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Abstract

In this thesis the theoretical and experimental treatment of the dynamics of a
large ensemble of two-level systems that are equally coupled to a bosonic mode is
presented. The connection to superradiance in open quantum systems is explored.
The experimental system is based on a 3D cavity with a reduced mode volume
and an ensemble of Nitrogen-Vacancy centers in diamond. With this system a
coherent population inversion in a macroscopic ensemble is reached for the first
time. The experiment is shown to agree well with the semiclassical theory.
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1. Introduction

Quantum mechanics is to this day one of the main topics of fundamental re-
search in physics. Over its history it has not only changed our understanding
of the world but also was of technological relevance. The laser is an example
for a high impact application of quantum mechanics. The transistor can also
be considered to be a quantum technology as well as imaging methods based
on nuclear magnetic resonance and advanced sensors based on the properties of
superconductors (SQUID).

In this work we will explore the phenomenon of superradiance which was first
predicted in 1954 [1] and is now enjoying renewed interest because of its rele-
vance for a new type of laser [2]. Furthermore, the superradiant phase transition
[3, 4] is now experimentally accessible [5, 6]. The first theoretical publications
about superradiance were focused on introducing the idea of superradiance in
vacuum and proposing experiments that would show that effect. However, there
were also publications that looked at superradiance in a closed system [7]. In
modern publications, that often focus on experimental realizations, these cases
are sometimes mixed which leads to misleading interpretations or presentations
of results.

In this thesis we will introduce the theoretical concepts that are necessary
for the treatment of superradiance and provide an intuitive explanation of the
effect. Furthermore, we establish the connection to the dynamics of a classical
dipole and explain the difference between superradiance in vacuum and in a
cavity. In the experimental part of this thesis we study the dynamics of a highly
excited ensemble of Nitrogen-Vacancy centers which corresponds to the case of
superradiance in a closed system. Shortly before this thesis was completed a
preprint was published [8] where the authors conduct very similar experiments
as in this thesis. However, the presentation suffers from the aforementioned
inaccuracies on which the treatment in this thesis can hopefully provide some
clarity.

The original idea for this thesis was to build a variation of a superradiant maser
as proposed in [9]. However, due to the cryogenic setting of our experiment and
the required strong optical pumping this proposal was not pursued further. In the
following section a short description of the superradiant laser is provided because
it constitutes the main motivation to pursue research related to superradiance.
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Chapter 1. Introduction

Figure 1.1.: Level scheme for the Helium-Neon laser.

1.1. Superradiant Laser

The defining feature of a laser is the coherence of emitted radiation, i.e. the emis-
sion spectrum has a narrow linewidth. Among other applications this property
is important for the measurement of time in atomic clocks [10–12], the detection
of gravity waves [13] and ground state cooling of nanomechanical oscillators [14].

A conventional laser consists of an incoherently pumped gain medium that
is located within a high finesse cavity. In the first laser, that could produce
continuous output, the gain medium was a Helium-Neon gas mixture that was
confined in a discharge tube. The Helium atoms were excited by collisions with
the electrons that were produced by the discharge tube. Then Helium atoms
transfered energy to the Neon atoms through collisions, which then radiatively
decayed. The energy level scheme for this setup is depicted in fig. 1.1. In such a
setup the photons are emitted in all directions with random phases because the
medium is far larger than the wavelength of the radiation and the Neon atoms
are uniformly spread out over the whole volume.

The second important component of a laser is the cavity. It captures the
photons that are in a specific spatial mode, thereby increasing the population
of this mode. The presence of photons in the cavity mode leads to stimulated
emission, i.e. a preferred decay of the gain medium into this mode. Therefore,
the cavity is similar to a filter. The spectral linewidth of the cavity determines
the linewidth of the laser. Current state of the art lasers are limited by thermal
fluctuations of the cavity mirrors to linewidths of 0.125-0.3 Hz [15, 16]. One way
to mitigate this effect is to use cryogenic single-crystal cavities [17]. Another
is to make the gain medium emit coherent radiation directly. This coherent
spontaneous emission is also called superradiance [2].

Superradiant or bad-cavity lasers are based on atomic ensembles that are con-
fined in optical lattices which are placed inside a cavity. However, in this case
the cavity mirrors must have a relatively high transmission rate and the average
photon number in the cavity mode should be � 1. As one can guess from this
requirement, stimulated emission plays a subordinate role in this concept. In-
stead, the effect of superradiance that leads to the collective enhancement of the
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dipole moment of a collection of atoms, is exploited.

As Dicke showed in 1954 [1], excited atoms that are separated by a distance
that is smaller than the wavelength of the emitted radiation, decay faster than
the same number of excited atoms that are far apart. This effect emerges be-
cause the atoms don’t decay independently but coherently. As will be shown in
section 2.5.3, this means that the rate of photon emission scales with N2, where
N is the number of atoms. This allows one to directly extract photons from
ultranarrow clock transitions at sufficiently high intensities. For example, the
spontaneously emitted radiation on the clock transition of 106 fully inverted and
independent 87Sr atoms is of the order of 10−16 Watt. If these atoms are coerced
into emitting coherently, the power increases to 10−12 Watt [2], which is sufficient
to use this radiation as a frequency reference.

The condition, that the atoms must be separated by a distance that is not larger
than the wavelength, requires one to make a very small cloud of atoms that has
a very high density to obtain sufficiently high output intensities. However, this
requirement can be relaxed by capturing relatively small numbers of atoms on
the sites of an optical lattice which is located inside a cavity. It was shown that if
the lattice sites coincide with the antinodes of the cavity mode and if the cavity
decay rate is not too large, correlations can emerge between atoms on different
lattice sites. The latter requirement is also called the collective strong coupling
regime.

The theoretical proposal was implemented in a Raman system [18] as a proof of
principle. In this case however, the frequency stability is limited by the stability
of the Raman lasers. Recently, superradiance of an ensemble of 87Sr atoms,
trapped in an optical lattice and enclosed by a cavity, was shown [19]. However,
no steady state superradiant laser on an ultranarrow clock transition has been
experimentally implemented yet.

There are many variants of optical atomic clocks that offer promising improve-
ments over current generation clocks that operate in the microwave regime. Be-
sides frequency stability one might also be interested in clocks that are less com-
plex and thus cheaper and easier to deploy.

Optical lasers had an exceptional impact on science and industry since their
invention. However, the very first ”laser” was operated in the microwave regime
- and was called maser for that matter. This type of lasers did not have as big
of an impact because of their immense complexity. They are either implemented
in atomic or free-electron systems that require vacuum chambers and pumping.
Solid state implementations on the other hand require cryogenic cooling. It has
been a long quest to build a room-temperature maser based on a solid state
system. Oxborrow et. al. demonstrated an implementation based on an organic
mixed molecular crystal in 2012 [20]. Unfortunately, organic materials can only
produce low output powers. The superradiant laser proposal led to the idea of
a maser based on Nitrogen-Vacancy centers in a diamond [9] that is not only
simple to implement but also allows relatively high output powers.
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1.2. Relevance for Other Quantum Technologies

The explanation of the effects that were discussed so far requires an understanding
of quantum mechanics, but the experimental realization does not require the
control of single quantum systems. In the history of quantum mechanics such a
high level of control was long considered to be impossible. Schrödinger famously
wrote [21]:

”
We never experiment with just one electron or atom or (small)

molecule. In thought-experiments we sometimes assume that we do;
this invariably entails ridiculous consequences... we are not experi-
menting with single particles, any more than we can raise Ichthyosauria
in the zoo.“

With the birth of Cavity Quantum Electrodynamics (CQED)[22] such level of
control became a reality and theorists began to think about how some of the
”ridiculous consequences” could be technologically exploited. This is the time
when first ideas about quantum computation emerged and culminated in a paper
by David Deutsch [23], that described a universal quantum computer. The quest
for an experimental realization of these ideas led to the development of many
experimental implementations of qubits (the basic building blocks of a quantum
computer), of which the superconducting qubit seems to be the most promising
one. The ability to control and engineer single quantum systems is believed to
lead to a second generation of quantum technologies that will have a great impact
in the areas of communication, computation and metrology.

While we do not deal with single quantum systems in this thesis, the theoretical
treatment and our experimental system are still relevant for the second generation
of quantum technologies. It was proposed that an ensemble of Nitrogen-Vacancy
centers [24, 25] or atoms [26] can serve as a quantum memory. Such a device
was experimentally implemented [27] in a similar system as was used for the
experiments in this thesis. In fact, a study of the spectral properties of the
Nitrogen-Vacancy centers and superradiance [25] was a necessary prerequisite
for the implementation of the quantum memory. However, the experimental
protocols might still be improved by considering the recently demonstrated cavity
protection effect [28] or by employing spectral hole burning to mitigate the effects
of inhomogeneous broadening [29]. But it should be noted that systems based
on superconducting qubits [30] or single 13C nuclear spins in the vicinity of a
Nitrogen-Vacancy center in diamond [31] so far show superior properties for the
use as quantum memories.
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1.3. Conventions and Notation

In this thesis we use the usual definitions of the Pauli and ladder operators

σz =

(
1 0
0 −1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σ± =

1

2
(σx ± iσy). (1.1)

With

σz |↑〉 = |↑〉 , σz |↓〉 = − |↓〉 ,
σ+ |↓〉 = |↑〉 , σ− |↑〉 = |↓〉 ,
σ+ |↑〉 ≡ 0, σ− |↓〉 ≡ 0.

The commutation relations are given by

[σa, σb] = 2iεabcσ
c, [σz, σ±] = ±2σ±. (1.2)

The collective operators

J± =
N∑
i=1

σ±i , Jz =
N∑
i=1

σzi . (1.3)

are denoted with the usual symbol for angular momentum operators but omit
the factor ~/2 that is common in the the angular momentum formalism. There-
fore, the commutation relations for the collective spin operators are equivalent
to the ones of the Pauli matrices and thus slightly different than in the angular
momentum formalism. Furthermore, the definition of the ladder operator has an
additional factor of 1/2

J± =
1

2
(Jx ± Jy). (1.4)

The eigenfunctions and eigenvalues of these operators can be defined as [32,
Chapter 6.2]

J2 |j,m〉 = j(j + 1) |j,m〉 , Jz |j,m〉 = 2m |j,m〉 , a†a |n〉 = n |n〉 . (1.5)

With

J2 |j,m〉 =

(
1

2
Jx

)2

+

(
1

2
Jy

)2

+

(
1

2
Jz

)2

=
1

2
(J+J− + J−J+) +

1

4
J2
z .

(1.6)

The operator signs were omitted where their omittance doesn’t lead to confu-
sion. Vectors are denoted as bold face symbols. The absolute values of vector
quantities are denoted by the same symbol as the vector but in regular face.





2. Theory

In this chapter we will introduce the theoretical tools that are needed to describe
the phenomenon of superradiance. First, we introduce basic models of light mater
interaction in closed systems in section 2.1 and section 2.2. Then, we provide
an introduction to the master equation which is used to model open quantum
systems. Based on it we derive the Maxwell-Bloch equations that model light
matter interaction in open quantum systems. In the last part of this chapter we
introduce the phenomenon of superradiance and discuss its phenomenology in
vacuum and in closed systems.

2.1. Jaynes-Cummings Model

One of the simplest models of light-matter interaction is the Jaynes-Cummings
model [33]. To derive the Jaynes-Cummings model we start with a Hamiltonian
that describes a two-level system - referred to as ”atom” in the following - that
is dipole-coupled to an oscillating field

H = Hfield +Hatom +Hint

= ~ωca†a+
~ωa
2
σz −

~Ω

2
(σ+ + σ−)(a† + a).

(2.1)

To be able to write the kinetic energy term of the atom as proportional to σz
we assume that there is a static external field that defines the quantization axis.
We can now choose the field amplitude of the bosonic mode to be facing in some
perpendicular direction to the static field and choose our coordinate system such
that this direction corresponds to the x axis. Note that this needs to be an
oscillating field because a static field in the x direction would simply tilt the
quantization axis. If the oscillating field has a z component, i.e. a component in
the direction of the static field, then the energy of the dipole transition becomes
time dependent. However, as we will see shortly, this fluctuation of the transition
energy can be neglected in a certain parameter regime.

In the interaction picture the equation of motion for an operator, that is time-
independent in the Schrödinger picture, is given by

dOI

dt
=
i

~
[H0, OI], (2.2)

with H0 denoting the non-interacting part of the Hamiltonian. Thus, in the
interaction picture σ+

I (t) = σ+eiωat, σ−I (t) = σ−e−iωat, a†I(t) = a†eiωct, aI(t) =

7
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ae−iωct. The Hamiltonian in the interaction picture reads

HI = −~Ω

2
(σ+a†ei(ωa+ωc)t + σ−a†e−i(ωa−ωc)t + σ+aei(ωa−ωc)t + σ−ae−i(ωa+ωc)t).

(2.3)
Note that the interaction picture is used to separate the part of the Hamiltonian
(H0) for which an exact solution is known. This part might contain interaction
terms. In this case one can not say that the time evolution of a product of two
operators is the product of the time evolutions of each individual operator as we
did above.

The Hamiltonian in eq. (2.3) can equivalently be written as

HI =− ~(ωc − ωa)
2

σz −
~Ω

2
(σ+a†ei2ωct + σ−a† + σ+a+ σ−ae−i2ωct)

=~(ωc − ωa)a†a−
~Ω

2
(σ+a†ei2ωat + σ−a† + σ+a+ σ−ae−i2ωat).

(2.4)

To obtain this form one sets the frequency of the atom equal to the frequency of
the field in H0 and to compensate for that adds a term that is proportional to
the difference of the frequencies to the interaction Hamiltonian (with the correct
sign). The derivation of these expressions can be done with eq. (2.2). Or, even
more generally, with the help of the Hadamard-Lemma

eXY e−X =
∞∑
m=0

1

m!
[X, Y ]m

with [X, Y ]m = [X, [X, Y ]m−1] and [X, Y ]0 = Y .

2.1.1. Rotating Wave Approximation

There are terms in the Hamiltonian that oscillate with the summed frequency
ωa+ωc and those that oscillate with the difference frequency ωa−ωc. In the case
that the field is in resonance with the atom, i.e. ωa ≈ ωc, and that Ω� ωa as well
as Ω
√
n+ 1� ωa, with n denoting the number of excitations in the the bosonic

mode, we can apply the Rotating Wave Approximation (RWA) and neglect the
terms that oscillate with the sum of the angular frequencies.

We will not provide a full proof of the validity of the RWA but instead give a
short intuitive example. Starting from the equation of motion in the interaction
picture

d

dt
|ψ(t)〉I = − i

~
HI(t) |ψ(t)〉I ,

we obtain the time evolution operator in the interaction picture

UI(t) = exp

[
− i
~

∫ t

0

Hint(τ) dτ

]
. (2.5)
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In the case of the Jaynes-Cummings model the relevant timescale for the integral
in eq. (2.5) is given by the inverse of the coupling constant Ω scaled with the
number of photons to Ω

√
n+ 1. Thus, if the interaction Hamiltonian contains

terms that are oscillating on a far smaller timescale than that, they average to
zero under the integral. This is the reason why - in a regime where the RWA
is valid - it is acceptable if the driving mode has a component in the direction
of the quantization axis. Such a setup will have a term like Hint = σz(a

† + a).
Since σz is constant in the interaction picture such an interaction term oscillates
with the frequency of the bosonic mode in the interaction picture and can thus
be neglected if the RWA is valid.

A recent state of the art circuit QED experiment (cavity QED with electrical
circuits) has reached a regime where Ω ≈ ωa [34]. Alternatively, this parameter
regime can also be reached in effective systems [6]. In both cases the RWA can
not be applied anymore.

2.1.2. Solution

Applying the RWA to eq. (2.3) and transforming back into the Schrödinger pic-
ture we obtain the Jaynes-Cummings Hamiltonian

HJC = ~ωca†a+
~ωa
2
σz −

~Ω

2
(σ+a+ σ−a†). (2.6)

We can now look at this Hamiltonian in the product basis of Fock and spin states
|n, ↑〉. One can see that the interaction term is degenerate with respect to |n, ↑〉
and |n+ 1, ↓〉, i.e. the Hamiltonian has a block diagonal form. The subspace
with a total of n excitations that are shared between the atom and the bosonic
mode looks like

H(n) = ~

nωc + ωa

2
Ω
2

√
n+ 1

Ω
2

√
n+ 1 (n+ 1)ωc − ωa

2

 .
There are two non-degenerate eigenvalues of H(n)

E±(n) = ~ωc
(
n+

1

2

)
± 1

2
~Ωn(∆) (2.7)

with ∆ = ωc − ωa and Ωn(∆) =
√

∆2 + Ω2(n+ 1). The eigenvectors are

|n,+〉 = sin

(
αn
2

)
|n+ 1, ↓〉+ cos

(
αn
2

)
|n, ↑〉 , (2.8)

|n,−〉 = cos

(
αn
2

)
|n+ 1, ↓〉 − sin

(
αn
2

)
|n, ↑〉 , (2.9)
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with αn = tan−1
(

Ω
√
n+1
∆

)
. These states are often referred to as dressed atomic

states. When the two-level system and the bosonic mode are in resonance, i.e
ωc = ωa, the eigenstates are given by

|n,±〉 =
1√
2

(
|n+ 1, ↓〉 ± |n, ↑〉

)
. (2.10)

2.1.3. Dynamics

The time evolution of an arbitrary initial state |ψ(0)〉 can now be computed by
projecting |ψ(0)〉 onto the states in eqs. (2.8) and (2.9).

|ψ(t)〉 =
∞∑
n=0

(
exp

(
− i
~
E

(n)
+ t

)
〈ψ(0)|n,+〉 |n,+〉

+ exp

(
− i
~
E

(n)
− t

)
〈ψ(0)|n,−〉 |n,−〉

)
.

(2.11)

For an initial number state in the bosonic mode |ψ(0)〉 = |n+ 1, ↓〉 and ωc = ωa
we get

|ψ(t)〉 = cos

(
Ωn

2
t

)
|n+ 1, ↓〉+ sin

(
Ωn

2
t

)
|n, ↑〉 . (2.12)

For a finite detuning ∆ = ωc − ωa this expression changes to

|ψ(t)〉 = exp

(
−iΩn

2
t

)
sin

(
αn
2

)
|n,+〉+ exp

(
i
Ωn

2
t

)
cos

(
αn
2

)
|n,−〉

=

(
exp

(
−iΩn

2
t

)
sin

(
αn
2

)2

+ exp

(
i
Ωn

2
t

)
cos

(
αn
2

)2
)
|n+ 1, ↓〉−

− 2i sin

(
Ωn

2
t

)
cos

(
αn
2

)
sin

(
αn
2

)
|n, ↑〉

=

(
cos

(
Ωn

2
t

)
+ i cos

(
Ωn

2
t

)
sin

(
αn
2
t

))
|n+ 1, ↓〉−

− i sin

(
Ωn

2
t

)
sin

(
αn
2
t

)
|n, ↑〉 .

(2.13)
It is immediately obvious that in the resonant case an occupation probability of
1 can be reached in the excited state of the atom while this is not possible in the
the off-resonant case. However, in the off-resonant case this probability can get
arbitrarily close to 1 if the number of excitations in the bosonic mode is large.

For brevity we will omit the explicit expressions of the time dependent wave
function for the case of a coherent initial state in the bosonic mode. They are
given by superpositions of eq. (2.13). The dynamics for this case are depicted
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in fig. 2.1. No matter whether the bosonic mode is on resonance or not a deter-
ministic ”π-pulse” is not possible if the bosonic mode is initially in a coherent
state. But the fidelity can be made arbitrary high by increasing the field intensity
(however, one should always keep in mind that the rotating wave approximation
will break down at some point). Whenever the bosonic mode is not in a specific
number state the solution is a superposition of multiple oscillations.

2.2. Tavis-Cummings Model

An extension of the Jaynes-Cummings model is the Tavis-Cummings model [35]
where one considers N two-level systems that are coupled to one bosonic mode.
Relative phases and interactions between the emitters are neglected in this model,
therefore it is better suited to describe a single higher-spin quantum system or
many two-level systems that are very close to each other, i.e. whose spatial
wave functions overlap. The Hamiltonian is a straightforward generalization of
eq. (2.6)

HJC = ~ωca†a+
~ωa
2

N∑
i

σzi − ~g
N∑
i

(σ+
i a+ σ−i a

†)

= ~ωca†a+
~ωa
2
Jz − ~g(J+a+ J−a

†)

(2.14)

Where we have used the collective operators defined in section 1.3. Their eigen-
states and eigenvalues are defined as

J2 |j,m〉 = j(j + 1) |j,m〉 , Jz |j,m〉 = 2m |j,m〉 , a†a |n〉 = n |n〉 . (2.15)

The free and interaction parts of the Hamiltonian commute. Therefore, it is
possible to find a basis that will diagonalize both parts simultaneously. The
eigenstates of the full Tavis-Cummings Hamiltonian can be labeled by j and
c = n+m where n denotes the number of photons and m one half of the eigenvalue
of the Jz operator (see section 1.3). Note that −j ≤ c < ∞. The eigenstates
of the Tavis-Cummings Hamiltonian can be written as a superposition of the
eigenstates of the free part

|j, c, i〉 =

c+j∑
n=c−j

A(j,c,i)
n |n〉 |j, c− n〉 . (2.16)

Here i is merely a label to distinguish states that have the same j and c. The
full solution is derived in [35]. The eigenstates of the Tavis-Cummings system are
dressed states of a spin N/2 system just like the Jaynes-Cummings eigenstates
are dressed states of a spin 1/2 system. However, the number of states within
each rung of the energy ladder now increases with the number of excitations in
the system till it reaches the maximal value 2j + 1 as is obvious from the sum
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(a) Occupancy of the excited state of the
two level system for |ψ(0)〉 = |1, ↓〉.
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(c) Occupancy of the excited state of the
two level system for a coherent initial
state in the bosonic mode |ψ(0)〉 =
|α = 2, ↓〉.
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(d) Mean number of excitations in the
bosonic mode for a coherent initial state
in the bosonic mode |ψ(0)〉 = |α = 2, ↓〉.
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(e) Occupancy of the excited state of the
two level system for a coherent sate with
α = 5.
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(f) Occupancy of the excited state of the
two level system for a coherent sate with
α = 5.

Figure 2.1.: Dynamics of the Jaynes-Cummings model for different initial con-
ditions. Solid line: bosonic mode and two level system in reso-
nance. Dashed line: bosonic mode and two level system detuned
with ∆ =

√
3Ω.



2.2. Tavis-Cummings Model 13

Figure 2.2.: Energy level structure of the first two excited states of the Jaynes-
Cummings (left) and Tavis-Cummings model with N two-level sys-
tems (right). For N � 1 the transitions t∗1 and t∗2 are at ω0 + g

√
N

and ω0 − g
√
N respectively. The transition t∗0 is highly suppressed

which makes the ladder harmonic for N � 1. The figure is repro-
duced from [36].

in eq. (2.16). The energy level structure for the Jaynes-Cummings and Tavis-
Cummings models are compared in fig. 2.2.

To illustrate some of the properties of the Tavis-Cummings model we present
the eigenstates for a few special cases. For a single excitation of the system
c = −j + 1, thus the sum in eq. (2.16) has only two terms. This corresponds
to the first rung of the dressed ladder that consists of two states which we label
with − and +

|j, 1,±〉 =
1√
2

(|1〉 |j,m = −j〉 ± |0〉 |j,m = j〉). (2.17)

The eigenenergies for these states are

E± = ~ωc ±
√
N~g (2.18)

Note that we have set the ground state energy to 0 instead of the usual ~ωc/2.
For completeness we write the angular momentum eigenstates in the individual
emitter basis (sometimes referred to as the computational basis)

|j,m = −j〉 = |↓, ↓, . . . ↓〉 , |j,m = −j + 1〉 =
1√
N

N∑
i

|↓, . . . ↑i, . . . ↓〉 . (2.19)

In quantum information theory the latter state is referred to as the ”W-state”.
For a system that consists of two emitters each rung of the ladder will have
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maximally three states. These states are given by [37]

|j = 1, c, 0〉 =

√
c+ 1

2c+ 1
|J = 1,m = 1〉 |c− 1〉 −

√
c

2c+ 1
|J = 1,m = −1〉 |c+ 1〉 ,

|j = 1, c,±1〉 =

√
c

2(2c+ 1)
|J = 1,m = 1〉 |c− 1〉

+

√
c+ 1

2(2c+ 1)
|J = 1,m = −1〉 |c+ 1〉 ±

√
1

2
|J = 1,m = 0〉 |c〉 ,

(2.20)
it is implied that the number of excitations is at least two and thus c ≥ 1. The
eigenenergies for these states are

Ec,0 = (c+ 1)~ωc, Ec,±1 = (c+ 1)~ωc ± 2~g
√
c+

1

2
. (2.21)

Here, g denotes the single two-level system coupling. A discussion of the energy
spectrum of the Tavis-Cummings model can be found in [36].

2.2.1. Approximations

Experimental realizations of the Tavis-Cummings model often feature high num-
bers of emitters as well as high occupation numbers of the bosonic mode. One
would expect that in both of these cases the system approaches a classical limit
in some sense. In this section we will explore various approximations for the
Tavis-Cummings model.

The first approximation is based on the Holstein-Primakoff transformation [38]

J+ = b†
√

2j − (b†b), J− =
√

2j − (b†b)b, Jz = b†b. (2.22)

This transformation is exact. It transforms an ensemble of non-interacting two-
level systems into an interacting bosonic system. The correspondence between
the bosonic and the spin sates is given by

|j,m = −j + n〉 = |n〉 . (2.23)

For a small number of excitations relative to the total number of emitters, i.e.
〈b†b〉 � j, the bosons are interacting only weakly and the Holstein-Primakoff
approximation can be made

J+ = b†
√

2j

√
1− b†b

2j
≈ b†, J− =

√
2j

√
1− b†b

2j
b ≈ b, Jz = b†b. (2.24)

This transforms the Tavis-Cummings model into a model of two interacting
bosonic modes. An analytical solution for such a system exists not only in the
case of Hamiltonian dynamics, but also when decay channels are introduced [39].
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Another limit to consider is the high excitation limit where c � j. The im-
plications of it become obvious when looking at the states in eq. (2.20). The
contributions from the |j = 1,m = 1〉 and |j = −1,m = −1〉 states become sym-
metric

|j = 1, c, 0〉 ≈
√

1

2
|J = 1,m = 1〉 |c〉 −

√
1

2
|J = 1,m = −1〉 |c〉 ,

|j = 1, c,±1〉 ≈
√

1

4
|J = 1,m = 1〉 |c〉+

√
1

4
|J = 1,m = −1〉 |c〉

±
√

1

2
|J = 1,m = 0〉 |c〉 ,

(2.25)

The dynamics of the spin part of the wave function for the cases c = j and c� j
are plotted in fig. 2.3. For the case c� j we have also added the dynamics of 3
two-level systems that are directly driven by a classical field with amplitude η.
Such a setup is described by

H =
~ω
2
Jz + ~gη(J+e

−iωt + J−e
iωt). (2.26)

The solution to this Hamiltonian is given by the spin coherent state

|ψ(t)〉 =
3∏
i=1

(
cos(gt) |↑〉i + sin(gt) |↓〉i

)
, (2.27)

The dynamics of the emitter ensemble increasingly resembles the dynamics of
independently driven two level systems as it is given by the spin coherent state.
Note that this statement is independent of the coupling strength g. A proper
comparison of the time evolution due to the Tavis-Cummings Hamiltonian and
the spin coherent state would require us to trace over the bosonic states which
would give us a mixed state which is classified by N2 complex numbers. However
as eq. (2.25) suggests, with increasing c the total wave function looks similar to a
product of the emitter state and the state of the bosonic mode. Tracing over the
bosonic states in this case produces a pure emitter state with N real coefficients.
Therefore, the comparison in fig. 2.3 where we only plot the time evolution of
the occupation probabilities of the basis states, is valid.

We have discussed the limits of very low and very high bosonic excitation. An
other interesting limit is the case where the number of two-level systems is very
large. The level splittings of the ladder of eigenstates arise due to the interaction
term (J+a + J−a

†) and since J± are nonlinear operators we expect to get an
additional anharmonicity in addition to the

√
n anharmonicity of the bosonic

operators in the Jaynes-Cummings model. Keeling [40] explores the scaling of this
anharmonicity and finds that it decreases with the number of two-level systems
albeit very slowly. He concludes that the effects due to the anharmonicity are
still relevant even for 106 emitters.
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Figure 2.3.: Time dependent occupation probabilities of the different collective
emitter states |j,m〉 for the cases c = j (left) and c = 2j+20 (right).
The dotted lines in the right panel show the solution to eq. (2.26).

One further approximation that is relevant for the study of the Tavis-Cummings
model is the semiclassical approximation. It is applicable when the single emitter
coupling g is smal. In this case all operator correlation functions are replaced by
the single operator expectation values, i.e. all quantum correlations are neglected.
As pointed out in [40] the semiclassical approximation also amounts to assuming
that the spacing between the energy eigenstates within each subspace of constant
c of the dressed energy ladder is equal, i.e. that there is no anharmonicity. This
approximation will be further discussed in section 2.4.

2.3. Master Equation

So far we have discussed closed quantum systems whose time evolution is gov-
erned by unitary Hamiltonian dynamics. However, any real system will not be
perfectly isolated from the environment. In this case it is called an open quantum
system. Similar to classical systems with dissipative channels its dynamics will be
damped. The correct way to introduce damping in a quantum system is through
the means of the master equation, since a naive introduction of a damping term
in the equations of motion of quantum operators would make their commutation
relations decay in time. We can only provide a short introduction to the topic
here and the interested reader is referred to the excellent treatment in [41] which
we follow closely.

In the following we use the subscript S to label operators that live in the
Hilbert space of the system and R to label the operators of the reservoir, i.e.
the environment. We start with the observation that the expectation values of
system operators only depend on the density matrix of the system

〈OS〉 = TrS⊗R(OSχ(t)) = TrS(OS TrR(χ(t))) = TrS(OSρ(t)). (2.28)

Where we have identified the partial trace of the full density matrix χ(t) to
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correspond to the system density matrix

ρ(t) = TrR(χ(t)). (2.29)

To determine the time evolution of ρ(t) we write the full Hamiltonian

H = HS +HR +HSR. (2.30)

HSR contains the interaction terms between the system and the reservoir. The
time evolution of the full density matrix in the interaction picture

χ̃(t) = e(i/~)(HS+HR)tχ(t)e−(i/~)(HS+HR)t, (2.31)

is given by

˙̃χ(t) = − i
~

[H̃SR(t), χ̃(t)]. (2.32)

Formal integration of this equation yields

χ̃(t) = χ̃(0)− i

~

∫ t

0

dt′[H̃SR(t′), χ̃(t′)]. (2.33)

Plugging this back into eq. (2.32) gives

˙̃χ(t) = − i
~

[H̃SR(t), χ(0)]− 1

~2

∫ t

0

dt′[H̃SR(t), [H̃SR(t′), χ̃(t′)]]. (2.34)

If the reservoir couples weakly to the system and if it is sufficiently large we can
assume that the density operator of the reservoir remains constant over time. We
denote it as R0 and assume that the full density matrix at t = 0 is a product of the
density matrices of the system and the reservoir. Then the full time-dependent
density matrix has the following form

χ̃(t) = ρ̃(t)R̃0 +O(H̃SR(t)). (2.35)

We can further assume that TrR(HSR(t)R0) = 0 because if this is not the case
this term can always be absorbed in the definition of the system density matrix.
We can now plug eq. (2.35) into eq. (2.34), take the partial trace over the reservoir
and neglect terms higher than second order in H̃SR, obtaining

˙̃ρ(t) = − 1

~2

∫ t

0

dt′[H̃SR(t), [H̃SR(t′), ρ̃(t′)R̃0]]. (2.36)

This is referred to as the Born approximation. Another approximation that is
commonly applied is the Markov approximation. One assumes that the inter-
action with the reservoir only depends on the current system state, i.e. ρ̃(t′) is
replaced with ρ̃(t) yielding the master equation in the Born-Markov approxima-
tion [32, Eq. 1.31]

˙̃ρ(t) = − 1

~2

∫ t

0

dt′[H̃SR(t), [H̃SR(t′), ρ̃(t)R0]]. (2.37)



18 Chapter 2. Theory

The Markov approximation is only valid if the changes introduced to the reservoir
due to the interaction with the system, decay faster than the timescale on which
ρ̃(t) varies. To continue further one has to specify more details about the reservoir
and HSR. We assume linear coupling in the system operators

HSR = ~
∑
i

siΓi, (2.38)

where si denotes system operators and Γi the reservoir operators including cou-
pling constants. If the open quantum system under study is a harmonic oscillator
this term looks like

HSR = ~
∑
i

(ar†i + a†ri) = ~(aΓ† + a†Γ). (2.39)

In the course of the further derivation we have to evaluate correlation functions
of the environment operators which will require us to make assumptions about
the density of states of the environment and the occupation of these states due to
finite temperature. Furthermore it turns out that the coupling to the environment
changes the unitary time evolution. In the case of a two-level system or atom
coupled to the environment this corresponds to the Lamb shift and a temperature
dependent frequency shift that can be interpreted as an AC-Stark shift due to
the thermal photons. For brevity the derivation is omitted here and the reader is
again encouraged to follow the treatment in [32]. We only state the final result
for a finite temperature environment that consists of harmonic oscillators. In the
Schrödinger picture, neglecting the changes to the unitary time evolution due to
the coupling to the environment, the time evolution of the system density matrix
is governed by

ρ̇ = − i
~

[HS, ρ]+
∑
i

γi
2

(n̄+1)(2siρs
†
i−s

†
isρ−ρs

†
isi)+

∑
i

γi
2
n̄(2s†iρsi−sis

†
iρ−ρsis

†
i ).

(2.40)
Indeed, there exists a proof that the most general equation that preserves the
trace of ρ must be of Lindblattform

ρ̇ = − i
~

[HS, ρ] +
∑
i

Γi
2

(2siρs
†
i − s

†
isiρ− ρs

†
isi). (2.41)

2.4. Maxwell-Bloch Equations

In experiments one measures expectation values of operators because the quan-
tum mechanical wave functions are not directly accessible. Therefore, it is in-
teresting to derive the equations of motion for some of these quantities. For the
Jaynes-Cummings model, these equations together with the semiclassical approx-
imation, i.e. 〈ÂB̂〉 = 〈Â〉 〈B̂〉, are called the Maxwell-Bloch equations (MBE).
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The semiclassical approximation in this context is sometimes also referred to as
the mean field approximation.

The Maxwell-Bloch equations are usually derived in the rotating frame. Since it
is easily confused with the interaction picture we shortly explain the difference in
the following. In the interaction picture one splits the Hamiltonian H = H0+Hint

into two parts and transforms it according to

HI = eiH0t/~He−iH0t/~. (2.42)

The time evolution of the operators is governed by H0 according to

ȮI =
i

~
[H0, OI], (2.43)

as already stated in eq. (2.2). While the evolution of the density matrix is
governed by HI

ρ̇I = − i
~

[HI, ρI]. (2.44)

This ensures that the expectation values are the same as in the Schrödinger
picture 〈O〉 = Tr(Oρ) ≡ Tr(OIρI). The rotating frame on the other hand is
introduced to make the time dependent terms in the Hamiltonian time indepen-
dent. For the example of a Jaynes-Cummings model where the bosonic mode is
coherently driven with an oscillating classical field with angular frequency ωd

HJC = ~ωca†a+
~ωa
2
σz −

~Ω

2
(σ+a+ σ−a†) + η(a†e−iωdt + aeiωdt), (2.45)

the transformation into the rotating frame is given by (note the ωd dependence)

HR = eiωda
†a+

ωd
2
σzHe−iωda

†a+
ωd
2
σz , (2.46)

yielding the Hamiltonian in the rotating frame

HR = ~∆ca
†a+

~∆a

2
σz −

~Ω

2
(σ+a+ σ−a†) + η(a† + a). (2.47)

However, now the operators and the density matrix evolve according to the same
Hamiltonian HR, i.e. the formalism is the same as in the Schrödinger picture
and not like in the interaction picture. The expectation values of operators
are different and one has to be careful when comparing theoretical results with
experimental data (see footnote in section 3.2).

To derive the Maxwell-Bloch equations we start with an open quantum system
whose unitary dynamics are described by the Tavis-Cummings model and that
has various loss channels. We start with the master equation and model the loss
channels with Lindblatt terms. We will furthermore assume that the temperature
of the environment is low enough so that the thermal occupation of energy levels
around ~ω is zero (n̄ = 0 in eq. (2.40)). The cavity damping is described by

Lcavity(ρ) = κ(2aρa† − a†aρ− ρa†a). (2.48)
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We also introduce a non-radiative spontaneous decay channel for the emitters. In
a solid this models the process where an excited emitter decays and produces a
lattice excitation. We assume that the damping acts on each emitter individually,
which is why we use the single emitter operators σ− instead of J− in the Lindblatt
term, obtaining

Ldecay(ρ) = γ‖

N∑
i

(2σ−i ρσ
+
i − σ+

i σ
−
i ρ− ρσ+

i σ
−
i ), (2.49)

where N denotes the number of emitters. There can also be purely phase destroy-
ing processes like elastic collisions in atomic vapor or elastic phonon scattering.
We can model these processes with the following Lindblatt term

Ldephasing(ρ) = γ⊥

N∑
i

(2σzi ρσ
z
i − 2ρ), (2.50)

where we have used the property σzσz = 1. This term is purely phenomenolog-
ical and its form is determined by the requirement that it should not affect the
expectation value of σ̇z = Tr(σzρ̇), i.e. it should not lead to decay.

Beside dephasing and decay an excitation channel of the system should be
included. One way to do that is to flip the sign on the terms that cause decay.
This approach is used to model incoherent pumping. This way of modeling
pumping is useful if one considers only a part of the quantum system in the
Hamiltonian evolution but uses other parts to excite it. This can be a three level
system of which only the levels one and two are relevant for the unitary evolution
but a transition from the first to the third level, which consequently decays to
the second, is used to excite the system.

A system can also be driven coherently which means that a transition is excited
directly. Such a driving term leaves the system in a pure state which is why it is
usually written as a part of the Hamiltonian. An example for a driven bosonic
mode would be

Hdrive = i~η cos(ωdt)(a
† − a). (2.51)

And with the rotating wave approximation applied

Hdrive = i~η(a†e−iωdt − aeiωdt). (2.52)

The drive strength η can be related to the power of the drive by η =
√
κdriveP ,

where κdrive is the coupling of the drive to the bosonic mode and P denotes
the power (or amplitude squared) of the drive. Further details are provided in
section 3.2.

The full Hamiltonian is given by

H = ~ωca†a+
~ωa
2
Jz + ig(a†J− − aJ+) + i~η(a†e−iωdt − aeiωdt). (2.53)
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Transforming into the rotating frame and assuming ωd = ωa = ωc we obtain

H = ig(a†J− − aJ+) + i~η(a† − a). (2.54)

The corresponding master equation is

ρ̇ = g[a†J− − aJ+, ρ]− iη[a† + a, ρ] + κ(2aρa† − a†aρ− ρa†a)

+ γ‖

N∑
i

(2σ−i ρσ
+
i − σ+

i σ
−
i ρ− ρσ+

i σ
−
i ) + γ⊥

N∑
i

(2σzi ρσ
z
i − 2ρ).

(2.55)

Now we can write the equations of motion for the expectation values of all relevant

operators by using the property 〈Ô〉 = Tr(Ôρ̂) and 〈 ˆ̇O〉 = Tr(Ô ˆ̇ρ). For the last
relation to hold true we need to be in the Schrödinger picture becuase we need
to commute the time derivative and the operator Ô. We obtain [41, Chapter 15
and 16]

〈ȧ〉 = −κ 〈a〉+ g 〈J−〉+ η (2.56)

〈ȧ†〉 = −κ 〈a†〉+ g 〈J+〉+ η (2.57)

〈J̇−〉 = −(γ‖ + γ⊥) 〈J−〉+ g 〈Jza〉 (2.58)

〈J̇+〉 = −(γ‖ + γ⊥) 〈J+〉+ g 〈Jza〉 (2.59)

〈J̇z〉 = −2γ‖(〈Jz〉+ 1)− 2g(〈J+a〉+ 〈J−a†〉) (2.60)

Note that the factor 2g in the last equation depends on the convention that one
uses for the collective operators. This is not a closed set of equations since there
are new expectation values like 〈Jza〉 whose equations of motion we need to add
to the above set. These additional equations will contain higher order correlations
and the process will continue till the equations for all possible correlation func-
tions are derived. This set will quickly become prohibitively large for numerical
integration. However, if the coupling g is small, we can make the semiclassical
approximation 〈ÂB̂〉 = 〈Â〉 〈B̂〉, thus neglecting all quantum correlations. This
of course does not mean that the observables become uncorrelated in the classical
sense! Classical correlations between observables will in fact become important
in the following treatment of superradiance. Due to our specific choice of phase
in the driving and dipole coupling terms, the equations for 〈ȧ〉 and 〈ȧ†〉 as well
as 〈J̇−〉 and 〈J̇+〉 are identical, which allows us to reduce the four equations to
two real equations.

〈ȧ〉 = −κ 〈a〉+ g 〈J−〉+ η (2.61)

〈J̇−〉 = −(γ‖ + γ⊥) 〈J−〉+ g 〈Jz〉 〈a〉 (2.62)

〈J̇z〉 = −2γ‖(〈Jz〉+ 1)− 4g 〈J−〉 〈a〉 (2.63)

This is an extended form of the the Maxwell-Bloch equations which includes the
additional dephasing term γ⊥. These equations are studied in many fields from
Nuclear-Magnetic-Resonance (NMR) research over laser physics to optics.
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In section 2.2.1 we discussed the Holstein-Primakoff approximation where one
replaces the spin operators J± with bosonic operators in the Hamiltonian. This
approximation can also be done on the level of the equations of motion by setting
〈Jz〉 ≡ −N , which also amounts to neglecting eq. (2.63). It is useful in the
exploration of the low excitation regime and various extensions of the Maxwell-
Bloch equations [39, 42].

2.4.1. Numerical Analysis for a Single Emitter

To understand the phenomenology behind the Maxwell-Bloch equations we first
consider the case without dissipation, i.e. γ‖ = 0, γ⊥ = 0, κ = 0 and solve the
equations numerically. Example solutions are plotted in fig. 2.4. It can be seen
that the dynamics resemble those of a classical dipole. The upper panels show
the case where a single emitter starts out in its ground state with less than one
excitation in the bosonic mode, i.e. 〈a(0)〉 < 1. The latter condition means that
the emitter will never reach the fully excited state. The energy in the system
oscillates between the bosonic mode and the emitter.

The lower panels of fig. 2.4 show the case where the number of bosonic exci-
tations corresponds exactly with the number of emitters. After the emitter has
absorbed the excitation from the bosonic mode it remains in the excited state
just like a pendulum would, if one kicks it such that by the time it reaches the
fully inverted position its kinetic energy becomes zero. This is a metastable state
which becomes immediately obvious when one considers the form of the Maxwell-
Bloch equations. In this state 〈a〉 = 0 and 〈J−〉 = 0 which means that eq. (2.62)
decouples completely from the emitter equations.1

In fig. 2.5 another interesting feature is visible. If there is less than one exci-
tation in the bosonic mode then the period of the oscillation increases with the
mean number of excitations, becoming infinite for n = 1. Above this threshold
the period decreases again. This is different from the dynamics of the full quan-
tum mechanical Jaynes-Cummings model where for the case n ≤ 1 the period of
the oscillation is independent of n. For an initial state like

|ψ(0)〉 =
1√

A2 +B2
(A |0〉+B |1〉) |↓〉 , (2.64)

the time evolution is given by

|ψ(t)〉 =
1√

A2 +B2

[
A |0, ↓〉+B

(
cos (gt) |1, ↓〉+ sin (gt) |0, ↑〉

)]
. (2.65)

Next, we explore the effects of decoherence and decay on the dynamics. Fig-
ure 2.6 shows the dynamics in the presence of dephasing and bosonic mode decay

1Due to the finite precision in a numerical simulation the metastable state will never be
reached exactly, unless set as the initial state by hand. Therefore, an oscillation with a
finite period will always be present.
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Figure 2.4.: Numerical solutions of the Maxwell-Bloch equations without dissipa-
tion (γ⊥,‖ = 0, κ = 0) in eqs. (2.62) to (2.63) for a single emitter in

the ground state, i.e. 〈Jz(0)〉 = −1, 〈J−(0)〉 = 0 and 〈a(0)〉 =
√

0.9
(upper panels) as well as 〈a〉 = 1 (lower panels).
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Figure 2.5.: Numerical solutions of the Maxwell-Bloch equations without dissipa-
tion (γ⊥,‖ = 0, κ = 0) in eqs. (2.62) to (2.63) for a single emitter in

the ground state, i.e. 〈Jz(0)〉 = −1, 〈J−(0)〉 = 0 and 〈a(0)〉 =
√

0.5
(pink), 〈a(0)〉 =

√
0.9 (green) and 〈a(0)〉 =

√
2 (blue).
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Figure 2.6.: Dynamics for a single emitter in a half excited initial state and no
bosonic excitations |ψ(0) = (1/

√
2) |0〉 (|↑〉+ |↓〉)〉 with g, κ, γ⊥ = 1

and γ‖ = 0.

γ⊥ = κ 6= 0 but without emitter decay γ‖ = 0. When the initial state of the
emitter contains some excitation and g ≈ κ, γ⊥, most of it gets trapped in the
emitter because its polarization decays quicker than it can transfer the excita-
tions to the bosonic mode. Note that the trapping will not happen if there is no
cavity decay because the 〈Jz〉 〈a〉 term in the derivative of 〈J−〉 will be non-zero
and introduce small amounts of polarization that allow the transfer of excitations
from the emitter to the bosonic mode.

More interesting features emerge when the drive term η is included. Figure 2.7
shows the dynamics with emitter dephasing and bosonic mode decay (the emitter
decay γ‖ is set to 0). The excitations oscillate between the bosonic mode and
the emitter till 〈a〉 and 〈J−〉 reach a steady state. But the emitter continues
to absorb excitations that are pumped into the system by the drive, i.e. 〈Jz〉
increases. A steady state will eventually be reached as soon as 〈Jz〉 becomes 0
which will force 〈J−〉 to become 0 too.

This case is shown in the upper panels of fig. 2.8. As soon as 〈Jz〉 reaches
0, oscillations set in again. This can be analyzed by linearizing the Maxwell-
Bloch equations around that steady state. Lastly we add emitter decay γ‖ to the
analysis and see that we obtain an additional steady state where both 〈Jz〉 and
〈J−〉 are non-zero. When the drive is turned off, this leads to oscillations since
the emitter can again release its excitations into the bosonic mode without being
reexcited by the drive.

For the case where all emitter dephasing and decay channels are zero, i.e.
γ⊥ = 0 and γ‖ = 0, there are three cases that can to be distinguished. They are
discussed in [41, Chapter 16.3.1] in great detail and are mentioned here briefly for
completeness. The three cases are classified by η/g < 1/2, η/g = 1/2 and η/g >
1/2. In the first case the emitter polarization cancels the drive, i.e. the emitter
destructively interferes with the driving field. Since there are no dephasing and
decay channels a finite polarization of the emitter also implies a finite excitation.
The bosonic mode on the other hand decays to 0. In the second case the emitter
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Figure 2.7.: Dynamics of a single emitter for γ⊥ = κ = 1, γ‖ = 0 and g = 5. The
shaded area shows the period of time when the drive term η is set to
0.2.

polarization reaches its maximum and barely cancels the drive. This drive is
called the critical drive. In the last case the emitter can not fully cancel the
external field which leads to oscillations.

The effects of additional emitters will be discussed at the end of the next
section, after the phenomenon of superradiance has been introduced.

2.5. Superradiance - Coherent Spontaneous
Emission

2.5.1. Dicke’s Thought Experiment

In the previous sections we have introduced the necessary tools and models to
study the main topic of this thesis - superradiance. This phenomenon was first
described by Dicke in 1964 [1]. He considered a dipole coupled emitter - emitter
A - initialized in its excited state. Such an emitter will spontaneously decay to its
ground state. If we introduce a second emitter - lets call it B - in its ground state,
the wave function of the combined system will be the product of the individual
wave functions. It is furthermore assumed that the emitters are far enough apart
so that the symmetry properties of the total wave function do not have to be
considered. This product wave function can be expressed as a superposition of a
singlet and triplet state

|ψ〉 = |↑, ↓〉 =
1

2
(|↑, ↓〉+ |↓, ↑〉) +

1

2
(|↑, ↓〉 − |↓, ↑〉). (2.66)

The dipole operator for the whole system is given by

d = (σ−A + eikrABσ−B) + (σ+
A + e−ikrABσ+

B). (2.67)

If the distance between the two emitters rAB is small compared to the wavelength
that corresponds to the energy difference between the excited and ground states,
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Figure 2.8.: Dynamics of a single emitter for γ⊥ = κ = 1, γ‖ = 0 and g = 5. The
shaded area shows the period of time when the drive term η is set
to 1. The upper panels show the case without emitter decay γ‖ = 0
and the lower panels the case with γ‖ = 1. Note that for sufficiently
high drive terms η the lower panels would look similar to the upper
ones.
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then we can set the phase factor to 1. This is the case that Dicke considered
in his thought experiment. In this case the dipole moment of the singlet part
of the wave function becomes 0 which prevents this part of the wave function
from decaying. This is very similar to classical interference of electromagnetic
fields which is dependent on the phase relation of the emitters. However, while
for classical dipoles the phase can only be encoded in the temporal or spatial
domain, there is also the phase of the wave function in the quantum case.

The triplet part will decay exponentially on a timescale tt that can be com-
puted with Fermi’s Golden rule. But this will only lead us to the probability of
decay conditional on the system being in the triplet state. The probability of
finding both emitters in their ground states for t� tt is 1/2, because this is the
probability to find the system in the triplet state. This is very different from the
case without emitter B, where the probability of finding emitter A in its ground
state would reach 1. We also note that if the emitters were prepared in the triplet
state, both would reach the ground state with absolute certainty and do so at a
rate that is twice as large as the spontaneous emission rate for a single emitter.

2.5.2. Coherence

Dicke used the above example to illustrate the importance of interference phe-
nomena and therefore coherence, for the spontaneous emission process. Coher-
ence for classical emitters means that their emitted radiation has a constant phase
relation. Ideally one wants all emitters to have exactly the same phase so that
their emitted fields can constructively interfere. Assuming that we have N waves
with unit amplitudes and phases φi ∈ [0, 2π] propagating in one dimension, the
intensity at some point in space at time t is given by

I(t) =
N∑
i,j

cos(ωt+ φi) cos(ωt+ φj)

=
N∑
i

cos(ωt+ φi)
2 +

N∑
i 6=j

cos(ωt+ φi) cos(ωt+ φj).

(2.68)

If the waves have random phases, i.e. if they were emitted incoherently, the
second term is going to average to 0 and thus the intensity will scale with N . In
the case of coherent radiation - where all phases are equal - the second term is
not zero and the intensity scales with N2. For quantum emitters, separated by
a distance smaller than the wavelength, a difference in phase can either emerge
through the phases within the collective wave function, like in Dicke’s thought
experiment, or through a difference in the time evolution of their respective wave
functions. If the wave function is symmetric under emitter permutation, then all
emitters must have the same phase. If the wave function has this symmetry for
all times then the phase due to the time evolution is also equal. Therefore, if the
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permutation symmetry condition is fulfilled for all times, the emission process is
coherent.

The states that are symmetric under emitter permutations are those that share
excitations equally among all emitters. We can obtain these states by starting in
the state where all emitters are excited and apply the collective ladder operator
as defined in eq. (1.4). The initial state clearly fulfills the symmetry requirement
and has the highest number of excitations while the ladder operator can not break
the symmetry since it is itself symmetric. In this way we can generate all fully
symmetric states labeled by the number of excitations. The normalized states
are given by [43, Equation 2.6]

|j,m〉 =

√
(j +m)!

N !(j −m)!

1

2

N∑
i

σ−i

j−m

|↑, ↑, . . . ↑〉 . (2.69)

With j = N/2 and −j ≤ m ≤ j where N denotes the number of emitters. In
the context of superradiance these states are usually referred to as Dicke states,
but they are identical to angular momentum eigenstates. That means that the
conversion between the individual and the symmetric basis could also have been
done through the Clebsch-Gordan formalism. The initial state corresponds to
|j,m = j〉 and the ladder operator is just the same as in the angular momentum
formalism. Importantly, any superposition of these states will also be symmetric
under emitter permutation. While each of these states features entanglement
among the emitters there are superpositions that do not. For example, the prod-
uct states

|ψθ〉 =
N∏
i=1

(
cos(θ) |↑〉i + sin(θ) |↓〉i

)
, (2.70)

can be expressed as superpositions of |j,m〉 with j fixed to N/2. One way to
see that this is true is to observe that any set of |j,m〉 states with a fixed j
forms a complete basis for a subspace of the Hilbert space of the corresponding
symmetry. Another way to see this is to consider the Hamiltonian that describes
a single emitter that is coherently driven by a classical field with amplitude η

H =
~ω
2

∑
i

σzi +~g
∑
i

(σ+
i e
−iωt+σ−i e

iωt) =
~ω
2
Jz+~gη(J+e

−iωt+J−e
iωt). (2.71)

The solution is given by the time dependent spin coherent states with θ = gt. As
the collective operator notation suggests, the time evolution due to this Hamil-
tonian always stays within a subspace that is spanned by the |j,m〉 states. As
will be shown in the next section, the intensity of radiation in this case can be
computed with

I = I0 〈J+J−〉 = I0

 N∑
i

〈σ+
i σ
−
i 〉+

N∑
i 6=j

〈σ+
i σ
−
j 〉

 . (2.72)
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For a spin coherent state the second term will not be zero which means that the
intensity will still scale with N2. We went through this exercise to demonstrate
that the entanglement of the triplet state in Dicke’s thought experiment is not a
necessary condition for coherence.

2.5.3. Superradiance in Vacuum

In his original work Dicke considered an ensemble of dipoles that is coupled to
a vacuum mode. In the formalism of the master equation that corresponds to
an environment that consists of a single oscillator at zero temperature, i.e. an
environment that can absorb radiation with momentum vectors in all possible
directions but only of one particular energy.2 We know that the operators J±
are the ones that enter the dipole coupling and thus couple the system to the
environment. Therefore, the only thing that we need to do is plug them into the
Lindblatt master equation that we derived in eq. (2.41). The Hamiltonian of the
ensemble is given by H = ~ω

2
Jz, but it will be omitted in the following because

we will be working in the rotating frame. We obtain the superradiance master
equation

ρ̇ =
γ‖
2

(2J−ρJ+ − J+J−ρ− ρJ+J−), (2.73)

where γ‖ corresponds to the single emitter decay rate. The amazing insight of
Dicke was that due to the collective coupling to the environment the system
will not leave the symmetric subspace of the initial state and therefore feature
coherence effects. Note that the above equation is very different from

ρ̇ =
γ‖
2

N∑
i

(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−), (2.74)

where there are no coherence effects and each emitter is damped independently of
the rest. Because of the preserved symmetry it makes sense to express the above
equation in the |j,m〉 basis. Furthermore, we note that the off-diagonal terms
of the density matrix are not coupled to the diagonal ones. The superradiance
master equation for the diagonal terms of the density matrix in the |j,m〉 basis
is

ρ̇m = −γ‖(j +m)(j −m+ 1)ρm + γ‖(j +m+ 1)(j −m)ρm+1, (2.75)

where ρm represents the probability of finding the system in state |j,m〉. There
are 2j + 1, if j is a half-integer, or 2j of these equations, if j is an integer. They
can be numerically integrated for small j. In [43] an overview over approximate
results is provided and in [44, 45] the exact solution for the master equation as
well as a few useful expectation values are obtained. The corresponding equations

2If we drop this requirement the effects of dipole-dipole interactions between the emitters
become relevant [43].
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of motion are

〈J̇z〉 = −2γ 〈J+J−〉 , (2.76)

〈J̇−〉 =
γ

2
〈JzJ−〉 . (2.77)

Because of energy conservation 〈J̇z〉 = 〈ṅ〉, with n = a†a. Therefore, the first
equation can be rewritten to an equation for the cavity amplitude. For brevity
we will not deal with these solutions here but only present the most important
properties of superradiance, following [43].

One doesn’t need to solve the full master equation to make some interesting
observations. We can think of superradiance as a cascade down the ladder of
Dicke states. Each step is considered as an independent spontaneous emission
process of one excitation. The rate of emission for the (j −m− 1)th photon is

Γm→m−1 = γ‖| 〈j,m− 1| J− |j,m〉 |2 = γ(j +m)(j −m+ 1). (2.78)

Here γ‖ denotes the spontaneous emission rate of a single excited emitter. A term
that is identical to the right hand side of this equation also appears in the master
equation. However, while Fermi’s golden rule gives us a transition probability
the term in the master equation should rather be interpreted as a coupling. Both
concepts are similar but not identical to each other. We see that for m = 0 the
term scales with j2 and thus with (N/2)2 just as we would expect for a coherent
process. This maximal rate is only reached if there is a point in time when the
system is completely in the |j,m = 0〉 state. For a general state, that is symmetric
under emitter permutations, the rate of photon emission is given by

Γtotal =

j∑
m=−j

pmγ‖(j +m)(j −m+ 1), (2.79)

where pm denotes the probability of being in the state |j,m〉. We can approximate
the rate at which the s = (j−m)th photon is emitted with Γs = γ‖Ns. Since we
assumed that the emissions are independent we can obtain the average time 〈td〉
(the brackets denote an average over multiple trials, not a quantum mechanical
average) that it would take to reach the |j,m = 0〉 state by summing the average
times of each individual photon emission

〈td〉 =

N/2∑
s=1

1

Γs
=

1

Nγ‖

N/2∑
s=1

1

s
≈ log(N/2)

Nγ‖
. (2.80)

We see that the timescale of independent spontaneous emission 〈tind〉 = 1/γ‖ is
significantly reduced. In incoherent spontaneous emission the rate is constant
over time while in superradiant decay the rate grows till the N/2th photon is
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emitted. To obtain the incoherent case from the superradiant one, we can intro-
duce random phases φi ∈ [0, 2π] in the collective ladder operator

J incoh− =
N∑
i=1

eiφiσ−i . (2.81)

Plugging this in eq. (2.78) and omitting the interference terms (which become 0
because of the random phases) we obtain

Γincoh = γ‖

N∑
i=1

| 〈↓|i σ
i
− |↑〉i |

2 (2.82)

In the incoherent case we know that a particular spin has decayed if we detect
a photon. I.e. if we were able to identify this emitter, the consequent dynamics
would not change. In the superradiant case each emitter contributes 1/Nth of
the emitted photon. If we were to stop the dynamics and measure each emitter
to determine which one has decayed, we would break the permutation symmetry
and alter the consequent dynamics considerably.

It should be noted that each photon emission is a stochastic process and that
the system can emit multiple photons at once. Therefore, the above picture of the
system falling from one rung of the Dicke ladder to the next is inaccurate. With
this picture in mind one might expect that the wave function of the system can
be described by a superposition of Dicke states |j,m〉 at all times or that the wave
function even corresponds to the Dicke states at certain times which would also
mean that the emitters become entangled in the process. However, both state-
ments are incorrect. Since the master equation does not couple diagonal terms
to the off-diagonal ones the density matrix remains diagonal during the process
and since the diagonal entries become smaller than one Tr(ρ2) =

∑N
m p

2
m < 1

because pm < 1 for all m, which means that the state becomes mixed. This is of
course just the same as in the case of regular spontaneous emission.

In the vacuum case the time evolution is dependent on 〈J+J−〉 while in the
case of Hamiltonian dynamics with the semiclassical approximation it is only
dependent on 〈J−〉 as is evident from the Maxwell-Bloch equations in eqs. (2.62)
to (2.63). Note that the expectation value 〈J+J−〉 can not be factorized into
〈J+〉 〈J−〉 because the operators J+ and J− do not commute. J− and a† on the
other hand operate on different Hilbert spaces and the expectation value of their
product can be factorized if the coupling between the two Hilbert spaces is small.

The fact that 〈J+J−〉 can not be factorized means that one can not derive
this result directly from the Maxwell-Bloch equations in eqs. (2.62) to (2.63) by
assuming κ� g and eliminating the equation for the cavity amplitude. Instead,
the cavity amplitude must be eliminated on the level of operator equations and
the expectation values must be taken afterwards. It is this change that makes
superradiance in vacuum so different than in the presence of a cavity mode. In
the prior case, coherence emerges spontaneously and is thus completely stored
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in the emitter ensemble while in the latter case coherence emerges through the
interaction with a common field. Furthermore, if a weakly coupled cavity mode
is present then dephasing can lead to 〈J−〉 = 0, thus highly suppressing the decay
of the emitter ensemble. This is different in the vacuum case as can be seen from
eq. (2.76) and eq. (2.82).

So far we have considered an ensemble of emitters in vacuum where there is no
feedback from the emitted photons back onto the ensemble because the photons
immediately disappear. This is quite different from the closed-system models
that were presented in earlier sections, where the photons keep interacting with
the ensemble which leads to stimulated emission. Another difference is that in
the absence of decay channels the system remains in a pure state. To study these
cases we turn again to the Maxwell-Bloch equations from eqs. (2.62) to (2.63).
Without decay these equations are equivalent to those that describe the dynamics
of a classical dipole as is shown in [7, Section III]. Therefore, we first look at
these dynamics from a purely classical point of view before we turn to numerical
solutions of the Maxwell-Bloch equations for multiple emitters.

2.5.4. Classical Aspects of Superradiance

A classical dipole in an external field experiences the torque

τ = µ×B. (2.83)

While we choose the usual notation for magnetic dipoles the following applies
to electric dipoles as well unless explicitly stated otherwise. If the dipole is
not aligned exactly parallel or antiparallel with the external field, it will start
rotating in the direction of the external field. Losing its potential energy and
gaining kinetic energy. As is evident from eq. (2.83) the torque will be time
dependent because the angle between µ and B will change in time. However,
to determine the dynamics we have to specify more details about the physical
system. We can imagine the dipole to be a bar magnet that is initially at rest. It
has a certain moment of inertia I and no angular momentum at the beginning.3

3Since magnetic moments of spins are always associated with an angular momentum the bar
magnet actually does have a finite angular momentum even if it is at rest. Therefore, we
might expect that a bar magnet precesses in a static magnetic field just like a spinning
top would in a gravitational field. The relation between the angular momentum and the
magnetic moment is given by

µ = g
−e

2me
L =

gµB

~
L = γL. (2.84)

The gyro-magnetic ratio in this case is γ = 1.76 · 1011(sT)
−1

. This means that the angular
momentum is negligibly small compared to the torque and the moment of inertia of the
structure. Note however that this argument does not apply to the quantum mechanical
spins themselves. Since the precession of a quantum mechanical spin happens on the level
of the wave function and does not involve moving around any mass, a quantum mechanical
spin will always precess in a static external field no matter how small.
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Figure 2.9.: Solutions for the equations of motion of a classical pendulum for
J = 1, J = 2 and J = 4.

The Lagrangian of this system is

L(α, α̇) = Erot − Epot =
1

2
Iα̇2 − µB cosα, (2.85)

with α denoting the angle between the external field axis and the dipole direction.
This leads us to the following equation of motion

α̈ =
µB

I
sin(α) = J sin(α). (2.86)

This equation is equivalent to the equation of motion of a pendulum (without
the small angle approximation), which can be analytically solved [46]. It has a
metastable solution α(0) = 0, α̇(0) = 0. Any small deviation from this state leads
to a time dependent, periodic solution. The size of the deviation determines the
period of the oscillation. In the limit α(0)→ 0 and α̇(0)→ 0 the period becomes
infinite. In this case the solution is given by [7, 47]

α̇(t) = 2
√
Jsech

(√
Jt
)
. (2.87)

This solution assumes that the dipole starts in its metastable state α = 0 at
t = −∞. The square of this function and the square of its derivative are plotted
in fig. 2.9. We see that α̇2(t) scales with J , while α̈2(t) scales with (J/2)2. As
we can guess from fig. 2.9a the dipole is parallel with the field at t = 0 because
its angular velocity is maximal at this time. The square of the angular velocity
enters the rotational energy. However, while the velocity is dependent on the
ratio of the dipole moment to the moment of inertia, the rotational energy is
dependent on the dipole moment alone, i.e. it scales with µ. Same goes for the
first derivative of the rotational energy.
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How do the dynamics change if we had two of such dipoles next to each other?
Each of them will rotate in exactly the same way as when the other one was
not there but the total rotational energy will be twice as large. Everything will
remain exactly the same if we were to replace the two separated dipoles with a
single one whose dipole moment and moment of inertia are twice as large.

We see that increasing the number of classical dipoles doesn’t change the dy-
namics, no matter how they are arranged. We can only change the dynamics if
we change the dipole moment while keeping the moment of inertia constant. In
the previous example of a bar magnet we would have to change the strength of
a ferromagnet.

We have established that for classical dipoles the rotational energy scales with
the size of the dipole moment while the change in rotational energy scales with
the square of the dipole moment if everything else is kept constant. While the
equations of motion are identical to the equations of motion for the quantum
mechanical system in the rotating frame, the dipole moment is a classical vector
quantity and its absolute size can not change due to interference effects. However,
in interacting classical systems the growth and decay of the total dipole moment
in time, analogous to the interference in the quantum mechanical systems, is
known [48].

2.5.5. Maxwell-Bloch Equations for Multiple Emitters

In the case of quantum mechanical dipoles we expect very similar dynamics as in
the classical case discussed above. Additionally we will look at how the dephasing
and decay channels as well as the drive term affect these dynamics.

In fig. 2.10 we plot numerical solutions for the cases of N = 1, 2, 4 emitters
with the initial excitation of the bosonic mode corresponding to the number of
emitters in each case 〈a†a〉 = 〈a〉2 = N . We see that an increase in the number
of emitters leads to an increase in the absorption rate of the bosonic excitations
by the emitters. If we imagine the bosonic mode to be a bucket of water then
the number of emitters could correspond to the number of holes through which
water can escape. The same amount of water would escape quicker if there were
more holes. However, if we increase the amount of water by the same factor
as we increase the number of holes then the time it would take to empty the
bucket completely, would remain constant. The dynamics that we observe here
is different: even though the number of excitations has increased by the same
factor as the number of emitters the time till all of them are absorbed decreased.
One can say that the exchange of excitations between the bosonic mode and the
emitters happens non-linearly.

How can this scaling be explained? We can not resent to the previously used
argument of an increasing transition amplitude that we obtained from Fermi’s
Golden rule, because a transition amplitude does not appear in the Maxwell-
Bloch equations. The coupling between the emitters and the field is governed by



2.5. Superradiance - Coherent Spontaneous Emission 35

0. 1. 2. 3. 4.
0.

1.

2.

3.

4.

g t

a2

0. 1. 2. 3. 4.
-4.

-2.

0.

2.

4.

g t

JZ

0. 1. 2. 3. 4.
-4.

-2.

0.

2.

4.

g t

J-

Figure 2.10.: Numerical solutions to the Maxwell-Bloch equations without dis-
sipation (γ⊥,‖ = 0, κ = 0) in eqs. (2.62) to (2.63) for 1 (pink), 2
(green) and 4 (blue) emitters in the ground state, i.e. 〈Jz(0)〉 =
−1,−2,−4, 〈J−(0)〉 = 0 and 〈a(0)〉 = 1,
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〈J−〉. We also made the semiclassical approximation which amounts to neglecting
the quantum correlations between the bosonic mode and the emitters. From the
point of view of the wave function this corresponds to the assumption that the
total wave function is a product of the bosonic and the emitter part. Since the
Maxwell-Bloch equations do not contain interaction terms between the emitters,
the emitter part of the wave function must be a product state of individual
emitter wave functions. Because of the symmetric coupling of all emitters the
total wave function must be symmetric under emitter permutations.

The most general state that fulfills these conditions is a product state of the
bosonic coherent state and the spin coherent state

|ψ(t)〉 = |α(t)〉
N∏
i=1

(cos(θ(α)t) |↓〉i + sin(θ(α)t) |↑〉i). (2.88)

This is arguably the most classical state of this quantum system. Its properties
are identical to the states that are generated by exposing an ensemble of two-level
systems to a classical driving field. In this case the driving field is the coherent
state of the bosonic mode. Therefore the time evolution of the emitter state is
coupled to the state of the bosonic mode. This is why θ depends on α in the
above equation.

The reason for the seemingly increased absorption is that there is a larger
external field to drive the emitters. The solutions plotted in fig. 2.10 are identical
to eq. (2.87). There we see the

√
J =

√
N dependence of the timescale which

in this case translates to the square root of the number of bosonic excitations
because we have chosen the initial condition such that the number of excitations
corresponds to the number of emitters. Starting in the state 〈Jz〉 = N and 〈a〉 = 0
would lead to the same

√
N scaling because the rate at which the number of

excitations would increase in the bosonic mode is higher when more emitters are
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Figure 2.11.: Mean photon number as derived in [7]. This is a plot of eq. (2.90)
for j = 10, m = 10, a = ln(4).

present. This higher field would in turn stimulate the emitters to transfer their
excitations even faster into the bosonic mode leading to a non-linear behavior.

The hallmark sign of coherence and superradiance is the N2 scaling. Looking
at the Maxwell-Bloch equation for the bosonic mode in eq. (2.62), which we
reproduce here (without the driving term),

〈ȧ〉 = −κ 〈a〉+ g 〈J−〉 , (2.89)

we see that the derivative of 〈a〉 is proportional to 〈J−〉 which is in turn pro-
portional to N . Thus, in the case of Maxwell-Bloch equations the characteristic
scaling emerges in the first derivative of the field. In vacuum, however, the field
decays so quickly that it is directly proportional to its derivative. It should be
noted that the non-linearity discussed here is equivalent to the non-linearity of a
classical pendulum. Furthermore, as can be seen from eq. (2.89) the scaling with
the number of emitters is equivalent to a scaling of the coupling g. Therefore,
neither the non-linearity nor its scaling are dependent on the presence of multiple
emitters.

In this section we have discussed the phenomenon of superradiance in the
semiclassical approximation. However, it should be noted that the metastable
state of these equations is unphysical. Quantum fluctuations lead to spontaneous
emission and thus prevent the fully inverted state from being metastable. The
implementation of these fluctuations into the semiclassical solution was done in
[7]. They find that the mean number of excitations in the bosonic mode is given
by

n̄(t) = (j +m)cn2[(2j + 1)2(t− T )|k], (2.90)

where cn denotes the Jacobi elliptic function, k = (j + m)/(2j + 1) and T =
(2j + 1)−1/2[a − ln(1 − k)/2] with ln(4) ≤ a ≤ π/2. This solution is plotted in
fig. 2.11.



3. Experimental System

The quantum optics phenomena that were discussed in the previous chapter can
be observed in many experimental setups [49, 50]. For the experimental part
of this thesis we used an ensemble of Nitrogen-Vacancy (NV−) defect centers
in a diamond as the ensemble of emitters. Its properties will be introduced
in the following section. The diamond was placed inside of a 3D cavity which
constituted the bosonic mode and will be described in section 3.2. To initialize the
NV− ensemble in its ground state the cavity and the diamond were cooled down
to 25mK in a dilution refrigerator. This also helped to decouple the ensemble
from noise photons, as well as reduced lattice vibrations of the diamond and
reduced cavity losses.

3.1. The Nitrogen Vacancy Defect Center in
Diamond

The NV− lattice defect has remarkable properties that make it a promising con-
tender for quantum information processing and communication. One of the ap-
plications in quantum information processing is the quantum memory, there the
NV− center is not used directly but rather serves as a means to address the C13

nuclear spin that has a coherence time in the range of seconds [31]. The NV−

center can be used in transducer nodes in quantum communication networks
[51] and was recently used in the first loophole-free Bell test [52, 53]. Beside
its comparatively long life- and decoherence times the NV− center can also be
optically addressed, initialized and read-out. It is sensitive to external fields,
stress and temperature which makes it useful for quantum metrology applica-
tions. Since diamonds are bio-compatible it can also be used as a marker for in
vivo imaging of biological samples. Another very promising diamond-defect for
quantum information processing is the silicon-vacancy center (SiV). It has even
better coherence properties than the NV− center because of higher symmetries
[54]. However, its applications for metrology are limited. Diamonds have a mul-
titude of other defects (”color centers”) which have been known for many years
because they affect the color of diamonds.

Diamonds consist of covalently bonded carbon atoms that are arranged in
two inter-penetrating face-centered cubic (fcc) lattices. The diamond lattice is
extremely rigid and has the widest optical transparency band of all known solids.
This facilitates the detection of optically active defects and impurities. The

37
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most abundant ones are typically nitrogen, boron, hydrogen, nickel, silicon and
phosphorous.

In our experiments we used synthetic high pressure high temperature (HPHT)
diamonds of the 1b type. These diamonds usually have a yellow or brown tone
and the dominating defect in them is the P1 center. It consists of a nitrogen atom
that forms four bonds with the neighboring carbon atoms. Since nitrogen has
five valence electrons one remains unpaired and causes the paramagnetic nature
of the defect with S = 1/2 and g ≈ 2 [55]. Typical concentrations of nitrogen in
type 1b diamonds range from 1017 cm−3 to 1019 cm−3. Concentrations are often
stated in parts-per-million (ppm) with 1 ppm = 1.76× 1017 cm −3 for diamonds.

The NV− defect is formed if there is one empty lattice site next to a nitrogen
atom and the other three are occupied by carbon atoms. The nitrogen can
either be naturally present in the lattice or implanted in a controlled way. The
diamond is then irradiated with electrons or neutrons to create lattice vacancies.
These vacancies become mobile when the diamond is heated above 650◦C. When
a vacancy arrives at a lattice site next to a nitrogen atom it becomes trapped
again and forms the NV− center. Details about the preparation of the samples
can be found in [56]. Since the center consists of two lattice sites it has a definite
direction as can be seen in fig. 3.1. Therefore, a diamond will have four different
subensembles of NV− centers with different orientations.

The defect consists of six electrons in total [57]. Three from the dangling bonds
of carbon atoms at the vacant lattice site and two from the nitrogen atom. The
sixth electron is captured from the lattice giving the defect its negative charge.
Only 2% of the electron density is found at the nitrogen atom. The configuration
where no additional electron is captured from the lattice is also stable and is
referred to as the NV0 center.

3.1.1. Level Structure

The level structure of the ground and the first excited state is depicted is fig. 3.1.
It was found that the NV− ground state is a paramagnetic spin triplet state. The
ground state features a zero-field-splitting (ZFS, marked with D in fig. 3.1), i.e. it
is non-degenerate even if no external magnetic field is applied. The ZFS emerges
because of interactions between unpaired electrons. This makes it very suitable
for various applications because no strong external fields are needed to separate
the states. The ZFS is also dependent on temperature and strain making the
NV− defect useful for quantum metrology. To be able to exploit quantum effects
in metrology and other applications, a well defined quantum state needs to be
prepared. For the NV− center this can conveniently be done through the optically
induced spin polarization mechanism [58] which enables the initialization of the
NV− center in its m = 0 ground state at room temperature.

For the experiments in this thesis it was necessary to initialize the whole en-
semble of NV− centers in its ground state. So far there exists no experimental
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Figure 3.1.: Structure of the NV− center consisting of a nitrogen atom and an
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Figure 3.2.: A schematic of a coplanar waveguide (left). An LC circuit diagram
(right).

evidence that the optically induced spin polarization mechanism can be used for
this purpose. Instead, the NV− ensemble was polarized thermally by cooling the
diamond to 25mK inside of a dilution refrigerator.

3.2. 3D Cavity

A range of experiments have been performed with NV− centers coupled to a
superconducting coplanar waveguide (CPW) cavity [59]. These structures were
developed to couple superconducting qubits for quantum information processing
[60]. The advantage of the CPWs lies in the fact that the mode volume is a lot
smaller than the wavelength which strongly increases the field that is produced
by a single excitation of the superconducting wire. The coupling to an electronic
spin is given by

g =
µBge
~

√
µ0~ω
2V

, (3.1)

which immediately follows from the form of the magnetic dipole coupling and the
quantization of the cavity field. But how can such a structure have a resonance
frequency at a wavelength that is larger than the structure itself? This is less
surprising when we think about the cavity not as a set of boundary conditions for
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Figure 3.3.: 3D cavity. The two holes under the bow ties are mounts for standard
SMA couplers.

photons but as an electrical circuit. In electronics the notion of a resonance circuit
is common. Its idealized version consists of an inductance L and a capacitance
C as depicted in fig. 3.2. Charge q flows back and forth between the two sides of
the capacitance creating a magnetic field at the inductance. The Hamiltonian of
this circuit consist of the sum of the energies in these two components

H = HC +HL =
1

2

(
q2

C
+ Lq̇2

)
=

1

2

(
q̃2 + CL ˙̃q2

)
, (3.2)

with q̃ = q/
√
C. This is the Hamiltonian of a harmonic oscillator with a resonance

frequency ω = 1/
√
LC. It can be quantized in the usual way and thus serve

as a bosonic mode. While the excitations are actually moving charge density
fluctuations in the superconducting wire, they produce local electric and magnetic
fields through which they can couple to the NV− centers. These fields decay
rapidly with the distance to the wire which leads to inhomogeneous coupling
strengths.

The first experiments with NV− centers and CPW cavities [28, 29, 59] were
aiming at showing strong coupling between an excitation in the NV− ensemble
and the cavity mode [61]. They were performed in the low excitation regime
where, as discussed in section 2.2.1, the Holstein-Primakoff approximation is
valid and the ensemble of NV−s can be approximated by a harmonic oscillator.
In this regime only the effective coupling geff =

∑N
i gi, where gi is the coupling

of each individual NV− center, enters the relevant dynamical equations. In this
thesis however, we are interested in studying the dynamics for full inversion
of the ensemble and the subsequent coherent oscillations between the ensemble
and bosonic mode. The inhomogeneous coupling would lead to different time
evolutions of each emitter wave function and thus break the coherence.

To obtain a homogeneous coupling to all NV − centers a new cavity design had
to be devised. The idea behind the CPW cavity was extended to the 3D case
[62]. The new cavity is depicted in fig. 3.3. For obvious reasons it was called the
”bow tie cavity”. The magnetic field is focused in the volume between the two
bow ties increasing the coupling to the NV− ensemble.

Another important property of a resonator are its losses. In the case of an
LC circuit they can be modeled with a resistance R, which corresponds to ohmic
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resistance of the structure. Ideally the cavity should be made out of a material
that becomes superconducting at the experimental conditions, like Aluminum.
But a superconductor would block the external magnetic field that is needed to
tune the energy levels of the NV− center ground state in resonance with the
cavity mode. Therefore, the cavity was made out of copper.

To be able to excite the ensemble of NV− centers quickly we need to create
a high field intensity within the cavity quickly. To understand how the various
parameters influence the field intensity within the cavity we shortly discuss the
input-output formalism [63]. We consider a two-port cavity that has internal
losses κint and two ports that couple the cavity to external fields κ1 and κ2. We
can think of the cavity in terms of rate equations. The excitations that are in the
cavity can leak out at a rate of κtot = κint +κ1 +κ2. But the excitations can also
be replenished through an external drive. In the quantum mechanical treatment
one usually classifies the cavity amplitude in terms of the number of excitations,
i.e. a dimensionless number. It is useful to describe the drive in a similar way.
However, since the drive consists of a traveling rather than a standing wave it is
better to characterize it in terms of a photon flux rather than a photon number

Pin = ~ωB2
in. (3.3)

This is the energy (averaged over 1/ω) that arrives at one of the cavity ports per
unit time expressed as the energy per photon (~ω) times the photon flux B2

in.
The rate equation for the complex cavity amplitude is

Ȧ = (κint + κ1 + κ2)A+
√

2κ1Bin. (3.4)

We had to take the square root of the photon flux B2
in and as dimensional analysis

dictates we also have to take the square root of the coupling because [κ] =
1/[time]. Note also that the drive ”amplitude” couples with the coupling rate of
the amplitude squared 2κ1 instead of just κ1 [64, Eq. 4].1 We obtain the steady
state

A =

√
2κ1

κint + κ1 + κ2

Bin. (3.6)

It is plotted in fig. 3.4. We see that the maximal cavity amplitude is reached
when κ1 = κint + κ2. This maximum can be considerably higher than the drive

1While it might seem easier to write down the rate equation for a†a, since it would not require
one to take the square root of the photon flux, it actually is not. The interested reader is
invited to solve the driven harmonic oscillator and arrive at

d

dt
〈a†a〉 = −γ 〈a†a〉+ if(t)(〈a†(t)〉+ 〈a(t)〉). (3.5)

For the derivation we assumed that the driving term in the Hamiltonian looks like HD =
~f(t)(a† + a). One still needs the solution for the equations of motion for the complex
amplitude 〈a(t)〉 to solve for 〈a†a(t)〉.
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Figure 3.4.: The steady state cavity amplitude in units of the drive amplitude as
a function of the drive coupling κ1 for different values of κint + κ2 =
0.2, 2, 20 (pink, green, blue).

amplitude. By using the following result from the input-output formalism [63,
Eq. 5.2]

Bout =
√

2κ1A−Bin, (3.7)

where Bout denotes the amplitude of the reflected signal2, we obtain

Bout =
κint + κ2 − κ1

κint + κ2 + κ1

Bin. (3.8)

This allows us to classify three different regimes

Over-coupled: κ1 > κint + κ2, the reflected field is non-zero.

Critically-coupled: κ1 = κint + κ2, the reflected field from the cavity is
zero and the cavity amplitude in the steady state reaches its maximum. In
electronics terminology this is called ”impedance matched”.

Under-coupled: κ1 < κint + κ2, the reflected field is non-zero.

Note that the critical coupling is not always the optimal one. In the experiments
that will be presented in the next chapter we apply short drive pulses and want
the cavity to have the maximal number of excitations for a given pulse length
and drive power. To obtain the optimal parameters for this case one needs to
solve the full time dependent driven and damped harmonic oscillator problem
and derive the optimal coupling as a function of the relevant parameters. An
other interesting quantity is the transmitted amplitude. We define the input and
output fields for the second port as in eq. (3.7)

Cout =
√

2κ2A− Cin. (3.9)

2Note that the relative sing of Bin and Bout is a matter of convention. It is different here as
in [63] because we use a different convention in eq. (3.4) as compared to equation 2.13 in
[63].
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Since Cin = 0 we obtain for the transmission on resonance

Cout =
2
√
κ2κ1

κint + κ2 + κ1

Bin. (3.10)

In electronics, an electrical circuit is usually classified through its inputs and
outputs, also known as scattering parameters. They are defined as ratios of
incoming and outgoing signals. In our notation this means

S11 =
Bout

Bin

, S21 =
Cout
Bin

. (3.11)

They are usually measured for a range of drive frequencies with a Vector Network
Analyzer (VNA). They are complex linear quantities [65]. In our experiments we
usually look at their absolute values on a logarithmic scale. The most convenient
measurement is a measurement of the transmission, i.e. S21, as a function of drive
frequency. In this measurement one determines the resonance function of a driven
harmonic oscillator, which is approximately a Lorentzian. This transmission
function is related to the exponential decay of the cavity excitations through a
Fourier transform. The relationship is described in appendix A. One can readily
extract the total cavity decay rate from the width of this function. Resonators
are classified according to their quality factor

Q =
fc

∆fFWHM

=
ωc

∆ωFWHM

=
πfc
κtot

=
ωc

2κtot
. (3.12)

The current cavity design consists of a total of five components: top, bottom,
frame and the two parts of the bow tie. While performing the experiments for
this thesis it was noted that the transmission on resonance is heavily dependent
on how tightly the cavity screws are screwed in. This inspired the idea to build
the cavity out of as few components as possible. Ideally the two bow ties would
make up one piece with the cavity bottom.





4. Experimental Results

In this chapter we present some of the experimental data that was obtained
during this thesis. We will show that the dynamics observed in the experiment
are very well described by the semiclassical theory.

4.1. Measurement Scheme

Depending on the requirement of the experiment, the cavity is equipped with
couplers of certain lengths. Then, the diamond is placed between the two bow
ties and the cavity is assembled. Before the screws are fully tightened the cav-
ity is connected to the Vector Network Analyzer (VNA) to determine its reso-
nance frequency and transmission on resonance. If the resonance frequency is
not within the desired range the cavity is disassembled and the bow ties are
shifted. While monitoring the resonance function of the cavity on the VNA the
screws are tightened, such that the transmission on resonance becomes maximal.
Dirt, or inproper alignment of the cavity parts can lead to low quality factors or
low transmission on resonance. In this case the cavity needs to be reassembled
again. The cavity quality factor decreases with increasing coupler length while
the transmission on resonance increases. The quality factor of the cavity is also
affected by the diamond. We have observed a decrease in the quality factor by
more than 30% as compared to the bare cavity for certain diamonds. Typical
resonance functions at this stage are shown in fig. 4.1.

Then the system is cooled down to 25mK in a dilution refrigerator. This process
takes approximately 48 hours. The transmission function is measured again to
determine the resonance frequency of the cavity. To tune one of the ground state
transitions of the NV− center in resonance with the cavity an external magnetic
field is applied. The field is generated with superconducting Helmholtz coils. The
transmission function is recorded for each field strength. When a transition of the
NV− center ground state becomes resonant with the cavity mode the resonance
function either gets damped (weak coupling) or splits into two peaks (in the
strong coupling regime). The field is adjusted such that the two peaks have the
same height which is best visible in a linear plot. At this point the preparations
for the experiment are complete.

The experiment consist of applying microwave pulses to one of the cavity ports
and recording the time resolved output on the other port. Since the resonance
frequency of the cavity is in the Gigahertz (GHz) range, this would require a time
resolution on the scale of nanoseconds. However, the relevant information is not
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Figure 4.1.: Cavity resonance functions for symmetric couplers of length 1mm
(upper panels) and 2mm (lower panels). Resonance functions at
room temperature are shown on the left and at 25mK on the right.
The resonance functions at low temperature include non negligible
contributions from the cables that connect the cavity within the di-
lution refrigerator to the VNA. This leads to an apparent decrease of
the transmission on resonance even though it has actually increased.
Note also that the cables have different contributions for the upper
and lower case and can not be accounted for with a single factor for
both cases. One would expect the quality factor to be larger for short
coupler lengths (upper panels). This is not the case here because dif-
ferent diamonds were used in the upper and lower cases which led to
different damping.
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Figure 4.2.: Cavity resonance function in the weak (left) and strong (right) cou-
pling regime. The blue curve in the left panel shows the transmission
function for detuned NV− centers for comparison.

contained in the GHz signal but rather in its envelope. Therefore, we employ a
homodyne detection scheme which multiplies the output signal of the experiment
with the input signal. The output of the experiment has the form the form

s(t) = I(t) cos(ωt)−Q(t) sin(ωt). (4.1)

In the homodyne scheme this signal is split into two. One which is multiplied
by the input signal cos(ωt) and one that is multiplied with the input shifted by
π/2, i.e. sin(ωt). Frequencies that are higher than ω are filtered which results in
two output signals I(t) and Q(t) respectively. The amplitude of the envelope is
obtained by the formula

A(t) =
√
I(t)2 +Q(t)2. (4.2)

This remedies the need for an oscilloscope in the GHz range in our experiment.
This procedure is done by an IQ-mixer produced by Microcircuits. This transfor-
mation corresponds to the transformation into the rotating frame that we have
done when deriving the Maxwell-Bloch equations in section 2.4.

4.2. Inversion of the NV− ensemble

The experimental goal of this thesis is to go beyond the low-excitation limit where
the Holstein-Primakoff approximation is valid and therefore to highly excite the
NV− ensemble. Our expectation was that the theoretical predictions from the
Maxwell-Bloch equations should closely match our experimental observations,
because the experimental system consists of a large number of weakly, but equally,
coupled emitters. In the following we show that this is indeed the case.

In fig. 4.3 we present experimental data for a diamond with an NV− density
of approximately 40 ppm and therefore approximately 1017 defect centers in the
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Figure 4.3.: The experimental (left) and theoretical (right) trace of the envelope
of the cavity amplitude squared for an intermediate drive intensity.
The shaded area in the right panel marks the time period when the
drive is on.

cavity mode volume. Both cavity couplers had a length of 1mm and the cavity
was resonantly driven for 1µs. Initially one sees vacuum rabi oscillations around
the low excitation state. Eventually the NV− ensemble leaves the low excitation
regime and a steep increase in the occupation number of the cavity is visible. This
corresponds to the case shown in the upper panels of fig. 2.8. The theoretical
prediction for the cavity amplitude is also reproduced in the right panel of fig. 4.3.
The oscillations around the 〈Jz〉 = 0, 〈J−〉 = 0 state are not visible in the
experimental data because of the increased noise level at high cavity occupation.
Based on the theoretical analysis it is clear that in this case the driving strength
is not sufficient to invert the NV− ensemble, i.e. achieve 〈Jz〉 > 0.

Our setup already featured a 16 Watt microwave amplifier and a higher pow-
ered one was not available. To be able to achieve an inversion we could either
replace the diamond sample with one that has a lower density of NV− centers or
change the couplers of the cavity. It is obvious that the output coupler should
be chosen such that it provides sufficient coupling so that the signal arriving at
the oscilloscope is large enough to be distinguished from the noise. At the same
time the coupler should be small enough so that as few excitations are lost as
possible. To fulfill these conditions a planar coupler was used at the output in
the experiment that is presented in the following.

If the precise relation between the length of the coupler and coupling strength
is known, then the input coupler length should be determined by solving the full
driven harmonic oscillator model. It will depend on the desired pulse duration.
But the coupler-length can also be determined empirically. For this experiment
we used a 2mm coupler as the input. In fig. 4.4 the drive power is varied from
−20dB of the maximal power to the maximal value for the case of two 1mm
couplers (left panel) and asymmetric couplers as just described (right panel). A
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Figure 4.4.: The envelope of the cavity amplitude squared plotted over time for
various drive powers. The left panel shows the data for the same
setup as fig. 4.3, i.e. intermediate drive power. The right panel
shows the data for an asymmetric coupler configuration.

branch-like structure emerges for the case of asymmetric couplers. Figure 4.5
shows an experiment where the duration of the drive-pulse is varied at fixed (in
this case maximal) power - with the same setup as in the right panel of fig. 4.4.
This time multiple branches are visible.

The explanation for this structure was partially presented in section 2.4.1.
Figure 4.6 shows the numerical simulation of the Maxwell-Bloch equations for
a single emitter and varying drive durations. The same branch structure as in
the experiment is visible. The trace on the right shows the origin of the branch
structure. For certain drive durations the system approaches its metastable state
- an inverted dipole with zero excitations in the cavity mode. The closer the
system comes to this state the longer the delay becomes leading to the branch
structure. It is important to note that in the simulations only a single two-level
system was considered. Therefore, the branch structure does not emerge because
of coherence effects between multiple emitters. This explanation is different than
the conclusion reached by the authors of [8]. Rose et. al. argue that the delay
is caused by the same mechanism as discussed in section 2.5.3, i.e. consequent
spontaneous emission with a changing dipole moment. This line of thinking is
borrowed from the case of superradiance in vacuum. In this case however, the
presence of photons in the cavity mode plays a crucial role since they prevent
the system from reaching the metastable state and therefore lead to a decrease
in the delay.

To be able to observe the branch structure the system has to reach the state
〈a〉 = 0, 〈Jz〉 > 0 and 〈J−〉 = 0. Crucially, the ensemble does not have to
reach full inversion 〈Jz〉 = N as long as the polarization becomes 0 because of
dephasing. Therefore, the presence of dephasing can decrease the minimal drive
power that is needed to observe the branch structure.

For completeness we also show experimental data for another diamond sam-
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Figure 4.5.: The envelope of the cavity amplitude squared plotted over time for
various drive pulse durations. In this case the drive power is sufficient
to achieve 〈Jz〉 > 0.

ple. This sample has approximately one order of magnitude less NV− centers.
Because of this an inversion can be reached at the same drive power as before
and symmetric couplers. In this experiment the cavity the couplers had a length
of 1mm. The data is shown in fig. 4.7.



4.2. Inversion of the NV− ensemble 51

0 5

2
5 15

2
10 25

2
15 35

2
20 45

2
25

0.2

1.2

2.2

3.2

4.2

5.2

6.2

7.2

8.2

9.2

Time

P
u
ls

e
L
e
n
g
th

(a) Cavity amplitude squared.
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(b) Cavity amplitude squared for a drive
duration of 4.825.
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(c) Excitation of the emitter, i.e. 〈Jz〉.
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(d) Emitter excitation for a drive duration
of 4.825.
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(e) Polarization of the emitter, i.e. 〈J−〉
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(f) Emitter polarization for a drive dura-
tion of 4.825.

Figure 4.6.: Theoretical simulations of the cavity amplitude squared, the excita-
tion and the polarization of a single emitter based on the Maxwell-
Bloch equations. The panels on the right correspond to cuts through
the plots on the left at the position marked by the white dashed line.
The first green dashed line in the right panels signifies the moment
in time when the drive is turned off. The shaded area in the right
panels marks the duration of time when the drive is on. The units in
the simulations are arbitrary as they serve to present the qualitative
agreement of the semiclassical theory and the experiment.
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Figure 4.7.: The envelope of the cavity amplitude squared plotted over time for
various pulse durations. In this experiment, rather than increasing
the drive power an other diamond was used that has fewer NV− cen-
ters. The right panel shows individual traces from the lower branch
in the right panel.



5. Conclusion

We have presented an overview of the models and methods that are relevant for
the theoretical treatment of superradiance. A modern introduction to the phe-
nomenon of superradiance was given, paying special attention to the difference of
superradiance in vacuum and in a closed system. The close analogy to a classical
dipole was explored to facilitate the intuitive understanding of the phenomenon.
We discussed the three sources of nonlinearities that can appear in the treatment
of the phenomenon.

First, we shortly discussed the quantum mechanical nonlinearity of the Tavis-
Cummings model that appears due to the unequal coupling of the energy levels
of the Jz operator to the bosonic mode. However, the dynamics of the coupled
system is only affected by the energy difference of consequent transitions, i.e.
by the anharmonicity of the energy transitions. As noted by Keeling [40] this
anharmonicity becomes nearly undetectable for more than 106 emitters.

The second type of nonlinearity stems from the form of the Maxwell-Bloch
equations and the fact that they have a metastable solution. This is equivalent
to the nonlinearity of a pendulum and was discussed in section 2.4.1 as well as
in section 2.5.4. The solution is given by a hyperbolic function. If more than
one emitter is considered then the deviation from a harmonic oscillation becomes
more pronounced. This can be considered as the third nonlinearity and was
shortly discussed in section 2.5.5.

The theoretical work in this thesis was accompanied by an experiment with
a novel type of 3D cavity that allowed the coherent excitation of a macroscopic
ensemble of Nitrogen-Vacancy centers in a diamond. With this experimental
setup we were able to successfully show the second type of nonlinearity. Beside
a recent preprint by Rose et. al [8], this is the first time that this nonlinearity
was shown experimentally.

This work provides a foundation for a range of further experiments. The ex-
perimental setup was equipped with a laser and a photo diode that can be used to
determine the excitation of the NV− ensemble and could provide a direct channel
for the readout of the NV− center state. Furthermore, the effects of spectral hole
burning [29] can be explored in the coherent strong excitation regime.

Since our experimental setup was initially believed to be not powerful enough
to achieve an inversion of the NV− ensemble more efficient approaches to driving
the ensemble were explored. In this context an exact solution for the driven
Tavis-Cummings model was pursued. While these avenues seem very promising,
further research is necessary to obtain conclusive results. The presentation of
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these ideas was omitted because they exceed the scope of this thesis.



A. Relation of the Exponential
Decay to the Cavity Linewidth

The Fourier transform of a Lorentzian is

F
(

1

π

κ/2π

(f − f0)2 + (κ/2π)2

)
(t) = exp

[
−2πif0t− κ|t|

]
. (A.1)

Note that there are various definitions of the Fourier transform of which most
differ only by a multiplicative factor. However, in eq. (A.1) the norm preserving
Fourier transform with a factor of 2π in the exponent is used. This is convenient
if one transforms to the frequency domain because the factor from the fourier
transform contains a 2πft and the factor from the description of the oscillation in
the time domain contains 2πf0t which gives the term (f −f0)2 in the Lorentzian.
If we were transforming to the angular frequency domain the fourier factor would
have 2πωt while the oscillatory term would have either ω0t or 2πω0t. In the former
case we would get a term like (ω−ω0/2π)2 and in the latter case the ω0 wouldnt
actually correspond to the angular frequency of the wave. If we transform to the
angular frequency domain by using a fourier transform with a factor of ωt in the
exponent we would get the following

F
(

1

π

κ

(ω − ω0)2 + κ2

)
(t) = exp

[
iω0t− κ|t|

]
. (A.2)

Thus, the decay rate is related to the FWHM ∆f by κ = π∆fFWHM or by
κ = ∆ωHWHM . For the Quality factor we have the following relations

Q =
fc

∆fFWHM

=
ωc

∆ωFWHM

=
πfc
κ

=
ωc
2κ
. (A.3)

This κ denotes the decay rate of the amplitude and thus corresponds to the κ in
the Maxwell-Bloch equation for the cavity amplitude eq. (2.62).
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