
Potree: Rendering Large Point
Clouds in Web Browsers

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Markus Schuetz
Matrikelnummer 0825723

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Michael Wimmer

Wien, 1. Juni 2015
Markus Schuetz Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Potree: Rendering Large Point
Clouds in Web Browsers

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Markus Schuetz
Registration Number 0825723

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Michael Wimmer

Vienna, 1st June, 2015
Markus Schuetz Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Markus Schuetz
Alszeile 78/6, 1170 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. Juni 2015
Markus Schuetz

v

Acknowledgements

I would like to thank anyone who has contributed to Potree and this thesis in one way
or another. To my advisor, Michael Wimmer, for his help with this thesis and his
abnormally fast response times, even on weekends. To Claus Scheiblauer as well as
Michael Wimmer for their previous works, on which this thesis is based.

Thanks to Daniel Kastl from Georepublic and Martin Isenburg from rapidlasso, not
only for their funding but also for their extensive help in the development process.

Thanks to Ricardo Cabello, developer and maintainer of the three.js WebGL render-
ing library. Three.js made it possible to leave low-level graphics programming aside and
concentrate on the actual target, the processing and rendering of large data sets.

Thanks to Howard Butler, Connor Manning, and Uday Verma, who also contributed
to the state-of-the-art in browser based point cloud rendering and made their work
publicly available.

Thanks to Christian Boucheny, developer of the Eye-Dome Lighting illumination
model, and Daniel Girardeau-Montaut, developer of the CloudCompare point cloud
viewer, for making their amazing contributions to point cloud rendering public and open
source.

Thanks to the Ludwig Boltzmann Institute for Archaeological Prospection and Virtual
Archaeology for the Heidentor point cloud and Riegl for the Retz point cloud, which are
used for the cover pages of each chapter, as well as anyone else who provided point clouds
that are used throughout this thesis.

Special thanks to family and friends, who had to endure a lot of talks about point
clouds.

Potree was funded by rapidlasso, Georepublic, Veesus, sigeom sa, sitn (ne.ch), the
Ludwig Boltzmann Institute Archaeological Prospection and Virtual Archaeology, and
Pix4D.

This research was supported by the EU FP7 project HARVEST4D(no. 323567) [23].

vii

Kurzfassung

Im Zuge dieser Arbeit stellen wir einen Punktwolkenrederer namens Potree vor, der es
ermöglicht riesige Datensätze mit Milliarden von Punkten, wie sie zum Beispiel durch
LIDAR Scanner oder Photogrammetrie Software entstehen, in einem Web Browser zu
betrachten.

Einer der Vorteile davon Punktwolken in Web Browsern zu rendern ist, dass es Be-
nutzern erlaubt ihre Datensätze mit Partnern oder der Öffentlichkeit zu teilen, ohne
dass diese erst große Datenmengen herunterladen oder eine Drittanwendung installieren
müssen. Der Fokus auf große Datensätze und die zahlreichen Messwerkzeuge erlaubt es
Benutzern auserdem, aufgenommene Datensätze zu analysieren und Messungen durch-
zuführen, ohne dass die Daten vorher in einem kosten- und zeitintensiven Schritt in
Dreiecksmodelle umgewandelt werden müssen.

Das Laden und Rendern von Milliarden von Punkten in Potree wird durch eine hierar-
chische Datenstruktur ermöglicht, in der Teilmengen der Punktwolke in unterschiedlichen
Auflösungen gespeichert werden. Teilmengen mit geringer Dichte werden im Root Node
gespeichert. Mit jedem weiteren Level erhöht sich die Dichte, und somit der Detailgrad,
der Daten die in den Nodes abgespeichert werden. Durch diese Struktur kann Potree sich
auf diejenigen Teile der Punktwolke beschränken die für einen gegebenen Blickwinkel am
wichtigsten sind. Punkte die sich nicht im Blickfeld befinden werden übersprungen, und
für entfernte Bereiche wird eine niedrigere Detailstufe aus geladen und gerendert.

Das Endergebnis dieser Arbeit ist ein open source und web-basierter Punktwolken-
renderer, der erfolgreich mit Datensätzen bis zu 597 Milliarden Punkten getestet wurde.

ix

Abstract

This thesis introduces Potree, a web-based renderer for large point clouds. It allows users
to view data sets with billions of points, from sources such as LIDAR or photogrammetry,
in real time in standard web browsers.

One of the main advantages of point cloud visualization in web browser is that it
allows users to share their data sets with clients or the public without the need to install
third-party applications and transfer huge amounts of data in advance. The focus on
large point clouds, and a variety of measuring tools, also allows users to use Potree to
look at, analyze and validate raw point cloud data, without the need for a time-intensive
and potentially costly meshing step.

The streaming and rendering of billions of points in web browsers, without the need
to load large amounts of data in advance, is achieved with a hierarchical structure that
stores subsamples of the original data at different resolutions. A low resolution is stored
in the root node and with each level, the resolution gradually increases. The structure
allows Potree to cull regions of the point cloud that are outside the view frustum, and
to render distant regions at a lower level of detail.

The result is an open source point cloud viewer, which was able to render point cloud
data sets of up to 597 billion points, roughly 1.6 terabytes after compression, in real time
in a web browser.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Definition . 2
1.3 Contributions . 3
1.4 Structure of the Work . 5

2 Related Work 7
2.1 Rendering Massive Point Clouds . 7
2.2 Web-Based Massive Point Cloud and Voxel Rendering 9
2.3 Desktop-Based Massive Point Cloud And Voxel Rendering 9
2.4 High-Quality Point-Based Rendering . 10

3 Data Structure 13
3.1 Overview . 14
3.2 Modifiable Nested Octree . 14
3.3 Potree’s Octree Structure . 15
3.4 Octree Traversal and Visible Node Determination 21

4 Point Cloud Rendering 25
4.1 Point Attribute Coloring . 26
4.2 Point Splatting . 27
4.3 Determining Point Sizes . 33
4.4 Eye-Dome Lighting . 38

5 Implementation and Features 43
5.1 WebGL . 44
5.2 Asynchronous and Parallel Execution . 45
5.3 Tools and Interaction . 47

xiii

5.4 Georeferencing . 56
5.5 Data storage . 59

6 Results 63
6.1 Performance . 64
6.2 Applications . 67
6.3 Showcase . 71

7 Conclusion and Future Work 77

Bibliography 79

CHAPTER 1
Introduction

1

1.1 Motivation

Point clouds are three-dimensional models that consist of points rather than the more
widely-used triangle models. They are most commonly obtained as a result of scanning
the real world through various scanning methods, such as laser scanning and photogram-
metry. Use cases include the generation of three-dimensional maps and globes (e.g.
Google Maps, Cesium), keeping track of building progress or changes in urban, forest
or other types of landscapes, the generation of three-dimensional assets for games and
movies, or to capture movement and poses (e.g. Kinect). In many use cases, the point
clouds are treated as raw data, which is then refined by converting it into triangle models
or two-dimensional images.

In order to present these models to clients or an interested audience, it was tradition-
ally necessary to transfer large amounts of data and to install third-party applications
to view it. Sometimes, the data has to be transfered by sending hard disks by mail, due
to the large amount of space they require.

With the release of WebGL, 3D content distribution over web browsers has become
increasingly popular. It has evolved into a standard that is natively supported by all
major browsers, on desktop and even mobile devices. WebGL now allows developers,
artists, companies, researchers and others to share their content with a wide audience,
without the need to install additional software. Many services, like Sketchfab [61], have
emerged that allow users to upload, share and view content without any knowledge about
the underlying WebGL mechanics.

In most cases, the content is relatively small. Small, in this context, means that the
full data set fits into memory, can be downloaded in a reasonable amount of time and
can be rendered in real time. Some types of content, however, exceed these requirements.
The data may not fit into memory, or downloading the full data would take minutes or
even hours.

The goal of this thesis is to develop a viewer that is capable of streaming and render-
ing point cloud data sets with billions of points, without the need to transfer the whole
data set first or to install a third-party viewer.

1.2 Problem Definition

3D scanning technologies such as laser scanners or photogrammetry produce enormous
amounts of data, often exceeding hundreds of millions or billions of points. Due to the
nature of point data, a high number of points is required to accurately represent even
simple models. A flat wall, for example, can be represented by a single quad and a
texture, but thousands or millions of coloured points may be required to reach the same
amount of detail.

While many use cases convert dense point cloud models to a more compact textured
triangle mesh, this is not always desirable or possible. The generation of a low-resolution
triangle mesh comes along with a loss of information, may not always be possible due to
a low scan density for complex objects or surfaces, and it can be very time consuming

2

and costly. Apart from that, it is often necessary to be able to verify the result from the
conversion of point clouds to three-dimensional triangle meshes, two-dimensional maps
or any other end product.

One of the major challenges of point cloud data is the processing and rendering of
data sets that do not fit into memory. These kinds of data sets require the use of out-of-
core algorithms. Out-of-core algorithms load and process only small chunks of data at
a time. Once a chunk has been processed, or it is no longer needed, it is removed from
memory to make place for the next chunk.

As an example for the dimension of point cloud data, the United States Geological
Survey (USGS) is currently undertaking a nation-wide scan of the whole United States.
Asuming an Elevation Quality Level of 2, with an effective point density of 3 points per
square meter, about 27 trillion points are expected [63][62]. This translates to roughly
540 terabyte in uncompressed storage.

Apart from processing and rendering huge data sets, making them readily available
is another big challenge. Surveyers may want to share data with their customers or
advertise their past projects; archaeologists, artists or scientists may want to share their
data sets with the public to get them interested in their work; and others may want to be
able to quickly analyze a point cloud without copying or downloading huge amounts of
data first. The easier it is to access, the greater the audience. Few users would upgrade
their hardware just to take a look a data set for fun. More users will be interested if all
that is required is a semi-large download and a third party viewer. One of the aims of
this thesis is to maximize the audience by making the process as easy as visiting a web
page.

In order to be able to view the complete dataset with all its details in real time
in a web browser, this master thesis is based on the modifiable nested octree (MNO)
structure introduced by Scheiblauer [54]. This structure makes it possible to cull points
outside the view frustum, and to render distant regions at a lower level of detail.

1.3 Contributions

The main contribution of this thesis is the adoption of a proven point cloud rendering
method to a less flexible and resource limited, but widely available runtime environment:
a standard web browser.

This adoption includes modifications to account for network transfer rates that are
two orders of magnitudes lower than loading data from disk, and rendering modes that
display data in useful ways or higher quality, with a lower impact on performance.

Contributions that improve behaviour from slow connections are a new file format,
the progressive loading and rendering of two-dimensional height profiles, and point-wise
adaptive point sizes, which adjusts the size of each point to the level of detail as additional
points are streamed in over time.

Contributions that improve rendering results are the Poisson-disk subsampling method,
which produces more evenly spaced subsets, an interpolation method that reduces occlu-
sions from overlapping points, and adaptive blend-depths for high-quality splatting.

3

The following list provides a short description of individiual contributions:
Contributions that improve behaviour from slow connections:

1. A new file format with a partitioning of the hierarchy that allows Potree to load
large point cloud hierarchies on demand. Multi-resolution hierarchies of large data
sets may consist of millions of nodes. Hierarchies of that size may be hundreds of
megabytes in size, which significantly increases initial load times if they are stored
in a single file.

2. A fast and progressive height-profile query method. Even profiles that contain
millions or billions of points are quickly displayed, since only the most important
points are loaded and rendered.

3. An adaptive point-size mode that adjusts point sizes to the level of detail. This
adaption allows to hide density differences between different levels of detail. As a
side effect, this method can make a point cloud appear like a closed surface with
little overdraw at any but the closest zoom levels. The difference to the point-size
heuristic of Scanopy is that the adaptive point size mode of Potree adjusts the size
point-wise to the level of detail, whereas the point-size heuristic of Scanopy adjusts
the size node-wise, based on an estimation of the density of the points in a node.

Contributions that improve rendering results:

1. A fast Poisson-disk subsampling method that creates more natural-looking sub-
sets than gridded approaches. Poisson-disk samples are uniform point sets with a
minimum distance between each point.

2. An interpolation splat mode which produces nearest-neighbor-like renderings that
resemble Voronoi diagrams. This method is implemented as a single-pass shader
that modifies fragment depths in order to render points as paraboloids instead of
screen-aligned squares. It provides a trade-off between the performance of square
or circle splats and the quality of high-quality splatting methods.

3. Adaptive blend-depths for high-quality splatting (Gaussian splats). The blend-
depth specifies the range within which points are blended together, in order to
create a smoother and anti-aliased result. A constant value is not suitable for
arbitrary zoom-levels in a multi-resolution rendering system, due to the increased
distance between points at lower levels of detail. Adaptive blend-depths adjust the
blend-depth to the world-space size of a point, instead. If combined with adaptive
point-sizes, it sets the blend-depth equal to the spacing between points.

And more generally, this thesis contributes a state-of-the-art WebGL point cloud
rendering system with high performance, high-quality rendering modes and a variety
of useful tools. Additionally, various state-of-the-art methods were implemented, such
as Eye-Dome Lighting, which computes illumination without the need for normals, fast
point picking on the GPU, clip boxes and annotations.

4

1.4 Structure of the Work
Chapter 2 gives an overview of related work, including other viewers for large point
clouds, and work related to high-quality rendering of point clouds. A description of the
adopted modifiable nested octree model, the build-up of this structure and how it is
traversed during rendering is given in Chapter 3. Chapter 4 describes how a point cloud
is rendered. This includes the calculation of colors and point sizes, as well as high-quality
rendering modes and the Eye-Dome Lighting shader, which computes illumination and
outlines without the need for normals. Chapter 5 covers implementation details of
Javascript and WebGL, and describes some of the functionality in Potree. Performance
evaluations, applications of Potree by third parties, and some of our own results are
shown in Chapter 6. A conclusion and a non-exhaustive list of future tasks is given in
Chapter 7.

5

CHAPTER 2
Related Work

Levoy and Whitted [29] were the first to suggest points as a rendering primitive. Suffi-
ciently dense sets of points are able to represent continuous three-dimensional surfaces,
and their simplicity makes points a viable alternative to more complex models.

In this chapter, we will cover previous and ongoing research and projects that are
related to the rendering of a large amount of points, and methods to improve the quality
of point-based rendering.

2.1 Rendering Massive Point Clouds

Handling massive amounts of points, which generally do not fit into memory, require out-
of-core algorithms that stream in, process and render only a small subset of the whole
data. Most methods employ variations of hierarchical space-partitioning structures, also
refered to as multiresolution structures, such as kd-trees, octrees, or quadtrees, and popu-
late all nodes with data that represents the original model at different resolutions. Some
of these methods redistribute the original point data within the hierarchical structure,
while others store the original data only in the leaf nodes and downsampled averages in
inner nodes.

The QSplat rendering system by Rusinkiewicz and Levoy [52] was the first multireso-
lution system that was capable of rendering hundreds of millions of points. The QSplat
method creates a bounding-sphere hierarchy out of an input point cloud or mesh that
can be traversed to create a progressively more refined rendering of the model. Each leaf
node represents a single point sample, whereas inner nodes represent a bounding sphere
that encompasses their respective subtrees. Rendering is done by traversing the hierar-
chy until a leaf is encountered, or until a desired level of detail is reached, i.e., when the
screen-projected bounding sphere is sufficiently small. A point splat that represents the
current bounding sphere or vertex of a node is drawn whenever traversal in a subtree is
suspended. QSplats uses a binary tree that is always split along its longest axis.

7

Gobbetti and Marton [20] developed a GPU-friendly multiresolution structure, Lay-
ered Point Clouds (LPC), that significantly reduces the cost of traversal on the CPU-side
and exploits the proficiency of GPUs at rendering thousands of geometric primitives in
parallel. The LPC structure stores subsamples of the point cloud in each node of the
hierarchy. The cost of traversal is reduced as it is only necessary to traverse down to
one of the subsamples that cover larger areas, not to individual points that cover small
areas. The subsamples are static, sent to the GPU once, and subsequently rendered by
the GPU, which is particularely good at rendering thousands of polygons or points in
parallel. LPC uses a binary tree that is always split along its longest axis.

Wimmer and Scheiblauer [75] introduced nested octrees, a structure that is similar
to LPC in that it stores subsamples of the original data in its nodes, but it accepts
arbitrary point data sets as input, whereas LPC assumes input to be uniformly sampled.
The subsamples in each node are built with the help of an inscribed octree. These
inscribed octrees are called inner octrees, and the nodes they are inscribed in are part of
the outer octree, hence the name nested octres. The outer octree is used to determine
visibility and the inner octrees are used to create the subsample.

Further research led to structures that are not only suitable for the rendering but also
the modification of massive point clouds. Wand et al. [70] proposed an octree structure
that distributes the original data sets in leaf nodes and simplified multiresolution repre-
sentations in inner nodes. The simplified multiresolution representation may consist of a
selection of representative points in the subtrees or averages of points in subtrees. In the
former case, duplicates are created and in the latter case, new points are being created.
Newly inserted points always travel down to a leaf node and update the multiresolution
representation along the way. Similarly, when a point is deleted, it is removed from the
corresponding leaf, and the multiresolution representation, up to the root, is updated.
Wand et al. also describe the case of a newly added point that is outside the bound-
ing box of the root. In this case, a new node with double the size will be created and
the current root will become a child of this new node. This process is repeated in the
direction of the point, until the octree encompasses the new point.

Another structure for the editing of point clouds is the modifiable nested octree
(MNO) by Scheiblauer and Wimmer [56]. In addition to an octree structure that is
suitable for insertion and deletion operations, they also introduced a selection octree that
allows users to select points with a volumetric brush. The MNO is based on the nested
octrees, but in order to improve the performance of insertion and deletion operations,
the inner octree has been replaced with a grid. In an MNO, the point samples are
created by accepting points that fall into a cell of a node’s inscribed grid. The selection
octree was introduced so that users can select points with a volumetric brush, without
disregarding points in higher detail nodes that were not visible during the selection. A
basic volume brush tool would only be able to select points that are in core during the
selection. The selection octree, however, remembers which parts of the volume were part
of the selection and will make sure that the respective points are marked as selected if
they are loaded later on.

8

2.2 Web-Based Massive Point Cloud and Voxel
Rendering

This section describes web-based point cloud renderers that also aim to render large data
sets.

Entwine, [26] Greyhound and Plasio [44] are part of a point cloud rendering stack
by Howard Butler, Connor Manning and Uday Verma. Entwine is the indexing library
which takes care of building an optimized data structure for efficient streaming of point
clouds. Subsamples in a node are obtained by keeping the point that is closest to the
center of a cell in the inscribed grid. Greyhound is the HTTP server that streams the
indexed data to a client upon request. Plasio is a WebGL-based point cloud renderer that
can render point clouds in las or laz format or stream a point cloud from a greyhound
server. They also created a Javascript port of laszip in order to be able to decompress
laz files directly inside the browser.

PointCloudViz server and the corresponding web client [45] are a commercial ser-
vice by Mirage Technologies [35] and a complement to their free desktop LIDAR viewer.
Their system uses a multiresolution structure for efficient streaming and rendering. No-
table features include oriented splats, lighting, different materials such as RGB, intensity
and classification and the modification of the color gradiants for elevation and intensity
through sliders.

ShareLIDAR [59] is a multi-resolution point cloud renderer with hosting service.
Notable features include illumination through normals, an orthographic top view, a
section (height-profile) tool and the adjustment of point sizes to reduce holes. A downside
is that it loads data in smaller tiles that do not cover the whole data set. This leads to
large empty space while the user waits for the data to stream in.

udWeb Demo [66] is a web browser based demonstration of Euclideons Unlimited
Detail / Geoverse technology. Elements are rendered as blocks instead of points, which
leads to the assumption that Euclideon uses voxel-based rendering methods rather than
point clouds. This allows to close holes in the data set without causing overlaps, both
of which are common in point cloud renderings. Blocks are initially very large, giving a
coarse representation of the data, and shrink in size as new data is streamed in.

2.3 Desktop-Based Massive Point Cloud And Voxel
Rendering

Scanopy [54] was a project by the computer graphics department at TU Wien and
one of the first point cloud renderers that was able to render and also edit point clouds
with billions of points. Potree originated as a web-based version of the structures and
algorithms that were developed with Scanopy.

Arena4D by Veesus [67] consists of a desktop renderer and a point server that allows
to stream point clouds. It is able to render massive point cloud data sets and includes
various tools for selection and editing of point clouds.

9

Geoverse [19] is a point cloud viewer by Euclideon, which is known for the marketing
of its Unlimited Detail technology, and supports rendering of data sets in the terabyte
range. Although it is advertised as a point cloud renderer, the nature of its renderings
may indicate that it is actually a voxel renderer.

PointCloudViz is a free point cloud viewer by Mirage Technologies [35]. It includes
features such as the generation of digital elevation models (DEM), overlay of georefer-
enced images and measurement.

Voxel Quest [68] was a project by Gavan Woolery that was able to create and render
huge procedural voxel environments. The author experimented with different rendering
techniques during its lifetime, including the raycasting on signed distance fields and
rasterizing voxels as point primitives, effectively treating a voxel data set as a point
cloud.

2.4 High-Quality Point-Based Rendering

Unlike polygon meshes, point clouds do not contain connectivity information and repre-
sent a set of points on a surface rather than a closed surface. Points are usually rendered
as rectangles, circles or single pixels on the screen. These primitives are fast to render
on GPUs, but the results suffer from problems such as occlusions between overlapping
points and aliasing artifacts. High-quality rendering methods provide means of improv-
ing the quality of point cloud renderings without the need to convert them to meshes.

Surfels, short for surface elements, were introduced by Herman [24] and later sug-
gested as a rendering primitive by Pfister et al. [41]. In the context of point-based
rendering, a Surfel is an oriented disk or ellipse in a three-dimensional space. The ori-
ented ellipses of a Surfel help to avoid holes between adjacent samples.

Surface splatting by Zwicker et al. [76] describes a high-quality, filtered method in
which the pixels of a projected point are weighted by a Gaussian filter function. Pixels
close to the center of a point are weighted higher than pixels further away. The weighted
contributions of all points are summed up and then normalized by the sum of all weights.
To ensure that only points that belong to the same surface contribute to the result, the
method compares depth values and only accepts new contributions if they are within
a certain thresold. This method produces high-quality, anti-aliased results, but it was
realized in a software renderer at this time.

After GPUs evolved, Botsch et al. [7] introduced High-Quality Surface Splatting on
Today’s GPUs, which is an approximation of the original surface splatting that finally
made it possible to exploit the GPU in order to produce high-quality, anti-aliased, ren-
derings of point clouds. Their method consists of a depth pass, an attribute pass and
a normalization pass. The depth pass ensures that only points of a visible surface, i.e.,
points closest to the viewer plus an additional offset, contribute to the result. The at-
tribute pass uses additive blending to accumulate weighted contributions of each point,
and the normalization pass normalizes the weighted contributions by the sum of weights.

Surface splatting was developed with oriented splats in mind, but since most point
cloud data sets do not contain the necessary normals or radii, Scheiblauer [55] suggested

10

to use screen-aligned circles instead, which is also what we are doing in Potree.
Preiner et al. [47] later developed Auto Splats, a method to calculate missing normals

and radii on the fly during rendering in screen-space, in order to allow for higher-quality
surface splatting than what is possible with screen-aligned circles. Calculating normals
on the fly also made it possible to apply illumination models such as Phong.

Eye-Dome-Lighting, a technique that creates illuminated point cloud renderings with-
out requiring normals, was described by Boucheny [8]. This technique is similar to an
edge-detection filter in that it samples the neighborhood around a point and creates a
response based on the differences in depth. Small differences in depth correlate with
surfaces that face the user, while larger differences in depth correlate with surfaces that
point increasingly further away. This characteristic is used to compute a shaded surface
without relying on normals.

11

CHAPTER 3
Data Structure

13

3.1 Overview
Point clouds are often too large to fit into memory as a whole and therefore have to be
processed using out-of-core algorithms. One possible out-of-core option is to split the
data into multiple tiles and process one or a few tiles at a time. This approach works
well for processing, but for visualizations it is often desired to display the whole data set
and not only a few tiles at a time.

Storing various levels of detail of the original model in a hierachical space-partitioning
data structure allows a point cloud renderer to quickly load and display the relevant parts
of a point cloud. Regions that are close to the camera are rendered at a higher level of
detail than distant regions, and regions that are outside of the view frustum are discarded
entirely. Variations of octrees and kd-trees are two popular space-partitioning structures
for the rendering of large point clouds. Some variations store subsamples of the original
point cloud. Others store the original data in leaf nodes and downsampled averages
or the bounding volume of a subtree in inner nodes. We have chosen a structure that
subsamples the original point cloud, because it does not create new points that require
additional disk space, and because it allows users to do point picking and measurements
on original, unaltered, data at any zoom level, without the need to wait until a leaf node
is loaded. An overview of structures for the rendering and modification of large point
clouds is given in Chapter 2.

Potree’s structure is based on a slightly adapted modifiable nested octree (MNO)
structure, which was introduced, and built into the Scanopy point cloud renderer, by
Scheiblauer [54]. Figure 3.1 shows a spherical point cloud that has been partitioned into
a MNO.

(a) Level 0 (b) Level 1 (c) Level 2 (d) Level 3

Figure 3.1: Low-level nodes (left) contain sparse models over large regions. Each level
exponentially increases the number of points and details.

3.2 Modifiable Nested Octree
We briefly describe the modifiable nested octree structure, on which Potree’s octree
structure is based.

The modifiable nested octree structure stores subsamples of the original point cloud
in each node. Low-level nodes contain sparse subsamples over large volumes. With each
level, the size of a node shrinks while the point density increases. Each point of the

14

original data set is assigned to exactly one octree node. This means that no new points
or duplicates are created, and that combining all points in all nodes returns the original
data set.

The original MNO structure obtains its subsamples through an inscribed three-
dimensional grid with 1283 cells. Initially, points are added to the root node and a
point will occupy the first cell it falls into. If a point falls into an already occupied cell,
and the total number of points in the node is below a threshold, then the point will be
assigned to this node anyway, but stored inside a padding array instead of the grid. The
padding array holds further points in the same node, additionally to the grid, in order to
avoid the need to immediately create a new child node to store these points. New child
nodes are created as soon as enough points that fall into a potential new child node have
accumulated. New child nodes are therefore immediately populated with a minimum
amount of points.

This subsampling approach leads to varying point densities at different octree levels,
and it also avoids mostly empty nodes because new nodes are only created after a
minimum amount of points have been amassed for a new child. It does, however, not
guarantee a certain minimum distance between points. Adjacent grid cells may contain
points that are arbitrarely close to each other.

The complete hierarchy of the MNO is stored in a single file. The nodes are stored
in one file for each node. Node files are named after the identifier of the corresponding
node, which is made up of the indices from the root to the node in question. The root
itself does not have an index and so the character r is used, instead. The identifier r042,
for example, stands for the node root.children[0].children[4].children[2].

3.3 Potree’s Octree Structure

Potree uses a variation of the MNO structure with a different subsampling method and
a partition of the hierarchy into smaller, quickly streamable, chunks. In order to avoid
confusion with the original modifiable nested octree structure, and because Potree does
not offer functionality to modify the point cloud, we will refer to it as Potree’s Octree
Structure or simply as octree in this thesis.

The resolution of a node is defined by the spacing property, which specifies the
minimum distance between points. The spacing is initially computed for the root node,
based on the size of the bounding box, and then halved at each level. For example, a
spacing of 1 meter may be used for a data set with an extent of 200 meters in each
direction. The root node will then contain a low-resolution version of the original data,
in which each point is at least 1 meter apart from the next one. The root node’s children
will have a spacing of 0.5 meters, which effectively doubles the resolution.

Different values for the spacing affect the number of points in a node, the number of
nodes that are required to store all points, and the depth of the tree. A lower spacing
leads to a higher amount of points in each node, a lower number of nodes overall and
a shallower tree depth. The optimal value of the spacing is difficult to define and
depends on various factors, such as CPU and GPU processing power and connection

15

Low Spacing Large Spacing

• More points in each node.

• Fewer nodes overall.

+ Faster octree traversal.

+ Fewer draw calls and GPU state
changes.

+ Reduces overhead that is associated
with each file download.

− Inefficient culling due to coarser spa-
tial partitioning.

− Each node takes longer to download

• Fewer points in each node.

• More nodes overall.

+ Finer spatial partitioning allows to
cull away more points.

+ Individual nodes are quickly down-
loaded.

− Slower octree traversal.

− More draw calls and GPU state
changes.

− Many small files must be loaded.

Table 3.1: Advantages and disadvantages of small or large values for the spacing.

speed. Table 3.1 lists some advantages and disadvantages between low and high values
for the spacing.

We have chosen a value of boundingCubeWidth / 128 for the spacing. It is synony-
mous to the partition of a node into a grid with 1283 cells, which is used for the MNO
structure of Scanopy, and it provides a reasonable trade-off between the advantages and
disadvantages of low and high values for spacing.

As with MNOs, a node is only split if a certain amount of points are added to it
during build-up. Any leaf node in the multiresolution octree is a node that has not been
split further, due to the small number of points that have been added to this node. They
serve as buckets for remaining points and, as a consequence, do not enforce a spacing
between points.

Apart from the spacing, the number of input points is another factor that affects the
depth of the octree and the number of nodes in the output. The conversion of the AHN2
point cloud, consisting of 640 billion points, resulted in an octree with 13 levels and 38
million files [33]. The octree hierarchy alone requires 190MB disk space, assuming the
hierarchy is encoded in 5 bytes for each node. The client needs the hierarchy to find
out which nodes have to be loaded and which nodes are visible, but sending hundreds of
megabytes would result in long initial load times. In order to reduce initial load times,
the hierarchy is split into multiple smaller chunks that contain hierarchyStepSize levels.
Figure 3.2 shows an example of a multiresolution octree hierarchy that has been split
into chunks with 2 levels each. Essentially, this produces another, shallow, octree that
stores the deep hierarchy of the multiresolution octree. This hierarchy-octree allows

16

Figure 3.2: The octree hierarchy is partitioned into batches with hierarchyStepSize, in
this example 2, levels. The hierarchy is then loaded on demand.

quick loading of the actually needed hierarchy on demand.

3.3.1 Poisson-Disk Subsampling

This section will go into the details of the Poisson-disk subsampling in Potree, which is
used to generate uniformly spaced subsamples with a minimum distance between points.

(a) input points (b) random (c) random sorted grid (d) grid center

(e) Poisson-disk (f) Morton-sorted nth (g) axis sorted grid (h) axis sorted nth

Figure 3.3: Approximately the same number of points selected from an input set (a)
through different sampling strategies. (b) random subset. (c) Points in random order.
First to fall into a cell is selected. (d) Point closest to the center of a grid cell is selected.
(e) Points with a minimum distance to each other are selected. (f) Points sorted in
Morton-order. Every nth point is selected. (g) Points sorted along axes. First to fall
into a cell is selected. (h) Points sorted along axes. Every nth point is selected.

17

Each node stores a subset of points with a certain resolution. A variety of sampling
methods, some of which were made up and tested in the process of finding a suitable
one, are shown in Figure 3.3.

The modifiable nested octree structure uses a grid-based method where a three-
dimensional grid is inscribed into the volume, and the first point that falls into a cell
will be accepted. If a point falls inside a cell that is already occupied, it is discarded.
This method is simple and fast, but it has the disadvantage that it does not enforce a
minimum spacing between points. Points inside adjacent cells may be selected even if
they are close to each other. Higher-quality sampling methods ensure that there is a
certain distance between points. For example, an improved grid-based method that is
used in Entwine [26] favours points at the center of a cell and it may swap an already
accepted point with a new one, if the new one is closer to the center.

For this thesis, we opted to use a Poisson-disk sampled approach. In a Poisson-disk
sample, each point has a minimum distance to all other points. The resulting data shows
more visually pleasing patterns than grid-sampled sets, and it also provides excellent
coverage with a small number of points. Enforcing a strict minimum distance between
points is a computationally expensive task, however, and requires more complex data
structures.

Poisson-disk samples can be created by a class of algorithms that are referred to as
dart throwing. They create Poisson-disk samples by creating points and then checking
that the distance to previously created and accepted points is sufficiently large. If the
distance is too small, the point will be discarded. Cook [11] was the first to propose
Poisson-disk samples for computer graphics and also gave an example for a naive dart
throwing algorithm that should be avoided due to its cost. Naive dart throwing checks
the distances from each new point to all previously accepted points, which is not feasible
when processing millions of points. Improved dart-throwing algorithms create samples
in empty regions and check against a local neighborhood [9]. Many dart-throwing al-
gorithms are concerned with how and where point samples are produced, in order to
improve performance. In subsampling a point cloud, we already have a fixed set of
samples and are only concerned about discarding points that are too close to each other.

In order to reduce the amount of distance checks between points, we divide each node
into a grid and only compute distances to points inside the same and adjacent cells.

The sample-grids are realized as sparse arrays, since point clouds usually depict sur-
faces rather than volumes. As such, only a small fraction of cells are actually populated,
making sparse arrays a significantly more memory-friendly choice. The C++ standard
library offers an implementation of hash maps, called std::unordered_map, that is used
as a three-dimensional sparse array. The unordered_map is a 1-dimensional collection
by design, but it can be used as a three-dimensional sparse array by encoding 3 integer
components into a single 64bit integer key.

Each cell stores the accepted points as well as references to adjacent cells in order
to quickly iterate through points in neighbors, without the need for relatively costly
hash-map accesses. New points are accepted by a cell if the smallest distance to all
points inside that cell, and to all points in adjacent cells, is larger than the spacing. Cell

18

instances are created when a newly added point falls into it for the first time. During
cell creation, adjacent spaces are checked for already existing neighbors. If a neighbor
exists, it is added to the new cells list of neighbors and the newly created cell will also
be added to the neighbors list.

The size of a cell can be any value between the spacing and the size of the node itself.
Only cell sizes equal or larger than the spacing ensure that points that are relevant for
the distance check are stored in the same or adjacent cells. Initially, the spacing itself
was chosen for the cell size to keep the amount of distance checks as low as possible.
Yin Fei [40] discovered that this leads to unnecessarely high memory usage and low
performance, and suggested to use larger cell sizes instead. Increasing the size of a grid
cell reduces the number of cells, and with it the memory usage as well as the processing
overhead of managing numerous cell instances.

(a) Small cell size (b) Larger cell size

Figure 3.4: Sparse distance-check grid. Distance checks have to be done for points inside
the same and to points inside neighboring cells. (a) Fewer distance checks but larger
memory footprint and processing overhead. (b) Higher number of distance checks but
memory-friendly. Spacing and cell sizes in the actual implementation are lower than
depicted.

Figure 3.4 shows the effect of different grid sizes. Whenever a point is added, dis-
tances to points inside the same cell and its neighbors are calculated. Points that pass
the minimum distance check are added to the grid. Subsequent points are then distance-
checked against points that already passed the test. Only occupied cells (red) are ini-
tialized and stored in the sparse structure. Each cell keeps a list of accepted points and
a list of occupied neighbors.

3.3.2 Build-Up

The build-up process takes one or more point clouds as input, partitions the points into
an octree, and stores the result on the filesystem with one file for each node.

The conversion process follows these rules:

1. Initially, the octree consists of a single root node, which also serves as a leaf at this
point.

2. Points are added, one-by-one, to the root node.

19

3. Internal nodes keep a point if no other point is within minimum distance (spacing)
and pass it down to its children otherwise.

4. The spacing is halved at each level.

5. Leaf nodes keep all points at first.

6. If a certain threshold of points is reached, a leaf node is expanded. It becomes an
internal node and adds all the stored points to itself, but this time following the
internal node rules. Points with a certain minimum distance remain in the former
leaf node and all the other points are passed down to its newly created child nodes.

7. The data is regularly flushed to the disk, for example each time 10 million points
have been processed.

8. If a node has not been touched since the previous flush, its data will be removed
from memory during the next flush.

9. If a point is about to be added to a node that has been removed from memory, the
data will be read back from disk to memory first.

Rules 3 and 4 lead to subsamples with a low resolution in lower levels and a gradually
higher resolution in higher levels. Low-level nodes keep points with a large distance from
each other. This distance is halved with each level, thus increasing the resolution.

Rules 5 and 6 allow the octree hierarchy to be expanded on demand. The hierarchy
is shallow at first and increases in depth as new points are added. Points inside internal
nodes have a certain spacing. Leaf nodes, on the other hand, are buckets where all
remaining points are stored.

Rule 7 allows users to view the current state of the conversion in Potree after each
flush, without the need to wait until the conversion has been finished. Since browsers
tend to cache files, it may be necessary to disable caching or to refresh the page instead
of simply visiting an URL. Otherwise, old data from a previous flush may be shown.

Rules 8 and 9 ensure that memory usage is kept low by removing data that has not
been used in a while. This works best if subsequent points possess a certain locality, i.e.
they are relatively close to each other and therefore fall into the same octree nodes. It
increases the chance that a high-level node is fully processed in only one or a few flush
cycles and not required to be in memory most of the time. Storing the whole data set
in multiple tiles is an effective way to ensure a certain amount of locality and therefore
reduce memory usage and to increase performance by reducing the amount of times a
node has to be read back to memory. Scheiblauer [54] and Leimer [28] have shown that
build-up times can be reduced if the point cloud is sorted in advance. The best case is
a Morton-ordered data set, in which all points that fall into the same node are stored
next to each other. Nodes are therefore fully processed at once and once unloaded, will
not have to be touched again. If subsequent points are relatively uniformly distributed
over the whole volume, on the other hand, the converter has to keep all or most of the
data in memory or read it back more often.

20

Issues

While this implementation creates Poisson-disk sampled subsets within each node, it does
not do so for the combination of nodes. During rendering, multiple nodes are combined,
but the Poisson-disk property has not been enforced for adjacent or intersecting nodes.
For adjacent nodes, this can lead to a noticeably higher density of points near their
borders. The adjacent nodes issue may be resolved by doing distance checks to points in
these nodes as well. This is very costly, however. A cheap heuristic to avoid increased
point densities at borders would be to discard all points within a certain distance to the
border and immediately pass them to the next level, instead.

Although the current sampling algorithm produces Poisson-disk sets, the coverage
may not be optimal. The order in which points are processed influences the results,
and unfavourable cases can lead to noticeable stripes and holes. Figure 3.5 shows an
optimally and a badly sampled point set. Initial tests have shown that randomizing the
input order of points helps to resolves this issue.

(a) Good subsample (b) Bad subsample. (c) Example

Figure 3.5: (a) Input points were processed in optimal order. The result has very good
coverage. (b) Input was processed in an unfavourable order. The gap between sampled
points leaves no place for any more points without violating the minimum distance
constraint. (c) A real-world example of a point cloud that has been processed in an
unfavourable point order.

3.4 Octree Traversal and Visible Node Determination
The octree structure allows for efficient rendering of large data sets through view-frustum
culling and rendering at a higher level of detail near the camera, as shown in Figure 3.6.
View-frustum culling skips nodes that are outside the visible region. Octree nodes with
different levels overlap and are rendered jointly to increase the level of detail. The level
of detail in a region is equal to the level of the highest-level node therein. Level of detail
constraints ensure that nodes closer to the camera are favoured over nodes that are far
away. A point budget limits the number of points loaded and rendered at any given time,
which helps to adapt performance requirements to the capabilities of different hardware.

The nodes that should be rendered are determined in an octree traversal step. Traver-
sal is done in a screen-projected-size order. The largest node on screen is visited first,
then the second largest, and so on. The projected size is obtained as a function of the
field of view, the distance to the center of the node, the node’s bounding sphere radius,
and the height of the screen. Figure 3.7 and Equation 3.1 show how the field of view
relates to the slope of the view frustum. Equation 3.2 gives the projected size of the

21

(a) (b)

Figure 3.6: (a) View frustum culling discarding nodes outside the frustum and LOD
favouring high-resolution nodes close to the viewer. (b) Color-coded LOD.

node, which is inversely proportional to the slope and the distance. The radius of the
node and the height of the screen are used to scale the result to a pixel size of the node.
At this time, Potree only considers the screen-projected-size in the traversal order. The
Scanopy renderer also accounts for the distance of a node to the center of the screen,
which leads to a higher amount of detail at the center where it matters the most.

Figure 3.7: The slope of the view frustum.

slope = tan(fov

2
) (3.1)

projectedSize = screenHeight

2
∗ radius

slope ∗ distance
(3.2)

During the traversal, Potree keeps a list of visible nodes, a list of nodes that are
visible but have not been loaded, and the sum of points in all visible nodes. A node
is considered visible if its bounding box intersects with the view frustum. If this is
not the case, the node will be discarded and its children will not be traversed further.
Traversal continues until there are no more nodes to visit, or until one of two conditions
is met. The most important condition, and usually the limiting factor, is that the sum
of visible points remains below a threshold, the point budget. The point budget allows
users to reduce the number of rendered points for a better performance, or increase it
for a better quality. The second condition is that a visited node must have a minimum
screen projected size. This condition reduces unnecessary work when a point cloud is
far away, in which case rendering a number of points well below the point budget will
be sufficient.

22

After the traversal, nodes in the list of visible but unloaded nodes are scheduled to
be loaded. To avoid loading too many nodes at once, and also to avoid loading nodes
that may not be visible anymore in a few frames time, only the first X nodes in the list
are scheduled to be loaded. Due to the traversal order, the first X nodes in the list are
the nodes with the largest screen-projected-size and therefore the most important nodes.
A value of X = 5 has proven to work well in practice.

An important consideration for the traversal is that the octree hierarchy is loaded
on demand. It is therefore possible that the traversal considers a node visible at first
but invisible at a later time. This will happen if nodes of the unloaded hierarchy have
a higher importance than already available nodes. Once this part of the hierarchy has
been loaded it will take up a share of the point budget that will no longer be available
for the previously visible node.

The rendering of the visible nodes is handled by three.js. Visible nodes are marked
as such with a flag, and the three.js renderer will then do its own traversal to invoke
draw calls for all nodes that were marked as visible.

23

CHAPTER 4
Point Cloud Rendering

25

This chapter covers various rendering techniques for point clouds that were imple-
mented in Potree. It describes how data stored as point clouds can be visualized and
different methods to illuminate and draw points.

4.1 Point Attribute Coloring

Point clouds may be colored using point attributes including, but not limited to, RGB.
Attributes other than RGB have to be mapped to an RGB color at runtime. Point
attributes are stored in the point cloud for each point in addition to the coordinates or,
in the case of elevation, as one of the coordinate axes. The level of detail is the only
coordinate that is computed at runtime and not stored on disk.

Depending on the scanning devices that were used to capture the data, and the post-
processing algorithms used to augment it, different kinds of attributes are stored in a
point cloud. Laser scanners usually provide at least intensity, whereas photogrammetry
usually provides at least RGB data. Some attributes, such as classification, require
post-processing steps after the data has been captured.

The following paragraphs describe attributes that are supported by Potree.
RGB usually describes the observed real-world color of a point. RGB colors are au-

tomatically captured by photogrammetry software, as they are part of the input images.
They are not an inherent property of laser scans, but additionally captured photos can be
used to project colors onto points. However, this attribute may also be used to store any
other kind of information that is mapped to RGB. Some software packages, for example,
can calculate ambient occlusion and store it in the RGB channels. Height and intensity
are also frequently stored in RGB to provide colours for an otherwise uncoloured point
cloud.

Intensity indicates the strength of the backscattered signal in a laser scan, or the
derived surface reflectance. The intensity is affected by various conditions such as dis-
tance between scanner and surface, atmospheric conditions, type of scanner and surface
reflectance [69]. Due to this, merging multiple airborne laser scans will often lead to in-
homogenous results, with noticeable differences in intensity for the same type of surface.

Elevation, or height, does not require additional space since it is already part of
the Euclidean coordinates. The elevation value is mapped to a color with the help of
a color gradient. The gradients are defined through an ordered list of elevation values
and their respective colors. Values in-between are interpolated and values outside are
clamped. Colored gradients allow users to quickly identify highs and lows, such as
between mountains and valleys or buildings and terrain.

Classification is derived from other point attributes, or related resources such as
georeferenced images. It indicates whether a point is part of the ground, vegetation,
buildings or other classes. In a most basic approach, bottom-most points may be clas-
sified as ground. In forest regions, anything above the ground may be classified as
vegetation. The class of a point is stored as a single number. Each number is then
mapped to a color. A look-up table is used to map from a class to a color.

26

Return number specifies the order in which points were captured from a single
beam. Certain materials, like leaves on a tree, reflect or absorb a portion of a laser beam
and let another portion pass through. This remaining energy may hit another object
and be reflected as well. Some laser scanners are able to capture not only the first but
also subsequent hits. Trees are especially likely to generate multiple hits. First hits are
generated by the topmost layer of trees and last hits are often generated by the ground,
trunk, or any structure below the canopy.

Point Source indicates from which file or source a point originated. In case of
airborne laser scans, the point source usually indicates the flight line.

Level of Detail is calculated on the fly during rendering. It is equal to the level of
the most detailed visible node in a region. The LOD is an integer value between 0 and
the depth of the visible hierarchy, which is then mapped to a color through a gradient
look-up.

Figure 4.1 shows examples for attributes available in Potree.

(a) RGB (b) Intensity (c) Elevation (d) Classification

(e) Return Number (f) Single Color (g) Source (h) LOD

Figure 4.1: Various point attributes. CA13 point cloud courtesy of Open Topography
and PG&E [42]

4.2 Point Splatting

Due to the missing connectivity between vertices, points are often rendered as single
pixels or screen-aligned squares or circles. These primitives are fast to render and they
are natively supported by graphics libraries or trivial to implement. The visual quality
is, however, low compared to high-quality splatting and interpolation techniques. The

27

following sections provide a description of the advantages and disadvantages of different
point-splatting techniques.

4.2.1 Squares and Circles

(a) (b) (c)

Figure 4.2: Points are rendered as squares in WebGL. Circles are obtained by discarding
fragments. (a) gl_PointCoord stores the normalized coordinates of a square with the
origin at the top left. (b) Coordinates are mapped to the distance from the center of
the square. (c) Fragments with a distance larger than 1 are discarded.

Squares are natively supported by WebGL with the gl.POINTS primitive. The vertex
shader member gl_PointSize defines the size of the square in pixels. Circles are not
natively supported. Instead, circles are displayed by rendering squares and discarding all
fragments that fall outside the circle’s boundary, as shown in Figure 4.2 and Listing 4.1.

Listing 4.1: Rendering circles in WebGL by discarding some fragments of the rendered
square.

float distanceFromCenter = length(2.0 * gl_PointCoord - 1.0);

if(distanceFromCenter > 1.0){
discard;

}

A common characteristic of this rendering mode are aliasing artifacts that give point
cloud renderings a noisy appearance. This is especially noticeable in point clouds with
high-frequency color information and during movement.

4.2.2 High-Quality Splats

Botsch et al. [7] proposed an efficient and GPU-friendly algorithm that increases the
quality by blending points together, instead of just taking the closest one. The idea
of this method is that all points within a certain range are considered to be part of
a surface patch and should therefore contribute to the result. This method reduces
occlusions, creates smooth transitions between points and reduces the aliasing artifacts
that are common in point cloud renderings.

The method consists of a depth, an attribute and a normalization pass. It was origi-
nally developed with oriented splats in mind, but since few point cloud data sets contain
the necessary normal information, and even fewer the additionally required ellipsoid

28

Figure 4.3: One point being occluded by the other. Points with the same or a similar
depth should be blended together instead.

radii, our implementation uses screen-aligned circles instead, as proposed by Scheiblauer
et al. [55].

The Depth Pass writes linear depth values of the nearest fragments into a frame
buffer.

The Attribute Pass produces a weighted sum of attribute values (RGB, Normals,
...) and a sum of weights. Floating point textures are used due to the high precision
requirements of the result, and blending mode is set to additive to obtain the respective
sums.

In the first step, the attribute-pass compares the depth of a fragment to the depth
inside the depth buffer. All fragments within a certain range pass this test and contribute
to the result. Fragments that are farther behind will be discarded. In the next step, a
weight is assigned to fragments that passed the depth test. This weight depends on the
distance from the fragment to the center of the corresponding point primitive. The closer
to the center, the higher the weight. In the final step, the fragment value is multiplied by
the weight and stored in the rgb channel. The weight itself is stored in the alpha channel.
Due to the additive blending, the result of this pass is a weighted sum of attributes in
the color channel and a sum of weights in the alpha channel, as shown in Figure 4.4.

(a) Weighted sum (b) Sum of weights

Figure 4.4: The attribute pass generates a weighted sum of attribute values and a sum
of weights.

The Normalization Pass divides the weighted sum-of-attribute values by the sum
of weights. This brings the attribute values from an arbitrary range back to a range of
0 to 1.

The smoothness of the transitions depends on the weight function that is used in the
attribute pass. Botsch and Scheiblauer suggested a Gaussian weight function, which has
its peak at the center and a smooth falloff as the distance to the center increases. For
Potree, we have experimented with other weight functions as well and we have chosen
the function shown in Equation 4.1. This weight function behaves similar in that it has

29

its peak at the center and a smooth falloff, but it approaches zero at a distance of one.
This property leads to a smoother transition near the border of the intersection of two
points. A Gaussian function, on the other hand, does not approach zero at a distance
of one, which leads to a sudden jump in the sum of weights where two points intersect,
as shown in Figure 4.5. It is, however, also possible to offset the Gaussian weight such
that it approaches zero at a distance of one. In practice, the results of Gaussian weights
and the weight function that we use are hardly distinguishable, alltough there may be
signal processing related differences that we did not explore at this time.

(a) Gaussian (b) Parabolic

Figure 4.5: (a) The Gaussian weight function exhibits a disconnect in the sum of weights
(green) where two points meet. (b) The parabolic function starts from zero at the edge,
thereby avoiding a disconnect in the sum of weights.

(a) Gaussian (b) Parabolic (c) Gaussian (d) Parabolic

Figure 4.6: Differences in Gaussian and parabolic weights. The jumps in the sum of
weights are noticeable only at the border of the intersection.

The weight function in Equation 4.1 is defined for a normalized distance with 0
at the center of the point and 1 at its border. The hardness factor allows adjusting
the smoothness of the transition. Figure 4.7 shows how weight function and the final,
normalized, result are affected by the hardness.

weight = (1 − distance2)hardness, distance ∈ [0, 1] (4.1)

The range within which points are blended together is specified by the blend depth.
Figure 4.9 shows the results for different values. With a value of zero, only the fragment
closest to the viewer and fragments with exactly the same depth value will be blended
together. When using a value of 10, all fragments that are up to 10 units behind the
closest one will be blended as well. Small values are useful to create smoothly blended
surfaces, while larger values allow users to see through objects.

Using a constant blend depth is not always useful, especially in a hierarchical ren-
dering system. If the viewer zooms out, detailed nodes are culled away. What remains

30

(a) 0.5 (b) 2 (c) 10

Figure 4.7: Effect of different values for hardness. Top row: Weight function. Bottom
row: Image after normalization. The hardness factor affects the smoothness of the
transition between points. High values produce results similar to Voronoi diagrams.

(a) (b) (c)

Figure 4.8: Comparison of circles(a) and high-quality splats with hardness 2(b) and
50(c). Subsea Equipment point cloud courtesy of Weiss AG [73]

are points with a large distance from each other, which won’t be blended together with
a low and fixed blend depth. In our implementation, the world space radius of a point
plus an optional offset is therefore used as blend depth. The world space radius is ob-
tained by projecting a point from screen space back to world space. As a result, points
are automatically blended together at arbitrary distances and object scales and without
seeing through the surface. If see-through is desired, the user can manually define an
additional offset.

4.2.3 Interpolation

The interpolation mode was developed for Potree to create high-quality point cloud
renderings in a single pass [57]. This is achieved by rendering points as paraboloids rather
than flat, screen-aligned rectangles or circles, as shown in Figure 4.10. The result is a
nearest-neighbor-like interpolation of points that closely resembles a Voronoi-diagram.

Other shapes like cones and spheres can also be used to improve quality, but paraboloids
have a few advantages. Spheres can only be used with circular shapes, while cones and
paraboloids work with rectangular shapes, too. The weight function for paraboloids is
also the simplest of all three. The most important advantage, however, is that over-
lapping paraboloids have straight intersections, whereas cones and spheres at different
depths will produce curved edges. Straight edges are arguably more pleasant and less
irritating to look at in many cases.

31

(a) 0 (b) 10 (c) 50

Figure 4.9: Large blend depth values allow seeing through surfaces. Overpass point
cloud courtesy of Surface and Edge [64]

.

(a) No depth-offset (b) With depth-offset

Figure 4.10: Adding a depth-offset to the fragments transforms flat screen-aligned
squares into paraboloids. Rendering points as paraboloids reduces undesired occlusions
and results in nearest-neighbor-like interpolation. Figure taken from [57].

This method is implemented by modifying the depth values of screen-aligned squares
inside the fragment shader. The following steps are required. First, the world-space
radius of a point is calculated in the vertex shader by projecting its screen-space pixel
size back into the world-space. In the next step, the fragment shader calculates the
depth offset of a fragment from the radius and a given weight function. Finally, the
modified depth-value is written to the gl_FragDepth output variable.

The interpolation mode offers a trade-off between the performance of squares and
circles and the quality of high-quality splats. It reduces overlaps and improves the
readability of high-frequency details such as text, lines and patterns. It also avoids
popping artifacts that appear when an occluding point suddenly becomes an occluded
point from one frame to the next. It does not deal with noise and aliasing, however.
Both are as prevalent with the nearest-neighbor-like interpolation as with the square
and circle rendering modes.

32

Weight function Shape Result
square 0

sphere
√

1 − (u2 + v2)

cone 1 −
√

(u2 + v2)

paraboloid 1 − (u2 + v2)

Figure 4.11: Shapes produced by different weight functions and possible results when
rendering points using the respective shape. u, v ∈ [−1, 1]. Figure taken and modified
from [57].

4.3 Determining Point Sizes

Determining the point size is an important factor for speed and visual quality. A low
point size improves the performance and reduces occlusion between points, but it also
leads to holes in the rendered images. A larger point size reduces holes between points,
but it also reduces performance and increases occlusion artifacts. The following sections
describe 3 different algorithms for point-size determination.

4.3.1 Fixed Screen-Space Size

A fixed screen-space point size means that the same pixel size is used for all points. This
mode is trivial to implement and sufficient in many cases. The main disadvantage of
this mode is that it is prone to holes at close range and overdraw when the user zooms
out.

4.3.2 Fixed World-Space Size

Instead of specifying a pixel size, the size is defined as the world-space radius in this
mode. This leads to larger sizes at close range and reduced sizes for distant points.

Figure 4.13 shows how the field of view relates to the slope of the view frustum.
Equation 4.3 shows how the inverse of the slope of the view frustum is used to project

33

(a) 1 pixel (b) 2 pixel (c) 4 pixel (d) 50 pixel

Figure 4.12: Fixed point sizes

from world-space radius to image-space pixel radius.

Figure 4.13: The slope of the view frustum.

slope = tan(fov

2
) (4.2)

pixelRadius = screenHeight

2
∗ worldRadius

slope ∗ depth
(4.3)

4.3.3 Adaptive Point Sizes

The adaptive point size mode was developed for Potree to adjust point sizes to the level
of detail. It hides the otherwise noticeable differences in point densities between different
levels of detail.

A similar point size mode is available in Scanopy under the name "weighted point
size" or "point size heuristic" [54]. The goal is the same, namely to avoid noticeable
differences in point densities between different levels of detail, and to achieve a more
or less closed surface representation of a point cloud. This can be done by making the
point size equal to the distance between points, which is assumed to correspond to the
spacing in Potree and the size of a cell in the inscribed grid in Scanopy.

The problem with setting the point size equal to the spacing is that in the hierarchi-
cal structure used in this work, higher detail nodes are rendered jointly with all their
ancestors, including the root node, which means that points from higher detail nodes
will be intermixed with points from lower detail nodes. For a leaf node, the point size

34

(a) (b) (c) (d) (e)

Figure 4.14: (a) Fixed pixel or world-space sizes lead to noticeable differences in density
between different levels of detail. (b) Color-coded level of detail. (c) Point sizes have
been adjusted to the level of detail to reduce holes without excessive overdraw. (d) Close-
up where two different levels of detail meet with fixed point sizes. (e) With adaptive
point sizes, points in the lower level of detail are enlarged, but points in the higher level
of detail remain small to avoid excessive overdraw and occlusions. Whitby point cloud
courtesy of GeoM [18].

can be increased up to the spacing between points, in order to close holes. However, the
points in a lower detail node can not be enlarged beyond the spacing of its deepest child
without occluding that node’s points, as shown in Figure 4.15.

The point size heuristic of Scanopy adjusts the sizes of points in a node in a way
that avoids excessive occlusions while still obtaining a closed surface. It accounts for the
depth and the estimated point density of the descendants of a node and carefully adjusts
the point sizes of inner nodes to close holes with as little occlusions and overdraw as
possible.

(a) (b) (c) (d) (e)

Figure 4.15: The difficulty of adjusting point sizes node-wise. (a) The hierarchy. (b)
All points rendered at the same size. (c) Node r2 is a leaf so its points can be enlarged
without occluding higher details. (d) Points in r1 can not be enlarged without occluding
nodes with higher detail. (e) Points in the root can not be enlarged either without
occluding higher levels of detail.

The adaptive point size mode of Potree resolves this issue by calulating the point
sizes point-wise instead of node-wise. The idea is that the size of a point is adjusted to
the spacing between points at a specific level of detail. Computing the level of detail of
a point is the issue, since points in a single node may be part of different levels of detail.
The level of detail in a specific region is equal to the highest-level visible node therein. It

35

is therefore obtained by traversing the octree from a point’s node to the deepest visible
node that encompasses that point. Visible, in this context, includes all nodes that are
going to be rendered, i.e., nodes that passed the visibility determination step and whose
points are loaded.

Equation 4.4 returns the world-space size of a point, given the spacing of points
inside the root node and the level of detail. The resolution effectively doubles with each
level and as a consequence, the point size is halved. The final pixel size is obtained by
applying the projection from world-space radius to pixel size, described in the previous
section.

worldRadius = spacingAtRoot

2LOD
(4.4)

The octree traversal that computes the level of detail for each point is done on the
GPU. The visible part of the hierarchy is passed to the shader, which then traverses the
octree from the root in the direction of the currently processed point, until it reaches the
deepest node that encompasses that point. At this time, for simplicity, traversal always
starts from the root but it should be sufficient to start from the node that a point resides
in. We will explore this in the future as part of performance improvements. Traversal
stops when the deepest visible node that encompasses a point is reached. The number
of nodes that were traversed is the LOD. Traversal is, theoretically, not necessary for
the leaf nodes, since the LOD for all points in a leaf is the level of the leaf itself. Potree
does not make an exception at this time, but we will explore this option in the future as
another part of performance improvements.

(a) (b) (c) (d)

(e) Encoding of the hierarchy in breadth-first order into a texture. The middle row represents
the RGB texture values. The children bitset, which indicates which child nodes exist, is stored in
the red channel. The green channel contains the offset to a node’s first child in the texture. The
blue channel is unused and filled with zeroes. The bottom row shows the binary representation
of the children bitset that is stored in the red channel.

Figure 4.16: Computing the LOD of a point. (a) The hierarchy. (b+c+d) Traversing
from the root to r3 and finally to r30. (e) The hierarchy, encoded into a RGB texture.

In order to pass the visible hierarchy to the vertex shader, it is stored in a 1-
dimensional RGB texture in a breadth-first order. The 8 bits of the red value indicate

36

which of the 8 children are visible. The green channel contains the relative offset to the
node’s first child. These 2 properties, and the octree-size, are sufficient to traverse the
octree from top to bottom. The blue channel is an empty filler to align the data to the
RGB texture layout.

Figure 4.16 shows an example of a hierarchy, its encoding, and how the LOD is
obtained for a specific point. An example follows that calculates the LOD for a point
that may have originated from node r, r3, r30, which ultimately does not matter. What
matters is the depth of the hierarchy at its location. In the first step, we find out in
which of the root’s children the point falls and compute its index, in this case 3. We then
check the bit of the children bitset at index 3 to see whether there actually is a child
node at this position or not. The bit is set to 1 so there is a child and traversal continues.
Next, we need to jump in the texture to r3, which is the second child of the root node.
The offset to the first child is already stored in the green channel. The number of 1-bits
up to the index (underlined in green) stands for the number of children we have to skip
to get to the child we are interested in. The same process is repeated for r3 to find out
that we have to jump to r30. The offset to r3’s first child is 3 and since r30 is already
the first child of r3, no additional child nodes have to be skipped over. Now at r30, the
next child node that the point falls into is r302. However, the bit at index 2 is 0, which
means that r302 does not exist or it is not visible. Traversal stops at r30, which is at
octree level 2. The LOD for this point is therefore 2.

Each traversed level requires one texture lookup, counting how many bits have been
set in a byte, and whether a certain bit has been set or not. The texture look-ups and bit
counting puts additional overhead on the vertex shader, but it also reduces the number
of vertices and fragments that are required to fill holes.

As a final note, the adaptive point size does not create a truly closed surface since it
is only concerned with adjusting the point sizes to the spacing of a level of detail and not
to the true spacing between points. This leads to two issues with leaf nodes. The first
issue are leaf nodes with a point density below the expected density at a certain octree
level. In this case, chosing the spacing at the leaf node’s level as the point size will not
be sufficient to cover holes. Figure 4.17 shows a case where the density in the leaf node
is lower than expected, even if only in one direction. The other issue are leaf nodes with
a higher density than what would be expected at a certain octree level. This happens
if a dense part of a point cloud falls into a small part of a node. The node is not split
because a relatively small amount of points are added to it. The depth of the octree
remains low in this region, which prompts the adaptive point size algorithm to increase
the size of points in it, even though the points should be rendered with low point sizes
due to their high density. Figure 4.18 shows an example of a point cloud with uniform
density but different octree depths. Points in green have the same density as points on
orange, but because the octree was not split further, are wrongly assumed to be of a
lower level of detail.

37

Figure 4.17: LIDAR scans often have high scan density in one direction and a lower
density in the other. The level of the leaf node is not enough to conclude a meaningful
point size. Apart from that, this is also a case where trying to close the gaps in both
directions introduces heavy overlaps along the denser direction. The density becomes
uniform in both directions in lower-resolution nodes, since they have a subsample density
that is lower then the original density in both directions.

Figure 4.18: Point cloud with uniform density but different octree depths.

4.4 Eye-Dome Lighting

Illumination models are used to enhance the depth perception of a scene and to make the
results look more pleasant. Without the shading provided by illumination, it becomes
hard or even impossible to perceive shapes. Point cloud models with colors from photos
or baked-in ambient occlusion already have a form of static illumination.

A large amount of point clouds do not contain surface normals, which are necessary
for illumination models such as Phong or Blinn. Widely used point cloud formats, such
as LAS, don’t even have a designated normal property.

Eye-Dome Lighting (EDL) is a method that creates illuminated surfaces and outlines
along silhouettes, without the need for normals [8]. The algorithm is conceptually similar
to an edge-detection filter on a depth map. High differences to surrounding values
lead to high responses. Surfaces that point towards the camera have relatively small
differences in depth and result in low respones. The largest responses are experienced
along silhouttes, which is the reason for the black outlines. Figure 4.20 shows an example
of a rendering where EDL helps to perceive objects. An overview of the EDL workflow
is shown in Figure 4.19.

Potree uses a variation of EDL with logarithmic depths. The response is obtained
by computing differences in depth to surrounding samples, as shown in Equation 4.5.
This equation sums up positive depth differences and normalizes the result to make

38

Figure 4.19: Eye-Dome Lighting workflow. First, colors and depths are rendered. The
shading is then computed from the depth map and finally composed with the color
values to obtain the shaded image. Image taken from Visualisation scientifique de grands
volumes de données : Pour une approche perceptive [8].

Figure 4.20: An elevation-colored point cloud without and with EDL. Retz point cloud
courtesy of Riegl [50].

it independent from the number of samples. The logarithm to the base 2 results in a
shading that is independent of the scale of the object. A small object close to the camera
will be shaded the same way as an object with twice the size at double the distance.

The number of neighborhood samples could theoretically be increased to achieve a
higher quality, but we were already satisfied with the results with four samples and
the performance benefits of keeping the sample size low. By default, a 4-connected
neighborhood is sampled by evaluating the depth values of the left, right, top and bottom
neighbors. In addition, a radius parameter is provided that allows users to place the
samples further away, e.g., 2 pixels or 3 pixels from the current pixel. Doing so increases
the thickness of the outlines.

response =

n∑
i=1

max(0, log2(depth) − log2(neighbori))

n
(4.5)

Equation 4.6 transforms the response to a shading factor. Multiplying the color value
by the shading factor gives the final, EDL-shaded, result. The factor 300 is an empirically
determined value for a suitable base shading strength. The edlStrength variable allows
users to further modify the strength of the shading. A value of zero results in no shading,
that is, the original color value remains unchanged. As edlStrength inreases, the shading
will grow stronger, resulting in a darker output image.

39

shade = exp(−response ∗ 300.0 ∗ edlStrength) (4.6)

(a) 0 (b) 0.5 (c) 1 (d) 2 (e) 4

Figure 4.21: Different values for EDL strength.

Figure 4.21 shows the results obtained by applying EDL with different strengths to
a point cloud without colors and normals.

The implementation in Potree is based on the EDL shader source of CloudCom-
pare [10], with some modifications.

• The linearization of the standard hyperbolic depth buffer has been removed. In-
stead of the hyperbolic depth-buffer values, logarithmic values to the base 2 are
rendered to, and then read from the alpha component of a floating-point texture.
This is mainly done because Potree has no access to WebGL’s depth buffer, but
using a custom logarithmic depth buffer has some advantages as well. We di-
rectly render the non-normalized log2(depth) into the texture, which is completely
independent of the near and far clip plane. With hyperbolic depth buffers, the
linearization is required to resolve this dependency. Otherwise, the shading would
be affected by the clip planes. Logarithmic values also feature a more favourable
distribution of precision between close and distant objects, which makes EDL in
Potree less prone to staircasing artifacts due to sudden jumps in depth.

• The EDL shader of CloudCompare supports a light direction vector. In Potree,
objects are always lit from the front.

• CloudCompare computes the shading at full, half and quarter resolution, and then
combines the results. Potree uses a single full resolution pass, since it already
produces satisfactory results.

40

Figure 4.22: Point cloud courtesy of WeissAG [73].

Figure 4.23: Rendering point classification without and with EDL. CA13 point cloud
courtesy of OpenTopography and PG&E [42].

41

CHAPTER 5
Implementation and Features

43

This chapter covers implementation details and functionality of the Potree viewer.

5.1 WebGL

WebGL [72] is a variation of OpenGL for web browsers, which is intented to provide
GPU rendering capabilities to web pages on a wide variety of devices, including desktop
PCs, notebooks, mobile phones and tablets. As such, it is based on the lowest common
denominator, OpenGL ES 2.0, to ensure that WebGL applications will run on as many
devices as possible. WebGL Extensions [71] expose additional features that are not in-
cluded in the base specification of ES 2.0 and WebGL. However, they are not guaranteed
to work on all WebGL conforming devices or browsers.

Some features in Potree, such as High-Quality Splatting and point interpolation,
make use of WebGL Extensions like floating-point textures or modifying the depth value
in fragment shaders. During setup, Potree checks if the respective extensions are avail-
able and if they are not, the features will be disabled. Due to this, High-Quality Splatting,
point interpolation and Eye-Dome Lighting are usually not available on mobile devices.

Potree uses the three.js [65] rendering library to handle scene graphs and draw calls.
Direct use of the WebGL API and GLSL are limited to special cases where three.js does
not provide some necessary functionality. This includes GPU-based point picking and
shaders for Eye-Dome Lighting and point-based rendering.

A limitation of WebGL is that it does not provide bit operations, which are required
by the adaptive point size mode. The necessary bit operations, namely counting bits up
to a certain index and checking if a certain bit has been set, were implemented in the
custom functions numberOfOnes 5.1 and isBitSet 5.2. These arithmetic implementations
of bit operations are far slower than the natively available bit operations in later versions
of GLSL. In an OpenGL 4.5 implementation of this shader, they have shown to be
a considerably bigger bottleneck than the texel-fetches that are also required by this
method.

Listing 5.1: WebGL workaround for the GLSL 4.0 bitCount function.

float numberOfOnes(float number, float index){
float tmp = mod(number, pow(2.0, index + 1.0));
float numOnes = 0.0;
for(float i = 0.0; i < 8.0; i++){

if(mod(tmp, 2.0) != 0.0){
numOnes++;

}
tmp = floor(tmp / 2.0);

}
return numOnes;

}

Listing 5.2: WebGL workaround for (number & (1 <<index)) > 0.

44

bool isBitSet(float number, float index){
return mod(floor(number / pow(2.0, index)), 2.0) != 0.0;

}

5.2 Asynchronous and Parallel Execution
A major requirement for rendering is to keep the application responsive at all times.
Tasks should not block the control flow and leave enough cycles to maintain a steady
framerate.

Any Javascript code, with the exception of Web Workers, is executed in one single
thread. Javascript applications do not maintain a custom main loop. Instead, they
provide callbacks that are invoked by the browser when certain conditions, such as
timeouts, the start of a new frame, or user input, have been met. In between the
execution of callbacks, the browser will handle updates to the page and render elements.
A callback should return quickly or it will prevent the browser from updating the page,
effectively freezing it.

Javascript offers asynchronous functions to schedule callbacks to be invoked at a later
time, or to execute specific tasks, but not code, in parallel. The popular setTimeout
function, for example, executes a callback after a set amount of time has passed. Due
to the single-threaded nature of Javascript, callbacks will run one after another, never
at the same time. The asynchronous version of the XMLHttpRequest function tells
the browser to load a resource and invoke a callback during progress or after loading
has finished. The resource loading itself is done in parallel, and multiple invocations of
XMLHttpRequest may result in multiple resources being loaded at the same time, but
as with setTimeout, the execution of the callbacks is done one after another.

The asynchronous callback philosophy is also applied to the render loop in Javascript,
as shown in Listing 5.3. The requestAnimationFrame function takes a callback that is
invoked at the browser’s own discretion. In order to keep the loop running, the callback
invokes another requestAnimationFrame call on itself, which will be executed during the
next frame. A browser decides when to invoke the callback based on a few conditions. If
a tab is active, it will usually try to maintain 60 frames per second or less if that is not
possible. If a tab is hidden or running in the background, the browser may not invoke
the callback to reduce CPU usage and increase battery life on mobile devices.

Listing 5.3: A basic render loop. Instead of maintaining an endless loop, Javascript
applications repeatedly send a request for the browser to invoke a callback before the
next repaint.

function loop(timestamp) {
requestAnimationFrame(loop);

update(timestamp);
render();

45

};
requestAnimationFrame(loop);

Web Workers are the exception to the usually single-threaded environment and run
Javascript code parallel to the main thread. They do, however, have quite strict limi-
tations. Code that is executed by a Worker runs in its own execution environment and
has no access to elements of the main thread. It is not possible to directly change a html
page or access any object of the main thread. Instead, Workers communicate with the
main thread through messages. The main thread sends the Worker a message, usually
with a workload to be processed, and the Worker will reply with another message, usu-
ally the result of the task or information about the progress. Messages are processed by
callbacks which, as usual, will be executed sequentially with other pending callbacks.

The difference between asynchronous functions and Web Workers is that asynchronous
functions may do specific things, such as loading a file, in parallel, but any Javascript
code that is provided to the function will be executed in the main thread. Web Workers,
on the other hand, do execute Javascript code in parallel.

Potree uses asynchronous functions to load files from a remote location, and Web-
Workers are used to parse and prepare the loaded data in a parallel thread, as shown in
Figure 5.1.

Figure 5.1: Timeline in Potree. Black rectangles: Tasks and callbacks that run inside
the main thread, including key and mouse events. The biggest task in each frame is the
update and render callback. Blue: Parallel loading of a ressource by the browser. Red:
Parallel execution of Javscript code by a Web Worker. (1) Start loading data for a node
with XMLHttpRequest. (2) Data has been loaded. The finish callback is scheduled to
run inside the main thread. (3) The finish callback is executed inside the main thread
and it spawns a Web Worker that prepares the loaded data in a parallel thread. (4) The
Web Worker finishes and the result will be handled by a callback in the main thread,
which sends the loaded data off to three.js. The node is now ready to be rendered.

46

5.3 Tools and Interaction

5.3.1 Point Picking

Point picking is required by various navigation and interaction operations such as zoom-
ing to a point or creating measurements. Mouse-point-intersections can be calculated
either on the CPU or on the GPU. Both options were evaluated and are described in
the following sections.

On the CPU

The CPU approach iterates through all points inside nodes that are intersected by the
mouse. For the intersection test, points are treated as disks with a certain radius.

Advantages of this approach are that its implementation requires less complexity, it
does not require potentially slow GPU-stalling operations and it may be implemented in
an asynchronous fashion, although we did not explore the latter. Disadvantages are that
it requires additional effort to account for projected pixel sizes and visibility of points
as calculated by vertex and fragment shaders.

On the GPU

This approach does point picking by rendering the region around the mouse on the GPU,
and evaluating the result on the CPU. All nodes that are intersected by the mouse will be
rendered but instead of colors, point indices are written to the output. A small window
around the mouse is fetched from the GPU to extract the index of the point closest to
the mouse.

A unique index is assigned to each rendered point. It consists of the sequence number
of the point within its node and the sequence number of the node itself. The point’s
sequence number is 3 bytes and the nodes sequence number 1 byte. Due to these size
constraints, point picking works for nodes with up to around 16 million points each and
for up to 255 nodes at once. The node sequence number starts at 1 so that an index
value of 0 can safely be used for empty regions. These limits are not enforced in Potree,
as both are unlikely to be reached. The octree generation creates nodes with far less
than 16 million points and the culling of all nodes that are not intersected by the mouse
significantly reduces the amount of nodes that will be rendered during picking. The
latter case might occur in rare situations and could be avoided by ignoring nodes with
larger volume. Due to the lack of gl_VertexID in WebGL, the point sequence numbers
are stored in an additional vertex attribute array. The node sequence number is passed
as a uniform value. The fragment shader writes the former into the RGB channel and
the latter into the alpha channel.

After the points have been rendered into a frame buffer, a small window, for example
17x17 pixels, around the mouse pointer location is read back to the CPU using readPix-
els(). Reading a single pixel is not sufficient because there may be holes between points,
in which case the pick function should snap to the closest point within the window. Zero
values indicate empty regions. The value closest to the center that is larger than zero is

47

the index of the point that is closest to the mouse pointer location. This index is then
split into the node and point sequence numbers which are used to retrieve the actual
point attributes, most importantly its coordinates.

The main advantage of this approach is that it does point picking based on the same
point sizes and occlusions that are seen by the user. The disadvantage is that the use
of readPixels() requires the CPU to wait until the GPU has finished rendering, which
can cause significant performance drops. In order to reduce performance losses, only
those nodes which are intersected by the mouse pointer are rendered. In practice, this
method still performs faster than the CPU approach we explored, even though readPixels
synchronizes CPU and GPU.

Figure 5.2: Output of the pick render pass. The point cloud is denser near the mouse
pointer because nodes that do not intersect the mouse are not rendered. Patches are
noticeable because the point sequence number, which is stored in the RGB channels,
starts at zero in each node.

5.3.2 Navigation

Different tasks require different tools. The same is true for navigation; no single naviga-
tion mode is suitable in all situations.

Three navigation modes were implemented in Potree: OrbitControls, FirstPerson-
Controls and EarthControls.

OrbitControls is a set of controls which let users orbit around a target or pivot,
similar to how satellites orbit the earth. The difference to trackball controls is that the
object remains upright, i.e., orbit controls feel like moving around and under or above
the object without touching it, whereas trackball controls feel like rotating the object
itself in any possible way.

The distance to the pivot can be changed using the mouse wheel. The amount of
change increases with the distance to the target, thus making it independent of the
object scale. It may be used for planet-sized objects as well as small statues. Double
clicking on any point will zoom the camera towards that point and change the target to

48

the point position. Dragging while holding the right mouse button will pan the screen
which, in essence, translates camera as well as target by the exact same value.

OrbitControls are intuitive, easy to use and yet powerful at the same time, which is
the reason they were chosen as the default mode in Potree.

FirstPersonControls or FlightControls give users a fly- or walk-through-like expe-
rience. This is useful for navigating through enclosed spaces or vast landscapes. Panning
(right mouse button) and click-to-zoom work exactly the same as with OrbitControls.
Dragging the left mouse button rotates the camera and allows the user to look into all
directions. The W, A, S, D, or alternatively the arrow keys, move the camera forwards,
to the left, backwards or to the right.

EarthControls provide a navigation mode similar to the one in Google Earth [21].
The left mouse button allows users to drag and drop the object along a ground plane with
the height of the targeted point. By dragging the right mouse button, the user rotates
around the clicked location. Finally, the scroll wheel can be used to zoom towards the
targeted position. This mode is designed to quickly and precisely navigate vast, open
landscapes.

5.3.3 Clip-Boxes

Clip-boxes allow the user to focus on a particular area of interest, as shown in Figure 5.3,
by highlighting points inside the box or by clipping points outside of it. They are useful
to cull away points which would otherwise distract or occlude.

A popular use case for clip-boxes are interiors of buildings. Without clipping areas,
the user would have to navigate inside rooms in order to be able to make sense of the
data. Clip-boxes allow users to cull away walls, ceilings or whole parts of buildings and
analyze their interiors from the outside, as shown in Figure 5.4.

(a) (b)

Figure 5.3: Using a clip-box to focus on a single object. Retz point cloud courtesy of
Riegl [50].

For both, highlighting and clipping, the vertex shader checks if a point is inside one
of the boxes. It then either modifies its color (highlighting) or discards it (clipping).

Algorithm 5.1 shows how the vertex shader handles rendering of clip-boxes. The
amount of clip-boxes and their inverse world matrices are passed to the shader. For each
vertex, the shader loops through all boxes and transforms the points to the clip-box

49

(a) No clipping (b) Highlighting inside

(c) Clipping outside (d) Clipping outside. Coloured by elevation.

Figure 5.4: Using a clip-box to reveal the interiour. Point cloud courtesy of Ogle, Tucker
and Hicks [38]

object-space. In object-space, all clip-boxes have a width, height and depth of 1 and
are located at the origin. A point is therefore inside the clip-boxes if all its coordinate
components are larger than -0.5 and smaller than 0.5. Depending on the clip-mode, the
point is now either highlighted if it is inside this interval or discarded if it is outside.
Discarding a vertex is not directly supported by WebGL. In order to discard it, its
coordinate is set to any value outside of the clip region.

Algorithm 5.1: render profile 3D
1 insideAny = false;
2 foreach clip_box do
3 transform point to clip box object space;
4 inside = -0.5 <= point.xyz <= 0.5;
5 insideAny = insideAny || inside;
6 end
7 if insideAny AND highlight_inside then
8 highlight point - increase red channel;
9 else if !insideAny AND clip_outside then

10 discard point;

50

5.3.4 Measurement

Potree offers distance, area and angle measurement tools. Although they display differ-
ent information, they work very similarly and are therefore implemented in the same
MeasuringTool class. Each measure consists of an array of vertices, and some flags that
indicate how they will be displayed. A distance measure, for example, will have distance
labels activated but angle labels and closing edge deactivated. An angle measure, on
the other hand, will have a closing edge and angle labels activated but no distance label.
Area measurements usually have distance labels, area labels and closing edge activated.
It is, however, also possible to define any other combination of flags.

The measurement tools use the previously described point picking method to allow
real-time drag and drop of the vertices. Due to the GPU picking, the drop-off location
is exactly the point that is currently hovered or the closest one around it.

Area measurements are done with respect to the ground plane. Differences in height
are ignored. Results are displayed without units, since Potree does not make any as-
sumption about the coordinate units.

(a) distance (b) angle (c) area

Figure 5.5: Different measurement tools. (c) Cutout of a highway construction point
cloud courtesy of sigeom sa [60].

Measurements are rendered without depth-testing, after the scene has been rendered
and post-processed. They are therefore not occluded by point clouds and unaffected by
Eye-Dome Lighting.

The texture of a label is updated by drawing into a two-dimensional canvas element.
two-dimensional canvas elements are part of the html standard and can be inserted into
a html page like any other element. The canvas API offers functionality to draw text,
lines and splines into the element. For the measurement labels, canvas elements are
drawn to and their content sent to the GPU, without adding them to the web page.

5.3.5 Height Profile

A height profile, or elevation profile, consists of a polyline where each edge, or segment,
has a width and an infinite height. Points that are within the boundary of a segment

51

are part of the profile. Figure 5.6 shows an example of a profile with 3 vertices in a
three-dimensional and an ortographic two-dimensional view.

(a) Three-dimensional view (b) Two-dimensional view

Figure 5.6: A profile that consists of 3 vertices that span 2 segments. (a) By default
points inside the profile are highlighted. (b) In the two-dimensional view, parallel pro-
jections of each segment are placed next to each other. Point cloud courtesy of Open
Topography and PG&E[42].

Height profiles allow users to obtain cutouts of the data and measure and analyze
without beeing blocked or distracted by surroundings. Distance and other measurement
tools, as well as navigational tools, can be constrained to points within the profile by
switching to the clip-outside mode.

(a) RGB highlighted (b) RGB clipped

(c) Height highlighted (d) Height clipped

Figure 5.7: The same height profile rendered in 2 different color and clip modes. Point
cloud courtesy of sigeom sa[60]

52

Retrieving Points in a Profile

The Potree.PointCloudOctree.getPointsInProfile() function returns all points inside the
given profile. It comes in 2 versions. A synchronous one, which immediately returns a
result for nodes in memory, and an asynchronous one, which creates a ProfileRequest.
The request frequently invokes callbacks whenever new points have been loaded. To keep
the application responsive, only a small number of nodes are loaded and processed each
frame. The request can be stopped at any time by calling request.cancel(). Cancelling is
useful for dense point clouds, when even small profiles may contain hundreds of thousands
or millions of points.

Unlike three-dimensional rendering, which does a screen-projected-size-first order to
traverse nodes, elevation profile retrieval does a level-order traversal. The reasoning
behind this is that the two-dimensional representation of the elevation profiles employ
orthographic projections, which map lower-level nodes to larger screen-projected sizes
anyway. Level-order ensures that the result converges in an even fashion towards the
final profile. For the two-dimensional representation, this means that elevation-profile
requests can be canceled with minimal or even negligible impact on the result after a
certain number of points were fetched. For a 500x300 pixel canvas, a threshold of 20.000
points works well in practice. Additional points will mostly occlude or be occluded by
previously fetched points.

Rendering a Height Profile

Two different options for the rendering of height profiles were implemented. Profile
segments may be rendered using clip-boxes with infinite height in the three-dimensional
view or projected and drawn in an orthogonal two-dimensional view.

The three-dimensional view provides the same rendering options as clip-boxes. Points
inside the profile may be highlighted, points outside the profile clipped or clipping may
be disabled. Measurement tools and navigation are constrained to the visible points,
allowing users to work on the area of interest without beeing obstructed or distracted
by surroundings.

The two-dimensional view uses the asynchronous version of getPointsInProfile(pro-
file, callback). The callback’s onProgress function continuously draws new points into
the two-dimensional canvas element as they are streamed in. If the profile is modified,
either by moving a vertex or changing its width, the current request is cancelled and a
new one will be created. The request is also cancelled after a certain number of points
have been drawn. Additional points are unlikely to improve the result and stopping the
request reduces unnecessary computational overhead. Due to its asynchronous nature,
the user can continue using the viewer while the two-dimensional view is gradually re-
fined. The 2D method aligns all profile segments along the x-axis resulting in side-by-side
orthogonal projections of all segments, as shown in Figure 5.8.

53

Figure 5.8: 2D projected profile. Start and end of each segment are indicated by red dot
at the bottom line.

Issues

Each segment is treated as a box with a start, end, infinite height and a width. As each
segment is treated individually, overlapping parts will return the same points multiple
times. This issue is prevalent at adjecent nodes with sharp angles, as shown in Figure 5.9.

(a) (b) (c)

Figure 5.9: (a) Adjacent segments overlap and return the same points twice. Possible
improved boundaries to avoid intersections are suggested in (b) and (c). CA13 point
cloud courtesy of Open Topography and PG&E [42]

Potree provides the option to save the points in a profile in a LAS file. The effects
of the point threshold is much more noticable in this case. Zooming into the data will
expose differences in point density because some regions were loaded up to a higher level
of detail than others, as shown in Figure 5.10. At this time, a complete profile without
threshold is not feasible for a fully client-side point cloud viewer, considering that a
profile may contain millions or even billions of points.

5.3.6 Annotations

Aside from presenting raw three-dimensional models, content providers may also want to
highlight and provide information about specific points of interest. Annotations enable
developers to insert text labels, move the camera towards a pre-defined location and
show short descriptions. Annotations are implemented using HTML elements in order
to take advantage of their extensive functionality.

54

Figure 5.10: Exported profile, opened in the CloudCompare point cloud viewer. The
point threshold works when viewing the data at a certain distance. Close-up views reveal
density differences as further processing has been cancelled after reaching the threshold.

Figure 5.11: Three Annotations on the lion model.

Listing 5.4 shows how an annotation with all available features is added to the scene.
Annotation and camera position have to be specified. Clicking on the annotation will
move the user to the camera position. The other attributes are optional. If no target is
specified, the annotation position is used as the target. The title defines the text of the
label. A sequential number starting from one will be used if this attribute is omitted.
Descriptions are shown when the mouse moves over the annotation. Descriptions may
consist of text as well as HTML elements.

Listing 5.4: Adding an annotation

viewer.addAnnotation(annotationPosition, {
"cameraTarget": target,
"cameraPosition": cameraPosition,
"title": "Lion",
"description": "Description can include html tags"

55

});

Clicking on an annotation will move the camera to the user-specified position. Instant
change of position and direction may lead to disorientation and confusion, as users lose
the context of how they got to their destination. The movement towards the specified
target and camera position is therefore implemented through a smoothly interpolated
animation path. An animation duration of 800ms has proven to be short enough to
swiftly reach the target, but long enough to grasp how the viewer got to the destination.

Putting the mouse over an annotation displays the optionally defined description.
The description may contain HTML tags, which allows developers to include standard
text as well as hyper-links, images and more, as shown in Figure 5.12.

Figure 5.12: Descriptions with links and images.

5.4 Georeferencing

Georeferencing is the process of linking two-dimensional or three-dimensional coordinates
to real-world locations. This is essential for various applications, such as creating and
displaying maps, creating scenes representing the real world, doing measurements and
more.

On a globe, locations may be specified through angular coordinates, namely latitude
and longitude, which give the angles in north-south and east-west direction. Another
option are cartesian coordinates in the earth-centered, earth-fixed (ECEF) coordinate
system. In this system, the origin is at the center of mass of the earth and coordinate
units are in meters. A third option are localized map-projections, where small patches
of the earth are taken and projected, so that the real-world ground is aligned with the
virtual scene ground.

The shape of the earth approximately resembles an oblate spheroid. Any projection
of a spheroid on a plane will cause a certain amount of distortion. The commonly
used Web Mercator projection, also known as EPSG:3857, shows increasingly larger
distortions towards the poles. Countries close to the pole appear bigger than they are,
in relation to those near the equator, as shown in Figure 5.13.

56

(a) (b)

Figure 5.13: Distortions caused by map projections. (a) makes Greenland appear as
big as Africa whereas (b) makes Greenland appear much smaller. Images taken from
Wikipedia Transverse Mercator Projection [74]

In order to reduce distortion errors, some projections are only valid for certain regions,
as shown in Figure 5.14. Within the specified extents, distortions are small enough such
that measurements produce useful results. The Swiss coordinate system, CH1903 / LV03
or EPSG:21781, is defined within the boundaries of Switzerland. Other countries also
have their own spatial reference systems. The Universal Transverse Mercator coordinate
system (UTM) is a world-wide system that splits Earth in 60 zones around the equator.
Each zone has a width of 6 degrees to reduce east-west distortion. Zones are then
projected cylindrically to reduce north-south distortions. The distortion increases as
coordinates get closer to the border of each zone. Surveyed data may not always fall
into the extent of a single map projection. In such cases, a data set may be split and
different projections used for each tile. Alternatively, if a certain amount of distortion
is acceptable, the same projection may be used for the whole data set, even though part
of the data is outside the extent.

(a) UTM zones (b) EPSG:21781

Figure 5.14: (a) UTM zones in the USA. Image courtesy of Chris Murphy [36] (b) A
coordinate system for switzerland. Screenshot taken from spatialreference.org [16]

Potree offers basic support for georeferencing. During conversion, the user has to
specify the spatial reference system of the data set in proj4 format, which is then stored
in the metadata of the converted data set. The coordinates themselves are left untouched.
If a point cloud with a spatial reference system is loaded by the Potree Viewer, it will

57

create a two-dimensional map overlay that displays the extent of the point cloud as
well as measurements that were added to the three-dimensional scene. The map overlay
was created with the openlayers3 library and uses OpenStreetMap as its map provider.
The spatial reference system of the map is Web Mercator. The proj4js library allows
transforming between the spatial reference systems of point cloud and map.

Figure 5.15: Single precision floating-point numbers do not have enough precision to
store many types of georeferenced coordinates. Point cloud courtesy of sigeom sa [60].

An issue with georeferenced coordinates are their large values. The minimum of the
extent of the Swiss coordinate system, for example, is [485869.5728, 76443.1884]. The
precision of floating-point numbers, however, decreases as values get larger. This issue
can manifest itself as jitter during movements or stripes, as coordinates on one axis are
rounded to the closest value that the floating-point number is able to represent, as shown
in Figure 5.15.

This issue has been solved as follows:

• For calculation purposes, the converter handles coordinates as double precision
numbers.

• For storage, 32bit fixed-point numbers are used. 64bit double values require too
much disk space and 32bit floating point values are not precise enough for large
models. A more detailed describtion of the format is given in Section 5.5.

• For rendering, floating point coordinates are used to exploit the GPUs proficiency
with floating point operations, but the coordinates in object space are kept close
to the origin, (0,0,0), to preserve precision. The world matrix of the point cloud
would usually be used to translate the point cloud from its object space to its
georeferenced position in the world-space. The view matrix then turns the position
of the camera to the new coordinate system origin. The world-view transformed
point cloud coordinates are then relative to the nearby camera origin, rather than
the very distant world origin. The translational parts of both matrices effectively
cancel each other out. However, for this to work, both matrices would have to use
double precision to be able to store the huge translational parts and to ensure an
accurate result of the matrix multiplication. Since the version of three.js we use
only offers single precision floating-point values, we can not rely on this technique.

58

As a workaround, we do not transform the point cloud into a georeferenced space
at all. Instead, the first point cloud remains at the origin and subsequently loaded
point clouds are placed relative to the first one. If georeferenced coordinates are
required, e.g., to syncronize the scene with a map overlay, coordinates can be
transformed from the local scene coordinate system to georeferenced coordinates
by a custom and more precise transformation. A downside of this workaround is
that the coordinate system origin remains near the first point cloud and any other
model that is placed too far away from it will still suffer from precision issues.

Figure 5.16: Point cloud with map overlay. The map shows the extent of the point
cloud, the position of the camera and the distance measurements. Point cloud courtesy
of sigeom sa [60].

5.5 Data storage
Each octree node contains a point cloud model that is stored in its own file on disk.
Potree offers a choice of 3 different point cloud file formats to choose from. The default
is a custom binary format that is based on the format of Scanopy, with the difference that
coordinates are stored as fixed-point numbers instead of floats. The other two supported
formats are LAS and LAZ.

5.5.1 The Potree Format

Potree stores point after point and then attribute after attribute. A metadata file spec-
ifies which attributes are available. The only mandatory attribute are the Euclidean
coordinates of a point. Optional attributes are RGBA, intensity and classification. A
list of attributes and their data types is shown in Table 5.1.

The format is based on the file format of Scanopy, with the main difference that
floating-point coordinates are quantized to, and stored as fixed-point values.

Coordinate Quantization

Floating-point values are not a suitable data type to store coordinates. Double precision
floating-point values have a high precision but require 64bit, which is very inefficient in

59

Table 5.1: Point Attributes

Attribute Format Bytes
XYZ 3 * uint32 12
RGBA 4 * uchar 4
intensity short 2
classification uchar 1

terms of disk space usage. Single precision floating-point values require only 32 bits, but
they do not have enough precision for many large models. This is because even though
floating-point values have a large range, they still have a very limited amount of digits.
It makes them more precise for small values, where those digits are free to be used for
the fractional part, but less precise for large values.

Coordinate quantization, in this context, means to transform the coordinate values
from a floating-point representation to a fixed-point representation. Fixed-point values
have a uniform precision over the whole coordinate range. The available bits can be
traded off between the coordinate range and the number of fractional digits. With
32 bits, it is possible to store 232, just over 4.294 billion, unique values. If we asume
millimeters as units, we end up with the ability to store a model with an extent of 4294
kilometers at millimeter precision.

Fixed-point values are stored in 32bit unsigned integers, because no native fixed-
point data type exists. The fractional part of a fixed-point value is preserved by scaling
the value up by a factor of 10digits.

Equation 5.1 shows how a coordinate is quantized from a float or double value to
an integer with a precision given by scale. A scale of 0.001 moves the decimal point 3
digits to the right, effectively transforming the units from meters to millimeters. The
remaining fractional part is lost during the conversion to an integer. Subtracting the
minimum of a node’s bounding box ensures that quantized values start from zero. Doing
so also avoids out-of-bounds errors, which will happen when already large coordinates
grow even larger through a division by a scale lower than 1.

xquantized = x − boxMin

scale
(5.1)

During loading, the reverse is done to transform back from a fixed-point representa-
tion to a floating-point representation.

Compression of quantized coordinates

Compression of quantized coordinates is currently under development and not part of
the public Potree repository, yet.

Quantization lends itself well to a simple form of compression. After quantization,
we get integers in a range between zero and boxWidth / scale. This range is usually a
small fraction of the whole 32 bit range. The idea of compression through quantization
is to store a number in as many bits as necessary, not more.

60

Equation 5.2 gives the number of bits required to store quantized coordinates. Ac-
cording to this equation, 19 bits are enough to store a model with a size of 400 meters
at millimeter precision, a reduction of about 40%.

bits = ceiling(log2(boxWidth

scale
+ 1)) (5.2)

Additional savings are obtained by quantizing not to the bounding box of the whole
point cloud, but the bounding box of each node. With each level, the bounding box size
is halved. Cutting the value space in half reduces the amount of required bits by exactly
1 bit per axis, for a total of 3 bits per three-dimensional coordinate. At octree level 8,
coordinates require 3 bytes less than coordinates at level 0.

5.5.2 The LAS and LAZ Formats

LAS is a widely used point cloud format, which is supported by most point cloud ap-
plications. It also stores coordinates as fixed-point integers. Instead of specifying each
desired point attribute, users decide between pre-defined record formats with a fixed
collection of attributes. Due to this, users are forced to store attributes even if they are
not in use, which leads to increased file sizes.

Passing the –output-format LAS flag to the PotreeConverter will save the contents
of each node in the LAS format.

A compressed version of LAS, the LAZ format, was created by Martin Isenburg [49]
to provide a storage-efficient way of saving the contents of LAS files. LAZ files tend to
be about 70 to 90 percent smaller than LAS.

Passing the –output-format LAZ flag to the PotreeConverter will save the contents
of each node in the compressed LAZ format. The reduced data size speeds up transfers
between server and clients. The Javascript version of the LAZ decoder, ported by Uday
Verma and Howard Butler using emscripten [14], is used to decompress the contents on
the Javascript client. Multiple Web Workers are then used to decompress multiple LAZ
files in parallel.

Decompression is a computationally expensive task, and due to the nature of the
code generated by emscripten, each instance of the decoder requires a few hundred MB
of memory. Using LAZ compression is therefore less suited for mobile devices with a low
amount of memory, or machines with very fast connections where transfer of larger files
is faster than transfer and decompression of smaller files. Multi-core devices with 4GB
RAM or more will greatly benefit from the faster transfer of compressed files, however,
especially if network speed is low.

61

CHAPTER 6
Results

63

This chapter contains performance evaluations of the converter and viewer, appli-
cations of potree by third parties, and our own renderings of point clouds that were
provided by third parties.

6.1 Performance
This section lists performance evaluations of the converter and the viewer.

Table 6.1: Test Systems

system Memory CPU GPU Disk
Notebook 16GB i7, 2.3GHz GTX 860M 1TB, 5400rpm
SSD 16GB i7, 2.3GHz - 500GB, SSD SATA 3
Server 32GB i7, 3.40GHz - 3TB, 7200rpm
S4 Active 2GB - Adreno 320 -
S7 Edge 4GB - Adreno 530 -
iPhone 6S 2GB - PowerVR GT7600 -

Table 6.1 shows the list of test machines. The converter performance was tested on
the Notebook, SSD and Server systems. Notebook and SSD are identical, except for the
disk drive. The disk used by the SSD system has a read performance of 540MB/s and a
write performance of 520MB/s, according to its specification. The viewer performance
was tested on the Notebook system and on three mobile devices, a Samsung Galaxy S4
Active, a Samsung Galaxy S7 Edge and an iPhone 6S.

The Potree converter performance is limited by disk speed and CPU. Table 6.2 shows
that the SSD system outperforms the Notebook system, even though it is identical, except
for the disk. The Server system, with a significantly higher CPU performance but an
expected disk performance between Notebook and SSD, outperforms both.

The disk speed bottleneck stems from the large amount of data that has to be read
and written. Due to the out of core-scheme, points may be read from disk and written
back to disk multiple times, thus further increasing the amount of I/O operations.

A large part of the CPU bottleneck comes from a single-threaded implementation of
the octree build-up, even though it is a potentially highly parallelizable task. Currently,
each point is processed one after another. A second thread exists to read points from the
input, while the build-up thread processes points that have already been read. Multi-
threaded build-up methods will be investigated in the future. Projects like Entwine [26]
by Hobu, and a modified Massive-PotreeConverter [34] by the NLeSC, have already
shown promising results in multi-threaded and distributed build-up methods.

The performance of the renderer is mostly affected by the GPU and partially by the
CPU. It has been evaluated in frames per second, to get an impression of the overall
performance, and duration in miliseconds to measure the execution time of specific
rendering tasks on the GPU.

We assume at least 60FPS to be a flawless real-time performance, 30FPS to be
an acceptable real-time performance, and anything between 10FPS and 30FPS to be

64

Table 6.2: PotreeConverter performance showing conversion duration and points per
second (pps) for different data sets and test machines.

Notebook SSD Server
data set points duration pps duration pps duration pps
CA13 17.7B - - - - 16h 305k
Whitby 7.7M 12s 642k 10.6s 726k 6s 1,247k
Eclepens 68.7M 437s 157k - - 290s 236k
Subseamanifold 26.9M - - - - 57s 467k
Heidentor 25.8M 92s 280k 38.5s 670k 20s 1,275k
Chowilla 692.3M - - - - 3,484s 198k
Dechen Cave 40.0M 167s 240k 95s 421k 115s 347k
Lion 4M 5.9s 670k 5.3s 754k 3.5s 1,125k

interactive. Frame rates below 10FPS are undesirable and should be avoided by reducing
the point budget, or by disabling features such as EDL and adaptive point sizes.

In order to achieve 60 frames per second, each frame must finish within 1 / 60 = 16.6
milliseconds. The actually available time to render objects is usually lower, in practice,
for reasons such as running the application inside a browser environment, which acts as
an additional layer to the GPU, inefficiencies in the communication between CPU and
GPU, or poor GPU utilization.

Figure 6.1 shows a performance comparison of Potree on different devices. The goal
of this performance evaluation is to show that Potree is able to achieve real-time or
interactive rendering performance in real-world use cases on desktop and mobile devices.
The point cloud is therefore rendered into the body of a maximized browser, on each
device. Some results are capped at 60 frames per seconds, because browsers automati-
cally enable vsync. For the Notebook system, we were able to turn vsync off, and achieve
higher frame rates, by starting Chrome with the command-line option –disable-gpu-vsync
–disable-d3d11.

Figure 6.1: Frames per second for the Matterhorn data set with different point budgets.

Figure 6.2 shows the time it took to render a point cloud with different point budgets
on the Notebook system. The relation between point budget and duration is mostly

65

linear, with a small deviation between a budget of 0.5 and 1 million points, which
happens when the GPU automatically adjusts the clock speed to the higher workload.
Durations were measured with the WebGL EXT_disjoint_timer_query extension, by
invoking the three.js render calls in between the start and end of a query. At a point
budget of three million, rendering the whole scene takes about 15.2 milliseconds, with
the majority of 15.1 milliseconds attributed to the rendering of the point cloud. The
dashed line represents the 16.6 milliseconds mark, which has to be undercut in order to
maintain a frame rate of 60 frames per second.

Figure 6.2: Time to render the point cloud with different point budgets. Tested on the
Notebook system.

EDL is a post-processing shader which renders a quad over the whole page. As
a result, one fragment shader is executed for each pixel. Figure 6.3 shows how the
performance scales with the resolution of the canvas and the number of neighborhood
samples. The point budget has no significant effect on the duration of the EDL pass,
because by the time it starts, the point cloud has already finished rendering.

On the Notebook system, the EDL pass takes 0.35 milliseconds to render into a full-
page canvas element with 1.8 megapixel, and with the default of 4 neighborhood samples.
That is about 2.1% of the 16.6 milliseconds render time that is available to maintain a
frame rate of 60 frames per second.

Figure 6.3: Eye-Dome Lighting performance linearely scales with the screen resolution
and the number of neighborhood samples.

Figure 6.4 shows a comparison of performance between the fixed and adaptive point
size modes. All the points are rendered with a size of 1 pixel for this test, even in
adaptive mode, since we are interested in the cost of calculating the size, without the
impact of rendering points at different sizes. Adaptive sizes are significantly slower at
the same point budget. Their advantage is, however, that they reduce the number of
points that have to be rendered to achieve satisfying results in the first place.

66

Figure 6.4: The time it takes to render a point cloud with fixed or adaptive point sizes
at various point budgets.

6.2 Applications

This section introduces some uses of Potree by third parties.

laspublish

Rapidlasso recently integrated Potree into its lastools package [27] as a new module
called laspublish. The lastools package is a widely used toolset for analysis, evaluation
and processing of point clouds.

OpenSFM

OpenSFM is a master thesis project by Matthias Adorjan with the aim to create a "free
and fully accessible structure-from-motion system, based on the idea of collaborative
projects like OpenStreetMap" [1]. It combines Potree and the Cesium globe renderer,
which allows users to explore georeferenced point clouds on a globe in a web browser.
Users can upload new data sets that will then be available on the globe, after a processing
step on the server backend.

67

Figure 6.5: Screenshot of OpenSFM, showing a point cloud and the images that were
used to create it. Image taken from OpenSFM master thesis [1]

Via Apia

Figure 6.6: Screenshots of the Via Appia viewer.

The “Mapping the Via Appia in 3D” was a project by the Netherlands eScience Center
[37] with the aim of “Creating a virtual 4D reconstruction of one of the earliest and
strategically most important roads of the Roman world” [32]. The data set is not avail-
able for view online due to copyright issues. The full source code for their framework,
using Potree for the visualization of point clouds, has been published on github [39].

68

The Netherlands AHN2 data

Figure 6.7: Screenshots of the AHN2 viewer.

The Actueel Hoogtebestand Nederland (AHN) is a program by the Netherlands to survey
the whole country. The second scan campaign, AHN2, resulted in a data set consisting
of 640 billion points, which was made publicly available as open data. This data set
requires 7.68 teraybte disk space, at 12 byte per point for uncompressed coordinates.

The Netherlands Escience Center [37] processed this data and released a web viewer,
based on Potree, that allows the public to view this data set online. [2] Their work
was based on an older and slower version of the PotreeConverter. According to their
calculations, processing the full dataset would have taken at least 100 days. In order to
speed this process up, the Netherlands Escience Center developed a parallel conversion
process, the Massive-PotreeConverter [34], which tiles the whole data set into multiple
smaller ones, processes each tile with a separate PotreeConverter instance, and finally
merges the result into a single, large octree. The final octree consist of 597 billion points,
partitioned into just over 38 million compressed laz files.

6.2.1 Sagrada and Eixample

(a) Sagrada (b) Eixample (c) Eixample close-up

Figure 6.8: Screenshots of the Temple Expiatori de La Sagrada Família and the Example
district, Barcelona.

The Temple Expiatori de La Sagrada Família is a church in the district of Eixample,
Barcelona [53]. Point cloud visualizations of Eixample and the church, using Potree 1.2,

69

were published by the Institut Cartografic i Geologic de Catalunya(ICGC) on their web
page [6].

6.2.2 PotreeViewer by SITN

Figure 6.9: Screenshots of the Neuchâtel point cloud with RGB and classification color
modes.

Based on Potree 1.3, SITN developed and published their own Potree Viewer user inter-
face to display a point cloud of Neuchâtel, Switzerland [46]. One of its main features is a
map overlay and a two-dimensional height profile view, both of which were later merged
into Potree 1.4. Still unique to the SITN Potree Viewer is the wide range of map overlay
sources, in addition to OpenStreetMap.

Figure 6.10: The point cloud and some of the various map overlays you can chose from.

70

6.2.3 ARA - Airborne Research Australia

(a) Adelaide Hills (b) South Australia

Figure 6.11: Screenshots taken from pages uploaded by ARA. [4] [5]

Airborne Research Australia, ARA [3], is a research institute at Flinders University,
Australia. ARA started to offer most of their data sets for free to the scientific community
and they recently published some of their data sets online, using Potree and laspublish.

Potree as a client for Entwine

Figure 6.12: Screenshot taken from http://potree.entwine.io [25].

Hobu and NLeSC have developed a modified version of Potree, which supports Entwine
as an alternative to the PotreeConverter, and Greyhound as an alternative to a file server.
Instead of loading an octree node from a file server, this modified version sends a request
to Greyhound for points within a volume at a specific level of detail.

A showcase for data sets that are processed by entwine, served by greyhound and
rendered by Potree, is available at http://potree.entwine.io [25].

6.3 Showcase
In this section, we present screenshots of point clouds rendered with Potree.

71

Figure 6.14: Point clouds of the building site of NVIDIA’s new headquarter at two
different times. Point clouds courtesy of NVIDIA [15].

Figure 6.15: This point cloud of the Dechen cave [12] in Iserlohn consists of 40 million
points. Dechen cave point cloud courtesy of Hämmerle et.al., who captured it as part of
a research project [22].

Figure 6.13: Harvest4D [23] was an EU funded project, with Potree as a part of it, that
dealt with the acquisition and rendering of 3D models of the real world. The screenshots
depict a point cloud of the Arènes de Lutèce.

72

Figure 6.16: Westend Palais point cloud courtesy of Faro [17].

Figure 6.17: This point cloud of the Matterhorn was created by senseFly[58], Drone
Adventures[13], and Pix4D[43]. The photogrammetry software of Pix4D was used to
compute a three-dimensional model out of 2188 images of the Matterhorn. The result is
a point cloud that consists of about 300 million points. Matterhorn point cloud courtesy
of Pix4D.

(a) Heidentor (b) Dover Mill ruins

Figure 6.18: Uses of Potree for archaeology. (a) The Heidentor in Carnuntum, Austria.
Point cloud courtesy of the LBI ArchPro [31]. (b) Dover Mill ruin point cloud courtesy
of Prologue Systems, LLC [48].

73

(a) Lion Head (b) Grave

Figure 6.19: Uses of Potree for archaeology. (a) Lion head point cloud courtesy of Simone
Garagnani [30]. (b) Grave point cloud courtesy of Prof. Heinz Runne, Paul Banse and
Philippe Kluge [51].

Figure 6.20: This point cloud of Retz, Austria, consists of a combination of an airborne
laser scan over the whole area, and terrestrial laser scans at the town center. Retz point
cloud courtesy of Riegl [50].

74

(a) Flight lines (b) San Simeon area with EDL

(c) Hearst Castle (d) Morro Rock

(e) Classifications of Morro Bay area (f) Return numbers of Morro Bay area

Figure 6.21: Screenshots of an airborne laser scanning campaign, with the short name
CA13_SAN_SIM, of the San Luis Obispo County coast, including the San Simeon and
Morro Bay areas. The data set consists of 17.7 billion points, and includes RGB colors,
intensity, classification, return number, and flight source. CA13 point cloud courtesy of
Open Topography and PG&E [42]

75

CHAPTER 7
Conclusion and Future Work

We presented a state-of-the-art point cloud viewer that is able to render point clouds
with hundreds of billions of points in real time in standard web browsers, by utilizing
a slightly modified version of the modifiable nested octree (MNO) structure [56]. This
octree structure, which contains a low-resolution subsample in its root node and gradu-
ally higher-resolution subsamples in higher-level nodes, allows Potree to render distant
regions at a lower level of detail, thereby reducing the amount of points that have to be
loaded and rendered. Regions that are outside the view-frustum are ignored altogether.
We extended the original MNO structure such that the octree hierarchy itself is stored
in another octree, the hierarchy-octree, which allows to load the hierachy on-demand
as well. This became necessary because millions of nodes are required to store larger
point clouds, and storing the whole hierarchy in a single blob led to increased initial
load times. We also decided to replace subsampling on a grid with Poisson-disk subsam-
pling. Poisson-disk subsamples are evenly spaced subsamples with a minimum distance
between points, and they exhibit more naturally looking and pleasant patterns.

We have also shown a new adaptive point-sizing method for octree structures, which
adjusts sizes point-wise to the level of detail. Closed surfaces are obtained by setting the
point size equal to the spacing between points at a certain level of detail. There are two
settings where this mode is especially beneficial. It fills in the initially large gaps while
points are streamed in, and it also fills in gaps when rendering at a low point budget.

To achieve a better visual quality, we implemented state-of-the art methods such as
Eye-Dome-Lighting [8], which provides illumination for point clouds without normals,
and high-quality surface splatting [70] with weighted screen-aligned circles [55]. In ad-
dition to that, we also added a nearest-neighbor-like interpolation shader that creates
renderings similar to Voronoi diagrams by drawing points as screen-aligned paraboloids
rather than circles [57]. This shader provides a trade-off between the high quality of
surface splatting and the high performance of basic screen-aligned circles.

The viewer is accompanied by a converter that builds-up the octree structure out of
a point cloud. The converter has been tested with point clouds up to 17.7 billion points.

77

Thanks to the NLeSC, who built a modified and parallel version of the converter [33],
we were able to test the viewer with a data set of 597 billion points.

The source code of the viewer, Potree, is available at:
https://github.com/potree/potree

The source code of the converter is available at:
https://github.com/potree/PotreeConverter

Future work includes

1. Generating low-resolution nodes in the octree introduces aliasing in a way similar
to downsizing an image without applying a filter. These aliasing artifacts can
be reduced by averaging colors instead of taking the first pick. This approach
essentially produces the equivalent of a mip map for point clouds.

2. Low-level performance improvements from draw-call and render-order optimiza-
tions. At this time we let three.js handle most of the rendering. We found that
significant improvements are possible by rendering front-to-back and by reducing
the number of uniform parameter updates.

3. Storing multiple nodes in a single file. HTTP range requests can be used to stream
specific nodes by reading only parts of a file. Currently, each node is stored in its
own file, which makes some operations, such as deletion or copying of the point
cloud files, relatively slow.

4. Improvements to the adaptive point sizing. At this time, nodes are not further
split by the converter unless they contain enough points. This lets the adaptive
point-size mode wrongly asume a low level of detail, thus increasing the point size.

5. Improved Poisson-disk sampling. As of now, the Poisson-disk sampling is only done
within each node seperately. Combinations of nodes do not uphold the Poisson-disk
property and therefore exhibit increased density on borders of same level nodes or
intersections with different level nodes. Another issue is that the sample quality
relies on the ordering of the input. Badly arranged input sets produce Poisson-disk
samples with holes or small cuts.

6. Additional sampling modes like two-dimensional grid, voxel grid, random choice,
etc. Some of them may significantly improve build-up times.

7. WebVR is an actively developed API, which allows developers to create virtual
reality applications in web browsers. Implementing WebVR in Potree will allow
users to view and interact with point clouds in VR.

78

Bibliography

[1] Matthias Adorjan. “The OpenSFM Database”. MA thesis. Favoritenstrasse 9-11/186,
A-1040 Vienna, Austria: Institute of Computer Graphics and Algorithms, Vienna
University of Technology, 2015. url: https://www.cg.tuwien.ac.at/
research/publications/2015/Adorjan-2015/.

[2] AHN2 online viewer. Accessed: 2015-10-22. url: http://ahn2.pointclouds.
nl/.

[3] Airborne Research Australia. Accessed: 2016-01-27. url: http://www.airborneresearch.
org.au/.

[4] Airborne Research Australia. Adelaide Hills. Accessed: 2016-01-27. url: http:
//www.airborneresearch.com.au/potree/ironbank1/examples/
ironbank1.html.

[5] Airborne Research Australia. Part of an area in South Australia. Accessed: 2016-
01-27. url: http://www.airborneresearch.com.au/potree/examples/
0107MH_02bcd_square_RGB.html.

[6] Basilica and Expiatory Church of the Holy Family and Eixample neighbourhood in
3D. Accessed: 2015-10-31. url: http://betaportal.icgc.cat/wordpress/
sagrada_familia_eixample_3d/.

[7] Mario Botsch et al. “High-quality Surface Splatting on Today’s GPUs”. In: Pro-
ceedings of the Second Eurographics / IEEE VGTC Conference on Point-Based
Graphics. SPBG’05. New York, USA: Eurographics Association, 2005, pp. 17–24.
isbn: 3-905673-20-7. doi: 10.2312/SPBG/SPBG05/017- 024. url: http:
//dx.doi.org/10.2312/SPBG/SPBG05/017-024.

[8] Christian Boucheny. “Visualisation scientifique de grands volumes de données :
Pour une approche perceptive”. In: (2009).

[9] Robert Bridson. “Fast Poisson Disk Sampling in Arbitrary Dimensions”. In: ACM
SIGGRAPH 2007 Sketches. SIGGRAPH ’07. San Diego, California: ACM, 2007.
isbn: 978-1-4503-4726-6. doi: 10.1145/1278780.1278807. url: http://
doi.acm.org/10.1145/1278780.1278807.

[10] CloudCompare. Accessed: 2016-01-26. url: http://www.danielgm.net/cc/.

79

https://www.cg.tuwien.ac.at/research/publications/2015/Adorjan-2015/
https://www.cg.tuwien.ac.at/research/publications/2015/Adorjan-2015/
http://ahn2.pointclouds.nl/
http://ahn2.pointclouds.nl/
http://www.airborneresearch.org.au/
http://www.airborneresearch.org.au/
http://www.airborneresearch.com.au/potree/ironbank1/examples/ironbank1.html
http://www.airborneresearch.com.au/potree/ironbank1/examples/ironbank1.html
http://www.airborneresearch.com.au/potree/ironbank1/examples/ironbank1.html
http://www.airborneresearch.com.au/potree/examples/0107MH_02bcd_square_RGB.html
http://www.airborneresearch.com.au/potree/examples/0107MH_02bcd_square_RGB.html
http://betaportal.icgc.cat/wordpress/sagrada_familia_eixample_3d/
http://betaportal.icgc.cat/wordpress/sagrada_familia_eixample_3d/
http://dx.doi.org/10.2312/SPBG/SPBG05/017-024
http://dx.doi.org/10.2312/SPBG/SPBG05/017-024
http://dx.doi.org/10.2312/SPBG/SPBG05/017-024
http://dx.doi.org/10.1145/1278780.1278807
http://doi.acm.org/10.1145/1278780.1278807
http://doi.acm.org/10.1145/1278780.1278807
http://www.danielgm.net/cc/

[11] Robert L. Cook. “Stochastic Sampling in Computer Graphics”. In: ACM Trans.
Graph. 5.1 (Jan. 1986), pp. 51–72. issn: 0730-0301. doi: 10.1145/7529.8927.
url: http://doi.acm.org/10.1145/7529.8927.

[12] Dechenhöhle - Tropfsteinhöhle und deutsches Höhlenmuseum Iserlohn. Accessed:
2016-09-08. url: http://www.dechenhoehle.de/.

[13] Drone Adventures. Accessed: 2016-09-08. url: http://droneadventures.
org/matterhorn.

[14] Emscripten C/C++ to javascript transpiler. Accessed: 2015-10-31. url: https:
//github.com/kripken/emscripten.

[15] Endeavor, NVIDIA’s new headquarter under construction. Accessed: 2016-09-01.
url: http://endeavor.nvidia.com/.

[16] EPSG:21781 on spatialreference.org. Accessed: 2016-08-18. url: http://spatialreference.
org/ref/epsg/21781/.

[17] Faro. Accessed: 2016-09-08. url: http://www.faro.com/.
[18] GeoM, Intelligent Geospatial Solutions. Accessed: 2016-09-12. url: http://www.

geomlidar.com/.
[19] Geoverse. Accessed: 2016-01-26. url: http://www.euclideon.com/products/

geoverse/.
[20] Enrico Gobbetti and Fabio Marton. “Layered Point Clouds: A Simple and Efficient

Multiresolution Structure for Distributing and Rendering Gigantic Point-sampled
Models”. In: Comput. Graph. 28.6 (Dec. 2004), pp. 815–826. issn: 0097-8493. doi:
10.1016/j.cag.2004.08.010. url: http://dx.doi.org/10.1016/j.
cag.2004.08.010.

[21] Google Earth. Accessed: 2016-01-26. url: https://www.google.com/earth/.
[22] M. Hämmerle et al. “Comparison of Kinect and Terrestrial LiDAR Capturing

Natural Karst Cave 3D Objects”. In: IEEE Geoscience and Remote Sensing Letters
11.11 (2014), pp. 1896–1900. doi: http://dx.doi.org/10.1109/LGRS.2014.
2313599. url: http://dx.doi.org/10.1594/PANGAEA.830567.

[23] Harvest4D. Accessed: 2016-01-26. url: https://harvest4d.org/.
[24] Gabor T. Herman. “Discrete Multidimensional Jordan Surfaces”. In: CVGIP: Graph.

Models Image Process. 54.6 (Nov. 1992), pp. 507–515. issn: 1049-9652. doi: 10.
1016/1049-9652(92)90070-E. url: http://dx.doi.org/10.1016/
1049-9652(92)90070-E.

[25] Hobu. Entwine and Potree examples. Accessed: 2016-09-07. url: http://potree.
entwine.io/.

[26] Hobu. Entwine Point Cloud Indexing Engine. Accessed: 2016-09-07. url: https:
//entwine.io/.

[27] lastools. Accessed: 2016-01-27. url: http://rapidlasso.com/lastools/.

80

http://dx.doi.org/10.1145/7529.8927
http://doi.acm.org/10.1145/7529.8927
http://www.dechenhoehle.de/
http://droneadventures.org/matterhorn
http://droneadventures.org/matterhorn
https://github.com/kripken/emscripten
https://github.com/kripken/emscripten
http://endeavor.nvidia.com/
http://spatialreference.org/ref/epsg/21781/
http://spatialreference.org/ref/epsg/21781/
http://www.faro.com/
http://www.geomlidar.com/
http://www.geomlidar.com/
http://www.euclideon.com/products/geoverse/
http://www.euclideon.com/products/geoverse/
http://dx.doi.org/10.1016/j.cag.2004.08.010
http://dx.doi.org/10.1016/j.cag.2004.08.010
http://dx.doi.org/10.1016/j.cag.2004.08.010
https://www.google.com/earth/
http://dx.doi.org/http://dx.doi.org/10.1109/LGRS.2014.2313599
http://dx.doi.org/http://dx.doi.org/10.1109/LGRS.2014.2313599
http://dx.doi.org/10.1594/PANGAEA.830567
https://harvest4d.org/
http://dx.doi.org/10.1016/1049-9652(92)90070-E
http://dx.doi.org/10.1016/1049-9652(92)90070-E
http://dx.doi.org/10.1016/1049-9652(92)90070-E
http://dx.doi.org/10.1016/1049-9652(92)90070-E
http://potree.entwine.io/
http://potree.entwine.io/
https://entwine.io/
https://entwine.io/
http://rapidlasso.com/lastools/

[28] Kurt Leimer. “External Sorting Of Point Clouds”. In: (2013).
[29] Marc Levoy and Turner Whitted. “The Use of Points as a Display Primitive”. In:

(Jan. 1985). url: https://graphics.stanford.edu/papers/points/.
[30] Lion head by Simone Garagnani. Accessed: 2016-09-08. url: http : / / www .

tcproject.net/.
[31] Ludwig Boltzmann Institute for Archaeological Prespection and Virtual Archaeology

(LBI ArchPro). Accessed: 2016-09-08. url: http://archpro.lbg.ac.at/.
[32] Mapping the Via Appia in 3D. Accessed: 2015-10-22. url: https://www.esciencecenter.

nl/project/mapping-the-via-appia-in-3d.
[33] Oscar Martinez-Rubi et al. “Taming the beast: Free and open-source massive point

cloud web visualization”. In: (2015). doi: 10.13140/RG.2.1.1731.4326/1.
[34] Massive-PotreeConverter. Accessed: 2015-10-22. url: https://github.com/

NLeSC/Massive-PotreeConverter.
[35] Mirage Technologies. Accessed: 2015-10-22. url: http://www.mirage-tech.

com/www/.
[36] Chris Murphy. UTM zones in USA. Accessed: 2016-08-18. url: https://commons.

wikimedia.org/wiki/File:Utm-zones-USA.svg.
[37] Netherlands eScience Center (NLeSC). Accessed: 2015-10-22. url: https://www.

esciencecenter.nl/.
[38] Todd Ogle, Thomas Tucker, and David Hicks. World War I Cave at German gal-

leries from Vauquois Hill. 2014.
[39] PattyVis. Accessed: 2016-01-05. url: https://github.com/NLeSC/PattyVis.
[40] Performance improvement by Yin Fei. Accessed: 2016-01-24. url: https://

github.com/potree/PotreeConverter/issues/43#issuecomment-
111017203.

[41] Hanspeter Pfister et al. “Surfels: Surface Elements As Rendering Primitives”. In:
Proceedings of the 27th Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’00. New York, NY, USA: ACM Press/Addison-Wesley
Publishing Co., 2000, pp. 335–342. isbn: 1-58113-208-5. doi: 10.1145/344779.
344936. url: http://dx.doi.org/10.1145/344779.344936.

[42] PG&E Diablo Canyon Power Plant (DCPP): San Simeon, CA Central Coast. Ac-
cessed: 2016-08-16. url: http://opentopo.sdsc.edu/lidarDataset?
opentopoID=OTLAS.032013.26910.2.

[43] PIX4D Photogrammetry Software. Accessed: 2016-09-08. url: https://pix4d.
com/.

[44] Plasio. Accessed: 2015-10-22. url: http://plas.io/.
[45] PointCloudViz Server. Accessed: 2015-10-22. url: http://server.pointcloudviz.

com/.

81

https://graphics.stanford.edu/papers/points/
http://www.tcproject.net/
http://www.tcproject.net/
http://archpro.lbg.ac.at/
https://www.esciencecenter.nl/project/mapping-the-via-appia-in-3d
https://www.esciencecenter.nl/project/mapping-the-via-appia-in-3d
http://dx.doi.org/10.13140/RG.2.1.1731.4326/1
https://github.com/NLeSC/Massive-PotreeConverter
https://github.com/NLeSC/Massive-PotreeConverter
http://www.mirage-tech.com/www/
http://www.mirage-tech.com/www/
https://commons.wikimedia.org/wiki/File:Utm-zones-USA.svg
https://commons.wikimedia.org/wiki/File:Utm-zones-USA.svg
https://www.esciencecenter.nl/
https://www.esciencecenter.nl/
https://github.com/NLeSC/PattyVis
https://github.com/potree/PotreeConverter/issues/43#issuecomment-111017203
https://github.com/potree/PotreeConverter/issues/43#issuecomment-111017203
https://github.com/potree/PotreeConverter/issues/43#issuecomment-111017203
http://dx.doi.org/10.1145/344779.344936
http://dx.doi.org/10.1145/344779.344936
http://dx.doi.org/10.1145/344779.344936
http://opentopo.sdsc.edu/lidarDataset?opentopoID=OTLAS.032013.26910.2
http://opentopo.sdsc.edu/lidarDataset?opentopoID=OTLAS.032013.26910.2
https://pix4d.com/
https://pix4d.com/
http://plas.io/
http://server.pointcloudviz.com/
http://server.pointcloudviz.com/

[46] PotreeViewer by SITN. Accessed: 2015-10-31. url: http://sitn.ne.ch/
lidar/.

[47] Reinhold Preiner, Stefan Jeschke, and Michael Wimmer. “Auto Splats: Dynamic
Point Cloud Visualization on the GPU”. In: Proceedings of Eurographics Sympo-
sium on Parallel Graphics and Visualization. Ed. by H. Childs and T. Kuhlen. Eu-
rographics Association 2012. Cagliari, May 2012, pp. 139–148. isbn: 978-3-905674-
35-4. url: http://www.cg.tuwien.ac.at/research/publications/
2012/preiner_2012_AS/.

[48] Prologue Systems. Accessed: 2016-09-08. url: http://www.prologuesystems.
com/.

[49] rapidlasso. Accessed: 2016-01-26. url: http://rapidlasso.com/.
[50] Riegl. Accessed: 2016-01-26. url: http://riegl.com/.
[51] Heinz Runne, Paul Banse, and Philippe Kluge. Grave point cloud. Accessed: 2016-

09-08. url: http://www.hs-anhalt.de/.
[52] Szymon Rusinkiewicz and Marc Levoy. “QSplat: A Multiresolution Point Ren-

dering System for Large Meshes”. In: Proceedings of the 27th Annual Conference
on Computer Graphics and Interactive Techniques. SIGGRAPH ’00. New York,
NY, USA: ACM Press/Addison-Wesley Publishing Co., 2000, pp. 343–352. isbn:
1-58113-208-5. doi: 10.1145/344779.344940. url: http://dx.doi.org/
10.1145/344779.344940.

[53] Sagrada Familia. Accessed: 2016-01-04. url: https://en.wikipedia.org/
wiki/Sagrada_Fam%C3%ADlia.

[54] Claus Scheiblauer. “Interactions with Gigantic Point Clouds”. PhD thesis. Fa-
voritenstrasse 9-11/186, A-1040 Vienna, Austria: Institute of Computer Graph-
ics and Algorithms, Vienna University of Technology, 2014. url: http://www.
cg . tuwien . ac . at / research / publications / 2014 / scheiblauer -
thesis/.

[55] Claus Scheiblauer and Michael Pregesbauer. “Consolidated Visualization of Enor-
mous 3D Scan Point Clouds with Scanopy”. In: Proceedings of the 16th Interna-
tional Conference on Cultural Heritage and New Technologies. Vienna, Austria,
Nov. 2011, pp. 242–247. isbn: 978-3-200-02740-4. url: https : / / www . cg .
tuwien.ac.at/research/publications/2011/scheiblauer-2011-
chnt/.

[56] Claus Scheiblauer and Michael Wimmer. “Out-of-Core Selection and Editing of
Huge Point Clouds”. In: Computers & Graphics 35.2 (Apr. 2011), pp. 342–351. issn:
0097-8493. url: https://www.cg.tuwien.ac.at/research/publications/
2011/scheiblauer-2011-cag/.

82

http://sitn.ne.ch/lidar/
http://sitn.ne.ch/lidar/
http://www.cg.tuwien.ac.at/research/publications/2012/preiner_2012_AS/
http://www.cg.tuwien.ac.at/research/publications/2012/preiner_2012_AS/
http://www.prologuesystems.com/
http://www.prologuesystems.com/
http://rapidlasso.com/
http://riegl.com/
http://www.hs-anhalt.de/
http://dx.doi.org/10.1145/344779.344940
http://dx.doi.org/10.1145/344779.344940
http://dx.doi.org/10.1145/344779.344940
https://en.wikipedia.org/wiki/Sagrada_Fam%C3%ADlia
https://en.wikipedia.org/wiki/Sagrada_Fam%C3%ADlia
http://www.cg.tuwien.ac.at/research/publications/2014/scheiblauer-thesis/
http://www.cg.tuwien.ac.at/research/publications/2014/scheiblauer-thesis/
http://www.cg.tuwien.ac.at/research/publications/2014/scheiblauer-thesis/
https://www.cg.tuwien.ac.at/research/publications/2011/scheiblauer-2011-chnt/
https://www.cg.tuwien.ac.at/research/publications/2011/scheiblauer-2011-chnt/
https://www.cg.tuwien.ac.at/research/publications/2011/scheiblauer-2011-chnt/
https://www.cg.tuwien.ac.at/research/publications/2011/scheiblauer-2011-cag/
https://www.cg.tuwien.ac.at/research/publications/2011/scheiblauer-2011-cag/

[57] Markus Schuetz and Michael Wimmer. “High-Quality Point Based Rendering Us-
ing Fast Single Pass Interpolation”. In: Proceedings of Digital Heritage 2015 Short
Papers. Granada, Spain, Sept. 2015, pp. –. url: https://www.cg.tuwien.ac.
at/research/publications/2015/SCHUETZ-2015-HQP/.

[58] senseFly. Accessed: 2016-09-08. url: https://www.sensefly.com/user-
cases/mapping-the-matterhorn.html.

[59] ShareLIDAR. Accessed: 2015-10-22. url: http://www.sharelidar.com/.
[60] Sigeom Sa. Accessed: 2016-01-26. url: http://sigeom.ch/.
[61] Sketchfab. Accessed: 2016-01-26. url: http://sketchfab.com/.
[62] Jason Stoker. The 3D Elevation Program: Overview. Accessed: 2016-08-30. url:

http://dels.nas.edu/resources/static-assets/besr/miscellaneous/
MSC/2015/3DEP_Stoker.pdf.

[63] Larry J. Sugarbaker et al. “The 3D Elevation Program InitiativeA Call for Action”.
In: (2014). Accessed: 2016-08-30. doi: 10.3133/cir1399. url: http://dx.
doi.org/10.3133/cir1399.

[64] surface and edge. Accessed: 2015-11-5. url: http://www.surfaceandedge.
com/.

[65] three.js. Accessed: 2016-08-18. url: http://threejs.org/.
[66] udWeb Demo. Accessed: 2015-10-22. url: http://udserver.euclideon.

com/demo/html5_viewer.html.
[67] Veesus. Accessed: 2015-10-22. url: http : / / www . veesus . com / veesus /

index.php.
[68] Voxel Quest. Accessed: 2016-09-14. url: http://www.voxelquest.com/.
[69] W. Wagner et al. “Radiometric Calibration of Full-Waveform Small-Footprint Air-

borne Laser Scanners”. In: ISPRS Archives XXXVII (July 2008), pp. 163–168.
[70] Michael Wand et al. “Interactive Editing of Large Point Clouds”. In: Eurographics

Symposium on Point-Based Graphics. Ed. by M. Botsch et al. The Eurographics
Association, 2007. isbn: 978-3-905673-51-7. doi: 10.2312/SPBG/SPBG07/037-
045.

[71] WebGL Extensions. Accessed: 2016-08-18. url: https://www.khronos.org/
registry/webgl/extensions/.

[72] WebGL Specification. Accessed: 2016-08-18. url: https://www.khronos.org/
registry/webgl/specs/1.0/.

[73] Weiss AG. Accessed: 2015-11-5. url: http://www.weiss-ag.org/.
[74] Wikipedia - Transverse Mercator Projection. Accessed: 2016-01-26. url: https:

//en.wikipedia.org/wiki/Transverse_Mercator_projection.

83

https://www.cg.tuwien.ac.at/research/publications/2015/SCHUETZ-2015-HQP/
https://www.cg.tuwien.ac.at/research/publications/2015/SCHUETZ-2015-HQP/
https://www.sensefly.com/user-cases/mapping-the-matterhorn.html
https://www.sensefly.com/user-cases/mapping-the-matterhorn.html
http://www.sharelidar.com/
http://sigeom.ch/
http://sketchfab.com/
http://dels.nas.edu/resources/static-assets/besr/miscellaneous/MSC/2015/3DEP_Stoker.pdf
http://dels.nas.edu/resources/static-assets/besr/miscellaneous/MSC/2015/3DEP_Stoker.pdf
http://dx.doi.org/10.3133/cir1399
http://dx.doi.org/10.3133/cir1399
http://dx.doi.org/10.3133/cir1399
http://www.surfaceandedge.com/
http://www.surfaceandedge.com/
http://threejs.org/
http://udserver.euclideon.com/demo/html5_viewer.html
http://udserver.euclideon.com/demo/html5_viewer.html
http://www.veesus.com/veesus/index.php
http://www.veesus.com/veesus/index.php
http://www.voxelquest.com/
http://dx.doi.org/10.2312/SPBG/SPBG07/037-045
http://dx.doi.org/10.2312/SPBG/SPBG07/037-045
https://www.khronos.org/registry/webgl/extensions/
https://www.khronos.org/registry/webgl/extensions/
https://www.khronos.org/registry/webgl/specs/1.0/
https://www.khronos.org/registry/webgl/specs/1.0/
http://www.weiss-ag.org/
https://en.wikipedia.org/wiki/Transverse_Mercator_projection
https://en.wikipedia.org/wiki/Transverse_Mercator_projection

[75] Michael Wimmer and Claus Scheiblauer. “Instant Points”. In: Proceedings Sym-
posium on Point-Based Graphics 2006. Eurographics. Boston, USA: Eurographics
Association, July 2006, pp. 129–136. isbn: 3-90567-332-0. url: http://www.cg.
tuwien.ac.at/research/publications/2006/WIMMER-2006-IP/.

[76] Matthias Zwicker et al. “Surface Splatting”. In: Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’01.
New York, NY, USA: ACM, 2001, pp. 371–378. isbn: 1-58113-374-X. doi: 10.
1145/383259.383300. url: http://doi.acm.org/10.1145/383259.
383300.

84

http://www.cg.tuwien.ac.at/research/publications/2006/WIMMER-2006-IP/
http://www.cg.tuwien.ac.at/research/publications/2006/WIMMER-2006-IP/
http://dx.doi.org/10.1145/383259.383300
http://dx.doi.org/10.1145/383259.383300
http://doi.acm.org/10.1145/383259.383300
http://doi.acm.org/10.1145/383259.383300

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Definition
	Contributions
	Structure of the Work

	Related Work
	Rendering Massive Point Clouds
	Web-Based Massive Point Cloud and Voxel Rendering
	Desktop-Based Massive Point Cloud And Voxel Rendering
	High-Quality Point-Based Rendering

	Data Structure
	Overview
	Modifiable Nested Octree
	Potree's Octree Structure
	Octree Traversal and Visible Node Determination

	Point Cloud Rendering
	Point Attribute Coloring
	Point Splatting
	Determining Point Sizes
	Eye-Dome Lighting

	Implementation and Features
	WebGL
	Asynchronous and Parallel Execution
	Tools and Interaction
	Georeferencing
	Data storage

	Results
	Performance
	Applications
	Showcase

	Conclusion and Future Work
	Bibliography

