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Abstract

The purpose of this thesis is to write out and extend the paper [Mou16] by Ayman Moussa,
which provides a modern approach to the classical Aubin-Lions Lemma. The author of [Mou16]
states and proves in his work two generalizations of the Aubin-Lions Lemma, which is an in-
dispensable tool in the studies of nonlinear parabolic differential equations. The two versions
handle the problems, delivered by the estimates of degenerated evolution equations and in-
compressible Navier-Stokes equations, the latter being considered on a non-cylindrical domain.
The interesting fact about his work is his totally different approach to these problems, which
where already studied by many other authors, without using the Aubin-Lions Lemma itself. We
prepare appropriate theory, use most of the ideas and strategies of [Mou16] and carry out the
proofs in [Mou16] substantially equal.
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Introduction

One of the most powerful tools in the studies of nonlinear parabolic differential equations is the
Aubin-Lions Lemma. This result is named after the French mathematicians Jean-Pierre Aubin
and Jacques-Louis Lions. The original statement and the proof can be found in the work of
Aubin [Aub63]. It provides a compactness criterion in the theory of Lebesgue spaces of Banach
space valued functions. More precisely suppose B,X, Y are Banach spaces of functions defined
on a set Ω ⊆ Rd and let I ⊂ Rd be a non empty and bounded interval. Consider a sequence
of functions (un)n∈N with un : I → B such that for p ∈ [1,∞) the p-th power of the norm
∥un(t)∥B : I → R is integrable. If

i) X is compactly embedded in B, which is in turn continuously embedded in Y ,

ii) (un)n∈N is bounded in Lp(I;X),

iii) (∂tun)n∈N is bounded in Lr(I;Y ), for r > 1,

then the sequence (un)n∈N has a converging subsequence in Lp(I;B).
Why is this theorem so important? The Aubin-Lions Lemma gives us the possibility to prove
the existence of a solution in many evolution equations. The usual way to apply the theorem is
to approximate a parabolic problem itself with a Galerkin method or a suitable regularization.
These approximation methods provide a bunch of solvable problems and therefore we obtain
a family of solutions. In general this family of solutions possesses a-priori uniform estimates
securing the hypotheses of the Aubin-Lions Lemma and therefore, applying this theorem renders
a converging subsequence, with the limit constituting a solution for the original problem. With
this in mind we construct two similar results.

In chapter 1 we give a brief overview of Radon measures, Sobolev spaces, Lebesgue spaces for
vector valued functions and we also define most of our notation there.

For the first version of the Aubin-Lions Lemma we modify the classical result by replacing
condition ii) with another boundedness condition. In most of the cases the Banach space X
is usally chosen as the Sobolev space W1,p(Ω). Therefore we have some information about the
sequence of weak gradients (∇xun)n∈N, where ∇x denotes the gradient in the space variable.
We want to weaken this condition. So let Φ : R → R be a nonlinear function with appropriate
conditions and exchange condition ii) above with

ii) (un)n∈N is bounded in Lp(I;B) and (∇xΦ(un))n∈N is bounded in Lp(I;B).

Inthsi case the problem arises that we cannot get easily a boundedness result for the gradient of
un. If the derivative Φ′(un(t, x)) is nowhere zero, we could write the gradient of un as follows:

∇xun =
1

Φ′(un)
∇xΦ(un).

We see, if un approaches a critical point of Φ, the expression degenerates and the usual Aubin
Lions Lemma fails here.
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We deal with this nonlinear version in chapter 2. The chapter starts with a characterisation for
Sobolev functions and progresses with the commutativity of the weak limit and multiplication
of two functions. If a sequence (un)n∈N converges weakly towards a function u and a second
sequence (vn)n∈N weakly-* converges towards a function v we obtain that

(unvn)
n→∞−−−⇀ uv

At the end of the chapter we show the proof of our first version applying this weak convergence
result.

For the second version of the Aubin-Lions Lemma we change the setting from a fixed spatial
domain into a moving spatial domain. We start with functions defined on the time/space domain
I × Ω, therefore we could say that for each t ∈ I the evaluation of u(t) is a function from Ω to
R. This is just possible, because I × Ω is a so called cylindrical domain, in the sense, that we
have a fixed domain Ω for each moment t ∈ I.
In contrast consider a family of domains (Ωt)t∈I , representing the motion of a spatial domain
and the corresponding non cylindrical time/space domain is given by

Ω̂ :=
∪
t∈I

{t} × Ωt.

To illustrate the difference of these two domains we present the figure, taken from [Mou16] on
page 3, where on the left hand side we have an example for a cylindrical domain and on the
right hand side we have a non cylindrical domain.

Figure 0.1: Illustration of a cylindrical (left) and a non cylindrical domain (right).

The arising problem with the non cylindrical time/space domain is that we cannot assume
functions u : (t, x) 7→ u(t, x) defined on Ω̂ as functions of the time variable with values in some
Banach space. Therefore the statement of the Aubin-Lions Lemma is already problematic.
In chapter 3 we give specific regularity conditions for the motion of the family (Ωt)t∈I , for
example we claim that each Ωt is diffeomorph to a bounded domain Ω ⊂ Rd. With these
assumptions we obtain a lot of facts for the family of sets, e.g. we find a common Poincaré
constant independent of t ∈ I.
The first result we get is close to a Aubin-Lions Lemma for non cylindrical domains and the
proof of this statement applies also for cylindrical domains, hence we could prove a similar

4



statement to the Aubin-Lions Lemma.
The main theorem of this chapter deals with a compactness result for divergence free vector
fields, which arise in the theory of incompressible Navier-Stokes equations on a moving domain.
For a better understanding we introduce the space of all square integrable divergence free vector
fields L2

div(Ω̂)
d and the important subspace of vector fields in L2

div(Ω̂)
d satisfying a homogeneous

Neumann condition on ∂Ω̂. At the end of the thesis we present the proof of the main theorem,
where we comprehensively go through the ideas of [Mou16].
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1 Prerequisites

In this chapter we want to give a summary about the most important theory we are going to
use in this thesis. Every reader should know the basics of topological spaces, Banach spaces,
metric spaces (for these we refer to [Kal14]) and also measure theory (for this theory we suggest
[Bog07]). Mostly we work with functions defined on the euclidean space Rd with the topology
induced by the euclidean norm. Let Ω ⊆ Rd, then we denote the space of all continuous functions
f : Ω → R as C0(Ω) and the space of all functions f : Ω → R, which are k-times continuously
differentiable will be denoted as Ck(Ω), where k takes values in N∪{∞}. We define the support
of a function f : Rd → R as the set

supp f := {x ∈ Rm : f(x) ̸= 0}.

The subset of Ck(Rd) of all functions f with compact support in Rd, will be denoted as Ck
c (Rd).

For a subset Ω ⊂ Rd we often write D(Ω) for the space C∞
c (Ω) and call it the test functions

We want to give a criterion for the smoothness of the boundary of a bounded subset Ω ⊂ Rd

(not:∂Ω).

Definition 1.0.1. (Ck /Lipschitz boundary) Let Ω ⊂ Rd be an open and bounded set and
Q :=

{
x ∈ Rd : |xi| < 1 for i = 1, . . . , d

}
. We say that Ω has a Ck boundary, if for every x ∈ ∂Ω,

there exist a neighborhood U ⊂ Rd of x and a map H : Q→ U satisfying:

i) H is bijective,

ii) H ∈ Ck(Q) and H−1 ∈ Ck(U),

iii) H(Q+) = U ∩ Ω and H(Q0) = U ∩ ∂Ω,

where Q+ := {x ∈ Q : xn > 0} and Q0 := {x ∈ Q : xn = 0}. If H is just Lipschitz continuous,
we call ∂Ω a Lipschitz boundary.

Let us start with some measure theory.

1.1 Measure theory

The Borel σ-algebra of a topological space X, which is the σ-algebra generated by all open sets
of X, will be denoted as B(X). Let additionally Y be a metric space, and let f : X → Y . We
say that f is a Borel function , if f−1(O) ∈ B(X) for every open set O ⊆ Y .
One of the most used measures on Rd, is the d-dimensional Lebesgue measure and it will be
dentoted as λd. Everytime we integrate with respect to the Lebesgue measure, we write dx
instead of dλd(x). The space of all functions for which the p-th power of the absolute value is
Lebesgue integrable in Ω ⊆ Rd will be denoted usally as Lp(Ω) for all p ∈ [1,∞] and its norm
will be denoted as ∥.∥Lp(Ω). We denote the conjugate exponent of p ∈ [1,∞) as p′, which fulfills
1
p + 1

p′ = 1 and where Lp′(Ω) is the topological dual of Lp(Ω). The set of all locally integrable

functions on Ω will be denoted as L1
loc(Ω). Since we will use them quite often, we recall Fubini

and the Dominated Convergence Theorem.
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Theorem 1.1.1. (Fubini) Let µ and ν be σ−finite nonnegative measures on the spaces X and
Y . Suppose that the function f : X × Y → R is integrable with respect to the product measure
µ ⊗ ν. Then the function y 7→ f(x, y) is integrable with respect to ν for µ−a.e x, the function
x 7→ f(x, y) is integrable with respect to µ with ν−a.e y, the functions

x 7→
∫
Y
f(x, y) dν(y), y 7→

∫
X
f(x, y) dµ(x)

are integrable on the corresponding spaces, and one has∫
X×Y

f(x, y) dµ⊗ ν =

∫
X

∫
Y
f(x, y) dν(y) dµ(x) =

∫
Y

∫
X
f(x, y) dµ(x) dν(y).

Proof. See [Bog07],Theorem 3.4.4 on page 185. . �

Theorem 1.1.2. (Dominated Convergence Theorem) Let λd be the d-dimensional
Lebesgue measure on Rd and let Ω ⊆ Rd be an open set. Suppose that (fn)n∈N ∈ Lp(Ω) converges
to a function f almost everywhere (not: a.e.) in Ω. If there exists a function g ∈ Lp(Ω) such
that

|fn(x)| ≤ g(x) a.e in Ω for every n ∈ N,

then the function f lies in Lp(Ω) and

fn
n→∞−−−−→ f in Lp(Ω).

Let us give a more general version of the Hölder inequality, which is the key element in the
proof of the Lyapunov inequality.

Theorem 1.1.3. (Hölder inequality) Assume that Ω ⊆ Rd and p, q, r ∈ [1,∞] such that
1
r = 1

p + 1
q . If f ∈ Lp(Ω) and g ∈ Lq(Ω), then fg ∈ Lr(Ω) and

∥fg∥Lr(Ω) ≤ ∥f∥Lp(Ω)∥g∥Lq(Ω).

Theorem 1.1.4. (Lyapunov inequality) If f ∈ Lp ∩Lq with 1 ≤ p ≤ q ≤ ∞, then f ∈ Lr,
for all r with p ≤ r ≤ q and there exists β ∈ [0, 1] such that

∥f∥r ≤ ∥f∥βp∥f∥1−β
q , where

1

r
=
β

p
+

1− β

q
.

We give now a short summary about Radon measures, which can be identified as elements of
the dual space of the set of all continuous functions with compact support. For the interested
reader we recommend the books [AFP00], [Mag12] and [EG15].

Definition 1.1.5. Let (X, E) be a measure space and let d ∈ N, d ≥ 1.
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a) We say that µ : E → Rd is a measure, if µ(∅) = 0 and for any sequence (Eh)h∈N of pairwise
disjoint elements of E

µ

( ∞∪
h=0

Eh

)
=

∞∑
h=0

µ(Eh).

If d = 1 we say, that µ is a real measure, if d > 1 we say that µ is a vector measure .

b) If µ is a measure, we define the total variation |µ| for every E ∈ E as follows:

|µ|(E) := sup

{ ∞∑
h=0

|µ(Eh)| : Eh ∈ E pairwise disjoint, E =

∞∪
h=0

Eh

}
.

Definition 1.1.6. Let X be a locally compact separable metric space, B(X) its Borel σ-algebra,
and consider the measure space (X,B(X)).

(i) A positive measure on (X,B(X)) is called a Borel measure. If a Borel measure is finite
on all compact sets (or in other words if a Borel measure is locally finite), it is called a
positive Radon measure.

(ii) A (real- or vector-valued) set function defined on the relatively compact Borel subsets
of X, that is a measure on (K,B(K)) for every compact set K ⊆ X, is called a (real-
or vector-valued) Radon measure on X. If µ : B(X) → Rd is a measure, according to
Definition 1.1.5, then we say that µ is a finite Radon measure.

If O is an open set in Rd, then we denote by M(O) (resp.(M(O)) the set of finite Radon
measures on O (resp.O).

The Riesz Representation Theorem is a very strong tool to handle the topological dual space
of all continuous functions with compact support. One can find the theory for this theorem in
[Mag12]. We only want to use the outcome, which is stated in the next remark.

Remark 1.1.7. Thanks to the Riesz Representation Theorem, we identify the topological dual
space of Cc(O) with M(O). The evaluation of a Radon measure µ ∈ M(O) at a function
f ∈ Cc(O) takes the form:

⟨µ, f⟩Cc(O) =

∫
O
f dµ.

Conversely, if g : O → R is a bounded Borel function and if we define µg(A) =
∫
A g(x) dx for

all A ⊆ O, then µg is clearly a finite Radon measure and we simply write g ∈ M(O). We also
denote with ⟨g, f⟩ the evaluation ⟨µg, f⟩, in the sense

⟨g, f⟩ =
∫
O
f(x)g(x) dx.

The interpretation of M(O) as dual space of Cc(O) renders also an equivalent definition for the
total variation of a measure µ ∈ M(O), in particular we have for every open set A ⊆ O

|µ|(A) := sup {⟨µ, φ⟩ : φ ∈ Cc(A), ∥φ∥∞ ≤ 1}
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and for E ⊂ O arbitrary

|µ|(E) := inf {|µ|(A) : E ⊆ and A is open} .

�
For Chapter 2, we will need the definition of the vague Topology on M(Rd), with which we can
define the weak convergence in M(Rd).

Definition 1.1.8. Let O ⊆ Rd be an open set, then we introduce the vague topology on M(O),
which is generated by the mappings µ 7→ ⟨µ, f⟩ =

∫
O fdµ for all f ∈ Cc(O). In particular, µn

vaguely converges to µ, if and only if

⟨µn, f⟩ → ⟨µ, f⟩, ∀f ∈ Cc(O). (1.1)

We state the property for Borel measures, that every Borel set with bounded measure can be
approximated by compact sets. We use this property especially for the Lebesgue measure, but
we state the generell result.

Theorem 1.1.9. (Inner approximation by compact sets) If µ is a Borel measure on Rd,
and E is a Borel set in Rd, with µ(E) < ∞, then for every ε > 0 there exists a compact set
K ⊆ E such that µ(E \K) ≤ ε. In particular,

µ(E) = sup {µ(K) : K ⊆ E,K is compact} .

Proof. See [Mag12], proof of Theorem 2.8 on page 18. . �

At the end, we define the space of all functions of bounded variation and give an important
result. For the interested reader we suggest the book [AFP00].

Definition 1.1.10. Let Ω be an open set in Rd and u ∈ L1(Ω). We say u is a function of
bounded variation in Ω, if the distributional derivative of u is representable by a finite Radon
measure on Ω, i.e. if∫

Ω
u · ∂xiϕ dx = −

∫
Ω
ϕ dDiu ∀ϕ ∈ C∞

c (Ω), i = 1, . . . , n (1.2)

for some Rd-valued measure Du = (D1u, . . . ,Dnu) in Ω. The vector space of all functions of
bounded variation in Ω is denoted by BV (Ω).

We notice that BV (Ω) endowed with the norm

∥u∥BV Ω = ∥u∥L1(Ω) + |Du|(Ω),

is a Banach space. Observe that Du is a functional on Cc(Ω), in the sense that

⟨Du, ϕ⟩ =
d∑

i=1

⟨Diu, ϕ⟩ ∀ϕ ∈ Cc(Ω)

and the expression |Du|(Ω) can be, thanks to the Riesz Representation Theorem, interpreted
as

|Du|(Ω) = sup
φ∈C∞

c (Ω),∥φ∥≤1

d∑
i=1

|⟨Diu, φi⟩|

10



The next theorem gives a compactness result for a bounded sequence in BV (Ω).

Theorem 1.1.11. (Compactness for BV functions) Let Ω ⊆ Rd be open and bounded, with
Lipschitz boundary ∂Ω. Assume (fn)n∈N is a bounded sequence in BV (Ω). Then there exists a
subsequence (fnj )j∈N and a function f ∈ BV (Ω) such that

(fnj )j∈N → f in L1(Ω).

as j → ∞.

Proof. See [EG15] proof of Theorem 5.5, page 203. . �

1.2 Sobolev spaces

1.2.1 A short recap

In this section we recall the definition of Sobolev spaces and provide an overview of the relevant
statements. Suppose Ω ⊆ Rd open, u, v ∈ L1

loc(Ω) and α = (α1, . . . , α2) is a multiindex of order
|α| = α1+ . . .+αd = k. We say that v is the αth- weak partial derivative of u, written Dαu = v,
if ∫

Ω
u(x)Dαϕ(x) dx = (−1)|α|

∫
Ω
v(x)ϕ(x) dx, ∀ϕ ∈ C∞

c (Ω).

Definition 1.2.1. Let p ∈ [1,∞], m ∈ N0 and Ω ⊆ Rd, then we define the Sobolev spaces as

Wm,p(Ω) := {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω)}

where α is a multi-index and Dαu is the appropriate weak partial derivative of u. With this

we are able to define the Sobolev spaces.

The space Wm,p(Ω) actually consists of equivalence classes of functions, which coincide on Ω
except on a null set. We define the norm on Wm,p(Ω) as:

∥u∥pWm,p(Ω) =
∑

|α|≤m

∥Dαu∥pLp(Ω), if p <∞,

∥u∥Wm,p(Ω) = max
|α|≤m

∥Dαu∥Lp(Ω), if p = ∞,

It is common to write Hk(Ω) instead of Wk,2(Ω) for all k ∈ N0 ∪ {∞}.
We have clearly that each k-times continuously differentiable function f with compact support
in Ω ⊂ Rd, lies in Wk,p(Ω) for all p ∈ [1,∞]. We call a function f a test function if f ∈ C∞

c (Ω)
and we will write D(Ω) instead of C∞

c (Ω). The closure of C∞
c (Ω) in Wk,p(Ω) will be denoted as

Wk,p
0 := C∞

c (Ω)
∥.∥

Wk,p(Ω)

For an open set Ω ⊆ Rd we establish the our first density result stated in [Bre10]. We need the
following

Definition 1.2.2. Let Ω ⊂ Rd be an open set. We say an open subset ω ⊂ Ω is strongly
included in Ω if ω ⊂ Ω and ω is compact
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Lemma 1.2.3. (Friedrichs Lemma) Let Ω be an open subset of Rd and u ∈ W1,p(Ω) with
1 ≤ p <∞. Then there exists a sequence (un)n∈N in C∞

c (Rd) such that

un|Ω −−−−→
n→∞

u in Lp(Ω),

∇un|ω −−−−→
n→∞

∇u|ω in Lp(ω)d for all strongly included subsets ω ⊂ Ω.

In the case Ω = Rd, there exists a subsequence (un)n∈N in C∞
c (Rd) such that

un −−−−→
n→∞

u in Lp(Ω),

∇un −−−−→
n→∞

∇u in Lp(ω)d.

Proof. See [Bre10], page 265, Theorem 9.2 . �

Most of the time we will need continuous Sobolev embeddings for all p ∈ [1,∞] and for this
purpose we want to recall the definitions of a continuous and a compact embedding.

Definition 1.2.4. Let X and Y be Banach spaces, X ⊆ Y . We say that X is continuously
embedded in Y , denoted by X ↪→ Y , provided

∥x∥Y ≤ C∥x∥X ∀x ∈ X

Definition 1.2.5. Let (X, d) be a metric space. A subset M of X is totally bounded , if and
only if for every ϵ > 0, there exists a finite collection of open balls inM of radius ϵ, whose union
contains M .

Definition 1.2.6. Let X and Y be Banach spaces, X ⊆ Y . We say that X is compactly
embedded in Y , denoted by X ⊂⊂ Y , provided

(i) X embeds continuously in Y ,

(ii) any bounded set in X is totally bounded in Y , i.e. every sequence in a bounded subset of
X has a subsequence that is Cauchy in the norm ∥.∥Y .

At this point we define the Sobolev exponent and state one of the main embedding theorems
for Sobolev spaces.

Definition 1.2.7. Let d be the dimension of the underlying space Rd. If 1 ≤ p < d, the Sobolev
exponent of p is

p⋆ :=
dp

d− p
.

We adopt the convention p⋆ = ∞, when p = d.

Theorem 1.2.8. (Rellich-Kondrachov Compactness Theorem) Assume Ω is a bounded
open subset of Rd, and ∂Ω is C1. Suppose 1 ≤ p < d. Then

W1,p(Ω) ⊂⊂ Lq(Ω)

for each 1 ≤ q < p⋆.
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Proof. See [Eva98] page 272. . �
The next two corollaries, taken from [Bre10], give an overview of all continuous embeddings,
which are important for us.

Corollary 1.2.9. Suppose that Ω is an open and bounded subset of Rd with ∂Ω ∈ C1. Let
p ∈ [1,∞], then we have

W1,p(Ω) ⊂ Lp⋆(Ω) if p < d,

W1,p(Ω) ⊂ Lq(Ω) ∀q ∈ [p,∞), if p = d,

W1,p(Ω) ⊂ L∞(Ω) if p > d,

and all these embeddings are continuous.

Proof. See Corollary 9.14 in [Bre10], on page 285. . �
Sometimes we need Sobolev embeddings for the whole space Rd. The following results can be
found in [Bre10].

Corollary 1.2.10. Let m ≥ 1 be an integer and let p ∈ [1,∞). We have

Wm,p(Rd) ⊂ Lq(Rd), where
1

q
=

1

p
− m

d
, if

1

p
− m

d
> 0,

Wm,p(Rd) ⊂ Lq(Rd), ∀q ∈ [p,∞), if
1

p
− m

d
= 0,

Wm,p(Rd) ⊂ L∞(Rd), if
1

p
− m

d
< 0,

and all these embeddings are continuous.

Proof. See Corollary 9.13 in [Bre10], on page 284. . �
At the end we give a generally version of the Poincaré inequality . For this version we need the
definition of the mean value of a function and we give a meaning to the expression ∥∇u∥Lp(Ω).

Let Ω ⊂ Rd and denote with |.| the p-norm in Rd, then

(u)Ω :=

∫
Ω
u dx, ∥∇u∥pLp(Ω) =

∫
Ω
|∇u|p dx.

Theorem 1.2.11. (Poincaré inequality) Let Ω be a bounded, connected and open subset of
Rd, with Lipschitz boundary ∂Ω. Assume p ∈ [1,∞]. Then there exists a constant CΩ, depending
only on d, p and Ω, such that

∥u− (u)Ω∥Lp(Ω) ≤ CΩ∥∇u∥Lp(Ω),

for each function u ∈ W1,p(Ω).

Proof. See [Eva98] Theorem 1 on page 275. . �

Remark 1.2.12. It is easy to check that the norm of the Sobolev space H1(Ω), for arbitrary
Ω ⊂ Rd, holds

∥u∥2
H1(Ω)

= ∥u∥2
L2(Ω)

+
d∑

i=1

∥∂xiu∥2L2(Ω)
= ∥u∥2

L2(Ω)
+ ∥∇u∥2

L2(Ω)
.

Hence we obtain with the Poincaré inequality the following estimate

∥u− (u)Ω∥H1(Ω) ≤
√

(1 + CΩ)∥∇u∥L2(Ω). (1.3)

�
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1.2.2 Traces

We are going to define the trace-operator for Sobolev functions. It assigns “boundary values” to
functions u ∈ W1,p(U), assuming that ∂U is C1. If u ∈ C(U), the evaluation of u at a boundary
point of U is well defined. Therefore the restriction of the trace-operator γ on W1,p(U)∩C(U)
has to satisfy γu = u|∂U . The next theorem guarantees the existence of such an operator. If it
is not otherwise stated, assume p ∈ [1,∞).

Theorem 1.2.13. (Trace-Theorem) Assume that U ⊂ Rd is bounded and ∂U is C1. Then
there exists a bounded linear operator

γ : W1,p(U) → Lp(∂U)

such that

(i) γu = u|∂U if u ∈ W1,p(U) ∩ C(U) and

(ii) ∥γu∥Lp(∂U) ≤ C∥u∥W1,p(U)

for each u ∈ W1,p(U), with the constant C depending only on p and U.

Proof. See [Eva98] page 258. . �

Definition 1.2.14. Let U be an open set in Rd and ∂U is Ck and let u ∈ Hm(U) for m ∈
N ∪ {∞}, then

(i) we call γu the trace of u on ∂U , and

(ii) we define the space Hm− 1
2 (∂U) := γ(Hm(U)) and endowe it with the norm

∥g∥
Hm− 1

2 (∂U)
= inf

u∈Hp(U),γu=g
∥u∥Hm(U).

We will not need the next result for this thesis, but it gives some intuition on how functions
with trace equal to 0 can be understood.

Theorem 1.2.15. Assume U ⊂ Rd is bounded and ∂U is C1. Suppose furthermore that u ∈
W1,p(U). Then

u ∈ W1,p
0 (U) if and only if γu = 0 on ∂U

Proof. See [Eva98] page 259. . �

1.2.3 Regularization

We shall introduce some elementary results concerning the approximation of functions by
smooth functions. Let φ ∈ C∞

c (Rd) be a smooth, even and non-negative function with sup-
port in the unit ball B1(0) of Rd and ∥φ∥L1(Rd) = 1. We define for each the sequence of

non-negative even mollifiers φη ∈ C∞
c (Rd) as φη(x) :=

1
ηd
φ(xη ), η > 0, such that the properties

(i) φη ≥ 0,

14



(ii) φη(x) = φη(−x) ∀x ∈ Rd,

(iii) supp(φη) ⊂ Bη(0),

(iv)
∫
Rd φη = 1.

hold. Let f, g : Rd → R be two Borel functions. We write the convolution of these two functions
as

f ⋆ g(x) :=

∫
Rd

f(x− y)g(y) dy.

We assume that the reader knows the basic properties of convolutions. Otherwise we suggest
[Bre10] for more information. The mollifiers have for this thesis relevant results, like the regu-
larization of a function f ∈ Lp(Ω), where Ω is an open subset of Rd. With this regularization
we are able to approximate such a function arbitrarily close.

Definition 1.2.16. Let f be in Lp(Rd) for 1 ≤ p < ∞, then we define the η−regularization as
the convolution fη := f ⋆ φη.

Lemma 1.2.17. For each η ∈ (0, 1) we have that supp fη ⊂ supp f +Bη(0) and fη ∈ C∞(Rd).

Proof. See [Sho94] page 31. . �

Lemma 1.2.18. If f ∈ Cc(Ω), where Ω ⊆ Rd is open, then fη → f uniformly in Ω for η → 0.
If f ∈ Lp(Ω), 1 ≤ p <∞, then ∥fη∥Lp(Ω) ≤ ∥f∥Lp(Ω) and fη → f in Lp(Ω) for η → 0.

Proof. See [Sho94] page 32. . �

1.3 The Lebesgue Space Lp([0, T ];B) of Banach space Valued
Functions

Since solutions of parabolic equations are functions in space and time, it may occur that the
regularity of the time is different to the regularity of the space. Therefore we need Sobolev spaces
which can differentiate between the space- and time variable. We say a function [0, T ]×B → R
takes values in a Banach space B, if u(t) ∈ B for all t ∈ [0, T ]. Lets take a closer look on these
functions.

Definition 1.3.1. Let B be a Banach space and T > 0

(i) The space Ck([0, T ];B), k ∈ N0 ∪ {∞} is the set of all k-times continuously differentiable
functions u : [0, T ] → B. The norm is given by

∥u∥Ck([0,T ];B) =
k∑

i=0

max
0≤t≤T

∥∂
iu

∂ti
(t)∥B

(ii) The space Lp((0, T );B) for p ∈ [1,∞] is the space of all (equivalence classes of) measurable
functions u : (0, T ) → B, that satisfy

∥u∥pLp((0,T );B) =

∫ T

0
∥u(l)∥pB dl <∞ for p ∈ [0,∞)

∥u∥L∞((0,T );B) = ess sup
0<t<T

∥u(t)∥B <∞ for p = ∞.

15



We give some properties of the Lebesgue space concerning their topological structure. For the
proofs and further information see [Zei90a], page 407.

Proposition 1.3.2. (Properties of Lebesgue Spaces) Let m ∈ N0 and 1 ≤ p ≤ ∞. Let B
and X be Banach spaces over R. Then

(i) Cm([0, T ];B), endowed with the norm ∥.∥Cm([0,T ];B), is a Banach space over R.

(ii) Lp([0, T ];B) endowed with the norm ∥.∥Lp([0,T ];B), is a Banach space over R, in the case
where one identifies functions that are equal almost everywhere on [0, T ]. Moreover, the
set of all step functions u : [0, T ] → B is dense in Lp([0, T ];B).

(iii) C([0, T ];B) is dense in Lp([0, T ];B), and the embedding

C([0, T ];B) ↪→ Lp([0, T ];B)

is continuous.

(iv) If H is a Hilbert space with scalar product (., .)H , then L2([0, T ];H) is also a Hilbert space
with the scalar product

(u, v) =

∫ T

0
(u(t), v(t))H dt.

(v) For 1 ≤ p <∞ the spaceLp([0, T ];B) is separable, if B is separable .

(vi) If the embedding X ↪→ B is continuous, then the embedding

Lr([0, T ];X) ↪→ Lp([0, T ];B) 1 ≤ p ≤ r ≤ ∞

is also continuous.

(vii) Let Ω ⊆ Rd and let B = Lp(Ω) with 1 ≤ p < ∞. Then we can identify Lp([0, T ]; Lp(Ω))
with Lp(I × Ω). This does not hold for p = ∞.

Let B be a Banach space with norm ∥.∥. We first recall the definition of the dual space. It is
defined by B′ := {f : B → R : f is linear and continuous} and its norm is given by

∥f∥B′ = sup
∥u∥≤1

|f(u)|.

The following describes the dual space of Lp(0, T ;B), in the terms of another Lebesgue space.

Proposition 1.3.3. Let B be a reflexive and separable Banach space, 1 ≤ p < ∞ and p′ be
the conjugate exponent of p. Then we the following identification:

(Lp([0, T ];B))′ = Lp′([0, T ];B′)

We point out that there exists also a Hölder inequality for Lebesgue spaces.

Proposition 1.3.4. (Hölder inequality) Let B be a Banach space, then for all
u ∈ Lp([0, T ];B) and for all v ∈ Lp′([0, T ];B′) the adapted Hölder inequality holds:

∥uv∥L1([0,T ];B) ≤ ∥u∥Lp([0,T ];B)∥v∥Lp′ ([0,T ];B′)
, (1.4)
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and all these integrals do exist.

Proof. For the proof see [Zei90a], proof of Proposition 23.6 on page 411. . �
At the end we want to state an usefull proposition from functional analysis, without a proof.

Proposition 1.3.5. Let B and X be Banach spaces such that B is dense and continuously
embedded. Then the embedding X ′ ↪→ B′ is continuous. Additionally if X is reflexive, then X ′

is dense in B′.

17





2 First Version

2.1 The nonlinear version

Let us begin this chapter with the statement of the first version of the Aubin-Lions Lemma.
This version deals with the lack of knowledge of the compactness in the space variable, where
we only have information about some function on it. We denote by M(I,H−m(Ω)) the dual
space of Cc(I,H

m(Ω)) for any arbitrary subset Ω in Rd.

Theorem 2.1.1. Consider a non-empty closed and bounded interval I ⊂ R, and a bounded open
set Ω ⊂ Rd with Lipschitz boundary. Furthermore consider a function Φ ∈ W1,1

loc(R,R) such that
(1|Φ′|<δ)δ>0 converges to 0 in L1(R), as δ → 0. If a sequence of functions (un)n∈N in L2(I × Ω)
satisfies, that

(i) (un)n∈N is bounded in L2(I × Ω),

(ii) the sequence of time derivative (∂t(un))n∈N is bounded in M(I; H−m(Ω)), and

(iii) (∇xΦ(un))n∈N is bounded in L2(I × Ω),

then (un)n∈N is relatively compact in L2(I × Ω).

To prove this theorem, we need to show that the product of a weakly converging sequence and
a weakly-* converging sequence, which satisfy additional properties, is weakly convergent. This
convergence result will be shown in the section below.

2.2 Weak convergence of a product

This section starts with the Lyapunov inequality for functions in vector valued Lebesgue spaces,
then we show a characterisation for Sobolev functions, which is the key element of the Commu-
tator Lemma. With all this preparation we are able to show the desired result of this section.

Lemma 2.2.1. (Lyapunov inequality for vector valued functions) Let I ⊂ R be a
bounded interval, u ∈ Lq(I; Lp1(Rd)) ∩ Lq(I; Lp2(Rd)) with q ∈ [1,∞] and 1 ≤ p1 ≤ p2 ≤ ∞.
Then u ∈ Lq(I; Lr(Rd)) for all r ∈ [p1, p2] and for the number β ∈ [0, 1] which satisfies 1

r =
β
p1

+ 1−β
p2

, we have

∥u∥Lq(I;Lr(Rd)) ≤ ∥u∥β
Lq(I;Lp1 (Rd))

∥u∥1−β
Lq(I;Lp2 (Rd))

.

Proof. The only cases where β = 1 or β = 0, occur when r = p1 or r = p2 or p1 = p2. In all
these cases we clearly have equality. Therefore let r ∈ (p1, p2) with p1 ̸= p2.
There exists β ∈ (0, 1) such that 1

r = β
p1

+ 1−β
p2

. Since u(t) ∈ Lp1(Rd) ∩ Lp2(Rd) for all t ∈ I, we
are able to apply the Lyapunov inequality , Theorem 1.1.4, and obtain for all t ∈ I

∥u(t)∥Lr(Rd) ≤ ∥u(t)∥β
Lp1 (Rd)

∥u(t)∥1−β
Lp2(Rd)

. (2.1)
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Using (2.1) we get

∥u∥q
Lq(I;Lr(Rd))

=

∫
I
∥u(t)∥q

Lr(Rd)
dt ≤

∫
I
∥u(t)∥qβ

Lp1 (Rd)
∥u(t)∥q(1−β)

Lp2 (Rd)
dt. (2.2)

Since ∫
I
(∥u(t)∥qβ

Lp1 (Rd)
)
1
β dt <∞ and

∫
I
(∥u(t)∥q(1−β)

Lp2 (Rd)
)

1
1−β dt <∞,

we have ∥u(t)∥qβ
Lp1 (Rd)

∈ L
1
β (I) and ∥u(t)∥q(1−β)

Lp2 (Rd)
∈ L

1
1−β (I). Since ( 1β )

−1 +( 1
1−β )

−1 = 1, we can

apply the Hölder inequality on (2.2) and obtain∫
I
∥u(t)∥qβ

Lp1 (Rd)
∥u(t)∥q(1−β)

Lp2 (Rd)
dt ≤

(∫
I
(∥u(t)∥qβ

Lp1 (Rd)
)
1
β dt

)β (∫
I
(∥u(t)∥q(1−β)

Lp2 (Rd)
)

1
(1−β) dt

)1−β

= ∥u∥qβ
Lq(I;Lp1 (Rd))

∥u∥q(1−β)

Lq(I;Lp2 (Rd))
.

This shows the desired estimate for all q ∈ [1,∞). Since all arguments also hold for q = ∞, the
proof can be done the same way. . �
For the characterisation of Sobolev functions we give the definition of the shift operator and
show that it is an isometric linear operator.

Definition 2.2.2. We define the shift operator τh : RRd → RRd
for h ∈ Rd. If f is some

function defined on Rd, then τhf(x) = f(x− h).

Lemma 2.2.3. Let τy : Lp(R)d → Lp(R)d for p ≥ 1, then τy is an isometric linear operator.

Proof. The linearity of τy is clear. Define the shift operator for y ∈ Rd as τ̃y(x) = x − y for
all x ∈ Rd. We have that detDτ̃y = 1 for all y ∈ Rd and with the Transformation rule (see
Theorem 3.1.3) we obtain for all u ∈ Lp(Rd) and z = x− y

∥τyu∥pLp(Rd)
=

∫
Rd

|u(τ̃y(x))|p dx =

∫
Rd

|u(τ̃y(τ̃−y(z))|p dz = ∥u∥p
Lp(Rd)

.

. �

Proposition 2.2.4. For h ∈ Rd let τh : Lp(Rd) → Lp(Rd) be the shift operator as defined in
Definition 2.2.2, and let u ∈ W1,p(Rd) with 1 ≤ p ≤ ∞. Then we have

∥τhu− u∥Lp(Rd) ≤ |h|∥∇u∥Lp(Rd). (2.3)

Proof. We want to reproduce the proof of [Bre10] on page 267.

Assume first that u ∈ C∞
c (Rd). Let h ∈ Rd and set

v(t) := u(x+ th), t ∈ R.

Then v(t)′ = h · ∇u(x+ th) and thus

u(x+ h)− u(x) = v(1)− v(0) =

∫ 1

0
v′(t) dt =

∫ 1

0
h · ∇u(x+ th) dt.
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With Jensen’s inequality we obtain for 1 ≤ p ≤ ∞ that

|τhu− u|p ≤ |h|p
∫ 1

0
|∇u(x+ th)|p dt.

and ∫
Rd

|τhu(x)− u(x)|pdx ≤ |h|p
∫
Rd

∫ 1

0
|∇u(x+ th)|p dt dx

≤ |h|p
∫ 1

0

∫
Rd

|∇u(x+ th)|p dx dt

≤ |h|p
∫ 1

0

∫
Rd

|∇u(y)|p dy dt

and thus

∥τhu− u∥p
Lp(Rd)

≤ |h|p∥∇u∥p
Lp(Rd)

.

This proves (2.3) for all u ∈ C∞
c (Rd). Assume now that u ∈ W1,p(Rd), with 1 ≤ p <∞. Thanks

to the Friedrichs Lemma (Lemma 1.2.3) we get a sequence (un)n∈N ∈ C∞
c (Rd) with un → u in

Lp(Rd) and ∇un → ∇u in Lp(Rd)d. The last inequality holds for all un and we conclude the
proof with passing to the limit. . �
It is not clear that one can apply Proposition 2.2.4 above for all non-empty open and bounded
subsets O ⊆ Rd, because if u ∈ Lp(O), the function τhu would not be well defined. This Problem
in mind we give a refinement of the previous Proposition, which we will use in another chapter.

Theorem 2.2.5. Let Ω ⊂ Rd be an open set and let ω ⊂ Ω be compact or strongly included (see
Definition 1.2.2). Furthermore let u ∈ W1,p(Ω) with 1 ≤ p ≤ ∞, then we have for all h ∈ Rd

with |h| ≤ d(ω, ∂Ω)

∥τhu− u∥Lp(ω) ≤ ∥∇u∥Lp(Ω)|h|.

Proof. The proof is very similar to the prove of Proposition 2.2.4. For a detailed proof see
[Bre10] Proposition 9.3 on page 267. . �
To follow Moussa [Mou16] we will repeatedly use the sequence (φη)η∈(0,1) of nonnegative even
mollifiers as defined in Subsection 1.2.3. If we convolute such a mollifier with a function u :
I × Rd → R, where I ⊂ R is a non empty and bounded interval, then we understand this
convolution as a convolution in the space variable. For example let u ∈ Lp(I × Rd) for some
p ∈ [1,∞] and let φη, η > 0, be a sequence of mollifiers as defined in Subsection 1.2.3, then the
convolution of both functions is defined as

u ⋆ φη(t, x) :=

∫
Rd

u(t, x− y)φη(y) dy =

∫
Rd

u(t, y)φη(x− y) dy.

Lemma 2.2.6. (Commutator Lemma) Let q ∈ [1,∞), p ∈ [1, d], r ∈ [1, p⋆) and I :=
[a, b] ⊂ R be a non-empty closed and bounded interval. Consider a bounded sequence (un)n∈N
in Lq(I;W1,p(Rd)) and a bounded sequence (vn)n∈N in Lq′(I; Lr′(Rd)). Let (φη)η>0 be defined
as in Subsection 1.2.3, t hen the commutator (convolution in the space variable only)

Sn,η := un(vn ⋆ φη)− (unvn) ⋆ φη
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goes to 0 in L1(I × Rd) as η → 0, uniformly in n.

Proof. We will use the shift operator τh, as defined in Definition 2.2.2. We want to show, that
for all r < p⋆

τhun − un −−−→
h→0

0 in Lq(I; Lr(Rd)) uniformly in n. (2.4)

Since W1,p(Rd) embeds continuously into Lr(Rd) for all r ∈ [1, p⋆] and thanks to Proposition
1.3.2 we know, that the sequence (un)n∈N is also bounded in Lq(I; Lr(Rd)) for all r ∈ [1, p⋆].
Therefore we get that for all h ∈ Rd the sequence (τhun−un)n∈N is also bounded in Lq(I; Lr(Rd))
for all r ∈ [1, p⋆]. Especially we find C1, Cp⋆ > 0, such that

∥τhun − un∥Lq(I;L1(Rd)) ≤ C1 ∀n ∈ N,

∥τhun − un∥Lq(I;Lp⋆ (Rd)) ≤ Cp⋆ ∀n ∈ N.

We want to apply Lemma 2.2.1. Since for all n ∈ N we have τhun − un ∈ Lq(I; L1(Rd)) ∩
Lq(I; Lp(Rd)) and τhun − un ∈ Lq(I; Lp(Rd)) ∩ Lq(I; Lp⋆(Rd)), we find β1, βp⋆ ∈ [0, 1] such that
the following two estimates hold for all n ∈ N:

∥τhun − un∥Lq(I;Lr(Rd)) ≤ ∥τhun − un∥β1

Lq(I;L1(Rd))
∥τhun − un∥(1−β1)

Lq(I;Lp(Rd))
∀r ∈ [1, p], (2.5)

∥τhun − un∥Lq(I;Lr(Rd)) ≤ ∥τhun − un∥
βp⋆

Lq(I;Lp(Rd))
∥τhun − un∥

(1−βp⋆ )

Lq(I;Lp⋆ (Rd))
∀r ∈ [p, p⋆].

(2.6)

Setting C := max(Cβ1
1 , C

(1−βp⋆ )
p⋆ ) and combining (2.5) and (2.6) we have for all n ∈ N:

∥τhun − un∥Lq(I;Lr(Rd)) ≤ C max
i∈{(1−β1),βp⋆}

(∥τhun − un∥iLq(I;Lp(Rd))) ∀r ∈ [1, p⋆]. (2.7)

So it is sufficient for (2.4) to prove that ∥τhun−un∥Lq(I;Lp(Rd)) goes to zero for h→ 0 uniformly

in n. Let us denote with ∇x the gradient in Rd, then thanks to Proposition 2.2.4 we obtain

∥τhun − un∥qLq(I;Lp(Rd))
=

∫
I
∥τhun(t)− un(t)∥qLp(Rd)

dt

≤
∫
I
|h|q∥∇xun(t)∥qLp(Rd)

dt = |h|q∥∇xun∥qLq(I;Lp(Rd))
.

The sequence (∇xun)n∈N is bounded in Lq(I; Lp(Rd)) by some constant C̃ > 0 , so that for all
r ∈ [1, p⋆] we finally get with (2.7)

∥τhun − un∥Lq(I;Lr(Rd)) ≤ C max
i∈{(1−β1),βp⋆}

(∥τhun − un∥iLq(I;Lp(Rd)))

≤ C max
i∈{(1−β1),βp⋆}

(∥∇xun∥iLq(I;Lp(Rd))|h|
i)

≤ C max
i∈{(1−β1),βp⋆}

(C̃i|h|i).

Passing to the limit h→ 0, we obtain (2.4).
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Since the mollifier φη has support in Bη(0), we can rewrite the commutator as follows

Sn,η(t, x) = un(vn ⋆ φη)(t, x)− (unvn) ⋆ φη(t, x)

=

∫
Rd

un(t, x)vn(t, x− y)φη(y) dy −
∫
Rd

un(t, x− y)vn(t, x− y)φη(y) dy

=

∫
Bη(0)

(un(t, x)− un(t, x− y))vn(t, x− y)φη(y) dy

=

∫
Bη(0)

(un(t, x)− τ−yun(t, x))vn(t, x− y)φη(y) dy.

Now for ε > 0 we find η0 > 0 such that for all |y| ≤ η0 and all r ∈ [1, p⋆) we have
∥τ−yun − un∥Lq(I;Lr(Rd)) ≤ ε for all n ∈ N. Since the sequence (vn)n∈N is bounded in

Lq′(I; Lr′(Rd)), we find a constant Cv > 0 such that for all n ∈ N we have ∥vn∥Lq′ (I;Lr′ (Rd))
≤ Cv.

Thanks to Fubini and the Hölder inequality (1.4) we obtain for all η ≤ η0

∥Sn,η∥L1(I×Rd) = ∥Sn,η∥L1(I;L1(Rd)) =

∫
I
∥un(t)(vn(t) ⋆ φη)− (un(t)vn(t)) ⋆ φη∥L1(Rd) dt

=

∫
I

∫
Rd

|un(t, x)(vn(t) ⋆ φη)(x)− ((un(t)vn(t)) ⋆ φη)(x)| dx dt

=

∫
I

∫
Rd

|
∫
Bη(0)

(un(t, x)− τ−yun(t, x))vn(t, x− y)φη(y)| dy dx dt

≤
∫
Bη(0)

∫
I

∫
Rd

|(un(t, x)− τ−yun(t, x))vn(t, x− y)φη(y)| dx dt dy

≤
∫
|y|≤η

∥τ−yun − un∥Lq(I;Lr(Rd))∥vn∥Lq′ (I;Lr′ (Rd))
|φη(y)| dy

≤ ε∥vn∥Lq′ (I;Lr′ (Rd))

∫
|y|≤η

|φη(y)| dy = ε∥vn∥Lq′ (I;Lr′ (Rd))

≤ Cvε,

which yields the desired uniform convergence. . �
For the next proof we need a simple result from the measure theory.

Lemma 2.2.7. Let fn, gn, f, g : Ω → R be measurable functions for all n ∈ N on a subset Ω in
Rd satisfying

• fn converges to f almost everywhere in Ω,

• the sequence (fn)n∈N is bounded in L∞(Ω),

• gn converges weakly towards g in L1(Ω),

then the sequence of the products (fngn)n∈N converges weakly towards fg in L1(Ω).

Proof. Let ϕ ∈ L∞(Ω), then

|⟨fngn − fg, ϕ⟩| = |
∫
Ω
(fngn − fng + fng − fg)ϕdx|

≤ |
∫
Ω
fn(gn − g)ϕdx|+ |

∫
Ω
g(fn − f)ϕdx|

≤ ∥fn∥L∞(Ω)

∫
Ω
|(gn − g)ϕ|+

∫
Ω
|g(fn − f)ϕ| dx.
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The first term converges to zero, thanks to the boundedness of (fn)n∈N in L∞(Ω) and the weak
convergence of (gn)n∈N in L1(Ω). Since fn converges to f almost everywhere, we have the
following convergence

|u(x)ϕ(x)(fn(x)− f(x))| n→∞−−−−→ 0 a.e. in Ω.

Additionally we have clearly that the function 2|u|∥ϕ∥∞∥fn∥L∞(Ω) lies in L1(Ω) and is an upper
bound for the sequence (|uϕ(fn − f)|)n∈N. Therefore we can apply the dominated convergence
theorem and obtain that the sequence fngn converges weakly towards fg. . �
With all these tools, we are able to state and prove the main statement of this section.

Proposition 2.2.8. Let q ∈ [1,∞), p ∈ [1, d], r ∈ [1, p⋆) and I ⊂ R a non-empty interval.
Consider (un)n∈N bounded in Lq(I;W1,p(Rd)) and (vn)n∈N bounded in Lq′(I; Lr′(Rd)) and weakly
or weakly-∗ converging in these spaces to u and v respectively. If the sequence (∂tvn)n∈N is
bounded in M(I; H−m(Rd)) for some m ∈ N then, up to a subsequence, we have the following
vague convergence in M(I × Rd) (i.e. with Cc(I × Rd) test functions):

(unvn)
n→∞−−−⇀ uv (2.8)

Proof. For each f ∈ Cc(I × Rd) we find a compact set Kf ⊆ I × Rd such that supp f ⊆ Kf

and for Kf there exists an open Ball BN (0) with radius N ∈ N, such that Kf ⊆ I × BN (0).
Let us define ON := I × BN (0). If we find for each N ∈ N a converging subsequence, we can
argue through a standard diagonal argument, that there exists a converging subsequence of
(unvn)n∈N, which converges vaguely in all M(ON ) and we obtain the desired vague convergence
in M(I × Rd). Therefore it is sufficient to prove for all N ∈ N the existence of a subsequence
of (unvn)n∈N, which converges in the vague topology of M(ON ) towards uv. In particular we
want to find for each N ∈ N a subsequence (univni)i∈N such that

lim
i→∞

⟨univni , f⟩ = lim
i→∞

∫
ON

uni(t, x)vni(t, x)f(t, x) d(t, x) = 0, ∀f ∈ Cc(ON ). (2.9)

To avoid a notational confusion, we will not write subindices. Now fix N ∈ N and define the
sequence of mollifiers (φη)η∈(0,1) as in section 1.2.3, then we show (2.9) in the following 5 steps.

Step 1. In this step we want to prove that

u(v ⋆ φη) −−−→
η→0

uv in L1(ON ). (2.10)

Since W1,p(BN (0)) embeds continuously into Lr(BN (0)) we have that
u ∈ L1(I; Lr(BN (0))). Therefore we obtain with the Hölder inequality

∥u(v ⋆ φη)− uv∥L1(ON ) =

∫
I
∥u(t)((v ⋆ φη)(t)− v(t))∥L1(BN (0)) dt ≤

≤
∫
I
∥u(t)∥Lr(BN (0))∥(v ⋆ φη)(t)− v(t)∥

Lr′ (BN (0))
dt

≤ ∥u∥Lq(I;Lr(BN (0)))∥(v ⋆ φη)− v∥
Lq′ (I;Lr′ (BN (0)))

.

In the last step we applied Hölder on the functions ∥u(t)∥Lr(BN (0)) ∈ Lq(I) and

∥(v ⋆ φη)(t)− v(t)∥
Lr′ (BN (0))

∈ Lq′(I). Thanks to this estimate we can finish this step if

∥(v ⋆ φη)− v∥
Lq′ (I;Lr′ (BN (0)))

η→0−−−→ 0. (2.11)
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Interpret the expression ∥v ⋆ φη(t) − v(t)∥
Lr′ (BN (0))

as function from I to R, then, with
applying Lemma 1.2.18, we obtain the pointwise convergence

∥v ⋆ φη(t)− v(t)∥
Lr′ (BN (0))

η→0−−−→ 0 ∀t ∈ I.

Since ∥v⋆φη(t)−v(t)∥Lr′ (BN (0))
is bounded by the function 2∥v(t)∥

Lr′ (BN (0))
, the conditions

of the dominated convergence theorem are satisfied and we get (2.11).

Step 2. For this step we desire a weak converging subsequence of (un(vn ⋆ φη))n∈N, in particular
we want for all η ∈ (0, 1)

(un(vn ⋆ φη))
n→∞−−−⇀ u(v ⋆ φη) weakly in L1(ON ). (2.12)

For this we intend to apply Lemma 2.2.7 on the sequences (vn ⋆ φη)n∈N and (un)n∈N.
Let η ∈ (0, 1) be arbitrary but fix. Thanks to Proposition 1.3.2 we have that
Lq(I;W1,p(BN (0))) embeds continuously and dense into L1(ON ) and therefore, thanks to
Lemma 1.3.5, we have that

un converges weakly towards u in L1(ON ). (2.13)

Now we take a closer look on the sequence (vn ⋆ φη)n∈N. First we want to show the
existence of a subsequence such that

vn ⋆ φη
n→∞−−−−→ v ⋆ φη a.e. in ON . (2.14)

Our strategy is to prove that (vn⋆φη)n∈N is bounded in BV (ON ) and deduce with Theorem
1.1.11 the existence of a converging subsequence in L1(ON ), which in turn provides a
converging subsequence a.e. in ON .
Since Lr′(BN ) embeds continuously into L1(BN ), there exists thanks to Proposition 1.3.2
an upper bound Cv > 0 of the sequence (vn)n∈N in L1(ON ). Since φη ∈ C∞

c (Rd) we obtain
for all n ∈ N the existence of the weak derivatives

∂xi(vn ⋆ φη) = vn ⋆ ∂xiφη ∀i ∈ {1, . . . , d}.

We have for all i ∈ {1, . . . , d} that the sequence (∂xi(vn ⋆ φη))n∈N is bounded in L1(ON ),
because of Young’s inequality for convolutions we have

∥∂xi(vn ⋆ φη)∥L1(ON ) ≤
∫
I
∥vn(t) ⋆ ∂xiφη∥L1(BN (0)) dt

≤
∫
I
∥vn(t)∥L1(BN (0))∥∂xiφη∥L1(BN (0)) dt

= ∥∂xiφη∥L1(BN (0))∥vn∥L1(ON ) ≤ ∥∂xiφη∥L1(BN (0))Cv.

Define the constant Cηi := ∥∂xiφη∥L1(BN (0)). Since (∂xi(vn⋆φη))n∈N is bounded in L1(ON )
and since (∂xi(vn ⋆ φη))n∈N is a sequence in M(ON ), the total variation of each element
coincide with the L1-norm. Therefore we have for each i ∈ {1, . . . , d} that the sequence of
total variations (|∂xi(vn ⋆ φη)|(ON ))n∈N is bounded by a constant depending only on the
mollifier φη .
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Now let C∂t denote the upper bound of the total variations (|∂t(vn ⋆ φη)|(ON ))n∈N. For
the sequence of the time derivative (∂t(vn ⋆ φη))n∈N we get for any ϕ ∈ C∞

c (ON )

|⟨∂t(vn ⋆ φη), ϕ⟩| = |⟨(vn ⋆ φη), ∂tϕ⟩| = |⟨vn, ∂tϕ ⋆ φη⟩| = |⟨vn, ∂t(ϕ ⋆ φη⟩)|
= |⟨∂tvn, ϕ ⋆ φη⟩| ≤ ∥∂tvn∥∥ϕ ⋆ φη∥Cc(I;H

m(BN (0)))

≤ C∂tCηt∥ϕ∥∞,

where Cηt is a constant depending on the mollifier φη. Thanks to the dense and continuous
embedding C∞

c (ON ) into Cc(ON ), we obtain for all n ∈ N

sup
ϕ∈Cc(ON ),∥ϕ∥≤1

|⟨∂t(vn ⋆ φη), ϕ⟩| ≤ C∂tCηt .

Therefore we get that the sequence of total variations (|∂t(vn ⋆ φη)|(ON ))n∈N is bounded
by a constant depending only on the mollifier φη. Eventually we obtain that

sup
n∈N

∥vn ⋆ φη∥BV (ON ) ≤ Cη

and deduce with Theorem 1.1.11 that (2.14) is true. Since the sequence (vn ⋆ φη)n∈N is
bounded in L∞(ON ), what is a direct consequence the bounds of (vn)n∈N and (∂tvn)n∈N
in Lq′(I; Lr′(BN (0))) and M(I; H−m(BN (0))) respectively and the fact that φη ∈ Cc(Rd),
the conditions of Lemma 2.2.7 are satisfied, hence the desired weak convergence (2.12)
holds.

Step 3. From Lemma 2.2.6 we infer

sup
n∈N

∥un(vn ⋆ φη)− (unvn) ⋆ φη∥L1(ON )
η→0−−−→ 0

Step 4. The aim of this step is to prove that for all f ∈ Cc(ON )

⟨unvn ⋆ φη − unvn, f⟩Cc(ON )
η→0−−−→ 0 (2.15)

uniformly in n. Since (un)n∈N is bounded in Lq(I;W1,p(Rd)) and Lq(I;W1,p(Rd)) ↪→
L1(I; Lr(Rd)), we get∫

I
∥un(t)vn(t)∥L1(Rd) dt ≤

∫
I
∥un(t)∥Lr(Rd)∥vn(t)∥Lr′ (Rd)

dt.

With the boundedness of (vn)n∈N in L1(I; Lr(Rd)), the inequality above and Proposition
1.3.2 we obtain that (unvn)n∈N is bounded in L1(I × Rd). Since φη is a mollifier, we also
obtain that (unvn ⋆ φη)n∈N is bounded in L1(BN (0)). Thanks to Remark 1.1.7 and the
fact that φη is even, we get for arbitrary f ∈ Cc(ON )

⟨unvn ⋆ φη − unvn, f⟩Cc(ON ) =

∫
ON

(un(t, x)vn(t, x) ⋆ φη(x))f(t, x) d(t, x)−

−
∫
ON

un(t, x)vn(t, x)f(t, x) d(t, x) =

= ⟨unvn, f ⋆ φη − f⟩Cc(ON ) ≤

≤ ∥unvn∥L1(I×Rd)∥f ⋆ φη − f∥L∞(I×Rd)
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Since f ⋆ φη − f converges, due to Lemma 1.2.18, uniformly to zero w.r.t. ∥.∥Cc(I×Rd),

it also converges uniformly to zero in L∞(I × Rd). This shows the uniform convergence
(2.15).

Step 5. We are now able to show the desired convergence. For that reason let fCc(ON ) be
arbitrary, then

⟨uv − unvn, f⟩Cc(ON ) = ⟨uv − u(v ⋆ φη), f⟩Cc(ON ) (2.16)

+ ⟨u(v ⋆ φη)− un(vn ⋆ φη), f⟩Cc(ON ) (2.17)

+ ⟨un(vn ⋆ φη)− (unvn) ⋆ φη, f⟩Cc(ON ) (2.18)

+ ⟨(unvn) ⋆ φη − unvn, f⟩Cc(ON ) (2.19)

Let ε > 0, then we can choose η > 0, such that the summands (2.16),(2.18) and (2.19)
are smaller than ε

4 for all n ∈ N, thanks to the steps 1, 3 and 4. Due to step 2 we find
nη ∈ N, such that the summand (2.17) is smaller than ε

4Cη
.

. �
To prove our main theorem we give a simple variation of Proposition 2.2.8 in the case of an
open and bounded domain Ω ⊆ Rd. We give a definition of bump functions, which are needed
for the proof.

Definition 2.2.9. Let O ⊆ Rd be an open set. Then for every compact subset K ⊂ O there
exists a smooth function ρ : Rd → R, with ρ(x) = 1 for all x ∈ K, 0 < ρ(x) < 1 for x ∈ O \K
and ρ(x) = 0 for x ∈ Rd \O. We call such functions bump functions.

Proposition 2.2.10. Let Ω ⊂ Rd be an open and bounded set with Lipschitz boundary,
q ∈ [1,∞), p ∈ [1, d], r ∈ [1, p⋆] and I ⊂ R a closed and bounded interval. Consider two
sequences (un)n∈N, (vn)n∈N bounded in Lq(I;Wp(Ω)) and Lq′(I; Lr′(Ω)), respectively weakly and
weak−∗ converging in this spaces to u and v. If (∂tvn)n∈N is bounded in M(I; H−m(Ω)) for
some m ∈ N, then up to a subsequence, we have the following weak−∗ convergence in M(I×Ω)
(i.e. with C (I × Ω))

Proof. Notice that (unvn)n∈N is bounded in L1(I × Ω). For the proof, read step 4 in the proof
of Proposition 2.2.8 and replace Rd with Ω.
Since λd is a Radon measure we can apply Theorem 1.1.9 to find a sequence of compact sets
(Kk)k∈N, such that λd(Ω \Kk) <

1
k for all k ∈ N. For each Kk we define the bump function

ρk : Rd → R. It is easy to prove the following convergences:

ρkuv
k→∞−−−−→ uv in L1(I × Ω) (2.20)

ρkun
n→∞−−−⇀ ρku weakly in Lq(I;W1,p(Ω)) (2.21)

ρkvn
n→∞−−−⇀ ρkv weakly-* in Lq(I;W1,p(Ω)) (2.22)

The two sequences (ρkun)n∈N and (ρkvn)n∈N satisfy all the assumptions of Proposition 2.2.8,
therefore we get that (ρ2kunvn)n∈N converges weakly to ρ2kuv in M(I×Rd) or M(I×Ω) respec-
tively. For every f ∈ C0(I × Ω), all k ∈ N and all n ∈ N the following holds:

|⟨unvn, f⟩C0(I×Ω) − ⟨uv, f⟩C0(I×Ω)| = |⟨unvn, (1− ρ2k)f⟩ + ⟨ρ2kunvn, f⟩ − ⟨uv, f⟩| ≤

≤ |⟨unvn, (1− ρ2k)f⟩|+ |⟨ρ2kunvn, f⟩ − ⟨ρkuv, f⟩|+ |⟨ρkuv, f⟩ − ⟨uv, f⟩|. (2.23)
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Lets take a closer look on the first summand of (2.23). Since f is continuous and has compact
support, it is bounded by a constant Cf ∈ R. We have also (1 − ρ2k) = 0 on Kk and therefore
we have for all n ∈ N

|⟨unvn, (1− ρ2k)f⟩| ≤ Cf

∫
I×(Ω\Kk)

|unvn| d(t, x) ≤ Cf · Cλd(I × (Ω \Kk)).

This term converges to zero for k to infinity, uniformly in n. For every ε > 0 there exists a
k0 ∈ N, such that for all k ≥ k0 and all n ∈ N we have ⟨unvn, (1− ρ2k)f⟩ ≤

ε
2 .

The other summands of (2.23) are treated as follows. Together with (2.20) we find for every
ε > 0 a k1 ∈ N, such that |⟨ρ2kuv, f⟩−⟨uv, f⟩| ≤ ε

4 for all k ≥ k1. Define kf,ε := max(k0, k1), then
we are able to choose nf,ε, such that for all n ≥ nf,ε we obtain |⟨ρ2kf,εunvn, f⟩−⟨ρ2kf,εuv, f⟩| ≤

ε
4 .

This shows that we find for every f ∈ C0(I×Ω) and every ε > 0 a nf,ε, such that for all n > nf,ε
we get |⟨unvn, f⟩C0(I×Ω)−⟨uv, f⟩C0(I×Ω)| < ε, which shows the weak convergence of the sequence

(unvn)n∈N. . �

2.3 Proof of Theorem 2.1.1

At this point we want to remind the reader of Rademacher’s Theorem, which says that every
Lipschitz function f : U → Rm, where U is a subset of Rn and n,m are natural numbers, is
a.e. differentiable and its derivative is bounded by its Lipschitz constant. Further we recall
a variation of the chain rule, where f is a Lipschitz continuous function and u has a weak
derivative. For more detailed information we suggest [Zie89].

Theorem 2.3.1. (Chain Rule for Sobolev functions) Let f : R → R be a Lipschitz
function and u ∈ W1,p(Ω), where Ω is some open set in Rd and p ∈ [1,∞]. If f ◦ u ∈ Lp(Ω),
then f ◦ u ∈ W1,p(Ω) and for almost all x ∈ Ω it holds

D(f ◦ u)(x) = f ′(u(x))Du(x).

Proof. See [Zie89], proof of Theorem 2.1.11 on page 48. . �

Definition 2.3.2. Let X be a normed space (X, ∥.∥). A function f : X → R ∪ {−∞,∞} is
called lower (upper) semi-continuous at x0 ∈ X if for everey sequence (xn)n∈N converging to
x0, i.e. xn → x holds

f(x0) ≤ lim inf
n→∞

(f(xn)) (lim sup
n→∞

f(xn) ≤ f(xn)).

We call f weakly lower (upper) semicontinous if we replace in the definition above convergence
in the norm by weak convergence, i.e. xn ⇀ x0.

To prove Theorem 2.1.1 we define the critical points of Φ. A point p0 ∈ R is called a critical
point of Φ , if Φ′(p0) = 0 and a regular point of Φ otherwise. We call a function f : U → R
regular where U ⊆ Rd, if Φ′(f(x)) ̸= 0 for all x ∈ Rd.
The main problem of Theorem 2.1.1 is that we know almost nothing about the space derivatives
of (un)n∈N, just that for some function Φ ∈ W1,1(R,R) the sequence of gradients (∇xΦ(un))n∈N
is bounded in L2(I × Ω). If every un(t, x) would be regular for all t ∈ I, we could write the
space derivative of each un as follows:

∇xun =
1

Φ′(un)
∇xΦ(un).
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In general the functions un are not regular, so that we cannot use this equality. Our aim for
the proof is to find a function ζ(un) : R → R, such that ζ erases all critical values of un for all
n ∈ N and that the weak limit of unζ(un) is not far from the quadratic weak limit of un (so ζ
has to approach the identity map in a suitable way).
Proof (of Theorem 2.1.1). We follow [Mou16]. Let us first notice that, without loss of generality,
we can assume that Φ is an increasing function. Indeed, if one defines

Φ̃(z) :=

∫ z

0
|Φ′(r)| dr,

then Φ̃ is obviously increasing, satisfies Φ̃′ = |Φ′| whence |∇xΦ̃(un)| = |∇xΦ(un)| pointwise.
In particular, the assumptions Φ ∈ W1,1(R,R), (1|Φ′|<δ)δ>0 → 0 as δ → 0 and (∇x(un))n∈N is

bounded in L2(I × Ω) are all satisfied by replacing Φ by Φ̃.
Recalling the above discussion, we would like to find a function ζε, which somehow approaches
the identity function Id : R → R, but also erases the critical values of un. The following function
does the job

ζε(z) :=

∫ z

0
min{1, Φ

′(r)

ε
} dr.

Indeed, we first have

ζε(z)− z ≤
∫ z

0

Φ′(r)

ε
1Φ′(r)<ε dr,

whence, by assumption,

∥ζε − Id ∥∞ ≤ ∥1Φ′<ε∥L1(R)
ε→0−−−→ 0 (2.24)

We obtain, that the function ζε approaches the identity function in a satisfying way. It is left
to show that it also erases the critical values of un. Since Φ is increasing, one can introduce
Φ−1, for example Φ−1(p) := inf {z ∈ R : Φ(z) ≥ p}. Consider the function Ψε := ζε ◦ Φ−1. We
are going to show that Ψε is Lipschitz continuous. For p1, p2 ∈ Φ(R), there exists z1, z2 ∈ R
such that Φ(zi) = pi and if p1 > p2, then z1 > z2. Without loss of generality we can assume
that p1 > p2.

|Ψε(p1)−Ψε(p2)| = |Ψε(Φ(z1))−Ψε(Φ(z2))| = |ζε(z1)− ζε(z2)| ≤

≤ |
∫ z1

z2

1

ε
Φ′(r) dr| = 1

ε
|Φ(z1)− Φ(z2)| =

1

ε
|p1 − p2|.

At this point we can apply the chain rule (see Theorem 2.3.1) to the functions Ψε and Φ and
gain the following equality for all n ∈ N

∇xζε = Ψ′
ε(Φ(un))∇xΦ(un).

We know that ∥Ψ′∥∞ < 1
ε a.e., and that (∇xΦ(un))n∈N is bounded in L2(I × Ω), from which we

infer that (∇xζε(un))n∈N is also bounded in L2(I × Ω). Since (un)n∈N is bounded in L2(I × Ω)
by a constant C ∈ R we obtain that (ζε(un))n∈N is also bounded in L2(I × Ω), because with
(2.24) we have

∥ζε(un)∥L2 = ∥ζε(un)− un + un∥L2 ≤ ∥ζε(un)− un∥L2 + ∥un∥L2 ≤ ∥1Φ′<ε∥L1λ(I × Ω)
1
2 + C.
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With the reflexivity of L2, we obtain weak convergent subsequences of (un)n∈N and (ζε(un))n∈N
respectively. Let us denote the corresponding limits by u and uε. Using this weak convergence
and the fact that (ζε(un))n∈N is bounded in L2(I; H1(Ω)) and (un)n∈N is bounded in L2(I; L2(Ω))
with (∂t(un))n∈N bounded in M(I; H−m(Ω)), one can apply Proposition 2.2.10 and obtains with
1 ∈ C0(I × Ω) as a test function∫

I×Ω
ζε(un)un

n→∞−−−−→
∫
I×Ω

uεu.

Again with (2.24) and the lower semicontinuity of the norm we get

∥u− uε∥L2 ≤ lim inf
n→∞

∥un − ζε(un)∥L2 ≤ ∥1Φ′<ε∥L1λ(I × Ω)
1
2

Let us again denote with C ∈ R the upper barrier of (un)n∈N regarding to ∥.∥L2 , then we get
with help of the Cauchy-Schwarz inequality

lim sup
n→∞

∥un∥L2 ≤ lim sup
n→∞

∫
I×Ω

ζε(un)un + lim sup
n→∞

∫
I×Ω

(un − ζε(un))un ≤

≤
∫
I×Ω

uεu+ C∥1Φ′ε∥L1 =

∫
I×Ω

(u2 − (uε − u)u) + Cλ(I × Ω)
1
2 ∥1Φ′<ε∥L1 ≤

≤ ∥u∥2
L2 + ⟨uε − u, u⟩L2 + C̃∥1Φ′ε∥L1 ≤ ∥u∥2

L2 + 2C̃∥1Φ′<ε∥L1 ≤

≤ lim inf
n→∞

∥un∥L2 + 2C̃∥1Φ′<ε∥L1 .

For ε→ 0 we get with the condition ∥1Φ′<ε∥L1 → 0 as ε to zero

lim sup
n→∞

∥un∥L2 ≤ ∥u∥L2 ≤ lim inf
n→∞

∥un∥L2 ,

which shows, that there exists a converging subsequence of (un)n∈N. . �
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3 Second Version

The purpose of this chapter is to adapt the theory we know to a different domain than the
typical cylindrical domain we are used to and state two statements. The first statement is
concerned with a compactness criteria in the sense of the Aubin-Lions Lemma. The motivation
for the second statement is to get a compactness criteria for divergence free vector fields. The
latter appear mainly in the theory of incompressible Navier Stokes equations in a time-depended
domain, which is concerned about finding a solution for the nonlinear problem

∂tu+ u · ∇xu−∆xu+∇xp = 0,

divx u = 0,

where p is some expression for the pressure. To deal with the pressure term, from which is
usually very less known, one has to test in the weak formulation against divergence free test
functions. The problem is that the set of these test functions is in general not dense in the
Lebesgue spaces. Therefore we need the definition of the space L2

div(Ω). We do not go deeper
into this theory, because this would to go beyond the scope of this work. For the interested
reader we suggest [BGM17].
Before we can state these two theorems we start with some preliminaries and then go over to
the definition of our setting.

3.1 Preliminaries

In this section we want to recall some theorems from the classic analysis we are going to use in
this chapter. For this section let F be a function from O to U , with O,U ⊆ Rd open. We call
F a diffeomorphism if F is bijective such that F and F−1 are continuous differentiable. The
Jacobian of a function f ∈ C1(Rm,Rn) will be denoted as Df which lives in C0(Rm;L(Rm;Rn)),
where L(Rm;Rn) is the space of all linear and bounded functions from Rm to Rn. We start
with the integral formula of the mean value.

Theorem 3.1.1. (Integral formula of the mean value) Let U ⊂ Rd be open, f : U → Rd a
differentiable function and γ : [α, β] → U a differentiable curve with γ(α) = x1 and γ(β) = x2.
Then the following holds:

f(x2)− f(x1) =

∫ β

α
Df(γ(t)) ◦ γ′(t) dt.

The next two theorems will help us to handle the upcoming diffeomorphism.

Theorem 3.1.2. (Inverse Function Theorem) Let f : C → Rd be continuously differentiable
on the open set C ⊆ Rd. Furthermore let c ∈ C, such that

detDf(c) ̸= 0

and let E ⊆ Rd be open with f(c) ∈ E. Then there exists open sets O ⊆ C and U ⊆ E with the
following properties:
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• c ∈ O and f(c) ∈ U .

• The restriction f |O is bijective from O to U .

• The inverse mapping g : U → O of f |O : O → U is continuously differentiable with
Dg(f(t)) = Df(t)−1 for all t ∈ O.

Theorem 3.1.3. (Transformation-Rule) Let F : O → U be a diffeomorphism between the
open sets O,U ⊆ Rd. If B ⊆ O, B Borel, then we have

λd(F (B)) =

∫
B
| detDF (x)| dλd(x).

A function f : U → R is integrable, if and only if the function f ◦F · | detDF | is also integrable.
In that case we have ∫

U
f(x) dx =

∫
O
f(F (y)) · |detDF (y)| dy.

At the end we give the definition of ε- interior sets, because we need these sets through the
whole chapter

Definition 3.1.4. If A is a connected open set in Rd and ε > 0, we define the ε−interior of A as
Aε := {x ∈ A : d(x,Ac) > ε)}, while A−ε denotes the ε−exterior of A, that is A−ε := A+Bε(0).

3.2 The setting

At the beginning we recall the definition of a domain. We call an open and connected subset
Ω ⊆ Rd domain . Let I := [a, b] be a closed interval with a, b ∈ R. For this chapter we consider
the open subset of R× Rd

Ω̂ :=
∪

a<t<b

{t} × Ωt,

which is restricted to some conditions:

[C1] For all t ∈ [a, b], Ωt is a bounded domain with Lipschitz boundary.

[C2] There exists a bounded domain Ω ⊂ Rd with Lipschitz boundary such that for all t ∈ [a, b]
there exists a C1-diffeomorphism ϑt : Rd → Rd such that

ϑt(Ω) = Ωt.

[C3] The function Θ : (t,x) → ϑt(x) lies in C0([a, b]; C1(Rd,Rd))

Facts 3.2.1.
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1. With the continuity of det : L(Rd,Rd) → R and the continuity of Dϑt, we get | detDϑt| ∈
C0(Rd,R) such that the mapping Θ̃ : (t,y) → | detDϑt(y)| lies in C0(I ×Rd,R). Since Ω
is bounded we know that I × Ω is compact in Rd+1 and we find a constant β > 0 such
that sup(t,y)∈I×Ω | detDϑt(y)| ≤ β.

If we do the same for Θ : (t,y) → |detDϑ−1
t (y)| we find another constant α̃ > 0, such

that sup(t,y)∈I×Ω | detDϑ−1
t (y)| ≤ α̃. Thanks to the Inverse Function Theorem (Theorem

3.1.2.) we have for α := 1
α̃ and for all (t,y) ∈ I × Ω

0 < α ≤ | detDϑt(y)| ≤ β. (3.1)

2. The previous estimate will allow us to use the change of variable x = ϑt(y) to trans-
port estimates from Ω to Ωt. If we set Sp,Ω as the Sobolev constant of the embedding
W1,p(Ω) ↪→ Lp⋆(Ω), we get for instance for p < d and for all v ∈ W1,p(Ωt) with the
Transformation-Rule (Theorem 3.1.3.):

∥v∥p
⋆

Lp⋆ (Ωt)
=

∫
Ωt

vp
⋆
(x) dx =

∫
Ω
v(ϑt(y))

p⋆ | detDϑt(y)| dy ≤ β∥v(ϑt(y))∥p
⋆

Lp⋆ (Ω)

≤ βSp⋆

p,Ω∥v(ϑt(y))∥
p⋆

W1,p(Ω)
= βSp⋆

p,Ω∥v · |detDϑ
−1
t |∥p

⋆

W1,p(Ωt)

≤ βSp⋆

p,Ωα
− p⋆

p ∥v∥p
⋆

W1,p(Ωt)
.

If we set Kp := Sp,Ωβ
1
p⋆ α

−1
p , we get the uniform estimate for all p < d:

∀t ∈ [a, b], ∀v ∈ W1,p(Ωt), ∥v∥Lp⋆ (Ωt) ≤ Kp∥v∥W1,p(Ωt) (3.2)

Thanks to Corollary 1.2.9 we can do the same estimate as above for p ≥ d, if we replace
p⋆ by p+ 1, and obtain

∀t ∈ [a, b], ∀v ∈ W1,p(Ωt) ∥v∥Lp+1(Ωt) ≤ K̃p∥v∥W1,p(Ωt), (3.3)

where K̃p := S̃p,Ωβ
1

p+1α
−1
p and S̃p,Ω is the constant of the continuous embedding of

W1,p(Ω) ↪→ Lp+1(Ω).

3. We are going to work with functions u ∈ Lp(Ω̂). Let us take a closer look on the integral∫
Ω̂
|u|p d(t, x).

Since u ∈ Lp(Ω̂), we have |u|p1Ω̂ ∈ L1(R× Rd). We set the following:

X = R, Y = Rd, µ(t) = λ(t), ν(x) = λd(x) f(t, x) = |u(t, x)|p1Ω̂(t, x).

We can write the indicator-function above in the following way

1Ω̂(t, x) =
∑
s∈I

1s(t) · 1Ωs(x) =

{
1Ωt(x) s = t

0 else
= 1Ωt(x).
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Applying Fubini’s theorem (Theorem 1.1.1) we obtain, that the functions x→ f(t, x) and
t → f(t, x) are integrable with respect to λd(x) and λ(t) respectively. Since the product
measure of λ⊗ λd is the d+ 1 dimensional Lebesgue measure λd+1(t, x), we get:∫

Ω̂
|u(t, x)|p d(t, x) =

∫
R×Rd

|u(t, x)|p1Ω̂(t, x) d(t, x) =
∫
R

∫
Rd

|u(t, x)|p1Ωt(x) d(t, x)

=

∫
I

∫
Ωt

|u(t, x)|p d(t, x) =
∫
I
∥u(t)∥pLp(Ωt) dt.

�
At this point we want to introduce a useful notation for Ω̂ (in contradiction with the one used
for ε-interior sets defined in Defintion 3.1.4):

Ω̂ε :=
∪

a<t<b

{t} × ϑt(Ωε),

∂Ω̂ :=
∪

a<t<b

{t} × ∂Ωt,

∂Ω̂ε :=
∪

a<t<b

{t} × ϑt(∂Ωε).

We want to point out that Ω̂ε is not the ε-interior of Ω̂ and that ∂Ω̂ and ∂Ω̂ε are not the
boundaries of Ω̂ and Ω̂ε in the classical sense respectively.

3.3 First statement

The motivation of the next theorem is to get a to the Aubin-Lions Lemma similar result for
moving domains.

Theorem 3.3.1. Let Ω̂ satisfy the assumptions [C1]-[C3]. Let p ∈ [1,∞) and let (un)n∈N
be a sequence of functions, that is bounded in Lp(Ω̂) and such that the sequence of gradients
(∇xun)n∈N is also bounded in Lp(Ω̂). We assume the existence of a constant C > 0 and an
integer N ∈ N such that, for any test function ψ,

|⟨∂tun, ψ⟩| ≤ C
∑

|α|≤N

∥∂αxψ∥L2(Ω̂). (3.4)

Then the sequence (un)n∈N is relatively compact in Lp(Ω̂).

Remark 3.3.2. There are two important facts to note here. First of all the partial derivative
∂tun exists only in the distributional sense, that means

⟨∂tun, ψ⟩ = −⟨un, ∂tψ⟩ ∀ψ ∈ D.

Secondly we cannot find a fixed Banach space Y , such that we can write ∂tun ∈ Lp(I;Y ),
because we don’t have a cylindrical domain. �
If one defines Ωt = Ω̃, where Ω̃ is a Lipschitz domain, we get nearly the Aubin-Lions Lemma,
because we can identify the spaces Lp(I × Ω̃) with Lp(I; Lp(Ω̃)). Then the conditions turn into

• W1,p(Ω̃) embeds compactly in Lp(Ω̃),
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• (un)n∈N is bounded in Lp(I;W1,p(Ω̃)),

• condition (3.4) holds for the sequence (∂tun)n∈N,

then we find a converging subsequence of (un)n∈N in Lp(I; Lr(Ω̃)) for an appropriate r ≥ 1.
This looks very familiar to the original Aubin-Lions Lemma. The proof for our statement can
also be done for cylindrical domains.

3.3.1 A common Poincaré constant.

Before we start working for the proof of Theorem 3.3.1, we take a closer look on the interior
sets Ωε, with the aim to find a common Poincaré constant for these sets. First let us recall the
definition of the Lipschitz constant of ∂Ω.

Definition 3.3.3. If Ω is open and bounded, then ∂Ω has to be bounded and closed, so we
get that ∂Ω is compact. If Ω has Lipschitz boundary, we find for each open cover

∪
x∈∂Ω Ux of

∂Ω a finite cover Ux1 ,∪ . . . ∪ Uxm of ∂Ω. Let Hxi be the approtiate Lipschitz functions for this
cover and Lxi the Lipschitz constants respectively. Then we have with L:= maxi∈{1...m}Lxi a
constant, such that for all x, y ∈ Q and i ∈ {1, . . . ,m}: |Hxi(x)−Hxi(y)| ≤L|x− y|. We define
the Lipschitz constant of Ω as the infimum of maxi∈{1...m}Lxi over all such coverings.

It is possible to find γ > 0 such that for all ε ∈ [0, γ) the interior sets Ωε share a common
Poincaré constant. To show this, we state a geometry result without a proof before.

Proposition 3.3.4. There exists γ > 0 and Cγ > 0, such that for any ε ∈ [0, γ] the open set
Ωε is Lipschitz, with a constant not exceeding Cγ.

With this proposition we are now able to state the desired result for the interior sets.

Proposition 3.3.5. Consider γ the positive number defined in Proposition 3.3.4. Then for
ε ∈ [0, γ], the open sets Ωε share a common Poincaré-Wirtinger constant, that is: there exists a
positive constant CΩ,γ depending only on Ω and γ, such that for all v ∈ H1(Ωε) with

∫
Ωε
v = 0,

we have

∥v∥L2(Ωε)
≤ CΩ,γ∥∇v∥L2(Ωε)

.

For the proof we need an extension theorem and a result from geometric analysis, which can be
found in [Ste70] or [Mag12] respectively.

Theorem 3.3.6. Let Ω be a bounded Lipschitz domain, then there exists a linear operator
PΩ : Wk,p(Ω) → Wk,p(Rd) for all k ∈ N and p ∈ [1,∞], with the following properties for all
u ∈ Wk,p(Ω) :

i) PΩ(u)|Ω = u,

ii) ∥PΩ u∥Wk,p(Rd) ≤ CLΩ,d,k∥u∥Wk,p(Ω),

where the constant CLΩ,d,k depends only on the dimension d, the differentiability k and LΩ,
which is the Lipschitz constant of Ω.

Proof. See [Ste70] Theorem 5 and Theorem 5’ on page 181. . �
The next Lemma deals with vanishing gradients. If a function u ∈ L1

loc has a vanishing gradient
(in distributional sense) in an open and bounded set, then the function is constant on this set
almost everywhere.
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Lemma 3.3.7. (Vanishing weak gradient) If u ∈ L2
loc(Rd), A ⊂ Rd is open and connected,

and ∫
Rd

u∇ψ dλ = 0 ∀ψ ∈ D(A) and ∀i ∈ {1, . . . , d}, (3.5)

then there exists c ∈ R such that u = c a.e in A.

Proof. See [Mag12] Lemma 7.5 on page 72. . �

Remark 3.3.8. The condition (3.5) in Lemma 3.3.7 is to understand component wise, in the
sense that for all ψ ∈ D(A)∫

Rd

u∇ψ dλ = 0 ⇔
∫
Rd

u
∂ψ

∂xi
dλ = 0 ∀i ∈ {1, . . . , d}.

We say that u has a vanishing gradient in distributional sense. �
Proof of Proposition 3.3.5. Let γ be the constant defined in Proposition 3.3.4, then the
interior sets Ωε share a common Lipschitz constant Mγ for all ε ∈ [0, γ). Hence the extensions
PΩε : H

1(Ωε) → H1(Rd) are bounded by some constant depending only on γ as follows

∥PΩ u∥H1(Rd) ≤ CMγ∥u∥H1(Ω). ∀u ∈ H1(Ω).

We argue by contradiction. If we assume the opposite statement, there would be a sequence
(εn)n∈N ∈ [0, γ) and a sequence (un)n∈N ∈ H1(Ωεn), such that

∥un∥L2(Ωεn )
= 1, ∥∇un∥L2(Ωεn )

≤ 1/n,

∫
Ωεn

un(x) dx = 0.

We can assume, without loss of generality, that the sequence (εn)n∈N converges monotonically
to some ε ∈ [0, γ]. Let us define the sequence (vn)n∈N ∈ H1(Rd), where vn := PΩεn

un. Our
next step is to show that (vn)n∈N is relatively bounded in L2

loc(Rd). Thanks to Theorem 3.6.7
it is sufficient to prove that

∥τhvn − vn∥L2(Rd)
h→0−−−→ 0 uniformly in n. (3.6)

The second property of PΩεn
guarantees, that the sequence (vn)n∈N is bounded in H1(Rd) by

some constant B. Because of Proposition 2.2.4 we get

∥τhvn − vn∥L2(Rd) ≤ ∥∇vn∥L2(Rd)|h| ≤ |h|B h→0−−−→ 0 uniformly in n.

With (3.6) we find a converging subsequence of (vn)n∈N, which we denote again with (vn)n∈N,
with limit v. Since vn equals un on Ωεn , we have that the sequence (∥vn∥L2(Ωεn )

)n∈N converges
to 0. The sequence (εn)n∈N is monoton, so we have that either Ωεn is included in Ωεn+1 for all
n ∈ N, either Ωεn+1 is included in Ωεn for all n ∈ N. We want to show that in both cases we
obtain ∇v = 0 in the sense of Lemma 3.3.7.

Case 1: Assume that Ωεn+1 ⊆ Ωεn for all n ∈ N, then Ωε is included in all Ωεn . Therefore we
obtain for all ψ ∈ D(Ωε)

|
∫
Rd

v
∂ψ

∂xi
dλ| = |

∫
Ωε

v
∂ψ

∂xi
dλ| = |(v, ∂ψ

∂xi
)L2(Ωε)

| = | lim
n→∞

(vn,
∂ψ

∂xi
)L2(Ωε)

|

= lim
n→∞

|(∂vn
∂xi

, ψ)L2(Ωε)
| ≤ lim

n→∞
∥∂vn
∂xi

∥L2(Ωε)
∥ψ∥L2(Ωε)

≤ lim
n→∞

∥∇vn∥L2(Ωεn )
∥ψ∥L2(Ωε)

≤ lim
n→∞

1

n
∥ψ∥L2(Ωε)

= 0.

Thanks to Lemma 3.3.7 we get that there exists c ∈ R such that v = c a.e. in Ωε.
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Case 2: Assume now that Ωεn ⊆ Ωεn+1 for all n ∈ N, then all sets Ωεn are contained in Ωε. Now
let ψ ∈ D(Ωε) be arbitrary and define K := suppψ. K is a compact subset of Ωε, hence
we find n0 ∈ N, such that for all n ≥ n0 we have that K ⊆ Ωεn . Going through the same
calculation we did in Case 1, replacing Ωε with K, we obtain that there exists c ∈ R such
that v = c a.e in Ωε.

In both cases we got that v has to be equal to a constant c ∈ R on Ωε almost everywhere. On
the other hand we can show that

v1Ωε − vn1Ωεn
= (v − vn)1Ωεn

+ v(1Ωε − 1Ωεn
)

n→∞−−−−→ 0 in L2
loc(Rd).

The first term on the right hand side converges to zero because vn converges to v in L2
loc(Rd).

For the second term observe that for case 1 we have 1Ωε − 1Ωεn
= −1Ωεn\Ωε

for all n ∈ N and

for case 2 we have 1Ωε − 1Ωεn
= 1Ωε\Ωεn

for all n ∈ N. In both cases we have for all x ∈ Rd

1Ωεn\Ωε
(x)

n→∞−−−−→ 0, 1Ωε\Ωεn
(x)

n→∞−−−−→ 0.

We also have that both function sequences are bounded by 1Ω, hence we can apply the dom-
inated convergence theorem. Therefore we obtain for all compact subsets K ⊂ Rd, that
v(1Ωε −1Ωεn

) converges to 0 in L2(K) and eventually that vn1Ωεn
converges to v1Ωε in L2(K).

Let K be compact with Ωεn ⊆ K for all n ∈ N (for example K := Ω). Since vn1Ωεn
converges

to v1Ωε in L2(K), the L2(Ωε) norm of v equals 1 and the mean-value of v vanishes on Ωε, but
this is impossible if v is constant almost everywhere on Ωε.

. �
The next lemma shows that the family (ϑt)t∈I satisfies a Lipschitz condition independent of
t ∈ I. We need this property for our last statement in this subsection as well as for the next
subsection.

Lemma 3.3.9. The family (ϑt)t∈[a,b] is uniformly bilipschitz on a neighbourhood of Ω. More

precisely, we find a constant L ≥ 1 and U ⊆ Rd, such that Ω ⊆ U and for all x, y ∈ U we get:

1

L
|x− y| ≤ |ϑt(x)− ϑt(y)| ≤ L|x− y| ∀t ∈ [a, b]. (3.7)

Proof. Since Ω is bounded, we find a r ≥ 0, such that the ball Br(0) contains Ω. We know that
Br(0) is convex, such that for all x, y ∈ Br(0) exists a curve γx,y(t) = x+ (y − x)t thats image
of the interval [0, 1] is contained in the closed Ball.
Let x, y ∈ Br(0) and t ∈ [a, b] be arbitrary, then we get with Theorem 3.1.1:

|ϑt(x)− ϑt(y)| ≤ |
∫ 1

0
Dϑt(γx,y(t))(x− y) dt|

≤
∫ 1

0
∥Dϑt(γx,y(t))∥L(Rd,Rd)|x− y| dt

≤ sup
x∈Br(0)

∥Dϑt(x)∥L(Rd,Rd)|x− y|.

We have Θ ∈ C0([a, b],C1(Rd,Rd)), so that DxΘ ∈ C0([a, b]× Rd,L(Rd,Rd)) with DxΘ(t, x) =
Dϑt(x). Since [a, b]×Br(0) is compact in [a, b]× Rd, we get

sup
x∈Br(0)

∥ϑt(x)∥L(Rd,Rd) ≤ sup
(t,x)∈[a,b]×Br(0)

∥ϑt(x)∥L(Rd,Rd) = ∥DxΘ∥
C0([a,b]×Br(0),L(Rd,Rd))

<∞.
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We define L := ∥DxΘ∥ and found a uniform Lipschitz constant for the family (ϑt)t∈[a,b]. If we

do the same for the family (ϑ−1
t )t∈[a,b], we obtain another uniform Lipschitz constant L̃. Define

L := max(L, L̃), then we have:

1

L
|x− y| = 1

L
|ϑ−1

t (ϑt(x))− ϑ−1
t (ϑt(y))| ≤ |ϑt(x)− ϑt(y)| ≤ L|x− y|.

With the upper inequality, we see that L2 ≥ 1, so that L has to be greater than one. . �

The next Lemma is a generalization of the chainrule for Sobolev functions (Theorem 2.3.1).

Lemma 3.3.10. Let T : Rd → Rd be bilipschitz and u ∈ W1,p(Ω), p ≥ 1, then v = u ◦ T ∈
W1,p(T−1(Ω)) and

∇v(x) = ∇u(T (x))DT (x),

for almost every x ∈ Ω, where DT is the derivative of T .

Proof. See Theorem 2.2.2 in [Zie89] on page 52. . �

For the sake of completeness, we give a version of Proposition 3.3.5 where we replace Ω with Ωt

and we will use this Proposition in a later section.

Proposition 3.3.11. Let Ω̂ satisfy [C1]-[C3]. Consider γ the positive number defined in
Proposition 3.3.4 . Then for ε ∈ [0, γ], and t ∈ [a, b], the open sets ϑt(Ωε) share a common
Poincaré-Wirtinger constant CΘ

Ω,γ (in the sense of Proposition 3.3.5).

Proof. Fix t ∈ [a, b], ε ∈ [0, γ] and u ∈ H1(ϑt(Ωε)). Since ϑt is bilipschitz, we get with Lemma
3.3.10 that v := u ◦ ϑt ∈ H1(Ωε). Thanks to Proposition 3.3.5 we have∫

Ωε

|v(y)|2 dy ≤ C2
Ω,γ |∇v(y)|2 dy.

Considering the change of variable y = ϑ−1
t (x) in the previous inequality, together with estimate

(3.1) we get

1

β

∫
ϑt(Ωε)

|u(x)|2 dx ≤
∫
ϑt(Ωε)

|u(x)|2| detDϑ−1
t (x)| dx =

∫
Ωε

|v(y)|2 dy

≤ C2
Ω,γ

∫
Ωε

|∇v(y)|2 dy = C2
Ω,γ

∫
ϑt(Ωε)

|((∇v) ◦ ϑ−1
t )(x)|2| detDϑ−1

t (x)| dx

≤ 1

α
C2
Ω,γ

∫
ϑ(Ωε)

|((∇v) ◦ ϑ−1
t )(x)|2 dx.

Because of the assumptions [C1]-[C3] we haveDϑt ∈ C0(Rd,L(Rd,Rd)) for all t ∈ I. Since I×Ω
is a compact set in Rd+1, there exists a constant B ∈ R, where Dx denotes the space-derivative,
such that

sup
t∈I

∥Dϑt∥C0(Rd,L(Rd,Rd)) = ∥DxΘ∥C0(I×Ω,C0(Rd,L(Rd,Rd)))

≤ ∥DxΘ∥C0(I×Ω,C0(Rd,L(Rd,Rd))) ≤ B.
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Thanks to the definition of the operator norm and the chain-rule (Lemma 3.3.10), we have that
|∇v(y)| ≤ ∥Dϑt∥C0(Rd,L(Rd,Rd))|∇u(ϑt(y))|, which leads us to

1

α
C2
Ω,γ

∫
ϑ(Ωε)

|(∇v)(ϑ−1
t (x))|2 dx ≤ 1

α
C2
Ω,γ∥Dϑt∥2C0(Rd,L(Rd,Rd))

∫
ϑ(Ωε)

|∇u(ϑt(ϑ−1
t (x)))|2 dx

≤ 1

α
C2
Ω,γ∥DxΘ∥2

C0∥∇u∥2L2(ϑt(Ωε))
.

Bringing all together, setting CΘ
Ω,γ :=

√
β/αCΩ,γ∥DxΘ∥C0 , provides

∥u∥L2(ϑt(Ωε))
≤ CΘ

Ω,γ∥∇u∥L2(ϑt(Ωε))
∀t ∈ [a, b], ∀ε ∈ [0, γ].

. �

3.3.2 Tools for the proof of the first statement.

In this subsection we look forward to the proof of Theorem 3.3.1 and state important results
for the family (ϑt)t∈I and for sequences of functions, which satisfy the conditions of Theorem
3.3.1.

Proposition 3.3.12. Let Ω̂ satisfy [C1]-[C3], then we have

i) For all t ∈ [a, b] and all ε > 0, ϑt(∂Ωε) is the boundary in Rd of ϑt(Ωε).

ii) There exists κ ∈ (0, 1] such that, for all t ∈ [a, b] and for all ε > 0, Ωt
ε/κ ⊂ ϑt(Ωε) ⊂ Ωt

εκ.

iii) λd(Ω
t \ ϑt(Ωε)) → 0 for ε→ 0 uniformly in t.

Proof.

i) Since ϑt is a diffeomorphism, ϑt is in particular a homeomorphism (a bijective function
f , where f and f−1 are continuous). Let O ⊆ Rd be an open set. Since ϑt is continuous
we have

ϑt(O) ⊆ ϑt(O).

The continuity of ϑ−1
t provides that ϑt(O) is closed and contains ϑt(O). Since ϑt(O) is

the smallest closed set containing ϑt(O), we have

ϑt(O) = ϑ(O).

With this, we get for every open set O ⊆ Rd, using that ϑt(O) is open:

ϑt(∂O) = ϑt(O \O) = ϑt(O) ∩ ϑt(Oc) = ϑt(O) ∩ ϑt(O)c = ϑt(O) \ ϑt(O) = ∂ϑt(O).

ii) We want to use Lemma 3.3.9. Define κ := 1
L , where L is the constant used in formula

(3.7). Let us show Ωt
ε/κ ⊆ ϑt(Ωε) first. Let w ∈ Ωt

ε/κ, then there exists a x ∈ Ω, such that

ϑt(x) = w. It is necessary to show that x ∈ Ωε. According to i) we have:

L · ε ≤ d(w, ∂Ωt) = d(ϑt(x), ∂ϑt(Ω)) = d(ϑt(x), ϑt(∂Ω)) =

= inf
y∈∂Ω

|ϑt(x)− ϑt(y)| ≤ L · inf
y∈∂Ω

|x− y| = L · d(x, ∂Ω).
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We get that x has to be in Ωε.
Second we want to show that ϑt(Ωε) ⊆ Ωt

εκ. Let z ∈ ϑt(Ωε), then we have x ∈ Ωε such
that ϑt(x) = z. We have to show that z ∈ Ωt

εκ. Again with i) we obtain:

d(z, ∂ϑt(Ω)) = d(z, ϑt(∂Ω)) = inf
y∈∂Ω

|ϑt(x)− ϑt(y)| ≥ inf
y∈∂Ω

1

L
|x− y| ≥ εκ.

Which shows that z ∈ Ωt
εκ.

iii) First, we deal with the uniformity in t:
Since ϑt is bijective, we get Ωt \ ϑt(Ωε) = ϑt(Ω) \ ϑt(Ωε) = ϑt(Ω \ Ωε). Thanks to the
Transformation Rule (Theorem 3.1.3) and formula (3.1), we get:

λd(Ω
t \ ϑt(Ωε)) =

∫
Ωt\ϑt(Ωε)

dλd(x) =

∫
Ω\Ωε

| detDϑt(x)| dλd(x) ≤ β · λd(Ω \ Ωε).

Whence it is sufficient to prove that the last term tends to zero for ε to zero. One has

λd(Ω \ Ωε) =

∫
Ω\Ωε

dx =

∫
Rd

1Ω\Ωε
(x) dx.

We have clearly, that 1Ω\Ωε
converges pointwise to 0 for ε to 0 and that 1Ω\Ωε

≤ 1Ω for
all ε ≥ 0, hence we can apply the dominated convergence theorem and obtain that

λd(Ω \ Ωε) =

∫
Rd

1Ω\Ωε
(x) dx

ε→0−−−→ 0.

Therefore we got the desired uniform convergence.

. �
Next we give a result similar to the regularization in section 1.2.3. The difference is that we
convolute in the space variable only.

Proposition 3.3.13. Let Ω̂ satisfy [C1]-[C3], (uk)k∈N and (∇xuk)k∈N be bounded sequences
in Lp(Ω̂) for p ∈ [1,∞), where ∇x denotes the gradient in the last d coordinates. Let (φη)η∈(0,1)
be the family of mollifiers in C∞

c (Rd) defined in Subsection 1.2.3, then for every ε > 0 we have

lim
η→0

sup
k∈N

∥uk − uk ⋆ φη∥Lp(Ω̂ε)
= 0,

where the convolution ⋆ has to be understood in the last d coordinates only.

Proof. First of all we define the measure µη(A) :=
∫
A φη(y) dy for all A ⊂ Rd and all η ∈ (0, 1).

Observe that for all η ∈ (0, 1), µη is absolutely continuous with respect to the Lebesque measure
with density φη and that µη is a probability measure on Rd, because

µη(Rd) =

∫
Rd

φη(y) dy =

∫
Bη(0)

φη(y) dy = 1.

Let ε > 0, then we have to show that for all k ∈ N the functions (uk ⋆φη)(t, x) = (uk(t)⋆φη) are
well defined for all (t, x) ∈ Ω̂ε and all η < C(ε), where C(ε) is some constant depending on ε. We
denote the restriction of uk on Ω̂ε as uk|Ω̂ε

, hence it is easy to see that uk|Ω̂ε
(t) = uk(t)|ϑt(Ωε).

Thanks to Proposition 3.3.12, there exists a constant κ ∈ (0, 1], such that for all t ∈ I we
have ϑt(Ωε) ⊂ Ωt

κε ⊆ Ωt
ε. Thus we obtain with Lemma 1.2.17 for all t ∈ I and all η < ε

2 that
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supp(u(t)|ϑt(Ωε) ⋆ φη) ⊆ Ωt
ε + Bη(0) ⊆ Ωt, hence the functions uk ⋆ φη are well defined for all

k ∈ N.
We know, that |.|p is a convex function, therefore we can apply the Jensen inequality with |.|p
and the probability measure µη. Thus we get for all (t, x) ∈ Ω̂ε:

|uk(t, x)− uk ⋆ φη(t, x)|p = |
∫
Rd

uk(t, x)φη(y) dy −
∫
Rd

uk(t, x− y)φη(y) dy|p

= |
∫
Rd

uk(t, x)− uk(t, x− y) dµη(y)|p

≤
∫
Rd

|uk(t, x)− τ−yuk(t, x)|p dµη(y),

where τy is the shift operator defined in Definition 2.2.2. Thanks to Lemma 2.2.4, we know
that ∥uk(t)− τ−yuk(t)∥Lp(ϑt(Ωε)) ≤ ∥∇xuk(t)∥Lp(ϑt(Ωε))|y| for all t ∈ I. Integrating over Ω̂ε and
using Fubini provides:

∥uk(t, x)− uk ⋆ φη(t, x)∥pLp(Ω̂ε)
=

∫
Ω̂ε

|uk(t, x)− uk ⋆ φη(t, x)|p d(t, x)

≤
∫
Ω̂ε

∫
Rd

|uk(t, x)− uk(t, x− y)|p dµη(y) d(t, x)

=

∫
Rd

∫
Ω̂ε

|uk(t, x)− uk(t, x− y)|pφη(y) d(t, x) dy

=

∫
Rd

∫
I

∫
ϑt(Ωε)

|uk(t, x)− τ−yuk(t, x)|pφη(y) dx dt dy

=

∫
Rd

∫
I
∥uk(t)− τ−yuk(t)∥pLp(ϑt(Ωε))

φη(y) dt dy

≤
∫
Rd

∫
I
∥∇xuk(t)∥pLp(ϑt(Ωε))

|y|pφη(y) dt dy.

Our assumption guarantees the existence of a constant C ∈ R, such that for all k ∈ N we have
∥∇xuk∥Lp(Ω̂) ≤ C. For all t ∈ I, the set ϑt(Ωε) is a subset of Ωt, hence Ω̂ε ⊂ Ω̂ and therefore

we get ∥∇xuk∥Lp(Ω̂ε)
≤ C. If we use Fubini in the same way as in Fact 3.2.1, 3., we obtain:

∥uk(t, x)− uk ⋆ φη(t, x)∥pLp(Ω̂ε)
≤
∫
Rd

∫
I
∥∇xuk(t)∥pLp(ϑt(Ωε))

|y|pφη(y) dt dy

=

∫
Rd

∥∇xuk∥pLp(Ω̂ε)
|y|pφη(y) dy

≤ C

∫
Bη(0)

|y|pφη dy ≤ Cηp

Letting η to 0, leads to the desired uniform convergence. . �
The last statement of this section gives us, with sufficient conditions, a global convergence result
for a only local converging sequence.

Proposition 3.3.14. Let Ω̂ satisfy [C1]-[C3] and fix p ∈ [1,∞). Assume that (un)n∈N,
(∇xun)n∈N are bounded in Lp(Ω̂). If for all ε > 0, one has that (un)n∈N is relatively compact in
Lp(Ω̂ε)(local compactness), then (un)n∈N is relatively compact in Lp(Ω̂)(global compactness).

Remark 3.3.15. The sequence (un)n∈N is relatively compact in Lp(Ω̂ε) for all ε > 0, if and
only if (un)n∈N is relatively compact in Lp(Ω̂ 1

m
) for all m ∈ N.
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Let ε ∈ (0, 1), then there exists m ∈ N, such that ε ∈ [ 1
m+1 ,

1
m) and hence Ω̂ε ⊆ Ω̂ 1

m+1
. Our

assumption guarantees the existence of a subsequence (unk
)k∈N, which converges in Lp(Ω̂ 1

m+1
)

and hence (unk
)k∈N converges in Lp(Ω̂ε) for all ε ∈ [ 1

m+1 ,
1
m).

For ε ≥ 1, we choose m = 1 and obtain that Ω̂ε ⊆ Ω̂1. Using the same argumentation as above,
we find for every ε > 0 a subsequence (unk

)k∈N that is converging in Lp(Ω̂ε).
The other direction is clear. �
Proof of Proposition 3.3.14. Thanks to Remark 3.3.15 we find in each Lp(Ω̂ 1

m
) a converging

subsequence of (un)n∈N. By diagonal extraction we find a subsequence of (un)n∈N that converges
in all Lp(Ω̂ 1

m
) and therefore this sequence converges in Lp(Ω̂ε) for all ε > 0. Let us denote this

subsequence again by (un)n∈N and its limit with u.
We begin the proof with showing that u ∈ Lp(Ω̂). Since (un)n∈N is bounded in Lp(Ω̂) we find a
constant C ∈ R such that supn∈N ∥un∥Lp(Ω̂ε)

≤ C for all ε ≥ 0. Therefore we have ∥u∥Lp(Ω̂ε)
≤ C

for all ε > 0. Passing to the limit ε→ 0, we obtain that ∥u∥Lp(Ω̂) ≤ C.

To prove the convergence in Lp(Ω̂) we split the proof in two cases, namely p < d and p ≥ d.
Assume first p < d. Since the sequences (un)n∈N and (∇xun)n∈N are bounded in Lp(Ω̂), we
hence deduce from estimate (3.2) the following:

sup
n∈N

∫
I
∥un(t)∥pLp⋆ (Ωt)

dt ≤ Kp
p sup
n∈N

∫
I
∥un(t)∥pW1,p(Ωt)

dt

≤ Kp
p (sup

n∈N

∫
I
∥un(t)∥pLp(Ωt) + sup

n∈N

∫
I
∥∇xun(t)∥pLp(Ωt) dt)

≤ Kp
p (sup

n∈N
∥un∥Lp(Ω̂) + sup

n∈N
∥∇xun∥Lp(Ω̂)) <∞.

Now for arbitrary ε > 0, by Hölder inequality (Theorem 1.1.3) with 1
p = 1

p⋆ + p⋆−p
pp⋆ we get

∥un∥pLp(Ω̂\Ω̂ε)
=

∫
I

∫
Ωt

|un(t, x)|p1Ωt\ϑt(Ωε)(x) dx dt ≤
∫
I
∥un(t)∥pLp⋆ (Ωt)

∥1Ωt\ϑt(Ωε)∥
p

L
pp⋆

p⋆−p (Ωt)

dt

=

∫
I
∥un(t)∥pLp⋆ (Ωt)

λd(Ω
t \ ϑt(Ωε))

p⋆−p
p⋆ dt.

Since Ω̂ is bounded, we obtain with the two upper estimates and Proposition 3.3.12:

lim
ε→0

sup
n∈N

∥un∥Lp(Ω̂\Ω̂ε)
≤ lim

ε→0
sup
t∈I

λd(Ω
t \ ϑt(Ωε))

p⋆−p
p⋆ sup

n∈N

∫
I
∥un(t)∥Lp⋆ (Ωt) dt = 0. (3.8)

We proved that u ∈ Lp(Ω̂), and therefore we get again with Proposition 3.3.12:

lim
ε→0

∥u∥p
Lp(Ω̂\Ω̂ε)

≤ lim
ε→0

∫
I
∥u(t)1Ωt\ϑt(Ωε)∥

p
Lp(Ωt) dt ≤ lim

ε→0
sup
t∈I

λd(Ω
t \ ϑt(Ωε))∥u∥pLp(Ω̂)

= 0. (3.9)

Finally we have for arbitrary ε > 0, due to convergence of (un)n∈N in all Lp(Ω̂ε)

lim
n→∞

∥un − u∥Lp(Ω̂) = lim
n→∞

∥un − u∥Lp(Ω̂\Ω̂ε)
+ lim

n→∞
∥un − u∥Lp(Ω̂ε)

≤ sup
n∈N

(∥un∥Lp(Ω̂\Ω̂ε)
) + ∥u∥Lp(Ω̂\Ω̂ε)

.

Since ε was arbitrary we can pass to the limit ε → 0 and obtain thanks to (3.8) and (3.9) the
desired convergence.
Thanks to (3.3), the case p ≥ d is completely similar, replacing p⋆ by p + 1 and Kp by K̃p in
the proof above. . �
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3.3.3 Proof of Theorem 3.3.1

The idea of the proof is to prove the statement for all Ω̂ε instead of Ω̂. Due to Proposition
3.3.14 this is sufficient to prove Theorem 3.3.1. The sequence of nonnegative even mollifiers
(φη)η∈(0,1), defined in Subsection 1.2.3 will be again a great assistance for the proof. Now we
are able to [Mou16].

Proof of Theorem 3.3.1. We only need to prove that for all integer m ∈ N, (un)n∈N is relatively
bounded in Lp(Ω̂ 1

m
). The conclusion follows then by Remark 3.3.15 and with Proposition 3.3.14.

Letm ∈ N be arbitrary. Since un is only defined on Ω̂, un⋆φη (convolution only in space variable)
is well-defined only in a subset of Ω̂. Proposition 3.3.12 ii) provides a constant κ ∈ (0, 1) such
that ϑt(Ω 1

m
) ⊂ Ωt

κ 1
m

for all t ∈ [a, b], hence

Ω̂ 1
m

⊆
∪
t∈I

{t} × Ωt
κ 1

m
.

Furthermore we have for all t ∈ [a, b] and x ∈ Ωt
κ 1

m

+ Bκ 1
2m

(0), that d(x, ∂Ωt) ≤ κ 1
2m . Since

suppφη ⊆ Bκ 1
2m

for all η ≤ 1
2m , we have, thanks to Lemma 1.2.17,

supp(un(t) ⋆ φη) ⊆ suppun +Bκ 1
m
(0).

Hence un ⋆φη is well defined in Ω̂ 1
m

for all n ∈ N, if η ≤ κ 1
2m . In that case, for any ψ ∈ D(Ω̂ 1

m
),

one gets ψ ⋆ φη ∈ D(Ω̂).
Now fix η ≤ κ

2m . Since (un)n∈N is bounded in Lp(Ω̂), the sequences (un ⋆ φη)n∈N and (∇xun ⋆

φη)n∈N are both bounded in Lp(Ω̂ 1
m
). For the time derivative we just write for all ψ ∈ D(Ω̂ 1

m
),

using the fact that φη is even,

⟨∂t(un ⋆ φη), ψ⟩ = ⟨∂tun, ψ ⋆ φη⟩.

Now (since η is small enough), we have ψ ⋆ φη ∈ D(Ω̂) and it is therefore an admissible test-
function for the estimate (3.4). Eventually, for any ψ ∈ D(Ω̂ 1

m
), we have

|⟨∂t(un ⋆ φη), ψ⟩| = |⟨∂tun, ψ ⋆ φη⟩| ≤ C
∑

|α|≤N

∥∂αx (ψ ⋆ φη)∥L2(Ω̂) = C
∑

|α|≤N

∥ψ ⋆ ∂αxφη∥L2(Ω̂) =

= C
∑

|α|≤N

(∫
I

∫
Ωt

(∫
Rd

ψ(t, y)∂αxφη(t, x− y) dy

)2

dx dt

) 1
2

≤ C
∑

|α|≤N

∥∂αxφη∥L∞(Rd)

(∫
I

∫
Ωt

∥ψ(t)∥2
L1(Ωt

1
m

)
dx dt

) 1
2

≤ C(b− a)
1
2 (sup

t∈I
λd(Ω

t))
1
2

∑
|α|≤N

∥∂αxφη∥L∞(Rd)

(∫
I
∥ψ(t)∥2

L1(Ωt
1
m

)

1

b− a
dt

) 1
2

≤ C(b− a)
1
2 (sup

t∈I
λd(Ω

t))
1
2

∑
|α|≤N

∥∂αxφη∥L∞(Rd)

∫
I
∥ψ(t)∥L1(Ωt

1
m

)

1

b− a
dt

≤ ∥ψ∥L1(Ω̂ 1
m

)C̃(sup
t∈I

λd(Ω
t))

1
2

∑
|α|≤N

∥∂αxφη∥L∞(Rd) = ∥ψ∥L1(Ω̂ 1
m

)Cφη .
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The constant Cφη is bounded, because supt∈I λd(Ω
t) is bounded, since Ω̂ is a bounded set, and

φη lies in C∞
c (Rd). This inequality shows that ⟨∂t(un ⋆ φη), .⟩ is linear and bounded functional

on a dense subset of L1(Ω̂ 1
m
), hence by duality ∂t(un⋆φη) ∈ L∞(Ω̂ 1

m
). Observe that we obtained

an estimate for all n ∈ N, hence the sequence ∂t(un ⋆ φη)n∈N is bounded in L∞(Ω̂ 1
m
) by Cφη .

Due to this boundedness, we get that the sequence (un ⋆ φη)n∈N is also bounded in W1,p(Ω̂ 1
m
),

therefore, thanks to Rellich-Kondachrov (Theorem 1.2.8), there exists a converging subsequence
in Lp(Ω̂ 1

m
).

For every l ≥ 2m/κ we have that the sequence (un ⋆ φ 1
l
)n∈N has a converging subsequence in

Lp(Ω̂ 1
m
) and by diagonal extraction we find a subsequence such that for any k ∈ N the sequence

(un ⋆ φ 1
lk

)n∈N has a convergent subsequence (without reindexing) in Lp(Ω̂ 1
m
). With all this

preparation we are now able to prove that (un)n∈N has a convergent subsequence in Lp(Ω̂ 1
m
).

Let δ > 0.
Then, thanks to Proposition 3.3.14, there exists lk ≥ 2m/κ such that ∥un−un ⋆φ 1

lk

∥Lp(Ω̂ 1
m

) ≤
δ
3

for all n ∈ N. We are also able to find nδ ∈ N such that for all i, j ≥ nδ we have
∥ui ⋆ φ 1

lk

− uj ⋆ φ 1
lk

∥Lp(Ω̂ 1
m

) ≤
δ
3 , hence for all i, j ≥ nδ

∥ui − uj∥Lp(Ω̂ 1
m

) ≤ ∥ui − ui ⋆ φ 1
lk

∥Lp(Ω̂ 1
m

) + ∥ui ⋆ φ 1
lk

− uj ⋆ φ 1
lk

∥Lp(Ω̂ 1
m

)+

+ ∥uj − uj ⋆ φ 1
lk

∥Lp(Ω̂ 1
m

) ≤ δ

We conclude that (un)n∈N has a subseqeunce that is Cauchy, since Lp(Ω̂ 1
m
) is a Banach space,

that subsequence converges in Lp(Ω̂ 1
m
). Since m was arbitrary, we have (thanks to Remark

3.3.15) for each ε > 0 that the sequence (un)n∈N is relatively compact in Lp(Ω̂ε) and with
Proposition 3.3.14 we obtain the desired relativ compactness of (un)n∈N in Lp(Ω̂). . �

3.4 A new Notation

From this point on we need to separate functions, which co-domains are R or Rd. Functions with
co-domain Rd are called vector fields and will be written in boldface, functions with co-domain
R are written as usual. Let u : Rd → Rd be a vector field and let O be a subset of Rd, then the
p−th power of u is called integrable, if∫

O
|u(x)|p dx <∞,

where |.| denotes the p−norm in Rd. For p ∈ [1,∞) the set of all vector fields, whose p−th
power of its p−norm is integrable, is called Lp(O)d. We notice here, that with our definition we
get

u ∈ Lp(O)d ⇔ ui ∈ Lp(O) ∀i ∈ {1, . . . , d}.

Since we write vector fields bold, we just write Lp(O) instead of Lp(O)d and we will do so for
all other spaces defined in this work. For p = 2 the space L2(O)d is a Hilbert space. The scalar
product of L2(O)d is then

(u,v)L2(O) =

∫
Ω
u(x) · v(x) dx,
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where “·” denotes the Euclidean scalar product.

From now on we study vector fields in the space variable, in the sense u : R× Rd → Rd. With
u ∈ Lp(Ω̂) we mean that u(t) ∈ Lp(Ωt)d for all t ∈ I. If the gradient of u (only in space!)
is in Lp(Ω̂), we mean ∇xu ∈ Lp(Ω̂)d×d and identify Lp(Ω̂)d×d=̂ Lp(Ω̂)d

2
. Since we can work

component-wise, we are able to adapt the theory of Lp−spaces simply to vector fields, which
components lie in Lp.

3.5 The Space L2
div(O)

Before we give the last version of the Aubin-Lions-Lemma, we have to define some special
Lebesgue-Spaces. This spaces contain all vector fields, whose norm is square-integrable and
whose divergence is also square-integrable. Let O ⊂ Rd be an open and bounded set with
Lipschitz-boundary and let u ∈ L2(O) be a sufficiently smooth function, then we define the
divergence of u = (u1, . . . , ud) as

divu(x) =

d∑
i=1

∂ui
∂xi

(x).

This subsection relies on section 2.2 of the book [GR86]. We will give a short summary of this
theory, focusing on the for us interesting parts. First of all we define the space of all divergence
free test functions:

Ddiv(O) := {ϕ ∈ D(O) : divϕ = 0} ,

where O is an arbitrary subset of Rd.
In section 1.2.2 we introduced the trace operator γ : H1(O) → H1/2(∂O), for O bounded and
with a Lipschitz-Boudary. The topological dual space of H1/2(∂O) is denoted by H−1/2(∂O).
We recall that in that case, there exists a normal trace operator

γn : C0(O) → C0(∂O)

v 7→ v · n|∂O,

where n is the outward unit normal defined on the boundary ∂O.
Before we define L2

div(O), we introduce similar spaces, because the properties of L2
div(O) will

follow nearly directly from the properties of these spaces.

Definition 3.5.1. Let O be an open and bounded subset of Rd with Lipschitz boundary, then
we introduce the following spaces:

H(div, O) :=
{
u ∈ L2(O) : divu ∈ L2(O)

}
we endow the space with the following norm:

∥v∥H(div,O) :=
(
∥v∥2

L2(O)
+ ∥ divv∥2

L2(O)

) 1
2 ∀v ∈ H(div, O).

and

H0(div, O) := D(O)
∥.∥H(div,O)

.

L2
div,0(O) := {u ∈ H0(div, O) : divu = 0} .
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There are some important and interesting coherences of these spaces, which we sum up in one
theorem. For further information we suggest [GR86].

Theorem 3.5.2. Let O be an open and bounded set with Lipschitz boudary ∂O. Then we have:

i) The space H(div, O) is a linear subspace of L2(O). If we endow H(div, O) with the norm
∥.∥H(div,O), it is a Hilbert-space.

ii) We have the following densities:

Ddiv(O) ⊆ L2
div,0(O) = Ddiv(O)

∥.∥H(div,O)
, (3.10)

D(O) ⊆ H(div, O) = D(O)
∥.∥H(div,O)

, (3.11)

H0(div, O) = {u ∈ H(div, O) : u · n|∂O = 0} (3.12)

iii) The space H(div, O) embeds continuously into L2(O), with the constant C = 1.

iv) The space L2
div,0(O) is a closed subspace of L2(O), hence we have the decomposition

L2(O) = L2
div,0(O)⊕ L2

div,0(O)⊥,

where L2
div,0(O)⊥ denotes the orthogonal complement of L2

div,0(O) with respect to (., .)L2(O).

v) The mapping γn can be extended by continuity to a linear and continuous mapping, still
denoted by γn from H(div, O) into H−1/2(∂O). This extension has the following properties:

γn(H(div, O)) = H−1/2(∂O), ∥γn∥L(H(div,O),H−1/2(∂O)) = 1, ker γn = H0(div, O).

Proof.

i) This is clear.

ii) The proof of (3.10) and (3.11) can be found in [GR86], Theorem 2.8 on page 30 and
Theorem 2.4 on page 27 respectively. The proof of the equality (3.12) can be found in
[GR86] Theorem 2.6 on page 29.

iii) For all v ∈ H(div, O) we have

∥v∥2
L2(O)

≤ ∥v∥2
L2(O)

+ ∥ divv∥2
L2(O)

= ∥v∥2H(div,O).

iv) Since for all v ∈ L2
div,0(O), divv = 0 holds, we have ∥v∥L2(O) = ∥v∥H(div,O).

v) We find the prove of all results in [GR86], Theorem 2.5, Corollary 2.8 and Theorem 2.6.

. �
With all this preparation, we are able to introduce the space of all vector fields in L2(O), with
a vanishing divergence:

L2
div(O) :=

{
u ∈ L2(O) : divu = 0

}
. (3.13)

Observe, that the space L2
div(O) does not coincide with H0(div, O), because for u ∈ L2(O) does

divu = 0 not imply that u · n = 0 and otherwise either. We want to list the most important
properties of this space.

Corollary 3.5.3. Let O be an open and bounded set with a Lipschitz-Boudary ∂O. Then we
have:

46



i) L2
div(O) is the closure of Ddiv(O), regarding to the ∥.∥L2(O)-norm.

ii) L2
div(O) is a closed subspace of H(div, O) and it is also a closed subspace in L2(O).

iii) L2
div,0(O) = L2

div(O) ∩H0(div, O).

iv) The restriction of the mapping γn : H(div, O) → H−1/2(O) on L2
div(O) is still surjective

and ker γn|L2
div(O) = L2

div,0(O).

Proof.

i) This follows from D(O)
∥.∥H(div,O)

= H(div, O).

ii) Since the norms ∥.∥L2(O) and ∥.∥H(div,O) coincide on L2
div(O) ii), is clear.

iii) L2
div,0(O) is a subset of H0(div, O) and L2

div(O). Every vector field u in the Intersection

has to fullfill that u ∈ L2(O), divu = 0 and u · n = 0, hence u ∈ L2
div,0(O).

iv) For this point, we adapt the proof of Corollary 2.8 in [GR86]. To show that γn(L
2
div(O)) =

H−1/2(O) we want to find for every µ ∈ H−1/2(O) a vector field u ∈ L2
div(O) such that:

u · n = µ on ∂O

We want to solve the Neumann Laplacian problem: Find ϕ ∈ H1(O) such that

∆ϕ = 0 in O,

∂nϕ = µ on ∂O.

This problem has, up to a constant, a unique solution in H1(O). If we set ∇ϕ = u, then
u ∈ L2

div(O) and u · n = µ.
For the ker γn|L2

div(O) we have the obvious equality

ker γn|L2
div(O) = ker γn ∩ L2

div(O) = H0(div, O) ∩ L2
div(O) = L2

div,0(O)

. �

Remark 3.5.4. We want to adapt the previous notations for solenoidal vector fields depending
on both time and space. Let O be an arbitrary open set of R×Rd (denote the first component
with t and the last components with x). If there is no ambiguity on the time variable, we denote
for the rest of this paper the space Ddiv(R×Rd) as the set of all test functions φ ∈ D(R×Rd),
such that for all t ∈ R, the functions φ(t) : x 7→ φ(t, x) are in Ddiv(Rd). Ddiv(O) denotes the
subspace of all test functions of Ddiv(R×Rd) having a compact support in O, while L2

div(O) and
L2
div,0(O) are respectively the closures of Ddiv(O) and Ddiv(O) in L2(O). With this notation we

recover the definition we had without the time variable. �
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3.6 Second Statement

Differently to the other two sections, where we present the theorem at the beginning of the
section, we have to do some work before we can state the last variant of the Aubin-Lions-
Lemma. We start with a classical result from functional analysis.

Let H be an arbitrary Hilbert-space over R with scalar product (., .)H and denote with ∥.∥H the
induced norm. The topological dual space of H will be denoted as H ′, which is endowed with
the operatornorm ∥f∥H′ = supx∈H,∥x∥H≤1 |f(x)|. We know ,that for every x ∈ H the mapping
fx : y 7→ (x, y)H is a bounded linear functional on H. In fact we have a much stronger result:

Lemma 3.6.1. Let H be a Hilbert-space, then the mapping

Ψ : H → H ′

x 7→ fx

is an isometric (∥fx∥H′ = ∥x∥H) linear bijection.

Since every Hilbert-space is Hausdorff (two different points in H can be separated by two
disjoint open sets), it is enough to define a continuous function on a dense subset of H. For the
rest of this section, if it is not otherwise stated, let O be an open and bounded subset of Rd

with Lipschitz boundary ∂O. With Lemma 3.6.1 we obtain the duality formula for L2(O) and
its dense subset D(O)

∥u∥L2(O) = sup
φ∈D(O),∥φ∥L2(O)≤1

(u,φ)L2(O). (3.14)

We cannot expect a duality formula as (3.14), when testing only against divergence free test
functions. As a matter of fact, there is a dual estimate of the same flavour for L2

div(O), but one
has to take into account the normal trace.

Lemma 3.6.2. Denote by CO the Poincaré-Wirtinger constant of O. For all u ∈ L2
div(O) one

has

∥u∥L2(O) ≤ sup
φ∈Ddiv(O),∥φ∥L2(O)≤1

(u,φ)L2(O) + (1 + CO)∥γnu∥H−1/2(∂O). (3.15)

Proof. It is sufficient to prove, that (3.15) holds for all w ∈ Ddiv(O), because Ddiv(O) is dense in
L2
div(O), hence we find for each u ∈ L2

div(O) a sequence (wn)n∈N in Ddiv(O) such that wn → u in
L2
div(O). Since L2

div(O) is a closed subspace of L2(O), we have especially that (wn)n∈N converges
to u in L2(O).
Consider the orthogonal projection P : L2

div(O) → L2
div,0(O) and let w ∈ Ddiv(O), then we have

∥w∥L2(O) ≤ ∥Pw∥L2(O) + ∥w − Pw∥L2(O).

Our aim is to estimate both terms on the r.h.s. Let us start with ∥Pw∥L2(O). Since Ddiv(O) is

dense in L2
div,0(O), L2(O) is a Hilbert space and Pφ = φ for all φ ∈ Ddiv(O), we obtain that

∥Pw∥L2(O) = ∥Pw∥L2
div(O) = sup

φ∈Ddiv(O),∥φ∥L2≤1

∫
O
Pw(x) ·φ(x) dx

= sup
φ∈Ddiv(O),∥φ∥L2≤1

∫
O
w(x)·Pφ(x) dx

= sup
φ∈Ddiv(O),∥φ∥L2≤1

(w,φ)L2(O),
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It remains to estimate the second term ∥w − Pw∥L2(O). If w ∈ L2
div,0(O), the estimate (3.15)

holds, because γnw = 0. Let w− Pw ̸= 0, then one can solve the Neumann-Laplacian problem

∆ξ = 0, on O

∂nξ = γnw on ∂O,

and the initial condition ∫
O
ξ = 0,

where ∆ξ = div∇ξ and ∂nξ = ∇ξ ·n. This boundary problem is well posed providing, a unique
solution v ∈ H1(O), with mean value (v)O = 0. The variational formulation gives directly,
∥∇v∥2

L2(O)
≤ ∥γnw∥H−1/2(∂O)∥γv∥H1/2(∂O), whence we obtain with the trace-theorem (Theorem

1.2.13) and estimate (1.3):

∥∇v∥2
L2(O)

≤ ∥γnw∥H−1/2(∂O)∥v∥H1(O) ≤
√
1 + CO∥γnw∥H−1/2(∂O)∥∇v∥L2(O).

so that eventually ∥∇v∥L2(O) ≤
√
1 + CO∥γnw∥H−1/2(O). Obviously ∇v ∈ L2

div,0(O)⊥, because

we have that w − Pw ̸= 0 and thereby we obtain 0 ̸= γnw = n · ∇v. Since div (w −∇v) = 0
and n · (w −∇v) = γnw − ∂nv = 0, we get that w −∇v ∈ L2

div,0(O). With this results and

(IdL2
div(O)−P)(w −∇v) = 0 ⇔ (IdL2

div(O)−P)w = (IdL2
div(O)−P)∇v,

we conclude that (IdL2
div(O)−P)w = ∇v. At the end we obtain

∥w − Pw∥L2(O) = ∥∇v∥L2(O) ≤
√

1 + CO∥γnw∥H−1/2(O).

The desired estimate (3.15) follows now from the density of Ddiv(O) in L2
div(O). . �

Remark 3.6.3. We see that with the continuity of γn (γn is linear and bounded), the r.h.s
of (3.15) in Lemma 3.6.2 defines a norm, which is equivalent to the ∥.∥L2(O) norm on L2

div(O).
Therefore (3.15) is a generalization of (3.14). �
Now let us get back to our setting defined in section 3.2. We want to adapt the spaces and
results of this subsection to our setting. From now on, we understand under the divergence of
a vector field, the divergence in the last d coordinates. All the results can of course be adapted
to the case of divergence free (in the space variable x) vector fields on Ω̂. Recalling Remark
3.5.4 we define the following spaces:

Ddiv(Ω̂) :=
{
φ ∈ D(R× Rd) : φ(t) ∈ Ddiv(Rd) ∀t ∈ R, suppφ ⊆ Ω̂

}
, (3.16)

L2
div(Ω̂) := Ddiv(Ω̂) =

{
u ∈ L2(Ω̂) : divu(t) = 0, ∀t ∈ (a, b)

}
(3.17)

For t ∈ [a, b], Ωt is a bounded set in Rd with Lipschitz boundary, hence there exists the outward
unit normal nt of Ωt and the normal trace operator γnt : L2

div(Ω
t) → H−1/2(Ωt). Thanks to

Theorem 3.5.2 we know that the operatornorm of γnt is not greater than 1, so that one has, for
all φ ∈ Ddiv(R× Rd),∫

I
∥γntφ(t)∥H−1/2(Ωt) dt ≤

∫
I
∥φ(t)∥L2(Ωt) dt = ∥φ∥L2(Ω̂).
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With this information we are able to define a normal trace operator on Ω̂. We defined ∂Ω̂
different to the boundary of Ω̂ in Rd+1, therefore we have to define a slightly different trace
operator. Let us define n̂ as the outward normal of ∂Ω̂ such that n̂|Ωt = nt for all t ∈ I. This
means, that n̂ is orthogonal to ∂Ωt in Rd and not to the boundary of Ω̂ in Rd+1.
This allows us to define the normal trace operator on L2

div(Ω̂), which lies in the space denoted

H
−1/2
x (∂Ω̂), defined as the completion of C∞(∂Ω̂) for the norm

∥ψ∥
H

−1/2
x (∂Ω̂)

:=

(∫
I
∥ψ(t)∥2

H−1/2(∂Ωt)
dt

)1/2

.

This normal trace operator will be denoted by γn̂ : L2
div(Ω̂) → H

−1/2
x (∂Ω̂). Let u ∈ L2

div(Ω̂) and
ϕ ∈ H1/2(∂Ω̂) then the expression γn̂u has to be understood as

⟨γn̂u, ϕ⟩H1/2(∂Ω̂) =

∫
∂Ω̂
γn̂u(t, x)ϕ(t, x) d(t, x) =

∫
I

∫
∂Ωt

(nt · u(t, x))ϕ(t, x) dx dt.

With this new normal trace operator we are able to define the space L2
div,0(Ω̂), which is the kern

of the map γn̂.

L2
div,0(Ω̂) := Ddiv(Ω̂) =

{
u ∈ L2

div(Ω̂) : γn̂u = 0
}

All this preparation allows us to formulate our last version of the Aubin-Lions Lemma.

Theorem 3.6.4. Let Ω̂ fulfill the assumptions [C1]-[C3]. Consider a sequence (un)n∈N that
lives in L2

div(Ω̂). Assume that (1Ω̂un)n∈N is bounded in L∞(R; L2(Rd)) and that the two se-

quences (un)n∈N and (∇xun)n∈N are bounded in L2(Ω̂). Assume furthermore that the non-
cylindrical analogue of the normal trace operator fulfills

γn̂un = 0, (3.18)

and that there exists a constant C > 0 and an integer N > 0 such that for all divergence- free
test functions ψ

|⟨∂tun,ψ⟩| ≤ C
∑

|α|≤N

∥∂αxψ∥L2(Ω̂). (3.19)

Then the sequence (un)n∈N is relatively compact in Lp(Ω̂).

Observe that the condition 3.18 is a boundary condition, which is very important to obtain the
following result

Proposition 3.6.5. Let (un)n∈N fulfill the assumptions of Theorem 3.6.4, then we have for
all n ∈ N, that div1Ω̂un ∈ L2(R; L2

div(Rd)).

Proof. If a function v ∈ L2(R× Rd) has also divv ∈ L2(R× Rd) (in the sense that divv(t) ∈
L2(Rd) for all t ∈ R), then we have for all φ ∈ D(R× Rd) the following:

⟨v,∇xφ⟩L2 =

∫
R×Rd

v · ∇xφ =

∫
suppφ

v · ∇xφ

=

∫
∂ suppφ

φv · n∂ suppφ −
∫
suppφ

divvφ

= −⟨divv, φ⟩L2
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Thanks to this, we can say a function f ∈ L2(R× Rd) has a weak divergence, if there exists a
function g ∈ L2(R× Rd) such that

⟨f ,∇xφ⟩L2 = −⟨g, φ⟩L2 , ∀φ ∈ D(R× Rd).

Now let n ∈ N be arbitrary. We have clearly that 1Ω̂un ∈ L2(R× Rd). Since divun = 0 on Ω̂
and γn̂un = 0, we obtain, with Green‘s formula, for all φ ∈ D(R× Rd)

⟨1Ω̂un,∇xφ⟩L2 =

∫
R×Rd

1Ω̂un · ∇xφ =

∫
Ω̂
un · ∇xφ

=

∫
∂Ω̂
γn̂(un)φ−

∫
Ω̂
φ divun = 0 = −⟨0, φ⟩L2 .

Therefore we have divun = 0 and hence un ∈ L2(R; L2
div(Rd)) for all n ∈ N.

. �
At the end of this section we give a version of Lemma 3.6.2 for the interior sets Ω̂δ for δ ∈ [0, γ],
where gamma is the constant of Proposition 3.3.4. Since Ωδ are Lipschitz domains for δ ∈ [0, γ]
(thanks to Proposition 3.3.4), we get that the diffeomorphic domains ϑt(Ωδ) have also Lipschitz
boundary. Hence we can apply the previous considerations for Ω̂δ and define, in the same way

as before, the normal trace operator γn̂,δ : L
2
div(Ω̂δ) → H

−1/2
x (∂Ω̂δ).

Lemma 3.6.6. Let Ω̂ fulfill the assumptions [C1]-[C3]. Recall the definition of γ in Proposi-
tion 3.3.4. For all δ ∈ [0, γ] and all u ∈ L2

div(Ω̂δ)

∥u∥L2(Ω̂δ)
≤ CI sup

ψ∈Ddiv(Ω̂δ),∥ψ∥L2(Ω̂δ)
≤1

(u,ψ)L2(Ω̂) + (CΘ
Ω,γ + 1)∥γn̂,δu∥H−1/2

x (∂Ω̂δ)
,

where CI is a constant depending only on the length of the interval [a, b] and CΘ
Ω,γ is the constant

of Proposition 3.3.11.

Proof. Since the sets ϑt(Ωδ) are all Lipschitz domains with a common Lipschitz constant CΘ
Ω,γ

(in the sense of Proposition 3.3.11), we can apply Lemma 3.6.2 and obtain for all u ∈ L2
div(Ω̂δ)

∥u(t)∥L2(ϑt(Ωδ))
≤ sup
ψ∈Ddiv(Ω̂δ),∥ψ∥L2(Ω̂)≤1

(u(t),ψ(t))L2(ϑt(Ωδ))

+ (CΘ
Ω,γ + 1)∥γntu(t)∥H−1/2(∂ϑt(Ωδ))

.

All terms in the upper estimate are greater or equal zero, hence we can integrate in time on
both sides and the estimate will still hold. With Jensen’s inequality we get

∥u∥L2(Ω̂) =
√
b− a

(
1

b− a

∫
I
∥u(t)∥2

L2(ϑt(Ωδ))
dt

)(1/2)

≤
√
b− a

b− a

∫
I
∥u(t)∥L2(ϑt(Ωδ))

dt

≤
√
b− a

b− a

∫
I

sup
ψ∈Ddiv(Ω̂δ),∥ψ∥L2(Ω̂)≤1

(u(t),ψ(t))L2(ϑt(Ωδ))
dt

+ (CΘ
Ω,γ + 1)

√
b− a

((
1

b− a

∫
I
∥γntu(t)∥H−1/2(∂ϑt(Ωδ))

dt

)2
)(1/2)

≤
√
b− a

b− a
sup

ψ∈Ddiv(Ω̂δ),∥ψ∥L2(Ω̂)≤1

(u,ψ)L2(Ω̂δ)
+ (CΘ

Ω,γ + 1)∥γn̂,δu∥H−1/2
x (∂Ω̂δ)
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. �

3.6.1 Proof of Theorem 3.6.4

The main idea of the proof of Theorem 3.6.4 is to show that the sequence (un)n∈N fullfills some
equi-continuity with respect to the L2(Ω̂) norm. This statement will be clarified by the next
theorem, which can be found in [Bre10] on page 111.

Theorem 3.6.7. (Kolmogorov-M. Riez-Fréchet). Let F be a bounded set in Lp(Rd) with
p ∈ [1,∞). Assume that

lim
|h|→0

∥τhf − f∥Lp(Rd) = 0 uniformly in f ∈ F , (3.20)

i.e., ∀ε > 0 ∃δ > 0 such that ∥τhf − f∥Lp(Rd) < ε ∀f ∈ F , ∀h ∈ Rd with |h| < δ. Then the

closure of F|Ω is compact for any measurable set Ω ⊂ Rd with finite measure.

Proof. See [Bre10] on page 111. . �

Remark 3.6.8. Let Ω be a bounded set in Rd, then the function τhf , for f ∈ Lp(Ω), is maybe
not well defined, hence we need a slight variation of Theorem 3.6.7. Since f ∈ Lp(Ω), the
function 1Ωf lies in Lp(Rd). When trying to establish that a family F ∈ Lp(Ω) has compact
closure in Lp(Ω) it is convenient to extend all functions f ∈ F to 1Ωf and apply Theorem 3.6.7
to the set 1ΩF ⊂ Lp(Rd). �

Proof of Theorem 3.6.4. The main idea of this proof is to apply Theorem 3.6.7. We want to
show that the sequence (un)n∈N fullfills the equi-continuity condition (3.20). In order to use
the shift operator correctly, we have to work, according to Remark 3.6.8, with the sequence of
extensions (1Ω̂un)n∈N. Our aim is to show that

lim
(s,y)→0

∥τ(s,y)1Ω̂un − 1Ω̂un∥L2(R×Rd) = 0 uniformly in n. (3.21)

To show (3.21), it is sufficient to prove the following 3 statements.

1.) There exists a constant r > 2 such that the sequence (un)n∈N is bounded in Lr(Ω̂).

2.) We have for all compact subsets K ⊂ Ω̂

lim
(0,y)→0

∥τ(0,y)(1Ω̂un)− 1Ω̂un∥L2(K) = 0, uniformly in n. (3.22)

3.) We have for all compact subsets K ⊂ Ω̂

lim
(s,0)→0

∥τ(s,0)(1Ω̂un)− 1Ω̂un∥L2(K) = 0, uniformly in n. (3.23)

Point 2.) and 3.) ist just another formulation to say, that the sequences converge in L2
loc(Ω̂).

After we have proven this three statements we can conclude the prove (if the reader wants to
jump directly to the conclusion, he can read the proves of these statements later).

1.
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For d > 2 we set q = 2⋆ and for d ≤ 2 we set q = 3. In both cases we have that H1(Ωt) embeds
continuously into Lq(Ωt) for all t ∈ I and according to point 2 in Facts 3.2.1, there exists in
both cases a constant C ∈ R such that for all v ∈ H1(Ωt)

∥v∥Lq(Ωt) ≤ C∥v∥H1(Ωt) ∀t ∈ I.

This means we can say with no loss of generality, that there exists some q > 2 and C ∈ R, such
that for all n ∈ N

∥un∥Lq(Ωt) ≤ C∥un∥H1(Ωt) ∀t ∈ I.

Since (un)n∈N and (∇xun)n∈N are both bounded in L2(Ω̂) we obtain for all n ∈ N∫
I
∥un(t)∥2Lq(Ωt) dt ≤

∫
I
C2∥un(t)∥2H1(Ωt)

dt

= C2

∫
I
∥un(t)∥2L2(Ωt)

dt+ C2

∫
I
∥∇xun(t)∥2L2(Ωt)

dt

= C2(∥un∥2L2(Ω̂)
+ ∥∇xun∥2L2(Ω̂)

) <∞.

Since this estimate holds for all n in N we have for some q > 2

sup
n∈N

∫
I
∥un(t)∥2Lq(Ωt) dt <∞. (3.24)

Now for all r ∈ (2, q) we find β ∈ (0, 1) such that 1/r = β/q + (1− β)/2. It is possible to find
r ∈ (2, q), so that rβ ∈ [1, 2]. If we interpret ∥un(t)∥Lq(Ωt) as a function from I to R, it lays,

thanks to (3.24), in L2(I) for all n ∈ N. Since I is a bounded interval, we have the continuous
embedding of L2(I) in Lrβ(I) and therefore we obtain the existence of a constant C̃ such that∫

I
∥un∥rβLq(Ωt) dt ≤ C̃

∫
I
∥un∥2Lq(Ωt) dt ∀n ∈ N

With help of the Lyapunov inequality (Theorem 1.1.4) and the condition that the sequence
(1Ω̂un)n∈N is bounded in L∞(R; L2(Rd)), we get for all n in N

∥un∥Lr(Ω̂) =

∫
I
∥un(t)∥rLr(Ωt) dt

≤
∫
I
∥un(t)∥rβLq(Ωt)∥un∥r(1−β)

L2(Ωt)
dt

≤ ∥1Ω̂un∥r(1−β)

L∞(R;L2(Rd))

∫
I
∥un(t)∥rβLq(Ωt) dt

≤ ∥1Ω̂un∥r(1−β)

L∞(R;L2(Rd))
C̃ sup

n∈N

∫
I
∥un(t)∥2Lq(Ωt) dt <∞,

hence (un)n∈N is bounded in Lr(Ω̂) for some r > 2.
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2.

Let K be an arbitrary compact subset of Ω̂. Then there exists δK > 0 such that d(K, ∂Ω̂) > δK .
Let (ym)m∈N be a sequence in Rd, which converges to 0 for m to infinity. Then there exists
m0 such that for all m > m0 we have that |(0, ym)| < δK . For all these m we have that
(K − ym) ⊂ Ω̂. Therefore we have for all m > m0

∥τ(0,ym)1Ω̂un − 1Ω̂un∥L2(K) = ∥τ(0,ym)un − un∥L2(K).

We describe the slices of K as Kt := K ∩ ({t}×Ωt) and therefore we have clearly
∪

t∈I K
t = K.

The sequence (∇xun)n∈N is bounded in L2(Ω̂) by some constant C∇ ∈ R. Thanks to Theorem
2.2.5 we obtain for all m > m0

∥τ(0,ym)1Ω̂un − 1Ω̂un∥2L2(K)
= ∥τ(0,ym)un − un∥L2(K) =

∫
I
∥τ(0,ym)un(t)− un(t)∥2L2(Kt)

dt

≤
∫
I
∥∇xun(t)∥2L2(Ωt)

|(0, ym)|2 dt = ∥∇xun∥2L2(Ω̂)
|(0, ym)|2

≤ |(0, ym)|2C∇.

Since K was arbitrary we get with the upper estimate clearly (3.22).

3.

Before we show (3.23) we want to clarify and simplify the upcoming steps, because this is the
hardest part of the proof. Observe that the δ−interior of Ωt is not the same as ϑt(Ωδ), but
thanks to Proposition 3.3.12 point ii) we can frame ϑt(Ωδ) between the two sets Ωt

δ/κ and Ωt
δκ

for some κ ∈ (0, 1]. The proof would be a notational mess if we take care about this fact.
Therefore we simplify the proof by setting κ = 1, hence we have ϑt(Ω

t) = Ωt
δ. To obtain the

general case, we have to adapt the steps below line by line, but the core argument stays intact.

Notice that the assumption γn̂un = 0 gives us through Proposition 3.6.5 that
1Ω̂un ∈ L2(R; L2

div(Rd)). From now on we will write un, instead of 1Ω̂un. Our boundary
condition γn̂un = 0 does not have to apply for γn̂,δun. Therefore we want to define, analogously
to the proof of Lemma 3.6.2, the orthogonal projection

Pδ : L
2
div(Ω̂δ) → L2

div,0(Ω̂δ).

Recall the definition of the mollifier φδ(x) := δ−dφ(δ−1x) with ϕ ∈ D(Rd) a nonnegative even
function with a support in the unit ball (and integral 1). If we convolute the vector field
f : Rd → Rd with the mollifier φδ we get the vector field

f ⋆ φδ := (f1 ⋆ φδ, . . . , fd ⋆ φδ).

Let us take a closer look on the convolution un ⋆ φδ. Since un vanishes on the outside of Ω̂, the
convolution un ⋆ φδ vanishes outside

Ω̂−δ :=
∪

t∈(a,b)

{t} × Ωt
−δ,

where we recall Definition 3.1.4 Ωt
−δ = Ωt + Bδ(0). This makes sense, because the support of

φδ is the ball Bδ(0) and we have suppun(t) ⋆φδ = Ωt+Bδ(0) for each t ∈ (a, b). It is clear that
un(t) ⋆ φδ ∈ L2(R; L2

div(Rd)), because un ∈ L2(R; L2
div(Rd)). We show (3.23) in the following

four steps.
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Step 1: For this step let n ∈ N be arbitrary. The convolution un(t) ⋆ φδ lies in L2(Ω̂−δ), hence we
get for any ε > 0

∥un(t) ⋆ φδ∥L2(Ω̂ε)
≤ ∥un(t) ⋆ φδ∥L2(Ω̂−δ)

<∞,

therefore un(t) ⋆ φδ ∈ L2(Ω̂ε) for all ε > 0, especially for ε = 2δ, where δ < γ/2. Since
un(t) ⋆φδ has divergence zero, it lies also in L2

div(Ω̂2δ) and therefore we can apply Lemma
3.6.6. Observe that Ddiv(Ω̂2δ) lies dense in L2

div,0(Ω̂2δ) = P2δ(L
2
div(Ω̂2δ)) and thus we get

the following estimate

∥un(t) ⋆ φδ − P2δ(un(t) ⋆ φδ)∥L2(Ω̂2δ)
≤ 0 + (CΘ

Ω,γ)∥γn̂,2δ(un(t) ⋆ φδ)∥H−1/2
x (∂Ω̂2δ)

.

If nt,2δ is the unit outward normal of Ωt
2δ, we have that −nt,2δ is the unit outward normal

of Rd \ Ωt
2δ, hence the normal trace of un(t) ⋆ φδ ∈ L2(Ωt

2δ) is the opposite of the the
normal trace as when we consider un(t) ⋆φδ as an element of L2(Rd \ Ωt

2δ), but the norms
of the traces coincide. Since ∥γ−nt,2δ∥ ≤ 1 we get

∥γn̂,2δ(un ⋆ φδ)∥2
H

−1/2
x (∂Ω̂2δ)

=

∫
I
∥γnt,2δ(un(t) ⋆ φδ)∥2H−1/2(∂Ωt

2δ)
dt

=

∫
I
∥γ−nt,2δ(un(t) ⋆ φδ)∥2H−1/2(∂(Rd\Ωt

2δ))
dt

≤
∫
I
∥un(t) ⋆ φδ∥2L2(Rd\Ωt

2δ)
dt = ∥un ⋆ φδ∥2L2(Rd\Ω̂2δ)

.

Combining these two estimates, using that suppun ⋆ φδ ⊆ Ω̂−δ, Lemma 1.2.18 and the
Hölder inequality we obtain

∥un(t) ⋆ φδ − P2δ(un(t) ⋆ φδ)∥L2(Ω̂2δ)
≤ (CΘ

Ω,γ + 1)∥un ⋆ φδ∥L2(Ω̂−δ\Ω̂2δ)

≤ (CΘ
Ω,γ + 1)∥un∥L2(Ω̂−δ\Ω̂2δ)

≤ (CΘ
Ω,γ + 1)λd+1(Ω̂−δ \ Ω̂2δ)

( 1
2
− 1

r
)∥un∥Lr(Ω̂).

It was shown previously that the sequence (un)n∈N is bounded in Lr(Ω̂) and since
λd+1(Ω̂−δ \ Ω̂2δ) → 0 for δ → 0, we conclude

sup
n∈N

∥un ⋆ φδ − P2δ(un ⋆ φδ)∥L2(Ω̂2δ)

δ→0−−−→ 0 (3.25)

Step 2: In this step we want to prove that for all δ > 0, there exists ξ > 0 such that

∀ψ ∈ D(Ω̂2δ) and ∀σ ∈ (0, ξ] we have τ(−σ,0)ψ ∈ D(Ω̂δ).

That the function τ(−σ,0)ψ is smooth as ψ is clear, so that we have only to show that

supp τ(−σ,0)ψ ⊂ Ω̂δ.

Fix δ > 0. We know that Θ ∈ C0([a, b],C1(Rd)), hence there exists ξ > 0 such that
∥Θ(t + σ) − Θ(t)∥C1(Rd) < δ for all σ ∈ (0, ξ] and all t ∈ [a, b]. Therefore we have for all
x ∈ Ω2δ that

d(ϑt+σ(x), ϑt(x)) = |ϑt+σ(x)− ϑt(x)| = |Θ(t+ σ, x)−Θ(t, x)| < δ, ∀σ ∈ (0, ξ].
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This shows that ϑt+σ(x) ∈ Ωt
2δ + δ ⊆ Ωt

δ = ϑt(Ωδ) and hence ϑt+σ(Ω2δ) ⊆ ϑt(Ωδ) for all
t ∈ [a, b] and for all σ ∈ (0, ξ].
Now consider ψ ∈ D(Ω̂2δ). If (t, x) is not an element of Ω̂δ, then x lies not in ϑt(Ωδ) and
therefore x /∈ ϑt+σ(Ω2δ), which is equivalent to (t+ σ, x) /∈ Ω̂2δ. We conclude that ψ(t+
σ, x) = 0, which means also τ(−σ,0)ψ(t, x) = 0 and with that we have shown supp τ(−σ,0)ψ ⊂
Ω̂δ.

Step 3: The estimate (3.19) leads us for a fixed δ > 0 to the following inequality

∀ψ ∈ Ddiv(Ω̂δ), ⟨un ⋆ φδ, ∂tψ⟩L2(Ω̂) ≤ Cδ∥ψ∥L2(Ω̂), (3.26)

where Cδ is only depending only on the mollifier φδ. To show (3.26) we use our condition
on the distributional time derivative (3.19) and follow the steps we did already in the
proof of Theorem 3.3.1.

|⟨un ⋆ φδ, ∂tψ⟩L2(Ω̂)| = |⟨∂tun,ψ ⋆ φδ⟩L2(Ω̂)| ≤
∑
α≤N

∥ψ ⋆ ∂αxφδ∥L2(Ω̂)

≤ ∥ψ∥L2(Ω̂)

∑
α≤N

∥∂αxφδ∥L∞(Ω̂) = ∥ψ∥L2(Ω̂)Cδ.

For any pair (v,Φ) ∈ D(R× Rd)2 a simple recalculation provides

⟨τ(s,0)v − v,Φ⟩L2(R×Rd) = ⟨(τ(s,0) − Id)v,Φ⟩L2(R×Rd) = s

∫ 1

0
⟨v, τ(−sz,0)∂tΦ⟩L2(R×Rd) dz.

If Φ ∈ Ddiv(Ω̂2δ), we have also that ∂tΦ ∈ Ddiv(Ω̂2δ). According of step 2 we know that
for s small enough and any z ∈ [0, 1] we obtain τ(−sz,0)∂tΦ ∈ Ddiv(Ω̂δ) and hence the

estimate (3.26) is usable for τ(−sz,0)∂tΦ. Since D(R× Rd) is dense in L2(R; L2
div(Rd)) we

can apply the upper formula to v = P2δ(un ⋆ φδ). Using Lemma 3.6.6 we get

∥(τ(s,0) − Id)P2δ(un ⋆ φδ)∥L2(Ω̂2δ)
≤ CI sup

Φ∈Ddiv(Ω̂2δ),∥Φ∥L2(Ω̂2δ)
≤1

⟨(τ(s,0) − Id)P2δ(un ⋆ φδ),Φ⟩L2(Ω̂2δ)

+ ∥γn̂(τ(s,0) − Id)P2δ(un ⋆ φδ)∥H−1/2
x (∂Ω̂2δ)

≤ CI sup
Φ∈Ddiv(Ω̂2δ),∥Φ∥L2(Ω̂2δ)

≤1

s

∫ 1

0
⟨v, τ(−sz,0)∂tΦ⟩L2 dz

+ ∥γn̂(τ(s,0) − Id)P2δ(un ⋆ φδ)∥H−1/2
x (∂Ω̂2δ)

≤ CI sup
Φ∈Ddiv(Ω̂2δ),∥Φ∥L2(Ω̂2δ)

≤1

sCδ∥τ(−sz,0)Φ∥L2(Ω̂δ)

≤ sCICδ.

Since n ∈ N was arbitrary we get uniform convergence in n in the sense

sup
n∈N

∥(τ(s,0) − Id)P2δ(un ⋆ φδ)∥L2(Ω̂2δ)

s→0−−−→ 0. (3.27)
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Step 4: Putting all 3 steps together we are able to prove (3.23). So let K ⊂ Ω̂ be an arbitrary
compact subset of Ω̂ and let δ ∈ (0, γ/2), then

τ(s,0)un − un = (τ(s,0) − Id)(un − un ⋆ φδ) (3.28)

+ (τ(s,0) − Id)(un ⋆ φδ − P2δ(un ⋆ φδ)) (3.29)

+ (τ(s,0) − Id)P2δ(un ⋆ φδ). (3.30)

We take δ small enough, such that K ⊂ Ω̂2δ and we will proceed line by line in the L2(Ω̂δ)
norm.
Let ε > 0. For the first line (3.28) we can adapt Proposition (3.3.13) for un and
Ω̂.Following the proof of Proposition (3.3.13) we obtain

∥un − un ⋆ φδ∥L2(K) ≤ ∥un − un ⋆ φδ∥L2(Ω̂2δ)
≤ δ∥∇xun∥L2(Ω̂2δ)

≤ δ∥∇xun∥L2(Ω̂).

Therefore we find δ1 > 0 such (3.28) becomes smaller than ε/3, independently from n
(and s). Due step 1 we also find δ2 > 0 such that the second line 3.29 is smaller than ε/3
w.r.t. ∥.∥L2(Ω̂2δ)

and for all n ∈ N. Now let us set δ = min(δ1, δ2). With δ0 fixed, we are
able to handle the third and last line, which convergence is independent of n and δ. Let
s0 such that for all |s| < |s0| the norm ∥(τ(s,0) − Id)P2δ(un ⋆ φδ)∥L2(Ω̂2δ)

is smaller than

ε/3, then we get for all (s, 0) ∈ Bs0(0)

∥τ(s,0)un − un∥L2(K) ≤ ∥τ(s,0)un − un∥L2(Ω̂2δ)

≤ ∥(τ(s,0) − Id)(un − un ⋆ φδ)∥L2(Ω̂2δ)

+ ∥(τ(s,0) − Id)(un ⋆ φδ − P2δ(un ⋆ φδ))∥L2(Ω̂2δ)

+ ∥(τ(s,0) − Id)P2δ(un ⋆ φδ)∥L2(Ω̂2δ)

≤ ∥(un − un ⋆ φδ)∥L2(Ω̂2δ)

+ ∥(un ⋆ φδ − P2δ(un ⋆ φδ))∥L2(Ω̂2δ)

+ ∥(τ(s,0) − Id)P2δ(un ⋆ φδ)∥L2(Ω̂2δ)

< ε.

Since K was arbitrary we have shown, that τ(s,0)un − un
L2
loc(Ω̂)

−−−−−→ 0 uniformly in n.

Conclusion

In this part we conclude our proof with showing

∀ε > 0, ∃δε : such that ∥τ(s,y)1Ω̂un − 1Ω̂un∥L2(R×Rd) < ε ∀n ∈ N, ∀(s, y) with |(s, y)| < δε.

Recall r > 2 from point 1.), then we find a constant R ∈ R such that

∥un∥Lr(Ω̂) < R ∀n ∈ N. (3.31)

Let ε > 0. Thanks to Theorem 1.1.9, there exists a compact subset Kε ⊂ Ω̂, such that

λd+1(Ω̂ \Kε) < (ε2/4Rr)(r−2)/2r. (3.32)
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Due to point 2.) and 3.) we find δε/4 > 0 and δ̃ε/4 > 0 such that

∥τ(0,y)(1Ω̂un)− 1Ω̂un∥L2(Kε)
<
ε

4
∀|(0, y)| < δε/4, (3.33)

∥τ(s,0)(1Ω̂un)− 1Ω̂un∥L2(Kε)
<
ε

4
∀|(s, 0)| < δ̃ε/4, (3.34)

Define δε := min(δε/4, δ̃ε/4). If we use the linearity and the isometry of the shift operator, then

we get, thanks to (3.33) and (3.34), for all n ∈ N and for all (s, y) ∈ R× Rd with |(s, y)| < δε

∥τ(s,y)(1Ω̂un)− 1Ω̂un∥L2(Kε)
=

∥τ(0,y)(τ(s,0)(1Ω̂un))− τ(0,y)(1Ω̂un) + τ(0,y)(1Ω̂un)− 1Ω̂un∥L2(Kε)
≤

∥τ(0,y)(τ(s,0)(1Ω̂un)− 1Ω̂un)∥L2(Kε)
+ ∥τ(0,y)(1Ω̂un)− 1Ω̂un∥L2(Kε)

=

∥τ(s,0)(1Ω̂un)− 1Ω̂un∥L2(Kε)
+ ∥τ(0,y)(1Ω̂un)− 1Ω̂un∥L2 <

ε

2
.

With this, (3.32) and the Hölder inequality (with 1/2 = 1/r + (r − 2)/2r) we obtain for all
n ∈ N and for all (s, y) ∈ R× Rd with |(s, y)| < δε

∥τ(s,y)(1Ω̂un)− 1Ω̂un∥2L2(R×Rd)
=

∥τ(s,y)(1Ω̂un)− 1Ω̂un∥2L2(Kε)
+ ∥τ(s,y)(1Ω̂un)− 1Ω̂un∥2L2(R×Rd\Kε)

<

ε2

4
+ ∥τ(s,y)1Ω̂un∥2L2(R×Rd\Kε)

+ ∥1Ω̂un∥2L2(R×Rd\Kε)
≤

ε2

4
+ 2∥1Ω̂un∥2L2(R×Rd\Kε)

≤

ε2

4
+ 2∥1Ω̂\Kε

un∥2L2(Ω̂)
≤

ε2

4
+ 2∥un∥rLr(Ω̂)

λd+1(Ω̂ \Kε)
2r
r−2 ≤

ε2

4
+ 2Rr ε2

4Rr
< ε2

The choice of Kε ⊂ Ω̂ depends only on ε, hence the choice of δε is independend of n, therefore
we have uniform convergence in n, which means that the condition (3.21) is satisfied.
At the end we obtain with Riesz-Fréchet-Kolmogorv’s Theorem (Theorem 3.6.7) that the se-
quence (1Ω̂un)n∈N is relative compact in L2(O) for all measurable sets O ⊂ R× Rd with finite

measure. Since (1Ω̂un)n∈N coincide with (un)n∈N on Ω̂, we have at the end of the day that the

sequence (un)n∈N is relatively compact in L2(Ω̂). . �

Remark 3.6.9. Theorem 3.6.4 has a homogeneous boundary condition (3.18). We want to
mention that one can replace (3.18) with the weaker assumption:

(γn̂un)n∈N has a converging subsequence in H−1/2
x (∂Ω̂). (3.35)

This condition is designed for non homogeneous boundary conditions. A. Moussa gives at the
end of [Mou16] a short proof if one replaces the condition (3.18) in Theorem 3.6.4 with (3.35).
�

58



Bibliography

[AFP00] Luigi Ambrosio, Nicola Fusco, and Diego Pallara. Functions of bounded variation
and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon
Press, Oxford University Press, New York, 2000.
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[Kal14] Michael Kaltenbäck. Fundament Analysis, volume 26 of Berliner Studienreihe zur
Mathematik [Berlin Study Series on Mathematics]. Heldermann Verlag, Lemgo,
2014.

[Mag12] Francesco Maggi. Sets of finite perimeter and geometric variational problems, volume
135 of Cambridge Studies in Advanced Mathematics. Cambridge University Press,
Cambridge, 2012. An introduction to geometric measure theory.

[Mou16] A. Moussa. Some variants of the classical Aubin–Lions Lemma. J. Evol. Equ.,
16(1):65–93, 2016.

59



[Sho94] R. E. Showalter. Hilbert space methods for partial differential equations. Electronic
Monographs in Differential Equations, San Marcos, TX, 1994. Electronic reprint of
the 1977 original.

[Ste70] Elias M. Stein. Singular integrals and differentiability properties of functions. Prince-
ton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., 1970.

[Zei90a] Eberhard Zeidler. Nonlinear functional analysis and its applications. II/A. Springer-
Verlag, New York, 1990. Linear monotone operators, Translated from the German
by the author and Leo F. Boron.

[Zei90b] Eberhard Zeidler. Nonlinear functional analysis and its applications. II/B. Springer-
Verlag, New York, 1990. Nonlinear monotone operators, Translated from the Ger-
man by the author and Leo F. Boron.

[Zie89] William P. Ziemer. Weakly differentiable functions, volume 120 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 1989. Sobolev spaces and functions of
bounded variation.

60



Index

BV (Ω), 10
H(div, O), 45
H0(div, O), 45
X ↪→ Y , 12
Ck([0, T ];B), 15
L(Rm;Rn), 31
Lp((0, T );B), 15
M(O), 9
Ck(Ω), 7
Cc(k)Ω, 7
η−regularization, 15
Hk(Ω), 11
Lp(Ω), 7
L2
div,0(O), 45

L2
div(O), 46

supp f , 7
ε-exterior, 32
ε-interior, 32

Borel σ-algebra, 7
Borel function, 7
Borel measure, 9
bump functions, 27

Chain Rule, 28, 38
Commutator Lemma, 21
compactly embedded, 12
Compactness for BV functions, 11
conjugate exponent, 7
continuously embedded, 12
critical point, 28

diffeomorphism, 31
divergence, 45
domain, 32
dual space, 16
duality formula, 48

embedding
compact, 12

continuous, 12

finite Radon measure, 9
Friedrichs Lemma, 12
function

-of bounded variation, 10
Borel, 7

Hölder inequality, 8, 16
Hausdorff, 48

inequality
Hölder-, 8
Lyapunov-, 8

Jacobian, 31

Lebesgue measure, 7
Lemma

Vanishing weak gradient, 36
Friedrichs-, 12

Lipschitz boundary, 7
Lipschitz constant, 35
locally finite, 9
lower semi-continuous, 28
Lyapunov inequality, 8, 19

mean value, 13
measure, 9

Borel, 9
Radon, 9
vector, 9

mollifier, 14

normal trace-operator, 45

p- norm, 13
Poincaré inequality, 13
positive Radon measure, 9

Rademacher’s Theorem, 28
Radon measure, 9
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regular function, 28
regular point, 28
Regularization, 14
Rellich-Kondrachov, 12
Riesz Representation Theorem, 9

shift operator, 20
Sobolev exponent, 12
strongly included, 11
support, 7

test function, 11
test functions, 7
Theorem

Integral formula, 31
Inverse Function, 31
Transformation-Rule, 32
Compactness for BV functions, 11
dominated convergence, 8
Fubini, 8
Inner approximation by compact sets,

10
total variation, 9
totally bounded, 12
trace, 14
trace-operator, 14

normal-, 45
Trace-Theorem, 14

vague topology, 10
vaguely convergence, 10
vector fields, 44
vector measure, 9

weak partial derivative, 11
weakly lower (upper) semicontinous, 28
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