
D I P L O M A R B E I T

Large Vocabulary

Continuous Speech Recognition Systems

and

Maximum Mutual Information Estimation

Ausgeführt am Institut für

Institut für Statistik und Wahrscheinlichkeitstheorie
der Technischen Universität Wien

unter der Anleitung von
Univ.Prof.Dipl.-Ing.Dr.techn. Friedrich Leisch

durch

Markus Cozowicz
Name

Bleichergasse 1/5, A-1090 Wien
Anschrift

August 15, 2006 Unterschrift (Student)

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Contents

1 Motivation 5

2 Introduction 5
2.1 Human Speech . 6

2.1.1 Place of Articulation 6
2.1.2 Manner of Articulation 7

2.2 Signal Transformation . 9
2.3 Modeling Phonemes . 10

3 Hidden Markov Model 10
3.1 Markov Model . 10
3.2 Hidden Markov Model . 12
3.3 Three Basic Problems . 13

3.3.1 Probability of an Observation Sequence 14
3.3.2 Choosing the Optimal State Sequence - Viterbi Algo-

rithm . 15
3.3.3 Estimation of Model Parameters 16
3.3.4 Continuous Observation Densities in HMMs 18

3.4 Maximum Mutual Information Estimation 20
3.4.1 Introduction . 20
3.4.2 Estimation of Model Parameters 21

4 MMIE Implementation 22
4.1 Introduction . 22
4.2 Backward Procedure . 24
4.3 Forward Procedure . 25
4.4 Parameter Estimation . 26
4.5 Pruning . 27
4.6 Descriptive Statistics . 29

5 Training a Large Vocabulary Continuous Speech Recogni-
tion System 33
5.1 Introduction . 33
5.2 Data Introduction . 33
5.3 Data Preparation . 34

5.3.1 Dictionary Format Conversion 34
5.3.2 Phoneme List . 34
5.3.3 Dictionary and Phoneme List with sil/sp 35
5.3.4 Word Level Transcripts 36

2

5.3.5 Monophone Transcripts 37
5.3.6 Audio Data . 38

5.4 Trainings Process . 38
5.4.1 Training Monophone HMMs 38
5.4.2 Training Triphone HMMs 39
5.4.3 Training a Language Model 39
5.4.4 Export HTK Models to Sail Labs Models 39

5.5 MMI Experiments . 40
5.6 Conclusion . 43

A Acoustic and Language Model Training Process 44
A.1 Training Monophone HMMs 45

A.1.1 Global Means and Variances 45
A.1.2 Creating Flatstart HMMs 47
A.1.3 Training using Monophone Transcripts 47
A.1.4 Creating sp and Tying with sil Center State 48
A.1.5 Training using Monophone including sp Transcripts . 48
A.1.6 Alignment using Monophone Transcripts 49
A.1.7 Training using Monophone aligned Transcripts 49

A.2 Training Triphone HMMs . 50
A.2.1 Creating Triphone Transcripts and Lists 50
A.2.2 Creating the Triphone Clone Scripts 51
A.2.3 Initializing Triphone HMMs with Monophone HMMs . 52
A.2.4 Performing Forward/Backward using Triphone Tran-

scripts . 52
A.2.5 Creating a Triphone based Dictionary and a Complete

Triphone List . 53
A.2.6 Tying HMMs according to Linguistic Criteria 54
A.2.7 Performing Forward/Backward on Tied HMMs 56
A.2.8 Increasing Mixtures 56

A.3 Training a Language Model 57
A.3.1 Text Corpora and Audio Transcript Conversion 57
A.3.2 Text Input File Lists 58
A.3.3 Create Chunks of Files 58
A.3.4 ID’ing Text . 58
A.3.5 Counting N-grams . 59
A.3.6 Merging Multiple Count Files 59
A.3.7 Creating the Forward Tree 60
A.3.8 Creating the Language Model 60

A.4 Exporting HTK Models . 61
A.4.1 Resolving Unseen HMMs 61
A.4.2 Matador Model Creation 62
A.4.3 Fast Gaussian Tree . 62

A.5 MMI Training . 62

3

Acknowledgments

I want to thank Sail Labs Technology AG for sponsoring this thesis and pro-
viding machines and corpora for experiments. Thanks goes to Andreas Türk
for providing his in-depth knowledge of the HTK toolkit. Many thanks to
Gerhard Backfried and Norbert Pfanner for supporting the Sail Labs speech
recognizer. I would like to thank Jürgen Riedler for sharing his knowledge on
the arabic language. Finally, thanks for guidance and constructive criticism
to Prof. Friedrich Leisch.

Abstract

German

Diese Arbeit gibt eine allgemeine Einführung in den Bereich der automa-
tisierten Spracherkennung mit Hilfe von Hidden Markov Modellen (HMM).
Es wurde eine vollständige Trainingsumgebung von Sprachmodellen inklu-
sive Erzeugung von Mix Modellen unter Verwendung des Hidden-Markov-
Toolkit (HTK) und eines Spracherkenners von Sail Labs’ erstellt. Um die
Erkennungsrate zu erhöhen, wurde Maximum Mutual Information (MMI)
Parameterschätzung implementiert. Ein 93h umfassender arabischer Broad-
cast News Korpus wurde für die Experimente verwendet. Eine Verbesserung
der Erkennungsrate durch MMI am verwendeten Korpus konnte nicht fest-
gestellt werden, es wird aber vermutet, dass die nötige Modell Umwandlung
um HTK trainierte Modelle in Sail Labs’ Spracherkenner zu verwenden,
dafür verantwortlich ist.

English

This thesis presents a general introduction to automatic speech recognition
based on Hidden Markov models (HMM). Using the Hidden-Markov-Toolkit
(HTK) and Sail Labs’ speech recognizer a complete trainings environment
including mixture model training was created. To improve accuracy Maxi-
mum Mutual Information (MMI) estimation was implemented. Experiments
were carried out using an 93h Arabic broadcast news corpus. MMI could not
improve the accuracy on the Arabic corpus, but it is presumed that model
transformations needed for usage of HTK trained models in Sail Labs’ speech
recognizer are responsible.

Keywords: speech recognition, hidden Markov models, maximum mutual
information training, discriminative training.

4

1 Motivation

The Sail Labs Technology AG created a near real time speech recognizer and
trained acoustic models for various languages including English, German,
French, Arabic and many more. Business demands constant improvement
of the recognizer and models.

Supporting training of models using a public available toolkit and the
increasing accuracy is such an important improvement. One of the stan-
dard methods to increase accuracy is model estimation using the Maximum
Mutual Information (MMI) criteria.

This thesis describes the complete training process of statistical models
for Sail Labs’ speech recognizer. As the targeted toolkit does not support
MMI estimation, it is extended. A detailed description of the implementa-
tion of MMI estimation is given. The accuracy of the current Arabic model
is not as excellent as the English model and therefore experiments are carried
out using the Arabic corpus.

2 Introduction

Automatic speech recognition has been researched for more than 30 years.
Today a state of the art toolkit, namely the Hidden-Markov-Toolkit 1 (HTK),
is available for the public. Based on this toolkit and the included HTK
Book [7] a general introduction to speech recognition is given. To improve
accuracy the toolkit is extended to support maximum mutual information
estimation.

The speech recognition itself is performed using Sail Labs’ 2 speech recog-
nizer and therefore the interaction with HTK and associated tools are de-
scribed. The automatic speech recognition task is commonly split into three
parts [2].

� A Front-End transforming the speech signal into feature vectors con-
taining spectral and/or temporal information. Common methods are
fast Fourier transform (FFT), linear predictive coding (LPC) and Mel
Frequency Cepstral Coefficients (MFCCs).

� An Acoustic Unit Matching System matches units of features.
Units can be words or sub-words, such as phonemes or syllables. Based
on the task (e.g. single digit or continuous speech recognition) the unit
size is chosen. Continuous speech recognition typically uses triphones
(a phoneme with a left and a right context).

1http://htk.eng.cam.ac.uk/
2http://www.sail-technology.com

5

� Language Model: Apart from basic acoustic information, knowledge
about the grammatical structure of a language is used. The structure
can either be obtained by specifying a formal grammar of the language
or gathering statistics from big text corpora (e.g. word bi-grams which
is the number of occurrences of word W1 followed by word W2).

2.1 Human Speech

When humans speak, air is pressed out of the lungs, passing the vocal cords
and finally either the mouth or the nose. Different sounds are generated by
varying all the previously mentioned parts, called the vocal tract.

The smallest linguistic unit is called a phoneme [6]. Each word can be
represented by multiple pronunciations consisting of a sequence of phonemes.
The International Phonetic Association (IPA) [1] provides a standardized
alphabet. A list of phonemes for the Arabic language used in all experiments
is given in Table 1.

Besides the IPA alphabet, the table also lists Sail Labs’ (SL) internal
phoneme representation derived from Buckwalter encoding and Arabic sam-
ple letters. To overcome HTK limitations certain phones are re-mapped and
listed in the HTK column.

Furthermore the phonemes are categorized into consonants in Tables 2
and vowels in Table 3 categorized by linguistic criteria. v and u denote
voiced and unvoiced. The Sail Labs’ internal encoding is used for phonemes
in Tables 2 and 3.

2.1.1 Place of Articulation

The different phonemes are formed by constriction of the vocal tract. This
constriction can happen at different places. A subset used for the Arabic
language is

� bilabial: The sound is formed by the closure of the lips.

� labiodental: The lower lip is pressed against the upper teeth to pro-
duce the sound.

� interdental: Interdental consonants are produced by placing the blade
of the tongue against the upper incisors.

� dental: Dentals are articulated with either the lower or the upper
teeth, or both, rather than with the gum ridge.

� dentalveolar: Dentalveolars are articulated with the flexible front
part of the tongue.

� alveolar: The alveolar ridge, which is just behind the top front teeth
is touched by the tongue.

6

SL IPA HTK Arabic SL IPA HTK Arabic
A /P/, /a:/ � d /d/ �
l /l/ � $ /S/ X ��
Y /P/ �� 2 /Q/ B 	
n /n/
� 6 /D/ C
�
s /s/ � ? /P/ G 	
H /è/ � q /q/

�
b /b/ �� D /d&/
�
x /X/ � f /f/

�
t /t/ � T /t&/ �
r /r/ � g /K/

	
k /k/ � O /T/ ��
w /w/, /u:/ � S /s&/ �
j /Z/ �� Z /z&/
�
m /m/ � J /P/

�
�

z /z/
� BRT

h /h/ � GRB

y /j/, /i:/ �� sil

W /P/ ��

Table 1: Phoneme Alphabet

� palatal: When the tongue touches the middle part of the palate.

� velar: The back part of the palate is touched by the tongue.

� uvular: Uvulars are articulated with the back of the tongue against
or near the uvula.

� pharyngeal: The root of the tongue is pressed against the pharynx.

� glottal: This sound is produced by using the glottis.

A complete list can be found in [25].

2.1.2 Manner of Articulation

Another classification criteria is the manner of articulation, or how the vocal
tract constricts. Again, the subset used for the Arabic language is

7

bi- labio- inter- dental dent- al-
labial dental dental alveolar veolar

plosive
v b d D
u t

fricative
v 6,Z z
u f O s S

nasal m n
trill r

lateral l

palatal velar uvular pharyngeal glottal

plosive
v J,W,Y
u k q 2 ?

fricative
v j g
u $ H h

non-emphatic emphatic

plosive
v d,W,Y D,2
u t,? T,q

fricative
v z,k,j,J Z,g
u s,$,h S,x,H

Table 2: Sail Labs encoded categorized consonants

� plosive: Plosives are produced by stopping the airflow in the vocal
tract.

� fricative: The vocal tract is nearly closed to produce these phonemes.

� nasal: If the air leaves the vocal tract through the nose instead of the
mouth.

� trill: The sound is produced by vibrations between the articulator and
the place of articulation.

� lateral: Laterals are pronounced with an occlusion made somewhere
along the axis of the tongue, while air from the lungs escapes at one
side or both sides of the tongue.

Additional information can be found in [26].

8

open close
front A y
back w

Table 3: Sail Labs encoded categorized vowels

2.2 Signal Transformation

The very rich information of the human speech found in the audio sig-
nal is split into various features. The Mel Frequency Cepstral Coefficients
(MFCCs) are commonly used for speech recognition ([7]). The following
description is based on [4]. To extract the features from the audio signal
several steps have to be performed:

1. Divide into frames: The signal is divided into frames by apply-
ing an overlapping windowing function in fixed intervals (e.g. 10ms).
Typically a Hamming window defined as

w(n) =

{
0.54 − 0.46 cos

(
2πn
M

)
, 0 ≤ n ≤ M

0, otherwise,

where M + 1 ist the window size and w(n) are the coefficients, is used
and removes edge effects at the start and end of the frame. Oppenheim
& Schafer [3] give a description of commonly used window functions
in signal processing. This process generates a Cepstral feature vector
for each frame.

2. Discrete Fourier Transform for each frame.

3. Log of amplitude spectrum, discards the phase information but
retains the amplitude information. According to [5] the amplitude is
most important for speech perception.

4. Mel-scaling and smoothing: The spectrum is smoothed and more
important areas are emphasized by transforming the data to the Mel-
scale. Pitch is not perceived in a linear manner and therefore the Mel-
scale is based on a mapping between actual frequency and perceived
pitch. This scale is linear up to 1kHz and logarithmic above.

5. Discrete Cosine Transform (DCT): The components of the Mel-
spectral vectors of each frame are highly correlated. To decorrelate
the components the DCT [23] is applied.

For all experiments a 45 dimensional Cepstral feature vector is calculated
for frames of 10ms. A more detailed description can be found in [2].

9

2.3 Modeling Phonemes

Based on MFCCs different approaches to model phonemes have been devel-
oped. Hidden Markov models are predominantly used for modeling phonemes.
Such systems are IBM ([9], [10]), CMU ([12], [13]), Philips [11], BBN/LIMSI
([14], [15]) and HTK [16]. Recent development effort was put into discrim-
inative training of HMMs using as Maximum Mutual Information (MMI)
estimation (see chapter 3.4) and Minimum Classification Error (MCE) [19].
Chapter 3 gives a detailed description on HMMs. As an alternative neural
networks are used in [17] or combinations of HMMs and neural networks
[18].

3 Hidden Markov Model

This section describes the statistical model in use for speech recognition.
The hidden Markov model (HMM) is based on the assumption that the
speech signal can be well characterized as a parametric random process. The
basic theory was published by Baum [8] in the late 1960s and a complete
description can be found in [2].

3.1 Markov Model

A Markov model consists of a set of N distinct states. In Figure 1 a weather
system with states sunny, rainy and stormy is presented. The system changes
its current active state in regular intervals according to probabilities associ-
ated to each state. The time instants associated with the state changes are
denoted as t = 1, 2, ..., the active state is denoted by rt. The time period for
the weather system is a single day. A complete probabilistic description of
the system would require the active state and all the preceding states that
lead to the current active state. In the case of a first order Markov chain it
is assumed that the current state depends only on a single preceding state.

P [rt = j|rt−1 = i, rt−2 = k, ...] = P [rt = j|rt−1 = i]

Therefore only state-transition probabilities aij involving two states need to
be specified of the following form

aij = P [rt = j|rt−1 = i], 1 ≤ i, j ≤ N

with these properties

aij ≥ 0 ∀i, j
N∑

j=1

aij = 1 ∀i

10

Figure 1: A Markov model of the weather

The transition probabilities of the weather example are found on top of the
arrows between the states. Finally initial probabilities for the first state
defined as

πi ≥ 0 1 ≤ i ≤ N
N∑

i=1

πi = 1

are required.
The output of an observable Markov model are the visited states as time

passes by. The states correspond directly to the observed events. A question
answered by the model in figure 1 could be:

What is the probability of this week’s forecast

Sunny-Sunny-Rainy-Stormy-Rainy

according to the model?

11

The observation sequence, O, is defined as

O = (Sunny, Rainy, Rainy, Stormy, Rainy)
= (S1, S2, S2, S3, S2)

t = (1, 2, 3, 4, 5)

corresponding to this week’s forecast. The probability of P (O|Model) is

P (O|Model) = P (S1, S2, S2, S3, S2|Model)

= P [S1]P [S2|S1]P [S2|S2]P [S3|S2]P [S2|S3]

= πS1a12a22a23a32

= (1.0)(0.1)(0.3)(0.3)(0.2)

= 0.0018,

that is, the probability πS1 of being in state S1 at time 1 multiplied by a11

accounting for the transition from state S1 to state S2 and so on. πS1 is 1
because t = 1 is today.

3.2 Hidden Markov Model

The association between events and states in Markov models are determinis-
tic. Markov models are extended so that the observation, the speech signal,
is a probabilistic function of the state. The result is a double stochastic
process, where the underlying process, the state transitions, cannot be ob-
served directly, but through another stochastic process that produces the
sequence of observations.

A hidden Markov model consists of

1. a distinct number of states N;

2. a state-transition probability distribution A = {aij} as specified for
Markov models;

3. M observation symbols and a subset V = {v1, v2, ..., vM} per state;

4. an observation symbol probability distribution, B = {bj(k)}, in which

bj(k) = P [ot = vk|rt = j], 1 ≤ k ≤ M,

defines the symbol distribution in state j, j = 1, 2, ...N ;

12

5. an initial state distribution Π = {πi}, in which

πi = P [r1 = i], 1 ≤ i ≤ N.

For convenience the compact notation λ = (A,B,Π) is used. Applying
the above to continuous speech recognition, a single HMM models units of
features (e.g. phonemes or syllables).

1. States represent the sequence of audio.

2. The transition probability distribution defines a graph by which the
HMM might be passed through.

aij = 0 ∀i > j,
aij > 0 ∀i ≤ j + 1,

1 ≤ i, j ≤ N

The graph is normally forward only and provides the ability to skip
the next state as presented in Figure 2.

Figure 2: Two HMMs with three states for the phone A and B

The corresponding transition matrix for phone A is given by

S1 S2 S3

S1 a11 a12 a13

S2 0 a22 a23

S3 0 0 a33

During training and recognition consecutive HMMs for phonemes are
connected at there start/end states.

3. The observation symbols are signal features as presented in
chapter 2.2.

13

3.3 Three Basic Problems

HMMs introduce three basic problems: evaluating the

1. probability (or likelihood) of a sequence of observations;

2. best sequence of model states;

3. model parameters to fit to the observations.

3.3.1 Probability of an Observation Sequence

The observation sequence O and the state sequence r are vectors of length
T:

r = (r1, r2, ...rT)

O = (o1, o2, ...oT)

The probability of an observation sequence given the model λ is defined as

P (O|λ) =
∑
Q

P (O|r, λ)P (r|λ)

which is the sum over the joint probability of state sequence r given the
model λ and the observation sequence O given the state sequence r and λ
for all possible state sequences Q.

The probability of the state sequence r is given by

P (r|λ) = πr1ar1r2ar2r3 ...arT−1rT

which is the product of the initial probability πr1 of being in state r1 and the
product of transition probabilities arirj according to the state sequence r.
The beginning of the path is modeled by πr1 and for each further transition
from ri to rj , transition probabilities arirj must be factored in. Given a state
sequence r the probability of the observation sequence O is

P (O|r, λ) = br1(o1)br2(o2)...brT
(oT),

the product of observation symbol probabilities for each state ri. Therefore

P (O|λ) =
∑
Q

P (O|r, λ)P (r|λ)

=
∑

r1,r2,...,rT

πr1br1(o1)ar1r2br2(o2)...arT−1rT
brT

(oT)

which describes the process as follows: Initially the state r1 is selected with
probability πr1 emitting the symbol o1 with probability br1(o1). Then the

14

process continues from state r1 to r2 with probability ar1r2 and emitting
symbol o2 with probability br2(o2). The process stops at state rT . This
process is computationally infeasible as it requires 2TNT calculations. The
Forward Procedure is more efficient.

The Forward Procedure defines the forward variable αt(i) as

αt(i) = P (o1, o2, ..., ot, rt = i|λ) (1)

that is, the probability of the partial observation, o1, o2, ..., ot (until time t)
and state i at time t, given the model λ. α1(i) at time 1 for state i is defined
as

α1(i) = πibi(o1), 1 ≤ i ≤ N.

The remaining αt(j) are recursively defined as:

αt+1(j) =
[N∑

i=1

αt(i)aij

]
bj(ot+1),

1 ≤ t ≤ T − 1
1 ≤ j ≤ N

Instead of evaluating all possible paths, similar to first order Markov models,
all previous paths αt(i) are merged into αt+1(j) weighted by the correspond-
ing transition probabilities aij . Based on equation 1, one can easily see that

P (O|λ) =
N∑

i=1

P (o1, o2, ..., oT , rT = i|λ)

=
N∑

i=1

αT (i).

The computation requires only N2T compared to 2TNT . The key difference
between the straight forward definition and the Forward Procedure, is that
all possible state sequences at time t − 1 will merge into αt(i) for t > 1.

The Backward Procedure defines the backward variable βt(i) in a very
similar manner to αt(i):

βt(i) = P (ot+1, ot+2, ..., oT |rt = i, λ)

This is the probability of the partial observation sequence from t + 1 to the
end, given state i at time t and the model λ. As with αt(i), βt(i) is defined
inductively as:

βT (i) = 1 1 ≤ i ≤ N

βt(i) =
N∑

i=1

aijbj(ot+1)βt+1(j) t = T − 1, T − 2, ..., 1

15

As with the α variable, succeeding paths are merged into βt(i). The following
problems can now be solved by using the α and β variable.

3.3.2 Choosing the Optimal State Sequence - Viterbi Algorithm

To find the optimal state sequence one has to define an optimality criterion.
Choosing only the best state for each time t might not result in a valid path,
as state transition probabilities might be zero. Thus one needs to find the
best valid path r = (r1, r2, ..., rT). This can be done by using the Viterbi
Algorithm. A quantity for scoring a path is given by

δt(i) = max
r1,r2,...,rt−1,rt

P (r1r2...rt−1, rt = i, o1o2...ot|λ)

Similar to the Forward Procedure, δt+1i is defined as

δ1(i) = πibi(o1)

δt+1(j) = [max
i

δt(i)aij] · bj(ot+1).

Each δt+1(i) is formed by re-using the maximum of δt(i) weighted by the
corresponding transition probability aij . To actually determine the opti-
mal state sequence, one has to keep track of each max δt(i) and collect
rarg max[δt(i)] using backtracking.

3.3.3 Estimation of Model Parameters

A far more difficult problem arises when it comes to estimation of model pa-
rameters. There is no closed form solution to maximize the probability of the
observation sequence given a model, but an iterative procedure commonly
known as the Baum-Welch Method or EM (expectation-maximization) method
([27], [28], [29], [30], [31]) exists.

At first, two probabilities need to be defined:

γt(i) = P (rt = i|O, λ)

ξt(i, j) = P (rt = i, rt+1 = j|O, λ)

γt(i) is the probability of being in state ri at time t and ξt(i, j) is the prob-
ability of being in state ri at time t and in state rj at time t + 1. γt(i)
can be expressed through αt(i) and βt(i) as produced by the Forward and
Backward Procedures:

16

γt(i) = P (rt = i|O, λ)

=
P (rt = i,O|λ)

P (O|λ)

=
P (rt = i,O|λ)

N∑
i=1

P (O, rt = i|λ)

=
P (o1, o2, ..., ot, rt = i|λ)P (ot, ot+1, ..., oT |rt = i, λ)

N∑
i=1

P (O, rt = i|λ)

=
αt(i)βt(i)

N∑
i=1

αt(i)βt(i)

αt(i) accounts for the partial observation sequence o1, o2, ..., ot and βt(i) for
ot, ot+1, ..., oT . ξt(i, j) can be expressed in terms of α and β

ξt(i, j) = P (rt = i, rt+1=j |O, λ)

=
P (rt = i, rt+1=j |O, λ)

P (O|λ)

=
P (rt = i, rt+1=j |O, λ)

N∑
i=1

P (O, rt = i|λ)

=
P (o1, o2, ..., ot, rt = i|λ)aijbj(ot+1)P (ot+1, ot, ..., oT |rt = j, λ)

N∑
i=1

P (O, rt = i|λ)

=
αt(i)aijbj(ot+1)βt+1(j)

N∑
i=1

αt(i)βt(i)

Comparing ξt(i, j) and γt(i), one can easily see that a specific path can be
modeled by adding the required transition probability aij and the output
probability bj(ot+1) to the product.

17

The re-estimation of parameters of an HMM are defined using γt(i) and
ξt(i):

π̄j = γ1(i)

āij =

T−1∑
t=1

ξt(i, j)

T−1∑
t=1

γt(i)

Γ(k, t) =
{ 1, if vk = ot

0, otherwise

b̄j(k) =

T−1∑
t=1

Γ(k, t)γt(j)

T−1∑
t=1

γt(j)

Updating the model parameters λ as shown above is the maximization step
of the EM algorithm. Baum and his colleagues [8] have proven that a re-
estimated model λ̄ = (Ā, B̄, π̄) defines either a critical point of the likelihood
function or λ̄ is more likely than λ.

3.3.4 Continuous Observation Densities in HMMs

Until now only discrete output symbols have been considered, but in speech
recognition one has to deal with a continuous signal. According to [2] reesti-
mation formulas exist if the density used to replace the observation symbol
probabilities B, is a finite mixture of log-concave or elliptically symmetric
densities. Usually Gaussian mixtures with M components are used to model
the signal. Parameter estimation as implemented in HTK [7] starts with a
single Gaussian per feature with mean vector μ and covariance matrix U
and is split according to the following procedure: The weight cjk of the j-th
state and k-th mixture component is first halved and then the mixture is
cloned. The two identical mean vectors are then perturbed by adding 0.2
standard deviations to one and subtracting the same amount from the other.
In the second step, the mixture component with the largest weight is split
as above. This is repeated until the required number of mixture components
are obtained.

bj(o) =
M∑

k=1

cjkN (o, μjk,Ujk), 1 ≤ j ≤ N, 1 ≤ k ≤ M

18

As before, o is the observation, cjk is the k-th mixture weight at state j
and N a Gaussian distribution with mean vector μjk and covariance matrix
Ujk. To ensure consistent updating of the model, the mixture weights must
adhere to stochastic constraints.

M∑
k=1

cjk = 1, 1 ≤ j ≤ N

cjk ≥ 0, 1 ≤ j ≤ N, 1 ≤ k ≤ M

For parameter estimation the EM algorithm is used. The expectation step
calculates the α and β variable in the same manner by the Forward/Backward
Algorithm for continuous observation densities as it was done for discrete
observations. The maximization step estimates aij as previously presented,
but the components of bj(k) are given by

c̄jk =

T∑
t=1

γt(j, k)

T∑
t=1

M∑
k=1

γt(j, k)

μ̄jk =

T∑
t=1

γt(j, k) · ot

T∑
t=1

γt(j, k)

Ūjk =

T∑
t=1

γt(j, k) · (ot − μjk)(ot − μjk)
′

T∑
t=1

γt(j, k)

The mixture weight c̄jk is the ratio of the expected number of times in state
j using the k-th mixture and the expected total number of times in state j.

γt(j, k) =

⎛
⎜⎜⎜⎜⎜⎝

αt(j)βt(j)
N∑

j=1

αt(j)βt(j)

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

cjkN (o, μjk,Ujk)
M∑

m=1

cjmN (o, μjm,Ujk)

⎞
⎟⎟⎟⎟⎟⎠

γt(j) is multiplied by the weighted output probability to accommodate for
the mixture components resulting in γt(j, k), that is the probability of being
in state j using the k-th mixture component.

19

3.4 Maximum Mutual Information Estimation

3.4.1 Introduction

In general, maximum likelihood estimation (MLE) as presented in the pre-
vious chapter is used to train HMMs due to the fact that it is an optimal
estimate (unbiased with minimum variance).

But MLE is based on the assumption that the observed speech is pro-
duced by the HMM. The following wrong assumptions are made:

� Output independence.

� Markov model, a state at time t depends only on states t − 1.

� Continuous probability density.

In contrast to MLE, maximum mutual information (MMI) estimation relies
less on model assumptions and was successfully used by [20], [21] and [22].
The basic idea of mutual information: how much information does one ran-
dom variable provide about another one? In the case of speech recognition
we want to know how much information the observed audio (O) holds about
the origin words (S). By maximizing the mutual information between ob-
served audio (O) and origin words (S), the knowledge of S is maximized.
The mutual information I between O and S is given by

I(O,S) =
∑
O,S

P (O,S) log
P (O,S)

P (O)P (S)

where P (O,S) is the joint probability of the observed audio and the origin
words and P (O) and P (S) are the corresponding marginal distributions. It
is easy to see that if O and S are independent, that is P (O,S) = P (O)P (S),

log
P (O)P (S)
P (O)P (S)

= log 1 = 0 → I(O,S) = 0

An alternative representation based on entropy (H) is given by

I(O,S) = H(S) − H(O|S)

H(O|S) = −
∑
o∈O

∑
s∈S

P (O = o, S = s) log P (O = o|S = s)

= −
∑
o∈O

∑
s∈S

P (O = o, S = s) log
P (O = o, S = s)

P (S = s)

= −
∑
o1∈O

∑
s∈S

P (O = o1, S = s) log
P (O = o1, S = s)∑

o2∈O

P (O = o2, S = s)

20

The entropy of the source H(S) cannot be changed, therefore only H(O|S)
can be adapted to maximize I(O,S). The MMI criteria is defined as

FMMI(λ) =
R∑

r=1

logP (Sr|Or, λ)

=
R∑

r1=1

log
P (Or1 |Sr1, λ)P (Sr1)

R∑
r2=1

P (Or2 |Sr2, λ)P (Sr2)

(2)

where R is the number of utterances.
P (S) is the probability of the origin word sequence, commonly referred

to as the language model score. The denominator term represents the sum of
probabilities of all possible word sequences. To overcome the computational
infeasibility it is approximated by the N-Best hypothesis or a word lattice
produced by a recognition run.

3.4.2 Estimation of Model Parameters

To define the estimation formulas we need to specify two quantities

γjm =
T∑

t=1

γt(j,m)

θjm =
T∑

t=1

γt(j,m) · ot.

γjm is the occupation count for state j using the k-th mixture component,
θjm is the weighted sum of output symbols. Two different θ and γ are used
for reestimation of μjm and σjm: θnum

jm correspond to the numerator term
of (2) and θden to the denominator term. The numerator part is based
on a single transcription using MLE, the denominator part uses a lattice
including confusability of the speech recognizer. The new μ̄jm and σ̄2

jm are
given by

μ̄jm =
{θnum

jm (O) − θden
jm (O)} + Dμjm

{γnum
jm − γden

jm } + D

σ̄2
jm =

{θnum
jm (O2) − θden

jm (O2)} + D(σ2
jm + μ2

jm)

{γnum
jm − γden

jm } + D
− μ̂2

jm

where D is set on a per Gaussian level, that is for every state j and every
mixture component m. D is set so that all variances σ2 are positive. A few
useful definitions to shorten the transformation.

21

Θσ = θnum
jm (O2) − θden

jm (O2)

Θμ = θnum
jm (O) − θden

jm (O)

Γ = γnum
jm − γden

jm

D is set twice the minimum given by

0 =
Θσ + D(σ2

jm + μ2
jm)

Γ + D
− μ̂2

jm

=
Θσ + D(σ2

jm + μ2
jm)

Γ + D
−
(Θμ + Dμjm

Γ + D

)2

=
(Θσ + D(σ2

jm + μ2
jm))(Γ + D) − (Θμ + Dμjm)2

(Γ + D)2

= (Θσ + D(σ2
jm + μ2

jm))(Γ + D) − (Θμ + Dμjm)2

= D2(σ2
jm) + D(Γ(σ2

jm + μ2
jm) + Θσ − 2Θμμjm) + ΘσΓ − Θ2

μ

A full derivation is found in [24].

4 MMIE Implementation

4.1 Introduction

The HTK was used to train the large vocabulary continuous speech recogni-
tion system. In chapter 5 an overview of the trainings process is given and
appendix A has a detailed description of all required steps.

At the time of writing only HTK 3.2.1 is available, which does not include
MMIE. As the HTK already provides a comprehensive framework for HMM
training, it is chosen as a base for MMIE implementation. This chapter
focuses on the implementation of MMIE, based on the MLE implementation
found in the HTK tool HERest. HERest is built from a multitude of sources
files. The following list contains the source files modified or extended for
MMIE:

� HTKTools/HERest.c: Main entry point of HERest. It includes loading
of data files and model update.

� HTKLib/HFB.c: Accumulation of α and β variable of the
forward/backward algorithm for transcripts.

22

� HTKLib/HNet.h: Defines data structures holding lattices
(see Figure 3 and 4).

� HTKLib/HMMI.c: Accumulation of α and β variable of the general-
ized forward/backward algorithm for lattices.

The original parameter estimation and statistic accumulation of the α and β
variable according to the forward/backward algorithm is done using HERest.
It can process transcripts and calculate statistics needed for MLE. MMIE
needs statistics accumulated from lattices and therefore HERest was gen-
eralized to support these. A comparison of a transcript and an associated
lattice generated by a recognition run is found in Figure 3.

fydAX

dAqrp fy

byrwt

dAnt

sil

sil dAX fy byrwt

Time

Transcript

Lattice

Figure 3: Transcript (MLE) vs. Lattice (MMIE)

The implementation of statistic accumulation for transcripts can be found
in HTKLib/HFB.c and the actual parameter update is done in
HTKTools/HERest.c. To fit into the current structure, HTKLib/HMMI.c
contains statistic accumulation for lattices and HTKTools/HERest.c was
extended with MMI based parameter re-estimation.

MLE statistic accumulation uses label files containing transcripts for the
audio. Depending on the matching unit modeled by an HMM the tran-
scripts are either word, monophone or triphone based. A sample of word
level transcripts can be found in chapter 5.3.4. MMIE accumulation needs
lattices from a recognition fitting with the matching units. Sail Labs’ recog-
nizer produces word lattices in HTK’s standard lattice format (slf). The
full process of generating the lattices and any post-processing required is
described in chapter A.5.

23

The generated lattices can be read and held in memory with functions
and data structures already provided by HTK. To accumulate statistics the
right transcript level is needed and the lattice is expanded to match the
HMMs by HTK’s ExpandWordNet function. The function requires a dic-
tionary containing each word with multiple associated pronunciations. To
expand each word into its pronunciation, the lattice needs to contain a pro-
nunciation ID per word. The returned Network structure found in HTK-
Lib/HNet.h serves as the root for the expanded lattice.

The nodes in the expanded lattice are linked in a chain for fast unordered
processing and each node contains an array of NetLink structures which link
to the succeeding nodes. For MMIE additional information for each node
during the forward/backward algorithm is needed, namely

� a list of succeeding and preceding nodes including language model
scores for the transition,

� a flag if the model is active at time t,

� time based pruning information,

� a model ID q to fit the MLE implementation.

The NetNode structure representing each HMM was extended with MMIInfo
structure holding the above information. Figure 4 shows the graph of the
data structures in use for the first words of the already expanded lattice
from Figure 3.

The forwardlinks and backlinks are single linked lists generated by re-
cursively walking through the lattice. For now only a single initial and final
HMM is allowed due to initialization restrictions.

The word lattice contains language model scores between each word.
This score is used as a transition probability in the forward/backward algo-
rithm. The language model score P (W2,W1) for the word sequence W1, W2

is spread equally among the expanded monophone or triphone nodes.

4.2 Backward Procedure

HERest calculates first the β variable and in a following step the α vari-
able. The MLE implementation assigns Q identifiers ordered by time to
each HMM. This numbering is used to process the HMMs in the correct
order and to prune the number of active HMMs at each time t. For more
details on pruning see chapter 4.5.

Each HMM has an identifier q and N states with an associated transition
probability matrix a. The first and last state are always non-emitting states.
Due to the time-based numbering, successors and predecessors are referenced
by q + 1 and q − 1 respectively. For the case of lattices, multiple successors

24

NetNode

hmm

chain

mmi

Network

chain

initialHMMs

finalHMMs

NetNode

hmm

chain

mmi

MMIInfo

backlinks

forwardslinks

NetNode

hmm

chain

mmi

MMIInfo

backlinks

forwardslinks

d+A d-A+X

MMIInfo

backlinks

forwardslinks

sil

NetNode

hmm

chain

mmi

d+A d-A+q

NetNode

hmm

chain

mmi

MMIInfo

backlinks

forwardslinks

MMIInfo

backlinks

forwardslinks

Figure 4: Data structures used for lattices

and predecessors may exist and therefore each HMM has an associated set
F and B implemented by the single linked lists forwardlinks and backlinks
found in MMIInfo. Each link holds the previously spread language model
l. The backward step starts at time t = T and progresses toward t = 1.
Before β is evaluated, the output probabilities b for each active HMM and
state are computed. β for the last state of each HMM active at time t = T
is calculated by

βT,q,N = 1 if q = Q
βT,q,N = βT,q+1,N · aq+1,1,N if q �= Q

The generalized version is given by

βT,q,N = 1 if |F | = 0
βT,q,N =

∑
f∈Fq

βT,f,N · af,1,N else

It should be noted that a1,N > 0 is only true for the small pause model (sp).
Furthermore, the summation over F needs to be done in order, that is if f
is part of the active set, βT,f,N needs to evaluated prior to q.

β of the emitting states for MLE and MMIE is given by

25

βT,q,i = ai,N · βT,q,N 2 ≤ i < N

And finally βT,q,1 is

βT,q,1 = a1,j · bj · βT,q,j 2 ≤ j < N

For the remaining time t, the β variable is given by

βt,q,N = βt+1,q+1,1 + βt,q+1,N · aq+1,1,N

Again aq+1,1,N uses the property that the q’s are ordered by time and there-
fore the generalized version needs to adapted.

βt,q,N =
∑
f∈Fq

βt+1,f,1 · lq,f + βt,f,N · af,1,N

The calculation needs to be done in the correct order as before. Beside
the adaptation for multiple successors, the sum includes the language model
score lq,f .

β of states 2 to N are given by

βt,q,i = aq,i,N · βt,q,N +
N−1∑
j=2

aq,i,j · βt+1,q,j i = N − 1 → 2

βt,q,1 =
N−1∑
j=2

aq,1,j · bq,j · βt,q,j

4.3 Forward Procedure

The forward procedure calculates the α-variable and accumulates statistics
for parameter estimation, iterating from time t = 1 to T . The accumulated
statistics are an expression of αt, αt−1, βt and βt−1.

Due to pruning, only a subset of βs are calculated during the backward
procedure, thus only αs for this subset need to be calculated. Each step
t = t + 1, for t > 1 performs:

1. Calculate αt

2. Accumulate statistics

3. Swap αt and αt−1 to save memory

26

For MLE, α at time t, HMM q, state 1 is given by

αt,q,1 = αt−1,q−1,N + αt,q−1,1 · aq−1,1,N

where N is the number of states of HMM q − 1. The HMM q − 1 is before
HMM q in the transcription. As lattices may contain multiple predecessors,
this and all following expressions containing references to q − 1 must be
generalized.

For MMI, αt,q,1 is given by

αt,q,1 =
∑
b∈Bq

αt−1,b,N · lq,b + αt,b,1 · ab,1,N

lq,f is the spread language model score. α for the remaining states 2 to N
is given by

αt,q,j = aq,1,j · αt,q,j +

(
N−1∑
i=2

aq,i,j · αt−1,q,i

)
· bq,j j = 2 → N − 1

αt,q,N =
N−1∑
i=2

aq,i,N · αt,q,i

4.4 Parameter Estimation

For each HMM, state and mixture, the following variables are accumulated
during the forward procedure

xt,j =

(
a1,j · αt,1 +

N−1∑
i=2

ai,j · αt−1,i

)
· βt,j

P (O|λ)
· cj,m · bj,m 1 < j < N

where P (O|λ) is estimated with β1,1,1, that is β at time 1, for the first
HMM of the transcript and state 1. Due to this estimation, a lattice must
not contain multiple HMMs at the beginning. cq,j,m is the m-mixture weight
at state j.

27

γ =
T∑

t=1

xt

θ(O)k =
T∑

t=1

(O − μk) · xt

θ(O2)k =
T∑

t=1

(O − μk)2 · xt

μ and σ of each mixture component k are updated by

μ̂k = μk +
θ(O)k

γ

σ̂k =
θ(O2)k

γ

For MMIE the accumulated γ, μ and σ based on lattices are stored sepa-
rately. MMI estimation of μ and σ uses transcript and lattice accumulations,
where γnum, μnum, σnum refer to the transcript and γden, μden, σden to the
lattice. The estimation is given by

μ̂k =
(θ(O)num

k + (γnum · O) − θ(O)den
k + (γden · O) + D · μk)

γnum − γden + D

σ̂k =
(θ(O2)num

k − θ(O2)den
k) + (D · σk + μ2

k)
γnum − γden + D

− μ̂2

where D is found in chapter 3.4.2.

4.5 Pruning

Pruning is a vital part of the trainings process. Consider the sentence

”The weather is very warm”.

At time t = 1 only the word ”the” needs to be looked at and not all the
other words occurring in the sentence. As the time advances during the for-
ward/backward algorithm only words, respectively the associated HMMs, in
a certain time window should be considered. This strategy has the advan-
tages of severely reducing the required amount of computation and assures
proper alignment of the transcript and the audio data. Suppose all words
are considered at every time and the current position in the audio is at
the beginning of the word ”weather”. Both words ”weather” and ”warm”

28

have some phonetic similarity at the beginning and therefore the α and β
variable would be increased, although the audio data actually corresponds
to the word ”weather”. To avoid this situation the following two pruning
techniques are used:

� Threshold based

� Time based

Threshold based A HMM q is removed from the current active set as
soon as

maxq(βq,t,i) − βq,t,i < ε

where i is the state number and ε is a pruning threshold. In some cases
the forward/backward algorithm fails to process an utterance due to a very
tight threshold. Therefore HERest provides three pruning parameters: start
threshold, step size and maximum threshold. The start threshold specifies
the initial threshold. If the forward/backward algorithm fails, the thresh-
old is increased by the step size and the utterance is processed again. The
threshold is increased until the maximum threshold is reached or the utter-
ance was processed successfully. Unlike the transcript implementation, the
lattice version needs to prune each HMM separately. The transcript version
defines a pruning beam specifying boundaries based on HMM IDs, which
correlate directly to their chronological occurrence in the transcript. As a
lattice holds several possible transcripts, multiple HMMs occur at the same
time. Therefore no chronologically ordered IDs for each HMM can be given
and pruning needs to be applied to each HMM part of the active set. The
main purpose of threshold based pruning is speed and memory improvement.

Time based Each HMM has an associated minimum processing duration.
Based on this minimum duration, the transcript version creates two vectors
for the previously mentioned pruning beam boundaries, qlo and qhi. As soon
as the sum of minimum durations of all predecessors of an HMM is larger
than time t, the HMM can be included in the active set/pruning beam of
the forward procedure. Likewise for the backward procedure, the sum of
minimum durations of all successors of an HMM needs to be smaller than
T − t, where T is the time span of the current utterance. This models
the idea, that an HMM should not be used as long as all its successors
or predecessors respectively, have not been processed. For the generalized
lattice case, the earliest usage of an HMM is defined as the sum of minimum
durations of the all HMMs on shortest path from the first or last HMM to
the one in question. The time based pruning needs to be equal for forward
and backward, especially in connection with sp. If the timing is off-by-one
the forward and backward procedure could produce unequal αt=T and βt=1.

29

4.6 Descriptive Statistics

To validate and compare the MMIE implementation to the existing MLE,
intermediate values have been visualized. The HMMs and there states are
ordered by time form the y-axis. Each data point is either the value of α, β
or α · β for the combination of HMM, state and time.

In Figure 5 the α and β according to the forward/backward procedure
for a sample utterance are presented. One can see that the value of α
and β decreases with the direction of the recursive definition, that is with
increasing respectively decreasing time. White areas mark combinations of
HMM, state and time where no value is available due to pruning. As one
can see the pruning beam is very tight and thus only a few HMMs are active
at a time.

Alpha

Time

H
M

M
s

Low High

sil1

sil1

sil1

l + n1

b − x + l1

b + Y1

A − d1

0 50 100 150 200 250 300 350 400

Beta

Time

H
M

M
s

Low High

sil1

sil1

sil1

l + n1

b − x + l1

b + Y1

A − d1

0 50 100 150 200 250 300 350 400

Figure 5: α/β variable for an utterance

Figure 6 presents α and β of a lattice matching the utterance of figure 5.
Comparing the lattice with the utterance, one can see that the pruning beam
is much wider as similar words are considered at the same time. In difference
to the backward procedure calculating the β variable, the forward procedure
is able to perform better alignment to the correct utterance, resulting in high
values of the α variable for only a few HMMs at a time. The HMMs on the

30

y-axis are no longer strictly ordered by time due to the internal storage
structure.

Alpha

Time

H
M

M
s

Low High

sil1y − j + A1
w − Y + y1

b + Y1
l − w + A1

l + n1sp1
r + Y1
y + B1

s − y + A1
A − s + f1
s − s + l1

0 50 100 150 200 250 300 350 400

Beta

Time

H
M

M
s

Low High

sil1y − j + A1
w − Y + y1

b + Y1
l − w + A1

l + n1sp1
r + Y1
y + B1

s − y + A1
A − s + f1
s − s + l1

0 50 100 150 200 250 300 350 400

Figure 6: α/β variable for a lattice

In Figure 7 a detail view of an HMM and its states is presented. Each
phoneme consists of a series of sounds. The fact that this series is ordered,
is modeled by the transition probability matrix that defines a graph that
can only be traversed forward. Thus each state models a part of the series.
In Figure 7 each state has a series of darker and wider dots accounting for
the amount of time it models the audio.

Figure 8 presents α · β of a lattice. As one can see the number of active
HMMs at a time is much larger compared with the corresponding utterance.
The HMMs are approximately ordered by time, but due to the structure of
a lattice the path is spread across the plot.

31

Alpha * Beta

Time

H
M

M
s

y + B1

y + B2

y + B3

y + B4

y + B5

y + B6

y + B7

80 84 88 92 96 100 104 108

Figure 7: α · β variable for an utterance

32

Forward/Backward Procedure

Time

H
M

M
s

Low High

sil1

y − j + A1

w − Y + y1

b + Y1

l − w + A1

l + n1

sp1

r + Y1

y + B1

s − y + A1

A − s + f1

s − s + l1

0 50 100 150 200 250 300 350 400

Figure 8: α · β variable for a lattice

33

5 Training a Large Vocabulary Continuous Speech
Recognition System

5.1 Introduction

A speech recognition model is trained based on the HTK Book’s tutorial [7]
. The tutorial describes training for a simple voice dialing application. Our
system will recognize broadcast media and hence require a larger dictionary
and more audio data. The tutorial is extended by the description of input
data conversion and training of multi-mixture models. Additional to the
standard MLE training, the newly implemented MMI training procedure
will be applied.

Filenames below are always formatted in italic, except in the summary
tables.

5.2 Data Introduction

The experiments are based on an Arabic broadcast corpus. Among the
channels transcribed are Al Arabia, Aljazeera and Saudi Channel. The
audio is stored in wav files, using PCM encoding, 16 bit mono 16 kHz. For
each audio file a transcript file exists.

The syntax, a sample and the corresponding translation for an utterance:

word word ... (filename-starttime)
w hkCA nHSl fy AlnhAyp ElY [GRB] (ANN_20050117_1830-000085)
(and) (so) (we get) (in the end) [garbage]

The text is Buckwalter encoded requiring no Unicode support from any
tool. Items surrounded by square brackets are markers for special items
(e.g. [GRB] is garbage). Furthermore a dictionary holding all words and
appropriate phone level pronunciations is required. Each word can have sev-
eral associated pronunciations.

The corpus is split into training and test sets:

Total Transcribed
Time Time

Training Set 113 h 93 h
Test Set 49 min 25 min

The total column accounts for the overall amount of audio data, whereas
the transcribed column only includes data which has been transcribed.

34

5.3 Data Preparation

The original data used for training is formatted for an outdated training
environment and needs to be converted for use with HTK with format dif-
ferences range from separators to special characters.

5.3.1 Dictionary Format Conversion

The dictionary must list at least all the words and associated pronunciations
occurring in training transcripts.

Input: /sail/ar ar/3rd/input/master.dict
Type: Sail Labs style dictionary
Format: <Prefix> <Word> <Pronunciation> [<Alternative-

Pronunciation> ...]

Excerpt from master.dict :

...
>$ACp $-A-6-h $-A-6-t
>$AE $-A-2
...

Output: output/converted.dict
Type: HTK style dictionary
Format: <Word> <Pronunciation>

Tool: sail2htk.dict.pl

Note: The HTK style dictionary must be sorted.

Excerpt from converted.dict :

...
XACp X A C h
XACp X A C t
...

5.3.2 Phoneme List

All operations on a set of HMM models requires a list of phonemes. Most
of the times the phone lists correspond directly to HMM models.

35

Input: output/converted.dict Dictionary with converted phone set
Output: output/master.dict Copy of converted.dict

output/phones List of phonemes used in con-
verted.dict

The converted.dict dictionary is copied unchanged to master.dict. The -n
parameter produces a list of phonemes and some overview statistics of the
dictionary. To model silence, a sil entry has to be added to the phoneme
list in contrary to the HTK tutorial where each dictionary entry has a sil
item at the end and therefore the phoneme list already contains the entry.

5.3.3 Dictionary and Phoneme List with sil/sp

Input: input/master.dict Dictionary with converted phone set
Output: output/master-sil.dict Dictionary with sil and non-sil post-

fixed pronunciation with sp and sil
appended

output/phones-sp List of phonemes including sp
Tool: bbn2htk.dict.pl

The new dictionary master-sil.dict contains each pronunciation twice, one
with sil and one with sp appended. sil is the silence phone and has the same
topology as all other phonemes. sp (short-pause) has only a single emitting
state, that is actually tied to the center state of sil. During training this
state can be skipped due to its topology. During alignment (see chapter
A.1.6) HVite selects the pronunciation that fits best. phones-sp is the list
of phonemes (equivalent to phones), but includes sp.

Excerpt from master-sil.dict :

...
XACp X A C h sil
XACp X A C h sp
...

36

5.3.4 Word Level Transcripts

Input: config/cfg.list List of audio files for training
audio/*.trans Directory containing transcript files

Output: output/word-train.mlf Master label file. Concatenation
of transcripts in HTK format

Tool: trans2mlf.pl Produces word-train.mlf

Sample input transcript ANN 20050308 0710 News.trans:

AlSAdr bhCA Al$Jn AlEAm (ANN_20050308_0710_News-004212)
[BRT] mn jAnb TAlb AlmnSq (ANN_20050308_0710_News-004454)
...

Each .trans file contains utterances ending with an identifier in brackets.
[GRB] is a special entry for garbage.

Sample output word-train.mlf :

"*/ANN_20050308_0710_News-004212.lab"
AlSAdr
bhCA
AlXJn
AlEAm
.
"*/ANN_20050308_0710_News-004454.lab"
[BRT]
mn
jAnb
TAlb
AlmnSq
.

Every utterance starts with a quoted path and an utterance identifier (or
label identifier in HTK terminology).

37

5.3.5 Monophone Transcripts

Input: output/master.dict Monophone dictionary without sp
output/word-train.mlf Word level transcription

Output: output/phone-train.mlf Monophone transcription
output/ Monophone transcription with sp
phone-sp-train.mlf word separator

Tool: word2phone mlf.pl Produces phone-train.mlf and
phone-sp-train.mlf

Excerpt from phone-train.mlf :

"*/ANN_20050308_0710_News-004212.lab"
sil
A
S
S
A
d
r
b
h
C
A
A
X
X
J
n
A
l
B
A
m
sil
.
...

Each word from word-train.mlf is transformed into its monophone represen-
tation found in output/master.dict. The dictionary might contain multiple
pronunciations per word. In this case the first pronunciation is arbitrarily
selected. The “correct” or more probable pronunciation is selected at the
alignment step (see chapter A.1.6).

38

The phone-train-sp.mlf is similar to phone-train.mlf with the exception
that words are separated by a sp.

5.3.6 Audio Data

Input: *.wav Audio files
training.filelist List of files to use

Output: *.ftrs Extracted audio features
Tool: HTKcompFeaturesDumper Extract features from audio files

wcut Cuts audio files into pieces
cut ar ar.pl Driver script for wcut and

HTKcompFeaturesDumper

Each wav file contains audio associated with multiple utterances (e.g. a
news episode). The HTKcompFeaturesDumper extracts feature vectors as
described in (see chapter 2.2) into HTK compatible feature files (.ftrs). Us-
ing HTK’s HCopy would generate a single feature file (.mfc) for the input
audio. The HTKcompFeaturesDumper needs to be fed with utterance-based
audio files because it isn’t capable of normalizing audio according to a seg-
mentation file. A segmentation file (.seg) contains time boundaries for each
utterance. Therefore wcut and a multitude of generated Makefiles is used
to cut and extract features. The Arabic corpus used for evaluation contains
approximately 96000 utterances.

5.4 Trainings Process

This chapter gives an overview over the training process. A detailed descrip-
tion of the individual steps is found in appendix A.

5.4.1 Training Monophone HMMs

The training starts with HMMs modeling monophones.

1. Compute global means and variances from the audio features.

2. Create HMMs for each monophone initialized with global means and
variances.

3. Perform forward/backward algorithm.

4. Creating the small pause model sp with a center state tied to the sil
model.

5. Perform forward/backward algorithm.

39

6. Assign most probable pronunciation to each word in the transcript
(forced-alignment).

7. Perform forward/backward algorithm.

5.4.2 Training Triphone HMMs

To improve accuracy context sensitive HMMs are trained. Each triphone
consists of a center phone with a left and right context.

1. Create triphone transcripts.

2. Initialize each triphone HMM with the monophone HMM of its center
state (e.g. A-B+C is initialized with B).

3. Perform forward/backward algorithm.

4. Tie HMMs found in dictionary, but not available in transcripts, to
existing HMMs based on linguistic criterias.

5. Perform forward/backward algorithm.

6. Increasing Gaussian mixtures of each feature component.

5.4.3 Training a Language Model

Apart from acoustic information, speech recognition employs structural in-
formation of the language. HTK’s and Sail Labs’ recognizer both use uni-,
bi- and/or tri-grams.

1. Count n-grams in text corpora.

2. Create a forward tree, containing the pronunciations sorted by prefix.

3. Create the language model, that is calculating probabilities based on
the n-gram counts.

5.4.4 Export HTK Models to Sail Labs Models

In a final step the HTK models need to be converted to Sail Labs format.

1. Tie HMMs found in forward tree with existing HMMs based on lin-
guistic criterias.

2. Create composite models (e.g. A-B+C,D is created from A-B+C and
A-B+D).

3. Conversion of HTK model to Sail Labs format.

40

5.5 MMI Experiments

All experiments where performed using Sail Labs recognizer on the 49 minute
test set. When comparing the correct transcript with the recognizer output,
different errors can occur. The following list gives a list of possible errors
and a sample for each.

� Insertion

Transcript The weather is very nice.
Recognized The weather is a very nice.

� Substitution

Transcript The weather is very nice.
Recognized The warning is very nice.

� Deletion

Transcript The weather is very nice.
Recognized The weather very nice.

For each experiment the following statistics using dynamic programming are
calculated:

Ref Number of words found in the reference
Ins Number of words inserted
Sub Number of words substituted
Del Number of words deleted

Corr% =
Ref − Sub − Del

Ref

Error% =
Sub + Del + Ins

Ref

Ins% =
Ins
Ref

Sub% =
Sub
Ref

Del% =
Del
Ref

41

At first models with a varying number of mixtures and 4 iterations of MLE
training are evaluated and produced the following results:

Mixtures Sub % Del % Ins % Corr % Err %
2 44.38 5.32 5.38 50.30 55.10
4 40.22 5.62 5.14 54.16 51.02
6 38.12 5.92 4.56 55.94 48.58
8 36.80 5.68 5.24 57.50 47.74
10 35.18 5.70 5.12 59.14 46.02
12 36.30 5.60 5.64 58.08 47.52

Due to the decreased performance of the 12-mixture model, another 3 iter-
ations of MLE training have been applied.

Mixtures Iter Sub % Del % Ins % Corr % Err %
12 5 35.00 5.62 4.90 59.38 45.50
12 6 34.62 5.44 4.88 59.90 44.98
12 7 33.96 5.98 4.86 60.08 44.76

Lattices needed for MMIE training were generated with the 12 mixture, 4
iterations models. At first MMIE was applied to this model without using
the language model scores.

Iter Sub % Del % Ins % Corr % Err %
1 35.42 5.74 4.10 58.88 45.22
2 35.34 6.14 3.50 58.52 44.94
3 38.68 8.02 2.32 53.30 49.02
4 39.12 13.38 2.14 47.50 54.60
5 45.98 18.06 0.96 35.94 65.04
6 55.28 16.68 1.10 28.06 73.02
7 61.48 14.42 1.88 24.14 77.76

To verify convergence of all 6.3 million μ and σ (for each HMM, state and
mixture), the mean and median of the absolute difference of μ before the
update and μ̂ after MMIE update are found in figure 9.
As one can see the parameters converge, but do not decrease the error rate.

For the second experiment again the 12 mixture, 4 iteration MLE trained
model was used as a base line, but MMIE was applied including the lan-
guage model scores.

Iter Sub % Del % Ins % Corr % Err %
1 34.96 5.24 3.84 59.80 44.04
2 36.08 5.92 3.40 57.98 45.40
3 38.18 8.02 2.84 53.80 49.02
4 40.94 12.64 2.06 46.46 55.60

42

0
5

10
15

0.
02

0.
04

0.
06

0.
08

Iteration

1 2 3 4 5 6 7

mean(μ − μ)
median(μ − μ)
max μ − μ
mean(σ − σ)
median(σ − σ)
max σ − σ

Figure 9: |μ− μ̄| and |σ− σ̄| of MMIE based on 12 mixture 4 iterations MLE
model without using language model scores

Similar to the first experiment, the error rate decreases, but further itera-
tions increase it again. Statistics on the update are presented in figure 10
to verify the convergence.
Two more experiments using the previously presented 12 mixture 7 iterations
MLE trained model were carried out. The performance of MMIE without
using the language model scores.

Iter Sub % Del % Ins % Corr % Err %
1 38.68 8.02 2.32 53.3 49.02
2 35.96 5.96 3.00 58.12 44.88
3 49.90 9.48 3.26 40.64 62.64
4 41.42 12.54 2.12 46.06 56.08

The performance of MMIE including the language model scores.

43

0
5

10
20

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Iteration

1 2 3 4

mean(μ − μ)
median(μ − μ)
max μ − μ
mean(σ − σ)
median(σ − σ)
max σ − σ

Figure 10: |μ − μ̄| and |σ − σ̄| of MMIE based on 12 mixture 4 iterations
MLE model including language model scores

Iter Sub % Del % Ins % Corr % Err %
1 35.58 5.00 4.08 59.40 44.70
2 36.46 5.96 2.80 57.60 45.22
3 38.90 7.50 2.40 53.60 48.76
4 40.78 12.42 2.04 46.80 55.24
5 47.38 17.24 1.34 35.38 65.98
6 53.42 19.60 1.14 26.98 74.18
7 61.70 15.48 1.74 22.80 78.92
8 63.70 16.94 1.46 19.34 82.14

5.6 Conclusion

The HTK provides a comprehensive framework to quickly train acoustic
models. Generating the required recognition outputs for MMIE nor evalua-
tion of models can be done using HTK’s recognizer HVite, as it is too time
consuming. Thus Sail Labs’ recognizer was used instead. Several HTK func-

44

0
5

10
20

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Iteration

1 2 3 4

mean(μ − μ)
median(μ − μ)
max μ − μ
mean(σ − σ)
median(σ − σ)
max σ − σ

Figure 11: |μ − μ̄| and |σ − σ̄| of MMIE based on 12 mixture 7 iterations
MLE model without using language model scores

tions were modified to use Intel Performance Primitives 3, which resulted in
a major speed improvement.

Based on the results in chapter 5.5, MMIE converges but does not result
in a reduction of error rate after the first iteration. As MMIE was only
evaluated on a single data set it might yield better results on another corpus.

It is suspected that the creation of composite models, which merges
several models into a single one, is responsible for this effect. Therefore the
training process will be adapted to minimize the gap between models used
during training and recognition.

A Acoustic and Language Model Training Process

This chapter contains a detailed description of the overall trainings process
of an acoustic and language model used for the experiments and evaluation
of MMIE.

3http://www.intel.com/support/performancetools/libraries/ipp/index.htm

45

0
5

10
20

0.
00

0.
02

0.
04

0.
06

0.
08

Iteration

1 2 3 4 5 6 7 8

mean(μ − μ)
median(μ − μ)
max μ − μ
mean(σ − σ)
median(σ − σ)
max σ − σ

Figure 12: |μ − μ̄| and |σ − σ̄| of MMIE based on 12 mixture 7 iterations
MLE model including the language model scores

A.1 Training Monophone HMMs

Each time an HTK tool processes feature files, a script file (specified with
-S script parameter) needs to supplied. This is always output/train-seg.scp
and contains absolute paths to the .ftrs files as generated in chapter 5.3.6.
Most of the HTK tools need a -C config parameter describing the feature
input. Throughout the training TARGETKIND = MFCC 0 D A Z is used.

A.1.1 Global Means and Variances

Input: proto HMM topology
audio Audio features

Output: output/proto HMM topology with global means and
variances

output/vFloors Global variance floors
Tool: HCompV Computes global mean and variances

46

HCompV processes all feature files and computes the global mean and vari-
ance for all 45 feature components. The topology of all HMMs is specified
in proto and an updated version containing the global mean and variances
is written to output/proto. The -f 0.01 parameter passed to HCompV en-
sures that no variance will fall below 0.01∗global variance. vFloors contains
variance floors, that is the global variance multiplied by 0.01 (from -f).

The proto file containing the topology of a single HMM (in difference to
the HTK tutorial, the Sail Labs Engine uses a 7 state (5 emitting states)
topology):

~o
<VECSIZE> 45
<MFCC_D_A_0>
~h "proto"
<BEGINHMM>
<NUMSTATES> 7
<STATE> 2
<MEAN> 45
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0
<VARIANCE> 45
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0
...
<STATE> 6
<MEAN> 45
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0
<VARIANCE> 45
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0
<TRANSP> 7
0.0 1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.4 0.2 0.2 0.0 0.2 0.0
0.0 0.0 0.4 0.3 0.3 0.0 0.0
0.0 0.0 0.0 0.4 0.3 0.3 0.0

47

0.0 0.0 0.0 0.0 0.6 0.4 0.0
0.0 0.0 0.0 0.0 0.0 0.6 0.4
0.0 0.0 0.0 0.0 0.0 0.0 0.0
<ENDHMM>

A.1.2 Creating Flatstart HMMs

Input: output/vFloors Global variance floors
output/phones Monophone list
output/proto HMM topology with global means and

variances
Output: output/flatmodel HMMs with global means and variances
Tool: concat.flatmodel.sh Produces output/flatmodel

The flatmodel file contains:

1. Header from proto.

2. Global variance floors from vFloors.

3. A copy of proto (excluding the header) for each phone listed in out-
put/phones.

Thus the flatmodel contains HMMs for each phone holding global means
and variances.

A.1.3 Training using Monophone Transcripts

Input: output/flatmodel HMMs with global means and
variances

output/phones Monophone list
output/phone-train.mlf Monophone transcription
audio Audio features

Output: output/monophone/3/ Monophone HMMs after
monophone.model 3 iterations of training

Tool: HERest Performs HMM training
train.sh Driver script for HERest

The forward/backward re-estimation algorithm as described in chapter 3.3.3
is performed in parallel. As a starting point the flatmodel is used and re-
estimated using phone level transcripts found in phone-train.mlf. Each par-
allel instance of HERest generates an accumulator file, which are merged
and used for re-estimation in a final step generating the model for the next

48

iteration. The accumulator files store the α and β variables as described in
chapter 3.3.1.

A.1.4 Creating sp and Tying with sil Center State

Input: output/monophone/3/ Monophone HMMs
monophone.model

Output: output/monophone/sp1/ Monophone HMMs including the
monophone-sp.model sp model

Tool: copy sil2sp.pl Produces monophone-sp.model

The sp model is created as a 3 state tee HMM, containing a single emitting
state that is tied to the center state of sil. sp is the only model containing
a non-zero transition probability from the first to the last state, allowing to
skip the emitting state. It should be noted that this phone is specifically
handled during forward/backward accumulation of α and β.

A.1.5 Training using Monophone including sp Transcripts

Input: output/monophone/sp1/ Monophone HMMs including
monophone-sp.model the sp model
output/phones-sp Monophone list including the sp
output/phone-sp-train.mlf Monophone transcription includ-

ing sp word separator
audio Audio features

Output: output/monophone/sp3/ Monophone HMMs including the
monophone-sp.model sp after 3 iterations of training

Tool: HERest Performs HMM training
train.sh Driver script for HERest

Two iterations of the forward/backward re-estimation algorithm are applied
to the monophone HMMs. Compared to A.1.3, a phone list extended by sp
and transcripts including sp after each pronunciation are used for training.

49

A.1.6 Alignment using Monophone Transcripts

Input: output/monophone/sp3/ Monophone HMMs including
monophone-sp.model sp model
output/phones-sp Monophone list including sp
output/word-train.mlf Word level transcription
output/master-sil.dict Dictionary with sil and non-sil

postfixed pronunciation
audio Audio features

Output: output/ Aligned monophone transcription
phone-aligned-train.mlf
output/ List of feature input files where
train-seg-aligned.scp a corresponding utterance is found

in word-train.mlf
Tool: HVite Speech recognizer producing

phone-aligned-train.mlf
find-unalignable.pl Produces train-seg-aligned.scp

The HTK speech recognizer HVite is used to do forced-alignment. As men-
tioned in chapter 5.3.3, up to now the first pronunciation in phone-train.mlf
is arbitrarily selected. HVite tries to align words found in word-train.mlf to
the most probable pronunciation found in master-sil.dict, producing a new
transcription phone-aligned-train.mlf. find-unalignable.pl compares train-
seg.scp and phone-aligned-train.mlf and produces a list of the utterances
that HVite was able to align. This discrepancy can originate from inaccu-
rate transcriptions.

A.1.7 Training using Monophone aligned Transcripts

Input: output/monophone/sp3/ Monophone HMMs including the
monophone-sp.model sp model
output/phones-sp Monophone list including sp
output/ Aligned monophone transcription
phone-aligned-train.mlf
train-seg-aligned.scp List of audio files to use
audio Audio features. Only the subset

HVite was able to align
Output: output/monophone/ Monophone HMMs after 2

aligned2/aligned.model iterations of training
Tool: HERest Performs HMM training

train.sh Driver script for HERest

50

Two iterations of the forward/backward re-estimation algorithm are applied
to the monophone HMMs using the most probable pronunciations as deter-
mined by forced alignment.

A.2 Training Triphone HMMs

A.2.1 Creating Triphone Transcripts and Lists

Input: output/ Aligned monophone transcription
phone-aligned-train.mlf
output/master-sil.dict Dictionary with sil and non-sil

postfixed pronunciation
mktri.led Script for HLEd
output/phones Monophone list

Output: output/ Triphone transcription
triphone-aligned-train.mlf
output/triphones Triphone list

Tool: HLEd Produces
triphone-aligned-train.mlf

cat, sort -u Post processing

Triphone transcripts are created based on the corresponding monophone
aligned transcripts. As a by-product the list of all triphones occurring in
the data is produced and written to output/triphones. The monophone list
found in output/phones is merged into the sorted triphone list.

The mktri.led script contains the following commands:

wb ... word boundary
TC ... create tri-phones
WB sil
WB sp
missing GRB, BRT, ... (non-speech events)
TC

WB specifies word boundaries. As a result no context dependent sil and
sp triphones are generated. TC commands HLEd to produce the triphone
transcripts found in triphone-aligned-train.mlf.

Excerpt from output/triphones:

A

51

A+A
A+B
A+C
A+D
...
A-A+T
A-A+h
A-A+l
...

The list not only contains triphones, but also mono- and biphones. Context-
dependent phones are specified in the following form:

X-Y X before Y
Y+Z Y before Z
X-Y+Z Y between X and Z

Y is called the “center phone”, regardless of whether a left or right context
is specified.

A.2.2 Creating the Triphone Clone Scripts

Input: output/triphones Triphone list
output/phones-sp Monophone list including sp

Output: output/mktri.hed Triphone cloning script for HHEd
Tools: perl-scripts Produce mktri.hed

The initial set of triphone HMMs is based on the monophone aligned HMMs
found in output/monophone/aligned2/aligned.model. For each triphone found
in output/triphones the monophone HMM equal to the triphones center-
phone is selected; e.g. the HMM A-B+D found in output/triphones will
be a copy of the monophone HMM B from output/.../aligned.model. This
is done with the clone command (CL output/triphones) instructing HHEd.
The tying commands (TI) are created to reduce the number of parameters,
tying the transition matrices of triphones, biphones and monophones with
an identical center phone (Note: *-A matches only biphones with A as center
phone). Thus all triphones and biphones with center phone A and mono-
phone A will share the same transition matrix.

Sample output/mktri.hed :

CL output/triphones
TI T_A {(*-A+*,*-A,A+*,A).transP}
TI T_sil {(*-sil+*,*-sil,sil+*,sil).transP}

52

TI T_sp {(*-sp+*,*-sp,sp+*,sp).transP}
TI T_l {(*-l+*,*-l,l+*,l).transP}
TI T_Y {(*-Y+*,*-Y,Y+*,Y).transP}
...
TI T_J {(*-J+*,*-J,J+*,J).transP}
TI T_BRT {(*-BRT+*,*-BRT,BRT+*,BRT).transP}
TI T_GRB {(*-GRB+*,*-GRB,GRB+*,GRB).transP}

A.2.3 Initializing Triphone HMMs with Monophone HMMs

Input: output/monophone/ Monophone HMMs
aligned2/aligned.model
output/mktri.hed Script for HHEd (see chapter A.2.2)
output/triphones Triphone list;

referenced in mktri.hed
output/phones-sp Monophone list including sp

Output: output/triphone/1/ Triphone HMMs
triphone.model

Tools: HHEd Produces triphone.model

HHEd initializes and ties the triphone HMMs with the associated mono-
phone HMMs as specified in chapter A.2.2.

A.2.4 Performing Forward/Backward using Triphone Transcripts

Input: output/triphone/1/ Triphone HMMs
triphone.model
output/triphones Triphone list
output/ Triphone transcription
triphone-aligned-train.mlf
audio Audio features
train-seg-aligned.scp List of audio files to use

Output: output/triphone/3/ Triphone HMMs after 2 iterations
triphone.model of training

Tool: HERest Performs HMM training
train.sh Driver script for HERest

Two iterations of the forward/backward re-estimation algorithm are applied
to the triphone HMMs.

53

A.2.5 Creating a Triphone based Dictionary and a Complete Tri-
phone List

Input: output/triphones Triphone list
output/master-sil.dict Dictionary with monophone

pronunciations
mktri.ded Script for HDMan

Output: output/triphones-fulllist Complete list of triphones
output/master-triphone.dict Dictionary with triphone pro-

nunciations
Tools: HDMan Produces triphones-fulllist

cat, sort Sorting of master-triphone.dict

In general the dictionary is a superset of words occurring in training tran-
scripts, representing all words and their associated pronunciations the recog-
nizer should be able to detect. The output/triphones list and the out-
put/triphone/3/triphone.model contains only the triphone HMMs found in
the training transcripts. To accommodate for triphones found in the dictio-
nary but not part of output/triphones, a similar triphone is selected in the
next step.

HDMan produces a complete list of triphones and a triphone based
dictionary. The dictionary is only required for MMI training. Each pro-
nunciation is stored once with a sil and once with a sp postfix, just as in
master-sil.dict.
The mktri.ded script contains the following commands:

create triphones
TC

Excerpt from master-triphone.dict.

...
XACp X+A X-A+C A-C+h C-h sil
XACp X+A X-A+C A-C+h C-h sp
XACp X+A X-A+C A-C+t C-t sil
XACp X+A X-A+C A-C+t C-t sp
...

54

A.2.6 Tying HMMs according to Linguistic Criteria

Input: output/triphones-fulllist Triphone list occurring in dictio-
nary

output/triphones Triphone list occurring in train-
ing transcripts

output/phones-sp Monophone list including sp
output/triphone/3/ Triphone HMMs
triphone-model
output/ Triphone transcription
triphones-aligned-train.mlf
output/triphone3/ Statistics on HMMs
stats
questions.list Classes of phonemes

Output: output/tree.hed Script for HHEd
output/trees Clustering decision tree
output/tiedlist Compressed list of triphones
output/triphone/tied1/ Tied triphone HMMs
tied.triphone.model

Tools: HHEd Produces tied.triphone.model
question.list2tree.hed.pl Produces tree.hed

In the first step a decision tree for tying HMMs is created by iteratively clus-
tering all HMMs found in output/triphones. Then this decision tree is used
to tie HMMs and produce missing HMMs specified by output/triphones-
fulllist. This is done on a per state level. Tying HMM states increases the
model robustness and reduces the parameters which have to be estimated.
Linguistically and acoustically similar contexts (e.g. A as center phone) are
grouped together.

For decision tree clustering the following input files are used:

� questions.list holds the classes of phonemes grouped by linguistic cri-
teria, such as place and manner of articulation (see chapter 2.1).

Excerpt from questions.list

close: y w
open: A
front: y A
...

� The stats file provides information about the number of occurrences

55

and occupation statistics for HMMs. Each entry contains the HMM
name, number of occurrences and occupation statistics for each state.

Excerpt from stats

"w-r+X" 37 55.698982 13.440671 ...
"w-j+r" 7 13.021901 17.921888 ...
"s-w+r" 1337 2420.234131 830.687561 ...
...

The intermediate tree.hed script generated by question.list2tree.hed.pl for
HHEd contains the following commands

� Questions to be used in the construction of the decision tree

QS "L_close" {y-*,w-*}
QS "R_close" {*+y,*+w}
QS "L_open" {A-*}
QS "R_open" {*+A}
QS "L_front" {y-*,A-*}
QS "R_front" {*+y,*+A}
...

� List of trees to be generated; for instance in the following example
each combination of center phone and state gets a separate tree.

TB 350.0 "A_2" {(A, *-A, *-A+*, A+*).state[2]}
TB 350.0 "l_2" {(l, *-l, *-l+*, l+*).state[2]}
...
TB 350.0 "Y_2" {(Y, *-Y, *-Y+*, Y+*).state[3]}
...

� Assign HMM states for unseen triphones using the above specified
decision trees.

AU output/triphones-fulllist

� List of outputs, that is a compressed list of triphones found in out-
put/tiedlist and the decision tree output/trees.

CO output/tiedlist
ST output/trees

56

A.2.7 Performing Forward/Backward on Tied HMMs

Input: output/triphone/tied1/ Tied Triphone HMMs
tied.triphone.model
output/tiedlist Compressed list of triphones
output/ Triphone transcription
triphone-aligned-train.mlf
audio Audio features
train-seg-aligned.scp List of audio files to use

Output: output/triphone/tied3/ Tied triphone HMMs after 2
tied.triphone.model iterations of training

Tool: HERest Performs HMM training
train.sh Driver script for HERest

Two iterations of the forward/backward estimation algorithm are applied to
the tied triphone HMMs.

A.2.8 Increasing Mixtures

Until now each of the 45 features was represented by a single mean and vari-
ance value for each state and HMM. To improve recognition performance,
Gaussian mixtures are used to represent each feature. This stage iteratively
increases the number of mixtures and applies the forward/backward estima-
tion algorithm after each increase. Initial experiments used 2, 4, 6, 8, 10
and 12 mixtures and 3 iterations of the estimation.

Input: output/triphone/tied3/ Tied Triphone HMMs
tied.triphone.model
output/tiedlist Compressed list of triphones
output/ Triphone transcription
triphone-aligned-train.mlf
audio Audio features
train-seg-aligned.scp List of audio files to use
output/mixture/12/ Script for HHEd
inc.mixture

Output: output/mixture/12/4 12 Gaussian mixture tied triphone
model HMMs after 3 iterations of train-

ing
Tool: HERest Performs HMM training

HHEd Increases the number of mixtures
train.sh Driver script for HERest

57

The inc.mixture script for HHEd contains the following command:

MU 12 {*.state[2].mix,*.state[3].mix,*.state[4].mix,
.state[5].mix,.state[6].mix}

It instructs HHEd to increase the number of mixtures to 12 for each of the
5 emitting states for every HMM.

A.3 Training a Language Model

Besides the acoustic information, the speech recognizer also uses structural
information inherent to the language. The type of information ranges from
simple uni-grams (the probability of a single word occurring) to grammars
such as parts-of-speech. The speech recognizer supplied by HTK as well
as Sail Labs uses uni-, bi- and/or tri-grams, but stores them differently for
efficient usage. This chapter describes the language model training process
using the Sail Labs Language Model Toolkit (LMT).

Most of the text input files are Buckwalter 4 encoded and need to be
converted to match the transformed Buckwalter encoding used for HTK
(see chapter 2.1).

The training process is implemented using Makefiles, shell- and perl
scripts. To avoid time consuming dependency checks for stages that de-
pend on a large number of files produced by previous stages, <target>.done
files created after each stage are used instead.

Each section is split into:

1. a general introduction to the stage

2. a table holding the Makefile target, input and output files, used tools
and sample input and output file contents

3. a process description.

A.3.1 Text Corpora and Audio Transcript Conversion

The text corpora and the transcripts of the audio used for the acoustic mod-
els are the basis for LMT.

4http://www.qamus.org/transliteration.htm

58

Target: output/lm/trans.done
output/lm/trans.audio.done

Input: *.trans
Output: *.txt

Tools: trans2matador.txt.sh
trans2matador.txt.pl

Sample Input: AlY AlsAdp Alm$trkyn (AFA19940513.0002-0)
Sample Output: AlY AlsAdp AlmXtrkyn

At the end of each input utterance an identifier is specified in parenthe-
sis. For LMT training the identifier needs to be stripped and the character
encoding needs to be adapted (see chapter 2.1).

A.3.2 Text Input File Lists

The list of files used for LMT.

Target: output/lm/trans.filelist
output/lm/trans-audio.filelist

Input: directory contents
Output: output/lm/trans.filelist, output/lm/trans-audio.filelist

Tools: find

A.3.3 Create Chunks of Files

For efficient processing of the text, the files are grouped into chunks based
on the number of words found in each file.

Target: output/lm/idify.split.done
Input: *.txt produced in chapter A.3.1

Output: lmFileList.for idify.part0000
lmFileList.for ngrammer.part0000

Tools: lm.idify.split.pl

lmFileList.for idify.part0000 contains all filenames with absolute path for
identification, that is replacing each word with its numeric ID from the
vocabulary. lmFileList.for ngrammer.part0000 contains all filenames with
absolute paths for the ngrammer. The ngrammer will count n-grams (uni-
grams, bi-grams, tri-grams, ...) for the language model.

A.3.4 ID’ing Text

All LMT statistic tools require the text to be ID’ed.

59

Target: output/lm/idify.done
Input: output/lm/idify/lmFileList.for idify.part0000

output/lm/idify-audio/lmFileList.for idify.part0000
vocab (the vocabulary)

Output: output/lm/idify/*.id
output/lm/idify-audio/*.id

Tools: idify

Each word is replaced by its numeric ID found in the vocabulary or a reserved
ID for unknown words. The results are stored in binary format.

A.3.5 Counting N-grams

The bigrams and trigrams are used to predict a word based on the previous
one or two words during recognition.

Target: output/lm/ngrammer.done
output/lm/ngrammer-audio.done

Input: output/lm/idify/lmFileList.for ngrammer.part0000
output/lm/idify-audio/lmFileList.for ngrammer.part0000
vocab (the vocabulary)

Output: output/lm/ngrammer/countFileFwd*
output/lm/ngrammer-audio/countFileFwd*

Tools: ngrammer

The ngrammer counts the occurrence of each word bi- and trigram and
stores it in binary format in multiple count files.

A.3.6 Merging Multiple Count Files

Target: output/lm/countFileFwd
Input: output/lm/ngrammer/countFileFwd*

output/lm/ngrammer-audio/countFileFwd*
Output: output/lm/countFileFwd

Tools: quickngrammerge

The countFileFwd files are merged together with different weights. In gen-
eral the transcripts of the audio get higher weights (e.g. 3 to 5) than the text
corpora. The weighting can be used to decrease the word error rate during
recognition for a specific domain (e.g. a single channel such as Aljazeera).

60

A.3.7 Creating the Forward Tree

The pronunciations are organized into a common-prefix tree for optimized
access during recognition.

Target: output/lm/fm tree sorted
Input: output/master.dict-mat

output/vocab
output/phones-mat

Output: output/lm/fm tree sorted
output/lm/word classes
output/lm/matador.htk.shared.model.list

Tools: makeFwdTree

master.dict-mat is the dictionary in Sail Labs’ internal format containing all
pronunciations of the recognition vocabulary vocab. The phones-mat con-
tains the phoneme-inventory excluding sil and sp. word classes represents
all words with a common-prefix which can be reached from a given node
in the tree. matador.htk.shared.model.list is a list of triphone models and
composite triphone models corresponding to all nodes in the tree.

A.3.8 Creating the Language Model

The language model contains bigram probabilities for the above created
classes of words (according to the forward tree) given a preceding word as
context.

Target: output/lm/matLm2gFwdClasses
Input: output/countFileFwd

output/word classes
output/vocab

Output: output/lm/matLm2gFwdClasses
Tools: makeNgr

matLm2gFwdClasses is the language model used by Sail Labs’ recognizer.
The recognition vocabulary is found in vocab. countFileFwd contains the
number of occurrences of each word bi- and trigram.

61

A.4 Exporting HTK Models

Sail Labs’ recognizer (internally named Matador) uses a different storage
format and composite models, which are not supported by HTK. Compos-
ite models are a combination of triphone models, sharing the left context.
e.g. the composite model A-B+C,D models the combination of A-B+C and
A-B+D.

Therefore the following steps are performed

1. matador.htk.shared.model.list holds the list of required HMMs (mono-
phone, biphone, triphone and composite models) in Sail Labs internal
format. It is converted to an HTK style list found in composite.models.

2. Decompose composite models found in composite.models into individ-
ual triphone models (composite.models.flat).

3. Merge the decomposed models with the phoneme inventory tiedlist
used during acoustic training (composite.models.flat.merged).

4. Extract the list of composite models (composite.models.only).

A.4.1 Resolving Unseen HMMs

matador.htk.shared.model.list most likely contains HMMs not found in the
trainings data. The so-called “unseen” HMMs are modeled by a similar
model based on linguistic criteria.

Input: create.missing.triphones.using.trees.hed
output/trees
output/composite.models.flat.merged

Output: output/composite.models.flat.merged.compact
output/lm/matador.htk.shared.model.list
output/mixture/12/model.pre-matador

Tools: HHEd

create.missing.triphones.using.trees.hed contains the commands for HHEd

LT output/trees
AU output/composite.models.flat.merged
CO output/composite.models.flat.merged.compact

1. LT loads the tree of models categorized by linguistic criteria (see chap-
ter A.2.6).

2. AU commands HHEd to link each model to its corresponding model
residing in the leaf found in the decision tree (trees).

62

3. CO compresses the model representation and stores it in compos-
ite.models.flat.merged.compact.

A.4.2 Matador Model Creation

The conversion of the HTK model to a Matador model is done with a mod-
ified version of HHEd.

The command file htk2matador.hed for HHEd contains

LS output/mixture/12/4/stats.no-sp
CC output/composite.models.only
SM output/composite.models
MA 0

and does the following

1. LS: Load occupation statistics (see the definition of γ in chapter 3.4.2).

2. CC: Creates composite models by mixing together the individual tri-
phones using MixDown(...) of HHEd.

3. SM: Sorts the models for Sail Labs internal representation correspond-
ing to the model IDs in the nodes of the forward tree.

4. MA: Writes the model in Matador format for the first pass of Sail
Labs’ recognizer.

A.4.3 Fast Gaussian Tree

To pre-select among the Gaussian of all models, a “fast Gaussian tree” is
generated. This reduces the number of Gaussian evaluations to be performed
for a given input vector.

A.5 MMI Training

To generate the required lattices for MMI estimation, the model produced
in the previous chapters is required. Initial experiments were done using
HTK’s recognizer HVite.

A recognition pass for 3 minutes of audio took over 10 hours on a 3.4
GHz Pentium4 machine, so Sail Labs’ recognizer was adapted to produce the
lattice. The recognizer normally runs in real-time on a comparable machine.
Generation of lattice for the complete trainings set of 96 hours took approx.
2-3 days on 3 machines ranging from 2 to 3.4GHz.

The recognizer output does not produce the standard HTK format for
lattices and needs the following post processing:

63

1. lat2slf.pl maps global pronunciation IDs as used by Sail Labs to the
corresponding relative IDs of HTK.

2. compress lattice.pl is used to remove duplicate paths in the lattice.

3. strip.s.from.lattice.pl converts initial <s> and final </s> tags into sil.

4. validate.lattice.pl does a rough validation of the lattices.

An important part of MMI estimation is the inclusion of language model
scores. To reduce the amount of software development, the generalized ver-
sion of the forward/backward algorithm in HERest was used to calculate
γnum, that is the occupation counts based on the transcript including lan-
guage model scores. Therefore the transcripts were converted to degenerated
lattices including language model scores:

1. trans2all.pl concatenates all .trans files into a single file trans.all.

2. evallm.exe processes trans.all and retrieves the language model scores
for all transcripts. The transcript is concatenated so that the time-
consuming loading of the language model only has to be done once.

3. trans.all.2.slf.pl creates the degenerated lattices in HTK standard lat-
tice format.

4. validate.lattice.pl is used again to validate the lattices.

It is required that the lattices from the recognition run include the correct
transcript, thus merge.transcript.into.slf.all.pl is used to merge the tran-
script with the corresponding lattice. The current implementation of the
merging process creates a new path starting from the longest prefix found
in the lattice to the longest postfix.

Now the actual MMI estimation using the generalized version of HERest
can begin.

64

References

[1] http://www.arts.gla.ac.uk/ipa/ipa.html

[2] L. Rabiner and B. H. Juang: Fundamentals of Speech Recognition. New
Jersey: Prentice Hall (1993)

[3] A. V. Oppenheim and R. W. Schafter: Zeitdiskrete Signalverarbeitung.
München, Wien: Oldenbourg Verlag (1992).

[4] B. Logan: Mel Frequency Cepstral Coefficients for Music Modeling.
International Symposium on Music Information Retrieval (2000).

[5] S. Mallat and W. L. Hwang: Singularity detection and processing with
wavelets. IEEE Trans. Inform. Theory, vol. 38, pp. 617-643 (1992).

[6] J. P. Olive, A. Greenwood and J. Coleman: Acoustics of American
English Speech - A Dynamic Approach. Springer Verlag (1993).

[7] S. Young, G. Evermann, T. Hain et al: The HTK Book. Cambridge
University Engineering Department (2002).

[8] L. E. Baum: An inequality and associated maximization technique in
statistical estimation for probabilistic functions of Markov processes.
Inequalities, 3 (1972).

[9] M. Kumar, N. Rajput, and A. Verma: A large-vocabulary continuous
speech recognition system for Hindi. IBM Journal of Research and De-
velopment, Volume 48, Number 5/6, (2004).

[10] L.R. Bahl, S. Balakrishnan-Aiyer, M. Franz, P.S. Gopalakrishnan, R.
Gopinath, R. Novak, M. Padmanabhan, S. Roukos. The IBM Large Vo-
cabulary Continuous Speech Recognition System for the ARPA NAB
News Task. In Proceedings of ARPA Spoken Language System Tech-
nology Workshop, pp 121-126, (1995).

[11] P. Beyerlein, X. Aubert, R. Haeb-Umbach, M. Harris, D. Klakow, A.
Wendemuth, S. Molau, H. Ney, M. Pitz and A. Sixtus. Large vocabulary
continuous speech recognition of Broadcast News - The Philips/RWTH
approach. In Speech Communication, Volume 37, pp 109-131, (2002).

[12] M.Y. Hwang. Subphonetic Acoustic Modeling for Speaker-Independent
Continuous Speech Recognition. Ph.D. thesis, Tech Report No. CMU-
CS-93-230, Computer Science Department, Carnegie Mellon University,
(1993).

[13] P. Lamere, P. Kwok, E.B. Gouvêa, B. Raj, R. Singh, W. Walker, P.
Wolf. The CMU Sphinx-4 Speech Recognition System. Proc. of the
ICASSP 2003, (2003).

65

[14] R. Schwartz, T. Colthurst, N. Duta, H. Gish, R. Iyer, C.-L. Kao, D.
Liu, O. Kimball, J. Ma, J. Makhoul, S. Matsoukas, L. Nguyen, M.
Noamany, R. Prasad, B. Xiang, D.-X. Xu, J.-L. Gauvain, L. Lamel, H.
Schwenk, G. Adda, L. Chen. Speech recognition in multiple languages
and domains: the 2003 BBN/LIMSI EARS system. Acoustics, Speech,
and Signal Processing, 2004. Proceedings. (ICASSP ’04). (2004).

[15] L. Nguyen, T. Anastasakos, F. Kubala, C. LaPre, J. Makhoul, R.
Schwartz, N. Yuan, G. Zavaliagkos, Y. Zhao. The 1994 BBN/BYBLOS
Speech Recognition System. In Proceedings of ARPA Spoken Language
Systems Technology Workshop, pp. 77-81, (1995).

[16] G. Evermann, H.Y. Chan, M.J.F. Gales, T. Hain, X. Liu, D. Mrva,
L. Wang, P.C. Woodland. Development of the 2003 CU-HTK Conver-
sational Telephone Speech Transcription System. Proceedings ICASSP
2004, Montreal, (2004).

[17] I. Kirschinger, H. Tomabechi and J.-I. Aoe. Recent Advances in Con-
tinuous Speech Recognition Using the Time-Sliced Paradigm. Inter-
national Workshop on Soft Computing in Industry, Muroran, Japan,
(1996).

[18] E. Trentin, M. Gori. Robust combination of neural networks and hidden
Markov models for speech recognition. Neural Networks, IEEE Trans-
actions on , vol.14, no.6pp. 1519- 1531, (2003).

[19] W. Macherey, L. Haferkamp, R. Schlüter and H. Ney. Investigations on
Error Minimizing Training Criteria for Discriminative Training in Au-
tomatic Speech Recognition. In the 9th European Conference on Speech
Communication and Technology (Interspeech 2005), Lisbon, Portugal,
(2005).

[20] V. Valtchev. Discriminative Methods in HMM-based Speech Recogni-
tion. PhD Thesis, Cambridge University, Department of Electrical En-
gineering, (1995).

[21] S. Kapadia. Discriminative Training of Hidden Markov Models. PhD
Thesis, Cambridge University, Department of Electrical Engineering,
(1998).

[22] P.C. Woodland and D. Povey. Large scale discriminative training for
speech recognition. Proc. ISCA ITRW ASR2000, (2000).

[23] N. Marhav and C.-H. Lee: On the asymptotic statistical behavior of
empirical cepstral coefficients. IEEE Transactions and Signal Processing
41, (1990-1993).

66

[24] Y. Normandin: Maximum Mutual Information Estimation of Hidden
Markov Models. Automatic Speech and Speaker Recognition: Kluwer
Academic Publishers (1996).

[25] http://en.wikipedia.org/wiki/Place of articulation

[26] http://en.wikipedia.org/wiki/Manner of articulation

[27] A.P. Dempster, N.M. Laird and D.B. Rubin. Maximum-likelihood from
incomplete data via the em algorithm. J. Royal Statist. Soc. Ser.B., 39,
(1977).

[28] R. Redner and H. Walker. Mixture densities, maximum likelihood and
the em algorithm. SIAM Review, 26(2), (1984).

[29] Z. Ghahramami and M. Jordan. Learning from incomplete data. Tech-
nical Report AI Lab Memo No. 1509, CBCL Paper No. 108, MIT AI
Lab, (1995).

[30] M. Jordan and R. Jacobs. Hierarchical mixtures of experts and the em
algorithm. Neural Computation, 6:181-214, (1994).

[31] C.F.J. Wu. On the convergence properties of the em algorithm. The
Annals of Statistics, 11(1):95-103, (1983).

67

