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Kurzfassung

Die Analyse von unbekannten, möglicherweise böswilligen, ausführbaren Dateien wird
als “Malware Analyse” bezeichnet. Dies ist allerdings immer eine Gratwanderung zwis-
chen einer möglichst hohen Genauigkeit der Analyseergebnisse und der gleichzeitigen An-
forderung, dies mit einem möglichst geringem Aufwand zu bewerkstelligen. Um diese Auf-
gabe möglichst effizient gestalten zu können, werden Hilfsmittel (“Tools”) benötigt, die
einerseits eine detaillierte Analyse ermöglichen, andererseits aber nur signifikante Informa-
tionen präsentieren, um Analysten rasch einen guten Überblick über die Funktionsweise des
Testobjekts bzw. dessen Kernbereiche, also zum Beispiel den Replikationsmechanismus,
zu ermöglichen.

Die beiden gebräuchlichsten Methoden - statische und dynamische Analyse - haben
beide jeweils ihre Stärken und Schwächen. Eine statische Analyse kann durch “obfus-
cation techniques” (Methoden, die das Disassemblieren von Maschinencode empfindlich
erschweren) nahezu unmöglich gemacht werden. Mit Hilfe der dynamischen Analyse ist es
schwer festzustellen, wie sich das Testobjekt unter wechselnden Umständen verhält (z.B.
Benutzereingaben, Systemzeit, das Vorhandensein und Nicht-Vorhandensein bzw. der In-
halt von bestimmten Dateien, Verfügbarkeit bzw. Status von Netzwerkressourcen, etc.).
Um mit Hilfe der dynamischen Analyse unterschiedliche Ausführungspfade zu extrahieren,
muss die Interaktion des Testobjekts mit seiner Umgebung manipuliert werden, womit
indirekt das Testobjekt selbst manipuliert wird. Wie diese Interaktion stattfindet ist im
Wesentlichen gut dokumentiert - mit einer Ausnahme: der Zugriff auf netzwerkbasierte
Ressourcen.

In dieser Diplomarbeit wird beschrieben, wie von Usermode Programmen auf (socket-
basierte) Netzwerk Ressourcen auf system-call Ebene zugegriffen wird, wie diese Zugriffe
einerseits beobachtet, andererseits manipuliert und - für das Testprogramm nicht erkennbar
- imitiert werden können. Außerdem wird beschrieben, welche Möglichkeiten multithreaded
Programme zur Synchronisation der Threads haben und wie diese Möglichkeiten ebenfalls
imitiert werden können.



Abstract

Malware analysis is the process of extracting the behaviour of an unknown executable.
This task is always a trade-off between the effort invested and the accuracy of results. To
achieve high efficiency, tools should provide only the relevant actions of the program. The
goal is to quickly help the analyst find and understand the core functionality (e.g., how
the exploit or the replication mechanism of a virus is implemented).

The two most common techniques for analyzing unknown executables - static and
dynamic analysis - have both advantages and drawbacks: a static analyst has to face the
fact that there are many obfuscation techniques, making it difficult to extract the core
functionality. For dynamic analysis, it is difficult to determine how the executable would
behave under different circumstances and in a different environment (e.g., user input,
system time, existence or non-existence of certain files and their contents, availability and
interaction with network resources). To determine different execution paths with dynamic
analysis, the interaction with the environment could be manipulated, and with it the test
subject. This interaction is mostly well-documented and relatively easy to track, with one
exception: networking.

In this thesis, I describe my research on how user-mode programs under Windows XP
use network resources via sockets on the system-call level, how the communication via
sockets can be intercepted, manipulated and imitated for a dynamic analysis, and how
multi-threaded applications can synchronize their (network) activities.
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the courses “Internet Security” and “Internet Security 2”, which were among the most
interesting I took at university and sparked my interest in IT Security. Furthermore, I like
to thank them for their constant patience and their support.



Contents

1 Introduction 1
1.1 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Basic Concepts 4
2.1 Malware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Malware analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Dynamic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 TTAnalyze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.1 Monitoring the Dynamic Behaviour . . . . . . . . . . . . . . . . . . 7
2.3.2 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 The Windows Operating System 11
3.1 User Mode vs. Kernel Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 System Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Objects and Handles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Useage of System Calls and Object Handles . . . . . . . . . . . . . . . . . 14

3.5.1 NtCreateFile() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5.2 NtWriteFile() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.6 Tools for Analyzing Windows . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6.1 WinDbg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Networking under Windows 21
4.1 OSI Reference Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.2 TCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.3 UDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.4 ICMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

i



4.3 Implementation of Networking in User Mode . . . . . . . . . . . . . . . . . 27
4.3.1 WSAStartup() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2 socket() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.3 gethostbyname() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.4 connect() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.5 send() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.6 recv() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Manipulating the Test Subject 31
5.1 Manipulating System Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.1 Hooking System Calls . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.2 Manipulating the Result of System Calls . . . . . . . . . . . . . . . 33
5.1.3 Virtualization of System Calls . . . . . . . . . . . . . . . . . . . . . 33

5.2 Reseting Network Connections to a Previous State . . . . . . . . . . . . . . 33
5.2.1 Where to Manipulate the System . . . . . . . . . . . . . . . . . . . 34
5.2.2 Where to Virtualize the Network in User-Mode . . . . . . . . . . . 35

6 Networking at System Call Level 37
6.1 System Calls for Networking . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1.1 NtDeviceIoControlFile() . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1.2 NtWaitForSingleObject() . . . . . . . . . . . . . . . . . . . . . . . . 39
6.1.3 NtClose() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Chronology of AFD Control Codes . . . . . . . . . . . . . . . . . . . . . . 40
6.2.1 socket() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2.2 connect() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.3 send() and recv() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.4 Error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.3 IoControlCodes for AFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3.1 AFD BIND (0x12003) . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3.2 AFD CONNECT (0x12007) . . . . . . . . . . . . . . . . . . . . . . 42
6.3.3 AFD SEND (0x1201F) . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3.4 AFD RECV (0x12017) . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3.5 AFD SELECT (0x12024) . . . . . . . . . . . . . . . . . . . . . . . 44
6.3.6 AFD UDP SEND (0x12023) . . . . . . . . . . . . . . . . . . . . . . 45
6.3.7 ICMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.4 Synchronisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.4.1 Waiting for Event Objects . . . . . . . . . . . . . . . . . . . . . . . 46
6.4.2 I/O Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.4.3 Replaying Synchronisation . . . . . . . . . . . . . . . . . . . . . . . 48

6.5 Local Procedure Call (LPC) . . . . . . . . . . . . . . . . . . . . . . . . . . 49

ii



7 Implementation 50
7.1 Hooking Network Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.1.1 Changes of the Generator . . . . . . . . . . . . . . . . . . . . . . . 50
7.1.2 Manual Decoding Function Parameters . . . . . . . . . . . . . . . . 51
7.1.3 LPC - DNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.2 Virtualising Network Access . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.2.1 Changes of TTAnalyze for Virtualising . . . . . . . . . . . . . . . . 56
7.2.2 Record Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2.3 Replay Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.2.4 Simulation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8 Evaluation 64
8.1 Mode of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

9 Future Work and Conclusion 68
9.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
9.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

iii



List of Figures

3.1 System Module Dependencies [1] . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Screenshot from WinDbg, debugging the Internet Explorer . . . . . . . . . 17

4.1 Schema of the OSI Reference Model . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Implementation of TCP/IP in the OSI Reference Model [2] . . . . . . . . . 25
4.3 The TCP three-way handshake [2] . . . . . . . . . . . . . . . . . . . . . . . 26

iv



Chapter 1

Introduction

Security is becoming a more and more relevant topic. Even Microsoft has recognised the
increasing relevance of security1. Campaigns such as “Month of Browser Bugs (MoBB)” [3]
demonstrate in an impressive way that software vendors such as Microsoft are not able to
keep track with the increasing numbers of exploits. Obviously, not only Microsoft has such
problems; the more famous a software becomes, the more interesting target it becomes
for crackers2. For example, as the popularity of Mozilla Firefox is growing, the more
vulnerabilities are published [4], although it seems to be more simple to find vulnerabilities
in Microsoft’s Internet Explorer - the “MoBB” reported 25 out of 31 bugs for this browser.

Most users feel uncomfortable with this situation because they do not possess the
necessary knowledge about how to use resources such as the Internet in a safe way3 or to
recognise an attack they are a target of. Therefore, security aware users use third party
products like virus scanners, anti-spyware tools, personal firewalls or tools for detecting
potential malicious software, such as Hijackthis [5]. Obviously, scanners for detecting
malware need to know the malware samples they have to detect. Technically spoken they
need a signature of a malware sample to identify these malware samples with an adequate
certainty4. Therefore, it is essential for the vendors of such scanners to collect and analyze
new malware samples to be able to provide up to date signatures for their customers.

s execution. Furthermore, we wish to reset the test-executable in user-mode only, not
in kernel mode (and with it the whole system), mainly because of performance reasons.

The goal of this thesis is to describe, how TTAnalyze was enhanced with the ability to

1This can be observed with e.g.,the new operating system Windows Vista: in contrast to Windows XP,
in Windows Vista new users are not per default system administrators; furthermore, by the implementation
of UAC (User Account Control) for reducing the rights of processes, thus, e.g., the Internet Explorer has
less rights than the user executing it

2I explicitly use “cracker” and not “hacker”, because a “hacker” only tries to use a system in a way
that it was not designed for, whereas a “cracker” will use systems in a way they were not designed for to
harm others and profit himself

3e.g., not to surf as system administrator at unknown web pages using a vulnerable browser
4There are approaches (e.g., heuristic analysis) to identify malware without such signatures, but these

have currently to much drawbacks (e.g., high rates of false positives) to solve this problem in general [6].
Although, for some areas (e.g, macro viruses) heuristic analysis is essential for modern scanners
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virtualize network traffic. Furthermore, some documentation of undocumented windows
internals that have been observed during the implementation of these enhancements is
provided.

1.1 Structure of this Thesis

Chapter 2, “Basic Concepts”, provides basic concepts that are necessary for further reading:
the terms malware and malware analysis are introduced. Additionally, a short description
of TTAnalyze is presented.

Chapter 3, “The Windows Operating System”, covers an introduction to selected topics
referring to the Windows operating system such as system calls, objects and handles.
With a short example, it is shown how a simple user mode program implements its core
functionality with system calls . At the end of this chapter a short introduction to WinDbg,
the Windows Debugger, is given.

Chapter 4, “Networking under Windows”, presents the basics for networking under
Windows. A short description of the OSI model and protocols discussed later in this thesis
are given. Again, with a short piece of code an introduction is given how networking is
implemented under Windows with the aim of Winsock.

Chapter 5, “Manipulating the Test Subject”, discusses the different possibilities, where
a test-subject executed in TTAnalyze could be manipulated, so that a changed environment
for this test-subject can be virtualized. For networking it is discussed, where in user-mode
such a manipulation could take place.

Chapter 6, “Networking as System Call Level”, describes how networking is imple-
mented at system call level. This includes a description of the used system call, an example
how a request/response is handled down to system call level, and a detailed description of
the most relevant control codes used by AFD.

Chapter 7, “Implementation”, describes the most interesting parts of the implementa-
tion and how specific problems were solved.

1.2 Terminology

Virus The term virus is mostly used as equivalent to Malware, but we use this term like
the classic definition by Frederick Cohen.

“A computer virus is a program that can infect other programs by modi-
fying them to include a possibly evolved copy of itself... A virus need not
be used for evil purposes.” [7]

Malware is a term used general for software that has a functionality that the user is not
aware of or does not wish. This term will be discussed detailed in Chapter 2.1. In
contrast to a Virus, Malware must not modify or infect other programs, instead it
can be, e.g., a stand-alone program.

2



Rootkit Rootkit technologie can be used by any program, in particular by malicious
programs (i.e., by malware in general and therefore by viruses too).

“Rootkits are not, in and of themselves, malicious. However, rootkits can
be used by malicious programs . . . A rootkit is a set of programs and code
that allows a permanent or consistent, undetectable presence on a com-
puter.” [8]

Test-subject The term test-subject references the executable file, that is executed in and
analyzed by TTAnalyze.

Handle is a 32 bit integer that acts as user-mode representation for a kernel-mode object.

1.3 Goals

The basis for this work is TTAnalyze [9], a tool for dynamic malware analysis. TTAnalyze
executes and analyses portable executable (PE) files [10] in an emulated environment.

To make dynamic analysis more sophisticated, we wish to extract the behaviour of the
executable under different conditions, i.e., how does the executable behave if the in- and
output in the broadest sense (e.g., reading from files, network access) change. For this,
we manipulate the test subject and test how it behaves under different circumstances. To
do many such tests in a relative short amount of time, we need a facility to reset the
test-subject to a previous state in it

3



Chapter 2

Basic Concepts

In this chapter an introduction to topics this thesis is based on is given, such as malware,
malware analysis, and TTAnalyze.

2.1 Malware

Malware (short for Malicious Software) is a general term for software with malicious intents,
such as misusing resources of an attacked computer for, e.g., sending spam or spreading
itself, stealing information such as credit card numbers, etc. Malware can be divided in sub
categories such as viruses, worms, spyware, trojan horses, etc, but not all malware samples
can be mapped exactly to a single category, because their behaviour and goals are part of
several categories. Malware is an increasing threat, the number of new samples that are
“released” every day get more and more. Thus, for virus scanner vendors it is more and
more difficult, to keep pace with new malware samples.

On the other (“crackers”) side, it is relative easy to create malware without a deep or
even any understanding of the used technologies. There are many code generators and
“toolkits” available, which create new malware without that the “user” of these tools ever
has to write even a single line of code. These tools have different levels of sophistication -
more advanced ones use technologies like rootkits, self-modifying code, etc.

It is some kind of strange luck that most of the malware samples are created by these
toolkits1. Many of these malware samples can be associated with a particular toolkit, and
thus, it is more easy to create a signature, which can be used by virus scanners to detect
this malware.

First of all, it is important to collect samples of a new type of malware and to recognise
as early as possible how dangerous and “infective” a new malware sample is. The scope
goes from samples that are not able to survive in the wild up to sample that cause an
major “break out”. For these requirements, the most effective solutions are honey pots.
Honey pots simulate vulnerable systems so that malware is able to attack these systems.
First, new malware samples can be collected this way. Furthermore, the number of attacks

1and not all malware samples are written by high-sophisticated crackers
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from a new malware is a good indication about how dangerous this new sample is, and
therefore, honey pots can help to install “early-warning-system” for major breakouts.

The next step is to generate a signature of the new malware sample which is needed
by virus scanners to detect and eliminate running and/or attacking malware. This task
should be finished as quickly as possible, because new appearing malware samples are,
in particular at major out-breaks, reproducing themselves aggressively. Therefore, the
probability to become a target is high. Additionally, the more PC’s are protected, the less
the malware spreads.

For the task of creating a signature it is essential to know what the malware sample is
doing, e.g., how the replication mechanism is implemented, how the attack on the system
is accomplished, which modifications of the system are done etc. This task is named
“malware analysis”. There are different approaches to determine the behaviour of an
unknown executable. These are discussed in the next section.

Obviously, even after a signature has been created, there are more challenges to be
solved. These signatures have to be distributed, particular modem users have problems
with the increasing traffic of signatures, caused by the increasing numbers of malware.
Furthermore, malware scanner vendors have to improve the performance of the scanning
algorithms, because the databases are growing faster and faster.

2.2 Malware analysis

As described above, malware analysis is needed to generate signatures, which are needed
to detect and eliminate malware. The results of malware analysis can also be used to find
and fix vulerabilities of attacked software. The manual analysis of malware is a tedious
task, therefore tools exist that help the analyst to do his job faster. The difficulties for
such tools is to reduce the information to the most relevant one. These tools can be
distinguished by their approach, how the analysis is done: static and dynamic analysis.
These two approaches are described in more detail in the next two sections.

2.2.1 Static Analysis

The static analysis determines the behaviour of an executable without executing it. To
perform such an analysis, the PE (portable executable) file is needed, so that it can be
reverse engineered (i.e., the assembly code is reviewed). One of the most famous tools for
doing this is IDA Pro [11].

This technique has some major problems:

• Assembly code is not very readable. There are no syntactic structures like in high-
level programing languages such as conditional statements, loops, functions2, vari-
ables, etc.

2As long as functions are not exported, which is in particular for malware rarely the case
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• It is difficult to determine, which parts of a PE file are used frequently, which are
used only rarely (e.g., error handling), or which parts are the most important one,
i.e., which contain the replication mechanisms, exploits etc.

• If techniques like self-modifying code or encryption are used, the code is not available
from the beginning but has to be discovered in a tedious way.

• Techniques such as code obfuscation make it nearly impossible to reassemble the
complete executable in one single step. Code obfuscation inserts e.g., junk data, and
many conditional and unconditional jumps which cannot be resolved without keeping
track of the runtime status of the executable.

2.2.2 Dynamic Analysis

For a Dynamic analysis the test-subject is executed and it is tried to determine how the
running executable affects its environment, i.e., which actions are executed. The problem
of dynamic analysis is, how this is done. There are mainly two approaches:

• The status of a system is saved, before the test-subject is executed. After the exe-
cution, the actual status of the system is compared with the saved one. Therefore,
with this approach only the changes in the system can be determined, and not how
the changes have been achieved. Consider a virus that exploits an unknown vulner-
ability: with this analysis approach it is impossible to discovered how this exploit is
working. Furthermore, there are performance restrictions, which result from a high
effort for saving and comparing complete system stati.

• The test-subject is executed in a (mostly emulated) system, and all actions are mon-
itored. This is the approached used by TTAnalyze, so it is discussed later in more
detail.

Executing unknown executables in an emulated environment is not a new idea: This is
the technique behind the the most powerful weapon of virus scanners: emulation [6]. Virus
scanners use a “lightweight system” because they have stringent performance restrictions.
Obviously, this approach in general has some problems too:

• It is impossible, to create an emulated environment that behaves exactly like a real
system. In the emulated systems used by virus scanners it is more easy for the
executed subject to detect that it is running in an emulated environment than in
TTAnalyze. Obviously, even in a more advanced, full fledged system such as QEMU
it is possible for the test-subject to detect such an emulated environment.

• With this approach, only one possible execution path can be analysed. If some parts
of the malware are only executed under certain circumstances (e.g. the replication
mechanism is only started at the first of every month), they cannot be analyzed.
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2.3 TTAnalyze

As already mentioned, this thesis is based on TTAnalyze, which was developed at Secure
Systems Lab at the TU Vienna, mainly by Ulrich Bayer. For a better understanding of
this thesis, a short description of this tool is given, so that the reader is able to understand
the extensions to this tool3.

TTAnalyze analyzes PE files with a dynamic approach. The test-subjects are executed,
but not in a “real” system. This would be a dangerous task, because the malware could
infect the test system or use the test system for spreading. TTAnalyze uses an emulated
system for the execution, where the test-subject is executed by a virtual processor in a
virtual system. This virtual system can be controlled and reset to the original state after
the analysis. Thus, every new test-subject is executed in a “clean” system.

Obviously, the execution in an emulated system is not as efficient as on a real processor,
but in the emulation we have full control over the system and in particular the test-subject.
The system can be stopped at any state of execution to take a deeper look at the current
state of the system. For this, the memory and the CPU states can be read, and even
a manipulation of the current state is possible. Obviously, emulation does not have only
advantages. As already mentioned, the execution in an emulated system is much more time
consuming than in a real system. The emulation software used by TTAnalyze is QEMU,
which reduces the performance of execution approximately by a factor 10. Furthermore,
an emulated system will never behave as a real system. It would be difficult to correctly
implement all operation codes a CPU is supporting.

Emulation is not a new idea. Virus and malware scanners use this technique for a
so called heuristic analysis, to get a basic understanding what an executable is doing.
Obviously, out of performance restrictions, they cannot execute it completely (e.g., until
it is terminating) in a full system. For such an emulation there a lightweight systems used
that implement a rudimentary subsystem.

2.3.1 Monitoring the Dynamic Behaviour

With emulation we have a powerful instrument to execute any executable in a secured
environment. For a dynamic analysis, we determine how the executable behaves and how
it interacts with its environment. In TTAnalyze, all actions are monitored via a defined
set of function calls. For finding this set of functions so that all actions can be monitored,
there are two contrary approaches4 - hooking “high level” vs. “low level” functions:

Hooking documented API functions

The first possibility would be, to hook the exported programming API by Windows, which
would include many functions. The main advantage for this high level approach is that

3For a detailed description, download the paper from http://seclab.tuwien.ac.at/publications.html
4It is theoretically possible, to find approaches between these two, but they would only have more

disadvantages of the two quoted ones and less advantages
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the function that would have to be hooked are well documented. Obviously, there are
fundamental disadvantages:

• Not all system calls provided by the Windows Kernel and therefore available to user
mode programs are exported by the documented Windows API, e.g., the system calls
for LPC5 are not directly exported (although they are used indirectly by some API
libraries, e.g., Winsock).

• Malware does not have to use high level functions. If the test-subject is using more
low-level functions, it could bypass the hooking mechanism. Additionally, if the
test-subject uses system calls that are not exported by high-level functions, it would
bypass the hooking mechanisms too.

• There are many APIs with many functions available for user-mode programs. Mon-
itoring all these functions would result in a high coding effort.

Hooking Low Level functions

To avoid the disadvantages of the approach discussed above, more low-level layered func-
tions could be monitored. The lowest level in user-mode that can be hooked are the
functions exported by ntdll.dll. This DLL is a layer for system-calls, to provide system-
calls as “normal” function calls and therefore making them available in languages such as
C/C++ without inline assembler. Thus, by hooking functions exported by ntdll.dll we
are almost hooking the system calls itself.

Obviously, hooking functions at this low level has one important disadvantage: the
functions from ntdll.dll are not documented officially. For most functions, including
e.g., reading and writing from and to files, editing the registry, starting processes, etc.,
there exists some unofficial documentation [12]. Unfortunately, for other essential tasks
such as networking, there does not exist any documentation about how it is implemented
with system calls.

2.3.2 System Architecture

TTAnalyze is made up of several modules. QEMU is responsible for the system emula-
tion, InsideTM implements the communication between the virtual system and the system
around the virtual system, the Generator creates code, which is responsible for reading the
function parameters from the stack, and the Analysis Framework interprets the informa-
tions, gained by the rest of the modules.

Qemu

QEMU is a machine emulator: it can run an unmodified target operating system (such as
Windows or Linux) and all its applications in a virtual machine [13]. For TTAnalyze there

5Local Procedure Call for interprocess communication. This technique is discussed in section 6.5
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have been introduced some modifications such as a packet filter (so that it is possible to
control which target should be available for the test-subject, because we do not wish to
spread malware in an uncontrolled way), and a call back mechanism to TTAnalyze. QEMU
is used in the same process as TTAnalyze, so it has been transformed from an executable
to a shared library (DLL). TTAnalyze uses functions exported by this DLL to determine
the behaviour of the virtual system.

QEMU boots from a virtual hard disk that is saved as file on the workstation executing
TTAnalyze. For a quick startup the virtual operating system is not booted for every
analysis, instead the state of a booted system is saved in a snapshot (which represents the
current state of the RAM of the virtual system, the CPU state, and modifications to the
hard disk), which can be loaded quickly.

InsideTM

InsideTM stands for “Inside The Matrix” and refers the parts of TTAnalyze running inside
the emulated system. InsideTM is a bridge between the the emulated system and the parts
outside of the emulated system.

InsideTM consists of two parts. The first part is a RPC Server waiting for requests
from TTAnalyze in an endless loop. This RPC connection is used for, e.g., file up- and
downloads, starting processes inside the emulated system, etc. Therefore, the RPC Server
is responsible for loading and starting the test subject.

The second part is a driver that runs inside the kernel of the emulated system and
therefore has access to all resources. During execution, the analysis is restricted to the
test subject - all other processes are not monitored. The differentiation between different
processes should be done quickly, because it has to be done often (with every translation
block). For the distinction of the target process out of all other processes, the PDBR (Page
Directory Base Register) is used. The PDBR contains the address of the page directory for
each process in the kernel, thus, it is unique for each process. The considerable advantage
of this technique is that the page directory base address is saved in the first 20 bits of the
CR3 register (thus, the page directory must be aligned to 4KB boundaries) [14], so it can
be accessed quickly.

After starting the test subject, only the process ID of the process is known (which is
unique too, but it would require a more complex algorithm to determine the process ID of
the currently running process). The driver is responsible for getting the PDBR from the
process ID.

Generator

Reading the function parameters of a hooked function from the stack is simple, as long as
only simple data types (e.g., integers, floats, etc.) are used. This is not always the case,
because there are pointers, structures, which may recursively contain pointers, structures
and so on. The generator is a framework that helps to avoid writing much code resolving
these references.
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As input the Generator needs the function declarations and a definition of all structures
that are contained in these declarations. Therefore, the Generator is executed during build-
time and generates code that is compiled to run during the execution of TTAnalyze. The
generated code reads the function parameters with its whole structures (as long as these
these can be defined statically) from the virtual system and provides these informations to
the analyzing part. The Analysis-Framework is notified about hooked function calls and
all function parameters are submitted.

Analysis-Framework

The Analysis-Framework is the core part of TTAnalyze. It keeps track of all functions that
are called and generates out of this information a report. Therefore, all the other parts
only exist to support this module.

The Analysis-Framework is divided into several parts, whereas every part is responsible
for a defined field of activity, e.g., the File-Analyzer for all file activities, the Network-
Analyzer for all activities corresponding to network, etc. These analyzers request notifica-
tions of function calls they need to keep track of, e.g., the File-Analyzer of NtCreateFile(),
NtWriteFile(), etc., the Network-Analyzer of NtCreateFile(), NtDeviceIoControl-

File(), etc. At the analysis end (i.e., if the test subject terminates or a defined timeout
occurs) the Analyzers are requested to generate a report out of their collected data.
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Chapter 3

The Windows Operating System

Giving a full introduction to the Windows Operating System is not possible on these few
sides, but we will give a short instruction to those parts that will be needed to under-
stand the rest of this thesis (there are many good books offering official and unofficial
documentation [1, 12, 15, 16]).

3.1 User Mode vs. Kernel Mode

Like in most operating systems, applications run in a lower privileged mode than the
operating system itself. Windows is using two different processor access modes (although
most processors windows is running on support more than these two), to protect the critical
operating system data. These two access modes are called user mode and kernel mode. As
the name reveals, the Windows kernel runs in kernel mode, managing all resources, granting
or rejecting access to these resources for user mode programs. The kernel is responsible for
managing all resources such as memory, access to network and files, etc. The managing of
devices such as network adapters, graphic cards, etc. is done by so called device drivers.
These have to run in kernel mode, because they access the devices, which is not granted
from user mode. Not even device drivers access the devices directly, this is done via the
HAL (Hardware Abstraction Layer).

Programs are mainly running in user mode. If they need access to any resource, they
have to call the system to provide the needed resources. For such an system-call, the CPU
switches to the more privileged level, so that the requested operation can be executed. For
switching to the more privileged kernel mode, a well defined call-gate has to be passed,
which controls the actions to be executed. The kernel itself checks, if the calling program
is allowed to execute the requested action, thus, there is no way to switch to the more
privileged level bypassing this check by the kernel.
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3.2 Architecture Overview

Windows was designed originally for running different subsystem, i.e., POSIX, OS/2 (re-
moved with Windows 2000), and Windows. The access of system resource is layered through
one or more subsystem dynamic-link libraries (DLLs). The role of the subsystem DLLs is
to translate a documented function into the appropriate internal (and generally undocu-
mented) Windows system service calls [15]. These system service calls are implemented
in the ntdll.dll, and there is some unofficial documentation for most of the functions,
exported by this DLL [12]. There are some system calls that are not handled by the
ntdll.dll, but all of these are for graphical programming purposes. Thus, for analyzing
the behaviour of a malware these are not interesting.

kernel32.dll

bootvid.dllhal.dll

win32k.sys

ntdll.dll

advapi32.dlluser32.dll

rpcrt4.dllgdi32.dll

ntoskrnl.exe

User Mode

Kernel Mode
INT 2Eh      or     SYSENTER

Figure 3.1: System Module Dependencies [1]

The DLLs kernel32.dll, advapi32.dll, user32.dll, and gdi32.dll are the core
Windows subsystem, the exported functions are well documented, e.g., at the MSDN web
pages [17]. Microsoft tries to keep these interfaces as constant as possible, so that it should
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be as simple as possible to transform Windows applications from one version to another
(or even from one service pack to another). In more low-level DLLs undocumented changes
are possible and therefore, these should not be used by user-mode programs.

Function calls accessing files, threads, networking etc. are passed into the kernel via
ntdll.dll, for graphics there are faster solutions, thus, gdi32.dll is able to call the
win32k.sys directly, without using the general solution over ntdll.dll.

The ntdll.dll is the most interesting one for our purposes. This DLL implements the
system-calls and out of reasons discussed later, this is the best interface for placing hooks
monitoring the behaviour of user-mode programs. There is no official documentation for
this DLL, but [12] provides some documentation for the ntdll.dll under Windows 2000.
For the main parts, this documentation can be used for Windows XP too. As mentioned
above, for low-level DLL’s such as ntdll.dll there is no guarantee that the interface keeps
constant between operation system versions and even service packs and that the behaviour
of all functions keeps the same.

ntoskrnl.exe contains the main part of the operating system: the executive, which
is responsible for memory management, process and thread management, security, I/O,
networking, interprocess communication and the kernel, containing the low-level functions
for e.g. thread scheduling, interrupt and exception dispatching, synchronization etc.

Furthermore, ntoskrnl.exe is responsible for loading device drivers, managing the ac-
cess to the used hardware. This hardware is not accessed directly, but through a additional
layer, called the HAL (Hardware Abstraction Layer), implemented in the hal.dll.

3.3 System Calls

The term system-call has been used in the preceding sections, without defining it in more
detail. To execute such a system-call, there are two possibilities:

• Executing a software interrupt: INT 2Eh. This is a relative slow approach, used on
older CPUs that do not support the second approach

• Executing the SYSENTER instruction. This approach is efficient, because there is no
interrupt that has to be executed and handled.

In both cases, the eax register is filled with a number, representing the function to
execute1. This number is an index in the Interrupt Descriptor Table (IDT), containing
function pointers to the corresponding kernel mode functions, which are called after the
switch to kernel-mode. The kernel copies the function parameters from the user-mode
stack to only from kernel-mode accessible memory (thus, the memory the kernel is working
on cannot be manipulated from user-mode, which could be exploited from malicious code).

Such a system-call is now explained with a short example function from ntdll.dll -
NtDeviceIoControlFile(), which will be discussed in more detail later. Reassembling
this function reveals the following assembler code:

1This numbers depend on the used system (Windows 2000, XP) and on the build version
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ntdll!NtDeviceIoControlFile
1 mov eax ,42h
2 mov edx ,offset SharedUserData!SystemCallStub (7 ffe0300)
3 call dword ptr [edx]
4 ret 28h

Listing 3.1: Reassembled function ntdll!NtDeviceIoControlFile()

In line 1, the number for the called function is loaded to the eax register, which is 0x42
for NtDeviceIoControlFile(). In line 2, the address of the system-call stub is loaded to
the edx register. This function pointer is saved in the symbol SharedUserData!System-
CallStub, which is in this case at address 0x7FFE0300. This variable is filled at sys-
tem startup, depending on the system Windows is running - for systems supporting the
SYSENTER instruction it is a pointer to ntdll!KiFastSystemCall.

ntdll!KiFastSystemCall
1 mov edx ,esp
2 sysenter

Listing 3.2: Reassembled function ntdll!KiFastSystemCall()

This function only copies the stack pointer to the edx register and executes the SYSENTER
instruction, which executes the requested function as described above in the kernel.

3.4 Objects and Handles

Objects are implemented as statically defined structures in the kernel, represent different
types of runtime objects, such as threads, files, and communication ports. These objects
are accessible only from kernel-mode, user-mode programs cannot use them directly. As
representation for these objects, user-mode programs receive handles, which are 32 bit
integers. These handles are unique for a process (they are unique for all handles, not only
for one type of handle). Thus, the handles for e.g., a thread and a file will never have the
same value. Handles are received by user-mode programs via an accordant functions, such
as NtCreateFile(). There are two “special handles” that can be used without creating an
object: 0xFFFFFFF represents the currently running process, and 0xFFFFFFFE represents
the currently running thread. If one thread wishes to supply a handle from itself, it can
use NtDuplicateObject(), using 0xFFFFFFFE as source handle.

The function NtClose() can be used to close handles. The impact of this system call
depends on the type of the closed handle: if the handle represents a file, this file is closed;
if the handle represents a thread, NtClose() will only make the handle itself invalid, the
thread is not terminated (for this NtTerminateThread() can be used).

3.5 Useage of System Calls and Object Handles

For a better understanding, the use of handles is demonstrated with a simple piece of code.
The function fileFoo() opens a file foo.txt and writes some bytes into this file.
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1 void fileFoo () {
2 FILE *file = fopen ( "C:\\foo.txt", "w") ;
3 fprintf ( file , "Hello World !\n" );
4 fclose ( file );
5 }

Listing 3.3: Writing to a file

In line 2, the file is created. The fopen() is linked to and executed by kernel32!

CreateFileA(). To create a file, the system call NtCreateFile() is executed.

3.5.1 NtCreateFile()

1 NTSATUS NtCreateFile(
2 OUT PHANDLE FileHandle ,
3 IN ACCESS_MASK DesiredAccess ,
4 IN POBJECT_ATTRIBUTES ObjectAttributes ,
5 OUT PIO_STATUS_BLOCK IoStatusBlock ,
6 IN PLARGE_INTEGER AllocationSize OPTIONAL ,
7 IN ULONG FileAttributes ,
8 IN ULONG ShareAccess ,
9 IN ULONG CreateDisposition ,
10 IN ULONG CreateOptions ,
11 IN PVOID EaBuffer OPTIONAL ,
12 IN ULONG EaLength
13 );

Listing 3.4: ntdll!NtCreateFile()

The OUT in Line 2 indicates that this parameter is used as out-parameter, thus, the
function will set a value. PHANDLE is a pointer to a handle (whereas a handle is as al-
ready mentioned a 32 bit integer). Therefore, if the function returns and signals success,
FileHandle will point to a handle, representing the created file (whereas “create” not nec-
essarily means that the file is created - it could have been opened with this function too).
For our function fileFoo() let the handle be e.g., 0x7E8.

In Line 3, DesiredAccess is a bit mask, defining the access, such as FILE READ ACCESS

0x1, FILE WRITE ACCESS 0x2, FILE APPEND DATA 0x4, and FILE EXECUTE 0x20 etc.
In Line 4, ObjectAttributes points to a structure, describing the requested object in

more detail. Among other things, this structure contains an unicode string ObjectName,
which is in our case "C:\foo.txt". The rest of the parameters are for the understanding
of our current example not relevant. Some of these are described later in the context of
other functions, see Section 6.1.1.

In Line 4 of our function fileFoo(), the obligatory “Hello World” is written to the
first line of our file. The fprintf() is executed by kernel32!WriteFile(), which itself
uses the system-call NtWriteFile().
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3.5.2 NtWriteFile()

NtWriteFile() looks similar to another function, NtDeviceIoControlCode(), which will
be discussed later in more detail. For now have a look at the parameters that are interesting
for the current example. For the parameter FileHandle in Line 2, the handle received by
NtCreateFile() is used, for our example 0x7E8. The string “Hello World” is standing
in the buffer, referenced by Buffer, the length of the buffer is defined by the parameter
Length in Line 9.

1 NTSTATUS NtWriteFile(
2 IN HANDLE FileHandle ,
3 IN HANDLE Event OPTIONAL ,
4 IN PIO_APC_ROUTINE ApcRoutine OPTIONAL ,
5 IN PVOID ApcContext OPTIONAL ,
6 OUT PIO_STATUS_BLOCK IoStatusBlock ,
7 IN PVOID Buffer ,
8 IN ULONG Length ,
9 IN PLARGE_INTEGER ByteOffset OPTIONAL ,
10 IN PULONG Key OPTIONAL
11 );

Listing 3.5: ntdll!NtWriteFile()

3.6 Tools for Analyzing Windows

The most important tool for this thesis was, beyond TTAnalyze, the Windows Debugger.
There are alternatives, such as SoftICE, but WinDbg [18] has been a good tool for our
purposes.

3.6.1 WinDbg

The Windows Debugger can be used for user-mode and for kernel-debugging session. Today
it is not possible to debug both user-mode and kernel-mode and it is currently unlcear if
it will be supported in future. This tool is updated frequently to consider new released
Windows operating system versions (e.g., for a new Service Pack).

User Mode Debugging

The screenshot of WinDbg in Figure 3.2 shows a debugging session for a TCP send, using
the Function NtDeviceIoControlFile() with the the AFD code AFD SEND (0x1201F).
This example will be discussed in detail in section 6.3.3.
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Figure 3.2: Screenshot from WinDbg, debugging the Internet Explorer
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Kernel Mode Debugging

Microsoft offers symbol files for its debugger, which offer informations about structures
that are not documented in an official way. We give a short example how to work with
WinDbg, and how Microsoft offers informations about officially undocumented structures.
We show, how to find the place, where the PDBR (described in section 2.3.2) is saved for
a specific process.

In Listing 3.6 it can be seen, how the command dt (display type) dumps the un-
documented EPROCESS structure. This information provides a good understanding of the
internal used structures of Windows.

0: kd> dt nt!_EPROCESS
+0x000 Pcb : _KPROCESS
+0x06c ProcessLock : _EX_PUSH_LOCK
+0x070 CreateTime : _LARGE_INTEGER
+0x078 ExitTime : _LARGE_INTEGER
+0x080 RundownProtect : _EX_RUNDOWN_REF
+0x084 UniqueProcessId : Ptr32 Void
+0x088 ActiveProcessLinks : _LIST_ENTRY
+0x090 QuotaUsage : [3] Uint4B
+0x09c QuotaPeak : [3] Uint4B
+0x0a8 CommitCharge : Uint4B
+0x0ac PeakVirtualSize : Uint4B
+0x0b0 VirtualSize : Uint4B
+0x0b4 SessionProcessLinks : _LIST_ENTRY
+0x0bc DebugPort : Ptr32 Void
+0x0c0 ExceptionPort : Ptr32 Void
+0x0c4 ObjectTable : Ptr32 _HANDLE_TABLE

[...]

Listing 3.6: Parts of the EPROCESS structure

To get the PDBR, we need to dump the KPROCESS structure:

0: kd> dt nt!_KPROCESS
+0x000 Header : _DISPATCHER_HEADER
+0x010 ProfileListHead : _LIST_ENTRY
+0x018 DirectoryTableBase : [2] Uint4B
+0x020 LdtDescriptor : _KGDTENTRY
+0x028 Int21Descriptor : _KIDTENTRY
+0x030 IopmOffset : Uint2B
+0x032 Iopl : UChar
+0x033 Unused : UChar
+0x034 ActiveProcessors : Uint4B
+0x038 KernelTime : Uint4B
+0x03c UserTime : Uint4B
+0x040 ReadyListHead : _LIST_ENTRY
+0x048 SwapListEntry : _SINGLE_LIST_ENTRY
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+0x04c VdmTrapcHandler : Ptr32 Void
+0x050 ThreadListHead : _LIST_ENTRY
+0x058 ProcessLock : Uint4B
+0x05c Affinity : Uint4B
+0x060 StackCount : Uint2B
+0x062 BasePriority : Char
+0x063 ThreadQuantum : Char
+0x064 AutoAlignment : UChar
+0x065 State : UChar
+0x066 ThreadSeed : UChar
+0x067 DisableBoost : UChar
+0x068 PowerState : UChar
+0x069 DisableQuantum : UChar
+0x06a IdealNode : UChar
+0x06b Flags : _KEXECUTE_OPTIONS
+0x06b ExecuteOptions : UChar

Listing 3.7: The KPROCESS structure

The KPROCESS structure is 0x6c bytes long (the last element starts at offset 0x6b and is
one byte long), the element after the Pcb in the EPROCESS structure starts at offset 0x6c,
therefore, dumping the KPROCESS structure obviously shows the beginning of the EPROCESS
structure.

At offset +0x018 the entry DirectoryTableBase can be seen. This looks like what
we are looking for. To be sure we start a kernel debugging session. To verify that the
DirectoryTableBase contains the value that will be loaded into the CR3 register (remem-
ber, we wish to identify a process in a efficient manner), we need a user-mode process
running into a breakpoint, finding the EPROCESS structure for this process in memory and
compare the DirectoryTableBase with the CR3 register. The values should be equal at
least for the 20 most significant bits2.

For kernel debugging a second workstation is needed3, which has to be connected via
e.g., a 1394er cable. We need a user mode process that e.g., opens a file. We set a
breakpoint bp nt!NtCreateFile and let the test process open a file. To assure that really
the expected test process has triggered the breakpoint4, we let the debugger display some
information of the current process. For this, we use the command !process. In Listing
3.8 we see parts of the output !process is delivering.

0: kd> !process
PROCESS 8533 fb38 SessionId: 0 Cid: 0620 Peb: 7ffd5000

2They will be equal for the complete DWORD, because during a process switch the
DirectoryTableBase is loaded directly in the CR3 register

3With WinDbg it is possible to start a kernel debugging session on the same host, but in this case
obviously no breakpoints can be set - it is impossible to halt the system for a breakpoint and simultaneous
explore the system with the debugger

4For kernel debugging the complete system is debugged, and therefore all running processes could
execute a nt!NtCreateFile and run into the corresponding breakpoint
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ParentCid: 00a4
DirBase: 06 c40280 ObjectTable: e25ecae0 HandleCount: 368.
Image: winamp.exe
VadRoot 8523 fe50 Vads 223 Clone 0 Private 4225. Modified 5564.

Locked 87.
DeviceMap e178fa80

[...]

Listing 3.8: The !process command

Note that our test-executable hit the breakpoint. Thus, we need to find the EPROCESS

structure for this process in memory - this is the value right after PROCESS - 8533fb38.
Dumping the memory reveals the following:

0: kd> dd 0x8533fb38
8533 fb38 001 b0003 00000000 8533 fb40 8533 fb40
8533 fb48 8533 fb48 8533 fb48 06 c40280 0003 d743
8533 fb58 00000000 00000000 00000000 00000000
8533 fb68 000020 ac 00000003 00000032 00000035
8533 fb78 8533 fb78 8533 fb78 00000000 00000000
8533 fb88 85 fcad48 860 f71d0 00000000 00000003
8533 fb98 06080008 00000000 32000000 00000000
8533 fba8 406392 c4 01 c71eb4 00000000 00000000

Listing 3.9: Dumping the EPROCESS structure

As mentioned above, the EPROCESS structure starts with no offset with the KPROCESS

structure. At offset +0x018 we hope to find our PBDR, which has a value of 06c40280, if
we look at the value of the CR3 register, we see that it has the same value. Therefore, we
found the place where the PDBR is saved in the Windows kernel internal structures. The
driver of InsideTM does exactly this at system runtime.
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Chapter 4

Networking under Windows

At the beginning of the Internet, Microsoft believed that networking was not important (in
contrast to e.g., BSD etc.). Therefore, a non-Microsoft browser - Mosaic (i.e., Netscape)
- was dominant. Microsoft developed the Internet Explorer relatively late (introduced it
with Windows 95). Today, networking is an essential part of Windows.

In this chapter the general basics about networking are discussed, starting with the OSI
Reference Model over the most used protocols for the daily use of the Internet, TCP, UDP,
and ICMP. In the following it is shown how networking is implemented with Winsock and
which functions for a simple request / response are used.

4.1 OSI Reference Model

The basis for the most used protocols is the OSI Reference Model (Open Systems Intercon-
nection Basic Reference Model). It is a abstract description of how networking should be
implemented to achieve platform independent communication channels. The OSI Model
was standardised in 1983 by the International Standards Organization (ISO).

The OSI Model describes a set of layers, whereas all are responsible for a concrete task,
but not all indications are used in the concrete implementations.

4.1.1 Layers

The Data to be transported over the network are handled down from Layer 7 (Application
Layer) to Layer 1 (Physical Layer), and are transported over the physical medium and are
transformed in reverse order back to Layer 7, where the data (bits - therefore zeros and
ones) can be used, depending on the concrete implemented protocol, e.g., as stream.

Layer 1 - Physical Layer

The Physical Layer is the physical infrastructure of a network, i.e., cables or another
transmission medium such as the air for Wireless LAN. Layer 1 receives the binary data
from higher layers and sends these over the physical medium.
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Figure 4.1: Schema of the OSI Reference Model

Layer 2 - Data Link Layer

The Data Link Layer is responsible for sending the data over the Physical Layer and is
the only layer that works both in software and hardware. For this, the data accepted
from higher layers are sent in frames over the Physical Layer. Therefore, it provides the
functionality to transfer data between two physical network devices, which are unique by
their physical address. The most famous example for the Data Link Layer is Ethernet, the
physical addresses for Ethernet are the so called MAC (Media Access Control) addresses.
The physical address is embedded by the manufacturer in the network devices, so the mac
address is unique on the network (every manufacturer has its own address space). The
Data Link Layer is sometimes called the Physical Address Layer, to regard the meaning of
the physical addresses.

At this Layer, data can only be sent between two physical connected devices. If more
than two devices are connected to a physical medium, the network device is able to separate
out unwanted data: data, which are not addressed to the physical address that the network
device is representing, are discarded. Switches are working at this layer: they remember
at which ports which MAC addresses are connected and transmit packets only to these
ports (in contrast to hubs, which spread the whole traffic to all ports, which reduces the
capacity of the network).

The data accepted from higher layers are divided into parts called frames, which contain,
e.g., for Ethernet a payload from 46 up to 1500 bytes. For Ethernet, the frame contains
a header, which contains informations such as source and destination MAC addresses
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and a checksum, for detecting errors. The frames passed down to the physical layer are
interpreted as pure binaries and sent over the physical device. The receiving host checks, if
the destination MAC address is equals to its own address, and if not, the frame is ignored.
If the MAC address matches, the header is removed and the rest of the data are passed to
the next higher layer.

Layer 3 - Network Layer

The Network Layer is entirely implemented in software, the hardware access is encapsulated
completely by the Data Link Layer. The Network Layer works with logical addresses, which
could be named software addresses too. Out of this, they do not need to be random (like
MAC addresses, which have to be unique), and can be defined by the user, e.g., in a
hierarchical form like IP addresses. Therefore, with the abilities of the Network Layer,
network traffic can be directed to a destination, of which the physical address is not known
and which does not have to be on the same (physical) network. With the ability of
hierarchical addresses it is possible to build large networks. These can be connected via
routers, which are smart devices that work on Layer 3. These devices do not blindly repeat
packets at Layer 1, instead they (try to) route the packets directly to their destination.
This results in much less collisions (on the Physical Layer) as if all packets would be send
broadcast.

Similar to the Data Link Layer, the data accepted from the higher layer are divided
into portions, called packets. These packets start with a header, containing the logical
source and destination address. The most famous implementation of the Network Layer is
IP (Internet Protocol), the corresponding addresses are IP addresses.

Layer 4 - Transport Layer

The Transport Layer is responsible for transferring the data transparent for higher layers.
It implements reliability (if provided by the implementing protocol), e.g., with a checksum
over the payload (the data to be transported). State- and connection oriented protocols
keep track of packets and retransmit packets that have been lost. Furthermore, protocols
at Layer 4 can implement ports, which allow more than one connection and therefore more
than one application to use a network device for several connections.

Layer 5 - Session Layer

The Session Layer is not used in most today dominating protocols (i.e., TCP, UDP, etc.).
The functionality that should be implement by Layer 5 is mostly implemented in Layer 7,
e.g., with http session cookies.

Layer 6 - Presentation Layer

The Presentation Layer is also commonly not used. It transforms data from one format to
another, e.g., an ASCII-coded file to an unicode file or transforming XML files to another
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format. Like the Session Layer, the Presentation Layer is rather theoretical, because most
of these transformations are done at Layer 7.

Layer 7 - Application Layer

The upperst layer is the Application Layer, where protocols define a way, how to access
resources through the web, e.g., http, ftp, ssh, etc.

4.2 Protocols

The concrete implementation of the OSI Reference Model are several protocols. In this
thesis, the focus is set to the protocols already mentioned: TCP, UDP and ICMP. These
are the protocols that are used in most Internet applications and therefore by malware too.

4.2.1 IP

The Internet Protocol is the implementation of OSI Layer 3, Network Layer. It provides
logical, “software” addresses with 32 bits (IPv4)[19] and 128 bits (IPv6)[20], whereas IPv4
is used today mostly, although IPv6 will be the protocol in future1. As shown in Figure
4.2, routers work at Network Layer and therefore at IP level.

4.2.2 TCP

TCP (Transmission Control Protocol) [21] is build on IP, the resulting combination of
protocols is referenced as TCP/IP Stack. TCP is a stateful, connection oriented protocol,
guaranteeing reliable in-order delivery of data from the sender to the receiver (or, if a
transport is not possible the sender is notified about a failure). TCP extends IP with the
ability of ports.

Connection oriented protocol means that for sending data over TCP a connection has
to be created. Stateful means that this connection is always in a definite state, so that
error can be detected, if the connection endpoints are not in the same state. These errors
provide the ability to detect packet lost and therefore are the basic for retransmitting
packets, until they arrive at the receiver.

In TCP (and, as we will see in UDP too) the endpoints of connections are represented
by sockets. Therefore, to create a connection a socket has to be created first. Such a
socket is connected to another socket, waiting for connection. The waiting socket is for
usual implemented as server socket, waiting for several incoming connections. The socket
initialising the connection is referenced as client socket.

TCP is the “core protocol” for the Internet today. It is the basic for many Layer 7
protocols such as http, pop3, imap, ssh, etc.

1The address space with 32 bits will become to small in near future - although not everybody has a
computer and a public IP, there are already more people on the world than IPv4 addresses could provide

24



Application
(Web browser, email client,

ssh client, etc)

Transport Layer
(TCP/UDP)

Data Link Layer

Physical Layer

Network Layer
(IP)

TCP/IP
Stack

Data Link Layer

Physical Layer

Network Layer
(IP)

Host

Server
(Web server, email

daemon, ssh daemon, etc)

Transport Layer
(TCP/UDP)

Data Link Layer

Physical Layer

Network Layer
(IP)

ServerRouter

Figure 4.2: Implementation of TCP/IP in the OSI Reference Model [2]

Now we describe, which Control Bits TCP uses, and how the connection is established
from the view of the network. We later describe how the connection establishment and
TCP networking in general are implemented in software.

Control Bits

Control Bits in TCP are used to describe the according packet in more detail. Those ones
needed to discuss the connection establishment and those, which will be referenced later,
are described now.

• ACK signals that the acknowledgement field (a 32 bit field in the TCP header) is
significant, therefore that the corresponding packet is used to acknowledge a packet
sent earlier.

• SYN requests a (re)synchronization of the sequence numbers - it is used during e.g.,
connection establishment. As the acknowledgement field, the sequence number is a
32 bit field in the TCP header.

• RST signals that the connection has to be reseted, due to error or other interruption.

• FIN is used by the sender, to signal that the connection can be closed.
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Connection establishment

For connecting two TCP sockets, the so called Three-Way Handshake is executed. It is
called Three-Way Handshake, because there are three packets sent over the network, setting
up the connection. As you can see in Figure 4.3, the client sends a packet containing an
initial sequence number ISN C (therefore the SYN bit is set), whereas this value is randomly
created by the TCP layer.

Client

SYN with ISNC

ACK ISNC and SYN with ISNS

ACK ISNS

Server

Figure 4.3: The TCP three-way handshake [2]

The server replies (if the corresponding port is opened) with the initial sequence number
from the client (ISN C) in the acknowledgement field, and generates itself an initial sequence
number ISN S and sets the sequence number field to this value. Therefore, in the second
packet the SYN and the ACK flags are set.

The client then acknowledges the sequence number ISN S from the server by sending
the third and last packet of the Three-Way Handshake with the ACK flag, whereas the
acknowledgement field contains the sequence number of the server, ISN S.

4.2.3 UDP

UDP (User Datagram Protocol) [22] is, like TCP, build on IP and extends IP with the
ability of ports. In contrast to TCP, it is connection less and not reliable. The main
advantage is that no connection has to be established and no state information has to be
saved. Therefore, the transfer of UDP packets is much faster than with TCP. UDP is
used for applications, which do not need a guarantee for receiving all packets, but need
the packets transmitted as quickly as possible, e.g., streaming applications for multimedia
data. It is used for e.g., Internet telephony protocols such as VoIP.

4.2.4 ICMP

The Internet Control Message Protocol [23] is also based on IP and serves as protocol for
submitting error- and information messages. In contrast to TCP or UDP, it is not used by
users directly, but implicit by the devices (hosts, routers, etc.) connected to the network
for exchanging status information, such as Time To Live (TTL) exceeded (code 11). The
only exception for this rule is the “ping” request, mostly available by a tool named like the
request. It checks the availability of a specific IP address on the network.
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4.3 Implementation of Networking in User Mode

For the implementation of applications using TCP or UDP network access the programmer
does not have to know anything about TCP flags and the like. For this, there exist APIs
that encapsulate the creation of connections and the sending of data.

The networking API for TCP and UDP under Windows is the Winsock (Windows
Sockets) library. Version 1.0 was Microsoft’s implementation of BSD Sockets, the standard
API for UNIX systems since the 1980s. The current version added, among others things,
features for asynchronous I/O that offers better performance and scalability [15].

Winsock describes the API for networking and this interface is mainly implemented in
the API DLL WS2 32.dll. Obviously, this DLL does not implement the whole user mode
part, it uses itself helper DLLs. mswsock.dll acts as transport service provider, and this
library uses Winsock Helper libraries for the accordingly protocols (e.g., wshtcpip.dll for
the TCP/IP Stack).

As already mentioned, the communication endpoints of TCP and UDP connections2

are sockets. For TCP, these sockets have to be connected to another socket, before any
data can be sent over it. For UDP, the socket has only to be created, after that the data
can be sent to any UDP server socket, without the need of connecting it.

Listing 4.1 shows a simple piece of code, doing a send / receive over TCP. In the next
subsections the used functions and their parameters are discussed. In further chapters it
will be shown, how these functions are implemented, which system calls are used, and how
multiple connections running in multiple threads can be synchronised.

1 void foo() {
2 WSADATA wsaData;
3 WSAStartup( MAKEWORD (2,2), &wsaData );
4 SOCKET m_socket = socket( AF_INET , SOCK_STREAM ,

IPPROTO_TCP );
5 sockaddr_in service; /* setup service */
6 service.sin_family = AF_INET;
7 service.sin_addr.s_addr = *( unsigned long*)

gethostbyname( "seclab.tuwien.ac.at" )->h_addr_list [0];
8 service.sin_port = htons( 80 );
9 connect( m_socket , (SOCKADDR *) &service ,

sizeof(service) );
10 int bytesSent = send(m_socket , sendStr.c_str(),

sendStr.size(), 0);
11 char buff [4096];
12 int recvBytes = recv(m_socket , buff , 4096, 0);
13 }

Listing 4.1: A simple send / receive with Winsock2

2UDP is connection less, but like TCP, for UDP there has to be a client sending UDP packets and a
server waiting for UDP packets
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4.3.1 WSAStartup()

For using the Winsock library, first an initialization function has to be called: WSAStartup().
This function initiates the Winsock library for further use.

The declaration in Line 2 from Listening 4.1 creates the structure WSADATA, which is an
out parameter3 of WSAStartup(). This structure contains informations such as the used
version numbers, etc.

int WSAStartup(
WORD wVersionRequested ,
LPWSADATA lpWSAData

);

Listing 4.2: WSAStartup()

The parameter wVersionRequested defines the highest version the user4 supports. The
major version is defined by the low-order byte, the minor version by the high-order byte.
The MAKEWORD macro is in windef.h, and receives two bytes and returns a WORD. The
second parameter lpWSAData is a pointer to the already mentioned structure WSADATA,
which receives informations such as the used version.

4.3.2 socket()

As already mentioned in section 4.2.2, sockets are the representation of communication
endpoints. For high level programing languages an object representing such an endpoint
is needed. All further actions are executed for this object.

SOCKET socket(
int af ,
int type ,
int protocol

);

Listing 4.3: socket()

For creating a socket with Winsock, the function socket() is called. This function
returns SOCKET, a handle for the socket object saved in the kernel. Therefore, the object is
not accessible directly, the user mode program only receives a handle for this object. For
executing functions for this socket, in user mode this handle has to be used.

The first parameter af defines the address family of the requested socket. For creating
an IPv4 socket, AF INET is used. Obviously, there are many other possibility, such as
AF INET6 for IPv6, AF NETBIOS, etc. The second parameter type defines the type of the new
socket. For the creation of a TCP socket SOCK STREAM is used, which requests a sequenced,
reliable, two-way, connection-based byte stream. Other values are e.g., SOCK DGRAM for

3Which means that the called function will manipulate the assigned function parameter.
4In this context, the user is the programmer or the program, using the Winsock library
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connectionless, unreliable datagrams (e.g., used for UDP), or SOCK RAW for a raw socket5.
protocol defines the protocol to be used, thus, for a TCP connection IPPROTO TCP is used,
for UDP sockets IPPROTO UDP is used.

4.3.3 gethostbyname()

From Line 5 to Line 8 the server endpoint of the connection is defined. sockaddr in

represents a socket address in Internet style, defined in winsock.h. As for the client socket,
the address family for the server socket is defined as AF INET. In Line 7, the destination
address of the connection is defined, or how the server socket can be located. In our
example, the IP address of the destination is not known, only the domain name. For this,
we resolve the domain name to an IP address, using the Domain Name System (DNS) [24].
The application of the DNS protocol is implemented by Winsock.

gethostbyname()6 receives a pointer to a null-terminated ANSI string and returns a
pointer to a hostent structure, which contains an array of addresses. As shown later, the
resolving of the domain name is not executed by the current process, but by services.exe.
The interprocess communication necessary for this task is described in Section 6.5.

4.3.4 connect()

In Line 9 the local socket is connected to the server socket. This is done with aim of the
connect() function.

int connect(
SOCKET s,
const struct sockaddr* name ,
int namelen

);

Listing 4.4: connect()

As first parameter, the previously created socket is passed in. name defines the server
socket to which the the local socket (referenced by the first parameter) has to be connected
to. The third parameter namelen defines the length of the name.

If the connection establishment is successful, connect() returns zero. Otherwise, it
returns SOCKET ERROR, and a detailed error code can be obtained by calling WSAGetLast-

Error().

5For a raw socket no headers at OSI Layer 4 will be generated, the user has to write them himself.
There are also possibilities to manipulate even the IP header

6This function is declared deprecated, but it is more simple to use than the substitute function
getaddrinfo(), and for our simple example it is sufficient
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4.3.5 send()

int send(
SOCKET s,
const char* buf ,
int len ,
int flags

);

Listing 4.5: send()

The send() in Line 10 will send the sendStr over the connected socket to the destina-
tion server. As we connected to port 80, sendStr may contain a http request. We use the
now connected socket as first parameter s, and assign a pointer to the sendStr as second
parameter buf, and len defines the length of this buffer. The flags parameter can be used
to influences the way, the call is made - but this feature is not used.

The return value defines how many bytes have been sent if no error occurred, otherwise
the return value is SOCKET ERROR. Like for connect() a specific error can be obtained by
calling WSAGetLastError().

4.3.6 recv()

int recv(
SOCKET s,
char* buf ,
int len ,
int flags

);

Listing 4.6: recv()

A receive works from sight of the user similar to a send. The user has to allocate
memory, where the received data is written to. The pointer to this buffer is assigned as
second parameter buf to recv, len defines the length of the available buffer. The flags

can be used to enforce Winsock to wait, until the complete buffer is filled (or the connection
was closed). The return value defines the number of bytes received, or SOCKET ERROR if an
error occurred.
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Chapter 5

Manipulating the Test Subject

The goal of this theses is to make dynamic analysis more sophisticated by extracting the
behaviour of the test subject under different circumstances. For this, the test subject has
to be executed under different conditions and then the differences between these executions
have to be determined. Obviously, this naive approach has two problems:

• For every possible state an analysis process has to be executed.

• It would be necessary to generate many virtual systems, being in different states.

The second problem can be solved by manipulating the function calls which interact
with the environment (these provide the informations about the state of the system and
its environment for the test-subject). The functions responsible for this interaction have
to be determined, hooked, and, if required, manipulated.

The decision, which functions have to be hooked is relative simple. In Windows every
user-mode program has only one facility to interact with its environment: via the kernel
and therefore via system calls, which are responsible for the interaction with the kernel.
Thus, by hooking and manipulating system calls, it is possible to simulate every state of a
system imaginable, without the (expensive) need, to create images of these virtual system
states.

The first problem - one execution for every possible system state - is more complex. The
number of theoretical possible system states is immense. The performance requirements
are not stringent, but executing the test subject with all these system states would be a
life-task!

A first step to a solution could be to restrict the system states to those ones, which
directly influence the test-subject. This indicates that the decisions which system states
should be tested is more easy to solve during execution: at run time it is known, which
system calls are executed and therefore which system calls should be manipulated to influ-
ence the test subject. This leads to the idea, to choose a complete dynamic approach - the
decision which system calls have to be manipulated is felt at runtime. If a execution path
is not interesting, this path is left and the test-subject is set back to a previously saved
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state. For this a facility is needed, which is able to save states and reset the test subject
to such a saved state.

In the next section it will be discussed, how system calls can be manipulated to influence
the test-subject. In the following sections it is shown, why for reseting the test-subject
to a previous state network connections are the main problem and how a solution for this
problem could look like.

5.1 Manipulating System Calls

As discussed in the introduction to this chapter, the manipulation and simulation of system-
calls can be used to simulation different system states. The first decision presented in the
introduction has been to hook the system calls. A further challenge is to manipulate and
simulate the execution of system calls.

5.1.1 Hooking System Calls

As shown in chapter 3.3, system calls are not like other function calls in user-mode. Sys-
tem calls are executed as software interrupt INT 2Eh or, on newer hardware, as explicit
sysenter instruction. Therefore, for hooking system calls with TTAnalyze, it would be
possible to analyze the assembler code executed by the virtual CPU. Obviously, this ap-
proach has two drawbacks:

• Additionally to the hooking of user mode functions in TTAnalyze, there would be a
further analysis effort, which would reduce the performance.

• The function to be called (e.g., NtCreateFile(), NtWriteFile(), etc.) are refer-
enced by a number in the eax register. This number is randomly generated at the
build of Windows and therefore could change with every Windows version and with
every service pack. This would reduce the flexibility of the solution.

To avoid these drawbacks, the functions of the unofficially undocumented DLL ntdll.

dll are hooked. This DLL contains the last user mode code that is executed before the
system switches to kernel mode. A malware author has therefore the theoretical chance
to bypass this monitoring technique, but it would be difficult to write malware that is
run-able on multiple systems (e.g., Windows 2000, Windows XP, with different Service
Packs). Beside the changing values for the eax register, he would have to consider changing
interfaces at this level, which are not reported by Microsoft. Using undocumented API
functions therefore decreases the chance that malware is successful on multiple system.

Although the interface of the ntdll.dll is not documented by Microsoft, there exists
a book offering unofficial documentation [12]. This book describes most of the functions
we need and provides for most functions a detailed description of all function parameters
and the used structures. These definitions are needed by the Generator.
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5.1.2 Manipulating the Result of System Calls

With the knowledge presented till now, it is possible to hook system calls. For manipulating
the result of system calls, a technique already implemented in TTAnalyze can be used: for
every call of a hooked functions, TTAnalyze remembers (for every thread) the return
address, which is saved on the stack. In the moment the function is started to be executed
(i.e., the instruction pointer, saved in the eip register, points to the function entry point),
the stack pointer (saved in the esp register) points to the return address (this value is
called the saved instruction pointer). If a thread executes code at the return address, the
function returned and the system and with it the function result can be manipulated as
needed. E.g., the function result can be changed to any value, by overwriting the eax

register, any buffers in the system (on the stack or on the heap) can be manipulated.

5.1.3 Virtualization of System Calls

There will be cases (discussed in Section 6.4.3), where the execution of system call is not
wished but a result is needed as if the function has been executed. Thus, the execution of
system calls has to be imitated. For this, a deep understanding of the imitated function
is required, because not only a few bytes in the system we are interested in have to be
changed (like for the manipulation of the result of a system call), but for virtualization the
complete behaviour of the simulated system call has to be replayed.

To replay a function, the system is manipulated in the moment when the function is
called. First, the execution of the function has to be avoided and the execution has to be
redirected back to the calling function. For this, the return address is read from the stack
and written to the eip register (instruction pointer). As already mentioned, the return
address is saved at the stack and the stack pointer directly points to it at this moment.

After setting the esp register, the second task is to “clear” the stack as if the returning
function would have done it. This means that the return address and the function param-
eters have to be popped from the stack, as they have been pushed on the stack for the
function call. To avoid the execution of additional code (which would have to be injected
into the virtual system) the stack pointer (saved in the esp register) is manipulated di-
rectly. For this, the number of the function parameters for the virtualized function has to
be known.

The generation of the function result is the same task as described in section 5.1.2, but
the result has not only to be manipulated - the complete behaviour has to be replayed.

5.2 Reseting Network Connections to a Previous State

In the introduction to this chapter, we decided that we wish to have a facility to save states
of the current execution of a test-subject, and we noted that a main problem in doing this
are network connections. In this section it is discussed, why this is a problem and how it
could be solved.
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The general idea of reseting a test-subject to a previous state should be clear. For a
reset, all the variables inside the program are set to a previously saved state. If we not all
the variables that are available inside a program are known (which will be mostly the case),
it is also possible to reset the complete allocated memory of this program to a previous
state. Obviously, the state of a program is not only defined by its internal state - the
environment of the program (e.g., the system time, files on the hard disk) are directly or
indirectly altered.

Network connections are a special case, because a network connection (e.g., a TCP
connection) always has a unique state:

• at the Transport Layer (OSI Layer 4 (Open Systems Interconnection Reference Model)
[25]) the sequence and acknowledgment numbers are incremented with every request

• at the Application Layer (Layer 7), depending on the used protocol (e.g., FTP, SMTP,
etc.)

Because of this, it is almost impossible to reset the system to a previous state, leaving the
environment (servers, etc.) untouched: the sequence / acknowledgment numbers would
not match, the TCP connection would break and even if this is not the case, the connected
server may be confused about unspecified behaviour of the client and abort the connection
/ session; the test-subject would behave in a different way, because its environment does
not behave as usual. This, of course, is exactly, what we would not like to occur.

Thus, we have a problem at the boundaries between the program and its used resources.
If we manipulate the program, we have to manipulate the system around the program too.
How and where this could be done, is discussed in the next sections.

5.2.1 Where to Manipulate the System

If we wish to reset network connections to a previous state, we have to make sure that
the system is in a consistent state, i.e., all shared objects (e.g., sockets) are perceived
in the same way by user mode and kernel mode. If the test-subjects were reset without
considering the environment, the system would not be in such a consistent state. As a
result, the test subject would behave in a way that is different from a real system. To
ensure that the system is in a consistent state, we have to manipulate it. There are three
ways of doing this:

• The user-mode part of our program could be reset and the endpoints of the established
connections (i.e., the servers, etc.) could be controlled. However, in this case, we face
consistency problems at OSI Layer 7 (e.g., suppose that a test-subject starts creating
a SMTP session, is reset and sends the EHLO a second time - the server will return
an error). This problem could be solved by implementing more tolerant versions of
all protocols that the test subject is using, which would result in a significant coding
effort. Beside this, the internal state of the sockets in the kernel may cause problems.
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• To avoid the different states in user-mode and the kernel, the complete system (i.e.,
the complete Windows) could be reset. Obviously, this would induce more problems
than it could solve: consistency problems at OSI Layer 4 and 7 (additionally to all
Layer 7 protocols, our own fault tolerant TCP/IP stack would have to be imple-
mented), as well as considerable restrictions on our performance (states with more
than 256MB would have to be saved).

• Finally, only the user-mode part of our program is reset, and the program state
is separated from the OS view, so that the kernel is not aware of the state of the
sockets used. Consequently, there cannot be any inconsistencies. To achieve this, the
complete network interaction between a user-mode process and the kernel has to be
imitated. In other words, network connections have to be virtualized.

5.2.2 Where to Virtualize the Network in User-Mode

For the third approach, we have to decide where in user-mode to hook and replay the
interaction of the test subject with its environment. One possibility would have been the
Winsock2 [26] interface, which is well documented [27]. Thus, it should be easy to generate
the behaviour of its functions. However, this option has some drawbacks:

• Not all programs will use the Winsock2 lib. Many will do so, but we wish to have a
solution that is as general as possible.

• The Winsock2 library has many functions that would have to be hooked and replayed.
This would result in much tedious and error-prone coding work.

• The Winsock2 library is “high level”. We would have to solve problems such as
synchronisation that cannot be solved with the abilities of Winsock21. So we would
have to operate at different levels and that would be error prone too.

• We do not have a “real” handle for our simulated socket of which the kernel is aware
of (the handle returned by a simulated socket()[27] function). If the system returns
a handle that is identical to our “faked” one, this may result in an error.

Given the considerations above, we have decided to choose a more low level location
to place our hooks and simulate the network functionality. This location should be as low
level as possible, but not inside the kernel (we do not wish to reset anything inside the
kernel). This removes the possibility of the documented TDI (Transport Driver Interface)
[28], which runs inside the kernel. With these requirements, we have to choose the system
call interface (implemented inside the ntdll.dll) to place our hooks (like most of the
functions hooked by TTAnalyze).

1As we will see later, to replay synchronisation we use functions from ntdll.dll and there are no
corresponding functions in the Winsock2 library
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Thus, we wish to virtualize the network at system call level. As described in section
5.1.3, the imitation of system calls is not easy, because we have to understand exactly,
which function call has which effects and how we could imitate these affects. In the next
section it is described in detail, how networking is implemented at system call level and
what is needed to know to imitate all these system calls.
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Chapter 6

Networking at System Call Level

Till now, we showed why we wish to be able to virtualize network connections and have
presented all the basics to understand the details presented now. Thus, this is the main
chapter of this thesis and will describe our work in most detail.

First, the system calls that are used to implement networking under Windows are
presented and described detailed. Following, the code sample from Listing 4.1 is discussed
again, but this time the focus are the used system calls. Then, the main Control Codes
used by AFD are discussed. In the last sections, Synchronisation and Local Procedure
Calls are discussed.

6.1 System Calls for Networking

As discussed in the previous sections, we aim to virtualize network calls at the system
call level. In this chapter, the system calls which are used by Winsock to implement
its functionality are analyzed. One of the functions that are needed have already been
discussed: NtCreateFile(). This function will not be mentioned in this chapter any
more.

6.1.1 NtDeviceIoControlFile()

The complete I/O commands for networking except the creation and the closing of the
sockets (i.e., connect, send, receive, etc.) are passed into the kernel via only one function1:
ntdll!NtDeviceIoControlFile() [12], using an interface called AFD (Ancillary Function
Driver for WinSock). Unfortunately, this interface is undocumented. The AFD driver is
responsible for the connection and buffer management needed to provide a sockets-style
interface to an application [29].

NTSTATUS NtDeviceIoControlFile(
IN HANDLE FileHandle ,

1This may result from the fact that Microsoft estimated networking in the beginning not as important
as e.g., UNIX
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IN HANDLE Event OPTIONAL ,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL ,
IN PVOID ApcContext OPTIONAL ,
OUT PIO_STATUS_BLOCK IoStatusBlock ,
IN ULONG IoControlCode ,
IN PVOID InputBuffer OPTIONAL ,
IN ULONG InputBufferLength ,
OUT PVOID OutputBuffer OPTIONAL ,
IN ULONG OutputBufferLength

);

Listing 6.1: ntdll.dll NtDeviceIoControlFile()

FileHandle

The first parameter is a handle, representing the socket. This handle must have been cre-
ated previously by calling NtCreateFile(). Furthermore, there are other types of handles
(which do not represent a socket) that can be used to accomplish some network tasks.
These tasks are always asynchronous tasks - for details see AFD CONNECT, AFD SELECT.

Event

An optional Event is passed in, if it is necessary that the requested operation is completed
before the program can proceed. If NtDeviceIoControlFile() returns STATUS PENDING,
the requested action is not finished already, but the action was started successfully. A
thread can wait for the completion of its request by calling NtWaitForSingleObject(),
using this event. Obviously, this is not a must, there are other synchronisation methods
without using events (see Section ??).

ApcRoutine

The third parameter is always NULL for network calls.

ApcContext

is used for asynchronous completion messages. This will be discussed in more detail in I/O
Completion (Section 6.4.2).

IoStatusBlock

The fifth parameter, a pointer to a caller-allocated structure IO STATUS BLOCK, is es-
pecially important for functions returning STATUS PENDING. It is a special memory area
that remains valid until the requested action is completed, which may be longer than
NtDeviceIoControlFile() needs to execute. I.e., when NtWaitForSingleObject() (called
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to wait for the completion of a started task) returns, the IO STATUS BLOCK contains infor-
mation about the status of the initial NtDeviceIoControlCode() call.

typedef struct _IO_STATUS_BLOCK {
NTSTATUS status;
ULONG information;

} IO_STATUS_BLOCK , *PIO_STATUS_BLOCK;

Listing 6.2: I/O status block

The field status contains values such as STATUS SUCCESS, STATUS CONNECTION RESET.
Depending on the IoControlCode and the status (i.e., if the function call was successful),
information contains some more information about the result, e.g., for an AFD SEND how
many bytes have been sent.

IoControlCode

is for networking one of the AFD codes. It defines the action to be executed (e.g., connect,
send, receive, etc.). Among other things, the size and existence of the input- and output
buffers can be determined by the IoControlCode. The AFD IoControlCodes are described
in more detail in the next section.

Inputbuffer

The InputBuffer is a pointer to a caller allocated memory. It is used to submit more
information, such as the buffer to be sent for a TCP send. The pointer may be null, but
only if the parameter InputBufferLength indicates a buffer size of 0.

Outputbuffer

Like the InputBuffer, the OutputBuffer is a pointer to a caller allocated memory2. There-
fore, even the existence and the size of the output buffer are determined by the caller and
the caller has therefore to know, how many bytes of output buffer are needed by the kernel.
There are even cases, where InputBuffer and OutputBuffer point to the same memory.

The OutputBuffer is used by the kernel so submit informations back to the caller,
that cannot be transmitted over the return value (which only indicates if the function was
successful or if an error occured). Just like for the InputBuffer, OutputBuffer may be
null, if OutputBufferLength indicates a buffer length of 0.

6.1.2 NtWaitForSingleObject()

This function has already been mentioned as being a synchronisation function. It receives a
handle for an event (i.e., a handle for an object, created with NtCreateEvent()). The event
should be in a non-signaled state, otherwise the function returns immediately. Alertable

2For usual the kernel does not allocate memory for a process except functions like malloc()
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defines, if the event can be signaled from user mode (i.e., if functions such as ZwSetEvent()
can release the thread from blocking). The “big brother” NtWaitForMultipleObjects()

receives one or more event handles and blocks as long as all of them are getting signaled.

NTSTATUS NtWaitForSingleObject(
IN HANDLE Handle ,
IN BOOLEAN Alertable ,
IN PLARGE_INTEGER Timeout OPTIONAL

);

Listing 6.3: ntdll.dll NtWaitForSingleObject()

With this function, Winsock is able to let a thread block as long as it takes for the action
to be executed. The question is, how Winsock knows if the operation has been successful
and if not, which error has occurred. That is what the IoStatusBlock is for: The result of
the operation requested by NtDeviceIoControlFile() is written to this structure.

6.1.3 NtClose()

NTSTATUS NtClose(
IN HANDLE Handle

);

Listing 6.4: ntdll.dll NtClose()

NtClose() is used, to close handles so that these handles are not valid any more (and
the kernel can use this handle for an newly opened object). The closing of the handle
does not necessarily mean that the object that is references by the handle is closed and
deleted. A NtClose() executed for a file handle will result in other actions executed inside
the kernel than a NtClose() executed for a handle that references a thread (the thread is
not terminated by a NtClose()).

6.2 Chronology of AFD Control Codes

Now the most important system calls for networking are known, therefore, the code from
Listing 4.1 can be discussed at system-call level.

6.2.1 socket()

The first three lines from Listening 4.1 are less interesting - they are needed to setup the
Winsock2 environment and do not cause any system call. In Line 4, the socket is cre-
ated. In behave of this function call, the necessary helper functions are loaded (if this
is not already done). For the creation of the socket, the first system call is executed:
ntdll.dll!NtCreateFile() is called with ObjectName \Device\Afd\Endpoint, the re-
turned file handle is the representation for the created socket, and it is the return value
from socket().
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On behalf of socket(), the first I/O operations are done via NtDeviceIoControl-

File(): AFD GET INFO (0x1207B) and AFD SET CONTEXT (0x12047). These change the
status of the handle in the system, thus, they are less interesting for replaying.

6.2.2 connect()

From Line 5 to 8, we omit the details of setting up our connection, they only work in
user mode to set up the definition of the server endpoint. The interesting part of our
connection establishment occurs in Line 9: connect() first binds the socket (AFD BIND

(0x12003)) to a local address3, performs some administrative tasks (AFD SET CONTEXT and
AFD GET TDI HANDLES (0x12037), and then connects via AFD CONNECT (0x12007). Here,
we have for the first time a return value that is not STATUS SUCCESS: STATUS PENDING.
This means that the action was started successful, but is not completed yet. Our simple
program is single threaded, so Winsock has to wait until the operation is complete. To
achieve this, Winsock calls NtWaitForSingleObject(), passes in the event handle from
the prior function call (NtDeviceIoControlFile() with control code AFD CONNECT). This
function will block, until the primarily task (the connection of the local port with the server
port) is completed.

After returning from NtWaitForSingleObject(), we have again two administrative
calls, AFD GET TDI HANDLES and AFD SET INFO.

6.2.3 send() and recv()

The send() in Line 10 will send the sendStr over our connected socket, causing an
AFD SEND, which returns the count of bytes sent in the IoStatusBlock. For usual, this
function returns directly and no further synchronisation is necessary. The recv() in Line
12 causes an AFD RECV, which receives the caller-allocated buffer where the received data
are written to. This function for usual returns STATUS PENDING. As with AFD CONNECT,
the completion of this operation is waited for by calling NtWaitForSingleObject(). If
this function returns, the input buffer of the prior function is not valid any more, only the
target buffer, where the received bytes are written to. The number of bytes that have been
received is stored in the IoStatusBlock.

6.2.4 Error handling

Errors appearing during execution are reported over the return value of the NtDeviceIo-

ControlFile() or, if ZwWaitForSingleObject() is used, with the status field of the
IoStatusBlock. The errors returned by these functions are not the same like the error
code received by WSAGetLastError(). For example, if a socket cannot be connected,
NtDeviceIoControlFile() returns STATUS CONNECTION REFUSED (0xC0000236), WSAGet-

3This is done by Winsock automatically, if the user does not do it
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LastError() uses ntdll.dll!RtlGetLastWin32Error() and returns WSAECONNREFUSED

(0x274D).

6.3 IoControlCodes for AFD

In this section, we explore the main IoControlCodes in more detail. We will not discuss
all existing control codes, but show, by means of the most important ones, their general
behaviour so that it should be easy to determine how other control codes work.

We did not encode the complete AFD structure. We restricted our work to the responses
- the reason is that we “only” wish to replay the traffic. So for IoControlCodes such as
AFD SET CONTEXT, which receives 248 bytes of input buffer, we did not decode the
input buffer - it is sufficient to know that after a successful call, the output buffer of 16
bytes is filled with zeros.

6.3.1 AFD BIND (0x12003)

The bind function associates a local address with a socket. [27] Input- and output buffer are
the same memory and 26 bytes long. At offset 0xE of the input buffer the IP can be found
(if WS2 32!bind() is not explicitly called, it is executed on behalf of WS2 32!connect()

and as IP 127.0.0.1 or 0.0.0.0 is used).
With offset 0xC in the response buffer there is a two byte port number (in network byte

order), starting at a non-zero value (mostly slightly larger than 0x400) that is incremented
with every bind. This count is also returned in AFD GET SOCKNAME. This control code
typically does not block.

6.3.2 AFD CONNECT (0x12007)

For connection establishments, there are two possibilities. A socket can be connected di-
rectly, passing in the socket handle to NtDeviceIoControlFile() as FileHandle. This
function usually returns STATUS PENDING. To wait until the connection is established,
NtWaitForSingleObject() is called.

Alternatively, the connection can be established in an asynchronous way. For this, a
separate file has to be created: \Device\Afd\AsyncConnectHlp. This is used as function
parameter FileHandle, the handle for the socket to connect is passed in via the input
buffer (as third DWORD - otherwise it is NULL). The return value is STATUS PENDING too.
For how the application is notified about the completion of the connection establishment,
see I/O Completion. Alternatively, to check if the socket is connected, an AFD SELECT can
be executed (i.e., check if the socket is write able).

For both options, port and IP Address are found with offset 0x14 and 0x16 in the input
buffer.
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6.3.3 AFD SEND (0x1201F)

AFD SEND expects as FileHandle a connected socket (so this function is available only for
TCP), 16 bytes of input buffer, and no output buffer. The first DWORD of the input buffer
is a pointer to a AFD WSABUF that declares the size of the buffer to send and a pointer to
the buffer. This function usually blocks until the bytes have been sent; the count of bytes
sent is written to the information field of the IoStatusBlock.

typedef struct _AFD_WSABUF {
UINT len;
PCHAR buf;

} AFD_WSABUF , *PAFD_WSABUF;

Listing 6.5: struct for AFD buffers

This is the example shown in Figure 3.2, showing a debugging session with WinDbg.
For analyzing a TCP send, a breakpoint has to be set for ntdll!NtDeviceIoControlFile
with condition poi(@esp + 0n24) = 0x1201f. This command reads the DWORD from
the address which is referenced by the stack pointer plus 24 bytes (the sixth parameter of
the function) and compares it with 0x1201f.

The command dd @esp prints the memory where the stack pointer points to. The value
0x719b5908 is the saved instruction pointer, which points to code in the mswsock library,
as you can see from the stack trace, shown in the window “Calls” right on the top of the
window.

The 7th parameter is the pointer to the input buffer, its content is dumped with the
command dd 0x1effd34. As you can see from the following memory dumps, the send
buffer can be found as described above.

6.3.4 AFD RECV (0x12017)

As AFD SEND, AFD RECV expects a connected socket as FileHandle, no output buffer and
16 bytes of input buffer:

typedef struct _AFD_RECV_INFO {
PAFD_WSABUF BufferArray;
ULONG BufferCount;
ULONG AfdFlags;
ULONG TdiFlags;

} AFD_RECV_INFO , *PAFD_RECV_INFO ;

Listing 6.6: input buffer for AFD RECV

As for AFD SEND, the first DWORD is a pointer to a AFD WSABUF struct, whereas the
BufferCount with our test subjects always was 0x14. The AfdFlags were always zero, for
the TdiFlags we observed two possibilities:

4WSARecv() and WSASend() from Winsock2 offer the possibility, to pass in several buffers. These
functions are used e.g., with the WSAAsyncSelect Model [30]
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• TDI RECEIVE NORMAL (0x20) is used for the normal receive: The kernel fills the
buffer referenced by BufferArray and returns the size of the received bytes in the
IoStatusBlock

• TDI RECEIVE NORMAL & TDI RECEIVE PEEK (0xA0) are used to get the status of the
device, the input buffer is always only one byte long, as return values we have observed
STATUS CONNECTION RESET and STATUS DEVICE NOT READY

6.3.5 AFD SELECT (0x12024)

This control code is not used by our example function foo(), but it is used frequently.
One example for using an AFD SELECT control code is WS2 32!select():

int select(
int nfds , // ignored
fd_set* readfds ,
fd_set* writefds ,
fd_set* exceptfds ,
const struct timeval* timeout

);

Listing 6.7: WS2 32!select()

The select function determines the status of one or more sockets, waiting if necessary,
to perform synchronous I/O [27]. fd set is a structure, containing one or more handles;
handles in readfds/writefds are checked for read- and write-ability, handles in exceptfds

are checked for connection errors and OOB data [31]. The return value determines the total
number of socket handles that are ready and contained in the fd set structures.

Similarly to the connect, for select there are two types of handles that can be used for
FileHandle:

• A handle to a socket (AFD endpoint), e.g., for WS2 32!select() the first handle
from the fd set structures

• For asynchronous select (e.g., if the WSAAsyncSelect Model [30] is used), a file
handle with ObjectName \Device\Afd\AsyncSelectHlp is passed, for details see
IoCompletion

Input- and output buffer are always the same. The size depends on the type of the
FileHandle5 and how many handles are passed in. The buffer is divided in two parts: a
static part, which is always present (16 bytes long), and a dynamic part, which grows with
the number of handles passed in (12 bytes for each handle).

For the static part, the first two DWORDs are flags for the kernel, which stay unmod-
ified, so we do not have to replay them. The third DWORD is a counter of how many

5For an asynchronous select, there is one more DWORD in the buffer, which was never relevant with
respect to our test subjects
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handles are in the rest of the buffer. The fourth DWORD may be zero or any other value
(because the buffer is mostly allocated from the stack - especially if used by Winsock - and
is not set to zero). We replaced this and other values (e.g., see the “not relevant” comment
in Listing 6.8) with zeros during execution which did not have any effect, so they do not
seem to be relevant.

The second part is an array of structures:

typedef struct _AFDSELECT_DYNAMICPART {
ULONG handle;
ULONG eventFlags;
ULONG reserved; //not relevant

} AFDSELECT_DYNAMICPART;

Listing 6.8: struct for the dynamic part of AFD SELECT

where handle is a handle for a file from type \Device\Afd\Endpoint, eventFlags

defines which (combination of) events have to be checked for this handle, where possible
values are 0x1 for receive, 0x2 for OOB receive, 0x4 for send, 0x8 for disconnect, 0x10 for
abort, 0x20 for close, 0x40 for connect, 0x80 for accept, 0x100 for connection failures, etc.
One handle can be passed in several times, e.g., if select() from Winsock is used and a
handle is contained in writefds and exceptfs, it will be passed in twice, with eventFlags

0x4 and 0x102.
In contrast to other IoControlCodes, for AFD SELECT the (output) buffer keeps valid

until ZwWaitForSingleObject() has returned with STATUS SUCCESS. If the request itself
was successful, the information of the IoStatusBlock is 0x1C, otherwise it is 0x10. For the
reply, the setup of the buffer is the same: The third DWORD of the buffer is a count, how
many handles are contained in the buffer. The eventFlags contains the occurred event.
The replied event may not always be requested, for example, OOB receive is replied with
0x1, 0x39 may replied with 0x80.

6.3.6 AFD UDP SEND (0x12023)

Sending UDP packets requires a similar setup as with TCP connection (obviously, no
connect is necessary). The creation of a socket results in the creation of file with Object-
Name \Device\Afd\Endpoint and the execution of AFD GET INFO and AFD SET CONTEXT.
As with TCP sockets, if no bind is done by the application, this is automatically exe-
cuted by Winsock. For TCP, on behalf of the connect, for UDP this is done on behalf of
sendto(). After the bind, some administrative tasks are executed: AFD GET TDI HANDLES,
AFD SET INFO, and AFD GET SOCK NAME.

The real send works, as expected for a stateless protocol, with a single function call
AFD UDP SEND. As for TCP send, the input buffer contains a pointer to a AFD WSABUF, at
offset 0x34 is a pointer to a buffer that contains at offset 0x8 the destination port and at
offset 0xA the destination IP. The IoStatusBlock contains, as for TCP send, the number of
the bytes sent.
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6.3.7 ICMP

ICMP requests are completely different to TCP/UDP network calls. ping.exe creates a
file with ObjectName \Device\Ip and executes NtDeviceIoControlFile() with IoCon-
trolCode 0x120000, whereas the IP is the first DWORD in the input buffer.

6.4 Synchronisation

The major problem for replaying network connections is to emulate the synchronisation of
threads. There are different kinds of issues:

• The operations that block and release threads are executed in the kernel. Our objec-
tive is to leave the kernel untouched, thus, the kernel does not know anything about
the status of our simulated socket. Therefore, it is not possible to let a function such
as TCP SEND execute to achieve a blocking thread.

• There are many possibilities to implement synchronisation. Microsoft’s Internet Ex-
plorer and Mozilla Firefox6 implement their own method with local TCP sockets
to signal blocking threads, Opera uses the available routines of the Winsock library
(WSAAyncSelect approach [30]). Thus, it is difficult to provide a general solution to
this problem.

Before the solutions we found are discussed, the main mechanisms that the Windows
kernel provides for synchronisation are shown.

6.4.1 Waiting for Event Objects

The main aspects of waiting for event objects have already been discussed. For the sake
of completeness, let us briefly recapitulate them: I/O operations for network operations
are always started with NtDeviceIoControlFile(), which may return STATUS PENDING

before the operations are complete. To wait for the completion of one or more actions,
NtWaitForSingleObject() (or NtWaitForMultipleObjects()) has to be called, passing
in the event handle(s) used with the corresponding NtDeviceIoControlFile() function
call(s). As long as these functions return STATUS TIMEOUT and not STATUS SUCCESS, the
call has to be repeated.

6.4.2 I/O Completion

Concepts:

I/O Completion ports are an instrument to implement high-performance server applications
[29, 32] (but they are adequate for any multi-threaded application where asynchronous

6For the research work applications have been selected whose behaviour we could verify easily
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I/O operations are required7). For such applications, it is optimal to run as few threads
as possible (and therefore, to have a minimum of context switches), but also to run at
least a minimum of threads (to have a full load of all CPUs). Consider a web server that
processes every incoming request with a dedicated thread. The Windows kernel provides
with I/O Completion a solution, where the kernel itself keeps track of running and waiting
threads. Threads waiting to process an incoming request are blocked as long as at least
the minimum of threads are running (i.e., a thread is released, if e.g., for eight CPUs only
seven threads are running).

For this, a completion port is associated with a server socket, incoming requests cause a
message to the completion port, from where they can be obtained by calling ZwRemoveIo-

Completion(). By blocking this function call, the windows kernel achieves the behaviour
described above.

Practical aspects:

First, a new port has to be created with ZwCreateIoCompletion(), receiving among other
parameters the maximum number of threads allowed to run. In the kernel, there it is
a queue on which completion packets can be pushed (KeInsertQueue() in the kernel,
ZwSetIoCompletion() in user mode) or popped from (KeRemoveQueue() and ZwRemoveIo-

Completion()). If no completion packet on the queue is available, or the maximum of
running threads is reached, threads calling ZwRemoveIoCompletion() will block; they are
released in first in - last out order.

NTSTATUS ZwRemoveIoCompletion (
IN HANDLE IoCompletionHandle ,
OUT PULONG CompletionKey ,
OUT PULONG CompletionValue ,
OUT PIO_STATUS_BLOCK IoStatusBlock ,
IN PLARGE_INTEGER Timeout OPTIONAL

);

Listing 6.9: ntdll!ZwRemoveIoCompletion

Handles for which asynchronous actions can be executed are associated with a port using
the function NtSetInformationFile(), the InformationClass FileCompletionInforma-

tion (0x1E) is set. For completed asynchronous I/O operations a completion packet
is queued to the port, whereas the key is determined by second DWORD in the input
buffer of NtSetInformationFile(), the CompletionValue is the ApcContext from the
corresponding NtDeviceIoControlFile(), and the IoStatusBlock contains as usual the
information about the executed action.

For AFD, note that if any \Device\Afd\AsyncXXXHlp file is created, an I/O completion
port is created (and saved in ntdll!WorkerCompletionPort()). The CompletionKeys are
function pointers and set depending on the type of asynchronous action they are used for,

7These ports can also be used for synchronization of threads without ever consuming the abilities for
I/O operations. Microsoft’s Internet Explorer uses I/O Completion ports partially in this way
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e.g., for \Device\Afd\AsyncConnectHlp the key is a pointer to mswsock!SockAsyncCon-

nectCompletion()8. These functions are executed after ZwRemoveIoCompletion(), where-
as the CompletionValue is a function parameter.

6.4.3 Replaying Synchronisation

In order to replay replaying synchronisation, the following cases have to be distinguished:

• if a ZwWaitForSingleObject() call has to block, it is passed into the kernel. To re-
lease it, we insert a function ZwPulseEvent(), which releases the thread and sets the
event to unsignaled state (if we only release the thread, the next ZwWaitForSingle-
Object() with this event would return immediately).

• NtDeviceIoControlFile() function calls that have to block, are not passed into
the kernel. They are substituted by ZwWaitForSingleObject() (how this is done,
see below), as event parameter the event from the original function is used. (Up to
now, we have not found a function that blocks without having an event passed in.)
The thread is released the same way as with “original” ZwWaitForSingleObject()

functions.

• For ZwRemoveIoCompletion() calls the kernel will not insert any completion mes-
sages on the queue, so we have to do it manually. This is done with ZwSetIoComple-

tion(), we only have to decide, when to do this. If we need the call non-blocking,
we insert the set call before the remove is executed. If we need it blocking, we insert
the set call at another thread, when we need the remove to be released.

Substitution of function calls

is needed to replace a function call temporarily with another one: For the caller it should
look as if the original function was executed (e.g., NtDeviceIoControlFile()), but we let
another function execute and pass into the kernel (e.g., ZwWaitForSingleObject()). To
achieve this, we manipulate the system at the moment, when the instruction pointer is at
the first instruction of the function to be substituted: We push the function parameters on
the stack, reset the instruction pointer; as saved instruction pointer we use the current one:
if for the corresponding thread the instruction pointer is back at our replaced function, we
know that we can replay the result of the substituted function and let this function return.

Inserting function calls

works similarly to the substitution of function calls. The main difference is the saved
instruction pointer and the fact that we do not need to memorise anything about the
inserted function: as with substitution, we push the function parameters on the stack and
reset the instruction pointer, for the saved instruction pointer we use the actual one. If
the inserted function is processed, the execution processes as if nothing happened.

8This function is not exported, but can be found in the symbol files for WinDbg
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6.5 Local Procedure Call (LPC)

Resolving domain names [24] for example with gethostbyname() from Winsock, is not
performed by the program itself instead, such queries are executed by services.exe to
cache domain names system wide. The interprocess communication is done with an un-
documented interface called LPC, “Local Procedure Call” [16].

The communication with LPC runs over ports. Typically, the server application cre-
ates a named port, and the client application connects to this port via the appropri-
ate name. For DNS Queries, Winsock connects with ZwConnectPort() to the port \RPC
Control\DNSResolver. The communication goes over the function ZwRequestWaitReply-

Port() (send a request and wait/block for the reply).
We did not reverse engineer most of the requests - there is a lot of traffic, before the real

DNS query is executed. The actual query is executed if the value of the third DWORD
in the request buffer is 0x90241. The domain name is delivered as unicode string at offset
0x38, the length of the string is found at offset 0x34.

For the response there are two possibilities:

• If the least significant byte of the third DWORD is 0x1, then the response is directly
in the response buffer with offset 0x24.

• If this byte is 0x4, a second call to ZwRequestWaitReplyPort() is necessary. In the
input buffer at offset 0x28 there is a pointer to a buffer and a length declaration.
This buffer contains the response in the same format as with the direct variant.

In this buffer, with offset of 0xB, an array of 32 byte long block starts. The resolved
IP Addresses are written in blocks that start with a DWORD of 0x4001. The second
DWORD is always 0x9, except the first, which is 0x2009. The resolved IP is found at
offset 0x14
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Chapter 7

Implementation

In this chapter the most interesting and significant implementation details are described.
The first part starts with details about the changes for the Generator, describe the imple-
mentation of the manual decoding of function parameters and give a short instruction to
the decoding of Local Procedure Calls and DNS queries. The second part describes the
implementation of the virtualizing of the Network.

7.1 Hooking Network Access

As described in section 6, accessing the network is done via NtDeviceIoControlFile().
The IoControlCode defines the action that is executed, and the size and existence of the
input and output buffers. Obviously, there is a problem with the Generator, one of the sub
systems of TTAnalyze. As described in 2.3.2, the Generator is only able to generate code
for function parameters, which can be defined statically. For AFD this is not the case,
because the structures of the input buffers vary with the IoControlCode, and even these
structures can not always be defined in a static way (e.g., if BufferCount for AFD RECV

(see Listing 6.6 is larger than one). For hooking network access, we have to change the
Generator, so that it is able to read the function parameters from functions, which cannot
be defined in a statically way.

7.1.1 Changes of the Generator

For changing the Generator out of reasons described above, there are mainly two possible
solutions:

• The behaviour of the Generator (reading only static structures form the virtual mem-
ory) is modified to a dynamic behaviour, thus, its behaviour has to depend on certain
function parameters that it has already read from the virtual system. Therefore, it
has to be a way found, to define under which circumstances the generator should
behave in which way.
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• To avoid the need of such a definition, reading of non-static function parameters is
implemented by hand and the Generator is modified in such a way that for certain
functions (which are rare) the code generated by the Generator is calling the manual
implemented code.

The first solution is certainly the more elegant one, but this solution would result in
much coding work. Till now, the Generator has to read and parse the definitions of the
function it has to hook. These function definitions are defined in a classic C/C++ style,
so for parsing existing tools are used [33]. For reading non-static data from the virtual
stack, it would be necessary, to find a syntax that is able to describe the functionality we
need1, and extending the existing code and tools with the abilities, to read and handle
these additional syntax.

After some evaluation we found that it is more efficient to choose the second approach2.
Thus, the Generator now checks if currently the function NtDeviceIoControlFile() is
generated. If yes, some code is inserted that checks if (IoControlCode & 0xFFFFF000) ==

0x120003. If this is the case, the generated code calls a function that contains the manual
implemented code, reading the function parameters corresponding to the IoControlCode
from the stack.

7.1.2 Manual Decoding Function Parameters

As described in the preceding section, the decoding of function parameters that cannot be
defined statically is done manually. The Generator has been modified, so that for certain
functions (in the case of networking NtDeviceIoControlFile()) under certain conditions a
manual written function is called. These functions are part of several classes, whereas every
class is responsible for a specific AFD IoControlCode. E.g., the class TcpConnectDecoder
is responsible for the AFD Code AFD CONNECT (0x12007). All these classes are build after
the same scheme and have to fulfill following requirements:

• Every class is responsible for one AFD Code and every object (instance of such a
class) is responsible for managing one specific function call.

• All these classes have to be thread safe: especially network applications are often
multi threaded and may execute several commands of the same type parallel.

1This would include that the function definitions include some sort if if, else and loops to express
different scenarios of possible combinations of function parameters

2It was difficult to find out which control code is responsible for which action, and to reverse engineer
the used structures, whereas the file include/drivers/afd/shared.h from ReactOS Source [34] delivered
some useful hints. The manual implementation for reading these parameters from the virtual stack has
been a relatively small effort

3If this condition is true, the handle used for NtDeviceIoControlFile() as FileHandle has with our
test-subjects always been from type \Device\Afd\XXX, therefore, it has always been an AFD IoControl-
Code
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• Every function has to implement two static functions: functionWasCall(Bit32u

threadId) and functionHasReturned(Bit32u threadId).

To demonstrate these requirements in more details, let us discuss a stripped-down
definition of the class TcpConnectDecoder.

1 class TcpConnectDecoder {
2 private:
3 static map <Bit32u , TcpConnectDecoder*>

tcpConnectDecodersdecoders;
4 unsigned __int32 DeviceHandle_in;
5 void functionWasCalled ();
6 void functionHasReturned ();
7 TcpConnectDecoder(Bit32u threadId );
8 public:
9 static TcpConnectDecoder* functionWasCalled(Bit32u threadId );
10 static void functionHasReturned(Bit32u threadId );
11 }

Listing 7.1: Definition TcpConnectDecoder

In Line 9 and 10, the definitions of the two functions every of these classes has to
implement can be seen.

The map in Line 3 is defined private static, so that the two public functions are able to
access it. This map contains (referenced by the unique threadId4), all current available
TcpConnectDecoder Objects.

Line 4 contains an example definition, which data members such an class could contain.
E.g., the current class contains additional data members like EventHandle in, IPAddress,
Port, and AsyncDeviceHandle, etc.

In Line 5 and 6 there are the non-static, private functions functionWasCalled() and
functionHasReturned(). These functions do not need the parameter threadId, because
the constructor in Line 7 makes the threadId available to the object as class variable.

To demonstrate the usage of this calls, let us take a look at the implementation of the
static function functionWasCalled(Bit32u threadId):

1 TcpConnectDecoder* TcpConnectDecoder ::
functionWasCalled(Bit32u threadId) {

2 assert(tcpConnectDecodersdecoders[threadId] == 0);
3 TcpConnectDecoder* decoder = new TcpConnectDecoder(threadId );
4 decoders[threadId] = decoder;
5 decoder ->functionWasCalled ();
6 return decoder;

4As threadId not the ID referenced by Windows is used, but the address of the Thread Environment
Block (TEB) in kernel memory. This address is unique and therefore can be used to distinguish the
different threads of a process. This is done to avoid an additional memory read from the virtual system
out of performance reasons
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7 }

Listing 7.2: TcpConnectDecoder::functionWasCalled(Bit32u threadId)

In Line 2, the assert() statement assures that there is no function call waiting for
returning (if a function is returning, the corresponding object is deleted after the necessary
decoding work is done). If this assertion fails, this would indicate an implementation error.
The only reason that a function did not return before it is called as second time (in the
same thread) may result from the fact that the function is calling itself in a recursive
manner. The function we hook is equate with a system-call, but a system-call cannot call
itself recursively. Therefore if this function is called a second time in the same thread, we
have to search an implementation error5.

In Line 3 and 4 a new TcpConnectDecoder object is created. This object receives the
information, for which threadId it is responsible. This new object is inserted into the
existing map. Then, the private function functionWasCalled() is called, which is doing
the main work: this function reads the function parameters from the stack and informs
the object that requested a notification.

The implementation of these private functions depend on the IoControlCode that
is executed. To show the general design of such a function, we explore the function
functionWasCalled() from the class TcpConnectDecoder in more detail.

1 void TcpConnectDecoder :: functionWasCalled ()
2 {
3 VirtualAddress tmpAddr;
5 Bit32u esp = vSys ->getESP ();
6 deviceHandle_in = *reinterpret_cast <unsigned __int32*>

(virtualSys ->readMemory(esp + 4, 4));
7 tmpAddr = *reinterpret_cast <VirtualAddress*>

(virtualSys ->readMemory(esp + 28 ,4));
8 if (CNetworkAnalyzer :: isHandleAsyncConnectHlp(

DeviceHandle_in ))
9 ASyncDeviceHandle = *reinterpret_cast <unsigned __int32*>

(virtualSys ->readMemory(tmpAddr +8 ,4));
10 port = *reinterpret_cast <unsigned __int16*>

(virtualSys ->readMemory(tmpAddr +20 ,2));
11 IPAddress = *reinterpret_cast <unsigned __int32*>

(virtualSys ->readMemory(tmpAddr +22 ,4));
12 if (aInfo ->getOverwriteIP ())
13 {
14 unsigned __int32 targetIP = aInfo ->getOverwriteIP ();
15 if(IPAddress != targetIP)
16 virtualSys ->writeMemory(tmpAddr +22, 4,

reinterpret_cast <unsigned __int8*> &targetIP );
17 }
18 /* notification of registered functions */

5Obviously, this assertion never failed

53



19 }

Listing 7.3: TcpConnectDecoder::functionWasCalled()

This function needs two temporarily variables; tmpAddr contains temporary addresses
in the virtual system and therefore something like a pointer that points to data in the
virtual system; the variable esp is equivalent with the esp register, which represents the
stack pointer. The stack pointer always points to the last used address on the stack, and
therefore points (as this is the function begin) to the saved instruction pointer on the stack.
After the saved instruction pointer (“after” means up to higher addresses) are the function
parameters following. (See Figure 3.2 to get an understanding of how the stack looks if
a function is currently started to be executed. This Figure is explained in more detail in
Section 6.3.3.) Therefore, in Line 6 we read the first function parameter from the stack,
which is the device handle representing the socket6.

As you can see in Listing 6.1 the 7th parameter of NtDeviceIoControlFile() is a
pointer to the input buffer. In Line 7 of Listing 7.3 this pointer is read from the virtual
system (again, all function parameters are 4 bytes long, plus the saved instruction pointer
indicates that we have to read the 4 bytes, beginning at esp plus 28 bytes).

In the Lines 8 and 9, first the CNetworkAnalyzer (responsible for analysing the com-
plete network related function calls and therefore hooking NtCreateFile() which defines
the type of an AFD Handle) is queried if the current used device handle is from type
\Device\Afd\AsyncConnectHlp. If this is the case, the handle for the \Device\Afd\End-
point with offset 0x8 is read from the input buffer (see AFD CONNECT for details why this
is done). In the Lines 10 and 11, the port and the destination address are read from the
input buffer.

The code from Lines 12 to 17 are responsible for implementing the option --over-

write-ip: The class CAnalysisInformation is queried for an IP-address that has to be
used to overwrite the destination of the TCP connection. If the return value is 0, this
option is not in use, otherwise the IP is overwritten in the virtual memory.

For the function return, functionHasReturned(Bit32u threadId) is called, which
asserts that for the threadId a corresponding object is saved in the map. For this object
the private function functionHasReturned is called. This function does, like for a function
call, the necessary work (e.g., overwrites back the primary IP address, if it has been
overwritten at the function call).

7.1.3 LPC - DNS

As described in Section 6.5, Local Procedure Calls are an undocumented interface for inter-
process communication. It is relative easy to keep track of all requests and responses that
are executed using this interface. Obviously, there are two main problems if the complete
interaction between two processes has to be monitored and interpreted automatically.

6The function readMemory() expects as function parameters the address from where the memory has
to be read and a count, how many bytes have to be read from the system. esp + 4 results from the fact
that the saved instruction pointer is 4 bytes long, just like the device handle
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• With every request / response it is possible to exchange a small amount of data (496
bytes)7. This may not be enough for all processes using LPC, therefore, processes can
use sections to exchange data. These sections are memory areas, that are mapped
in the address space of both processes. These areas are permanently valid in both
processes, so it is difficult to keep track of data exchanges. As long as these data
areas are only used after a corresponding request or response, the sections could be
dumped and the changes could be logged. Furthermore, it is possible that some kind
of polling is used. In this case, the executed code has to be analyzed at assembler
code level, to recognise read and writes at the corresponding memory areas.

• Just like LPC, the protocols used to exchange data over LPC are undocumented or
even a self-contained implementation by a malware author. In both cases it is difficult
to analyze and evaluate the content and generate a meaningful and significant report
about the executed interprocess communication.

These problems have been encountered during the analysis of LPC. For DNS queries no
sections are used (if the response is longer than 496 bytes, a second request / response pair
is executed), but it is difficult to understand the complete traffic that is exchanged between
the client process and services.exe. Thus, a LPC Analyzer has been implemented, which
is able to keep track of all registered server- and client ports and the data traffic. Obviously,
the analysis of the data has to be done manually. For the DNS traffic, it is possible to
recognise queried domain names and manipulate the response (this is done, if the option
--overwrite-ip is used).

7.2 Virtualising Network Access

The functionality described in section 7.1 is only able to monitor network access8. Our
goal described in the Introduction and more detailed in Chapter 5 is to virtualize network
connections. Therefore, the first step has been to find out how in Windows network access is
working. The second step has been to test the accumulated knowledge with many different
test-executables and to verify that we are able to capture all of the network traffic. For
this, we did not need to understand all of the control codes and all of its responses - it was
sufficient to decode AFD CONNECT, AFD SEND, AFD RECV, etc.

The third, more difficult task has been to understand the response of all control codes
used, to be able to virtualize the network access9. The forth, and most challenging task is
to replay the synchronisation of multiple threads. Before these problems are discussed, we
have to look at some changes of TTAnalyze.

7With every request/response a PORT MESSAGE is transmitted between the two processes. This
PORT MESSAGE is 512 bytes long, and 16 bytes are used for a header

8If it is not necessary to know which process causes which network traffic, it is more easy to capture
the network traffic with a network sniffer, such as Ethereal [35]

9We do not need to understand all of the input, as long as we are able to generate a correct response
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7.2.1 Changes of TTAnalyze for Virtualising

As described in section 5.1.3, for Virtualising the Network Access we need to imitate the
execution of system calls. For this, we have to manipulate the stack pointer (esp register),
the stack itself and parts of the virtual memory in general, as well as the instruction pointer
(eip register). The first two tasks can be accomplished without any changes to TTAnalyze,
but the third task, manipulating the instruction pointer, cannot be implemented with the
existing system. This results out of two problems:

• The instruction pointer is not accessible from TTAnalyze. This results from the
architecture of QEMU, where the instruction pointer is tightly coupled with the
translation block. Therefore, the instruction pointer cannot be changed in every part
of the execution without considering the current translation block.

• The callback mechanism of TTAnalyze manipulates the translation blocks. There-
fore, if the notification of the execution of, e.g., NtDeviceIoControlFile() is re-
ceived, the corresponding translation block is already executing and it is difficult to
intercept the execution of this translation block. In this situation, the actual instruc-
tion pointer is saved in a non-public variable and therefore cannot be manipulated.

Out of this, the callback mechanism for function calls that may be intercepted has to
be changed in a way that we are able to change the instruction pointer. For this, the
QEMU code has to be changed on a location before a translation block is executed and
where it is possible to manipulate the instruction pointer without that it is necessary to
consider anything about translation blocks. The best place for this manipulation is in
the file cpu-exec.c before the translation block for the next execution is searched and
executed (in line 435 for version 0.7.1).

1 unsigned __int32 tmpVar = 0;
2 if ( (env ->cr[3]& 0xFFFFF000) == mq_ts_pagedir_addr

&& entryPointReached ) {
3 if ( env ->eip == ntDevIoEntryPoint ) {
4 cpu_memory_rw_debug(env , env ->regs[R_ESP] + 24,

(uint8_t *) &tmpVar , 4, 0);
5 if ( (tmpVar & 0xFFFFFF00) == 0x12000 ) {
6 int funcResult = afdNetworkReplay ();
7 if (funcResult < 0xFFFFFFFF)
8 pc = funcResult;
9 }
10 }
11 else if ( env ->eip == zwWaitFSingleObjEntryPoint) {
12 int replay = syncReplay ();
13 if (replay)
14 pc = replay;
15 }
16 else if ( env ->eip == zwRemoveIoComplEntryPoint ) {
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17 int replay = removeIoCompCallback ();
18 if (replay)
19 pc = replay;
20 }
21 else if ( (tmpVar = isInsertedWaitFunc ()) )
22 pc = tmpVar;
23 }

Listing 7.4: Changes to cpu-exec.c

Listing 7.4 shows the complete changes to cpu-exec.c, but for now only the Lines 1
to 10 are discussed, Lines 11 to 23 are needed for tasks described later.

In Line 2 it is checked, if the process of the test-subject is running (with the aim
of the cr3 register, described in section 2.3.2) and if the entry point of the process has
already been reached (and therefore, if the analysis is already running). Variables such
as mq ts pagedir addr, entryPointReached, or ntDevIoEntryPoint are defined in the
qemu.dll and set during startup from TTAnalyze.

The code from Lines 3 and 4 is responsible to check, if currently the function NtDevice-

IoControlFile() is called (if the instruction pointer points to the entry point of this
function), and if yes, to read the sixth parameter from the stack - the IoControlCode. If
the IoControlCode is an AFD control code (a logical and with 0xFFFFFF00 is 0x12000),
TTAnalyze is called back. TTAnalyze returns 0, if no modification of the system has to
be executed and a non-zero value, if the system has to be manipulated. The return value
is the instruction pointer, where the execution has to proceed. This value is saved in pc

(program counter), which is a variable from QEMU representing the current instruction
pointer10.

Obviously, the function afdNetworkReplay() has to be implemented in TTAnalyze.

7.2.2 Record Mode

For virtualizing the network access, there are two methods implemented, whereas these
both can be mixed up without any effort.

• Record and Replay Mode: For this virtualizing technique, in a first run a record of
the interaction between user-mode and kernel-mode is created (i.e., all significant
function calls and their parameters are saved and written to a file). In the second
run, these data are used to simulate the network traffic.

• Simulation Mode: In this mode, the complete interaction of user-mode and kernel-
mode is simulated. This means that the user has to know, when things have to
happen. This option can be used for simulating a changed environment.

In this section, we describe the Record Mode of the first technique. In the next sections
the Replay Mode and the Simulation Mode are described.

10All other changes are accomplished in TTAnalyze
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For Record Mode, the functions are hooked as usual (the variable ntDevIoEntryPoint

from Listing 7.4 is set to zero, so the code from this Listing will never be executed), and
for the relevant functions the significant data (e.g., function parameters) are saved in a
file. This is done by the class CNetworkRecord, which encapsulates the complete record
and loading functionality. Before this class and its function is discussed in more detail, let
us review the functions that are hooked.

Functions recorded for Replay

For virtualizing the network access, it is not only necessary to record the function calls
of NtDeviceIoControlFile(), it is also needed to record the functions that are used for
synchronisation.

First, the decision which NtDeviceIoControlFile() function calls have to be recorded
is relative easy - all function calls with a corresponding IoControlCode are recorded. Fur-
thermore, we keep track of all AFD devices (a file with an ObjectName of \Device\Afd\XXX)
by hooking the function NtCreateFile(). With our test-subjects we did not find any sam-
ple, where the results of both techniques did not match.

The first function for synchronization is NtWaitForSingleObject(), see Listing 6.3. All
functions that receive an event-handle that has been used for a call of NtDeviceIoControl-
File() for an AFD device are recorded too.

For more advanced synchronization technologies (I/O Completion, see chapter 6.4.2) we
have to hook the functions NtCreateIoCompletion(), NtSetIoCompletion(), NtRemove-
IoCompletion(), and NtSetInformationFile().

NtCreateIoCompletion() is needed to keep track of all handles for I/O Completion
Ports. As described in section 6.4.2, I/O Completion Ports are associated with AFD
devices via a call of NtSetInformationFile(). Therefore, we record all function calls
of NtSetIoCompletion() and NtRemoveIoCompletion() that use a port handle that has
been associated an AFD device. Obviously, if an I/O Completion Port is closed with
NtClose() we remove this handle from the list of handles to record.

Which data to record

Untill now we have seen, which functions we are recording, but we did not discuss which
data we are recording. This is what the structure RecordItemHeader is for:

1 typedef struct _RecordItemHeader {
2 unsigned __int16 type;
3 unsigned __int16 flags;
4 unsigned __int32 argA;
5 unsigned __int32 argB;
6 unsigned __int32 argC;
7 unsigned __int32 threadId;
8 unsigned __int32 functionResult;
9 unsigned __int32 inputBufferLength;
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10 unsigned __int32 outputBufferLength;
11 unsigned __int32 additionalBuffers;
12 } RecordItemHeader;
13
14 #define TYP_NTDEVICEIOCONTROLFILE 0x1
15 #define TYP_ZWWAITFORSINGLEOBJECT 0x2
15 #define TYP_ZWSETIOCOMPLETION 0x4
17 #define TYP_ZWREMOVEIOCOMPLETION 0x8
18
19 #define FLAG_RETURNED_DIRECTLY 0x1
20 #define FLAG_BLOCKED 0x2
21 #define FLAG_RETURNED_FROM_BLOCKED 0x4

Listing 7.5: Structure RecordItemHeader

This structure represents a function call or a function return. The type defines the type
of the function, e.g., TYP NTDEVICEIOCONTROLFILE 0x1 for NtDeviceIoControlFile().

The flags define how the function behaves during the recording. If the function re-
turned directly (i.e., no other function was called or returned while the function executed),
FLAG RETURNED DIRECTLY 1 is used. FLAG BLOCKED is used, if the function was called
and before it returned, an other function was called or returned (i.e., an other thread
was executed during the execution of this function and therefore the thread of this func-
tion blocked). FLAG RETURNED FROM BLOCKED is used for a function that returned from a
blocking state (i.e., a function that was recorded with FLAG BLOCKED has to return with
flag FLAG RETURNED FROM BLOCKED). All definitions for the types and flags are designed
in a way so that they can be used as bit masks. This is needed for the Replay Mode in
CNetworkRecord class for the search algorithm (if e.g., multiple types are searched).

The variables argA to argC receive different values, depending on the type of the func-
tion.

Function argA argB argC
TYP NTDEVICEIOCONTROLFILE IoControlCode Event handle File Handle
TYP ZWWAITFORSINGLEOBJECT Event handle IoControlCode
TYP ZWSETIOCOMPLETION Port Handle Completion Key Completion Value
TYP ZWREMOVEIOCOMPLETION Port Handle Completion Key Completion Value

Table 7.1: Meaning of argA to argC values for all function types

The IoControlCode for TYP ZWWAITFORSINGLEOBJECT is the IoControlCode for the cor-
responding NtDeviceIoControlFile() - it is needed for a more precise mapping at Replay
Mode.

The variables threadId and functionResult are self-explanatory. Obviously, functions
with a flag FLAG BLOCKED cannot have a function result.

The variables inputBufferLength, outputBufferLength, and additionalBuffers

are only needed for TYP NTDEVICEIOCONTROLFILE. If no (additional) buffers are used, these
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values are 0. The additional Buffers are needed for function calls, where the input and
output buffers contain pointers to other regions of memory which have to be recorded too
(e.g., for TCP SEND).

This structure is part of the CNetworkItem class. This class provides the functions
to set and read all parameters and implements the writing and reading from a file. As
minimum, the structure is written, the buffers (if present) are written immediately after
the structure. For this, the operator<< and the operator>> are overloaded.

CNetworkRecord

The class CNetworkRecord is responsible for managing the recording - for creating and for
reading the records. The functionality for reading the record are described in section 7.2.3.
Beyond the creation and filling of the record file, the core role of CNetworkRecord is to
act as buffer for CNetworkItems. CNetworkRecord is notified about called and returning
functions and has to decide, when to write a function to a file and with which flags.
Therefore, for every thread there may be a CNetworkItem buffered.

7.2.3 Replay Mode

For the Replay Mode, the core class is, as for Record Mode, CNetworkRecord. This class
keeps track of all called functions that have to be replayed. The main challenge is to create
a mapping from the “old system” (the recorded system) to the “new system” (the replayed
system). This mapping includes threads and handles for files, events, and I/O Completion
Ports. As long as only one thread is used (as in our simple function foo() from Listing
4.1), the mapping and therefore the replay is determinable and works without problems.
As more threads and different types of synchronisation are used, the more complex is the
mapping between old and new system and therefore the decision which CNetworkItem

should be used for a concrete replay.
First, the record file is read and all contained CNetworkItems are saved in a vector. If

e.g., the class CAfdDecoder receives a call of NtDeviceIoControlFile() for an AFD de-
vice, this function call has to be replayed. For this, CNetworkRecord::getRecordItem()
is queried to search for the corresponding CNetworkItem. This function receives some
informations about the function to be replayed: type, threadID, argA (i.e., the IoControl-
Code for TYP NTDEVICEIOCONTROLFILE) and the addresses of the input- and output buffer,
and the IoStatusBlock (these are needed for blocking calls of NtDeviceIoControlFile to
know where these buffers are located).

Before the type and argA are used for a search, it is checked if the threadId is already
mapped. If not, a non-mapped thread ID is searched, whereas for this search the type and
argA are needed too. The search starts with the first CNetworkItem and goes toward the
last one. The threadId of the first element, where the thread ID is not already mapped
and type and argA are matching, is used for the new mapping.

For every thread there is a “current position” saved, which describes the current position
in the execution. Therefore if a thread is mapped, the next item is always search towards
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the end. The success of a replay depends mainly on this algorithm, if the thread mappings
are correct.

Insertion of function calls

As described in section 6.4.3, we sometimes need to insert function calls. This does not
work with the method used for TTAnalyze. During the work on TTAnalyse we found
that the current implementation of function insertion does only work as long as no thread
switch happens during the execution of the inserted function. The function we need to
insert sometimes will cause an thread switch (e.g., WaitForSingleObject() to simulate
a blocking NtDeviceIoControlFile() are inserted to cause an thread switch), therefore
this approach would not work for our purposes. The approach of TTAnalyze is build to
insert any function call, even functions with many parameters or even pointers to larger
memory areas. All these data have to be placed on the stack, therefore it is not possible
to write these data on the stack without ever reaching non-mapped memory. Therefore,
these data are written on the stack with code inserted into the virtual system.

For functions like WaitForSingleObject() we only need a small amount of memory
(12 bytes for the parameters and 4 byte for the return address), therefore we can insert a
function by writing the 16 bytes directly into the virtual memory and switching the stack
pointer 16 bytes up11.

I/O Completion simulation

For the simulation and replay of synchronisation I/O Completion Ports have to be consid-
ered. For this, there are two different approaches:

• Simulation of all function calls relating to I/O Completion ports, which includes
NtCreateIoCompletion(), NtSetIoCompletion(), NtRemoveIoCompletion(), Nt-
SetInformationFile() etc. One problem with this approach would be that we
do not know from the beginning which I/O Completion ports are used for the net-
work purposes and therefore have to be simulated (the ports are associated after the
creation with an AFD device, therefore at creation time it is impossible to decide
if a NtCreateIoCompletion() has to be simulated or not). Furthermore, one I/O
Completion Port is sometimes used for several purposes (i.e., one port may be as-
sociated with several devices and additionally it may be filled manually with items
via NtSetIoCompletion()), so it would be some effort, to simulate all these function
calls.

• The creation of I/O Completion Ports is executed as usual, even the functions
NtSetInformationFile(), NtSetIoCompletion(), and NtRemoveIoCompletion().
Only the execution of NtDeviceIoControlFile() using as handle a device \Device

11We did not encounter problems with these technique - it seems that Windows does not allow to get
the free stack smaller than these 16 bytes
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\Afd\AsyncXXXHlp needs a simulation. For these cases, a completion message is
queued on the queue inside the kernel with an inserted NtSetIoCompletion() func-
tion call.

The second approach is the more efficient one, but it has still a problem to be solved.
Especially the actions executed in an asynchronous way (e.g., connect, select) need a certain
amount of time be finished. Therefore, the completion messages cannot be queued to the
kernel immediately with the simulation of NtDeviceIoControlFile(). Thus, if the port
is not only used for one purpose, the order of the queued messages it is not deterministic.
The problem during the Replay Mode is to decide, when a completion message has to be
queued to the port.

This problem is not easy to solve, because many different situations have to be con-
sidered. Most of these problems result from the fact, that the scheduling of thread is not
deterministic which results especially at processes with several threads at Replay Mode a
complete different order of execution of the I/O Operations. Consider, for example, the
following scenario.

In the “new” system a function NtRemoveIoCompletion() is executed and in the record
a function NtRemoveIoCompletion() returns immediately. In the “new” system the cor-
responding NtDeviceIoControlFile() has not been executed and, therefore, there is no
completion message on the kernel intern queue. Thus, if the replay lets this function return
with the recorded values (whereas the handles have to be replaced from “old” to “new”
ones), this will cause an unwished behaviour and will pretty sure result in an error.

To avoid such situations, the theoretical status of the kernel-intern queue is simulated.
Thus, all function calls of NtDeviceIoControlFile() for an “async AFD device” and
NtSetIoCompletion(), which cause a message to a completion port (sometimes with a
temporal delay), cause an virtual completion message to the simulated Completion Port.
Therefore, at Replay and Simulation Mode it is known if on the kernel intern queue a
message is available.

Consider the example described above: By looking at the simulated queue, NtRemoveIo-
Completion() can return only if a completion message is available which is only the case,
if the corresponding NtDeviceIoControlFile() has already been executed. Obviously, if
a NtRemoveIoCompletion() is simulated, the corresponding message has to be removed
from the simulated queue.

7.2.4 Simulation Mode

In Simulation Mode the complete interaction is simulated, therefore the responses must
be inserted manually (e.g., if the test-subject is executing an AFD RECV the replay has to
provide some data for the test-subject). The class CManReplay provides a set of functions,
which are queried for the corresponding informations. In the following, the functions for a
TCP receive are discussed.

1 Bit32u tcpReceive(Bit32u Handle , Bit32u eventHandle ,
Bit8u *buff , Bit32u size);
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2 void letTcpReceiveReturn(Bit32u Handle , Bit32u eventHandle ,
Bit8u *buff , Bit32u size);

Listing 7.6: Receive functions of class CManReplay

In Listing 7.6 the function declarations of the callback functions for a TCP receive are
shown. If the CAfdDecoder receives in Simulation Mode a function call of NtDeviceIoCon-
trolFile() with IoControlCode AFD RECV, the function tcpReceive() of the class CManRe-
play is called. The parameters buff and size describe the buffer the client is able to receive
(the size is equivalent to the buffer, the client allocated for a recv() of Winsock). There-
fore, this buffer has to be filled manually. The return value defines the information field
of the IoStatusBlock and therefore the size of the response. Obviously, the function result
has to be a value smaller or equal than the size parameter. In this case, the function is
simulated as returning immediately.

To simulate a function that blocks, tcpReceive() has to return 0xFFFFFFFF. In this
case, the CAfdDecoder inserts a ZwWaitForSingleObject() function, which causes the
thread to block. Obviously, the question arises how this thread can be released so that
the function returns? This is what the function letTcpReceiveReturn() and the pa-
rameters Handle and eventHandle from tcpReceive() are for. letTcpReceiveReturn()
(which calls the corresponding function of the CAfdDecoder class) receives the Handle

and eventHandle of the virtual blocking function. The corresponding function of the
CAfdDecoder class asserts that such a function is noted as blocking and then inserts a
NtPulseEvent() function call (to release the inserted NtWaitForSingleObject()). The
buff parameter is a newly allocated buffer that is filled with the response, the size pa-
rameter defines the size of the buffer (again, the size is used to set the information

field of the IoStatusBlock and may not larger than the size of the buffer allocated by the
test-subject).

As for the Repaly Mode, for Simulation Mode the synchronisation is the most challeng-
ing task. For a complete simulation of more complex test-subjects the testing algorithm
has to be advanced, to understand the dependences of the different threads.
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Chapter 8

Evaluation

The first part of this chapter describes how I worked to discover all the information outlined
above. The second part explains how I verified my work.

8.1 Mode of Operation

Most of the information that was required for writing this thesis is not public available.
Therefore, beside the implementation of the different modes, the main challenge was to re-
verse engineer the mode of operation of the AFD codes and the synchronisation techniques
used. This reverse engineering was an iteration of different tasks.

1. Analyzing the advanced log files: during the work, I enriched TTAnalyze with
the ability to log all functions of all loaded DLLs. This required a more advanced
mechanism to keep track of all loaded DLLs: In Windows it seems to be possible for
a process to load DLLs implicitly without explicitly calling a corresponding function
(e.g., LoadLibraryExW()). These functions are used in TTAnalyze to keep track of
all loaded DLLs, but I discovered that sometimes DLLs are loaded or mapped into
the address space of a process without any of the functions for loading a DLL being
called. Nonetheless, such DLLs appear in the PEB (Process Environment Block) so
that it is possible to find the corresponding file on the virtual hard disk and to analyse
this file in order to register all exported functions. It would be very expensive for
every translation block to iterate over all registered loaded DLLs to find implicitly
loaded DLLs. Therefore for every loaded DLLs the executable areas are registered
and for every translation block it is verified whether the current instruction pointer
points to an registered memory area. This is expensive too (thus, this feature should
only be used for reverse engineering), but it is more efficient than iterating over the
PEB, because this would result in a lot of RPC calls for reading the virtual memory,
which is necessary for iterating over the PEB.

These advanced log files gave a good overview of which system calls and sub-DLLs are
used for e.g., connecting a socket. However, for a detailed view, these log files were
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not suitable because it is not possible to view the memory or function parameters of
all function calls. However, this method delivers hints as to which function calls are
the significant and relevant ones.

2. Analyzing the “normal” log files, which include for functions hooked for TT-
Analyze the function parameters. With the method described above, the relevant
function parameter could be tracked down to the systems calls. Therefore, with the
logged function parameters the usage of e.g., a handle for a socket could be watched,
for which system and function calls this socket handle is used, etc. But even with this
method, it is not possible to reverse engineer e.g., structures used in input buffers,
etc.

3. Debugging session: during debugging sessions it is possible to halt the executable
and search for specific function parameters, e.g., the IP a socket has to be con-
nected to. However, there are many function calls even for only one function (e.g.,
NtDeviceIoControlFile), therefore, the breakpoints have to be conditional to re-
ceive only or mostly relevant function calls. For this, a handle, a control code or the
like has to be known. This information is gathered in the preceding steps, therefore
this task can be used to approve of or discard speculations about specific function
calls or function parameters.

4. Implementation: if the first three steps were successful, the hypotheses derived
from Steps 1-3 were implemented and tested with different executables. If under
different test scenarios all executables behaved as expected, I could be nearly sure,
that my hypotheses were correct.

Obviously, it has not been possible to go straight from Step 1 to Step 4 . There were
a lot of incorrect and misleading assumptions, which could not be verified in a subsequent
step. E.g., if I did not recognise a function in Step 1, I could not analyze it in Step 2.
It was often the case that the assumptions were correct until Step 4, and in Step 4 I had
to realize that my implementation considered only one specific scenario and several other
scenarios occur with different executables, different parameters or a different behaviour
caused by race conditions.

Furthermore, it was sometimes difficult to realize which problem was currently the most
significant one. There are many function calls in different threads. Even the execution of
the example function foo() from Listing 4.1 results in a log file of about 40.000 lines. The
log file for starting the Internet Explorer and loading http://seclab.tuwien.ac.at produces
a 140MB logfile (about 1.8 million lines). Finding the correct function(s) for a concrete
problem in all logged functions is a tedious task. The synchronisation tasks were especially
difficult to understand, because in contrast to pure socket functionality, it is difficult to
isolate a concrete set of function calls. For AFD, if the function send() from Winsock is
called, the system calls for implementing this functions must be executed between the call
and the return of this function. For synchronisation tasks, this is not as simple because
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several threads have to be monitored and the function call(s) searched cannot be isolated
as comfortably as for AFD calls. 1

8.2 Verification

For the verification of the work I first tried to replay function calls implementing network
access. For this, the two modi “Record Mode” and “Replay Mode” were implemented. To
verify the flexibility of my work, I simulated the network for applications whose behaviour
could be verified easily - browsers and self-written test-executables:

• Microsoft’s Internet Explorer was the most difficult application, because it uses for
a simple site a couple of concurrency threads. Parts of these threads are used to
synchronize the “real working” threads, also using sockets. This raises the number
of threads and handles to map from the old to the new system and makes it more
difficult to replay the function calls in correct order. With the tool-set described
above the scheduling of threads cannot be influenced directly, it is only possible to
influence the state of a thread (waiting or blocking), but if two threads are returning
it is not possible to influence the decision of the operating system which thread is
released first.

Thus, the more threads and handles are executed, the more difficult it is to guess how
the handles and threads are mapped correctly from the old to the new system. For
the Internet Explorer, I am able to replay about the first 30 function calls (depending
on how different the non-deterministic execution of Record and Replay Mode are)
and therefore about 5 thread switches.

• Opera uses a different approach for synchronising its threads. That is, it uses the
already mentioned WSAAsyncSelect Model, which uses I/O Completion Ports for
synchronisation. Out of this, there are less threads executed and the mapping of
threads and handles is more simple. Therefore, for Opera it is possible to replay the
loading of a simple site.

• The self-written test-executable executing the function foo() from Listing 4.1 is
single-threaded and therefore, the mapping of the handles from old to new system
is quiet simple. Thus, a replay for single-threaded application has not been any
problem.

The next step is to replay the corresponding function-calls without any recording,
therefore to simulate the interaction between user-mode and kernel-mode completely. This
is what the simulation mode is for.

The complete simulation of network traffic requires a deeper understanding of the data
exchanged between user-mode and kernel-mode, the used synchronisation techniques. This

1Nonetheless, the work was, though sometimes annoying, mostly great hacking fun.
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knowledge is needed by the human analyst, who tries to simulate the network traffic.
Furthermore, a deeper understanding of the test-executable is required (i.e., it is essential
to know when a particular thread has to return, which data are filled into the response
buffers, etc.). This is particularly difficult if e.g., sockets are used as synchronisation
technique (such as in Microsoft’s Internet Explorer).

Obviously, this is exactly what was described in the introduction and what the goal of
this theses was. Therefore, as I am able to simulate the network access for the code from
Listing 4.1, I have been able to reach my objectives.
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Chapter 9

Future Work and Conclusion

9.1 Future Work

Networking under Windows is a wide-ranging topic, there are some APIs TTAnalyze is
currently not able to handle. Beside sockets, Windows provides other possibilities to access
network resources [15] that are not accessed via AFD:

• Named pipes and mailslots provide reliable bidirectional and unreliable unidirectional
data transmission [15], e.g., for network drives.

• Remote procedure call (RPC) are an independent API, but are executed over named
pipes, LPC and AFD.

Furthermore, for synchronisation tasks, methods will have to be found to simulate
them in a more comfortable way, without understanding the current technique for every
test subject. The currently used system, which tries to map handles and threads from the
old to the new systems, does not work with more complex scenarios. One possible solution
could be to write a more general and more intelligent analyzing part, which is able to
understand different synchronisation techniques and help the human analyzer using the
Simulation Mode to avoid inconsistent system states. Consider a local socket that is used
for synchronisation: Such a more intelligent analyzing module has to understand that two
sockets are connected to one another and receiving in one thread can only return bytes if
another thread has been sent bytes over this socket.

Obviously, there are a lot of techniques, which have to be understood. Therefore, it
will take a lot of research, reverse engineering and coding work until software will be is
able to understand all these techniques.

9.2 Conclusion

At the beginning of my project, I expected that the most difficult part would be to under-
stand the undocumented AFD protocol. During my work I realised that that was a relative
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easy task provided I had sufficient knowledge of function call conventions and assembler
code, some reverse engineering practice, and a set of good tools. For AFD, it is possible to
reduce the set of functions which have to be examined to a relatively small number. After
I had understood the general behaviour and usage of AFD, the research of further AFD
codes was similar to that of the preceding AFD codes.

For synchronisation this is not the case. The usage of events is relatively simple, easy
to understand, documented and more like the schemes of every day programming. This
may result from the fact that events occur in every programmer’s life and are used day by
day.

However, for “normal” programmers the usage of I/O Completion Ports is something
completely new. Certainly, the technique behind I/O Completion Ports was not invented
by Microsoft for the Windows Kernel, nonetheless, it is not a basic concept for every
programmer. Furthermore, the creation, setup and usage of these ports do not occur
in chronological order. In particular, these ports are sometimes used without this being
apparent (e.g., when a completion message is queued inside the kernel to a completion port
by a call of NtDeviceIoControlFile()) and, therefore, have been difficult to detect and
understand.

Finally, I showed that it is possible to omit the kernel for network access with sockets
and therefore that it is possible to build tools that carry out a more sophisticated dynamic
analysis by running through different scenarios of the execution of a test subject.
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