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Abstract

Data-intensive systems are used to access and store massive amounts of data by combining the

storage resources of multiple data-centers, usually deployed all over the world, in one system.

This enables users to utilize these massive storage capabilities in a simple and efficient way.

However, with the growth of these systems it becomes a hard problem to estimate the effects

of modifications to the system, such as data placement algorithms or hardware upgrades, and to

validate these changes for potential side effects.

This thesis addresses the modeling of operational data-intensive systems and presents a novel

simulation model which estimates the performance of system operations. The running example

used throughout this thesis is the data-intensive system Rucio, which is used as the data man-

agement system of the ATLAS experiment at CERN’s Large Hadron Collider.

Existing system models in literature are not applicable to data-intensive workflows, as they

only consider computational workflows or make assumptions which do not hold for operational

systems. A hybrid modeling approach is proposed which addresses the limits of these models.

It partitions the system into discrete components, creates models for these components, and

combines them into one concise system model. However, each component model is only built

on observed data metrics, such as system traces. The identification of which system components

to model and which ones to omit is based on a quantitative system analysis of the Rucio data-

intensive system. The storage, network, data integrity validation, and services components were

identified. An existing model from literature was utilized for the network component. For

the other components models based on machine learning techniques are created and evaluated

against historic workloads from the running example. The component models are unified in an
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event simulator and evaluated agains historic workloads from the Rucio data-intensive system.

The median relative evaluation error of the hybrid system model is demonstrated with 22%.



Kurzfassung

Datenintensive System werden benutzt um massive Mengen an Daten zu speichern und um auf

diese zuzugreifen. Diese Systeme vereinen die Speicher Ressourcen multipler Datenzentren wel-

che üblicherweise über die gesamte Welt verteilt sind. Dies befähigt die Benutzer des Systems

die Ressourcen in einer einfachen und effizienten Art und Weise zu benützen. Der Wachstum

und die Größe dieser Systeme macht es allerdings äußerst schwierig die Auswirkungen von

Änderungen am System, wie zum Beispiel Daten Platzierungs Algorithmen oder Hardwarean-

passungen, vorherzusagen.

Diese Dissertation behandelt die Modellierung von operativen datenintensiven Systemen

und präsentiert ein neuartiges Simulationsmodell welches die Leistung von Systemoperationen

vorhersagt. Als Anwendungsbeispiel dient das datenintensive System Rucio, das als Datenver-

waltungssystem für das ATLAS Experiment an CERNs Large Hadron Collider verwendet wird.

Existierende Systemmodelle in der Literatur sind nicht anwendbar auf Abläufe von daten-

intensiven Systemen, da sie hauptsächlich rechenbetonte Abläufe modellieren oder Annahmen

treffen, die auf operative Systeme nicht zutreffen. Diese Dissertation präsentiert einen hybriden

Modellierungsprozess der die Limitierungen existierender Modelle löst. Der Prozess partitio-

niert das datenintensive System in verschiedene Komponenten und erstellt Modelle für jede ein-

zelne Komponente. Diese Modelle werden dann zu einem Systemmodell verbunden. Die Kom-

ponenentenmodelle basieren allerdings nur auf global zugänglichen Informationen, wie Ereignis

Protokolle von Systemen, da dies die einzigen Informationen sind die gemein für datenintensi-

ve Systeme verfügbar sind. Die Identifikation der zu inkludierenden Komponenten basiert auf

einer quantitativen Analyse des Rucio Systems. Die Speicher-, Netzwerk-, Datenvalidierungs-
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und Servicekomponente werden dabei identifiziert. Für die Netzwerkkomponente wird ein exis-

tierendes Modell, aus der Literatur, verwertet. Für die anderen Komponenten werden Modelle,

basierend auf maschinellem Lernen, erstellt. Alle Modelle werden mit historischen Workloads

des Rucio Systems evaluiert. Die Komponentenmodelle werden in einem Simulator implemen-

tiert und anschließend gegen historische Workloads des Rucio Systems evaluiert. Der Median

des relativen Evaluierungsfehlers des hybriden System Modells ist 22%.
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CHAPTER 1
Introduction

1.1 Motivation

In 2012 at the world economic forum Big Data, Big Impact in Davos, Switzerland a report was

presented that declared data as a new class of economic asset, similar to crude materials or

currency [Vital Wave consulting, 2012]. Data is becoming more available and more integrated

in modern society but the challenge of storing, organizing, and accessing vast amounts of data

amplifies as well. The term big data is commonly used to describe datasets of a size so large that

conventional data processing systems are unable to handle them. Systems specifically designed

to handle these extreme amounts of data are called data-intensive systems and are usually highly

distributed.

The definition of data-intensive systems changed rapidly over the years. According to

Hilbert and Lopez [2011] the combined capacity of storage in the world in 1986 was about 2.6

exabytes, optimally compressed, which grew to 295 exabytes, optimally compressed, in 2007.

In 1986 a system would be considered data-intensive if it manages more than a gigabyte of data,

nowadays in 2015 a big data-intensive system would have about the same storage capacity as

the total storage capacity of the world in the year 1986. With the rapid growth of data the con-

centration of big amounts of data in single data-intensive systems also grew significantly. Most

people are familiar with products like Twitter [Twitter Inc., 2015], Youtube [Google Inc., 2015],
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Facebook [Facebook Inc., 2015] or Dropbox [Dropbox Inc., 2015]. Without these data-intensive

systems life would be very different. But there are also numerous data-intensive systems in do-

mains which are less in the focus of the public eye, like economics and finance, health, as well

as science.

With the rise of these massive systems technological challenges arise as well. It becomes

more difficult to estimate the characteristics of a system. In 1986 it was moderately simple to

estimate the time to process a certain sized dataset on a hard drive. However, modern data-

intensive systems are distributed over multiple continents and involve thousands of computers,

hence it becomes a very complex undertaking to estimate how these systems behave. This

creates hard problems such as optimizing scheduling, data placement algorithms, or planning

hardware upgrades. It is unclear if any changes result in the expected performance and if there

are any unwanted side effects. There are several approaches for software systems to estimate the

effects of changes like software test-cases, code deployment in pre-production testbeds, as well

as simulation. But these approaches are very often limited, non constructive, or even impossible

in the domain of data-intensive systems.

This thesis presents a novel approach to model data-intensive systems under these restric-

tions. The model is able to capture the performance-relevant characteristics of a data-intensive

system and can be used to estimate the performance of system operations.

1.2 Problem statement

With increasing size and complexity it becomes very difficult to estimate the outcome of even

tiny changes to the system. Nonetheless, developers and operators have to adapt their system

continuously to guarantee a smooth and efficient experience for their users. This user experience

stands at the center of this thesis: How long does it take for a user or application to read or

write data in the system. Of course there are also other factors, like internal peculiarities such

as resource consumption, costs or code complexity, which are interesting for the developers

and operators, but the external operational performance of the system is the most important

characteristic for the user as well as the developer and operator. Therefore this thesis focuses on
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system modeling of operational data-intensive systems, with a case study from a grid computing

system. The research question posed by this thesis is:

Can a model be constructed that estimates the response time of user operations in a

data-intensive system?

Consequently, the research objective of this thesis is to create a model for operational data-

intensive systems which is able to predict the response time of user operations. The model

must be able to take an operational workload as an input and estimate the response time of

individual operations in the workload. With this model researchers can propose changes to the

data-intensive system, such as data placement or data selection algorithms, and investigate the

effect of the proposed changes to the response time of write and read operations. Models in

literature are focused on studying resource consumption like disk and bandwidth usage but do

not, or only inaccurately, give an estimation about the performance changes for the end user of

the system.

The field of modeling data processing systems is essentially as old as computer science itself

hence there exists a wide area of related work in process modeling, disk drive modeling, and net-

work modeling. However, when it comes to large-scale distributed systems the literature is more

limited and in the area of data-intensive systems there are gaps which are filled by this thesis.

Certain assumptions are made in literature on distributed systems which raise concerns about

their applicability to operational data-intensive systems. These assumptions are also discussed

in this document. Specifically this thesis addresses the following problems which are not yet

sufficiently answered by existing work:

Data-intensive workflows

One of the key-requirements of a data-intensive system model is to be able to estimate the

response time of an individual read/write operation. However the vast majority of literature fo-

cuses on computational use cases and thus makes certain assumptions and simplifications, such

as instead of estimating response times the model is classifying operations as fast or slow. Most

often the access times are not estimated at all, as they are considered negligible when investi-
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gating computation workflows. Are these simplifications valid when modeling the workflows

of data-intensive systems? If not, what can be done to actually estimate the operation response

time? Which components of a data-intensive system have to be modeled at all and which ones

can be considered negligible?

High number of events

The operational workloads of data-intensive systems consist, even in a short time-frame, of a

very high volume of events. This is different to computational systems, as a single computational

job can involve thousands or even hundreds of thousands of events which are usually abstracted

as one computational event. Thus, a data-intensive workload is orders of magnitude larger than a

workload of a computational distributed system. How does this influence the methodology when

modeling a data-intensive system? Is it even possible to construct models on such large input

datasets and how does sampling influence the accuracy of the final model? Are there stochastic

attributes of the workload which have to be represented in the sample to generate an accurate

model? Also, once the model is created, is it able to process input workloads of that size and

predict the response times?

Requirements for modeling operational data-intensive systems

How is it different to create a model for a data-intensive system compared to a conventional data

processing system. Does the fact that the system is operational change the modeling approach?

Are the input requirements to data-intensive system models distinctively different compared to

other distributed systems? Do the same assumptions about accessible information and system

knowledge hold for data-intensive systems? Can system characteristics be extracted from an

operational system and which ones are needed for a model? Are operational measurements

representative enough compared to specifically injected measurement workloads?

Modeling of data-intensive system components

For the performance critical components of data-intensive workflows independent models have

to be investigated and created. There are a number of modeling techniques from related areas
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in network modeling, disk drive modeling, or the modeling of relational databases. Are these

approaches from related domains applicable to data-intensive component models? If not, what

are more appropriate modeling techniques and how do they perform?

Unifying models in a hybrid system model and integration in an event simulator

The independent models have to be unified into a hybrid data-intensive system model. What

provisions have to be made to be able to switch specific component models without invalidating

the hybrid model? How can the component models be plugged into the hybrid model, while still

keeping a consistent global state? How can the model be integrated into an event simulator and

used to predict full input workloads of a system?

1.3 Outline

The remainder of this thesis is organized as follows: Chapter 2 introduces the operational data-

intensive system Rucio, which acts as running example of this thesis. To ease the content of the

thesis, this chapter also gives a brief overview of the data grid reference architecture presented

by Foster et al. [2001] and builds the connections between the reference architecture and the

running system example. The section also discusses how data grids, a special type of data-

intensive system, compare to other types of data-intensive systems.

Chapter 3 describes the related work in modeling and simulating data-intensive systems.

This chapter only treats full-system models, individual component models are discussed in their

respective chapters.

Chapter 4 presents the novel hybrid simulation model proposed by this thesis. This chapter

gives a general introduction on modeling and simulation and then establishes the input require-

ments for modeling operational data-intensive systems. The chapter then explains the principal

idea and concepts of the hybrid simulation model. Based on a statistical analysis of the work-

flows and historical workloads of the operational data-intensive system Rucio, a selection of

components is done whose component models are part of the hybrid system model. The specifics

of these component models are presented in chapters 5 to 8.
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Chapter 5 first details related work on how storage systems are modeled. The chapter then

continues by investigating different machine learning techniques to create black-box models

for storage systems in data-intensive systems. Each technique is carefully evaluated based on

historic workloads.

Chapter 6 investigates existing techniques for modeling network systems. Specifically the

question of how to model large-scale networking systems, transferring very large volumes of

data, is addressed here.

Chapter 7 details how typical data integrity validation workflows, based on checksum algo-

rithms, can be accurately modeled.

Chapter 8 continues with the different service components, identified in Chapter 4. Tech-

niques to create accurate performance models for these service workflows are investigated and

evaluated.

Chapter 9 details how the component models are combined in a unified hybrid system model.

The chapter continues with a comprehensive evaluation of the hybrid data-intensive system

model by replaying historic workloads in the event simulator. This chapter gives a clear pic-

ture of the performance of the model and also details its limitations.

The thesis finishes with a summary and a conclusion in chapter 10. This includes relevant

work that arose during the research carried out for this thesis.
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CHAPTER 2
Overview of the ATLAS data-intensive

system

2.1 Introduction

As the emphasis of this thesis is on the modeling of an operational data-intensive system, a

running example is needed to conduct and apply the research. This running example is Rucio, the

distributed data management system of the high-energy physics experiment ATLAS at the Large

Hadron Collider [ATLAS Collaboration, 2008]. In Section 2.2 a general overview of Rucio

is given. As the architecture and workflows of Rucio are quite specialized, a clear mapping

of the system to the widely used data grid reference architecture is given in Section 2.3. This

approach prepares the content so that the findings and analysis are applicable and adaptable to

other systems. As data grids are a specific type of data-intensive systems, section 2.4 details

the similarity and differences between data grids and other data-intensive systems. The section

continues in presenting overviews of other data-intensive systems.
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Figure 2.1: Overview of the Large Hadron Collider (LHC) experiments and facilities (Copyright
2011 CERN).

2.2 Rucio

Rucio [Garonne et al., 2012, 2014] is the distributed data management system of the high-energy

physics experiment ATLAS, at the Large Hadron Collider (LHC) located at the European Or-

ganization for Nuclear Research (CERN) in Geneva, Switzerland. It is ring-shaped, measures

27km in circumference, and is buried 100m underground, as depicted in Figure 2.1. ATLAS (A

Toroidal LHC ApparatuS) is one of two general purpose detectors used to investigate particle

collisions at the LHC. The detector consist of several sub-detectors shown in Figure 2.2 which

observe head-on proton-proton collisions at extremely high energies. The experiment studies

these collisions in hope of making discoveries about the basic forces that shape our universe.

Possible areas of investigations include extra dimensions of space, unification of fundamental
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Figure 2.2: Overview of the ATLAS detector and its sub-detectors (Copyright 2008 CERN).

forces, or evidence of dark matter in the universe. ATLAS is one of the two experiments that

was involved in the discovery of a particle consistent with the Higgs boson in 2012 [Aad et al.,

2012]. This discovery ultimately led to the physics nobel prize in 2013 for Peter Higgs and

François Englert, who proposed the mechanism in 1964. The author of this thesis is one of the

core software engineers included in the development of the Rucio system.

Rucio is also used as the distributed data management system of the Alpha Magnetic Spec-

trometer (AMS). AMS is an experiment designed to measure antimatter in cosmic rays and to

search for the evidence of dark matter [Aguilar et al., 2002]. The AMS Module is attached to

the International Space Station to which it was carried by the space shuttle Endeavour on flight

STS-134 on May 16, 2011 and was installed 3 days later.

The ATLAS detector records huge amounts of data which have to be stored and processed

by the collaboration in search for physics discoveries. Due to the amount of data produced by

ATLAS a data-intensive system is needed. Rucio is responsible for organizing the entirety of

the collaboration’s data. At the time of writing this thesis, this is about 250 Petabytes of physics
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data. The data is stored on over 750 storage endpoints in more than 150 data centers world-

wide which are connected by the Worldwide LHC Computing Grid [Bird et al., 2008] (WLCG).

Each site provides storage resources, like tape libraries, disk pools, distributed hierarchical file

systems, or other large-scale storage systems as well as computing resources like CPU or GPU

farms. The reason for this highly distributed infrastructure mostly lies in cost issues as well as

to increase the availability of resources. A single large concentration of resources is usually not

possible with the type of funding of large multinational consortiums. The ATLAS collabora-

tion’s participating institutions pledge these resources, under certain service level agreements,

to the management of the distributed system. The distributed computing paradigm of dispersing

resources geographically and facilitating them using middle-ware software is called a data grid

[Allcock et al., 2005]. The job of the middleware is to organize the data and to coherently use

the storage resources while enabling the user to interact with the system in a simple and efficient

way.

Data grids are organized in different ways which are dominated by the data access workflows

or by physical limitations of the hardware. In ATLAS the sites are categorized in four different

tiers:

Tier-0 is the CERN computing centre. Data read directly from the detector is processed by a

chain of triggering systems and the derived, as well as raw, data products are stored in large-scale

tape and disk storage systems directly at CERN.

Tier-1 sites are typically large national laboratories pledging a significant amount of stor-

age and computing resources. Currently there are 10 Tier-1 sites, seven in Europe, two in the

United States and one in Asia, which are all connected to each other and CERN by dedicated

high-capacity networks. Tier-1 sites are primarily used to store a fraction of the raw data for

availability reasons and to perform large-scale reprocessing of the raw data to derive data prod-

ucts.

Tier-2 sites are generally medium sized universities or laboratories usually associated to

some Tier-1 site. Typically the Tier-2 sites are connected to a single Tier-1 by national scientific

networks. Tier-2 sites provide the storage and processing capacities for specific research groups

within the collaboration. Also Tier-2 sites are heavily used to generate simulated data using
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Figure 2.3: Overview of the ATLAS topology and data workflow.

Monte Carlo methods, and for storing and processing user analysis data.

Tier-3 sites are smaller universities providing a small amount of resources without any guar-

antees of availability or fault-tolerance. These sites are usually not part of official data replication

policies, but pull data to their site for specific user analysis purposes.

Figure 2.3 denotes the workflow of ATLAS data. This shows that resources in a data grid

are not only different due to their heterogeneity in technology, but also due to different usage

caused by the experiment’s workflows. These workflows are controlled by policies integrated

in the middleware system. The policies guarantee the availability of data as well as the access

performance of the data, as different data products are considered with different importance by

the collaboration. For a data-intensive system model it is important being able to represent the

policies defining these workflows and to be flexible in adapting to all types of topologies and

data workflows.

Concept & Workflows

Every data-intensive system has, to some extent, unique workflows and concepts. This section

gives a brief overview of the concepts and workflows used in Rucio. In section 2.3 the mapping

of these concepts and workflows to the data grid reference architecture is made. This is important

in order to describe a generic data-intensive system model which is capable to model systems

universally without restricting itself to specific concepts.

In the center of Rucio are the concepts of accounts, files, datasets, and storage systems. Ac-

counts represent individual users, a group of users, or a centrally organized production activity.
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Figure 2.4: File, dataset and container aggregation hierarchy in Rucio.

Accounts are assigned privileges and access credentials such as X509 certificates or Kerberos

tokens.

Files are the smallest concept of data in Rucio. Each file is addressable by a unique filename

called a data identifier. However, physicists rarely interact with a single file but with a group

of files, which in Rucio are called datasets. Datasets are also uniquely addressable by a data

identifier and can be resolved to a specific set of files. Datasets can be grouped into containers

which, further on, can also be grouped into other containers as well. Again, each container is

addressable by a unique data identifier as well. The aggregation hierarchy of Rucio is shown in

Figure 2.4.

For data discovery and lookup, each file, dataset and container can be assigned with metadata

attributes. There are two groups of attributes, physics attributes for example the number of

collision events and the physics run number, and system attributes such as size, creation time, or

checksums.

Storage resources are abstracted in Rucio by a concept called a Rucio Storage Element

(RSE). A storage element can be anything from a tape library system, a disk pool, a distributed

file system, or even just a specific directory on a file system. Each RSE is associated with a

set of access protocols, policies for deletion like thresholds and quality of service attributes like

planned downtimes. Also metadata attributes, for example country=us or tier=1 can be
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assigned to storage elements. Rucio uses a formal language combining set operators and meta

attributes to address a set of storage elements [Barisits et al., 2014]. This language can be used

to express data placement to a specific set of storage elements.

A file physically located at a specific storage element is called a replica. Each replica is

also associated with a additional attributes like creation time or the physical file path. In most

cases a deterministic function is used to generate the physical file path at a storage element.

This allows clients to access files at a storage element without the need of resolving the physical

file path at the Rucio server. However, certain storage elements like tape libraries do require a

non-deterministic file path to work efficiently.

Another concept in Rucio are replication rules, which are used for three different purposes.

Replication rules are associated to a data identifier and define the number of replicas which

should be created on a certain set of storage elements. Thus, replication rules are used to initiate

data replication. If necessary, multiple replication rules can be defined for the same data identi-

fier, thus they also express the concept of multiple ownership of data. Every rule is interpreted

as an account expressing their interest in this data. The third purpose is data deletion: As long

as there are replication rules affecting a file replica, the file replica will not be deleted by the

system. Once the last replication rule is removed, the replica is marked as being available for

deletion. The actual deletion is then depending on the storage policies of the storage element,

such as if certain occupancy thresholds are reached.

The second concept used in Rucio to control data placement are subscriptions. Subscriptions

are used to automatically create replication rules for data which does not exist yet. A subscription

is a set of criteria for meta data which are checked against every newly created data identifier.

If the data identifier matches the criteria of the subscription, a replication rule is set for the data

identifier.

Architecture

Rucio is designed as a distributed architecture with four sections: Client, server, daemon and

storage resources. See Figure 2.5 for an overview. The user can access Rucio by three different

ways: by using a python API or command line client, by directly making REST calls to the
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Figure 2.5: General overview of the Rucio architecture.

server or via the Rucio web user interface. All calls to the client are transformed into HTTP

request which are sent to the servers REST interface [Richardson and Ruby, 2008]. The Rucio

servers are listening for calls. Once a call is received the account is authenticated based on the

provided client certificates. On successful authentication the client receives a token which is

valid for one hour and can be used for subsequent requests.

The separation between daemons and servers is guided by one principle: Potential work-

load intensive requests are only acknowledged by the server but the actual execution is done

asynchronously by the daemons in the background. This ensures a smooth user interaction and

avoids the congestion of the servers. Also recurrent actions, for example consistency checks,

are executed by the daemons. There is generally no direct interaction between storage resources

and the server, as these interactions are also potentially time intensive.

The servers are written in Python [Python Software Foundation, 2015] and the architec-

ture is designed in a horizontally scalable way. For each physical host an Apache webserver is
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Figure 2.6: Distributed architecture of the Rucio servers.

started which initializes a number of mod_wsgi containers [Apache Software Foundation, 2015]

each hosting a single Rucio server instance. The distributed architecture of the Rucio servers

is detailed in Figure 2.6. Each client-generated HTTP REST request is sent to a DNS address

which resolves to multiple loadbalancers. Each loadbalancer is based on the HAProxy software

[Tarreau, 2015]. The loadbalancer does the SSL handshake and relays the request to a random

Rucio server based on the least-connection scheduling algorithm. The Rucio servers then un-

dertake the necessary communication with the database. The return-stream of the HTTP request

is channeled back through the loadbalancer to the client. Thus the architecture is horizontally

scalable both on the loadbalancer as well as on the Rucio server layer.

The database consists of two instances, one serving as standby instance and thus this layer

is not fully horizontal scalable.

The Rucio backbone consists of a set of horizontally scalable daemons all assigned with a

specific task.

The Judge is the daemon in charge of the evaluation of replication rules. Once a replication

rule is requested the daemon checks the necessary account quotas and permissions, and then

parses the replication rule expression, and creates a set of transfer requests as well as logical file

replicas on the database. Once a replication rule is deleted or expired, the daemon updates the

quotas as well and flags the according replicas for deletion.
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The Conveyor is the file transfer daemon of Rucio. It continuously picks up file transfer

requests from the database, selects the optimal source replica, and executes file transfers between

the source and destination storage element. It also regularly checks the progress of ongoing

transfers, and verifies successful transfers with checksum comparisons. Once a transfer was

successful the daemon is also responsible for updating the respective replicas and replication

rules on the database.

For the deletion of data there are two different types of daemons: The Reaper is responsible

for physically deleting replicas on the storage elements. Based on deletion policies it selects

storage elements which are in need of storage space and deletes previously flagged replicas by

directly interacting with the storage elements. The second deletion daemon is the Undertaker

which acts on the logical expiration of datasets and containers. When a data identifier expires,

all its assigned replication rules are removed and the containing replicas are marked for deletion.

This ensures that data with a very limited lifetime is removed from the system to free up storage

resources.

There are also a set of secondary daemons in charge of consistency checks and data recov-

ery, message exchange with other applications, quotas and usage statistics as well as a tracing

daemon which records the system and data access performance for subsequent analytical use

cases.

Scale

The core part of Rucio, not including storage systems and databases, runs on about 60 4/8 core

machines with 8/16Gb of memory. There are 4 load balancers, 15 Apache frontend servers,

28 daemon nodes, as well as several nodes for administration and monitoring. The amount of

managed resources is shown in Table 2.1 while the evolution of total managed data is shown in

Figure 2.7. The system manages 730 logical storage elements which map to about 230 physical

storage systems.

The evolution of the amount of globally managed data shows a linear increase in data until

the technical stop of the LHC in the beginning of 2013. During the 2 year technical stop no

new data was recorded from the detector, however, simulation data was generated as well as
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Entity Volume

Accounts 5308
Files ~0.6 billion
Datasets ~7.7 million
Replication rules ~7.5 million
Replicas ~0.65 billion

Table 2.1: Volumes of selected system resources of Rucio.
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Figure 2.7: Evolution of total data volume managed by Rucio.

reprocessing campaigns of already collected data were conducted. At the end of the technical

stop in the beginning of 2015, a major deletion campaign removed almost 30 PB of data. Since

the start of the LHC for Run-2 a linear increase in data can be observed again. The frontend

request rate and response time of Rucio, measured at the loadbalancers is shown in Figure 2.8.

This plot shows a typical week of interactions. The typical workload of Rucio is rather spiky,

averaging at 180 Hz frontend request rate and about 120 ms response time. The transfer and

deletion rate, shown in Figure 2.9, is similarly spiky. This is both due to the characteristics of

the workload and the bulk-handling of requests in the system. The plots show that Rucio nearly
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Figure 2.8: Frontend request rate and frontend response time of Rucio.

deletes twice as much files as it transfers in between storage systems. The reason for this is that

intermediate data products are temporarily stored at a storage system but only read locally at the

data center, thus a WAN transfer is never executed for these files.

2.3 The data grid reference architecture

Foster et al. [2001] describe a grid reference architecture by identifying the general components

of a grid computing system. Based on this work Allcock et al. [2002] formulate the data grid

specific reference architecture. The goal of their work was to describe the ”Grid problem” both

from an architectural point of view, as well as the interactions between collections of individ-

uals, institutions, and resources. Their work enabled researchers to describe their findings in a

common framework, and to also make the bridge from data grids to other data-intensive systems.

The layers and a partial list of components of the data grid reference architecture is shown in

Figure 2.10.

The entire grid is decomposed into 5 layers which are further split into different components.
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Figure 2.9: WAN transfer rate and deletion rate of Rucio (Files per second).

The bottom layer is the fabric layer consisting of all the basic hardware components of the grid.

Storage systems, network systems, databases, both for catalog as well as metadata information,

as well as computing resources for the management machinery of the distributed system. The

computing resources described here are strictly to run the software of the data grid middleware

and should not be confused with computing resources used by the user applications. The connec-

tivity layer holds protocols responsible for the communication and authentication with elements

from the fabric layer. At the resource layer are mostly protocols associated with managing indi-

vidual resources. This can be common protocols like HTTP or proprietary protocols of certain

vendors of storage resources. The collective layer of the architecture holds the actual high-level

service architecture of the data gird middleware:

• The Replica management service is responsible for resolving file collections to files and

for the bookkeeping of replica locations. Also the transfer management is part of this

component. The service uses underlying data movement protocols from the resource layer

which are independent from the replica management itself. In Rucio the core parts of the
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Figure 2.10: Data grid reference architecture by Allcock et al. [2002].

server, as well as the Judge and Conveyor daemons, are associated with this component.

• The Replica selection service is responsible for selecting the best source replica, when

requesting data as well as selecting the best destination for data replication. In Rucio this

is associated with the Judge daemon.

• The main reason for separating a Metadata service from the replica management is that

metadata is often very application specific. Thus different workflows are used to create

and query metadata. This is also the reason why there are different fabric resources for

the metadata catalog, as the architecture could foresee different technologies, for example

non-relational databases, to store metadata. In Rucio there are specific workflows in the

core which are covered by the metadata service in the reference architecture but there is

no separate metadata database, thus the same relational database is used for both replica

information as well as metadata.

• The idea behind the distributed catalog service is to run a central replica catalog as well

as local mirrors of the catalog for certain data partitions, for example one local catalog
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per geographic continent. This concept has mostly historical reasons, as the file catalogs

could not handle the amount of requests, thus they had to be partitioned for performance

and reliability reasons. Rucio does not use distributed catalogs thus this component is not

associated.

• The information service holds information about the performance of the system as well

as the mapping of access protocols to storage resources. This component also exists in

the server part of Rucio and is either stored in the same database as used by the cata-

log services or in external timeseries databases such as Graphite [Graphite Collaboration,

2016].

The mapping of Rucio components to their reference architecture counterpart is mostly quite

direct but can slightly divert depending on the workflow. An example workflow of data discov-

ery and download is shown in Figure 2.11. In this workflow the application or user wants to

download a set of files associated to a collective data identifier. The Rucio equivalent for this is

downloading a dataset. In the first step the data identifier or meta data query is resolved against

the metadata service to receive a list of logical filenames. In the next step the replica manage-
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ment service is queried to receive, for each logical file, a list of replica locations. In Rucio the

last two requests are done in one atomic step, but internally still both interactions are executed

in an optimized way. The replica selection service is queried next which internally queries the

information service for current system state and metrics as well as storage protocols to select

the optimal replicas. In Rucio these requests are received by the server and internally processed

by the Judge component. The client application then receives the list of selected replicas and

protocols and can then start the downloads directly from the storage systems.

Other data-intensive system, outside of the data grid domain, do not strictly stick to the

data grid reference architecture. But in general the steps in any data-intensive system, like in

cloud-, cluster- or partly super-computing, are very similar: data discovery, replica selection

and transfer. In the remainder of this thesis the data grid reference architecture will be used to

describe the findings of the investigated operational system. More detailed explanations of the

internal workflows in Rucio are added when necessary.

2.4 Other data-intensive systems

There exists a vast amount of data-intensive systems, both in the research domain as well as

coming from industry. However, as the core of the problem lies in processing the data efficiently,

industry application providers are usually less open about their architecture and design choices

as well as the scale of their systems, compared to other data-intensive systems from the open

source and science domain. This section presents a concise introduction of some selected data-

intensive systems next to Rucio.

Large Synoptic Survey Telescope

The Large Synoptic Survey Telescope (LSST) will conduct a 10-year survey of the nights sky

starting in 2019 [Abell et al., 2009]. The telescope is a 8.4 meter large special three-mirror

telescope located in north-central Chilè. It’s mission is to produce images of the nights sky to

look for evidence of dark matter, dark energy, and astronomical rapid movements.

The planned data production is 30 Terabytes of data per day. The expected volume over the
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ten year lifetime of the telescope are 200 petabytes of image and derived data. The LSST will

use a grid based solution for its data storage and analysis [Kantor et al., 2013] with multiple

data centers across the American continent. The infrastructure is a close adaption of the historic

design of the WLCG and the Rucio predecessor DQ2 [Branco et al., 2010].

National Centers for Environmental Information

The National Centers for Environmental Information (NCEI) is the world’s largest active archive

of environmental data [United States Government, 2015]. It is a merger of the National Climatic

Data Center, the National Geophysical Data Center, and the National Oceanographic Data Cen-

ter. The center stores an aggregated volume of 20 Petabytes of atmospheric, oceanic, costal,

and geophysical digital data. The data comes from a wide variety of sources and is up to 150

years old. The data is stored in several mass storage systems across the United States but no

direct links to the public are provided. Users have to explicitly request access to certain datasets

which are either provided online or by shipping digital media to the requestor. This approach of

controlling the access to the data as well as providing the data on offline sources significantly

reduces the workload on the data-intensive system.

Google & YouTube

Google is very secretive about its infrastructure operation and actual system scale. In a recent

investigation by Munroe [2015] where the author followed the hardware spending and power

needs of Google, the storage capacity was estimated at about 10 Exabytes of data stored on

hard disks in addition to another 2-5 Exabytes on tape storage. Most of Google’s data is stored

in their own proprietary data-intensive system, the Google File System (GFS), in at least 19

different data centers. Many of the companies software products or intermediate structured

storage systems, such as BigTable [Chang et al., 2008] are built on top of GFS [Austin, 2009].

Due to the nature of Google products and the exposure to both the general public as well as

commercial customers, the usage patterns are different than to other data-intensive systems.

YouTube video views, for example, do not follow Zipf’s distribution thus requiring different

policies in terms of caching and replication [Cheng et al., 2008].
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CHAPTER 3
Existing full system models

3.1 Introduction

This chapter covers the related work done in the area of modeling data-intensive systems. The

models and simulation systems presented in this section only cover full system models. The

related work for specific component models, or component models, as well as different modeling

techniques, are discussed in the respective sections further on in this thesis.

Data-intensive systems can be categorized into a range of classes of systems and predictive

models are usually made for a specific type of system. However, those models are most often

also applicable to other classes of data-intensive systems, thus these should not only be seen in

the context of their origin. As established in the introduction chapter, this thesis focuses on the

modeling of response times of user operations of operational data-intensive systems, not on the

execution time of the user applications instrumenting the data-intensive system. This difference

is crucial as many system models focus on this part of the data-intensive system. For example,

High Performance Computing (HPC) is one class of data intensive system, however, HPC sys-

tems are mostly dominated by the job execution of user applications as the direct interactions

with the data-intensive system are local and therefore extremely fast. These models usually

strongly simplify many parts of the interaction with the data-intensive system.

The focus of this thesis lies in distributed systems, where the interactions with the data-
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intensive system take a non-trivial amount of time. In the spotlight of this chapter are models

for computing- and data-grids, peer-to-peer computing, and cloud computing. Casanova et al.

[2014] give an extensive overview of simulation systems and models of distributed applications

and platforms which would exhaust the scope of this chapter.

This chapter continues by describing the most widely used simulation frameworks used to

model grids, clouds and peer-to-peer systems.

3.2 Grid simulation frameworks

Over the last decade numerous models have appeared and disappeared on the scientific horizon.

Usually these models serve a very specific purpose, for example measuring the relative differ-

ence between two scheduling algorithms, simulating the execution time of computing jobs, or

predicting the storage utilization. There are strong differences in the modeling approaches and

also especially in the effort of validating the respective models against an operational system.

Only a few simulation systems passed the test of time and are still actively maintained or are

considered mature. This section gives an overview of these systems.

GridSim

Buyya and Murshed [2002] first presented the GridSim simulation system in 2002. Over the

years numerous extensions were published, with the latests extension for data grids being pre-

sented in 2008 [Sulistio et al., 2008]. The GridSim architecture is based on the discrete event

simulation infrastructure of SimJava [Kreutzer et al., 1997]. SimJava is a process based sim-

ulation package where each component is represented as a process, and multiple processes act

together to advance in simulation time and deliver events. The different components commu-

nicate with each other based on this events. An overview of the GridSim architecture is shown

in Figure 3.1. The basic, event-based, simulation system of GridSim is built directly on top of

SimJava and offers different toolkits, such as application modeling, resource entities, and job

management. These toolkits are linked by resource brokers and schedulers to the simulation

configuration. Each simulation configuration consists of a couple of entities, for example ap-
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Figure 3.1: Overview of the GridSim architecture [Buyya and Murshed, 2002].

plication configuration, resource configuration, and user requirements. Once the simulation is

started, the resource broker links the inputs of the configurations to the different toolkits in Grid-

Sim. These toolkits then use the high-level functions of SimJava, as well as the configuration

parameters, to make predictions and report them back to the resource brokers. Despite the very

wide usage of the simulator its network model was somewhat criticized as the validity limits

have never been properly documented [Casanova et al., 2014]. Also the more recently published

extension for data grids is a rather simplistic model, as it only allows a fixed seek time and

fixed data transfer rate per storage element. Nevertheless GridSim seems to be the most widely

downloaded computing grid simulator, with over 20.000 downloads since 2007.
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OptorSim

OptorSim by Bell et al. [2003] is a rather short-lived simulator as it is no longer maintained. The

architecture and design of OptorSim is built around the use-case of optimizing replica place-

ment. Each computing element is represented by a single thread. The computing elements are

controlled by a resource broker, run in another thread. Each thread reports the advancement of

simulation time, which is modeled based on static configuration tables, to the broker. The broker

assigns jobs to idling computing resources, thus, there is no real scheduling. For the use-case

of replica placement the approach was deemed sufficient. Each storage resource is represented

by a data structure noting the file availability in the storage system. If a computing job is ac-

cessing a local storage element, no storage access time is predicted, as the local availability of

the replica is deemed sufficient. If a transfer from a remote storage is required, the transfer time

is predicted based on a static bandwidth table and the job is given back to the broker until the

time the transfer finishes. This means that the congestion of several network flows on the same

network link is not taken into account. Despite the non-existence of a proper storage model and

the simplifications of the network model OptorSim is still quite widely used and cited, mostly

as the main objective of OptorSim was to simulate storage capacity and the frequency of replica

accesses under different distribution patterns, which allowed for these simplifications.

SimGrid

SimGrid was presented by Casanova [2001] and is probably the most maintained grid simu-

lators, with the newest extension published in 2015 [Lebre et al., 2015]. SimGrid performs

event-driven simulation and its design offers three different APIs for user applications to in-

teract with the simulation, as shown in Figure 3.2. The APIs enable the SIMIX part of the

simulator, which is a kernel providing abstractions for concurrent process simulation. The ac-

tual core of the simulator is the SURF layer of the application, which enacts the simulation of

execution of activities and resources. Each activity is defined as an amount of work by the upper

layers, and when its remaining amount of work reaches zero the SURF layer signals the SIMIX

layer of the success of an activity. SimGrid’s most notable contribution is their network model
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Figure 3.2: Overview of the SimGrid architecture [Lebre et al., 2015].

[Velho and Legrand, 2009], which is flow-based. This model offers, in contrast to many network

simulators in literature which are based on packet-level simulation, high accuracy while it still

scales to data-intensive systems. Also one of SimGrids big advantages is that its network model

is strongly validated against real systems [Fujiwara and Casanova, 2007, Velho and Legrand,

2009]. Storage support for data grids was added very recently to SimGrid [Lebre et al., 2015]

and is based on seek time and bandwidth configurations for each storage system, however with

a much more advanced sharing model when compared to OptorSim.

GloBeM

Grid global behavior prediction [Montes et al., 2011] based on the GloBeM model [Montes

et al., 2008, 2009] follows a different approach than the previously presented models. GloBeM

abstracts the grid as one single entity and uses a machine learning approach, based on monitored

traces, to model system behavior. An overview of the GloBeM workflow is shown in Figure

3.3. The advantage of this approach is that nearly no system knowledge is necessary to build

accurate models. Thus model creation is quick and in general also quite accurate. However,

the simulation accuracy is very much depending on the similarity of the simulated workload to
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Figure 3.3: Overview of the GloBeM workflow [Montes et al., 2011].

the trained workload. In practice the simulation accuracy suffers when simulating non-similar

workloads. The described use-cases of the model only include computing grids.

3.3 Cloud simulation frameworks

Cloud computing is a computing paradigm which gives the user convenient, on-demand access

to large amounts of shared resources. The types of resources are manifold, but usually when

referring to cloud computing, compute or storage resources are assumed. At the foundation of

cloud computing is a large pool of resources, like computing nodes connected in a networked

infrastructure. The cloud platform then assigns the resource, or part of the resource, to the

requesting user.

Due to the similarity to grid models, cloud simulators mostly evolved from them. This

section introduces the most commonly used cloud simulators.
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Figure 3.4: Overview of the CloudSim architecture [Calheiros et al., 2011].

CloudSim

CloudSim was introduced by Calheiros et al. [2011]. The simulator uses GridSim as its sim-

ulation core and builds the abstractions for the cloud activities and resources, such as virtual

machines, around it. The architecture overview is shown in Figure 3.4. Each resource in the

cloud is described by a set of characteristics like millions of instructions per second (MIPS),

memory and storage and a provisioning policy for allocating processing cores to the resource.

The actual virtual machine allocation model is based on a space-shared policy that estimates the

finish time of a task managed by a virtual machine. For storage the model focuses on predict-

ing capacity usage, as the response time for storage operations is, similar to GridSim, based on

static transfer times. As already explained in the GridSim section, the model is not well validated

against operational systems [Casanova et al., 2014].

GroudSim

GroudSim [Ostermann et al., 2010, 2011] is a simulation model specifically designed to simulate

cloud platforms and applications. It also originates from an event-driven grid simulation model.

The modeling approach focuses on job executions in clouds, and grids. The execution time esti-

mation is based on a stochastic model for runtimes and different cost models for scheduling. The
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model does not consider network congestion but bases its transfer estimations on a simple band-

width sharing model, with different flows just getting an even amount of bandwidth. Storage

access is not estimated and considered to be negligible.

3.4 Peer-to-peer simulation frameworks

The peer-to-peer computing paradigm splits workloads equally between privileged hosts. The

peers of the network provide their resources, such as storage, bandwidth, or processing capacities

to the network, without needing a central point of coordination. In this model peers act both as

consumers and suppliers of resources, in contrast to the classical client-server paradigm.

Modeling peer-to-peer systems quickly gets into the dilemma of trading accuracy for scal-

ability, as peer-to-peer systems often involve millions of peers. This section presents the most

prominent peer-to-peer simulators.

OverSim

Baumgart et al. [2007] published OverSim which relies on the OMNeT++ [Varga, 2001] dis-

crete event simulation core. The architecture overview of the system is shown in Figure 3.5.

The architecture is split up in three different parts. The application layer offers basic interfaces

to basic key-based routing implementations like Distributed Hash Tables [Stoica et al., 2001].

The Overlay layer then offers different structured peer-to-peer protocol implementations, which

are directly used by the application layer. The actual simulation is then done in the Underlay

layer, which is partly based on the OMNeT++ core as it offers many features for visualizing the

simulation workflow. The Underlay layer also offers different network protocol models, with

different accuracy and scalability characteristics. Their most-scalable simple protocol puts the

peers into an Euclidean space. Each access path gets characterized with a bandwidth, access

delay, and packet loss. The end-to-end packet delay of a packet between two nodes is approx-

imated by a constant formula containing these attributes. Thus the underlying network can be

simply simulated by one single event and is even able to model contention happening close to

the peers. Despite this simple model the accuracy is quite high and due to the low complexity

54



Figure 3.5: Overview of the OverSim architecture [Baumgart et al., 2007].

the model is very scalable. However, the model gets less accurate with large, wide-spanning

networks. The model also doesn’t predict any storage events as the authors focus on processing

and bandwidth resources.

PeerSim

PeerSim [Montresor and Jelasity, 2009] is the most widely used simulator for peer-to-peer stud-

ies. The architecture of PeerSim is designed in a modular way for an efficient and simple config-

uration. To facilitate the simulation of large networks, the model makes certain simplifications.

The main assumption is that mostly very small messages are exchanged between the peers, thus

bandwidth effects are ignored, as the key characteristic is message count and not transfer du-

ration estimates. To further improve the simulation time for big networks the message delay

between two peers is assumed to be constant, thus the network model is initialized as a fixed-

delay model. Due to the focus on small message passing, no storage model is included in the
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Figure 3.6: Overview of the PeerSim architecture [Montresor and Jelasity, 2009].

simulator as well. The architecture is shown in Figure 3.6 and is summarized as follows: The

different initializers are executed before the simulation, based on the simulation configuration.

Once initialized the control components manage the simulation by monitoring and manipulating

the other components, such as network or nodes. The simulation engine works both in an event-

based as well as cycle-based approach, where protocol actions are executed in a pre-defined

order. The cycle-based approach makes further simplifying assumptions and scales better with

large workloads, but is less realistic.
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CHAPTER 4
Novel hybrid simulation model for

data-intensive systems

4.1 Introduction

This section outlines the general idea behind system models and presents the different ways of

achieving this in the context of data-intensive systems. Law and Kelton [1991] define a system as

a collection of entities that act and interact together toward the accomplishment of some logical

end. They define a model as a representation of the system to be studied as a surrogate for the

actual system. In Figure 4.1 the general ways of studying a system, according to [Law and

Kelton, 1991], are illustrated.

• Experiment with the actual system. Experiments conducted with the actual system are

representative and relatively simple to conduct. However, with increasing complexity of

a system, this method becomes infeasible. Even small experiments might be disruptive to

the operation of the system and bigger experiments, such as testing partial system failures,

would be simply catastrophical for most large scale systems. This is important for data-

intensive systems as even small user inputs can create strong impacting effects on the

system. For this reasons, data-intensive systems are usually studied by experimenting
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Figure 4.1: Strategies to study a system [Law and Kelton, 1991].

with a model of the system.

• Physical models are real-world representations of the system built at scale. In the context

of software systems these are smaller-scale versions of the real system, such as experimen-

tal testbeds. However, for large scale distributed systems a representative testbed would

require an infeasible amount of resources. Also, most often researchers want to investi-

gate specific situations happening during operational workloads, however, it is non-trivial

to create a representative operational workload at scale [Lassnig et al., 2011]. For these

reasons physical models are most often ruled out for data-intensive systems.

• Mathematical models represent a system in terms of logical and quantitative relations

which are manipulated in order to observe how the system reacts.

• Analytical solutions. Mathematical models can be distinguished into two different types.

The first type being analytical solutions. With these models the researcher identifies a

set of formulas that abstract the functionality of the system and thus always deliver an

exact solution. With increasing system complexity such models are usually extremely

convoluted and de-facto unobtainable.
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• Banks et al. [2009] describe Simulation as the imitation of the operation of a real-world

system over time. In contrast to analytical solutions simulation means to numerically

approximate the model/system to see how different inputs affect the output measures.

Due to the complexity of data-intensive systems, simulation is the only feasible method

for modeling these systems.

Furthermore, mathematical models and specifically simulation models can be classified

alongside three different dimensions [Law and Kelton, 1991]:

• Static and Dynamic simulation models. A static model is a representation of a system at

a specific point in time, or a model of a system where time plays no role in the output of

the system. A dynamic model represents a system which changes over time, which is the

case for data-intensive systems.

• Deterministic and Stochastic simulation models. A deterministic simulation model does

not contain any probabilistic functions. However, as a requirement for a model to be de-

terministic, all input quantities and functional relationships of the system must be known.

This can be the case for certain processes in physics or chemistry, but in computing, it is

infeasible to collect all input quantities of a system, thus a certain set of variables is al-

ways unknown. This leads to elements of the model always having some kind of random

variate, making the model stochastic. For example, in a data-intensive system it is highly

unlikely to have accurate and complete data about the traffic occurring on all network

links, such as the internet.

• Discrete and Continuous simulation models. A discrete simulation model is a model,

where the system values change at specific points in time. In a continuous model these

values change continuously over time. A mixture between both types can be implemented.

Thus a model of a data-intensive system, such as the hybrid simulation model introduced

later in this chapter, has to be discrete, dynamic and stochastic simulation model. The remainder

of this chapter continues as follows:
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In section 4.2 the requirements to an operational, data-intensive system model are discussed.

What kind of estimators has the model to return? What kind of component knowledge is neces-

sary in order to be able to build the model. What kind of data is necessary and can it be assumed

that access to this data is, in general, available to researchers of data-intensive systems?

Section 4.3 introduces the idea and concept of the hybrid simulation model for data-intensive

systems. The section covers the general structure and workflows of the system model as well as

the introduction of system component models.

In Section 4.4 a quantitative system analysis is conducted on the data-intensive system Ru-

cio. This analysis should shed light on the critical workflows of the system and which com-

ponents have an impact on the performance of these workflows. The objective of this section

is to identify a set of components which significantly influence the performance of these work-

flows, in respect to the thesis research question. These components then have to be modeled and

integrated into the hybrid system model.

4.2 Requirements for an operational, data-intensive system model

The first requirement is already defined by the research question of this thesis:

Requirement 1 The model predicts the response time of individual read and write operations.

A model of a data-intensive system must process input operands, such as the current state of

the system and a descriptor of a read/write operation, and return an estimator for the response

time of the given operation. Existing grid models only estimate resource usage, such as band-

width or storage utilization. Other models in literature give performance estimators, but at an

abstract level such as classifications or quality of service distributions. These models have merit

for certain studies, but for most researchers and operators of large scale data-intensive systems

the performance of end-user operations is the focus. This enables researchers to investigate dif-

ferent data placement algorithms or even integrate the predictive model in the decision making

workflow of the production system.

The second requirement for a data-intensive system model is defined as follows:
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Requirement 2 The data grid components are black boxes. Component models must be con-

structed based on global observations, rather than internal component data or knowledge.

The reason for this requirement lies in the idiosyncrasies of large-scale distributed systems.

These systems can be distributed across multiple continents and are managed by a large group

of people. This leads to a highly heterogenous system, as the organizations [Foster et al., 2001]

are free to choose different technologies, manufacturers, and configurations for their systems.

Access to individual parts of the system is most often very limited, thus global observations,

such as global traces, are the only type of available information.

Requirement 3 Only passive observations must be used instead of observations from controlled

system experiments.

This requirement is specified due to the substantial differences between operational data-

intensive systems and systems which only exist in test environments. A common approach

in literature to construct a system model is to engage the system in controlled experiments,

to capture more detailed performance characteristics. These experimental workloads are very

often used in academic testbeds, such as PlanetLab by Chun et al. [2003]. This approach of

in-operando built resource models most likely leads to more accurate results, however, in oper-

ational production systems it is simply not feasible to run large-scale controlled experiments, to

observe the system under different load conditions. Such experiments are generally considered

too risky as they could produce unforeseen side effects or even jeopardize operational data.

With the established requirements it becomes immediately apparent that the current state

of research is in violation with most requirements. For example, the GridSim [Sulistio et al.,

2008] and SimGrid [Lebre et al., 2015] models do estimate operation response times, thus they

do comply with requirement 1, however both systems require extensive topology definitions for

attached storage systems, such as the number of disks attached at an endpoint, as well as through-

put, and seek rates for each disk. This breaks requirement 2. Not only is it mostly unknown how

specific sub-systems are composed and specified, but even if that knowledge was available, these

sub-systems are not necessarily compatible with the performance topology requested by these

models. For example, tape robots for cold storage of data operate substantially different than

61



disk pool systems, thus it is not possible to define them with the constrains of these topologies,

such as the number of disks.

The work of Montes et al. [2011] with their GlobeM model does not specifically consider re-

sponse time estimators, as the authors focus on state transitions, but in principle, the model could

also be used to predict response times, however for now there is no published work where the

authors have demonstrated that. The GlobeM model complies to all requirements as it abstracts

the data-intensive system as one single model and uses machine learning methods to train the

model based on historic workloads. However, due to the abstraction of a very complex system

into one single entity a lot of information gets lost leading to a potential loss in accuracy.

In summary, approaches in literature require either very detailed knowledge or data of the

system, thus the level of abstraction is very small, or they over-abstract the system and therefore

are subject to a potential loss in accuracy. The objective of this thesis is to create a model

somewhere in between those extremes, which offers accurate predictions without requiring very

detailed knowledge of the internals of the system.

4.3 Hybrid simulation model for data-intensive systems

The hybrid simulation model decomposes a data-intensive system into several components,

builds component models for each, and unifies the models into a single system model. Spe-

cific general system knowledge is preserved, as it is not lost in a single giant black box model,

while still complying to requirement 2. The approach of building the individual component

models is driven by global observational data, instead of data or knowledge of internals of the

component. The challenge of creating the hybrid simulation model lies in two steps: First,

the selection of the right components to be represented by component models. This challenge

is solved by analysis of an existing data-intensive system. A quantitative analysis investigates

workflows and extracts the components which have a critical influence on the performance of the

workflow. This analysis is shown in Section 4.4. The second step is modeling these components

and achieving accurate estimators. These steps are shown in Chapters 5 to 8.

The overview of the hybrid simulation model is shown in Figure 4.2. The simulation ap-
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Figure 4.2: Overview of the hybrid simulation model concept.

proach is to execute the hybrid model in an event simulator, which accepts an input workload

and estimates the individual operation response times. The hybrid model is designed in a mod-

ular approach. It consists of an interface for each component model. The component models

themselves are connected to an interface which allows the attachment of different models while

executing the same input workload. Each interface has access to the current system state of the

data-intensive system. The component models return their operation estimator as well as their

view of the current system state back to the interface, in order to be able to track the system

state.

When the model gets integrated in an event simulator, the workflow is as follows: The input

processor iterates all operations sequentially and queries the hybrid model for an estimator. The

hybrid model then queries the component models for an estimator of the currently processed

operation. The collected estimators for each operation are then aggregated by the hybrid model

to generate the response time estimator tend, which is reported back to the simulation processor.
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4.4 Component model selection based on quantitative system

analysis

Intuitively not all components will have the same impact on the performance of user operations

and thus do not carry the same importance in respect to a system model. The objective of

this section is to conduct a quantitative performance analysis of the workflows involved when

writing and reading files in a data-intensive system. To that extent the analysis should identify

the components used in this workflow and investigate how much time is spent in different parts

of the workflow. Ultimately this should lead to the identification of the relevant and irrelevant

components, in respect to the research question. This analysis is based on Rucio which collects

detailed system traces since the beginning of 2009 [Lassnig and Fahringer, 2009]. These traces

can be categorized into two groups: Internal traces, which are internal transfer requests coming

from the Rucio daemons itself. This mostly includes transfer requests being made by the system

for fully automatic replication of data. The second category of traces are external traces, which

are requests being made by users or computing nodes to directly read or write data from or to

storage systems.

The archive of internal traces in Rucio is collected since the launch of the system in late

2014. Each internal trace is a single file transfer event issued by one of the Rucio daemons. The

dataset includes 670 million events. Figure 4.3 shows the amount of collected internal events

since October 2014.

The archive of external traces includes more than 8 billion file operation level traces. Figure

4.4 shows the evolution of the captured traces starting from 2008. Thus the archive includes

both traces from the DQ2 era as well as Rucio. The data shows a linear increase of traces since

data taking with a drop in the year 2014, due to the upgrade phase of the LHC, during which no

data was taken from the detector.

The conclusive outcome of the analysis is the identification of the performance critical com-

ponents involved in user workflows of a data-intensive system. These identified components

can then be modeled and used to predict the performance of user operations of data-intensive

system.
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Figure 4.3: Amount of Rucio internal file transfer requests per month.

Instrumentation framework in concealed environments

The instrumentation framework used by Rucio was initially developed for its predecessor DQ2.

It is described in detail by Lassnig and Fahringer [2009]. The initial objective was that no

existing instrumentation framework had the capabilities to capture external operational traces at

the required level of detail, while working under the operational and administrative requirements

of the ATLAS data grid.

In contrast to other data-intensive systems, data grids have the unique characteristic that

parts of the distributed system, such as storage and networking systems, are just utilized by the

data-intensive system, and thus under very limited control of the distributed system. This leads

to the idiosyncrasy that no instrumentation data is available about certain parts of the system.

This data is contained within a concealed environment. This is partly a technological as well as

an administrative challenge, as in data grids there is usually no administrative entity which is

able to force specific monitoring software stacks to be deployed throughout the system. At the

same time, however, operators and developers of the data grid require correct and timely runtime
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Figure 4.4: Captured amount of external trace events per month.

information at a specific level of detail. This challenge lead to the monitoring system of Rucio.

The characteristics of the instrumentation system are discussed in length in [Lassnig, 2014].

The key characteristics are correctness: the behavior seen by the participating clients must be

correctly reported to the system. For example, if multiple client operations belong to the same

transactional data grid operation, this transactional behavior must be part of the captured ob-

servation as well. Non-invasiveness: The observations must be captured without impacting the

operational systems performance as well as reported within reasonable time. Synchronization:

Events observed in multiple concealed environments must be reported in a synchronized way,

without affecting the total order of events.

The implemented framework is partly based on the data stream reference architecture from

Golab and Özsu [2003]. The architecture of the framework is based on data streams the dis-

tributed system has no control over. Thus the order in which data elements arrive as well as

their volume is explicitly not controlled by the distributed system. In Rucio this is reflected

by a client requesting data originating from a collective data identifier, such as a container or

dataset. Multiple data streams are started by the client directly from the storage endpoints. As
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Figure 4.5: Number of traces per different client instrumenting Rucio in the year 2015.

no traces are directly captured, or reported, at the storage system or networking system, the only

place to capture these performance characteristics is on the client which subsequently reports

the observations back to the data grid. To achieve a full system view with this approach the

majority of access-workflows used in the ATLAS collaboration had to be utilized to capture and

report these traces. Specifically the Rucio clients as well as the workload management system

PanDA [Maeno, 2008] was instrumented in that way. Figure 4.5 shows the distribution of dif-

ferent clients accessing files in Rucio in the year 2015. The majority of traces are generated by

the workload management system PanDA through their pilot. The clients are usually only used

by the user when finally reading the data, but all the intermediate analysis steps and recurrent

processing runs are done directly by the workload management system, which pulls the data

from storage directly to the computing element. Thus a much higher access rate of the data,

originating from the workload management system, is expected. Only a very small amount of

upload requests is done by the clients as they are mostly used by the users who are usually not

creating data. The plot also shows that about 100 million traces come from the legacy DQ2
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clients. These are the clients of the predecessor data management system (DQ2) which are still

compatible with Rucio. Especially in the beginning of 2015, shortly after the decommissioning

of DQ2, many users were still using the DQ2 clients and only switching to the Rucio clients

later on.

A typical instrumentation workflow is described based on the rucio download behavior,

when downloading a dataset. The workflow is depicted in Figure 4.7, at the end of the section.

When executing the command the client starts to capture performance traces for different parts

of the workflow. Between the timestamps tsubmit and tstart the Rucio servers are queried for the

contents of the dataset as well as the replica locations, including a preliminary replica selection,

of all containing files. In the next step the client spawns a thread per file so that downloads

are executed concurrently. For each file the client decides either to use the pre-selected replica

or make a decision on its own. This means that the client is potentially using different storage

systems to request the replicas. Once the replica is selected the correct storage protocol is

chosen and the transfer call to the storage system is constructed. Before starting the transfer the

ttransfer timestamp is recorded. After the transfer finishes the data integrity validation phase of

the workflow starts with recording the tvalidation timestamp. A checksum is calculated for each

transferred file and compared with the checksum initially provided by the server. This concludes

the validation phase and the tend timestamp is recorded. The client then submits the complete

trace event to the server, thus reporting the events which happened in the concealed environment.

While the tsubmit and tstart timestamp can be collected directly at the server, the other

timestamps are completely independent from the central infrastructure and thus only execute in

the concealed environment. As the client spawns a thread for each file transfer one trace event is

submitted for each transfer. However, as the first part of the workflow, until the tstart timestamp,

is only executed once, these two timestamps will be similar in all traces. A detailed timeline

of trace timestamps is shown in Figure 4.6. The trace events are sent to the server at the end

of the workflow irrespective of the success of the transfer. Even if a transfer fails or the client

is stopped gracefully, an informative trace event will be sent to the server. This is important

as potentially incomplete trace events have to be accommodated for subsequent analysis. The

trace events are sent to the REST interface of the loadbalancer in the JavaScript Object Notation
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Figure 4.6: Rucio trace instrumentation timeline visualisation.

(JSON) format. The loadbalancer then relays the trace to a specific set of Rucio Apache servers,

which are exclusively responsible for receiving and storing the traces in a timely fashion.

The rucio upload instrumentation behavior is quite similar to the download workflow

and shown in Figure 4.8. At first the Rucio server is instructed to create the dataset and the files

as well as replicas. All replicas are created in a COPYING state. Once the server call returns

the tstart timestamp is recorded and a thread is created for each file transfer. The upload call

is constructed based on the available protocols, and the transfer operation is executed between

the ttransfer and tvalidation timestamps. Once finished the server is notified about the success of

the transfer operation and the replica state is changed to AVAILABLE. Similar to the download

workflow, the tsubmit and tstart timestamps will be equal in all file traces. The rest of the

workflow is done concurrently as well, thus the other timestamps diverge.

A similar instrumentation was put on top of the pilot unit of the workload management

system. Instances of the pilot run on all processing nodes of the computing grid, which interact

directly with Rucio APIs for replica lookups but do construct and execute its own protocol
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calls, without using the Rucio clients. The instrumentation of the PanDA pilot workflow when

downloading data is shown in Figure 4.9. In this workflow the timestamps get recorded in

two separated parts of the workflow. First, when the job gets dispatched from the workload

management system in the sites computing queue the Rucio servers are contacted to resolve

the data identifier into file and replica information. This is also the time when the tsubmit and

tstart timestamps are recorded. At a later point in time, when the pilot gets instantiated at the

computing element, it already has all the replica information as part of the payload. The pilot

then directly constructs the storage calls and transfers the data from the storage element to the

computing element, without using the Rucio clients. After the transfer is done the checksums

are also verified. The trace event is then sent to the Rucio server.

The pilot upload workload instrumentation, shown in Figure 4.8, is also similar. When the

job gets created at the PanDA servers the respective output datasets are instantly created in

Rucio. Once the pilot is instantiated and the job finished creating all the output data the tsubmit

timestamp is recorded. The pilot then uploads the data to the storage element. It does this

without using the Rucio clients. However, the pilot uses the same deterministic functions to

create the storage paths thus the files end up in the same location where the data management

system would put them. After all transfers are done the tend timestamp is recorded as well and

the trace events are then sent to Rucio. Once the pilot sent a positive acknowledgment to the

server of the workload management system. Rucio is contacted again to logically create the

replicas in the catalogs, which are already physically existing in the storage system. The files

are also added to the output datasets.

Next to the tracing timestamps, which are important for the performance analysis, each

trace also records a set of meta attributes describing the operation. The attributes are shown in

Table 4.1. These attributes not only give the timestamps for performance analysis, but also hold

information about the protocols used and errors in case of transfers not being successful. This

information is essential as there, most often, is no other information about why a certain storage

end point is failing.
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Attribute Description

account The account name of the issuer of the operation.
appid Application id field which is set by the application recording the trace.
catStart The start of the catalog lookups. In this document it is referred to as tsubmit.
clientState The final state of the client when finishing the transfer. This can be DONE, FAIL

or partial failures.
dataset The dataset name the transferred file belongs to.
datasetScope The dataset scope the transferred file belongs to.
duid The dataset universal id. This field was used in DQ2 and is meanwhile deprecated.
eventType The event type of the operation. This can either be a get/put from a client, from a

pilot or from a pilot for analysis data.
filename The file name of the transferred file.
filesize The file size, in bytes, of the transferred file.
guid The global unique identifier id of the transferred file.
hostname The hostname of the machine issuing the request.
ip The ip address of the machine issuing the request.
localSite In case of a download, the site identifier of the site the data is sent to. In case of an

upload, the site identifier of the site the data is originating from.
protocol The protocol used for the transfer.
relativeStart The starting time of each transfer thread (tstart).
remoteSite In case of a download, the site identifier of the site the data is originating from. In

case of an upload, the site identifier of the site the data is sent to.
scope The file scope of the transferred file.
stateReason The reason for a failed transfer.
suspicious The suspicious flag indicates that, for a (partially) failed transfer, data is potentially

left at the storage system and has to be checked or removed.
timeEnd The end time of the operation (tend).
timeStart The start time of the client (Not depicted in the other figures).
transferEnd End time of each single transfer.
transferStart Start time of each single transfer (ttransfer).
url The fully qualified url of the source replica file.
usr The hashed user name in case of the trace being given out externally to guarantee

anonymity.
usrdn The distinguished name of the certificate the user is using to authenticate himself.
uuid The universal unique identifier of this operation. In case of multiple transfers being

executed in one client operation, all the traces will have a similar uuid.
validateStart Start time of the data integrity validation process (tvalidation).
version The version of the client being used.

Table 4.1: The recorded attributes for each trace in Rucio.
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Figure 4.7: rucio download workflow and trace instrumentation.
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Figure 4.8: rucio upload workflow and trace instrumentation.
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Event traces of internal transfer requests

In contrast to the external operations, the internal operations are scheduled and executed by

the data management system itself. The external data grid operations are entirely scheduled by

the user or external application with little to no control of the system in scheduling them. All

internal traces come from these transfer requests executed by the system. A single transfer event

describes a storage to storage file transfer request using the networking system of the data grid.

In Rucio, such transfer requests are issued by replication rules, either requested by a user or

created by the distributed system itself, to optimize data distribution. For more information on

replication rules, see Section 2.2.

Once a replication rule has been submitted to the system, the Judge daemon is interpreting

the rule and creating the necessary transfer requests in the database. The Conveyor daemon

asynchronously processes these transfer requests and schedules them for transfer, based on the

system load, the priority of the transfer, the load on the network and the storage system, and other

factors. Once the transfer request is scheduled for transfer it is submitted to the File Transfer

Service [Kiryanov et al., 2015] at CERN which takes care of the storage to storage transfer calls.

Each request is described by multiple attributes shown in Table 4.2.

The full workflow of a transfer request is shown in Figure 4.11. The replication rule submis-

sions can be done by either using the python clients or directly the REST interface of the Rucio

server. Usually replication rules are created for datasets or containers, rarely for single files.

Once a rule is received the Judge resolves the data identifier to the relevant files and replicas,

selects the target storage element and creates the necessary transfer requests in the database. For

each required file transfer one transfer request is created. At this time also the tcreated_at time-

stamp is recorded. As the transfer requests belong to the same rule and are created at the same

time, they all have the same tcreated_at timestamp. The Conveyor daemon continuously scans

the database for newly created transfer requests. Once it finds newly arrived requests and the

conditions of the system, network and storages allow for the transfers to be submitted, it submits

the transfer jobs to the File Transfer Service (FTS). At this time the tsubmitted_at timestamp is

recorded. The File Transfer Service also has a scheduling layer in front of the actual transfer

execution. This is to ensure that different priorities are taken into account as well as not to flood
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Attribute Description

created_at Timestamp recorded when the transfer request is created.
updated_at Timestamp recorded each time the transfer request is updated.
state State of the transfer request.
request_type Request type, which can be either a transfer or a stage in request from tape.
external_id The external id of the file transfer service job.
scope Scope of the file requested for transfer.
name Name of the file requested for transfer.
dest_rse_id RSE id of the destination storage element.
id Unique request id.
previous_attempt_id The previous request id in case the request is a retrial.
retry_count The retry count.
attributes Additional attributes stored as a serialized dictionary.
err_msg The error message if the request failed.
rule_id The rule id of the rule requesting the transfer.
bytes The size of the file to be transferred.
md5 The md5 checksum of the file.
adler32 The adler32 checksum of the file.
dest_url The generated url of the destination file.
external_host The file transfer service host used to request the submission job.
activity The Rucio activity being used for different prioritization of transfers.
submitted_at Timestamp recorded when the transfer is submitted to the file transfer service.
transferred_at Timestamp recorded when the transfer has finished.
submitter_id The id of the actual submission daemon in the file transfer service.
started_at Timestamp recoded when the transfer is started.
source_rse_id RSE id of the source storage element.

Table 4.2: The attributes describing each transfer request in Rucio.

certain network links. Once scheduled, a transfer job is dispatched to one of the job processors

in the pool which then executes the transfer job based on the protocols both the destination and

source storage endpoint support. The job processor also records the tstarted_at timestamp once

started. When successful, the ttransferred_at timestamp is recorded. After the transfer finished

successfully the job processor initiates a checksum validation. The job processor then terminates

the job and the FTS central server notifies the Rucio conveyor about the transfer, including all

the recorded meta data.
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Figure 4.11: Rucio internal transfer workflow.
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System analysis

The objective of this section is to take the trace archive of Rucio and conduct a quantitative

analysis on it. The outcome of this analysis is a detailed understanding of how much time is spent

in the different workflows, but especially, how certain components influence these workflows.

These components can later on be modeled and included in a predictive model of the data-

intensive system. This analysis is conducted in a generic way and the findings are presented,

wherever possible, in the terminology established in the data grid reference architecture[Foster

et al., 2001]. Thus the analysis is, for the most part, applicable to other data-intensive systems,

however, there might be some peculiarities which are specific to the Rucio system. The analysis

is based on the trace archive of Rucio of the year 2015. The dataset for 2015 includes about 2

billion external trace events and 617 million internal trace events.

As specified by the research objective the focus of this thesis is on modeling user operations,

or so called data grid operations. These read (download) or write (upload) operations are exe-

cuted on a collective data identifier such as a dataset or container. The user is usually reading or

writing multiple files in one operation. Figure 4.12 shows an overview of data grid operations for

download, upload and transfer, partitioned by the aggregated data grid operation size. Transfer

operations are a special subset of write operations, when a user requests data being moved from

one storage system to another. In this case the user does not execute the transfer himself, but

requests a transfer being done on his behalf by the distributed data management system itself.

There are two orders of magnitude more upload operations than download operations, especially

in the smallest partition of data grid operations smaller than one Gigabyte. The reason for this

is the PanDA pilot upload workflow shown in Figure 4.10. Many computation jobs are started

on different computation elements to process the input data of a job. Each computation element

writes the output of the job to the same output dataset, but as the computing jobs do not have

any knowledge of each other, each upload is done with a different trace uuid, thus, considered as

a different data grid operation. For the bigger partitions there are multiple orders of magnitude

more data grid operations for downloads than for uploads. This is also for the reason described

above. For the year 2015 there were slightly over 20,000 data grid upload operations larger than

100 Gigabytes, while there were over 340,000 data grid download operations for the same parti-
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Figure 4.12: Number of data grid operations partitioned by data grid operation size for the year
2015 (Logarithmic scale).

tion. The amount of transfer operations is usually similar to the amount of download operations.

In the 10 to 100 Gigabytes partition there are interestingly more transfer operations than down-

load operations, which would suggest that some data is never read, which, to some extent, is

true as the data is optimistically replicated to increase availability. But a second explanation for

this phenomenon is that data is transferred as part of big datasets and later split up into smaller

chunked datasets. Then only these smaller datasets are read from the storage.

The effect described above is also shown in Figure 4.13. This barplot shows the average size

of data grid operations also partitioned by the operation size. While in the larger partitions the

average size of uploads, downloads and transfers is essentially similar, the small partition shows

an order of magnitude smaller average transfer size for uploads. For uploads in the smallest

partition, the average transfer size is only slightly over 2 Megabytes, while for downloads the

average transfer size is over 130 Megabytes (120 Megabytes for transfers). This is because out-

put datasets are populated by many different data grid operations during upload, but downloaded

in one data grid operation which yields a higher aggregated size for the download operations.
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Figure 4.13: Average size of data grid operations partitioned by data grid operation size for the
year 2015 (Logarithmic scale).

For further analysis the data grid operations are separated into local and remote operations.

A data grid operation is considered as local if the source and destination is within the same local

network. This is the case for computing elements accessing data from the storage element in the

same data center, or users accessing data from storage elements in the same university network.

In these cases the networks are usually over-provisioned and thus are not the bottleneck of the

data grid operations. In contrast remote operations are computing elements or users accessing

storage elements in remote data centers, thus having to use wide area network transfers over

dedicated networks or the internet. In these cases, the network part of the workflow can be per-

formance critical to the whole operation. The distinction is made based on the localSite and

remoteSite attribute described in Table 4.1. Local and remote operations have to be treated

separately in further analysis, as from a modeling point of view they involve different compo-

nents.

Figure 4.14 shows the number of data grid operations for local and remote upload/download

operations. The bar plot is also partitioned on operation size. In all partitions there are orders
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Figure 4.14: Number of data grid operations per operation type partitioned by data grid operation
size for the year 2015 (Logarithmic scale).

of magnitude more local upload operations than remote upload operations, which is expected as

the pilot of the workload management system writes the analysis output to local storage. Similar

for all but the smallest partition there are more local download operations than remote download

operations. This is also due to the same reason, that a pilot gets usually dispatched to where the

data is, thus reading the data from the local storage element.

While the Rucio internal transfers, executed by FTS [Kiryanov et al., 2015], are more than

99% done with the LCG access protocol, different protocols are used for the user uploads and

downloads. This is potentially critical to the performance of the read and write operations, due

to the overhead of the protocols themselves. Also depending on the protocol, different servers

are used for a storage endpoint and thus may deliver different performances due to hardware or

utilization. Figure 4.15 shows an overview of the amount of data grid operations per protocol

used based on the external traces. The previously described effect of having more upload data

grid operations is also visible here. The largest protocol, both in uploads and downloads is

from the LHC computing grid protocol stack (LCG, GSIFtp, GFAL, SRM) mostly based on

82



Castor dCache https lcg local objectstores xroot

N
um

be
r o

f d
at

a 
gr

id
 o

pe
ra

tio
ns

 (L
og

ar
ith

m
ic

 s
ca

le
)

1e
+0
0

1e
+0
2

1e
+0
4

1e
+0
6

1e
+0
8

Upload
Download

Figure 4.15: Number of data grid operations per protocol for the year 2015 (Logarithmic scale).

the Globus toolkit by Foster [2006]. The Castor (CERN Advanced Storage Manager protocol

[CERN, 2016]) protocol as well as the dCache protocol by Fuhrmann and Gülzow [2006] are

only used for downloading data. The reason for this is that in the ATLAS data grid Castor is

only used for tape-based storage systems into which users have no permission to write. All

write operations to the tape system are done using storage to storage transfers via replication

rules and thus only shows up in the internal traces. For dCache the reason seems to be that

the protocol offers advantageous reading performance but users choose different protocols for

writing to the storage systems. Another observation is that the protocols for downloads are more

or less equally used while there are strong differences for the upload protocol. A general larger

amount of upload data grid operations is explained by the previously detailed effect of much

smaller upload operations due to the workload management system workflow. But there are also

large differences between the upload protocols, with the LCG protocol stack being used the most

followed by local protocols (POSIX based) and with https as the least used protocol. At the time

of writing this thesis the only protocol used for objectstores is Amazon S3 by Palankar et al.
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[2008]. The xrootd protocol by Dorigo et al. [2006] also amounts for an order of magnitude

more upload operations than download operations, also caused by the previously mentioned

effect.

The next step of this quantitative analysis is to investigate the actual performance of the

operations. The performance metric in focus is the response time of data grid operations, or

metrics related to it such as transfer rates. This analysis shows how much time the system

spends in different parts of the workflow and to some extend gives evidence to the complexity of

said workflows. The analysis is based on aggregated time spent in a workflow, in contrast to end-

to-end time spent in the workflow. Many steps in the workflow are executed concurrently, thus to

most useful measurement in respect to this analysis is aggregated time spent in the workflow. The

specific calculation will be presented for each timing period definition later on in this section.

This information is essential to make a decision which system components should be included

in a system model and even what kind of modeling approach might be applicable to certain

processes in the workflow. To achieve this, the workflows for the download-local, download-

remote, upload-local, upload-remote as well as transfer will be partitioned into logical consistent

timing periods, where each timing period corresponds to one, or multiple, components. As both

the internal as external trace archive only offers a limited number of observed timestamps, these

periods cannot be chosen completely arbitrary. The measurements for each period are then

partitioned based on the data grid operation size defined by: 0 < x < 1 Gb, 1 < x < 10 Gb,

10 < x < 100 Gb and 100 < x <∞ Gb.

The first workflow analyzed is the read workflow, which based on the data grid reference

architecture by Allcock et al. [2002] is defined as follows:

(i) The metadata service is queried for the list of logical file names.

(ii) The replica management service is queried for available replicas for each file.

(iii) The replica selection service selects the optimal replica for each file.

(iv) The files are read from the storage system.

(v) The files are transferred over the network.
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(vi) Data integrity validation of the transferred files.

This is roughly mappable to the rucio download (local and remote) workflow depicted in Figure

4.7 as well as the PanDA pilot get workflow in Figure 4.9. The following periods are defined:

• resolve: This period involves the steps (i) and (ii) of the data grid reference which are

responsible for resolving the logical identifier into the available replicas. The period starts

with the tsubmit timestamp and ends with the tstart timestamp. As this workflow step is

only executed once per data grid operation, both timestamps are similar for all traces and

the period is defined as ∆t = tstart − tsubmit

• select: This period represents the replica selection (step (iii)) of the data grid reference

architecture. The period is enclosed by timestamp tstart and ttransfer. This step is also

only executed once per data grid operation, thus the period is defined as ∆t′ = ttransfer−

tstart

• transfer: The transfer period represents both the fetching of the data from the stor-

age system (step (iv)) as well as the transfer of the data over the network (step (v)).

It is enclosed by the timestamps ttransfer and tvalidate. As the transfers are executed

concurrently in the workflow, the aggregated time spent in the workflow is defined as

∆t′′ =
∑n

i=1 tvalidate(i)− ttransfer(i)

• validate: The validation period comes at the end of the workflow (step (vi)). It is enclosed

by the timestamps tvalidate and tend. Also the validation step is executed concurrently in

the workflow. The period is defined as ∆t′′′ =
∑n

i=1 tend(i)− tvalidate(i)

The full workflow, timestamps, and periods are shown in Figure 4.16.

The analysis is conducted twice, once for the download-local and once for the download-

remote workflow. The results for the local read workflow are shown in Table 4.3. vol describes

the aggregated volume of each data grid operation, thus the value defines into which partition

the data falls into. In the first row, only local data grid download operations of a size between

0 and 1 Gb are described. n describes the number of data grid operations in this partition while

vol describes the mean volume of these data grid operations. The bottom row aggregates all
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Figure 4.16: Periods of the read workflow.

resolve select transfer validate
vol [Gb] n vol ∆̃t [s] σ(∆t) ∆̃t′ σ(∆t′) ∆̃t′′ σ(∆t′′) ∆̃t′′′ σ(∆t′′′)

[0, 1) 1.4M 0.2 0.016 7.3 ∼ 0 24.8 4.7 4955 0.4 54.5
[1, 10) 4.3M 3.5 0.014 2.5 ∼ 0 9.8 19.9 495 8.1 253

[10, 100) 0.7M 13 0.016 2.2 ∼ 0 27.5 102 8600 35.2 789
[100,∞) 0.1M 2554 0.019 0.5 2.46 284 1220 20699 584 19949

* 6.5M 4.2 0.014 4.14 ∼ 0 60.3 12.34 4124 5.8 1590

Table 4.3: Performance analysis statistics of the local read workflow.

partitions and shows the statistics for the full dataset. For each of the four periods the median

time ∆̃t is shown, which is the time the operation spends in this part of the workflow. Also the

standard deviation σ(∆t) is given.

A detailed boxplot of the obtained performance analysis is also shown in Figure 4.17. As a

first observation it is immediately obvious that the two dominating parts of the workflow over all

partitions are the transfer and validation periods. The resolve and the select periods are insignif-

icant to the performance of the operation. The select period of the workflow is instantaneous,

which makes sense for these operations as they are initiated as local downloads. Only the local

replica is eligible for a download. No selection has to be done. The time spent in this period

is in the microsecond area. Only for the largest partition is the timing in the area of multiple

seconds. This is most likely due to the very large number of transfers being requested. The

transfer period, even for the small partitions, shows a significantly higher median and mean du-

ration. The high standard deviation is more interesting as strongly scattered data also hints to a
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Figure 4.17: Performance analysis of the local read workflow.

more problematic relation of the data and a higher complexity when modeling it. For example,

a strong linear relation between the size and the duration can be easily represented by a simple

linear model. To investigate if there is any linear relation between the volume and the timing the

Pearson product-moment correlation coefficient, as shown in Equation 4.1, is used.

ρX,Y =
COV (X,Y )

σXσY
(4.1)

The calculation of the pearson product-moment correlation coefficient for each of the workflow

periods is shown in Table 4.4. Most of the data shows no correlation at all. No linear relation

between the size and the time of the transfer is found. Only for the very large partition a small

correlation is found. Interestingly, also for the validation workflow, which is strongly dependent

on the used checksum algorithm, no linear correlation is found between the size and the duration

of the workflow. Judging from this plots the resolve and select period are, from a duration point

of view, not really relevant to the performance of the operation, as they take an insignificant

amount of time. For the local read workflow the most critical periods are transfer and validation

which identifies the local network, storage, as well as data integrity validation components to be
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resolve select transfer validate
vol [Gb] ρ∆t,vol ρ∆t′,vol ρ∆t′′,vol ρ∆t′′′,vol

[0, 1) -0.008 -0.01 0.001 0.03
[1, 10) -0.0001 0.0004 0.087 0.094

[10, 100) 0.003 0.119 0.024 0.111
[100,∞) -0.0002 0.711 0.493 0.107

Table 4.4: Pearson product-moment correlation coefficient of the local read workflow.

resolve select transfer validate
vol [Gb] n vol ∆̃t [s] σ(∆t) ∆̃t′ σ(∆t′) ∆̃t′′ σ(∆t′′) ∆̃t′′′ σ(∆t′′′)

[0, 1) 1.9M 0.03 0.549 34 4.02 210 7.0 815 0.01 32.3
[1, 10) 0.1M 3.2 0.82 27.5 12.0 378 410 3195 12.2 406

[10, 100) 28k 31 0.94 26.4 102 543 4092 13586 204 2743
[100,∞) 5400 300 1.04 9.9 377 770 28976 76800 2506 19921

* 2M 1.4 0.5 33.2 5 256 10 6589 0.03 1285

Table 4.5: Performance analysis statistics of the remote read workflow.

the most significant ones. These components must be accurately represented in a system model

to achieve precise results.

The results for the remote read workflow are shown in Table 4.5 and a detailed boxplot is

displayed in Figure 4.18. A couple of differences immediately stand out when comparing with

the local download workflow statistics. For one, the select period shows much larger durations

compared to the local select period. This is because for the local workflow the selection can

be skipped, while for the remote workflow the replica selection service has to be contacted

to know which replica to select. A second observation is that the validation period duration

seems to be much smaller than for the local workflow, which is somewhat unintuitive. When

looking at the data in more detail it becomes clear that the average volume, per partition, is quite

different in both workflows. In the remote workflow, for the smallest partition, the average data

grid operation is only 30 Mb in size, while for the local workflow it is 200 Mb. In the remote

workflow very often only a couple of files are transferred remotely as the rest is fetched locally

hence the smaller volume. This is the reason why the validation period is much smaller. For
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Figure 4.18: Performance analysis of the remote read workflow.

resolve select transfer validate
vol [Gb] ρ∆t,vol ρ∆t′,vol ρ∆t′′,vol ρ∆t′′′,vol

[0, 1) 0.003 0.105 0.141 0.086
[1, 10) 0.005 0.078 0.174 0.102

[10, 100) 0.013 0.123 0.342 0.175
[100,∞) -0.001 0.263 0.618 0.297

Table 4.6: Pearson product-moment correlation coefficient of the remote read workflow.

the second partition (1 < x < 10 Gb) the volumes are about the same as well as the validation

duration. However, the transfer duration is much higher for the remote workflow, which is also

expected due to the usage of the network infrastructure.

Table 4.6 investigates again the linear relation between size and time for the different work-

flow periods, using the pearson product-moment correlation coefficient. The result is quite sim-

ilar to the local download workflow. Almost no correlation except for the largest partition of

the transfer period exists. This also suggests that for most of the workflow models no simple
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linear model would suffice. Due to the much larger transfer durations the other periods become

less significant as the majority of the workflow duration is spent in the transfer workflow. How-

ever, for the smallest partition, which holds the largest amount of operations, the select period

gets even more dominant compared to the local workflow. As the transfer duration is dispropor-

tionally higher the validation period is less critical. The resolve part does not have much of an

impact to the overall workflow duration. This makes the network and storage components the

most significant ones for this workflow, but also a representation of the replica selection service

component should be included in the system model.

The data grid reference architecture for the write workflow is defined as follows:

(i) The logical file names are registered with the metadata service.

(ii) The (unavailable) replicas are registered with the replica management service.

(iii) The files are transferred via the network.

(iv) The files are written to the storage system.

(v) The replica management service is notified about the availability of the replicas.

For the rucio upload workflow (Figure 4.8) as well as the PanDA pilot put workflow

(Figure 4.10) this maps to the following periods:

• register: This period involves step (i) and (ii) which is responsible for registering the

logical file and dataset information as well as the (unavailable) replica information on the

server. The period starts with the tsubmit timestamp and ends with the tstart timestamp.

The full period is defined as ∆t = tstart − tsubmit

• transfer: The transfer period represents both the transfer of the data via the network (step

(iii)) and the writing of the data to the storage system (step (iv)). It is enclosed by the

timestamps ttransfer and tvalidate. As this workflow part is executed concurrently, the

period aggregation is defined as ∆t′ =
∑n

i=1 tvalidate(i)− ttransfer(i)
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Figure 4.19: Periods of the write workflow.

register transfer notify
vol [Gb] n vol ∆̃t [s] σ(∆t) ∆̃t′ σ(∆t′) ∆̃t′′ σ(∆t′′)

[0, 1) 201M 0.003 0.639 15.4 3.76 278 0.467 27.3
[1, 10) 177k 2.9 6.9 182 233 9305 0.56 149

[10, 100) 260k 21 106 566 402 8575 27 164
[100,∞) 20k 251 331 1768 23025 34257 634 809

* 201M 0.057 0.64 72.5 3.7 684 0.46 28

Table 4.7: Performance analysis statistics of the local write workflow.

• notify: The notify period is the last step in the workflow, when the server is notified about

the availability of the replicas (step (v)). It is enclosed by the timestamps tvalidate and

tend. The period is defined as ∆t′′ =
∑n

i=1 tend(i)− tvalidate(i)

The full workflow partitioning is shown in Figure 4.19.

The results for the local write workflow are shown in Table 4.7 and a detailed boxplot is

displayed in Figure 4.20.

At a first glimpse the results are unsurprising: Relatively small register and notification times

and large transfer times. For the smallest partition, with data grid operation sizes below 1 Gb,

the 3 periods have almost similar timings. The data grid operations in this partition are very

small, with an average of only 3 Mb per operation, thus only a couple of files. The overhead in

contacting the server for registration and notification is almost similar to the transfer time. These

small data grid operations are due to the effect explained earlier, with an input dataset split up

into many computation jobs resulting in many small upload operations to upload the analysis
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Figure 4.20: Performance analysis of the local write workflow.

output. With the larger partitions the majority of the workflow is clearly spent in the transfer

partition. The registration and notification time for the largest partition of transfers larger than

100 Gb seems unreasonable high. This could point to a bottleneck in the server with handling

very large lists of replicas to register. The linear relation between size and time for the different

workload periods is shown in Table 4.8. All workflows and periods show no linear relation

whatsoever. For the smallest partition all three parts of the workflow are significant, while for the

other partitions the transfer workflow dominates the duration and thus is the most significant one.

This means that a system model should focus on the storage and network components followed

by slightly less important metadata service and replica management service components.

For the remote write workflow the system registered about 70 000 operations, but due to a

bug in the tracing software stack all timing attributes were corrupted and unusable. However,

due to this small amount of data grid operations the loss of these statistics is negligible.

While the storage to storage transfer workflow is not specifically mentioned in the data grid

reference architecture, as it is somewhat considered a special case of the write workflow, it is

still beneficial to specify the workflow and periods explicitly. The main difference of the transfer
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register transfer notify
vol [Gb] ρ∆t,vol ρ∆t′,vol ρ∆t′′,vol

[0, 1) 0.012 0.073 0.038
[1, 10) 0.267 0.080 0.055

[10, 100) -0.014 0.413 0.090
[100,∞) -0.01 0.388 0.217

Table 4.8: Pearson product-moment correlation coefficient of the local write workflow.

workflow to the write/upload workflow is that for the upload there is no scheduling done and the

transfer is executed immediately, while for the transfer workflow the data management system

decides when to schedule the transfer. The workflow is defined as follows:

(i) The metadata service is queried for the list of logical file names.

(ii) The replica management service is queried for available replicas for each file.

(iii) The transfer requests are registered with the replica management service.

(iv) The transfer request is read from replica management service.

(v) The transfer request is submitted to the transfer service.

(vi) The files are transferred via the network.

(vii) The files are written to the storage system.

(viii) The replica management service is notified about the availability of the replicas.

For the rucio transfer workflow (Figure 4.11) the following periods are selected:

• submit: This period involves step (i) to (v) which is responsible for resolving the dataset,

registering the replicas and requesting the transfers from the replica management service

and finally submitting the transfer request to the transfer service. The period starts with

the tcreated_at timestamp and ends with the tsubmitted_at timestamp. The workflow is only

executed once per data grid operation and the period is defined as ∆t = tsubmitted_at −

tcreated_at
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Figure 4.21: Periods of the transfer workflow.

• queue: The queue period represents the time the transfer sits in the waiting queue of

the transfer service, until the actual flow of data starts. This is in between step (v)

and (vi). The period is enclosed by the timestamps tsubmitted_at and tstarted_at. The

workflow is executed once per file transfer, thus the aggregated period is defined as

∆t′ =
∑n

i=1 tstarted_at(i)− tsubmitted_at(i)

• transfer: The transfer period represents both the transfer of the data via the network (step

(vi)) and the writing of the data to the storage system (step (vii)). It is enclosed by the

timestamps tstarted_at and ttransferred_at.

The period is defined as ∆t′′ =
∑n

i=1 ttransferred_at(i)− tstarted_at(i)

Unfortunately there is no timestamp taken when the server is notified about the success of the

transfer operation by the transfer service. The workflow is shown in Figure 4.21.

The statistics for the transfer workflow are shown in Table 4.9 and the boxplot is displayed

in Figure 4.22.

The first characteristic is the relatively large submission time for the partition of transfers

smaller than 1 Gb. Overall the submission time is constant, as it is a simple push of transfer

requests to the file transfer service, but in the case of the smallest partition the submission takes
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submit queue transfer
vol [Gb] n vol ∆̃t [s] σ(∆t) ∆̃t′ σ(∆t′) ∆̃t′′ σ(∆t′′)

[0, 1) 12.9M 0.1 352 93191 5 89857 56 414058
[1, 10) 3.2M 3.5 274 101103 331 192539 953 851624

[10, 100) 1.7M 31.7 299 175085 3465 341279 5339.5 977264
[100,∞) 127k 344 316 574428 10384 552485 49694 2617819

* 17.9M 5.8 331 115515 6 147154 203 628377

Table 4.9: Performance analysis statistics of the transfer workflow.
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Figure 4.22: Performance analysis of the transfer workflow.

the biggest part of the overall workflow, even bigger than the transfer duration. The queue

time, which is the time a transfer is kept in the queue until it is actually executed, scales with

the volume size. This can be explained by the number of files being larger for larger transfer

requests, thus the aggregated time these files stay in the queue is also larger. For the 1 < x < 10

Gb and the 10 < x < 100 Gb partition the queuing time is similar to the actual transfer time.

Thus the workflow spends the same amount of time in queuing transfers and actually transferring
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submit queue transfer
vol [Gb] ρ∆t,vol ρ∆t′,vol ρ∆t′′,vol

[0, 1) -0.001 0.086 0.035
[1, 10) 0.0008 -0.025 -0.002

[10, 100) 0.007 -0.038 0.043
[100,∞) 0.009 0.085 0.185

Table 4.10: Pearson product-moment correlation coefficient of the transfer workflow.

them. However, this makes sense when looking at the Rucio queue statistics, where on average,

half a million transfers are kept in the queue. Only the largest partition of transfers, bigger than

100 Gb, shows the effect one would expect from the start. The workflow is dominated by the

transfer time, followed by the queuing time and a relatively insignificant submission time. The

standard deviations for all time frames in all partitions is very high. To some extent this is also

expected as the transfers are executed on many different network links with drastically different

performance measures, thus resulting in very different transfer times.

The linear relation between the different timeframes and the transfer size is analyzed in Table

4.10 using the Pearson product-moment correlation coefficient. Again, all the workflows show

no linear relation between the operation timing and size. This also suggests that for most of

the workflows in the transfer workflow no simple linear model would be sufficient. The submit

period is only significant in the smallest partition of operations. All the other partitions are

dominated by the queue and transfer period, with slightly more time spent in the transfer part of

the workflow.

Component selection

The set of identified components to be included in the hybrid simulation model is shown in Table

4.11. Storage and network components are included for all workflows. Some other components

of the workflow can be completely skipped though, as they have no significant impact on the

performance of user operations.

If a component model is not necessary for the performance estimation of a given workflow,

a functional model will be used instead of the actual simulation model. Functional models
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local-read remote-read write transfer

Metadata service X
Replica management service X

Replica selection service X -
Storage interaction X X X X

Network interaction X X X
Date integrity validation X X - -

Transfer service - - - X

Table 4.11: Selected components to be represented as component models in the hybrid simula-
tion model.

do not offer any performance prediction, thus they are not useful in terms of the simulation

objective, but they do produce output operands based on the given input operand. For example,

a functional model for the metadata service component is a simple persistent dictionary. The

functional model can be queried for the files contained in a dataset, which is information needed

in subsequent steps in the workflow, but the model does not return any performance estimation

how long said query takes. From the simulation point of view the functional model returns its

answer instantaneously.

The details of the specific component models are presented in Chapter 5 for the component

model of the storage interactions, Chapter 6 for the component model of the network interac-

tions, Chapter 7 for the component model of the data integrity validation workflow, and Chapter

8 for the component models of the different service components.
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Part II

Modeling system components
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CHAPTER 5
Modeling storage systems

5.1 Introduction

Storage systems are one of the core resources of data-intensive systems. A data-intensive system

interconnects a large amount of mass-storage systems, located in different data centers world-

wide, to offer the users efficient access to large storage capacities. As users establish different

workflows they also have different requirements to these storage systems, their data availabil-

ity, and their access performance. For example, long-term storage of data where access time is

non-critical, for cold storage of data, medium-term storage for data which is stored until it gets

distributed to long-term storage systems, or high performance short-term storage areas, for data

which is staged to computation elements. These workflows lead to the deployment of different

technologies, such as magnetic tape libraries, network attached storage in the form of disk arrays

for hard disk drives and solid-state drives, or even distributed file systems, which are integrated

into the data-intensive system.

The objective of this chapter is to establish a modeling technique which is able to build an

accurate component model for all storage systems used in data-intensive systems. The modeling

technique has to be in accordance with the requirements specified in Section 4.2. The model is

built based on the available observational data and predicts individual read or write operation

metrics, such as the transferrate.
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Modeling storage system is a research field with a long history. The field developed along-

side the success of hard disk drives and the need of manufacturers and enterprise users to model

and simulate their storage system needs. Unsurprisingly, researchers were concentrating on the

simulation of single disk drives, such as Ruemmler and Wilkes [1994]. Over the years also

models for very specific systems were introduced, such as the work of Hillyer and Silberschatz

[1996] modeling the DLT4000 tape drive system. Only later efforts were made to simulate

multiple disks in a system, such as Barve et al. [1999].

The remainder of this chapter is structured as follows. At first the most prominent modeling

techniques for mass storage systems are introduced. For each technique the underlying concept

is presented and the applicability of the technique in the context of data-intensive systems is

discussed. Section 5.2 presents related work in modeling storage systems analytically. Section

5.3 introduces execution-driven simulation methods for storage systems, and section 5.4 dis-

cusses black-box storage models based on Classification and Regression Trees. Furthermore the

chapter continues in Section 5.5 presenting different machine learning techniques, which offer a

different approach to storage system modeling. Finally the applicable modeling techniques are

evaluated based on historic workloads from the ATLAS data grid in Section 5.6. Section 5.7

shows the conclusions of the chapter.

5.2 Analytical models

Idea

There are numerous articles about how to model storage systems analytical, but for the sake of

conciseness this section focuses on Uysal et al. [2001] as the proposed approach is very trans-

parent and straightforward. However, other analytical modeling techniques work very similar.

Analytical storage models, at first for disk drives and later for mass storage systems, were among

the first type of storage models. Only later on techniques based on simulation or machine learn-

ing were used, which are presented in this chapter.

Uysal et al. [2001] created an analytical model which is able to predict the throughput of

individual operations of a disk array mass storage system. The authors put much effort into val-
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Figure 5.1: Decomposed component workflow for analytical storage model [Uysal et al., 2001].

idating their model against workloads taken from a real disk array system, the Hewlett-Packard

SureStore E Disk Array FC60.

Their novel modeling approach is based on hierarchical decomposition of the internal archi-

tecture of the system. The idea is that individual components of the system are easier to model

than their composition. However, this approach requires detailed domain-specific knowledge of

the actual operated storage system.

Method

The disk array consists of up to 60 disks in up to six different trays. For failover reasons, the

system consists of two controllers each having a fibre channel connection to the network. Each

controller is connected to a battery-powered cache. The controller is then connected via an ultra

wide SCSI bus to the disk trays.

The authors identified the controller, the caches, and the disks as individual components

which have to be modeled individually. The decomposed component workflow is shown in

Figure 5.1. Each component model transforms an input workload specification into an output

specification that becomes the input for the next model in line. Therefore the models only

communicate with each other by passing specifications. The cache component is the first in line

to receive the workload specification. It will absorb some of the access requests (cache hits) and
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relay the rest of the workload to the controller model. The controller translates logical unit (LU)

disk accesses to individual disk accesses and relays these to the individual disk models. The disk

models then compute their throughput estimators without using any lower level model.

The cache model receives the input specification as a list of I/O request streams. It outputs

a list of streams which did not have any cache hits. In steady state the disks are only accessed

when both read and write requests cause cache misses. Read requests are just kept in cache

and write requests are only written to disk if not accessed. The total_cache_size is defined

in the system description, the n streams S1, S2, ...Sn and their corresponding output streams

S′1, S
′
2, ...S

′
n are part of the input specification. For the model’s purposes the cache is divided

into n parts of size cache_size(Si) by:

cache_size(Si) = total_cache_size ·

(
request_rate(Si)∑n
j=1 request_rate(Sj)

)
(5.1)

The probability of a cache hit is then approximated by the probability that the number of bytes

accessed by the system between two accesses to the same block is less than cache_size(Si).

The authors define this as the re-reference distance which is a distribution given in the input

workload specification. The request rate is thus defined as:

request_rate(S′i) = request_rate(Si) · P [re_reference_distance(Si) > cache_size(Si)]

(5.2)

The controller model first limits the total rate of requests and the bandwidth of the requests

by the following equations:

n∑
i=1

request_rate(Si) ≤ max_controller_throughput (5.3)

n∑
i=1

request_rate(Si) · E[request_size(Si)] ≤ max_controller_bandwidth (5.4)

The values of max_controller_throughput and max_controller_bandwidth are part of the

device description. In the studied system the authors use a RAID 1/0 configuration. Different

equations are used for reads, large writes, and small writes. Also, in case of the limit being

exceeded a queue length is calculated by the model. The read is rather simple, as the FC60

controller only reads whole stripe units from disk. Thus if an I/O request is smaller than a stripe
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unit, the entire unit is read into the cache anyway. The number of stripe units read per read

request is defined as:

disk_accesses_per_read(Si) = 1 +
read_request_size(Si)
stripe_unit_size

(5.5)

The stripe_unit_size is also part of the system specification. The read request rate, for a

specific disk j is then estimated by:

read_request_rate(Sij) =
disk_accesses_per_read(Sij) · read_request_rate(Si)

LU_disks
(5.6)

As write requests have to be written at least to two disks for each logical unit, due to the RAID

1/0 operation, the write_request_size for large writes is defined as follows:

write_request_size(Sij) = 2 · write_request_size(Si)
LU_disks

(5.7)

For small writes, the write request size is impacted by the stripe unit size as well. The write

requests for large write operations can be coalesced into a single disk write request, thus:

write_request_rate(Sij) = write_request_rate(Si) (5.8)

For small writes though the accesses touch multiple logical units, therefore:

write_request_rate(Sij) =
2 · write_request_size(Si) · write_request_rate(Si)

write_request_size(Sij) · LU_disks
(5.9)

The queue length is defined as the number of requests outstanding per disk Dj . For simplifi-

cation it is assumed that the queue length is divided between reads and writes according to the

respective read and write rate. The queue length is calculated as follows:

queue_length(Sij) = queue_length(Si) ·
(
read_accesses(Si) + write_accesses(Si)

LU_disks · request_rate(Si)

)
(5.10)

The disk model enforces throughput limits through inequality:
n∑
i=1

read_utilization(Sij) + write_utilization(Sij) < 1 (5.11)

The utilizations are calculated as follows, whereas the service times are part of the system de-

scription:

read_utilization(Sij) = read_request_rate(Sij) · disk_read_service_time(Sij) (5.12)
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write_utilization(Sij) = write_request_rate(Sij) · disk_write_service_time(Sij)

(5.13)

The disk read service time only depends on the datum being found in the disk cache, which is

estimated as follows:

disk_read_service_time(Sij) =(1− disk_cache_hit_prob)·(
disk_read_pos_time(Sij) +

read_request_size(Sij)
disk_transfer_rate

)
(5.14)

The disk cache hit probability can be calculated based on the read ahead distance and the request

size. The disk positioning time is estimated by:

disk_read_pos_time(Sij) =
mean_read_disk_seek_time∑n

k=1 queue_length(Skj)
+
disk_rotation_time

2
(5.15)

Furthermore the mean read disk seek time and the disk rotation time are also parameters of the

device description. The model adjusts for the performance of sequential reads as there are no

repositioning delays on the disk. Also the read ahead buffer is incorporated in the model. For the

write positioning and service time only the first request in the stream experiences a seek time,

the other requests just experience rotational delays.

disk_write_pos_time(Sij) =
disk_rotation_time

2
+

mean_write_disk_seek_time
write_run_count(Sij) ·

∑n
k=1 queue_length(Skj)

(5.16)

The actual service time is then the sum of positioning and transfer times, where the disk transfer

rate is a parameter of the system description.

disk_write_service_time(Sij) = disk_write_pos_time(Sij) +
write_request_size(Sij)
disk_transfer_rate

(5.17)

The experimental evaluation is done with a FC60 mass storage system with 30 disks and two

controllers in RAID 1/0 configuration. The system description, which is used to initialize the

analytical model, is based on 11 parameters. The workloads injected into the system are created

using a synthetic workload generator. The same workloads are then injected into a simulator
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running the analytical model. The average error of the model predicting the throughput is at

about 15% and does not exceed 30%. The highest relative error was detected at 42% but only

occurring at a certain system setup.

Discussion

The discussion of each model will be guided by the requirements previously defined in Section

4.2.

The first requirement is the prediction of response times of individual read and write opera-

tions. The analytical model by Uysal et al. [2001] clearly meets this requirement. The authors

even go a step further and estimate the individual I/O streams forming the file-level access. Al-

though the model predicts the throughput of this streams, this can easily be transformed to the

response time for a read and write operation.

The second requirement asks for the model to be black-boxes and that only external obser-

vations are used to construct the model. This requirement is clearly not met, as domain specific

knowledge is necessary to even decompose the system but also internal measurements and spec-

ifications, such as the number of disks, transfer rates, and rotation rates are necessary to initialize

the model. But even when assuming that this information is available, the model is clearly spec-

ified for a very small spectrum of types of systems. Thus in the context of a data-intensive

system, only a very limited amount of storage systems would be applicable to the model as it

is unclear how the model performs with other types of, disk-array based, systems. Besides the

question of performance, it is furthermore undefined if such a model could be even initialized,

even if only small alterations are done to the system. For example the usage of non-rotational

disks while the model asks specifically for the disk rotation time.

The third requirement prohibits the injection of experimental workloads to measure the sys-

tem under different load conditions. While the authors do use this technique to achieve more

accurate measurements for some of the system specifications, it is plausible that the model is

initializable without such workload injections.

Overall the model is not a good fit for usage in the context of data-intensive system, as it is

just not generic enough to cover a wide range of storage system technologies.
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Figure 5.2: Execution-driven simulation overview [Kaeli, 2004].

5.3 Execution-driven simulation

Idea

The idea of execution-driven simulation models is that, the workload is partially executed in a

real system while other parts are estimated using a prediction model. This technique originally

comes from studying microcontroller architectures. In literature, there are multiple publications

featuring execution-driven simulation for mass storage systems. This section specifically fo-

cuses on Kaeli [2004] due the simplicity of their approach, but the findings also apply to other

execution-driven methods.

Method

Kaeli [2004] focus on simulation models of three types of mass storage systems: Direct Attached

Storage (DAS), Network Attached Storage (NAS), and Storage Area Networks (SAN) systems.

Figure 5.2 shows an overview of the execution-driven approach in the case of NAS. While some

parts of the NAS system, like the RAID controller or network interfaces are not simulated, the

real disk I/O operations are predicted using a hard disk model provided by DiskSim [Ganger

et al., 2008]. DiskSim itself is an analytical simulation model for hard drives, which has to be
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initialized using detailed hard disk characteristics.

When the NAS system is configured in normal mode the RAID controller of the system

creates real I/O requests and relays them to the hard disks to retrieve the data. When configured

in simulation mode no I/O requests are relayed to the hard disks, but instead I/O traces are

extracted and fed into the DiskSim model, which reports back a performance estimator for this

specific trace.

The advantage is that it is not necessary to simulate the full workflow, as parts of it are just

executed in the real system. Usually this is done to quickly study caching techniques or the

performance of certain RAID settings, without running a full benchmark suite on the real disk

drives. It is also very useful to estimate the performance of newer disk drive models, without

actually benchmarking the whole system with a new set of disks.

The authors validate their model against a NAS and a SAN setup on a Beowulf cluster

[Sterling, 2002] using Western Digital 80GB hard disks. The relative simulation error of the

model is consistently no more than 3%.

Discussion

The first requirement of predicting response times of individual read and write operations is met.

The second requirement, stating that the components should be seen as black-boxes and that

only external observations are to be used, is not met. The DiskSim models require very char-

acteristic information about the actual disk drives in use, which conflicts with the requirement.

As some parts of the system are not modeled, but executed on the real system, it is debatable

if this requirement is met. But even if it is, the method is still not a good fit for distributed

data-intensive systems, as it would require access and model integration of all storage systems

in the data grid. Even if this is scaled down and one only requires one storage system, per type

of system, this is still an impracticable, and most likely impossible, amount of resources.

The third requirement is, in principle, respected. However, experimental workload injec-

tions are necessary for the construction of hard drive characteristics for the DiskSim models.

Thus, if disk drives are used where no drive characteristic are available, the model can only be

constructed by injecting experimental workloads.
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Overall the model is impracticable in the context of data-intensive systems.

5.4 Black-box models using Classification and Regression Trees

Idea

Wang et al. [2004] decided to focus on machine learning techniques to model and predict the

performance of storage devices. The authors use Classification And Regression Trees (CART)

[Breiman et al., 1984], to model single disk devices as well as disk arrays. CART models are

a form of black-box model, thus there is no knowledge about the internal composition of the

storage device and the model is strictly built based on training of historic workloads. This offers

the advantage that the modeling technique is generic thus it applies to any storage device.

Method

The detailed theory and background of CART models is presented in section 5.5. CART models

approximate functions on a Cartesian space using constant functions. The goal of the model is

to predict device performance as a function of I/O workload. The models input is a workload

represented as a sequence of disk requests, with each request ri described by four attributes:

arrival time (ArrivalT imei), logical block number (LBNi), request size in number of disk

blocks (Sizei), and read/write type (RWi). As the model is purely trained on such structured

workloads, it is irrelevant if the device is just a single disk drive or a RAID storage system with

multiple disks.

The authors present two ways of generating the storage model. The first mode is request-

level device models, which predicts per-request response time. The second way are workload-

level models, which predict the aggregate performance of the entire workload. The transforma-

tion of the workload into a multi-dimensional feature space, which is exercised in the CART

model to create the predictor, is shown in Figure 5.3.

The request-level device models predict the response time of individual requests based on a

request description. Each request ri in the input workload is transformed into a request descrip-
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Figure 5.3: Workload transformation for CART models [Wang et al., 2004].

tion Ri, containing the following variables:

Ri = {TimeDiffi(1), . . . , T imeDiffi(k),

LBNi, LBNDiffi(1), . . . , LBNDiffi(l),

Sizei, RWi,

Seq(i)}

(5.18)

where

TimeDiffi(k) = ArrivalT imei −ArrivalT imei−2k−1 (5.19)

LBNDiffi(l) = LBNi − LBNi−l (5.20)

The TimeDiff measurements are used to describe the temporal burstiness of the workload

at the moment when ri arrives. LBNDiff is used to measure the spatial locality of the data on

the disk, to support accurate prediction of seek times on disk. The parameters k and l define how

far the predictor looks back to measure bursts and data locality. Too small values of these vari-

ables lead to inferior device models, while too large values lead to unnecessarily long training

and prediction times.

For the workload-level models the entire workload is transformed into a single workload

description and the model predicts aggregate device performance directly. The workload de-
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scription W contains the following attributes:

W = {AverageArrivalRate,

ReadRatio,

PercentageOfSequentialRequests,

TemporalAndSpatialBurstiness,

CorrelationsBetweenPairsOfAttributes}

(5.21)

The compression of the workload into these workload descriptors is more complex than for the

request-level models, thus the difference between request-level and workload-level models is

that the former is fast in training and slow in prediction, and the latter is the opposite.

The experimental results are based on on two different simulated devices: A single 9GB

Atlas 10K disk with a rotational latency of 3ms and a RAID 5 disk array consisting of 8 Atlas

10K disks with 32KB strip size. In both cases no real system was used but only a validated model

provided by DiskSim. The relative error |Ŷ−Y |Y is used for the evaluation. For the single disk

model the average relative error for the per-request model is 19% and 15% for the per-workload

model. The models for the disk array offer a similar performance.

Discussion

Requirement one is met, as the per-request level model is specifically predicting the response

time of single requests. The model also goes one step further, as it models single logical block

requests, thus it predicts at a sub-file level.

The second requirement of not using internal component knowledge is also met and demon-

strated, as CART is a pure black-box modeling approach.

The third requirement of not injecting experimental workloads to generate the model is also

respected. The authors identify inadequate training data as one of the major error sources of the

model and mention that injected training workloads could improve this problem, however, the

model also works without injecting these workloads.
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5.5 Machine Learning techniques

Arthur Samuel [Phil Simon, 2013] defined machine learning as the field of study that gives

computers the ability to learn without being explicitly programmed. It is the study of creating

algorithms that learn from a given set of data and make predictions on a different set of data.

Before the wider establishment of machine learning techniques, regression analysis was used to

tackle most prediction problems, thus there is a strong overlap between machine learning and

regression analysis. Regression analysis is a statistical method for investigating and estimating

the relationship between variables. The goal of regression analysis is the creation of a function

of the independent variables (or predictors) based on the dependent variables. This function is

called a regression function.

In its simplest form the regression model assumes that for a data set {yi, xi1, . . . , xip}ni=1

of n statistical units the relationship between the dependent variable yi and the independent

variables xi is linear. Thus the regression model takes the form:

yi = β1xi1 + · · ·+ βpxip + εi = xTi β + εi, i = 1, . . . , n, (5.22)

where εi is used as disturbance term. An example of a linear regression fit is shown in the first

plot of Figure 5.4. It can be observed that in this example the relationship between the two

variables is almost linear and the resulting regression function represents an almost-perfect fit.

However, when applied to data which does not represent a linear relation the regression function

does not approximate the function at all, which is shown in the right plot of Figure 5.4.

In these cases non-linear regression methods have to be used. One of the most common

approaches is non-linear least squares, which fits a set of m observations with a model that is

non-linear in n unknown parameters (m > n). This approach assumes a set of m data points

of form (x1, y1), (x2, y2), . . . , (xm, ym), and a model function y = f(x, β). x additionally

depends on n parameters of the form β = (β1, β2, . . . , βn) with m ≥ n. The objective is to find

the vector β such that the resulting curve fits the data best while the sum of squares

S =

m∑
i=1

r2
i (5.23)
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Figure 5.4: Examples of linear and non-linear regression.

is minimized. The residuals are given by ri = yi − f(xi, β). Consequently, the minimum of S

occurs when the gradient of the function is zero. As the model consists of n parameters there

must be n gradients of form:

∂S

∂βj
= 2

∑
i

ri
∂ri
∂βj

= 0 (j = 1, . . . , n) (5.24)

In non-linear systems, the derivates ∂ri
βj

do not have a closed solution. Therefore initial values

must be chosen for these parameters and the values are obtained by approximation:

βj ≈ βk+1
j = βkj + ∆βj (5.25)

With each iteration the model is linearized by approximation to a Taylor series expansion:

f(xi,β) ≈ f(xi,β
k) +

∑
j

∂f(xi,β
k)

∂βj

(
βj − βkj

)
≈ f(xi,β

k) +
∑
j

Jij ∆βj . (5.26)

The function J in aboves equation is called the Jacobian [Seber and Wild, 1989], which is a

function of the independent variable and the parameters represented in β. In terms of a linearized
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model ∂ri
∂βj

= −Jij . When transforming the Jacobin into its residuals and substituting them into

the gradient equation, they become n simultaneous linear equations, which can be written in

matrix notation:

(JTJ)∆β = JT∆y (5.27)

These functions form the basis of any algorithm fitting a non-linear model, such as the Gauss-

Newton algorithm [Seber and Wild, 1989].

However, the application of regression analysis becomes extremely difficult with an increas-

ing number of variables and a complex interaction between these variables, especially when

the predictors have a non-linear relationship. Also many non-linear regression algorithms usu-

ally require more manual input than their non-supervised machine learning counterparts. Thus,

the application of machine learning in the big data domain becomes more and more important,

especially when predictors are the objective of the research and not the discovery of inferences.

In the remainder of this chapter a subset of machine learning techniques, namely Classi-

fication and Regression Trees, Neural Networks and Support Vector Machines are discussed.

There also exists a wider body of predictive modeling techniques, such as Radial basis functions

[Buhmann, 2000], Naïve Bayes [Russell et al., 2003], or k-nearest neighbors [Altman, 1992],

but these methods were excluded as the three presented methods are most widely used and,

according to related work, most often deliver superior results.

Classification and Regression Trees

Classification and Regression Tree (CART) analysis is an umbrella term referring to classifica-

tion tree and regression tree analysis, introduced by Breiman et al. [1984]. Both methods are

a form of decision tree learning. In the context of this work, the focus lies on regression trees,

but the basic principles of both analysis methods are the same. Their main difference is that

in a classification tree model the target variable can only take a finite set of values, while in

regression trees the target variable can take continuous values.

The general idea of a decision tree is that each interior node corresponds to one of the input

variables (dependent variables) and there are edges to children for each of the possible values of

the variable. The leaf nodes represent the value of the predictor given the values of the dependent
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Figure 5.5: Example of a decision tree.

Algorithm 1 Grow phase of the top-down induction of decision trees algorithm [Breiman et al.,
1984].

1: function GROW_TREE(T )
2: N ← create a new node
3: N.class← most common class in T
4: N.test← best attribute
5: if N.test is not good enough then
6: mark N as a leaf and return N
7: for each value vj of N.test do
8: examplesj ← examples with N.test = vj
9: if examplesj is empty then N.branchj ← N.class

10: elseN.branchj ← build_tree(examplesj)
return N

variables in the path from the root to the leaf. Figure 5.5 shows an example of a decision tree

where a loan decision has to be made. In this case the decision tree is a classification tree, as

each leaf is labeled with a single class.

The most common approach in learning decision trees is a greedy algorithm called top-down

induction of decision trees by Quinlan [1986]. The method is split into two parts, a growing

phase and a pruning phase. The growing phase is shown in Algorithm 1. The key step is shown

in line 4 and 5, the selection of the best attribute. There are many different metrics in literature
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how to identify the best attribute. Most commonly used are Gini impurity, Information gain

and Variance reduction. Gini impurity takes the distribution of labels and randomly labels an

element according to this distribution. The measure is then defined as how often a randomly

selected element would be incorrectly labeled using this method.

The information gain metric is based on information entropy defined in information theory:

IE(f) = −
m∑
i=1

fi log2 fi (5.28)

The information gain is then the entropy of the parent minus the sum of entropy of the children:

IG(T, a) = H(T )−H(T |a) (5.29)

The variance reduction is especially useful where the predictor is a continuous variable, such

as in a regression tree. The variance reduction measure of a node N in the tree is defined as the

overall reduction of the variance of the target variable x due to the split at that node [Quinlan,

1986]:

IV (N) =
1

|S|2
∑
i∈S

∑
j∈S

1

2
(xi − xj)2− 1

|St|2
∑
i∈St

∑
j∈St

1

2
(xi − xj)2 +

1

|Sf |2
∑
i∈Sf

∑
j∈Sf

1

2
(xi − xj)2

 (5.30)

S represents the set of presplit sample nodes, St the set of sample nodes for which the test

evaluates true and Sf the set of sample nodes where the split test evaluates false.

The pruning phase of the algorithm works bottom-up. The idea of Algorithm 2 is to remove

sections of the tree that provide only little gain to the prediction accuracy of the model. Thus it

reduces overfitting. The evaluation criteria mentioned in line 3 of Algorithm 2 is most often the

estimated error by testing the model with an evaluation dataset.

As with all machine learning techniques, Classification and Regression trees comply with all

requirements. The advantage of the method, especially in the context of data-intensive systems

is, that it performs very well with large datasets. While the problem of learning an optimal

decision tree is NP-complete, all commonly used tree growing algorithms are based on greedy

heuristics which produce local-optimal results. Another characteristic of the algorithm is that
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Algorithm 2 Pruning phase of the top-down induction of decision trees algorithm [Breiman
et al., 1984].

1: function PRUNE_TREE(T )
2: repeat
3: Select a node N in T such that pruning maximally improves the evaluation criteria
4: if t 6= ∅ then T = prune(T, t)

5: until t = ∅ return T

it is very robust to measurement errors in the data, which are part of all real-world measured

datasets. Also CART models are very easy to understand and interpret, as they can be visualized

in their actual tree form.

Support Vector Machines

The idea of Support vector machines (SVM) [Hearst et al., 1998] was first introduced by Vladimir

Vapnik in 1963. It is a machine learning technique used both for classification problems as well

as regression analysis. The principal idea of Support vector machines is to learn a classifier

based on a training dataset, where each example is tagged by one of two categories, and cate-

gorize new examples into one of the two categories. The SVM method addresses one specific

issue: Common approaches were trying to minimize the expected empirical loss on the training

data, however, SVMs attempt to minimize expected generalization loss [Hearst et al., 1998]. It

is unknown where the future examples will fall, but under the probabilistic assumption, it can

be assumed that they are drawn from the same distribution as previously seen examples. This is

done by creating a maximum margin separator. The separator is simply defined as a line furthest

away from the examples in the training dataset. An example for a maximum margin separator is

shown in Figure 5.6. The margin is the width of the area between the two dashed lines whereas

the separator is in the middle, at the same distance to the two furthest points of each category.

The support vectors in this example are the vectors marked with circles. The advantage of SVMs

is that such separators can not only be created for two-dimensional data spaces but they can also

be found for finite dimensional spaces. The separator is then called a hyperplane. Most often

it is even advantageous to transform a problem into a multi-dimensional space as a the original

input data is not linearly separable, but it is easily separable in a higher dimensional space. This
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Figure 5.6: Example of a maximum margin separator.

is the so-called kernel trick.

The creation of a maximum margin separator for a linear separation works as follows: With

a training dataset of n points defined as:

(~x1, y1), . . . , (~xn, yn) (5.31)

yi are set to 1 or -1, indicating the category the vector belongs to. The objective is to find a

maximum margin separator (hyperplane) that divides the group of vectors with yi = 1 from

the group of vectors with yi = −1. This is done while maximizing the distance between the

hyperplane and the nearest vector ~xi from each category. A hyperplane is defined as a set of

vectors ~xi following

~w · ~x+ b = 0 (5.32)
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~w is the normal vector to the hyperplane and the parameter b
||~w|| specifies the offset of the hyper-

plane along the normal vector ~w. The next step is to find the two hyperplanes which define the

margin between the two categories. These can be described as:

~w · ~x+ b = 1 ~w · ~x+ b = −1 (5.33)

The distance between the two hyperplanes is then 2
||~w|| . In order to find a maximum margin

separator the distance between the two planes has to be maximized which means minimizing

||~w||. Off course, the minimization has to be done while the examples still lie on the correct side

of the margin, which is defined by this constraint:

yi(~w · ~xi + b) ≥ 1, for all 1 ≤ i ≤ n (5.34)

Thus the separator is expressed by a simple optimization problem to minimize ||~w|| subject to

yi(~w · ~xi + b) ≥ 1, for i = 1, . . . , n. As a consequence, the maximum margin hyperplanes are

determined by the vectors ~xi which lie nearest to it. These vectors are called the support vectors.

However, in practice it is rarely the case that the examples are linearly separable. Figure

5.7 shows a training dataset in a two dimensional space which is clearly not linearly separable.

When the data is transformed into a three dimensional space, thus mapping each input vector ~x

to a new vector F (~x) the data becomes easily separable by a hyperplane, as shown in Figure 5.8.

This method is called the kernel trick and was originally proposed by Aizerman et al. [1964].

The phenomenon states that if data is mapped into a space of sufficiently high dimension it

will generally become linearly separable. However, the transformation into a higher-dimension

feature space increases the generalization error as well. The details of said kernel functions

are well-described in literature, and commonly used kernels include polynomial, gaussian radial

basis functions, and hyperbolic tangents.

Over the years adaptions and extensions to the SVM method have been introduced. Espe-

cially relevant to this thesis are Multiclass Support Vector Machines [Chih-Wei Hsu and Chih-

Jen Lin, 2002]. These methods allow to use SVMs to classify multiple classes, instead of only

two. Earlier implementations with the general SVM approach only allowed to decompose such

mutliclass problems into several binary classification problems. Support Vector Regression Ma-
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Figure 5.7: Non-linearly separable training dataset in two-dimensional space.

chines (SVR) by Smola and Vapnik [1997] do not use hyperplanes to separate groups of exam-

ples but actually try to fit a linear or non-linear regression model.

Similar to Neural Networks, SVMs have the problem that they are essentially black boxes

and it is very hard to understand the internals, especially when the data is mapped to multiple

dimensions. In contrast to Neural Networks though, there are usually less parameters to adapt

in SVMs which makes it easier to generate an accurate model. They are also rather memory

intensive and do not cope well with very big datasets.

Neural Networks

Artificial Neural Networks are a group of models which are inspired by biological neural net-

works, such as the human central nervous system. They are used to estimate unknown functions

that depend on a large number of inputs. Typical use-cases include handwriting recognition,

speech recognition, and computer vision. The theory behind neural networks was already es-

tablished half a century ago by Rosenblatt [1958]. Since then the field went through many
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Figure 5.8: Data of Figure 5.7 mapped into a three-dimensional space with a separating hyper-
plane.

improvements, such as the backpropagation algorithm by Werbos [1990], and recurrent neural

networks by Pineda [1987]. With the advancement of deep learning [Deng, 2014] the interest in

neural networks has reached a new high.

A neural network is generally structured into nodes (or neurons) which are connected by

direct links. A simple mathematical model of a neuron is shown in Figure 5.9. The link between

two units i and j thus serves the purpose to propagate the activation ai from i to j. The network

also defines a weight wi,j for each link, which specifies the strength of the connection between

the two nodes. Each node also has a dummy input a0 = 1 with a weight w0,j . When used, each

neuron j computes a weighted sum of its inputs, which is called the input function:

inj =

n∑
i=0

wi,jai (5.35)

Afterwards it applies its activation function g to calculate the output aj :

aj = g(inj) = g

(
n∑
i=0

wi,jai

)
(5.36)
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Figure 5.10: Threshold and logistic activation functions for neurons.

The function g is usually one of two types: a hard threshold, in which case the node is called

a perceptron, or alternatively a logistic function. Both functions are displayed in Figure 5.10.

There are two paradigms in connecting the neurons together to a network. A feed-forward

network connects neurons only in one direction, thus it forms a direct acyclic graph. There

are no loops in a feed-forward network and the network has no states other than the weights

themselves. In a recurrent network the outputs of a neuron can be fed back into its own inputs.

Thus the response of a network depends on the state of the network determined by previous

inputs. This allows recurrent networks to model more complicated processes, but it also makes

them much harder to understand.
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Algorithm 3 Back propagation learning algorithm [Russell et al., 2003].

1: function BACK_PROPAGATION_LEARNING(examples, network)
2: repeat
3: for each wi,j in network do
4: wi,j ← a small random number

5: for each example(x, y) in examples do
6: // Propagate the inputs forward to compute the outputs
7: for each node i in the input layer do
8: ai ← xi
9: for l = 2 to L do

10: for each node j in layer l do
11: inj ←

∑
iwi,jai

12: aj ← g(inj)

13: // Propagate deltas backward from output layer to input layer
14: for each node j in the output layer do
15: ∆[j]← g′(inj)× (yi − aj)
16: for l = L− 1 to 1 do
17: for each node i in layer l do
18: ∆[i]← g′(ini)

∑
j wi,j∆[j]

19: // Update every weight in network using deltas
20: for each wi,j in network do
21: wi,j ← wi,j + α× ai ×∆[j]

22: until the stopping criterion is satisfied return network

Feed-forward neural networks are typically organized in layers. Each layer only receives

input from the directly preceding layer. The network can consist of multiple hidden layers, with

an input layer and output layer at the beginning and the end of the network.

The general principle of learning in neural networks is to test the model based on a cost

function and update the weights of the network while minimizing this cost function. Most prob-

lems will use a task-specific cost function to do this. However, this learning phase gets more

complicated when the neural network has multiple layers. While the error is easily specifiable

at the output layer, it is hard to specify the error at a specific hidden layer, as it is unclear what

the value is supposed to be at this point. This is where the back-propagation algorithm [Werbos,

1990] is used. The idea is to back-propagate the error from the output layer to the specific hidden

layer. The algorithm is shown in Algorithm 3. The weight update rule is shown in line 21. The

124



general idea is that a hidden node j is responsible for some fraction of the error ∆[j]. Therefore

the ∆[j] values are generated by the strength of the connection between the hidden node and the

output node. The error is backpropagated to provide the ∆[j] value for the hidden layer (Line

18).

The algorithm can be summarized into two phases. First generate the ∆ values for the output

units (the error of the output node). Then, starting with the output layer until the earliest hidden

layer: Propagate the ∆ values to the previous layer and update the weights between the two

layers.

However, training the weights of a fixed network is only one part of the learning phase of

neural networks. The second part is choosing the right network structure as in number of nodes

and layers. Most approaches boil down to try different structures, train them, and then choose

the best one. Several algorithms have been proposed in optimizing this phase, such as [Denker

and Solla, 1989] and [Mezard and Nadal, 1989].

One of the key-criticisms of neural networks are their complexity and visualization. Once

trained, it is very difficult to understand why a neural network performs a certain way, as the

internal processes are very scattered and not easily understandable for a human, especially when

compared to the CART algorithms. Another point of critique is that neural networks require

vast amounts of memory and computation power, both in training and operation. However, the

development of highly optimized general purpose GPUs gave the domain a new high in recent

years, as very complex neural networks can now be trained in a fraction of the time.

5.6 Evaluation

The evaluation of the different modeling approaches is done by training and evaluation the stor-

age component models with historic workloads from Rucio. The system analysis in section 4.4

shows that a multitude of protocols is used, even for a single storage system and that many differ-

ent storage technologies are deployed throughout the data-intensive system. As the component

model has to accurately represent all of these technologies, different workloads from different

storage systems have to be tested. Thus, a large and small tape-robot based system and a large,
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medium, and small disk-pool based storage system is selected. For each system, a two week

workload is fetched from the archive and split into a one week training and one week evaluation

workload. Only local file operations are used to train and test the model, to minimize eventual

effects of the networking systems. The impact of remote file operations on the storage system

should be minimal as they only represent a very small fraction of the workload.

For each modeling technique and for each storage system a model is trained to predict the

transfer rate of file operations:

transferrate =
tvalidate − ttransfer

size
(5.37)

The transferrate is used as it is normalized based on the transfer size, however, the transfer

response time, as required by requirement 1, can easily be calculated once the transferrate is

estimated.

As an error metric for the transferrate estimator the relative error is used.

δtransferrate =
∣∣∣ transferrate− ˆtransferrate

transferrate

∣∣∣ (5.38)

Linear model

To establish a baseline and to see what to expect from the models a simple linear regression

model is evaluated. This model is based on the concept of Anderson [2001], which essentially

correlates the number of parallel operations with the transfer rate of a storage system. To achieve

this, an additional value, corresponding to the amount of parallel operations at a given time in

the workload, has to be calculated and added to the workload. To some extend this is similar to

the TimeDiffi value in section 5.4, which represents the temporal burstiness of the workload.

Thus for a given operation i the number of concurrent_operations is defined as:

concurrent_operations(i) =

n∑
j=1

concurrent(i, j) (5.39)

with concurrent(x, y) defined as:

concurrent(x, y) =


ttransfer(x) ≤ tvalidate(y) ≤ tvalidate(x) 1

ttransfer(x) ≤ ttransfer(y) ≤ tvalidate(x) 1

else 0

(5.40)
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Figure 5.11: Evaluation of the linear model).

large-tape small-tape large-disk medium-disk small-disk

˜δtransferrate 0.42 0.19 0.54 0.32 1.55
σ(δtransferrate) 8.17 1.55 1198 28.38 10.36

Table 5.1: Statistics of the linear model evaluation.

Figure 5.11 shows a boxplot of the relative error of the linear model estimator and Table

5.1 shows the numerical statistical values. While for most storage systems the median relative

error is relative small, ranging from 0.19 to 0.54, the median error of the small-disk model is

much higher (1.55). The statistical spread of the error of the estimator is also of interest, as it

defines how stable the model is in predicting the values. For the tape and medium disk models

the standard deviation is not too high (between 1.55 and 28.38) however, for the large-disk and

small-disk model the standard deviation goes up to 1198. In general, a median error of 19% is

quite acceptable, as even single hard disk drive models observe errors of around 5-10%, thus

an relative error of 19% in a much more complex system is quite acceptable. However, the
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Figure 5.12: CART model of the small-tape storage system.

spread of the relative error, for some storage systems, is just too high for a usable model, with

predictions being multiple factors off. The linear model thus is not generally well applicable to

the transferrate prediction of storage systems in data-intensive systems, but it sets a baseline for

comparison for other models.

Classification and Regression Tree model

The Classification and Regression tree models are trained with the training workload and al-

lowing the pruning phase of the algorithm to decide which variables of the workload are most

significant for the prediction. For all of the five models the algorithm only picked the filesize,

protocol and concurrent_operations fields, which would also be the naive expectation for rel-

evant columns. Figure 5.12 shows the pruned classification and regression tree model for the

small-tape workload. Here the operations are only predicted based on the concurrent_operations

field with 52% of the operations falling into one category. The evaluation of all workloads are

detailed in Figure 5.13 and Table 5.2. While the median relative error is consistently smaller,

the biggest improvement is the stability of the prediction expressed by a much smaller standard
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Figure 5.13: Relative error of the CART model.

large-tape small-tape large-disk medium-disk small-disk

˜δtransferrate 0.37 0.15 0.34 0.24 0.40
σ(δtransferrate) 3.01 0.78 184 12.1 3.12

Table 5.2: Statistics of the CART model evaluation.

deviation of the relative error. Only the prediction of the large-disk workload still shows a very

skewed distribution of the relative errors with very strong outliers.

Support Vector Machines

The Support Vector Machine models are also trained with the training workload and evaluated

with the evaluation workload. As the predicted variable is a vector, instead of a class, the trained

SVM model is a regression machine, instead of a multiclass SVM. The model is trained using

an ε Support Vector regression algorithm [Chang and Lin, 2001], as it showed slightly better

results than the ν Support Vector regression algorithm. As a kernel function the training-phase

129



is parameterized with a gaussian radial basis function.

While the model training works well and in reasonable amount of time for the small-tape,

small-disk and large-tape workloads, the training does not finish with the medium-disk and

large-disk workloads due to the size of the datasets. While this problem could most likely be

tackled by using GPU-optimized SVM training, the lack of this specialized and expensive hard-

ware requires a different solution for the problem. While experimenting with different workload

sizes, it showed that a workload larger than 100.000 rows pushes the training phase to over one

hour. Above this threshold, the time it takes to generate the model increases almost exponen-

tially. However, the large-disk dataset consists of over 1 million rows. The idea is to reduce

the dataset to a smaller dataset by the means of sampling. However, the loss of information due

to the sampling should not decrease the quality of the model. To achieve this, the method of

stratified sampling [Neyman, 1934] is used to decrease the dataset size while preserving the rep-

resentativeness of the sample to the workload. Instead of sampling the full dataset randomly, the

dataset is divided into subpopulations (stratum) which are then sampled randomly or systemati-

cally. This strategy ensures that at least some samples of operations defined by a specific charac-

teristic are represented in the sample. The optimal allocation strategy is used to define the size of

each stratum, thus the cardinality of each stratum is proportional to the standard deviation of the

distribution of the variable. As the defining stratum characteristic the concurrent_operations

variable is used, thus there is one stratum for each value of the variable. To evaluate the loss

of model quality when using sampling techniques, a support vector machine is trained for the

full and different sampled sizes of the large-tape dataset. For comparison also simple random

samples (without repetition) are created, trained, and evaluated. Figure 5.14 shows the result

of this investigation. Using the stratum sampling technique, a sample of 80%, 60%, 40%, 20%,

and 10% of the original dataset size is created, the model trained and then evaluated against an

evaluation dataset. The results show that there is no loss in prediction quality, except for the 10%

sample, which has a very minimal loss. As a comparison, a random sample with 20% and 10%

of the original dataset size is created, trained, and evaluated as well, which shows a significantly

worse evaluation result. Thus, the usage of the stratum sampling technique should be valid to

downsize the very large datasets for training.
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Figure 5.14: Impact of stratum (80%-10%) and random (r20%-r10%) sampling of the workload
on the quality of the trained model.

large-tape small-tape large-disk medium-disk small-disk

˜δtransferrate 0.36 0.13 0.15 0.20 0.52
σ(δtransferrate) 2.27 0.6 70.13 3.20 3.69

Table 5.3: Statistics of the SVM model evaluation.

The boxplot of the relative error of the trained models is shown in Figure 5.15. The model

for the medium-disk and large-disk storage is trained based on a sampled dataset to 10% of

its original size. Table 5.3 shows the median and standard deviation of the trained models.

While the median relative error of the SVM models only slightly decreased in comparison with

the CART model, the standard deviation for the large-disk and small-disk models decreased

significantly. Thus, the technique does perform significantly better than the CART model.

Neural Networks

The Neural Networks methodology also requires the large workloads to be sampled for the

training phase to finish in a reasonable amount of time. Hence the model for the medium-disk
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Figure 5.15: Relative error of the SVM model.

and large-disk storage are trained with samples of 10% of their original size.

In comparison with the support vector machines, which do not allow a lot of parameters to

be tuned, the neural network approach requires much more fine tuning. There is usually not a

very clear strategy of what parameters work best for a certain problem set, so experimentation is

required. There is however certain recommendations stemming from literature. For the storage

models a single-hidden-layer neural network is used as literature shows that multiple hidden

layers do not result in a significant advantage in most cases [Bengio and LeCun, 2007]. The

training is done by re-sampling the training workload in multiple iterations and fitting the model

to the remainder of the dataset in each iterations. This workflow converges the model to an

optimal solution in a number of operations (1000 as an upper bound).

Figure 5.16 shows a boxplot of the relative error of the Neural Network model for the differ-

ent storage systems. Table 5.4 shows the median relative error as well as the standard deviation

of the relative error. In general the model performs very similar to the Support Vector machines.

The model for the large-disk shows a higher standard deviation of the relative error while the
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Figure 5.16: Relative error of the Neural Network model.

large-tape small-tape large-disk medium-disk small-disk

˜δtransferrate 0.44 0.22 0.23 0.24 0.36
σ(δtransferrate) 6.5 2.59 684 11.4 2.5

Table 5.4: Statistics of the Neural Network model evaluation.

model for the small-disk shows a lower median relative error as well as standard deviation.

5.7 Conclusion

This chapter introduced, discussed, and evaluated many different modeling techniques. Al-

though many of the models are widely used, such as very specific analytical models for certain

storage systems, they are not applicable in the domain of data-intensive systems. This has been

investigated by evaluating the models with the requirements presented in section 4.2. The only

acceptable techniques for modeling storage systems in a data-intensive system have been found

to be in the domain of machine learning.
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Three machine learning techniques, namely Classification and Regression Trees, Support

Vector Machines, and Neural Networks were presented and evaluated. For the training and

evaluation different storage workloads from the Rucio data-intensive system were used. The

Support Vector Machines and Neural Network models showed slightly better, in some cases

even significantly better, results than the Classification and Regression Tree models. In general a

median relative error of around 20% was demonstrated, however, some storage systems showed

a high variation. While these relative errors seem high in comparison with single disk drive

models, which usually show relative errors around 1-3%, the error is quite acceptable for such

complex systems. The analytical model introduced in section 5.2 showed comparable relative

errors of around 15%, however, the variation was much smaller as the error does not exceed 30%.

However, the analytical model is able to capture system characteristics, such as caching and

internal queues, which the machine learning model, if at all, only captures implicitly. Evidently

there has to be a downside for using these much more generic techniques. When comparing

the results to predictions made in different domains but for similarly complex systems, such as

the prediction of computation times on super computers [Smith et al., 2004], the relative errors

shown in this chapter are similar, or better, than the results presented for these systems.

For the inclusion in the hybrid system model, the Support Vector Machine modeling tech-

nique is selected. However, it has to be noted that, depending on the storage system, the Neural

Networks sometimes performed better than the SVM and vice versa. The challenge is that no

statistical characteristics could be identified which a-priori tell which technique will perform

superior. Hence, this can only be done by experimentation, which is too time-intensive for a real

world data-intensive system. Rucio alone consists of more than 750 storage systems, regularly

training and evaluating 1500 models would be infeasible.
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CHAPTER 6
Modeling network systems

6.1 Introduction

Next to the storage systems, network systems are the second core resource of a data-intensive

system. As the storage resources are rarely concentrated at a single geographical location and

as the data is often accessed from different parts of the system, some means of connecting the

storage resources are necessary. This is done by shared and dedicated network systems. While

there are different computer networking communication standards used throughout the field,

such as InfiniBand [Association, 2000], which is mostly used for super computers, Ethernet

[Shoch, 1981], and Fibre Channel [Latif et al., 2002] the Internet layer and Transport layer used

is predominantly TCP/IP [Fall and Stevens, 2011]. The reason for this is that the internet runs

mostly on this protocol, thus it suggests itself to re-use this technology also for the dedicated

networks to decrease complexity.

The objective of this chapter is to identify a modeling technique which is able to accurately

model networking systems based on the TCP/IP protocol. Specifically, the time to complete or

transferrate of a file transfer, independent of it being a read or write request, has to be estimated

by the model. The model has to be able to realistically represent the characteristics of the TCP/IP

protocol, such as fairness and congestion effects. Similar to Chapter 5 the modeling technique

has to be in accordance with the requirements specified in Section 4.2. The specifics of how
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these requirements translate to network systems are presented in Section 6.2.

Network simulation, similar to storage simulation, is a field with a long history. The first

network models came up in parallel with the development of network communication technolo-

gies. These models were mostly driven by the needs of manufacturers of networking systems

and communication services providers. In academia, network simulation became of interest a bit

later, in the 1980s. The first widely used network model was the REAL [Keshav and Srinivasan,

1988] simulation package, which was later renamed to ns-1. Many more network models, with

different features and use cases in mind followed later. Network models can roughly be catego-

rized into packet-level and flow-based models. Packet-level models represent network transfers

as a sequence of events, such as packet departures and arrivals. Flow-based models abstract the

discrete packet stream as a single flow and simulate the flow interactions at this abstracted level.

This chapter is structured as follows. In Section 6.2 the model requirements in respect to

networks of data-intensive systems are discussed. Also the network topology specification and

layout is discussed in this section. Section 6.3 presents the theory behind packet-level models

and discusses the most widely used models in literature. In Section 6.4 flow-based models are

discussed and presented. Section 6.5 continues with the evaluation of the presented models and

Section 6.6 ends the chapter with a conclusion.

6.2 Topology specification

The requirements specified in Section 4.2 apply to networking systems as follows: For require-

ment 1 a network transfer does not distinguish if the underlying data operation is a read or write

operation, thus the response time being measured and estimated is the end-to-end response time

of packet level arrivals associated to a specific file transfer.

The network systems are considered as black-boxes, as required by requirement 2, thus no

internal component data is used to construct the model. However, globally available knowledge

and data, such as the algorithms and mechanics of the TCP/IP protocol can be used to construct

the model, as the data is publicly available. Also the bandwidth and latency of a link are con-

sidered an external/observational data point, thus it can be used during the model generation.
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Figure 6.1: Schematic topology of the network used in Rucio.

For example, the outgoing and incoming bandwidth capacities and latencies are available for

essentially all data centers in the Rucio data-intensive system.

Requirement 3 states that no controlled experiments can be conducted to measure wide per-

formance characteristics in order to construct a more accurate model.

The network topology of a data intensive system is usually structured as follows: Each data

center hosts multiple storage systems which are connected to the internal network infrastructure

of the data center. The data centers are either connected to each other by dedicated network links

or via the internets shared networks.

For example, the Rucio system categorizes data centers into tiers. Tier-1 data centers are

connected to each other via a dedicated network, the LHC optical private network [Simeonidou,

Dimitra Nejabati et al., 2004]. Each Tier-1 data center is then connected to its associated Tier-2

data centers via dedicated national networks, typically science networks, or the internet. The

categorization of data centers into Tiers is not significant, what is significant though is that data

centers are connected to each other via different networks, thus the network topology itself is

heterogeneous. A network model thus must support heterogeneous topologies. Figure 6.1 shows

an extract of the schematic topology of Rucio. In general, these dedicated resources are faster

and potentially easier predictable, as they are under the control of the data-intensive system. The
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outgoing and incoming internet links of the data centers are also well described, but it is unknown

which routing control and what resources are used at the hops in between the endpoints. It is

also unknown how these resources are utilized and if any congestion effects affect the network

transfers. The reason for this is that while the network transfer of the data-intensive system are

observable and measured, the transfer happening on the internet are not, thus it is unknown if

and how they affect the transfers of the system routed via the internet. These effects can only be

categorized as noise. The internet transfers are inevitably more difficult to predict than transfers

enacted in an isolated network resource. Data centers with multiple links offer different options

how to route incoming and outgoing data, this also needs to be represented in the network model.

For the sake of simplicity, the focus of the network model is on external connections and

not on the network infrastructure inside the data center. This simplification is done due to two

reasons: It is unlikely that the internal network topology has a significant impact on the per-

formance of transfers, as the bottleneck is usually the data center outgoing network link. Thus,

ignoring this makes the model less complex. Secondly, the internal topology of the data centers

in a data intensive system is mostly unknown. This situation is quite similar to the storage sys-

tems as the operation of the data centers is not done centrally. For data center internal operations,

the network performance is implicitly included in the storage model.

Any network model supporting the use-case of a data-intensive system should support the

representation of the network topology in a simple graph-based notation. The topology is thus

defined as an directed graph G = (V,E) where the set of vertices V represents the set of data

centers and the set of edgesE represents the set of network links. The internet is also represented

as a special vertices vINT making the set of vertices V = {v1, v2, . . . , vn, vINT }. Each data

center has at least one link to the internet {vi, vINT } and the data centers connected to dedicated

networks have multiple links. The attributes defining each network link are constrained to the

bandwidth and latency. This information is generally consistently available on a global level.

Some models also benefit from additional data, such as average packet loss, but this information

is not consistently available. For each combination of vertices vi, vj the route is defined as a list

of edges Li,j = {{vi, vk}, {vk, vm}, . . . , {vn, vj}}.

The general requirements to a network model thus are:
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1. Accurate estimation of TCP/IP transfers and protocol effects.

2. Handling of topology representations in a loosely defined graph.

3. Not requiring more information than bandwidth and latency per link.

6.3 Packet-level models

Packet-level models were among the first network models used in communication network sim-

ulation. The idea of using discrete event simulation, which simulates every single packet being

part of a TCP/IP data flow, is self-evident as the model can re-enact processes done in real net-

work devices that also manipulate single TCP/IP packets. Instead of enacting these processes in

a network device, the process time to complete for each packet is estimated inside the CPU of

the computer running the simulation. This approach uses very few abstractions, thus the core

model itself is very close to its real world counter parts. There exist numerous simulation mod-

els based on this principle, with the most prominent ones being ns-3 [Henderson et al., 2008],

GTNetS [Riley, 2003], and SSFNet [Cowie et al., 1999]. A comprehensive overview of network

models is presented by Gupta et al. [2013].

These simulators operate, in most parts, very similar. Usually elements of the simulated

network, such as links, routers, switches, and computers are represented as queues. A global

scheduler analyzes which elements to activate at a certain moment in the simulated timescale,

activates the modeled function of the associated elements, which transforms and moves events

from one queue into another, and then extends the simulated time for a calculated value. The

queues do not hold the actual simulated TCP/IP packets but events associated to a specific packet,

such as packet-received, or transmission-complete events. Thus a single TCP/IP packet requires

multiple simulation events, which increases the simulation complexity as instead ofO(N),O(j ·

N) events have to be passed. Figure 6.2 shows a simple schematic topology of a network

of a packet-level model including two nodes, their queues, and a simplex link in between. A

pseudocode for a simple packet transmission is shown in Algorithm 4. When a transmission

event, associated to a TCP/IP packet is sent the event simulator calls the transmit_packet method,

including all the packet information. If the link is currently busy, a transmission event is queued
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Node A Node BLink

Queue A Queue B

Figure 6.2: Queue architecture example used in packet-level network models.

Algorithm 4 Pseudocode for packet transmission events in a packet-level network model.

1: function TRANSMIT_PACKET(packet)
2: // Process a packet transmission event
3: if Link is not busy then
4: // Calculate the time to transmit
5: transmit_time← packet_size

link_bandwidth + propagation_delay
6: // Schedule receive event at receiver
7: schedule_packet_receive_event(transmit_time)
8: // Schedule link free event
9: schedule_link_free_event(transmit_time)

10: Set link busy
11: else
12: // Link is busy
13: // Enqueue packet for later transfer
14: enqueue_packet()
15: function LINK_FREE_EVENT

16: // Process a link free event
17: Set link not busy
18: if Queue not empty then
19: Remove packet from Queue
20: transmit_packet(packet)

in queue A and the event will be pulled by the scheduler at a later moment. If the link is not

busy, the transmission time is calculated based on the packet size and the bandwidth, also the

speed-of-light propagation delay is added to the transmission time (Line 5). Then a receive event

with this timestamp is put into queue B (Line 7). At the same time a link free event is put into

queue A, to signal that the queue is empty now (Line 9). When this link free event is polled

at queue A, the link is set to non-busy and a new transmission event can be retrieved from the
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queue.

This example only describes a very simple workflow and does not go into details of conges-

tion events, and flow fairness. However, the key characteristic of packet-level models is that a

simple packet can generate multiple events, in case of complex congestion issues even a very

large amount of events per packet. The model includes queue transformation functions for all

type of workflows and situations which always serve two functions: Moving and transforming

simulation events, and the expansion of simulation time.

The network models of ns-2/ns-3, GTNetS an SSFNet are widely validated across all com-

monly used protocols [Henderson et al., 2008]. From an accuracy point of view they are deemed

to perform extremely close to their real environments.

Due to this a lot of related work is about finding ways how to reduce the amount of events

without losing accuracy due to abstraction [Fujimoto et al., 2003] or to increase the paralleliza-

tion of the simulator. Simulator performance is measured in the number of packet transmissions

that can be processed by a simulator per second of wallclock time (PTS). Typical performance

measures on a sequential execution are around 100.000 PTS. With parallel execution with 1500

processors PTS values of up to 100 million have been demonstrated. However, these perfor-

mances are also very dependent on the problem set and the interaction of the simulated network

flows.

6.4 Flow-based models

While the scalability issues of flow-based network models do not matter much for most re-

searchers studying network protocols, the simulation of networks of distributed systems is on

a completely different scale, as most problem sets would just take orders of magnitude more

simulation time then simulated time.

Flow-based models were first proposed by Anick et al. [1980]. Their objective is to scale

much better by using higher levels of abstraction. Specifically they estimate the performance

of network flows instead of network packets by having functional abstractions of the bandwidth

sharing behavior of TCP flows [Massoulie and Roberts, 1999]. This estimation is done purely
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based on the bandwidth and TCP congestion window size. This is intuitively much more scal-

able, as a single network flow can abstract hundreds of megabytes in transferred packets, which

can require millions of events to be processed in a packet-level model. The general idea of flow-

based models, such as proposed by Velho and Legrand [2009], is that every link Lk is defined

by a maximum bandwidth Bk and every flow Fi has a throughput pi. The system is thus defined

by the constraint that the bandwidth capacity of each link may never be exceeded:

∀Lk
∑

i|Fi uses Lk

pi ≤ Bk (6.1)

The key question for a model is thus how TCP handles bandwidth fairness when more than

one flows are active at a certain link. While the initial assumption is that a Max-Min fairness

model [Hahne, 1991] is used, this was shown to be wrong by Dah Ming Chiu [2000]. Analytical

investigations of the TCP model [Floyd and Fall, 1999] showed that

pi =
c

RTT ·
√
P

(6.2)

RTT is the round trip time, P the fraction of packet loss, and c a constant. Thus when assuming

that the packet loss is constant among flows, the formula suggests that the bandwidth is in inverse

proportion to the round trip time. The congestion mechanism also relies on the window size W ,

limiting the bandwidth of a flow to W
RTT as there are always at most W pending packets in

a flow. Based on this it has been shown that the TCP sharing mechanism, at equilibrium, is

actually equivalent to maximizing:

∑
i

√
3/2

Di
tan−1(

√
3/2Dipi) (6.3)

Di is the equilibrium round trip time [Low, 2003]. The issue with this formula is that it is much

harder to maximize than a simple max-min model. Thus most flow based models decide to use

a simpler equation, still delivering a close result at much lower computational cost.

For example, a popular flow-based model part of the SimGrid [Casanova et al., 2008] frame-

work approximates the equation by using a RTT aware max-min sharing algorithm. The full

model and the exact proof is detailed by Casanova and Marchal [2002]. There exist two types

of bottlenecks, balanced ones, where the bandwidth is shared fairly, and unbalanced ones. A
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bottleneck link is defined as: ∑
i|Fi uses Lk

pi = Bk (6.4)

It can be proven that the links on a route r which are balanced bottleneck have the greatest

utilization U(l):

U(l) =
1

Bl

∑
r∈l

1

RTTr
(6.5)

The idea of the algorithm [Casanova et al., 2008] is then, to calculate a fair bandwidth allocation

at every checkpoint in the event simulation, inversely proportional to the flows RTTs, starting

with the balanced bottleneck links.

At any given checkpoint in the discrete event simulation, the model loops over this algorithm

until there are no more routes left:

1. Compute the utilization U(l) of every link.

2. Identify the links with the greatest utilization and put them into the set L1.

3. For each route r going through one of the links in L1 compute the throughput p. Remove

all the routes going through the links in L1 and lower the capacity of all links used by

these routes:

R1 = {r ∈ R|r ∩ L1 6= ∅}

∀r ∈ R1, pr = min
l∈L1∩r

{
1

RTTr∑
r′3l

1
RTT ′r

}
∀l ∈ L,B′l = Bl −

∑
r3l

pr

(6.6)

Other [Schwefel et al., 2003] flow-based network simulators use a different equation set to

mimic the bandwidth sharing/congestion solving behavior of the TCP streams but the general

concept of using these abstract interactions at a flow-level save a lot of computation efforts

making the simulation much more efficient.
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6.5 Evaluation

The question of which model to integrate into the hybrid simulation model for data-intensive sys-

tems is based on two key-characteristics: Accuracy and scalability. The GTNetS [Riley, 2003]

model is selected as the representation for the packet-level models and the SimGrid [Casanova,

2001] model as representation for the flow-based models. Both models were selected due to

their wide adaption and ease of integration. Also both models support the topology specification

described in Section 6.2.

Accuracy

Packet-level simulation models have been extensively validated [Henderson et al., 2008]. Their

estimations are equivalent, or extremely close, to real-world network communication systems.

In most cases, the small differences can be explained by noise or effects which were just not part

of the input data of the model. This does not come as a big surprise as the design of the models

represent the real systems very closely. However, with flow-based network models the level

of abstraction is much higher, thus an estimation error (residual) is, to some degree, expected.

The question is how large it is and if it is significant enough to exclude flow-based models for

data-intensive systems.

A first comparison between packet-level and flow-based network models was done by Nicol

et al. [1999]. The authors used the implementation of a flow-based model and plugged it into

the SSF net simulator. This allowed them to directly compare the results of SSF, in packet-level

mode, with the flow-based model. They use different test topologies and experimental setups

with multiple hundreds of nodes and multiple thousand flows. Their experimental results showed

that the relative error of the flow-based model is in the 1% range.

A second comparison was done by Fujiwara and Casanova [2007] for the SimGrid flow-

based network model. The authors created and executed multiple experiments with one-link,

5-link (Dumbbell) and multi-link random topologies. They compare the results of the SimGrid

model against the packet-level model of the GTNetS simulator. Their findings were that for

big flows (Larger than 10MB of data) the result is good (relative error in the 1% range) but
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the accuracy decreases with smaller flows. Also in heavily congested networks, the accuracy

decreased.

A second approach of these experiments with SimGrid was presented by Velho and Legrand

[2009]. The researchers investigated an updated version of their model with a refinement of

the Max-Min sharing approximation. They could show excellent results for flows larger than

100KB with relative errors below 0.5%. Also the model worked accurately in heavily congested

network situations.

Scalability

While not specifically mentioned in the model requirements, scalability is a relevant charac-

teristic for a model of a data-intensive system, as it has a direct impact on the runtime of the

simulation. This has not been specifically required, as the runtime is highly dependent on the

hardware the simulation is executed on, the size of the simulated system, and the size of the input

workload. But in general terms, it should be possible to simulate a day or multi-day workload

of a data-intensive system in a reasonable amount of time, thus in hours, not days.

In Liu et al. [2001] the authors study the efficiency of flow-based simulation vs. packet-level

simulation. For the packet-level model they use the SSF simulator and the flow-based model is

represented by two FIFO and WFQ based models. They showed a factor 4 performance increase

between the flow-based model to the packet-level model.

In [Fujiwara and Casanova, 2007] the authors show that with the highly-performant GTNetS

platform the simulation of a 125 sec workload of 200 flows, each transferring 100 MB on a

topology with 200 nodes takes about 1500 sec on a 3.2GhZ Intel Xeon processor. Thus it takes

an order of magnitude more simulation time than simulated time. A comparison based on the

number of flows is shown in Figure 6.3. The plot shows a much smaller incline for the flow-

based model. When repeating this experiment with an 8-core AMD Opteron processor with 2.3

GHz the numbers were very similar, an experiment with 2000 flows did not finish after six hours

for the packet-level model, while the flow-based model simulation finished after 30 seconds (for

a 125 sec workload). While these results are not very surprising due to the millions of events

a packet-level simulator has to process, it is quite discouraging in terms of implementation in
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Figure 6.3: Simulation time comparison between packet-level and flow-based simulator by [Fu-
jiwara and Casanova, 2007].

the hybrid data-intensive model. In Rucio, an average days workload includes about a million

file transfers with a Petabyte of aggregated volume. Thus, this would require the simulation of a

million flows, not including multi-session protocols which would instantiate multiple flows per

file, resulting in about 700 billion packets (with an average window size of 1500 Bytes).

6.6 Conclusion

In this chapter network communication models were introduced, discussed and evaluated. At

first the network topology specification in respect to data-intensive systems is introduced. Specif-

ically, the requirements laid out in Section 4.2 were examined and adapted to network communi-

cation models. This also resulted in a specification for network topologies which any considered

network model must support.

Then the two most used paradigms of network communication models were introduced and

discussed. Namely packet-level models, which use TCP packets as the unit in the discrete event
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simulation and flow-based models which abstract multiple packets into one TCP flow. As the

packet-level models work at a very detailed level close to their real-world counterparts, their

accuracy is superior. However, it has been shown that the flow-based models deliver very similar

accuracy, especially with data flows over a certain size, which is essentially always the case

in data-intensive systems. However, the scalability of packet-level models is largely inferior

compared to flow-based models. At the size and complexity needed for typical data-intensive

systems, a packet-level based simulation would simply not finish in a reasonable amount of time,

at least without an impracticable amount of hardware.

Due to this scalability issues and the equivalency in accuracy, flow-based models, specifi-

cally the implementation in the SimGrid [Casanova, 2001] framework is selected for inclusion

in the hybrid system model for data-intensive systems.
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CHAPTER 7
Modeling data integrity validation

7.1 Introduction

Data validation is a common process enacted in most data processing systems and data-intensive

systems are no exception. All read and written data has to be validated for integrity by the sys-

tem. While most underlying network protocols, such as TCP do provide data integrity guar-

antees failures can still happen during other processes in the workflow, such as failures during

reading at the source, and failures during writing in the storage system at the destination. The

data-intensive system has to provide functionality to validate the data at the end of the workflow.

The Rucio data-intensive system provides four workflows (see Section 4.4) for reading, writing,

and transferring data, all of which enact data integrity validation. While writing and transferring

do the data validation implicitly via the storage and transferring protocols, which is implicitly

included in the storage model, both read workflows enact explicit data validation. The objective

of this chapter is to establish a modeling technique which is able to estimate this data integrity

validation process.

The remainder of this chapter is structured as follows. In Section 7.2 the general concepts of

data integrity errors and their validation methods are presented. This section focuses on check-

sum algorithms and their performance. Section 7.3 continues by presenting different modeling

techniques to estimate the time to completion of checksum algorithms. All techniques are eval-
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uated with historic validation data from the ATLAS data grid. The chapter then concludes in

Section 7.4.

7.2 Data integrity validation

The purpose of data integrity validation is to detect and recover from corruption errors of the

data, so that they are not propagated to the user [Bairavasundaram et al., 2008]. Typical rea-

sons for data corruption are errors in the storage system, such as disk failures, or errors during

transferring the data over the network. The general idea of data integrity validation is the same

in all data processing systems: Ensure that the data is recorded correctly and upon retrieval en-

sure that it is the same as when it was originally recorded. In the ATLAS data grid, as in most

data-intensive systems, this is done by calculating and storing a checksum when the data gets

created. For all subsequent transfer and read operations, the checksum is calculated again for

the newly written data and compared against the original checksum. When detecting checksum

errors, the system can further investigate if just the newly written data is corrupted, and thus can

be re-read, or if there is a data corruption problem at the source, with data which once already

passed validation.

There are different types of checksum generating functions, however, the most commonly

used ones are hash functions. A hash function is a mathematical function which maps data

of arbitrary size to data of fixed size. Hash functions can have different properties, but in the

context of data integrity validation, the hash function should support: Determinism, thus a given

input value always results in the same hash value; Uniformity, thus every value in the output

range should be generated with the same probability. This is required to decrease the amount of

hash collisions. Non-Continuity, thus two slightly different inputs should result in very different

hash values. Due to their popularity mostly cryptographic hash functions are used, which also

have the property of Non-Invertibility, thus it is very hard to reconstruct the input of the function

based on the hash value.

In the ATLAS data grid two different checksum algorithms are used: MD5 by Rivest [1992]

and Adler-32 by Adler [1996]. MD5 processes inputs of any length and produces fixed-length
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outputs of 128 bits. This is done by breaking the input into blocks of 512 bit and executing

4 rounds of 16 operations on each block. Each operation is based on a non-linear function F .

MD5 consists of four different functions F and uses a different one in each of the four rounds.

Adler-32 is based on the Fletcher-32 [Fletcher, 1982] algorithm and also takes inputs of any

size to produce a 32 bit output. The aim of Adler-32 is to trade reliability for speed. The

algorithm generates two 16-bit checksums A and B and concatenates them to a 32-bit integer.

A is obtained by summing all bytes in the stream, plus one, and B is the sum of all individual

values of A. The exact algorithm is shown in Algorithm 5. The modulo value used in line 6 and

Algorithm 5 Pseudocode of the Adler-32 [Adler, 1996] algorithm.

1: function ADLER32(input)
2: A← 1
3: B ← 0
4: i← 0
5: for i < len(input) do
6: A← (A+ input[i]) mod 65521
7: B ← (B +A) mod 65521

return B × 216 +A

7 is the largest prime number fitting in a 16 bit integer. The general advantage of the algorithm

is that the values are aggregated continuously, thus it can be used in parallel for multiple data

streams, such as when writing to tape libraries.

However, the actual used hash function is not essential in terms of modeling the performance

of the function. The model should just be able to capture the performance of any kind of hash

function, as required by Requirement 2 in Section 4.2.

7.3 Modeling & Evaluation

When it comes to modeling the performance of hash functions, one key characteristic is appar-

ent: the checksum is calculated on the user’s computer. This creates an additional difficulty

in modeling the process, as while there is some knowledge about the environment of processes

running within the data-intensive system, very little is known about the user’s computer. A naive

assumption would be that the performance of a hash function is mostly dominated by the file-
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Figure 7.1: Validation duration and validation rate experiment with MD5/Adler-32.

size, the CPU, and the I/O performance of the computer. However, only the file size is known to

the model. Figure 7.1 shows a plot of experimental measurements taken on a personal computer

by calculating MD5 and Adler-32 checksum for randomly generated files of different sizes. The

plot shows both the validation duration as well as the validation rate defined as:

validationrate =
filesize

tend − tvalidation
(7.1)

Both checksum algorithms show very similar durations, with Adler-32 executing faster for large

files.

Figure 7.2 shows a distribution of file sizes in the ATLAS data grid. The plot shows that a

vast range of filesizes is used in the data-intensive system, thus the question is how the checksum

functions perform under such a large variety of inputs.

Figure 7.3 displays the validationrate as boxplot for one month of read and write operations

on the ATLAS data grid. The plot shows that the validationrate is very small for small files but

asymptotical converges to a value around 190 Mb/s for files bigger than 100Mb. The bad valida-

tionrate for smaller files is most likely due to initializiation overheads of the checksum process.
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Figure 7.2: Distribution of file sizes in the ATLAS data grid.

However, the plot also shows large variances and deviations from the median. Again, this is

most likely due to the fact that the checksum calculation is executed on the user’s computer, thus

different environmental conditions hugely influence the checksum walltime. The same effect as

seen in Figure 7.1 can also be observed in this plot: The validation rate is low for small files and

reaches a stable rate for larger files. The outlier for the 1Mb sized file for both methods is most

likely explained due to some kind of disk caching effect.

The patterns shown in Figure 7.3 and Figure 7.1 suggest that a model should not be too

complex to build, as the behavior of the validation rate is quite predictable. However, as no

information is available about the execution environment, the model purely relies on historic

data and the averages of the validation rate observed in these datasets. In many cases this is

fine, as typically computing nodes from a computing farm are validating the data accessed at

a storage element and these computing nodes are relatively homogenous. However if the data

of a storage element is accessed from a much bigger set of different computers, the validation

predictions are inevitably more erroneous.
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Figure 7.3: Validation rate (in Mb/s) for one month of operations in the ATLAS data grid.

The model’s quality is expressed as the relative error of the validationrate defined as:

δvalidationrate =
∣∣∣validationrate− ˆvalidationrate

validationrate

∣∣∣ (7.2)

Figure 7.4 shows boxplots for the relative error of a linear model, a classification and regression

tree, a support vector machine, and a neural network. As already expressed in Section 5.5, all

machine learning models comply with the requirements set out in Section 4.2. All models are

trained to predict the validation rate based on the filesize of a training workload, as no other

information is available about the environment the validation is executed in. The evaluation

is done by predicting the validation rate of an evaluation workload. Based on the measured

validation rates for different filesizes shown in Figure 7.3, the assumption that a linear model

would work well holds, especially if the distribution of filesizes is not too large. In general

all models perform quite similar with the neural network model performing best with a median

relative error of 17%.

7.4 Conclusion

In this chapter validation models were introduced, discussed and evaluated. The chapter intro-

duced the most commonly used cryptographic hash functions which are used for file integrity
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Figure 7.4: Validation of different models for the validationrate prediction.

validation. An investigation was conducted to analyze the correlation between the filesize and

the validation duration. It was shown that for files larger than 100Mb the validationrate of crypto-

graphic hash functions stays essentially constant. This was shown based on historical workloads

as well as in experiments conducted on a personal computer.

A linear model as well as three machine learning techniques were evaluated to predict the

validationrate. All models performed quite similar, with the neural network model performing

best, thus it is selected for inclusion in the hybrid system model for data-intensive systems.

155





CHAPTER 8
Modeling services

8.1 Introduction

While the other components, such as storage, network, or validation are essentially similar in any

data-intensive system, the service workflows emphasize its peculiarities. This poses a challenge

in creating an accurate, but still abstract, model which is able to predict the performance of any

service workflow. Next to the performance specific prediction the component model must also

include a functional part in order to correctly represent the decision process of the real-world

counterpart. This chapter focuses on the performance predictive part of the model, the functional

part will be covered in Chapter 9.

The objective of this chapter is thus to establish one, or multiple, modeling techniques which

are able to build an accurate component model for the different service components used in data-

intensive systems. The model predicts the components response time and should be abstract

enough to be able to cover unspecified service workflows, just based on the observational data

specified in Section 4.2.

For the ATLAS data grid four different service components were identified in Section 4.4.

The metadata service is used to query the system for a list of files based on a set of metadata.

The replica management service keeps track of the physical replicas in the data-intensive system

and resolves a set of files to the addresses of the physical replicas. The replica selection service
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directs the client which replicas to use, based on the current system state, as well as other inputs

controlling the selection algorithm. The transfer service is a scheduling component for site to

site transfer workflows. It is a queuing system used to protect the system from overload. While

the first three components are dominated by the performance of the database, the transfer service

is a classical queuing system.

The remainder of this chapter is structured as follows. In Section 8.2 the related work in

modeling the performance for service components is presented and discussed. Section 8.3 con-

tinues with the introduction, creation, and evaluation of a predictive model for service compo-

nents which purely relies on historic observations. In Section 8.4 a predictive model specifically

for queue based service components is presented and evaluated. The chapter then finishes in

Section 8.5 with a conclusion.

8.2 Related work

There is no specific related work on modeling service components. For a majority of service

components the response time is mostly dominated by the performance and complexity of a

relational database management system (DBMS).

There is some related work in the domain of creating performance models for the execution

time of queries for database management systems, such as SQL queries for relational database

systems. The internal scheduler of a DBMS benefits from performance models [Wentao Wu

et al., 2013] to optimize the execution time of incoming queries. The related work can roughly

be divided into two approaches, one based on analytical modeling and the other on machine

learning. This section continues with discussing one popular article for each of the two ap-

proaches. For the analytical model the work of Wu et al. [2013] and for the machine learning

approach the work of Gupta et al. [2008] is presented.

In Wu et al. [2013] the authors follow an analytical approach to make an execution time

prediction for an incoming query under load. The query is not predicted in isolation but under

load of the database, which is the most common case in a real-world scenario where the database

executes multiple queries concurrently. The approach consists of two steps: First, for each
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incoming query the optimizer decomposes the query and estimates the costs of I/O and CPU,

for each pipeline of the query. These abstract costs are then converted to time by using some

system-specific parameters. Second, the acquired execution times for each pipeline are then fed

into two queueing networks, one for I/O and one for CPU which represents the concurrency

of all active queries in the system. The residence time in the queue essentially represents the

execution time of each pipeline. A set of equations is used to transform the queuing times if

multiple servers are available to execute the queries or if data is partially available in a buffer.

The model is evaluated for a large set of workloads and offers relative errors of the execution

time prediction between 20% and 80%. This analytical approach covers very well the problem of

infinite number of unknown queries. However, it requires a very large set of parameters specific

to the DBMS hardware and configuration.

In Gupta et al. [2008] the authors use a machine learning approach to minimize the amount

of information needed about the DBMS. The general idea is that each incoming query is de-

composed by the query optimizer into several pipelines and their associated cost. Both values

are input to the prediction model. Whenever a new query is executed a load monitor also reads

the current system state and transforms it into a load vector which is also fed into the prediction

model. The prediction model then estimates the execution time based on the query, its cost and

the current load vector. Once executed, the actual execution time is fed back into the predictive

model. The authors use a classification tree to train the association between load vectors and

queries and thus improve predictions over time. The model performs better the more queries

it observes under several load conditions. The evaluation of the model is done by comparing

it against real-world executions on an enterprise level DBMS. They achieve an overall average

accuracy of 87%.

The applicability to the hybrid model for data-intensive systems is problematic in both cases.

The analytical model needs extensive parameterization to express the performance of the under-

lying DBMS, which strongly conflicts with requirement 2, specified in Section 4.2. However,

both models have one issue in common. It is unclear how the abstract, top-level operations map

to multiple, specific, structured and, decomposable queries required by both models. From a

data-intensive model point of view, the queries are already considered component specific, and
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thus outside the scope per requirement 2. Also the current load of the DBMS, required by both

models, is not available. Hence both models cannot be considered as component models for

services.

As the related work is only very limitedly applicable to data-intensive system, the idea is to

build two kinds of machine learning models. The first model is presented in Section 8.3 and is

purely trained on cost indicators to predict the response times of operations. The second one,

presented in Section 8.4, integrates queuing behavior to the model.

8.3 Cost indicator based response time prediction

The models presented in the related work section use the cost prediction of the query optimizer,

to make an estimation about its execution time. Due to lack of information and the requirements

described out in Section 4.2, this cannot be done for the hybrid model but there are other indica-

tors which could indicate operational cost and thus correlate an operation with the response time.

For example, the replica management- and replica selection service resolves a set of files to its

replicas and makes a decision about which ones to use. One could assume that a request with

a larger number of files takes longer than a request with a lower number of files, as more data

needs to be processed. The number of files per data grid operation is expressed as the number

of traces with the same uuid, see Table 4.1. Per data grid operation only one request is sent to

the component stack. The historic component response time is given as ∆t = ttransfer − tstart.

Equation 8.1 is used to calculate the Pearson product-moment correlation coefficient between

the number of files n in an operation and ∆t and thus describes the linear relation between the

two variables.

ρn,∆t =
COV (n,∆t)

σnσ∆t
(8.1)

The result for a one month dataset resulted in a correlation coefficient of 0.68 with a 95% con-

fidence interval. This indicates a strong linear uphill relationship between the number of files

requested in an operation and the response time. The assumption that the number of files is a

good cost indicator for the performance of the query holds.
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Figure 8.1: Validation of different models for the cost indicator based prediction of service
component response time.

Figure 8.1 shows a boxplot of the relative error of models predicting the component response

time based on the number of files of the operation. The relative error is defined as:

δ∆t =
∣∣∣∆t− ∆̂t

∆t

∣∣∣ (8.2)

The models are trained and evaluated with two different workloads. A linear model, Classifica-

tion and Regression tree, Support Vector Machine and Neural Network are trained. The linear

model performs comparably well with a median relative error of 60%. The neural network

model however performs best with a median relative error of 36% and a much smaller standard

deviation. Interestingly the CART and SVM model were not able to represent the linear relation

of the two variables at all and showed large relative errors. The models accuracy, both in median

relative error and standard deviation, are similar to the specific query execution time models

presented in [Wu et al., 2013] and [Gupta et al., 2008]. Hence a very specific query execution

time model would most likely only show little to no benefit.
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8.4 Queue based response time prediction

The transfer service component is used to queue transfer requests and execute them at the right

moment in time. The exact implementation of this depends on the data-intensive system. While

some systems may execute transfers immediately, others can use queues to protect the system

from overload. In the ATLAS data grid, an optimizer is used to analyze how much load a certain

link can absorb and issues only a certain number of concurrent transfers, while holding the other

requests back. This dynamic behavior makes the service component difficult to model, as no

static rules are used to schedule the transfers. For a given link, the number of requests in the

queue at the moment a request is submitted, gives some indication about the duration this request

will be in the queue. Thus for each operation i the number of in_queue operations is defined as:

in_queue(i) =
i−1∑
j=1

queued(i, j) (8.3)

with queued(x, y) defined as:

queued(x, y) =


tsubmitted_at(x) ≤ tstarted_at(y) ≤ tstarted_at(x) 1

else 0

(8.4)

Equation 8.3 only counts operations being in the queue at the moment the operation is added

to the queue. The reasoning for this is that the model, at the time of estimation, also has no

knowledge about the operations potentially being added to the queue later on.

The model is trained on the in_queue attribute to predict the duration ∆t a request resides

in the queue.

∆t = tstarted_at − tsubmitted_at (8.5)

Figure 8.2 shows a boxplot of the relative error of models predicting the component response

time, which is equal to the queue time, based on the queue behavior of the operation. All

models are trained with a historic training workload and evaluated against a historic evaluation

workload. The relative error is rather high for all models, even the best performing SVM shows

a median relative error of 71%. Thus, modeling the transfer service queue time based on the

amount of files in the queue at a given point in time is not optimal. Intuitively, this is expected
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Figure 8.2: Validation of different models for the queue based prediction of service component
response time.

behavior because the optimizer schedules transfers based on the number of transfers in flight, and

some other performance characteristics. But this is difficult behavior to model without assuming

some functionality of the optimizer, which would impact the models generality. However, the

models generality is fundamental and the primary reason why the requirements in Section 4.2

were specified. Hence generality is favored here over accuracy. However, the median queue

time of an operation is around 7 seconds, thus a median relative error of 70% does not impact

the overall operation time too much.

8.5 Conclusion

This chapter presented two approaches how the different service components of a data-intensive

system can be modeled. The chapter first introduced two models which predict the execution

time of database queries. One based on machine learning, and one based on an analytical model.

However, due to the requirements laid out in Section 4.2 and a lack of information of these
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system details, other modeling approaches had to be considered. As the different service com-

ponents are roughly based on two different paradigms, two models were introduced: one based

on the number of files as a cost indicator and one based on the queue behavior. For both mod-

els, several machine learning techniques were evaluated against historic workloads. For the cost

indicator based model the neural network approach performed best, while for the queue model

the Support Vector Machine gave the best result.

The best performing underlying machine learning techniques are selected for each model for

the inclusion in the hybrid system model for data-intensive systems.
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Part III

Evaluation and conclusion
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CHAPTER 9
Event simulator and evaluation

9.1 Introduction

The previous chapters proposed a modeling technique for components of a data-intensive sys-

tem. This chapter focuses on bringing these component models together, unifying them in a full

hybrid system model, integrating said model in an event simulator which is able to accurately

simulate date-intensive systems, and finally evaluating the model against historic workloads of

the ATLAS data grid.

The remainder of this chapter is structured as follows. In Section 9.2 the general workflows,

input and output specifications and transformations, model implementations, and the general

architecture and workflows of the event simulator are presented. Section 9.3 continues with the

evaluation of the event simulator. The simulator is trained based on a historic workload of the

ATLAS data-intensive system and evaluated against a different workload of the system. The

same workloads are used to train and evaluate a model based on the GloBeM [Montes et al.,

2011] methodology. The Chapter finishes in Section 9.4 with a conclusion.

167



Event simulator

Network 
definition

Training
workload

Input
workload

Output

Replica
locations

Figure 9.1: Data workflow of the event simulator.

9.2 Event simulator

The general principle of the hybrid simulation model and its implementation in an event simula-

tor has been outlined in Section 4.3. This section picks up on this general outline and focuses on

the architecture and implementation of the system simulator. The principle of a discrete event

simulation is that the input of the system is a discrete sequence of events and each event changes

the state of the system at a specific point in time. The natural event in terms of a data-intensive

system is a read or write operation, consisting of several file accesses.

The data workflow of the event simulator is detailed in Figure 9.1. It works in two serial

steps, an initialization phase, and a simulation phase. The initialization phase is used to con-

struct the component models. The network definition is used to initialize the network model and

the training workload is used to initialize all machine learning based component models. The

replica locations define the mapping of files to available replicas. In some use-cases this can

be derived from the input workload, in others it is necessary to have this definition. Once all

component models are fully initialized the simulation phase is started. The input workload is

iterated in a chronological order and for each operation the system model predicts the operations

response time, which is stored in the output.
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Attribute Description

type The type of the operation (download, upload, transfer).
file The file identifier, typically the unique filename.
dataset The dataset identifier the file belongs to.
source Identifier of the source storage system.
destination Identifier of the destination storage system.
size Filesize in bytes.
protocol Identifier of the protocol being used.
uuid The universal unique identifier of this operation. In case of multiple transfers being

executed in one system operation, all the operation will have the same uuid.
tsubmit Submission timestamp of the event.

tstart Transfer initialization timestamp.
ttransfer Timestamp of the start of the transfer execution.
tvalidation Timestamp of the end of the transfer and start of the validation phase.
tend Timestamp of the end time of the operation.

Table 9.1: Input workload attributes of the event simulator.

Input and output specification

The key requirement to the input specification is a clear and general definition which minimizes

the effort to transform a system specific workload into something the event simulator can inter-

pret.

The input workload is a comma separated file where each line represents one file transfer in

the system. Table 9.1 shows the minimal set of attributes needed for the event simulation. The

first section of attributes are the mandatory values needed for the simulation input workload. For

the training workload additional attributes are needed for the model training, which are shown in

the second section in Table 9.1. Usually, one system operation reads or writes multiple files. The

relation of multiple transfers belonging to the same system operation is expressed by the uuid,

hence file interactions of the same operation have the same uuid. Operations of the transfer type

are always storage system to storage system transfers, thus the source and destination always

specifies a storage system. Upload and download operations are performed from/to a storage

system to/from a computer or worker node in some campus network or data center. For these

events, the source or destination of the computing node is the specific network identifier of
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Attribute Description

file The file identifier, typically the unique filename.
location Identifier of the storage system the file has a replica at.

Table 9.2: Replica location attributes of the event simulator.

the campus or data center, as no mass storage system is used as either source or destination.

The output workload is a the same event from the input workload, however, the estimated tend

timestamp is added.

The replica location listing is also a comma separated file, with the attributes defined in

Table 9.2. The replica locations are necessary for simulation uses cases where the user does not

replay a very specific workload but lets the data-intensive system model make some decisions.

For example, for a download operation the source storage system is not defined in the input

workload, but instead the system model must decide which source replica to use. In cases like

this the event simulator must be aware of the initial distribution of replicas.

As SimGrid [Casanova et al., 2008] is used as the underlying model for the network compo-

nent model, their definition of network topology and routing files are used as network definition.

The network topology definition is an XML based file which defines all hosts, such as storage

systems, routers, network links, and their interconnection. The routing file is also an XML based

file which defines for each host pair a sequence of links. A more detailed topology definition is

outlined in Section 6.2.

The input specifications are kept as general as possible, but any data-intensive system will

require the workloads it produces to be transformed into the general event simulation inputs.

For the ATLAS data-intensive system a small tool-stack developed in Python [Python Software

Foundation, 2015] is used for these transformations.

Architecture & Workflow

A component overview of the simulator architecture is shown in Figure 9.2. The event simulator

is composed of six components. The simulation stack is implemented in the C programming
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Figure 9.2: Overview of the architecture of the event simulator.

language. In some cases external libraries or Python programs are called via an embedded

Python interpreter.

The input processor is responsible for processing the workload and handling the various

simulation parameters. In simulation mode, it iterates the input workload and relays operations

to the system model for response time estimation. The returned tend value of the system model

is then, together with the attributes of the input workload, written to the output file. In training

mode, it only relays the locations of the training workload, the network definition, and the replica

locations to the hybrid system model, as it is up to the component models to process the inputs

in the most optimal way for training.

The hybrid data-intensive system model is the core component of the simulation. For each

operation event coming from the input processor, it calls the component models for an estimator

of the operation. The system model also holds a structure of the current system state in memory.

A reference to the system state structure is given as pointer to each component model, thus

when estimating an operation, the component model has access to the full simulated system

state at that moment in time and can also modify the system state. The implementation of the

hybrid system model is general enough that it does not have to be adapted to be able to simulate

a specific data-intensive system. During initialization phase it uses the information from the

replica locations input to update the system state to the respective replica locations. If no replica
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Figure 9.3: Simulation workflow for the estimation of a local read operation.

locations are given, it parses the input workload and derives the replica locations from it. For

the component models, each component model’s train method is called with a reference to the

simulators input. The actual training is then done by the component model itself.

Figure 9.3 shows a sequence diagram for the simulation of one local read operation. The

hybrid system model queries all the relevant component models for an estimation of the response

time. In the example shown, a local-read operation is shown, thus the network model returns 0

as no WAN transfer is executed. Once all component estimates are retrieved, they are aggregated

by the system model:

tend = tsubmit +

n∑
i=1

response_timei (9.1)

In simulation mode the sequence shown in Figure 9.3 is only one iteration in the estimation loop

of the input processor. At the end of each iteration the estimated time is written to the output file

and the loop starts over with the next estimation.

All component models are derived from a class definition (defined as a struct in C) imple-

menting two methods. See Figure 9.4 for a class diagram. All models have to implement these

two methods, as they act as the interface to the hybrid system model. The complexity of both

methods strongly depends on the complexity of the machine learning or analytical model ap-

proach being used, but next to these also some data-intensive system specific functionality might
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float estimate(event *event, state *state)
void train(char *training_workload, char *network_definition, state *state)

component_model

service_model network_model storage_model validation_model

Figure 9.4: Class diagram of the component model.

be necessary to be implemented. The following generic component models are implemented:

• The service_model is split into two models. As mentioned in Chapter 8, the cost indicator

based model (Neural network based) is used for the replica selection, replica management,

and metadata service. The queue based model (Support Vector Machine based) is used for

the transfer service. When calling the estimate method, the service model decides based

on the operation type, source, and destination which of the specific models to call. See

Table 4.11 for a mapping. In the case of the ATLAS data-intensive system, the service

model also has some system specific implementations for the replica selection service. In

cases where the input workload is only partially filled, thus the system model has to decide

which source replicas to read, the replica selection service makes this decision. Hence

simplified policy rule sets from the actual data-intensive system have to be implemented

in the model. In the replica selection case this is a shortest path query in a graph weighted

by the link latencies, which is generated during the training phase based on the network

topology. Thus the replica closest to the source, measured by link latency, is selected.

• The network_model is based on the network model of the SimGrid [Casanova et al., 2008]

framework. Specifically the API of the MSG stack is used. The train method is rather

simple and just initializes the SimGrid core with the supplied XML platform files. The

estimate method requires a more elaborate implementation, as the MSG stack only offers

a very basic abstraction for message passing, thus all file transfer specific workflows are

implemented in the network model on top of that. For local storage system accesses the
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network model returns a response time of 0, as no wide area network interactions are

executed in this case.

• The storage_model is based on the machine learning approach with Support Vector Ma-

chines presented in Chapter 5. In the training phase, the workload is partitioned into

storage elements. If necessary, each partition is sampled using the stratum sampling ap-

proach. A SVM model is then trained for each of the partitions, thus creating one model

per storage system. In the simulation phase the respective model where data is read from

or written to is used for the response time estimation.

• The validation_model is on the basis of the Neural Network model presented in Chapter

7. In the training phase, the validation model also partitions the workload similarly to the

storage model. While this approach does not appear to be very intuitive, it is guided by a

very simple motive: The validation performance is mostly driven by the hardware (CPU,

disk) of the computer executing the validation. As this information is not available, the

partitioning by campus network/data center makes the assumption that computers in this

cluster are usually similar. This assumption often holds, as worker nodes in a data center

are very often homogeneous. Thus, by having these data center specific validation models

instead of one global validation model, the prediction performance is improved. In the

simulation phase the implementation of the estimate function only calculates a response

time for the local-read and remote-read operation. For other operations 0 is returned, as

the validation is done implicitly by the transfer system.

9.3 Evaluation

To evaluate the event simulator and thus the full hybrid simulation model for date-intensive

systems, historical traces from real-world systems are simulated and compared. The idea is

to inject multiple workloads, not only from the ATLAS data-intensive system, but also from

other data-intensive systems. However, no other data-intensive system workloads and system

descriptions could be obtained. Even the workloads from the Grid Workload Archive [Iosup

et al., 2008] are not applicable to data-intensive systems as they are workloads of computing
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grids and thus do not include any data handling. Unfortunately all operators of data-intensive

systems which have been contacted in order to evaluate the model had no interest in sharing their

data.

For the evaluation a four day workload of the ATLAS data-intensive system is selected and

split into a three day training workload and a one day testing workload. The training work-

load includes about 8 million file transfers while the testing workload almost reaches 3 million

transfers. These are comparably average utilized days for the ATLAS data-intensive system.

While all file transfers are estimated by the data-intensive system model the evaluation is done

on system operation level, as defined in the requirements in Section 4.2. Multiple files are read

or written as part of one system operation. The estimation error is based on the difference in

response time of the whole system operation. As the workload includes file-level operation, the

response time rt of an operation x is defined as:

rt(x) = max(tend(i))−min(tsubmit(i)), ∀i|uuid(i) = uuid(x) (9.2)

Similar to the system analysis the operations are partitioned into four partitions of total

operation size between x < 1 Gb, 1 < x < 10 Gb, 10 < x < 100 Gb, and 100 < x Gb. The

evaluation error used is the relative error of the response time defined as:

error =
|r̂t− rt|

rt
(9.3)

The general objective of the evaluation is not only to evaluate the full system model but also

to compare the model against other models. However, as already discussed in Chapter 3, there

are no models complying to the requirements laid out in Section 4.2. Most models do not support

the full data workflows of a data-intensive system, as they are focused on computational jobs.

The GridSim [Buyya and Murshed, 2002] and SimGrid [Casanova, 2001] simulators do have ex-

tensions for data workflows, but both the GridSim and the SimGrid model require storage system

characteristics and parameters which are not available. Some experiments were conducted by

essentially guessing and tuning these parameters, but the simulation errors were extremely high

and not representable. However, the authors of both publications show comparable results in

their articles when a detailed full system description, such as in a testbed, is available. Yet, this
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is not the case for large-scale production systems like the ATLAS data-intensive system. The

scope and environment for both models are just too different to accurately compare them and

would not give the models proper credit.

The model which is most applicable to data-intensive systems and complying to the require-

ments is the GloBeM [Montes et al., 2011] model. While originally developed to be a model for

grid computational job behavior prediction the approach can also be extended to data workflows.

However, this was never demonstrated by the authors. Furthermore the source code of the model

has never been published by the authors, thus a simple adaption is not possible. Hence a GloBeM

model for data-intensive system has to be implemented in order to evaluate it in this thesis. As

the implementation is not necessarily what the original authors would have in mind, the model

will be referred to as GloBeM-like model. The general principle of GloBeM is to abstract the

system as one entity and monitor state changes in the system. These state changes are classified

and used to train a model, which later on can be used to predict state changes in a time series.

The general advantage is that the model is very general and does not require knowledge about

the inner mechanics of the system. The set of states and a workload containing the state changes

over time is sufficient. The idea of the GloBeM-like model is to instead of predicting state

changes of a computing job to predict state changes of a read or write operation. The individual

steps in the file transfer are also split up into state changes, thus one read or write operation

goes through several transfer states for each file. For the evaluation the estimated response time,

similar to Equation 9.2, is calculated for each operation. The same three day training workload

and one day testing workload is used to evaluate the GloBeM-like model. For the underlying

machine learning method Neural Networks are used as they generally perform well.

Figure 9.5 shows the evaluation of the hybrid simulation model for data-intensive systems.

The median relative simulation error of the entire model is at 22%, however, this is mostly due

to the fact that most operations fall into the first partition of operations smaller than 1 Gb. The

error gets larger the larger the operations get. One interesting fact is that the variance of the

relative error gets smaller the larger the operations get, while usually the inverse effect would be

expected.

Figure 9.6 shows the evaluation of the GloBeM-like model. This model uses less knowledge
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Figure 9.5: Relative simulation error of the hybrid simulation model for data-intensive systems.

of the internals of the system than the hybrid simulation model and relies more on machine

learning techniques to capture the state-changing behavior of the system. The median relative

error is at 72%. In general the variances are also much higher and the method seems to capture

the behavior less well, as the accuracy seems to be quite erratic in each partition. However,

the result, especially for some partitions, is still striking, considering that the methodology does

not have any knowledge about the internals of the system. Also, the time spent in optimizing

the GloBeM-like model is quite limited, thus the results should be taken as a reference, not

necessarily as a in-depth analysis of the methodology.

9.4 Conclusion

This chapter presents the evaluation of the hybrid simulation model for data-intensive systems

and compares the model against the only available model in literature. After the introduction,

Section 9.2 proposes an event simulation framework in which the hybrid simulation model gets

executed. The input and output specification of the simulator is presented followed by the archi-
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Figure 9.6: Relative simulation error of the GloBeM-like model.

tecture and workflow of the simulator. The workflows and specifics of the component models,

and how they are integrated into the simulation framework, are presented as well. The eval-

uation section first introduces the response time metric being used to evaluate the estimators.

The environment of the evaluation, describing the training and simulation workloads is clearly

specified. The section continues by introducing a data-intensive system focused model, based on

the GloBeM methodology, which was implemented in order to compare the hybrid simulation

model. As there are no other applicable models in literature, only the GloBeM-like model could

be used as a reference for comparison.

The evaluation showed a median relative error of the hybrid simulation model of 22% while

the GloBeM-like model performed at 72%. The hybrid simulation model also showed a smaller

spread of the error.
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CHAPTER 10
Summary and conclusions

This thesis investigates performance models for data-intensive systems. The research question

is stated as ”can a model be constructed that estimates the response time of user operations in a

data-intensive system?”. At first, the ATLAS data-intensive system Rucio [Garonne et al., 2012,

2014], which acts as a running example throughout this thesis, is introduced and outlined. By

analyzing existing full system simulation models in literature, the challenges, weaknesses, and

limits of existing approaches are identified. These findings are compiled into three requirements

for a model of an operational data-intensive system. Most models in literature are either not

applicable to data-intensive workflows, or make assumptions which do not hold for operational

systems, such as the level of specific system knowledge required. Steered by these require-

ments the novel hybrid simulation model approach for data-intensive systems is proposed. The

hybrid modeling approach partitions the system into discrete components, creates models for

these components, and combines them to one concise system model which is able to predict

the performance of user operations. The identification of these system components results from

a quantitative system analysis of the Rucio data-intensive system. The storage, network, data

integrity validation, and services components were identified. For the storage model existing

models from three different paradigms were evaluated but identified as non-applicable to the

domain of data-intensive systems. Three machine learning techniques, namely Classification

and Regression Trees, Support Vector Machines, and Neural Networks were presented as well.
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Models are built based on these techniques and evaluated by extracting workloads, for different

storage systems, from the Rucio system. The models are trained and evaluated with different

workloads from the operational system. For the network model two well established modeling

paradigms were evaluated. Packet-level models represent the networking system with almost no

abstraction and simulate single TCP/IP packets, whereas flow-based [Anick et al., 1980] models

abstract multiple packets as a single flow. Both models have been shown to perform similarly

accurate for network flows over 100kB in size. However, the packet-level model does not scale

with the volume of data moved in data-intensive systems, resulting in simulation times which

are orders of magnitude larger than the simulated time. The data integrity validation model

captures the performance of data integrity validation workflows by training a Neural Network

model with historic workloads. The service component model is more complex, as several dif-

ferent service workflows have to be mapped by the model. Two approaches, one based on cost

indicators and one based on queue behavior, are proposed and evaluated. All component models

are implemented in an event simulation framework and evaluated against a historic workload

of the ATLAS data-intensive system. The hybrid simulation model performs with an median

relative error of 22%. A current state-of-the-art GloBeM [Montes et al., 2011] based modeling

approach, which had to be adapted to conform to data-intensive systems, performed with an

relative error of 72%.

10.1 Contributions

Modeling data-intensive workflows

The vast majority of literature focuses on computational uses cases. The question of what sys-

tem components influence the performance of a read or write workflow arises. This is addressed

in Chapter 4 by a quantitative analysis of historic workloads of the running example Rucio. The

system collects extensive traces since the beginning of 2009. Each trace describes a file access,

such as a read or write, and is described by more than 30 different attributes. Among these are

also several timestamps during certain milestones of the operation. For each of the different user

access workflows, such as remote and local read, remote and local write, and site to site transfers,
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different system components are accessed during the workflows. For the purpose of the analysis

the entire workload of the year 2015 is analyzed, including about 300 million local uploads,

70 thousand remote uploads, 9 million local reads, 3 million remote reads, and 25 million site

to site transfers. However, each operation includes multiple file interactions, in total about two

billion transfers. The analysis assigns the exercised components to their generic components in

the reference architecture [Allcock et al., 2002]. Then the measured periods for each workflow

are mapped to the components and the data is analyzed for statistical significance. A quite trivial

finding is that the network component is insignificant for local workflows, but other more sur-

prising findings are presented. Thus for small remote read operations the querying of the replica

selection services takes as much time as the transfer itself, thus making this component highly

significant for a performance model. For the write workflows the registration of replicas and

locations at the metadata components takes a significant amount of time, even for larger opera-

tions. For the site to site transfers a significant amount of time is spent in queueing the transfers.

Some of these findings point to deficits in the data management software, however, the perfor-

mance issues have to be represented by the model nevertheless, otherwise no accurate estimation

can be made by the model. Hence, a common mistake in literature is to make assumptions about

the underlying system being modeled, such as that certain parts of the workflow are fast and

insignificant. However, a model must be guided by the observed data, not by the assumption of

how a system should work. Of the seven components defined by the data grid reference archi-

tecture only two to four components are statistically significant for each workflow. Due to the

reduction of the component workflows to the performance significant parts, it also decreases the

complexity of the hybrid model.

Requirements for modeling operational data-intensive systems

Creating a model for a data-intensive system is inherently different from creating a model for

a conventional data processing system. These differences can be divided into two categories:

access and scale. For a conventional data processing system it is unquestionable that the re-

searcher has full access to all hardware and software components of the system. Thus creating

a model for the system can be done under the assumption of full knowledge. Data-intensive
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systems are large-scale distributed systems and operate under entirely different idiosyncrasies.

There is no detailed knowledge about many parts and specifics of the system. But even if this

access was possible, collecting instrumentation data is on a much bigger scale than for a con-

ventional data processing system and likely infeasible. Further more, there are no test-beds for

data-intensive systems. While a conventional data processing system can be exercised with tests

in a contained environment, for example to create more extensive workloads or test the system

under distinct conditions, the scale prohibits the creation of a representative test environment for

multi-continental, large-scale data-intensive systems. Thus modeling the data-intensive system

means interacting with an operational system, hence running the risk of operational impact or

even jeopardizing operational data. These observations lead to the formulation of three require-

ments in modeling data-intensive systems which are presented in detail in Chapter 4: 1. The

model predicts the response time of individual read and write operations; 2. The data grid com-

ponents are black boxes. Component models must be constructed based on global observations,

rather than internal component data or knowledge; 3. Only passive observations must be used

instead of observations from controlled system experiments. These requirements are driven by

operational conditions and thus limit the approach compared to systems modeled under labora-

tory conditions. However, the formulation of such requirements is essential to not only define

the constraints of the model, but also to give other researcher the possibility to compare and

reflect on the requirements and assumptions they make about their models.

Modeling data-intensive system components

The storage model, presented in Chapter 5, relies on machine learning techniques. Namely mod-

els based on Classification and Regression tress, epsilon regression Support Vector Machines,

and feed-forward Neural Networks models were implemented and evaluated. To evaluate the

accuracy of the models workloads from five different storage systems of different sizes and un-

derlying technology were extracted from the system. The workloads were enriched with an

attribute representing the number of concurrent accesses at a certain time in the system. Each

model estimates the transferrate of a single file access, thus the data is normalized by filesize.

The Classification and Regression tree model shows an relative median error of around 30%.
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For two of the five storage systems it performs with a high standard deviation, with the 9th per-

centile of the relative error over 400%. The Support Vector Machine model shows a slightly

better median performance around 25%, but a generally lower standard deviation with only one

storage model at 300% for the 9th percentile of the relative error. The Neural Network model

showed a slightly larger median relative error of 28% but a more consistent result with smaller

standard deviations of the error for all storage systems. The neural network model shows no 9th

percentile of the relative error larger than 150%.

For the network component, presented in Chapter 6, an already established model used in

literature is utilized.

The data integrity validation model presented in Chapter 7 aims to accurately represent the

data integrity validation workflow of a data-intensive system. The methodology is quite simple,

as the validation process is mostly dependent on environmental conditions, such as the local CPU

or harddisk, which the model has no knowledge about. Thus the model is built on the filesize

of each specific file access. The assumption that there is a linear relation between the filesize

and the validation time is confirmed by experiment. A Pearson product-moment test confirms

a strong uphill relationship of the data, indicating that a linear model should work well for the

component. The model creation is based on the previously used machine learning techniques.

Also a linear model is added to the lineup. The evaluation shows a median relative error of 17%

for the neural network model. However, even the linear model performs at an median relative

error of 23%, confirming the strong linear relationship of the independet variables.

The services models presented in Chapter 8 are the most challenging ones. The model must

be general enough to apply to any service component of a data-intensive system. It cannot

mock the internal behavior of a specific component. But while being generic, it must also

deliver accurate predictions. Two modeling approaches were presented. A cost indicator based

response time prediction where a variable in the input is used as a cost indicator, describing

the complexity of the operation. For example, the number of files covered by an operation is a

good cost indicator for many queries. For three of the four service components the number of

files can be used as a cost indicator. A strong uphill relationship of 0.68 with a 95% confidence

interval in a Pearson product-moment correlation test can be shown between the service time
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and the number of files for those operations. The cost indicator based model is utilizing a neural

network which is evaluated with a median relative error of 36%. The second model is based on

queuing behavior and aims to model transfer queues in front of a transfer system. This is done by

training on the historic behavior of previous transfers, by correlating the number of transfers in

the queue with the time they spent in the queue. The Support Vector Machine model performed

best with a median relative error of 71%.

The presented models accurately predict the performance of their modeled components.

Some of the machine learning techniques are also not ideal to answer certain questions, such

as What happens if a better performing storage system is used at this site? It is difficult to adapt

certain models, such as a neural network or support vector machine, to new parameters. The rep-

resentation of the trained model is very difficult to interpret for humans. For other techniques,

such as Classification and Regression trees the adaption of the model is easier. These issues will

be addressed in future work, but are outside of the scope of this thesis.

Modeling and predicting a high number of events

Operational workloads of data-intensive systems process, in a short time-frame, a very high

number of events. This raises two questions in the context of modeling the system. Can a

model be trained based on such high-volume workloads? But also, once the model is created,

can it estimate input workloads of such cardinality? The first problem is addressed in Section

5.6. All tested machine learning techniques can not cope with workloads larger than 100.000

events in a reasonable amount of time. This can be improved by using better hardware but the

sizes of data-intensive workloads are orders of magnitude bigger, thus this quickly gets into

an unrealistic area. Sampling methods have to be used to reduce high-volume workloads to a

digestible size. However, the risk when sampling data is that the intrinsic characteristic of the

workload gets lost. A model trained with such a workload would thus be less accurate. This

effect is shown in Section 5.6 when a model, trained with an entire workload is compared with

a model trained with a 10% sized random sample of the workload. The model trained with the

sampled workload performs far less accurate and less stable. However, sampling methods exist

which decrease the volume of the dataset while trying to preserve its intrinsic characteristic.
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One of such methods is called stratified sampling [Neyman, 1934] where the dataset is divided

into stratums which are then sampled systematically. As the defining stratum characteristic

the number of concurrent operations is used. The analysis shows that a model trained with

a stratum sampled workload with 10% of the size of its original still performs similar to the

model trained with the full workload. When estimating a workload all used models show no

issues with predicting large workloads, as each operation is predicted in isolation, thus when

estimating, the model is independent from the size of the workload. This part of the work shows

that data-intensive system models are prone to a high number of events in a workload and cannot

cope with them. When applying special systematical sampling techniques to the workload, the

characteristics of the workload can be preserved and modeling made possible.

Unifying models in a hybrid system model and integration in an event simulator

The proposed modeling techniques for system components are unified in one full-scale, hybrid

system model for data-intensive systems, which is described in Chapter 9. The architecture

unifies the C implementations of the models in an event simulator. The actual system specific

information is supplied by multiple inputs: a network definition, describing the network graph,

a training workload, which is used by the different component models to extract specific com-

ponent information from the system, a replica location catalog, defining an initial replica distri-

bution, and the actual input workload which is being estimated. After all component models are

trained or initialized, the event simulator iterates the input workload and queries each component

model for an estimator and interpretation of each single event. The estimators are aggregated

by the hybrid model and written to an output file. The evaluation is done by training the hybrid

model with workloads from the Rucio system. The event simulator is then exercised with a

separate evaluation workload from the system. The median evaluation error of the model is at

22%, with an relative interquartile range error of around 30%. However, the error increases with

operation size, resulting in a median relative error of 33% for operations larger than 100Gb.

Surprisingly, the spread of the error decreased with growing operation size, while the inverse

behavior would be expected. As no related work was applicable to the use cases of operational

data-intensive systems, the concept of the GloBeM [Montes et al., 2011] methodology was ex-
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tended to data-intensive systems. The GloBeM-like model performed with an median relative

error of 72%, for the same training and evaluation workload. Thus, this thesis improves the state

of the art by 40%.

10.2 Publications

Significant parts of this thesis were published as articles in peer-reviewed proceedings of in-

ternational conferences or as peer-reviewed articles for international journals. All articles were

presented at their respective conferences as public talks or posters. While the core contributions

of this thesis are my own work, some articles, specifically where the model is used as a method

to investigate the data-intensive system, are shared work with my colleagues at CERN. Most

notably, Mario Lassnig, Vincent Garonne, Angelos Molfetas, Thomas Beermann and Cedric

Serfon. According to Google Scholar in January 2017, the articles have been cited more than

170 times.

Making cluster applications energy-aware - Vasić, Barisits, Salzgeber, and Kostic [2009]

This paper describes a novel approach in making cluster applications, such as distributed file

systems, energy-aware. The architecture actively and dynamically powers done nodes based on

the utilization pattern observed in the cluster. The approach is evaluated with a special imple-

mentation of the Hadoop MapReduce framework. This article was presented at the workshop for

Automated Control for Datacenters and Clouds at the 6th IEEE/ACM International Conference

on Autonomic Computing and Communications (ICAC’09) in Barcelona, Spain. While this

work has no direct part in this thesis, the need of accurate performance models for operational

systems became apparent to me while conducting this research.

A similarity measure for time, frequency, and dependencies in large-scale workloads - Lass-

nig, Fahringer, Garonne, Molfetas, and Barisits [2011]

This work describes a novel similarity metric for workloads of data-intensive systems. The

method is comprised of two parts, one using discrete wavelet transform to investigate the time
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and frequency characteristics of the workload. The other evaluates attributes based on associ-

ation rule learning. The work was presented at the 24th ACM SIGARCH / IEE International

Conference on High Performance Computing, Networking, Storage and Analysis (SC’11) in

Seattle, USA.

Popularity framework for monitoring user workload - Molfetas, Lassnig, Garonne, Stewart,

Barisits, Beermann, and Dimitrov [2012]

This work describes a methodology to infer information from collected tracing data that allows

a data-intensive system to be queried for usage patterns of specific data. This article was pre-

sented at the 19th International Conference on Computing in High Energy and Nuclear Physics

(CHEP’12) in New York, USA.

Simulating the ATLAS Distributed Data Management System - Barisits, Garonne, Lassnig,

and Molfetas [2012]

This article presents a full-scale simulation framework for LHC-specific distributed data man-

agement systems. The simulator was evaluated against workloads of the ATLAS data man-

agement system DQ2 [Branco et al., 2010]. This work was presented at the 19th International

Conference on Computing in High Energy and Nuclear Physics (CHEP’12) in New York, USA.

The ATLAS Distributed Data Management project: Past and Future - Garonne, Stewart,

Lassnig, Molfetas, Barisits, Beermann, Nairz, Goossens, Barreiro Megino, Serfon, Oleynik, and

Petrosyan [2012]

This article describes the state of the ATLAS distributed data management system DQ2 and

outlines recent contributions. The work includes an overview of the updated architecture and

preliminary benchmarks of novel data placement algorithms. The article was presented as part

of the IOP Journal of Physics, 2012.

Advances in service and operations for ATLAS data management - Stewart, Garonne, Lass-

nig, Molfetas, Barisits, Zhang, Calvet, Beermann, Megino, Tykhonov, Campana, Serfon, Oleynik,
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and Petrosyan [2012]

This paper describes the recent advances in the ATLAS data management system. It specifically

outlines the workflows of dynamic data placement algorithms which detect and replicate, popu-

lar data. The work was presented at the 14th International Workshop On Advanced Computing

And Analysis Techniques In Physics Research (ACAT’14) in London, UK.

The ATLAS Distributed Data Management System & Databases - Garonne, Lassnig, Barisits,

Beermann, Vigne, and Serfon [2013]

This overview paper outlined the architecture and usage of large-scale databases as part of the

ATLAS data-intensive system. The work was presented at the Extremely Large Database Eu-

rope workshop (XLDB’13) in Geneva, Switzerland.

ATLAS Replica Management in Rucio - Barisits, Serfon, Garonne, Lassnig, Stewart, Beer-

mann, Vigne, Goossens, Nairz, Molfetas, and on behalf of the ATLAS Collaboration [2014]

This article describes a novel expressional language which allows operators and users of a data

management system to dynamically allocate and replicate data. The semantics of the language

enable the definition of data management policies via a simple and robust syntax. The article is

part of the IOP Journal of Physics, 2014.

Popularity Prediction Tool for ATLAS Distributed Data Management - Beermann, Maettig,

Stewart, Lassnig, Garonne, Barisits, Vigne, Serfon, Goossens, Nairz, and Molfetas [2014]

This work describes a novel machine learning approach in predicting the popularity of newly

registered datasets in the ATLAS data grid. This contribution then enables the system to repli-

cate the data based on its predicted popularity. The article was presented at the 11th International

Symposium on Grids and Clouds (ISGC’14) in Taipei, Taiwan.

Rucio, the next-generation Data Management system in ATLAS - Serfon, Barisits, Beermann,

Garonne, Goossens, Lassnig, Nairz, and Vigne [2014]

This contribution outlines the design and architecture of a novel data management system used
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by the ATLAS collaboration. The system is designed to manage hundreds of Petabytes of data

and cope with frontend interaction rates of hundreds of Hertz. The article was presented at the

37th International Conference on High Energy Physics (ICHEP’14) in Valencia, Spain.

Resource control in ATLAS distributed data management - Barisits, Serfon, Garonne, Lass-

nig, Beermann, and Vigne [2015]

This article describe a novel approach of defining resource allocations and dynamically manag-

ing resources in the distributed data management system. The work was presented at the 21st

International Conference on Computing in High Energy and Nuclear Physics (CHEP’15) in Ok-

inawa, Japan.

Scalable and fail-safe deployment of the ATLAS Distributed Data Management system Rucio

- Lassnig, Vigne, Beermann, Barisits, Garonne, and Serfon [2015]

This contribution details the automatic deployment management of the ATLAS distributed data-

intensive system. The design of the deployment workflow and monitoring is outlined as well.

This article was presented at the 21st International Conference on Computing in High Energy

and Nuclear Physics (CHEP’15) in Okinawa, Japan.

A hybrid simulation model for data grids - Barisits, Kühn, and Lassnig [2016a]

This article describes a novel simulation model for data grids. The approach partitions data grid

workflows into different components and constructs machine learning based models for each

component. The components are then combined into a full-scale system model. This article was

presented at the 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Comput-

ing (CCGrid’16) in Cartagena, Colombia.

C3PO - A Dynamic Data Placement Agent for ATLAS Distributed Data Management - Beer-

mann, Lassnig, Barisits, Serfon, and Garonne [2016]

This contribution introduces a new dynamic data placement algorithm for the ATLAS data grid.

This method is designed to pre-place potentially popular data to make it more widely available
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by predicting the processing utilization at a given point in time in the future. This article was

published as part of the IOP Journal of Physics, 2016.

Automatic rebalancing of data in ATLAS distributed data management - Barisits, Serfon,

Garonne, Lassnig, and Beermann [2016b]

This article describes a methodology to predict potential resource shortages and pro-actively, and

dynamically, rebalance data to other data centers to avoid resource contention. The algorithm

always enforces replication policies, such as replication factors, but tries to optimize data access

performance by data movement. This article was presented at the 22nd International Conference

on Computing in High Energy and Nuclear Physics (CHEP’16) in San Francisco, USA.

10.3 Physics contributions

Besides the contributions this research made in the field of computer science, major parts of the

findings of this thesis had direct technical impact on the software and operation of the ATLAS

data grid, which directly led to physics results. Thus more than 80 co-authorships for peer-

reviewed physics articles were completed within the ATLAS collaboration. Most importantly,

I hope that this work played its role in the discovery of a new particle that is consistent with

the Standard Model Higgs Boson, a discovery which led to the 2013 Nobel Prize in Physics for

Peter Higgs and François Englert.
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