
MAGISTERARBEIT

Requirement Classification of

Dependable Real-Time Systems

unter der Leitung von

Ao. Univ.-Prof. Dr. Peter Puschner

Institut für technische Informatik 182/1

und als verantwortlich mitwirkenden Universitätsassistenten

Univ.Ass. Dr. Raimund Kirner

Institut für technische Informatik 182/1

eingereicht an der

Technischen Universität Wien,

Fakultät für Informatik

durch

Josef M. Trojer, Bakk.techn.

Matr.-Nr. 9908365

1070 Wien, Neustiftgasse 53/2/37

Wien, im Jänner 2007 .

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Abstract

Implementing safety in real-time systems today requires time-consuming
and cost-intensive certification procedures recommended by domain-
specific safety standards. Additionally, meeting tight time-to-market dead-
lines in implementing increasing system complexity forces industry to find
comprehensive ways to reduce the effort expended on developing system
artifacts.
This master’s thesis introduces a strategy for the development of depend-
able real-time systems that encapsulates the reuse potential of system
behavior on the basis of requirements specifications. To this end, the
platform-oriented concept of the model-driven architecture (MDA) is used
to separate dependable system behavior on the basis of a platform-specific
and platform-independent viewpoint. When it comes to integrating safety,
a systematic development of requirements according to the RTCA/DO-
178B guidelines helps to specify safety-critical behavioral aspects of a
real-time system by using high-level and low-level requirements. Com-
bining the viewpoint principles of the MDA with the systematic two-level
requirements development according to RTCA/DO-178B is the basic strat-
egy for the reuse of requirements, with a requirements classification pat-
tern (RCP) dividing the dependable system behavior into four requirements
classification windows (RCW).
The assignment of requirements to RCWs is based on a platform-oriented
analysis of system properties. The requirements classified in this the-
sis are stated in natural language. Each system property belongs to a
platform layer, with a platform layer providing a manageable reusable in-
sight of the system platform behavior. Thus, a platform layer, with its
container-related characteristics, limits the scope of the RCP within the
same technological domain.
In order to demonstrate the practical relevance of the reuse strategy men-
tioned, an RCP developed for this thesis was applied to a set of sample
software requirements of TTP-OS, a safety-critical, fault-tolerant real-time
operating system developed according to RTCA/DO-178B as a certifiable
software product for the aerospace industry. As the use of natural lan-
guage for the specification of requirements often is ambiguous, so-called
informal guidelines are used to support a platform-oriented property as-
signment decision. A reusable distribution reflects a majority of assigned
requirements in the platform-independent RCWs. Changing requirements
from being platform-specific to being platform-independent shows a reuse-
driven approach to developing requirements for dependable real-time sys-
tems.

i

Danksagung

Einleitend möchte ich mich bei Prof. Peter Puschner bedanken, welcher
es mir ermöglichte, meine Diplomarbeit am Institut für technische Infor-
matik zu verfassen. Vor allem jedoch zolle ich großen Dank Dr. Raimund
Kirner für dessen gewissenhafte und exzellente fachliche Betreuung, die
wesentlich zur Fertigstellung meiner Diplomarbeit beigetragen hat.

Karl Salasch und Martin Schlager danke ich für wertvolles und es-
sentielles Feedback in sämtlichen Diskussionsrunden und natürlich für
deren fundiertes Korrekturlesen.

Ebenso möchte ich der Firma TTTech Computertechnik AG für deren
technischen Unterstützung hinsichtlich Unterlagen zu TTP-OS, sowie
den hervorragenden arbeitstechnischen Bedingungen speziell bei der
Fertigstellung meiner Diplomarbeit danken.

Diese Arbeit widme ich meinen Eltern Josef und Cäcilia, sowie meinen
beiden Brüdern Thomas und Reinhard.

ii

Contents

Abstract . i

Danksagung . ii

1 Introduction 1

1.1 Scope . 2

2 Fundamentals 4

2.1 Real-Time Systems . 4

2.1.1 Real-Time . 4

2.1.2 Classifications . 6

2.2 Distributed Real-Time Systems 7

2.2.1 RT Entity and RT Image 8

2.2.2 RT Communication Requirements 8

2.2.3 Time-Triggered Architecture 9

2.3 Safety-Critical Aspects 11

2.3.1 Dependability . 11

2.3.2 System and Software Safety 14

2.4 Software Validation and Verification 17

2.4.1 Verification, Validation and Argumentation 18

2.4.2 Formal Methods 20

3 Related Work 22

3.1 Requirements Reuse . 22

3.1.1 Domain Analysis 22

3.1.2 AC 20-148 Reusable Software Components (RSC) 24

3.1.3 Natural Language Processing 24

3.1.4 Real-Time Requirement Pattern 25

3.2 Classification Schemes 26

3.2.1 Safety Integrity Levels 26

3.2.2 Safety Standards 27

3.2.3 MISRA C . 31

iii

4 Requirements and Safety 33

4.1 Safety Requirements Engineering 33

4.1.1 Safety Problem, Hazards and Requirements . . . 33

4.1.2 Safety Requirement Development 35

4.2 Requirements Capture 38

4.2.1 System and Software Requirements 38

4.2.2 Software Safety Requirements 43

4.3 Hazard Analysis Techniques 45

4.3.1 Software FTA . 45

4.3.2 Software HAZOP 47

5 Behavior Classification 49

5.1 Platform Behavior Specification 50

5.1.1 Real-Time System Platform Determination 50

5.1.2 RT System Platform Viewpoints 52

5.1.3 Platform Layers . 53

5.2 Platform Behavior Classification 56

5.2.1 Viewpoints and Cognitive Distance 56

5.2.2 System Properties and Requirements 57

5.2.3 Requirements Classification Pattern 58

5.2.4 Classification Axioms 59

6 Requirements Evaluation 64

6.1 TTP-OS (Dependable RTOS) 64

6.1.1 TTP-OS (System Overview) 64

6.1.2 TTP-OS Requirements Documentation 66

6.2 TTP-OS Requirements Classification 67

6.2.1 TT RTS Platforms 67

6.2.2 TTP-OS Platform Layer Specification 68

6.2.3 RCP Sample Application 70

6.3 RCP for TTP-OS (Results) 73

6.3.1 System Property Identification In Natural Lan-

guage Requirements 74

6.3.2 RCP Extension using a Domain Model 76

6.3.3 Distribution of Requirements of a Platform

Layer to enable Reuse 78

6.3.4 Requirements Development Using RCW Concepts 80

7 Conclusion 84

Glossary 86

Bibliography 92

Index 97

iv

Chapter 1

Introduction

The safety-critical domain considers a software failure as hazardous

system situation that can cause a potentially serious harm to its en-

vironment. Thus, the determination of safety requirements, which

specify the safe behavior of an entire system to be developed, helps

to prevent errors from occurring in that system.

Software safety is based on systematic software development.

The term software safety is already applied to an early stage of

software development, when software requirements are being speci-

fied. At this stage, safety can be proved by following domain-specific

safety standards defining guidelines and recommendations for the

engineering of requirements, depending on the respective safety de-

gree desired.

Software development has to undergo certification when it is nec-

essary to prove that a requirements specification complies with the

relevant safety standards to a sufficient degree. Depending on the

safety approach applied, a slight modification of requirements can

result in an unavoidable re-certification of parts of the artifacts de-

veloped if not of the entire system itself, which can cause an enor-

mous increase in cost-intensive and time-consuming certification

activities.

One way to overcome this problem is to reuse software. Soft-

ware reuse is aimed at developing software on the basis of exist-

ing domain-specific system artefacts and development of know-how

rather than creating an entire system from scratch [Kru92]. An

existing requirement specification constitutes an adequate system

artifact and can therefore act as core instrument in finding an ap-

propriate solution to a certain problem.

This thesis introduces a generic requirement classification pat-

1

tern (RCP) that can be used to specify requirements for safety-

critical software. Before requirements can be classified, a plat-

form layer defining classification and domain boundaries has to be

specified. Then RCP can be used to separate natural language (NL)

requirements into four requirement classification windows (RCW),

depending on the semantic information those NL requirements con-

tain. The four RCWs are the result of a conceptual combination

of high-level and low-level requirements specified according to the

guidelines laid down in RTCA/DO-178B [Rad92] and the reuse-

oriented, platform-independent and platform-specific viewpoint of

the model-driven architecture (MDA) [MM03]. The RCP makes it

possible to give reasons for reusing requirements specifications.

The RCP also shows how to divide a software behavior in terms

of so-called platform layers in order to enable a platform-oriented

approach to the engineering of requirements for safety-critical soft-

ware

For this master’s thesis, the RCP has been applied to the re-

quirements specification documents of an existing certifiable soft-

ware product, TTP-OS [TG94], which is a fault-tolerant, distributed

real-time operating system already used in safety-critical domains

(for examples, aerospace).

1.1 Scope

This master’s thesis covers the following topics:

- Fundamentals (Chapter 2 on page 4), outlining the essential

concepts required for the better understanding of this thesis

and discussing safety-critical aspects (including dependabil-

ity), system safety and software safety. This section, more-

over, classifies real-time systems, explains its distributed as-

pect and introduces formal methods as a potential way to ver-

ify and validate requirements for safety-critical software

- Related Work (Chapter 3 on page 22), listing related work

done in the field of software reuse and classification by identi-

fying approaches to information structures, by creating safety-

critical software components, by presenting text-processing

strategies reused for natural language (NL) requirements and

by describing a formal pattern for real-time systems. Clas-

sification schemes contribute to the concept of safety-critical

applications, listing two derived standards (IEC 61508 and

2

RTCA/DO-178B) and a related guideline concept for imple-

menting safe programs.

- Requirements and Safety (Chapter 4 on page 33), describing

the relationship between safety and requirements by providing

a solution to the safety problem and its impact on the devel-

opment of safety requirements. This section also answers the

question of how system and software requirements can be de-

veloped when system safety is of particular importance. Finally

this section describes the techniques that are used to uncover

hazards, the root of unsafeness.

- Application-Oriented Classification of Software Safety Re-

quirements (Chapter 5 on page 49), introducing the generic

requirement classification pattern (RCP), which first deter-

mines a system platform layer and then splits up conceptual

information into a platform-specific and platform-independent

content. The determination of a system platform layer starts

with a platform description of the respective real-time sys-

tem, providing detailed information on corresponding systems,

extending the platform-oriented view of dependable real-time

systems and concluding its definition by discussing the im-

pact of software safety on platform layers. The requirement

classification resulting from that determination divides a set

of requirements due to its system properties, determines rules

for the intrinsic classification of those properties and summa-

rizes the results as axioms of requirements development.

- Evaluating Requirements Classifications for Safety-

Critical Software (Chapter 6 on page 64), applying the concept

of the RCP to a safety-critical time-triggered software product.

The applicability of the RCP is discussed with regard to sys-

tem behavior modeling, its reuse potential and requirements

development.

3

Chapter 2

Fundamentals

This chapter covers the fundamental concepts of this thesis. A dis-

tributed solution to real-time systems, for which we propose fun-

damental requirements, extends the criteria and classifications de-

fined for real-time systems. The concept of dependability serves as

a basis for describing safety, with that description being then put

into the context of system and software development. Finally, we in-

tegrate the requirements specification into the system development

process by discussing validation and verification issues for safety-

critical system.

2.1 Real-Time Systems

2.1.1 The Concept of Real Time

“A real-time computer system is a computer system in which the cor-

rectness of the system behavior depends not only on the logical re-

sults of the computation, but also on the physical instant at which

these results are produced [. . .] If a real-time computer system is dis-

tributed, it consists of a set of (computer) nodes interconnected by a

real-time communication network [Kop97].”

An entire real-time system can be grouped into three compo-

nents (subsystems):

1. the operator,

2. the controlled object, and

3. the real-time computer system.

4

Real -Time
Computer System

Controlled ObjectOperator

Man-Machine Interface Instrumentation Interface

Figure 2.1: Conceptual Model of a Real-Time System [Kop97]

These subsystems are also called clusters. The operator clus-

ter and the controlled object cluster constitute the environment of

the real-time computer system. A real-time system is additionally

characterized by two interfaces:

1. The man-machine interface, located between operator and real-

time computer system has input and output devices.

2. The instrumentation interface, located between real-time com-

puter system and controlled object, contains actuators and

sensors for transforming physical signals into digital ones and

vice versa.

Data processing within clusters and between interfaces, as shown

in Figure 2.1 on the current page, is done by methods for scheduling

and resource management. All kind of resulting work is computed

and communicated within the real-time computer system domain.

The resulting sequential execution of a program within a real-time

system is called a task. A task not comprising an internal state

at its point of invocation is a stateless task, otherwise a task with

state [Kop97]. A set of n tasks is referred as job [HHCB06]. With

respect to the time domain, the timely execution of tasks is funda-

mental aspect of any RT system.

“A real-time computer system must react to stimuli from the op-

erator within time intervals dictated by its environment. The instant

at which a result must be produced is called a deadline. If a result

has utility even after the deadline has passed, the deadline is clas-

sified as soft, otherwise it is firm. If a catastrophe could result if a

firm deadline is missed, the deadline is called hard [...] A real-time

computer system that must meet at least one hard deadline is called

hard real-time computer system or a safety-critical real-time computer

system. If no hard real-time deadline exists, then the system is called

a soft real-time computer system [Kop97].”

Based on the temporal characteristic of a task, a deadline vio-

lation may imply a hazardous situation for the system. Thus con-

5

siderations on the correct execution of tasks affect the whole RT

system.

A variety of examples for real-time systems can be found in the

domain of embedded systems.

2.1.2 Classification of Real-time Systems

In addition to the fundamental real-time concepts of hard, firm and

soft timing constraints, this section describes ways how to classify

real-time systems [Kop97].

Event-Triggered versus Timed-Triggered

An event is an occurrence of an happening on the time-line. It

connects the past with the future. The occurrence of an event starts

some action, for example, the execution of a task. This occurrence

is also considered as a trigger of an action. Communication and

processing activities depend on the trigger mechanism used by the

real-time computer system. Dealing with triggers in the real-time

domain results in two completely different design approaches.

In the event-triggered approach, system activities depend on the

events occurring in the computer system or environment. Dynamic

scheduling strategies used in the real-time computer system han-

dle the interrupt mechanism reflecting the signaling of significant

events. In the time-triggered approach, all system activities are trig-

gered by the progression of the global time and started periodically

at predetermined instants [Kop93]. Static scheduling strategies of-

fer a synchronous interrupt mechanism delivering signals at prede-

fined points of the global time.

Fail-Safe versus Fail-Operational

The execution of applications on real-time systems often includes

the concept of state machines in hardware and software. The oc-

currence of malicious events have a significant impact on the cor-

rect behavior of the system. If the system immediately enters a

safe state, after malicious states have been detected, the system is

called fail-safe. A real-time system holding a safe state does not

have a hazardous effect on the environment. Thus, a fail-safe sys-

tem does not provide the environment with any additional function-

ality. Nevertheless, some systems have to provide a minimal level of

6

service even if a hazardous situation or failure occurs. These sys-

tems are called fail-operational (for example, flight-control systems

in an aircraft).

Guaranteed Response versus Best Effort

Designing a real-time system faces engineers with two implications

of integrating the fault and load hypothesis, namely guaranteed re-

sponse and best effort. A real-time system is characterized by guar-

anteed response when the design of that system neglects proba-

bilistic arguments, even in the case of peak load and fault scenar-

ios. Careful planning and analyzing is indispensable for creating

a guaranteed-response system. If the system design does not have

guaranteed response, this implies a best-effort design method when

the system has been implemented. Engineers design the system us-

ing the statement "best possible effort taken" as their fundamental

motto.

Resource-Adequate versus Resource-Inadequate

The concept of resource adequacy, which nowadays is integrated in

many designs of safety-critical systems, enables a correct handling

of rare-event scenarios by providing enough system resources. Non-

safety-critical systems do not have to provide adequate resources.

They also do not have to satisfy extraordinary fault and load scenar-

ios in a sufficient way. Thus, this kind of real-time systems reflects

resource inadequacy.

2.2 Distributed Real-Time Systems

To overcome the increasing complexity of real-time systems, the en-

tire system functionality is divided into modular subsystems. The

safety-critical domain makes use of the decomposition principle and

its effect on system development. This design consideration is sus-

tained by the fact that using a centered real-time system never

achieve a overall system failure rate of 10−9, which reflects a safety-

critical behavior [Sur94]. The design of distributed real-time sys-

tems has to show compliance with fundamental communication re-

quirements and real-time system properties.

7

2.2.1 Real-Time Entity and Real-Time Image

A real-time (RT) entity per definition is a “state variable of relevance

for the given purpose [Kop97]” and plays an important role in the

efficient description of real-time system behavior. RT entities reside

within a computer system or its environment and have a logical or

physical interpretation. RT entities are characterized by static and

dynamic attributes, for example, the name for an entity is consid-

ered to be static, while dynamic attributes change their values at a

certain point in time. Each RT entity comprises an internal state

and has a close relationship to its real-time image.

An RT image per definition is the “current picture of an RT en-

tity [Kop97].” For the behavior of a system it is necessary to know

in which (internal) state the distributed real-time system resides.

Therefore an RT entity is observed at a certain point in time and

evaluated by

Observation = <Name,tobs,Value>

The atomic data structure of an observation reflects the moment

of observation tobs with respect to time and the resulting V alue. An

arbitrary time-based observation can only be done with a contin-

uous RT entity. An RT entity or RT image is stored in a real-time

object on a node within the distributed real-time system network.

Temporal accuracy defines a temporal relationship between an RT

entity and its RT image of an RT Object within a corresponding

real-time application.

”A RT-image is temporally accurate if the time interval between

the moment "now" and point in time when the current value of the

real-time image was the value of the corresponding RT entity is

smaller than an application specific bound”

2.2.2 Real-Time Communication Requirements

The entire functionality of a distributed system is determined by a

set of nodes interacting with each other according to specific rules.

A computational node located within a distributed real-time sys-

tem typically comprises a host processor and a communication con-

troller. The entire system behavior is based on a variety of commu-

nication flows taking place between these nodes. These commu-

nication flows are controlled by systematic and well-defined rules,

which are called protocols. Internal system information or envi-

8

ronmental information is transmitted via state messages or data

messages.

A safe real-time communication has to comply with the follow-

ing five essential behavioral aspects, valid for the development of

distributed real-time systems [Kop97].

Bounded Protocol Latency Information transmission is charac-

terized by protocol latency, which is the interval between the

start of message transmission on the communication network

interface (CNI) on sending node A and the reception of that

message on receiving node B.

Supporting Composability A composable communication allows

expanding the communication range to other nodes without

any further problems of recalibrating existing configurations

or implementations. The variety of existing types for real-time

systems is another requirement for communication.

Flexibility Flexibility in this context means that different types

of systems with different configurations and properties are

adapted to the existing real-time network without any major

changes to the system.

Error detection Dependable and predictable services should de-

termine the probabilistic presence of communication errors.

Those services also determine a correction of erroneous trans-

mission or inform all nodes participating in the network about

a hazardous situation. Communication errors are also caused

by operations taking place on the node itself (for example, mali-

cious interactions with actuators). Communication has to take

care about the end-to-end acknowledgment of control mes-

sages and its reaction, which implies a separate monitoring

mechanism for such systems.

Physical structure The physical structure is decisive for the re-

quested behavior of the distributed real-time system. In most

cases, decisions depend on economic and technical reasons

limited by the stakeholders.

2.2.3 Time-Triggered Architecture

Developed over the last two decades at the Vienna University of

Technology1, the Time-Triggered Architecture (TTA) provides a com-

1Vienna University of Technology, Institute of Computer Engineering, Real-Time

Systems Group (http://www.vmars.tuwien.ac.at)

9

http://www.vmars.tuwien.ac.at

prehensive design statement to industrial demands listed in Section

2.2.2 on page 8 before.

The TTA specifies a computing framework designated for large

distributed real-time systems. The entire system intended is divided

into nearly autonomous components. The components are clusters

or nodes. Every node has a global, fault-tolerant time base of a pri-

ori known precision. Communication and agreement protocols are

simplified by this global time, which allows a transparent specifi-

cation of interfaces among nodes. A global time base also enables

a prompt error detection and guarantees the timeliness of a real-

time application. The design of time-triggered systems is based on

the so-called two-level design approach. In the architecture design

phase, interaction among the components is specified by defining

interfaces in the temporal and value domain. In the component

design phase, components are built according to the constraints

specified in the preceding architecture design phase [KB03].

The TTA solves communication issues by using the time-triggered

protocol (TTP). TTP is an integrated communication protocol en-

abling fault-tolerant communication among distributed real-time

systems. Based on a set of specific services, TTP contributes

to a safe behavior of the distributed system. Those service

are “predictable message transmission, message acknowledgment

in group communication, clock synchronization, membership, rapid

mode changes, and redundancy management[KG94].” Two classes of

protocol types have been derived from TTP. TTP SAE Class A (TTP/A)

is a low-cost field-bus protocol, whereas TTP SAE Class C (TTP/C) is

intended as a fault-tolerant communication solution in the safety-

critical domain (for example, aerospace industry) [Sch01] [PK98].

10

2.3 Safety-Critical Aspects

When we specify safety requirements for a computer-based, dis-

tributed real-time system, the fundamental principles to be linked

with the concept of safety have a deep impact on an appropriate

and sufficient safety-related design and the implementation corre-

sponding to that design.

The safety-critical aspects presented in the following sections are

essential concepts that are frequently used in this domain when

elaborating approaches to software requirements for safety-critical

systems, in particular when developing software for distributed,

time-triggered real-time systems.

2.3.1 Dependability

The safety of a software system property is integrated into the con-

cept of dependability.

Dependability itself is the capability of a computer-based sys-

tem to “deliver service that can justifiably be trusted. The service

delivered by a system is its behavior as it is perceived by its user(s);

a user is another system (physical, human) that interacts with the

former at the service interface. The function of a system is what a

system is intended to do, and is described by the functional specifi-

cation. Correct service is delivered when the service implements the

system function. A system failure is an event that occurs when the

delivered service deviates from correct service. A failure is thus a

transition from correct service to incorrect service, i.e., to not imple-

menting the system function. The delivery of incorrect service is a

system outage. A transition from incorrect service to correct service is

service restoration [ALR01].”

Software requirements are the integral part of any functional

specification. Thus, the lexical and semantic content of a software

requirement contributes to the dependability of a computer-based

system. Apart from the impact functional specifications can have on

safety-critical systems the notion of time constitutes the conceptual

basis for a failure.

Dependability can be located within three categories – impair-

ments to dependability, means for dependability and attributes of

dependability –, from which a number of attributes extend. Fig-

ure 2.2 on the next page shows these categories in a dependability

tree [ALR01].

11

Dependability

Impairments

Means

Attributes

Availability

Reliability

Safety

Security

Procurement

Validation

Fault Prevention

Fault Tolerance

Fault Removal

Fault Forecasting

Faults

Errors

Failures

Figure 2.2: The dependability tree [ALR01]

The structural background of the first category, impairments to

dependability (see Figure 2.2 on this page), is based on the at-

tributes error, fault and failure. Whenever a sequential time-line

is followed, a fault constitutes the adjudged or hypothesized cause

of an error. An error is an unintended state within the behavior of

a computer-based system. Based on an error, the resulting devi-

ation of actual service from intended service is the corresponding

failure [Kop97].

Safety is considered as one of six basic attributes a dependable

system has to comprise. Dependability requirements describe to

which extent and with which effort a dependability goal, as defined

by a specific dependability attribute, has to be achieved within a

system. In [ALR01] the authors extend their concept of dependabil-

ity by so called secondary attributes. In the context of software re-

quirements, the secondary dependability attribute robustness plays

a major role in specifying dependable real-time software systems.

Robustness deals with dependability in the presence of unavoidable

external faults which denote a specific class of faults with its own

classification of system reaction. Strictly satisfying only the basic

set of dependability attributes is not a deterministic approach to a

dependable system, because different kinds of dependable systems

imply a variety and/or combination of dependability attributes in

order to satisfy a specific safety-critical user requirement.

The third dependability category, means of dependability, relates

to methods and techniques enabling the establishing of dependable

computer-based systems. Two attributes extending these means,

12

fault prevention and fault tolerance, can be seen as dependability

procurement constructing a dependable system, whereas the at-

tributes fault removal and fault forecasting can be considered as

dependability validation ensuring a valid employment of procure-

ment methods [Hil98].

Fault management deals with the adequate employment of these

four means during the development of dependable systems. A de-

scription of these means and the proper techniques used to imple-

ment them is given below.

Fault prevention: Fault prevention is aimed at preventing the in-

troduction or occurrence of a fault within the behavioral

sphere of a system, which is done by quality control during

the software design and software implementation. Techniques

used to implement this means of dependability are modular-

ization, structured programming and abstraction techniques

supported by systematic approaches to development and train-

ing.

Fault tolerance To preserve the intended behavior of a system even

in the presence of an active fault, fault tolerance is carried out

mainly by error detection and system recovery. Whenever the

system reaches an erroneous state, error detection within the

system uncovers the situation by assigning error signals to

the corresponding unintended state (for example, “exception

handling” for software). The effectiveness of the error treat-

ment methods is crucial to the valid and correct execution of

any fault-tolerant system. In a next step, the system recovery

returns the erroneous state into a valid and correct execu-

tion state mode by using error and fault handling. Examples

for software fault tolerance techniques are N-Version Program-

ming, Recovery Blocks or Diversity Programming [Hil98].

Fault removal: Fault removal techniques must be applied to sys-

tem development or the operational life of a system to reduce

the presence (number, seriousness) of faults. Validation and

verification (see Section 2.4 on page 17 for a more detailed

description) are applied to the development process to uncover

faults in the software design specification and subsequent soft-

ware implementation. As far as the operational life of a system

is concerned, faults can be reduced by corrective and preven-

tive maintenance.

13

Fault forecasting: Fault forecasting estimates the future occur-

rence and consequences of faults and determines a fault model

for the software system by using qualitative (ordinal) or quan-

titative (probabilistic) evaluation. In the course of modeling

software requirements, which are stated in functional system

specifications, techniques and methods are used to prevent

the system from hazardous states. Such software hazards

may contribute to an error (or accident) occurring within the

system. Examples of hazard treatment techniques are Fault

Tree Analysis (FTA) or Hazard and Operability Analysis (HA-

ZOP) (see Section 4.3 on page 45 for a more detailed descrip-

tion).

2.3.2 System and Software Safety

The term safety for computer-based, safety-critical systems has a

large number of definitions in the scientific and industrial literature.

The term safety can be defined in the following way:

“Safety is a property of the system that will not endanger

human life or the environment [Sto96].”

Here is a more precise definition:

“The conservation of human life and its effectiveness, and

the prevention of damage to items as per mission require-

ments [B.S03].”

The operational field of real-time systems offers adequate func-

tionality in order to cope with the challenge of providing safe system

behavior to the environment. Real-time systems constitute a co-

design of software and hardware components and cover, owing to

their wide operational field in different industrial domains, a broad

range of safety-critical applications.

This conceptual point of view makes it necessary to distinguish

between system and software when talking about safety.

System Safety

In this work we assume a safety-critical system as a computer-

based system comprising hardware and software components.

When developing a safety-critical system it should be made sure

to prevent the risk of an unforeseen accident that might be based

14

on the occurrence of a hazard or to reduced such a risk to a tolera-

ble level. Therefore it is necessary to identify and analyze hazards at

system level. If a system hazard is identified, it must be determined

how severe or critical are the consequences of that hazard and how

likely it is to occur. After the design decision has been made, poten-

tial hazard sources are assigned to the specific hardware or software

components. Unfortunately hazards have the nature to appear in

every stage of the development process. Thus system safety activi-

ties have to be done at every stage of a system life-cycle in order to

handle the unavoidable presence of system hazards in an appropri-

ate and safe way. A system safety engineer has to manage hazards

by using analysis, control and management procedures to identify,

evaluate, eliminate and control those hazards [Lev03].

Based on the following seven principles, this safety approach to

creating computer-based systems offers a systematic way for pre-

venting foreseeable accidents [Lev95] :

“System safety . . . ”

• “. . . emphasizes building in safety, not adding it on to a com-

pleted design.”

• “. . . deals with systems as a whole rather than with subsys-

tems or components.”

• “. . . takes a larger view of hazards than just failures.”

• “. . . emphasizes analysis rather than past experience and stan-

dards.”

• “. . . emphasizes qualitative rather than quantitative ap-

proaches.”

• “. . . recognizes the importance of trade-offs and conflicts in sys-

tem design.”

• “. . . is more than just system engineering.”

Whenever a hazard is identified, the system design or environ-

ment have to be modified to provide a way to eliminate this poten-

tially malicious system state. If such a system design or environ-

ment modification cannot avoid an unacceptable system hazard,

system safety requirements have to be specified.

15

Software Safety

“A safety-critical software is any software that can directly

or indirectly contribute to the occurrence of a hazardous

system state [Lev95].”

In other words, the relationship between software and system 2 is

based on the assignment of specific system hazard aspects to the

corresponding software parts. For this reason, software safety is a

system safety problem. Software safety, which is also referred to

as software system safety to emphasize the system nature of this

specific issue, is considered as “the freedom from software-related

hazards [B.S03].” A software hazard is a software condition that is

a malicious prerequisite for an accident of the system itself. The

embedded behavior of software within the system context, but also

the hazard characteristics of software itself can affect system safety

in two different ways [Lev95] :

• software output values or timing can contribute to a hazardous

situation,

• software is not able to control or handle hardware failures

which propagate through the system design in order to trans-

fer the system to a hazardous state.

The complexity and diversity in software development entails diffi-

culties when it comes to determine qualitative statements about the

dependability of a software component. Whereas in hardware de-

velopment a component failure rate is a significant state about the

systems reliability, in software no according means can be applied

and therefore does not constitute an effective means for software

risk assessment within the domain of safety-critical (software) sys-

tems [Lev91]. However, different approaches employed to achieve

software reliability can show that software is not safe. For this

reason, software safety has to focus on the safe creation and im-

plementation of software design issues preventing hazardous situa-

tions from occurring or reducing the risk of hazard occurrence.

To elaborate safety requirements for software it is necessary to

have an elementary understanding of how software can cause haz-

ards. Table 2.1 on the next page gives an overview of the potential

causes leading to the occurrence of software hazards [B.S03].

The entire system development process uses the preliminary haz-

ard analysis (PHA) at a late stage of requirements engineering and

2In this context a system is an abbreviation for safety-critical system.

16

A failure in recognizing a hazardous situation requiring a cor-

rective measure

A failure to perform a required function

Poor response to a contingency

Incorrect solution to a problem

Performing a function which is not required

Performing a function which is out of sequence

Poor timing of response for an adverse situation

Table 2.1: Potential Causes for Software Hazards [B.S03]

at an early phase of the design process, that is, comparably early in

the entire life-cycle. The PHA is aimed at identifying safety-critical

domains, doing a first assessment of hazards, and defining an ade-

quate hazard control and appropriate additional activities. Hazards

identified in the course of a PHA are assigned to specific software

components, after a design decision has been made. A subsystem

hazard analysis (SSHA) carried out in connection with a PHA is

aimed at identifying the potential causes for software hazards listed

in Table 2.1 on this page. Those hazards can occur at the inter-

face level of software components, between software components,

or within the software design itself. Software safety, furthermore, is

aimed at finding out how software components have contributed to

a hazardous situation, which is done by

1. identifying software hazards,

2. assessing an appropriate risk level for the potential occurrence

of a software hazard and

3. ensuring a sufficient effort to design devices that eliminate or

control the hazards identified [Lev91].

Software safety standard documents describe appropriate tech-

niques and measures used to conduct a software development pro-

cess in a proper way (see Section 3.2.2 on page 27 for details).

2.4 Software Validation and Verification

Every project starts with the specification of requirements devel-

oped by stakeholders involved in order to provide a transparent and

consistent view of the intended system. Requirement specifications

constitute a legal and commercial basis on the basis of which the

17

system is developed. The system development process, however,

has to integrate several phases phases providing a continual state-

ment about the correct implementation of the intended system be-

havior.

Implementation

Unit Test

Integration Test

System Test

Validation Testing

System Design

Requirement Specification

Component Design

Module Design

V
erification

S
tages

V
alidation

S
tage

System Validation = Validation Testing + Argumentation

Figure 2.3: The V-Model

Figure 2.3 shows the V-Model, which is a development process

model contrasting every development stage displayed on the left side

of the figure with the specific verification and validation stage dis-

played on the right side. Thus, verification or validation, in ev-

ery stage of system development, provides an up-to-date statement

about the implementation of the respective system behavior.

2.4.1 Verification, Validation and Argumentation

Definition 2.1 (Verification) “Confirmation by examination and

provisions of objective evidence that the particular requirements for

a specific intended use are fulfilled [IEE98].”

Development activities, which relate to the verification stages,

have to determine measures and techniques of how to construct

a system architecture that provides the intended system behavior.

The requirement specification itself is a means to decide how to

design and implement components and their relationship between

each other. Thus, design and implementation have a definition of

their own particular requirements. A summary of these particular

requirements specified for each system component defines the en-

tire system behavior. Simultaneously the specific intended use is

defined by implementing a specific solution to the existing problem.

18

Verification methods deal with the correct development of the de-

sign and the implementation corresponding to that design. Testing

offers a comprehensive and broad, diversified verification activity.

Different kinds of testing techniques and measures used to design

and implement a software system provide meaningful statements

about the correctness of that system. Classifications of testing tech-

niques and measures reflect different perceptions of the system and

its development.

In [Rus91] testing activities are grouped into dynamic testing,

static testing and the testing of specifications and requirements.

Dynamic Testing monitors the system and provides information

about whether the system is executed correctly or not. Dy-

namic test case generation covers a broad range of input data

for the system in order to prevent unexpected behavior. Ex-

amples for dynamic testing are random testing or border value

testing.

Static Testing reveals inconsistencies and omissions within the

source code implementation. Static testing also proves the

correct transformation of software requirements into source

code. Static testing examples are structured walk-throughs or

anomaly detection.

Testing of requirements and specifications proves the correct

and valid specification of the system behavior at a very early

development stage.

In this context, testing procedures depend on how information

about the intended system is specified in the documentation. If

a specific formalism is provided, adequate formal techniques and

methods can be applied to detect anomalies within the requirement

model or design specification. Formal methods are described in Sec-

tion 2.4.2 on the following page.

Definition 2.2 (Validation) “Confirmation by examination and pro-

visions of objective evidence that specified requirements have been

fulfilled [IEE98].”

Based on testing activities, a verification statement informs

about the correct design or implementation of the system. When re-

quirements are validated, a summary of verification statements pro-

vided by different development stages comprehensively evidences

the correct and safe system behavior. The summary of verification

activities is therefore called validation testing.

19

In the case of safety-critical systems, where requirements con-

stitute specified statements about system safety, argumentation ar-

ranges information coming from validation testing. Argumenta-

tion is aimed at providing evidence of sufficient safety being im-

plemented in the system.

For this reason, a correct validation of a safety-critical software

product consists of validation testing done in combination with ar-

gumentation.

2.4.2 Formal Methods

Using natural language (NL) for the specification of software require-

ments often leaves room for interpretation, as far as the subse-

quent development stages are concerned. Ambiguity or inconsis-

tency present in the requirements document may lead to malicious

misinterpretation of the specified requirements. Thus NL may con-

stitute a potential source of hazard occurrence.

As described in Section 2.4.1 on page 18, the use of a precise

formalism in the requirements specification process supports ar-

gumentation about system safety. Formal methods use discrete

mathematics to describe the discrete behavior of a system.

“The word ‘formal’ in formal methods derives from formal logic

and means ‘to do with form’. The idea in formal logic is to avoid re-

liance on human intuition and judgment in evaluating arguments by

requiring that all assumptions and all reasoning steps be made ex-

plicit, and further requiring that each reasoning step be an instance of

a very small number of allowed rules of inference. Assumptions, the-

orems, and proofs are written in a restricted language with very pre-

cise rules about what constitutes an acceptable statement or a valid

proof. In their pure, mathematical form, these languages and their as-

sociated rules of manipulation are called logic. In formal methods for

computer science, the languages are enriched with some of the ideas

from programming languages and are called specification languages,

but their underlying interpretation is usually based on a standard

logic3”.

In terms of requirements specifications, formal specification lan-

guages provide a mathematical model description of the intended

system behavior. Requirements are additionally transformed into

formal properties of the system model. A proof using a requirement

as a formal property on the formal model validates the correct im-

3Nowadays, temporal logic is used for standard logic [Rus93].

20

plementation of the system behavior.

Modeling and proving separates formal methods into formal ver-

ification and formal specification.

“Formal Specification is the use of notations derived from formal

logic to define (1) the requirements that the system is to achieve, (2)

a design to accomplish those requirements, and (3) the assumptions

about the world in which a system will operate. The requirements

explicitly define the functionality required from the system as well

as enumerating any specific behaviors that the system must meet,

such as safety properties [...] Formal Verification is the use of proof

methods from formal logic to (1) analyze a specification for certain

forms of consistency and completeness, (2) prove that the design will

satisfy the requirements, given the assumptions, and (3) prove that a

more detailed design implements a more abstract one [Spi00].”

Despite the cost-effective benefits of validation done in the early

stages of the development process, a possible introduction of for-

mal methods into the development process encounters resistance,

which is partly based on myths described in [Hal90] and [BH95].

Examples of the use of formal methods in industry are the formal

specification notation Z or model checking and theorem proving for

the verification of hardware design logic [CW96].

21

Chapter 3

Related Work

A reuse approach is basically aimed at creating an information

structure which then is classified in order to provide specific

reusable system artifacts. This chapter outlines related work done

in the field of software requirements reuse and proceeds with clas-

sification schemes established for the safety-critical domain.

3.1 Requirements Reuse

As software used in real-time systems is playing a more and more

independent role, the need for software reuse even in the domain

of safety-critical systems (for example, in the automotive indus-

try) [HKK04] increases. Reusing software offers a cost-effective

strategy in improving quality and increasing productivity for the in-

tended system. In the software domain, the idea of patterns has

lead to effective re-usability artifacts [GHJV02] [App97]. Reuse in

general is characterized by four dimensions: abstraction, selection,

specialization and integration [Kru92]. This thesis focuses on po-

tential reuse sources for the requirements capture phase.

“Knowledge-based requirements representation techniques are

frequently matched with intelligent identification of and search for

software requirements [Cyb98].”

3.1.1 Domain Analysis

If system development is forced to prepare the system design due to

a modification of requirements, existing domain-specific knowledge

minimizes the effort connected with that task. In software engineer-

ing, domain analysis deals with the extraction of generic informa-

22

tion structures suitable for a specific domain. In this context, the

term domain refers to an application area.

Furthermore, “domain analysis can be seen as process where

information used in developing systems is identified, captured, struc-

tured and organized for further reuse. More specifically, domain

analysis deals with the development and evolution of an information

structure to support reuse [PD90].”

In order to establish such information structures, the authors

of [PD90] introduce a domain analysis process called structured

analysis and design technique (SADT). The process model is used

to conduct a conditional development process. The SADT uses

domain-related inputs, outputs, controls and mechanisms to de-

termine a domain model for every stage of the development process.

In addition to domain models, the SADT elaborates standard docu-

ments and reusable components.

The feature-oriented domain analysis (FODA) [KCH+90] is one of

the most well-known domain analysis methods. FODA contributes

to the model-based approach and focuses on the features of simi-

lar software applications. From a user perspective, a feature is a

capability of the system application. FODA is aimed at creating a

domain model that covers common and variable features of related

software systems. Thus, a set of features is taken as a description

for the domain in which the system is located. A feature itself can

be mandatory, optional, or alternative. These three attributes are

used for defining the domain. Requirements engineering disciplines

participate in the creation of a domain model corresponding to those

attributes.

The JIAWG Object-Oriented Domain Analysis (JODA)1 method

combines domain analysis issues with the concept of object-oriented

analysis [CY91]. JODA basically divides the domain analysis pro-

cess into three stages:

1. Domain preparation: The object-oriented paradigm identifies

objects, attributes and services, and their relationship.

2. Domain definition: The definition of the domain provides sce-

narios that are defined and simulated.

3. Domain modeling: Finally, the resulting objects are ab-

stracted and grouped together for their potential reuse.

The behavior classification described in this thesis is oriented to-

ward the concept of domain analysis. Apart from the identification

1“JIAWG” stands for “Joint Integrated Avionics Working Group”.

23

of commonalities, the thesis focuses on specifying a precise sepa-

ration of system behavior. The methods mentioned above deal with

a potential reuse of requirements, but do not cover any issue with

regard to their semantic behavioral information.

3.1.2 AC 20-148 Reusable Software Components (RSC)

Safety-critical software systems are certified in combination with

the hardware underlying those systems in order to provide system

safety. Changing the design of the system software or its hardware

units results in an unavoidable re-certification of the entire system.

Thus, a software upgrade entails cost-effective certification efforts

on the contractor’s side. On the other hand, certification authori-

ties are faced with an administrative certification overload based on

such minor changes (for example, on software systems for different

CPU models of a controller family). For this reason, the AC 20-148

(AC)2 [Fed04] provides guidelines supporting engineers in receiving

FAA acceptance for a reusable software component (RSC) The AC

leaves room for system-specific interpretations. It does not provide

detailed information on how to establish a reusable set of specified

requirements. In terms of the AC, a system intending to use an

RSC has to meet all applicable RTCA/DO-178B objectives. Thus

any reusable software component has to be developed following the

guidelines in RTCA/DO-178B. In addition to considerations of AC

the component is reusable within the certification domain. Section

3.2.2 on page 29 gives a detailed description of RTCA/DO-178B.

The AC guidelines provide information on the development and use

of RSC. Furthermore the AC documents how to handle a design

change of the RSC. The AC also addresses life-cycle data of the RSC

across company or division boundaries.

A commercial example for considerations laid down in the AC

is LynxOSr, a real-time operating system that complies with all

RTCA/DO-178B guidelines. Being an active operating software

platform, it constitutes an RSC3.

3.1.3 Natural Language Processing

In the Advanced Integrated Requirement Engineering System (AIRES)
4 project, requirements are processed as natural language texts.

2AC stands for Advisory Circular.
3http://www.lynx.com/
4http://ite.gmu.edu/~cset/aires.htm

24

http://www.lynx.com/
http://ite.gmu.edu/~cset/aires.htm

In [Par93] the author introduces a technique that clusters require-

ment sentences specified in natural language. The motivation be-

hind is to reduce the effort-intense specification process for software

requirements and to prevent a situation where wrong requirements

implicate wrong systems. The focus of the reuse concept is the re-

quirements text specified in natural language. For this reason, the

concept discussed in [Par93] describes a two-phase process aimed

at developing reusable requirement components. In this context, re-

quirement components are objects, functions and quality goals with

regard to the system. In the first phase, the component extraction

phase, a text analysis and extraction process is used to identify the

requirement components. The text analysis is based on a lexical

analysis and syntactic pattern analysis, whereas the intrinsic ex-

traction is based on requirement clustering due to component iden-

tification. In the next phase, the component classification phase, the

components are classified with regard to their lexical affinities.

This thesis examines natural language requirements using the

model-driven approach, as described in [MM03]. Requirements are

also treated as whole sentences. The proposed behavior classifica-

tion may profit from the concept of requirement components and

lexical-related identification techniques.

3.1.4 Real-Time Requirement Pattern

The use of formal methods in the field of requirements engineer-

ing has been mentioned in Section 2.4.2 on page 20. The authors

of [PGK97] introduce a generic approach to the specification of sys-

tem requirements. This specification is based on a set of require-

ment patterns aimed at reducing the formal system requirements

specification. A requirement pattern relates to design patterns used

in the field of software engineering [GHJV02]. In [GKP98] they ex-

tend this approach by using a real-time requirement pattern which

allows transforming natural language requirements for real-time

systems into a precise and concise formal specification, with a tai-

lored, temporal real-time logic being used for specification. A class

of domain-specific software requirements are specified on the ba-

sis of the requirement pattern concept. The description of a re-

quirement pattern follows a requirements pattern description tem-

plate. Starting with a pool of requirements patterns, the reuse of

requirements undergoes a three-step process. First, one require-

ment pattern is selected from the requirements pool and evolves

in the course of time. Secondly, the patterns are adapted to spe-

cific, suitable instantiations. Finally a requirements specification is

25

developed by composing these specific patterns together. Unfortu-

nately, if there is no pattern available, a time-consuming process

in creating such a pattern has to be started during development.

In [PGK97] and [GKP98], the authors in each case “discover” a re-

quirement reuse pattern for real-time systems.

3.2 Classification Schemes

Classification schemes can reflect different views of the nature of

a requirement in the safety-critical context. Safety integrity levels

make the effort to be required for the development of a safe system

measurable. Safety standards offer a requirement mechanism to

achieve the intended safe-system behavior during development. A

corresponding implementation profits from guidelines reflecting the

requirements for man-machine interaction.

3.2.1 Safety Integrity Levels

Safety Integrity Levels (SIL) divide the need for system safety into

five categories, referred to as SIL0, SIL1, SIL2, SIL3, and SIL4. SIL

0 is mostly neglected because systems with that safety integrity level

do not have any malicious impact on their environment. SIL 4 sys-

tems, by way of contrast, are characterized by the highest safety

integrity level suiting the context on which the system operates.

The principle behind the SIL concept is that the risk of hazardous

malfunctions in a safe system decreases, as the effort expended to

develop it increases.

For this reason, the effort expended affects each stage of a sys-

tem’s life-cycle. Each stage results in a varying amount of require-

ments for the development and design of the system. Thus each

SIL requires certain techniques and measures to provide evidence

of safety, as specified by the SIL-related requirements. The SIL con-

cept furthermore assumes that fatal and hazardous events result-

ing from system malfunctions derive from design errors rather than

from an unexpected input value domain.

Table 3.1 on page 28 gives an overview of the five different SILs,

describes the significance of the individual categories for the devel-

opment of safety-critical systems and assigns probability values of

a dangerous failure per hour (PFH)5. Table 3.1 on page 28 moreover

5PFH of a safety-related system encompasses a high demand or continuous

mode of operation following [Int98a].

26

explains the role of the system with respect to its impact on the

environment when the SIL increases.

Developing safe software as a part of a safety-critical system con-

siders human activity in the specification, design and implementa-

tion stage as key issue when following the SIL principle. An ad-

equate set of measures and techniques employed to achieve and

validate a specifically required SIL is introduced into the life-cycle

of software system.

3.2.2 Safety Standards

Characterizing safety by five SILs (see Section 3.2.1 on the preceding

page) implies a set of requirements for the intended “safe” system.

Safety standards classify those requirements, propose requirement

development strategies and offer a specific approach to satisfy the

need for safety evidence. IEC 61508 and RTCA/DO-178B have dif-

ferent interpretations of SILs and the treatment of requirements in

the system development.

IEC 61508 – Functional Safety of E/E/PE Safety-Related Sys-

tems

IEC 61508 is a stand-alone standard for safety-related systems.

This standard document can be adapted to different kinds of safety-

related industrial domains (for example, CENELEC6 for railway sys-

tems). IEC 61508 focuses on functional safety, which is described

as “part of the overall safety that depends on a system or equipment

operation correctly in response to its outputs.” [Int02].

IEC 61508 covers safety-related developing issues for hard-

ware and software by arrogating the satisfactory validation of so-

called safety requirements for design, implementation, operation

and maintenance. Unlike Section 4.1.1 on page 33, safety require-

ments in this context refer to system development. Thus they in-

directly contribute to a safe behavior.7 The IEC 61508 standard is

divided into seven parts. For the development of safety-related soft-

ware, IEC 61508-3 [Int98b] – in addition to IEC 61508-1 [Int98a]

– defines a framework of safety requirements for software develop-

ing. It breaks down the entire system life-cycle into a specific safety

software life cycle [Int98a].

6http://www.cenelec.org
7In IEC 61508, the safety function requirement equals to our safety require-

ment, described in Section 4.1.1 on page 33.

27

http://www.cenelec.org

SIL Description of SIL [HR99] PFH

SIL 0 The system does not affect safety. No as-

sumptions are made about its safety and

the corresponding safety requirements.

none

SIL 1 The system was developed for normal com-

mercial use with regard to quality and tech-

nology. SIL 1 systems are not expected to be

the direct cause of fatal accidents, but they

could be a minor contributing factor.

≥ 10−6 to < 10−5

SIL 2 High quality commercial systems. With

careful system design, very good-quality

COTS products should be able to be justi-

fied for use in SIL 2 systems. SIL 2 systems

are not expected to be the sole cause of a

fatal accident but they could provide a sig-

nificant contribution.

≥ 10−7 to < 10−6

SIL 3 The system was specifically developed to

meet safety requirements. The develop-

ment should use specialist methods and

techniques and the highest levels of quality

assurance, modeling, analysis and testing.

COTS products are most unlikely to be able

to be used for the implementation of SIL 3

functions. Although a failure of a SIL 3 sys-

tem should not be the sole cause of a fatal

accident, it may create a situation that chal-

lenges the safety protection systems.

≥ 10−8 to < 10−7

SIL 4 The highest safety level of a system of

proven quality utilizing multiple hardware

redundancy. Software that is able to meet

this level of integrity demands the highest

possible project competence, the best avail-

able technology, the closest attention to the

correctness of the requirements, design and

code, and analysis of the code to demon-

strate that it matches the requirements, in

addition to all other elements of good prac-

tice. SIL 4 systems are considered as safety-

critical.

≥ 10−9 to < 10−8

Table 3.1: Safety Integrity Levels

28

A specific SIL is assigned to every software system. To show

compliance with a specific SIL, safety requirements, as defined in

the IEC 61508 safety standard, are specified by a SIL-related classi-

fication. Such classifications propose (highly) recommended valida-

tion and verification techniques for every safety requirement stated.

References to IEC 61508-7 citeiec61508:7 provide significant infor-

mation on how to validate all the safety requirements proposed.

According to IEC 61508, a safety requirement is based on

a safety function requirement and a safety integrity requirement.

Safety function requirements describe the intended functionality

and behavior of the system, whereas safety integrity requirements

ensure that the system reflects a certain likelihood of the derived

safety function to perform correctly. The safety function, however,

is only implemented when safety is needed. Thus the entire system

is divided into a functional and safety-related domain. When devel-

oping safe software, the safety-related domain usually is minimized

because of the costs involved. This assumptions refer to system

requirements demanding SIL 3.

RTCA/DO-178B – Software Considerations in Airborne Systems

and Equipment Certification

The integration of safety into software is an essential requirement

for systems developed for the aerospace domain. For a conven-

tional aircraft, a system failure may have a catastrophic impact on

the environment and on human lives. RTCA/DO-178B [Rad92] has

been established by the Radio Technical Commission for Aeronautics

(RTCA) Special Committee 167 to provide strict guidelines for the de-

velopment and certification of safety-critical avionics software. Un-

like safety-related systems based on IEC 61508 (see Section 3.2.2

on page 27, RTCA/DO-178B focuses on safety-critical systems cor-

responding to IEC 61508 SIL 4.

In RTCA/DO-178B, the safety integrity levels finds their inter-

pretation in assigning failure conditions to system functions. On

the basis of these failure conditions, the integration of safety into

software development and certification follows a separation into five

different software design assurance levels (DAL).

Table 3.2 on the following page compares design assurance

levels with the IEC 61508 SIL concept. Both concepts are de-

rived from the basic SIL description given in Section 3.2.1 on

page 26. RTCA/DO-178B corresponds to IEC 61508-3[Int98b], be-

cause both address only software development issues. RTCA/DO-

29

RTCA/DO-178B IEC 61508

Catastrophic (Level A) SIL 4

Hazardous/Severe-Major (Level B) SIL 3

Major (Level C) SIL 2

Minor (Level D) SIL 1

No Effect (Level E) SIL 0

Table 3.2: Comparison of DALs and SIL

178B recommends a two-level development approach (the so-called

what?/how? principle) for specifying a safe software behavior. Re-

quirements for hardware are specified in RTCA/DO-154 [Rad00],

which addresses hardware-related issues. The entire system safety

concept, which corresponds to IEC 61508-1 [Int98a], is determined

by ARP 4754 [Soc96a] and ARP 4761 [Soc96b].

The elicitation and specification of safety requirements for

safety-critical systems within the software life-cycle itself is not de-

scribed in RTCA/DO-178B. The System Safety Assessment Process

(SSAP), stated in ARP 4754 [Soc96a] and, in a more detailed way,

in ARP 4761 [Soc96b], comprises three phases.

1. The Failure Hazard Analysis (FHA) specifies the safety require-

ments the system has to be meet and answers the question of

how much safety is required to achieve a tolerable level of risk.

The result of the FHA are Safety Objects

2. In the next phase, the Preliminary System Assessment (PSA),

these safety Objects are allocated to the safety requirements

the system has to meet.

3. Finally, the System Safety Assessment (SSA) validates the

specified safety requirements through software implementa-

tion.

The verification and validation of software requirements based

on RTCA/DO-178B is ensured by structural coverage and require-

ment coverage. In literature, structural coverage is also referred

as code coverage. RTCA/DO-178B recommends Modified Condi-

tion/Decision Coverage (MC/DC) as structural coverage [HV01]. In

order to do a satisfactory test coverage, it is necessary to define test

cases corresponding to the requirements. For traceability reasons,

these High -Level and Low-Level Test Cases are directly derived from

software requirements. A boundary value analysis adds specific

Robustness Test Cases (RTC) to the existing low-level test cases,

30

which significantly extends the range of the existing test coverage.

Requirement coverage adopts the results of the code coverage. Fur-

thermore, requirement coverage provides information on software

requirements validation. According to RTCA/DO-178B, the design

assurance level A requires a one-hundred-percent code coverage.

3.2.3 Implementing Safe Software with MISRA C

The classification of requirements can also address a safer imple-

mentation of software systems. The Motor Industry Software Relia-

bility Association (MISRA) - Guidelines For The Use Of the C Language

in Vehicle Based Software [The98] constitutes such a contribution.

In MISRA, a requirement is interpreted as a Rule. Rules determine

the use of the C programming language for any kind of system im-

plementation aspect. The motivation behind MISRA is the mitiga-

tion of programming language insecurities (for example, mistakes,

misunderstandings of the programming language, or unexpected

output based on erroneous compilers). Thus the MISRA guidelines

focus on a safe interaction of human intention with the resulting

system implementation.

The scope of the MISRA rules determines a subset of the C pro-

gramming language, which is considered as safe for concrete im-

plementation aspects. Apart from that, MISRA involves the concept

of SIL, enforcing its adaption starting when SIL 2 or 3 is required.

Software metrics and style issues are subjective items in every soft-

ware development process and thus not in the sphere of MISRA. The

MISRA standard document does not recommend any specific tools

or vendors.

1 Environment 10 Conversions

2 Character Sets 11 Expressions

3 Comments 12 Control Flow

4 Identifiers 13 Functions

5 Types 14 Preprocessing Direc-

tives

6 Constants 15 Pointers and Arrays

7 Declarations and Defi-

nitions

16 Structures and Unions

8 Initialization 17 Standard Libraries

9 Operators

Table 3.3: MISRA Rules

31

In Table 3.3 on the preceding page MISRA issues the correspond-

ing classifications of proposed rules for a safe implementation using

the C programming language. Not every rule8 listed in Table 3.3 on

the preceding page has to be applied to the implementation process.

MISRA distinguishes between required and advisory rules. Whereas

a required rule is mandatory, a programmer should follow advisory

rules when using the MISRA C subset for implementation.

8MISRA presents 127 rules illustrated within the 17 classifications listed in Ta-
ble 3.3 on the previous page.

32

Chapter 4

Requirements and Safety

It is essential to understand the context of safety and requirements

for a system development process. This process is targeted on safety

by elaborating the system and software requirements a system has

to meet. A safety-related system also undergoes a hazard analysis.

The systematic use of hazard analysis techniques allows the assign-

ment of safety requirements to unexpected but identifiable hazards

that might occur in the system to be developed.

4.1 Safety Requirements Engineering

Requirements Engineering is a discipline that deals with the un-

derstanding and documenting of software requirements. Safety re-

quirements constitute a solution to a specific safety-critical prob-

lem. Once the problem is defined, it is possible to elaborate re-

quirements and determine a set of safety requirements stated in a

requirements specification.

4.1.1 Safety Problem, Hazards and Requirements

A system development process addresses issues that have to do

with the problem domain and solution domain. The development of

requirements creates a conception of how to bring these two do-

mains together.

Definition 4.1 (Problem Domain) “The problem domain is the part

of the world where the computer is to produce desired effects, to-

gether with the means available to produce them, directly or indi-

rectly [Kov98].”

33

With reference to Definition 4.1 on the previous page, the safety-

critical domain constitutes the problem domain. In the problem

domain, a system has to deal with the presence of hazards, which

may lead to accidents and, therefore, to loss of human life. The

specifically implemented system itself, however, resides in the so

called solution domain. In the case of computer-based systems, the

solution domain is also called machine domain.

Definition 4.2 (Well-Defined Problem) “A well-defined problem is

a set of criteria according to which proposed solutions either defi-

nitely solve the problem or definitely fail to solve it, along with any

ancillary information, such as which materials are available to solve

the problem [Kov98].”

Note: Throughout this thesis, the term well-defined problem

(see Definition 4.2 on this page) is briefly referred to as problem.

A safety problem addresses a situation residing in the safety

problem domain. The set of criteria specified by a safety problem

comprise structured information about situations that could po-

tentially cause harm to human life or to the system environment.

Basically, we can restrict the safety problem domain to a temporal

domain, where unexpected situations may reside within a time-line

that starts with the systems execution until the final result, an ac-

cident.

Definition 4.3 (Hazard) “A hazard is a situation in which there is

actual or potential danger to people or to the environment.”

Obviously, if there is a way to prevent a hazard, as explained

in Definition 4.3 on the current page, the system remains safe even

in extraordinary, unexpected system situations. Software hazards

are based on faults. Hardware faults are random, whereas software

faults are systematic. Software faults focus on software design and

errors in the specification of software artifacts.

Definition 4.4 (Accident) “An accident is an unintended event or

sequence of events that causes death injury, environmental or mate-

rial damage [Lev86].”

If a safety problem is defined, an information structure has to

bridge the gap between the problem and solution domains. Require-

ments address issues of the problem domain in order to provide a

solution. They manifest themselves as part of the solution domain,

34

but obtain their information about the intended system from the

problem domain. Based on Definition 4.3 on the preceding page, a

safety requirement refers to the safety problem domain and provides

details about hazardous situations (or hazards) in the systems. Re-

quirements are furthermore statements that identify the need for a

safe software system.

Software Hazard: The function set_speed returns the value 120 after

calculation.

�

�

�

�
Safety Requirement If the function set_speed returns a value < 100,

the exception handler shall set the error flag to 1.

Rationale: On the basis of data provided by two wheel sensors, the

system function set_speed calculates the current speed value of a

transport vehicle. The possible speed values are defined by an inte-

ger and can range from I = {0 to 100}. The speed value calculated

is sent to a braking system, which can adjust the system to a value

level of not more than 110. Otherwise the braking system will fail.

Table 4.1: Example of a Safety Requirement

The software hazard given in Table 4.1 on the current page can

lead to accident if the value is transmitted to the motor unit of the

vehicle. A software requirement provides a solution to this problem

by setting the error flag to 1, which will automatically switch the sys-

tem to a mechanical mechanism. The safety requirement therefore

provides a solution to a hazardous situation. A potentially fault-

tolerant implementation would reside in the solution domain. The

above example also shows that a requirement-based system behav-

ior determines whether a requirement resides in the safety problem

domain or not.

4.1.2 Safety Requirement Development

During the development of a safety-critical system, the unexpected

occurrence of a hazard is omnipresent in every state of the de-

velopment process. Development stages following the requirement

development stage can profit from a well-defined and safe behav-

ior description of the system. Even during requirements devel-

opment, the different stages with their different techniques and

measures are aimed at specifying correct, consistent and complete

requirements intended to be valid over the entire software life-

cycle [ZG02] [HED93].

35

For this reason, it is necessary to assess potential sources of an

unexpected occurrence of a hazard and manage such sources by

using a set of specific processes and techniques. In this context,

the term safety requirement development defines activities needed

for the development of safety requirements based on hazard identi-

fication.

Traditionally, the development of requirements comprises five

core activities [NE00], that is the

1. Eliciting,

2. Analyzing and Modeling,

3. Specifying,

4. Validating and

5. Managing of requirements.

Note: As this thesis does not focus on the management of re-

quirements and describes requirement validation in Section 2.4 on

page 17, we confine ourselves to describing the following require-

ment development stages :

• Eliciting, focusing on reviewing, wording and understanding

of what the user needs. In the case of software, the user’s

needs are also available as system requirements. A user is a

human or a system. Besides, the elicitation process includes

constraints on the software to be developed.

• Analyzing and Modeling, taking the established needs and

starts defining them as requirements.

• Specifying, creating a document that states and specifies the

software requirements defined.

These three fundamental requirement stages are combined with

activities that are used to determine a set of safety requirements for

a safety-critical system. The development of safety requirements is

determined by this combination. Basically, the time-line of a safety

requirement process can be divided into two phases, according to

the occurrence of a hazard. Activities are required before or after a

hazard is present in the system.

“Having identified the hazard associated with a system it is use-

ful to classify them by their severity and their nature. The severity

36

of a hazard is related to the consequences of any accident that might

occur as a result of that hazard. The nature of a hazard has consid-

erable impact on the manner in which it may be controlled. [...] The

importance of a hazard is related to both its severity and its frequency

of occurrence. These two factors are combined within the concept of

risk [Sto96].”

Appropriate safety-related activities take place in the context of

conventional requirements development (see Figure 4.1 on the cur-

rent page). Figure 4.1 on this page shows the presence of a hazard

that has occurred at a very early development stage1.

Elicitation Analysis & Development Specification

Hazard Analysis

Risk Analysis

�hazard identified�

Safety
Requirment

Figure 4.1: Safety Requirement Development

A hazard analysis is done even during the elicitation of require-

ments and aimed at identifying hazardous states in the software

design. A risk analysis then uses information available about the

hazards identified to determine – with reference to Definition 4.5 on

the current page – the risk level for individuals or other systems.

Definition 4.5 (Risk) “This is a measure of the probability and

severity of a negative effect to environment, equipment/property, or

the health [B.S03].”

A risk analysis furthermore tries to propose a classification of

hazards according to their severity and frequency, which reflects

the quantitative probability of a specific risk. Qualitative measures

are often used to describe the frequency or severity of a certain

hazard where numerical values for risk classes are not appropri-

ate. Quantitative and qualitative risk classes can be found in safety

standards [Int98b] [Rad92].

If there is unacceptable risk for a design issue, remedial design

work must be done to make the hazard less likely to occur or to

1The black asterisk stands for “hazard identified”.

37

mitigate the consequences. The results of such analysis are often

referred to as derived safety requirements [McD02].

After hazards and risks have been identified, the safety require-

ment documentation ensures an interlock mechanism so that the

system will be safe.

4.2 Requirements Capture

In the course of any system development, the requirements capture

phase constitutes a key aspect in specifying the correct behavior

of a system. As for safety-critical systems, requirements are split

up into system requirements, software requirements, and hardware

requirements for which additional safety requirements have to be

specified if unavoidable hazards could occur.

4.2.1 System and Software Requirements

System Requirements

System Requirements specify the overall behavior of a system,

which – in the case of real-time systems – constitutes a co-design

between hardware and software. After the elaboration of system

requirements, the respective specification allows taking specific de-

sign decisions on the ratio of components to be developed. An eco-

nomic, legal and technical system requirements agreement made by

the stakeholders involved is the basis of further software develop-

ment activities.

In [Sof98] the number of stakeholders has been grouped into

three main categories, with regard to system requirements:

Customer Usually the safety-critical domain favors product-driven

systems instead of market-driven systems in which the user

and his needs are well known. A user is a human or thing

(for example, another subsystem). The system requirement

specification is considered as a legal contract and interface

between customer and developing company.

Raw requirements for the system are stated by the customer

and describe the objectives, user needs and problems to be

solved. Raw requirements describe the concrete idea of a

safety-critical system and result in the determining of rough

and superficial system properties.

38

Operational System System Interface

Properties, describing

the general goals, ob-

jectives and desired

capabilities of the

system, but neglect-

ing considerations

on how to implement

the system.

Properties, providing

information about

operations done

within a system,

about an approx-

imate interface

determination and

about explicit exter-

nal requirements for

the system.

Properties, compris-

ing a detailed de-

scription of external

system interfaces.

Table 4.2: System Properties in terms of System Requirements

Technical Community Members of the technical community par-

ticipate in every stage of the software life-cycle. Involving engi-

neers in the development process of system requirements im-

proves the quality of system requirements.

Environment In addition to the customer and analysts relation-

ship, the environment of the system restricts the development

of system requirements. Basically, safety standards and tech-

nological policies, with regard to industrial and governmen-

tal concerns, largely determine system requirements. The in-

dustrial background is to introduce similar structures, pro-

cesses, techniques and measures in different industrial agen-

cies, whereas governmental agencies have a demanding inter-

est in ensuring that developing companies prove their software

is as safe, as they claim it is. The IEC 61508 standard, for

example, recommends test techniques and measures for ev-

ery stage of the safety life-cycle of a specific IEC-based SIL

compliance (see also Section 3.2.2 on page 27, IEC 61508).

The Federal Aviation Administration (FAA) as an governmental

agency commissions a Designated Engineering Representative

(DER) to check the developing company’s Plan for Software As-

pects of Certification (PSAC) for its compliance with the Design

Assurance Level (DAL)2, as laid down in RTCA/DO-178B (for

details on RTCA/DO-178B, refer to Section 3.2.2 on page 29,

RTCA/DO-178B). In keeping a competitive and strong posi-

tion, the real-time systems market is faced with a tremendous

demand for safety.

2Corresponds to the term “Safety Integrity Level (SIL)”, as defined by IEC.

39

The development of system requirements for safety-critical real-

time system goes hand in hand with the creation of a corresponding

system architecture. According to [KB03], a system architecture of

a computer-based system is a framework for the construction of a

system that constrains an implementation in such a way that the

resulting system is understandable, maintainable, extensible, and

can be developed in a cost-effective way. A component of a sys-

tem architecture is either a subsystem or an elementary component

(for example, a program, timer, sensor, or an actuator) and resides

within the software or hardware of the system. The desired behav-

ior of the system described by the system requirements specifica-

tion has an influence on the selection of adequate components. As

for dependable real-time systems, a system requirements specifica-

tion helps to decide how communication should take place within

the system. The relationship between the specification of system

requirements and the creation of a corresponding system architec-

ture traditionally is bidirectional. Whenever a system architecture

does not completely suit the behavior description that is based on

the system requirements, it is inevitable to modify the specification

of the system requirements defined.

The development process for system requirements, with its

bidirectional relationship to system architecture creation, deals

with different types of system requirements. Apart from func-

tional requirements, safety requirements and additional certifi-

cation requirements there are well-established certification prac-

tices [Soc96a] [Soc96b] used for system development which focus

on so-called derived system requirements. Section 4.2.2 on page 43

gives a detailed description of safety requirements for software. Air-

worthiness regulations usually require additional certification re-

quirements, which have to be determined and agreed with airwor-

thiness regulations for compliance with certification issues. Derived

system requirements result from the design process for a safety-

critical system itself. In the development process, design decisions

based on derived system requirements show a new point of view of

a system behavior not sufficiently covered by system requirements.

Therefore derived system requirements can have implications, as

they may not uniquely relate to a higher-level requirement stage.

Derived system requirements also can result from system architec-

ture considerations when the choice for a specific architecture or

architectural component has its implications.

40

Software Requirements

When the system requirements have been sufficiently specified, en-

gineers decide about how the ratio between software and hardware

can be used within a safety-critical real-time system. This system

co-design principle implies a close relationship between hardware

and software architecture and, thus, characterizes the software re-

quirements development process. Apart from requirements elabo-

ration, the development process for software requirements is con-

strained by

• the system requirements and architecture,

• the underlying hardware with its requirements specification

and architecture,

• external considerations based on the software engineering

techniques used for development,

• the corresponding software architecture.

System
Requirements

HW Requirements

SW
Requirements

SW
Architecture

HW Architecture

Software
System

Architecture

Hardware

External
Considerations

Figure 4.2: Constraints on Software Requirements

Figure 4.2 on the current page shows the constraints made on

software requirements. The dashed line running between system,

software and hardware requirements emphasizes the cognitive bor-

derline when it comes to decision-making how the system should

be composed.

A first analysis is made on system requirements in order to elici-

tate the specific software requirements for the software components

to be developed. As for safety-critical systems, [Soc96a] describes

the approach to filling this gap between system and software devel-

opment. [Soc96a] describes a system that is decomposed into items

41

for which requirements are stated and then iteratively assigned to

software or hardware components.

However, the flow of information from the system development

process to the software development process has to focus on the

correct, complete and consistent tracking of requirements to which

the selected software components are allocated. In this context,

requirements contributing to system safety are of particular impor-

tance. On the other hand, any modification of software require-

ments must not affect system safety, particularly when derived soft-

ware requirements have to be introduced into the software system

development.

Once the software requirements have been elicited, they consti-

tute the key input for creating the corresponding software archi-

tecture. The design process for a software architecture, which has

to be done in combination with the underlying hardware, results

in modifications of the requirements specification. Furthermore,

the proposed hardware implementation has a reverse impact on the

elaboration of complete and consistent requirements [Lia00].

The development of safety-critical systems requires traceability

to be established from the customer’s idea to the final validation,

with the latter constituting the end of a software development pro-

cess model (for example, the V-model). The problem domain can be

solved by putting the question What?, which is followed by How?

in order to increase the understanding for a specific problem . This

specific treatment of software requirements results in separating

requirements into high-level and low-level requirements.

High-level software requirements (HLR) specify the behavior of

the software system by considering the question “What shall

the system do ?”.

Low-Level software requirements (LLR) introduce architectural

considerations into the software requirements stage by an-

swering the question “How shall the system be implemented ?”.

The two-level approach to specifying software requirements for a

safety-critical system creates a relationship between HLRs and LLRs

(that is, traceability), where each HLR can be traced to one or more

LLRs and vice versa. Software implementation should directly start

from the specification of a low-level software requirement [Rad92].

42

4.2.2 Software Safety Requirements

“Safety requirements derived through safety analysis will place in-

tegrity constraints on existing core functions [AK01].” With regard

to the system development process, these safety requirements ba-

sically reside at the system level. The specification of the software

component behavior has to include software-related aspects of the

original safety requirements by providing traceability information.

The relationship between safety requirements and software compo-

nents is the starting point for determining software safety require-

ments.

Due to an existing knowledge structure in the safety-critical do-

main (for example, standards documents or national authorities),

safety requirements, according to [Fed00], also exist in the form of

generic or specific software safety requirements.

Generic software safety requirement (GSSR): A GSSR is an ex-

isting solution to a safety problem. The problem description

addresses a situation taking place within a specific safety-

critical domain. Furthermore, the knowledge base is aimed at

assessing potential hazard sources in the system design pro-

cess at an early stage.

Specific software safety requirement (SSSR) An SSSR results

from hazard analysis activities done to find a particular so-

lution. Thus an SSSR implies the implementation of a specific

functional aspect ensuring a certain system behavior.

Table 4.3 on the following page lists examples of GSSRs. They ad-

dress an abstractly safe behavior that can suit different kinds of

systems for the same technical domain. The examples are extracted

from a safety-critical knowledge base [Fed00].

Before giving examples of specific software safety requirements,

we have to solve a dilemma that results from different safety ap-

proaches employed by the industry. In general, software require-

ments have only a part of software safety requirements, which de-

pends on the safety approach used for the elaboration of system

hazards. If a particular software solution is chosen to be imple-

mented for a system, every derived software safety requirement re-

flects a SSSR. Safety approaches, however, have different meanings

of how software safety requirements contribute to the software sys-

tem behavior.

43

Generic Software Safety Requirements
�

�

�

�GSSR 1 The failure of safety-critical software functions shall be de-

tected, isolated, and recovered from such that catastrophic and

critical hazardous events are prevented from occurring.

�

�

�

�GSSR 2 Software shall process the necessary commands within the

time-to-criticality of a hazardous event.

�

�

�

�GSSR 3 Software shall provide error handling to support safety-

critical functions.

Table 4.3: Generic Software Safety Requirements [Fed00]

For this reason, a comparison between two safety approaches is

given below [Lev03] :

System Safety As mentioned in Section 2.3.2 on page 14, system

safety determines its safety requirements at system level and

propagates them to the software when a software component

contributes to an identified system hazard. Software require-

ments therefore integrate a safe software system behavior.

Industrial Safety Whenever there is a hazardous situation, indus-

trial safety focuses on reducing the likelihood of recurrence

instead of reconsidering and changing the whole system. Thus

safety requirements for industrial applications are specified for

the potential operation mode of a system, therefore focusing on

a specific part of that system.

An example of an SSSR following the industrial safety approach

can be found when implementing a system that reflects functional

safety. In this master’s thesis the term “system safety” is referred

to as “safety approach”. System safety implies an integrated ap-

proach to software safety requirements. Furthermore, a software

safety requirement is specific with regard to the overall design deci-

sion. The integrated approach allows shortening the term “software

safety requirements” to “software requirements” and vice versa. Un-

fortunately, safety requirements on system level do not allow inves-

tigating a specific and isolated safety-critical part of the software

system behavior.

44

4.3 Hazard Analysis Techniques

Safety requirements are derived from a hazard analysis. There is

a large number of hazard analysis techniques, with two such tech-

niques being described in this section. A fault-tree analysis (FTA)

identifies a hazardous situation by decomposing functionality into

sub-functionality and examining the potential hazardous relation-

ship. A Hazard and Operability Study (HAZOP) provides an iterative

and systematic process that reviews the design on the basis of a set

of negative interrogatives.

4.3.1 Software Fault Tree Analysis

The fault tree analysis (FTA), which is widely used in the safety-

critical domain, examines an existing design if unexpected mali-

cious events can occur. The Software FTA reflects a static analy-

sis technique used to decompose a system or component into its

elements, with all their relationships being shown. The graphical

method is used in design and development. Whereas the HAZOP

method (see Section 4.3.2 on page 47) deals with the process of

identifying hazards, the FTA is aimed at determining the cause of

hazards in the design.

...

(a) AND

...

(b) OR

(c) Basic
FTA
Event

(d) not
trace-
able FTA

Event

(e) Result-
ing FTA
Event

Figure 4.3: Fault Tree Analysis Elements

Figure 4.3 on the current page lists FTA elements. The elements

AND and OR connect the events finally leading to a hazard. The

final event, the so-called top event, is shown on top. The two logical

operators can have one or more inputs, but only one output. FTA

events can be grouped into three categories:

45

1. A circle represents a basic event (see Figure 4.3c on the pre-

ceding page). A basic event identifies a potential malicious

situation within the system and can be connected by a logical

AND or OR operator.

2. A rhombus represents a fault event (see Figure 4.3d on the

previous page). A fault event cannot be traced back to its origin

malicious source.

3. A rectangle represents a resulting event (see Figure 4.3e on the

preceding page).

A typical FTA starts with a set of basic events on the bottom,

with the relation between two events being expressed by a logical

operator. But events can be connected even with no logical opera-

tor in between. Doing an FTA in the safety-critical software domain

yields an hazardous output on top of the tree. Analyzing the pro-

gression of events has two objectives. An FTA is done in order “to

find paths through the code from particular inputs to these outputs

or to demonstrate that such parts do not exist [LCS91].” All event

types shown in Figure 4.3 on the previous page are considered as

inputs, whereas the top event is the output of the FTA. During the

construction of a fault tree one successively asks the question “How

could this fault event occur ? [B.S03]”.

In the case of software, we use failure mode templates for a cer-

tain programming language to do an FTA. The events shown in

those templates correspond to the semantic information provided

by the respective programming language. Figure 4.4 on the follow-

ing page, by way of example, shows a possible assignment template.

The hazardous output yielded by the FTA is defined in the top

event. Situations that might lead to this particular output are listed

below the top event. The logical OR states that the system is in a

hazardous state even if only one of these basic or non-backward-

traceable fault events occurs. If the FTA results in such a path, the

design or code implementation of the software program has to be

modified.

An FTA is also used in risk analysis [B.S03]. The idea be-

hind software FTA is described in [LCS91]. In this context, [Sto96]

and [Kop97] give a more detailed description of the system FTA.

46

Change in value

causes failure

Operand evolution

causes failure

Exception

causes

failure

Assignment

causes failure

Figure 4.4: Assignment SFTA Template

4.3.2 Software Hazard and Operability Analysis

The Hazard and Operability Analysis (HAZOP) is usually done at the

beginning of the system development process. In the case of soft-

ware, hazards do not lead to a direct accident. Software hazards

only contribute to an overall system hazard. Thus, also a software

component within a safety-critical system can be likely to be re-

sponsible for an accident.

Basically, the HAZOP is done at system level. At this level, how-

ever, the results of the HAZOP have a significant influence on soft-

ware design and software implementation. The HAZOP does not

only identify a hazard present in the system, but it also determines

the operations to be done in the event of such a hazard occurring.

Based on the underlying accident model of the system, the HAZOP

makes use of system theory and helps an engineer in discovering

where the design and the intended operations deviate from each

other.

The HAZOP analyzes every process unit and its relationship to

other system entities. The objective of the HAZOP is “to find all

possible deviations from the design’s expected operation and all haz-

ards associated with these deviations [Lev95].”. Thus, the HAZOP is

suited to analyze any kind of hazardous situation that might occur

in every part of the system. Specific questions have to be answered

when creating an evidence of a hazard-free design solution. The

47

questions to be answered in the design review use specific guide

words. Table 4.4 on the current page shows the HAZOP guide words

and their meanings [Lev95].

Guide words Meaning

NO, NOT, NONE The intended result is not achieved, but

nothing else happens.

MORE More of a relevant physical property

than there should be.

LESS Less of a relevant physical property than

there should be.

AS WELL AS An activity occurs in addition to what

was intended, or more components are

present in the system than there should

be.

PART OF Only some of the design intentions are

achieved.

REVERSE The logical opposite of what was in-

tended to occur.

OTHER THAN No part of the intended result is

achieved, and something completely dif-

ferent happens.

Table 4.4: HAZOP Guide words

Considering a concrete system design, we can apply the HAZOP

guide words to any variable of interest (for example, to system com-

ponent, a resulting temperature value or a relation between engine

and sensor). Furthermore we investigate any existing relationship of

the variable to other system entities by including the HAZOP guide

words. If an unexplained situation has been discovered by applying

the guide words listed in Table 4.4 on this page, the systematic re-

view activity has found a potential source of a malicious situation.

Each of the hazardous situations detected is logged by a so-called

HAZOP report. This report contains information about the HAZOP

guide words used, any deviation found in the system design, the

possible causes for that deviation and the likely consequences if

that deviation would occur in actual system operation.

A HAZOP can be done for every instance of the system devel-

opment time-line. However, it is recommended to apply this hazard

analysis technique to the earliest stages of the development process.

An iterative HAZOP review process can also be used in terms of risk

analysis [B.S03].

48

Chapter 5

Application-Oriented
Requirements
Classification

The system safety approach determines safety requirements at sys-

tem level. After the design decision has been made, software com-

ponent development inherits safety-critical behavior from system

level when software requirements are specified. This means that

safety-critical concerns are still within a classification of software

requirements, which constitute the focus of this thesis. However,

to understand the problem domain, we assume a dependable real-

time system as a system platform. Then we have to assign a novel

platform-related concept to the behavioral description of the real-

time system. This novel core concept, which is inspired by the

MDA [MM03], is the platform layer (PL). Requirements address the

behavior of one or more platform layers. Furthermore, a require-

ment itself is interpreted as a textual arrangement of system prop-

erties in natural language. Based on these system properties, the

requirement classification pattern (RCP) determines the according

requirement classification. The RCP provides four different require-

ment classification windows (RCW), which result from a conceptual

combination of MDA platform viewpoints [MM03] and the develop-

ment of requirements according to RTCA/DO-178B [Rad92]. Clas-

sification axioms finally advise engineers on how to deal with re-

quirements using the RCP.

49

5.1 Platform Behavior Specification

The model-driven architecture (MDA) [MM03], with its proposed con-

cepts, relationships and objects provides ways to find adequate so-

lutions to the reuse of safety-critical requirements specifications. In

the MDA, the notion of platform constitutes the integral core com-

ponent for any system to be developed. The platform concept is

mapped to the real-time system domain and extended by software-

related and distributed, time-triggered issues. To this viewpoint the

RTCA/DO-178B, with its two-level requirement development strat-

egy, is added and embodies the comprehensive safety development.

5.1.1 Real-Time System Platform Determination

Considerations made on the classification of requirements always

start with determining the platform for the respective real-time sys-

tem, which is a core concept of system development in [MM03].

A system that is a platform has platform-specific and platform-

independent functional characteristics. Thus we assume that a sys-

tem behavior is also classified into a platform-specific and platform-

independent part.

Definition 5.1 (Platform (MDA)) “A platform is a set of subsystems

and technologies that provide a coherent set of functionality through

interfaces and specified usage patterns, which any application sup-

ported by that platform can use without concern the details of how

the functionality provided by the platform is implemented [MM03].”

Software is part of real-time system co-design. Co-design encom-

passes hardware design and software design. The platform concept

in [MM03] focuses on the software domain. Thus relevant concepts

of the MDA are introduced in this and the following Section 5.1.2

on page 52 via showing its relevance not only for software itself but

also for behavioral aspects of real-time systems.

In contrast to conventional software (such as desktop software

for conventional PCs) and its development domains, the real-time

software domain is constrained by a close relationship of software to

its underlying hardware target. For this reason, the real-time soft-

ware platform inherits the underlying hardware set of subsystems

and technologies. Specific services extend this inherited functional-

ity through proper and well-defined interfaces at software platform

level. In other words, the real-time software platform is the platform

50

application running on hardware. Furthermore, the co-design prin-

ciple has the advantage that it helps to specifically overcome design

problems at hardware level using the software platform stage and

vice versa.

An example of the considerations made on extending the origi-

nal platform is the implementation of a timer unit that might not

exist on the hardware platform. In this case, the timer unit has to

be provided by a service on the software platform side. As far as

the distributed, time-triggered real-time domain is concerned, the

system to be developed is embedded in a specific network, which

provides the system environment with distributed services. Thus,

the real-time system with its real-time software platform becomes

a new platform used to provide the basis for distributed software

applications. Figure 6.1 on page 67 show the abstraction levels of

system platforms with regard to distributed time-triggered real-time

software systems, with these abstraction levels being described as

a case study in Section 6.2 on page 67.

In Figure 5.1 on the following page, a real-time system scenario

illustrates the dependency between a hardware and software plat-

form within a real-time system. A sensor measures the environment

and provides the hardware platform with an analog value, with the

hardware platform providing the overlying software platform with

functionality. The sensor determines the correct actuator value and

sends it through the hardware platform to the actuator. The plat-

form principle ensures that the value determined is also sent to

platform levels lying over the software platform shown in Figure 5.1

on the next page.

Once the hardware and software platforms for the real-time sys-

tem to be developed have been set up, the system behavior is sepa-

rated into platform-specific and platform-independent conceptual in-

formation. Conceptual information includes a summary of techno-

logical aspects of the system to be developed (for example, require-

ments, design or development procedures). Platform-independent

information about the requirements specification allows transfer-

ring existing specific, behavioral knowledge from one platform to an-

other within the same technological domain, which ensures differ-

ent kinds of real-time system behaviors to be platform-independent,

as long as the transfer of behavioral knowledge does not go beyond

the domain boundary.

In case of real-time software, examples for an adequate software

platform can be found in the field of real-time operating systems.

51

Real-Time Software
Platform

Hardware Platform

Real-

Time

System

Actuator
Sensor

Figure 5.1: Real-Time System Platforms

5.1.2 Real-Time System Platform Viewpoints

Establishing a real-time system platform divides conceptual plat-

form information into a platform-independent and platform-specific

part. Following this conceptual separation, however, is not always

suitable for the domain of requirements. Requirements describe the

intended system behavior. The MDA is aimed at establishing a final

model of the system, in this case a real-time system. A model is

a specification of architectural considerations made on the system

to be developed. If the specification process focuses on the system

behavior, different viewpoints of the system behavior are required.

A system behavior therefore is treated as blackbox, providing cer-

tain capabilities towards the environment and its user (or other sys-

tems). Knowledge about the insight or on how the real-time system

is not important in order to describe the behavior. In classifying

requirements, internal aspects and thus the intrinsic model are ne-

glected in this work. Different kinds of viewpoint to a system, how-

ever, ensure a effective transparent and common way to propose

how a real-time system should work in the proposed domain.

Definition 5.2 (Viewpoint) “A viewpoint on a system is a technique

for abstraction using a selected set of architectural concepts and

structuring rules, in order to focus on particular concerns within that

system [MM03].”

Definition 5.2 on this page describes a viewpoint as defined in

the MDA. A view of a system is the resulting viewpoint model.

52

Hence, the behavioral information about a platform is considered

from a platform-independent and platform-specific viewpoint.

The platform-independent viewpoint (PIV) focuses on those

parts of the system behavior which are not specific for a

certain system or system platform. For this reason, the

PIV provides all information about the system behavior that

does not change when switching from one platform to another

within the same technological domain.

To establish a transparent view of the complete system behavior,

the platform-specific viewpoint (PSV) includes the PIV and addi-

tionally focuses on the specific implementation and environment in

which the system will be executed.

5.1.3 Platform Layers

The nature of a software system platform for a real-time system is

typically very complex and unbounded. For this reason, there are

approaches to software architecture that advocate the use of lay-

ers to modularize the software design. As far as software system

behavior is concerned, we render the platform concept described

in Section 5.1.1 on page 50 more precisely by introducing the term

platform layer (PL). A platform layer defines a conceptual part of the

entire system platform behavior. There are hardware and software

platform layers, with this thesis focusing on software platform lay-

ers. Thus, the view of the platform layer of a system significantly dif-

fers from the conventional platform perception, as described in Def-

inition 5.1 on page 50.

Figure 5.2 on the next page shows how this novel concepts of a

platform layer relates to the system platform and the system plat-

forms behavior. The platform layer PL b abstracts platform behavior

specified in platform layer, PL c and PL d. The according system

behavior covered by platform layer PL b is gray shaded. When fol-

lowing the usual platform perception in Definition 5.1 on page 50,

then a conceptual change (for example, a change in the system en-

vironment) made below the entire platform is not visible to the user.

Changing the intended functionality below the system platform im-

pacts on the classification of requirements to be specified for the

entire system.

Each platform layer maps only to fractions of the system be-

havior. Thus, if the environmental conditions change, this allows

a modular change of the requirements specification. This modu-

lar specification addresses hardware and software functionality for

53

System

Platform

PL a

System

Platform

Behaviour
PL c

PL d

PL b

Figure 5.2: Platform Layer Characteristic

the platform below platform PL a (see Figure 5.2 on the current

page). For this reason a platform layer is considered as a con-

ceptual container that stores requirements. The kind of platform

layer is defined by its type or the requirements specified for it. A

platform layer defines boundaries between other behavioral parts of

the system and finally determines the domain in which the system

resides. As described in other approaches to requirements model-

ing [Dav93] [YZ80], the concept of container-oriented platform lay-

ers facilitates the requirements specification process. In terms of

classification, a platform layer limits the scope of behavior speci-

fication and additionally makes it possible to judge, whether a re-

quirement is platform-specific or platform-independent. Section 5.2

on page 56 gives a detailed description of the proper classification

strategy to be employed.

The arrangement of platform layers within a system platform fol-

lows traditional layer-oriented concepts (for example, horizontally

or hierarchically arranged layers). For the classification of require-

ments the system platform boundaries limit the range in creating

platform layers. Any behavioral aspect outside the system platform

boundary is assumed to be platform-independent. The functional

contents of a platform layer mostly comprise a specific system com-

ponent of the entire system platform.

The structure of a platform layer and its boundaries are based on

subjective considerations made on the modularity of the system to

be developed. Basically these subjective considerations are similar

54

to that of the object-oriented analysis [CY91]. But instead of offering

a model, only revealing entities and their contribution to the entire

system behavior is from interest. Due to the complexity of real-time

systems, different numbers of platform layers may placed into a sys-

tem platform. Such subjective considerations furthermore result in

a dilemma in the specification of platform layers for a concrete sys-

tem platform. Figure 5.3 on the current page shows an example

illustrating the dilemma of different platform perceptions. The plat-

Time-Triggered Operating
System (OS)

Hardware for Time-

Triggered Systems (HW)

Distributed Time-Triggered
Application (APP)

Platform

Specification

Platform Layer

Specification

Figure 5.3: The Platform Layer Specification Dilemma

form layer specification modes, shown in Figure 5.3 on this page,

have four possible platform layer structures, which are displayed in

ovals. The braces represent the respective platform layer percep-

tion possible for the system. A feasible structural solution to the

perception of platform layers is to separate the whole system plat-

form behavior into three platform layers. This solution constitutes a

conventional, initial description, which is displayed with rectangles

in Figure 5.3 on the current page. Analogously we determine three

(system) platforms labeled as Platform Specification in figure Figure

5.3 on this page. Platform layers comprising software-specific items

(for example, APP and OS) can be be combined into one software

platform layer. A special case is the platform layer specification dis-

played rightmost in Figure 5.3 on the current page. In this case, the

platform layer equals the entire system platform.

A specification strategy should basically be used to find an ap-

propriate solution to this dilemma. The strategy employed should

make use of any domain knowledge existing. Information structures

55

based on domain knowledge can support a comprehensive state-

ment limiting the platform layer. Furthermore, a modular specifi-

cation approach should reflect a minimum of cognitive distance, as

far as platform layers and their (system) platform are concerned.

5.2 Platform Behavior Classification for Real-

Time Systems

A platform used for real-time systems integrates functionality pro-

vided by software and hardware. Platform layers divide the en-

tire specification of the system behavior into manageable functional

specification parts. This concept helps in classifying software and

hardware requirements for a dependable real-time system.

5.2.1 Viewpoints and Cognitive Distance

Cognitive distance between the development of two systems is the

amount of intellectual effort expended by an engineer to take the

system from one stage of system development to another. Cognitive

distance cannot be measured using units and numbers. Instead,

it is an informal notion in supporting the evaluation of the effec-

tiveness of an approach to system reuse. According to [Kru92], an

approach of applying cognitive distance should follow three charac-

teristics:

a) using fixed and variable abstractions that are both succinct

and expressive;

b) maximizing the hidden part of an abstraction;

c) using automated mappings from abstraction specifications to

abstraction realization.

A viewpoint following the explanation given in Definition 5.2 on

page 52 complies with a) and b), but cannot provide a specific map-

ping scenario demanded by c. In this work the focus is on require-

ment classification, neglecting mapping scenarios. The platform-

independent viewpoint (PIV) is an appropriate means for minimizing

the cognitive distance. The PIV embodies an information hiding pol-

icy.

System implementation details are not of interest to the PIV.

Therefore, commonalities of requirement-specific information exist-

56

ing among different systems of the same domain are established by

using the PIV.

The PIV is limited by the domain boundary of the system do-

main. Existing between a domain network, which constitutes a set

of domains, the domain boundary is driven by the scope of the sys-

tem and its application [PD90]. A domain boundary furthermore

defines common behavioral entities, operations and relationships of

the platform-independent view. It also sets limits to its operational

capability, as far as the underlying platform-specific view of the set

of software and hardware requirements is concerned. Hence, the

PIV is considered as an instrument for domain analysis.

For the classification of requirements, the PIV focuses on exist-

ing information structures specified in software requirements docu-

ments. These documents contain requirements addressing different

platform layers and follow the certification guidelines proposed by

RTCA/DO-178B, which divides the entire information about a plat-

form layer into a structure of high-level and low-level aspects.

5.2.2 System Properties and Requirements

A behavioral information structure specifies the entities of a sys-

tem to be developed and the relationships between those entities.

An entity that characterizes the system behavior is called system

property. System properties reside within hardware and software

platform layers, which allows the use of platform layers for real-

time systems. System layers can additionally belong to one or more

platform layers within a system platform.

Definition 5.3 (Requirement (1)) “We define a requirement as any

function, constraint, or other property that must be provided, met, or

satisfied to fill the needs of the system’s intended user(s) [Abb86].”

Definition 5.3 on the current page outlines the close relationship

between (system) property and requirement. This thesis deals with

requirements, as introduced in Definition 5.4 on this page. Thus

the requirement statement has to include one or more system prop-

erties in its specification. Even the diversity of natural language

leads to requirements, where a property defines further properties.

Definition 5.4 (Requirement (2)) “A requirement is a natural lan-

guage statement describing the intended system behavior by ad-

dressing one or more system properties.”

57

Property Ex-

ample

Requirement Statement

1
�

�

�

�
Req1 The system shall provide a service that initiates

the shutdown sequence.

2
�

�

�

�
Req2 The setup_timer function shall configure the

time source of timer1 and timer2

Table 5.1: System property examples

A system property can describe any behavioral aspect of the sys-

tem platform. Examples for a system property are objects, relation-

ships, goals or system states. On the basis of the platform layer

concept described in Section 5.1.3 on page 53, we assume in this

thesis that a platform layer is specified by platform-specific and/or

platform-independent properties. Furthermore, a requirement can

address different platform layers within the same system platform.

In order to understand how to determine a property within a

natural language requirement, two sample requirements are given

in Table 5.1 on this page.
�

�

�

�
Req1 and

�

�

�

�
Req 2 contain system proper-

ties of the intended system, which are underlined. Those properties

address behavioral aspects of different platform layers.

5.2.3 Requirements Classification Pattern

PIR

PSR

LLRHLR

M
o

d
e
l-
d
ri

v
e

n

V
ie

w
p

o
in

t
L
e

v
e

ls

Requirement Certification
Viewpoint Levels

Figure 5.4: Requirement Classification Pattern

Platform-specific and platform-independent properties deter-

mine the system behavior of the platform layer stage. In addition to

the model-driven platform layer aspects, the classification has to in-

tegrate safety-critical aspects. Safety-critical systems have to follow

58

recommended practices of requirements development. Considera-

tions made on requirements, as proposed by RTCA/DO-178B, di-

vide the system behavior into a high-level and low-level stage, with

traceability linking the high-level and low-level requirement stages

with each other. RTCA/DO-178B itself addresses certification as-

pects concerning the safety-critical software domain. The platform

layers inherit this software requirement development strategy from

the classification of requirements.

A requirements classification pattern (RCP) is used for the clas-

sification of requirements, as shown in Figure 5.4 on the previous

page. The basic idea behind this pattern is to combine the model-

driven aspects, as described in Section 5.1.2 on page 52, with the

requirements development strategy recommended by the guidelines

of RTCA/DO-178B. The use of different platform layers allows a

classification of requirements for the entire platform system includ-

ing software and hardware.

Description Abbreviation

Platform-Independent Requirements PIR

Platform-Specific Requirements PSR

High-Level Requirements HLR

Low-Level Requirements LLR

Table 5.2: Four different viewpoints to the platform layer behavior

The four viewpoints of a platform layer, as listed in Table 5.2 on

the current page, span a two-dimensional space over the entire sys-

tem behavior. PIR and PSR reflect the model-driven impact. They

are summarized as model-driven viewpoint levels, whereas the high-

level and low-level requirements are requirements certification view-

point levels reflecting the safety-critical aspects of a requirements

classification.

Figure 5.4 on the preceding page divides the “pattern space” into

four equal-sized rectangles, each representing a so called require-

ment classification window (RCW). Table 5.3 on the next page de-

scribes the four different RCWs. It should be noted that a platform

layer requirement resides within one of these four RCWs.

5.2.4 Classification Axioms

A requirement resides within one of the four requirement classifi-

cation windows shown in Figure 5.4 on the preceding page. The

four different viewpoints (see Table 5.2 on the current page) de-

59

Viewpoint Combination Description Requirement

Classification

Window 1

HLR/PIR A requirement at high-

level stage and platform-

independent.

RHI

HLR/PSR A requirement at high-

level stage and platform-

specific.

RHS

LLR/PIR A requirement at low-

level stage and platform-

independent.

RLI

LLR/PSR A requirement at low-

level stage and platform-

specific.

RLS

Table 5.3: The four requirements category windows of the RCP

termine an approach to assigning an individual requirement to

its requirement classification window. Software and hardware re-

quirements are stated in requirements documents. RTCA/DO-

178B recommends separating requirements into high-level and low-

level requirements and specifying them in separate requirements

documents. If such a separation of requirements has not been

done already, a set of requirements is separated into the two cat-

egories mentioned by using the What?/How? interrogative princi-

ple2. Properties also determine whether a requirement is platform-

specific or platform-independent. The platform layer concept has an

essential influence on the determination of platform-specific prop-

erties.

Definition 5.5 (Platform-specific Property)

“A platform-specific property of a requirement is a property that de-

scribes the intended behavior of a platform layer that is below the

platform layer of the requirement.”

Definition 5.5 on the current page is the basis for the separation of

requirements into platform-specific and platform-independent re-

quirements. Thus, the treatment of properties also plays a decisive

2The What?/How? interrogative principle is used to separate the specified sys-

tem behavior into a high-level and low-level requirements stage (see Section 4.2.1
on page 41). In this thesis, we assume that a separation of requirements into
high-level and low-level requirements is available due to the reuse of requirements

in the course of certification activities.

60

role in applying the RCP.

Classification Axiom 5.1 If a requirement contains a low-level prop-

erty, the requirement is a low-level requirement (LLR).

Classification Axiom 5.2 If a requirement does not contain any

low-level property, the requirement is a high-level requirement (HLR).

Classification Axiom 5.3 If a requirement contains a platform-

specific property, the requirement is a platform-specific requirement

(PSR).

Classification Axiom 5.4 If a requirement does not contain any

platform-specific property, the requirement is a platform-independent

requirement (PIR).

These four axioms enable a transparent RCW assignment proce-

dure for requirements. Axioms 5.1 and 5.2 deal with the certifica-

tion viewpoints, whereas Axioms 5.3 and 5.4 refer to model-driven

viewpoints assessing the properties specified in a requirement state-

ment.

The classification axioms enable a comprehensive assignment of

requirements to their respective requirement classification window.

Before classification takes place on a system platform, as it is illus-

trated in Figure 5.5a on the following page, a set of platform layers

has to be specified, as depicted in Figure 5.5b on the next page.

Furthermore Figure 5.5b on the following page illustrates a system

platform, in which different kinds of platform layers encompass dif-

ferent kinds of system properties.

In Figure 5.5a on the next page only one property is platform-

independent because the property resides above and thus outside

the system platform. The novel concept of platform layers, which

is introduced to the system platform in Figure 5.5b on the follow-

ing page, allows to take a look inside the system platform behav-

ior and its system properties. In this context the use of specified

classification axioms focuses on a classification of requirements be-

longing to platform layer PL 1, which for clearness reasons is grey

shaded. Thus the separation into platform-specific and platform-

independent system behavior has to be aligned to the position of PL

1 within the system platform.

After determining the system platform with its platform layers,

we are now able to define an examples for demonstrating the use

61

 System

Platform

..
.

p5

pi

p4

pj

p
la

tf
o

rm
-

in
d

e
p

e
n

d
e

n
t

p
la

tf
o

rm
-

s
p

e
c
if
ic

p6

p1

p3

p2

(a) System platform and system proper-
ties without platform layers

 System

Platform

..
.

p
la

tf
o

rm
-

In
d

e
p

e
n

d
e

n
t

(P
L

)

p
la

tf
o
rm

-

s
p

e
c
if
ic

(P
L

)

p6

PL 2
p4

PL n pjpi

PL 3 p5

p1 p2
PL 1 p3

(b) Introduction of platform layer to sys-
tem platform and system properties

Figure 5.5: System platform and platform layers

of the four classification axioms. A set S of requirements r with

a number of properties p defined for the system platform shown

in Figure 5.5b on the current page are as follows:

S =
{r1(p5), r2(p1, p2), r3(p1, pi), r4(p2, p3, p4), r5(p1, p4), r6(p6, p3)}

The set S comprises requirements that are documented in a re-

quirements specification complying with RTCA/DO-178B. In order

to classify the set of requirements, classification axioms are applied

to S. Examining the properties of the platform system shown in Fig-

ure 5.5b on this page yields the following results:

• platform-independent requirements are :

Spi = {r2(p1, p2), r5(p1, p4), r6(p6, p3)}

• platform-specific requirements are :

Sps = {r1(p5), r4(p2, p3, p4), r3(p1, pi)}

Set Spi follows classification axiom 5.4. As there is no require-

ment with platform-specific information in Spi, the latter shows plat-

form independence. If there is even one property with platform-

specific information, that requirement has to be added to Sps. Sps,

however, can contain platform-independent information as can be

seen in requirement r4(p2, p3, p4). Sps is platform-specific, thus the

corresponding requirements are platform-specific too.

As mentioned at the beginning of this section, certification guide-

lines complying with RTCA/DO-178B proceed from the assumption

that requirements are separated into the categories “high-level” and

62

“low-level requirements”. Once the platform-related partition has

been determined, Spi and Sps can be embedded into the traceabil-

ity scheme. A traceability scheme assigns low-level requirements

to high-level requirements and vice versa. Moreover, a traceability

scheme exactly identifies whether a requirement r is a high-level

or low-level requirement. For this reason, the traceability scheme

identifies the following requirements of set S as

• high-level requirements are :

Shl = {r4(p2, p3, p4), r3(p1, pi), r5(p1, p4)}

• low-level requirements are :

Sll = {r6(p6, p3), r1(p5), r2(p1, p2)}

When we combine the set of requirements Spi and Sps (see list-

ing above) with the information provided by Shl and Sll we can

determine specific sets for each requirement classification window

(see Table 5.4 on the current page).

SRHI = Shl ∩ Spi = {r5} SRLI = Sll ∩ Spi = {r2}

SRHS = Shl ∩ Sps = {r4, r3} SRLS = Sll ∩ Sps = {r6, r1}

Table 5.4: Results of the requirements classification procedure

63

Chapter 6

Evaluating Requirements
Classifications of
Safety-Critical Software

The requirements classification pattern (RCP) introduced in Sec-

tion 5.2 on page 56 can be applied to the field of safety-critical

software development. For demonstration purposes, we examine a

fault-tolerant real-time system, TTP-OS [TG94], to prove the practi-

cal use of the requirements classification pattern for the engineering

of safety-critical requirements.

6.1 TTP-OS – A Dependable Real-Time Software

Platform

6.1.1 TTP-OS (System Overview)

TTP-OS is a fault-tolerant, hard real-time operating system that

comprehensively complies with the essential needs demanded by

the safety-critical industry, namely:

• robustness with regard to design and accurate execution mode

of the operating system,

• resource efficiency in terms of minimum CPU, RAM and ROM

cycles,

• fault-tolerant hard real-time behavior that provides a generic

mechanism preventing hazards from occuring in the operating

system

64

• system openness with regard to ensuring a composable,

reusable and maintainable software system design.

TTP-OS is conceptually divided into two components:

1. an on-line runtime kernel, which is the minimum set of func-

tionality responsible for system execution, and

2. an offline node design component provided by TTP-Build1. All

functionality that can be done offline is moved out of the run-

time kernel and specified offline by TTP-Build, which comple-

ments the TTP-OS kernel, using the design data generated by

the cluster design tool TTP-Plan2.

Core aspects of TTP-OS in terms of functionality are as follows :

Task execution The core function of any operating system is the

activation of tasks. TTP-OS uses a time-based scheduling pol-

icy, which is configured offline, and supports task preemption.

A time-triggered task running in the system can always be in

one of three possible states at any point in time: running, ready

or preempted. “Preempted” means that a higher-priority task

becomes ready to run at its statically defined activation time

and preempts the currently executing task by moving the lat-

ter from the running state into the preempted state. There are

two different kinds of time sources used to activate a task, the

local time, provided by the CPU, and the global time, which is

a system-wide, synchronized timebase, the fault-tolerant time

provided by TTP. A deadline has to be specified for each task,

with TTP-OS monitoring and checking this deadline for viola-

tions (deadline monitoring).

Fault management TTP-OS provides different kinds of fault man-

agement techniques that prevent hazardous situations from

occurring in the system by avoiding task blocking, doing spe-

cific configuration checks and interacting with the fault-tolerant

communication layer.

When a system error occurs, TTP-OS calls an error handler,

which passes the exception code to the corresponding excep-

tion handler. When a task raises an exception, the exception

1TTP-Build is an offline node design tool that generates the interface between
the cluster level and the node level (the application software) and that provides
essential design data required for the execution of TTP-OS.

2Further information about TTP-Plan and TTP-Build can be found

at http://www.tttech.com

65

http://www.tttech.com

code is passed to the corresponding exception handler, with

further task execution depending on the respective exception

configuration. An exception itself is configured by the applica-

tion or TTP-OS.

Application mode(s) An application mode determines the tempo-

ral behavior of an application, which is the predefined points

in time at which tasks become activated. An application can

define several application modes that can be changed during

runtime. For each application mode defined, the node design

tool TTP-Build generates a configuration that stores the cur-

rent state of TTP-OS. Interfaces provided by TTP-OS enable

special mechanisms to protect the application modes defined.

6.1.2 TTP-OS Requirements Documentation

As TTP-OS was developed as a certifiable, safety-critical soft-

ware product complying with the RTCA/DO-178B Level A guide-

lines [Rad92], it can serve as a good example of how to use the RCP.

To this end, two documents were subjected to closer examination

for this thesis:

1. the Software Requirements Document (SRD), specifying the

high-level requirements for the software implementation of

TTP-OS, and

2. the Software Design Document (SDD), specifying the low-level

requirements for the software implementation of TTP-OS.

For the understanding of the requirement examples in this chap-

ter, a deep technical understanding is not necessary. Such specific

knowledge would reflect specific architectural considerations and

concepts. However, a system behavior reflects a black-box-oriented

view to the system, neglecting internal objects and relationships.

Also the requirements were slightly modified to demonstrate the use

of the RCP so that they furthermore can serve as an initial point for

discussion.

66

6.2 TTP-OS Requirements Classification (Using

the RCP)

Safety-critical systems following the distributed, time-triggered

paradigm are developed for a specific hardware platform. The re-

spective platform layer corresponding to the requirements classifi-

cation of TTP-OS is determined by examining existing architectural

platform considerations. Eventually, requirements are assigned to

each requirement classification window (RCW), as described in Sec-

tion 5.2.3 on page 58, using exemplary TTP-OS requirements.

6.2.1 Evaluating Time-Triggered Real-Time System Plat-
forms

Applying the concept of a model-driven architecture (MDA) (see Def-

inition 5.1 on page 50) to the domain of distributed, time-triggered

real-time systems results in three fundamental platform specifica-

tions, shown in Figure 6.1 on the current page. These platform

specifications limit the system domain boundaries for the platform

layer determination, which is done in Section 6.2.2 on the following

page. The partitioning of an entire system (or subsystem) into differ-

Hardware for time-

triggered Systems

Time-Triggered

Operating System

Distributed

Time-Triggered

Application

Tim
e-

Trig
ge

re
d

R
ea

l-T
im

e

Sys
te

m
 P

la
tfo

rm

D
is
tri

bu
te

d
Tim

e-
Trig

ge
re

d

R
ea

l-T
im

e
Sys

te
m

 P
la
tfo

rm

HW Domain

S
W

 D
o
m

a
in

Figure 6.1: System platform specifications for distributed, time-

triggered real-time systems

ent system platforms and corresponding platform layers may start

with the hardware for time-triggered systems(see Figure 6.1 on the

current page), which reflects the hardware platform of the system

67

to develop. Although we focus on software requirements, services

provided by the hardware are not neglected in the platform model.

Those services determine and possibly constrain the behavior of the

software levels following above. On the next level, the time-triggered

operating system ensures additional platform functionality to ex-

tend the services provided by the underlying hardware platform.

Combining these two platforms can serve as a first interpretation of

a real-time system (see also section Section 5.1.1 on page 50) and

constitutes the so-called time-triggered real-time software platform.

In most cases, this software platform functionality resides on the

corresponding hardware entity locally, which is the main difference

to the next platform lying above, the distributed, time-triggered real-

time system platform. Finally, the system uses services provided by

the application that runs on the distributed, time-triggered software

platform to ensure a correct execution of the system functions.

The system platform used for the case study used in this thesis

is the time-triggered operating system platform. The platform per-

ception includes platform layers that inherit software and hardware

issues.

6.2.2 TTP-OS Platform Layer Specification

The requirements classification pattern separates requirements of a

specific platform layer into four requirement classification windows.

Before classifying software requirements for TTP-OS, a correspond-

ing TTP-OS platform layer has to be specified. Figure 6.2 on the

current page shows a possible specification of platform layers that

can be used for requirements classification. Basically distributed

TTP Controller CPU

Application

TTP-OSFT-Com

H
a

rd
w

a
re

S
o

ftw
a
re

S
y
s
te

m

(a) TTP-OS software architecture

TTP-OS PLS
o
ft

w
a
re

 D
o
m

a
in

H
a
rd

w
a
re

D
o
m

a
in

System Platform
Specifications

Application PL

Hardware PL

Application
FT-Com

TTP Controller CPU

(b) TTP-OS platform layers

Figure 6.2: TTP-OS platform layer specification

68

time-triggered real-time systems have three platform specifications,

shown in Figure 6.1 on page 67. When assigning a platform layer

to TTP-OS, we can transform these three platform specifications

into three individual platform layers. Additionally, this transforma-

tion is conceptually merged with an existing architectural descrip-

tion. Figure 6.2a on the previous page shows the current architec-

ture of TTP-OS, where a set of architectural layers is arranged hier-

archically. In this particular case, the platform layer determination

benefits from this existing layer-oriented separation. The resulting

TTP-OS platform layer resides between application and hardware

platform layer and summarizes all architectural concepts relating

to the operating system.

The layer separation offers a way to change the behavioral struc-

ture of the original platform separation, shown in Figure 6.1 on

page 67. A requirements specification done in terms of platform

specification takes a bird’s eye view on the system behavior. As

described in Section 5.1.1 on page 50 this situation may lead to a

restriction of the system platform behavior. Only functionality on

top of the platform is visible to subsequent platform extensions.

This assumption also holds for considerations made on the behav-

ior described in Section 5.1.3 on page 53. Any information belong-

ing to hardware- or software-specific issues are hidden, because

an overlying platform makes use of platform functionality only by

means of well-defined behavioral interfaces (for example, services).

The TTP-OS platform layer provides these “access points” in terms

of platform perceptions, but the platform layer boundaries allow a

separation and encapsulation of properties residing only in the TTP-

OS platform layer.

The lowermost platform (hardware platform) comprises the hard-

ware platform layer. The hardware examined for this thesis includes

a specific communication unit, the TTP controller. Additionally, the

CPU of the hardware target is added to the hardware platform layer.

Above the TTP-OS platform layer, which is of interest for this the-

sis, the FT-COM layer and the application constitute the application

platform layer. Properties defined in the application platform layer

are assumed to be platform-independent in the sense of Definition

5.5 on page 60. If software requirements include only properties of

the application platform layer or properties combined with the TTP-

OS platform layer, they are considered as platform-independent.

In order to classify requirements with regard to TTP-OS, the sep-

aration, as shown in Figure 6.2b on the preceding page, correctly

determines, whether a requirement is platform-specific or platform-

independent.

69

6.2.3 RCP Sample Application For TTP-OS Certification
Documents

Having defined a platform layer for its use with TTP-OS, require-

ments are assigned to their respective requirements classification

windows. Table 6.1 on the current page and Table 6.2 on the

following page list a set of high-level and low-level software require-

ments arbitrarily taken from the TTP-OS SRD and SDD.

The excerpt of sample requirements listed in these two tables is

to show a first practical use of the RCP of the existing certification

documents. The entire semantic information contained in the set of

requirements focuses on time-triggered aspects of TTP-OS system

behavior (for example, static scheduling).

�

�

�

�Id High-Level Software Requirement Statement
�

�

�

�r1 The TTP-OS service Start TTP shall start the schedule table asso-

ciated with the time source of the TTP controller so that the schedule

table is synchronized with the cluster.
�

�

�

�r2 TTP-OS shall check the deadline of an application when the ap-

plication task ends.
�

�

�

�r3 TTP-OS shall activate all application tasks according to a time

schedule calculated offline.
�

�

�

�r4 Each time table in TTP-OS shall have its own time source.
�

�

�

�r5 TTP-OS shall provide a service which updates the life-sign of the

TTP controller.
�

�

�

�r6 TTP-OS shall provide services to save and restore CPU resources to

allow floating point operations for preempted and preempting tasks.

Table 6.1: Exemplary set of high-level software requirements Shl

Both sets of requirements (Shl and Sll) contain platform-

independent and platform-specific information about the system be-

havior in terms of system properties. Thus, in a first step, when

identifying the properties of the two sets (Shl and Sll), it is essential

to decide, whether the requirement is platform-specific or platform-

independent. A solution to the way of identifying system properties

is a systematic walk-through of the requirements, which extracts

all the identified system properties into a separate list.

Such a list, which refers to the platform layer specified, is cre-

ated systematically when the requirements are classified. In the

3“HLSR ID” stands for “High-Level Software Requirement Identifier”. The HLSR
column contains references providing traceability to the corresponding high-level

software requirements.

70

�

�

�

�Id Low-Level Software Requirement Statement HLSR

ID3
�

�

�

�r7 TTP-OS shall calculate the start of the schedule table

by increasing the time stamp as follows : (time_stamp =
time_stamp + cycle_length

2
)

r1

�

�

�

�r8 TTP-OS shall pass the time stamp of the time source as

parameter when calling the service hal_cur_time.

r1

�

�

�

�r9 The function check_deadline shall return

value DEADLINE_E if the currently activated task chain

violates its deadline.

r2

�

�

�

�r10 The function all_schedule shall assign the fol-

lowing values of the schedule table state according

to its time source : status to STATE, cycle_start to

start_time, int_time plus start_time to recalculate

time_sync_phase.

r4

Table 6.2: Exemplary set of low-level software requirements Sll

TTP-OS context, such a list refers to the TTP-OS platform layer, so

that this list is called platform layer property list (PLPL). PLPLs for

schedule table

Start TTP
in the future

TTP Controller

floating point operations

task

Table 6.3: High-level system

properties

hal_get_current
time_stamp

start of schedule table

int_time
DEADLINE_E

Table 6.4: Low-level system

properties

Shl and Sll are listed in Table 6.3 on the current page and Table 6.4

on this page. Once identified, these lists support the separation of

system properties into requirements corresponding to these prop-

erties. A PLPL property is furthermore marked as platform-specific

for the TTP-OS layer, which is based on Definition 5.5 on page 60.

Whenever the property of a requirement addresses a behavioral as-

pect of a platform layer below a platform layer of the requirement,

then this requirement is platform-specific.

Based on the classification axiom described in Section 5.2.4

on page 59 we assume in terms of requirement classification that

platform-specific properties are from more interest than platform-

independent properties within a requirement. Thus a way to re-

71

duce the number of properties in the PLPLs is to omit platform-

independent properties.

In
�

�

�

�r5 the platform-specific property life-sign of the TTP controller

resides in the hardware platform layer. The TTP controller is part

of the hardware platform layer. Thus the life-sign resides below the

TTP-OS platform layer.
�

�

�

�r5 is a high-level platform-specific require-

ment.

The properties of
�

�

�

�r3 , in contrast, describe a behavior characteristic

of the TTP-OS layer. Moreover,
�

�

�

�r3 does not contain specific infor-

mation about any conceptual capability of the below residing plat-

form layer. Therefore
�

�

�

�r3 is a platform-independent requirement. A

property referenced outside the system behavior boundary does not

influence the platform-oriented decision process.

The same strategy can be applied to Sll, following an iterative pro-

cess to identify system properties with a list that corresponds to Ta-

ble 6.4 on the previous page. The only platform-independent re-

quirement in S11 is
�

�

�

�r7 , where all the properties identified address

behavior that is characteristic of the TTP-OS platform layer. The

remaining requirements in S11 are platform-specific. Using classifi-

cation axioms, as described in Section 5.2.4 on page 59, and Def-

inition 5.5 on page 60 for the requirement sets Shl and Sll, we can

describe the results in the following requirements classification win-

dows (see Table 6.5 on this page):

RHI = {
�

�

�

�r2 ,
�

�

�

�r3 ,
�

�

�

�r4 } RLI = {
�

�

�

�r7 }

RHS = {
�

�

�

�r1 ,
�

�

�

�r5 ,
�

�

�

�r6 } RLS = {
�

�

�

�r8 ,
�

�

�

�r9 ,
�

�

�

�r10 }

Table 6.5: Requirements classification windows of Shl and Sll

72

6.3 Using the RCP for TTP-OS (Results)

Section 6.2.3 on page 70 gives us a first impression of how to use

the requirements classification pattern. A detailed examination has

been carried out on the TTP-OS requirements documents, with Ta-

ble 6.6 on this page listing the total number of high-level and low-

level requirements. Table 6.7 on the current page lists the results of

Analysed

Number

(Existing

Number)

High-level requirements 113 (113)

Low-level requirements 180 (559)

Derived Low-level requirements 74 (129)

Total number of classified requirements 367 (801)

Table 6.6: Total number of all requirements for TTP-OS

the requirements classification, which has been done using the re-

quirements classification pattern that is described in Section 5.2.3

on page 58, with Table 6.8 on the current page showing an addi-

tional RCW comprising a classification for derived low-level require-

ments.

RHI = 71 RLI = 71

RHS = 42 RLS = 109

Table 6.7: Number of classified TTP-OS requirements and their

RCWs

This RCW extension was necessary because derived require-

ments do exist only at a low-level stage in the TTP-OS requirement

documentation. Table 6.8 on this page lists the number of derived

low-level requirements classified for TTP-OS.

RLI = 16

RLS = 58

Table 6.8: Evaluated RCWs for derived low-level TTP-OS Require-

ments

Establishing this overview of classification results was linked

with problems concerning the identification of system properties. A

73

generic advice for estimating the reuse potential of a requirements

specification was found, and finally a top-down order of RCW can

support the development of requirements for reusable system com-

ponents.

6.3.1 System Property Identification In Natural Lan-
guage Requirements

Natural language as a representation to specify software require-

ments usually leaves room for more than one interpretation,

which is due to the use of natural language itself. In some cases,

considerations made on the representation of properties have led to

several classification problems, discussions and solutions.

Sometimes, the classification of requirements done on the basis

of the information provided can make it quite difficult to decide

immediately, whether a property is platform-specific or platform-

independent.

Therefore, the requirement classification process made on high-

level and low-level requirement documents has resulted in the

following informal guidelines (IG), which can be used for making

platform-oriented decisions. Using these informal guidelines, en-

gineers are now able to elicit properties on the basis of a common

requirements classification strategy:

- IG 1 When no assumption can be made whether a require-

ment is platform-specific or platform-independent, assign the

requirement – for safety reasons – to a platform-specific re-

quirement classification window.

- IG 2 If additional semantic information is referenced by or in

the requirement statement, use that information.

- IG 3 Requirements conforming to Definition 5.5 on page 60

and classification axiom 5.3 are platform-specific.

- IG 4 Properties that do not reside within the system platform

(specification) are platform-independent.

- IG 5 Make a first iteration to determine the system properties

for the platform-layer according to Definition 5.5 on page 60,

make a second iteration to finally assign the requirements

corresponding to their properties by using classification ax-

iom 5.3.

74

In order to demonstrate the practical use of these informal guide-

lines, they are, by way of example, applied to the requirements given

below.
�

�

�

�
HL Req 1 TTP-OS shall define two possible consequences for each

exception: “Continue” and “Shutdown”

Requirement
�

�

�

�
HL Req 1 at first glance shows platform-

independent behavior. With reference to IG 2, no additional infor-

mation is provided. The requirement, however, specifies two possi-

ble consequences in the event of exceptions being raised, which in

turn suggests a platform-specific, conceptual background. In or-

der to avoid further discussion, we use IG 1, according to which
�

�

�

�
HL Req 1 is assigned to a platform-specific requirements classi-

fication window. Another good reason in favor of using IG 1 is

safety. Wrongly specified platform-independent requirements can

result in wrong platform-independent designs, which finally can

cause hazardous situations. Advocating a platform-specific solu-

tion protects the system from malicious situations and can resolve

a potential ambiguity concerning the interpretation of natural lan-

guage requirements.
�

�

�

�
LL Req 1 TTP-OS shall initialize the error handler by using the service

routine init_errorhandling (Reference ref)4.

Requirement
�

�

�

�
LL Req 1 at first glance suggests that the require-

ment statement specifies platform-independent behavior. To be

on the safe side, we use IG 2, which allows including additional

information specified in ref . This referenced information shows

program-related details on init_errorhandling (for example, data

types being used), which in turn is covered by IG 3 so that we

can clearly say that requirement
�

�

�

�
LL Req 1 is a platform-specific

requirement.
�

�

�

�
HL Req 2 TTP-OS shall activate all application tasks according to a

time schedule calculated offline.

The property time schedule, which is intended to be created

offline is a suitable example for a property belonging to the system

but residing outside of the system platform specification. IG 4 is

used, the requirement
�

�

�

�
HL Req 2 itself is platform-independent.

The impact of whether choosing platform-independent or

platform-specific for a specific property is shown in exam-

ple
�

�

�

�
HL Req 3 . The system property time source in this context lit-

erally is an abstract term but references to a hardware unit.

4In this context ref is used as an abstraction for content-related references

stated within requirement specifications.

75

6.3.2 RCP Extension using a Domain Model

The modeling character of a platform layer is emphasized

by [LMV97], where “the process of creating reusable requirements is

aided by having a road-map for structuring the domain and organiz-

ing reusable requirements knowledge.” The requirement examples
�

�

�

�
HL Req 3 raises another modeling issue resulting in an extension

of the RCP by domain models.
�

�

�

�
HL Req 3 TTP-OS shall raise an exception E1 if synchronization has

lost one time source.

A property that describes a hardware entity resides below the

TTP-OS platform layer (see Section 6.2.1 on page 67). In this con-

text, the requirement is platform-specific, however, making the two

iterations, as mentioned in guideline IG 5, may suggests that the

system property time source still is platform-independent. This

assumptions is true if we argue that time source resides within an

domain model for the specific technological domain of time-triggered

systems. Section 3.1.1 on page 22 briefly describes the concept of

domain analysis and describes approaches how to create a domain

model [KCH+90] [BdC91].

A vague domain model may also be developed based on experi-

ence made within a specific domain. For example a hardware engi-

neer always assign a CPU or ROM unit to a hardware controller do-

main model. Thus following the time-triggered paradigm in [KB03],

we assume a time source constitutes an core concept and thus

an entity in the domain model developed for a time-triggered sys-

tem platform as illustrated in Figure 6.2 on page 68.

Platform
Specifications

p3
PL 2

PL 1

Domain

Model
p2

p1

Figure 6.3: RCP extended by a domain model

Figure 6.3 on this page shows the concept of a domain model

(see eclipse), which is integrated into the platform system and the

corresponding platform layer concept. The domain model partici-

pate in the behavioral description of both platform layers PL 1 and

PL 2. System properties may reside within or outside of the domain

76

model. Domain analysis identifies commonalities within a specific

technological domain through this domain model. Thus these frac-

tions of the platform layers, which are covered by the domain model,

are platform-independent.

Furthermore this domain model extension affects the classifi-

cation of requirements. Given a requirement r and the two sys-

tem properties p1 and p2 in Figure 6.3 on the previous page, if

we conform with Definition 5.5 on page 60, r(p1, p2) is a platform-

specific requirement. However, property p2 resides within the do-

main model, constituting a common behavioral aspect in the speci-

fied domain and thus has to be platform-independent.

Thus if a domain model is available, r(p1, p2) is platform-

independent. For this reason we have to extend Definition 5.5 on

page 60 by the concept of a domain model.

Definition 6.1 (Platform-specific Property (Domain Model))

“A platform-specific property of a requirement is a property that de-

scribes the intended behavior of a platform layer that is below the

platform layer of the requirement and resides outside the domain

model of the system platform.”

In context of Definition 6.1 on this page the property p3 in Fig-

ure 6.3 on the previous page is platform-specific and r(p1, p3) a

platform-specific requirement. In terms of TTP-OS requirements

we assume that the corresponding domain model comprises only

the system property time source as shown in figure Figure 6.4 on

this page.

Domain

Model

time source

Figure 6.4: Simplified domain model of TTP-OS requirements used

by RCP extension

If we apply this assumption in combination with Definition

6.1 on the current page on high-level requirements in Table 6.7

on page 73, it will lead to a change toward a more platform-

independent distribution of requirements within the corresponding

RCWs. Table 6.9 on the next page provides the resulting RCW with

its requirements distribution using a RCP extended by a domain

model.

77

RHI = 87 RLI = 71

RHS = 26 RLS = 109

Table 6.9: RCWs using a domain model for property time source

6.3.3 Distribution of Requirements of a Platform Layer
to enable Reuse

Table 6.7 on page 73 lists the results of the RCP examination made

on the TTP-OS platform layer and shows that the majority of high-

level requirements reside in the platform-independent RCW RHI,

whereas the majority of the classified low-level requirements reside

in the platform-specific RCW RLS. In Figure 6.5a on the current

page the according distribution is emphasized through the gray-

shaded RCWs.

RHS

RHI RLI

RLS

(a) Conventional distribution of re-
quirements in dependable real-time
systems

RHS

RLI

RLS

RHI

(b) Proposed requirements distribu-
tion in dependable real-time systems
for better reuse of requirements

Figure 6.5: Two requirement distributions of RCWs

One reason for that is the system safety approach, which at all

requirements development stages requires traceability to be estab-

lished for a dependable real-time system. Another reason for the

assumed conventional distribution – in particular as far as RHS is

concerned – is the fact that source code should be directly developed

on the basis of these behavioral statements. A platform-specific

low-level requirement describes the system behavour in terms of

concrete implementation details. Thus a platform-specific low-level

requirement instruments the developer more precisely in creating

according source code than a platform-independent low-level re-

quirement. If there were not any precise mapping strategy between

the low-level platform-independent stage and the low-level platform-

specific stage or source code (for example, code generator), there

would be room for interpretation, which would cause ambiguity and

a deviation from implementation, as described in Section 2.3.2 on

78

�
�

�
�rta The application task shall activate timerfunction(C167).

The timer function timerfunction(C167) is a platform-specific

property addressing functionality residing in an underlying plat-

form layer . timerfunction(C167)monitors the temporal behavior

of the application task, which is limited by a predefined temporal in-

terval.

Attempt 1:
�

�

�

�rta’ The application task shall assign the predefined ap-

plication task time interval to the 16bit timer of the hardware target.

Attempt 2:
�

�

�

�rta” The application task shall activate a task monitoring

function.

Table 6.10: Changing a platform-specific property to a more

platform-independent property

page 16.

As far as safety is concerned, the AC 20-148 (see Section 3.1.2

on page 24) introduces a way of establishing and using a reusable

certifiable component that is based on a worldwide recommended

safety standard. A requirements classification is able to be reused

if it it reflects a majority of high-level and low-level requirements

residing in the platform-independent RCW. The gray-shaded RCWs

shown in Figure 6.5b on the preceding page document this assump-

tion. The question of how to create a more reusable requirements

classification can be answered by moving platform-specific infor-

mation toward platform independence while not tailoring the basic

semantic information about the requirement.

The platform-specific requirements specified in the respective

classification windows have to be modified to achieve more plat-

form independence. An evaluation of the results, as given in Table

6.7 on page 73, does not always allow the creation of platform-

independent requirements on the basis of corresponding platform-

specific requirements. The example given in Table 6.10 on this page

illustrates a possible change from a platform-specific property to a

platform-independent property.

The timer function timerfunction(C167) sets a specific flag

in the timer configuration that allows assigning a predefined time

interval value to the application task. The system should check

whether the task is executed within this predefined time interval or

not.

If timerfunction(C167) were removed from
�
�

�
�rta , there could

79

be one possible solution to change the requirement. The abbrevia-

tion ta in rta stands for timer activation. Different hardware targets

have specific timer configuration settings in common. This domain-

related information is used by
�

�

�

�rta’ . The property 16bit timer speci-

fies a platform-specific requirement, but allows changing the under-

lying platform layer. A possible specific functionality is hidden by a

different interpretation of the basic intent. In
�

�

�

�
r′′

ta
, the abstraction

change process is extended. The result is a platform-independent

requirement, which is characterized by the property task monitor-

ing function. Unfortunately, this requirement allows different im-

plementations of the intended behavior. Thus
�

�

�

�rta” is a potential

source of behavioral hazards. With regard to requirement reuse, it

is therefore more appropriate to change the original requirement in

the sense of requirement
�

�

�

�rta’ rather than in the sense of
�

�

�

�rta” .

Additionally, the example given in Table 6.10 on the previous

page shows that a change of requirements toward more platform

independence is the harder the more platform-specific properties a

requirement has. Requirements ambiguity based on semantic in-

formation change might lead to incorrect system behavior. For this

reason, requirements should be changed if at least one platform-

independent property is available5. A set of only platform-specific

properties in a requirement always specifies the underlying platform

layer. A requirement specifying different platform layer properties

is also called cross-platform layer requirement (CPLR).

6.3.4 Requirements Development Using RCW Concepts

The proposed classification of requirements offers a system-

atic reuse-oriented strategy in developing requirements. Basi-

cally it follows the development guidelines defined in RTCA/DO-

178B [Rad92]. Based on the separation of requirements into high-

level and low-level requirements as proposed by RTCA/DO-178B,

adds the model-driven aspect to the development of requirements

specifications.

The core concept of this development approach is the order of

the RCW. For this reason, the pattern is split up into four classi-

fication windows, which are connected by transformation arrows.

Each RCW describes a method to specify requirements. The re-

sult is shown in Figure 6.6 on page 82, which reflects a three-level

requirements development process. The specification process for

5Note: A property itself may be a summary of properties, which makes it difficult
to define “one” property.

80

a system to be developed has to pass through each of the levels

shown.

RDL6 Requirements

1
�

�

�

�RHI1 The system shall activate all application tasks according to an

off-line calculated time schedule.

2
�

�

�

�RLI1 A task chain shall have only one schedule interrupt.
�

�

�

�RLI2 The task chain shall save the current task chain configuration

after completion of every task.
�

�

�

�RLI3 A service shall prepare the next scheduling interrupt using task-

specific information.
�

�

�

�RHS1 TTP-Build shall generate application-specific schedule config-

uration data for TTP-OS

3
�

�

�

�RLS1 The function saved_current shall save the current task chain

configuration cur.
�

�

�

�RLS2 Schedule interrupt Ix shall have a reference only to task
chain x.
�

�

�

�RLS3 The service set_interrupt shall prepare the next scheduling

interrupt by passing the saved task chain cur as second parameter.

Table 6.11: Requirements development (example)

The first level specifies a first abstract description of the intended

system behavior. At the first stage, requirements development in-

cludes information hiding. Furthermore, a requirement residing in

the RHI window gives a comprehensive answer to the What? inter-

rogative.

The requirements specification continues at level 2 (see Figure

6.6 on the next page), with the specification process differentiat-

ing between RHS and RLI methodology. Both reside in the second

level because they do not provide details on the final implementa-

tion. Internally, the main difference between the RHS and RLI is

traceability. The low-level characteristic of RLI implies a traceability

scheme to the RHI, which results in a corresponding effort in devel-

oping low-level platform-independent requirements. In contrast the

RHS only enriches implementation-specific details on the existing

RHI requirements.

The final development stage is the RLS, which refines the re-

quirements model to its final shape. Requirements defined at RLS

level specify implementation details of the system to be developed.

The information described by these requirements should enable en-

gineers to translate them directly into source code. Whereas RLS is

a platform-specific refinement of RLI behavior, the transition from

81

Level 1 Level 2 Level 3
�

�

�

�RHI1
�

�

�

�RLI1
�

�

�

�RLS1
�

�

�

�RHI1
�

�

�

�RLI2
�

�

�

�RLS2
�

�

�

�RHI1
�

�

�

�RLI3
�

�

�

�RLS3
�

�

�

�RHI1
�

�

�

�RHS1
�

�

�

�RLS1 ,
�

�

�

�RLS2 ,
�

�

�

�RLS3

Table 6.12: Traceability matrix

RHS to RLS has to establish a traceability scheme.

Table 6.11 on the preceding page, by way of example, shows

the development of requirements, with the individual development

stages being listed hierarchically. Each level is marked by an RCW

label put right in front of the respective requirement sentence.

Certification and implementation can be based on a traceability

scheme. Table 6.12 on the current page lists a traceability matrix

that offers an adequate means for these development activities.

RHI RLI

RHS RLS

p
la

tf
o
rm

-

in
d

e
p
e
n
d
e
n

t
p

la
tf

o
rm

-

s
p
e

c
if
ic

Level 1 Level 2 Level 3

RSP 1

RSP 1

RSP 2

RSP 2

RSP 0

Figure 6.6: Requirements categorization windows as requirements

development strategy

The example given in 6.11 also determines three possible require-

ment specification paths (RSP):

• RSP 0: RHI → RLS

• RSP 1: RHI → RLI → RLS

• RSP 2: RHI → RHS → RLS

82

RSP 0 reflects the conventional development process of require-

ments following RTCA/DO-178B which neglects RCWs on Level 2.

RSP 1 integrates all considerations made on system behavior and

design at the first two levels (Level 1 and Level 2). In order to finish

the requirements development process, only platform-specific infor-

mation about the implementation has to be added. Therefore RSP 1

is recommended for a possible reuse.

RSP 2 integrates considerations made on the concrete design

of the system behavior only when the second transition (RHS →
RLS) is done. Whenever the specific platform is changed, the entire

effort expended to provide details on a concrete design has to be

done again in the requirements specification. Thus, RSP 2 is not

recommended for a possible requirements reuse.

83

Chapter 7

Conclusion

Reusing requirements for dependable real-time systems is a method

to reduce the amount of time-consuming and costly certification

activities, which are done in compliance with international safety

standards.

This thesis focuses on the development of a requirements clas-

sification pattern of dependable real-time systems by combining

model-driven aspects with safety-relevant guidelines used to de-

velop requirements. In the domain of safety-critical real-time sys-

tems, requirements are specified by preventing unexpected mali-

cious situations from occurring in the system design. Different

safety approaches, however, entail different interpretations on how

to arrange safety requirements. System safety defines them at sys-

tem level and inherits the safety-critical impact on software require-

ments specified at subsequent development stages. System hazards

are revealed by using the fault-tree analysis (FTA), and the hazard

and operability analysis (HAZOP).

As far as the reuse of system development artifacts is concerned,

the development of an information structure is followed by a clas-

sification of commonalities inherent to the proposed domain. In

this thesis, commonalities can be found in the requirements de-

velopment approach recommended by the guidelines of RTCA/DO-

178B and the reuse-oriented concept of the model-driven archi-

tecture (MDA). Relying on the viewpoint concept of the MDA, we

can divide the system behavior into a platform-independent and

platform-specific part, whereas the RTCA/DO-178B approach to

requirements development separates requirements into high-level

and low-level requirements.

In order to provide a limited and manageable view on the reuse of

requirements, with regard to the system platform determination we

84

extended the MDA platform by the platform layer concept. The plat-

form layer allows viewing inside the system platform, limiting the

scope of a corresponding requirements classification. System prop-

erties are assigned to each individually determined platform layer

in order to decide whether the respective requirement is platform-

independent or platform-specific. Based on the RTCA/DO-178B

software safety guidelines, the requirements classification pattern

constitutes a generic reuse classification strategy, owing to its prin-

ciple of generalizing natural language requirements.

Existing certification requirements documents can serve as an

ideal source for applying the requirements classification pattern.

If there is no two-level documentation, as is available for TTP-OS,

the requirements structure has to be developed by introducing a

traceability scheme. Requirements are specified in natural lan-

guage. The resulting system property elicitation, which is the basis

for the assignment of properties to a platform-specific or platform-

independent RCW, can be facilitated by platform layer property lists

and informal guidelines.

Whenever a classification of requirements has been established,

the number of requirements defined in each of the RCWs pro-

vides information about the effort to be expended to create a more

reusable requirements documentation. A possible modification

from platform-specific to platform-independent requirement must

not change the information about the behavior specified by the re-

quirements. On the other hand, if a requirement is changed from

being platform-independent to being platform-specific, the require-

ments development reflects a stepwise refinement of the system

behavior. These steps are already defined as requirements cat-

egorization windows and hierarchically ordered in three ways as

requirement specification paths (RSP). RSP 0 reflects the conven-

tional requirement specification following RTCA/DO-178B. RSP 1

and RSP 2 describe the final platform-specific low-level behavior of

a dependable real-time system by an additional requirement devel-

opment level. However, for reuse-oriented requirement development

approach we recommend the use of RSP 1 because the majority of

the intended system behavior resides in the platform-independent

RCW even in the low-level requirement stage. Furthermore the in-

troduction of a simple domain model has increased the reuse po-

tential of the classified set of requirements.

In order to develop a safe real-time system, it may be essential

to reuse an already safe real-time system.

85

Glossary

AC AC 20-148 Reusable Software Components [Fed04]

COTS Commercial off-the-shelf

DAL Design assurance level [Rad92]

Dependable system A system is dependable if it is trustworthy

enough that reliance can be placed on the service it deliv-

ers [ALR01].

DER Designated engineering representative [Rad92]

E/E/PE Electrical/electronic/programmable electronic [Int98a]

Error An error is a part of the system state that may lead to a

failure [Kop97].

Event-triggered system A real-time system is even-triggered (ET)

if all communciation and processing activities are triggered by

an event.

Fail-operational The ability of a system to continue to deliver ser-

vice in degraded mode and with known safety risks after the

occurrence of a failure.

Fail-safe The ability of a system to reach a safe state after the oc-

currence of a failure.

Failure A failure is an observable deviation from the specifica-

tion [Kop97].

Fault A fault is the cause of an error.

Fault forecasting Estimating the present number, the future inci-

dence, and the likely consequences of faults [ALR01].

86

Fault tolerance The ability of a functional unit to continue to per-

form a required function in the presence of faults or errors.

FHA Failure hazard analysis

FT-COM layer The Fault-tolerant Communication Layer is the in-

terface between the application layer and the communication

layer (the network). The FT-COM layer has tasks and mes-

sages that ensure the exchange of data between these lay-

ers [TG94].

FTA Fault tree analysis

Functional safety Part of the overall safety relating to the equip-

ment under control (EUC) and its control system, which de-

pends on the correct functioning of the E/E/PE safety-related

systems, other technology safety-related systems and external

risk reduction facilities [Int02].

GSSR Generic software safety requirement

Hard real-time system A real-time computer system that must

meet at least one hard deadline.

Hazard A hazard is an undesirable condition that has the potential

to cause or contribute to an accident

HAZOP Hazard and operability analysis

HLR High-level requirement

JODA JIAWG object-oriented domain analysis

LLR Low-level requirement

MC/DC Modified Condition/Decision Coverage

MDA Model-driven architecture

MISRA Motor Industry Software Reliability Association

NL Natural language

OS Operating system

PFH Probability of a dangerous failure per hour

87

PIR Platform-independent requirement

PIV Platform-independent viewpoint

PL Platform layer

Platform A platform is a set of subsystems and technologies that

provide a coherent set of functionality through interfaces and

specified usage patterns, which any application supported

by that platform can use without concern for the details

of how the functionality provided by the platform is imple-

mented [MM03].

PLPL Platform layer property list

Problem domain The part of the world where the problem solved by

a piece of software resides, and in terms of which that problem

is defined [Kov98].

PSA Preliminary system assessment

PSAC Plan for software sspects of certification [Rad92]

PSR Platform-specific requirement

RCP Requirement classification pattern

RCW Requirement classification window

RDL Requirement Development Level

Real-time entity A real-time entity is a state variable of relevance

for the given purpose [Kop97].

Real-time image A real-time image is the current picture of an RT

entity [Kop97].

Real-time object A real-time object is located on a node and con-

tains an RT entity or RT Image [Kop97].

Real-time system A real-time computer system is a computer sys-

tem in which the correctness of the system behavior depends

not only on the logical results of the computations, but also on

the physical time when the results are produced.

Requirement A natural language statement describing the in-

tended system behavior by means of system properties.

88

Requirements engineering Requirements engineering is the dis-

cipline concerned with understanding and documenting soft-

ware requirements.

RHI Platform-independent high-level requirement

RHS Platform-specific high-level requirement

Risk Risk is the product of hazard severity and hazard probability.

The severity of a hazard is the worst-case damage of a potential

accident related to the hazard [B.S03].

RLI Platform-independent low-level requirement

RLS Platform-specific low-level requirement

Robustness Robustness is the degree to which a system operates

correctly in the presence of exceptional inputs or stressful en-

vironmental conditions [IEE91].

RSC Reusable software component

RSP Requirement specification path

RT Real-time

RTC Robustness test cases

RTCA Radio Technical Commission for Aeronautics

Safety Dependability with respect to the non-occurrence of danger-

ous failures. Measure of continuous delivery of either correct

service or incorrect service after benign failure.

Safety case A safety case is a combination of a sound set of ar-

guments supported by analytical and experimental evidence

substantiating the safety of a given system [BB98].

Safety integrity The probability of a safety-related system satis-

factorily performing the required safety functions under all the

stated conditions within a stated period of time.

Safety integrity level (SIL) Discrete level (one out of a possible

five) for specifying the safety integrity requirements of the

safety functions to be allocated to the E/E/PE safety-related

systems, where safety integrity level 4 has the highest level of

safety integrity and safety integrity level 0 has the lowest.

89

Safety life-cycle Necessary activities involved in the implementa-

tion of safety-related systems, occurring during a period of

time that starts at the concept phase of a project and finishes

when all the safety-related systems are no longer available for

use.

Safety-critical system A system where a failure can cause damage

on persons, property or the environment.

Service The service that a system delivers is the behavior as it is

perceived by a user.

SIL see Safety integrity level.

Soft real-time system A real-time computer system that is not

concerned with any hard deadline.

Software engineering (SE) (1) the application of a systematic, dis-

ciplined, quantifiable approach to the development, opera-

tion, and maintenance of software; that is, the application

of engineering to software. (2) the study of approaches as in

(1) [IEE91]

SSA System safety assessment

SSAP System safety assessment process

SSSR Specific software safety requirements

System A system is a set of components – both computer-related

and non-computer-related – that provides a service to a user.

Time-triggered protocol A communication protocol where the

point in time of message transmission is derived from the pro-

gression of the global time [Kop97]

Time-triggered system A real-time computer system is time-

triggered (TT) if all communication and processing activities

are initiated at predetermined points in time at an a priori

designated tick of a clock.

TTA Time-triggered architecture

TTP-OS Time-triggered protocol operating system

TTP/A Time-Triggered Protocol SAE class A

TTP/C Time-Triggered Protocol SAE class C

90

User A user is another system (for example, a human or computer)

that interacts with the system at the service interface.

91

Bibliography

[Abb86] Russell J. Abbott. Software Development - An integrated Ap-

proach. Wiley-Interscience, March 1986.

[AK01] K. Allenby and T. Kelly. Deriving safety requirements using sce-

narios. In Fifth IEEE International Symposium on Requirements

Engineering, pages 228–235, August 2001.

[ALR01] A. Avizienis, J. Laprie, and B. Randell. Fundamental Concepts of

Dependability, 2001.

[App97] B. Appleton. Patterns and Software: Essential Concepts and Ter-

minology, 1997.

[BB98] Peter Bishop and Robin Bloomfield. A Methodology for Safety

Case Development. In F. Redmill and T. Anderson, editors, In-

dustrial Perspectives of Safety-critical Systems: Proceedings of

the Sixth Safety-critical Systems Symposium, Birmingham 1998,
pages 194–203. Springer, 1998.

[BdC91] J. Burnham and D. de Champeaux. Object oriented (domain)

analysis. In OOPSLA ’91: Addendum to the proceedings on

Object-oriented programming systems, languages, and applica-

tions (Addendum), pages 83–90, New York, NY, USA, 1991. ACM
Press.

[BH95] J.P. Bowen and M.G. Hinchey. Seven More Myths of Formal Meth-

ods. IEEE Software, 12(4):34–41, 1995.

[B.S03] B.S.Dillon. Engineering Safety, volume 1. World Scientific Pub-
lishing Co. Pte. Ltd., Series in Industrial and System Engineering
edition, 2003.

[CW96] E.M. Clarke and J.M. Wing. Formal methods: state of the art and

future directions. ACM Comput. Surv., 28(4):626–643, 1996.

[CY91] P. Coad and E. Yourdon. Object-oriented analysis (2nd ed.). Your-
don Press, Upper Saddle River, NJ, USA, 1991.

[Cyb98] J.L. Cybulski. Patterns in Software Requirements Reuse. In
Proc. 3rd Australian Conference on Requirements Engineering

ACRE’98, pages 135–153, Deakin University, Geelong, Australia,
October 1998.

92

[Dav93] A. Davis. Software Requirements: Objects, Functions and States.
Prentice Hall, 1993.

[Fed00] Federal Aviation Administration (FAA). System Safety Handbook.
December 2000.

[Fed04] Federal Aviation Admistration (FAA). Advisory Circular 20-148
Reusable Software Components, December 2004.

[GHJV02] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design pat-

terns: abstraction and reuse of object-oriented design. Software

pioneers: contributions to software engineering, pages 701–717,
2002.

[GKP98] R. Gotzhein, M. Kronenburg, and C. Peper. Reuse in Require-

ments Engineering: Discovery and Application of a Real-Time Re-

quirement Pattern. In FTRTFT ’98: Proceedings of the 5th Interna-

tional Symposium on Formal Techniques in Real-Time and Fault-

Tolerant Systems, pages 65–74, London, UK, 1998. Springer-
Verlag.

[Hal90] A. Hall. Seven Myths of Formal Methods. IEEE Software, 7(5):11–
19, 1990.

[HED93] S.D. Harker, K.D. Eason, and J.E. Dobson. The change and

evolution of requirements as a challenge to the practice of software

engineering. In Proceedings of IEEE International Symposium on

Requirements Engineering, pages 266–272, 1993.

[HHCB06] Wolfgang Herzner, Bernhard Huber, György Csertan, and An-
drás Balogh. The DECOS Tool-Chain: Model-Based Develop-
ment of Distributed Embedded Safety-Critical Real-Time Sys-
tems. ERCIM News, 67, Oct. 2006.

[Hil98] M. Hiller. Software Fault Tolerance Techniques from a RealTime

Systems Point of View: An Overview. Technical Report 98-16,
Dept. of Computer Engineering, Chalmers University of Tech-
nology, Sweden, 1998.

[HKK04] B. Hardung, T. Kölzow, and A. Krüger. Reuse of software in

distributed embedded automotive systems. In EMSOFT ’04: Pro-

ceedings of the 4th ACM international conference on Embedded

software, pages 203–210, New York, NY, USA, 2004. ACM Press.

[HR99] V. Hamilton and C. Rees. Safety Integrity Levels: A Industrial

Viewpoint. In F. Redmill and T. Anderson, editors, Towards Sys-

tem Safety - Proceedings of the Seventh Safety-critical System

Symposium, Huntington, UK, 1999, pages 111–126. Springer,
1999.

[HV01] K. J. Hayhurst and D. S. Veerhusen. A Practical Approach To

Modified Condition/Decision Coverage. In 20th Digital Avionics

Systems Conference (DASC), volume 1, pages 1B2/1–1B2/10,
Daytona Beach, Florida, USA, October 2001.

93

[IEE91] IEEE. IEEE Std 610.12-1990 - Standard Glossary of Software

Engineering Terminology, January 1991.

[IEE98] IEEE. IEEE Std 1012-1998 - Standard for Software Verification

and Validation, March 1998.

[Int98a] International Electrotechnical Commission (IEC). IEC 61508,
Part 1, General requirements, 1998.

[Int98b] International Electrotechnical Commission (IEC). IEC 61508,
Part 3, Software Requirements, 1998.

[Int02] International Electrotechnical Commission (IEC). Functional

Safety in IEC 61508 - A basic Guide, 2002.

[KB03] H. Kopetz and G. Bauer. The Time-Triggered Architecture. Pro-

ceedings of the IEEE, 91(1):112 – 126, January 2003.

[KCH+90] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, and A.S. Pe-
terson. Feature-Oriented Domain Analysis (FODA) Feasability

Study. ESD-90-TR-222 CMU/SEI-90-TR-21, Software Engineer-
ing Institute, Carnegie Mellon University, Pittsburgh, Pennsylva-
nia 15213, November 1990.

[KG94] H. Kopetz and G. Grünsteidl. TTP-A Protocol for Fault-Tolerant

Real-Time Systems. Computer, 27(1):14–23, 1994.

[Kop93] H. Kopetz. Should Responsive Systems be Event-Triggered or

Time-Triggered? Institute of Electronics, Information, and Com-

munications Engineers Transactions on Information and Systems,
E76-D(11):1325–1332, 1993.

[Kop97] H. Kopetz. Real-Time Systems: Design Principles for Distributed

Embedded Applications. Kluwer Academic Publishers, Norwell,
MA, USA, 1997.

[Kov98] B. L. Kovitz. Practical Software Requirments - A Manual of Con-

tent and Style. Manning Publications Co., 1998.

[Kru92] C.W. Krueger. Software Reuse. ACM Comput. Surv., 24(2):131–
183, 1992.

[LCS91] N.G. Leveson, S.S. Cha, and T.J Shimeall. Safety verification of

Ada programs using software fault trees. IEEE Software, 8(4):48–
59, 1991.

[Lev86] N.G. Leveson. Software safety: why, what, and how. ACM Com-

put. Surv., 18(2):125–163, 1986.

[Lev91] N.G. Leveson. Software safety in embedded computer systems.
Commun. ACM, 34(2):34–46, 1991.

[Lev95] N.G. Leveson. Safeware - System Safety and Computers.
Addison-Wesley, 1995.

[Lev03] N.G. Leveson. White paper on Approaches to System Engineering,
April 2003.

94

[Lia00] L. Liao. From requirements to architecture: The state of the art

in software architecture design. Technical report, Department of
Computer Science and Engineering, University of Washington,
2000.

[LMV97] W. Lam, J.A. McDermid, and A.J. Vickers. Ten steps towards

systematic requirements reuse. In Proceedings of the Third IEEE

International Symposium on Requirements Engineering, pages 6–
15, Dept. of Compuer Science, York University, January 1997.

[McD02] John A. McDermid. Software hazard and safety analysis. In
FTRTFT ’02: Proceedings of the 7th International Symposium

on Formal Techniques in Real-Time and Fault-Tolerant Systems,
pages 23–36, London, UK, 2002. Springer-Verlag.

[MM03] J. Miller and J. Mukerji. MDA Guide 1.0.1. Object Management
Group, June 2003.

[NE00] B. Nuseibeh and S. Easterbrook. Requirements Engineering: A

Roadmap. In ICSE - Future of SE Track, pages 35–46, 2000.

[Par93] S. Park. Software Requirement Text Reuse. In The proceedings of

the Sixth Annual Workshop on Software Reuse, Center for Soft-
ware Systems Engineering George Mason University, 1993.

[PD90] R. Prieto-Díaz. Domain Analysis: An Introduction. SIGSOFT

Softw. Eng. Notes, 15(2):47–54, 1990.

[PGK97] C. Peper, R. Gotzhein, and M. Kronenburg. A Generic Approach to

the Formal Specification of Requirements. ICFEM, 00:252, 1997.

[PK98] S. Poledna and G. Kroiss. The Time-Triggered Protocol TTP/C.
Real-Time Magazine, 4:98–102, 1998.

[Rad92] Radio Technical Commission for Aeronautics (RTCA). DO-
178B/ED12 - Software Considerations in Airborne Systems and

Equipment Certification, December 1992.

[Rad00] Radio Technical Commission for Aeronautics (RTCA). DO-
254/ED-80 - Design Assurance Guidance for Airborne Electronic

Hardware, April 2000.

[Rus91] J. Rushby. Measures and Techniques for Software Quality As-

surance. Technical report, Computer Science Laboratory, SRI
International, 333 Ravenswood Avenue, Menlo Park, CA 94025,
1991.

[Rus93] J. Rushby. Formal Methods and the Certification of Critical Sys-

tems. Technical report, Computer Science Laboratory, SRI In-
ternational, Menlo Park CA 94925, USA, December 1993.

[Sch01] Schlatterbeck, R. and Elmenreich, W. TTP/A: A Low Cost Highly

Efficient Time-Triggered Fieldbus Architecture. In Proceedings of

the SAE World Congress 2001, March 2001, Detroit, Michigan,

USA, March 2001.

95

[Soc96a] Society of Automotive Engineers (SAE). ARP 4754 - Certification

considerations for Highly Integrated or Complex Aircraft Systems,
1996.

[Soc96b] Society of Automotive Engineers (SAE). ARP 4761 - Guidelines

and Methods for Conducting the Safety Assessment Process on

Civil Airborne Systems and Equipment, 1996.

[Sof98] Software Engineering Standards Committee of the IEEE Com-
puter Society. IEEE Guide for Developing System Requirements

Specifications, December 1998.

[Spi00] C.R. Spitzer. The Avionics Handbook. CRC Press, December
2000.

[Sto96] N. Storey. Safety-Critical Computer Systems. Pearson, 1996.

[Sur94] N. Suri. Advances in ULTRA-Dependable Distributed Systems.
IEEE Computer Society Press, Los Alamitos, CA, USA, 1994.

[TG94] C. Tanzer and M. Glueck. TTP-Os - The Time-Triggered and Fault-

Tolerant RTOS. Real-Time Magazine, 4:61–64, 1994.

[The98] The Motor Industry Software Reliability Association (MISRA).
Guidelines For The Use Of The C Language In Vehicle Based Soft-

ware, April 1998.

[YZ80] R.T. Yeh and P. Zave. Specifying Software Requirements. In Pro-

ceedings of the IEEE, volume 68, pages 1077–1085, 1980.

[ZG02] D. Zowghi and V. Gervasi. The Three Cs of Requirements: Con-

sistency, Completeness, and Correctness, 2002.

96

Index

AC 20-148 . 24
Accident .34
Analyzing (of requirements)36

Behavior classification 49
Best effort . 7
Classification schemes 26

CNI . 9
Code coverage . 30
Cognitive distance . 56

Communication network interface9
Composability .9
cross-platform layer requirement . . . 80

Customer requirements38
DAL . 29
Dependability .11

Derived safety requirements 38
Derived system requirements40
Design assurance level29

Distributed real-time systems7
DO-178B .. .29
Domain analysis .22

Domain boundary . 57
Domain model .23, 76
Dynamic testing . 19

Elicitation (of requirements) 36
Error Detection . 9
Event . 6
Event-triggered systems6

Fail-operational . 6
Fail-safe . 6
Failure conditions . 29

Failure hazard analysis 30
Fault forecasting . 14
Fault prevention .13

Fault removal .13
Fault tolerance . 13
Fault tree analysis 45

Feature-oriented domain analysis . . .23
Flexibility .9
FODA23

Formal methods . 20
Formal specification21
Formal verification 21

FTA .45

Generic software safety requirement 43
Guaranteed response7
Hazard . 34

Hazard analysis . 37
techniques . 45

Hazard and operability analysis 47

HAZOP ... 47
High-level software requirement42
IEC 61508 . 27

Informal guidelines74
JIAWG Object-Oriented Domain Analy-

sis . 23

Job .5
JODA .. .23
Low-level software requirement42

Machine domain .34
MC/DC .. .30
MDA .. 2

MISRA .. .31
Model-driven architecture2, 50
Modeling (of requirements) 36

Natural language . 20
Natural language processing 24
Natural language requirements 74

NL processing .24
PHA .. 16
Platform behavior

classification .56

specification . 50
Platform layer . 49, 53
Platform layer property list 71

Platform-independent viewpoint57
Platform-specific property 60
Platform-specific property (Domain

Model) .77
Preliminary system assessment 30
Problem domain . 33

Protocol latency . 9
Raw requirements . 38
RCP .2

RCW .. 2
distribution . 78

RDL . 81

Real time . 4

97

cluster . 5
communication requirements8

computer system 4
concept . 4
controlled object 4

environment . 5
instrumentation interface 5
man-machine interface5

operator . 4
Real-time entity . 8
Real-time image .8

Real-time object .8
Real-time requirement pattern 25
Real-time systems . 4

best effort . 7
classification . 6
distributed . 7

event-triggered . 6
fail-operational .6
fail-safe .6

guaranteed response 7
platform determination 50
platform viewpoints 52

resource-adequate 7
resource-inadequate7
time-triggered . 6

Related work .22

Requirement classification pattern . . 2,
49

Requirement classification window .. 2,

49
Requirement components25
Requirement coverage30

Requirement definition (1) 57
Requirement definition (2) 58
Requirement specification path 82

Requirements
application-oriented classification

49

classification .64
classification axioms 59
classification pattern 58, 59

classification window59
cross-platform layer80
evaluation .64

high-level . 59
low-level .59
natural language 74

using a domain model 76
using RCW concepts 80

Requirements and safety33

Requirements capture 38
Requirements elicitation 36
Requirements engineering 33

Requirements reuse 22
Resource adequacy . 7

Resource inadequacy 7
Resource-adequate . 7
Resource-inadequate 7

Reusable software component 24
Risk . 37
Risk analysis . 37

Robustness .. 12
Robustness test cases31
RT systems .4

RTCA/DO-178B .. 29
RTS . 4
SADT ... 23

Safety function requirement 29
Safety integrity levels26
Safety integrity requirement 29

Safety problem .. 33
Safety requirement development 35
Safety requirements43

Safety requirements engineering 33
Safety standards . 27

IEC 61508 . 27

RTCA/DO-178B 29
Safety-critical aspects11
Safety-critical system 14
Scope (of thesis) .2

Secondary dependability attributes . 12
SIL .26
SIL 0 . 28

SIL 1 . 28
SIL 2 . 28
SIL 3 . 28

SIL 4 . 28
Software hazard . 16
Software requirements 41

constraints .. .41
Software safety . 16
Software safety requirements43

Software system safety16
Software validation 17
Software verification 17

Solution domain .33
Specific intended use18
Specific software safety requirement 43

SSHA .. .17
Static Testing .. 19
Structural coverage 30

Structured analysis and design tech-
nique (SADT) 23

Subsystem hazard analysis17

System .. 1
System properties . 57

98

System properties (System Require-
ments) .38

System requirements38
System safety .14, 44
System safety assessment 30

Task . 5
Temporal accuracy . 8
Testing . 19

Time-triggered architecture 9
Time-triggered protocol 10
Time-triggered systems6

Traceability . 42
Trigger .6
TTA . 9

TTP . 10
TTP-OS

application mode 66

deadline monitoring 65
fault management 66
global time . 65

local time . 65
on-line kernel .65
platform layer 68

platform layer specification 68
RCP . 66
RCP results . 73
RCP sample application70

requirements classification 67
requirements documentation . . . 66
runtime kernel 65

SDD .. 66
SRD .. 66
system overview 64

task execution 65
TTP/A . 10
TTP/C .. 10

Validation . 19
Validation testing .19
Verification .18

Verification methods 19
Well-defined problem34

99

	Title Page
	Abstract
	Danksagung
	Contents
	1 Introduction
	1.1 Scope

	2 Fundamentals
	2.1 Real-Time Systems
	2.1.1 Real-Time
	2.1.2 Classifications

	2.2 Distributed Real-Time Systems
	2.2.1 RT Entity and RT Image
	2.2.2 RT Communication Requirements
	2.2.3 Time-Triggered Architecture

	2.3 Safety-Critical Aspects
	2.3.1 Dependability
	2.3.2 System and Software Safety

	2.4 Software Validation and Verification
	2.4.1 Verification, Validation and Argumentation
	2.4.2 Formal Methods

	3 Related Work
	3.1 Requirements Reuse
	3.1.1 Domain Analysis
	3.1.2 AC 20-148 Reusable Software Components (RSC)
	3.1.3 Natural Language Processing
	3.1.4 Real-Time Requirement Pattern

	3.2 Classification Schemes
	3.2.1 Safety Integrity Levels
	3.2.2 Safety Standards
	3.2.3 MISRA C

	4 Requirements and Safety
	4.1 Safety Requirements Engineering
	4.1.1 Safety Problem, Hazards and Requirements
	4.1.2 Safety Requirement Development

	4.2 Requirements Capture
	4.2.1 System and Software Requirements
	4.2.2 Software Safety Requirements

	4.3 Hazard Analysis Techniques
	4.3.1 Software FTA
	4.3.2 Software HAZOP

	5 Behavior Classification
	5.1 Platform Behavior Specification
	5.1.1 Real-Time System Platform Determination
	5.1.2 RT System Platform Viewpoints
	5.1.3 Platform Layers

	5.2 Platform Behavior Classification
	5.2.1 Viewpoints and Cognitive Distance
	5.2.2 System Properties and Requirements
	5.2.3 Requirements Classification Pattern
	5.2.4 Classification Axioms

	6 Requirements Evaluation
	6.1 TTP-OS (Dependable RTOS)
	6.1.1 TTP-OS (System Overview)
	6.1.2 TTP-OS Requirements Documentation

	6.2 TTP-OS Requirements Classification
	6.2.1 TT RTS Platforms
	6.2.2 TTP-OS Platform Layer Specification
	6.2.3 RCP Sample Application

	6.3 RCP for TTP-OS (Results)
	6.3.1 System Property Identification In Natural Language Requirements
	6.3.2 RCP Extension using a Domain Model
	6.3.3 Distribution of Requirements of a Platform Layer to enable Reuse
	6.3.4 Requirements Development Using RCW Concepts

	7 Conclusion
	Glossary
	Bibliography
	Index

