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Introduction

In the theory of optimal transportation, the set P2(M) of Borel probability measures
with finite second moment on a smooth and compact Riemannian manifold M , endowed
with the quadratic Wasserstein distance W2 is well known. However, it was only in
recent years that one started to investigate and understand the differential structure of
this so called Wasserstein space (P2(M),W2).
Otto [Ott01] was the first to consider the continuity equation as a possibility to endow
(P2(M),W2) with a Riemannian-like structure. He formally defined tangent vectors to
a Borel probability measure µ ∈ P2(M) via the continuity equation

∂tµt + div(vtµt) = 0

by −div(vµ), for v ∈ L2
µ, and endowed this “tangent bundle” with the L2-scalar product

〈−div(vµ),−div(wµ)〉 :=

∫
〈v, w〉 dµ.

Other authors ([AGS08], [AG+08], [Lot08]) then improved Otto’s results by starting to
rigorously construct the so called weak Riemannian structure of (P2(M),W2). The aim
of this thesis is to give an overview of the construction of the weak Riemannian struc-
ture, by introducing concepts known from Riemannian manifolds such as tangent space,
parallel transport or Levi-Civita connection in the Wasserstein setting.

This thesis is divided into three parts. Part I recalls the most important results used
in the course of this thesis. Chapter 1 deals with the basics of Riemannian Geometry.
Chapter 2 covers the most important results about absolutely continuous curves and
the weak convergence of measures. In this chapter we also define an important map
associated to a given absolutely continuous curve c, namely the metric derivative of c,
denoted by |ċ|. The last chapter of the introductory part, Chapter 3, recalls the most
important results and concepts concerning optimal transport. Therein, we formulate the
optimal transport problem, that is finding a minimizer of

γ 7→
∫
X×Y

c(x, y)dγ(x, y),

and present results concerning the existence of such minimizers. Especially the notion
of a c-cyclical monotone set will prove to be very useful. For optimal transport maps T ,
that is when looking for measures of the type γ = (id, T )#µ with a measurable function
T , we present necessary and sufficient conditions for their existence. In this chapter we
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also introduce the Wasserstein space P2(X) with the associated Wasserstein distance
W2, which is a metric space whose differential structure we study in this thesis. The
remainder of the thesis will be concerned with the construction of a structure resembling
the one of a Riemannian manifold on (P2(M),W2), where M is a smooth and compact
Riemannian manifold.

Part II starts with the construction of the so called weak Riemannian structure of
(P2(M),W2), by introducing the continuity equation

∂tµt + div(vtµt) = 0

and analyzing some of its properties. This equation has to be understood in the distri-
butional sense. We extend the heuristical formalism developed by Otto and rigorously
define a tangent bundle. In Chapter 4 we summarize a few results about the continuity
equation and prove two important theorems: To a given absolutely continuous curve
(µt), the first theorem provides a unique vector field vt, such that

‖vt‖µt ≤ ‖ṽt‖µt

for all ṽt which also solve the continuity equation with respect to µt. This unique
vector field is called the velocity vector field of µt and plays a very important role in the
construction of the parallel transport on (P2(M),W2). The second important result in
this chapter is the so called Benamou-Brenier formula

W2(µ, ν) = inf

∫
‖ṽt‖µ̃t dt,

where the infimum is taken over all solutions (µ̃t, ṽt) of the continuity equation satisfying
µ̃0 = µ and µ̃1 = ν.
In Chapter 5 we derive two explanations, why the tangent bundle to a given measure µ
should be considered as

Tanµ (P2 (M)) := {∇φ | φ ∈ C∞c (M)}L
2
µ(M)

.

By Theorem 4.2.1 it will be concluded that only gradients of test functions (and their
limits) have to be considered in the tangent bundle. Moreover, the Benamou-Brenier
formula suggests to use the L2-product as scalar product on the tangent bundle. On the
other hand, we want the unique velocity vector field to always lie in the tangent bundle.
As we will show, these requirements lead to the same definition of Tanµ (P2 (M)).

Part III deals with the second order analysis of (P2(M),W2). In this part we define
a parallel transport and furthermore derive a definition for the Levi-Civita connection.
Chapter 6 deals in great detail with the construction of the parallel transport. Taking a
manifold embedded in Rn into consideration, a construction of the parallel transport in
Euclidean space without using a covariant derivative is described. An important obser-
vation is the Lipschitz continuity of the angle between two subspaces Vt and Vs.
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Equipped with the tools developped in this section, we mimic the proofs of the Euclidean
case in the Wasserstein setting. To that aim we first define the so called regular curves,
which replace the smooth curves known from classical Riemannian geometry.
An important role in the construction of the parallel transport play translation maps τ ts.
Since two different tangent vectors vt ∈ Tanµt (P2 (M)) and vs ∈ Tanµs (P2 (M)) live in
different L2-spaces and are therefore not directly comparable, we first need a method
to translate vt to a vector field in Tanµs (P2 (M)). The translation maps τ ts provide us
with such a translation and allow us to define the total derivative by

d

dt
vt = lim

s→t

τ ts(vs)− vt
s− t

.

Additionally, by defining vector fields along curves, we are able to construct the parallel
transport in the Wasserstein setting and prove its uniqueness. Finally, the notion of
parallel transport can naturally be defined by

Pµt

(
d

dt
ut

)
= 0,

where Pµt denotes the projection onto Tanµt (P2 (M)). As in the Euclidean case, a
Lipschitz-type inequality enables us to carry out the whole construction.
Chapter 7 is dedicated to the definition of the Levi-Civita connection on (P2(M),W2).
With the parallel transport maps T ts at hand, the definition of the covariant derivative
reads

D

dt
ut := lim

h→0

T tt+h(ut+h)− ut
h

.

Eventually, we will show that D
dtut indeed defines the Levi-Civita connection, that is we

show its compatibility with the metric and that it satisfies the torsion free identity.
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1. Riemannian Geometry Preliminaries

We first start by presenting the fundamentals of Riemannian geometry. Ultimately, the
goal of this thesis is to define a structure on a certain set, resembling that of a Riemannian
manifold, although it will not be such a manifold. Here we introduce the most important
definitions and results of Riemannian geometry. We omit proofs in this section, but the
material presented here is treated in any introductory course on smooth manifolds (for
example [Lee01]) and Riemannian geometry (for example [dCV92] or [GHL04]).

1.1. Differentiable Manifolds and Smooth Maps

Without diving to deep into the theory of smooth manifolds, here are the most impor-
tant definitions, that enable us to talk about smooth manifolds and smooth maps on
manifolds.

Definition 1.1.1 (Topological Manifold). M is called a topological manifold of dimen-
sion n, if the following three properties are satisfied:

(i) M is Hausdorff,

(ii) M is second countable,

(iii) M is locally euclidean.

Definition 1.1.2 (Chart, Local Coordinates). A chart is a pair (U, φ), where U ⊆ M
is an open subset and φ : U 7→ Ũ is a homeomorphism with φ(U) = Ũ ⊆ Rn.
The component functions (x1, x2, . . . , xn) of φ are called the local coordinates in U .

Definition 1.1.3 (Smoothly Compatible Charts, Atlas, Smooth Atlas). If (U, φ) and
(V, ψ) are two charts in M with U ∩ V 6= ∅, then we call the homeomorphism
ψ ◦ φ−1 : φ(U ∩ V ) → ψ(U ∩ V ) a coordinate change from φ to ψ. Two charts are
called smoothly compatible, if either U ∩ V = ∅ or ψ ◦ φ−1 is a diffeomorphism.
An atlas A is a set of charts (Ui, φi), such that the Ui cover M . An atlas A is called a
smooth atlas if every two charts are smoothly compatible.

Definition 1.1.4 (Maximal Atlas, Smooth Manifold). A smooth atlas A is called a
maximal atlas if there is no strictly greater atlas Ã containing A. A maximal atlas A is
also called a smooth structure.
A smooth manifold is a pair (M,A), consisting of a topological manifold M and a smooth
structure A.
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Definition 1.1.5 (Coordinate Representation, Smooth Maps). For a map f : M → N
between two smooth manifolds M and N , and charts (U, φ) in M and (V, ψ) in N with
f(U) ⊆ V , we call the function f̂ : φ(U)→ ψ(V ) defined by f̂ = ψ◦f ◦φ−1 the coordinate
representation of f for (U, φ) and (V, ψ).
A map f : M → N is smooth, if for every p ∈ M there exist charts (U, φ) in M and
(V, ψ) in N , such that f(U) ⊆ V , p ∈ U and the coordinate representation of f for (U, φ)
and (V, ψ) is smooth in the usual euclidean sense.

1.2. The Tangent Bundle and the Cotangent Bundle

Here we shortly review the first order analysis of smooth manifolds.

Definition 1.2.1 (Derivation). Let M be a smooth manifold. We call a linear functional
v : C∞(M)→ R a derivation at p ∈M , if for every f, g ∈ C∞(M) the product rule

v(fg) = f(p)v(g) + g(p)v(f)

holds.

We will follow [Lee01] by defining the tangent space at p as the set of all derivations.

Definition 1.2.2 (Tangent Space at p). The vector space of all derivations at p ∈M is
called the tangent space to M at p and denoted by TpM . An element of TpM is called
a tangent vector of M at p.

However, there are other possible (and more intuitive and geometric) definitions of the
tangent space at p. A very useful one is the characterization of tangent vectors as
derivatives along curves.

Definition 1.2.3 (Alternative Definition of TpM). Let M be a smooth manifold and
p ∈ M . Two curves γ1, γ2 : I → M from an open interval I containing 0 to M , such
that γ1(0) = γ2(0) = p, are said to be equivalent, if in any local chart (U, φ) it holds

(φ ◦ γ1)′(0) = (φ ◦ γ2)′(0).

We call an equivalence class of curves for this equivalence relation a tangent vector
to p on M . If γ is a representative of such an equivalence class, then we denote the
corresponding tangent vector (i.e. the equivalence class of γ) by γ′. The tangent space
at p then is, as before, the set of all tangent vectors at p and denoted by TpM .

We will not make a strict distinction between these two characterizations of the tangent
space.
The collection of all tangent spaces at points p ∈M is called the tangent bundle.

Definition 1.2.4 (Tangent Bundle). The disjoint union of all tangent spaces TpM at p
for every p ∈M is called the tangent bundle and denoted by TM .
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Theorem 1.2.5. Let M be a smooth manifold of dimension n. If TM denotes its
tangent bundle, then TM is a smooth manifold of dimension 2n.

Whereas tangent vectors can be seen as generalizations of derivatives of curves, tangent
covectors act as generalizations of gradients of smooth functions.

Definition 1.2.6 (Covector Space). Let M be a smooth manifold and p ∈M . We call
the dual space of TpM its covector space and denote it by

T ∗pM := (TpM)∗ .

We will call an element of T ∗pM a tangent covector.

As with the tangent bundle, the union of all covector spaces deserves its own name.

Definition 1.2.7 (Covector Bundle). The disjoint union of all covector spaces T ∗pM at
p for every p ∈M is called the covector bundle and denoted by T ∗M .

The covector bundle carries the structure of a smooth manifold:

Theorem 1.2.8. Let M be a smooth manifold of dimension n. If T ∗M denotes its
covector bundle, then T ∗M is a smooth manifold of dimension 2n.

Definition 1.2.9 (Differential). Let M and N be two smooth manifolds and F : M → N
be a smooth map. Then the map dFp : TpM → TF (p)N defined by

dFp(v)(f) = v(f ◦ F )

is called the differential or push-forward of F at p.

Definition 1.2.10 (Vector Field, Covector Field). A smooth vector field is a smooth
map V : M → TM according to Definition 1.1.5, usually written as p 7→ Vp, such that
for every p ∈M it also holds Vp ∈ TpM .
Analogously, a smooth covector field is a smooth map W : M → T ∗M , such that for
every p ∈M it also holds Wp ∈ T ∗pM .

In the following we will denote by X(M) the set of all smooth vector fields on M and
by Xc(M) the set of all smooth vector fields on M with compact support.
One can also interpret smooth vector fields as maps C∞(M) → C∞(M) by associating
to a vector field Y ∈ X(M) the map

Y : C∞(M)→ C∞(M)

f 7→ Y f

where Y f is defined by (Y f)(p) := Yp(f).
Given two smooth vector fields X and Y , the Lie bracket provides us with a way to
compute a third smooth vector field [X,Y ].

Definition 1.2.11 (Lie Bracket). Let X and Y be smooth vector fields on a smooth
manifold M . Their Lie bracket is another smooth vector field defined by

[X,Y ] f := X(Y f)− Y (Xf) ∀f ∈ C∞(M).

5



1.3. Riemannian Metrics

Now that we have a basic understanding of smooth manifolds, let us introduce a special
type of smooth manifold, a so called Riemannian manifold, that exhibits a metric on
each tangent space TpM .

Definition 1.3.1 (Riemannian Metric, Riemannian Manifold). Let M be a smooth
manifold. A Riemannian metric is a map g, that associates to every p ∈ M an inner
product gp(·, ·) =: 〈·, ·〉p on the tangent space TpM which varies smoothly in p, i.e. for
given smooth vector fields X,Y ∈ X(M) the map p 7→ gp(Xp, Yp) is a smooth map.
We call a smooth manifold together with a given Riemannian metric a Riemannian
manifold.

We will denote the Riemannian metric by 〈·, ·〉. As a first important result we obtain
that every smooth manifold admits a Riemannian metric.

Theorem 1.3.2. Let M be a smooth manifold. Then there exists a Riemannian metric
on M .

A Riemannian metric allows us to define the notion of length of a curve through its
corresponding tangent vector and to introduce a metric on M .

Definition 1.3.3 (Length of a Curve). Let M be a Riemannian manifold and
γ : [a, b]→M a curve. We define the length of γ as

L(γ) =

∫ b

a

√
〈γ′, γ′〉γ(t)dt.

Definition 1.3.4 (Metric on M). Let M be a Riemannian manifold. We can define a
metric on M by

dM (x, y) := inf {L(γ) | γ : [0, 1]→M,γ(0) = x, γ(1) = y} .

The metric defined this way recovers the topology of the manifold.
As a corollary of Theorem 1.3.2 we get, that every smooth manifold is metrizable.

1.4. Affine Connections, Parallel Transport and the Levi-Civita
Connection

In this section we are going to recall the definitions and properties of affine connections,
in particular the Levi-Civita connection, and of parallel transports.

Definition 1.4.1 (Affine Connection). Given a Riemannian manifold M and a map

∇ : X(M)× X(M)→ X(M) : (X,Y ) 7→ ∇XY,

we say that ∇ is an affine connection on M if, for every X,Y, Z ∈ X(M) and any real
valued smooth functions f, g on M , it satisfies the following three properties:

6



(i) ∇fX+gY Z = f∇XZ + g∇Y Z,

(ii) ∇X(Y + Z) = ∇XY +∇XZ,

(iii) ∇X(fY ) = f∇XY +X(f)Y .

Proposition 1.4.2 (Covariant Derivative). Let M be a smooth manifold, ∇ an affine
connection on M and V,W vector fields along a curve γ : I →M . There exists a unique
vector field DV

dt along γ, such that for any smooth function f on I

(i) D
dt(V +W ) = DV

dt + DW
dt ,

(ii) D
dt(fV ) = df

dtV + f DV
dt ,

(iii) if V (t) = Y (γ(t)) for Y ∈ X(M), then DV
dt = ∇γ̇Y .

This unique vector field DV
dt is called the covariant derivative.

We have defined a connection as map X(M)×X(M)→ X(M), however it is equivalently
possible to define a connection as map TpM×X(M)→ X(M), since for the computation
of (∇XY )(p) it is not necessary to know X, but only Xp. For p ∈ M this allows us to
define the gradient of a vector field Y from TpM into itself by

∇Y (p) : v 7→ (∇vY )(p).

Covariant derivatives allow us to define a notion of parallelism.

Definition 1.4.3 (Parallel Vector Field). Let M be a smooth manifold and ∇ an affine
connection on M . We say a vector field V along a curve γ is parallel, if DV

dt = 0.

Proposition 1.4.4 (Parallel Transport). Let M be a smooth manifold with affine con-
nection ∇. Furthermore, let γ : I → M be a curve in M and V0 ∈ Tγ(t0)M for t0 ∈ I.
There exists a unique parallel vector field V along γ, such that V (t0) = V0. We call V
the parallel transport of V0 along γ.
The linear map Pt : Tγ(t0)M → Tγ(t)M which associates to every V0 ∈ Tγ(t0)M the
tangent vector V (t) ∈ Tγ(t)M , where V is the unique parallel transport of V0 along γ, is
called the parallel transport map.

Usually, Proposition 1.4.4 is shown as soon as one has defined the covariant derivative.
However, as we will see in Chapter 6, it is possible to construct a parallel transport in
Rn without using local charts or a covariant derivative. This approach will be a key
observation for the construction of parallel transport (and the Levi-Civita connection)
in the space (P2(M),W2).

Next let us recall what we mean by compatibility with the metric and torsion free identity.
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Definition 1.4.5 (Compatibility with the Metric). Let M be a Riemannian manifold,
∇ an affine connection on M and 〈·, ·〉 a Riemannian metric. We say that ∇ is compatible
with the metric, if

〈X,Y 〉 = const

for any curve γ and for any parallel vector fields X,Y along γ, or equivalently, if

d

dt
〈X,Y 〉 =

〈
DX

dt
, Y

〉
+

〈
X,

DY

dt

〉
.

Definition 1.4.6 (Torsion Free Identity). Let M be a Riemannian manifold, ∇ an affine
connection on M and 〈·, ·〉 a Riemannian metric. We say that ∇ satisfies the torsion free
identity (or sometimes that ∇ is symmetric), if

∇XY −∇YX = [X,Y ]

for all X,Y ∈ X(M).

Theorem 1.4.7 (Levi-Civita). Let M be a Riemannian manifold with Riemannian met-
ric 〈·, ·〉. Then there exists a unique affine connection ∇ on M that is compatible with
the metric and that satisfies the torsion free identity. We will call this unique affine
connection the Levi-Civita connection.

For a smooth function f onM , the Riemannian metric allows us to define a generalization
of a gradient to manifolds. We define the gradient of f as the vector field ∇f ∈ X(M)
which satisfies

g(∇f,X) = Xf

for all vector fields X ∈ X(M).

1.5. L2
µ-vector fields on M

Let µ be a Borel probability measure on M and denote by 〈·, ·〉p the scalar product on
TpM (that is 〈·, ·〉 is the Riemannian metric on TM). Let furthermore u and v be two
maps from M to TM such that up := u(p) ∈ TpM and analogously vp ∈ TpM for µ-a.e.
p ∈M . Then we define the L2

µ-scalar product of u and v by

〈u, v〉µ :=

∫
M
〈u, v〉p dµ(p)

with the induced L2
µ-norm

‖u‖2µ :=

∫
M
〈u, u〉p dµ(p).

We say that u ∈ L2
µ if ‖u‖ <∞. Elements of L2

µ will also be called vector fields. We will
sometimes write L2

µ(M) to explicitly mention the underlying manifold M . For example,
L2
µ(Rn) denotes the space of vector fields on Rn, that is maps from Rn to TpRn ∼= Rn

(not to be confused with L2
µ-functions from Rn to R).
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2. Absolutely Continuous Curves, Narrow
Topology and Metric Derivatives

This chapter shortly summarizes the most important results about convergence of mea-
sures, absolutely continuous curves and their metric derivatives. All the results stated
here (and their proofs) can be found in [AGS08].

2.1. Absolutely Continuous Curves and Metric Derivatives

Let us start with the important notion of an absolutely continuous curve.

Definition 2.1.1 (Absolutely Continuous Curve). Let (X, d) be a complete metric space
and consider a curve c : I → X on an open interval I. We say that c is an absolutely
continuous curve, if there exists a measurable function f ∈ L1(I) such that

d(c(s), c(t)) ≤
∫ t

s
f(r)dr ∀s, t ∈ I, s < t. (2.1)

By AC(I,X) we denote the set of all absolutely continuous curves from I to X.

Remark 2.1.2. Note that the definition above (and the result of the following Theo-
rem 2.1.3) can be generalized to curves c, such that the right-hand side of (2.1) considers
functions f ∈ Lp(I) for p ≥ 1. We would then write c ∈ ACp(I,X). However we will
not need such curves in the following. F

The following theorem characterizes a minimal right-hand side of (2.1).

Theorem 2.1.3. If (X, d) is a complete metric space, I ⊂ R an open interval and
c ∈ AC(I,X) an absolutely continuous curve, then the map |ċ| : I → R, defined by

|ċ| (t) := lim
s→t

d(c(s), c(t))

|s− t|
,

exists for λ1-a.e. t ∈ I. Furthermore, the following three properties hold:

(i) |ċ| ∈ L1(I),

(ii) |ċ| qualifies as integrand for the right-hand side of (2.1), i.e.

d(c(s), c(t)) ≤
∫
I
|ċ| (r)dr,
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(iii) among all possible functions f that qualify as integrands for the right-hand side
of (2.1), |ċ| is λ1-a.e. minimal, i.e.

|ċ| (t) ≤ f(t) for λ1-a.e. t ∈ I.

Definition 2.1.4 (Metric Derivative). Given an absolutely continuous curve c(t), then
we call the map |ċ| (t) provided by Theorem 2.1.3 its metric derivative. We will sometimes
write |ċt| as a shorthand for |ċ| (t).

Lemma 2.1.5 (Arc-Length Reparametrization). Given an absolutely continuous curve
c(t), then there exists a reparametrization, such that |ċ| = 1.

2.2. Narrow Topology

We denote the set of all Borel probability measures on X by P(X). Often we will need
the convergence of measures in the following sense:

Definition 2.2.1 (Narrow Convergence). Let (µn) ⊂ P(X) be a sequence of Borel
probability measures. We say (µn) converges narrowly to a measure µ, symbolically
µn → µ, if

lim
n→∞

∫
X
fdµn =

∫
X
fdµ

for every continuous and bounded function f ∈ Cb(X).

In the special case X = Rn it is sufficient to only consider test functions:

Lemma 2.2.2. If (µk) ⊂ P(Rn) is a sequence of Borel probability measures, then µk
already converges narrowly to a measure µ if

lim
k→∞

∫
Rn
fdµk =

∫
Rn
fdµ ∀f ∈ C∞c (Rn).

When dealing with lower or upper semicontinuous functions, we have the following Fatou
like property:

Lemma 2.2.3. If µ ∈ P(X) and (µn) ⊂ P(X) such that µn → µ narrowly, then for
every lower semicontinuous function f bounded from below it holds

lim inf
n→∞

∫
X
fdµn ≥

∫
X
fdµ.

Using −f instead of f in the lemma above, we get the analogous inequality for upper
semicontinuous functions bounded from above.
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3. Optimal Transport Preliminaries

In this chapter we introduce the most important results concerning Optimal Transport.
The reader should be familiar with the results presented here, as we will use them
throughout the rest of this thesis. Again we will not give any proofs. For a thorough in-
troduction to optimal transportation theory (where all the omitted proofs can be found)
the reader is encouraged to advice [Vil08]. A shorter, but still very clear and informative
introduction, can be found in [AG13].

3.1. Optimal Transport Formulation

Before we introduce the problem formulation of optimal transport, we have to establish
a few definitions and notations.
As before, we denote by P(X) the set of all Borel probability measures on X. We will
normally denote measures by µ, ν and γ. Given two Polish spaces X and Y , a measure
µ ∈ P(X) and a measurable function T : X → Y , we define the measure T#µ ∈ P(Y ),
the so called push-forward of µ through T , by

T#µ(A) := µ(T−1(A)) for every Borel set A ⊂ Y.

For two measures µ ∈ P(X) and ν ∈ P(Y ), a measure γ ∈ P(X×Y ) is called a transport
plan or transference plan from µ to ν, if its marginals equal µ and ν, in other words if

πX#γ = µ, πY #γ = ν

where πX , πY are the projections onto X and Y respectively. We will denote the set of
all transport plans from µ to ν with trp(µ, ν). We can now state the Monge-Kantorovitch
formulation of Optimal Transport:

Problem 3.1.1 (Monge-Kantorovitch minimization problem). Let (X,µ), (Y, ν) be two
Polish probability spaces and let c : X × Y 7→ R ∪ {+∞} be the so called cost function.
Find a measure γ ∈ trp(µ, ν), such that

γ 7→
∫
X×Y

c(x, y)dγ(x, y) (3.1)

is minimized.
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A transport plan γ which minimizes (3.1) is called an optimal transport plan. The
transport cost of a given transport plan γ is defined by

C(γ) :=

∫
X×Y

c(x, y)dγ(x, y).

A transport plan γ with C(γ) <∞ is called a finite transport plan.
The following classical existence result holds:

Theorem 3.1.2. Under the assumptions of (3.1), if the cost function
c : X×Y → R∪{+∞} is lower semicontinuous and if furthermore c(x, y) ≥ a(x) + b(y)
∀x ∈ X, ∀y ∈ Y holds for two upper semicontinuous functions a : X → R ∪ {−∞} and
b : Y → R ∪ {−∞}, such that a ∈ L1(µ) and b ∈ L1(ν), then (3.1) admits a minimizer.

Definition 3.1.3 (c-cyclical Monotonicity). Let Γ ⊂ X × Y . If for every n ∈ N and
every family (x1, y1), . . . , (xn, yn), where (xi, yi) ∈ Γ, the inequality

n∑
i=1

c(xi, yi) ≤
n∑
i=1

c(xi, yi+1)

holds, Γ is said to be c-cyclically monotone. If a transport plan γ is concentrated on a
c-cyclically monotone set, then γ is itself said to be c-cyclically monotone.

The next three results characterize optimality conditions and a duality formulation to
(3.1) using the so called c-cyclical monotonicity. To fully understand those results, we
must first introduce a few definitions. In the following, X and Y can be arbitrary sets
and c : X × Y → R ∪ {+∞} is a function.

Definition 3.1.4 (c-Transforms). Let ψ : X → R ∪ {+∞} be a function which is not
identically +∞. Its c-transform ψc is defined by

ψc(y) = inf
x∈X

(
ψ(x) + c(x, y)

)
, ∀y ∈ Y

Let φ : Y → R∪ {−∞} be a function which is not identically −∞. Its c-transform φc is
defined by

φc(x) = sup
y∈Y

(
φ(y)− c(x, y)

)
, ∀x ∈ X

The functions ψ and ψc (respectively φ and φc) are said to be c-conjugate.

Now we can define c-convexity and c-concavity.

Definition 3.1.5 (c-convexity, c-concavity). Let ψ and φ be defined as in 3.1.4. If there
exists a function ζ1 : Y → R ∪ {±∞} such that ψ = ζc1, then ψ is said to be c-convex.
If there exists a function ζ2 : X → R ∪ {±∞} such that φ = ζc2, then φ is said to be
c-concave.

Finally, let us define c-subdifferentials and c-superdifferentials.
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Definition 3.1.6. Let ψ and φ be defined as in Definition 3.1.4. The c-cyclically mono-
tone set

∂cψ := {(x, y) ∈ X × Y | ψc(y)− ψ(x) = c(x, y)}
is called the c-subdifferential of ψ. The set

∂cψ(x) := {y ∈ Y |(x, y) ∈ ∂cψ}

is called the c-subdifferential of ψ at x.
In the same way, the c-cyclically monotone set

∂cφ := {(x, y) ∈ X × Y | φ(y)− φc(x) = c(x, y)}

is called the c-superdifferential of φ.

We are now able to formulate an important characterization of optimal transport plans.

Theorem 3.1.7 (Fundamental Theorem of Optimal Transport). Under the assumptions
of Theorem 3.1.2, let γ ∈ trp. Then the following three statements are equivalent:

(i) γ is optimal,

(ii) supp γ is c-cyclically monotone,

(iii) there exists a c-concave function φ such that max {φ, 0} ∈ L1(µ) and such that
supp γ ⊂ ∂cψ(x).

Above theorem shows, that optimality depends only on the support of a transport plan
γ, therefore restrictions of optimal transport plans are again optimal.
One can improve the result given in Theorem 3.1.2 by removing the continuity as-
sumptions on the cost function c. The following theorem and its proof can be found
in [BGMS09].

Theorem 3.1.8. Let (X,µ) and (Y, ν) be two Polish probability spaces and let
c : X × Y 7→ R ∪ {+∞} be a Borel measurable cost function. The following results hold:

(i) Every finite optimal transport plan is c-cyclical monotone.

(ii) Every finite c-cyclical monotone transport plan is optimal if there exist a closed set
F and a µ⊗ ν null set N , such that {(x, y) ∈ X × Y | c(x, y) =∞} = F ∪N .

The last result in this section is a duality formulation of (3.1).

Theorem 3.1.9 (Kantorovitch Duality). If (X,µ) and (Y, ν) are two Polish probability
spaces, c : X × Y → R ∪ {+∞} a lower continuous cost function, a ∈ L1(µ) and
b ∈ L1(ν) two upper semicontinuous functions, such that c(x, y) ≥ a(x) + b(y) for all
pairs (x, y) ∈ X × Y , then the following duality holds:

min
γ∈trp(µ,ν)

∫
X×Y

c(x, y)dγ(x, y) = sup
ψ∈L1(µ)

( ∫
Y
ψc(y)dν(y)−

∫
X
ψ(x)dµ(x)

)
= sup

φ∈L1(ν)

( ∫
Y
φ(y)dν(y)−

∫
X
φc(x)dµ(x)

)
One can restrict the suprema to c-convex functions ψ and c-concave functions φ.
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3.2. Existence of Optimal Transport Maps

When looking for optimal transport plans, we are specifically interested in so called op-
timal transport maps. Given two measures µ and ν, a transport map is a µ-measurable
function T , such that T#µ = ν. If γ := (id, T )#µ is an optimal transport plan, we call T
an optimal transport map. For the special case where X = Y is a Riemannian manifold
and the cost function c(x, y) is the squared distance on this manifold, we have a useful
characterization by so called regular measures.

Definition 3.2.1 (Regular Measure). A measure µ ∈ PM is called regular, if for any
semiconvex function ψ : M → R it vanishes on the set of points of non differentiability
of ψ.

Remark 3.2.2. Every measure which is absolutely continuous w.r.t. the volume measure
is regular. F

Theorem 3.2.3 (Brenier-McCann). Let M be a smooth compact Riemannian manifold
without boundary and µ ∈ P(M). Then the following statements are equivalent:

(i) For every ν ∈ P(M) there exists only one transport plan from µ to ν and this plan
is induced by a map T .

(ii) µ is regular

If either (i) or (ii) holds, the optimal map can be written as x 7→ expx(∇ψ(x)) for some
c-convex function ψ : M → R.

3.3. The Wasserstein Space and its Topology

Until now we worked with two (possibly different) underlying spaces X and Y . Now
we turn our attention to the case where X equals Y . We are particularly interested in
extending the optimal transport cost C(µ, ν) = infγ∈trp(µ,ν)

∫
c(x, y)dγ(x, y) to a metric

on a suitable defined subspace of P(X). When defining the cost function c in terms of
a metric d, this goal can be easily achieved. This leads us to following definitions:

Definition 3.3.1 (Wasserstein Distance). Let (X, d) be a Polish metric space and fix
p ∈ [1,∞). For two probability measures µ, ν ∈ P(X), define the Wasserstein distance
Wp(µ, ν) of order p by

Wp(µ, ν) =

(
inf

γ∈trp(µ,ν)

∫
d(x, y)pdγ(x, y)

)1/p

.

We finally arrive at the definition of the space, that we are going to study in more detail
in this thesis.
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Definition 3.3.2 (Wasserstein Space). Let (X, d) be a Polish metric space and fix
p ∈ [1,∞). We define the Wasserstein space of order p by

Pp(X) :=

{
µ ∈ P(X)

∣∣∣∣ ∫
X
d(x0, x)pdµ(x) <∞

}
for some x0 ∈ X. Note that this definition does not depend on the particular point
x0 ∈ X.

Lemma 3.3.3. Let (X, d) be a Polish space and fix p ∈ [1,∞). It holds that Wp is a
metric.

Theorem 3.3.4. Let (X, d) be a Polish space and fix p ∈ [1,∞). Consider a sequence
of probability measures (µk) ⊂ Pp(X) and µ ∈ Pp(X). Then the following equivalence
holds:

Wp(µk, µ)→ 0 ⇔ µk → µ narrowly

∧
∫
d(x0, x)pdµk(x)→

∫
d(x0, x)pdµ(x) for some x0 ∈ X.

3.4. Geodesics in (P2(M),W2)

From now on we will only consider the special case p = 2, thus we will be concerned
with the structure of (P2(M),W2), where M is a compact, smooth Riemannian manifold
without boundary.

Theorem 3.4.1. Let M be a Riemannian manifold and (µt) a curve in P2(M). Then
the following two statements are equivalent:

(i) (µt) is a geodesic in (P2(M),W2)

(ii) there exists a plan γ ∈ P(TM), such that the following two equalities hold:∫
|v|2dγ(x, v) =W2

2 (µ0, µ1)

(EXP (t))#γ = µt

where EXP (t) : TM →M is defined by (x, v) 7→ expx(tv).

Remark 3.4.2. For the case M = Rn, there exists only one constant speed geodesic
connecting any two points x, y ∈ Rn, namely t 7→ (1 − t)x + ty. It follows that (µt) is
geodesic if and only if there exists an optimal transport plan γ, such that

µt = ((1− t)π1 + tπ2)#γ

or if γ is induced by a map

µt = ((1− t) id +tT )#µ0.

F
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Furthermore, we are interested in interpolating Kantorovitch potentials along such
geodesics. This is accomplished through the Hopf-Lax evolution semigroup.

Definition 3.4.3 (Hopf-Lax Evolution Semigroup).

Hs
t (ψ)(x) :=


inf
y∈X

ct,s(x, y) + ψ(y) if t < s

ψ(x) if t = s

sup
y∈X
−ct,s(x, y) + ψ(y) if t > s

,

where we have used the rescaled cost functions

ct,s(x, y) =
d2(x, y)

s− t
.

Theorem 3.4.4. Let (X, d) be a geodesic Polish space. If the curve (µt) is a constant
speed geodesic in (P2(X),W2) and ψ is a c0,1-convex Kantorovitch potential for (µ0, µ1),
then ψ := Hs

0(ψ) is a ct,s-convex Kantorovitch potential for (µt, µs) for every t < s.

Let us conclude this chapter with an existence and uniqueness result for optimal trans-
port maps along constant speed geodesics.

Theorem 3.4.5. Let (µt) ⊂ P2M be a constant speed geodesic in (P2(M),W2), t ∈ (0, 1)
and s ∈ [0, 1]. Then there exists only one optimal transport plan from µt to µs and this
transport plan is induced by a Lipschitz map T .
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Part II.

First Order Analysis
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4. The Continuity Equation

We start our analysis by introducing the continuity equation in Rn and developing an
understanding of its properties. The continuity equation will enable us to define a
tangent space to µ ∈ P2(Rn) as a subset of L2

µ(Rn).
Throughout this chapter the underlying space will be Rn. To generalize the results to
an arbitrary Riemannian manifold M , one can use Nash’s embedding theorem. For an
example how this can be done, the reader may take a look at [AG13].
We will not prove every statement, the omitted proofs can be found in [AGS08] or [AG13],
which are the main references for this part.

4.1. The Continuity Equation and First Properties

Let us first state the continuity equation. Given a Borel family (µt) of probability
measures, where t is taken from an open interval I := (0, T ), and a Borel vector field
v : I × Rn → Rn satisfying ∫ T

0

∫
Rn
|vt| dµtdt <∞, (4.1)

we say the continuity equation holds if

∂tµt + div(vtµt) = 0. (4.2)

This equation has to be understood in the sense of distributions, that is∫ T

0

∫
Rn

(∂tφ(t, x) + 〈vt(x),∇xφ(t, x)〉) dµt(x)dt = 0 ∀φ ∈ C∞c ((0, T )× Rn) (4.3)

or equivalently

d

dt

∫
Rn
ζ(x)dµt(x) =

∫
Rn
〈∇ζ(x), vt(x)〉 dµt(x) ∀ζ ∈ C∞c (Rn) (4.4)

In general, a continuity equation of the form

∂tρ+ div u = 0

describes the transport of some quantity (such as mass, energy or electric charge) that
obeys certain conservation laws. Examples for continuity equations are

• Mass conservation in fluid dynamics: here ρ is the density of the fluid, u = ρv its
mass flux, v its velocity field and the equation essentially states that the amount of
mass that leaves a system is equal to the amount of mass that enters the system,
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• Probability conservation in quantum mechanics: ρ is a probability density function
and the equation states that probability behaves similar to a current, therefore u
is called probability current,

• Charge conservation in electromagnetic theory: here ρ is the charge density while
u is the current density.

We will denote solutions of the continuity equation as pairs (µt, vt). Whenever we say
that (µt, vt) is a solution of (4.2), we implicitly assume that vt satisfies condition (4.1).
The first important result about the continuity equation is, that given a family of mea-
sures µt, we can find a continuous representative. This lemma will allow us to only
consider time-continuous curves (µt).

Lemma 4.1.1. Let (µt) be a Borel family of probability measures and let vt be a Borel
vector field such that the continuity equation (4.2) holds. There exists a continuous
representative of µt, that is a narrowly continuous curve (µ̃t) such that µt = µ̃t for
λ1-a.e. t ∈ (0, 1).

The next property allows us to construct new distributional solutions of (4.2) by time-
rescaling.

Lemma 4.1.2. Let (µt, vt) be a solution of the continuity equation (4.2) and let γ(t)
be a strictly increasing map. If µ̄t and v̄t are defined by µ̄t := µγ(t) and v̄t := γ(t)′vt
respectively, then (µ̄t, v̄t) is a further solution of (4.2).

Finally, the following two theorems in this section provide a very important represen-
tation formula for solutions of the continuity equation and an approximation by curves
satisfying special regularity assumptions.

Theorem 4.1.3 (Picard-Lindelöf for Solutions of the Continuity Equation). Let (µt, vt)
be a solution of the continuity equation (4.2) and assume that vt furthermore satisfies∫ T

0
(sup
B
|vt|+ LLip(vt,Rn))dt <∞

for every compact set B ⊂ Rn. Then there exists a unique family of maps
T (t, s, ·) : supp(µt) → supp(µs), t, s ∈ [0, 1], such that the curve s 7→ T (t, s, x) is
absolutely continuous for every t ∈ [0, 1], x ∈ supp(µt) and such that for every t ∈ [0, 1]
and every x ∈ supp(µt) it satisfies

(a) T (t, t, x) = x,

(b) d
ds T (t, s, x) = vs(T (t, s, x)), for a.e. s ∈ [0, 1],

(c) T (r, s,T (t, r, x)) = T (t, s, x) , ∀s, r ∈ [0, 1],

(d) T (t, s, ·)#µt = µs, ∀s ∈ [0, 1].
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Lemma 4.1.4. Let µt be a solution of the continuity equation (4.2) w.r.t. the vector
field vt, such that ∫ T

0

∫
Rn
|vt|2 dµtdt <∞.

It holds that there exists a family (µεt, v
ε
t)ε>0, such that

(i) µεt is a continuous solution of the continuity equation (4.2) w.r.t. vεt ,

(ii) vεt satisfies
∫ T
0 (supB |vεt | + LLip(vεt ,Rn))dt < ∞ for every compact set B ⊂ Rn, in

particular (µεt, v
ε
t) satisfies the conditions of Theorem 4.1.3,

(iii) W2(µ
ε
t, µt)→ 0 for every t ∈ (0, 1) as ε→ 0,

(iv) ‖vεt‖µεt ≤ ‖vt‖µt ∀t ∈ (0, T ),

(v) vεtµ
ε
t → vtµt narrowly,

(vi) limε→0+ ‖vεt‖µεt = ‖vt‖µt.

4.2. Vector Fields of Minimal Norm

We can now state and proof our main result of this chapter. The following theorem
gives us a complete characterization of absolutely continuous curves in (P2(Rn),W2)
and allows us to define velocity vector fields and a tangent space.
As we are only interested in L2

µ(Rn) spaces, we will only formulate the theorem in the
case p = 2, however it is possible to obtain more general results for Lpµ(Rn) spaces.
Those more general results can be found in [AGS08], where the proofs stated here have
been taken from.

Theorem 4.2.1. Let (µt) : I → P2(Rn) be an absolutely continuous curve on an open
interval I := (0, T ) ⊆ R and let |µ̇| ∈ L1(I) be its metric derivative. Then there exists a
Borel vector field v : (x, t) 7→ vt(x) such that the following holds:

(i) vt ∈ L2
µt(R

n),

(ii) ‖vt‖µt ≤ |µ̇t| for λ1-a.e. t ∈ I,

(iii) the continuity equation holds,

(iv) for λ1-a.e. t, vt belongs to the L2-closure of the gradients of test functions, i.e.

vt ∈ {∇φ | φ ∈ C∞c (Rn)}L
2
µt

(Rn)
.

If, on the other hand, there exists a narrowly continuous curve (µt) : I → P2(Rn) and a
Borel vector field vt, such that the continuity equation holds in the distributional sense
and such that ‖vt‖L2(µt,Rn) ∈ L

1(I), then the curve (µt) is absolutely continuous and

|µ̇t| ≤ ‖vt‖L2(µt,Rn)

for λ1-a.e. t ∈ I.

21



Proof. We begin with the first part of the theorem and therefore assume, that (µt) is
an absolutely continuous curve. According to Lemma 4.1.2 and Lemma 2.1.5 we may
assume that the metric derivative |µ̇| is constant. For any φ ∈ C∞c (Rn) define the map
Hφ(x, y) by

Hφ(x, y) :=

{
|∇φ(x)| if x = y
|φ(x)−φ(y)|
|x−y| if x 6= y

.

Note thatHφ(x, y) is upper semicontinuous, i.e. lim sup(x,y)→(x0,y0)Hφ(x, y) ≤ Hφ(x0, y0).

Letting γt+ht be any optimal transport plan for µt and µt+h, we have

1

h

∫
R2n

|φ(x)− φ(y)| dγt+ht ≤ 1

h

∫
R2n

|x− y|Hφ(x, y)dγt+ht

≤ 1

h

(∫
R2n

|x− y|2 dγt+ht

) 1
2
(∫

R2n

H2
φ(x, y)dγt+ht

) 1
2

=
W2(µt, µt+h)

h

(∫
R2n

H2
φ(x, y)dγt+ht

) 1
2

(4.5)

Now we see that both marginals of γt+ht (i.e. µt and µt+h) converge narrowly to µt,
which means limh→0+ γ

t+h
t is an optimal transport plan from µt to µt and is therefore

concentrated on the diagonal of Rn ×Rn. Thus limh→0+ γ
t+h
t = (Id, Id)#µt. Taking the

upper semicontinuity of Hφ and Lemma 2.2.3 into account and using (4.5), we obtain

lim sup
h→0+

1

h

∫
R2n

|φ(x)− φ(y)| dγt+ht ≤ lim sup
h→0+

W2(µt, µt+h)

h

(∫
R2n

H2
φ(x, y)dγt+ht

) 1
2

≤ |µ̇t|
(∫

Rn
H2
φ(x, x)dµt

) 1
2

= |µ̇t| ‖∇φ‖µt .

Let µ ∈ P(I × Rn) be the measure whose disintegration is
{µt}t∈I , i.e. µ(J ×A) =

∫
J µt(A)dt. For any φ ∈ C∞c (I × Rn) we have

∫
I×Rn

d

dt
φ(t, x)dµ =

∫
I×Rn

lim
h→0+

φ(t+ h, x)− φ(t, x)

h
dµ

= lim
h→0+

∫
I

1

h

(∫
Rn
φ(t+ h, x)dµt −

∫
Rn
φ(t, x)dµt

)
dt

= lim
h→0+

∫
I

1

h

(∫
Rn
φ(t, x)dµt−h −

∫
Rn
φ(t, x)dµt

)
dt

= lim
h→0+

∫
I

1

h

(
−
∫
R2n

φ(t, x)− φ(t, y)dγt+ht

)
dt.
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Combining this result with (4.5) and using Fatou’s lemma one obtains∣∣∣∣∫
I×Rn

d

dt
φ(t, x)dµ

∣∣∣∣ ≤ ∫
I
|µ̇t| ‖∇φ(t, ·)‖µt dt

≤
(∫

I
|µ̇t|2 dt

) 1
2
(∫

I
‖∇φ(t, ·)‖µt dt

) 1
2

.

(4.6)

To simplify notation, let us denote the set of gradients of test functions on I × Rn by

VI := {∇φ | φ ∈ C∞c (I × Rn)}

and define a linear functional L on VI by

L(∇φ) := −
∫
I×Rn

d

dt
φ(t, x)dµ.

If we consider the L2
µ-closure VI := VI

L2
µ(I×Rn), then (4.6) tells us, that L(∇φ) can be

uniquely extended to a bounded functional on VI . Since VI is a Hilbert space, the Riesz
representation theorem assures us the existence of an element v(t, x) ∈ VI such that
L(∇φ) can be represented as scalar product with v(t, x). Setting vt(x) := v(t, x) we get∫

I

∫
Rn

d

dt
φ(t, x)dµtdt = −L(∇φ) =

∫
I

∫
Rn
〈∇φ, vt〉 dµtdt ∀φ ∈ C∞c (I × Rn)

which is exactly the weak formulation of the continuity equation. Since convergence in
Lp implies existence of a subsequence which converges pointwise a.e., we find for any
sequence (φn) ⊂ V with∫ ∫

|∇φn(t, ·)− v(t, ·)|2 dµtdt =

∫
|∇φn − v|2 dµ→ 0

a subsequence (φnk), such that∫
|∇φnk(t, ·)− v(t, ·)|2 dµt → 0

for λ1-a.e. t ∈ I. That is, for λ1-a.e. t, vt even satisfies

vt ∈ {∇φ | φ ∈ C∞c (Rn)}L
2
µt

(Rn)
.

To conclude the first part, we still need to show, that ‖vt‖µt is bounded by |µ̇t|. We
already know the estimate ∫

I
‖vt‖µt dt ≤

∫
I
|µ̇t| dt

for the interval I, but the same steps can be repeated with any arbitrary interval J ⊆ I.

Thus for each J , we get a vector vJt ∈ VJ
L2
µJ

(Rn)
, where µJ := µ

∣∣
J×Rn (remember that

restrictions of optimal plans are again optimal plans) and such that∫
J
‖vt‖µt dt ≤

∫
J
|µ̇t| dt.
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Furthermore (4.2) holds (for J instead of I), which means that vJt = vt µ-a.e. for every
J ⊆ I and this finally proves the first claim.
Now we are going to show the converse claim, starting with a narrowly continuous
curve (µt) and a vector field vt such that the continuity equations holds and such that
‖vt‖µt <∞. We want to show that µt is absolutely continuous and that ‖vt‖µt is bounded
from below by |µ̇t|. To that aim consider the approximations µεt and vεt provided by
Lemma 4.1.4. They satisfy all the necessary conditions for Theorem 4.1.3. Hence we
obtain measurable functions T εt , which are solutions of the ordinary differential equation
given by Ṫ εt (x) = vεt(T

ε
t (x)) with initial condition T ε0(x) = x, such that µεt = (T εt )#µ

ε
0.

Thus we can define a transport plan γ := (T εt , T
ε
s )#µ

ε
0 ∈ trp(µεt, µ

ε
s) which allows us to

estimate the squared Wasserstein distance with

W2
2 (µεt, µ

ε
s) ≤

∫
R2n

|x− y|2 dγ

=

∫
Rn
|T εt (x)− T εs (x)|2 dµε0

=

∫
Rn

(∫ s

t

∣∣∣Ṫ εr ∣∣∣ dr)2

dµε0

≤ (s− t)
∫
Rn

∫ s

t

∣∣∣Ṫ εr ∣∣∣2 drdµε0
= (s− t)

∫ s

t

∫
Rn
|vεr|

2 dµεrdr

≤ (s− t)
∫ s

t

∫
Rn
|vr|2 dµrdr

for any 0 ≤ t ≤ s ≤ 1, where the last inequality is due to Lemma 4.1.4 (iv). Using the
triangle inequality we get

W2(µt, µs) ≤ W2(µt, µ
ε
t) +W2(µ

ε
t, µ

ε
s) +W2(µ

ε
s, µs)

and with Lemma 4.1.4 (iii) we arrive at

W2
2 (µt, µs) ≤ (s− t)

∫ s

t

∫
Rn
|vr|2 dµrdr. (4.7)

The final estimate (4.7) holds for arbitrary s and t, therefore we obtain

W2
2 (µt, µs)

(s− t)2
≤ 1

(s− t)

∫ s

t
‖vr‖2µr dr

and taking the limit t→ s on both sides we end up with the desired estimate

|µ̇t|2 = lim
t→s

W2
2 (µt, µs)

(s− t)2
≤ lim

t→s

1

(s− t)

∫ s

t
‖vr‖2µr dr = ‖vt‖2µt .
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Theorem 4.2.1 can be used to show the famous Benamou-Brenier formula.

Theorem 4.2.2 (Benamou-Brenier). The following formula holds:

W2
2 (µ0, µ1) = inf

∫
‖ṽt‖2µ̃t dt =

(
inf

∫
‖ṽt‖µ̃t dt

)2

,

where the infimum is taken over all couples (µ̃t, ṽt) satisfying the continuity equation (4.2)
such that µ̃0 = µ0 and µ̃1 = µ1.

Proof. Recall that for an absolutely continuous curve, its metric derivative satisfies

W2(µs, µt) ≤
∫ t

s
|µ̇t| dt

(see Theorem 2.1.3). Using the second part of Theorem 4.2.1 we get

W2(µ0, µ1) ≤
∫ 1

0
|µ̇t| dt ≤

∫ 1

0
‖vt‖µt dt ≤

(∫ 1

0
‖vt‖2µt dt

) 1
2

.

To see that the lower boundW2(µ0, µ1) really can be attained, consider a constant speed
geodesic µt and recall, that for a constant speed geodesic

W2(µs, µt) = |t− s|W2(µ0, µ1)

holds. Thus, the first part of Theorem 4.2.1 yields(∫ 1

0
‖vt‖2µt dt

) 1
2

=

∫ 1

0
‖vt‖µt dt

≤
∫ 1

0
|µ̇t| dt

=

∫ 1

0
lim
s→t

W2(µs, µt)

|t− s|
dt

=

∫ 1

0
W2(µ0, µ1)dt

=W2(µ0, µ1).

Remark 4.2.3. Recall that given a Riemannian manifold M , the metric d on M is defined
via its Riemannian metric g by

d(x, y) := inf

∫ √
g(γ′t, γ

′
t)dt

where the infimum is taken over all curves γ : [0, 1] → M , such that γ(0) = x and
γ(1) = y. We still did not define a tangent space to a measure µ, but under above
consideration, the Benamou-Brenier formula suggests to use the L2

µ-product as the scalar
product on the tangent space. F
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5. The Tangent Space Tanµ (P2 (M))

From now on M will denote a smooth and compact Riemannian manifold without bound-
ary. We can use Nash’s embedding theorem to generalize the results from the last chapter
to M (see for example [AG13]).

5.1. The Tangent Space Tanµ (P2 (M))

Let us recap what we have so far:

(i) The second part of Theorem 4.2.1 gives us for any pair (µt, vt), which solves the
continuity equation in the distributional sense, a lower bound on the norm of vt in
terms of the metric derivative of µt:

‖vt‖µt ≥ |µ̇t|

(ii) On the other hand, the first part of Theorem 4.2.1 says, that for given curve (µt)
there exists a vector field vt with minimal norm, i.e.

‖vt‖µt = |µ̇t|

(iii) This minimal vector field vt is unique, because given another minimal vector field
ṽt one could consider the vector field w := 1

2(vt + ṽt). This vector field is also a
solution of (4.2). But because ‖vt‖µt = ‖ṽt‖µt = |µ̇t|, the strict convexity of the

L2-norm gives

‖w‖µt =
1

2
‖vt + ṽt‖µt <

1

2

(
‖vt‖µt + ‖ṽt‖µt

)
= |µ̇t| ,

which is a contradiction.

Let us summarize this results in the following corollary:

Corollary 5.1.1. Let (µt) : I → P2(M) be an absolutely continuous curve on an open
interval I ⊆ R. If |µ̇| ∈ L1(I) is its metric derivative, then there exists a unique Borel
vector field vt with minimal L2-norm

‖vt‖µt = |µ̇t|

such that the continuity equation (4.2) holds.
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Our aim is to provide a suitable definition for a tangent space to a Borel measure
µ ∈ P2(M). For given absolutely continuous curve (µt) ⊂ P2(M) it would be very
desirable to associate a unique “velocity” to it. But if (µt, vt) is a solution to the
continuity equation, than (µt, vt+wt) also solves the continuity equation for every wt such
that div(wtµt) = 0. That is, using only the continuity equation as condition for a suitable
definition of a tangent space will not provide uniqueness. However, Corollary 5.1.1
provides us with a unique vector field which can be used to characterize the tangent
space. Because of this considerations, we make the following definition.

Definition 5.1.2 (Velocity Vector Field). Let (µt) be an absolutely continuous curve on
an open interval. Then we call the unique Borel vector field vt provided by Corollary 5.1.1
the velocity vector field of µt.

Let us recall the next lemma, which will provide us with a first possible definition of a
tangent space to µ.

Lemma 5.1.3. Let 〈·, ·〉 denote a scalar product on a vector space X and let
‖x‖ :=

√
〈x, x〉 be the induced norm. Then it holds

〈x, y〉 = 0⇔ ‖x‖ ≤ ‖x+ ty‖ ∀t ∈ R.

Proof. If 〈x, y〉 = 0, then

‖x‖2 = ‖x‖2 + 2t 〈x, y〉 ≤ ‖x‖2 + 2 〈x, ty〉+ ‖y‖2 = ‖x+ ty‖2 .

On the other hand, if ‖x‖ ≤ ‖x+ ty‖ for all t ∈ R, then

2t 〈x, y〉+ t2 ‖y‖2 ≥ 0.

Since t ∈ R is arbitrary, we can choose it such that

t2 ‖y‖2 ≥ 2t |〈x, y〉| ≥ 0

and letting t→ 0 yields the desired result.

Using Lemma 5.1.3 we can find an equivalent characterization of the minimality condition
provided by Theorem 4.2.1.

Lemma 5.1.4. Let µ ∈ P2(M) and v ∈ L2
µ, such that (µ, v) is a solution of the continuity

equation. Then v is minimal amongst all other solution vectors ṽ ∈ L2
µ, i.e.

‖v‖µ ≤ ‖ṽ‖µ ∀ṽ ∈ L2
µ such that (µ, ṽ) solves the continuity equation ,

if and only if

v ∈ T :=

{
u ∈ L2

µ

∣∣∣∣ 〈u,w〉µ =

∫
M
〈u,w〉p dµ(p) = 0 ∀w ∈ L2

µ : div(wµ) = 0

}
.
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Proof. The minimality condition ‖v‖µ ≤ ‖ṽ‖µ is the same as asking for

‖v‖µ ≤ ‖v + w‖µ ∀w ∈ L2
µ(M) such that div(wµ) = 0,

by simply setting w = ṽ − v. Applying Lemma 5.1.3 gives the desired result.

Lemma 5.1.4 suggests to define the tangent space to µ as

T 1
µ :=

{
v ∈ L2

µ

∣∣∣∣ ∫ 〈v, w〉 dµ = 0 ∀w ∈ L2
µ : div(wµ) = 0

}
.

On the other hand, as we have seen, vector fields solving the continuity equation in the
sense of distributions (4.4) can be viewed as functionals that act only on gradients of
test functions φ ∈ C∞c (M). This observation together with Remark 4.2.3 suggests to
define the tangent space by

T 2
µ := {∇φ | φ ∈ C∞c (M)}L

2
µ(M)

.

However, as Theorem 5.1.6 will show, both spaces coincide. But at first let us find a
characterization for the normal space to T 1

µ .

Proposition 5.1.5. Let µ ∈ P2(M). The normal space (T 1
µ)⊥ to T 1

µ can be written as

(T 1
µ)⊥ = K :=

{
w ∈ L2

µ

∣∣ div(wµ) = 0
}
.

Proof. By definition of normal space, we have

(T 1
µ)⊥ =

{
w ∈ L2

µ

∣∣ 〈v, w〉 = 0 ∀v ∈ T 1
µ

}
.

Since for every w ∈ K it holds 〈v, w〉 = 0 for arbitrary v ∈ T 1
µ by definition of T 1

µ , it

clearly holds K ⊆ (T 1
µ)⊥.

To show that (T 1
µ)⊥ ⊆ K, we are going to show K⊥ ⊆ ((T 1

µ)⊥)⊥ = T 1
µ . To that aim

choose arbitrary v ∈ K⊥, that is v satisfies 〈v, w〉 = 0 for all w ∈ K which is by definition
of K the same as 〈v, w〉 = 0 for all w ∈ L2

µ such that div(wµ) = 0. This directly implies
v ∈ T 1

µ .

Now we can show the equality of T 1
µ and T 2

µ .

Theorem 5.1.6. If µ ∈ L2
µ(M), then T 1

µ = T 2
µ .

Proof. First pick v ∈ T 2
µ and denote by (φn) a sequence in C∞c (M), such that ∇φn → v

in L2
µ(M). Then for every w ∈ L2

µ(M), such that div(wµ) = 0, it holds

〈v, w〉 = lim
n→∞

〈∇φn, w〉 = 0

and therefore v ∈ T 1
µ .

To prove the converse, we are going to show that (T 2
µ)⊥ ⊆ (T 1

µ)⊥. Choose w ∈ (T 2
µ)⊥.

Then, by definition of (T 2
µ)⊥, w satisfies 〈∇φ,w〉 = 0 for all φ ∈ C∞c (M) which is the same

as div(wµ) = 0. But according to Proposition 5.1.5 this is equivalent to w ∈ (T 1
µ)⊥.
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From two different points of view we arrived at the same space, suitable to act as tangent
space to given Borel measure µ. Therefore we can define the following.

Definition 5.1.7 (Tangent Space to P2(M) at µ). Consider a measure µ ∈ P2(M).
Then the tangent space at µ is defined by

Tanµ (P2 (M)) := {∇φ | φ ∈ C∞c (M)}L
2
µ(M)

=

{
v ∈ L2

µ(M)

∣∣∣∣ ∫ 〈v, w〉 dµ = 0 ∀w ∈ L2
µ(M) : div(wµ) = 0

}
.

Now, using again Proposition 5.1.5, the definition of the normal space naturally follows.

Definition 5.1.8 (Normal Space to P2(M) at µ). Let µ ∈ P2(M) and Tanµ (P2 (M))
the tangent space at µ. Then the normal space at µ is defined by

Tan⊥µ (P2 (M)) :=

{
w ∈ L2

µ(M)

∣∣∣∣ ∫ 〈v, w〉 dµ = 0 ∀v ∈ Tanµ (P2 (M))

}
=
{
w ∈ L2

µ(M)
∣∣ div(wµ) = 0

}
.

5.2. Picard-Lindelöf on Manifolds

In this section we will first restate the Picard-Lindelöf Theorem 4.1.3 for the more general
case of a Riemannian manifold M . Afterwards we are going to define a notion of approx-
imation of solutions (µt, vt) of the continuity equation by transport couples (solutions of
the continuity equation with special regularity properties) satisfying the conditions for
the Picard-Lindelöf theorem and guaranteeing therefore the existence of the flow maps
T (t, s, ·).

Let us start with the formal definition of a transport couple, that is a pair consisting of
a curve (µt) together with a suitable vector field (for example - but not necessarily - the
tangent vector field) (vt).

Definition 5.2.1 (Transport Couple). Consider a curve ξ : t → (µt, vt), with
µt ∈ P2(M) and vt ∈ L2

µt . We call ξ a transport couple, if the following two condi-
tions are satisfied:

(i)
∫ 1
0 ‖vt‖µt dt <∞,

(ii) µt satisfies the continuity equation (4.2) w.r.t. vt.

After having defined transport couples, we need to define a notion of convergence for a
sequence of transport couples. Before doing so, let us recall what we mean by convergence
of vector fields v ∈ L2

µ.

Definition 5.2.2 (Convergence of Vector Fields). Let µ ∈ P2(M), v ∈ L2
µ(M) and

let furthermore µn ∈ P2(M) and vn ∈ L2
µn(M), n ∈ N, such that W2(µ

n, µ) → 0
for n→∞. Then we say that vn converges to v if
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(i) 〈vn, ξ〉µn → 〈v, ξ〉µn ∀ξ ∈ Xc(M),

(ii) limn→∞ ‖vn‖µn = ‖v‖µ.

Definition 5.2.3 (Convergence of Transport Couples). Let (µt, vt) be a transport couple
and let (µnt , v

n
t ) be a sequence of transport couples. We say that (µnt , v

n
t ) converges to

(µt, vt), if the following holds for a.e. t ∈ [0, 1]:

(i) W2(µ
n
t , µt)→ 0 uniformly for n→∞,

(ii) vnt converges to vt for a.e. t ∈ [0, 1],

(iii) limn→∞
∫ 1
0 ‖v

n
t ‖µnt dt =

∫ 1
0 ‖vt‖µt dt.

Finally, we will need the Lipschitz constant for Borel vector fields v:

Definition 5.2.4 (Lipschitz Constant for Tangent Vector Fields). Let ξ ∈ Xc(M) be a
tangent vector field on M . We will call the constant

L(ξ) := sup
x∈M
‖∇ξ(x)‖

its Lipschitz constant.
For µ ∈ P2(M), v ∈ L2

µ and S(v) := {(ξn) ⊂ Xc(M) | ξn → v}, we call the constant

L(v) := inf
S(v)

lim inf
n→∞

L(ξn)

the Lipschitz constant of v.

With the definition given above, a tangent vector v ∈ L2
µ is said to be Lipschitz, if

L(v) < ∞. After having established the necessary notation and definitions in the last
section, we can now state the Picard-Lindelöf theorem (again) for a manifold M . This
is basically the same statement as its euclidean counterpart Theorem 4.1.3.

Theorem 5.2.5 (Picard-Lindelöf on Manifolds). Let (µt, vt), t ∈ [0, 1] be a transport
couple and assume that vt is Lipschitz. Then there exists a unique family of maps
T (t, s, ·) : supp(µt)→ supp(µs), t, s ∈ [0, 1], such that the curve s 7→ T (t, s, x) is abso-
lutely continuous for every t ∈ [0, 1], x ∈ supp(µt) and satisfying

(a) T (t, t, x) = x,

(b) d
ds T (t, s, x) = vs(T (t, s, x)), for a.e. s ∈ [0, 1],

(c) T (r, s,T (t, r, x)) = T (t, s, x) , ∀s, r ∈ [0, 1],

(d) T (t, s, ·)#µt = µs, ∀s ∈ [0, 1],

for every t ∈ [0, 1] and every x ∈ supp(µt).
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The next approximation result allows us to approximate transport couples with more
regular ones. This result will prove useful later when defining parallel transport in
(P2(M),W2). We will not give a proof here, the interested reader may take a look at
chapter 8 in [AGS08] and chapter 2 in [Gig12] (there one can also find an even stronger
approximation with tangent vectors vnt ).

Theorem 5.2.6 (Approximation of Transport Couples). Let (µt, vt) be a transport cou-
ple, such that ∫ 1

0
L(vt)dt <∞.

Then (µt, vt) can be approximated by transport couples (µnt , v
n
t ), such that:

(i) (µnt , v
n
t ) converges to (µt, vt) in the sense of Definition 5.2.3,

(ii) vt are defined for every t ∈ [0, 1] on the whole manifold M and vt ∈ Xc(M),

(iii) the flow maps T (t, s, ·) provided by Theorem 5.2.5 are defined on the whole manifold
M , (t, s, x) 7→ T (t, s, x) is C∞ and the equations in Theorem 5.2.5 hold for every
choice of t, s ∈ [0, 1] and x ∈M ,

(iv) there exists a compact set K ⊂M , such that T (t, s, x) = x for any x /∈ K and for
any t, x ∈ [0, 1].

Notice the importance of the condition
∫ 1
0 L(vt)dt here. In the next chapter we will

define so called regular curves based on this condition, which will allow us to come up
with a definition for a parallel transport in (P2(M),W2).
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Part III.

Second Order Analysis
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6. Parallel Transport in (P2(M),W2)

We turn to the second order analysis of (P2(M),W2). At first, we are going to define a
parallel transport for our setting. Afterwards we can define the covariant derivative.

6.1. Parallel Transport without Local Charts in Rn

Parallel transport is usually defined using a connection. However, it is possible to define
parallel transport in Rn without a connection and local charts. This is important, as we
don’t have this tools at our disposal in (P2(M),W2). This section shows how to define
parallel transport in Rn in such a way. We can then mimic this approach to define a
suitable parallel transport in (P2(M),W2).

Throughout this section M will be a Riemannian manifold embedded in Rn. We can
identify the tangent space TpM at a point p ∈M with a linear subspace V ⊂ Rn.
Let us first consider a smooth curve γ : [0, 1] → M and let us denote by Vt := Tγ(t)M
the tangent space at γ(t). Furthermore we will denote by Pt : Rn → Vt the orthogonal
projections from Rn to Vt. If u : [0, 1] → Vt is a regular vector field along γ, then the
Levi-Civita derivative of u along γ is given by

∇γ̇(t0)u(t0) = Pt0

(
du

dt
(t0)

)
In this setting, the parallel transport of u(0) along γ satisfies

Pt

(
du

dt
(t)

)
= 0. (6.1)

Let us first show uniqueness of the parallel transport. Note that the time derivative of
the norm is 0, because

d

dt
‖u(t)‖2 = 2

〈
u(t),

d

dt
u(t)

〉
= 2

〈
u(t), Pt

(
d

dt
u(t)

)〉
= 0.

That means the norm of a parallel transport is constant (w.r.t. the time t). Now assume
there exist two parallel transports u(t) and ũ(t). Since u − ũ also satisfies (6.1) (that
means u − ũ is also a parallel transport), we have ‖u(t)− ũ(t)‖ = c for every t and for
a suitable constant c. Setting t = 0 we get

c = ‖u(0)− ũ(0)‖ = ‖u0 − u0‖ = 0,
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which means u = ũ.

The next step is to show existence of a solution of (6.1). To make use of such a proof in
our Wasserstein setting, we may only use tools available also in (P2(M),W2). Our key
observations, which enable us to show the existence, are the following two estimates:

Lemma 6.1.1. For any s, t ∈ [0, 1] and for arbitrary vt ∈ Vt and v⊥t ∈ V ⊥t the following
two estimates hold:

|vt − Ps(vt)| ≤ C |vt| |t− s| , (6.2)∣∣∣Ps(v⊥t )
∣∣∣ ≤ C ∣∣∣v⊥t ∣∣∣ |t− s| . (6.3)

Proof. Without loss of generality assume s < t. For arbitrary v ∈ Rn define the map

θv : [0, 1]2 → Rn : (s, t) 7→ Ps(v)− Pt(v).

We begin with the simpler case, when there exists an open subset U ⊆ M and an
embedding φ : Ũ ⊆ Rk → φ(Ũ) = U , such that both γ(t) and γ(s) lie in U . Then we
can express the tangent vectors at γ(s) and γ(t) as derivatives of φ through

vs =
∑

vis
dφ

dxi
(γ(s)), vs ∈ Vs,

vt =
∑

vit
dφ

dxi
(γ(t)), vt ∈ Vt.

Using the basis vectors fi(s) := dφ
dxi

(γ(s)) we can express a projection onto Vs through

Ps(v) =
∑ 〈v, fi(s)〉

|fi(s)|2
fi(s)

and analogously for Pt(v). Now θv(s, t) can be written as

θv(s, t) =
∑ 〈v, fi(s)〉
〈fi(s), fi(s)〉

fi(s)−
∑ 〈v, fi(t)〉
〈fi(t), fi(t)〉

fi(t)

and lies therefore in C∞
(

[0, 1]2
)

(notice that every fi is a composition of smooth func-

tions and therefore smooth). As smooth function on a compact domain it is in particular
Lipschitz-continuous. Furthermore, because θv(s, t) is linear in v, the Lipschitz constant
is of the form L = C |v|, where C depends on γ but not on v. Choosing v = vt ∈ Vt we
get

|vt − Ps(vt)| = |(Pt(vt)− Pt(vt))− (Ps(vt)− Pt(vt))|
= |θvt(t, t)− θvt(s, t)|
≤ C |vt| |s− t| .
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Now consider the general case when there is no open subset U and embedding φ, such
that U is a neighbourhood for γ(s) and γ(t). Because γ([0, 1]), as smooth image of a
compact set, is itself a compact set, we can find a finite number of times ti, i = 1, . . . , N ,
open subsets Ui ⊆M and embeddings φi, i = 0, . . . , N , such that t < t1 < · · · < tN < s,
γ(ti) ∈ Ui−1 ∩ Ui and such that γ(s) ∈ U0 and γ(t) ∈ UN . Using the triangle inequality
we get

|vt − Ps(vt)| = |Pt(vt)− Ps(vt)|
≤ |Pt(vt)− Pt1(vt)|+ |Pt1(vt)− Ps(vt)|
≤ C |vt| |t− t1|+ |Pt1(vt)− Ps(vt)| (6.4)

where the last inequality is due to the first part (γ(s) and γ(t1) both lie in U0). In the
same manner we iteratively proceed with the second summand on the righthand side
of (6.4). We finally end up with

|vt − Ps(vt)| ≤ C |vt|

(
|t− t1|+

N−1∑
i=1

|ti − ti+1|+ |ti+1 − s|

)
= C |vt| |s− t| .

As this inequality holds for every vt ∈ Vt with |vt| = 1, we even get

sup
vt∈Vt,
‖vt‖=1

|vt − Ps(vt)| ≤ C |s− t| . (6.5)

To show the second estimate (6.3), we observe that for ṽ⊥t ∈ V ⊥t with
∣∣ṽ⊥t ∣∣ = 1 we have∣∣∣Ps(ṽ⊥t )

∣∣∣ ≤ sup
v⊥t ∈V

⊥
t ,

‖v⊥t ‖=1

∣∣∣v⊥t − P⊥s (v⊥t )
∣∣∣ =

∥∥∥Ps∣∣V ⊥t ∥∥∥
= sup

vs∈Vs,v⊥t ∈V
⊥
t ,

‖vs‖=‖v⊥t ‖=1

〈
v⊥t , vs

〉
= sup

vs∈Vs,v⊥t ∈V
⊥
t ,

‖vs‖=‖v⊥t ‖=1

〈
vs, v

⊥
t

〉

=
∥∥∥P⊥s ∣∣Vt∥∥∥ = sup

vt∈Vt,
‖vt‖=1

|vt − Ps(vt)|

(6.5)

≤ C |s− t| .

For general v⊥t ∈ V ⊥t we therefore conclude∣∣∣Ps(v⊥t )
∣∣∣ ≤ C ∣∣∣v⊥t ∣∣∣ |s− t| .

Lemma 6.1.1 is the most important observation in this section. It enables us to define
the parallel transport without using tools relying on a Riemannian setting. Our aim for
the following sections is to find an analogous result in the Wasserstein setting. After
establishing this lemma (or its Wasserstein analogon), the remainder is mainly iterative
application of the two estimates (6.2) and (6.3).
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Remark 6.1.2. Lemma 6.1.1 has a very intuitive interpretation. We denote with
θ(Vt, Vs) ∈ [0, π/2] the angle between the subspaces Vt and Vs, where

sin θ(Vt, Vs) := sup
vt∈Vt,
‖vt‖=1

|vt − Ps(vt)| .

The above lemma gives us a Lipschitz condition for the map (t, s) 7→ θ(Vt, Vs). It
essentially tells us, that the angle between Vt and Vs varies smoothly in time. F

Let us now return to our initial question: for an initial point u0, how can we construct
a vector field u(t), such that u(0) = u0 and (6.1) holds? The key idea is the following:
for γ(0) = u0 ∈ V0 define the curve u(t) := Pt(u0), then (6.1) can be written as

P0 (u̇(0)) =P0

(
d

dt
Pt(u0)

)
= P0

(
lim
t→0

Pt(u0)− P0(u0)

t

)
= lim
t→0

1

t
P0 (Pt(u0)− P0(u0)) = lim

t→0

1

t
P0 (Pt(u0)− u0)

(6.6)

As Pt(u0)− u0 ∈ V ⊥t , we can use the estimates (6.2) and (6.3) to get

|P0(Pt(u0)− u0)| ≤ C |Pt(u0)− u0| |t| ≤ C2 |u0| |t|2

and therefore (6.6) simplifies to

P0

(
d

dt
Pt(u0)

)
= 0,

which already resembles (6.1) (for t = 0).
To finally compute the parallel transport, we have to consider limits on the set of par-
titions of [0, 1] (or more generally partitions of [s, t] , s, t ∈ [0, 1]).

Definition 6.1.3 (Partition of [s, t] and Set of Partitions). A set P = {t0, t1, . . . , tN}
is called a partition of [s, t] if s = t0 < t1 < · · · < tN = t. We will denote the set of all
partitions on [s, t] by Ps,t.
We say a partition Q is a refinement of P, symbolically Q ≥ P, if P ⊆ Q.

Note that (Ps,t,≤) is a direct set. Next we recall what a limit over Ps,t is.

Definition 6.1.4 (Limit over Ps,t). Let (X, d) be a complete metric space and let
f : Ps,t → X be a function. We say x ∈ X is a limit of f over Ps,t, if

∀ε > 0 ∃P ∈ Ps,t : d(x, f(Q)) < ε ∀Q ≥ P

We will denote this limit by x = limP∈Ps,t f(P).

Remark 6.1.5. If the limit limP∈Ps,t f(P) exists, it is unique. Furthermore, as (X, d) is
complete, we could have equivalently required

∀ε > 0 ∃P ∈ Ps,t : d(f(P), f(Q)) < ε ∀Q ≥ P

in the definition of the limit. F
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In the following we will consecutively apply orthogonal projections to a starting point
u0. To simplify notation, we will therefore denote with Psk,sk−1,...,s1(u0) the function

Psk,sk−1,...,s1(u0) := Psk(Psk−1
(. . . Ps1(u0) . . .))

for arbitrary given times s1, s2, . . . , sk, not necessarily ordered.
For a partition P = {t0 < t1 < · · · < tN} ∈ Ps,t and u0 ∈ V0 we will denote by P(u0)
the function

P(u0) := PtN (PtN−1(. . . Pt1(u0) . . .)) = PtN ,tN−1,...,t1(u0) ∈ VtN .

We now show, that the limit limP∈Ps,t P(u0) exists for every u0 ∈ V0. This limit will
provide us with a suitable definition for the parallel transport in Rn. The proof is mainly
based on the following lemma.

Lemma 6.1.6. Let 0 ≤ t0 ≤ t1 ≤ . . . ≤ tN ≤ 1. Then for any u ∈ Vt0 it holds∣∣PtN (u)− PtN ,tN−1,...,t1(u)
∣∣ ≤ C2 |u| |t0 − tN |2 .

Proof. We prove the lemma by induction. We start with N = 2. For any u ∈ Vt0 we
have

|Pt2(u)− Pt2,t1(u)| = |Pt2(u− Pt1(u))|
(6.3)

≤ C |u− Pt1(u)| |t2 − t1|
(6.2)

≤ C2 |u| |t2 − t1| |t1 − t0| (6.7)

≤ C2 |u| |t2 − t0|2 .

Now assume we have shown the thesis already for N−1. Remember that we can estimate
the length of a projection by

|Pt(u)| ≤ |u| . (6.8)

Applying (6.7) and using the induction hypothesis we get∣∣PtN (u)− PtN ,tN−1,...,t1(u)
∣∣ ≤ ∣∣PtN (u)− PtN ,tN−1(u)

∣∣+
+
∣∣PtN ,tN−1(u)− PtN ,tN−1,...,t1(u)

∣∣
(6.8)

≤
∣∣PtN (u)− PtN ,tN−1(u)

∣∣+
+
∣∣PtN−1(u)− PtN−1,...,t1(u)

∣∣
(6.7)

≤ C2 |u| |tN − tN−1| |tN−1 − t0|+
+
∣∣PtN−1(u)− PtN−1,...,t1(u)

∣∣
≤ C2 |u| |tN − tN−1| |tN−1 − t0|+ C2 |u| |tN−1 − t0|2

≤ C2 |u| |t0 − tN |2

which proves the lemma.
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We can now prove the existence of a limit of P(u) in Ps,t.

Lemma 6.1.7 (Existence of Limit of P(u)). Let [s, t] ⊆ [0, 1] and u0 ∈ Vs. Then the
limit limP∈Ps,t P(u0) exists.

Proof. According to Remark 6.1.5 we want to show

∀ε > 0 ∃P ∈ Ps,t : |P(u0)−Q(u0)| < Cu0ε ∀Q ≥ P

with a constant Cu0 depending only on u0. We are going to construct P and show that
it satisfies (6.1).
For given ε > 0 choose N ∈ N such that 1

N < ε and define P by

P := {t0, t1, t2, . . . , tN} , with ti = s+
i(t− s)
N

, ∀i = 0, . . . , N.

Let Q ≥ P be a refinement of P with Q := {s0 < s1 < · · · < sK} and let l ≤ K be
the index, such that sl = t1 (such an index exists because P ⊆ Q). Now define two
partitions of [t1, tN ] through

P1 := P ∩ [t1, tN ] = {t1, t2, . . . , tN} ,
Q1 := Q∩ [t1, tN ] = {sl, sl+1, . . . , sK} .

Furthermore, if we set

v := Pt1(u0) ∈ Vt1 ,
w := Psl,sl−1,...,s1(u0) ∈ Vsl ,

we have

P(u0) = PtN ,tN−1,...,t1(u0) = PtN ,tN−1,...,t2 (Pt1(u0)) = P1(v),

Q(u0) = PsK ,sK−1,...,s1(u0) = PsK ,sK−1,...,sl+1

(
Psl,sl−1,...,s1(u0)

)
= Q1(w).

We therefore get

|P(u0)−Q(u0)| = |P1(v)−Q1(v) +Q1(v)−Q1(w)|
≤ |P1(v)−Q1(v)|+ |Q1(v)−Q1(w)|
≤ |P1(v)−Q1(v)|+ |v − w|
= |P1(v)−Q1(v)|+

∣∣Psl(u0)− Psl,sl−1,...,s1(u0)
∣∣

≤ |P1(v)−Q1(v)|+ C2 |u0| |t0 − t1|2 , (6.9)

where the last step is due to Lemma 6.1.6. Setting [s′, t′] := [t1, t] we can repeat the
steps above for the first summand on the righthand side of (6.9). Proceeding inductively
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we finally get

|P(u0)−Q(u0)| ≤ C2 |u0|
N−1∑
i=0

|ti − ti+1|2

≤ C2 |u0|
N−1∑
i=0

(t− s)2

N2

= C2 |u0|
(t− s)2

N
< C2 |u0| ε,

which is what we wanted to show.

We are finally able to come up with a definition for the parallel transport in Rn, using
only tools also available in (P2(M),W2):

Definition 6.1.8. Let [s, t] ⊆ [0, 1]. For an initial tangent vector us ∈ Vs we denote by
T ts(us) the limit

T ts(us) := lim
P∈Ps,t

P(us).

Lemma 6.1.9. Let 0 ≤ t1 ≤ t2 ≤ t3 ≤ 1. Then T t3t2 ◦ T
t2
t1

= T t3t1 .

Proof. Note that projections are continuous and that taking the limit of all partitions
of [t1, t3] is the same as taking the limit of all partitions of [t1, t3] containing the point
t2. So we have

lim
P∈Pt2,t3

P( lim
Q∈Pt1,t2

Q(u)) = lim
P∈Pt2,t3

lim
Q∈Pt1,t2

P(Q(u))

= lim
P∈Pt1,t3 ,
t2∈P

P(u)

= lim
P∈Pt1,t3

P(u).

Although we write only T ts(u) without mentioning the smooth curve γ(t), remember that
T ts depends on γ through the projections Pt, which map onto Vt = Tγ(t)M . This means

using a different curve γ̃(t) will result in a different map T̃ ts .

Now we can state the main result of this section:

Theorem 6.1.10 (Parallel Transport in Rn). Let [0, t] ⊆ [0, 1] and u0 ∈ V0. Then the
curve t 7→ T t0(u0) is the parallel transport of u0 along γ.
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Proof. First note that because T t0(u0) is a limit of projections, we have∣∣T t0(u0)
∣∣ ≤ |u0|. Furthermore according to Lemma 6.1.6 we have∣∣∣Pt (T t−h0 (u0)

)
− T t0(u0)

∣∣∣ =
∣∣∣Pt (T t−h0 (u0)

)
− T tt−h

(
T t−h0 (u0)

)∣∣∣
=
∣∣Pt (ut−h)− T tt−h (ut−h)

∣∣
≤ C2 |ut−h|h2

≤ C2 |u0|h2,

where ut−h := T t−h0 (u0). Using this we get

Pt

(
Ṫ t0(u0)

)
= Pt

(
lim
h→0

T t0(u0)− T t−h0 (u0)

h

)
= lim

h→0

1

h
Pt

(
T t0(u0)− T t−h0 (u0)

)
= lim

h→0

1

h

(
T t0(u0)− Pt

(
T t−h0 (u0)

))
= 0,

which proves our claim according to (6.1).

6.2. Regular Curves

Our goal for the next three sections is to immitate all the steps of the last section to
get to the same result as in Theorem 6.1.10 for our space of interest (P2(M),W2) with
a Riemannian manifold M . But before defining a parallel transport in (P2(M),W2), we
have to come up with an equivalent of a smooth curve. We will call such curves regular
curves. These curves will satisfy a similar lipschitz condition as those established in (6.2)
and (6.3), which was a key condition for the construction of parallel transport in Rn.
We start this section by defining regular curves and investigate some of their properties.

Definition 6.2.1 (Regular Curve). An absolutely continuous curve (µt) with velocity
vector field (vt), t ∈ [0, 1] is called a regular curve if it satisfies

(i)
∫
‖vt‖2µt dt <∞,

(ii)
∫ 1
0 L(vt)dt <∞.

Given a regual curve (µt) and its tangent velocity vector (vt), the assumptions of The-
orems 5.2.5 and 5.2.6 are met. In such a case, we will call the maps T (t, s, ·) the flow
maps of µt. These flow maps allow us to define a translation along (µt).

Definition 6.2.2 (Translation Maps (τx)ts and τ ts). Let (µt) be a regular curve, T (t, s, ·)
its flow map and fix t, s ∈ [0, 1] and x ∈ supp(µt). Denote with Ps,t the parallel transport
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in M along the absolutely continuous curve r 7→ T (t, r, x) from r = s to r = t. Then
define the maps (τx)ts through

(τx)ts : TT(t,s,x)M → TxM

v 7→ Ps,t(v).

Let furthermore u ∈ L2
µs . The translation maps τ ts(u) ∈ L2

µt are then defined by

τ ts(u)(x) = (τx)ts (u (T (t, s, x))) .

Thanks to the group properties of T (t, s, x) and of the parallel transport Ps,t(x), the
translation maps τ ts satisfy the group property themselves. Another nice property, which
follows directly from the definition of the translation maps, is that the translations τ ts
are isometries.

Lemma 6.2.3. Let r, s, t ∈ [0, 1]. Then the following three statements hold:

(i) the translation maps are linear,

(ii) the translation maps satisfy the group property

τ ts ◦ τ sr = τ tr ,

(iii) τ ts maps L2
µs isometrically to L2

µt.

Proof. The linearity follows directly from the linearity of the parallel transport Ps,t(v).
To proof (ii) fix an u ∈ L2

µr and x ∈M . First of all, since T (t, s,T (s, r, x)) = T (t, r, x),
the composition (τ ts ◦ τ sr )(u)(x) is well defined. To show the claim, it is only a matter of
expanding all definitions:

(τ ts ◦ τ sr )(u)(x) = (τx)ts (τ sr (u) (T (t, s, x)))

= (τx)ts
(
(τT(t,s,x))

s
r (u (T (s, r,T (t, s, x))))

)
= (τx)ts

(
(τT(t,s,x))

s
r (u (T (t, r, x)))

)
= (τx)ts (Pr,s (u (T (t, r, x))))

= (Ps,t ◦ Pr,s) (u (T (t, r, x)))

= Pr,t (u (T (t, r, x)))

= (τx)tr (u (T (t, r, x)))

= τ tr(u)(x)

To show the second part remember that parallel transports are norm-preserving. We
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therefore have∥∥τ ts(v)− τ ts(w)
∥∥
µt

=

∫ (
((τx)ts ◦ v)− ((τx)ts ◦ w)

)2 ◦ T (t, s, ·) dµt

=

∫ (
((τx)ts ◦ v)− ((τx)ts ◦ w)

)2
dµs

=

∫
((Ps,t ◦ v)− (Ps,t ◦ w))2dµs

= ‖Ps,t ◦ (v − w)‖µs
= ‖v − w‖µs .

These translation maps allow us to define a Lipschitz-like constant for the flow maps.

Definition 6.2.4 (Constant L(T (t, s, ·))). Let (µt) be a regular curve, (vt) its veloc-
ity vector field, T (t, s, ·) its flow maps and fix s, t ∈ [0, 1]. We define the constant
L(T (t, s, ·)) by

L(T (t, s, ·)) := inf lim inf
n→∞

sup
x∈supp(µnt )

∥∥∇(Tn (t, s, ·))(x)− (τx)ts
∥∥
op
.

Without proof we state the following proposition. The interested reader can find the
proof in [Gig12].

Proposition 6.2.5 (Bounds for Lipschitz Constants). Let (µt) be a regular curve, (vt)
its velocity vector field and T (t, s, x) its flow maps. Then the following bounds for the
Lipschitz constants hold:

LLip(T (t, s, ·)) ≤ e|
∫ s
t L(vr)dr|,

L(T (t, s, ·)) ≤ e|
∫ s
t L(vr)dr| − 1.

We can now show the following important result, which enables us to define the parallel
transport in the Wasserstein setting as we did in the special case of a manifold embedded
in Rn.

Proposition 6.2.6 (Bounds for Projections). Let (µt) be a regular curve, (vt) its velocity
vector field, T (t, s, x) its flow maps and u ∈ Tanµs (P2 (M)). Then the following bound
for the error of the projections holds:∥∥τ ts(u)− Pµt(τ ts(u))

∥∥
µt
≤ L(T (t, s, ·)) ‖u‖µs .

Proof. First of all, in order to show the statement, it is sufficient to show∥∥τ ts(∇φ)− Pµt(τ ts(∇φ))
∥∥
µt
≤ L(T (t, s, ·)) ‖∇φ‖µs ∀φ ∈ C∞c ,
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that is we search for a function ψ ∈ C∞c (M), such that the error
∥∥τ ts(∇φ)−∇ψ

∥∥
µt

can

be controlled by L(T (t, s, ·)) ‖∇φ‖µs .
Remember that a projection leads to a best approximation and therefore∥∥τ ts(∇φ)− Pµt(τ ts(∇φ))

∥∥
µt
≤
∥∥τ ts(∇φ)−∇ψ

∥∥
µt
∀∇ψ ∈ Tanµt (P2 (M)) .

Let us start with velocity vectors vt that satisfy the regularity assumptions (iii) and (iv)
in Theorem 5.2.5. Assuming that those assumptions are satisfied, we can set
ψ := φ ◦ T (t, s, ·). Because φ and T (t, s, ·) belong to C∞, so does ψ. And since
according to assumption (iv) in Theorem 5.2.6 T (t, s, ·) differs from the identity only on
a compact set, we even have ψ ∈ C∞c . We therefore obtain∥∥τ ts(∇φ)− Pµt(τ ts(∇φ))

∥∥
µt
≤
∥∥τ ts(∇φ)−∇ψ

∥∥
µt

=

∥∥∥∥τ ts(∇φ)−
(

(∇φ ◦ T (t, s, ·))> · ∇T (t, s, ·)
)>∥∥∥∥

µt

=

√∫ ∣∣∣(τx)ts(∇φ ◦ T (s, t, x))−∇T (t, s, x)> · ∇φ ◦ T (t, s, x)
∣∣∣2 dµt

=

√∫ ∣∣∣((τx)ts −∇T (t, s, x)>
)

(∇φ ◦ T (t, s, x))
∣∣∣2 dµt

≤

√∫ ∥∥∥(τx)ts −∇T (t, s, ·)>
∥∥∥2
op
|∇φ ◦ T (t, s, ·)|2 dµt

≤ L(T (t, s, ·)) ‖∇φ ◦ T (t, s, ·)‖µt
= L(T (t, s, ·)) ‖∇φ‖µs

which is what we wanted to show.
For the general case (where (µt, vt) does not satisfy the regularity assumptions from
above) one can approximate the transport couple (µt, vt) using Theorem 5.2.6 with
transport couples satisfying those regularity assumptions. We won’t dig deeper into this
subject, the interested reader can find the proof in [Gig12].

6.3. Vector Fields along Regular Curves

Definition 6.3.1 (Vector Fields along a Curve). Let (µt) be a curve in P2(M) and let
u : [0, 1]→ X(M) be a measurable map such that ut ∈ L2

µt for any t. Then we will call
such a map a vector field along (µt) and denote it by (ut).

We now turn our attention to the regularity of vector fields. If we only consider regular
curves (µt), then we can translate ut, which is defined in L2

µt , to τ st (ut) ∈ L2
µs .

Definition 6.3.2 (Regularity of Vector Fields). Let (µt) be a regular curve and (ut) be
a vector field along (µt). We say that (ut) is absolutely continuous if the map t 7→ τ st (ut)
is absolutely continuous for any s ∈ [0, 1]. In the same way we say (ut) is Cn (or C∞) if
the map t 7→ τ st (ut) is Cn (or C∞ respectively) for any s ∈ [0, 1].
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We are now able to define the total derivative along a regular curve.

Definition 6.3.3 (Total Derivative of an Absolutely Continuous Vector Field along a
Regular Curve). Let (µt) be a regular curve and (ut) an absolutely continuous vector
field along (µt). Then we define the total derivative of (ut) as

d

dt
ut = lim

s→t

τ ts(us)− ut
s− t

.

The above limit is intended to be in L2
µt .

The next proposition discusses three important properties: linearity, representation as
translation of the time-derivative and the Leibniz rule.

Proposition 6.3.4. Let (µt) be an absolutely curve and (ut), (ũt) two absolutely con-
tinuous vector fields along (µt). Then the following three properties hold:

(i) the total derivative is linear: d
dt(ut + ũt) = d

dtut + d
dt ũt.

(ii) The total derivative can be represented by

d

dt
ut = τ ts

(
d

dt
(τ st (ut))

)
for a.e. t ∈ [0, 1] , ∀s ∈ [0, 1] .

This in particular means, the total derivative of an absolutely continuous vector
field is itself an L1 vector field.

(iii) The total derivative satisfies the Leibniz rule:

d

dt
〈ut, ũt〉µt =

〈
d

dt
ut, ũt

〉
µt

+

〈
ut,

d

dt
ũt

〉
µt

.

Proof. The linearity of the total derivative follows immediately from the linearity of the
translation maps τ ts.
The second property is due to the group property of the translations:

τ ts

(
d

dt
(τ st (ut))

)
= τ ts

(
lim
h→0

τ st+h(ut+h)− τ st (ut)

h

)
= lim

h→0

τ tt+h(ut+h)− ut
h

=
d

dt
ut.

Finally the Leibniz rule can be shown by

d

dt
〈ut, ũt〉µt =

d

dt

〈
τ0t (ut), τ

0
t (ũt)

〉
µ0

=

〈
d

dt
τ0t (ut), τ

0
t (ũt)

〉
µ0

+

〈
τ0t (ut),

d

dt
τ0t (ũt)

〉
µ0

=

〈
d

dt
ut, ũt

〉
µ0

+

〈
ut,

d

dt
ũt

〉
µ0

.
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6.4. Parallel Transport in the Wasserstein Setting

We directly start with the definition of the parallel transport in the Wasserstein setting
and show that this definition indeed satisfies the conditions for a parallel transport.

Definition 6.4.1 (Parallel Transport in (P2(M),W2)). Let (µt) be a regular curve, (vt)
its velocity vector field and (ut) an absolutely continuous tangent vector field. Then we
say (ut) is a parallel transport if

Pµt

(
d

dt
ut

)
= 0

for almost every t ∈ [0, 1].

First let us discuss uniqueness of parallel transports. As in the Riemannian case this
can easily be shown by first showing that the norm of a parallel transport is constant.
This follows from Proposition 6.3.4:

d

dt
‖ut‖2µt = 2

〈
ut,

d

dt
ut

〉
= 2

〈
ut, Pµt

(
d

dt
ut

)〉
= 0.

Considering now two different parallel transports ut and ũt, we have due to the linearity
of the total derivative that ut−ũt is a parallel transport too, and therefore ‖ut − ũt‖µt = c
for a suitable constant c. Choosing t = 0 we get

c = ‖u0 − ũ0‖µ0 = 0

which shows the uniqueness.

To show existence we proceed as in the Riemannian case. We start by stating the
analogous result to Lemma 6.1.1. Using Proposition 6.2.5 and Proposition 6.2.6 the
analogous estimates to (6.2) and (6.3) read

∥∥P ts(w)
∥∥
µt
≤ C

∣∣∣∣∫ s

t
L(vr)dr

∣∣∣∣ ‖w‖µs t, s ∈ [0, 1] , w ∈ Tan⊥µs (P2 (M)) (6.10)

‖τ st (u)− P st (u)‖µs ≤ C
∣∣∣∣∫ s

t
L(vr)dr

∣∣∣∣ ‖u‖µt t, s ∈ [0, 1] , u ∈ Tanµt (P2 (M)) . (6.11)

Before we proceed let us simplify our notation a little bit. In the Riemannian case we
worked with projections Ps, which could be applied to a tangent vector vt ∈ Vt to map
it into Vs. In the Wasserstein setting however we cannot simply apply a projection to a
tangent vector vt ∈ Tanµt (P2 (M)) to get a tangent vector in Tanµs (P2 (M)), because vt
and vs lie in different L2 spaces. We have to first perform a translation to the correct L2

µs
space where the projection then is defined. Let us therefore denote such a translation
and projection from Tanµt (P2 (M)) to Tanµs (P2 (M)) with

P st (u) := Pµs (τ st (u)) .
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Again we will apply consecutively such operations, therefore let us introduce a simpler
notation. For arbitrary numbers 0 ≤ s1 ≤ s2 ≤ · · · ≤ sk ≤ 1 we denote by

Psk,sk−1,...,s1(u) := P sksk−1
(P

sk−1
sk−2 (. . . P s2s1 (u) . . .))

the map which repeatedly applies such translations and projections.
As in the case of Rn we will denote partitions of [0, 1] (or more generally of [s, t])
with P or Q and the set of all partitions will be denoted by P. Furthermore for
P = {t0 < t1 < · · · < tN} and u ∈ Tanµt0 (P2 (M)) we denote by P(u) the map

P(u) := PtN ,...,t0(u).

In the proof of existence of a parallel transport we will need the following result:

Lemma 6.4.2. Let P be the set of all partitions of [0, 1] and for each partition P ∈ P
denote with t0, . . . , tn its partitions points. Let furthermore (vt) be the velocity vector
field of a regular curve. Then

lim
P∈P

n−1∑
i=0

(∫ ti+1

ti

L(vr)dr

)2

= 0.

Proof.

n−1∑
i=0

(∫ ti+1

ti

L(vr)dr

)2

≤ max
i=0,...,n−1

{∫ ti+1

ti

L(vr)dr

} n−1∑
i=0

(∫ ti+1

ti

L(vr)dr

)
≤ max

i=0,...,n−1

{∫ ti+1

ti

L(vr)dr

}∫ 1

0
L(vr)dr

which tends to 0 for n→∞.

Now that we have established almost the same notation as in the Riemannian setting,
the proofs can be easily adopted to our needs. Let us first state and prove the analogous
of Lemma 6.1.6.

Lemma 6.4.3. Let 0 ≤ t0 ≤ t1 ≤ . . . ≤ tN ≤ 1 be given numbers. Then for any
u ∈ Tanµt0 (P2 (M)) it holds∥∥∥P tNt0 (u)− PtN ,tN−1,...,t0(u)

∥∥∥
µtN

≤ C2 ‖u‖µt0

(∫ tN

t0

L(vr)dr

)2

Proof. The proof is almost the same as its Riemannian analogon. Again we proof the
lemma with induction. Let us start with N = 2. First we see that because of the group
property of the translations τ st we have

P t2t0 (u)− P t2t1
(
P t1t0 (u)

)
= Pµt2

(
τ t2t0 (u)

)
− Pµt2

(
τ t2t1
(
Pµt1

(
τ t1t0 (u)

)))
= Pµt2

(
τ t2t0 (u)− τ t2t1

(
P t1t0
))

= Pµs2
(
τ t2t1
(
τ t1t0 (u)− P t1t0 (u)

))
= P t2t1

(
τ t1t0 (u)− P t1t0 (u)

)
.
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We have that τ t1t0 (u)−P t1t0 (u) ∈ Tan⊥µt1
(P2 (M)) and applying (6.10) and (6.11) we finally

get ∥∥P t2t0 (u)− Pt2,t1,t0(u)
∥∥
µt2

=
∥∥P t2t0 (u)− P t2t1

(
P t1t0 (u)

)∥∥
µt2

=
∥∥P t2t1 (τ t1t0 (u)− P t1t0 (u)

)∥∥
µt2

≤ C2

∣∣∣∣∫ t2

t1

L(vr)dr

∣∣∣∣ ∥∥τ t1t0 (u)− P t1t0 (u)
∥∥
µt1

≤ C2

∣∣∣∣∫ t2

t1

L(vr)dr

∣∣∣∣ ∣∣∣∣∫ t1

t0

L(vr)dr

∣∣∣∣ ‖u‖µt0 (6.12)

≤ C2

∣∣∣∣∫ t2

t0

L(vr)dr

∣∣∣∣2 ‖u‖µt0 .
Now let us consider a general N > 2 and assume we know that the thesis holds for
N − 1. Since due to Lemma 6.2.3 the translation maps τ ts are isometries,

∥∥P ts(u)
∥∥
µt

can
be estimated by ∥∥P ts(u)

∥∥
µt

=
∥∥Pµt(τ ts(u))

∥∥
µt
≤
∥∥τ ts(u)

∥∥
µt

= ‖u‖µs . (6.13)

Then using (6.12) we have∥∥∥P tNt0 (u)− PtN ,tN−1,...,t0(u)
∥∥∥
µtN

≤
∥∥∥P tNt0 (u)− PtN ,tN−1,t0(u)

∥∥∥
µtN

+
∥∥PtN ,tN−1,t0(u)− PtN ,tN−1,...,t0(u)

∥∥
µtN

(6.13)

≤
∥∥∥P tNt0 (u)− PtN ,tN−1,t0(u)

∥∥∥
µtN

+
∥∥PtN−1,t0(u)− PtN−1,...,t0(u)

∥∥
µtN−1

≤
∥∥∥P tNt0 (u)− PtN ,tN−1,t0(u)

∥∥∥
µtN

+

+ C2

∣∣∣∣∫ tN−1

t0

L(vr)dr

∣∣∣∣2 ‖u‖µt0
(6.12)

≤ C2

∣∣∣∣∣
∫ tN

tN−1

L(vr)dr

∣∣∣∣∣
∣∣∣∣∫ tN−1

t0

L(vr)dr

∣∣∣∣ ‖u‖µt0
+ C2

∣∣∣∣∫ tN−1

t0

L(vr)dr

∣∣∣∣2 ‖u‖µt0
≤ C2 ‖u‖µt0

(∫ tN

t0

L(vr)dr

)2

.

To proof that P(u) has a limit in the set P is now a consequence of the preceding lemma.
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Theorem 6.4.4. Let (µt) be a regular curve and consider a tangent vector
u0 ∈ Tanµ0 (P2 (M)). Then the limit limP∈Ps,t P(u0) exists.

Proof. Without loss of generality we may assume that [s, t] = [0, 1]. Again, the proof
is almost the same as in the euclidean case. The main idea is to repeatedly apply
Lemma 6.4.3, such that, for given ε, there exists a partition P with

‖P(u0)−Q(u0)‖µs ≤ C
2 ‖u0‖µt

N−1∑
i=0

(∫ ti+1

ti

L(vr)dr

)2

< ε (6.14)

for every partition Q ≥ P. Fix therefore an arbitrary ε > 0. According to Lemma 6.4.2
we can find a partition P = {0 = t0 < t1 < · · · < tN = 1} such that

C2 ‖u0‖µt
N−1∑
i=0

(∫ ti+1

ti

L(vr)dr

)2

< ε.

It remains to show the first inequality in (6.14) for every Q ≥ P. Consider therefore
a refinement Q = {0 = s0 < s1 < · · · < sK = 1} of P and let l ≤ K be the index, such
that sl = t1 (such an index exists because P ⊆ Q). As in the Riemannian case, define
two partitions of [t1, 1] and two new tangent vectors through

P1 := P ∩ [t1, 1] = {t1 < t2 < · · · < tN = 1} ,
Q1 := Q∩ [t1, 1] = {t1 = sl < sl+1 < · · · < sK = tN = 1} ,
v := P t1t0 (u0) ∈ Tanµt1 (P2 (M)) ,

w := Psl,sl−1,...,s0(u0) ∈ Tanµt1 (P2 (M))

so that

P(u0) = PtN ,...,t0(u0) = PtN ,...,t1
(
P t1t0 (u0)

)
= P1(v),

Q(u0) = PsK ,...,s0(u0) = PsK ,...,sl (Psl,...,s0(u0)) = Q1(w).

We have

‖P(u0)−Q(u0)‖µ1 ≤‖P1(v)−Q1(v)‖µ1 + ‖Q1(v)−Q1(w)‖µ1
≤‖P1(v)−Q1(v)‖µ1 + ‖v − w‖µ1

≤‖P1(v)−Q1(v)‖µt + C2 ‖u0‖µt

(∫ t1

t0

L(vr)dr

)2

(6.15)

where the last step is due to Lemma 6.4.3. We can repeat the steps above with the
first summand on the right-hand side of (6.15), by defining P2 = P1 ∩ [t2, 1] and
Q2 = Q1∩ [t2, 1] which gives us an estimate for ‖P1(v)−Q1(v)‖µt . Repeatedly applying
Lemma 6.4.3 to all subintervals [ti, 1] by constructing partitions Pm = Pm−1 ∩ [tm, 1]
and Qm = Qm−1 ∩ [tm, 1] we finally end up with

‖P(u0)−Q(u0)‖µs ≤ C
2 ‖u0‖µt

N−1∑
i=0

(∫ ti+1

ti

L(vr)dr

)2

< ε

which shows the existence of a limit.
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Now, as in the euclidean case, we naturally get a definition for our parallel transportation
map.

Definition 6.4.5 (Limit Process Map T ts (us)). Let [s, t] ⊆ [0, 1] and let (µt) be a regular
curve. For an initial tangent vector us ∈ Tanµs (P2 (M)) we define the vector T ts (us) as
the vector obtained by the limit process above, namely

T ts : Tanµs (P2 (M))→ Tanµt (P2 (M))

us 7→ lim
P∈Ps,t

P(us).

For s > t the same definition holds, but instead of (µt) we consider the curve (µ1−t).

Before showing that this map indeed gives us a parallel transport, we show that it
satisfies the desired group property.

Proposition 6.4.6. Let (µt) be a regular curve and let T ts be the limit process map as
above. Then T ts satisfies the group property

T ts ◦ T sr = T tr ∀r, s, t ∈ [0, 1] .

Proof. We split the proof into two parts. First we only consider the easier case, where
r ≤ s ≤ t. Then the proof is the same as in the Riemannian case, as the limit over all
partitions P coincides with the limit over all partitions with a fixed partition point s.
Now we turn to the general case. It is sufficient to show that T ts = (T st )−1, all possible
orderings of r, s, t can then easily be derived. To that aim we will show that

lim
P∈P
‖u−QP (P(u))‖µs = 0 ∀u ∈ Tanµs (P2 (M)) (6.16)

where QP is defined by

QP : Tanµt (P2 (M))→ Tanµs (P2 (M))

u 7→ P0,t1,...,tn−1,1(u) = P 0
t1(P t1t2 (. . . P

tn−1

1 (u) . . .))

for the partition P = {0 < t1 < · · · < tn−1 < 1}. Since for any u ∈ Tanµti (P2 (M)) it
holds

P titi+1

(
τ
ti+1

ti
(u)
)

= Pµti

(
τ titi+1

(
τ
ti+1

ti
(u)
))

= Pµti (u) = u

and since P
ti+1

ti
(u) − τ ti+1

ti
(u) ∈ Tan⊥µti+1

(P2 (M)), we can apply the lipschitz inequali-

ties (6.10) and (6.11) to get∥∥∥P titi+1
(P

ti+1

ti
(u))− u

∥∥∥
µti

=
∥∥∥P titi+1

(
P
ti+1

ti
(u)− τ ti+1

ti
(u)
)∥∥∥

µti

≤ C
∥∥∥P ti+1

ti
(u)− τ ti+1

ti
(u)
∥∥∥
µti+1

∣∣∣∣∫ ti+1

ti

L(vr)dr

∣∣∣∣
≤ C2 ‖u‖µti

(∫ ti+1

ti

L(vr)dr

)2

.
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Applying this estimate to (6.16) for arbitrary u ∈ Tanµt0 (P2 (M)) yields

‖u−QP (P(u))‖µt0 ≤
∥∥u− P 0

t1

(
P t10 (u)

)∥∥
µt0

+
∥∥P 0

t1

(
P t10 (u)

)
−QP (P(u))

∥∥
µt0

≤ C2 ‖u‖µ0

(∫ t1

0
L(vr)dr

)2

+

+
∥∥P 0

t1

(
P t10 (u)

)
−QP (P(u))

∥∥
µt0

≤ C2 ‖u‖µ0

(∫ t1

0
L(vr)dr

)2

+

+
∥∥∥P 0

t1

(
P t10 (u)− P t1t2

(
. . .
(
P
tn−1

1 (P(u))
)
. . .
))∥∥∥

µt0

≤ C2 ‖u‖µ0

(∫ t1

0
L(vr)dr

)2

+

+
∥∥∥P t10 (u)− P t1t2

(
. . .
(
P
tn−1

1 (P(u))
)
. . .
)∥∥∥

µt1

= C2 ‖u‖µ0

(∫ t1

0
L(vr)dr

)2

+

+
∥∥∥ũ− P t1t2 (. . .(P tn−1

1

(
P ′(ũ)

))
. . .
)∥∥∥

µt1

where ũ = P t10 (u) and P ′ is a partition of [t1, 1] such that P ′(ũ) = P(u),
i.e. P ′ = {t1 < t2 < · · · < tn−1 < 1}. Since we can estimate the norm of ũ by
‖ũ‖µt1 ≤ ‖u‖µ0 , we can iterate the above procedure and finally arrive at

‖u−QP (P(u))‖µt0 ≤ C
2 ‖u‖µ0

n−1∑
i=0

(∫ ti+1

ti

L(vr)dr

)2

.

Then Lemma 6.4.2 proves our claim.

Finally we are able to show that our construction indeed gives us the parallel transport
in (P2(M),W2).

Theorem 6.4.7. Let (µt) be a regular curve, u ∈ Tanµ0 (P2 (M)) and let T ts be the limit
process map. Then the vector field

ut := T t0 (u)

is the parallel transport of u along (µt).

Proof. The first thing we are going to show is the absolute continuity of t 7→ T t0 (u). Con-
sider therefore any interval [s, t] ⊆ [0, 1]. Applying Lemma 6.4.3 (with
t0 = s, tN = t and ti < ti+1 for arbitrary points ti) and passing to the limit over
all partitions {s < t1 < · · · < tN−1 < t} ∈ Ps,t, we get

∥∥P ts(u)− T ts (u)
∥∥
µt
≤ C2 ‖u‖µs

(∫ t

s
L(vr)dr

)2

(6.17)
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for any u ∈ Tanµs (P2 (M)).
Now fix s1 < s2 < t. Combining above result with the lipschitz estimate (6.11), with
the group property of T ts (Proposition 6.4.6) and with Lemma 6.2.3 (ii) and (iii) yields∥∥τ ts1 (T s10 (u))− τ ts2 (T s20 (u))

∥∥
µt

=
∥∥τ s2s1 (T s10 (u))− T s20 (u)

∥∥
µs2

=
∥∥τ s2s1 (ũ)− T s2s1 (ũ)

∥∥
µs2

≤
∥∥τ s2s1 (ũ)− P s2s1 (ũ)

∥∥
µs2

+
∥∥P s2s1 (ũ)− T s2s1 (ũ)

∥∥
µs2

≤ C
(

1 + C

∫ 1

0
L(vr)dr

)
‖ũ‖µs2

∫ s2

s1

L(vr)dr

which shows the absolute continuity.
Now let us show that t 7→ T t0 (u) defines the parallel transport. We want to show that∥∥∥∥Pµt ( d

dt
ut

)∥∥∥∥
µt

= 0

or equivalently

lim
s→t

∥∥∥∥∥Pµt
(
τ ts(us)− ut

)
s− t

∥∥∥∥∥
µt

= 0.

To that aim observe that∥∥Pµt (τ ts(us)− ut)∥∥µt ≤ ∥∥Pµt (τ ts(us)− ut)− Pµt (τ ts (P st (u))− ut
)∥∥
µt

+

+
∥∥Pµt (τ ts (P st (u))− ut

)∥∥
µt

≤
∥∥τ ts (us − P st (ut))

∥∥
µt

+
∥∥Pµt (τ ts (P st (u))− ut

)∥∥
µt

= ‖us − P st (ut)‖µs +
∥∥Pµt (τ ts (P st (u))− ut

)∥∥
µt
.

According to (6.17), ‖us − P st (ut)‖µs is already a o(s−t). To conclude the proof we need

to show that
∥∥Pµt (τ ts (P st (u))− ut

)∥∥
µt

is o(s − t) too. But since

P st (ut)− τ st (ut) ∈ Tan⊥µs (P2 (M)), this follows by applying the lipschitz estimates (6.10)
and (6.11): ∥∥Pµt (τ ts (P st (u))− ut

)∥∥
µt

=
∥∥P ts (P st (ut)− τ st (ut))

∥∥
µt

≤ C ‖P st (ut)− τ st (ut)‖µs

∫ t

s
L(vr)dr

≤ C2 ‖ut‖µt

(∫ t

s
L(vr)dr

)2

.
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7. Covariant Derivative in (P2(M),W2)

In this chapter we are going to define the Levi-Civita connection on (P2(M),W2) through
the parallel transport map T ts developed in the last chapter.

7.1. Levi-Civita Connection

Let us directly start with the definition of the covariant derivative.

Definition 7.1.1 (Covariant Derivative). Let (µt) be a regular curve and T ts the parallel
transport maps along (µt). If furthermore (ut) is an absolutely continuous tangent vector
field along (µt), i.e. ut ∈ Tanµt (P2 (M)) ∀t ∈ [0, 1], then the covariant derivative D

dtut
of ut along (µt) is defined by

D

dt
ut := lim

h→0

T tt+h(ut+h)− ut
h

,

where the limit is intended in Tanµt (P2 (M)).

Remark 7.1.2. Because

Pµt

(
d

dt
ut

)
= lim

h→0

P tt+h(ut+h)− ut
h

we can use the estimate (6.17) to obtain∥∥∥∥D

dt
ut − Pµt

(
d

dt
ut

)∥∥∥∥
µt

= lim
h→0

1

h

∥∥T tt+h(ut+h)− P tt+h(ut+h)
∥∥
µt

≤ lim
h→0

1

h
C2 ‖ut+h‖µt+h

(∫ t

t+h
L(vr)dr

)2

= 0.

Therefore, we could equivalently define the covariant derivative by

D

dt
ut := Pµt

(
d

dt
ut

)
.

From this characterization it immediately follows, that D
dtut is an L1 vector field, since∥∥∥∥D

dt
ut

∥∥∥∥
µt

≤
∥∥∥∥ d

dt
ut

∥∥∥∥
µt

.

F
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The next step is to show that this covariant derivative is indeed the Levi-Civita connec-
tion on (P2(M),W2), i.e. we need to show its compatibility with the metric and that it
satisfies the torsion free identity.

Lemma 7.1.3 (Compatibility with the Metric). Given two absolutely continuous vector
fields ut, ũt ∈ Tanµt (P2 (M)), the covariant derivative D

dt satisfies

d

dt
〈ut, ũt〉µt =

〈
D

dt
ut, ũt

〉
µt

+

〈
ut,

D

dt
ũt

〉
µt

.

Proof. Using the Leibniz rule from Proposition 6.3.4 and Remark 7.1.2 we obtain

d

dt
〈ut, ũt〉µt =

〈
d

dt
ut, ũt

〉
µt

+

〈
ut,

d

dt
ũt

〉
µt

=

〈
Pµt

(
d

dt
ut

)
, ũt

〉
µt

+

〈
ut, Pµt

(
d

dt
ũt

)〉
µt

=

〈
D

dt
ut, ũt

〉
µt

+

〈
ut,

D

dt
ũt

〉
µt

.

To state and prove the torsion free identity, we need a little bit more notation. Consider
therefore a fixed starting point µ ∈ P2(M) and two regular curves µ1t , µ

2
t starting in

µ, that is µ10 = µ20 = µ, with its corresponding velocity vector fields v1t and v2t . Note
that those velocity vector fields can be chosen continuous according to Lemma 4.1.1.
Furthermore, consider two C1 vector fields, u1t along µ1t and u2t along µ2t , which satisfy
u20 = v10 and u10 = v20. Now it makes sense to consider the derivatives D

dtu
1
t of u1t along µ1t

and D
dtu

2
t of u2t along µ2t at t = 0. Let us introduce a new notation for those covariant

derivatives:

∇u20u
1
t :=

D

dt
u1t

∣∣∣
t=0

and analogously

∇u10u
2
t :=

D

dt
u2t

∣∣∣
t=0

.

Lemma 7.1.4 (Torsion Free Identity). Given two absolutely continuous vector fields
u1t , u

2
t ∈ Tanµt (P2 (M)) such as above, the torsion free identity holds, i.e.[

u10, u
2
0

]
= ∇u10u

2
t −∇u20u

1
t .

Proof. First consider the functional Fφ : µ 7→
∫
φdµ for arbitrary but fixed φ ∈ C∞c (M).

Due to the continuity equation (4.2) we obtain the derivative of Fφ along u2t as
〈
∇φ, u2t

〉
µt

.
Combining this with the Leibniz rule from Proposition 6.3.4 we get

u10(u
2
0(Fφ(µ))) =

d

dt

〈
∇φ, u2t

〉
µt

∣∣∣
t=0

=
〈
∇u10∇φ, u

2
0

〉
µ

+
〈
∇φ,∇u10u

2
t

〉
µ
.
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Analogously, we can compute u20(u
1
0(Fφ(µ))). Taking the difference we arrive at[

u10, u
2
0

]
(Fφ(µ)) = u10(u

2
0(Fφ(µ)))− u20(u10(Fφ(µ)))

=
〈
∇φ,∇u10u

2
t −∇u20u

1
t

〉
µ

+
〈
∇u10∇φ, u

2
0

〉
µ
−
〈
∇u20∇φ, u

1
0

〉
µ

=
〈
∇φ,∇u10u

2
t −∇u20u

1
t

〉
µ
,

where the last equality is due to〈
∇u10∇φ, u

2
0

〉
µ

=
〈
∇u20∇φ, u

1
0

〉
µ
.

Since the set {∇φ | φ ∈ C∞c (M)} is by definition dense in Tanµ (P2 (M)), we finally get[
u10, u

2
0

]
(µ) = ∇u10u

2
t −∇u20u

1
t

which is exactly the torsion free identity.
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