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Abstract

This thesis gives an introduction into the theory of algebraic function fields
and algebraic curves with an application to Goppa codes. The first two
chapters focus on function fields in a purely algebraic setting and have
the Riemann-Roch Theorem as their main result. Algebraic curves are ap-
proached from the perspective of function fields. Two kinds of Goppa codes
are defined via places and local components of differentials, respectively. An
example of how to construct Goppa codes from algebraic curves is given.
In the last chapter a standard decoding scheme as well as a list decoding
algorithm for Goppa codes are presented.
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Preface

I was always fascinated when I heard how a piece of abstract discrete math-
ematics could be used to solve “real word” problems. When diving deeper
into the subject matter of such a solution, it is even more astonishing to see
in what elegant ways results from algebra or number theory can be used to
tackle problems in information technology. A particularly beautiful example
of this are Goppa codes, also called algebraic geometry codes. Since their
theoretical fundament involves field theory, algebraic geometry and the the-
ory of algebraic function fields – subjects that I am greatly interested in –
this topic felt like the right choice for the thesis when I first came across it.

I wrote this thesis from June 2016 onwards. Originally, I planned to
put more emphasis on decoding algorithms of Goppa codes. However, I felt
that elaborating the underlying theory was indispensable. Especially when it
comes to providing concrete examples of Goppa codes, a profound knowledge
of the function field of an algebraic curve is very important. Therefore,
the theoretical part given in Chapters 1 to 3 became more extensive than I
intended it to be. In chapter 5, besides the well-known decoding scheme of
Vlǎduţ and Skorobogatov, I focused on the list decoding algorithm developed
by Sudan, Shokrollahi and Wasserman. In my opinion, the list decoding
approach is itself interesting since it is a contrast to the “standard” approach
of nearest neightbour decoding. In particular, list decoding of Goppa codes
revealed an interesting result about the number of code words in a Hamming
ball of a given radius.

I would like to thank a few people who made it possible for me to complete
this thesis. First of all, I would like to thank my advisor, Prof. Gerhard
Dorfer. He supported me constantly throughout the writing process, read
drafts and paid attention to every detail. He suggested studying the books
of Stichtenoth [14] and Pretzel [11], which shaped the Chapters 1 to 3, and
encouraged me to look into list decoding of Goppa codes, an approach I
was not aware of. My thanks also go to my friends Isaak Granzer, who
corrected the text and gave me valuable comments on it, and Jordy van
Velthoven, for discussing and suggesting various books. I am most grateful
to my parents, Peter and Ursula, for supporting me my whole life, for their
constant encouragement and for enabling my studies.

Vienna, February 2017 Peter Michael Kuleff
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Chapter 1

Algebraic Function Fields

In this chapter we will give an introduction to the theory of algebraic function
fields. An algebraic function field is a field extension F/K of transcendence
degree one. This concept naturally arises in the theory of algebraic curves.
More precisely, the set of rational functions on an algebraic curve is an al-
gebraic function field (see Chapter 3). However, it is possible to study these
objects in a purely algebraic setting. We shall follow this approach in this
chapter. We will develop basic results about algebraic function fields as in
the book [1] by Chevalley and [14] by Stichtenoth. The reader interested in
the theory of algebraic function fields with applications to algebraic curves
may be refered to [10] or [11] which treat this subject in the context of coding
theory or to classic books about algebraic geometry such as [19] or [6].

1.1 Places and Valuation Rings

Definition 1.1.1. Let K be an arbitrary field. An algebraic function field
F over K is an extension F/K with the following properties: There is an
element x ∈ F which is trancendental over K and the extension F/K(x) is
finite (hence algebraic).

By K̃ we denote those elements of F which are algebraic over K. Since
sums, products and quotients of algebraic elements are algebraic as well, K̃
is a subfield of F . We call K̃ the field of constants of F .

Lemma 1.1.2. Let F/K be an algebraic function field. Then z ∈ F is
transcendental over K if and only if [F : K(z)] <∞.

Proof. For the whole proof fix an element x ∈ F which is transcendental over
K and satisfies [F : K(x)] < ∞. If z is algebraic over K then [K(z) : K] is
finite. Since

1



2 CHAPTER 1. ALGEBRAIC FUNCTION FIELDS

[F : K(z)] · [K(z) : K] = [F : K] ≥ [K(x) : K] =∞

we see that [F : K(z)] =∞.
Let z be transcendental over K. Since [F : K(x)] < ∞ the extension

F/K(x) is algebraic. Hence there is a polynomial f(x, ζ) ∈ K(x)[ζ] such
that f(x, z) = 0. Wlog we may assume that the coefficients are elements of
K[x]. We can interpret f as a polynomial of the form f(ξ, z) with coefficents
in K(z) in the independent variable ξ. x is a root of this polynomial and so
[K(x, z) : K(z)] <∞. Therefore

[F : K(z)] = [F : K(x, z)] · [K(x, z) : K(z)] ≤ [F : K(x)] · [K(x, z) : K(z)]

and since both factors of the right hand side are finite we conclude [F :
K(z)] <∞.

Remark. The lemma above shows that the element x in the definition of an
algebraic function field does not play a special role among the elements of F
which are trancendetal over K.

The easiest example of a function field that one can think of is K(x)/K
where K is an arbitrary field and K(x) denotes the field of rational functions
in some indeterminate x. As a motivation for our next definition we will
consider an irreducible polynomial f(x) with coefficients in K and the set

Of :=

{
g(x)

h(x)

∣∣∣∣ g(x), h(x) ∈ K[x], f(x) 6 |h(x)

}
.

If f(x) divides a product it has to divide one of its factors, so Of is closed
under addition and multiplication. Therefore it is a subring of K(x) which
obviously contains K. For any element z ∈ K(x), Of contains z itself or z−1.
The following definition generalises this notion:

Definition 1.1.3. Let F/K be a function field. A valuation ring of F/K is
a subring O ( F which has K as a subset and for any z ∈ F× contains z or
its inverse. We denote the units of O by O× and the non-units by P . We
call P a place of F/K.

The following lemma summarises some basic properties of valuation rings.

Lemma 1.1.4. A valuation ring O of a function field F/K has the following
properties:

1.) P is the unique maximal ideal of O.
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2.) Take some arbitrary z ∈ F×. Then z is an element of O if and only if
z−1 /∈ P.

3.) If some z ∈ F satisfies an equation of the form zn + an−1z
n−1 + . . . +

a1z + a0 = 0 where a0, . . . , an−1 ∈ O then z ∈ O.1

4.) K̃ ⊆ O.

5.) K̃ ∩ P = {0}.

Proof.

1.) It is sufficient to show that P is an ideal. Since a proper ideal of O
must not contain units, any such ideal is a subset of P . For arbitrary
u ∈ O, z ∈ P the product uz cannot be invertible in O since otherwise
u(uz)−1 = z−1 ∈ O. If y, z ∈ P and one of them is zero then clearly
y − z ∈ P . If both are non-zero then y/z or z/y is in O. In the first
case we have z − y = z(1− y/z) ∈ P , the other case follows similarly.

2.) Assume z ∈ O but z−1 ∈ P . Then z is the inverse of z−1 in O.
So z−1 ∈ O× = O \ P which is a contradiction. Conversely, assume
z−1 /∈ P but z /∈ O. By the definition of a valuation ring z−1 ∈ O. So
z−1 is not invertible in O, i.e. z−1 ∈ P , contradicting the assumption.

3.) Let us assume that z /∈ O. The definition of a valuation ring then
states that z−1 ∈ O. Using the assumption gives

0 = z−(n−1)(zn +
n−1∑
i=0

aiz
i) = z +

n−1∑
k=0

an−1−k(z
−1)k.

Thus z ∈ O which is a contradiction.

4.) An arbitrary z ∈ K̃ fulfils an equation of the form p(z) = 0 were p is a
polynomial with coefficients in K ⊆ O. By 3.) this means z ∈ O.

5.) This follows from the last point. All non-zero elements of K̃ lie in O
and thus are units of this ring.

1Satisfying this condition, O is said to be integrally closed .
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Remark. Point 2.) of the previous lemma shows that a valuation ring O
may be reconstructed from its place P . In particular O = {z ∈ F× : z−1 /∈
P} ∪ {0}. Hence there is a one-to-one correspondence between the places
and the valuation rings of F . We will make use of this fact frequently.

Example 1.1.5. Let us return to our previous example, the field K(x). We
wish to find the place Pf associated with Of . Consider a non-zero element
g(x)/h(x) of Of , i.e. g(x) 6= 0 and f(x) does not divide h(x). This is
invertible if and only if h(x)/g(x) ∈ Of , that is, if and only if f(x) is not a
divisor of g(x). Therefore Pf can be described by means of

Pf =

{
g(x)

h(x)

∣∣∣∣ g(x), h(x) ∈ K[x], f(x)|g(x), f(x) 6 |h(x)

}
.

It is easy to verify that

O∞ :=

{
g(x)

h(x)

∣∣∣∣ g(x), h(x) ∈ K[x], deg g(x) ≤ deg h(x)

}
is another valuation ring of K(x). We use the convention deg(0) := −∞
such that 0 ∈ O∞. The corresponding place P∞ consists of those rational
functions g(x)/h(x) with deg g(x) < deg h(x). P∞ may be interpreted in the
following way: If g(x) = gmx

m + . . .+ g1x+ g0, h(x) = hnx
n + . . .+h1x+h0,

m ≤ n then

g(x)

h(x)
=
gmx

m + gm−1x
m−1 + . . .+ g1x+ g0

hnxn + hn−1xn−1 + . . .+ h1x+ h0

=

(1/x)n−m(g0(1/x)m + g1(1/x)m−1 + . . .+ gm−1(1/x) + gm)

h0(1/x)n + h1(1/x)n−1 + . . .+ hn−1(1/x) + hn
=

(1/x)n−mg̃(1/x)

h̃(1/x)

where g̃(x), h̃(x) are polynomials, h̃(0) = hn 6= 0. Conversely, if we start with
g̃(x), h̃(x), h̃(0) 6= 0 then a similar calculation transforms g̃(1/x)/h̃(1/x) into
a fraction g(x)/h(x), g(x), h(x) polynomials, deg g ≤ deg h. This shows that
the automorphism of K(x) that fixes K and takes x to 1/x maps O∞ to Ox.
Thus O∞ is not essentially different from the other places. We may think of
O∞ as the set of all rational functions “without a pole” at ∞.

Indeed, the aforementioned Of together with O∞ are all places of K(x):

Proposition 1.1.6. Let O be a valuation ring of K(x). Then O = Of for
some irreducible f(x) ∈ K[x] or O = O∞.
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Proof. Let us first assume that x ∈ O such that K[x] ⊆ O holds. Since
P is a prime ideal in O, P ∩ K[x] is a prime ideal in K[x]. If P ∩ K[x]
is the zero ideal, then every non-zero element of K[x] is invertible in O. It
follows that O = K(x) which contradicts the definition of a valuation ring.
So P ∩ K[x] is generated by an irreducible f(x) ∈ K[x]. Take an element
u = g/h ∈ Of where g and h are polynomials in x. Then we may assume
that f does not divide h and thus h ∈ O \ P = O×. This yields h−1 ∈ O
and thus u = h−1g ∈ O, so we see Of ⊆ O. Now assume that there is a
u = g/h ∈ O \Of with polynomials g and h that are relatively prime. Then
f |h, f - g so 1/g ∈ Of ⊆ O. Therefore 1/h = u/g ∈ O which implies that
h /∈ P . This is clearly contradicting f |h, so O = Of .

Let us turn to the case where x /∈ O. We conclude that 1/x ∈ P and
therefore K[1/x] ⊆ O. Similar to the first case one may derive the existence
of an irreducible polynomial f̃ ∈ K[1/x] such that P ∩K[1/x] consists of all
multiples of f̃ and O = Of̃ . But this time 1/x ∈ P so f̃(1/x) divides 1/x.

Therefore we can choose f̃(1/x) = 1/x so O = O∞.

1.2 Existence of Places

We will now show that any algebraic function field F admits infinitely many
places. If F = K(x) then this can be easily seen: Two essentially different2

irreducible polynomials f, g ∈ K[x] define two different places Pf and Pg.
This holds since f ∈ Pf and f /∈ Pg. Furthermore, there are infinitely many
essentially different irreducible polynomials in K[x]. For an infinite field K
one can consider x− a, a ∈ K. For a finite field it is well known that for any
positive integer n there is an irreducible polynomial of degree n.

The following theorem will help us to prove this result for arbitrary func-
tion fields.

Theorem 1.2.1. Let F/K be an algebraic function field. Take a subring R
with the property K ⊆ R ⊆ F and a proper ideal I 6= {0} of R. Then there
is a valuation ring O with associated place P such that I ⊆ P and R ⊆ O.

Proof. We consider the family

F := {S |S is a subring of F,R ⊆ S, IS 6= S}

where we denote by IS the ideal in S generated by I, i.e. all elements of the
form a1s1 + . . . + aksk with ai ∈ I, si ∈ S. We want to use Zorn’s Lemma

2We call two polynomials essentially different if one is not a constant multiple of the
other polynomial.
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to show that there is a maximal element in F , where we assume the usual
set theoretic order. Since R ∈ F this set is not empty. Let K ⊆ F be a
linear ordered set. Define T :=

⋃
K. Then T is a ring containing R. We

want to verify that IT is properly contained in T . Assume that IT = T .
Then there are elements a1, . . . , ak ∈ I, t1, . . . , tk ∈ T with the property
1 = a1t1 + . . . + aktk. But then there is a ring S0 in K which contains all ti
and therefore 1 ∈ IS0. This yields IS0 = S0 which contradicts the choice of
K. Hence K has an upper bound in F and due to Zorn’s Lemma there is a
maximal element O in F .

Next we want to show that O is a valuation ring of F/K. We immediately
see that K ⊆ R ⊆ O. A consequence of IO 6= O is that O is properly con-
tained in F . To complete the proof assume that there is a z ∈ F with z, z−1 /∈
O. Then O ( O[z] and therefore (IO)[z] = I(O[z]) = O[z] and, analogously,
(IO)[z−1] = I(O[z−1]) = O[z−1]. Hence we find a0, . . . , ak, b0, . . . , b` ∈ IO
such that

1 = a0 + a1z + . . .+ akz
k

1 = b0 + b1z
−1 + . . .+ b`z

−`

with ak, b` 6= 0. Observe that k, ` ≥ 1 since 1 /∈ IO. We may assume that k
and ` are chosen minimally and that k ≥ `. If we multiply the first equation
with (1− b0) and the second one with akz

k we get

1− b0 = (1− b0)a0 + (1− b0)a1z + . . .+ (1− b0)akz
k

0 = ak(b0 − 1)zk + akb1z
k−1 + . . .+ akb`z

k−`.

Adding the two equations yields an equation of the form ck−1z
k−1 + . . . +

c1z+c0 = 1 with ci ∈ IO. Obviously not all ci can be zero, so let j ≤ k−1 be
maximal with cj 6= 0. 1 /∈ IO and therefore j ≥ 1. This equation contradicts
the choice of k. So z or z−1 has to be an element of O which concludes the
proof.

Corollary 1.2.2. There are infinitely many places of an algebraic function
field F/K.

Proof. Let x ∈ F be an element that is transcendental over K. We take an
arbitrary irreducible polynomial f(x) ∈ K[x] and use the previous theorem
with I = f(x)K[x], R = K[x]. This shows the existence of a place P
containing f(x). Two essentially distinct irreducible polynomials f(x) and
g(x) cannot be elements of the same place. This is due to the fact that for
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such polynomials we find u(x), v(x) ∈ K[x] with u(x)f(x) + v(x)g(x) = 1
and so 1 would be an element of that place. Since there are infinitely many
essentially distinct polynomials, there are infinitely many places.

1.3 Zeros, Poles and Valuations

Given a function field F/K we already saw in Lemma 1.1.4 that a place P is
a maximal ideal of its valuation ring O. Thus O/P is a field. Let us consider
the map z 7→ z+P which maps the elements of O to their residue class. We
call it the residue class map . Since Lemma 1.1.4 states that K̃ ⊆ O and
K̃ ∩ P = {0}, the mapping is injective on the field of constants. Thus we

can consider K̃ as a subfield of O/P .

Definition 1.3.1. Let F be a function field, P one of its places and O the
corresponding valuation ring. O/P is the residue class field of P . The degree
of P is the dimension

deg(P) := [O/P : K].

The degree is always finite. This will easily follow from the next lemma if we
choose R = O and I = P .

Lemma 1.3.2. Let F/K be an algebraic function field, R a subring with
K ⊆ R ⊆ F and I ( R a proper ideal. Let z be a non-zero element of I.
Assume that t0, . . . , tk ∈ R fulfill t0 = z, ti/ti+1 ∈ I for 0 ≤ i ≤ k−1, tk = 1.
Take u1, . . . , un ∈ R such that their residue classes modulo I are linearly
independent over K. Then the k · n elements tiuj, 1 ≤ i ≤ k, 1 ≤ j ≤ n are
linearly independent over K(z).

Proof. Assume that the tiuj are not linearly independent. I.e. there is a
relation of the form

k∑
i=1

n∑
j=1

qij(z)tiuj = 0

with qij(z) ∈ K(z). We may assume that the qij(z) are polynomials in
z and that not all of them are divisible by z. This can be achieved by
multiplying with the least common multiple of the denominators and by
cancelling through a power of z if necessary. Let k′ ≤ k be the largest
integer such that qk′j(0) 6= 0 for some j but qij(0) = 0 for all i > k′ and all
j ≤ n. Then we can rewrite the equation as



8 CHAPTER 1. ALGEBRAIC FUNCTION FIELDS

k′∑
i=1

n∑
j=1

qij(z)tiuj = zw

where w is some element of R. Subtracting the first k′ − 1 summands of the
outer sum and dividing by tk′ gives

n∑
j=1

qk′j(z)uj =
z

tk′
w −

k′−1∑
i=1

n∑
j=1

qij(z)
ti
tk′
uj.

For i < k′ the quotients of the form ti/tk′ = (ti/ti+1) · . . . · (tk′−1/tk′) are
elements of Ik

′−i and hence of I since this is an ideal. This holds in particular
for z/tk′ = t0/tk′ . Therefore the right hand side is congruent zero modulo I.
z is an element of I by assumption so qk′j(z) ≡ qk′j(0) modulo I. This yields

n∑
j=1

qk′j(0)uj ≡ 0 mod I

where not all scalars are zero, thus contradicting our assumption.

Using the same notation as in the previous lemma we obtain

Corollary 1.3.3. The degree of a place P is finite. The degree [K̃ : K] is
finite. In particular

[K̃ : K] ≤ [O/P : K] ≤ [F : K(z)]

for an arbitrary non-zero element z ∈ P.

Proof. The right inequality follows by setting R = O, I = P , k = 1, t0 = z,
t1 = 1 and taking u1, . . . , un to be linearly independent in O/P over K. The
right hand side is finite by Lemma 1.1.2 and the fact that a non-zero element
of P is transcendental.

To study the residue class map in the case F = K(x) take a place Pf
consisting of all elements g/h with g divisible and h not divisible by some
irreducible polynomial f . In this case K[x] ⊆ Of and two elements of K[x]
are identified if their difference is divisible by f . Thus the image of K[x]
under the residue class map can be considered as K[x]/f which is a field.
Since Of consists of certain quotients of elements of K[x] this is already the
image of the whole valuation ring Of . Thus Of/Pf can be considered as
an algebraic extension of degree deg(f) of K. More precisely, Of/Pf can
be obtained by adjoining an element ξ to K that satisfies f(ξ) = 0. To
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understand O∞/P∞ we can use Example 1.1.5. We saw that there is an
isomorphism of K(x), fixing K and mapping O∞ to Ox and P∞ to Px. Thus
O∞/P∞ ∼= Ox/Px ∼= K.

In the case where f(x) = x− a it is convenient to write Pa := Px−a and
Oa := Ox−a, respectively. We can interpret the residue class map as follows:
For some u = g/h, h(a) 6= 0

u(x)− u(a) =
g(x)h(a)− h(x)g(a)

h(a)h(x)

holds. Since x−a divides the numerator of the right side we conclude u(x)+

Pa = u(a) + Pa. Keeping our interpretation K̃ ⊆ Oa/Pa in mind, u + Pa
may be interpreted as the value of u at a. If u is a quotient as above but
h(a) = 0, g(a) 6= 0, u does not lie in Oa. In fact x−a divides h and therefore
a may be seen as pole of h. The following definition generalises this notion
to arbitrary function fields and places:

Definition 1.3.4. Let F/K be a function field and P a place of F . Denote
by O its valuation ring. For u ∈ O we write u(P) for the residue class of u
modulo P and call this the value of u taken by P . If u(P) = 0, i.e. u ∈ P ,
then P is called a zero of u. If u /∈ O the place P is said to be a pole of u.

Remark. P is a pole of u if and only if P is a zero of u−1. This is just a
reformulation of the fact that u−1 ∈ P if and only if u /∈ O.

Proposition 1.3.5. Let F/K be an algebraic function field, z ∈ F an ele-
ment which is transcendental over K. Then z has at least one zero and one
pole.

Proof. zK[z] is a proper ideal of K[z] since z is transcendental over K.
Therefore Theorem 1.2.1 applies to K[z] and zK[z]. Thus there is a place P
of F with z ∈ P . Hence P is a zero of z. Similarly we find a zero Q of z−1.
So Q is a pole of z.

For F = K(x) each place P is a principal ideal, i.e. there is a generating
element t ∈ O such that P = tO. In fact, if P = Pf (f ∈ K[x] irreducible)
one can choose t = f . If O = O∞ a possible choice is t = 1/x. In the case
O = Of suppose that there is an element u = g/h which belongs to fnO
for all n ≥ 0. Then u = fngn/hn with gn and hn relatively prime and their
quotient lying in O. So ghn = hfngn and since f does not divide hn, fn

must divide g. So g = 0 and therefore u = 0. The same holds in the case
O = O∞. We thus found an element t ∈ O with the properties
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1.) P = tO

2.)
⋂∞
n=0 t

nO = {0}.

From now on F/K may be an arbitrary function field and P one of its
places. We assume that there is an element t ∈ O with the properties above.
Indeed this is always the case as will be shown later. For any u ∈ F there is
some integer n with u ∈ tnO: If u ∈ O one can choose n = 0. If u /∈ O then
u−1 ∈ O. Hence there is an integer m such that u−1 ∈ tmO, u−1 /∈ tm+1O.
Therefore t−mu−1 ∈ O and t−mu−1 /∈ tO = P . So this element is invertible in
O and thus u = t−m(t−mu−1)−1 ∈ t−mO. We conclude that for any non-zero
element u of F there is a largest integer n such that u ∈ tnO. If t̃ is another
element with the above two properties then t̃ ∈ P = tO. So t̃/t ∈ O and
by symmetry t/t̃ ∈ O. These quotients (and therefore all its powers) are
invertible in O. Consequently tmO = t̃m(t/t̃)mO = t̃mO. So the definition
of n does not depend on the choice of t but only on P . Thus we will denote
the largest integer n with u ∈ tnO by vP(u) := n.

We now consider the rational function field C(x)/C. For u ∈ C(x) there
is the following interpretation of va(u) := vPa(u), a ∈ C. If u(a) = 0 then
va(u) is the multiplicity of a as a zero of u. If a is a pole then −va(u) is the
multiplicity of this pole. And va(u) = 0 if and only if a is neither a pole nor
a zero of u.

Proposition 1.3.6. Let F/K be an algebraic function field and P one of its
places. Then P is a principal ideal of the corresponding valuation ring O. In
particular there exists an element t ∈ P with P = tO and

⋂∞
n=0 t

nO = {0}.

Proof. Fix an arbitrary non-zero element z0 ∈ P . We use Lemma 1.3.2 where
we set n = 1, u1 = 1. If we have k+1 elements ti with the properties t0 = z0,
ti/ti+1 ∈ P , tk = 1 the lemma states that k ≤ [F : K(z0)]. Assume that k is
chosen maximally and define t := tk−1. We shall see that t is a generator of
P .

First assume that there is a z ∈ P which is not an element of tO. I.e.
z/t /∈ O, hence t/z ∈ P . But then t0, t1, . . . , tk−1 = t, t/z, tk = 1 is a sequence
with k + 1 elements that fulfils the above properties which contradicts the
choice of k. This shows the inclusion P ⊆ tO. Since t ∈ P and P is an ideal
we conclude that P = tO.

Assume z ∈ tmO for a non-zero element z ∈ P and some m ∈ N. Then
we may write z = t0w0 = t1w1 = . . . = tmwm with elements wi ∈ O. Since
wi/wi+1 = t ∈ P and wm−1 = wmt ∈ P we may use Lemma 1.3.2 (again with
n = 1) for the sequence z = w0, w1, . . . , wm−1, 1. This shows m ≤ [F : K(z)].
Thus we see z /∈ ∩∞n=0t

nO.
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The generator t is sometimes called a prime element for P . The above
proposition shows that for any u ∈ F× the notion of the largest integer vP(u)
such that u ∈ tvP (u)O is well-defined in any function field.

Definition 1.3.7. Let F/K be a function field, O a valuation ring and P
its place. Take a prime element t for P . For u ∈ F× we define

vP(u) := max{m ∈ Z : u ∈ tmO}.

vP is called the valuation at the place P . This definition does not depend
on the choice of the generating element t but only on P . If u = 0 we
set vP(u) := ∞. If n = vP(u) > 0 we call P a zero of order n of u. If
n = vP(u) < 0 we call P a pole of order −n of u.

The following lemma will summarize some of the properties of vP . Indeed
in the case of the function field C(x)/C, keeping the interpretation of va(u)
as the order of the pole or zero a of u in mind, these are well known.

Lemma 1.3.8. Let P be a place of a function field F/K and vP be defined
as above. Take u,w ∈ F×, then the following properties hold.

1.) Fix a prime element t for P. Then u has a unique representation of
the form u = tvP (u)s with s ∈ O×.

2.) Whenever there is a representation u = tns with s ∈ O× we have
n = vP(u).

3.) vP(uw) = vP(u) + vP(w)

4.) vP(u+ w) ≥ min(vP(u), vP(v))

5.) vP(a) = 0 for all a ∈ K̃ \ {0}

6.) If vP(u) 6= vP(w) then vP(u+ w) = min(vP(u), vP(w)).

Proof.

1.) Set n := vP(u). By definition there is a representation of the form
u = tnz where z ∈ O. But z cannot be an element of P = tO since
otherwise z = tz′ for some z′ ∈ O and thus u ∈ tn+1O. Clearly, z is
unique.

2.) By assumption u ∈ tnO. Suppose u = tns ∈ tmO for some m > n.
Then s ∈ tm−nO ⊆ tO = P so s is not invertible in O which is a
contradiction. Hence n = vP(u).



12 CHAPTER 1. ALGEBRAIC FUNCTION FIELDS

3.) Set m := vP(u), n := vP(w). Then there are s1, s2 ∈ O× such that
u = tms1, w = tns2. Therefore uw = tm+ns1s2. Since s1s2 ∈ O× the
second point yields vP(uw) = m+ n.

4.) Set m,n, s1, s2 as before. Wlog suppose m ≤ n. Then u+w = tm(s1 +
tn−ms2) ∈ tmO and consequently vP(u+ w) ≥ m = min(m,n).

5.) Since K̃ ⊆ O we have a ∈ O. But a is invertible in O, so a /∈ P = tO.
Hence vP(a) = 0.

6.) Wlog we may assume vP(u) < vP(w). Suppose the claim is not true,
i.e. vP(u + w) > vP(u). Note that vP(w) = vP(−w) by 3.) and 5.).
Together with 4.) this leads to

vP(u) = vP((u+ w)− w) ≥ min(vP(u+ w), vP(w)) > vP(u)

which clearly is a contradiction.

Statement 6.) is sometimes called the strict triangle inequality .

Remark. The function vP determines O uniquely. It is easily seen from the
definition of vP that

O = {z ∈ F : vP(z) ≥ 0}
P = {z ∈ F : vP(z) > 0}
O× = {z ∈ F : vP(z) = 0} .

The next lemma will turn out to be helpful. It shows that if a valuation
ring contains another they have to be equal.

Lemma 1.3.9. A valuation ring O of a function field F/K is a maximal
subring of F .

Proof. Take an element z ∈ F \ O. We have to show that F = O[z]. If we
write P for the place of O then vP(z) < 0. For an arbitrary y ∈ F

vP(yz−k) = vP(y)− kvP(z) ≥ 0

if we choose k large enough. Therefore u := yz−k ∈ O and so y = uzk ∈ O[z]
which concludes the proof.
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1.4 Independence of Valuations

In this section we will develop a fundamental theorem about the possible
behaviour of an element u of a function field. To get an idea of what it
is about let us consider the rational function field C(x)/C. Fix an element
a ∈ C and two elements u,w ∈ C(x). Then the Laurent series expansion of
their difference at a is of the form

u(x)− w(x) =
∞∑
k=r

(uk − wk)(x− a)k

where uk, wk ∈ C and r is the least integer such that uk 6= 0 or wk 6= 0.
From this we see that ur = wr, ur−1 = wr−1, . . . , um−1 = wm−1, um 6= wm if
and only if (x− a)m divides u(x)− w(x), but (x− a)m+1 does not, which is
equivalent to va(u− w) = m.

Consider now the following problem: Given distinct complex numbers
ai, rational functions wi ∈ C(x) and integers mi for 1 ≤ i ≤ n. Is there
a function u ∈ C(x) with the property that its Laurent series expansion
coincides with that of wi at ai up to the index mi for all i? I.e. is there some
u ∈ C(x) that fulfils the n conditions

va(u− wi) = mi

simultaneously? The main result of this section states that this is indeed
possible. It is formulated in the much wider sense of an arbitrary function
field. It is called “independence of valuations” since it states that the be-
haviour of a function at a given finite set of places does not imply anything
about the behaviour at another place. In the literature it is also refered to
as “weak approximation theorem”.

Theorem 1.4.1 (Independence of Valuations). Let F/K be a function field
and n > 0 an integer. For 1 ≤ i ≤ n fix arbitrary elements wi ∈ F , distinct
places Pi and integers mi. We abbreviate vPi

as vi. Then there is an element
u ∈ F with the property

vi(u− wi) = mi

for all i ≤ n.

Proof. The proof is rather technical and therefore divided into four steps:

1.) There exists some y ∈ F such that v1(y) > 0, vi(y) < 0 for i = 2, . . . , n.
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2.) There is some w ∈ F with the properties v1(w−1) > m1 and vi(w) > mi

for i = 2, . . . , n.

3.) Given y1, . . . , yn ∈ F then there is a z ∈ F such that vi(z − yi) > mi

for all i ≤ n.

4.) Final proof.

Proof of 1.) Denote by Oi the valuation ring of Pi. We proof this step by
induction on n. For n = 2 there are elements y1 ∈ O1 \ O2 and y2 ∈ O2 \ O1

by Lemma 1.3.9. So v1(y1) ≥ 0, v1(y2) < 0, v2(y2) ≥ 0, v2(y1) < 0. Therefore
y := y1/y2 has the desired property. For n > 2 we start with the induction
hypothesis v1(w) > 0, v2(w) < 0, . . . , vn−1(w) < 0 for some w ∈ F . Choose
z ∈ F such that v1(z) > 0, vn(z) < 0 and an integer r ≥ 1 such that
rvi(w) 6= vi(z) for all i ≤ n−1. If we set y := z+wr then of course v1(y) > 0
and for 2 ≤ i ≤ n

vi(y) = vi(z + wr) = min(vi(z), rvi(w)) < 0

by the strict triangle inequality stated in Lemma 1.3.8 and the choice of w
and z.

Proof of 2.) Choose y with the properties stated in 1.) and set w :=
(1 + ys)−1 for some s ∈ N. Then

v1(w − 1) = v1(−ys(1 + ys)−1) = sv1(y)− v1(1 + ys) =

sv1(y)−min(v1(1)︸ ︷︷ ︸
=0

, sv1(y)︸ ︷︷ ︸
>0

) = sv1(y)

vi(w) =− vi(1 + ys) = −min(vi(1)︸︷︷︸
=0

, svi(y)︸ ︷︷ ︸
<0

) = −svi(y)

for 2 ≤ i ≤ n. If we choose s sufficiently large, w fulfils the required proper-
ties.

Proof of 3.) Take s ∈ Z with vi(yj) ≥ s for all i, j ≤ n. Using step 2.) n
times we find ŵ1, . . . , ŵn such that

vi(ŵi − 1) >mi − s
vi(ŵj) >mi − s for all j 6= i.

For arbitrary i, j ≤ n, j 6= i this choice leads to

vi(ŵjyj) = vi(ŵj) + vi(yj) > (mi − s) + s = mi.
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An analogous calculation shows vi((ŵi − 1)yi) > mi. Define z :=
∑n

j=1 ŵjyj,
then

vi(z − yi) = vi(
n∑
j=1

ŵjyj − yi) ≥ min(ŵ1y1, . . . , (ŵi − 1)yi, . . . , ŵnyn) > mi.

Proof of 4.) To finish the proof choose z ∈ F with vi(z − wi) > mi as
in the previous step. We also find zi ∈ F such that vi(zi) = mi (simply set
zi := tmi

i for a generating element ti of Pi). Using step 3.) a second time
gives z′ ∈ F such that vi(z

′ − zi) > mi. Now we obtain

vi(z
′) = min(vi((z

′ − zi), vi(zi)) = mi.

By setting u := z + z′ we see that

vi(u− wi) = vi((z − wi) + z′) = min(vi(z − wi), vi(z′)) = mi.

Thus we found an element u ∈ F with the desired features.

1.5 Divisors

Theorem 1.5.1. Let P1, . . . ,Pr be zeros of some u ∈ F×, F/K being a
function field. Then

r∑
i=1

vPi
(u) deg(Pi) ≤ [F : K(u)].

Thus u can only have finitely many poles and zeros.

Proof. In order to prove this set vi := vPi
, ei := vi(u) and denote by Oi the

valuation ring of Pi for 1 ≤ i ≤ r. Choose elements of F in the following
way:

• For 1 ≤ i ≤ r choose ti such that vi(ti) = 1 and vk(ti) = 0 for k 6= i.
This is possible due to the Theorem of Independence of Valuations.

• For 1 ≤ i ≤ r we choose ui,1, . . . , ui,di such that their residue classes
modulo Pi form a basis of Oi/Pi as a K-vector space (i.e. di = degPi).

• For 1 ≤ i ≤ r, 1 ≤ j ≤ di choose elements zi,j ∈ F such that vi(ui,j −
zi,j) > 0 and vk(zi,j) ≥ ek for k 6= i. Note that zi,j ≡ ui,j modulo Pi.
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We claim that the elements t`izi,j, 1 ≤ i ≤ r, 1 ≤ j ≤ di, 0 ≤ ` ≤ ei − 1
are linearly independent over K(u). This will proof our claim since there are∑r

i=1 eidi =
∑r

i=1 vi(u) degPi of these elements.
Assume that there exist qi,j,`(u) ∈ K(u) such that

r∑
i=1

di∑
j=1

ei−1∑
`=0

qi,j,`(u)t`izi,j = 0.

Wlog we may assume that qi,j,`(u) ∈ K[u] and not all of these polynomials
are divisible by u. Choose k,m such that 1 ≤ k ≤ r, 0 ≤ m ≤ ek − 1 and

u|qk,j,`(u) for all j ≤ dk, ` < m

u - qk,j,m(u) for some j ≤ dk.

Since u ∈ Ok we have K[u] ⊆ Ok and thus vk(qi,j,`(u)) ≥ 0. Multiplying
the above equation with t−mk and evaluating vk at the summands shows the
following: If i 6= k we have

vk(qi,j,`(u)t`it
−m
k zi,j) = vk(qi,j,`(u))︸ ︷︷ ︸

≥0

+ vk(t
`
i)︸ ︷︷ ︸

=0

+ vk(t
−m
k )︸ ︷︷ ︸

=−m

+ vk(zi,j)︸ ︷︷ ︸
≥ek

≥ ek −m > 0.

Now consider the case i = k, ` 6= m. If ` < m then u|qk,j,`(u) and thus
vk(qk,j,`(u)) = vk(uq̃k,j,`(u)) = vk(u) + vk(q̃k,j,`(u)) ≥ vk(u), which gives

vk(qk,j,`(u)t`−mk zk,j) = vk(qk,j,`(u)) + vk(t
`−m
k ) + vk(zk,j) ≥

vk(qk,j,`(u)) + vk(t
`−m
k ) ≥

{
vk(u) + `−m ≥ ek −m > 0, ` < m

0 + `−m > 0, ` > m

Consequently for all (i, `) 6= (k,m) we have qi,j,`(u)t`it
−m
k zi,j ∈ Pk. Therefore

dk∑
j=1

qk,j,m(u)zk,j ∈ Pk.

Since u ∈ Pk we have qk,j,m(u) ≡ qk,j,m(0) modulo Pk for 1 ≤ j ≤ dk. From
zk,j ≡ uk,j modulo Pk we see

dk∑
j=1

qk,j,m(0)uk,j ∈ Pk.

So qk,j,m(0) = 0 and thus u|qk,j,m(u) for all j ≤ dk, contradicting our choice
of k and m.
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Definition 1.5.2.

• A divisor of a given function field F/K is a formal product of the form

D =
∏
P∈P

PdP

where P denotes the set of all places of F , dP ∈ Z and dP 6= 0 for only
finitely many P ∈ P. Divisors are multiplied by the rule∏

P∈P

PdP ·
∏
P∈P

PeP :=
∏
P∈P

PdP+eP .

This makes the set of all divisors an abelian group. It is called the
divisor group of F . The neutral element is the product where all ex-
ponents are zero and is referred to as the unit divisor . It is denoted
by 0. We interpret P0 ∈ P as a divisor by setting dP0 = 1 and dP = 0
for P 6= P0. For a divisor D we denote by D−1 the inverse element.
Exponentiation of the form Dn, n ∈ Z, is defined in the obvious way.

• For a given x ∈ F× we define the zero divisor and the pole divisor by

(x)0 :=
∏
P∈Z

PvP (x)

(x)∞ :=
∏
P∈N

P−vP (x)

where Z denotes the set of zeros of x and N the set of poles. We use
the convention that places not occurring in the product have exponents
equal to zero. The principal divisor of x is defined by (x) := (x)0 ·(x)−1

∞ .
A principal divisor is a divisor of the form D = (z) for some z ∈ F×.
By Lemma 1.3.8, (xy) = (x) · (y), so x 7→ (x) is a homomorphism
from (F×, ·) to the divisor group. So the set of principal divisors is a
subgroup of the divisor group.

• For a divisor D with exponents dP we will also write vP(D) := dP in
analogy to the notation for the order function at P . Thus we may write

D =
∏
P∈P

PvP (D) as well as

(x) =
∏
P∈P

PvP (x).
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We shall refer to P as a zero of D if vP(D) > 0 and call P a pole of D
if vP(D) < 0.

• Let D1,D2 be divisors with associated exponents vP(D1) and vP(D2).
We say that D1 devides D2 and write D1 ≤ D2 if vP(D1) ≤ vP(D2) for
all P ∈ P. A positive divisor D is a divisor with the property D ≥ 0,
i.e. a divisor without poles.

• The support of a divisor D is the set of places P where vP(D) is
non-zero, i.e.

suppD := {P ∈ P : vP(D) 6= 0} .

Remark. The divisor group can be interpreted as the free abelian group with
generating set P.

Remark. If P is a place of degree one and O is the corresponding valuation
ring then K̃ = O/P . So for z ∈ O the residue class z(P) := z + P is an

element of K̃. If z /∈ O we set z(P) := ∞. If K is an algebraically closed

field then K̃ = K and there is the following interpretation for the elements
of F : Since O/P is an algebraic extension of K, it must be of dimension one,
i.e. all places are of degree one. So identifying z with the map{

P→ K ∪ {∞}
P 7→ z(P)

all elements of the function field are seen to be functions from P (the set
of places) to K. Therefore, elements of an arbitrary function field F/K are
often refered to as functions .

Every divisor D of a function field F gives rise to a certain subset of F .
This set may be interpreted as the set of all functions with prescribed zeros
and allowed poles of a certain order described by the divisor. This set is
called the Riemann-Roch space. It is one of the fundamental definitions of
this chapter and will be object of further investigation.

Definition 1.5.3. Let F/K be a function field and D one of its divisors.
The Riemann-Roch space is defined by

L(D) : = {z ∈ F | vP(z) ≥ −vP(D) for all P ∈ P}
=
{
z ∈ F×

∣∣(z) ≥ D−1
}
∪ {0}

=
{
z ∈ F×

∣∣D · (z) is positive
}
∪ {0} .
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L(D) is the set of all elements z ∈ F such that D · (z) has no pole. In
other words: If

D = Pa11 . . .Pamm Q
−b1
1 . . .Q−bnn

with ai, bj > 0 and places Pi,Qj of F then L(D) consists of those elements
that have zeros of order at least bj at Qj and poles only in P = Pi with

maximal order ai. Since multiplication with non-zero elements of K̃ does
not change anything about poles and zeros of some z ∈ F the Riemann-Roch
space L(D) is closed under multiplication by elements of K̃. 4.) of Lemma
1.3.8 shows that it is also closed under addition. So L(D) is a subspace of F
as a vector space over the base field K.

Definition 1.5.4. Let F/K be a function field and D a divisor. We define
the degree of D by

deg(D) :=
∑
P∈P

vP(D) deg(P).

This sum is well defined since there are only finitely many summands not
equal to zero. The dimension ofD is the dimension of the associated Riemann
Roch space

`(D) := dimK(L(D)).

As a consequence of the following lemma we shall see that the dimension
of a divisor is always finite.

Lemma 1.5.5. Let F/K be a function field, D1,D2 divisors such that D1 ≤
D2. Then L(D1) is a subspace of L(D2) and

dimK(L(D2)/L(D1)) ≤ deg(D2)− deg(D1).

Proof. For any z ∈ L(D1) we have vP(z) ≥ −vP(D1) ≥ −vP(D2), hence
z ∈ L(D2). To prove the second statement it is convenient to consider the
special case D2 = D1 · P for a place P of F (with corresponding valuation
ring O). Let u ∈ F be an element with vP(u) = vP(D2) = vP(D1) + 1. Such
a choice is possible by Theorem 1.4.1. Consider the K-linear map

f :

{
L(D2)→ O/P
z 7→ (uz)(P)

.

This is well defined since vP(uz) = vP(D2)+vP(z) ≥ 0, so uz ∈ O. z ∈ ker(f)
if and only if uz ∈ P or equivalently vP(uz) ≥ 1. This holds if and only if
vP(z) ≥ 1 − vP(u) = −vP(D1). Hence ker(f) = L(D1). Therefore there is



20 CHAPTER 1. ALGEBRAIC FUNCTION FIELDS

a linear, injective map from L(D2)/L(D1) into the residue class field of O.
This shows

dimK(L(D2)/L(D1)) ≤ dimK(O/P) = deg(P) = deg(D2)− deg(D1).

Now the general case follows easily by induction on the sum of exponents of
D2 · D−1

1 : Assume that the inequality is already proven for the case D1 · P ≤
D2. Using the well-known fact W/V ∼= (W/U)/(V/U) for arbitrary vector
spaces U ≤ V ≤ W we obtain

dimK(L(D2)/L(D1)) = dimK(L(D2)/L(D1P)) + dimK(L(D1P)/L(D1)) ≤
deg(D2)− deg(D1P) + deg(D1P)− deg(D1) = deg(D2)− deg(D1).

Corollary 1.5.6. For a function field F/K and a divisor D the dimension
`(D) is always finite. In particular

`(D) ≤ deg(D+) + [K̃ : K]

where D+ is defined by vP(D+) = vP(D) if this integer is positive and
vP(D+) = 0 otherwise.

Proof. The definition shows D ≤ D+ and the latter is a positive divisor. By
Proposition 1.3.5 every element of F that is transcendental over K has a
pole, so L(0) = K̃. Thus the previous lemma yields

`(D+) = dimK(L(D+)/L(0)) + dimK(L(0)) ≤ deg(D+) + [K̃ : K] <∞

and the inequality follows from L(D) ⊆ L(D+).

We already saw that in the case F = K(x) the degrees of the places are
of the form

deg(Pf ) = deg(f), for f ∈ K[x] irreducible

deg(P∞) = 1.

Any non-zero element u ∈ K(x) may be written in the form

u = fa11 · . . . · famm g−b11 · . . . · g−bnn

with distinct irreducible polynomials fi, gj ∈ K[x] and positive integers ai, bj.
Let us denote the numerator by u1 and the denominator by u2. Wlog assume
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that a1 + . . .+ am ≥ b1 + . . .+ bn. For the zero divisor of u this implies

deg((u)0) =
m∑
i=1

deg(Pfi)vfi(u) =

m∑
i=1

deg(fi)ai = deg(u1).

Using v∞(f/g) = deg(g)− deg(f) for polynomials f, g we see that

deg((u)∞) =
n∑
j=1

(− deg(Pgj))vgj(u)− deg(P∞)v∞(u) =

n∑
j=1

deg(gj)bj − (deg(u2)− deg(u1)) = deg(u1)

where deg(ui) is the degree of the polynomial ui. Thus the degrees of (u)0

and (u)∞ coincide and deg((u)) = deg((u)0) − deg((u)∞) = 0. This means
that for elements of K(x) there are always as much poles as zeros if we count
them weighted by the degrees of poles and zeros. Indeed, this is also the case
for arbitrary function fields.

Theorem 1.5.7. Let F/K be a function field. For z ∈ F , z transcendental
over K, the following formula holds:

deg((z)0) = deg((z)∞) = [F : K(z)]

Proof. Using Theorem 1.5.1 for z−1 yields deg((z)∞) = deg((z−1)0) ≤ [F :
K(z−1)] = [F : K(z)] =: n. Therefore it remains to show that n ≤ deg((z)∞).
We use the abbreviation

B := (z)∞ =
m∏
i=1

P−vPi
(z)

i

where Pi, 1 ≤ i ≤ m, denote the poles of z. Then B is a positive divisor. Let
u1, . . . , un be a basis of F/K(z) and fix a positive divisor C with the property
(uj) ≥ −C for all j ≤ n. Take an arbitrary integer r ≥ 0. Then the elements
ziuj, 0 ≤ i ≤ r, 1 ≤ j ≤ n are linearly independent over K since the zi are
linearly independent in K(z) (as a K-vector space) and the uj are linearly
independent in F (as a K(z)-vector space). The ziuj are elements of L(BrC)
since

vP(ziuj) = ivP(z) + vP(uj) ≥ −ivP(B)− vP(C) ≥ −vP(BrC).
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So there are (r + 1)n linearly independent elements in L(BrC). Since BrC
is a positive divisor the last corollary gives (r + 1)n ≤ `(BrC) ≤ r deg(B) +

deg(C) + [K̃ : K]. This is equivalent to

n ≤ deg(B)− n− deg(C)− [K̃ : K]

r
.

Since r may be chosen arbitrarily large we obtain n ≤ deg(B) as desired.
The statement about (z)0 easily follows from deg((z)0) = deg((z−1)∞) =

[F : K(z−1)] = [F : K(z)].

Corollary 1.5.8. Let F/K be a function field and z ∈ F×. Then deg((z)) =
0.

We call two divisors D1, D2 equivalent if their quotient D1D−1
2 is a prin-

cipal divisor. I.e. if there is a z ∈ F× such that D1 = (z) · D2.

Lemma 1.5.9. If D1, D2 are equivalent then L(D1) is isomorphic to L(D2)
(as a K-vector space) and deg(D1) = deg(D2).

Proof. By assumption D1 = (z) ·D2. Therefore we can consider the K-linear
map u 7→ uz from L(D2) to L(D1). Similarly, u 7→ uz−1 sends elements
from L(D1) to L(D2). Since the two mappings are inverse to each other the
Riemann-Roch spaces are isomorphic.

The second claim follows from Corollary 1.5.8 since deg(D1) = deg((z))+
deg(D2) = deg(D2).

The following lemma will provide an upper bound for deg(D) − `(D)
where D is an arbitrary divisor of F . The important thing is that this bound
is independent of the divisor D.

Lemma 1.5.10. Let F/K be a function field. Then there is an integer γ
such that

deg(D)− `(D) ≤ γ

for all divisors D of F/K.

Proof. Given divisors D1 ≤ D2 recall that

`(D2)− `(D1) = dimK(L(D2)/L(D1)) ≤ deg(D2)− deg(D1)

by Lemma 1.5.5, so deg(D1)−`(D1) ≤ deg(D2)−`(D2). Fix a transcendental
element z ∈ F and consider the divisor B := (z)∞. In the proof of Theorem
1.5.7 we showed the existence of a positive divisor C, depending on z such
that `(BrC) ≥ (r + 1) deg(B) for all positive integers r. Lemma 1.5.5 gives

`(BrC)− `(Br) = dimK(L(BrC)/L(Br)) ≤ deg(C)
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and thus

deg(Br)−
γ:=︷ ︸︸ ︷

(deg(C)− deg(B)) = (r + 1) deg(B)− deg(C) ≤
`(BrC)− deg(C) ≤ `(Br)

follows. Now we want to extend the inequality deg(Br)− `(Br) ≤ γ for ` ≥ 0
to arbitrary divisors D. For a given D we will show the existence of divisors
D̂, D′ and an integer r such that D ≤ D̂, D′ ≤ Br and D̂,D′ being equivalent.
From that we obtain

deg(D)− `(D) ≤ deg(D̂)− `(D̂)
∗
=

deg(D′)− `(D′) ≤ deg(Br)− `(Br) ≤ γ

where * follows from Lemma 1.5.9. For a fixed D choose D̂ ≥ D such that
D̂ is positive. Then BrD̂−1 ≤ Br and thus `(Br) − `(BrD̂−1) ≤ deg D̂ by
Lemma 1.5.5. Therefore

`(BrD̂−1) ≥ `(Br)− deg(D̂) ≥ deg(Br)− γ − deg(D̂).

The second inequality holds because of our choice of γ. If we choose r
sufficiently large then the right hand side is positive and hence we may select
a non-zero element z ∈ L(BrD̂−1). Setting D′ := (z)−1D̂ shows that D′ and

D̂ are equivalent and that D′ = (z)−1D̂ ≤ BrD̂−1D̂ = Br which concludes
the proof.

The previous lemma shows that the following definition makes sense.

Definition 1.5.11. Set κ := [K̃ : K]. The genus g of an algebraic function
field F/K is the integer defined by

g := max {deg(D)− `(D) + κ | D is a divisor of F} .

The genus is a non-negative integer since deg(0)−dim(0)+κ = 0−κ+κ = 0.
The definition of the genus shows

Corollary 1.5.12 (Riemann’s Theorem). Let F/K be an algebraic function
field of genus g and D be a divisor. Then the inequality

deg(D) + κ− g ≤ `(D)

holds.
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If D is a positive divisor this can be combined with Corollary 1.5.6 and thus

deg(D) + κ− g ≤ `(D) ≤ deg(D) + κ.

The genus is an important invariant in a function field. The inequality in
1.5.12 can be used to show that there exist functions with certain prescribed
zeros and poles only at allowed places: If one chooses the divisor D such that
the left hand side is positive, this assures that there is a non-zero element in
the associated Riemann-Roch space, i.e. there exists a non-trivial example
fulfilling these properties. Note that this result is essentially different from
Theorem 1.4.1 since in the latter prescribed zeros or poles at some places
could lead to poles at other places.

Corollary 1.5.13. For a function field F/K there is an integer c such that

`(D) = deg(D) + κ− g

for every divisor D with deg(D) ≥ c.

Proof. We choose a divisor D0 such that `(D0) = deg(D0) − g + κ and set
c := deg(D0) + g. Then

`(DD−1
0 ) ≥ deg(DD−1

0 )− g + κ ≥ c− deg(D0)− g + κ = κ.

So there is some non-zero element z ∈ L(DD−1
0 ). Then (z) ≥ D−1D0 and so

D′ := (z)D ≥ D0. Using Lemma 1.5.9 we see

deg(D)− `(D) = deg(D′)− `(D′) ≥ deg(D0)− `(D0) = g − κ.

Since deg(D)− `(D) ≤ κ− g always holds this shows the claim.



Chapter 2

The Riemann-Roch Theorem

So far we have developed lower and upper bounds for `(D). In the case where
D is a positive divisor the gap between these bounds is equal to the genus g.
In the general case where D is not assumed to be positive this gap could grow
arbitrarily large. The next step is to develop an exact formula for `(D). This
is the Riemann-Roch Theorem. It is crucial in order to derive properties of
Goppa codes.

The original Riemann-Roch Theorem was not formulated in the setting
of algebraic function fields. It was a result in the context of Riemann sur-
faces. It can be shown that the field of meromorphic functions on a compact
Riemann surface is an algebraic function field over C in the sense of our def-
inition. In the 1920s the Riemann-Roch theorem was generalized by André
Weil, replacing the field of meromorphic functions of a compact Riemann sur-
face with a general function field (stemming from an arbitrary field). This
approach needs to translate the analytic machinery of the original theorem
in purely algebraic terms. It leads to rather technical definitions and proofs
which seem to appear from nowhere if they are not related to their original
counterparts. Therefore Section 2.1 tries to motivate some of the concepts
from their origin, i.e. the theory of compact Riemann surfaces, without div-
ing too deep into this subject. The only parts of the section required for the
rest of the chapter are Definitions 2.1.1 and 2.1.2. Therefore the reader may
as well omit the other parts.

2.1 Repartitions and Differentials

For this section a prior knowledge in complex analysis is assumed. However,
the reader does not have to be familiar with the basic theory of Riemann
surfaces. This section is based to a great extent on Chapter 12 of [11] which
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tries to show the conceptual abstraction undertaken by Weil. Another at-
tempt which assumes some previous knowledge about Riemann surfaces can
be found at the beginning of Chapter 6 of [12]. A good and compact intro-
duction to the theory of Riemann surfaces is [5]. To dive into the concepts
required for the proof of the Riemann-Roch Theorem in its original form it
is sufficient to read §1, §6, §9 and §16.

A Riemann surface is a connected topological Haussdorff space which is
locally homeomorphic to C. That is, there is a family of so called “charts”,
(Ui, ϕi) such that ϕi(Ui) ⊆ C and ϕi is a homeomorphism onto ϕi(Ui). It
carries a bit of extra structure to be able to define holomorphic and meromor-
phic functions. In particular, the compositions ϕj ◦ϕ−1

i |ϕi(Ui∩Uj) are assumed
to be holomorphic whenever Ui ∩ Uj is not empty. In this section we will
assume the Riemann surface to be compact. Examples of compact Riemann
surfaces include the Riemann sphere C∪{∞} which is homeomorphic to the
unit ball S2 and the complex torus T×T.1

Let X be a compact Riemann surface. One can define holomorphic and
meromorphic functions X → C (X → C ∪ {∞} respectively). There are
many analogies to holomporphic and meromorphic functions on a subset of
C. For example two holomorphic functions are equal if they coincide on a
set which has a limit point. It is also possible to define the order of a pole
of a meromorphic function as well as the residue at a point. A meromorphic
function has only finitely many poles. The set of all meromorphic functions
on X, denoted by M(X), is a field.

An advanced topic is the concept of a differential ω (also called meromor-
phic differential form of degree one, meromorphic 1-form or simply differ-
ential form). The definition of differentials is rather technical and not very
illuminating for our purposes so we will just state some of their properties.
The set of differentials is a one dimensional vector space over the field of
meromorphic functions M(X). It is possible to define zeros and poles of a
differential. There is also the notion of a holomorphic differential which can
be thought of a differential without poles. Further, one can consider the
residue Resa(ω) ∈ C at any point a ∈ X. A result about compact Riemann
surfaces states that a differential has only finitely many poles on X and
hence only finitely many points with non-zero residue. Differentials can be
integrated along a path2 γ on the Riemann surface. This produces a complex
number denoted by ∫

γ

ω.

1Here T = {z ∈ C : |z| = 1}.
2Here path refers to a piece-wise continuously differentiable curve.
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If f ∈M(X) then the product fω is again a differential form. Let us consider
a simply connected, open subset U ⊆ X and assume that the boundary ∂U
can be parameterised by a path. Hence the differential ω gives rise to a
function that maps each pair of such a subset and a meromorphic function
to a complex number3

rω : (U, f) 7→
∫
∂U

fω.

rω is C-linear in its second argument. Furthermore – similar to the well
known result from classical complex analysis – the integral has the property
that if fω is holomorphic on U , then rω(U, f) = 0. It is possible to show
that analogously to meromorphic functions on C

rω(U, f) =
∑
a∈U

Resa(fω).

holds. The sum always makes sense since as mentioned before only finitely
many summands are non-zero. This representation has the advantage that
we can extend it to arbitrary subsets U ⊆ X. A result about Riemann
surfaces states that the sum of all residues of a differential is equal to zero,
i.e. rω(X, f) = 0 for f ∈ M(X). To avoid working with pairs (U, f) we
define the set of repartitions:

Definition 2.1.1. Let F/K be an algebraic function field. A repartition is
a map Γ assigning an element f ∈ F to each place of F and which has only
finitely many distinct values. The set of all repartitions is denoted by R. We
write ΓP for the value of Γ at P and define vP(Γ) := vP(ΓP). If S is a set of
places f/S denotes the repartition which assigns f to every place in S and
which is zero elsewhere. If addition of two repartitions and multiplication
with an element of F is defined pointwise, R becomes a vectorspace over F .
Let D be a divisor of F . In analogy to the Riemann-Roch space we define
R(D) to consist of all repartitions Γ with vP(Γ) + vP(D) ≥ 0 for all places
P .

Remark. In the literature repartitions are also called adèles . They are usually
defined in a slightly different way: Most authors consider all maps Γ: P→ F
with Γ(P) ∈ OP for almost all P ∈ P as repartitions. In contrast, our space
is strictly included in this space.

Remark. Every repartition can be written as f1/S1 +. . .+fn/Sn with fi ∈ F
and the Si forming a partition of the set of all places. We interpret each
f ∈ F as the constant repartition assigning f to each place of F .

3For this function to be well defined this mapping has to be independent of the choice
of the parameterisation. We state without a proof that this is always the case.
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In the case of the function field of meromorphic functions on a Riemann
surface we identify each pair (U, f) with f/U . Using our new notation we
summarise the above mentioned properties of rω:

• rω : R→ C is linear

• rω(f/U) = 0 whenever fω has no poles in U

• rω(f) = rω(f/X) = 0 for any meromorphic function f ∈M(X)

The second property simply states that rω vanishes on all repartitions inR(D)
where D is chosen appropriately.4 The last two properties are equivalent to
the single property rω(Γ + f) = 0 for all Γ ∈ R(D), f ∈ M(X). Hence we
define differentials of an arbitrary function field in the following way:

Definition 2.1.2. Let F be an algebraic function field over K. For an
arbitrary divisor D define Y (D) := R(D) +F ≤ R. A K-linear map ω : R→
K is called differential if there is a divisor D such that ω vanishes on Y (D).
We denote the set of all differentials by Ω and the set of all differentials
vanishing on Y (D) by Ω(D).

Remark. If D1 ≤ D2 then Y (D1) ⊆ Y (D2). Therefore, if ω vanishes on
Y (D2) it does so on Y (D1), i.e. Ω(D2) ⊆ Ω(D1). If we define multiplication
K ×Ω→ Ω and addition Ω×Ω→ Ω pointwise, then Ω becomes a K-vector
space with Ω(D1) as a subspace. Indeed, if C, D are divisors, ω1 ∈ Ω(C),
ω2 ∈ Ω(D), α ∈ K, then αω1 vanishes on Y (C) and ω1 +ω2 vanishes on Y (B)
if we define B by vP(B) := min(vP(C), vP(D)).

2.2 The Weak Riemann-Roch Theorem

In this section we will define the index5 j(D) of a divisor. We will derive
a first formula for `(D) which depends on j(D), following the approach of
[11, chapter 12]. In a sense this only shifts the problem since the index is in
general hard to calculate. We shall express the index in a different way in
the next section which will lead to the final Riemann-Roch Theorem.

Definition 2.2.1. Let F be an algebraic function field over K and D one of
its divisors. As in the previous secion, R denotes the space of repartitions.
The index of D is defined as j(D) := dimK(R/Y (D)).

4More precisely: If ω has a pole of order n > 0 at a point a and P is the place

corresponding to a then vP(D)
!
= −n.

5In the literature the term index of speciality is also common.
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Remark. Recall our definition κ = [K̃ : K] from Section 1.5. Since both R

and Y (D) are vector spaces over K̃, so is R/Y (D). Hence if j(D) is finite
(as we shall see this is always the case) it is a multiple of κ. The index has
the following interpretation: Since some differential ω : R→ K that vanishes
on Y (D) corresponds to a linear functional R/Y (D)→ K in a natural way,
Ω(D) can be interpreted as the dual space of R/Y (D). Hence if the dimension
j(D) is finite, dimK(Ω(D)) = dimK(R/Y (D)) = j(D).

If C, D are divisors, C ≤ D, then R(C) ⊆ R(D) and Y (C) ⊆ Y (D). As we
will see, the corresponding factor spaces are always finite-dimensional. To
investigate the index of a divisor it is necessary to develop formulas that ex-
press these relative dimensions in terms of the degree of the involved divisors.
In order to do so we need the following generalisation of the Riemann-Roch
space:

Definition 2.2.2. Let F/K be a function field, D a divisor and S ⊆ P a
set of places. Then L(D,S) consists of those elements z ∈ F with vP(z) +
vP(D) ≥ 0 for all P ∈ S.

With this definition L(D) = L(D,P).

Lemma 2.2.3. Let F be an algebraic function field over K, S be a finite
set of places, C,D divisors such that C ≤ D. Then L(C,S) ⊆ L(D,S) and
dimK(L(D,S)/L(C,S)) =

∑
P∈S(vP(D)− vP(C)) deg(P).

Proof. The inclusion holds by definition. We show the inequality in the
special case where D = C + P for some place P ∈ S. The general case
follows by induction similar to the proof of Lemma 1.5.5. Choose elements
v1, . . . , vd ∈ OP such that their residual classes modulo P form a basis of
OP/P (as a K-vector space), i.e. d = degP . By Theorem 1.4.1 there is
some u ∈ F with vP ′(u) = −vP ′(D) for all P ′ ∈ S. For the same reason we
find xi, i ≤ d, such that

vP(vi − xi) ≥ 1

vP ′(xi) ≥ 0 for P ′ ∈ S \ {P}.

By the choice of the xi, vP(xi) ≥ 0, hence xiu ∈ L(D,S). We will show that
the xiu form a basis of L(D,S)/L(C,S).

Take an arbitrary z ∈ L(D,S). Then vP ′(zu−1) ≥ 0 for all P ′ ∈ S. In
particular zu−1 ∈ OP . Hence there is a representation zu−1 =

∑d
i=1 aivi +w

with ai ∈ K,w ∈ P . Since xi ≡ vi modulo P we may also write zu−1 =∑d
i=1 aixi + w̃, w̃ ∈ P . Multiplying this with u we get a representation of
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z in the desired kind if we can show that uw̃ ∈ L(C,S). We already know
that vP(w̃) ≥ 1. For a place P ′ ∈ S not equal to P , vP ′(zu−1) ≥ 0 and
w̃ =

∑d
i=1 aixi − zu−1 imply vP ′(w̃) ≥ 0. Hence w̃u ∈ L(C,S).

To show linear independence of the xiu, suppose there is a linear com-
bination of the form

∑d
i=1 aixiu ∈ L(C,S). Then vP(

∑d
i=1 aixi) + vP(u) ≥

−vP(C). Since vP(u) = −vP(D) = −vP(C)−1 this implies vP(
∑d

i=1 aixi) ≥ 1,

i.e.
∑d

i=1 aixi ∈ P . But the xi form a basis of OP/P , so ai = 0 for all
i ≤ d.

Corollary 2.2.4. With the same assumptions as for the previous lemma
suppose S contains the support of both C and D. Then

dimK(L(D,S)/L(C,S)) = deg(D)− deg(C)

Lemma 2.2.5. Let F/K be a function field, C, D divisors such that C ≤ D.

1.) R(C) ⊆ R(D) and dimK(R(D)/R(C)) = deg(D)− deg(C)

2.) Y (C) ⊆ Y (D) and dimK(Y (D)/Y (C)) = deg(D)−deg(C)−(`(D)−`(C))

Proof. The set inclusions in 1.) and 2.) follow immediately from the defini-
tions.

1.) Let S ⊆ P be a finite set of places containing the supports of both
C and D. If we can show that R(D)/R(C) and L(D,S)/L(C,S) are
isomorphic then the formula follows by the above corollary.

Define a map by taking u ∈ L(D,S) to u/S. Clearly u/S ∈ R(D) and
the so defined map ψ is linear. u/S ∈ R(C) if and only if u ∈ L(C,S).
So ψ gives rise to an injective linear map

ψ̂ : L(D,S)/L(C,S)→ R(D)/R(C).

To show that ψ̂ is surjective take some Γ ∈ R(D), i.e. vP(Γ) ≥ −vP(D)
for all places. By the Theorem of Independence of Valuations there is
some w ∈ F with the property vP(w − ΓP) ≥ −vP(C) for all P ∈ S.
vP(w) ≥ min(vP(w − ΓP), vP(ΓP)) ≥ −vP(D), so w is an element of
L(D,S). Γ has no poles outside S, so vP(w/S− Γ) ≥ −vP(C) for all
places P , i.e. w/S is congruent Γ modulo R(C).

2.) We will use the following two standard lemmas from linear algebra: If
W is a vector space and U, V are subspaces of W then
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U/U ∩ V ∼= (U + V )/V.

If U ⊆ V ⊆ W then

W/V ∼= (W/U)/(V/U).

Since Y (D) = R(D) + F = R(D) + Y (C) we obtain Y (D)/Y (C) ∼=
R(D)/R(D) ∩ Y (C) by the first relation. For Γ ∈ R(C) , y ∈ F the
definition shows that Γ+y ∈ R(D) if and only if y ∈ F ∩R(D) = L(D).
This leads to R(D) ∩ Y (C) = R(C) + L(D). Using all this we obtain

Y (D)/Y (C) ∼= R(D)/R(D) ∩ Y (C) =

R(D)/(R(C) + L(D)) ∼=
R(D)/R(C)

(R(C) + L(D))/R(C)
∼=

R(D)/R(C)
L(D)/R(C) ∩ L(D)

=
R(D)/R(C)
L(D)/L(C)

.

By 1.) the dimension of the numerator is equal to deg(D) − deg(C).
The dimension of the denominator equals `(D)− `(C) which completes
the proof.

Corollary 2.2.6. Let C ≤ D be divisors of F . Then dimK(Y (D)/Y (C)) ≤
`(C)− deg(C) + g − κ. If deg(D)− `(D) = g − κ then equality holds.

Proof. By Riemann’s Theorem deg(D)− `(D) ≤ g−κ. So this follows easily
from the previous lemma.

Theorem 2.2.7 (Weak Riemann-Roch Theorem). Let F/K be an algebraic
function field. Then for any divisor D the formula

`(D) = deg(D) + j(D)− g + κ

holds. In particular, j(D) is finite.

Proof. By the definition of the genus there is some divisor C with the property
deg(C) − `(C) = g − κ. This equality is also true for any divisor B ≥ C. If
we define B by vP(B) := max(vP(C), vP(D)) Corollary 2.2.6 gives

j(D) = dimK(R/Y (D)) ≥ dimK(Y (B)/Y (D)) = `(D)− deg(D) + g − κ.
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Define n := `(D)−deg(D) +g−κ and choose n+ 1 elements Γ0, . . . ,Γn ∈ R.
Since each of the Γi has only finitely many zeros and poles, defining

vP(B′) := max(vP(C), vP(D),−vP(Γ0), . . . ,−vP(Γn)), P ∈ P,

gives rise to a divisor B′ ≥ C. It has the properties Γi ∈ R(B′) for all i. Using
the above equality with B′ instead of B yields dimK(Y (B′)/Y (D)) = n and
therefore the Γi are linearly dependent.

Remark. Since dimK(Ω(D)) = j(D) we observe that this vector space is finite
dimensional for every divisor D.

If we set D to be the unit divisor 0 the Weak Riemann-Roch Theorem yields

Corollary 2.2.8. g = j(0) = dimK(R/Y (0)).

2.3 The Riemann-Roch Theorem

In this section we will prove the final version of the theorem. We shall
achieve this by assigning a certain divisor to each differential. We call divisors
stemming from a differential canonical divisors. It is possible to express the
index j(D) of a divisor as the dimension of a certain Riemann-Roch space
using both D and a fixed canonical divisor. Within this section we will follow
[14, chapter 1.5].

When we defined the set of differentials Ω of a function field F/K, we
saw that it is a K-vector space. Since the product of an element z ∈ F and a
repartition Γ ∈ R is defined6 we may introduce a multiplication F × Ω→ Ω
by

zω(Γ) := ω(zΓ).

Lemma 2.3.1. Let F/K be an algebraic function field, C,D be divisors,
ω ∈ Ω(C) and z ∈ L(D). Then zω ∈ Ω(CD−1).

Proof. We consider an arbitrary Γ ∈ Y (CD−1) and claim that zΓ ∈ Y (C).
Γ = ∆ + y for some ∆ ∈ R(CD−1) and y ∈ F . For an arbitrary place P

vP(z∆) + vP(C) = vP(z) + vP(D)︸ ︷︷ ︸
≥0

+ vP(∆) + vP(C)− vP(D)︸ ︷︷ ︸
≥0

≥ 0

so z∆ ∈ R(C) and zΓ ∈ Y (C). This shows zω(Γ) = ω(zΓ) = 0.

6In the canonical way (z · Γ)P = z · ΓP .
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Corollary 2.3.2. With the above defined multiplication Ω is an F -vector
space.

Proof. Take ω ∈ Ω and z ∈ F . Then ω ∈ Ω(D) for some divisor D and
z ∈ L((z−1)). By the above lemma zω ∈ Ω((z)D) ⊆ Ω.

Our next step is to prove that Ω as an F -vector space has a rather simple
structure:

Theorem 2.3.3. Let F/K be an algebraic function field, Ω be the space of
differentials. Then Ω is one-dimensional as an F -vector space.

Proof. First we will argue that Ω is not the zero space, i.e. that there is a
non-trivial differential. By Theorem 2.2.7

j(D) = `(D)− deg(D) + g − κ ≥ − deg(D)− κ

for an arbitrary divisor D. So if deg(D) ≤ −1−κ then j(D) ≥ 1 and therefore
Ω ⊇ Ω(D) 6= {0}. This shows that there are non-trivial differentials.

Now take differentials ω1, ω2. We want to show that they are linearly
dependent over F . Wlog we may assume both to be non-zero. For i = 1, 2
there is some divisor Di such that ωi ∈ Ω(Di). We take a divisor C which we
will specify later and consider the maps

ϕi :=

{
L(CDi)→ Ω(C−1)

z 7→ zωi
.

By Lemma 2.3.1 this function indeed maps into Ω(C−1). ϕi is also injective:
Since ωi 6= 0 there is some Γ ∈ R with the propery ωi(Γ) 6= 0. Hence if z 6= 0
we see from (zωi)(z

−1Γ) 6= 0 that zωi is non-zero.
A well known result from linear algebra is that if U1 and U2 are subspaces

of a finite-dimensional vector space V then

dim(U1 ∩ U2) ≥ dim(U1) + dim(U2)− dim(V ).

We will use this with Ui := ϕi(L(CDi)) and V := Ω(C−1) to show that
U1∩U2 6= {0} if we choose C appropriately. Recall that D 7→ deg(D)−`(D) is
monotone. Therefore if D0 has the property that equality holds in Riemann’s
Theorem and D ≥ D0 then this is true for D as well. So it is possible to
choose a positive divisor C such that

`(CDi) = deg(CDi)− g + κ

for i = 1, 2. Since C is positive `(C−1) = 0 and hence
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dimK(Ω(C−1)) = j(C−1) = `(C−1)− deg(C−1) + g − κ = deg(C) + g − κ.

Combining these equations with the inequality above gives

dim(U1 ∩ U2) ≥
(deg(CD1)− g + κ) + (deg(CD2)− g + κ)− (deg(C) + g − κ)

= deg(C) + deg(D1) + deg(D2) + 3(κ− g)

Since D1, D2, κ and g are fixed we may choose C in a way that makes the
right hand side positive. This shows that the intersection U1 ∩ U2 is not
trivial. Therefore we can pick elements z1, z2 ∈ F such that z1ω1 = z2ω2 6= 0
and hence ω2 = (z1/z2)ω1.

Lemma 2.3.4. Let F be an algebraic function field and ω 6= 0 a differential.
Then there exists a unique divisor W with the properties:

• ω vanishes on Y (W), i.e. ω ∈ Ω(W).

• For any divisor D for which ω vanishes on Y (D) we have D ≤ W.

Proof. By Corollary 1.5.13 we know that there is a constant c such that if
deg(D) ≥ c for some divisor D then `(D) = deg(D) + κ − g. This gives
j(D) = 0 or in other words Ω(D) = {0}. Therefore if ω ∈ Ω(D) then
deg(D) < c. So there are maximal elements in the set

{D : D is a divisor, ω ∈ Ω(D)} .
Now for D1, D2 define a divisor D1 ∨ D2 by

vP(D1 ∨ D2) := max(vP(D1), vP(D2))

for all places P . Then from the definition it is straightforward to see that
R(D1 ∨ D2) = R(D1) ∪ R(D2). Thus Y (D1 ∨ D2) = Y (D1) ∪ Y (D2), so ω
vanishes on Y (D1 ∨D2) if and only if it vanishes on both Y (D1) and Y (D2).
This yields Ω(D1∨D2) = Ω(D1)∩Ω(D1) which shows that the above defined
set is closed under ∨. So there is exactly one maximal element W which is
also the greatest element.

Definition 2.3.5. Let ω be a non-zero differential of a function field F/K.
Then the unique maximal divisor W with the property that ω ∈ Ω(W) is
called the divisor of ω and denoted by (ω). Every divisor stemming from
a differential is said to be a canonical divisor . The order function of a
differential is defined by vP(ω) := vP((ω)).
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Lemma 2.3.6. Let F/K be a function field, z ∈ F× and ω 6= 0 a differential.
Then (zω) = (z)(ω).

Proof. In the proof of Corollary 2.3.2 we showed the following: If ω vanishes
on Y (D) then zω vanishes on Y ((z)D). If we set D = (ω) we see that zω
vanishes on Y ((z)(ω)), hence (z)(ω) ≤ (zω). Substitution yields (z−1)(zω) ≤
(z−1zω) = (ω). Multiplying with (z) concludes the proof.

Definition 2.3.7. If D1,D2 are divisors then they are said to be equivalent
if there is some z ∈ F× such that D1 = (z)D2. Since deg((z)) = 0 equivalent
divisors are of the same degree.

Corollary 2.3.8. Any two canonical divisors are equivalent.

Proof. Consider two non-zero differentials ω1, ω2. Then by Theorem 2.3.3
there is some z ∈ F× such that ω1 = zω2. By the previous lemma (ω1) =
(z)(ω2).

From the next theorem the Riemann-Roch Theorem will follow easily. It
basically states that the linear injection we already considered in the proof
of Theorem 2.3.3 is surjective if the involved divisor C is a canonical divisor.

Theorem 2.3.9. Let D be an arbitrary divisor and W = (ω) be a canonical
divisor. Then

ϕ :

{
L(WD−1)→ Ω(D)

z 7→ zω

is an isomorphism. Therefore j(D) = `(WD−1).

Proof. We already saw that ϕ maps L(WD−1) into Ω(D) and that it is
injective. To prove surjectivity fix some element ω0 ∈ Ω(D) \ {0}. By
Theorem 2.3.3, ω spans Ω as an F -vector space, so there is an element z ∈ F
such that ω0 = zω. Using the privious corollary yields (z)W = (z)(ω) =
(zω) = (ω0) ≥ D. This shows z ∈ L(WD−1) which proves the claim.

Combining this with the weak Riemann-Roch Theorem gives:

Theorem 2.3.10 (Riemann-Roch Theorem). Let F/K be an algebraic func-
tion field. Fix some canonical divisor W of F/K. Then for an arbitrary
divisor D the following formula holds:

`(D) = deg(D) + `(WD−1) + κ− g
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Corollary 2.3.11. LetW be some canonical divisor. Then `(W) = g−κ+1
and deg(W) = 2g − 2κ.

Proof. For the first claim set D = 0 in the Riemann-Roch Theorem. This
gives

1 = `(0) = deg(0) + `(W) + κ− g = `(W) + κ− g.

The second claim follows by setting D =W :

g − κ+ 1 = `(W) = deg(W) + `(0) + κ− g = deg(W) + 1 + κ− g

Rearranging this equation concludes the proof.

A direct consequence of Riemann’s Theorem was Corollary 1.5.13. It showed
the existence of a certain integer c, depending only on the function field F/K,
such that `(D) = deg(D) + κ− g for all divisors D with degree greater than
or equal to c. We are now able to specify this constant:

Corollary 2.3.12. Let F/K be a function field and D a divisor such that
deg(D) > 2g − 2κ. Then

`(D) = deg(D) + κ− g.

Proof. Let W be a canonical divisor. The last corollary and our assumption
imply deg(WD−1) < 0. Thus `(WD−1) = 0 and so our claim follows from
the Riemann-Roch Theorem.

Remark. The bound of the above corollary is the best possible, since for a
canonical divisor W we have `(W) = g − κ + 1, whereas deg(W) + κ− g =
(2g − 2κ) + κ− g = g − κ.

2.4 Local Components of Differentials

For the definition of Goppa codes in Chapter 4 we will need the notion of
the local component of some differential ω of F/K. In the previous section
we considered an embedding of F into R, which mapped some f ∈ F to the
repartition that is constantly f . Now we shall define a different embedding
ιP : F → R for some place P of F/K, namely

ιP(f)(Q) :=

{
f, if Q = P
0, if Q 6= P

.
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Definition 2.4.1. For an algebraic function field F/K, a differential ω ∈ Ω
and a place P we define the local component ωP : F → K by

ωP(f) := ω(ιP(f)).

Since ιP and ω are K-linear, the local component is a linear functional.

Proposition 2.4.2. Let F/K be an algebraic function field, ω ∈ Ω and let
Γ ∈ R be a repartition. Then ωP(ΓP) 6= 0 for only finitely many places P.
The following equation holds:

ω(Γ) =
∑
P∈P

ωP(ΓP)

Proof. Wlog assume ω 6= 0 and set W := (ω), the canonical divisor of ω.
Since vP(W) 6= 0 for only finitely many places P , Γ has only finitely many
values f1, . . . , fk ∈ F , and each of these functions has only finitely many
poles, we conclude vP(ΓP) < 0 for only finitely many places P . Thus there
is a finite set S ⊆ P such that

vP(W) = 0, vP(Γ) ≥ 0 ∀P /∈ S.

Define ∆P := ΓP for P /∈ S and ∆P := 0 else. Then ∆ ∈ Y (W) since
suppW ⊆ S. Thus we have

ω(Γ) = ω(∆)︸ ︷︷ ︸
=0

+ω

(∑
P∈S

ιP(ΓP)

)
=
∑
P∈S

ωP(ΓP).

If P /∈ S then vP(ΓP) ≥ 0 = −vP(W) and so ιP(ΓP) ∈ Y (W). Thus
ωP(ΓP) = ω(ιP(ΓP)) = 0, which shows the claimed equation.

The following lemma gives an alternative description of the order of a differ-
ential at a place.

Lemma 2.4.3. Let ω : R → K, ω 6= 0 be a differential of F/K and P be a
place. Then

vP(ω) = max{r ∈ Z : ωP(f) = 0 for all f ∈ F with vP(f) ≥ −r}.

Proof. By definition, vP(ω) = vP(W) whereW := (ω) is the divisor of ω. Set
s := vP(ω). If f ∈ F , vP(f) ≥ −s then ιP(f) ∈ R(W) ⊆ Y (W). ω vanishes
on Y (W), so ωP(f) = ω(ιP(f)) = 0. Now assume that ωP(f) = 0 for all
f ∈ F satisfying vP(f) ≥ −s − 1. Take an arbitrary element Γ ∈ R(WP).
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We have Γ = (Γ − ιP(ΓP)) + ιP(ΓP) as well as Γ − ιP(ΓP) ∈ Y (W) and
vP(ΓP) ≥ −s− 1, hence

ω(Γ) = ω(Γ− ιP(ΓP)) + ω(ιP(ΓP)) = 0.

So ω vanishes on R(WP) and thus also on Y (WP) = R(WP) +F . But this
contradicts the definition of W . Thus there is some f ∈ F , vP(f) = −s− 1
such that ω(f) 6= 0, which proves the claim.



Chapter 3

Algebraic Curves

Each algebraic curve, defined over some field K, gives rise to the field of
rational functions on the curve. This field is an algebraic function field over
K in the sense of our definition. The theory of algebraic curves is closely
related to the theory of algebraic function fields: In the case of a non-singular
curve, certain groups of points (conjugated points, see Section 3.7) are in one-
to-one correspondance to the places of the function field. The genus of the
function field is related to the degree of the polynomial defining the curve via
the Plücker Formula. The reason for our study of algebraic curves is twofold:
On one hand, they provide interesting examples of algebraic function fields
(actually, up to isomorphy, any algebraic function field is of this kind, see e.g.
[14, Appendix B]). On the other hand, evaluating certain rational functions
on a curve at a fixed set of points will provide a method of constructing
concrete Goppa codes (see Section 4.3.2).

After defining affine and projective algebraic curves in the following sec-
tions we will investigate the associated function field. A brief summary of
the basic definitions needed for the purpose of Goppa codes including helpful
examples can be found in [8, Section 2.1]. A more involved discussion about
algebraic curves with an emphasis on curves over finite fields is provided in
[10].

3.1 Affine and Projective Space

To establish notation we state the well-known definitions of affine and pro-
jective spaces.

Definition 3.1.1. Let K be an arbitrary field. The n-dimensional affine
space over K is the set of n-tuples (a1, . . . , an), ai ∈ K. It will be denoted
by An

K or simply An if the underlying field is not in question.

39
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To define the n-dimensional projective space PnK or Pn consider the fol-
lowing equivalence relation on An+1 \ {~0}:

(a0, a1, . . . , an) ∼ (b0, b1, . . . , bn) :⇔ ∃λ ∈ K× : ai = λbi, 0 ≤ i ≤ n

The n-dimensional projective space is defined by (An+1 \ {~0})/∼. We write
the equivalence class of (a0, a1, . . . , an) as (a0 : a1 : . . . : an). Let us consider
the map given by

ψi :

{
An → Pn

(a1, . . . , an) 7→ (a1 : . . . : ai : 1 : ai+1 : . . . : an)

for 0 ≤ i ≤ n. It is injective and it is not hard to verify that Pn =⋃n
i=0 ψi(An), i.e. the n+ 1 copies ψi(An) of An cover the projective space.

3.2 Absolutely Irreducible Polynomials

For the whole chapter we will use the following notation for polynomials:
For a field K, ẋ, ẏ, ż will denote independent variables. K[ẋ], K[ẋ, ẏ] and
K[ẋ, ẏ, ż] will denote the polynomials in one, two or three variables and we
will write f(ẋ), g(ẋ, ẏ) or h(ẋ, ẏ, ż) for their elements. The reason for this
convention will be clear from Section 3.3 on.

Irreducibility of a polynomial f(ẋ, ẏ) ∈ K[ẋ, ẏ] depends on the field. If L
is an extension field of K, f(ẋ, ẏ) may factor in L[ẋ, ẏ] while it is irreducible
in K[ẋ, ẏ]. We call f(ẋ, ẏ) absolutely irreducible if it is irreducible in K[ẋ, ẏ],
where K is the algebraic closure of K. Constant polynomials are by definition
neither reducible nor irreducible. Since the irreducible elements of K[ẋ] are
exactly the polynomials of degree one, it is not clear whether there are non-
trivial examples of absolutely irreducible polynomials in K[ẋ, ẏ]. Below we
cite Eisenstein’s criterion and show how to use it to prove the existence of
such polynomials. For a proof of this well-known result see e.g. [16].

Proposition 3.2.1 (Eisenstein’s Criterion). Let R be an integral domain
and

g(ẋ) = anẋ
n + an−1ẋ

n−1 + . . .+ a1ẋ+ a0

a polynomial in R[ẋ]. If there is a prime element p ∈ R such that p - an, p|ai
for 0 ≤ i ≤ n− 1, p2 - a0 then g(ẋ) is irreducible in R[ẋ].

If we set R = K[ẏ] and choose p to be a linear polynomial in the independent
variable ẋ, this proves the following
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Corollary 3.2.2. Take a polynomial

f(ẋ, ẏ) =
n∑
i=0

pi(ẏ)ẋi ∈ K[ẋ, ẏ]

where pi(ẏ) ∈ K[ẏ]. If there is some α ∈ K, such that pn(α) 6= 0, pi(α) = 0
for 0 ≤ i ≤ n − 1, α is not a double root of p0(ẏ) then f(ẋ, ẏ) is absolutely
irreducible.

Example 3.2.3.

• For every field K and an arbitrary integer n > 0 the polynomial yn−x
is absolutely irreducible.

• If n > 0, charK - n then xn + yn − 1 is absolutely irreducible.

3.3 Affine Curves

For the rest of the chapter we shall assume that K is an arbitrary field.
We will then consider the affine space An = An

K
over the algebraic closure

K. An affine algebraic curve is the set of zeros of an absolutely irreducible
polynomial in two variables:

Definition 3.3.1 (Affine Algebraic Curve). Let f(ẋ, ẏ) be an absolutely
irreducible polynomial. Then the set of points (a, b) ∈ A2

K
which are zeros

of f(ẋ, ẏ) is called an affine algebraic curve. To indicate that f(ẋ, ẏ) defines
a curve we will write Cf or C : f(ẋ, ẏ) = 0.

Every affine algebraic curve gives rise to a field. As we shall see in the
next paragraphs, this field is an algebraic function field over K. To motivate
the definition let us first consider an example.

Example 3.3.2. Let us consider the curve C : ẋ2 + ẏ2 − 1 = 0 over some
field K with charK 6= 2. Consider the rational function ϕ(ẋ, ẏ) := ẋ/ẏ. It
can be evaluated for all points (a, b) ∈ C \ {(±1, 0)}. For such a point

a

b
=
a2

ab
=

1− b2

ab

so ϕ has the same values as ψ(ẋ, ẏ) := (1 − ẏ2)/(ẋẏ) in those points of C
where both are defined. In the general case of some irreducible f(ẋ, ẏ), when
it comes to evaluating two functions gi(ẋ, ẏ)/hi(ẋ, ẏ), i = 1, 2, at points of Cf ,
we do not want to distinguish between them if f(ẋ, ẏ) divides g1(ẋ, ẏ)h2(ẋ, ẏ)−
g2(ẋ, ẏ)h1(ẋ, ẏ).
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Definition 3.3.3 (Function Field of an Affine Curve). Let Cf be an algebraic
curve described by some absolutely irreducible polynomial f(ẋ, ẏ) ∈ K[ẋ, ẏ].
The ring K[Cf ] := K[ẋ, ẏ]/f(ẋ, ẏ) is called the coordinate ring of Cf . It is
an integral domain since f(ẋ, ẏ) is irreducible. Therefore K[Cf ] has a field of
fractions which we denote by K(Cf ). The field K(Cf ) is called the function
field of Cf .

Remark. We set x := ẋ + (f(ẋ, ẏ)) ∈ K[Cf ] and y := ẏ + (f(ẋ, ẏ)) ∈ K[Cf ].
Then for any polynomial g(ẋ, ẏ) its class modulo f(ẋ, ẏ) is given by g(x, y).
In this notation g(x, y) = 0 in K[Cf ] if and only if f(ẋ, ẏ)|g(ẋ, ẏ).

Example 3.3.4. Consider the function field given by the curve C : f(ẋ, ẏ) =
ẋ3 + ẏ3 − 1 = 0 for some field K with charK 6= 3. The element 1/x is the
same as x2/(1− y3). y3/(1− x) is equal to x2 + x+ 1.

The following proposition justifies the name function field for K(Cf ).

Proposition 3.3.5. Let Cf be an algebraic curve defined by f(ẋ, ẏ) and
K(Cf ) be its function field. Then K(Cf )/K is an algebraic function field in
the sense of Definition 1.1.1.

Proof. Since f(ẋ, ẏ) is not constant, the ring homomorphism{
K[ẋ, ẏ]→ K[Cf ]

g(ẋ, ẏ) 7→ g(x, y)

is injective on K. Therefore, if we identify K with its image, K is a subring
of K[Cf ] and thus K ≤ K(Cf ). Wlog we may assume that ẏ occurs in
f(ẋ, ẏ). Hence x cannot be algebraic over K: For no element p(ẋ) ∈ K[ẋ],
p(ẋ) 6= 0 is a multiple of f(ẋ, ẏ) and therefore p(x) 6= 0 in K[Cf ]. Hence x
is transcentental over K and K(x) ⊆ K(Cf ). y is algebraic over K(x) since
it is a zero of h(ẏ) := f(x, ẏ) ∈ K(x)[ẏ]. Since K(Cf ) = K(x, y) = K(x)(y)
the extension K(Cf )/K(x) is finite.

3.4 Homogeneous Polynomials

In order to define projective algebraic curves we introduce homogeneous poly-
nomials and mention some of their properties without proving them. Proofs
of the cited facts can be found in [19, Chapter I, §10]. In the following def-
inition the degree of a multivariate monomial Ẋk0

0 · · · Ẋkn
n is the sum of its

exponents k0 + . . .+ kn:
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Definition 3.4.1. A polynomial F (Ẋ0, Ẋ1, . . . , Ẋn) ∈ K[Ẋ0, Ẋ1, . . . , Ẋn] is
said to be homogeneous of degree d if all of its monomials are of degree d.

A polynomial F is homogeneous of degree d if and only if

F (Ṫ Ẋ0, Ṫ Ẋ1, . . . , Ṫ Ẋn) = Ṫ dF (Ẋ0, Ẋ1, . . . , Ẋn)

holds in K[Ẋ0, Ẋ1, . . . , Ẋn, Ṫ ]. If f(ẋ1, . . . , ẋn) ∈ K[ẋ1, . . . , ẋn] is of degree d
then

F (Ẋ0, Ẋ1, . . . , Ẋn) := Ẋd
0f(Ẋ1/Ẋ0, . . . , Ẋn/Ẋ0) (3.1)

is homogeneous of degree d. Conversely, if F (Ẋ0, . . . , Ẋn) is homogeneous of
degree d, Ẋi - F , then

f(ẋ1, . . . , ẋn) := F (ẋ1, . . . , ẋi, 1, ẋi+1, . . . , ẋn) (3.2)

is a polynomial of degree d. For i = 0 Equations (3.1) and (3.2) define a one-
to-one correspondence between the polynomials in K[ẋ1, . . . , ẋn] of degree d
and the homogeneous polynomials in K[Ẋ0, . . . , Ẋn] of degree d not divisible
by Ẋ0. f is irreducible if and only if F is irreducible.

Let us return to the projective plane P2. An affine point (a0, a1, a2) could
be a zero of some polynomial in three variables while (λa0, λa1, λa2), λ ∈ K×,
is not a zero. For a homogeneous polynomial F this is impossible, since

F (λa0, λa1, λa2) = λ3F (a0, a1, a2).

Therefore we can define a projective point (a0 : a1 : a2) to be a zero of some
homogeneous polynomial F (Ẋ0, Ẋ1, Ẋ2) if F (a0, a1, a2) = 0.

3.5 Projective Curves

We are now able to define projective algebraic curves . We will see that every
affine algebraic curve can be embedded in a projective curve in a canonical
way.

Definition 3.5.1 (Projective Algebraic Curve). Let K be an arbitrary field,
K its algebraic closure and F (Ẋ, Ẏ , Ż) be an absolutely irreducible, homo-
geneous polynomial. We define the projective algebraic curve CF of F to be
the set of all projective points (a0 : a1 : a2) ∈ P2

K
that are zeros of F . A point

which has a representative with all coefficients ai in K is called rational.



44 CHAPTER 3. ALGEBRAIC CURVES

Remark. Let f(ẋ, ẏ) be an absolutely irreducible polynomial of degree d.
Then F (Ẋ, Ẏ , Ż) := Żdf(Ẋ/Ż, Ẏ /Ż) is absolutely irreducible as well. The
affine algebraic curve Cf defined by f is embedded in the projective algebraic
curve CF . To be more precise, the map ψ2 : (a, b) 7→ (a : b : 1) we considered
in Section 3.1 embeds Cf into CF . ψ2(Cf ) consists of those points (b0 :
b1 : b2) ∈ CF with b2 6= 0. Points (b0 : b1 : 0) of CF are called the points
at infinity . CF is called the projective closure of Cf . The sets ψ−1

i (CF ),
i = 0, 1, 2, are the affine components of the projective curve. They ψ−1

i (CF )
are algebraic curves described by the equations

ψ−1
2 (CF ) : f2(ẋ, ẏ) = F (ẋ, ẏ, 1) = 0

ψ−1
1 (CF ) : f1(ẋ, ż) = F (ẋ, 1, ż) = 0

ψ−1
0 (CF ) : f0(ẏ, ż) = F (1, ẏ, ż) = 0

where f2(ẋ, ẏ) = f(ẋ, ẏ), so the corresponding affine component is the original
affine curve.

Next we want to define the function field of a projective algebraic curve CF .
Consider all quotients G(Ẋ, Ẏ , Ż)/H(Ẋ, Ẏ , Ż) with homogeneous polyno-
mials G(Ẋ, Ẏ , Ż), H(Ẋ, Ẏ , Ż) of the same degree, F (Ẋ, Ẏ , Ż) - H(Ẋ, Ẏ , Ż).
Denote this set by RF . It is a subring of K(Ẋ, Ẏ , Ż). Denote the set of those
quotients G/H in RF where F (Ẋ, Ẏ , Ż) divides G(Ẋ, Ẏ , Ż) by IF . This is
as a maximal ideal of RF .

Definition 3.5.2 (Function Field of a Projective Curve). The field RF/IF is
called the function field of the projective curve CF . We denote it by K(CF ).
As in the case of the affine curve we denote the class of the homogeneous
polynomial G(Ẋ, Ẏ , Ż) modulo F (Ẋ, Ẏ , Ż) by G(X, Y, Z). An analogous
notation will be used for quotients.

Example 3.5.3. Consider the projective curve defined by CF : Ẋ3+Ẏ 3−Ż3 =
0. This is the homogeneous polynomial corresponding to f in Example 3.3.4.
Y 3/(Z3 −XZ2) is an element of the function field K(CF ) since F does not
divide Ż3 − ẊŻ2. It is equal to

(Z3 −X3)/(Z3 −XZ2) =

(Z −X)(Z2 +XZ +X2)/(Z2(Z −X)) = (Z2 +XZ +X2)/Z2.

For an absolutely irreducible polynomial f and the corresponding homo-
geneous polynomial F we have seen that the algebraic curve Cf is embedded
in CF . Now we shall see how the function fields K(Cf ) and K(CF ) are
related.
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Proposition 3.5.4. Let f(ẋ, ẏ) ∈ K[ẋ, ẏ] be absolutely irreducible and denote
by F (Ẋ, Ẏ , Ż) the homogeneous polynomial with F (ẋ, ẏ, 1) = f(ẋ, ẏ). Then
there is an isomorphism from K(CF ) to K(Cf ) that fixes K. In particular
K(CF ) is an algebraic function field in the sense of Definition 1.1.1.

Proof. We consider the map

Ψ:

{
K(CF )→ K(Cf )
G(X,Y,Z)
H(X,Y,Z)

7→ G(x,y,1)
H(x,y,1)

.

Here G(X, Y, Z) and H(X, Y, Z) are residue classes modulo F (Ẋ, Ẏ , Ż) of
homogeneous polynomials of the same degree. We will first show that this
map is well-defined and afterwards argue that it is indeed a field isomorphism.
Using the facts from Section 3.4 we see

G(X, Y, Z)

H(X, Y, Z)
=
G′(X, Y, Z)

H ′(X, Y, Z)
⇐⇒

G(X, Y, Z)H ′(X, Y, Z)−H(X, Y, Z)G′(X, Y, Z)

H(X, Y, Z)H ′(X, Y, Z)
= 0 ⇐⇒

F (Ẋ, Ẏ , Ż)
∣∣∣(G(Ẋ, Ẏ , Ż)H ′(Ẋ, Ẏ , Ż)−H(Ẋ, Ẏ , Ż)G′(Ẋ, Ẏ , Ż)

)
⇐⇒

f(ẋ, ẏ) = F (ẋ, ẏ, 1) |(G(ẋ, ẏ, 1)H ′(ẋ, ẏ, 1)−H(ẋ, ẏ, 1)G′(ẋ, ẏ, 1)) ⇐⇒
G(x, y, 1)

H(x, y, 1)
=
G′(x, y, 1)

H ′(x, y, 1)

thus Ψ is well defined and injective. It is straightforward to check that Ψ
is indeed a homomorphism. To show that Ψ is surjective take an element
g(x, y)/h(x, y) of K(Cf ) and consider

Φ :=
Zdg(X/Z, Y/Z)

Zdh(X/Z, Y/Z)
(3.3)

where d is the maximum of the degrees of g(ẋ, ẏ) and h(ẋ, ẏ). Both numerator
and denominator are homogeneous of degree d, so Φ is an element of K(CF ).
Obviously, Ψ maps Φ to g(x, y)/h(x, y).

3.6 Evaluating Functions

For a polynomial p(ẋ, ẏ) =
∑m

i=0

∑n
j=0 pi,jẋ

iẏj the formal partial derivative
with respect to ẋ is defined as
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pẋ(ẋ, ẏ) :=
m∑
i=1

n∑
j=0

ipi,jẋ
i−1ẏj.

pẏ(ẋ, ẏ) is defined accordingly and the definition extends to polynomials with
more than two variables in the obvious way. Consider the curve Cf defined by
some absolutely irreducible f(ẋ, ẏ). A point (a, b) of Cf is called singular if
fẋ(a, b) = fẏ(a, b) = 0 and non-singular or regular otherwise. If F (Ẋ, Ẏ , Ż)
is a homogeneous polynomial the partial derivatives are again homogeneous
and thus we can define a point (a0 : a1 : a2) of the projective curve CF to be
singular if all the partial derivatives vanish at this point. The curve Cf and
CF are said to be non-singular or regular if they have no singular points. The
following lemma is a well known result about the formal partial derivative.
For a proof see e.g. [19, Chapter I].

Lemma 3.6.1. Let p(ẋ, ẏ) be a polynomial with coefficients in some field K
and take a, b ∈ K. Then

p(ẋ, ẏ) = p(a, b) + px(a, b)(ẋ− a) + py(a, b)(ẏ − b)+
(ẋ− a)2p1(ẋ, ẏ) + (ẋ− a)(ẏ − b)p2(ẋ, ẏ) + (ẏ − b)2p3(ẋ, ẏ)

for suitable polynomials pi(ẋ, ẏ), i = 1, 2, 3.

In the following paragraphs we shall discuss how to evaluate a function
ϕ ∈ K(Cf ) at a point (a, b) of Cf . Note that for some p(x, y) ∈ K[Cf ]
the evaluation g(a, b) does not depend on the representative of p(x, y) since
f(a, b) = 0. For polynomials g(ẋ, ẏ), h(ẋ, ẏ) the formulation “g(ẋ, ẏ)/h(ẋ, ẏ)
is a representative of ϕ” means ϕ = g(x, y)/h(x, y) in K(Cf ). Given a point
(a, b) of the curve, such a quotient will have one of the three types:

(I) h(a, b) 6= 0

(II) h(a, b) = 0 and g(a, b) 6= 0

(III) g(a, b) = h(a, b) = 0

In case (I) we would like to say that ϕ has a value at (a, b). Case (II) should
indicate a pole. It is allways possible to construct representatives of type
(III) but they cannot be used to determine a value or a pole so we would
like to avoid them. The following proposition shows that this intuitions are
right. In Section 3.7 we will see that it is possible to avoid case (III) if the
point (a, b) is regular.



3.6. EVALUATING FUNCTIONS 47

Proposition 3.6.2. Let Cf be an affine algebraic curve, (a, b) a point on the
curve and ϕ ∈ K(Cf ) a function. Then the following properties hold

• It is impossible that ϕ has a representative of type (I) and type (II).

• If g(ẋ, ẏ)/h(ẋ, ẏ) and ĝ(ẋ, ẏ)/ĥ(ẋ, ẏ) are representatives of ϕ if type (I)
then

g(a, b)

h(a, b)
=
ĝ(a, b)

ĥ(a, b)
.

In this case we write ϕ(a, b) for this value.

Proof.

• Assume g(ẋ, ẏ)/h(ẋ, ẏ) is a representative of type (I) and ĝ(ẋ, ẏ)/ĥ(ẋ, ẏ)
is a representative of type (II). Then f(ẋ, ẏ) divides g(ẋ, ẏ)ĥ(ẋ, ẏ) −
ĝ(ẋ, ẏ)h(ẋ, ẏ) and hence (a, b) is a zero of this difference. This yields

0 = g(a, b)

= 0︷ ︸︸ ︷
ĥ(a, b)−ĝ(a, b)h(a, b) = −ĝ(a, b)h(a, b)

contradicting h(a, b), ĝ(a, b) 6= 0 which holds by our assumption.

• The argument of the last point shows

g(a, b)ĥ(a, b) = ĝ(a, b)h(a, b)

which proofs the claim.

Remark. It is possible to generalise these notions to polynomials g(ẋ1, . . . , ẋn)
and points (a1, . . . , an) for an arbitrary n ≥ 2. Proposition 3.6.2 can be
adapted in the obvious way.

Let us now turn to the case of a projective curve CF . We would like to
evaluate a function Φ ∈ K(CF ) at a point (a0 : a1 : a2) of the curve. Φ is given
by a representative G(Ẋ, Ẏ , Ż)/H(Ẋ, Ẏ , Ż) with homogeneous polynomials
satisfying deg(G) = deg(H) = d and F - H. If (a0 : a1 : a2) is not a zero
of H then the evaluation of G/H does not depend on the representative of
(a0 : a1 : a2) because
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G(λa0, λa1, λa2)

H(λa0, λa1, λa2)
=
λdG(a0, a1, a2)

λdH(a0, a1, a2)
=
G(a0, a1, a2)

H(a0, a1, a2)

for an arbitrary λ ∈ K× As above we can distiguish the cases:

(I) H(a0, a1, a2) 6= 0

(II) H(a0, a1, a2) = 0 and G(a0, a1, a2) 6= 0

(III) G(a0, a1, a2) = H(a0, a1, a2) = 0.

If (a0 : a1 : a2) is not singular, together with the results from the next
section we will see: Φ has either a representative of type (I) or of type (II).
If G(Ẋ, Ẏ , Ż)/H(Ẋ, Ẏ , Ż) is a representative of type (I) then we can define
the value of Φ at (a0 : a1 : a2) as G(a0, a1, a2)/H(a0, a1, a2). In the second
case we define Φ to have a pole at (a0 : a1 : a2).

Remark. We saw that if f(ẋ, ẏ) is absolutely irreducible and F (Ẋ, Ẏ , Ż) is
its homogeneous counterpart then Cf is embedded in CF via (a1, a2) 7→ (a1 :
a2 : 1). Consider the isomorphism between K(Cf ) and K(CF ) described in
Proposition 3.5.4. Let ϕ ∈ K(Cf ) with the representative g(ẋ, ẏ) then its
image Φ under the isomorphism has the representative as in (3.3). Therefore
we see that (a1, a2) is a pole of ϕ if and only if (a1 : a2 : 1) is a pole of
Φ. If this is not the case, evaluating (a1, a2) at ϕ gives the same result as
evaluating (a1 : a2 : 1) at Φ:

ϕ(a1, a2) =
g(a1, a2)

h(a1, a2)
=
G(a1, a2, 1)

H(a1, a2, 1)
= Φ((a1 : a2 : 1))

This shows that the interpretation of the function field K(Cf ) as “rational
functions on Cf” extends naturally to K(CF ). We may think of the elements
of K(CF ) as the rational functions on a projective curve.

3.7 Places and Points

Let Cf : f(ẋ, ẏ) = 0 be an affine algebraic curve. Every point (a, b) of the
curve leads to a subring

O(a,b) =

{
g(x, y)

h(x, y)

∣∣∣∣g(x, y), h(x, y) ∈ K[Cf ], h(a, b) 6= 0

}
.

of K(Cf ). It is called the local ring of (a, b) . We shall see below that this ring
has a unique maximal ideal. More generally, commutative rings with a unique
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maximal ideal are called local rings . A quotient g(x, y)/h(x, y) ∈ O(a,b) is
invertible in this ring if and only if g(a, b) 6= 0. Thus the set of elements not
invertible in O(a,b) is given by

P(a,b) =

{
g(x, y)

h(x, y)

∣∣∣∣g(x, y), h(x, y) ∈ K[Cf ], g(a, b) = 0, h(a, b) 6= 0

}
.

Obviously P(a,b) is an ideal of O(a,b). Since proper ideals do not contain
invertible elements, any proper ideal is a subset of P(a,b), i.e. P(a,b) is the
unique maximal ideal of O(a,b). It is possible to show that (a, b) is a regular
point if and only if O(a,b) is a valuation ring of K(Cf ). We shall prove this
result in the case where (a, b) is a rational point. To do so we have to consider
Noetherian rings:

Definition 3.7.1. Let R be an integral domain. R is called Notherian if for
every ascending chain I1 ⊆ I2 ⊆ . . . of ideals there is an integer n such that
In = In+1 = . . .

We are interested in Noetherian rings because of the following property:
Assume R is a Noetherian ring and t ∈ R is not invertible. For each r ∈
R \ {0} there is a maximal n ∈ N such that tn|r. Since otherwise . . . | r

t2
| r
t
|r

and thus (r) ( ( r
t
) ( ( r

t2
) ( . . ., contradicting the assumption. The following

facts about Noetherian rings are not hard to proof. See e.g. [17]

• A ring is Noetherian if and only if every ideal is finitely generated.

• Homomorphic images (and hence factor rings) of Noetherian rings are
Noetherian.

• If R is a Noetherian ring, S ⊆ R \ {0} is closed under multiplication
then the localisation RS−1 := { r

s
: r ∈ R, s ∈ S} is a Noetherian ring.

The proofs of the results from Lemma 3.7.2 to Corollary 3.7.8 go back to
[11, Chapter 14].

Lemma 3.7.2. Let (a, b) be an arbitrary point of the algebraic curve Cf then
the local ring O(a,b) is a Noetherian ring.

Proof. K[ẋ, ẏ] is a Noetherian ring by Hilbert’s Basis Theorem. There-
fore K[Cf ] = K[ẋ, ẏ]/f(ẋ, ẏ) is a Noetherian ring. Set S := {g(x, y) ∈
K[Cf ] : g(a, b) 6= 0} then O(a,b) is isomorphic to the localisation K[Cf ]S

−1.
Thus O(a,b) is a Noetherian ring.

Lemma 3.7.3. If (a, b) is a rational point of Cf , fẏ(a, b) 6= 0 then P(a,b) =
(x− a)O(a,b).
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Proof. The inclusion (x − a)O(a,b) ⊆ P(a,b) is obvious. For the converse we
will first show (y − b)/(x− a) ∈ O(a,b) from which the rest will easily follow.
By Lemma 3.6.1 we have the following expansion of f(ẋ, ẏ):

f(ẋ, ẏ) = f(a, b)︸ ︷︷ ︸
=0

+fẏ(a, b)(ẏ − b) + (ẋ− a)f1(ẋ, ẏ) + (ẏ − b)2f2(ẋ, ẏ).

By calculating modulo f(ẋ, ẏ) and rearranging terms we obtain

0 = fẏ(a, b)(y − b) + (x− a)f1(x, y) + (y − b)2f2(x, y)

y − b
x− a

=
f1(x, y)

−fẏ(a, b)− (y − b)f2(x, y)
.

Since the denominator of the right hand is non-zero at (a, b) this proves the
claim. Now take some ϕ ∈ P(a,b), ϕ 6= 0. Then ϕ = g(x, y)/h(x, y), for
polynomials g(ẋ, ẏ), h(ẋ, ẏ) with g(a, b) = 0, h(a, b) 6= 0. Write

g(x, y) = (x− a)g1(x, y) + (y − b)g2(x, y)

then g(x, y)/(x − a) = g1(x, y) + (y − b)/(x − a)g2(x, y) ∈ O(a,b) and so
g(x, y) ∈ (x − a)O(a,b). Since 1/h(x, y) ∈ O(a,b) we have ϕ ∈ (x − a)O(a,b)

which concludes the proof.

Proposition 3.7.4. Let Cf : f(ẋ, ẏ) = 0 be an algebraic curve and suppose
(a, b) is a regular, rational point of Cf . Then O(a,b) is a valuation ring of
K(Cf )/K.

Proof. Obviously K ( O(a,b) ( K(Cf ). Wlog assume that fẏ(a, b) 6= 0. Then
we saw that P(a,b) is a principal ideal with generator (x− a). Take arbitrary
elements g(x, y), h(x, y) ∈ K[Cf ]. Since O(a,b) is a Noetherian ring we can
write g(x, y) = (x − a)mϕ(x, y), h(x, y) = (x − a)nψ(x, y), with ϕ(x, y) =
ϕ1(x, y)/ϕ2(x, y), ψ(x, y) = ψ1(x, y)/ψ2(x, y) with polynomials ϕi, ψi such
that ϕ, ψ ∈ O(a,b) and m,n ∈ N are maximal. We have ϕ1(a, b) 6= 0, since
otherwise ϕ1(x, y) = (x − a)ϕ′1(x, y) for some ϕ′1 ∈ O(a,b), which contradicts
the choice of m. For the same reason ψ1(a, b) 6= 0 and so g(x, y)/h(x, y) =
(x − a)m−n(ϕ1(x, y)ψ2(x, y))/(ϕ2(x, y)ψ1(x, y)). If m ≥ n this is an element
of O(a,b) and if m < n we see that h(x, y)/g(x, y) ∈ O(a,b).

Remark. Proposition 3.7.4 is also true if we do not assume (a, b) to be a
rational point. In this case the proof requires techniques from commutative
algebra and gets much more involved. For this more general case see e.g. [10,
Section 3.1] which in turn uses results from [4, Chapter 10]
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In general these are not all valuation rings of K(Cf ). The function field
K(ẋ)/K may be interpreted as the function field of the curve ẏ = 0. Assume
that K is algebraically closed. As we have seen in Chapter 1 the places of
K(ẋ)/K ∼= K(Cẏ)/K are Pa, a ∈ K, and P∞. The places Pa are in one
to one correspondence to the points (a, 0) of Cẏ, but there is no affine point
corresponding to P∞. Below we shall characterise those places of K(Cf )
corresponding to points of the affine algebraic curve. After that we can use
these results to see how every place corresponds to a point on the projective
closure of Cf .

Lemma 3.7.5. Let L/K be a field extension, α, β ∈ L. Then K[α, β] is a
field if and only if α and β are algebraic over K.

Proof. If α and β are algebraic over K then K[α] is a field and β is algebraic
over K[α]. Hence K[α, β] = K[α][β] is a field. Conversely, assume that
K[α, β] is a field. K(α) is a subfield and since K(α)[β] = K[α, β], β is
algebraic over K(α). If we assume that α is not algebraic over K then
K[α, β]/K is an algebraic function field. In Chapter 1 we saw that any
function field has infinitely many places. Further there are only finitely many
places of K[α, β]/K that are poles of α or β. So there is some valuation ring
O such that α, β ∈ O. Therefore we have K[α, β] ⊆ O and thus K[α, β] = O.
But this is a contradiction since valuation rings are proper subrings of their
function field.

Lemma 3.7.6. Let Cf be an affine algebraic curve, (a, b) a point of Cf .
Consider the evaluation map

Ψ(a,b) :

{
K[Cf ]→ K[a, b]

g(x, y) 7→ g(a, b)
.

Then ker Ψ(a,b) is a maximal ideal of K[Cf ]. Any maximal ideal of K[Cf ] is
of this kind.

Proof. Both a and b are algebraic over K, so K[a, b] is a field. Since

K[Cf ]/ ker Ψ(a,b)
∼= K[a, b],

ker Ψ(a,b) must be a maximal ideal.
Conversely, assume that I C K[Cf ] is maximal. Then L := K[Cf ]/I

is a field and L = K[α, β] if we set α = x + I, β = y + I. So by the
previous lemma α and β are algebraic over K. There is a subfield L′ of K
isomorphic to L. Denote by ψ : L → L′ an isomorphism that fixes K and
set a := ψ(α), b := ψ(β), then L′ = K[a, b]. We have g(x, y) ∈ I if and only
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if g(α, β) = 0 which is equivalent to g(a, b) = 0. This shows I = ker Ψ(a,b).
Since f(α, β) = f(x, y) + I = 0 + I we see that f(a, b) = 0 and thus (a, b) is
a point of Cf .

Lemma 3.7.7. Let Cf be an affine algebraic curve and O be a valuation
ring of K(Cf ), such that K[Cf ] ⊆ O. Denote by P the place of O. Then
P ∩K[Cf ] is a maximal ideal of K[Cf ].

Proof. Note that K ⊆ K[Cf ] and K∩P = {0}. For g(x, y) ∈ K[Cf ] consider
the map {

K[Cf ]/P ∩K[Cf ]→ O/P
g(x, y) + P ∩K[Cf ] 7→ g(x, y) + P

.

It is easily seen to be well-defined, injective and a ring homomorphism that
fixes K. Thus up to isomorphy we have K ⊆ K[Cf ]/P ∩ K[Cf ] ⊆ O/P .
In Corollary 1.3.3 we saw [O/P : K] < ∞. Hence K[Cf ]/P ∩ K[Cf ] =
K[α1, . . . , αn] for elements αi ∈ O/P that are algebraic over K. This shows
that K[Cf ]/P ∩K[Cf ] is a field and hence P ∩K[Cf ] is a maximal ideal in
K[Cf ].

The following corollary shows that every valuation ring of K(Cf ) that
contains K[Cf ] is the local ring of some point:

Corollary 3.7.8. Let Cf be an affine algebraic curve and O be a valuation
ring of K(Cf ) with the property K[Cf ] ⊆ O. Then there is a point (a, b) of
Cf such that O = O(a,b).

Proof. Denote by P the place of O. By the above lemma, P ∩ K[Cf ] is a
maximal ideal of K[Cf ]. By Lemma 3.7.6 there exists a point (a, b) ∈ Cf such
that g(x, y) ∈ P ∩K[Cf ] if and only if g(a, b) = 0. We can now show that
O(a,b) ⊆ O: Take an element g(x, y)/h(x, y) ∈ O(a,b). Then h(a, b) 6= 0, so
h(x, y) /∈ P ∩C[Kf ] which implies that h(x, y) /∈ P . Therefore 1/h(x, y) ∈ O
and since K[Cf ] ⊆ O we conclude g(x, y)/h(x, y) ∈ O. By Lemma 1.3.9
valuation rings are maximal subrings of K(Cf ) which shows O(a,b) = O.

Remark. Obviously for any point (a, b) ∈ Cf we have K[Cf ] ⊆ O(a,b). So the
previous lemma characterises the valuations rings arising from points.

Analogous to the case of affine points every point (a0 : a1 : a2) of a
projective curve CF leads to the set

O(a0:a1:a2) :=

{
G(X, Y, Z)

H(X, Y, Z)
∈ K(CF )

∣∣∣∣H((a0 : a1 : a2)) 6= 0

}
⊆ K(CF ).
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O(a0:a1:a2) is easily seen to be a subring of K(CF ). If (a0 : a1 : a2) is non-
singular then an arbitrary Φ ∈ K(CF ) has either a value at (a0 : a1 : a2) or
a pole at (a0 : a1 : a2). In the first case Φ ∈ O(a0:a1:a2) and in the second case
Φ−1 ∈ O(a0:a1:a2). In other words, if the point is non-singular then O(a0:a1:a2)

is a valuation ring of K(CF ). In this case Φ is not invertible in O(a0:a1:a2)

if and only if it has a zero at (a0 : a1 : a2). Therefore, the place of this
valuation ring is given by

P(a0:a1:a2) =

{
G(X, Y, Z)

H(X, Y, Z)
∈ O(a0:a1:a2)

∣∣∣∣G((a0 : a1 : a2)) = 0

}
.

Definition 3.7.9. Two points (a1, a2), (b1, b2) in A2
K

are called conjugated
if g(a1, a2) = 0 ⇔ g(b1, b2) = 0 for all g(ẋ, ẏ) ∈ K[ẋ, ẏ]. Similiarly two
projective points (a0 : a1 : a2), (b0 : b1 : b2) ∈ P2

K
are said to be conjugated

if G(a0, a1, a2) = 0 ⇔ G(b0, b1, b2) = 0 for all homogeneous G(Ẋ, Ẏ , Ż) ∈
K[Ẋ, Ẏ , Ż].

It follows directly from the definition that if A = (a0 : a1 : a2) and
B = (b0 : b1 : b2) are conjugated, A is a point of CF if and only if B is a point
of CF . Further, A is non-singular if and only if B is non-singular. In this case
they lead to the same valuation ring, i.e. OA = OB, and hence to the same
place. If A and B are not conjugated they lead to different valuation rings.
This can be seen as follows: Take a homogeneous polynomialG(Ẋ, Ẏ , Ż) such
that A is a zero and B is not a zero. Wlog we can assume that a2 6= 0. Then
ZdegG/G(X, Y, Z) is an element of OB but not of OA. Similiar considerations
show that two non-singular points (a, b), (a′, b′) of some affine algebraic curve
Cf are conjugated if and only if O(a,b) = O(a′,b′).

Proposition 3.7.10. Let F (Ẋ, Ẏ , Ż) be an absolutely irreducible, homoge-
neous polynomial and K(CF ) the function field of the corresponding pro-
jective curve. If O is a valuation ring of K(CF ) then there is a point
A = (a0 : a1 : a2) of CF such that O = OA.

Proof. Let C2, C1 and C0 denote the affine components of CF , described by
the polynomials

C2 : f2(ẋ, ẏ) := F (ẋ, ẏ, 1) = 0

C1 : f1(ẋ, ż) := F (ẋ, 1, ż) = 0

C0 : f0(ẏ, ż) := F (1, ẏ, ż) = 0.

Proposition 3.5.4 states that the map
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Ψ2 :

{
K(CF )→ K(C2)
G(X,Y,Z)
H(X,Y,Z)

7→ G(x,y,1)
H(x,y,1)

is an isomorphism between the function fields K(CF )/K and K(C2)/K. For
i = 0, 1, defining Ψi analogously (i.e. substituting Y = 1 for i = 1 and X = 1
for i = 0) we get isomorphisms as well.

We would like to show that Ψ−1
i (K[Ci]) ⊆ O for at least one i. It is not

hard to check that the preimage of K[C2] is given by

Ψ−1
2 (K[C2]) = K[X/Z, Y/Z]

Similiarly Ψ−1
i (K[Ci]) is given by K[X/Y,Z/Y ] for i = 1 and K[Y/X,Z/X]

in the case i = 0. Consider the three sets

{X/Y, Y/X}, {X/Z,Z/X}, {Z/Y, Y/Z}.

Since O is a valuation ring, for every set at least one of its elements is
contained in O. We distinguish between two cases: In the first case among
these three elements of O there are two with the same denominator, wlog
Y/X,Z/X ∈ O. Hence we see that Ψ−1

0 (K[C0]) = K[Y/X,Z/X] ⊆ O,
showing our claim. In the second case all three denominators are different,
wlog X/Y, Y/Z, Z/X ∈ O. But then even all six elements are in O and
with the same argument as before Ψ−1

i (K[Ci]) ⊆ O for some i. Since Ψi is
an isomorphism, Ψi(O) is a valuation ring of K(Ci) containing K[Ci]. By
Corollary 3.7.8 there exists a point (a, b) of Ci such that Ψi(O) = O(a,b).
Wlog we may assume that i = 2. To conclude the proof set A = (a : b : 1).
Take G(X, Y, Z)/H(X, Y, Z) ∈ OA, i.e. H(a, b, 1) 6= 0. So

Ψ2(G(X, Y, Z)/H(X, Y, Z)) = G(x, y, 1)/H(x, y, 1) ∈ O(a,b).

This shows Ψ2(OA) ⊆ O(a,b) = Ψ2(O). Since Ψ2 is a bijection and valuation
rings are maximal subrings of K(CF ) this yields OA = O.

3.8 Function Fields over Perfect Fields

We will now discuss the situation of a ground field K that is assumed to be
perfect . This covers a lot of important cases, namely fields of characterisic
zero, algebraically closed fields and – most important for our purposes –
finite fields. Therefore we cite some definitions and results from field theory,
which can be found in any book about general algebra, e.g. [16]. K is called
a perfect field if any irreducible polynomial p(x) ∈ K[x] splits into distinct
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linear factors in its splitting field L. We summarise some properties of these
fields:

Lemma 3.8.1. All fields with characteristic zero are perfect. If charK =
p > 0 then K is perfect if and only if every element of K has a p-th root in
K.

Corollary 3.8.2. Finite fields and algebraically closed fields are perfect.

The next lemma will be used in the proof of Proposition 3.8.4.

Lemma 3.8.3. Let K be a field, h(ẋ) ∈ K[ẋ] be irreducible and L ≥ K
be a splitting field of h(ẋ). For given roots α1, α2 ∈ L of h(ẋ) there is an
automorphism of L which fixes K and maps α1 to α2.

Let us again consider the function field K(Cf )/K of an affine algebraic
curve Cf . We can now prove that if the ground field K is perfect then the

field of constants K̃ of K(Cf )/K is equal to K.

Proposition 3.8.4. Let K be a perfect field, Cf an algebraic curve defined
by some absolutely irreducible polynomial f(ẋ, ẏ) ∈ K[ẋ, ẏ] and K(Cf )/K

the algebraic function field arising from Cf . Then K̃ = K.

Proof. Assume that there is an element ϕ(x, y) = ϕ1(x, y)/ϕ2(x, y) ∈ K(Cf )
which is algebraic overK but not an element ofK, where ϕi(ẋ, ẏ) are assumed
to be polynomials. Let h(ẋ) ∈ K[ẋ] be the minimal polynomial of ϕ(x, y)
over K and denote by L ≥ K a splitting field of h(ẋ). Then we have

h(ϕ(ẋ, ẏ)) =
n∏
k=1

(ϕ(ẋ, ẏ)− αi) =

1

ϕn2 (ẋ, ẏ)

n∏
k=1

(ϕ1(ẋ, ẏ)− αiϕ2(ẋ, ẏ))

in L(ẋ, ẏ), where the αi are the roots of h(ẋ). They are all distinct since
K is a perfect field by assumption. Since h(ϕ(x, y)) = 0 in K(Cf ), f(ẋ, ẏ)
devides the numerator of h(ϕ(ẋ, ẏ)). f(ẋ, ẏ) is absolutely irreducible and
therefore prime since L[ẋ, ẏ] is a factorial ring. Thus f(ẋ, ẏ) must divide
one of the factors ϕ1(ẋ, ẏ) − αiϕ2(ẋ, ẏ), say the first one. Note that n ≥ 2
since ϕ(x, y) /∈ K. There is an automorphism σ of L that fixes K and
takes α1 to α2 6= α1. Since σ(f(ẋ, ẏ)) = f(ẋ, ẏ) and σ(ϕi(ẋ, ẏ)) = ϕi(ẋ, ẏ)
we conclude that f(ẋ, ẏ) divides also ϕ1(ẋ, ẏ) − α2ϕ2(ẋ, ẏ). Hence f(ẋ, ẏ)
divides (α1 − α2)ϕ2(ẋ, ẏ). Since ϕ2(x, y) 6= 0 in K(Cf ), f(ẋ, ẏ) must divide
the first factor, which is an element of L×. But this is a contradiction since
this implies that f(ẋ, ẏ) is constant.
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Remark. In Chapter 2 the integer κ = [K̃ : K] occured in Riemann’s Theorem
and the Riemann-Roch Theorem. For perfect fields, in particular finite fields,
which is the relevant case for our purposes, κ = 1. Hence the Riemann-Roch
Theorem simplifies to

`(D) = deg(D)− g + 1 + `(WD−1)

for a given divisor D and a fixed canonical divisor W .



Chapter 4

Goppa Codes

4.1 Error-correcting Codes

In the following paragraphs we will briefly outline some of the basics of er-
ror-correcting codes . For a more detailed introduction to this subject we
refer to the introductory chapters of [18] and [9].

We assume that we want to transmit k-tuples (a1, . . . , ak) of elements of
some finite alphabet A over a noisy channel . In this context, noisy means
that errors occure at random positions. Thus the received word might be dif-
ferent from the original one. To be able to recover the original word from the
transmitted word one needs to add redundant information. This is achieved
by an encoding function fC : Ak → An which is assumed to be injective. It
turns the original data (a1, . . . , ak) into a longer message (b1, . . . , bn) which
will be transmitted over the channel. Transmission may result in errors,
thus a different word (b′1, . . . , b

′
n) may be received. The goal is to reconstruct

(b1, . . . , bn) from (b′1, . . . , b
′
n) which then gives (a1, . . . , ak).

Most applications are based on the approach that A is some finite field
Fq. Thus (a1, . . . , ak) is an element of Fkq and (b1, . . . , bn) ∈ Fnq , respectively.
The encoding function fC is assumed to be a linear injection Fkq → Fnq .
C := fC(Fkq) is called a (linear) code . It is a k-dimensional subspace of Fnq .
k is the rank and n is the length of the code. We consider the elements of
Fnq as row vectors. They are called words and the elements of C are the code
words . This way, after encoding message a to code word c, the transmission
process adds an error e ∈ Fnq to the word c ∈ C that we wish to decode, i.e.
reconstruct c from the received word

f = c+ e ∈ Fnq .

The number of non-zero entries in e is called the weight of e and it is denoted

57
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by w(e). The Hamming distance between two words f1, f2 is defined by
d(f1, f2) := w(f1 − f2). It is easy to see that d is a metric on Fnq . We
will always use the nearest neighbour decoding . This means that if there is
a unique code word with least distance to the received word the decoding
process chooses this one. The minimum weight of a non-zero codeword,

d := min{w(c) : c ∈ C \ {0}} =

min{d(c1, c2) : c1, c2 ∈ C, c1 6= c2}

is called the minimum distance of C. If 2t+ 1 ≤ d or equivalently t ≤ b(d−
1)/2c the nearest neighbour decoding is correct for errors e with w(e) ≤ t. In
this case C is said to be t-error-correcting . The most important parameters
of the code C are the length n, the rank k and the minimum distance d. We
say that C ⊆ Fnq is a linear [n, k, d]q-code or simply linear [n, k, d]-code if it is
clear that C is a code over Fq. The following bound is a standard and easy
to prove result.

Lemma 4.1.1 (Singleton Bound). Let C be a linear [n, k, d]-code, then the
following inequality holds:

d+ k ≤ n+ 1

If we choose a basis c1, . . . , ck of C and define a matix G by setting the i-th
row of G to be ci, we obtain what is called a generator matrix of C. If we set
ci = fC(ei), where ei is the i-th unit vector in Fkq , then fC(a) = a ·G. When
the code words are characterised by their first k positions it is possible to
choose the ci in a way such that

G =
(
Ik

∣∣∣ Ĝ)
where Ik denotes the k× k-unit matrix and Ĝ is an appropriate k× (n− k)-
matrix. If fC(a) = a · G and G has this particular shape then the encoding
is said to be systematic . Systematic encoding is useful since the original
message can be obtained from the corresponding code word by projecting on
the first k coordinates.

A parity check matrix is an (n− k)× n-matrix H such that for c ∈ Fnq

c ∈ C ⇐⇒ c ·HT = 0.

It is always possible to find a parity check matrix for a code C. In the case
of systematic encoding it is particularly easy. If G = (Ik|Ĝ) as above then

H = (−ĜT |In−k) is a parity check matrix for C.
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For words b = (b1, . . . , bn), b′ = (b′1, . . . , b
′
n) let b · b′ =

∑n
i=1 bib

′
i denote

the inner product. For any linear [n, k, d]q-code C with generator matrix G
the dual space

C⊥ :=
{
b ∈ Fnq : b · c = 0 for all c ∈ C

}
is an (n− k)-dimensional code with G as a parity check matrix. C⊥ is called
the dual code of C . Since we are dealing with finite dimensional vector
spaces we have (C⊥)⊥ = C.

4.2 Goppa Codes

From now on we consider algebraic function fields F/K with K = Fq. Thus

K is a perfect field and the results of Section 3.8 hold. In particular K = K̃,
i.e. any element of F \K is transcendental over K. Further, for the constant
κ which occurs in Riemann’s Theorem and the Riemann-Roch Theorem, we
have κ = 1. First we will define dual Goppa codes (which are also called
Goppa function codes in the literature).

Definition 4.2.1 (Dual Goppa Code). Let F/Fq be an algebraic function
field and P1, . . . ,Pn distinct places of degree one. Define B := P1 · . . . · Pn
and let D be a divisor with suppD ∩ suppB = ∅. Then the dual Goppa
code CL(B,D) is defined as the set of all vectors (ϕ(P1), . . . , ϕ(Pn)) where
ϕ ∈ L(D).

This definition makes sense, since ϕ has no pole at Pi. CL(B,D) ⊆ Fnq
since all Pi are assumed to be of degree one, i.e. they are rational places
and therefore Oi/Pi = K. In Section 3.7 we saw that there is a one-to-one
correspondence between points of the curve and places of its function field.
So in the case where Pi corresponds to a finite1 point (a, b) of the curve the
evaluation ϕ(Pi) in the above definition is actually an evaluation of the form
ϕ(a, b). In Section 4.3.2 we give an example of such a construction. This way
a Goppa code can be constructed from a curve if a basis of L(D) is known.
The following lemma summarises some basic properties of dual Goppa codes.

Theorem 4.2.2. Let B,D be divisors with the above properties, then the dual
Goppa code CL(B,D) is a linear [n, k, d]-code with the following properties:

1.) n = deg(B)

1If C is given by f(ẋ, ẏ) = 0 the finite points are the zeros of f , i.e. the points that do
not require the projective closure of the curve.
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2.) k = `(D)− `(DB−1)

3.) d ≥ n− deg(D)

Proof. Since CL(B,D) is the image of the linear map ev : L(D) → Fnq : ϕ 7→
(ϕ(P1), . . . , ϕ(Pn)), it is a subspace of Fnq . 1.) holds by definition. To prove
2.) we need to determine the kernel of ev. Observe that ϕ(Pi) = 0 if and only
if vPi

(ϕ) ≥ 1. Thus an element ϕ ∈ L(D) is in the kernel of ev if and only if
vPi

(ϕ) ≥ 1 for all i = 1, . . . , n. This is the case if and only if ϕ ∈ L(DB−1).
This yields k = dim(ev(L(D))) = dim(L(D))−dim(ker ev) = `(D)−`(DB−1).

To show the last statement take a non-zero element (ϕ(P1), . . . , ϕ(Pn)) of
the code and denote by m the number of zeros in the code word. By Corollary
1.5.8 the number of poles is equal to the number of zeros if weighted with the
degrees of the involved places. Using vP(ϕ) ≥ −vP(D) for all places gives

0 =
∑
P∈P

vP(ϕ) deg(P) =
∑

P∈suppB

vP(ϕ) deg(P) +
∑

Q/∈suppB

vQ(ϕ) deg(Q) ≥

m+
∑

Q/∈suppB

vQ(ϕ) deg(Q) ≥ m−
∑

Q/∈suppB

vQ(D) deg(Q) = m− deg(D).

So n −m ≥ n − deg(D). Since n −m is the number of non-zero entries in
ev(ϕ) the weight of an arbitrary non-zero codeword is at least n−deg(D).

The most important case is deg(D) < n. From this deg(DB−1) =
deg(D) − n < 0 follows, so L(DB−1) = {0}, i.e. k = `(D). Combining
this with Riemann’s Theorem gives

Corollary 4.2.3. Let F be an algebraic function field over Fq of genus g,
CL(B,D) a dual Goppa code with parameters [n, k, d]. If deg(D) < n then
k ≥ deg(D)−g+1 and d ≥ n−deg(D). In particular n−g+1 ≤ k+d ≤ n+1.

Remark. If g = 0 this gives k + d = n + 1, hence in this case Goppa codes
meet the Singleton bound. Codes with this property are called maximum
distance seperable codes, or MDS codes for short.

Let us now turn to the definition of primary Goppa codes (also know
as Goppa residue codes). They are a generalisation of the original family of
codes introduced by Goppa in 1981. Most decoding algorithms are based on
them. To define these codes recall the definition of repartitions, differentials
and local components of differentials for an algebraic function field F/K from
Sections 2.2 and 2.4:
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• A repartition Γ is a map that assigns an element of F to each place
P ∈ P and takes only finitely many distinct values. We identify f ∈ F
with the repartition that is constantly f . The order of Γ at P is by
definition vP(ΓP). The set of all repartitions of F/K is denoted by R.
For a divisor D, R(D) ⊆ R is the analogue of the Riemann-Roch space
in R.

• A differential ω : R → K is a linear map that vanishes on Y (D) :=
R(D) + F for some divisor D. The set

{D : D is a divisor, ω vanishes on Y (D)}

has a greatest element, denoted by (ω) and called the divisor of ω.

• Ω(D) is the K-vector space of all differentials vanishing on Y (D). The
index of a divisor D is given by

j(D) = dimK(R/Y (D)) = dimK(Ω(D)) = `(D)− deg(D) + g − 1

• For f ∈ F , by definition, ιP(f) is the repartition which is f at P and
zero elsewhere. For a differential ω the local component is ωP(f) :=
ω(ιP(f)) ∈ K, i.e. the local component is a functional ωP : F → K.
For a repartition Γ we have

ω(Γ) =
∑
P∈P

ωP(ΓP)

by Proposition 2.4.2.

Definition 4.2.4 (Primary Goppa Codes). Let B = P1 · · · Pn be a divisor
where Pi, 1 ≤ i ≤ n, are distinct places of degree one and let D be a divisor
with support disjoint from suppB. Then

CΩ(B,D) := {(ωP1(1), . . . , ωPn(1)) : ω ∈ Ω(DB−1)}

is called the primary Goppa code of B and D.

Since the local components ωPi
are functionals F → Fq the set defined above

is indeed a subspace of Fnq . We shall see how to express the dimension of
CΩ(B,D) in terms of the indices j(D) and j(DB−1).

Lemma 4.2.5. The dimension of CΩ(B,D) is equal to j(DB−1)− j(D).
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Proof. Consider the map

Ψ:

{
Ω(DB−1)→ CΩ(B,D)

ω 7→ (ωP1(1), . . . , ωPn(1))

We would like to show ker Ψ = Ω(D) from which the rest will follow easily.
First we argue that for an arbitrary place P of degree one and a differential
ω 6= 0 with vP(ω) ≥ −1 we have ωP(1) = 0 if and only if vP(ω) ≥ 0. Recall
that by Lemma 2.4.3 for a number r ∈ Z

vP(ω) ≥ r ⇔ ωP(f) = 0 for all f ∈ F with vP(f) ≥ −r. (4.1)

Assume that ωP(1) = 0. Take an arbitrary f ∈ F , vP(f) ≥ 0. We may write
f = f(P) + (f − f(P)), where vP(f − f(P)) ≥ 1 and vP(ω) ≥ −1. So by
(4.1) we have ωP(f − f(P)) = 0 and therefore

ωP(f) = ωP(f(P)) = f(P)ωP(1) = 0.

Using (4.1) again, this yields vP(ω) ≥ 0. Now assume that vP(ω) ≥ 0. Then
vP(1) = 0 ≥ −vP(ω) and hence ωP(1) = 0.

From the definition of the divisor (ω) it follows easily that Ω(D) = {ω ∈
Ω: D ≤ (ω)}. So for an element ω ∈ Ω(DB−1) we have ω ∈ Ω(D) if and only
if vPi

(ω) ≥ 0 for 1 ≤ i ≤ n. By the above argument this is equivalent to
wP1(1) = . . . = wPn(1) = 0, i.e. ω ∈ ker Ψ. Since Ψ is surjective our claim
follows from

dimCΩ(B,D) = dim Ω(DB−1)− dim(ker Ψ) =

dim Ω(DB−1)− dim Ω(D) = j(DB−1)− j(D).

Now we are able to prove the surprising result that the two kinds of Goppa
codes introduced before are dual to each other. More precisely, CL(B,D) is
the dual code of CΩ(B,D), which explains the terminology.

Theorem 4.2.6. Let P1, . . . ,Pn be places of degree one, B := P1 · · · Pn and
let D be a divisor, suppB ∩ suppD = ∅. Then CΩ(B,D) = CL(B,D)⊥.

Proof. We start by proving the following fact: Let P be a place of degree one,
ω a differential with divisor W := (ω), f ∈ F such that vP(ω) = vP(W) ≥
−1, vP(f) ≥ 0, then

ωP(f) = f(P)ωP(1).
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We have vP(ιP(f − f(P))) = vP(f − f(P)) ≥ 1 ≥ −vP(W). For a place
Q 6= P , by definition of ιP , vQ(ιP(f − f(P))) = vQ(0) =∞ ≥ −vQ(W) and
hence ιP(f−f(P)) ∈ Y (W). ω vanishes on Y (W), thus ω(ιP(f−f(P))) = 0
and so

ωP(f) = ω(ιP(f)) = ω(ιP(f(P) · 1)) = f(P)ω(ιP(1)) = f(P)ωP(1).

Next we show the inclusion CΩ(B,D) ⊆ CL(B,D)⊥. Take some differential
ω ∈ Ω(DB−1) and some ϕ ∈ L(D) and consider the scalar product of the
corresponding code words:

(ωP1(1), . . . , ωPn(1)) · (ϕ(P1), . . . , ϕ(Pn)) =
n∑
i=1

ϕ(Pi)ωPi
(1) =

n∑
i=1

ωPi
(ϕ)

(1)
=
∑
P∈P

ωP(ϕ)
(2)
= ω(ϕ) = 0.

The last equation follows since by definition differentials vanish on F . To
justify (1) take an arbitrary place Q /∈ {P1, . . . ,Pn}. vQ(ιQ(ϕ)) = vQ(ϕ) ≥
−vQ(D) = −vQ(DB−1). For places Q′ 6= Q we have vQ′(ιQ(ϕ)) = vQ′(0) =
∞, so ιQ(ϕ) ∈ Y (DB−1). Thus ωQ(ϕ) = ω(ιQ(ϕ)) = 0. (2) holds by Propo-
sition 2.4.2.

Now, using Theorem 4.2.2, Lemma 4.2.5 and the facts about the index of
a divisor we obtain

dimCΩ(B,D) = j(DB−1)− j(D) =(
`(DB−1)− deg(DB−1) + g − 1

)
− (`(D)− deg(D) + g − 1) =

deg(B) + `(DB−1)− `(D) = n− (`(D)− `(DB−1)) =

n− dimCL(B,D) = dimCL(B,D)⊥.

This shows that indeed CΩ(B,D) = CL(B,D)⊥.

Let us consider the dual Goppa code CL(B,D) with parameters [n, k, d].
Assume further deg(D) < n such that ϕ 7→ (ϕ(P1), . . . , ϕ(Pn)) is injective.
If we have a basis ϕ1, . . . , ϕk of L(D) then

GL :=


ϕ1(P1) ϕ1(P2) · · · ϕ1(Pn)
ϕ2(P1) ϕ2(P2) · · · ϕ2(Pn)

...
...

. . .
...

ϕk(P1) ϕk(P2) · · · ϕk(Pn)


is a generator matrix of CL(B,D). Hence HΩ := GL is a parity check matrix
for CΩ(B,D). The following lemma shows how the parameters of a primary
Goppa code can be computed from B, D and the genus of the function field.
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Theorem 4.2.7. Let F/K be an algebraic function field of genus g and let
the primary Goppa code CΩ(B,D) be defined as in 4.2.4. If 2g− 2 < deg(D)
then CΩ(B,D) is a linear [n, k, d]-code with parameters

1.) n = deg(B)

2.) k = n− deg(D) + g − 1 + `(DB−1)

3.) d ≥ deg(D)− (2g − 2).

Proof. 1.) follows directly from the definition. To prove 2.) note that
the code is the dual code of CL(B,D), hence Theorem 4.2.2 gives n − k =
dimCL(B,D) = `(D) − `(DB−1). By Corollary 2.3.12 (a corollary of the
Riemann-Roch Theorem) `(D) = deg(D) + 1 − g since deg(D) > 2g − 2.
Putting this together gives the desired equality. To show 3.) let c =
(c1, . . . , cn) 6= 0 be a code word with m non-zero entries. Assume that
m is less than deg(D) − (2g − 2). By reordering the places Pi we can
assume that ci 6= 0 for 1 ≤ i ≤ m and ci = 0 otherwise. Define divi-
sors Bj by Bj := P1 · . . . · Pj where 1 ≤ j ≤ m. Then, by assumption,
deg(DB−1

j ) ≥ deg(D)−m > 2g− 2. Using Corollary 2.3.12 again, we obtain

`(DB−1
j ) = deg(D) − j + 1 − g. In particular L(DB−1

m ) ( L(DB−1
m−1). Thus

we may pick a function ϕ lying in L(DB−1
m−1) \ L(DB−1

m ). Due to our choice
ϕ(P1) = . . . = ϕ(Pm−1) = 0, ϕ(Pm) 6= 0. But since ϕ ∈ L(D) this gives

n∑
i=1

ciϕ(Pi) = cmϕ(Pm) 6= 0

contradicting the fact that c lies in CΩ(B,D) = CL(B,D)⊥.

4.3 Examples of Goppa Codes

4.3.1 Reed-Solomon Codes

First we consider so called Reed-Solomon codes . We will see how to interpret
them as Goppa codes. To do so, we identify the words c = (c0, c1, . . . , cn−1) ∈
Fnq with polynomials c(ẋ) = c0 + c1ẋ+ . . .+ cn−1ẋ

n−1 of degree less than n.

Definition 4.3.1 (Reed-Solomon Code). For a prime power q consider the
finite field Fq. Let α be a primitive element of Fq. Set n := q − 1, choose
integers i, k such that 0 < k ≤ n. Define g(ẋ) := (ẋ− αi)(ẋ− αi+1) · · · (ẋ−
αi+n−k−1), then the set
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CRS(k, i) := {c(ẋ) ∈ Fq[ẋ] : deg c(ẋ) < n, g(ẋ)| c(ẋ)}

interpreted as a subset of Fnq is called Reed-Solomon code.

It is not hard to show that CRS(k, i) is a linear subspace of Fnq , i.e. a code
in the sense of our definition. A polynomial c(ẋ) of degree less than n is an
element of CRS(k, i) if and only if c(αi) = c(αi+1) = . . . = c(αi+n−k−1) = 0.
Thus, if we denote by Vn the space of polynomials in Fq[ẋ] of degree less than
n and define

ψ :

{
Vn → Fn−kq

c(ẋ) 7→ (c(αi), c(αi+1), . . . , c(αi+n−k−1))

we have CRS(k, i) = kerψ and hence dimCRS(k, i) = dim kerψ = n −
dimFn−kq = k. We used the fact that ψ is surjective, which can be seen
by using Lagrange interpolation: Since n− k ≤ n there is a polynomial c(ẋ),
deg c(ẋ) ≤ n − 1 such that c(αi) = b0, . . . , c(α

i+n−k−1) = bn−k−1 for given
elements bj ∈ Fq.

Now consider a polynomial f(ẋ) of degree deg f(ẋ) < k and the word c :=
(f(α), f(α2), . . . , f(αn)) ∈ Fnq . We would like to show that c ∈ CRS(k, 1).
Due to linearity it is sufficient to show this for f(ẋ) = ẋj, 0 ≤ j < k. Thus we
substitute ẋ = α`, 1 ≤ ` ≤ n−k, into the polynomial αj+α2jẋ+. . .+αnjẋn−1.
This yields

αj + α2jα` + . . .+ αnjα(n−1)` =

αj(1 + αj+` + . . .+ α(n−1)(j+`)) = αj
1− αn(j+`)

1− αj+`
= 0

since n = q − 1 is the order of (F×q , ·) and therefore αn = 1. Note that
1 ≤ j + ` ≤ n− 1 and hence αj+` 6= 1. Thus

{
(f(α), f(α2), . . . , f(αn)) : f(ẋ) ∈ Fq[ẋ], deg f(ẋ) < k

}
⊆ CRS(k, 1).

Since k ≤ n, a polynomial in Vk ⊆ Vn has less than n zeros. So ϕ : Vk →
Fnq : f(ẋ) 7→ (f(α), . . . , f(αn)) is injective. Thus the above defined subspace
of CRS(k, 1) is of dimension k and hence ϕ(Vk) = CRS(k, 1). Hence we found
an alternative description of Reed-Solomon codes.

The curve C : ẏ = 0 may be identified with the affine line A1
K

, K = Fq.
The associated function field K(C) is naturally isomorphic to the field of
rational functions K(ẋ). The rational places of K(ẋ) are of the form Pa,
a ∈ K (the set of rational functions having a zero at a) and P∞ (the set
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of rational functions g(ẋ)/h(ẋ) with deg g(ẋ) < deg h(ẋ)), see Proposition
1.1.6 and the paragraph after Corollary 1.3.3. An element f(ẋ) ∈ K(ẋ) is a
polynomial of degree less than k if and only if it has no poles except P∞ and
this pole is of degree less than k. Hence CRS(k, 1) can be rewritten as

{(f(Pα), f(Pα2), . . . , f(Pαn)) : f(ẋ) ∈ L((k − 1)P∞)}

i.e. CRS(k, 1) = CL(B, (k−1)P∞) if we set B = PαPα2 · · · Pαn . Since K(ẋ) is
of genus 0, the remark after Corollary 4.2.3 shows that Reed-Solomon codes
are MDS codes.

A drawback of Reed-Solomon codes is that their length n is determined
by the size of the alphabet q. An advantage of Goppa codes lies in the fact
that the possible code length only depends on the number of rational places
of the function field K(C)/K.

4.3.2 A Concrete Example of a Goppa Code

In this section we would like to construct a concrete Goppa code from an
algebraic curve and determine the parameters n, k and d. Therefore we need
to choose a finite field Fq, a curve Cf : f(ẋ, ẏ) = 0 as well as rational points
of the curve that lead to the divisors B and D. We will consider the curve
Cf : f(ẋ, ẏ) := ẋ3 + ẋẏ2 + ẋẏ+ ẏ = 0 over F16 and the projective closure CF .
We will denote the elements of F16 according to the following table

element minimal polynomial in F2

0, 1 x, x+ 1
α0, α1 x2 + x+ 1
β0, β1, β2, β3 x4 + x+ 1
γ0, γ1, γ2, γ3 x4 + x3 + 1
δ0, δ1, δ2, δ3 x4 + x3 + x2 + x+ 1

where β−1
i = γi, β

2i

0 = βi, γ
2i

0 = γi and δ2i

0 = δi holds for 0 ≤ i ≤ 3. γ0 is a
primitive element of F16 and γ5

0 = α0, γ−1
0 = β0, γ3

0 = δ0. All calculations in
this section were done using [3].

Corollary 3.2.2 shows that f(ẋ, ẏ) is absolutely irreducible. The corre-
sponding homogeneous polynomial is F (Ẋ, Ẏ , Ż) = Ẋ3+ẊẎ 2+ẊẎ Ż+Ẏ Ż2.
It is not hard to show that the projective algebraic curve has no singular
points, i.e. that there is no common zero of F (Ẋ, Ẏ , Ż) and all its partial
derivatives. Thus CF is indeed a non-singular, projective algebraic curve and
every rational point (i.e. a point with coefficients in F16) defines a place. The
table below lists all rational points of CF :
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(0 : 0 : 1)

(0 : 1 : 0)

(1 : 1 : 0)

(1 : 1 : 1)

F2

(α0 : 1 : 1), (α1 : 1 : 1)

(α0 : α1 : 1), (α1 : α0 : 1)


F4

(γ0 : α1 : 1), (γ1 : α0 : 1), (γ2 : α1 : 1), (γ3 : α0 : 1)

(γ0 : β3 : 1), (γ1 : β0 : 1), (γ2 : β1 : 1), (γ3 : β2 : 1)


F16

The points are grouped in a way such that conjugated points are in the same
line.

To define a Goppa code we make the following choice: We set Q := (0 :
0 : 1) and we write Pi, 1 ≤ i ≤ 8, for the eight points in the last two rows
where the index i increases from left to right. For the places corresponding
to these points we shall write Q and Pi as well. Set B := P1 · · · P8 and
consider the codes CL(B, jQ), 1 ≤ j < 8. CL(B, jQ) consists of the words
(ϕ(P1), . . . , ϕ(P8)) where ϕ is an arbitrary function having a pole only at Q
with order at most j. To calculate the genus of CF we need the so called
Plücker Formula (see e.g. [11, Chapter 14]). It allows us to calculate the
genus of the function field of K(CF )/K from the degree of the defining poly-
nomial.

Theorem 4.3.2 (Plücker Formula). Let CF : F (Ẋ, Ẏ , Ż) = 0 be a projective
algebraic curve over an arbitrary field K with at least one K-rational point.
If CF has no singular points and n is the degree of F (Ẋ, Ẏ , Ż), then the
genus of K(CF )/K is equal to

g =
(n− 1)(n− 2)

2
.

Thus in our case the genus is g = 1. Therefore we may use Theorem 4.2.7.
Note that deg(jQ) = j < 8 = deg(B) and hence `(jQB−1) = 0. Thus we see
that CΩ(B, jQ) is a linear [n, k, d]-code with n = 8, k = 8− j and d ≥ j. By
the Singleton bound d ∈ {j, j + 1}.

A basis of L(jQ) will lead to a basis of CL(B, jQ) since by assumption
`(jQB−1) = 0 and therefore the evaluation map ϕ 7→ (ϕ(P1), . . . , ϕ(P8)) is
injective (see the proof of Theorem 4.2.2). This in turn will enable us to
construct a check matrix of CΩ(B, jQ). Since deg(jQ) = j > 0 = 2g − 2,
Corollary 2.3.12 tells us `(jQ) = deg(jQ) = j. To find a basis of this
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Riemann-Roch space it will be sufficient to find a non-constant element ϕ ∈
L(Q). fẏ(0, 0) = (ẋ + 1)|(ẋ,ẏ)=(0,0) = 1, so by Lemma 3.7.3, x is a generator
of P(0,0) and thus vQ(x) = 1. To calculate vQ(y) we use

y = x3 y

x3
= x3y

4 + x2y2 + x2y + xy + x2 + 1

(x+ 1)3
.

This follows from f(ẋ, ẏ)(ẋ2ẏ2 + ẋ2ẏ + ẋ2 + ẋẏ + 1) = ẋ3(ẏ4 + ẋ2ẏ2 + ẋ2ẏ +
ẋẏ+ ẋ2 +1)−(ẋ+1)3ẏ. Note that the above equation holds only for elements
of K(Cf ), i.e. we are calculating modulo f(ẋ, ẏ). The quotient on the right
hand side is invertible in OQ, thus vQ(y) = 3. Set ψ := (y(y+ γ0))/x2. Then
we have

vQ(ψ) = vQ(y) + vQ(y + γ0)− 2vQ(x) = 3 + 0− 2 = 1,

i.e. ψ has a zero of order 1 at Q. Obviously ψ has no other zeros among the
points of Cf . The element in K(CF ) corresponding to ψ is (Y (Y +γ0Z))/X2.
Neither (0 : 1 : 0) nor (1 : 1 : 0) are zeros of this function. Thus ϕ := ψ−1

has only a pole at Q which is of order one, i.e. ϕ ∈ L(Q). Set ϕi := ϕi,
then vQ(ϕi) = −i and so {ϕ1, . . . , ϕj} is a basis of L(jQ). The matrix
(ϕi(Pk))1≤i≤j,1≤k≤n is equal to the first j rows of

γ2 α1 α1 β3 γ0 δ2 γ3 β0

γ3 α0 α0 β0 γ1 δ3 γ0 β1

δ2 1 1 δ1 δ0 δ1 δ3 δ2

γ0 α1 α1 β1 γ2 δ0 γ1 β2

α0 α0 α0 α0 α0 1 α1 α1

δ3 1 1 δ2 δ1 δ2 δ0 δ3

β1 α1 α1 γ2 β3 δ3 β2 γ3


.

It is a parity check matrix for CΩ(B, jQ).



Chapter 5

Decoding Algorithms for
Goppa Codes

5.1 Basic Error Correction

In this section we will consider primary Goppa codes, introduced in Section
4.2. We will develop a decoding algorithm going back to Skorobogatov and
Vlǎduţ, 1990. It was one of the first decoding algorithms for Goppa codes
and is capable of decoding up to b(d−g−1)/2c errors where d is the minimum
distance and g is the genus of the involved function field. Note that this is in
general less than the error correction capacity b(d− 1)/2c of the code. Our
describtion of error locators and the Skorobogatov-Vlǎduţ algorithm follows
[11, chapter 6]. We fix the following notation:

• F/Fq is an algebraic function field of genus g

• P1, . . . ,Pn are places of degree one of F/Fq

• B := P1 · · · Pn and D is a divisor with support disjoint from that of B

• CΩ(B,D) is the primary Goppa code defined by B and D

• C,Y ,Z are divisors with properties that will be specified during this
section

We use the notation

ϕ · f :=
n∑
i=1

ϕ(Pi)fi

69
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for an arbitrary element ϕ ∈ F without poles at Pi and an element f =
(f1, . . . , fn) ∈ Fnq and call this product the syndrom of f with respect to ϕ.
If ϕ has a pole among the places Pi then define ϕ · f := ∞ where ∞ is not
an element of Fq. In this notation

CΩ(B,D) = {c ∈ Fnq : ϕ · c = 0 for all ϕ ∈ L(D)}.

Definition 5.1.1 (Error Locator). Let e = (e1, . . . , en) ∈ Fnq be an error
word. A place Pj is called error location of e if ej 6= 0. An element θ ∈ F×
which has no poles among the Pi and has the property that θ(Pi) = 0
whenever ei 6= 0 is called an error locator of e. In other words, an error
locator of e is a function θ that vanishes at the error locations of e and
therefore satifies θ · e = 0.

Note that the definition of an error locator is based on a fixed sequence
P1, . . . ,Pn. In the following paragraphs we will

1.) prove the existence of an error locator for a given error word e under
certain conditions (Lemma 5.1.2),

2.) see how to use an error locator of e to determine ei whenever ei 6= 0
(Proposition 5.1.4) and

3.) show how to construct an error locator from an error word (Proposition
5.1.5).

Lemma 5.1.2. Let t be a positive integer, e ∈ Fnq be an arbitrary error word
with w(e) ≤ t, C a divisor such that `(C) > t. Then there is an error locator
of e in L(C).

Proof. Let M ⊆ {1, . . . , n} be the set of indices j where ej 6= 0 and choose a
basis ϕ1, . . . , ϕm of L(C), i.e. m = `(C). Consider the following linear system
of equations:

m∑
i=1

aiϕi(Pj) = 0, j ∈M

The system consists of at most t equations with m > t unknowns. This
certainly has a non-trivial solution (a1, . . . , am) ∈ Fmq , i.e. ai 6= 0 for some
index i. Define θ :=

∑m
i=1 aiϕi. Then θ ∈ L(C) and θ(Pj) = 0 for all j ∈M ,

i.e. θ is an error locator of e in L(C).

The next lemma seems to be somewhat technical. It will be clear in the
subsequent corollary why it is useful.
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Lemma 5.1.3. Let t, r be integers, t, r ≥ 0. Assume there are divisors C, Z
with support disjoint from B such that

• C is positive, deg(C) ≤ t+ r

• deg(Z) ≥ t+ r + 2g − 1.

Fix an element θ of L(C). Let e(1), e(2) be words in Fnq such that w(e(i)) ≤ t

and θ is an error locator for e(i), i = 1, 2. If ϕ ·e(1) = ϕ ·e(2) for all ϕ ∈ L(Z)
then e(1) = e(2).

Proof. Denote by N the set of those indices j ∈ {1, . . . , n} where θ(Pj) = 0.
Suppose N contains more than t+ r elements. Then, by Theorem 1.5.7

deg((θ)−1
∞ C) = − deg((θ)0)︸ ︷︷ ︸

<−(t+r)

+ deg(C)︸ ︷︷ ︸
≤(t+r)

< 0.

So (θ)−1
∞ C has a negative exponent at some place P , i.e.

vP((θ)C) = vP((θ)0(θ)−1
∞ C) = vP((θ)−1

∞ C) < 0

But this contradicts the assumption θ ∈ L(C). Thus N has at most r + t
elements. Since θ is an error locator for the e(i), it is an error locator for
e(1) − e(2) and so w(e(1) − e(2)) ≤ t+ r.

Since the indices of the error locations of the e(i) are in N we have

ϕ · e(i) =
∑
j∈N

ϕ(Pj)e(i)
j

for all ϕ ∈ F without poles among the Pj, j = 1, . . . , n and i = 1, 2. In
particular this is true for all ϕ ∈ L(Z). Since ϕ·e(1) = ϕ·e(2) for all ϕ ∈ L(Z),
e(1) − e(2) is a codeword of CΩ(B,Z). Due to our assumption on Z we have
2g−2 < deg(Z), so Theorem 4.2.7 is applicable to CΩ(B,Z), hence this code
has minimum distance d ≥ deg(Z)−(2g−2) ≥ t+r+2g−1−(2g−2) = t+r+1.
Since e(1) − e(2) has weight at most t+ r we conclude e(1) − e(2) = 0.

We are now able to describe how to find the error word e, given the received
word f = c+ e and an error locator for e:

Proposition 5.1.4. Let r, t ≥ 0 be integers and suppose C and Z are divisors
with the properties stated in the previous lemma. Assume further that Z ≤ D.
Fix some basis ϕ1, . . . , ϕs of L(Z). Suppose c ∈ CΩ(B,D) such that f = c+e
is the received word and θ ∈ L(C) is an error locator of e, w(e) ≤ t. Consider
the linear system
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∑
j∈N

ϕi(Pj)xj = ϕi · f, 1 ≤ i ≤ s (5.1)

where N is the set of j ∈ {1, . . . , n} with θ(Pj) = 0. Then xj = ej, j ∈ N , is
the unique solution of (5.1).

Proof. We have ϕi ∈ L(Z) ⊆ L(D) and ek = 0 whenever k /∈ N , so∑
j∈N

ϕi(Pj)ej = ϕi · e = ϕi · f − ϕi · c = ϕi · f, 1 ≤ i ≤ s.

Assume (xj)j∈N is another solution of (5.1). Set e′i = xi if i ∈ N and e′i = 0
else. Then θ is an error locator of e′ := (e′1, . . . , e

′
n). Since ϕi ·e′ = ϕi ·f = ϕi ·e

for all 1 ≤ i ≤ s we see that ϕ · e′ = ϕ · e for all ϕ ∈ L(Z). This implies
e = e′ by the above lemma, showing that xi = ei for all i ∈ N .

We will now see how to find an error locator under certain conditions.

Proposition 5.1.5. Consider an error word e with w(e) ≤ t. Let C and Y
be divisors with support disjoint from suppB, deg(Y) ≥ t + 2g − 1. Choose
bases ψ1, . . . , ψ` ∈ L(C) and χ1, . . . , χm ∈ L(Y). Then the system


ψ1χ1 · e ψ2χ1 · e . . . ψ`χ1 · e
ψ1χ2 · e ψ2χ2 · e . . . ψ`χ2 · e

...
...

. . .
...

ψ1χm · e ψ2χm · e . . . ψ`χm · e

 ·

a1

a2
...
a`

 = ~0 (5.2)

has a non-trivial solution (a1, . . . , a`)
T ∈ F`q if and only if

∑`
i=1 aiψi is an

error locator of e in L(C).

Proof. We shall first prove the following result: θ ∈ L(C) is an error locator
of e if and only if θχ · e = 0 for all χ ∈ L(Y). From this the rest will
follow easily. If θ is an error locator then θ(Pi)ei = 0 for all i ≤ n, hence∑n

i=1 θ(Pi)χ(Pi)ei = 0 for an arbitrary χ ∈ L(Y). For the converse consider
the vector c := (θ(P1)e1, . . . , θ(Pn)en). By assumtion c ∈ CΩ(B,Y) and by
Theorem 4.2.7 this code has minimum distance d ≥ t+ 1. Since w(e) ≤ t the
vector c has at most t non-zero entries. Therefore it is the null vector which
means that θ is an error locator of e.

If (a1, . . . , a`)
T is a non-trivial solution of (5.2) and θ :=

∑`
i=1 aiψi then

θχj · e = 0 for 1 ≤ j ≤ m. So θχ · e = 0 for all χ ∈ L(Y). Therefore θ ∈ L(C)
is an error locator for e.



5.1. BASIC ERROR CORRECTION 73

Conversely, if θ ∈ L(C) is an error locator for e then θ =
∑`

i=1 aiψi,
ai 6= 0 for at least one index i. It is easy to check that θχj · e is equal to
the j-th component of the matrix-vector-product in (5.2). Since θχj · e = 0,
(a1, . . . , a`)

T is a non-trivial solution.

Using the previous results from this section we can now describe a decod-
ing procedure for the Goppa code CΩ(B,D) and a fixed t ≥ 0. We assume
that D has degree deg(D) > 2g− 2 such that CΩ(B,D) has parameters as in
Theorem 4.2.7. We assume that a divisor C exists that has the following prop-
erties: C is positive, supp C∩suppB = ∅, `(C) > t, deg C ≤ degD−2g+1−t
After describing the algorithm we shall give conditions under which such a
divisor C exists.

Algorithm 5.1.6. The following steps will be performed only once: Set
Y := D · C−1 and select bases {ϕ1, . . . , ϕs} of L(D), {ψ1, . . . , ψ`} of L(C)
and {χ1, . . . , χm} of L(Y), respectively.

Input A word f = c+ e, c ∈ CΩ(B,D), w(e) ≤ t.
Output The error e.
Step 1 Find a non-trivial solution of the system

ψ1χ1 · f ψ2χ1 · f . . . ψ`χ1 · f
ψ1χ2 · f ψ2χ2 · f . . . ψ`χ2 · f

...
...

. . .
...

ψ1χm · f ψ2χm · f . . . ψ`χm · f

 ·

a1

a2
...
a`

 = ~0

and set θ :=
∑`

i=1 aiψi.
Step 2 Define N := {j : 1 ≤ j ≤ n, θ(Pj) = 0} and solve∑

j∈N

ϕi(Pj)xj = ϕi · f, 1 ≤ i ≤ s.

Step 3 Set ej = xj if j ∈ N and ej = 0 else. Return
e := (e1, . . . , en).

Note the difference between the system in Step 1 and (5.2): The set of
linear equations in this algorithm is solvable knowing only f . We will now
prove that Algorithm 5.1.6 works.

Proposition 5.1.7. Let t ≥ 0 be an integer, CΩ(B,D) a primary Goppa code
and C a divisor such that C is positive, supp C ∩ suppB = ∅, `(C) > t and
deg C ≤ degD − 2g + 1− t. If e is an error word of weight at most t, c is a
code word and f = c + e then running Algorithm 5.1.6 with input f results
in e.
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Proof. Note that degY = degD − deg C ≥ t + 2g − 1. The support of Y
is contained in supp C ∪ suppD and thus disjoint to suppB. Thus C and Y
fulfil the requirements of Lemma 5.1.2 and Proposition 5.1.5. To see that
Proposition 5.1.4 may be applied set Z := D and r := degD− 2g− 2t+ 1 ≥
deg C − t ≥ `(C) − 1 − t ≥ 0. Due to Lemma 5.1.2, e has an error locator
in L(C). Furthermore, ψiχj ∈ L(CY) = L(D) and hence ψiχj · f = ψiχj · e
for 1 ≤ i ≤ `, 1 ≤ j ≤ m, i.e. the system in Step 1 is equivalent to (5.2).
By Proposition 5.1.5 the element θ computed in Step 1 is an error locator of
e. Consequently, ek 6= 0 is only possible if θ(Pk) = 0. The system in Step 2
computes the values of ei by Proposition 5.1.4.

The next lemma states some conditions such that a divisor C with the
properties required to apply Proposition 5.1.7 exists.

Lemma 5.1.8.

• If there is an integer c such that

t+ g ≤ c ≤ deg(D)− 2g + 1− t

and some place Q of degree one, Q /∈ suppB, then there is a divisor C
fulfilling the requirements of Proposition 5.1.7.

• In particular, such an integer c exists if deg(D) ≥ 3g + 2t− 1.

Proof.

• In this case choose C positive, with degree equal to c and support
disjoint from B. One possible choice is to set C := cQ. By Riemann’s
Theorem `(C) ≥ deg(C) + 1 − g > t. Hence both of the required
inequalities hold.

• Under this assumption t+ g ≤ deg(D)− 2g + 1− t.

Remark. The algorithm described above is called Skorobogatov-Vlǎduţ error
processing algorithm . Combining the second inequality from Lemma 5.1.8
with the inequality for the minimal distance d of CΩ(B,D) yields

d ≥ g + 2t+ 1

or equivalently t ≤ b(d− g − 1)/2c. This means that we cannot ensure that
the algorithm is capable of correcting more than b(d−g−1)/2c errors, which
is in general less than the general error correction capacity b(d− 1)/2c.



5.2. LIST DECODING 75

5.2 List Decoding

Usually, decoding of a linear [n, k, d]q-code C assumes that if f = c+e, c ∈ C
and f is the received word, the error e is of weight w(e) ≤ bd−1

2
c. The reason

for this is the following: If w(e) > bd−1
2
c, then there could be a code word

c′ 6= c such that d(c′, f) ≤ d(c, f) = w(e), i.e. f is at least as close to c′ as
to c. Thus the nearest neighbour decoding could produce the wrong result.
In this section we will drop this assumption and follow a different approach,
known as list decoding. It differs from the standard decoding problem in that
it asks for a list L of all code words with distance less than or equal to r
to a given word f , where r ≥ 0 is in general greater than bd−1

2
c. Thus, if

d(f, c) = w(e) ≤ r, the original code word c will be in L.

Definition 5.2.1 (List Decoding Problem). Let C ⊆ Fnq be a linear code, r
be a non-negative integer and f ∈ Fnq be a word. The list decoding problem
asks for all words in Bn

r (f) ∩ C where

Bn
r (f) := {g ∈ Fnq : d(f, g) ≤ r}

is the Hamming ball in Fnq of radius r around f .

We are particularly interested in list decoding of Goppa codes. In Section
5.2.1 we will discuss a list decoding algorithm for Reed-Solomon codes intro-
duced by Sudan in [15]. This algorithm was generalised to Goppa codes by
Shokrollahi and Wasserman in [13] and improved by Sudan and Guruswami
in [7]. We shall discuss this generalisation in Section 5.2.2.

Assume that for some fixed r ≥ 0 and an arbitrary word f ∈ Fnq the
number of code words with distance at most r to f is bounded by some
integer `. I.e. if Bn

r (f) ∩ C = {c1, . . . , cm(f)} then m(f) ≤ `. A good list
decoding algorithm should work for arbitrarily large n in reasonable time,
i.e. in polynomial time in n. A necessary condition for this is that the size
of the output m(f) is bounded polynomially in n for all f ∈ Fnq which is true
if ` can be bounded by some polynomial in n. To formalize this notion we
make the following definition:

Definition 5.2.2. Let C be a linear code of length n. If there are integers
r, ` ≥ 0 such that there are at most ` code words in Bn

r (f) for all f ∈ Fnq , i.e.
|Bn

r (f) ∩ C| ≤ `, then C is said to be (r, `)-decodeable.

Every [n, k, d]q-code is (bd−1
2
c, 1)-decodeable as well as (n, qk)-decodeable.



76 CHAPTER 5. DECODING ALGORITHMS FOR GOPPA CODES

5.2.1 List Decoding for Reed-Solomon Codes

Recall that a Reed-Solomon code CRS(k, 1) over the field Fq, introduced in
Section 4.3.1, is an [n, k, d]q code where n = q−1, 1 ≤ k ≤ n and d = n−k+1.
It is given by

CRS(k, 1) = {(f(α), f(α2), . . . , f(αn)) : f(ẋ) ∈ Fq[ẋ], deg f(ẋ) < k}

where α is a primitive element of Fq. The list decoding problem for CRS(k, 1),
a given word (b1, . . . , bn) ∈ Fnq and r ≥ 0 is the problem of finding all poly-
nomials f(ẋ) ∈ Fq[ẋ], deg f(ẋ) < k such that f(αi) 6= bi for at most r indices
i ∈ {1, . . . , n}. Or, in other words, finding all f(ẋ) such that f(αi) = bi for at
least t := n− r indices. Hence we can reformulate the list decoding problem
for CRS(k, 1) as follows:

Definition 5.2.3 (List Decoding Problem for Reed-Solomon Codes). Let
(x1, b1), . . . , (xn, bn) be distinct points with components in Fq and t be an
integer, 0 ≤ t ≤ n. The list decoding problem for Reed-Solomon codes is the
problem of finding all polynomials f(ẋ) ∈ Fq[ẋ], deg f(ẋ) ≤ k − 1 =: k′ such
that f(xi) = bi for at least t indices i ∈ {1, 2, . . . , n}.

The list decoding problem for Reed-Solomon codes can be solved in poly-
nomial time in n under the assumption that t is bounded from below by a
certain constant depending on n and k′. We will present an algorithm to
solve it going back to [15].

To motivate the algorithm assume we are in possession of a list of all
polynomials f1(ẋ), . . . , fm(ẋ) that solve the list decoding problem for tuples
(x1, b1), . . . , (xn, bn) and parameters k′ = k − 1 and t. Set Q(ẋ, ẏ) := (ẏ −
f1(ẋ)) · · · (ẏ − fm(ẋ)). Then, if t is small enough, Q(xi, bi) = 0 for all i ≤ n.
In particular, if t ≤ k′, then for any choice of t indices i(1), . . . , i(t) there is a
polynomial f(ẋ) of degree at most k′ such that f(xi(j)) = bi(j), 1 ≤ j ≤ t, by
Lagrange interpolation and thus Q(xi(j), bi(j)) = 0. If we factor Q(ẋ, ẏ) into
irreducible factors (note that Fq[ẋ, ẏ] is a unique factorisation domain ) then
we are able to reconstruct the list of the fi(ẋ) again. Thus we will pursue
the following strategy:

• Find a bivariate polynomial Q(ẋ, ẏ) 6= 0 with coefficients in Fq such
that Q(xi, bi) = 0 for all i ≤ n.

• Decompose Q(ẋ, ẏ) into irreducible factors. For each factor that is a
constant multiple of ẏ − f(ẋ) for some f(ẋ) ∈ Fq[ẋ], output f(ẋ) if
deg f(ẋ) ≤ k′ and f(xi) = bi for at least t indices i ∈ {1, . . . , n}.
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We will have to choose the degree of Q(ẋ, ẏ) sufficiently large to be able to
satisfy the first point. We will see that if a certain quantity derived from
the degree of Q(ẋ, ẏ) is smaller than t then the polynomials provided in
the second point represent a complete list of solutions to the list decoding
problem.

Definition 5.2.4 ((w1, w2)-weighted Degree). Let K be an arbitrary field.
For a monomial aẋiẏj ∈ K[ẋ, ẏ], a ∈ K×, and positive integers w1, w2 the
(w1, w2)-weighted degree is w1i+w2j. For a polynomial Q(ẋ, ẏ) ∈ K[ẋ, ẏ] the
(w1, w2)-weighted degree deg(w1,w2) Q(ẋ, ẏ) is the maximum of the (w1, w2)-
weighted degrees of all monomials of Q(ẋ, ẏ) with non-zero coefficients.

We will be interested in the (1, k′)-weighted degree of bivariate polyno-
mials and start with a result showing that the second point in our strategy
indeed leads to all polynomials f(ẋ) that fulfil f(xi) = bi for at least t indices
i.

Lemma 5.2.5. Let Q(ẋ, ẏ) be a bivariate polynomial and g(ẋ) be a uni-
variate polynomial with coefficients in an arbitrary field K. Then there are
polynomials q(ẋ, ẏ) and r(ẋ) such that

Q(ẋ, ẏ) = (ẏ − g(ẋ))q(ẋ, ẏ) + r(ẋ).

Proof. We consider Q(ẋ, ẏ) =
∑m

i=0Qi(ẋ)ẏi as a polynomial in the unknown
ẏ with coefficients in K(ẋ), i.e. as an element of K(ẋ)[ẏ]. Since K(ẋ) is a
field we can use univariate polynomial division to obtain

Q(ẋ, ẏ) = (ẏ − g(ẋ))q(ẋ, ẏ) + r(ẋ)

with q(ẋ, ẏ) ∈ K(ẋ)[ẏ] and r(ẋ) ∈ K(ẋ). We want to show that actu-
ally q(ẋ, ẏ) ∈ K[ẋ, ẏ] and r(ẋ) ∈ K[ẋ]. Write q(ẋ, ẏ) = q1(ẋ, ẏ)/q2(ẋ) and
q1(ẋ, ẏ) =

∑m−1
i=0 hi(ẋ)yi with q2(ẋ), hi(ẋ) ∈ K[ẋ], 0 ≤ i ≤ m − 1. Then

comparing coefficients at ẏj, 0 ≤ j ≤ m, yields

Qm(ẋ) = hm−1(ẋ)/q2(ẋ)

Qj(ẋ) = hj−1(ẋ)/q2(ẋ)− g(ẋ)hj(ẋ)/q2(ẋ), 1 ≤ j ≤ m− 1

Q0(ẋ) = −g(ẋ)h0(ẋ)/q2(ẋ) + r(ẋ)

By induction we see that hj(ẋ)/q2(ẋ) ∈ K[ẋ] for 0 ≤ j ≤ m − 1. Therefore
q(ẋ, ẏ) ∈ K[ẋ, ẏ] and consequently r(ẋ) ∈ K[ẋ].

Proposition 5.2.6. Let K be a field, Q(ẋ, ẏ) ∈ K[ẋ, ẏ] and f(ẋ) ∈ K[ẋ].
Then Q(ẋ, f(ẋ)) is the zero polynomial if and only if ẏ−f(ẋ) divides Q(ẋ, ẏ).
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Proof. The implication from right to left is obvious. Thus, assume that
Q(ẋ, f(ẋ)) = 0. We use the above lemma to decompose Q(ẋ, ẏ) and substi-
tute ẏ = f(ẋ):

0 = Q(ẋ, f(ẋ)) = (f(ẋ)− f(ẋ))q(ẋ, f(ẋ)) + r(ẋ) = r(ẋ).

Thus we see that r(ẋ) is the zero polynomial and hence Q(ẋ, ẏ) = (ẏ −
f(ẋ))q(ẋ, ẏ).

Corollary 5.2.7. Let (x1, b1), . . . , (xn, bn) ∈ F2
q be distinct pairs, 0 ≤ k′, t ≤

n integers, Q(ẋ, ẏ) ∈ Fq[ẋ, ẏ] with Q(xi, bi) = 0 for all i ≤ n and f(ẋ) ∈ Fq[ẋ],
deg f(ẋ) ≤ k′ such that f(xi) = bi for at least t indices i. If Q(ẋ, ẏ) is of
(1, k′)-weighted degree N < t then ẏ − f(ẋ) divides Q(ẋ, ẏ).

Proof. Let aẋiẏj be a monomial of Q(ẋ, ẏ). To evaluate the degree of this
monomial after the substitution ẏ = f(ẋ) we calculate

deg(aẋif(ẋ)j) = i+ j deg f(ẋ) ≤ deg(1,k′) aẋ
iẏj ≤ deg(1,k′) Q(ẋ, ẏ).

Therefore we have the following bound for the degree of g(ẋ) := Q(ẋ, f(ẋ)):

deg g(ẋ) = deg(Q(ẋ, f(ẋ))) ≤ deg(1,k′) Q(ẋ, ẏ) = N < t

Due to our assumption

g(xi) = Q(xi, f(xi)) = Q(xi, bi) = 0

for at least t indices i. Note that if f(xi) = bi, f(xj) = bj for distinct indices
i, j then (xi, f(xi)) = (xi, bi) 6= (xj, bj) = (xj, f(xj)) and thus xi 6= xj. So
g(ẋ) has at least t distinct zeros. But g(ẋ) is of degree less than t and hence
equal to the zero polynomial. Therefore Q(ẋ, f(ẋ)) = 0 and so by Proposition
5.2.6, ẏ − f(ẋ) divides Q(ẋ, ẏ).

Lemma 5.2.8. Let (x1, b1), . . . , (xn, bn) be distinct points with coordinates in
Fq. If r, s ≥ 0 are integers such that (r + 1)(s + 1) + k′(s + 1)s/2 > n then
there exists a polynomial Q(ẋ, ẏ) ∈ Fq[ẋ, ẏ], Q(ẋ, ẏ) 6= 0 with (1, k′)-weighted
degree at most r + sk′ such that Q(xi, bi) = 0 for all i ≤ n.

Proof. We start by setting

Q(ẋ, ẏ) :=
s∑
j=0

r+(s−j)k′∑
i=0

qijẋ
iẏj.

Note that the (1, k′)-weighted degree of the inner sum is at most r + (s −
j)k′ + k′j = r + sk′ and hence deg(1,k′) Q(ẋ, ẏ) ≤ r + sk′. The n equations
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Q(xi, bi) = 0 lead to a linear system of equations in the unknowns qij. There
are exactly

s∑
j=0

(r + (s− j)k′ + 1) = (r + 1)(s+ 1) + k′
s∑
j=0

(s− j)

= (r + 1)(s+ 1) + k′(s+ 1)s/2 > n

unknowns. Therefore there is a non-trivial solution qij, 0 ≤ j ≤ s, 0 ≤ i ≤
r+ (s− j)k′ of this system. This solution leads to a polynomial Q(ẋ, ẏ) with
the desired properties.

Corollary 5.2.7 and Lemma 5.2.8 show that if we find integers r, s such
that

r + k′s < t and (r + 1)(s+ 1) + k′(s+ 1)s/2 > n (5.3)

the approach of finding a polynomial Q(ẋ, ẏ) with all the (xi, bi) as zeros and
factoring it into irreducible factors provides a solution of the list decoding
problem. Note that under the conditions given above all solutions f(ẋ) of
the list decoding problem lead to a factor ẏ − f(ẋ) of Q(ẋ, ẏ). There might
be factors ẏ − f(ẋ) of Q(ẋ, ẏ) such that f(ẋ) is not a solution of the list
decoding problem. But these can be ruled out easily by testing the conditions
deg f(ẋ) < k and f(xi) = bi for at least t indices i ∈ {1, . . . , n}. What is left
to do is to choose r and s in a way that guarantees the above inequalities.
The following lemma provides sufficient conditions on n, k′ and t under which
such integers r and s can be found:

Lemma 5.2.9. If n, k′ and t are non-negative integers such that

t ≥ k′
⌈√

2(n+ 1)/k′
⌉
− bk′/2c (5.4)

then the choice r := dk′/2e − 1, s :=
⌈√

2(n+ 1)/k′
⌉
− 1 leads to integers

satisfying (5.3).

Proof. Set A :=
⌈√

2(n+ 1)/k′
⌉
, then s = A − 1. Substituting this and

rearranging terms show
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2dk′/2e ≥ k′ ⇒
(2dk′/2e − k′)A ≥ 0⇒

k′A2︸︷︷︸
≥2n+2

+(2dk′/2e − k′)A− 2n− 2 ≥ 0⇒

2dk′/2eA+ k′A(A− 1) ≥ 2n+ 2⇒
(r + 1)(s+ 1) + k′(s+ 1)s/2 ≥ n+ 1

The other inequality follows by the assumption on t from

r + k′s = dk′/2e − 1 + k′(A− 1) =

k′A− bk′/2c︸ ︷︷ ︸
≤t

+ bk′/2c − k′ + dk′/2e︸ ︷︷ ︸
=0

−1 < t

Thus, putting together Corollary 5.2.7, Lemma 5.2.8 and Lemma 5.2.9
we obtain an algorithm solving the list decoding problem for Reed-Solomon
codes with parameters n, k′ and t, provided inequality (5.4) holds:

Algorithm 5.2.10.
Input A list of n distinct pairs (x1, b1), . . . , (xn, bn) ∈ F2

q,
parameters k′, t.

Output A list of all polynomials f(ẋ) ∈ Fq[ẋ], deg f(ẋ) ≤
k′ with the property that f(xi) = bi for at least t
indices i.

Initialisation r := dk′/2e−1, s :=
⌈√

2(n+ 1)/k′
⌉
−1, an empty

list L.
Step 1 Find Q(ẋ, ẏ) ∈ Fq[ẋ, ẏ] such that Q(xi, bi) = 0 for

all i ≤ n and deg(1,k′) Q(ẋ, ẏ) ≤ r + sk′ by solving
a linear system of equations.

Step 2 Factor Q(ẋ, ẏ) into irreducible elements. For each
factor which is a constant multiple of ẏ − p(ẋ),
check if deg p(ẋ) ≤ k′ and p(xi) = bi for at least t
indices i ≤ n. If so add p(ẋ) to L.

Since this section should motivate the solution of the list decoding prob-
lem for Goppa codes, we did not pay attention to every detail. In particular
we skipped the problem of factoring polynomials in Fq[ẋ, ẏ] into irreducible
factors. This problem is solveable in polynomial time in the degree of the bi-
variate polynomial. The degree of Q(ẋ, ẏ) in the above algorithm is bounded
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by some polynomial in n. So the procedure still runs in polynomial time,
although the factorisation of Q(ẋ, ẏ) is the bottle neck. When we consider
list decoding of Goppa codes we will see how to generalise the approach of
Algorithm 5.2.10.

Putting together the previous results we can prove that Reed-Solomon
codes are (r, `)-decodeable for fairly good parameters r and `:

Corollary 5.2.11. The Reed-Solomon code CRS(k, 1) over Fq of length n =
q − 1 is (r, `)-decodeable with

r = n− (k − 1)
⌈√

2(n+ 1)/(k − 1)
⌉
, ` =

⌈√
2(n+ 1)/(k − 1)

⌉
.

Proof. Take an arbitrary word b = (b1, . . . , bn) ∈ Fnq . We must show that
|Br(b) ∩ CRS(k, 1)| ≤ `. Let α be a primitive element of Fq such that the
code words are (f(α), . . . , f(αn)), f(ẋ) ∈ Fq[ẋ], deg f(ẋ) < k. Set xi := αi,
1 ≤ i ≤ n and t := n − r. Then (f(α), . . . , f(αn)) ∈ Br(b) if and only if
f(xi) = bi for at least t indices i ∈ {1, . . . , n}. By the choice of r, t fulfils the
condition of Lemma 5.2.9 (k′ = k − 1). Thus there is a polynomial Q(ẋ, ẏ)
such that Q(xi, bi) = 0, i ≤ n and the (1, k′)-weighted degree of Q(ẋ, ẏ) is
less than t. Let fi(ẋ), 1 ≤ i ≤ m be the polynomials of degree less than k
corresponding to the code words in Br(b), i.e. |Br(b)∩CRS(k, 1)| = m. Then
by Corollary 5.2.7 the factors ẏ − fi(ẋ) divide Q(ẋ, ẏ) and thus

mk′ = deg(1,k′)(ẏ − f1(ẋ)) + . . .+ deg(1,k′)(ẏ − fm(ẋ)) ≤ deg(1,k′) Q(ẋ, ẏ) < t

and hence m < t/k′ =
⌈√

2(n+ 1)(k − 1)
⌉
/(k− 1) ≤

⌈√
2(n+ 1)/(k − 1)

⌉
.

5.2.2 List Decoding for Goppa Codes

It is obvious how to reformulate the list decoding problem for dual Goppa
codes. Recall that for divisors B = P1 · · · Pn, D with suppB ∩ suppD = ∅,
where Pi are places of degree one, the dual Goppa code is defined by

CL(B,D) = {(ϕ(P1), . . . , ϕ(Pn)) : ϕ ∈ L(D)} .

Thus the list decoding problem for CL(B,D) , analogous to the case of Reed-
Solomon codes, will be solved if we find a solution to the following problem:
Given an integer t, 0 ≤ t ≤ n and a word b = (b1, . . . , bn) ∈ Fnq , find
all functions ϕ ∈ L(D) such that ϕ(Pi) = bi for at least t indices among
i = 1, . . . , n.
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Since Reed-Solomon codes are a special case of Goppa codes, it is not
surprising that it is possible to generalise the results of the previous section for
the latter class of codes. For this purpose we define the following evaluation
of polynomials H(ẏ) ∈ F (ẏ), where F/Fq is an algebraic function field: Take
a place Q of F/Fq and an element ϕ ∈ F . Then H(ϕ) ∈ F and thus
H(Q, ϕ) := H(ϕ)(Q) is an element of some finite extension field of Fq, if Q
is not a pole of H(ϕ). If Q is a place of degree one, β ∈ Fq then H(Q, β) ∈
Fq ∪ {∞}. If H(ẏ) =

∑m
j=0 uj ẏ

j then this evaluation is given by

H(Q, β) =
m∑
j=0

uj(Q)βj.

In analogy to the case of Reed-Solomon codes the solution to the list decoding
problem is roughly the following:

• Find a polynomial H(ẏ) ∈ F [ẏ] (this will play the role of Q(ẋ, ẏ) in
the previous section), H(ẏ) =

∑m
j=0 uj ẏ

j such that H(Pi, bi) = 0 for
1 ≤ i ≤ n.

• Find all roots ϕ ∈ F of H(ẏ). For each root check if ϕ ∈ L(D) and
ϕ(Pi) = bi for at least t indices i ∈ {1, . . . , n}. In this case, ϕ is a
solution to the list decoding problem.

We will first give conditions on H(ẏ) under which all solutions of the list
decoding problem are roots of H(ẏ):

Lemma 5.2.12. Consider the dual Goppa code CL(B,D), B = P1 · · · Pn and
a word b = (b1, . . . , bn) ∈ Fnq . Take some integer 0 ≤ t ≤ n, an integer m ≥ 0
and a divisor F , degF = t− 1−m deg(D) with support disjoint from B. If

H(ẏ) =
m∑
j=0

uj ẏ
j ∈ F [ẏ],

uj ∈ L(FDm−j), such that H(Pi, bi) = 0 for 1 ≤ i ≤ n and ϕ ∈ L(D) is a
solution to the list decoding problem then ϕ is a root of H(ẏ).

Proof. Due to our assumptions we have ujϕ
j ∈ L(FDm), hence H(ϕ) is in

this Riemann-Roch space as well.

H(Pi, ϕ) =
m∑
j=0

uj(Pi)ϕ(Pi)j =
m∑
j=0

uj(Pi)bji = 0

for at least t places Pi by the assumption on ϕ. Denote by C the product
of those places Pi such that H(ϕ)(Pi) = H(Pi, ϕ) = 0, i.e. deg C ≥ t.
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So H(ϕ) ∈ L(C−1) and since supp C ∩ suppFDm = ∅ we have H(ϕ) ∈
L(FDmC−1). By the choice of the degree of F we obtain

deg(FDmC−1) = deg(F) +m deg(D)− deg(C) ≤
(t− 1−m deg(D)) +m deg(D)− t < 0

This shows L(FDmC−1) = {0}, so H(ϕ) = 0, which concludes the proof.

Lemma 5.2.13. With the notation of Lemma 5.2.12 assume that

(m+ 1)(t− g)− deg(D)
m(m+ 1)

2
> n. (5.5)

Then there is a polynomial H(ẏ) ∈ F [ẏ] with the properties stated in the
lemma.

Proof. Let ψj1, . . . , ψjr(j) be a basis of L(FDm−j) for 0 ≤ j ≤ m, i.e. r(j) =

`(FDm−j). We make the ansatz uj =
∑r(j)

k=1 ajkψjk for unknowns ajk ∈ Fq.
Substituting this into the equation for H(ẏ) and evaluating at (Pi, bi) yield
the n linear equations

H(Pi, bi) =
m∑
j=0

r(j)∑
k=1

ajkψjk(Pi)bji = 0, 1 ≤ i ≤ n. (5.6)

By Riemann’s Theorem r(j) ≥ deg(FDm−j)− g + 1 = (t− 1−m deg(D)) +
(m− j) deg(D)− g + 1 = t− g − j deg(D). There are exactly

m∑
j=0

r(j) ≥
m∑
j=0

t− g − j deg(D) = (m+ 1)(t− g)− deg(D)
m(m+ 1)

2
> n

unknowns. Thus the linear system (5.6) has a non-trivial solution, which
leads to a polynomial H(ẏ) with the desired properties.

Lemma 5.2.14. Assume m,n, g and deg(D) are given. If we set

t :=

⌈
n+ 1

m+ 1
+
m deg(D)

2
+ g

⌉
then inequality (5.5) is satisfied.
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Proof. According to our choice of t the left hand side of inequality (5.5) is
greater than or equal to

(m+ 1)

(
n+ 1

m+ 1
+
m deg(D)

2

)
− deg(D)

m(m+ 1)

2
= n+ 1 > n.

Lemma 5.2.15. The dual Goppa code CL(B,D) is (r,m)-decodeable with
r = n− d(n+ 1)/(m+ 1) + (m deg(D))/2 + ge for an arbitrary integer m ≥
0.

Proof. Given an arbitrary word b = (b1, . . . , bn) ∈ Fnq the number of code
words inBr(b) is bounded by the number of those ϕ ∈ L(D) with the property
ϕ(Pi) = bi for at least t := n − r indices i = 1, . . . , n, i.e. the number
of solutions to the associated list decoding problem. By our choice of r,
Lemma 5.2.14 and Lemma 5.2.13 apply to t and thus there is a polynomial
H(ẏ) ∈ F [ẏ] of degree at most m satisfying the conditions of Lemma 5.2.12.
By this lemma, each solution of the list decoding problem is a root of H(ẏ).
This shows |Br(b) ∩ CL(B,D)| ≤ m.

Let us consider some consequences of Lemma 5.2.15: Note that under the
standard assumption deg(D) < deg(B) we have k = `(D) ≥ deg(D)− g + 1
and hence deg(D) ≤ k+ g− 1. Thus we see that Goppa codes are (n−d(n+
1)/(m+ 1) +m(k+ g− 1)/2 + ge,m)-decodeable for an arbitrary m ≥ 0. By
choosing α := g + k − 1, m = d

√
2n/αe a straight forward estimate shows

that Goppa codes are (
n−

⌈√
2nα

⌉
+ g,

⌈√
2n/α

⌉)
-decodeable. For Reed-Solomon codes g = 0, so α = k− 1 and this turns out
to be almost the same result as Corollary 5.2.11 (actually it is even a slight
improvement).

If we collect the results of this section, we obtain an algorithm similar to
5.2.10, that solves the list decoding problem. Of course we have to assume
that the parameters n, g and deg(D) (stemming from CL(B,D)) as well as t
(stemming from the list decoding problem) and m fulfil inequality (5.5), e.g.
by choosing t as suggested by Lemma 5.2.14.

Algorithm 5.2.16. The following step has to be performed only once:
Choose a divisor F , degF = t − 1 −m deg(D), suppF ∩ suppB = ∅ and
find bases ψj1, . . . , ψjr(j) of L(FDm−j) for 0 ≤ j ≤ m.
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Input Places P1, . . . ,Pn, elements b1, . . . , bn ∈ Fq, pa-
rameters t,m, deg(D), g.

Output A list L of all elements ϕ ∈ L(D) with the property
ϕ(Pi) = bi for at least t indices i ∈ {1, . . . , n}.

Initialisation Empty list L.
Step 1 Find a polynomial H(ẏ) =

∑m
j=0 uj ẏ

j ∈ F [ẏ],

H(ẏ) 6= 0, uj ∈ L(FDm−j), H(Pi, bi) = 0 for
1 ≤ i ≤ n by solving the linear system in (5.6)

and setting uj :=
∑r(j)

k=1 ajkψjk.
Step 2 Factor H(ẏ) into irreducible factors in F [ẏ]. For

each linear factor ẏ−ϕ of H(ẏ) check if ϕ ∈ L(D)
and ϕ(Pi) = bi for at least t indices i ∈ {1, . . . , n}.
If so add ϕ to L.

Remark. This algorithm requires a subroutine to factor polynomials in F (ẋ)
into irreducible factors. A possible solution to solve this problem is sketched
in [13, Section III]. It is an adaption of a well-known procedure to factor
univariate polynomials with coefficients in algebraic number fields, see e.g.
[2, Section 3.6]



86 CHAPTER 5. DECODING ALGORITHMS FOR GOPPA CODES



Bibliography

[1] Claude Chevalley. Introduction to the Theory of Algebraic Functions of
One Variable. Mathematical Surveys, No. VI. American Mathematical
Society, New York, N. Y., 1951.

[2] Henri Cohen. A course in computational algebraic number theory, vol-
ume 138 of Graduate Texts in Mathematics. Springer-Verlag, Berlin,
1993.

[3] The Sage Developers. SageMath, the Sage Mathematics Software System
(Version 7.3), 2016. http://www.sagemath.org.

[4] David Eisenbud. Commutative algebra, volume 150 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 1995.

[5] Otto Forster. Lectures on Riemann surfaces, volume 81 of Graduate
Texts in Mathematics. Springer-Verlag, New York-Berlin, 1981.

[6] William Fulton. Algebraic curves. Advanced Book Classics. Addison-
Wesley Publishing Company, Advanced Book Program, Redwood City,
CA, 1989.

[7] Venkatesan Guruswami and Madhu Sudan. Improved decoding of Reed-
Solomon and algebraic-geometry codes. IEEE Trans. Inform. Theory,
45(6):1757–1767, 1999.

[8] Tom Høholdt, Jacobus H. van Lint, and Ruud Pellikaan. Algebraic ge-
ometry codes. 2011. http://www.win.tue.nl/~ruudp/paper/31.pdf.

[9] F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting
codes. I. North-Holland Publishing Co., Amsterdam-New York-Oxford,
1977. North-Holland Mathematical Library, Vol. 16.

[10] Harald Niederreiter and Chaoping Xing. Algebraic geometry in coding
theory and cryptography. Princeton University Press, Princeton, NJ,
2009.

87



88 BIBLIOGRAPHY

[11] Oliver Pretzel. Codes and algebraic curves, volume 8 of Oxford Lec-
ture Series in Mathematics and its Applications. The Clarendon Press,
Oxford University Press, New York, 1998.

[12] Michael Rosen. Number theory in function fields, volume 210 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 2002.

[13] M. Amin Shokrollahi and Hal Wasserman. List decoding of algebraic-
geometric codes. IEEE Trans. Inform. Theory, 45(2):432–437, 1999.

[14] Henning Stichtenoth. Algebraic function fields and codes, volume 254 of
Graduate Texts in Mathematics. Springer-Verlag, Berlin, second edition,
2009.

[15] Madhu Sudan. Decoding of Reed Solomon codes beyond the error-
correction bound. J. Complexity, 13(1):180–193, 1997.

[16] B. L. van der Waerden. Algebra. Vol. I. Springer-Verlag, New York,
1991.

[17] B. L. van der Waerden. Algebra. Vol. II. Springer-Verlag, New York,
1991.

[18] J. H. van Lint. Introduction to coding theory, volume 86 of Graduate
Texts in Mathematics. Springer-Verlag, Berlin, third edition, 1999.

[19] Robert J. Walker. Algebraic Curves. Princeton Mathematical Series,
vol. 13. Princeton University Press, Princeton, N. J., 1950.



Index
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affine component

of a projective curve, 44
affine space, 39
algebraic curve
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projective, 43

algebraic function field, 1, 42
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code, 57

dual, 59
dual Goppa, 59
Goppa function, 59
Goppa residue, 60
linear, 57
MDS, 60
primary Goppa, 61
Reed-Solomon, 64

code word, 57
coordinate ring, 42
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(w1, w2)-weighted, 77
of a divisor, 19

differential, 26, 28
dimension

of a divisor, 19, 20
divisor, 17

canonical, 34
equivalent, 22, 35
of a differential, 34
pole, 17
positive, 18

principal, 17
support of a, 18
unit, 17
zero, 17

divisor group, 17
dual code, 59
dual Goppa code, 59

Eisenstein’s Criterion, 40
encoding function, 57
error correction capacity, 69
error location, 70
error locator, 70
error-correcting codes, 57

field
of constants, 1
perfect, 54

formal partial derivative, 45
function, 18

holomorphic, 26
meromorphic, 26

function field
of a projective curve, 44
of an affine algebraic curve, 42

generator matrix, 58
genus, 23

Hamming ball, 75
Hamming distance, 58

Independence of Valuations, 13
Theorem of, 13

index of a divisor, 28
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integrally closed, 3

length
of a code, 57

list decoding, 75
list decoding problem, 75

for dual Goppa codes, 81
for Reed-Solomon codes, 76

local component, 37
local ring, 49

of a point, 48
localisation, 49

minimum distance
of a code, 58

nearest neighbour decoding, 58
Noetherian ring, 49

order
of a pole, 11
of a zero, 11

parity check matrix, 58
Plücker formula, 67
place, 2

degree of a, 7
rational, 59

point
at infinity, 44
conjugated, 53
non-singular, 46
regular, 46
singular, 46

pole
of a function, 9

polynomial
absolutely irreducible, 40
homogeneous, 42

primary Goppa code, 61
prime element, 11
projective closure, 44

projective space, 40

(r, `)-decodeable, 75
rank

of a code, 57
repartition, 27
residue, 26
residue class field, 7
residue class map, 7
Riemann surface, 26
Riemann’s Theorem, 23
Riemann-Roch space, 18
Riemann-Roch Theorem, 25, 35

Weak, 31

Singleton bound, 58
Skorobogatov-Vlǎduţ algorithm, 74
support, 18
syndrom, 70
systematic encoding, 58

t-error-correcting, 58
triangle inequality, 11

strict, 12

unique factorisation domain, 76

valuation, 11
valuation ring, 2
value, 9

weight, 57
word, 57

received, 57
transmitted, see received

zero
of a function, 9


