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Abstract

Many practical hard problems in mathematics and computer science may be formulated
as constraint satisfaction problems (CSPs). Tree and generalized hypertree decomposi-
tions are two important concepts which can be used for identifying and solving tractable
classes of CSPs. Unfortunately the task of finding an optimaltree or generalized hy-
pertree decomposition is anNP-complete problem. Thus many heuristic methods have
been developed for finding tree decompositions and generalized hypertree decomposi-
tions of small width.

In this master thesis we present new heuristic methods for tree and generalized hy-
pertree decompositions. For that purpose we examine already existing heuristic methods
for tree decompositions and extend them to an A* algorithm and a genetic algorithm for
tree decompositions and to a genetic algorithm and a self-adaptive genetic algorithm for
generalized hypertree decompositions. Furthermore we prove that the set of all elimi-
nation orderings may act as a search space for the generalized hypertree width and we
develop a lower bound heuristic for the generalized hypertree width, which combines
lower bound heuristics for tree decompositions with lower bound heuristics for thek-
set cover problem. Moreover we show how existing reduction and pruning techniques,
for shrinking the search space for the optimal tree decomposition, may also be used for
generalized hypertree decompositions. Based on these results we propose a branch and
bound algorithm and an A* algorithm for generalized hypertree decompositions.

Computational experiments show that the heuristic methodspresented in this the-
sis are able to compete with other heuristic methods for treeand generalized hypertree
decompositions. For many benchmark instances the genetic algorithms and the branch
and bound algorithm return improved upper bounds on the treewidth and generalized
hypertree width and for some instances the A* algorithms andthe branch and bound
algorithm are able to fix the exact treewidth and generalizedhypertree width.
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Kurzfassung

Constraint satisfaction problems (CSPs) bilden eine Problemklasse in der Mathematik
und Informatik, die viele praxisrelevante und harte Probleme beinhält. Tree decomposi-
tions und generalized hypertree decompositions sind zwei Methoden, mit denen effizient
lösbare CSP Instanzen identifiziert und für solche Instanzen effizient Lösungen berech-
net werden können. Leider ist das Auffinden der optimalen tree decomposition bzw.
generalized hypertree decomposition einer CSP Instanz einNP-vollständiges Problem.
Aus diesem Grund sind in der Vergangenheit bereits viele heuristische Methoden für tree
decompositions und generalized hypertree decompositionsvorgestellt worden.

Ziel dieser Magisterarbeit ist es, neue heuristische Methoden für tree und general-
ized hypertree decompositions zu entwickeln. Zu diesem Zweck betrachten wir bere-
its existierende heuristische Verfahren für tree decompositions und erweitern diese zu
einem A* Algorithmus und einem genetischen Algorithmus für tree decompositions
bzw. zu einem genetischen Algorithmus und einem selbst adaptierenden genetischen
Algorithmus für generalized hypertree decompositions. Weiters beweisen wir, dass
elimination orderings einen geeigneten Suchraum für die generalized hypertree width
darstellen, und wir entwickeln eine lower bound Heuristik für generalized hypertree
width, die lower bound Heuristiken für tree decompositions und für dask-set cover Prob-
lem kombiniert. Außerdem zeigen wir, dass existierende Techniken, um den Suchraum
für optimale tree decompositions zu verkleinern, auch für generalized hypertree decom-
positions angewendet werden können. Basierend auf diesenResultaten entwickeln wir
einen branch and bound Algorithmus und einen A* Algorithmusfür generalized hyper-
tree decompositions.

Testergebnisse für Benchmark Instanzen zeigen, dass die vorgestellten heuristis-
chen Methoden für tree und generalized hypertree decompositions in der Lage sind, mit
anderen Verfahren zu konkurrieren. Die genetischen Algorithmen und der branch and
bound Algorithmus finden für viele Instanzen verbesserte obere Schranken für treewidth
und generalized hypertree width und für einige Instanzen können die A* Algorithmen
und der branch und bound Algorithmus treewidth und generalized hypertree width exakt
bestimmen.
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Chapter 1

Introduction

1.1 Constraint Satisfaction Problems (CSPs)

Many areas of our daily lives are affected by constraints. Our lifestyle is largely de-
termined by our income. Laws restrict and regulate the living-together between people
within a state. Available time constrains the quantity and quality of work we are able
to perform. Thus, every day we try to solve problems in such a way that the problem
inherent constraints are satisfied.

Also in science we are often confronted with the task of finding solutions of prob-
lems which satisfy constraints. As the complexity of the regarded problems grows we
depend on the help of computers in order to solve them.”Starting with the pioneer-
ing work of Montanari [39] researchers in artificial intelligence have investigated a
class of combinatorial problems that became known as constraint satisfaction problems
(CSPs).”[33]

Informally speaking, a CSP consists of variables and the values which may be as-
signed to variables are restricted by one or several constraints. A solution for a CSP is an
assignment of allowed values to its variables which satisfies all constraints. Sometimes
we are also interested in all such assignments. In mathematics and computer science,
especially in the fields of operations research and artificial intelligence, many impor-
tant real-world problems can be modeled as CSP. For instance, boolean satisfiability
problems, scheduling problems, the n-queens problem, boolean conjunctive queries, the
graph k-colorability problem and many other interesting problems might be formulated
as CSPs.

The main advantage of CSP is that it represents a very generalclass of problems
including many interesting practical problems. By developing methods for solving CSPs
we automatically obtain methods for all problems that possess a formulation as CSP. The

1



CHAPTER 1. INTRODUCTION 2

main drawback with CSP is that CSP contains manyNP-complete problems, implying
that all known algorithms that are able to solve CSPs requireexponential running time
in the worst case.

1.2 Decomposition Methods

In [27] Gottlob et al. write,”researches in the AI and database community have de-
veloped techniques for identifying and solving tractable classes of CSPs, which can be
divided into two main groups [40]:

• Tractability due to restricted structure. This includes all tractable classes of CSPs
that are identified solely on the base of the structure of the constraint scopes,
independently of the actual constraint relations.

• Tractability due to restricted constraint relations. This includes all classes that
are tractable due to particular properties of the constraint relations.”

The structure of a CSP is visualized by its constraint hypergraph. Decomposition
methods can be used for identifying and solving tractable classes of CSPs by exploiting
the structure of the constraint hypergraph, thus they deal with tractability due to restricted
structure.

Decomposition methods aim at transforming a CSP instance into another instance
which can be solved efficiently. Informally, this is done by decomposing a given CSP
into a tree of subproblems. If each of the subproblems is significantly smaller in size
than the original CSP we are able to solve the subproblems more efficiently than the
original problem. Finally we derive a solution for the original CSP from this tree of
subproblems, which again can be done efficiently.

In this master thesis we will considertree decompositionsandgeneralized hyper-
tree decompositionsamong the various decomposition methods that have been devel-
oped during the last decades. The notion of tree decompositions was introduced by
Robertson and Seymour in [42]. Gottlob, Leone and Scarello proposed a new decompo-
sitions method calledhypertree decompositionsin [29] and they showed that hypertree
decompositions were able to generalize and beat any other decomposition method in
[27]. Generalized hypertree decompositions are derived from hypertree decompositions
by dropping one condition of hypertree decompositions [28].

Usually, decomposition methods use a measure calledwidth in order to denote the
size of the greatest subproblem. The smallest, thus optimal, width of all tree decom-
positions of a graph is denotedtreewidthwhereas the smallest width of all generalized
hypertree decompositions of a hypergraph is denotedgeneralized hypertree width.
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In order to solve a CSP we aim at finding a tree decomposition orgeneralized hy-
pertree decomposition of width near or equal to the treewidth and generalized hypertree
width respectively. Both decisions problems, deciding whether there exists a tree de-
composition of a graph of width at most k as well as deciding whether there exists a
generalized hypertree decomposition of a hypergraph of width at mostk are known to
beNP-complete, [1] and [26].

1.3 Heuristic Methods

Heuristic methods might help us in order to compute tree decompositions and general-
ized hypertree decompositions of small width within a reasonable amount of time.

As mentioned in [45], given a problem in computer science, researchers tend to
develop algorithms for that problem and try to prove that these algorithms satisfy the
following two criteria:

1. good (worst case) running time.

2. a close-to-optimal or optimal solution.

A heuristic method finds a solution to a given problem but it doesn’t ensure good
running time or it doesn’t put a guarantee on the quality of the returned solution or
sometimes a heuristic method doesn’t satisfy any of the above criteria. Nevertheless
heuristic methods are applied to many hard problems in computer science because they
often are the only way to achieve good solutions within a short time.

Many heuristic methods have been developed for tree decompositions within the
last decades. Bodlaender gives a survey of heuristic methods for tree decompositions in
[7] as well as Hicks et al. in [30]. This master thesis presents new heuristic methods for
tree decompositions and generalized hypertree decompositions which are based on the
following heuristic methods for tree decompositions, generalized hypertree decomposi-
tions and related problems:

• A genetic algorithm for triangulating the moral graph of Bayesian networks,
a problem strongly related to tree decompositions of graphs, was proposed by
Larrañaga et al. in [36].

• Two branch and bound algorithms for tree decompositions arepresented in [5] and
[24].

• McMahan shows how heuristic methods for tree decompositions may be used in
order to generate generalized hypertree decompositions in[37].
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Genetic algorithmsare a very popular technique for computing solutions for opti-
mization problems although they do not put any guarantee on the quality of the delivered
solution. They imitate the principle of evolution by altering and selecting individuals of
a population of solutions for a given optimization problem.

Branch and boundalgorithms try to reduce the search space that has to be explored
for a given optimization problem. They cut off regions in the search space which do not
contain solutions that are better than those that have already been found. A branch and
bound algorithm is an exact method, if it terminates it will deliver the optimal solution
to a problem.

In [37] McMahan combined a technique calledBucket Elimination, which origi-
nated in constraint satisfaction [16], with several vertexordering heuristics for tree de-
compositions and set cover heuristics. The computational results he achieved with his
approach were quite promising.

All of the three heuristic methods mentioned above are basedon elimination order-
ings. An elimination ordering is a permutation of the vertices of a graph or hypergraph.
It is known that the set of all of its elimination orderings may be used as search space for
the treewidth of graphs. Up to the present it is an open question whether elimination or-
derings can be used as search space for the generalized hypertree width of hypergraphs.

1.4 Research Questions for This Thesis

The intension behind this thesis was to examine and extend existing heuristic methods
for tree decompositions and to explore how those methods canbe applied directly to
generalized hypertree decompositions. Before proceedingfurther, we will summarize
the main objectives of this thesis:

• Develop an A* (pronounced ”A star”) algorithm for tree decompositions, which
additionally exploits the techniques used in [5] , [8] and [24] for shrinking the
search space. The A* should be able to solve the same problemsas the branch and
bound algorithms in [5] and [24].

• Develop a genetic algorithm for tree decompositions based on the work that has
been carried out in [36] and examine if the genetic algorithmis able to return new
upper bounds for known benchmark instances.

• Develop genetic algorithms for generalized hypertree decompositions and exam-
ine their performance on known benchmark instances.

• Develop a branch and bound algorithm for generalized hypertree decompositions
which is able to compute the generalized hypertree width of agiven hypergraph.
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• Develop an A* algorithm for generalized hypertree decompositions.

1.5 Main Results

At this point we summarize the main results of this thesis:

• We implement a genetic algorithm for computing treewidth upper bounds based
on the genetic algorithm in [36]. Our computational resultsreveal that the genetic
algorithm was able to return improved upper bounds for the treewidth of many
graphs of the Dimacs graph coloring benchmark instances [18].

• We propose an A* algorithm for computing the treewidth of graphs which addi-
tionally applies reduction and pruning methods presented in [5], [8] and [24] in
order to narrow the search space which has to be explored. Computational results
show that the algorithm is able to solve nearly all instancesof the Dimacs graph
coloring benchmarks [18] which have been solved by the algorithms in [5] and
[24]. For an additional instance the treewidth could be fixed.

• We prove that the set of all elimination orderings may be usedas search space for
the generalized hypertree width of a hypergraph.

• We implement a genetic algorithm for computing upper boundson the generalized
hypertree width of hypergraphs. Computational results showed that the genetic
algorithm was able to return improved upper bounds on the generalized hypertree
width for many benchmark instances [22].

• We implement a self-adaptive island genetic algorithm for generalized hypertree
width upper bounds based on [19]. This algorithm is able to adjust its control pa-
rameters itself and doesn’t require time-consuming experiments in order to obtain
suitable values for those control parameters.

• We develop a general technique which combines lower bounds for treewidth and
lower bounds for thek-set cover problem to get a lower bound for the generalized
hypertree width of hypergraphs and we propose a concrete lower bound heuristic
for generalized hypertree width.

• We propose a branch and bound algorithm for generalized hypertree width of hy-
pergraphs which is based on elimination orderings and the developed lower bound
heuristic. The branch and bound algorithm will return the generalized hypertree
width of a given hypergraph, if it is given enough time. The branch and bound
algorithm was able to compute the generalized hypertree width for some bench-
mark hypergraphs [22]. Furthermore it returned improved upper bounds for some
benchmark instances.
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• We propose an A* algorithm for generalized hypertree width which is based on
the same results as the branch and bound algorithm. The A* algorithm was able
to compute the generalized hypertree width for some benchmark hypergraphs [22]
and for some instances it returned improved lower bounds on the generalized hy-
pertree width.

1.6 Further Organization

This thesis comprises 10 chapters. In chapter 2 we give preliminary information about
CSPs, decomposition methods, tree and generalized hypertree decompositions. In chap-
ter 3 we show that we may obtain a generalized hypertree decomposition of smallest
width from at least one elimination ordering. As a consequence the set of all elimination
orderings represents a search space for the generalized hypertree width of hypergraphs.
In chapter 4 we give an overview of those heuristic methods used within this thesis. In
the following chapters we present new heuristic methods fortree and generalized hy-
pertree decompositions. In chapter 5 we propose an A* algorithm for computing the
treewidth of graphs, in chapter 6 a genetic algorithm for computing treewidth upper
bounds, in chapter 7 we introduce two genetic algorithms forcomputing upper bounds
on the generalized hypertree width of hypergraphs, in chapter 8 we present a branch
and bound algorithm for computing the generalized hypertree width and in chapter 9 an
A* algorithm for computing the generalized hypertree width. Chapter 10 concludes and
describes work that remains to be done.



Chapter 2

Preliminaries

2.1 Graphs and Hypergraphs

Definition 1 (Graph [15]). A graph G= (V,E) is a structure that consists of a finite set
of vertices V= {v1, ..., vn}, and a set ofedges, E = {e1, ..., em}. Each edgee is incident to
an unordered pair of vertices{u, v}.

Definition 2 (Hypergraph [15]). A hypergraphis a structureH = (V,H) that consists of
verticesV = {v1, ..., vn} and a set of subsets of these verticesH = {h1, ..., hm}, hi ⊆ V,
called hyperedges. The hyperedges differ from regular edges in that they may ”connect”
(or are defined over) more than one or two variables. Note thatevery graph may be
regarded as hypergraph whose hyperedges connect two vertices.

Definition 3 (Gaifman graph, primal graph [15]). LetH = (V,H) be a hypergraph. The
Gaifman graphor primal graphof H , denotedG∗(H), is a graph obtained fromH as
follows:

1. G∗(H) owns the same set of vertices asH .

2. Two verticesvi and v j are connected by an edge inG∗(H) iff vi and v j appear
together within a hyperedge ofH .

Definition 4 (Dual graph [15]). A hypergraphH = (V,H) can be mapped to a regular
graph called adual graph, Hdual. The vertices of the dual graph are the hyperedges of
H , and two vertices are connected inHdual if their corresponding hyperedges share a
vertex inH . Each vertex of the dual graph is labeled by the vertices of the corresponding
hyperedge inH .

Definition 1, 2 and 4 were taken almost verbatim from [15]. In order to distinguish
graphs from hypergraphs we will often denote graphs as regular graphs.

7
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2.2 Constraint Satisfaction Problems

2.2.1 Basic Definitions

Definition 5 (Constraint Satisfaction Problem [15], [45]). A constraint satisfaction prob-
lem (or CSP) is a triple〈X,D,C〉 consisting ofvariables, domainsandconstraints. The
setX = {x1, ..., xn} contains thevariablesof the CSP. The collectionD = {D1, ...,Dn}

contains the finitedomainsfor each variable. The domain of a variable lists the allowed
values for that variable. Eachconstraint Ci in C = {C1, ...,Cm} is defined over a subset
Si of variables,Si ⊆ X, denoted thescopeof constraintCi. A constraintCi specifies the
allowed combinations of values for the variables in its scope Si . Thus, a constraintCi

may also be written as a pairCi = 〈Si ,Ri〉, whereRi is a relation defined onSi whose
tuples represent the allowed values.

Definition 6 (Solution of CSP). A solution of a CSP is acomplete consistent assign-
mentfrom the values of the domains to the corresponding variables. By complete we
mean that we assign a value to each variable of the CSP and a complete assignment is
consistent if it satisfies all constraints. The problem of deciding whether a CSP instance
has a solution is calledconstraint satisfiability (CS). Sometimes we are also interested
in finding all complete consistent assignments.

Many interesting real world problems possess a representation as CSP. For instance,
map and graph coloring problems, boolean satisfiablity problems, boolean conjunctive
queries, the n-queens problem and many more may be formulated as CSPs.

Example 1(Map 3-Coloring of Australia from [45]). The problem of coloring the states
and territories of Australia in such a way that neighboring regions have distinct colors
may be modeled as CSP. Figure 2.1 shows the map of Australia and a possible valid
3-coloring.
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Variables: X = {WA,NT,Q,S A,NS W,V,TAS}
the federal states and territories of Australia

Domains: D = {DWA,DNT,DQ,DS A,DNS W,DV,DT AS}

∀Di ∈ D : Di = {r, g, b}
each state may be colored red (r), green (g) or blue (b)

Constraints: C = {C1,C2,C3,C4,C5,C6,C7,C8,C9}

C1 = 〈{NT,WA},R1〉

C2 = 〈{S A,WA},R2〉

C3 = 〈{NT,Q},R3〉

C4 = 〈{NT,S A},R4〉

C5 = 〈{Q,S A},R5〉

C6 = 〈{NS W,Q},R6〉

C7 = 〈{NS W,V},R7〉

C8 = 〈{NS W,S A},R8〉

C9 = 〈{S A,V},R9〉

∀Ri : Ri = {(r, g), (r, b), (g, r), (g, b), (b, r), (b, g)}
neighboring regions must have distinct colors

Solution: WA= r, NT = g, S A= b, Q = r, NS W= g, V = r, TAS= g

Figure 2.1: Map of Australia and a valid 3-coloring [45].



CHAPTER 2. PRELIMINARIES 10

Example 2 (Boolean Satisfiability (SAT)). Given the boolean formulaφ = (x1 ∨ x2 ∨

x3)∧ (x1∨ x4)∧ (x3∨ x5) in conjunctive normal form, the boolean satisfiability problem
for φ asks whether we can assign the values true or false to the variables ofφ such thatφ
evaluates to true.

Variables: X = {x1, x2, x3, x4, x5}

the variables inφ

Domains: D = {Dx1,Dx2,Dx3,Dx4,Dx5}

∀Di ∈ D : Di = {t, f }
each variable may be set to true (t) or false (f )

Constraints: C = {C1,C2,C3}

C1 = 〈{x1, x2, x3},R1〉

C2 = 〈{x3, x5},R2〉

C3 = 〈{x1, x4},R3〉

R1 = {( f , f , f ), ( f , f , t), ( f , t, f ), ( f , t, t), (t, f , t), (t, t, f ), (t, t, t)}
R2 = {( f , f ), ( f , t), (t, f )}
R3 = {( f , f ), (t, f ), (t, t)}
there is a constraint on each clause
containing the value combinations that will make the clausetrue

Solution: x1 = t, x2 = t, x3 = f , x4 = t, x5 = f

2.2.2 Complexity of CSPs

Given a CSP the number of possible complete variable assignments isO(dn), whered
denotes the maximum domain size. For instance, in example 1 we had to color seven
states or territories with one out of three allowed colors, and in example 2 we had to solve
a SAT instance with five variables over the two boolean valuestrue and f alse. This re-
sults in 37 possible complete assignments for example 1 and in 25 complete assignments
for example 2 respectively. Checking whether a complete assignment is consistent with
the CSP’s constraints can be done in polynomial time, thus CSP is a member ofNP.
NP-hardness of CSP follows from the fact that manyNP-complete problems can be
transformed into a CSP formulation and this transformationcan be done in time polyno-
mial in the size of the original problem. It follows that CSP is anNP-complete problem
itself.

If we build the natural join over all constraint relations ofa given CSP we will get a
relation consisting of all complete consistent assignments for that CSP. The natural join
of m constraint relations of size at mostn is feasible inO(nm−1logn) time. O(nm−1logn)
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is an upper bound for both constraint satisfiability and computing all complete consistent
assignments of a CSP [10].

2.2.3 Constraint Hypergraphs, Join Trees and Acyclic CSPs

Definition 7 (Constraint Hypergraphs). A CSP can be visualized by itsconstraint hy-
pergraph. Given a CSP we can derive its constraint hypergraph by introducing a vertex
for each variable of the CSP. For each constraint we introduce a hyperedge connecting
those vertices that correspond to the variables within the scope of the constraint.

Example 3. Figure 2.2 shows the constraint hypergraphs for the (a) map coloring prob-
lem in example 1 and for the (b) satisfiability problem in example 2. In the map coloring
problem we introduced only binary constraints on each pair of neighboring regions thus
the resulting constraint hypergraph is a regular graph.

Figure 2.2: Constraint hypergraphs for the problems in Example 1 and 2.

Definition 8 (Join Tree [15]). Given a CSP, its constraint hypergraphH and the dual
graphHdual, a join treefor the CSP is a subgraph ofHdual which

1. is a tree consisting of the same set of vertices asHdual .

2. which satisfies the connectedness condition for join trees. The connectedness con-
dition for join trees requires that for each variableY of the CSP the vertices in the
join tree containingY form a subtree of the join tree.

Note that there is a one-to-one correspondence between the constraints of the CSP and
the vertices of the join tree.
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Example 4. Figure 2.3 [15] shows (a) a hypergraph, (b) its the dual graphand (c) a join
tree.

Definition 9 (Acyclic CSP [15]). A CSP which has a join tree is called anacyclicCSP.

Figure 2.3: A hypergraph (a), its dual graph (b) and a join tree (c) [15].

It is well known that acyclic CSPs can be solved efficiently [14]. Given an acyclic
CSP and a join tree we are able to derive a solution from the join tree by applying the
algorithmAcyclic Solving(Figure 2.4) as presented in [15].

Algorithm Acyclic Solving determines whether there is a solution for an acyclic
CSP by processing the join tree in bottom-up fashion. In eachstep those tuples are
deleted from the constraint relation of a parent vertexv j that do not match any tuple
in the constraint relation of the current vertexvi . If the CSP has no solution the empty
relation will be created eventually at some vertex.

For computing a complete consistent assignment of the CSP, algorithm Acyclic
Solving processes the join tree of reduced constraint relations in top-down fashion. Start-
ing at the root it selects a tuple which is consistent with thevalues that have already been
found and assigns new values according to the selected tuple. Figure 2.5 visualizes the
effect of algorithm Acyclic Solving when applied to a CSP and itsjoin tree. Crossed out
tuples are eliminated by the semi-joins in the bottom-up phase. Gray tuples are selected
in the top-down phase.
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Algorithm: Acyclic Solving

Input: a constraint satisfaction problem〈X,D,C〉, C = {C1, ...,Cm} and a join treeT
Output: a solution to the problem if existing

1. Let d = (v1, ..., vm) be an ordering of the vertices inT such thatv1 is T’s root and each
vertex precedes all of its children ind.

2. Associate each constraintCi = 〈Si ,Ri〉 with its corresponding vertexvi in T.

3. /* BOTTOM-UP PHASE - eliminate not matching tuples */
for i = m to 2 do

Let v j be the parent vertex ofvi in T
Rj := Rj X Ri /* update relation Rj associated parent vj * /
if Rj is the empty relationthen exit /* the CSP has no solution */

4. /* TOP-DOWN PHASE - find a complete consistent assignment */

Select a tuple inR1

for i = 2 to m do
Select a tuple inRi that is consistent with all previous assignments.

Figure 2.4: Algorithm Acyclic Solving [15].

Algorithm Acyclic Solving can be implemented in such a way that its running time
is in O(mnlogn), wherem is the number of constraints andn is the size of the largest
constraint relation, thus acyclic CSPs can be solved efficiently. Furthermore, recognizing
whether a CSP is acyclic and computing the join tree of an acyclic CSP can also be done
efficiently [15].

Figure 2.5: Acyclic Solving applied to a CSP and its join tree.
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2.3 Decomposition Methods

We have seen that acyclic CSPs can be solved efficiently but we are still confronted with
a worst case running time ofO(nm−1logn) for solving CSPs in general.

Decomposition methods may be used for identifying and solving tractable classes of
CSPs by exploiting the structure of the constraint hypergraph. Given an CSP instanceI , a
decomposition method transformsI into a solution-equivalent and acyclic CSP instance
I ′. If I ′ can be found in time polynomial in| I | and if the size of the largest relation in
I ′ is polynomial in| I | we will be able to solveI ′ in polynomial time sinceI ′ is acyclic
[27]. Decomposition methods use a measure calledwidth in order bound the size of the
largest relation inI ′.

2.3.1 Tree Decompositions

Basic Definitions

Definition 10 (Tree [29]). Let H = (V,H) be a hypergraph. Atree for a hypergraph
H is a pair〈T, χ〉 whereT = (N,E) is a rooted tree, andχ is a labeling function which
associates to each vertexp ∈ N the setχ(p) ⊆ V.

Definition 11 (Tree Decomposition, width, treewidth [29]). A tree decompositionof a
hypergraphH is a treeTD = 〈T, χ〉 forH which satisfies the following two conditions.

1. for each hyperedgeh ∈ H, there existsp ∈ vertices(T) such thath ⊆ χ(p).

2. for each variableY ∈ V , the set{p ∈ vertices(T) | Y ∈ χ(p)} induces a (connected)
subtree ofT (connectedness condition).

Thewidthof a tree decomposition〈T, χ〉 is maxp∈vertices(T) |χ(p)− 1|. Thetreewidth
ofH is the minimum width over all its tree decompositions.

Given a CSP, a tree decomposition of its constraint hypergraph may be regarded as a
join tree of a solution-equivalent acyclic CSP. Thus a vertex of the the tree decomposition
represents a subproblem of the new acyclic CSP and the width of a tree decomposition
acts as an upper bound on the size of the greatest subproblem.The treewidth of the
constraint hypergraph is the minimal width which can be achieved by one of its tree
decompositions. When solving a CSP from one of its tree decompositions, the first
condition for tree decompositions ensures that all constraints of the original CSP must
appear in at leat one subproblem of the new acyclic CSP. The second condition for tree
decompositions guarantees that any variable must be assigned the same value in each
subproblem in which it appears.
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Example 5. Figure 2.6 shows (a) a constraint hypergraph and (b) a tree decomposition of
width = 2 for the CSP presented below. Each tree vertex contains the variables/vertices
which are associated to it by the labeling functionχ.

Variables: X = {x1, x2, x3, x4, x5, x6}

Domains: D = {Dx1,Dx2,Dx3,Dx4,Dx5,Dx6}

Dx1 = {a, b}, Dx2 = Dx3 = ... = Dx6 = {b, c}

Constraints: C = {C1,C2,C3}

C1 = 〈{x1, x2, x3},R1〉

C2 = 〈{x1, x5, x6},R2〉

C3 = 〈{x3, x4, x5},R3〉

R1 = {(a, b, c), (a, c, b), (b, b, c)}
R2 = {(a, b, c), (a, c, b)}
R3 = {(c, b, c), (c, c, b)}

The concept of tree decompositions was introduced by Robertson and Seymour in
[42] and was originally defined only for regular graphs. Since every graph may be re-
garded as hypergraph with two vertices in each of its hyperedges, Definition 11 covers
the definition for tree decompositions of graphs and extendsthe concept of tree decom-
positions onto arbitrary hypergraphs. Yet another connection between tree decomposi-
tions of graphs and tree decompositions of hypergraphs is given by Lemma 1, taken from
[33].

Lemma 1 ([33]). 〈T, χ〉 is a tree decomposition of hypergraphH iff it is a tree decom-
position of G∗(H), the primal graph or Gaifman graph ofH .

Computational Results for Tree Decompositions

Given a CSP instanceI, its constraint hypergraph and a corresponding tree decomposi-
tion of width= k, a solution for CSP can be computed in timeO(ndk+1), wheren denotes
the number of variables of the CSP andd the maximum domain size [15]. Thus we are
interested in finding a tree decomposition whose width is close-to or equal the treewidth.
Unfortunately computing the treewidth of a graph is anNP-hard problem. The formal
decision problem of treewidth asks if there exists a tree decomposition of width at most
k, for some integerk. Arnborg et al. provedNP-completeness for that problem ifk
is part of the input [1]. If we regardk as a constant Bodlaender [6] presented a linear
time algorithm which decides whether there exists a tree decomposition of width at most
k. Moreover this linear time algorithm is also able to computea tree decomposition of
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Figure 2.6: Constraint hypergraph (a) and a possible tree decomposition ofwidth=2 (b).

width at mostk. In practice this linear time algorithm performs very slowly even for
small values fork due to a huge constant factor.

2.3.2 Generalized Hypertree Decompositions

In [29] Gottlob et al. proposed a new decomposition method which they calledhypertree
decompositions. Hypertree decompositions were originally introduced in database the-
ory as a decomposition method for identifying and solving tractable classes of boolean
conjunctive queries. In [27] Gottlob et al. showed that hypertree decompositions may be
applied to CSP as well and gave a comparison of structural CSPdecompositions meth-
ods which revealed that hypertree decompositions stronglygeneralize all other observed
decomposition methods. This means that whenever another decomposition method guar-
antees polynomial runtime for classes of CSPs then also hypertree decompositions are
able to solve these classes in polynomial time but there are classes of CSPs that can
be solved in polynomial time by hypertree decompositions but cannot be solved effi-
ciently by any other decomposition method explored in [27].The quality of a hypertree
decomposition is again measured by itswidth, and the smallest width a hypertree decom-
position can achieve for a hypergraphH is denotedhypertree width, hw(H). For fixed
k, the problem of checking whether the hypertree width of a hypergraph is at mostk is
feasible in polynomial time, as well as computing a hypertree decomposition of width at
mostk [29].

Generalized hypertree decompositionsrepresent a variation of hypertree decom-
positions. They are obtained by dropping one condition in the definition of hypertree
decompositions, thus they generalize the concept of hypertree decompositions as indi-
cated by their name.
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Basic Definitions

Definition 12 (Hypertree [29]). Let H = (V,H) be a hypergraph. Ahypertree for a
hypergraphH is a triple 〈T, χ, λ〉, whereT = (N,E) is a rooted tree, andχ andλ are
labeling functions which associate to each vertexp ∈ N two setsχ(p) ⊆ V andλ(p) ⊆ H.

Definition 13 (Generalized Hypertree Decomposition [28]). A generalized hypertree
decompositionof a hypergraphH is a hypertreeGHD = 〈T, χ, λ〉 forH which satisfies
the following three conditions:

1. for each edgeh ∈ H, there existsp ∈ vertices(T) such thath ⊆ χ(p).

2. for each variableY ∈ V, the set{p ∈ vertices(T) | Y ∈ χ(p)} induces a (connected)
subtree ofT (connectedness condition).

3. for eachp ∈ vertices(T), χ(p) ⊆ var(λ(p)).

The width of a generalized hypertree decomposition〈T, χ, λ〉 is maxp∈vertices(T) |λ(p)|.
Thegeneralized hypertree-width, ghw(H), ofH is the minimum width over all its gen-
eralized hypertree decompositions.

The first and the second condition for generalized hypertreedecompositions are
identical with the conditions for tree decompositions, thus a generalized hypertree de-
composition of a hypergraphH is a tree decomposition ofH at the same time. The
third condition says that for each vertex of the generalizedhypertree decomposition the
variables within theχ-set of the vertex must be contained by at least one hyperedgein
theλ-set of the vertex.

Note that the above definition does not require that every hyperedge has to be
associated with at least one vertex. This is necessary in order to guarantee problem-
equivalence between a constraint hypergraph and its generalized hypertree decomposi-
tion. Lemma 2 shows that each generalized hypertree decomposition can be changed
efficiently in order to satisfy this additional requirement.

Definition 14 (from Definition 4.2 in [29]). A generalized hypertree decomposition
〈T, χ, λ〉 of hypergraphH is a complete generalized hypertree decompositionof H if,
for eachh ∈ H, there existsp ∈ vertices(T) such thath ⊆ χ(p) andh ∈ λ(p).

Lemma 2 (from Lemma 4.4 in [29]). Given a hypergraphH , every k-width general-
ized hypertree decomposition GHD ofH can be transformed in logspace into a k-width
complete generalized hypertree decomposition GHD’, whosesize is O(|H| +|GHD|).

Like a tree decomposition, also a complete generalized hypertree decomposition
may be regarded as a join tree of a solution-equivalent acyclic CSP. Again, a vertex of
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the complete generalized hypertree decomposition represents a subproblem of the new
acyclic CSP. Each subproblem is defined by the vertices within its χ-set and by the
hyperedges within itsλ-set. In contrary to the width of tree decompositions the width
of a generalized hypertree decomposition is the maximum number of hyperedges or
constraints associated with a vertex, which measures the complexity of the subproblem
more accurately. A subproblem consisting of many variableswhich are restricted by few
constraints is easily solvable.

The generalized hypertree width of a constraint hypergraphdenotes the width of an
optimal generalized hypertree decomposition.

Example 6. Figure 2.7 shows a (complete) generalized hypertree decomposition for the
constraint hypergraph of the CSP in example 5. The variables/vertices which appear in
each tree vertex are those which are associated to it by the labeling functionχ. The con-
straints/hyperedges within each tree vertex are those which are associated by the labeling
functionλ. It might be that a constraint/hyperedge associated with a tree vertex contains
a variable/vertex which does not belong to the variables/vertices associated with the tree
vertex. Such variables/vertices are marked with a ”” in the contraints/hyperedges.

Figure 2.7: Generalized hypertree decomposition ofwidth=2.

Computational Results for Generalized Hypertree Decompositions

Given a CSP instanceI, its constraint hypergraph and a corresponding complete general-
ized hypertree decomposition ofwidth= k, a solution for CSP can be computed in time
O(|I |k+1log|I |), which is polynomial in the size of the CSP instance [27]. Computing all
complete consistent assignments is feasible in output-polynomial time [27].

The generalized hypertree width of a hypergraphH doesn’t exceed both its
treewidth and its hypertree width,ghw(H) ≤ hw(H) ≤ tw(H), thus problems may be
solved more efficiently from generalized hypertree decompositions. Unfortunately, de-
ciding whetherghw(H) ≤ k is anNP-complete problem [26] and moreover deciding
whetherghw(H) ≤ k remainsNP-complete even for fixedk [47].
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2.4 Solving CSPs from Tree Decompositions and Generalized
Hypertree Decompositions

Figure 2.8 shows a tree decomposition for the CSP in example 5and visualizes how a
solution for the CSP is derived from it. For solving the CSP from the tree decomposition
we use steps 4. and 5. of algorithmJoin Tree Clusteringin [15]. Given the CSP and a
tree decomposition Join Tree Clustering applies the following strategy:

1. Each constraint is placed in one vertex of the tree decomposition containing its
scope. Afterwards each vertex represents the subproblem offinding all complete
assignments for the variables of the vertex which are consistent with the associated
constraints.

2. Each subproblem is solved independently. The solution for each subproblem is
shown within the relation associated with the vertices in Figure 2.8. Now we have
obtained a join tree of the solution equivalent acyclic problem.

3. Apply algorithm Acyclic Solving for finding a complete consistent assignment.

Figure 2.8: Solving example 5 from a tree decomposition.

Figure 2.9 shows a complete generalized hypertree decomposition for the CSP in
example 5 and visualizes how a solution for the CSP is derivedfrom it. Given a CSP
and a generalized hypertree decomposition we are able to derive a solution for the CSP
as follows:
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1. Compute a complete generalized hypertree decomposition.

2. For each vertexp compute a new constraint relationRp which is the projec-
tion on the variables inχ(p) of the join of the constraint relations inλ(p),
Rp := πχ(p) Zh∈λ(p) h. AssociateRp with vertex p. Figure 2.8 shows the result-
ing relations. Now we have obtained a join tree of the solution equivalent acyclic
problem.

3. Apply algorithm Acyclic Solving for finding a complete consistent assignment.

Figure 2.9: Solving example 5 from a (complete) generalizedhypertree decomposition.

2.5 Bucket Elimination

In [37] McMahan showed how a method namedbucket elimination[15] may be used for
the creation of tree decompositions and generalized hypertree decompositions. Bucket
elimination itself originates from constraint satisfaction. Informally speaking, bucket
elimination algorithms tend to solve CSP by creating a tree decomposition and solving
the problem on that tree decomposition. An example for a bucket elimination algorithm
is algorithmAdaptive Consistencyin [15]. In order to obtain a tree decomposition bucket
eliminations requires an elimination ordering, which is a permutation of the vertices of
the constraint hypergraph.

2.5.1 Creating Tree Decompositions via Bucket Elimination

Definition 15 (Elimination Ordering). Given a hypergraphH = (V,H), anelimination
ordering forH is an orderingσ = (v1, ..., vn) of the vertices inV.



CHAPTER 2. PRELIMINARIES 21

Given a constraint hypergraphH = (V,H) and an elimination orderingσ =
(v1, ..., vn) of the hypergraph’s vertices algorithmBucket Elimination[37] (Figure 2.10)
returns a tree decomposition forH .

Initially, the algorithm creates a bucket for each vertex ofthe constraint hypergraph
and puts the vertices of each hyperedge into the bucket of themaximum vertex within
this hyperedge. The maximum vertex ofV′ ⊆ V is the vertex with the highest index
according toσ.

Afterwards the buckets are processed in order given byσ. When processing bucket
Bvi , we look at the setA := χ(Bvi ) − {vi}. Intuitively, A contains only vertices that will
be processed afterBvi . The setA is copied to the bucketBvj of its maximum vertexv j.
Additionally Bvi andBvj are connected by an edge.

Finally we get a tree decomposition, where the buckets and the introduced edges act
as a tree and the contents of the buckets represents the vertices within theχ-sets. Figure
2.11 shows a hypergraph (a) and the tree decomposition (b) returned by algorithm Bucket
Elimination using the elimination orderingσ = (x6, x5, x4, x3, x2, x1).

Fortunately, there exists at least one elimination ordering which forces algorithm
Bucket Elimination to return a tree decomposition of optimal width (treewidth) [12],
[34], [43]. The set of all elimination orderings of a hypergraphH may act as search
space for the optimal tree decomposition. As a consequence of [1] finding an elimination
ordering resulting in an optimal tree decomposition is anNP-complete problem.

2.5.2 Bucket Elimination for Generalized Hypertree Decompositions

In [37] McMahan showed how bucket elimination can be extended in order to obtain
generalized hypertree decompositions. The main idea behind his approach is that every
generalized hypertree decomposition〈T, χ, λ〉 may be considered as a tree decomposi-
tion which satisfies an additional property.

• for eachp ∈ vertices(T), χ(p) ⊆ var(λ(p)).

This property requires that the hyperedges in theλ-sets contain the variables in the
correspondingχ-sets. Thus each tree decomposition can be transformed intoa gener-
alized hypertree decomposition by attaching hyperedges tothe decomposition vertices
which contain their variables.
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Algorithm: Bucket Elimination

Input: a (constraint) hypergraphH = (V,H)
an elimination orderingσ = (v1, ..., vn) of the vertices inV

Output: a tree decomposition〈T, χ〉 forH

1. Initially B = ∅, E = ∅
for eachvertexvi introduce an empty bucketBvi , χ(Bvi ) := ∅

2. Fill the bucketsBv1, ..., Bvn as follows:
for eachhyperedgeh ∈ H

Let v ∈ h be the maximum vertex ofh according toσ
χ(Bv) := χ(Bv) ∪ vertices(h)

3. for i = n to 2 do
Let A := χ(Bvi ) − {vi}

Let v j ∈ A be the next vertex inA following vi in σ
χ(Bv j ) := χ(Bv j ) ∪ A /* add vertices in A to bucket Bv j * /
E := E ∪ (Bvi , Bv j ) /* connect buckets Bvi , Bv j * /

4. return 〈(B,E), χ〉, whereB = {Bv1, ..., Bvn}

Figure 2.10: Algorithm Bucket Elimination [37].
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In order to ensure that the width of the resulting generalized hypertree decomposi-
tion is small we have to attach as few hyperedges as possible for each tree decomposition
vertex. This optimization problem for each tree decompositions vertexp is formalized
as set cover problem [32] in the following way:

Given V = {v1, ..., vn} a set of vertices
H = {h1, ..., hm}, ∀i : hi ⊆ V a set of hyperedges

For each tree decomposition vertexp find C ⊆ H
such thatχ(p) ⊆ vertices(C) and|C| is minimal.

Also the set cover problem is anNP-complete problem [32] but minimal set cover
can be formulated as an IP-program [46] and so we are able to obtain exact solutions for
small and middle instances for the set cover problem by the help of an IP-solver within
a reasonable amount of time. Moreover there is a greedy algorithm [11] for the set cover
problem which in practice returns a close-to-optimal solution for many instances.

In [37] McMahan used amongst others the greedy set covering heuristic [11] in
order to solve the set cover problems which arise during bucket elimination. The greedy
set covering heuristic [11] successively chooses the hyperedge which covers most of
the uncovered vertices. Figure 2.11 shows a generalized hypertree decomposition for a
hypergraph obtained via ”covering” the vertices of one of its tree decompositions.

If the set cover problems that arise during the elimination process are solved ex-
actly, e.g. by using an IP-solver the quality of the resulting tree decomposition is again
determined by the underlying elimination ordering. Unlikefor tree decompositions it
has not been shown whether there exists an elimination ordering that produces an op-
timal generalized hypertree decomposition for bucket elimination combined with exact
set covering. In the next chapter we will prove that at least one elimination ordering will
result in a generalized hypertree decomposition of optimalwidth.

2.5.3 Vertex Elimination

Given a hypergraphH and an elimination orderingσ, the tree decomposition returned
by algorithm Bucket Elimination may also be constructed viaa method calledvertex
elimination [44]. Algorithm Vertex Elimination(Figure 2.12) describes this technique
in pseudo code. Vertex elimination acts on the primal graph of a given hypergraph and
eliminates the vertices in order given by an elimination ordering. We say that a vertex
is eliminated from a graph when all its neighbors within the graph are connected with
each other and the vertex is removed from the graph. The name elimination ordering
originates from this process which is also used in order to obtain triangulations of graphs
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Figure 2.11: A hypergraph (a), a tree decomposition (b) and ageneralized hy-
pertree decomposition (c) obtained via bucket eliminationfrom the orderingσ =
(x6, x5, x4, x3, x2, x1).

[44], [25]. Many heuristic methods for tree decompositionssuch as [5] and [24] use
vertex elimination and also the heuristic methods presented in this thesis will apply this
method.

Algorithm: Vertex Elimination

Input: a (constraint) hypergraphH = (V,H)
an elimination orderingσ = (v1, ..., vn) of the vertices inV

Output: a tree decomposition〈T, χ〉 forH

1. Initially B = ∅, E = ∅
for eachvertexvi introduce an empty bucketBvi , χ(Bvi ) := ∅

2. ComputeG = G∗(H) the primal graph ofH .

3. for i = n to 1 do
/* eliminate vertex vi * /
χ(Bvi ) = {vi} ∪ N(vi)
Introduce an edge between each pair of non adjacent neighbors ofvi in G
Let v j be the next vertex inN(vi) following vi in σ
E := E ∪ (Bvi , Bv j )
Removevi from G

4. return 〈(B,E), χ〉, whereB = {Bv1, ..., Bvn}

Figure 2.12: Algorithm Vertex Elimination [44].



Chapter 3

Elimination Orderings -
Generalized Hypertree Width

In section 2.5.2 we described how to build a generalized hypertree decomposition for a
hypergraphH from an elimination ordering. In this chapter we prove that ageneralized
hypertree decomposition forH whose width equalsghw(H) can be obtained from at
least one elimination ordering. This result is particularly important for heuristic methods,
because it implies that the set of all elimination orderingsfor a hypergraphH is an
appropriate search space for generalized hypertree width.

In [3] F. Bacchus proves that the elimination width of a hypergraph equals its
treewidth, which implies that a tree decomposition of widthequal to the treewidth can be
obtained from an elimination ordering. Our proof is in fact amodification of the proof
provided by F. Bacchus, thus during the rest of the chapter wewill clarify in detail which
ideas have been adopted from [2] and [3], how we have modified and extended them and
which work has been done by us.

3.1 Problem Description

Definition 16. LetH = (V,H) be a hypergraph and letσ = (v1, ..., vn) be an ordering of
the vertices inV, wherevi is thei − th element in the ordering. This induces a sequence
of hypergraphsHn,Hn−1, ...,H1 whereHn = H andH i−1 is obtained fromH i as fol-
lows: all hyperedges inH i containingvi are merged into one hyperedge and thenvi is
removed. Thus the underlying vertices ofH i−1 arev1, ..., vi−1. The setclique(vi , σ,H)
denotes the set containingvi and all vertices that are adjacent tovi in H i and the col-
lectioncliques(σ,H) := {clique(vi , σ,H) |vi ∈ V} contains all sets that are produced by

25
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removing the vertices ofH in the order given byσ. (Parts of this definition were taken
almost verbatim from [3].)

Definition 17. The width ofC ⊆ V inH , width(C,H), is the size of the smallest subset
of hyperedges inH such that each vertex inC is contained in at least one hyperedge of
the subset. The width ofH underσ is the maximum width of a set incliques(σ,H),
width(σ,H) := max

C∈cliques(σ,H)
width(C,H).

The elimination process in definition 16 produces the same labels as bucket elim-
ination. As a consequence thewidth(σ,H) is the width of the generalized hypertree
decomposition produced by bucket elimination if the set cover problem for each vertex
is solved exactly. Note that the labels obtained via the process in definition 16 are also the
same labels as returned from vertex elimination (section 2.5.3), because the adjacency
relations in the hypergraphs produced by the process in definition 16 are equivalent to
the adjacency relations within the regular graphs in each elimination step of vertex elim-
ination.

Now the question arises whether there is an elimination ordering such that
width(σ,H) = ghw(H). If the answer for that question is yes we might obtain the
generalized hypertree decomposition of smallest width (ghw) via bucket elimination or
vertex elimination if the arising set cover problems are solved exactly.

3.2 The Leaf Normal Form for Tree Decompositions

Definition 18 (Leaf Normal Form [2]). A tree decomposition TD= 〈T, χ〉 for a hy-
pergraphH = (V,H) is in leaf normal formif the following two conditions hold on
TD = 〈T, χ〉.

1. there is a one-to-one mappinglea f : H → leaves(T) between the hyperedges of
hypergraphH and the leaf vertices of tree decompositionTD = 〈T, χ〉 such that
for each hyperedgeh ∈ H it holds thatχ(lea f(h)) = h.

2. each internal vertexp ∈ vertices(T) has variableY in its label iff p lies on a path
between two leaves withY in their labels.

The definition of tree decompositions in leaf normal form wastaken almost ver-
batim from definition for tree decompositions for hypergraphs in [2]. This definition in
[2] requires additionally that a tree decomposition has to be a binary tree. This require-
ment has been dropped in definition 18 because for our purposea tree decomposition
in leaf normal form need not be a binary tree. Furthermore F. Bacchus proposes two
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rules for transforming arbitrary tree decompositions intotree decompositions satisfying
his definition. The first rule is used for transforming an arbitrary tree decomposition
into a binary one and has no impact on our considerations. Thesecond rule describes
how to introduce leaf vertices, corresponding to hyperedges, which are needed for the
one-to-one mapping between the leaves of the tree decomposition and the hyperedges of
the hypergraph. AlgorithmTransform Leaf Normal Form(Figure 3.1) uses this second
transformation rule in step 2.

We claim that the following algorithm is able to transform a tree decomposition
TD = 〈T, χ〉 into a tree decomposition in leaf normal formTD′ = 〈T′, χ′〉 such that for
each vertexp′ ∈ vertices(T′) there is a vertexp ∈ vertices(T) with χ′(p′) ⊆ χ(p).

Algorithm: Transform Leaf Normal Form

Input: hypergraphH = (V,H), tree decompositionTD = 〈T, χ〉 forH
Output: a tree decomposition in leaf normal formTD′ = 〈T′, χ′〉

of hypergraphH satisfying:
∀p′ ∈ vertices(T′) ∃p ∈ vertices(T) : χ′(p′) ⊆ χ(p)

1. Initially T D′ := T D,T′ := T, ∀p ∈ vertices(T) : χ′(p) := χ(p).

2. For each hyperedgeh ∈ H we introduce a new leaflh and connect it to a vertexp that has
already been inT with h ⊆ χ′(p) = χ(p). The introduced leaf is labeled with the variables
of the corresponding hyperedge,χ′(lh) := h, and we map hyperedgeh to the new leaflh,
lea f(h) := lh.

3. While there is a leafl ∈ leaves(T′) that is not reached by the mappinglea f we deletel.

4. For each inner vertexp′ ∈ vertices(T′) and for each variableY ∈ χ′(p′) we deleteY from
χ′(p′) if p′ is not on a path between two leaves withY in their labels.

Figure 3.1: Algorithm Transform Leaf Normal Form.
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Example 7. Figure 3.2 shows a hypergraph (a) and its tree decomposition(b). Figure
3.3 visualizes the leaves attached to the tree decomposition by step 2. of algorithm
Transform Leaf Normal Form as dashed boxes. The crossed out leaf was deleted during
step 3. Figure 3.4 shows the tree decomposition obtained by deleting variables in step
4. This tree decomposition is already in leaf normal form. Crossed out variables were
deleted in step 4.

Figure 3.2: Hypergraph (a) and its tree decomposition (b)

Figure 3.3: Tree Decomposition after step 3. of algorithm Transform Normal Leaf Form
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Figure 3.4: Tree Decomposition in leaf normal form after step 4.
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3.2.1 Correctness Proof for Algorithm Transform Leaf Normal Form

Within this section we intend to prove that algorithm Transform Leaf Normal Form
transforms an arbitrary tree decompositionTD = 〈T, χ〉 into a tree decomposition
TD′ = 〈T′, χ′〉 in leaf normal form such that for each vertexp′ ∈ vertices(T′) there is
a vertexp ∈ vertices(T) with χ′(p′) ⊆ χ(p). The lemmas and the theorem within this
subsection as well as their proofs have been developed entirely by ourselves.

Definition 19. LetH be a hypergraph and〈T, χ〉 be a tree decomposition forH . For
each variableY in H the setTY consists of the vertices ofT which containY in their
associatedχ-set.

Lemma 3. After step 1. for each vertex p′ ∈ vertices(T)′ there is a vertex
p ∈ vertices(T) with χ′(p′) ⊆ χ(p).

Proof. Obviously, after step 1.TD′ andTD are the same tree decompositions ofH and
thus the lemma holds. �

Lemma 4. After step 3. TD′ is a tree decomposition of hypergraphH = (V,H).

Proof. In step 2. and step 3. we add and delete leaves from the treeT′. Thus after step
3. T′ is still a tree.

Furthermore we have to show that first and the second condition for tree decompo-
sitions of hypergraphs are satisfied byTD′ after step 3.

In step 2. for each hyperedgeh ∈ H we introduce a leaf vertexlh with χ′(lh) = h
and connect it to a vertexp, with h ⊆ χ′(p), which has already been inTD . Note thatp
must exist sinceTD is a tree decomposition of hypergraphH satisfying the first condi-
tion for tree decompositions of hypergraphs. These leaves are not deleted during step 3.
Thus after step 3. for eachh ∈ H the vertexlea f(h) ∈ vertices(T′) satisfies
h = χ′(lea f(h)) ⊆ χ′(lea f(h)). We conclude that the first condition for tree decomposi-
tions of hypergraphs is satisfied byTD′ after step 3.

Assume that the connectedness condition for tree decomposition is satisfied byTD′

before but violated after a new leaflh and a new edge (lh, p) have been introduced in step
2. We know thatp is chosen such thath = χ′(lh) ⊆ χ′(p). When connecting the leaflh
to p we connect also the leaflh to subtreeT′Y, for each variableY ∈ χ(lh), andT′Y is still
a tree afterwards. Thus the connectedness condition cannotbe violated after any action
taken in step 2.

Therefore it must be that the connectedness condition for tree decompositions is
satisfied byTD′ before but violated after a leafl has been deleted in step 3. Then after
the deletion ofl there must be a variableY such that all vertices containingY in their
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labels don’t form a connected subtree ofT′. We know that all vertices that containY in
their labels form the subtreeT′Y before the deletion ofl.

If Y < χ′(l) then the deletion ofl doesn’t changeT′Y andT′Y is still a tree after the
deletion ofl.

If Y ∈ χ′(l) then by deleting the leafl from T′ we are also deleting the leafl from
the subtreeT′Y and thus all vertices that containY in their labels must form a subtree
after the deletion ofl.

We conclude that after step 3.TD′ is a valid tree decomposition of hypergraph
H . �

Lemma 5. After step 3. the mapping lea f: H → leaves(T′) is a one-to-one mapping
such that for each hyperedge h∈ H it holds thatχ′(lea f(h)) = h.

Proof. In step 2. we define a one-to-one mapping between the hyperedges ofH and the
introduced leaves such that for each hyperedgeh ∈ H it holds thatχ′(lea f(h)) = h. In
step 3. we delete only those leaves inTD′ that are not reached by the mappinglea f.
Thus after step 3. the leaves ofT′ are those that have been introduced during step 2. We
conclude that after step 3.lea f is a one-to-one mapping between the hyperedges ofH

andleaves(T′). �

Lemma 6. After step 3 for each vertex p′ ∈ vertices(T′) there is a vertex p∈ vertices(T)
with χ′(p′) ⊆ χ(p).

Proof. We know from Lemma 3 that after step 1. for eachp′ ∈ vertices(T′) there is a
p ∈ vertices(T) with χ′(p′) ⊆ χ(p).

In step 2. for each hyperedgeh ∈ edges(H) we introduce a leaflh with χ′(lh) = h
and connectlh to a vertexp that has already been inT with h ⊆ χ′(p) = χ(p). Thus for
each newly introduced leaflh there is a vertexp ∈ vertices(T) such that
h = χ′(lh) ⊆ χ′(p) = χ(p). Therefore the condition holds also for the newly introduced
leaves inT′.

In step 3. we only delete vertices and the remaining verticesstill satisfy the property
since their labels are not changed.

We conclude that after step 3. for eachp′ ∈ vertices(T′) there is ap ∈ vertices(T)
with χ′(p′) ⊆ χ(p). �

Lemma 7. After step 4. the mapping lea f: H → leaves(T′) is a one-to-one mapping
such that for each hyperedge h∈ H it holds thatχ′(lea f(h)) = h.
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Proof. From Lemma 5 we know that after step 3.lea f is a one-to-one mapping between
the hyperedges of hypergraphH and leaves ofT′. Step 4. alters the labels of the
inner vertices ofT′ but the number of leaves as well as the labels of the leaves remain
unchanged. Thus after step 4. the mappinglea f : H → leaves(T′) is still a one-to-one
mapping such that for each hyperedgeh ∈ H it holds thatχ′(lea f(h)) = h. �

Lemma 8. After step 4. TD′ is a tree decomposition of hypergraphH .

Proof. From Lemma 4 we know thatTD′ is a tree decomposition after step 3.

In step 4. the labels of the vertices ofT′ are altered but the structure ofT′ remains
unchanged. ThusT′ is also a tree after step 4.

Additionally we have to show that the first condition and the second condition for
tree decompositions of hypergraphs are satisfied byTD′ after step 4.

From Lemma 7 we know that after step 4. the mappinglea f : H → leaves(T′) is
a one-to-one mapping such that for each hyperedgeh ∈ H it holds thatχ′(lea f(h)) = h.
We conclude that the first condition for tree decompositionsof hypergraphs is satisfied
after step 4. since for each hyperedgeh ∈ H there is a vertexlea f(h) ∈ vertices(T′) with
h ⊆ χ(lea f(h)).

Assume that the connectedness condition for tree decompositions is satisfied by
TD′ after step 3. but violated after step 4. Then after step 4. there must be a variableY
such that the vertices containingY in their labels don’t form a subtree ofT′. Thus the
vertices containingY in their labels can be partitioned into two non-empty sets,C1 and
C2, such that each vertex inC1 is not adjacent to any vertex inC2.

If there isn’t any leaf inC1 thenC1 contains only inner vertices ofT′. Let p′ ∈ C1

be such an inner vertex. We know thatY ∈ χ′(p′) sincep′ ∈ C1. Thusp′ must lie on
a unique pathP between two leaves,l1 andl2, containingY in their labels, otherwiseY
would have been deleted fromχ′(p′) in step 4. Note that in step 4.Y hasn’t been deleted
from the label of any vertex inP sinceP is a path between two leaves containingY. l1
andl2 must lie inC2, according to our assumption that there is no leaf inC1.

If all vertices in pathP containY in their labels then each of the vertices inP either
is in C1 or C2 and there must be at least one edge between a vertex ofC1 and a vertex of
C2, a contradiction to our assumption that such an edge doesn’texist.

Therefore it must be that there is at least one vertex on the path betweenl1 and p′

which does not containY in its label and that there is at least one vertex on the path
betweenl2 and p′ which does not containY in its label. SinceY hasn’t been deleted
from the label of any vertex inP in step 4. and there isn’t any other path different fromP
betweenl1 andl2 in treeT′ the connectedness condition for variableY has already been
violated before step 4. which contradicts Lemma 4.
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Thus it must be that there is at least one leafl1 in C1 and by applying the same
argumentation as above toC2 we get that there is at least one leafl2 in C2. SinceT′ is
a tree there must be a unique pathP betweenl1 and l2. Again, in step 4.Y hasn’t been
deleted from the label of any vertex inP. If each vertex inP containsY in its label there
must be at least one edge between a vertex inC1 and a vertex inC2, a contradiction to
our assumption that such an edge doesn’t exist. If there is a vertex inP that does not
containY in its label then it must be that the connectedness conditionfor variableY has
already been violated before step 4. which contradicts Lemma 4.

We conclude that after step 4.TD is a tree decomposition of hypergraphH.

�

Lemma 9. After step 4. each internal vertex p′ ∈ vertices(T′) has Y in its label iff p′

lies on a path between two leaves with Y in their labels.

Proof. Necessity follows directly from step 4. Assume there is a vertex p′ in vertices(T′)
with Y ∈ χ′(p′) and p′ does not lie on a path between two leaves withY in their labels
thenY must have been deleted fromp′ in step 4. This contradicts our assumption that
Y ∈ χ′(p′) after step 4.

Sufficiency. Assume thatp′ lies on a path between two leaves withY in their labels
andY < χ′(p′). SinceT′ is a tree there is a unique path between two of its leaves.p′

lies on a unique path between the two leaves containingY in their labels andp′ doesn’t
containY. ThenTD′ = 〈T′, χ′〉 doesn’t satisfy the connectedness condition after step 4.
which has been proven to hold in Lemma 8 . �

Lemma 10. After step 4. for each p′ ∈ vertices(T′) there is a p∈ vertices(T) with
χ′(p′) ⊆ χ(p).

Proof. We know from Lemma 6 that after step 3. for eachp′ ∈ vertices(T′) there is a
p ∈ vertices(T) with χ′(p′) ⊆ χ(p). Since in step 4. variables are only deleted and not
added to labels of vertices ofT′ we conclude that after step 4. for eachp′ ∈ vertices(T′)
there is ap ∈ vertices(T) with χ′(p′) ⊆ χ(p). �

Theorem 1. For every tree decomposition TD= 〈T, χ〉 of hypergraphH there is a tree
decomposition TD′ = 〈T′, χ′〉 of hypergraphH in leaf normal form such that for each
p′ ∈ vertices(T′) there is a p∈ vertices(T) such thatχ′(p′) ⊆ χ(p). Moreover algorithm
Transform Leaf Normal Form returns such a tree decomposition.

Proof. Follows directly from Lemma 7, Lemma 8, Lemma 9 and Lemma 10. �
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3.3 From Leaf Normal Forms to Elimination Orderings

In this section we will show that we can derive an eliminationorderingσ from a tree
decompositionTD = 〈T, χ〉 in leaf normal form such that each set withincliques(σ,H)
is contained within a vertex ofTD (see lemma 13).

This result is needed in section 3.4 in order to prove that a generalized hypertree
decomposition ofwidth = ghwcan be obtained from at least one elimination ordering.
The definitions, lemmas and their proofs presented within this section are already im-
plicetly given within the proof for lemma 1 in [3]. Lemma 1 in [3] says that for each tree
decomposition for a hypergraphH of width w there is an elimination orderingπ such
that the induced width of H underπ is at mostw. This result implies that an optimal tree
decomposition may be obtained from at least one eliminationordering. We partitioned
the proof for Lemma 1 in [3] into several definitions and lemmas and modified the proof
of lemma 1 in [3] in order to ensure a better understanding forthe reader. Nevertheless,
the results presented within this section have already beenproved by F. Bacchus in [3].

Definition 20. LetH = (V,H) be a hypergraph and letσ = v1, ..., vn be an ordering of
the vertices inV. We use the notationx <σ y in order to indicate thatx precedesy in the
ordering. (Note that ifx <σ y theny will be removed fromH beforex.)

Definition 21. Let TD = 〈T, χ〉 be a tree decomposition of hypergraphH = (V,H) in
leaf normal form.

For an arbitrary vertexp ∈ vertices(T) let

• Tp denote the subtree ofT rooted atp

• vars(p) denote the union of the labels of the leaves inTp

• depth(p) denote the distance fromp to the root inT

For an arbitrary vertexv ∈ V of hypergraphH let

• leaves(v) denote the set of leaves inT which containv in their labels

• dca(v) denote the deepest common ancestor of all the leaves inleaves(v)

• depth(v) be the depth of the deepest common ancestor of all leaves containing v,
depth(v) := depth(dca(v))

This definition was taken almost verbatim from Lemma 1 in [3].
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Lemma 11. Let TD= 〈T, χ〉 be a tree decomposition of hypergraphH = (V,H) in leaf
normal form. Then∀v ∈ V ∀p ∈ vertices(T)

1. v∈ χ(dca(v))

2. leaves(v) ⊆ vertices(Tdca(v))

3. v∈ χ(p) ⇒ v ∈ vars(p)

4. v does not appear in any label of any vertex outside the subtree Tdca(v)

Proof. We know that

1. dca(v), the deepest common ancestor of the leaves containingv, must lie on a path
between two leaves withv in their labels. SinceTD is in leaf normal form it must
be thatv ∈ χ(dca(v)).

2. dca(v) is the deepest common ancestor of the leaves ofT containingv. Thus the
subtree rooted atdca(v) obviously contains all such leaves.

3. TD is in leaf normal form. Thus ifv ∈ χ(p) there must be a path between two
leaves containingv and at least one of those two leaves must be in subtreeTp

rooted atp.

4. dca(v) is the deepest common ancestor of all leaves withv in their labels. If any
vertex p outsideTp containsv thenp must lie on a path between two leaves with
v in their labels. If both leaves are inTp then eitherp is in Tp or dca(v) isn’t a
common ancestor of all leaves containingv, a contradiction. If at least one leaf is
outsideTp then againdca(v) isn’t a common ancestor of all leaves containingv, a
contradiction.

�

Lemma 12. LetH = (V,H) be a hypergraph, TD= 〈T, χ〉 a tree decomposition of H in
leaf normal form and letσ be any ordering of the vertices in V such that if
depth(v) < depth(w) then v<σ w. If y ∈ vars(dca(x)) and y<σ x then y∈ χ(dca(x))

Proof. Assume by way of contradiction that there is a tree decomposition TD = 〈T, χ〉
of a hypergraphH in leaf normal form, an orderingσ such that ifdepth(v) < depth(w)
then v <σ w and two verticesx and y such thaty ∈ vars(dca(x)) and y <σ x but
y < χ(dca(x)). Fromy ∈ vars(dca(x)) we know that there is a leafl in Tdca(x) containing
y and fromy <σ x we know thatdepth(dca(y)) ≤ depth(dca(x)). Thus it must be that
eitherdca(y) = dca(x) or dca(y) < vertices(Tdca(x)).
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If dca(y) = dca(x) we know thaty < χ(dca(y)) = χ(dca(x)), a contradiction to
Lemma 11.

If dca(y) < vertices(Tdca(x)) then dca(x) lies on the unique pathP between the
leaf l in Tdca(x) and dca(y). Sincey ∈ χ(dca(y)) and y < χ(dca(x)), P violates the
connectedness condition for tree decompositions of hypergraphs, a contradiction to our
assumption thatTD = 〈T, χ〉 is a tree decomposition of hypergrahH . �

Lemma 13. LetH = (V,H) be a hypergraph, TD= 〈T, χ〉 a tree decomposition ofH
in leaf normal form and letσ be any ordering of the vertices in V such that if
depth(y) < depth(x) then y<σ x. Then for each v∈ V it holds that
clique(v, σ,H) ⊆ χ(dca(v)).

Proof. By induction:

Basis: vn is removed.
When vn is eliminatedclique(vn, σ,H) containsvn and all vertices that are ini-

tially adjacent tovn. From Lemma 11 we know thatvn ∈ χ(dca(vn)) and since
leaves(vn) ⊆ vertices(Tdca(vn)) we know thatTdca(vn) contains all leaves withvn in their
labels. According to the one-to-one mappinglea f between the hyperedges ofH and the
leaves ofT, all hyperedges in whichvn appears inH can be found inleaves(vn).

Thus for each vertexy initially adjacent tovn we havey ∈ vars(dca(vn)) and since
y <σ vn it must be thaty ∈ χ(dca(vn)) (Lemma 12). We conclude thatclique(vn, σ,H)
⊆ χ(dca(vn)).

Induction step: We assume thatclique(v, σ,H) ⊆ χ(dca(v)) for v ∈ {vi+1, ..., vn}. vi is
removed.

Whenvi is eliminatedclique(vi , σ,H) consists ofvi , of vertices that were initially
adjacent tovi and of vertices that are adjacent tovi after one of the vertices invi+1, ..., vn

has been eliminated.

We know thatvi ∈ χ(dca(vi )) (Lemma 11).

For each vertexy that was originally adjacent tovi it must be thaty andvi appear
together within an hyperedge ofH and thus they are also together within a leaf ofT.
Sinceleaves(vi ) ⊆ vertices(Tdca(vi )) (Lemma 11) it must be thaty ∈ vars(dca(vi )). We
know thaty ∈ vars(dca(vi )) andy <σ vi thus we conclude thaty ∈ χ′(dca(vi )) (Lemma
12).

For each vertexy that is adjacent due to the elimination of a vertexv j with
vi <σ v j , we know thaty, vi , v j ∈ clique(v j , σ,H) ⊆ χ(dca(v j )) according to our induc-
tion assumption.
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If dca(v j ) < vertices(Tdca(vi )) thenvi < χ(dca(v j )), since there is no vertex outside
the subtree rooted inTdca(vi ) that containsvi in its label (Lemma 11), a contradiction to
vi ∈ χ(dca(v j )) .

Thus it must be thatdca(v j ) ∈ vertices(Tdca(vi )). Sincey ∈ χ(dca(v j )) we know
that y ∈ vars(dca(v j )) (Lemma 11). Sincedca(v j ) ∈ vertices(Tdca(vi )) it must be that
vars(dca(v j )) ⊆ vars(dca(vi )) and thusy ∈ vars(dca(vi )). Fromy ∈ vars(dca(vi )) and
y <σ vi we conclude thaty ∈ χ(dca(vi )) (Lemma 12). �

Example 8. Figure 3.5 shows a tree decompositions in leaf normal form and the deepest
common ancestors (dca) for each variable. For the variablesin the elimination ordering
σ it holds that ifdepth(y) < depth(x) theny <σ x. Figure 3.6 shows a tree decomposition
(a) derived fromσ via bucket elimination/vertex elimination. The variables in each
vertex are contained by at least one vertex of the original tree decomposition (b).

Figure 3.5: Elimination orderingσ derived from deepest common ancestors (dca).
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Figure 3.6: Tree decomposition (a) derived fromσ and original tree decomposition (b).
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3.4 Obtaining an Optimal Generalized Hypertree Decompo-
sition from Elimination Orderings

In this section we prove that for each hypergraphH there is at least one elimination
orderingσ such that the width ofH underσ equals the generalized hypertree width,
width(σ,H) = ghw(H). As a consequence of this result our approach to create general-
ized hypertree decompositions via bucket elimination/vertex elimination is able to create
a generalized hypertree decomposition of minimal width. The set of all possible elimi-
nation orderings for a hypergraph may be regarded as search space for the generalized
hypertree width.

Theorem 2. LetH = (V,H) be a hypergraph, GHD= 〈T, χ, λ〉 be a generalized hy-
pertree decomposition of hypergraphH and let k be the width of GHD. Then there
is an orderingσ of the vertices in V such that the width ofH underσ is at most k,
width(σ,H) ≤ k.

Proof. As generalized hypertree decompositionGHD is also a tree decomposition of
hypergraphH . From Theorem 1 we know that there is a tree decompositionGHD′ =
〈T′, χ′〉 of H in leaf normal form such that for eachp′ ∈ vertices(T′) there is ap ∈
vertices(T) satisfyingχ′(p′) ⊆ χ(p).

According to Lemma 13 there must be an orderingσ of the vertices inV such that
for eachC ∈ cliques(σ,H) there is ap′ ∈ vertices(T′) with C ⊆ χ′(p′). Then for each
C ∈ cliques(σ,H) there must also be ap ∈ vertices(T) with C ⊆ χ(p) andwidth(C,H)
≤ |λ(p)|. width(C,H) was defined to be the size of the smallest subset of hyperedges in
H such that each vertex ofC is contained in at least one hyperedge of the subset. Since
the hyperedges inλ(p) contain all vertices ofp, thus also all vertices ofC, the cardinality
of λ(p) may exceedwidth(C,H), thuswidth(C,H) ≤ |λ(p)|.

The width ofGHD is the maximum number of hyperedges associated with a vertex
in T and the width ofGHD is supposed to bek. Since for each setC ∈ cliques(σ,H)
there is ap ∈ vertices(T) with C ⊆ χ(p) andwidth(C,H) ≤ |λ(p)| we conclude that the
width ofH underσ does not exceed the width ofGHD, width(σ,H) ≤ k. �

Theorem 3. LetH = (V,H) be a hypergraph. Then there must be an orderingσ of the
vertices in V such that width(σ,H) = ghw(H).

Proof. The generalized hypertree width of a hypergraphH , ghw(H), is defined to be the
minimum width over all generalized hypertree decompositions ofH . Thus there must be
a generalized hypertree decompositionGHD ofH such thatwidth(H) = ghw(H). From
Theorem 2 we know that there must be an orderingσ such thatwidth(σ,H) ≤ ghw(H).
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In [37] it is shown that given an ordering of the vertices of a hypergraph a gen-
eralized hypertree decomposition consisting only of the sets produced by that ordering
can be constructed. Ifwidth(σ,H) < ghw(H) there would be a generalized hyper-
tree decomposition of width smaller thanghw(H), which contradicts the minimality of
ghw(H). Thus it must be thatwidth(σ,H) = ghw(H). �



Chapter 4

An Overview of Heuristic Methods
used in This Thesis

In this chapter we give a short description of the heuristic methods which are applied
within this master thesis. These heuristic methods arebranch and bound algorithms, A*
algorithmsandgenetic algorithms. Furthermore we are going to review already available
heuristic methods for tree decompositions and related problems.

4.1 Branch and Bound Algorithms

A simple but inefficient method for finding the optimal solution for an optimization
problem isexhaustive search. Exhaustive search checks each solution for a given op-
timization problem and returns the optimal solution after the whole search space has
been visited. Since the search space for an optimization problem is usually very large,
exhaustive search may not return the optimal solution within a reasonable amount of
time.

A branch and bound algorithmtries to overcome this problem by identifying and
omitting regions within the search space which don’t contain solutions that are better
than the best solution we have already found during the search. A branch and bound
algorithm ”shrinks” the search space by the help of the following two techniques:

1. Branching: The overall search space is partitioned into several smaller sub re-
gions. This process is recursively applied on the subregions until we end up in
single solutions for the optimization problem. The produced subregions may be
visualized as a tree, thebranch and bound treeor thesearch tree.

41
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2. Bounding: For each subregion a lower (minimization problem) or an upper bound
(maximization problem) on the value of the best solution within the subregion is
computed which is used for narrowing the search space.

In order to discard those regions from the search space that will not lead to better
solutions a branch and bound algorithms applies a strategy called pruning. For mini-
mization problems this is done by maintaining a global variable upper bound containing
the value of the best solution found so far. The upper bound may be initialized with
the value of a randomly or heuristically created solution. Whenever a solution of better
quality is explored the upper bound will be updated. For eachsubregion we compute
a lower bound on its optimal solution. If the lower bound for asubregion exceeds the
current upper bound we may discard this subregion.

Example 9. Figure 4.1 shows a search tree representing all possible elimination order-
ings for three vertices and visualizes an imaginary execution of a branch and bound
algorithm on this tree. The value in a tree node is the lower bound for the subregion
represented by the tree rooted at this node. Initiallyub = 20, then a solution of value
14 is found, thusub = 14. Whenever the lower bound of a node is greater or equal to
the current value forub the solutions below this node are excluded from the branch and
bound search (dashed nodes).

Figure 4.1: Branch and bound search.

Branch and bound algorithms are exact methods. If they are given enough time they
will return an optimal solution of the problem they are designed for. A branch and bound
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algorithm may also be used as approximation for the best solution. For instance, if we
restrict the running time of a branch and bound algorithm then the branch and bound
algorithm will return the value of the best solution which has been found until the time
limit was exceeded. The pruning power of a branch and bound algorithm depends on
the quality of the upper and lower bound heuristics which areapplied within the branch
and bound algorithm. A key issue for developing branch and bound algorithms for min-
imization problems, such as finding the treewidth and generalized hypertree width of a
hypergraph, is the design of good lower bounds.

4.2 A* Algorithms

A* algorithms (pronounced A star) are graph search algorithms which find anoptimal
path from a start vertex to a goal. Like branch and bound algorithms also A* algorithms
are exact methods. In the previous section we mentioned thata branch and bound al-
gorithm partitions the search space successively into sub regions and this partitioning
process is visualized as branch and bound tree. We may transform a branch and bound
tree into a graph search problem as shown in Figure 4.2. The start for our search is the
root of the tree. The costs for getting from vertices to theirsuccessors are associated
with the edges. Finally we introduce a goal vertex covering all leaves of the tree.

Figure 4.2: Graph search problem derived from branch and bound tree in Figure 4.1.

A* algorithms arebest-first searchmethods. A best-first search algorithm selects
the next vertex that will be visited within the search according to an evaluation function
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f (n), which is an estimate for the costs of a path from the start tothe goal containing
the vertexn. The vertex with the lowest value forf (n) is chosen to be visited next
and its children will be evaluated according tof (n) (Figure 4.3). In practice, the
unvisited vertices are stored within a priority queue ordered by their values forf (n).
The evaluation functionf (n) for A* algorithms is an lower bound for the lowest costs
of a path from the start to the goal containing the vertexn. A* algorithms computef (n)
in the following way:

f (n) = g(n) + h(n)

g(n) denotes the costs for reachingn andh(n) is an estimate for the lowest costs
for getting fromn to the goal. In order to find the optimal solution it is reasonable
to continue the search at the vertex with the lowest value forf (n) = g(n) + h(n) [45].
Moreover it turns out that if the search graph is a tree, such as a branch and bound tree,
and if h(n) is an admissible heuristic, which means thath(n) never overestimates the
lowest costs for reaching the goal fromn, the path returned by an A* algorithm will be
the optimal solution. The main drawback with A* algorithms is that there may be an
exponential number of vertices within its priority queue such that an A* algorithm may
run out of memory before it has completed its search.

If we have a branch and bound algorithm for an optimization problem we may
obtain an A* algorithm for that problem:

• Our search graph is the modified branch and bound tree (Figure4.2).

• For g(n) we use the costs of the partial solution represented by vertex n.

• For h(n) we use a lower bound on the value of the partial solutions within the
subtree rooted atn.
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Figure 4.3: Best-first search.
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4.3 Genetic Algorithms

Genetic algorithms(GAs) were developed by Holland [31] in the 1970s. They represent
a class ofevolutionary algorithms(EAs). Evolutionary algorithms try to find a good
solution for an optimization problem by imitating the principle of evolution. They alter
and select individuals from a population of solutions for the optimization problem.
In the following we introduce and describe frequently used terms within evolutionary
algorithms:

population ... set of candidate solutions
individual ... a single candidate solution
chromosome ... set of parameters that determine the properties of a solution
gene ... single parameter
allele ... concrete value for a parameter
genotype ... all concrete parameter values of a chromosome
phenotype ... all properties of a candidate solution

Figure 4.4 shows the structure of a genetic algorithm [38]. Agenetic algorithms
tends to optimize the value of an objective function of an optimization problem, in terms
of genetic algorithms also calledfitness function. At the beginning a genetic algorithm
creates an initial population containing randomly or heuristically created individuals.
These individuals are evaluated and assigned afitnessvalue, which is the value of the
fitness function for the solution represented by the individual. The population is evolved
over a number of generations until a halting criterion is satisfied. In each generation the
population undergoesselection, recombination, also denotedcrossover, andmutation.

During the process of selection the genetic algorithm decides which individuals
from the current population are allowed to enter the next population. This decision
is based on the fitness value of the individuals and individuals of better fitness should
enter the next population with higher probability than individuals of lower fitness. Not
selected individuals are discarded and won’t be evolved further.

The process of recombination or crossover combines different properties of sev-
eral parent solutions within one or more children solutions, also denotedoffsprings. If
only good or the best properties of the parents are combined the resulting child may
be fitter than any of its parents. Recombination is the characteristic operator of genetic
algorithms. Within the other class of evolutionary algorithms,evolution strategies(ES),
recombination isn’t applied.

During the process of mutation the individuals are slightlyaltered. Mutation is used
to introduce new genetic material into the population.
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Genetic Algorithm

t = 0
initialize population(t)
evaluatepopulation(t)

while ¬terminateddo
t = t + 1
selectpopulation(t) from population(t − 1)
recombinepopulation(t)
mutatepopulation(t)
evaluatepopulation(t)

Figure 4.4: The structure of a genetic algorithm [38].

In practice parameters are used in order to control the behavior of a genetic algo-
rithm. Typicalcontrol parametersare mutation rate, crossover rate, population size and
parameter for selection techniques. The crossover rate specifies how many individuals
undergo crossover during an iteration, the mutation rate specifies the probability that a
individual is mutated during an iteration whereas the population size determines how
many individuals appear together within the population. Parameters for selection tech-
niques are used to control the degree how much individuals ofhigher fitness are preferred
to individuals of small fitness. The choice of the control parameters has a crucial effect
on the behavior of the algorithm.

4.3.1 Problem Representation

When designing a genetic algorithm for a given optimizationproblem we have to think
about how a solution for the problem may be represented within the genetic algorithm.
Popular problem representations are bit-strings, permutations, finite state machines and
symbolic expressions [38]. We intend to develop genetic algorithms for tree and general-
ized hypertree decompositions. In chapter 3 we have seen that the set of all elimination
orderings, which is the set of all permutations of the vertices of a hypergraph, repre-
sents a suitable search space for the optimal tree or generalized hypertree decomposition.
Therefore we will describe standard crossover and mutationoperators for permutations
in the following two sections.
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4.3.2 Crossover Operators for Permutations

The crossover operators described within this section are taken from [36]. Figure 4.5
gives an overview of the presented crossover operators.

Partially-Mapped Crossover (PMX)

The partially-mapped crossover operator determines a crossover area within the parent
solutions by randomly selecting two positions within the permutations. The genes in the
crossover areas define a mapping. The crossover areas are exchanged. If a gene outside
the crossover area appears in the exchanged area it is replaced by the value defined by
the mapping.

Cycle Crossover (CX)

The cycle crossover operator can be described as follows. Ifthe first parent is written
above the second parent we can consider the ordering as a single permutation. Then we
have to determine the first cycle of that permutation. Withinthe offspring the elements
of the cycle have the same position as in the first parent. The other elements have the
same positions as in the second parent.

Order Crossover (OX1)

The order crossover operator determines a crossover area within the parents by randomly
selecting two positions within the permutation. The genes in the crossover area of the
parent are copied to the offspring. Starting at the end of the crossover area all genes
outside the area are inserted in the same order in which they occur in the other parent.

Order-Based Crossover (OX2)

The order-based crossover operator selects at random several positions in the parent
string by tossing a coin for each position. The genes of one parent at these positions
are deleted in the other parent. Afterwards they are reinserted in the order of the other
parent.

Position-Based Crossover (POS)

The position-based crossover operator also starts with selecting a random set of positions
in the parent strings by tossing a coin for each position. Theelements at the selected
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positions are exchanged between the parents in order to create the offsprings. The genes
missing after the exchange are reinserted in the order of theother parent.

Alternating-Position Crossover (AP)

The alternating-position crossover operator creates an offspring by selecting alternately
the next element of the first parent and the next element of thesecond parent, omitting
the elements already present in the offspring.

Figure 4.5: Crossover operators for permutations.
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4.3.3 Mutation Operators for Permutations

The mutation operators described within this section are taken from [36]. Figure 4.6
gives an overview of the presented mutation operators.

Displacement Mutation Operator (DM)

The displacement operator selects a random substring of thesolution. This substring is
moved to a random position of the solution.

Exchange Mutation Operator (EM)

The exchange mutation operator randomly selects two elements in the solution and ex-
changes them.

Insertion Mutation Operator (ISM)

The insertion mutation operator randomly chooses an element in the solution and moves
it to a randomly selected position.

Simple-Inversion Mutation operator (SIM)

The simple-inversion mutation operator selects randomly two cutpoints in the string that
represents the individual and reverses the substring between these two cutpoints.

Inversion Mutation Operator (IVM)

The inversion mutation operator selects a substring, removes it from the string and ran-
domly inserts it at a randomly selected position in reversedorder.

Scramble Mutation Operator (SM)

The scramble mutation operator selects a random substring and reorders the elements in
it at random.
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Figure 4.6: Mutation operators for permutations.
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4.4 A Review of Existing Branch and Bound Algorithms for
Tree Decompositions

Within this section we give a description of two branch and bound algorithms for com-
puting the treewidth of regular graphs, algorithmBB-tw introduced by Bachoore and
Bodlaender in [5] and algorithmQuickBBintroduced by Gogate and Dechter in [24].
Our review will concentrate only on those ideas in [5] and [24] which will be adopted
for the development of new heuristic methods for tree decompositions and generalized
hypertree decompositions in this thesis later.

4.4.1 The Basic Branch and Bound Algorithm

Both branch and bound algorithms BB-tw [5] and QuickBB [24] compute the treewidth
of a regular graph based on elimination orderings. Figure 4.1 shows a branch and bound
tree representing all possible elimination orderings for three vertices which is searched
by the branch and bound algorithms. At the beginning the branch and bound algorithms
create a solution heuristically. The width of that solutionacts as the first upper bound on
the treewidth and is stored within the variableub. Starting at the root the tree is searched
in depth-first-search fashion. If the search visits a new search node a vertex is eliminated
from the graph. In each node of the branch and bound tree the following values are
computed:

• the degree of the vertex that is eliminated in the branching step, denotedd.

• the maximum degree of all eliminated vertices along the pathfrom the root to
the current node in the tree, denotedg. g is the width of the partial elimination
ordering consisting of the vertices on the path from the rootto the current node and
is computed asg = max(d, g′), whereg′ denotes the width of the partial solution
represented by the parent node of the current search node.

• a lower boundh on the treewidth of the graph obtained after eliminating allver-
tices of the path from the root to the current node in the tree.

• a lower bound on the width of the tree decomposition of the original graph which
may be reached when continuing the search in the subtree rooted at the current
search node,f = max(g, h).

If f ≥ ub then the subtree rooted at the current node will be discardedfrom the
search. The search continues at the parent node of the current search node. If the search
ends in a leaf of the branch and bound tree and the width of the solution represented by
that leaf is smaller thanub, thenub is set to this new upper bound on the treewidth.
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The above description refers to the branch and bound search of algorithm QuickBB
[24], but also algorithm BB-tw [5] applies the same search principle as algorithm
QuickBB.

4.4.2 Upper and Lower Bound Heuristics

For computing a first upper bound algorithm QuickBB uses the min-fill heuristic. BB-
tw uses heuristics introduced in [4] for getting the first upper bound. The following
description of the min-mill heuristic is taken almost verbatim from [24].

min-fill heuristic: Order the vertices from 1 ton as follows. First select a vertex
v which adds the least number of edges when eliminated from thegraph and place it at
positionn. Eliminatev from the graph and introduce an edge between each pair of not
adjacent neighbors ofv. Now select any vertex that adds the least number of edges when
eliminated and place it at the next position in the ordering.Repeat the process breaking
ties arbitrarily.

For computing a lower bound on the treewidth of a graph Gogateand Dechter pro-
pose a new heuristic named minor-min-width [24] which is implemented in QuickBB.
Bodlaender et al. developed the same heuristic independently in [9] and named it
MMD+(least-c). Algorithmminor-min-width in Figure 4.7 was taken from [24] and
presents the the lower bound heuristic in pseudo code notation.

Algorithm: minor-min-width

Input: a graphG
Output: a lower bound on the treewidth ofG

1. lb = 0

2. repeat

(a) Contract the edge between a minimum degree vertexv and u ∈ N(v) such that
the degree ofu is minimum in N(v) to form a new graph inG′. Ties are broken
randomly.

(b) lb = max(lb, degreeG(v)).

(c) SetG to G′.

3. until no vertices remain inG.

4. return lb

Figure 4.7: Algorithm minor-min-width [24].

Bachoore and Bodlaender use the degeneracy heuristic [9] and the Ramachandra-
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murthi γ parameter of the graph [41] for a getting lower bound in BB-tw. We present
another heuristic taken from [35] which we will use as lower bound heuristic for the
treewidth of graphs. The heuristic is denotedminor-γR within this thesis and is pre-
sented below in Figure 4.8.

Algorithm: minor- γR

Input: a graphG
Output: a lower bound on the treewidth ofG

1. lb = 0

2. repeat

(a) Sort the vertices inG according to their degrees in ascending order.

(b) Determine the first vertexv in this sequence that is not adjacent to all its predeces-
sors.

(c) γR = degreeG(v)

(d) Contract the edge betweenv andu ∈ N(v) such that the degree ofu is minimum in
N(v) to form a new graph inG′. Ties are broken randomly.

(e) lb = max(lb, γR).

(f) SetG to G′.

3. until no vertices remain inG.

4. return lb

Figure 4.8: Algorithm minor-γR [35].

4.4.3 Reduction Techniques for Graphs

In [8] Bodlaender et al. present techniques for removing vertices from graphs without
changing their treewidth. Both algorithms BB-tw [5] and QuickBB [24] apply these
rules in order to reduce the search space for the branch and bound search.

Simplicial Vertices

Definition 22 (Simplicial vertex [24]). A vertex v of graphG is simplicial if all its
neighbors induce a clique inG.

In [8] it is shown that when removing a simplicial vertex froma graph the treewidth
of the resulting graph doesn’t exceed the treewidth of the original graph. Thus whenever
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a simplicial vertex appears in the graph during the branch and bound search the simplicial
vertex is removed in the next step.

Strongly Almost Simplicial Vertices

Definition 23 (Almost simplicial vertex [24]). A vertexv of graphG is almost simplicial
if all but one of its neighbors induce a clique.

Definition 24 (Strongly Almost Simplicial vertex [5]). An almost simplicial vertexv of
graphG is strongly almost simplicialif the degree ofv in G doesn’t exceed any lower
bound on the treewidth ofG.

In [8] it is shown that when removing a strongly almost simplicial vertex from a
graph the treewidth of the resulting graph doesn’t exceed the treewidth of the original
graph. Thus whenever a strongly almost simplicial vertex appears in the graph during
the branch and bound search the strongly almost simplicial vertex is removed in the next
step.

4.4.4 Reducing the Search Space

In [24] Gogate and Dechter define a subset of the set of all possible elimination orderings
of a graph, denotedtreewidth elimination setas follows:

Definition 25 (Treewidth elimination set [24]). Let P be the set of all possible orderings
σ = (v1, ..., vn) of vertices of a graphG constructed in the following manner. Select an
arbitrary vertex and place it at positionn. For i = n−1 to 1, if there exists a vertexv such
thatv < N(vi+1), make it simplicial and remove it fromG. Otherwise, select an arbitrary
vertexv and remove it fromG. Placev at positioni. P is called thetreewidth elimination
setof G.

Moreover in [24] they present a lemma implying that it is sufficient to consider only
elimination orderings within the treewidth elimination set in order to get the treewidth of
a graph. Therefore algorithm QuickBB [24] uses only the elimination orderings in the
treewidth elimination set for the branch and bound search.

4.4.5 Pruning Rules

Suppose that we are in a node of the branch and bound tree, letg be the width of the
partial solution represented by that node and letn′ denote the number of vertices that
haven’t been eliminated yet. We know that the width of a solution within the subtree
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rooted at the current search node may be at mostw = max(g, n′ − 1). If w is smaller than
the width of the best solution found so far,w < ub, we know that we will find a better
solution within the subtree rooted at the current search node. There are two cases. If
n′ − 1 ≤ g then we don’t have to continue the search within the subtree.If n′ − 1 > g
then at least one solution within the subtree will lead to a new upper bound of at most
n′ − 1 but we have to continue the search within the subtree for finding its best solution.
This observation was made in [5] and leads to the following pruning rule for each node
of the branch and bound search.

Pruning Rule 1 (PR 1) [5]
computew := max(g, n′ − 1)
if w < ub thenub= w

if n′ − 1 ≤ g then exclude the subtree rooted at the current node from the search

In [24] Gogate and Dechter present several pruning rules forreducing the search
space of algorithm QuickBB. Bachoore and Bodlaender formulated another pruning rule
in [5] and claimed that this rule will have similar pruning power.

Pruning Rule 2 (PR 2) [5]

Supposev andw are successive vertices in an elimination orderingσ, andv andw are
not adjacent orv andw are adjacent and each vertex has a neighbor precedingv,w in σ
that is not a neighbor of the other in the graph obtained by eliminating the vertices inσ
until v. Then the orderingσ′, obtained by swappingv andw in σ, has the same width as
σ. Thus, we prune the search tree as follows: for such a pair of verticesv,w, when we
have looked at a branch representing the elimination orderings ending withw, v, xi , ..., xn

we prune the branch representing the orderings ending withv,w, xi , ..., xn.

Pruning Rule 2 was taken almost verbatim from [5]. Figure 4.9(a) shows a part
of a branch and bound tree affected by this pruning rule. From Figure 4.9(b) we see
why this pruning technique may be applied to the branch and bound search. The graph
obtained by eliminatingv andw is always the same no matter in which orderv andw
were eliminated. Ifv andw are not adjacent the same sets are created when eliminatingv
beforew and when eliminatingw beforev. If they are adjacent the maximum cardinality
of the sets created when eliminatingv and w is independent from the order of their
elimination.



CHAPTER 4. AN OVERVIEW OF HEURISTIC METHODS USED IN THIS. . . 57

Figure 4.9: Pruning rule 2 may be applied to the verticesv and w in (b) [5]. As a
consequence a subtree of the search tree may be excluded fromthe search (a).

4.5 A Genetic Algorithm for Triangulating the Moral Graph
of Bayesian Networks

In [36] Larrañaga et al. introduced a genetic algorithm fordecomposing Bayesian
networks. A Bayesian network consists of vertices representing stochastic variables and
directed arcs representing dependencies between the variables and may be visualized
as directed acyclic graph. The variables of a Bayesian network have a finite set of
states, which are comparable with the domains of a CSP, and for a variablevi the
number of possible states for that variable is denotedni . From the directed acyclic graph
representing the Bayesian network we are able to derive a so called moral graph, which
is a regular graph. The genetic algorithm presented in [36] aims at computing a ”good”
triangulation of that moral graph by the help of eliminationorderings which is equivalent
to finding a ”good” tree decomposition for the moral graph. Speaking in terms of
tree decompositions the genetic algorithm doesn’t tend to find a tree decomposition of
smallest width but it assigns a weight to a tree decomposition TD = 〈T, χ〉 according to
the following formula:

w(TD) = log2

∑

u∈T

∏

vi∈χ(u)

ni
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The genetic algorithm presented in [36] uses amongst othersthe crossover oper-
ators described in section 4.3.2 and the mutation operatorspresented in section 4.3.3.
Larrañaga et al. tested the genetic algorithm with two benchmark graphs trying several
combinations of crossover and mutation operators in combination with different popu-
lation sizes, mutation rates and selection biases. For manycombinations the returned
results were better than for other triangulation methods. Only the results returned by
simulated annealing for the benchmarks were equivalent with the best results of the ge-
netic algorithm.



Chapter 5

An A* Algorithm for Treewidth

Within this chapter we present an A* algorithm which is able to compute the treewidth
of a regular graph. This algorithm will also compute the treewidth of a hypergraph if it
is applied on the primal graph of the hypergraph.

5.1 Algorithm A*-tw

In order to compute the treewidth of a graph the A* algorithm searches the search tree
representing the elimination orderings in the treewidth elimination set (Definition 25).
Additionally it uses the second pruning rule (PR 2 from section 4.4.5) and the reduction
rules for simplicial and strongly almost simplicial vertices for narrowing the search space
(section 4.4.3). As upper bound heuristic for the treewidthwe use the min-fill-heuristic
and as a lower bound we take the maximum of the values returnedby the minor-min-
width heuristic and the minor-γR heuristic (section 4.4.2). The resulting algorithm is
namedA*-tw and is described in Figure 5.1.

The algorithm uses a single priority queue, denotedqueue, for storing search states,
representing the nodes of the search tree. A search state contains the variablesg, h, f ,
whereg is the width of the partial solution represented by the search state,h is the
lower bound on treewidth of the graph obtained by eliminating the vertices of the partial
solution andf is a lower bound on the width of all elimination orderings ending with
the partial solution. Furthermore a state contains links toits children within the search
tree. Such a link is represented by the vertex which will be eliminated next in the child
state. We say that we visit a state if we remove the state from the priority queue and
by evaluating a state we mean that we assign to it the values for g, h, f and its children
before inserting it into the priority queue. The queue orders the states after their valuef
in ascending order.
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First of all an upper and a lower bound on the treewidth of the graph are computed.
If the upper bound on the instance equals the lower bound it isreturned as the treewidth.
Otherwise we evaluate the initial state representing the root of the search tree by setting
g = 0, and assigning the value for the lower bound toh and f . If there is a simplicial or
strongly almost simplicial vertex this vertex is the only child of the root state. If there is
no such vertex there is a child for each vertex within the graph. Finally the initial state
is inserted into the priority queue and the A* search begins.

During an iteration of the A* search the states at top of the priority queue, having
the lowest value forf , is visited. We create a graphGs representing the graph that is
obtained by eliminating the vertices of the partial solution represented bys. If s.g ≥
|Gs| − 1 we have visited a state representing a solution and thus we return s.g as the
treewidth of the graph. Otherwise the children ofs are evaluated and inserted into the
priority queue.

For each child statet and its associated vertexv we compute its children according
to the treewidth elimination set and pruning rule 2. Afterwards we determined, the
degree of vertexv in Gs, and obtain a graphGs

v by eliminatingv from Gs. The width of
the partial solution represented byt is the maximum of the width of the partial solution
represented bys andd, thus t.g = max(s.g, d). t.h is assigned a lower bound on the
treewidth of graphGs

v. Both t.g as well ast.h represent a lower bound on the width
of all elimination orderings ending with the partial solution represented byt as well
as any lower bound of a search state on the path from the root tot, thus we sett. f =
max(t.g, t.h, s. f ). If there is a simplicial vertex or a strongly almost simplicial vertex
within Gs

v this vertex is the only child of statet.

Finally we insertt into the priority queue ift. f is less than the upper boundub on
the treewidth of the original graph. States witht. f ≥ ub won’t lead to solutions which
are better than the upper bound solution we have already computed therefore they are
excluded from the search in order to decrease the memory needed by the A* algorithm.

If all search states withf < ub have been visited but none of them represented a
solution it must be thatub is the treewidth of the graph and thusub is returned by the
algorithm in that case.
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Algorithm: A*-tw

Input: a graphG = (V,E)
Output: the treewidth of the graph

lb = lower bound(G)
ub= upper bound(G)
if lb = ub then return ub /* treewidth already found* /

/* evaluate the root of the search tree */
r = new S tate()
r.h = lb, r.g = 0, r. f = lb

if ∃ a simplicial vertexw in G or an almost simplicial vertexw of degree≤ t. f then
r.children= {w}
r.reduced= true

elser.children= V
queue.push(r)

/* A* search - visit next state in queue */
while queueis not emptydo

s= queue.pop()
createGs

/* new lower bound is found */
if s. f > lb then lb = s. f

/* optimal solution is found */
if s.g ≥ |Gs| − 1 then return s.g

/* evaluate the children of current search state */
for eachv ∈ s.childrendo

t = new S tate()
t.children= children ofv according to treewidth elimination set
if not s.reducedthen prunet.childrenaccording to PR 2

d = degreeGs(v)
Gs

v = eliminate(v,Gs)
t.g = max(s.g, d)
t.h = lower bound(Gs

v)
t. f = max(t.g, t.h, s. f )

if ∃ a simplicial vertexw or an almost simplicial vertexw of degree≤ t. f in Gs
v then

t.children= {w}
t.reduced= true

if t. f < ub then queue.insert(t)

return ub

Figure 5.1: Algorithm A*-tw.
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5.2 Implementation Details

5.2.1 Graph Representation

When visiting a states in the A* algorithm we have to create a graphGs representing the
graph that is obtained by eliminating the vertices of the partial solution represented bys.
In the next iteration we visit a different statet and we have to consider its corresponding
graphGt. It would be useful if we could transformGs into Gt and this transformation
process took as few steps as possible.

Within our implementation of the A* algorithm we use a singlegraph object which
may be transformed into the graph that is needed within the current search state. This
transformation is done by eliminating vertices from the graph and by restoring elim-
inated vertices. The graph object consists of the followingdata structures, requiring
O(|V|2) memory:

• an integer matrix, denotedA. The i-th row of the matrix,A[i] is a list for the
vertex i initially containing the vertices adjacent to vertexi in G. If an edge [i, j]
is inserted to the graph, when eliminating a vertex,j is appended to the listA[i]
andi is appended toA[ j].

• an integer matrix, denotedE. E[i][ j] contains the length of thei-th adjacency list
A[i] after j vertices have been eliminated.

• a boolean matrix , denotedT. T is an adjacency matrix.T[i][ j] = 1 if vertex i is
adjacent to vertexj, otherwiseT[i][ j] = 0.

• a boolean arrayeliminated. eliminated[i] = 1 iff vertexi has been eliminated from
the graph.

By the help of these data structures we are able to eliminate avertex and also to
restore the last eliminated vertex.

When eliminating a vertexv we are able to compute the filled in edges. For each
new edge we update the entries inT and append the according vertices inA. The new
lengths of the lists inA are saved withinE. Finally we delete entries indicating edges
containingv in T and seteliminated[v] = 1.

Assume that we restore the last eliminated vertexv and thatv is the j-th vertex that
has been eliminated. For each vertexi we look at the list elements that were inserted
within the last step, these elements areA[i][E[ j − 1]], ...,A[i][E[ j]]. In that way we
are able to compute the edges which were inserted due to the elimination of v. We
delete the entries corresponding to those edges inT. From the listA[v] we are able
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to determine the vertices to whichv was adjacent before its elimination, these are the
elements inA[v][0] , ..,A[v][E[ j−1]] which have not been eliminated yet. We update the
corresponding entries inT and finally we seteliminated[v] = 0.

Example 10. Figure 5.2 shows a graph with 6 vertices (a) and the graphs obtained by
eliminating vertex 6 and 2 (b) and (c). Vertices adjacent dueto edges resulting from the
elimination process are inserted into the lists inA (d). The length of the lists inA are
stored withinE (e). T (f) is the adjacency matrix of the graph in (c).

Figure 5.2: Graph sequence obtained by eliminating vertex 6and 2 and the data struc-
turesA, E andT after the elimination of those vertices.

Now, if we want to transform our graph representingGs into Gt we restore the ver-
tices which have been eliminated to obtainGs in reverse order. Afterwards we eliminate
the vertices needed for obtainingGt. If the partial elimination orderings associated with
Gs into Gt have some postfix in common we need not restore and eliminate the vertices
of that common postfix.

5.2.2 Partial Solutions

In order to obtain the partial solution associated with a search states a state has two
additional variables. A variablevertexstoring the vertex which was eliminated when
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that s is evaluated and a variablepredecessorcontaining its predecessor state in the
search tree. By the help of the predecessor variable we are able to derive the path from a
states to the root and the vertices associated with the states of this path are the vertices
in the partial elimination ordering represented by search states.

5.2.3 Memory Saving Measures

From the pseudo code notation of the A* search algorithm within section 5.1 we know
that states withf ≥ ubwill not be inserted into the priority queue because they won’t lead
to solutions of width smaller than the upper boundubwe have already found. Within our
implementation of the algorithm we delete states withf ≥ ub and the memory required
by those states is not allocated any more.

Note that after a state has been visited and removed from the priority queue it is
not removed from the memory. The state is still needed for obtaining partial elimination
orderings as described in the previous subsection. But the vertices stored withinchildren
associated with a visited state are not needed any more. Thuswe will free the memory
which was allocated for thechildren in order to reduce the memory demand of the A*
search algorithm.

5.3 Computing Lower Bounds with the A* Algorithm

Recall that thef -value for a search statet is computed byt. f = max(t.g, t.h, s. f ) where
s. f is the f -value of t’s predecessor in the search trees. The value f of a state is a
lower bound on the width of all elimination orderings endingwith the partial solution
represented by that state. Sincet is a child ofs in the search tree all elimination order-
ings ending with the partial elimination ordering represented by t are also elimination
orderings ending with the partial elimination ordering represented bys, thuss. f is also
a lower bound on the width of all elimination orderings associated witht and therefore
s. f is also regarded when computingt. f = max(t.g, t.h, s. f ).

As a consequence thef -values along a path in the search tree are nondecreasing and
also the f -values along the sequence of visited search states are nondecreasing. Thus
whenever we visit a search state whosef -value is greater than allf -values considered
before we obtain a new lower bound on the treewidth of the graph. If we restrict the
running time of the A* algorithm by a time limit then thef -value of the last state visited
before the limit was exceeded may act as a lower bound on the treewidth of a graph.

As already mentioned the states within the priority queue are ordered by theirf -
values. Among states with the same value forf we prioritize those which lie deeper
in the search tree in the hope that we will reach a goal state earlier. Once the search



CHAPTER 5. AN A* ALGORITHM FOR TREEWIDTH 65

has reached the states whosef -values equal the treewidth a solution might be obtained
earlier if we favor states with higher depth.

5.4 Computational Results

Within this section we present the results that our A* algorithm achieved for graphs
from the Second Dimacs graph coloring challenge [18] and forsome grid graphs. The
A* algorithm A*-tw was implemented using C++ and STL. All experiments were run
on a machine with an Intel(R) Pentium(R)-4 3.40 GHz processor having 1 GB RAM.
The min-fill heuristic for getting an upper bound as well as the minor-min-width and
minor-γR lower bound heuristics use random numbers for breaking ties. We performed
ten runs for each graph instance. Each run was given a time limit of one hour and if the
time limited was exceeded the algorithm returned thef -value of the last visited state,
which is a lower bound on the treewidth of the instance. For each instance we report the
highest value returned from the ten runs.

The tables use the following terminology. The columnsGraph, V andE show the
instance name of a graph, the number of its vertices and edges. The columnslb andub
give the lower and upper bounds on the instance which were computed at the beginning
of the algorithm. The columnA∗-tw shows the value that was returned by algorithm
A*-tw, bold entries indicate that the treewidth for that graph was found. The column
timegives the time in seconds that was needed for computing the treewidth, a ”*” entry
indicates that the algorithm exceeded the one hour time limit and returned only a lower
bound on the graph instance.

5.4.1 Dimacs Graph Coloring Instances

The results returned by algorithm A*-tw applied on selectedDimacs graphs are shown in
table 5.1. The columnsQuickBBandBB− tw contain the results returned by the branch
and bound algorithms QuickBB [24] and BB-tw [5] after three hours on an Intel(R) Pen-
tium(R) 4 2.4 GHz 2GB machine and after one hour on an Intel(R)Pentium(R) 4 2.8
GHz respectively. ”*” entries indicate that the algorithm did not return the treewidth of
the graph, ”-” entries indicate that an algorithm was not applied to an instance. Only
for the instances myciel5 and queen77 A*-tw did not return the treewidth whereas
QuickBB and BB-tw could. For the instance miles1000 A*-tw was able to compute the
treewidth which hasn’t been fixed before. For the instance DSJC125.5 A*-tw returned a
significantly improved lower bound of 82.
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Graph V E lb ub A∗-tw time QuickBB BB− tw

anna 138 986 11 12 12 0.02 12 12
david 87 12 12 13 13 1.31 13 13
huck 74 602 10 10 10 0 10 -
jean 80 508 9 9 9 0 9 -
queen55 25 320 12 18 18 1.35 18 18
queen66 36 580 16 26 25 115.21 25 25
queen77 49 952 20 37 31 * 35 -
fpsol2.i.1 496 11654 66 66 66 3.78 66 -
fpsol2.i.2 451 8691 31 31 31 2.32 31 -
fpsol2.i.3 425 8688 31 31 31 2.1 31 -
inithx.i.1 864 18707 56 56 56 12.97 56 -
inithx.i.2 645 13979 31 31 31 5.89 31 31
inithx.i.3 621 13969 31 31 31 5.5 31 31
mulsol.i.1 197 3925 50 50 50 0.21 50 -
mulsol.i.2 188 3885 32 32 32 0.17 32 -
mulsol.i.3 184 3916 32 32 32 0.16 32 -
mulsol.i.4 185 3946 32 32 32 0.17 32 -
mulsol.i.5 186 3973 31 32 31 1.18 31 -
miles1000 128 6432 48 50 49 4.02 * -
miles1500 128 10396 77 77 77 0.14 77 -
miles250 128 774 9 9 9 0 9 -
miles500 128 2340 22 23 22 0.61 22 -
miles750 128 4226 34 40 34 * * -
myciel3 11 20 4 5 5 0 5 -
myciel4 23 71 8 11 10 0.7 10 10
myciel5 47 236 14 21 16 * 19 19
DSJC125.1 125 736 23 66 24 * * *
DSJC125.5 125 3891 58 111 82 * * *
DSJC125.9 125 6961 105 119 119 38.39 119 -
DSJR500.1c 500 121275 475 485 485 547.98 485 -
le450 5a 450 5714 62 315 63 * * *
le450 15a 450 8168 75 290 75 * * -
le450 25a 450 8260 75 258 77 * * -
zeroin.i.1 211 4100 50 50 50 0.530 - -
zeroin.i.2 211 3541 32 33 32 0.410 - -
zeroin.i.3 206 3540 32 33 32 0.390 - -

Table 5.1: Dimacs graph coloring benchmarks.
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5.4.2 Grid Graphs

Table 5.2 presents the results returned by algorithm A*-tw applied on several grid graphs.
It is folklore that the treewidth of an × n-grid is n. A*-tw was able to compute the
treewidth up to the 6× 6-grid if it was given a one hour time limit.

Graph V E lb ub A∗ − tw time

grid2 4 4 2 2 2 0
grid3 9 12 3 3 3 0
grid4 16 24 4 4 4 0
grid5 25 40 4 5 5 0
grid6 36 60 4 6 6 150.46
grid7 49 84 4 8 5 *
grid8 64 112 4 10 5 *

Table 5.2: Grid graphs.
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Chapter 6

A Genetic Algorithm for Treewidth
Upper Bounds

In this chapter we present a genetic algorithm which computes upper bounds on the
treewidth of graphs. This algorithm will also compute an upper bound on the treewidth
of a hypergraph if it is applied on the primal graph of the hypergraph.

6.1 Algorithm GA-tw

The genetic algorithm for computing upper bounds on the treewidth of graphs is named
GA-tw. Figure 6.1 presents algorithm GA-tw in pseudo code notation.

The algorithm takes as input a regular graph for which an upper bound
on the treewidth should be computed and the control parameters n, pm, pc, s and
max iterations. The population sizen specifies the number of individuals within the
population of the genetic algorithm,pm specifies the mutation rate,pc the crossover rate
As selection technique we usetournament selectionwhich requires a parameters, the
group size.max iterationsgives the number of generations over which the population
is evolved.

An individual solution is an elimination ordering and is represented as permutation
of the vertices of the graph. The initial population consists of n randomly created indi-
viduals. Each individual is evaluated and is assigned a fitness value. The fitness is the
width of the tree decomposition which may be created via bucket or vertex elimination
from the elimination ordering. The best fitness of an individual of the initial population
is recorded by the genetic algorithm. The population is evolved overmax iterations
iterations.

69



CHAPTER 6. A GENETIC ALGORITHM FOR TREEWIDTH UPPER BOUNDS70

Whithin each iteration we select the individuals which willenter the next popula-
tion via tournament selection. Tournament selection selects an individual by choosing
randomly a group ofs individuals from the former population and the individual of high-
est fitness (smallest width) within this group is selected tojoin the next population. This
process is applied untiln individuals have been selected.

For recombining the individuals of the solution we apply oneof the crossover oper-
ators presented in section 4.3.2. The crossover ratepc determines the number of individ-
uals which undergo recombination, e.g. ifpc = 0.8 then 80% of the individuals within
the population are recombined with each other whereas 20% remain unchanged.

As mutation operator we apply one of the mutation operators introduced in section
4.3.3. The mutation ratepm determines the probability that an individual is mutated. For
each individual of the population we compute a uniformly distributed random number
x ∈ [0, 1] and if x < pm we mutate the corresponding individual.

At the end of each iteration the individuals are evaluated again. Whenever an indi-
vidual’s fitness is better than the best fitness found so far its fitness value is recorded as
the best fitness (smallest width). Finally the best fitness (smallest width) found by the
genetic algorithm is returned as an upper bound on the treewidth of the graph.

Note that since every tree decomposition of a hypergraph is also a tree decomposi-
tion of the hypergraph’s primal graph and vice versa (Lemma 1[33]) algorithm GA-tw
may also be used in order to compute upper bounds on the treewidth of a hypergraph if
it is applied to the primal graph of the hypergraph.

Algorithm: GA-tw

Input: a graphG = (V,E)
control paramters for the GAn, pm, pc, sandmax iterations

Output: an upper bound on the treewidth of the graph

t = 0
initialize (population(t), n)
evaluatepopulation(t)

while t < max iterationsdo
t = t + 1
population(t) = tournamentselection(population(t − 1), s)
recombine (population(t), pc)
mutate (population(t), pm)
evaluatepopulation(t)

return the smallest width found during the search

Figure 6.1: Algorithm GA-tw.
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6.2 Implementation Details

We implemented algorithm GA-tw using C++ and STL.

6.2.1 Graph Representation

For the representation of the input graph of algorithm GA-twwe chose the same repre-
sentation as in section 5.2.1 for the A* algorithm A*-tw.

6.2.2 Evaluating Individuals

In order to evaluate individual solutions, which are in factelimination orderings, we
modified the algorithm for deciding if an elimination ordering is a perfect elimination
ordering presented in [25]. AlgorithmEvaluate Individualin Figure 6.2 produces the
same sets of vertices as bucket or vertex elimination. With our graph representation the
modified algorithm in Figure 6.2 has running timeO(|V| + |E′|) [25], where|E′| is the
set containing the original edges of the graph and the edges which are filled in when
eliminating the vertices of the graph.

Algorithm: Evaluate Individual
Input: a list of adjacency lists, denotedA, representing graphG = (V,E)

an elimination orderingσ = (v1, ..., vn)
Output: the width of the tree decomposition according toσ

width= 0, i = n
while width< i do

X = {x ∈ A[vi ] | x <σ vi}

width= max(|X|,width)
Let u be the vertex inX which is eliminated next inσ
A[u] = A[u] ∪ (X − {u})
i = i − 1

return width

Figure 6.2: Evaluation function used in GA-tw.
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6.3 Computational Results

First of all we tried to find good values for the control parameters of algorithm GA-tw
in order to obtain small upper bounds on the treewidth of graphs in our computational
experiments. Afterwards we applied algorithm GA-tw using the obtained parameter
values on many graphs of the Second Dimacs graph coloring challenge [18]. For many
instances our genetic algorithm was able to return upper bounds on the treewidth of the
graph which are better than the upper bounds obtained in [4],[5], [13] and [24].

6.3.1 Comparison of Crossover Operators

We compared the crossover operators of section 4.3.2 with each other by applying
them to selected graphs of the Second Dimacs graph coloring challenge [18]. For each
crossover operator and each graph we ran our algorithm GA-twfive times with popula-
tion sizen = 50 and group sizes = 2 for tournament selection. Each single run lasted
exactly 1000 iterations. Table 6.1 shows the average, the minimum and the maximum
width achieved by the crossover operators during the five runs with 100% crossover rate
and with 0% mutation rate. Since position-based crossover (POS) achieved the best
average width for all instances we chose it as the crossover operator for our further tests.

6.3.2 Comparison of Mutation Operators

In order to compare the mutation operators of section 4.3.3 we applied algorithm GA-tw
to several graphs of the Second Dimacs graph coloring challenge [18]. For each mutation
operator and each graph we ran our algorithm GA-tw five times with population size
n = 50 and group sizes = 2 for tournament selection. Each single run lasted exactly
1000 iterations. Table 6.2 shows the average, the minimum and the maximum width
achieved during the five runs with 0% crossover rate and with 100% mutation rate. Since
the insertion mutation operator (ISM) achieved the best average width in most cases we
chose it as mutation operator for our further experiments.

6.3.3 Determining Suitable Mutation and Crossover Rates

In order to obtain good values for the mutation and crossoverrate we considered dif-
ferent combinations of mutations rates,pm = 1%, 10%, 30%, and recombination rates,
pc = 80%, 90%, 100%, and applied algorithm GA-tw using those combinationsto se-
lected instances of the Second Dimacs graph coloring challenge [18]. For each com-
bination and each graph we ran our algorithm GA-tw five times with population size
n = 200 and group sizes = 2 for tournament selection. As crossover operator we
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used position-based crossover (POS), as mutation operatorthe insertion mutation oper-
ator (ISM). Each single run lasted exactly 1000 iterations.The average, the minimum
and maximum width achieved during the five runs are shown in Table 6.3. The com-
bination of a recombination rate of 100% and a mutation rate of 30% achieved good
average results with all instances and performed best with the large instances le45025d
and queen1616, thus we chose this combination for our further experiments.

6.3.4 Population Size and Tournament Selection Group Size

We considered populations of 100, 200, 1000, and 2000 individuals. Table 6.4 shows the
average, minimum and maximum width for Dimacs graphs [18] returned by algorithm
GA-tw after five runs of 1000 iterations. A population of sizen = 2000 achieves the best
results in three out of four instances. For such populationsa tournament selection group
size ofs= 3 or s= 4 seems to be the best choice as it can be seen in Table 6.5.

6.3.5 Final Results for Dimacs Benchmarks Graphs

Finally we applied algorithm GA-tw on 62 graphs of the SecondDimacs graph coloring
challenge [18]. We ran GA-tw with the control parameters obtained in the previous
subsections, which are a population size ofn = 2000, a crossover rate ofpc = 1.0
or 100%, a mutation ratepm = 0.3 or 30%, and a tournament selection group size of
s = 3. We performed ten runs for each graph instance. A single runof GA-tw lasted
2000 iterations, thus each run of algorithm GA-tw carried out four million evaluations
of individual solutions. As crossover and mutation operators we used position-based
crossover (POS) and the insertion mutation opertor (ISM). For each graph we performed
ten runs on machine with an Intel(R) Pentium(R)- 4 3.40GHz processor having 1GB
RAM.

Table 6.6 shows the results for the considered graphs. The columnsGraph, V andE
present the graph name and the number of vertices and edges ofthat graph.ub contains
the value of the smallest upper bound for a graph reported in [4], [5], [13] and [24].
min, maxandavgpresent the best, worst and average width returned by algorithm GA-
tw for an instance whereasstd. dev. contains the standard deviation of the ten results
returned by algorithm GA-tw. Columnmin-time presents the time which was needed
by algorithm GA-tw for the run which returned the width in column min, avg-time the
average running time of the ten runs.

Compared with the best upper bounds for the considered instances in [4], [5], [13]
and [24], algorithm GA-tw found an improved upper bound on the treewidth for 22
graphs, GA-tw was able to return the same upper bound for 31 graphs, and for only 9
graphs the results delivered by GA-tw were worse.
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Instance Crossover Operator avg min max
games120 POS 37 35 40
games120 OX2 46.6 40 49
games120 PMX 50.2 45 53
games120 OX1 56.2 56 57
games120 CX 59.2 56 62
games120 AP 60.8 59 62
homer POS 42.2 37 50
homer OX2 53.8 45 60
homer PMX 72.8 65 85
homer CX 98 91 105
homer OX1 118.4 114 121
homer AP 143.8 135 151
inithx.i.3 POS 129.8 50 184
inithx.i.3 OX2 204.4 190 220
inithx.i.3 OX1 321.6 278 338
inithx.i.3 PMX 331.8 283 387
inithx.i.3 CX 368 351 394
inithx.i.3 AP 370.2 322 384
le450 25d POS 370 364 376
le450 25d OX2 375.8 370 379
le450 25d PMX 391.8 388 399
le450 25d CX 394.2 392 396
le450 25d OX1 396.2 394 398
le450 25d AP 401.6 399 403
myciel7 POS 75 70 83
myciel7 OX2 86.8 80 97
myciel7 PMX 108.2 101 115
myciel7 CX 113.4 109 116
myciel7 OX1 119 116 121
myciel7 AP 128.8 124 133
queen1616 POS 207 202 211
queen1616 OX2 213 209 219
queen1616 PMX 217.6 214 221
queen1616 OX1 224.2 222 225
queen1616 CX 224.6 223 227
queen1616 AP 227.4 225 229
zeroin.i.3 POS 40.2 33 45
zeroin.i.3 OX2 51.4 45 60
zeroin.i.3 OX1 93 85 99
zeroin.i.3 PMX 98 94 106
zeroin.i.3 CX 99.4 86 112
zeroin.i.3 AP 101.4 74 123

Table 6.1: Comparison of crossover operators.
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Instance Mutation Operator avg min max
games120 ISM 37.4 35 43
games120 EM 38.2 38 39
games120 SM 48.8 47 50
games120 SIM 49.8 48 52
games120 DM 54 52 56
games120 IVM 56.4 55 58
homer EM 42.8 39 47
homer ISM 43.6 41 49
homer SM 81.4 78 85
homer SIM 91.6 79 100
homer DM 101.2 94 105
homer IVM 102.4 96 107
inithx.i.3 ISM 65.8 56 74
inithx.i.3 EM 121.2 93 156
inithx.i.3 SM 208.2 184 265
inithx.i.3 SIM 230.6 205 271
inithx.i.3 DM 243.8 228 275
inithx.i.3 IVM 274.8 264 289
le450 25d ISM 359.2 349 364
le450 25d EM 367.2 361 372
le450 25d DM 384.2 381 388
le450 25d SM 388.8 385 395
le450 25d SIM 390.4 388 392
le450 25d IVM 393.2 391 397
myciel7 ISM 70.4 68 77
myciel7 EM 78.4 71 87
myciel7 SM 99.6 98 101
myciel7 SIM 106.2 106 107
myciel7 DM 110.8 110 112
myciel7 IVM 113.4 112 116
queen1616 ISM 202.4 197 209
queen1616 EM 209 204 215
queen1616 DM 217.6 214 220
queen1616 IVM 220.2 217 223
queen1616 SM 220.2 217 224
queen1616 SIM 222.6 222 224
zeroin.i.3 ISM 34.8 33 37
zeroin.i.3 EM 41.2 40 43
zeroin.i.3 SM 63.6 56 70
zeroin.i.3 SIM 64.8 61 69
zeroin.i.3 DM 81.2 80 84
zeroin.i.3 IVM 85 80 91

Table 6.2: Comparison of mutation operators.
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Instace pc pm avg min max
games120 0.8 0.1 33 32 34
games120 0.9 0.01 33 32 34
games120 1 0.1 33 32 34
games120 0.9 0.3 33.2 33 34
games120 1 0.01 33.4 33 34
games120 0.9 0.1 33.6 32 36
games120 0.8 0.3 33.8 32 38
games120 0.8 0.01 34 34 34
games120 1 0.3 34.4 33 39
homer 1 0.01 31.2 31 32
homer 1 0.3 31.2 31 32
homer 0.9 0.3 31.4 31 32
homer 0.8 0.3 31.6 31 32
homer 0.9 0.01 31.6 31 32
homer 0.9 0.1 31.6 30 34
homer 1 0.1 31.6 31 32
homer 0.8 0.01 32 31 33
homer 0.8 0.1 32 31 34
inithx.i.3 0.8 0.1 35 35 35
inithx.i.3 0.8 0.3 35 35 35
inithx.i.3 0.9 0.01 35 35 35
inithx.i.3 0.9 0.1 35 35 35
inithx.i.3 0.9 0.3 35 35 35
inithx.i.3 1 0.01 35 35 35
inithx.i.3 1 0.1 35 35 35
inithx.i.3 1 0.3 35 35 35
inithx.i.3 0.8 0.01 35.4 35 36
le450 25d 1 0.3 335.6 333 338
le450 25d 0.9 0.3 339.2 334 345
le450 25d 1 0.1 339.8 336 344
le450 25d 0.8 0.3 340.8 336 346
le450 25d 0.9 0.01 341.4 335 349
le450 25d 0.8 0.1 341.8 337 345
le450 25d 1 0.01 342.2 339 344
le450 25d 0.8 0.01 344.2 341 346
le450 25d 0.9 0.1 344.4 336 351
myciel7 0.8 0.01 66 66 66
myciel7 0.8 0.1 66 66 66
myciel7 0.8 0.3 66 66 66
myciel7 0.9 0.01 66 66 66
myciel7 0.9 0.1 66 66 66
myciel7 0.9 0.3 66 66 66
myciel7 1 0.01 66 66 66
myciel7 1 0.1 66 66 66
myciel7 1 0.3 66 66 66
queen1616 1 0.3 190.6 187 193
queen1616 0.9 0.01 191.4 189 194
queen1616 1 0.01 191.6 189 195
queen1616 0.9 0.3 191.8 190 193
queen1616 1 0.1 191.8 190 195
queen1616 0.9 0.1 192 190 195
queen1616 0.8 0.1 192.8 189 198
queen1616 0.8 0.3 193.2 190 195
queen1616 0.8 0.01 194.2 187 197
zeroin.i.3 0.9 0.01 32.4 32 33
zeroin.i.3 0.8 0.1 32.8 32 33
zeroin.i.3 0.9 0.3 32.8 32 33
zeroin.i.3 1 0.1 32.8 32 33
zeroin.i.3 0.8 0.01 33 33 33
zeroin.i.3 0.8 0.3 33 33 33
zeroin.i.3 0.9 0.1 33 33 33
zeroin.i.3 1 0.01 33 33 33
zeroin.i.3 1 0.3 33 33 33

Table 6.3: Comparison of different combinations of mutation rate and crossover rate.
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Instance n Average min max
le450 25d 2000 334.8 334 337
le450 25d 1000 335 332 338
le450 25d 200 339.66 336 342
le450 25d 100 342.4 335 349
LE450 5B.col 2000 264.6 258 282
LE450 5B.col 1000 266.2 256 280
LE450 5B.col 200 266.33 254 281
LE450 5B.col 100 273.6 264 293
queen1616 2000 189.2 187 191
queen1616 1000 190.8 188 193
queen1616 200 191 188 194
queen1616 100 194.4 194 195
zeroin.i.3 200 32.66 32 33
zeroin.i.3 100 33 33 33
zeroin.i.3 1000 33 33 33
zeroin.i.3 2000 33 33 33

Table 6.4: Comparison of different population sizes.

Instance s avg min max
le450 25d 4 331.8 328 336
le450 25d 3 332.2 329 335
le450 25d 2 334.8 334 337
LE450 5B.col 3 257.4 250 267
LE450 5B.col 4 264.4 251 283
LE450 5B.col 2 264.6 258 282
queen1616 4 187.6 184 194
queen1616 3 188.2 185 191
queen1616 2 189.2 187 191
zeroin.i.3 2 33 33 33
zeroin.i.3 3 33 33 33
zeroin.i.3 4 33 33 33

Table 6.5: Comparison of different group sizes for tournament selection.
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Graph V E ub min max avg std.dev. min-time avg-time

anna 138 986 12 12 12 12 0.00 00:03:33 00:03:32
david 87 812 13 13 13 13 0.00 00:02:34 00:02:32
huck 74 602 10 10 10 10 0.00 00:02:00 00:01:59
homer 561 3258 31 31 31 31 0.00 00:18:38 00:18:36
jean 80 508 9 9 9 9 0.00 00:02:00 00:01:59
games120 120 1276 33 32 32 32 0.00 00:07:42 00:07:32
queen55 25 320 18 18 18 18 0.00 00:00:33 00:00:33
queen66 36 580 25 26 26 26 0.00 00:00:51 00:00:51
queen77 49 952 35 35 36 35.2 0.42 00:01:32 00:01:34
queen88 64 1456 46 45 47 46 0.47 00:02:47 00:02:30
queen99 81 2112 58 58 60 58.5 0.71 00:03:50 00:03:50
queen1010 100 2940 72 72 73 72.4 0.52 00:05:39 00:05:35
queen1111 121 3960 88 87 90 88.2 1.14 00:08:17 00:07:55
queen1212 144 5192 104 104 108 105.7 1.34 00:10:33 00:10:52
queen1313 169 6656 122 121 125 123.1 1.29 00:15:06 00:14:50
queen1414 196 8372 141 141 148 144 2.16 00:19:41 00:19:24
queen1515 225 10360 163 162 168 164.8 1.87 00:25:44 00:25:17
queen1616 256 12640 186 186 191 188.5 1.90 00:34:53 00:31:41
fpsol2.i.1 496 11654 66 66 66 66 0.00 00:33:02 00:32:29
fpsol2.i.2 451 8691 31 32 33 32.6 0.52 00:24:05 00:23:45
fpsol2.i.3 425 8688 31 31 33 32.3 0.67 00:24:22 00:22:49
inithx.i.1 864 18707 56 56 56 56 0.00 00:56:18 00:55:42
inithx.i.2 645 13979 31 35 35 35 0.00 00:38:37 00:38:24
inithx.i.3 621 13969 31 35 35 35 0.00 00:37:41 00:37:17
miles1000 128 6432 49 50 50 50 0.00 00:09:19 00:09:24
miles1500 128 10396 77 77 77 77 0.00 00:07:37 00:07:33
miles250 128 774 9 10 10 10 0.00 00:04:02 00:04:01
miles500 128 2340 22 24 25 24.1 0.32 00:07:22 00:07:16
miles750 128 4226 36 37 37 37 0.00 00:08:56 00:08:50
mulsol.i.1 197 3925 50 50 50 50 0.00 00:11:11 00:11:05
mulsol.i.2 188 3885 32 32 32 32 0.00 00:09:44 00:09:48
mulsol.i.3 184 3916 32 32 32 32 0.00 00:09:39 00:09:32
mulsol.i.4 185 3946 32 32 32 32 0.00 00:09:38 00:09:33
mulsol.i.5 186 3973 31 31 31 31 0.00 00:09:44 00:09:31
myciel3 11 20 5 5 5 5 0.00 00:00:14 00:00:14
myciel4 23 71 10 10 10 10 0.00 00:00:34 00:00:34
myciel5 47 236 19 19 19 19 0.00 00:01:20 00:01:18
myciel6 95 755 35 35 35 35 0.00 00:03:52 00:03:48
myciel7 191 2360 54 66 66 66 0.00 00:12:37 00:12:24
school1 385 19095 188 185 199 192.5 5.66 01:18:04 01:21:35
school1nsh 352 14612 162 157 170 163.1 5.40 01:10:39 01:09:05
zeroin.i.1 211 4100 50 50 50 50 0.00 00:10:41 00:10:30
zeroin.i.2 211 3541 32 32 33 32.7 0.48 00:09:54 00:09:46
zeroin.i.3 206 3540 32 32 33 32.9 0.32 00:09:45 00:09:38
le450 5a 450 5714 256 243 263 248.3 7.12 01:47:13 01:51:24
le450 5b 450 5734 254 248 253 249.9 1.60 01:52:12 01:49:50
le450 5c 450 9803 272 265 272 267.1 2.28 01:38:37 01:35:37
le450 5d 450 9757 278 265 268 265.6 1.07 01:30:02 01:25:08
le450 15a 450 8168 272 265 275 268.7 3.71 01:54:36 01:42:21
le450 15b 450 8169 270 265 271 269 1.63 01:47:03 01:39:08
le450 15c 450 16680 359 351 359 352.8 2.44 01:23:17 01:22:05
le450 15d 450 16750 360 353 361 356.9 2.56 01:21:04 01:17:57
le450 25a 450 8260 234 225 232 228.2 2.10 01:40:25 01:41:05
le450 25b 450 8263 233 227 239 234.5 3.47 01:40:45 01:46:06
le450 25c 450 17343 327 320 331 327.1 3.78 01:43:09 01:34:08
le450 25d 450 17425 336 327 335 330.1 2.33 01:51:52 01:35:06
DSJC125.1 125 736 64 61 63 61.9 0.74 00:08:21 00:07:47
DSJC125.5 125 3891 109 109 110 109.2 0.42 00:04:21 00:04:19
DSJC125.9 125 6961 119 119 119 119 0.00 00:01:50 00:01:54
DSJC250.1 250 3218 173 169 171 169.7 0.82 00:31:18 00:27:02
DSJC250.5 250 15668 232 230 233 231.4 0.84 00:10:48 00:09:57
DSJC250.9 250 27897 243 243 244 243.1 0.32 00:03:58 00:04:01

Table 6.6: Final results for Dimacs graphs.



Chapter 7

Genetic Algorithms for Generalized
Hypertree Width Upper Bounds

In this chapter we present a genetic algorithm for computingupper bounds on the gen-
eralized hypertree width of hypergraphs. Furthermore we will propose an extension of
that algorithm which will be able to adapt its control parameters itself without external
specification.

7.1 The Genetic Algorithm GA-ghw

7.1.1 Algorithm GA-ghw

The genetic algorithm for computing upper bounds on the generalized hypertree width
of hypergraphs is namedGA-ghw. GA-ghw is basically the same algorithm as algorithm
GA-tw (Figure 6.1) presented in the previous chapter. The only differences between
GA-tw and GA-ghw are that

1. GA-ghw takes a hypergraph as input whereas GA-tw expects aregular graph.

2. GA-ghw evaluates individual solutions in a different way. The fitness of an indi-
vidual is its width in terms of generalized hypertree decompositions.

7.1.2 Implementation Details

We implemented algorithm GA-ghw using C++ and STL.

79
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Graph Representation

Algorithm GA-ghw takes a hypergraphH = (V,H) as input and computes its primal
graphG∗(H). The primal graph, which is a regular graph, is representedas described in
section 5.2.1. Furthermore GA-ghw stores the hyperedgesH of the hypergraph and the
information which hyperedges contain which vertices.

Evaluating Individuals

When evaluating an individual solution, which is an elimination ordering, algorithm
GA-ghw computes the sets of vertices produced by bucket or vertex elimination for the
primal graph. The width of a generalized hypertree decomposition is the maximum
number of hyperedges associated to a decomposition vertex.Thus, for each vertex set
the evaluation function of algorithm GA-ghw (Figure 7.1) computes an upper bound
on the minimum number of hyperedges needed for covering the vertex set. For that
purpose a heuristic namedGreedy Set Cover[11] (Figure 7.2) is used. Greedy Set Cover
successively takes the hyperedge containing most uncovered vertices until all vertices
are covered. Ties are broken at random. The maximum number ofhyperedges that was
needed in order to cover a vertex set is returned as the fitnessvalue of the evaluated
elimination ordering.

Algorithm: Evaluate Individual
Input: a list of adjacency lists, denotedA, representing the primal graphG∗(H) = (V,E)

the set of hyperedgesH from the original hypergraphH = (V,H)
an elimination orderingσ = (v1, ..., vn)

Output: the width of the generalized hypertree decomposition according toσ

width= 0, i = n
while width< i do

X = {x ∈ A[vi ] | x <σ vi}

χ(vi ) = {vi} ∪ X
k = Greedy S et Cover(χ(vi ),H)
width= max(k,width)
Let u be the vertex inX which is eliminated next inσ
A[u] = A[u] ∪ (X − {u})
i = i − 1

return width

Figure 7.1: Evaluation function used in GA-ghw.
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Algorithm: Greedy Set Cover
Input: a set of vertices to coverχ(vi )

a set of hyperedgesH
Output: an upper bound on the minimum number of hyperedges

needed to cover the vertices inχ(vi )

C = ∅
while χ(vi ) * C do

Select an hyperedgeh ∈ H containing the maximum number of uncovered vertices.
Ties are broken randomly.
C = C ∪ h

return |C|

Figure 7.2: Greedy set cover algorithm [11] .

7.1.3 Computational Results

Due to time restrictions, we tested algorithm GA-ghw only on19 hypergraphs of the
CSP hypergraph library from [22]. GA-ghw was executed with the control parameters
which were obtained for algorithm GA-tw within the previouschapter, a population size
of n = 2000, a crossover rate ofpc = 1.0 or 100%, a mutation ratepm = 0.3 or 30%, and
a tournament selection group size ofs= 3. For each hypergraph we performed ten runs
of GA-ghw. A single run of GA-gwh lasted 2, 000 iterations thus each run of algorithm
GA-ghw carried out four million evaluations of individual solutions. As crossover and
mutation operators we used position-based crossover (POS)and the insertion mutation
operator (ISM).

We tested the ten runs for each hypergraph either on a machine(1) with an Intel(R)
Pentium(R)-4 3.40GHz processor having 1GB RAM or on a machine (2) with an Intel(R)
Xeon(TM) 3.20GHz processor having 4GB RAM. We converted thetimes of machine
(1) into the times machine of machine (2). On both machines weapplied GA-ghw to four
different instances using the same random seed. For each instance the run at machine (2)
took 79% of the computation time of the run at machine (1).

Table 7.1 enlists the results of GA-ghw for the considered hypergraphs. The
columnsGraph, V andH present the graph name and the number of vertices and hyper-
edges of that graph.ubcontains the value of the smallest upper bound on the generalized
hypertree width for a hypergraph reported in [17].min, maxandavg present the best,
worst and average width returned by algorithm GA-ghw for an instance whereasstd.dev.
contains the standard deviation of the ten results returnedby algorithm GA-ghw. Within
the columnmin-timewe present the time which was needed by algorithm GA-ghw for
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Hypergraph V H ub min max avg std.dev. min-time avg-time

adder75 526 376 2 3 3 3 0.00 05:02:54 05:02:51
adder99 694 494 2 3 3 3 0.00 08:33:10 08:33:53
b06 50 48 5 4 4 4 0.00 00:09:39 00:09:44
b08 179 170 10 9 9 9 0.00 01:04:39 01:04:44
b09 169 168 10 7 7 7 0.00 01:14:43 01:14:54
b10 200 189 14 11 12 11.8 0.42 01:51:47 01:51:39
bridge 50 452 452 2 6 6 6 0.00 06:33:56 06:33:25
c499 243 202 13 11 12 11.7 0.48 02:13:10 02:13:13
c880 443 383 19 17 18 17.2 0.42 06:54:25 06:55:26
clique 20 190 20 10 11 12 11.2 0.42 01:30:19 01:30:43
grid2d 20 200 200 11 10 10 10 0.00 01:36:00 01:35:32
grid3d 8 256 256 20 21 22 21.3 0.48 04:53:40 04:49:49
grid4d 4 128 128 17 15 16 15.3 0.48 01:24:17 01:24:42
grid5d 3 122 121 18 16 18 16.7 0.82 01:25:32 01:24:51
nasa 579 680 21 19 22 19.9 0.74 17:13:13 17:19:44
NewSystem1 142 84 3 3 4 3.1 0.32 00:36:45 00:36:59
NewSystem2 345 200 4 4 4 4 0.00 03:01:16 03:01:36
s444 205 202 6 5 5 5 0.00 01:46:54 01:47:07
s510 236 217 23 17 17 17 0.00 02:40:09 02:41:52

Table 7.1: GA-ghw results for selected benchmark hypergraphs.

the run which returned the width in columnmin, columnavg-timepresents the average
time of the ten runs.

Compared with the best upper bounds known for the consideredinstances algorithm
GA-ghw found an improved upper bound on the generalized hypertree width for 12
graphs , GA-ghw was able to return the same upper bound for 2 graphs, and for 5 graphs
the width returned by GA-ghw was worse than the best upper bound known so far.

7.2 Extending GA-ghw to a Self-Adaptive Island GA

As already mentioned in section 4.3 the behavior of a geneticalgorithm depends on the
values chosen for its control parameters. Adjusting the parameters of a genetic algorithm
takes a lot of time and the optimal parameter values of a genetic algorithm may differ
for several problem instances or genetic operators. It might even be that the optimal
parameter values vary at different stages of the search performed by a genetic algorithm.
In order to overcome these problems several genetic algorithms have been introduced,
which can automatically adjust their parameter values. A classification and an overview
of such algorithms is given by Eiben et al. in [20]. In [19] Takashima et al. propose a
genetic algorithm, named SAIGA (self-adaptive island genetic algorithm), which adapts
the population size, the crossover rate, the mutation rate and the group size for tourna-
ment selection. Since these are also the control parametersof algorithm GA-ghw we
will extend algorithm GA-ghw by the help of the ideas proposed in [19].
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7.2.1 Algorithm SAIGA-ghw

Algorithm: SAIGA-ghw

Input: a hypergraphH = (V,H)
Output: an upper bound on the treewidth of the graph

for i = 1 to I do /* I ... the number of islands */
initialize parami

initialize islandi with parami

while evaluations< maxevaluationsdo
/* evolution */
for i = 1 to I do

evolveislandi with parami

/* migration * /
for i = 1 to I do

migrateislandi

/* neighbor orientation */
for i = 1 to I do

orientateparami at its neighbors

/* mutation */
for i = 1 to I do

mutateparami

return the smallest width found during the search

Figure 7.3: Algorithm SAIGA-ghw.

The genetic algorithm for computing upper bounds on the generalized hypertree
width of hypergraphs which adapts control parameters is namedSAIGA-ghw. Figure 7.3
shows algorithm SAIGA-ghw in pseudo code notation.

SAIGA-ghw is an island GA [48], it evolves several genetic algorithms in parallel
and each single genetic algorithm is regarded as an island. From time to time some
solutions migrate between the islands and ensure that islands share some information
among each other and thus perform some kind of cooperative search. Within SAIGA-
ghw we place the islands in a ring topology.

A single islandislandi is controlled by the parameter vectorparami = (n, pc, pm, s)
which contains values for the control parametersn, the population size,pc, the recombi-
nation rate,pm, the mutation rate, ands, the group size for tournament selection. Initially
the parameter vector is created randomly for each island.

During an iteration of SAIGA-ghw each islandislandi is evolved like algorithm
GA-ghw (selection, recombination, mutation and evaluation) using the parameters spec-
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ified in parami . If a certain number of evaluations occurred within an island the evolu-
tion process is halted. If the population size of an island must increase due to an altered
parameter vector new randomly created individuals will be added to the island.

After evolving the islands some of the individuals of each island migrate to their
neighbors within the ring topology. The migrating individuals as well as their migration
destination (left or right neighbor in the ring) are chosen at random. Islands which
receive migrating individuals replace randomly selected individuals within their current
population with the immigrated individuals.

After the migration phase, each parameter vectorparami is assigned the best fitness
of an individual of the current population ofislandi as its own fitness value. Afterwards
the fitness of each parameter vectorparami is compared with the fitness of its neighbors
in the ring topology. If the fitness of the neighbors isn’t better thanparami ’s own fitness
parami remains unchanged. Otherwise the parameter values withinparami are shifted
into the direction of the parameter values of the fittest neighbor. This phase is denoted
”neighbor orientation”. Finally the parameter vectors aremutated themselves.

The main difference between algorithm SAIGA [19] and algorithm SAIGA-ghw
is that SAIGA also applies selection and recombination to the parameter vectors and
the parameter vectors swapped between the different islands. We omit the selection,
recombination and swapping of parameter vectors. Instead we introduced the process of
neighbor orientation. With the mutation of parameter vectors and neighbor orientation
we would like to achieve the following effects:

1. Due to the mutation of parameter vectors the genetic algorithm also explores the
space of possible parameter settings during the search.

2. By neighbor orientation the information on good parameter vectors should be
propagated through the ring of islands.

7.2.2 Parameter Representation

Like in [19] we distinguish between the phenotypes of the parameters’ population size
n, crossover ratepc, mutation ratepm and tournament selection group sizes and their
genotypesn′, p′c, p′m and s′. Each genotype is represented by a floating point number
whithin range 0 and 1. The corresponding phenotypes are computed as follows:

Phenotype Range
(1) n = 20+ ⌊exp(8 · n′ · log(2))⌋ [21, 276]
(2) pc = p′c [0, 1]
(3) pm = 0.00005· exp(p′m · log(1/0.0001)) [0.00005, 0.5]
(4) s = 2 ∗ ⌊s′ ∗ 4⌋ [2, 6]
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Note that the phenotypes for population size (1) and for tournament selection group
size (4) are computed differently as in [19].

7.2.3 Initialization of Parameters

The genotype parametersp′m ands′ are assigned uniformly distributed random numbers
between 0 and 1,p′c is assigned a uniformly distributed random number between 0.5 and
1. Then the corresponding phenotypes are computed. For the population size we ini-
tialize the phenotype parameter with a normally distributed random integerN(100, 50).
The genotypen′ for n is computed afterwards.

7.2.4 Mutation of Parameter Vectors

Each single parameter is mutated at a probability of 60%. Mutation adds a normally
distributed random numberN(0, 0.1) to the genotype parameter which is chosen for mu-
tation. The corresponding phenotypes are computed afterwards. Figure 7.4 presents the
pseudo code of the mutation of a parameter vector.

Algorithm: Mutate Parameter Vector

Input: a parameter vectorparami

Output: the mutated parameter vector

r = a uniform random number from [0, 1]
if r < 0.6 then

n′ = n′ + N(0, 0.1)

r = a uniform random number from [0, 1]
if r < 0.6 then

s′ = s′ + N(0, 0.1)

r = a uniform random number from [0, 1]
if r < 0.6 then

p′c = p′c + N(0, 0.1)

r = a uniform random number from [0, 1]
if r < 0.6 then

p′m = p′m+ N(0, 0.1)

repair genotype parameters if they are not in [0, 1]
compute phenotypes

Figure 7.4: Mutation of parameter vector.
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7.2.5 Neighbor Orientation

As already mentioned, each parameter vectorparami is assigned the best fitness of an
individual of the current population ofislandi as its own fitness value. If the fitness of
some parameter vector of a neighboring island is better thanparami ’s fitness,parami

will be shifted into the direction of the parameter values ofits fittest neighbor. This shift
is done by reducing the difference in the values of the genotype parameters between
parami and its fittest neighbor by 50%. For instance, lets′i ands′neighbor be the genotype
parameters for tournament selection group size ofislandi and its fitter neighbor. By
settings′i = (s′i + sneighbor′)/2 we reduce the difference between the parameter values by
50% and shifts′i into the direction ofs′neighbor.

7.2.6 Further Details

Within an iteration of SAIGA-ghw each island executes iterations of GA-ghw until more
than 1000 are evaluated. In each iteration of SAIGA-ghw 5% ofthe individuals of an
island migrate.

7.2.7 Computational Results

Due to time restrictions, we tested algorithm SAIGA-ghw only on four hypergraphs
from [22]. We ran SAIGA-ghw withI = 20 island GAs. As crossover operator
we chose position-based crossover (POS), as mutation operator the insertion muta-
tion operator (ISM). For each hypergraph we performed 10 runs. A single run lasted
maxevaluations= 4, 000, 000 total evaluations.

We tested the ten runs for each hypergraph either on a machine(1) with an Intel(R)
Pentium(R)-4 3.40GHz processor having 1GB RAM or on a machine (2) with an Intel(R)
Xeon(TM) 3.20GHz processor having 4GB RAM. Like in section 7.1.3 we converted the
times of machine (1) into the times of machine (2).

Table 7.2 presents the results of algorithm SAIGA-ghw for the considered hyper-
graphs. The columnsGraph, V andH present the graph name and the number of ver-
tices and hyperedges of that graph.min, maxandavgpresent the best, worst and aver-
age width returned by algorithm GA-ghw for an instance whereasstd.dev. contains the
standard deviation of the ten results returned by algorithmGA-ghw. Within the column
min-timewe present the time which was needed by algorithm GA-ghw for the run which
returned the width in columnmin, columnavg-timepresents the average time of the ten
runs.

If we compare the results of algorithm SAIGA-ghw on the four hypergraphs with
the results delivered by algorithm GA-ghw (Table 7.1) we observe that SAIGA-ghw was



CHAPTER 7. GENETIC ALGORITHMS FOR GENERALIZED HYPERTREE . .. 87

Hypergraph V H min max avg std.dev. min-time avg-time

adder99 496 694 4 5 4.1 0.32 09:08:48 09:39:13
b06 48 50 4 4 4 0.00 00:20:22 00:30:50
b09 168 169 7 7 7 0.00 01:27:58 01:41:17
s444 202 205 5 6 5.6 0.52 02:10:09 02:18:24

Table 7.2: SAIGA-ghw results for selected benchmark hypergraphs.

able to obtain the same upper bounds on the generalized hypertree width of hypergraph
b06 and b09 in each of the ten runs. For instance s444 SAIGA-ghw was also able to
return a upper bound of 5 but, unlike algorithm GA-ghw, this upper bound was not
returned in each run. When applied to hypergraph adder99 SAIGA-ghw was not able to
find the 3-width upper bound which was always returned by GA-ghw. Note also, that for
each instance the average time needed by algorithm SAIGA-ghw exceeds the average
time needed by algorithm GA-ghw.

We conclude that the upper bounds returned by algorithm SAIGA-ghw as well as
its running time are slightly worse that the upper bounds delivered by algorithm GA-ghw
and its time behavior. But we have to bear in mind that the results of GA-ghw in Table
7.1 preceded many time-consuming experiments in order to determine suitable control
parameter values (see section 6.3). Thus algorithm SAIGA-ghw may be considered as
an alternative to algorithm GA-ghw if we do not have the time for obtaining control
parameter values in comprehensive experiments.
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Chapter 8

A Branch and Bound Algorithm for
Generalized Hypertree Width

In this chapter we propose a branch and bound algorithm whichis able to compute
the generalized hypertree width of a hypergraph. For that purpose we develop a lower
bound heuristic for the generalized hypertree width of hypergraphs in section 8.1, and
show how some of the graph reduction and pruning techniques presented in chapter 4
can be used and extended for our branch and bound algorithm insection 8.2 and section
8.3. Finally we present the branch and bound algorithm for computing the generalized
hypertree width of hypergraphs in section 8.4, its implementation details in section 8.5
and the results it returned for selected hypergraph benchmarks in section 8.6.

8.1 A Lower Bound Heuristic for Generalized Hypertree
Width

Within this section we show how lower bound heuristics for treewidth and lower bound
heuristics for thek-set cover problem may be used for obtaining a lower bound heuristic
on the generalized hypertree width of hypergraphs. Thus, first of all we give a short
introduction on thek-set cover problem.

89
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8.1.1 Thek-Set Cover Problem

Thek-set problem may be formulated as minimization problem as follows [21]:

Given T = {t1, ..., tn} a set
S = {S1, ...,Sm}, ∀i : Si ⊆ T a collection of subsets ofT
k an integer

Find a subcollection ofC ⊆ S such thatC covers at leastk elements ofT such that
|C| is minimal. Thus, an instance of thek-set cover problem may be represented as a
triple 〈T,S, k〉.

k-Set Cover as Integer Program (IP)

Thek-set cover problem is anNP-complete problem. It may be formulated as integer
programm (IP). An integer programming problem consists of alinear objective function
and linear constraint equations and inequations. The variables of the objective function
and of the constraints are required to be integers. Thek-set cover problem may be
formulated as integer program as shown below.

min
∑m

j=1 x j

subject to: yi +
∑

j:ti∈S j
x j ≥ 1 i = 1, ..., n (1)-(n)

∑n
i=1 yi ≤ n− k (n+ 1)

x j , yi ∈ {0, 1} IP - program
(x j , yi ≥ 0 LP - relaxation)

This formulation was taken from [21]. We introduce a (binary) integer variable
x j for each subset inS. x j = 1 iff subsetS j is a member of the the resulting cover.
Moreover we introduce a (binary) integer variableyi for each elementti ∈ T. yi = 1
iff ti is not covered. The constraint inequation (n+1) says that there may be at most
n − k uncovered elements ofS. The equations (1)-(n) specify which elements inT are
covered by which subsets inS and ensure that each element must be covered by at least
one subset oryi has to be 1. The solution which satisfies all constraints and minimizes
the objective function represents the solution for thek-set cover problem.

Although integer programming is known to beNP-hard many problem instances
formulated as integer program may be solved exactly by the help of IP-solvers. If we al-
low that the variables of a given integer program are real numbers we obtain the so-called
LP-relaxation of the integer program. The exact solution tothe LP-relaxation is a lower
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bound for the exact solution of the corresponding integer program (for minimization
problems as thek-set cover problem). The LP-relaxation belongs to the classof linear
programs (LPs) in which all variables are real numbers. Solving a linear program (LP)
is feasible in polynomial time, thus also computing the solution for the LP-relaxation of
an integer program. For further information on integer and linear programing see [46].

Set Cover as IP-Program

Also the set cover problem (section 2.5.2) may be formulatedas IP [21]. We will use
the following IP-formulation of the set cover problem in order to cover the vertex sets
derived from an elimination ordering exactly with an IP-solver.

min
∑m

j=1 x j

subject to:
∑

j:ti∈S j
x j ≥ 1 i = 1, ..., n

x j ∈ {0, 1}

8.1.2 From Treewidth Lower Bounds to Generalized HypertreeWidth
Lower Bounds

Theorem 4. Let lb be a lower bound for the treewidth of a hypergraphH = (V,H). Then
the exact solution or any lower bound of the k-set cover problem〈V,H, lb+ 1〉 is a lower
bound on the generalized hypertree width forH , ghw(H).

Proof.

1. Let lb be a lower bound for the treewidth of a hypergraphH = (V,H). Then we
know that every tree decomposition forH has a vertexp with at leastk = lb + 1
vertices in its labelχ(p).

2. Every generalized hypertree decomposition for a hypergraphH is also a tree de-
composition forH . Thus it must be that every generalized hypertree decomposi-
tion, also one having a width ofghw(H), has a vertexp with at leastk = lb + 1
vertices in its labelχ(p).

3. Thus, the minimum number of hyperedges needed to cover at leastk = lb + 1
vertices ofH is a lower bound for the generalized hypertree width ofH .
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4. The problem of finding the minimum number of hyperedges needed to cover at
leastk = lb+1 vertices can be formulated as an instance of thek-set cover problem
with V as basic set,H as collection of subsets ofV and lb + 1 as the minimum
number of elements that have to be covered,〈T = V,S = H, k = lb + 1〉.

5. Thus, the exact solution or any lower bound for thek-set cover problem
〈T = V,S = H, k = lb + 1〉 represents a lower bound forghw(H).

�

On the basis of Theorem 4 we developed a lower bound heuristicfor the general-
ized hypertree width of a hypergraphH . We named the heuristictw-ksc-widthbecause
it combines lower bound heuristics for treewidth of hypergraphs with a lower bound
heuristic for thek-set cover problem. Figure 8.1 presents the pseudo code for tw-ksc-
width.

From Lemma 1 [33] we obtain that the lower bound of the treewidth of a hyper-
graph’s primal graph is also lower bound of the treewidth of the hypergraph. For that
reason tw-ksc-width applies the minor-γR and the minor-min-width heuristics (section
4.4.2) to the primal graphG∗(H). A variablek is assigned the maximum of the values
returned by the two heuristics plus one. Afterwards tw-ksc-width computes a solution
for the LP-relaxation of thek-set cover problem〈V,H, k〉. The returned solution of that
problem is ceiled because the exact solution for ak-set cover problem must be an integer
value. This ceiled value is returned as a lower bound on theghw(H).

Algorithm: tw-ksc-width

Input: a hypergraphH = (V,H)
Output: a lower bound forghw(H)

1. k = max(minor-min-width(G∗(H)),minor-γR(G∗(H)) +1

2. lp relax= the solution for the LP-relaxation of thek-set cover problem〈V,H, k〉

3. lb = ⌈lp relax⌉

4. return lb

Figure 8.1: Algorithm tw-ksc-width.
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8.2 Reduction Techniques

Definition 26 (Simplicial Vertex in Hypergraph). A vertexv of a hypergraphH is sim-
plicial if each pair of its neighbors appear together withina hyperedge.

Lemma 14. Let v be a simplicial vertex of hypergraphH and letH−{v} be the hyper-
graph obtained by deleting v fromH . Then it holds that ghw(H−{v}) ≤ ghw(H) and
that ghw(H) = max(k, ghw(H−{v})), where k is the minimum number of hyperedges
needed to cover v and its neighbors inH .

Proof. Let 〈T, χ, λ〉 be a generalized hypertree decomposition ofH whose width equals
ghw(H). Obviously by deletingv from theχ-sets of〈T, χ, λ〉 we obtain a generalized
hypertree decomposition ofH−{v} of width at mostghw(H).

In chapter 3 we proved the a generalized hypertree decomposition whose width
equalsghw(H) can be obtained from an elimination orderingσ. Whenever the first
vertex of the set consisting ofv and its neighbors is eliminated according toσ a χ-
set will be produced in the resulting generalized hypertreedecomposition containingv
and its neighbors. At leastk hyperedges are needed to cover thatχ-set. It follows that
ghw(H) = max(k, ghw(H−{v})). �

The above lemma implies that whenever a simplicial vertex appears in a hyper-
graph associated with a subproblem within a branch and boundsearch the simplicial
vertex may be removed in the next step. Note that a vertexv is a simplicial vertex of a
hypergraphH iff v is a simplicial vertex of the primal graphG∗(H) since the adjacency
relations inH andG∗(H) are equivalent. This result is important for the branch and
bound algorithm we will propose in this chapter because it will be based on the primal
graphG∗(H).

8.3 Pruning Rules

In section 4.4.5 we described two pruning rules from the branch and bound algorithm
for treewidth in [5]. Now we examine if and how these rules maybe modified and used
for a branch and bound algorithm which computes the generalized hypertree width of a
hypergraph. Our branch and bound algorithm will use the treerepresenting all possible
elimination orderings as search tree. For obtaining the vertex sets which are produced
by elimination orderings we will eliminate vertices from the primal graph of the input
hypergraph.
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Suppose that we are in a node of the branch and bound tree, letg be the width of
the partial solution represented by that node and letn′ denote the number of vertices that
haven’t been eliminated yet. We know that the width of a solution within the subtree
rooted at the current search node may be at mostw = max(g, n′) because we need at
mostn′ hyperedges in order to cover then′ vertices. If we solve the set cover problem
for then′ remaining vertices of the hypergraph exactly or we compute an upper bound
on that set cover problem and it turns out that we needk hyperedges in order to cover
then′ vertices we conclude that the width of a solution within the subtree rooted at the
current search node may be at mostw = max(g, k).

If w is smaller then the width of the best solution found so far,w < ub, we know
that we will find a better solution within the subtree rooted at the current search node.
There are two cases. Ifn′ ≤ g andk ≤ g respectively, then we don’t have to continue
the search within the subtree. Ifn′ > g andk > g respectively then at least one solution
within the subtree will lead to a new upper bound of at mostn′ andk respectively but we
have to continue the search within the subtree for finding itsbest solution.

We conclude that we are able to derive two pruning rules for a branch and bound
algorithm for generalized hypertree width from Pruning Rule 1 in section 4.4.5 [5]. The
two rules are denoted Pruning Rule 1 (PR 1) and Pruning Rule 1’(PR 1’) and are given
below.

Pruning Rule 1 (PR 1)
computew := max(g, n′)
if w < ub thenub= w

if n′ ≤ g then exclude the subtree rooted at the current node from the search

Pruning Rule 1’ (PR 1’)
compute an exact solution or an upper boundk for the set cover problem defined by the
n′ remaining vertices andH
computew := max(g, k)
if w < ub thenub= w

if k ≤ g then exclude the subtree rooted at the current node from the search

From Pruning Rule 2 in 4.4.5 [5] we are able derive two pruningrules for a branch
and bound algorithm for generalized hypertree width. The two rules are denoted Pruning
Rule 2a (PR 2a) and Pruning Rule 2b (PR 2b) and are given below.From Figure 8.2 we
see why Pruning Rule 2a and Pruning Rule 2b are applicable fora branch and bound
algorithm for generalized hypertree width. No matter if we eliminate v beforew or w
beforev we obtain the same graphs after the elimination of the two vertices.
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If v andw are not adjacent the same vertex sets are created when they are eliminated
and thus the order in whichv andw are eliminated doesn’t have an effect on the width.
These considerations are expressed within Pruning Rule 2a.

If v andw are adjacent then when eliminating the vertexv beforew we obtain the
sets consisting ofv,Nv,Nv,w andw,Nv,Nw,Nv,w and when eliminating vertexw beforev
we havew,Nw,Nv,w andv,Nv,Nw,Nv,w in the created sets (see Figure 8.2). Thus we have
to check whetherv,Nv,Nv,w andw,Nv,Nw,Nv,w or w,Nw,Nv,w andv,Nv,Nw,Nv,w may
be covered with fewer hyperedges. These considerations areexpressed within Pruning
Rule 2b.

Pruning Rule 2a (PR 2a)

Supposev andw are successive vertices in an elimination orderingσ, andv andw are
not adjacent in the graph obtained by eliminating the vertices inσ up to v. Then the
orderingσ′, obtained by swappingv andw in σ, has the same width asσ. Thus, we
prune the search tree as follows: for such a pair of verticesv,w, when we have looked at
a branch representing the elimination orderings ending with w, v, xi , ..., xn we prune the
branch representing the orderings ending withv,w, xi , ..., xn.

Pruning Rule 2b (PR 2b)

Supposev and w are successive vertices in an elimination orderingσ with w <σ v
andv andw are adjacent in the graph obtained by eliminating the vertices inσ up to
v. Let σ′ be the ordering obtained by swappingv and w in σ. Let coverw,v be the
minimum number of hyperedges needed to cover one of the two sets created whenv is
eliminated beforew and letcoverv,w be the minimum number of hyperedges needed to
cover one of the two sets created whenw is eliminated beforev. If coverw,v ≤ coverv,w
then the width ofσ doesn’t exceed the width ofσ′. Thus, we prune the search tree
as follows: for such a pair of verticesv,w with coverw,v ≤ coverv,w, we explore the
branch representing the elimination orderings ending withw, v, xi , ..., xn and we prune
the branch representing the orderings ending withv,w, xi , ..., xn. If coverw,v > coverv,w
we explore the branch representing the orderings ending with v,w, xi , ..., xn and we prune
the branch representing the elimination orderings ending with w, v, xi , ..., xn.
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Figure 8.2: Example graph [5] for pruning rules PR 2a and P2 2b.
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8.4 Algorithm BB-ghw

We introduce a branch and bound algorithm which is able to compute the generalized
hypertree width of a given hypergraphH . The branch and bound algorithm searches the
branch and bound tree representing all elimination orderings of the vertices inH . The
algorithm uses the hypergraph’s primal graphG∗(H) in order to create the vertex sets that
are produced according to a specific elimination ordering. We will exploit the pruning
rules 1 (PR 1) and 2a (PR 2a) from section 8.3 as well as the simplicial vertex reduction
rule from section 8.2 in order to shrink the search space. Theresulting algorithm is
namedBB-ghw. Figure 8.3 shows algorithm BB-ghw in pseudo code notation.

Within algorithm BB-ghw we will use an array of search nodes,denotedstack,
for storing the nodes of the current search path. A search node contains three variables
g,h and f , whereg is the width of the partial solution represented by the search node,
h is the lower bound on the graph obtained after eliminating the vertices of the partial
solution andf is a lower bound on the width of any elimination ordering ending with that
partial solution. In addition, each search nodes is associated a vertex, denotedvertex,
representing the vertex which is eliminated at the search node and a list of the vertices
representing the vertices which are eliminated at the childnodes ofs within the search
tree, denotedchildren. We say that a node is explored if all its children have been visited.

First of all Algorithm BB-ghw computes the primal graphG∗(H) for its input hy-
pergraphH = (V,H). Then a lowerlb and an upper boundub on ghw(H) are computed
from the primal graph. For computing the lower bound we use heuristic tw-ksc-width
from section 8.1.2. For getting an upper bound onghw(H) we compute a tree decom-
position forH by the help of the min-fill heuristic from section 4.4.2 and compute a
minimum cover for the labels of the tree decomposition vertices [37]. The width of the
resulting generalized hypertree decomposition acts as initial upper bound.

If the upper bound equals the lower bound we returnubas the generalized hypertree
width. Otherwise we initialize the search noder representing the root node of the search
tree by settingr.g = 0, r.h = lb andr. f = lb. If there is a simplicial or vertex inG∗(H)
this vertex is the only child of the root node. If there is no such vertex there is a child for
each vertex within the hypergraph.

Afterwards the branch and bound search begins and lasts until the whole search
tree has been explored or we have found an upper bound which equals our initial lower
boundlb. In each iteration we regard the last node of our current search path, denoteds.
This node may be either a node representing a solution or a node which has at least one
unexplored child or an explored node.

If s represents a solution we examine if the width of that solution is smaller than
the upper bound we have found so far. If that is the case that width is stored inubas new
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upper bound. Finally the vertex that has been eliminated at this node is restored within
the primal graph.

If s has at least one unexplored child, denotedt, we will visit that child node.
Let v denote the vertex which will be eliminated at nodet, thus t.vertex= v. When
eliminating v from G∗(H) we get a set of verticesX containingv and its neighbors.
BB-ghw computes the minimum numberk of hyperedges inH needed for covering the
vertices inX. The width of the partial solution represented byt is the maximum of the
width of the partial solution insandk, thust.g = max(s.g, k). We compute a lower bound
on the generalized hypertree width ofG∗(H) with tw-ksc-width and assign it tot.h. A
lower bound on the width of any elimination ordering ending with the partial solution
represented byt is the maximum of the width computed so fart.g, the lower bound on
the generalized hypertree width of the remaining grapht.h and any lower bound of a
search state on the path from the root tot, thust. f = max(s. f , t.g, t.h). If t. f ≥ ub then
BB-ghw won’t find a solution better thanub in the subtree rooted at the current search
node and thus that subtree is pruned. Otherwise the childrenof t are computed according
to the pruning rules 1 and 2a and the simplicial vertex reduction rule.

If s has been explored the vertexs.vertexthat has been eliminated ats is restored
in G∗(H).

If BB-ghw terminates it will returnub whose value is the generalized hypertree
width ofH .

8.5 Implementation Details

We implemented algorithm BB-ghw using C++ and STL. For representing and pro-
cessing the primal graph of the input hypergraph we chose thegraph representation
proposed in section 5.2.1. Since this representation requiresO(|V|2) space and also the
space needed by the states withinstackis in O(|V|2) the space complexity of BB-ghw is
O(|V|2).

For computing the solution of the LP-relaxation of thek-set cover problem of the
lower bound heuristic tw-ksc-width as well as for solving the set cover problems ap-
pearing within the branch and bound search we used GNU LinearProgramming Kit 4.9
(GLPK) [23].
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Algorithm: BB-ghw

Input: a hypergraphH = (V,H)
Output: the generalized hypertree width of theH

computeG∗(H)
lb = lower bound(G∗(H))
ub= upper bound(G∗(H))
if lb = ub then return ub /* ghw(H) already found* /

/* initialize the root of the search tree */
depth= 0
r = stack[depth]
r.h = lb, r.g = 0, r. f = lb, r.vertex= ∅
if ∃ a simplicial vertexw in G∗(H) then

r.children= {w}
elser.children= V

while (depth> −1) and (ub> lb) do /* branch and bound search */

s= stack[depth]
if depth= |V| − 1 then /* s is a leaf of the branch and bound tree - solution */

if s. f < ub then
ub= s. f

restore(s.vertex,G∗(H))
depth= depth− 1

else if∃ v ∈ s.childrenthen /* s has at least one unexplored child - branching*/
depth= depth+ 1
t = stack[depth]
t.vertex= v

determinet.childrenaccording to pruning rule PR 2a
X = eliminate(v,G∗(H))
k = exact set cover (X,H)

if ∃ a simplicial vertexw in G∗(H) then /* simplicial vertex reduction rule */
r.children= {w}

t.g = max(s.g, k)
t.h = lower bound(G∗(H))
t. f = max(s. f , t.g, t.h)
if t. f ≥ ub then t.children= ∅ /* Bounding */

/* Pruning according PR 1*/
n′ = |V| − depth/* remaining vertices */
w = max(t.g, n′)
if w < ub then

ub= w
if n′ ≤ t.g then

t.children= ∅ /* prune search */

removev from t.children

else/* all children of s have been explored - one step back in the search tree */
restore(s.vertex,G∗(H))
depth= depth− 1

return ub

Figure 8.3: Algorithm BB-ghw.
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8.6 Computational Results

We tested algorithm BB-ghw on 95 hypergraphs from [22] on a machine with an In-
tel(R) Xeon(TM) 3.20 GHz processor having 4GB RAM. We implemented BB-ghw as
randomized algorithm thus we performed ten runs of BB-ghw for each hypergraph. Each
run was given a one hour time limit. Table 8.1 and Table 8.2 present the results BB-ghw
returned for the 95 hypergraphs. The columnsHypergraph, V andH contain the name,
the number of vertices and hyperedges for each hypergraph. Column lb presents the
maximum lower bound returned by the lower bound heuristic tw-ksc-width in ten runs.
Columnub gives the best upper bound on the generalized hypertree width of a hyper-
graph which has been reported in [17], ”*”-entries indicatethat no result was available.
Columnmin- f ill presents the minimum upper bound which was computed by the min-
fill heuristic in ten runs for each instance. ColumnBB−ghwgives the best width reported
by algorithm BB-ghw, the columnsavg. andstd.dev. contain the average width and the
standard deviation for the ten runs. Columntime reports the time of a run which was
able to return an exact solution for an instance, ”*”-entries indicate that the time limit of
an hour was exceeded.

Algorithm BB-ghw was able to compute the gen. hypertree width for 23 instances.
For other 21 hypergraphs BB-ghw returned an improved upper bound on the generalized
hypertree width, which for 7 hypergraphs was due to an improved upper bound returned
by the min-fill heuristic. Anyway for 14 hypergraphs the improved upper bound was
found within the branch and bound search. For 40 BB-ghw couldreturn an upper bound
which was equal to the best upper bound known so far for that instance. Only for eight
instances the best known upper bound was not reached.
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Hypergraph V H lb ub min- f ill BB-ghw avg. std.dev. time

2bitcomp5 95 310 3 11 13 13 14 1.41 *
2bitmax 6 192 766 5 15 13 13 25.3 6.60 *
adder15 106 76 2 2 2 2 2 0.00 0.03
adder25 176 126 2 2 2 2 2 0.00 0.06
adder50 351 251 2 2 2 2 2 0.00 0.19
adder75 526 376 2 2 3 2 2 0.00 30.31
adder99 694 496 2 2 3 2 2 0.00 66.7
aim-50-16-no-3 50 80 4 9 9 9 9 0.00 *
aim-50-16-yes1-3 50 80 4 10 10 9 9.8 0.42 *
aim-50-20-no-3 50 100 5 12 12 11 11.8 0.42 *
aim-50-20-yes1-3 50 100 5 11 11 10 10.8 0.42 *
aim-50-34-yes1-3 50 170 7 13 12 12 12 0.00 *
ais6 61 581 5 10 10 9 9.6 0.70 *
ais8 113 1520 5 14 14 12 14.2 0.92 *
atv partial system 125 88 2 3 4 3 3.7 0.48 *
b01 47 45 2 5 5 5 5.2 0.42 *
b02 27 26 2 3 3 3 3 0.00 *
b03 156 152 2 7 7 7 7 0.00 *
b06 50 48 2 5 5 4 4.7 0.48 *
b08 179 170 3 10 10 10 10 0.00 *
b09 169 168 3 10 10 10 10.2 0.63 *
b10 200 189 3 14 13 13 14.2 0.79 *
bridge 15 137 137 2 2 3 3 3.2 0.42 *
bridge 25 227 227 2 2 3 3 3.7 0.48 *
c432 196 160 2 9 9 9 9 0.00 *
c499 243 202 3 13 13 12 15 2.16 *
clique 10 45 10 2 5 6 5 5 0.00 *
clique 15 105 15 2 8 8 8 8 0.00 *
clique 20 190 20 3 10 12 10 10 0.00 *
dubois100 300 800 2 2 2 2 2 0.00 0.34
dubois20 60 160 2 2 2 2 2 0.00 0.02
dubois21 63 168 2 2 2 2 2 0.00 0.03
dubois22 66 176 2 2 2 2 2 0.00 0.02
dubois23 69 184 2 2 2 2 2 0.00 0.03
dubois24 72 192 2 2 2 2 2 0.00 0.02
dubois25 75 200 2 2 2 2 2 0.00 0.03
dubois26 78 208 2 2 2 2 2 0.00 0.04
dubois27 81 216 2 2 2 2 2 0.00 0.04
dubois28 84 224 2 2 2 2 2 0.00 0.04
dubois29 87 232 2 2 2 2 2 0.00 0.04
dubois30 90 240 2 2 2 2 2 0.00 0.04
dubois50 150 400 2 2 2 2 2 0.00 0.1
flat30-1 90 300 5 10 12 12 14.4 1.84 *
flat30-50 90 300 5 11 11 11 11.4 0.52 *
flat30-99 90 300 5 11 14 14 15.9 1.20 *
grid10 100 180 3 * 12 9 10.2 1.03 *
grid15 225 420 3 * 20 16 18.1 1.10 *
grid20 400 760 3 * 26 21 24.9 2.18 *
grid2d 10 50 50 3 5 5 5 5 0.00 *
grid2d 15 113 112 3 8 9 8 9 0.47 *
grid2d 20 200 200 3 11 12 12 12.7 0.48 *
grid3d 4 32 32 2 6 6 5 5 0.00 *
grid3d 5 63 62 3 8 8 8 8.2 0.42 *
grid3d 6 108 108 3 12 13 12 12.9 0.32 *
grid3d 7 172 171 4 16 17 17 18.1 0.74 *
grid4d 3 41 40 3 6 8 6 6.9 0.32 *
grid4d 4 128 128 4 17 16 15 16.2 0.63 *
grid5 25 40 3 * 4 3 3.2 0.42 0.02

Table 8.1: BB-ghw results for selected benchmark hypergraphs.
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Hypergraph V H lb ub min- f ill BB-ghw avg. std.dev. time

hole10 110 561 3 11 11 11 11 0.00 *
hole6 42 133 3 7 7 7 7 0.00 *
hole7 56 204 3 8 8 8 8 0.00 *
hole8 72 297 3 9 9 9 9 0.00 *
hole9 90 415 3 10 10 10 10 0.00 *
par8-1-c 64 254 3 7 7 7 7.1 0.32 *
par8-2-c 68 270 4 6 6 6 6.5 0.53 *
par8-3-c 75 298 4 8 7 7 7 0.00 *
par8-4-c 67 266 3 7 7 6 7.1 0.57 *
par8-5-c 75 298 4 7 7 7 7 0.00 *
pret15025 150 400 2 5 5 5 5 0.00 *
pret15040 150 400 2 5 5 5 5 0.00 *
pret15060 150 400 2 5 5 5 5 0.00 *
pret15075 150 400 2 5 5 5 5 0.00 *
pret6025 60 160 2 5 5 5 5 0.00 *
pret6040 60 160 2 5 5 5 5 0.00 *
pret6060 60 160 2 5 5 5 5 0.00 *
pret6075 60 160 2 5 5 5 5 0.00 *
s208 115 104 2 7 7 7 7.1 0.32 *
s27 17 13 2 2 2 2 2 0.00 0
s298 136 133 3 5 5 5 5 0.00 *
s344 184 175 2 7 7 7 7 0.00 *
s349 185 176 2 7 7 7 7 0.00 *
s382 182 179 3 5 5 5 5.4 0.52 *
s386 172 165 4 8 8 7 7.9 0.32 *
s400 186 183 3 6 6 5 5.9 0.32 *
s420 231 212 2 9 9 9 9.8 0.79 *
s444 205 202 3 6 6 5 5.8 0.42 *
s510 236 217 4 23 20 20 22.3 1.64 *
s526 217 214 3 8 8 7 7.9 0.32 *
s641 433 398 3 7 8 8 8.5 0.85 *
s713 447 412 3 7 8 7 8.8 1.03 *
s820 312 294 5 13 12 12 12 0.00 *
s832 310 292 5 12 11 11 11 0.00 *
uf20-01 20 91 5 6 6 6 6 0.00 0.42
uf20-050 20 91 6 6 6 6 6 0.00 0.07
uf20-099 20 91 5 6 6 6 6 0.00 0.79

Table 8.2: BB-ghw results for selected benchmark hypergraphs.



Chapter 9

An A* Algorithm for Generalized
Hypertree Width

In this chapter we present an A* algorithm for computing the generalized hypertree
width of hypergraphs. The algorithm uses the lower bound heuristic, the graph reduction
technique and a pruning rule presented in the previous chapter.

9.1 Algorithm A*-ghw

Basically, the A* algorithm for computing the generalized hypertree width of hyper-
graphs, namedA*-ghw, has the same structure as algorithm A*-tw in section 5.1. Figure
9.1 presents algorithm A*-ghw in pseudo code notation.

The A* algorithm explores the search tree representing all elimination orderings of
the vertices of its input hypergraphH = (V,H). In addition, A*-ghw uses the reduction
rule for simplicial vertices from section 8.2 and pruning rule 2a from section 8.3 in order
to shrink the search space. For getting an upper bound onghw(H) we compute a tree
decomposition forH by the help of the min-fill heuristic from section 4.4.2 and compute
a minimum cover for the labels of the tree decomposition vertices [37]. The width of
the resulting generalized hypertree decomposition acts asinitial upper bound. As lower
bound heuristic we take the tw-ksc-width heuristic from section 8.1.

The algorithm uses a single priority queue, denotedqueue, for storing search states,
representing the nodes of the search tree. A search state contains the variablesg, h, f ,
whereg is the width of the partial solution represented by the search state,h is the lower
bound on the graph obtained by eliminating the vertices of the partial solution andf is
a lower bound on the width of all elimination orderings ending with the partial solution.
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Furthermore a state contains links to itschildren within the search tree. Such a link is
represented by the vertex which will be eliminated next in the child state. We say that
we visit a state if we remove the state from the priority queueand by evaluating a state
we mean that we assign to it the values forg, h, f and its children before inserting it into
the priority queue. The queue orders the states after their value f in ascending order.
Among states with the same value forf priority is given to those states which lie deeper
in the search tree in the hope that we will reach the goal stateearlier.

First of all the primal graphG∗(H) is derived from the input hypergraphH . Then
an upper and a lower bound on the generalized hypertree widthof the hypergraph are
computed from the primal graph. If the upper bound on the instance equals the lower
bound it is returned asghw(H). Otherwise we evaluate the initial state representing the
root of the search tree by settingg = 0, and by assigning the value for the lower bound
to h and f . If there is a simplicial vertex this vertex is the only childof the root state. If
there is no such vertex there is a child for each vertex withinthe graph. Finally the initial
state is inserted into the priority queue and the A* search begins.

During an iteration of the A* search the states at top of the priority queue, having
the lowest value forf , is visited. We create a graphGs representing the graph that is
obtained by eliminating the vertices of the partial solution represented bys. If s.g ≥
|Gs| we have visited a state representing a solution and thus we return s.g asghw(H).
Otherwise the children ofsare evaluated and inserted into the priority queue.

For each child statet and its associated vertexv we compute its children according
to pruning rule 2a. Afterwards we determineX, a set consisting ofv and its neighbors in
in Gs, and compute the minimum numberk of hyperedges inH needed for covering the
vertices inX. Then by eliminatingv from Gs we obtain the graphGs

v.

The width of the partial solution represented byt is the maximum of the width of
the partial solution represented bysandd, thust.g = max(s.g, d). t.h is assigned a lower
bound on the treewidth of graphGs

v. Both t.g as well ast.h represent a lower bound on
the width of all elimination orderings ending with the partial solution represented byt
as well as any lower bound of a search state on the path from theroot to t, thus we set
t. f = max(t.g, t.h, s. f ). If there is a simplicial vertex withinGs

v this vertex is the only
child of statet.

Finally we insertt into the priority queue ift. f is less than the upper boundub on
ghw(H). States witht. f ≥ ub won’t lead to solutions which are better than the upper
bound solution we have already computed therefore they are excluded from the search
in order to decrease the memory needed by the A* algorithm.

If all search states withf < ub have been visited but none of them represented a
solution it must be thatub is the treewidth of the graph and thusub is returned by the
algorithm in that case.
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Algorithm: A*-ghw

Input: a hypergraphH = (V,H)
Output: the generalized hypertree width of theH

computeG = G∗(H)
lb = lower bound(G)
ub= upper bound(G)
if lb = ub then return ub /* treewidth already found* /

/* evaluate the root of the search tree */
r = new S tate()
r.h = lb, r.g = 0, r. f = lb

if ∃ a simplicial vertexw in G then
r.children= {w}
r.reduced= true

elser.children= V
queue.push(r)

/* A* search - visit next state in queue */
while queueis not emptydo

s= queue.pop()
createGs

/* new lower bound is found */
if s. f > lb then lb = s. f

/* optimal solution is found */
if s.g ≥ |Gs| then return s.g

/* evaluate the children of current search state */
for eachv ∈ s.childrendo

t = new S tate()
t.children= V(Gs) − {v}
if not s.reducedthen prunet.childrenaccording to PR 2a

X = v∪ NGs(v)
k = exact set cover (X,H)
Gs

v = eliminate(v,Gs)
t.g = max(s.g, k)
t.h = lower bound(Gs

v)
t. f = max(t.g, t.h, s. f )

if ∃ a simplicial vertexw in Gs
v then

t.children= {w}
t.reduced= true

if t. f < ub then queue.insert(t)

return ub

Figure 9.1: Algorithm A*-ghw.
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9.2 Implementation Details

We implemented algorithm A*-ghw using C++ and STL. For representing and process-
ing the primal graph of the input hypergraph we chose the graph representation proposed
in section 5.2.1.

For computing the solution of the LP-relaxion of thek-set cover problem of the
lower bound heuristic tw-ksc-width as well as for solving the set cover problems appear-
ing within the A* search we used GNU Linear Programming Kit 4.9 (GLPK) [23].

If we restrict the running time of the A* algorithm by a time limit then thef -value
of the last state visited before the limit was exceeded may act as a lower bound on the
treewidth of a graph for the same reasons as mentioned in 5.3.

9.3 Computational Results

We tested algorithm A*-ghw on 87 hypergraphs from [22]. All experiments were run
on a machine with an Intel(R) Pentium(R)-4 3.40 GHz processor having 1 GB RAM.
Since the lower and upper bound heuristics of A*-ghw are implemented in randomized
fashion we performed ten runs of A*-ghw for each hypergraph.Each run was given a
one hour time limit. Table 9.1 and Table 9.2 present the results which were returned by
A*-ghw for the 87 hypergraphs.

The columnsHypergraph, V andH contain the name, the number of vertices and
hyperedges for each hypergraph. Columnlb presents the maximum lower bound re-
turned by the lower bound heuristic tw-ksc-width in ten runsfor the initial hypergraph.
ColumnA∗-ghw gives the maximum value returned by algorithm A*-ghw in ten runs.
Columntime reports the time of a run which was able to return an exact solution for an
instance, ”*”-entries indicate that the time limit of an hour was exceeded.

Algorithm A*-ghw was able to compute the generalized hypertree width for 19
instances whereas for other 9 hypergraphs A*-ghw was able toimprove the initial lower
bound. For the remaining 59 instances A*-ghw was not able to improve the quality of
the initial lower bound.
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Hypergraph V H lb A∗-ghw time

2bitcomp5 95 310 4 4 *
2bitmax 6 192 766 5 5 *
adder15 106 76 2 2 4.450
adder25 176 126 2 2 0.060
aim-50-16-no-3 50 80 4 4 *
aim-50-16-yes1-3 50 80 4 4 *
aim-50-20-no-3 50 100 5 6 *
aim-50-20-yes1-3 50 100 5 5 *
aim-50-34-yes1-3 50 170 7 8 *
ais6 61 581 5 5 *
ais8 113 1520 5 6 *
atv partial system 125 88 2 2 *
b01 47 45 2 2 *
b02 27 26 2 2 *
b03 156 152 2 2 *
b06 50 48 2 3 *
b08 179 170 3 3 *
b09 169 168 3 3 *
b10 200 189 3 3 *
bridge 15 137 137 2 2 *
bridge 25 227 227 2 2 *
c432 196 160 2 2 *
c499 243 202 3 3 *
clique 10 45 10 2 3 *
clique 15 105 15 2 3 *
clique 20 190 20 3 3 *
dubois100 300 800 2 2 0.330
dubois20 60 160 2 2 0.020
dubois21 63 168 2 2 0.020
dubois22 66 176 2 2 0.020
dubois23 69 184 2 2 0.020
dubois24 72 192 2 2 0.030
dubois25 75 200 2 2 0.020
dubois26 78 208 2 2 0.030
dubois27 81 216 2 2 0.030
dubois28 84 224 2 2 0.040
dubois29 87 232 2 2 0.040
dubois30 90 240 2 2 0.040
dubois50 150 400 2 2 0.100
flat30-1 90 300 5 5 *
flat30-50 90 300 5 5 *
flat30-99 90 300 5 5 *
grid10 100 180 3 3 *
grid15 225 420 3 3 *
grid2d 10 50 50 3 3 *
grid2d 15 113 112 3 3 *
grid2d 20 200 200 3 3 *
grid3d 4 32 32 2 4 *
grid3d 5 63 62 3 4 *
grid3d 6 108 108 3 3 *
grid3d 7 172 171 4 4 *
grid4d 3 41 40 3 4 *
grid4d 4 128 128 4 4 *
grid5 25 40 3 3 538.7

Table 9.1: A*-ghw results for selected benchmark hypergraphs.
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Hypergraph V H lb A∗-ghw time

hole10 110 561 3 6 *
hole6 42 133 3 4 *
hole7 56 204 3 5 *
hole8 72 297 3 5 *
hole9 90 415 3 6 *
par8-1-c 64 254 3 3 *
par8-2-c 68 270 4 4 *
par8-3-c 75 298 4 4 *
par8-4-c 67 266 3 3 *
par8-5-c 75 298 4 4 *
pret15025 150 400 2 2 *
pret15040 150 400 2 2 *
pret15060 150 400 2 2 *
pret15075 150 400 2 2 *
pret6025 60 160 2 2 *
pret6040 60 160 2 2 *
pret6060 60 160 2 2 *
pret6075 60 160 2 2 *
s208 115 104 2 2 *
s27 17 13 2 2 0.00
s298 136 133 3 3 *
s344 184 175 2 2 *
s349 185 176 2 2 *
s382 182 179 3 3 *
s386 172 165 4 4 *
s400 186 183 3 3 *
s420 231 212 2 2 *
s444 205 202 3 3 *
s510 236 217 4 4 *
s526 217 214 3 3 *
uf20-01 20 91 5 6 0.380
uf20-050 20 91 6 6 0.080
uf20-099 20 91 5 6 0.760

Table 9.2: A*-ghw results for selected benchmark hypergraphs.



Chapter 10

Conclusions

In this master thesis we presented new heuristic methods fortree decompositions and
generalized hypertree decompositions.

In chapter 5 we proposed an A* algorithm, named A*-tw, for computing the
treewidth of graphs which additionally applies reduction and pruning methods presented
in [5], [8] and [24] in order to narrow the search space which has to be explored. Com-
putational experiments revealed that A*-tw was able to compute the exact treewidth for
all but two benchmark instances [18] for which the branch andbound bound algorithms
in [5] and [24] could determine the treewidth. A*-tw could fixthe treewidth for an
additional instance.

In chapter 6 we presented a genetic algorithm, named GA-tw, for computing upper
bounds on the treewidth of graphs based on a genetic algorithm for triangulations of the
moral graph of Bayesian networks [36]. Computational experiments showed that the
position-based crossover operator (POS) and the insertionmutation operator (ISM) are
suitable operators for achieving small upper bounds on the treewidth of graphs. Com-
pared with the best upper bounds for 62 benchmark graphs [18]known from [4], [5],
[13] and [24], GA-tw found an improved upper bound on the treewidth for 22 graphs,
GA-tw was able to return the same upper bound for 31 graphs, and for only 9 graphs the
results delivered by GA-tw were worse.

In chapter 3 we proved that at least one elimination orderingof a hypergraph corre-
sponds to a generalized hypertree decomposition of optimalwidth for that hypergraph.
This result implies that the set of elimination orderings may be regarded as a search space
for the generalized hypertree width of hypergraphs and thatheuristic methods based on
elimination orderings may find an optimal generalized hypertree decomposition.

In chapter 7 we proposed a genetic algorithm, named GA-ghw, for computing up-
per bounds on the generalized hypertree width of hypergraphs. When applied to 19
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benchmark hypergraphs from [22], GA-ghw found an improved upper bound on the
generalized hypertree width for 12 graphs, GA-ghw was able to return the same upper
bound for 2 graphs, and for 5 graphs the width returned by GA-ghw was worse than the
best upper bound known from [17].

We implemented a self-adaptive island genetic algorithm for generalized hypertree
width upper bounds based on [19]. Although the self-adaptive genetic algorithm did
not give so good results as the the previously mentioned genetic algorithm, its main
advantage is that it is able to adjust its control parametersitself and doesn’t require time-
consuming experiments in order to obtain suitable values for those control parameters.

In chapter 8 we proved that we may obtain a lower bound on the generalized hy-
pertree width of a hypergraph from a lower bound on its treewidth and from an exact
solution or a lower bound for ak-set cover problem, arising from the treewidth lower
bound. Based on that results, we proposed a lower bound heuristic for generalized hy-
pertree width, named tw-ksc-width. Moreover we showed how known reduction [8] and
pruning techniques [5], for shrinking the search space for treewidth, may also be applied
for reducing the search space for the generalized hypertreewidth. We proposed a branch
and bound algorithm, named BB-ghw, in chapter 8 and an A* algorithm, named A*-ghw,
in chapter 9, which use the lower bound heuristic tw-ksc-width and some of the derived
reduction and pruning techniques.

We tested algorithm BB-ghw with 95 benchmark instances in [22] and compared
the results delivered by BB-ghw with known upper bounds on their generalized hyper-
tree width from [17]. Algorithm BB-ghw was able to compute the generalized hypertree
width for 23 instances. For other 21 hypergraphs BB-ghw returned improved upper
bounds on the generalized hypertree width, which for 7 hypergraphs was due to an im-
proved upper bound returned by the min-fill heuristic. Anyway, for 14 hypergraphs the
improved upper bound was found within the branch and bound search. For 40 BB-ghw
could return an upper bound which was equal to the best upper bound for that instance.
Only for 8 instances the best known upper bound was not reached.

Algorithm A*-ghw was applied to 87 benchmark instances in [22] and it was able
to compute the generalized hypertree width for 19 instanceswhereas for other 9 hyper-
graphs A*-ghw was able to improve the initial lower bound.

One interesting point for future research is the development of new lower bound
heuristics for the generalized hypertree width of hypergraphs. With improved lower
bounds on the generalized hypertree width of hypergraphs branch and bound algorithms
would be able to discard more regions from their search space. Also the behavior of A*
algorithms depends on the quality of their underlying lowerbound heuristics.

Another task for future research is the development of new reduction and pruning
rules which again would reduce the search space of A* and branch and bound algorithms.
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