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Abstract

The holographic principle proposes a solution to one of the most prominent problems of our time –
the search for a consistent, quantized theory of gravity. According to this principle a theory of gravity
in (d + 1) dimensions is equivalent to a quantum field theory (without gravity) in d dimensions. An
important realization of this conjecture is the Anti-de-Sitter/conformal field theory (AdS/CFT) corre-
spondence. However, since this correspondence is a strong-weak correspondence, it is hard to explicitly
check the holographic principle by calculating observables on the field theory and the gravitational theory
side.
Conversely, higher-spin theories lead to weak-weak dualites, which can provide useful insights into aspects
of the holographic principle [1–3]. Furthermore, since calculations in three dimensions may be done in
the Chern-Simons formulation and are technically less challenging than in higher dimensions, it is often
useful to restrict onself to three dimensions to clear up conceptional issues and obtain a better under-
standing of the holographic principle. In this thesis, we construct a new set of boundary conditions for
spin-3 gravity in three-dimensional flat space. This set of boundary conditions is inspired by the recent
“Soft Heisenberg hair”-proposal for Einstein gravity in three-dimensional Anti-de-Sitter space [4], which
has subsequently been extended to flat space [5] and higher-spin gravity in AdS space [6].
In chapter 2 we discuss the peculiarities of restricting oneself to three dimensions and review the Chern-
Simons formalism and the canonical analysis. In chapter 3 we discuss boundary conditions for gravity in
three-dimensional AdS space and give a review of the Brown-Henneaux boundary conditions [7] and the
near horizon boundary conditions proposed in [4].
In chapter 4 we motivate the respective near horizon boundary conditions for spin-3 gravity in three-
dimensional flat space and compute the canonical boundary charges and the asymptotic symmetry al-
gebra. As in previous, related work [4–6] the boundary conditions ensure regularity of the solutions
independently of the charges. The asymptotic symmetry algebra is again given by a set of û(1) current
algebras. We find that the vacuum descendants generated by the charges all have the same energy as the
vacuum, i.e. they are higher-spin “soft hair” in the sense of Hawking, Perry and Strominger [8]. Further-
more, we derive the entropy for solutions that are continuously connected to flat space cosmologies and
find the same result as in the spin-2 case: the entropy is linear in the spin-2 zero-mode charges and inde-
pendent from the spin-3 charges. Using twisted Sugawara-like constructions of the higher-spin currents
we show that our simple result for entropy of higher-spin flat space cosmologies coincides precisely with
the complicated earlier results expressed in terms of higher-spin zero-mode charges.
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1 Introduction

1.1 The Search for Quantum Gravity

At the beginning of the 20th century, physics underwent two grand revolutions. First, the Newtonian
theory of space and time was reformed by Einstein’s general relativity, which employed a new, geometrical
understanding of the gravitational force. Second, it was discovered that physics on the atomic and
subatomic scale was also incorrectly described by classical mechanics. The introduction of quantum
mechanics enabled us to understand a vast variety of phenomena and led to multiple technical advances,
while changing our understanding of nature drastically. Today, both general relativity and quantum
mechanics have been very well tested individually and have experienced many successes throughout the
course of the years. General relativity has been praised for its accuracy and has predicted phenomena
in the cosmos, such as the possible expansion of the universe and the possible existence of black holes,
long before they were experimentally accessible. The theory of quantum mechanics in turn led to the
formulation of the standard model of particle physics, which manages to describe the electromagnetic,
weak and strong interactions in a single model.
Throughout the history of science, a reductionist point of view appeared to be successful [9], which was
affirmed by the grand success of Maxwell’s electromagnetism and peaked with the success of the standard
model. Nevertheless, despite many attempts to solve it, the search for a consistent quantized theory of
gravity, i.e. quantum gravity remains one of the biggest physics problems to this day.
One possible theory that unifies the fundamental forces of the standard model and gravity is string theory.
The fundamental objects of string theory are given by one-dimensional objects (strings) that live in a
ten-dimensional spacetime. The different particles of the standard model correspond to oscillations of the
string and the additional dimensions, which are needed for string theory to be consistent, are assumed
to be compactified at such small scales that they are rendered unobservable. Although string theory is
a beautiful theory in terms of mathematics which makes it tempting to believe in its validity, a theory
which aims to describe our universe must also pass experimental tests. Therefore, string theory is often
criticized for not making any testable predictions, since corrections from string theory only appear at
energy scales much larger than the ones that are accessible (∼ TeV) at the moment. Note that the same
is true for any consistent theory of quantum gravity, since the Planck length, the scale where quantum
gravity effects are certainly relevant, is too small to be accessible with current experimental technology.

1.2 AdS/CFT and the Holographic Principle

Even if string theory may not be the fundamental theory governing all laws in nature, it has already
led to important advances in physics and mathematics. Among other things string theory led to the
discovery of the Anti-de-Sitter/Conformal field theory (AdS/CFT) correspondence, which in its first ver-
sion by Maldacena in 1997 [10] conjectured a duality (a mathematical equivalence between two theories)
between a type IIB superstring theory on AdS5 × S5 and a N = 4 supersymmetric Yang-Mills theory.
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The AdS/CFT correspondence is an important realization of a more general conjecture – the holographic
principle [11]. This principle proposes a duality between a (d + 1) dimensional theory of gravity and
a d-dimensional quantum field theory, located at the boundary of the gravitational theory. Hence, the
gravitational theory in the bulk can be equivalently described by a quantum field theory living at the
boundary of the spacetime in question. This in turn would allow to freely switch between a gravitational
description and a quantum field theory description in one dimension lower. The name of the principle
was coined by the fact that a hologram in “real life” represents a two-dimensional screen that encodes all
the information necessary to reproduce a given three-dimensional object. The object can thus either be
described as a three-dimensional or a two-dimensional object – both descriptions are equivalent from a
physicists point of view, since no information loss occurs.
A general proof of the AdS/CFT correspondence does not exist, since this would require a full under-
standing of string theory in a curved background, which is lacking at the moment [12]. Nevertheless,
numerous non-trivial tests of the conjectured duality are possible by calculating observables on both sides
and checking whether they are in agreement (for a slightly outdated review see [13]). Although there are
many mathematical tests which suggest that a correspondence exists (for instance integrability provides
numerous checks, see [14] for a review), the question naturally arises whether there are also “real life”
realizations of the holographic principle that confirm that our world is in fact a hologram. The most
prominent example for such a realization in nature is given by the entropy of a black hole. Initially,
black holes were assumed to be objects of zero entropy. Bekenstein found that this assumption would
violate the second law of thermodynamics, since in this case one could decrease the amount of entropy
in the universe by throwing some object with a certain amount of entropy into the black hole. Thus, one
immediately runs into contradictions if one demands that black hole thermodynamics be in accordance
with the laws of thermodynamics as we know them from statistical mechanics. This led Bekenstein to
think that black holes are indeed non-zero entropy objects. In fact, they possess the maximum amount
of entropy possible for a certain region of spacetime. An intuitive way to think about this is to imagine
adding more and more mass to a given system until it collapses to a black hole, endowed with the same
(or more) amout of entropy than before. More precisely, Bekenstein found that there exists an upper
bound for the entropy S of a certain volume V that is proportional to the area of the black hole horizon

S ≤ Area(∂V )
4GN

= SBH , (1.1)

where GN denotes Newton’s constant and ∂V is the boundary of V . This comes as a surprise, since
the statistical mechanics definition of entropy as the logarithm of the number of microstates compatible
with a certain macrostate would rather indicate that the entropy is proportional to the volume of a given
system. Due to the fact that the entropy is a measure of information, the Bekenstein bound can be
interpreted as the maximal amount of information that may be put into a region V of spacetime. Hence,
employing a holographic interpretation this suggests that (broadly speaking) the information might as
well be described via a field theory living at the boundary. This and many similar arguments have en-
couraged countless amount of research into this direction.
Although it is interesting to work on, the standard AdS/CFT duality, which deals with gravitational
theories in AdS space (space with negative cosmological constant), can not be directly applied to our
universe, which is endowed with a very small, positive cosmological constant. Therefore, different types
of non-AdS holography have been studied throughout the last years.
One line of research deals with flat space holography, which is particularly interesting, since the cosmolog-
ical constant measured in our universe is incredibly small, making flat space a very good approximation
for most purposes in physics.
To this day, the generality of the holographic principle is still unclear and many open questions re-
main. This Master thesis serves as a modest step towards a more thorough understanding of flat space
holography.
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1.3 Higher-Spin Gauge Theories
One extensively studied aspect of (AdS) holography are higher-spin symmetries, which were first studied
by Klebanov and Polyakov [1] and Sezgin and Sundell [2], who conjectured a duality between the large
N limit of the critical 3d O(N) model and the minimal bosonic higher-spin theory in AdS4. On the
gravitational side, these higher-spin symmetries may be considered as generalizations of local coordinate
transformations, while on the field theory side, they correspond to fields with spin1 s > 2. On the grav-
itational side “higher-spin” is equivalent to higher-rank gauge field, i.e. spin-1, spin-2 and spin-3 fields
are is denoted by Φµ, Φ(µν) and Φ(µνλ) (where the parantheses denote total symmetrization). The metic
gµν , the fundamental field of Einstein gravity, is precisely such a spin-2 field.
Higher-spin excitations appear naturally in string theory, where additionally to the massless modes of
spin s ≤ 2 an infinite tower of massive modes appears. These modes are very heavy and thus unob-
servable at currently accessible energy scales. Through the standard model we are acquainted with the
fact that particles usually aquire mass through some kind of spontaneous symmetry breaking. Therefore,
it is reasonable to ask if string theory is just a broken phase of a superior gauge theory equipped with
additional higher-spin symmetries. If this was the case, one could view string tension generation as a
mechanism of symmetry breaking, since the higher-spin modes become massless in the tensionless limit.
Another interesting feature of higher-spin theories is that they lead to weak-weak dualities in contrast
to the usual AdS/CFT correspondence that relates a strongly coupled field theory to a weakly coupled
gravitational theory (or vice versa). This strong-weak duality can be used to tackle problems like sin-
gularities in general relativity or non-abelian plasma, such as the strongly coupled quark gluon plasma
in quantum chromodynamics, since one may use the duality to switch to “the other side” whenever one
runs into technical problems. However, at the same time this perk is a drawback, since a weak-strong
duality makes calculations on the gravitational, as well as on the field theory side at least difficult, if
not impossible. Since these calculations are necessary for explicit checks of the holographic principle,
weak-weak dualities are very useful.
Still, while writing down a theory of free higher-spin fields is unproblematic, coupling them to gravity is
not an easy endeavor and was even believed to be impossible due to various No-Go results (see [15] for a
summary). In particular, at the end of the 1960s Weinberg [16] and Coleman and Mandula [17] argued
that higher-spin symmetries cannot be realized in a nontrivial field theory in flat space. Fradkin and
Vasiliev [18] showed that this problem may be circumvented by considering higher-spin gauge theories
involving gravity on curved background. Nevertheless, these theories come at the price of needing an
infinite tower of massless fields to be consistent.
The entire situation changes drastically when considering the special case of three dimensions, where
interesting higher-spin theories involving gravity in flat space indeed exist [19], [20]. Only in three dimen-
sions it is known to date that it is possible to write down a consistent theory considering only excitations
up to a certain spin n and thus truncate the otherwise infinite tower of higher-spin fields.

1In this context a notion of spin s can be defined through the transformation properties of a field under Lorentz
transformations. On the conformal field theory side this transformation behaviour is determined by the conformal weight
h = s. Therefore, the terms spin and conformal weight will be used interchangable. More information on conformal weights
is provided in appendix C.
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2 Prerequisites

2.1 Gravity in three Dimensions
In (2+1) dimensions, gravity has no local propagating degrees of freedom, i.e. gravitational waves do
not exist. In fact, one may show that the curvature of spacetime is completely determined in terms of
the Einstein tensor. To make this more explicit, we first revisit Einstein gravity. The field equations
describing the relation between the curvature of spacetime and the matter and energy distribution are
given by

Gαβ + Λgαβ = 8πGNTαβ , (2.1)

where Tαβ is the stress-energy tensor, GN is Newton’s constant, Λ is the cosmological constant, gαβ is
the metric tensor and the Einstein tensor Gαβ is defined as

Gαβ = Rαβ −
1
2gαβR . (2.2)

The Ricci tensor Rαβ and the Ricci scalar R are contractions of the Riemann curvature tensor Rαβγδ

Rαβ = Rγαγβ , R = gαβRαβ (2.3)

with
Rγδαβv

δ = [∇α,∇β ] vγ . (2.4)

Note that in writing down this we have already used torsion freedom of the covariant derivative, i.e.
[∇α,∇β ] f = 0 for arbitrary functions f . The covariant derivative ∇a

∇αvβ = ∂αv
β + Γβαγvγ (2.5)

consists of the ordinary partial derivative ∂/∂xα usually denoted as ∂α plus an additional term Γβαγ ,
which defines an affine connection on our manifold. This correction term equips us with a notion of
parallel transport between different points of the tangent space of our manifold.
To define a unique connection and thus, a unique covariant derivative we need torsion freedom (which
we already employed above) and metric compatibility ∇γ gαβ = 02. This determines the connection
coefficients Γβαγ , also called Christoffel symbols, in the context of general relativity, to be

Γγαβ = 1
2g

γδ (∂βgδα + ∂αgδβ − ∂δgαβ) . (2.6)

Equations (2.1), (2.2) and (2.4) give an explicit relation between the curvature of space encoded in the
Einstein tensor Gαβ and the matter content of the theory Tαβ . In the words of the famous physicist John
Archibald Wheeler: “Spacetime tells matter how to move and matter tells spacetime how to curve.”

2Metric compatibility physically means that angles are preserved under parallel transport.
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Now the consequences of restricting ourselves to three dimensions will be considered. Since the Einstein
tensor is a symmetric tensor, the number of independent components are given by 1

2d(d+1). Furthermore,
the symmetries of the Riemann tensor restrict the number of independent components to 1

12d
2(d2 − 1).

A derivation of this statement is recalled in appendix D.1. Thus, we find that the Riemann and the
Einstein tensor have the same number of degrees of freedom in three dimensions

#R = 1
129 · (9− 1) = 6 = 1

23 · (3 + 1) = #G . (2.7)

Since the Einstein and the Riemann tensor are related through (2.2) and (2.3), this means that the
curvature of spacetime is completely determined by the matter content of our theory and the cosmological
constant. In the absence of local matter sources (Tαβ = 0) we have no dynamical gravitational degrees of
freedom - there are no gravitational waves/gravitons in three dimensions. However, theories other than
Einstein gravity in three dimensions allow for (typically) massive gravitons [21].
This suggests that gravity in three dimensions might not be a worthwhile topic to study. Fortunately,
global effects of the manifold allow for interesting solutions, in particular for black hole solutions. The
most famous example is the BTZ black hole solution found by Bañados, Teitelboim and Zanelli [22].
Although the BTZ solution is locally AdS3, it differs from global AdS by conserved charges at the
boundary of AdS spacetime. Furthermore, the causal structure of the BTZ black hole differs from global
AdS: the former has two Killing horizons and singularities. Brown and Henneaux showed that these
global charges generate two copies of the Virasoro algebra [7]. In fact, the mass and angular momentum
of the BTZ black hole are the zero-modes of these conserved global charges. Subsequently, this led to the
holographic conjecture that AdS in three dimensions may be described equivalently by a two-dimensional
conformal field theory living at the boundary, see [23] and references therein..

2.2 Introduction to the Chern-Simons Formalism
We have seen in the previous section that gravity in three dimensions does not possess any local degrees
of freedom, and thus is a purely topological theory. This becomes more evident when using a suitable
formulation of gravity – the Chern-Simons formulation. In this section we give a brief introduction to the
first order formulation of gravity in order to pave the way for the following discussion of the Chern-Simons
theory. We will furthermore expand on the Hamiltonian analysis which is used to construct the canonical
charges and hence, the asymptotic symmetries of our theory.

2.2.1 Non-Coordinate Basis
The Einstein-Hilbert action is given by

IEH [g] = 1
16πGN

∫
M

d3x
√
−g (R− 2Λ) , (2.8)

where GN is Newton’s constant and g = det (gµν). The equations of motion (2.1) may be obtained from
(2.8) by using the principle of stationary action and neglecting boundary terms. The metric gµν is the
fundamental dynamical field of (2.8) and acts as a symmetric bilinear form on the tangent space of the
manifoldM. In general relativity one usually chooses a basis for the tangent space with respect to some
(in principle arbitrary) coordinates, the so-called coordinate basis. At a point p of the manifold the
tangent space Tp is given by all tangent vectors at this point. It is common practice to take the set of
derivatives {eµ} = {∂µ} along the set of chosen coordinates as basis of the tangent space. The dual space
of our tangent space is called the cotangent space. It is given by the set of all maps f : Tp → R and the
corresponding basis elements – either called dual vectors, cotangent vectors or one-forms mathematically
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speaking – consist of all {dxµ}, since 〈dxµ, ∂ν〉 = δµν . However, for many purposes, it is advantageous to
employ a first order formulation of general relativity instead of the better known second order formulation
we have already discussed3. First order formulations often strongly reduce the computational difficulty of
a problem. Furthermore, the first order formulation of (2.8), the so-called Einstein-Hilbert-Palatini action,
see (2.15) below, may be rewritten as a Chern-Simons action, see (2.18) below. Since all calculations in
this thesis are done in the Chern-Simons formulation we show explicitly that the Chern-Simons action is
(up to boundary terms) classically equivalent to the Einstein-Hilbert action (2.8), see appendix D.2.
In the first order formulation, the basis of the tangent space consists of an orthonormal set of vectors
{ea}, which are not related to the coordinates (i.e. non-coordinate basis). We demand that the inner
product of these basis vectors is given by

gµν e
a
µ e

b
ν = ηab, (2.9)

where ηab is the Minkowski metric. The frame fields {ea} are often referred to as “vielbein”, which means
“many legs” in German, or in three dimensions “dreibein”. The coordinate basis {eµ} may be expressed
in terms of the orthonormal basis {ea} as

eµ = e aµ ea . (2.10)
In this context, the components of the vielbein eaµ are conventionally referred to as the vielbein itself.
One advantage of choosing the tangent space this way is that one can easily promote objects from a flat
(orthonormal basis) to a curved spacetime (coordinate basis). For instance, for a vector va this means

vµ = eµav
a . (2.11)

The introduction of the non-coordinate basis leads to an additional gauge freedom, since we may change
basis vectors independently of our choice of coordinates. In fact, each basis that satisfies condition (2.9)
is equally good. The transformations that connect all valid bases are the well-known Lorentz transforma-
tions. This local Lorentz invariance at each point of our manifoldM suggests that an associated gauge
field exists and indeed, this gauge field is given by the spin connection ωab = ωabµdxµ. We are now able
to compute the action of the covariant derivative on objects with both coordinate and non-coordinate
indices, since the spin connection provides us with an affine connection with respect to the flat space-
time. The covariant derivative on a generalized tensor carrying both Greek and Latin indices is defined
in analogy to (2.5)

∇µvaν = ∂µv
a
ν + ωabµv

b
ν − Γσνµvaσ . (2.12)

2.2.2 Chern-Simons Formulation of Gravity
Having introduced a non-coordinate basis, we now review the first order and subsequently also the Chern-
Simons formulation of gravity. In the following, we restrict ourselves to three dimensions.
We can use the epsilon symbol to write the antisymmetric spin connection with just one index instead of
two4

ωa = 1
2ε
abcωbc . (2.13)

Formally, this is referred to as the Hodge dualization (see appendix B) of the spin connection. The
dualized Riemann curvature can now be defined as

Ra = 1
2ε
abcRbc = dωa + 1

2ε
abcωb ∧ ωc , (2.14)

3First order or second order formulation refers to the number of derivatives of the fundamental fields appearing in the
action. The number of derivatives of the metric appearing in (2.8) is two, because the curvature tensor is given in terms of
the covariant derivative, see (2.4), which contains the Christoffel symbols (2.6) that in turn contain first derivatives of the
metric.

4Hereafter we omit the form indices of the tensors in question ωabµ → ωab and Rabµν → Rab.
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where ∧ denotes the wedge product defined in appendix B. Now, we are finally equipped with the necessary
tools to rewrite (2.8) in terms of the dualized curvature two-form Ra and the dreibein ea

IEHP [e, ω] = 1
8πGN

∫
M

{
ea ∧Ra −

Λ
6 εabce

a ∧ eb ∧ ec
}
, (2.15)

where Λ denotes the cosmological constant. This form of the action is referred to as the Einstein-Hilbert-
Palatini action. It is indeed a first order formulation of the theory of gravity, since the curvature two-form
contains only first derivatives of the dualized spin connection. The field equations are then obtained by
varying the action with respect to the two independent fields ea and ωa

Ra = dωa + 1
2ε
abcωb ∧ ωc = Λ

2 ε
a
bce

b ∧ ec , (2.16)

T a = dea + εabcω
b ∧ ec = 0 . (2.17)

In order to formulate general relativity as a gauge theory, the vielbein ea and the spin connection ωa
need to be combined into a gauge field. In three dimensions, we are equipped with the necessary tools
to do so, since both ωa and the ea have the same index structure and thus can be linearly combined into
a single Lie algebra valued gauge field. The structure of (2.15) looks very similar to the Chern-Simons
action in three dimensions, a topological gauge theory

ICS [A] = k

4π

∫
M
〈A ∧ dA+ 2

3A ∧A ∧A〉 . (2.18)

Due to the fact that both theories are topological theories and have a very similar structure, the question
arises naturally whether one can rewrite the Einstein-Hilbert-Palatini action in three dimensions as a
Chern-Simons action. This is indeed possible and was explicitly shown by Witten in [24, 25]. The
appropriate combination of dreibein and spin connection into a gauge field is

A = eaPa + ωaJa , (2.19)

where Pa and Ja generate the following Lie algebra

[Pa, Pb] = −ΛεabcJc, [Ja, Jb] = εabcJc, [Ja, Pb] = εabcPc . (2.20)

For different values of the cosmological constant the gauge algebra is then given by

• Λ > 0 (de Sitter): so(3, 1) ,

• Λ = 0 (Minkowski): isl(2,R) := iso(2, 1) ∼ sl(2,R)⊕sR3 ,

• Λ < 0 (Anti-de-Sitter): so(2, 2) ∼ sl(2,R)⊕sl(2,R) ,

where ⊕s denotes the semidirect sum, ⊕ denotes the direct sum and “∼” means “isomorphic to”. For
Anti-de-Sitter space the gauge algebra is so(2, 2), the global conformal algebra of R1,1, which may be
interpreted as a hint for the conjectured AdS3/CFT2 correspondence. The final ingredient needed to
rewrite (2.18) as a Chern-Simons action is a non-degenerate5, invariant6 bilinear form 〈 , 〉. In general,
such a non-degenerate bilinear form may not be found in any number of dimensions [24], which is another
reason why d = 3 is so special.
The invariant, non-degenerate bilinear form of (2.20) is given by

〈Ja, Pb〉 = ηab, 〈Ja, Jb〉 = 〈Pa, Pb〉 = 0 . (2.21)
5Def: Let 〈 , 〉 be a bilinear form on a Lie algebra g with x, y ∈ g. The bilinear form 〈 , 〉 is called non-degenerate, if

〈x, y〉 = 0 ∀x ∈ g⇒ y = 0.
6Def: Let g be a Lie algebra and x, y, z ∈ g. A bilinear form 〈 , 〉 is called invariant, if 〈[x, y], z〉 = 〈x, [y, z]〉.
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In (2.18) the bilinear over the wedge product of three gauge fields is a shorthand way of denoting

〈A ∧A ∧A〉 = 1
2f

a
ce A

cAeAbγab , (2.22)

where γab denotes the bilinear form and f a
ce are the structure constants of the Lie algebra. The Chern-

Simons action (2.18) together with the generators (2.20) and the bilinear form (2.21) is up to boundary
terms equivalent to the Einstein-Hilbert-Palatini action(2.15) provided that the CS-level is taken to be

k = 1
4GN

. (2.23)

We provide the explicit calculation in appendix D.2. The equations of motion (EOM) are obtained by
varying (2.18) with respect to the gauge field A

F = dA+A ∧A = 0 . (2.24)

By inserting the expression for the gauge field in terms of the dreibein and the spin connection (2.19)
into (2.24), we recover the EOM for the torsion and the curvature (2.16). Eq. (2.24) implies, at least
locally (on some open set inM), that A is a gauge transformation of the trivial connection A = 0, i.e.

A = g−1 dg (locally) . (2.25)

Moving from the metric to the Chern-Simons formalism brings the technical advantage that one may
now use well-known techniques from gauge theories on gravitational problems, such as using a gauge
transformation to switch to a better suited gauge. Nevertheless, one has to be careful when doing so,
since the gauge transformations that we are considering are usually finite and therefore, will generally
not leave the Chern-Simons action invariant, i.e.

Ã = g−1(A+ d)g , (2.26a)
SCS [Ã] = SCS [A] + δSCS [A] . (2.26b)

We see that an additional term δSCS [A] with respect to SCS [A] appears that is given by [26]

δSCS [A] = k

4π

∫
∂M
〈g−1 dgA〉 − k

12π

∫
M
〈g−1 dg ∧ g−1 dg ∧ g−1 dg〉 . (2.26c)

This additional term δSCS [A] vanishes, if

• g → 1 sufficiently fast when approaching the boundary ofM

• gauge transformations are topologically trivial (such as infinitesimal gauge transformations) .

However, δSCS [A] does not vanish for general finite gauge transformations. One interesting feature which
will come up again in the following chapters is the connection between diffeomorphisms and infinitesimal
gauge transformations. An infinitesimal gauge transformation generated by a gauge parameter ε is given
by

δεA = dε+ [A, ε] . (2.27)

If we now consider a special form of the gauge parameter ε = ξνAν we get

δξνAν = ∂µξ
νAν + ξν∂µAν + ξν [Aµ, Aν ] . (2.28)
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Addition of the vanishing term εν (∂νAµ − ∂νAµ) yields after rearrangement

δξνAν = ξν∂µAν + ∂µξ
νAν︸ ︷︷ ︸

LξAµ

+ εν (∂µAν − ∂νAµ) + εν [Aµ, Aν ]︸ ︷︷ ︸
ενFµν

= LξAµ + ενFµν . (2.29)

Hence, we see that on-shell (F = 0) diffeomorphisms for gravity in three dimensions correspond to
infinitesimal gauge transformations generated by parameters

ε = ξνAν . (2.30)

2.3 Canonical Analysis
In this section, we review the canonical analysis for three-dimensional Einstein gravity in the Chern-
Simons formulation. Since our theory has no local dynamical degrees of freedom, the investigation of the
Chern-Simons action (2.18) in the Hamiltonian formalism will give us constraints on the phase space Γ.
The review follows [26] and [21] closely. We find a very practical way of computing the canonical charges
and the asymptotic symmetry algebra, which are of great importance in the following chapters. We start
by writing down the action (2.18) in index notation

ICS [A] = k

4π

∫
M

d3x εµνλγab

(
Aaµ∂νA

b
λ + 1

3f
a
cdA

c
µA

d
νA

b
λ

)
, (2.31)

where γab denotes the bilinear form on the Lie algebra and the generators Ta satisfy

[Ta, Tb] = if cabTc . (2.32)

The gauge field A is a Lie algebra valued one-form

A = Aaµ dxµTa . (2.33)

In the following we assume that our manifoldM has the topology of a cylinderM = Σ×R parametrized
by x = (t, ρ, ϕ). As a consequence Σ is topologically a disk that we parametrize by ϕ and ρ with
ϕ ∼ ϕ+ 2π. The coordinates split accordingly

M → Σ× R (2.34)

xµ =

 t
ρ
ϕ

 → t, xµ̄ =
(
ρ
ϕ

)
. (2.35)

The boundary of the disk is located at some ρ = ρ0. This 2+1 decomposition of (2.31) leads to

ICS [A] = k

4π

∫
R

dt
∫

Σ
d2x εµ̄ν̄γab

(
Ȧaµ̄A

b
ν̄ +Aa0F

b
µ̄ν̄ + ∂ν̄

(
Aaµ̄A

b
0
))
, (2.36)

with F aµ̄ν̄ = ∂µ̄A
a
ν̄ − ∂ν̄Aaµ̄ + fabcA

b
µ̄A

c
ν̄ and εµ̄ν̄ = εtµν . The Lagrangian reads

L[A, Ȧ] = k

4π ε
µ̄ν̄γab

(
Ȧaµ̄A

b
ν̄ +Aa0F

b
µ̄ν̄ + ∂ν̄

(
Aaµ̄A

b
0
))
. (2.37)

Computing the canonical momenta from (2.37) gives

φ µ̄
a := π µ̄

a −
k

4π ε
µ̄ν̄γabA

b
ν̄ ≈ 0 ,
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φ 0
a := π 0

a ≈ 0 . (2.38)

The fact that the spatial canonical momenta are proportional to the fields themselves means that in-
troducing canonical momenta is redundant, as we can just describe our entire phase space by using the
gauge fields themselves. Furthermore, the canonical momentum of the temporal component of the gauge
field vanishes. This means that the fields Aa0 are not dynamical fields, since a kinetic term for them in
the Lagrangian is missing. All physical fields that we know of bring about kinetic terms. Thus, it seems
natural to exclude Aa0 from the physical phase space of our theory. Instead Aa0 may be interpreted as
Lagrange multipliers enforcing the field equations Fµ̄ν̄ = 0.
If one goes from the Lagrangian formalism to the Hamiltonian formalism, the time derivatives of the
canonical coordinates q̇ are replaced by their canonical momenta p

{q, q̇} → {q, p} , (2.39)
L (q, q̇) → H (q, p) , (2.40)

where in our case the role of the canonical coordinates is played by Aaµ and the the canonical momenta
are denoted by π µ

a . However, if one would simply replace the velocities Ȧaµ by the canonical momenta
(2.38) one would effectively lose degrees of freedom, since the canonical momenta only depend on Aaµ̄.
This tells us that there exist constraints φm(Aaµ, Ȧaµ) = 0, which restrict our phase space Γ to the
physical subspace Γ1. In our case these constraints are given by (2.38).
This also explains why we wrote “≈” instead of “=” in (2.38). From now on we will have to distinguish
between weak (≈) and strong (=) equalities. Two functions f , g in phase space are weakly equal (f ≈ g),
if they are equal under restriction to a constraint surface. In our case this constraint surface has to
include Γ1. If f and g are equal independently of the constraints, they are called strongly equal (f = g).
The Poisson brackets of the canonical variables are defined as

{Aaµ(x), π ν
b (y)} = δabδ

ν
µ δ

2(x− y) , (2.41a)
{Aaµ, Abν} = {π µ

a , π
ν
b } = 0 . (2.41b)

After this discussion we return to further development of the Hamiltonian formalism. Let us consider
the canonical Hamiltonian density Hc, which may be obtained from the Lagrangian density (2.37) via a
Legendre transformation

Hc = πµa Ȧ
a
µ − L ≈ −

k

4π ε
µ̄ν̄γab

(
Aa0F

b
µ̄ν̄ + ∂ν̄

(
Aaµ̄A

b
0
))
, (2.42)

where we already used (2.38). Throughout calculations involving Hc, we must be consistent with the
constraints of our system. Instead of enforcing the constraints by hand each time, it is useful to introduce
the total Hamiltonian

HT = Hc + uaµφ
µ
a , (2.43)

where the constraints (2.38) are added, using arbitrary multipliers uaµ. From this one may infer the
following relations (also see appendix D.3)

∂HT

∂π µ
a

= ∂Hc

∂π µ
a

+ ubν
∂φ ν

b

∂π µ
a

= Ȧ a
µ , (2.44a)

∂HT

∂A µ
a

= ∂Hc

∂A µ
a

+ ubν
∂φ ν

b

∂Aµa
= − ∂L

∂A µ
a
≈ −π̇µa , (2.44b)

which together with the constraints
φ µ
a ≈ 0 , (2.44c)
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give exactly the EOM that can be derived from the variational principle in the Lagrange formalism

δ

∫
d3xL =

∫
d3x

(
πµa Ȧ

a
µ −HT + uaµφ

µ
a

)
. (2.45)

Using the definition of the Poisson bracket (2.41a) and the Hamiltonian EOM (2.44) we may deduce for
an arbitrary function g = g (A µ

a , π
µ
a ) that

{g,HT } = ∂g

∂A µ
a

∂HT

∂π µ
a
− ∂g

∂π µ
a

∂HT

∂A µ
a
≈ ∂g

∂A µ
a
Ȧ µ
a + ∂g

∂π µ
a
π̇ µ
a = ġ . (2.46)

2.3.1 Consistency Equations
Since we are dealing with a constrained system, it is natural to demand that time evolution takes place
on the constraint surface. This may be regarded as a consistency requirement. Hence, we require that
the primary constraints are conserved during the time evolution of the system, i.e.

φ̇ µ
a = {φ µ

a ,HT } ≈ 0 . (2.47)

This leads to the conditions

Ka ≡ −
k

4π ε
µ̄ν̄γabF

b
µ̄ν̄ ≈ 0 , (2.48)

∇µ̄Aa0 − uaµ̄ ≈ 0 , (2.49)

where ∇µ̄Xa = ∂µ̄X
a + fabcA

b
µ̄X

c is the covariant derivative. Equation (2.48) leads to a secondary
constraint, while (2.49) determines uaµ̄. At last we may employ the Hamiltonian EOM (2.44) to simplify
(2.49). Due to the fact that canonical momenta only appear within the constraints, differentiation with
respect to them just gives us the Lagrange multipliers

Ȧaµ̄ = ∂HT
∂π µ̄

a

= uaµ̄ . (2.50)

This allows us to rewrite (2.49) as

∇µ̄Aa0 − uaµ̄ = ∇µ̄Aa0 − ∂0A
a
µ̄ = ∂µ̄A

a
0 − ∂0A

a
µ̄ + fabcA

b
µ̄A

c
0 = F aµ̄0 ≈ 0 . (2.51)

Plugging (2.48) and (2.49) into (2.43) we may write the total Hamiltonian as

HT = Aa0K̄a + ua0φ
0
a + ∂µ̄

(
Aa0π

µ̄
a

)
(2.52)

with
K̄a = Ka −∇µ̄φµ̄a . (2.53)

Up to now we were differentiating between the constraints in terms of primary and secondary constraints.
However, the discrimination that is physically relevant is the one between first class and second class
quantities. While first class constraints generate gauge transformations, second class constraints do not.
Instead they restrict the phase space.
A variable f = f(p, q) is called first class if it has weakly vanishing Poisson brackets with all other
constraints in the theory. If this does not hold, the variable is called second class. We compute the
Poisson brackets of the constraints φ µ

a , K̄a by employing the commutation relations (2.41a) and find that

{φ µ̄
a (x), φ ν̄

b (y)} = − k

2π ε
µ̄ν̄γabδ

2(x− y) , (2.54a)

12



{φ µ̄
a (x), K̄a(y)} = −f c

ab φ
µ̄
c δ

2(x− y) , (2.54b)
{K̄a(x), K̄b(y)} = −f c

ab K̄cδ2(x− y) . (2.54c)

All Poisson brackets involving φ 0
a vanish identically. From (2.54) we see that only φ 0

a and K̄a van-
ish weakly with every other constraint and are thus first class constraints, while φ µ̄

a are second class
constraints. Since φ µ̄

a are not generators of gauge transformations and hence effectively restrict our
phase space, we would like to encode this information not only in the Hamiltonian (as we already did
by Hc → HT ), but also in the time evolution of our system, i.e. the Poisson brackets. Inclusion of the
second class constraints promotes the Poisson brackets to Dirac brackets. For the case at hand this means
treating the second class constraints φ µ̄

a ≈ 0 as strong equalities, i.e. φ µ̄
a = 0. This way we obtain the

Dirac brackets
{Aaµ̄, Abν̄}DB = 2π

k
habεµ̄ν̄δ

2(x− y), (2.55)

where εµ̄ν̄ is obtained via εµ̄ᾱεᾱν̄ = δµ̄ν̄ . Now we are finally able to verify that counting the degrees of
freedom per spacetime point x in the Chern-Simons formalism gives in fact zero – as expected. The
number of degrees of freedom # is given by

# = N − (2N1 +N2) , (2.56)

where N denotes the dimension of our phase space, N1 is the number of first class constraints and N2
is the number of second class constraints. Note that each first class constraint comes with exactly one
related gauge condition due to the fact that first class constraints generate gauge transformations. After
fixing the gauge the gauge conditions (first class constraints) may be treated the same way as second
class constraints. Hence, these constraints have to be taken into account into the Dirac bracket. Note
that since no first class constraints appear in (2.55), the relation does not change. The phase space at
a point x is spanned by the fields Aaµ̄(x) and their canonical momenta πaµ̄(x) and has the dimension
6D, where D denotes the dimension of our Lie algebra. The number of first class constraints (φ 0

a , K̄a) is
N1 = 2D, the number of second class constraints (φ µ̄

a ) is N2 = 2D. Hence, we indeed find that

# = 6D− (4D + 2D) ≡ 0 (per point). (2.57)

This counting is valid at each point and thus gives ∞ −∞ in total. Hence, it could yield something
finite or infinite of “lower degree” (read: “zero per point”). It is therefore no contradiction with later
statements that a physical state space in three-dimensional gravity indeed exists due to boundary states.

2.3.2 Generators of Gauge Transformation and Canonical Boundary Charges
In the previous subsection we have already mentioned that first class constraints generate gauge trans-
formations. We now explicitly construct their gauge generator G. Per definition, G generates gauge
transformations by acting on the dynamical variables via Dirac brackets7. In 1982 Castellani developed
an algorithm for the construction of all gauge generators of a constrained Hamiltonian system [27]. Gen-
erally speaking, the procedure goes as follows. We start by taking the subsequent ansatz for the gauge
generator

G[ε(t)] = ε(k)(t)Gk + ε(k−1)(t)Gk−1 + ...+ ε(t)G0 , (2.58)
where Gk has to be a primary first class constraint and all other Gn(n < k) must be first class constraints
that satisfy

Gk = CPFC , (2.59a)
7Note that the entire procedure is insensitive to the existence of second class constraints, since their only effect is to

reduce the phase-space of the theory.
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Gk−1 + {Gk, Ht} = CPFC , (2.59b)
... ...

{G0, HT } = CPFC . (2.59c)

Hence, one starts with a primary first class constraint and calculates its Dirac bracket with the total
Hamiltonian to determine the gauge generator up to primary first class constraints. The procedure stops
when we obtain the constraint G0, for which the Dirac bracket with HT again gives a primary first class
constraint. Note that one must at each step try to add suitable primary first class constraints in order
to find the basic gauge generators Gk, which cannot be split into a sum of independent gauge generators∑
m 6=k Gm. One finds that for the case in question the minimal chain is given by

G̃ = εaK̄ 0
a +D0ε

aπ 0
a . (2.60)

For our purpose it is useful to define the so-called smeared generator, which is obtained by integrating G̃
over the spatial surface Σ

G =
∫

Σ
d2x G̃ =

∫
Σ

d2x
(
εaK̄ 0

a +D0ε
aπ 0
a

)
. (2.61)

One can show that the gauge generator creates the following gauge transformations via δε• := {•,G[ε]}8

δεA
a
0 = D0ε

a , (2.62a)
δεA

a
µ̄ = Dµ̄ε

a , (2.62b)
δεπ

0
a = −f c

abε
bπ 0
c , (2.62c)

δεπ
µ̄
a = k

4π ε
µ̄ν̄γab∂ν̄ε

b − f c
abε

bπ µ̄
c , (2.62d)

δεφ
µ̄
a = −f c

abε
bπ µ̄
c . (2.62e)

In principle, this would be the end result for our generators. However, the fact that we are considering a
theory with a boundary leads to respective boundary terms, which render the generator G non-functionally
differentiable. This we wish to avoid that at all costs, since the generators act on dynamic variables via
Poisson brackets and thus should have well-defined derivatives. Let us consider a variation of the gauge
generator G in field space for field independent gauge parameters, i.e. δε = 0

δG[ε] =
∫

Σ

(
δ
(
D0ε

aπ 0
a

)
+ εaδK̄a

)
=
∫

Σ
d2x

(
fabcε

cπ µ
a δA

b
µ +Dµε

aδπ µ
a + k

4π ε
µ̄ν̄γab∂µ̄ε

aδAbν̄

− ∂µ̄
(
k

4π ε
µ̄ν̄γabε

aδAbν̄ + εaδπ µ̄
a

))
. (2.63)

The first three terms are bulk terms and do not spoil functional differentiability, but the last term – a
boundary term – does. Since we require our canonical generators to be functionally differentiable, we
improve their form by adding another boundary term that precisely cancels the boundary term in (2.63),
i.e.

δGdiff[ε] = δG[ε] + δQ[ε] , (2.64)
where the variation of the canonical boundary charge is given by

δQ[ε] =
∫

Σ
d2x ∂µ̄

(
k

4π ε
µ̄ν̄γabε

aδAbν̄ + εaδπ µ̄
a

)
. (2.65)

8Throughout the entire thesis we differentiate carefully between δε, which is an abbreviation for the action of a gauge
generator on a variable • via δε• := {•,G[ε]}, and δ, which stands for the variation in field space.
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This expression may be further simplified by setting φ µ̄
a = 0 and hence, going to the reduced phase space.

δQ[ε] =
∫

Σ
d2x ∂µ̄

(
k

4π ε
µ̄ν̄γabε

aδAbν̄ + εaδ

(
k

4π ε
µ̄ν̄γabA

b
ν̄

))
= k

2π

∫
Σ

d2x ∂µ̄
(
εµ̄ν̄γabε

aδAbν̄
)

= k

2π

∫
Σ

dρ dϕγab εa
(
∂ρ
(
ερϕ︸︷︷︸
=1

δAbϕ
)

+ ∂ϕ
(
εϕρ︸︷︷︸
=−1

δAbρ
))

= k

2π

∫
Σ

d
(
γabε

aδAb
)

(2.66)

The use of Stokes’ Theorem9 leads to the following expression for the variation of the boundary charge

δQ[ε] = k

2π

∫
∂Σ

dϕγabεaδAbϕ = k

2π

∫
∂Σ

dϕ 〈εδAϕ〉 . (2.67)

Whether this expression is functionally integrable depends on the explicit form of the gauge parameter ε
and thus on the theory under consideration. For constant ε we may trivially integrate (2.67) and get

Q[ε] = k

2π

∫
∂Σ

dϕ 〈εAϕ〉 . (2.68)

2.3.3 Asymptotic Symmetries
Finally, after having laid the groundwork by performing the canonical analysis, we are able to discuss the
asymptotic symmetries of our theory. Asymptotic symmetries are symmetries that leave the proposed
asymptotic form of the field in question – in gravitational theories this would be the metric or the Chern-
Simons connection – invariant. This, however, does not mean that the solution does not change, but
rather means that under the action of an asymptotic symmetry a solution is mapped to a generically
physically distinct solution, which differs from the original one by global charges such as (2.67). The
algebra of asymptotic symmetries is determined by the Poisson brackets of the improved gauge generator
Gdiff , which are promoted to Dirac brackets in the context of constrained Hamiltonian systems.

{Gdiff[ε],Gdiff[λ]} = Gdiff[σ(ε, λ)] + Z[ε, λ] , (2.69)

where Z[ε, λ] denotes possible central terms and σ(ε, λ) denotes a composite gauge parameter. As already
discussed in section 2.3.2, promoting Poisson to Dirac brackets in our case means that the second class
constraints are strongly set to zero. Additionally, after fixing the gauge, also the first class constraints
are strongly set to zero. This in turn means that the bulk part of the gauge generator, which is just
the sum of first class constraints multiplied by certain parameters, see (2.60), identically vanishes. Thus,
the asymptotic symmetry algebra may be determined by computing the Dirac brackets of the canonical
boundary charges

{Q[ε],Q[λ]} = Q[σ(ε, λ)] + Z[ε, λ] . (2.70)
In general, this asymptotic symmetry algebra may be determined by “simply” evaluating the Dirac
brackets using (2.55). As this is often rather cumbersome, we will employ a shortcut to determine the
asymptotic symmetry algebra throughout this thesis. Given two functions V,W and a canonical boundary
charge Q[ε] =

∫
dϕ ε(x)V(x) one may use the fact that this charge is the generator of infinitesimal gauge

transformations
δε• = {•, Q[ε]} . (2.71)

So, if one knows the transformation behaviour of W under gauge transformations one can determine the
Dirac bracket of {V(ϕ),W(ϕ)} via

δεW(ϕ) = −{Q[ε],W(ϕ)} = −
∫

dϕ ε(x){V(x),W(y)} . (2.72)

9
∫
M dω =

∫
∂M ω, where d denotes the exterior derivative.
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Before closing this section and thus the review of the canonical analysis, we want to demonstrate the
relation between the canonical boundary charges and physical properties of the system in consideration,
already advertised in section 2.1. We recall our current knowledge: First of all, we know that the algebra
of gauge transformations is spanned by (2.70). Furthermore, we know that certain gauge transformations
correspond to diffeomorphisms (on shell), see (2.28). The last piece of the puzzle is Noether’s theorem,
which states that every continuous symmetry transformation leads to a related conservation law. In the
present formalism this theorem is realized the following way: Killing vectors ξµ are generators of isome-
tries, flows that preserve the form of the metric. Thus, Killing vectors generate symmetry transformations
that preserve the notion of distance on our manifold. Statements well known from classical mechanics
that claim that the Hamiltonian H and the angular momentum operator J are the generators of time
translations and rotations, respectively, can now be translated into the Chern-Simons formalism. The
Killing vectors ξ = ∂

∂t and κ = ∂
∂ϕ are related to the parameter of gauge transformations through (2.30).

Thus, mathematically speaking we find that

H = Q[ε = ξµAµ = At]
(2.68)= k

2π

∫
∂Σ

dϕ 〈AtAϕ〉 , (2.73)

J = Q[ε = κµAµ = Aϕ] (2.68)= k

2π

∫
∂Σ

dϕ 〈AϕAϕ〉 . (2.74)

2.4 Anti-de-Sitter Spacetimes
As we have seen in section 2.2, one particularly practical feature of spacetimes with negative cosmological
constant is that the gauge algebra so(2, 2) is a direct sum of two copies of sl(2,R). We now explicitly
perform the split, since it will be used heavily throughout the entire next chapter. We start by defining
the new generators as

J±a = 1
2 (Ja ± l Pa) . (2.75)

These new generators satisfy
[J+
a , J

−
b ] = 0 , [J±a , J±b ] = ε c

ab J±c . (2.76)
The split can now be explicitly realized via

J+
a =

(
T+
a 0
0 0

)
, J−a =

(
0 0
0 T−a

)
(2.77)

where both T+
a and T−a satisfy an sl(2,R) algebra. Furthermore, we deduce the following bilinear form

for T+
a and T−a from (2.21)

〈T+
a , T

+
b 〉 = l

2ηab , 〈T−a , T−b 〉 = − l2ηab . (2.78)

It is now possible to rewrite the gauge field A as

A =
((
ωa + 1

l e
a
)

T+
a 0

0
(
ωa − 1

l e
a
)

T−a

)
=
(
A+ 0
0 A−

)
. (2.79)

Thus, after implementation of this split the Chern-Simons action (2.18) splits into

S[A+, A−] = SCS [A+] + SCS [A−] , (2.80)

with the invariant bilinear form given by (2.78). However, due to the fact that both T+
a and T−a satisfy an

sl(2,R) algebra, it is convenient not to distinguish between the two generators, i.e. setting Ta = T+
a = T−a .
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The only issue one has to take care of when doing so is the minus sign appearing in (2.78). However,
the minus sign can easily be introduced manually by taking instead of the sum the difference of the two
Chern-Simons actions in (2.80), i.e.

S[A+, A−] = SCS [A+]− SCS [A−] . (2.81)

Obviously, the split has to be taken care of whenever the bilinear form appears, which is also the case in
the canonical boundary charges, i.e.

Q[ε+, ε−] = Q[ε+]−Q[ε−] (2.82a)

with
Q[ε+] = k

2π

∫
dϕ 〈ε+δA+

ϕ 〉 , Q[ε−] = k

2π

∫
dϕ 〈ε−δA−ϕ 〉 . (2.82b)

The metric may be recovered from (2.79) via

gµν = l2

2 〈A
+
µ −A−µ , A+

ν −A−ν 〉 , (2.83)

since

gµν = l2

2 〈A
+
µ −A−µ , A+

ν −A−ν 〉 = l2

2 · 2
eaµ
l

ebν
l
〈Ta, Tb〉

(2.78)= eaµe
b
νηab , (2.84)

which is just the usual expression of the metric as the contraction over the local dreibein, see (2.9).

Change of Basis
Until now it was convenient to use the generators Ta as a basis of the sl(2,R) algebra given by

[Ta, Tb] = ε c
ab Tc (2.85)

and equipped with the bilinear form (2.78). However, throughout all the calculations in chapters 3 and 4
we employ a different basis for the sl(2,R) algebra in order to be in accordance with the notation in [4–6].
The change of basis is defined by the following linear combination

L0 = T1 , (2.86)
L1 = T0 + T2 , (2.87)

L−1 = T0 − T2 . (2.88)

Furthermore, we absorb the AdS radius l into k via

k = 1
4GN

→ l

4GN
. (2.89)

Clearly, the generators Ln still fulfill the sl(2,R) algebra (after all, only the basis was changed), which
may be written as

[Ln, Lm] = (n−m)Ln+m , (2.90)
where n runs from −1 to 1 and the bilinear form is given by

〈L1, L−1〉 = −1 , 〈L0, L0〉 = 1
2 . (2.91)

17



2.5 Anti-de-Sitter Higher-Spin Gravity
As already mentioned in the introduction higher-spin gravity theories provide an interesting class of grav-
itational theories, exhibiting more symmetries than just diffeomorphism and local Lorentz invariance.
Furthermore, we recall that only in three dimensions it is known to be possible to write down a consistent
theory considering only excitations up to a certain spin n. An interesting (and potentially confusing)
aspect of higher-spin theories is that the metric and associated notions such as Riemannian curvature,
singularities or horizons are not gauge-invariant entities anymore. Nevertheless, field configurations exist
that may be most naturally interpreted as higher-spin black holes or higher-spin cosmologies10, i.e. solu-
tions equipped with some characteristic gauge invariant quantity such as some characteristic temperature
and entropy (see [28] for a review). Therefore, since a straightforward geometrical interpretation is not
possible in the metric formalism while the extension from ordinary spin-2 gravity to higher-spin gravity
in the Chern-Simons formalism is fairly straightforward, one usually employs the latter formulation when
discussing higher-spin gauge symmetries. Additionally, the Chern-Simons formulation has a precise no-
tion of gauge invariance that can be extended to higher-spin symmetries. In the Chern-Simons formalism
regularity of a black hole can be defined through holonomies (see [29], [30]) of the connection A; geodesics
and their proposed higher-spin extensions can be related to Wilson lines (see [31]).
The extension from spin-2 to spin-N gravity in the case of AdS can be performed by simply replacing
the gauge group sl(2,R)⊕sl(2,R) by sl(N,R)⊕sl(N,R). It was shown in [32] that for N ≥ 2 such a
Chern-Simons theory describes a theory of gravity coupled to a finite tower of massless integer spin-s ≤ N
fields. Thus, the problem of incorporating the usual spin-2 gravity into the higher-spin theory reduces to
the problem on how to embed sl(2,R) into sl(N,R). Dependent on the embedding qualitatively different
higher-spin theories are obtained. However, note that one can also use different gauge algebras such
as hs[λ]⊕hs[λ] as a gauge algebra, which describes spin-2 gravity coupled to spin fields s = 3, 4, ...∞.
In this thesis we will focus on the principal embedding of sl(2,R) ↪→ sl(3,R) or isl(2,R) ↪→ isl(3,R),
respectively11.
Hence, higher-spin gravity in the principal embedding for Λ < 0 can be described by a sl(N,R)⊕sl(N,R)
Chern-Simons theory with the corresponding action given by (2.80) and (2.18) with the bilinear form
denoting the trace with respect to sl(N,R). Furthermore, the Chern-Simons level k is adjusted such that
it matches the normalization of the Einstein-Hilbert action, i.e.

k = l

8GN 〈L0, L0〉
, (2.92)

with
〈L0, L0〉 = N (N2 − 1)

12 , (2.93)

where L0 is the Cartan subalgebra generator of sl(2,R) algebra contained in sl(N,R). The metric can be
obtained from the Chern-Simons connection via [28]

gµν = l2

2 〈L0, L0〉
〈A+

µ −A−µ , A+
ν −A−ν 〉 . (2.94)

10Flat space cosmologies represent flat space analogons to black holes in three dimensions, since they exhibit a cosmological
horizon and they carry a mass and an angular momentum.

11We recall (see section 2.2.2) that since isl(2,R) ∼ sl(2,R)⊕sR3, a certain embedding sl(2,R) ↪→ sl(3,R) implies an
embedding isl(2,R) ↪→ isl(3,R).
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3 Boundary Conditions for AdS Space

In field theories the physical content of the theory is given by the field equations and the boundary
conditions. While it is common practice in non-gravitational theories to demand that the fields asymp-
totically vanish, demanding that the metric asymptotically vanishes at the boundary of spacetime is a
highly unnatural choice for gravitational theories, which results in a singularity. Nevertheless, while in
other field theories vanishing of the field in question just denotes a transition to the vacuum state, a
singularity in general relativity usually denotes either a problem in the theory itself or a physically very
distinct point like the center of a black hole for instance. Hence, these boundary conditions would lead
to highly unnatural spacetimes.
Instead, a better approach is to assume that the metric asymptotes to a certain solution of Einstein’s
equations. In particular, for the case of flat space one assumes that the metric g asymptotically takes
the form of the Minkowski metric η. In the cases of de-Sitter and Anti-de-Sitter the most natural choice
is to assume that the metric asymptotes to global de-Sitter gdS or Anti-de-Sitter gAdS spacetime. In the
following we consider three-dimensional manifoldsM, which are taken to have the topology of a cylinder
M = Σ× R, parametrized by xi = (t, r, ϕ). The boundary of the cylinder is then located at r →∞.

gΛ=0
r→∞−→ η + subleading terms , (3.1)

gΛ<0
r→∞−→ gAdS + subleading terms , (3.2)

gΛ>0
r→∞−→ gdS + subleading terms , (3.3)

It is furthermore important to recall that global de-Sitter/Anti-de-Sitter space in global coordinates is
given by

ds2
dS = −

(
1− r2

l2

)
dt2 +

(
1− r2

l2

)−1

dr2 + r2 dϕ2 , (3.4)

ds2
AdS = −

(
1 + r2

l2

)
dt2 +

(
1 + r2

l2

)−1

dr2 + r2 dϕ2 , (3.5)

with the cosmological constant given as Λ = ±1/l2, respectively.

3.1 Brown-Henneaux Boundary Conditions

The objective of this section is to specify what we mean by asymptotically Anti-de-Sitter spacetimes,
i.e. we will consider a set of metrics that approaches the metric of AdS3 in a certain way when going to
infinity. Asymptotically AdS spacetimes in the sense of Brown and Henneaux are required to fulfill the
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boundary conditions

gtt = −r
2

l2
+O(1) , (3.6a)

gtr = O
(

1
r3

)
, (3.6b)

gtϕ = O(1) , (3.6c)

grr = l2

r2 +O
(

1
r4

)
, (3.6d)

grϕ = O
(

1
r3

)
, (3.6e)

gϕϕ = r2 +O(1) , (3.6f)

where O(rn) denotes that the fluctuation of the corresponding metric component behaves at most pro-
portional to rn. These boundary conditions may equivalently be stated in the Fefferman-Graham expan-
sion [33], where the metric is expanded in orders of r2 and the proposed form of the metric is taken to
be

ds2 = l2

r2 dr2 + γij(r, x̃k) dx̃i dx̃j (3.7a)

with x̃ = (t/l, ϕ). Close to the boundary r → ∞ the tensor γij(r, x̃k) may be expanded in orders of r2,
i.e.

γij = r2g
(0)
ij (x̃k) +O(1) . (3.7b)

We call metrics asymptotically AdS3 in the sense of Brown and Henneaux, if

g
(0)
ij dx̃i dx̃j = ηij dx̃i dx̃j . (3.7c)

Thus, the Brown-Henneaux boundary conditions may be regarded as Dirichlet boundary conditions with
a flat boundary metric on the cylinder located at infinity [34]. It was shown by Bañados in [35] that
the most general solution subject to the boundary conditions (3.6) and (3.7), respectively, (up to trivial
diffeomorphisms12) is given by

ds2 = l2

r2 dr2 −
(
r dx+ + 2πl2

kr
L−(x−) dx−

)(
r dx− + 2πl2

kr
L+(x+) dx+

)
, (3.8)

where k = l/4GN is the Chern-Simons level and we employed light-cone coordinates x± = t
l ± ϕ. The

solution space is parametrized by two arbitrary functions L−(x−) and L+(x+) and contains, among
others, the following solutions:

• Global AdS3 in global coordinates L−(x−) = L+(x+) = k
8π

• BTZ black hole for L+(x+) = − 1
4π (Ml − J) = const and L−(x−) = − 1

4π (Ml + J) = const

The functions L−(x−) and L+(x+) are also referred to as state-dependent functions, since they depend
on the state, i.e the particular solution of our system. Note that requiring that a given metric is part of
this most general class (3.8) of solutions (up to trivial diffeomorphisms) is equivalent to prescribing the
fall-off conditions (3.6), (3.7) for the metric components at large distances.
Another useful set of coordinates, which will be used in the following are the Gaussian coordinates, which

12By trivial diffeomorphisms we mean diffeomorphisms that do not change the canonical boundary charges.
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Figure 3.1: Spectrum of the Brown-
Henneaux (= asymptotically AdS) boundary
conditions taken from [36]. Black holes exist
for M ≥ 0, |J | ≤ Ml. Global AdS3 is sepa-
rated by a gap from the continuous black hole
spectrum. ForM < 0 conical singularities ap-
pear in the spectrum: a conical defect occurs
if ϕ has a period less then 2π as it is in the
case of a cone – the result is a curvature sin-
gularity on the tip. A conical excess means
that the period is greater than 2π, which also
results in a singularity.

are obtained from the global coordinates by transforming the radial coordinate acoording to r = eρ l. In
Gaussian coordinates (3.8) becomes

ds2 = l2
[
dρ2 − 2π

k

{
L+(dx+)2 + L−(dx−)2

}
−
{
e2ρ + 4π2

k2 L+L−e−2ρ
}

dx+dx−
]
, (3.9)

where L+ ≡ L+(x+) and L− ≡ L−(x−). Following the discussion of section 2.4 we know that metric
(3.9) may equally be described using two Lie algebra valued gauge fields A+ and A− (Chern-Simons
gauge fields) that fulfill sl(2,R) (see appendix A.1 for details on the algebra) We partially fix the gauge
by choosing

A± = b−1
±
(
a±(x±) + d

)
b± (3.10a)

with
b± = b±(ρ) = e±ρL0 (3.10b)

and a±, hereafter also referred to as “auxiliary connection”, being given by

a± = ±
(

L±1 + 2π
k
L±L∓1

)
dx± . (3.10c)

Different solutions parametrized by distinct and generally non-constant values of L+ and L− may be
connected through finite gauge transformations (2.26a). These improper gauge transformations are not
true gauge transformations in the sense that they leave the system in question invariant. Actually, they
change the canonical boundary charges which in turn – as the following computation explicitly shows –
define physical properties of the system in consideration. This way a BTZ black hole parametrized by
a certain mass and angular momentum may be mapped to global AdS through a gauge transformation,
which changes the canonical boundary charges. These gauge transformations are precisely spanned
by the asymptotic symmetry algebra, which is per definition (see section 2.3) the algebra of gauge
transformations that preserves the boundary conditions given by (3.6) or (3.7) modulo proper gauge
transformations. Thus, the asymptotic symmetry algebra solely contains improper gauge transformations.
The spectrum of solutions is given by (3.10) or (3.9), respectively can be nicely summed up in a picture,
see Fig. 3.1.

3.1.1 Canonical Boundary Charges and Asymptotic Symmetry Algebra
In the following, we determine the asymptotic symmetry algebra in accordance to the procedure we
already discussed in section 2.3. We consider infinitesimal gauge transformations generated by parameters
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ε̃±, which we choose as

ε̃± = b−1
± ε±(x±) b± (3.11)

with b± given by (3.10b). Assuming this specific form for the gauge parameters ε̃+ and ε̃− is smart, since
this takes us to the gauge of the auxiliary connection a. Furthermore, (3.11) already implements the
information that improper gauge transformations preserving the form of a+ = a+(x+) and a− = a−(x−)
should only act on the subspaces spanned by x+ and x− respectively13. The asymptotic symmetry algebra
corresponds to the set of infinitesimal gauge transformations

δε±a
± = dε± + [a±, ε±] , (3.12)

that preserve the form of (3.10). These transformations take the form

ε±(x±) = λ±L±1 ∓ λ′±L0 +
(
λ′′±
2 + 2π

k
L±λ±

)
L∓1 , (3.13)

where λ± ≡ λ±(x±) are arbitrary parameters and prime denotes a derivative with respect to the argument
of the function, i.e. f ′(x±) = ∂x±f(x±). Under the transformation defined by (3.11) and (3.13) the
functions L+ and L− transform according to L+ → L+ + δε+L+ and L− → L− + δε−L− with

δε±L± = ±
(
λ±L′± + 2L±λ′± + k

4πλ
′′′
±

)
. (3.14)

Thus, under a boundary condition preserving transformation g, parametrized by (3.11) and (3.13), one
solution is mapped to a physically distinct solution. This solution is now parametrized by different
state-dependent functions L and L̄, but takes the same form, i.e.

a± = a±(L±)→ a± = a±(L± + δε±L±) . (3.15)

The variation of the canonical boundary charges associated with the asymptotic symmetries spanned
by (3.12) and (3.13) may be readily calculated in the Chern-Simons formalism, see (2.82) and (2.67).
Furthermore, we may use the fact that the boundary charges Q[ε+, ε−] = Q[ε+] − Q[ε−] stay invariant
under a change of gauge from the connection A to the auxiliary connection a, since

δQ+[ε+] = k

2π

∫
dϕ 〈ε̃+δA+

ϕ 〉 = k

2π

∫
dϕ 〈b−1

+ ε+b+δ(b−1
+ (a+

ϕ + d)b+)〉

δb+=0= k

2π

∫
dϕ 〈b−1

+ ε+δa+
ϕ b+〉 = k

2π

∫
dϕ 〈ε+δa+

ϕ 〉 , (3.16)

where we used cyclicity of the trace in the last step14. Obviously, the same line of reasoning may also be
followed for δQ−[ε−] and thus, by using (3.12), (3.13) and (A.2) we obtain

δQ+[ε+] = k

2π

∫
dϕ 〈ε̃+δA+

ϕ 〉 = k

2π

∫
dϕ 〈ε+δa+

ϕ 〉 =
∫

dϕλ+δL+ , (3.17a)

δQ−[ε−] = k

2π

∫
dϕ 〈ε̃−δA−ϕ 〉 = k

2π

∫
dϕ 〈ε−δa−ϕ 〉 = −

∫
dϕλ−δL− . (3.17b)

These charges are integrable, finite and conserved in time. The asymptotic symmetry algebra can then
be computed via δε1Q[ε2] = {Q[ε2],Q[ε1]} by employing the usual trick (2.71). Using the transformation
behaviour (3.14) and decomposing L+ and L− into Fourier modes

L+
m = k

2π

∫
eimϕL+ dϕ , L−m = k

2π

∫
eimϕL− dϕ , (3.18)

13This can of course also be derived by simply inserting a general function ε±(x+, x−) into (3.12).
14Remember that the bilinear form is merely a trace over the representation of the gauge algebra.
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we obtain

[L+
m, L

+
n ] = (m− n)L+

m+n + c

12m
3δn+m,0 , (3.19a)

[L−m, L−n ] = (m− n)L−m+n + c

12m
3δn+m,0 , (3.19b)

[L+
m, L

−
n ] = 0 , (3.19c)

with the central element c given by

c = 6k = 3l
2GN

, (3.19d)

where we already replaced the Dirac brackets with commutators via i{ , } → [ , ] to quantize the system.
We see that the algebra associated to symmetry transformations that preserve asymptotically AdS3
boundary conditions in the sense of (3.6) is given by two copies of the Virasoro algebra with central
charge c (3.19d). The Virasoro algebra (3.19) is the algebra of local conformal tranformations in two
dimensions and is the central extension of the Witt algebra. Interestingly, the algebra (3.19) is infinite-
dimensional (recall m ∈ Z) – a peculiarity of the algebra of conformal transformations in two dimensions.
Note that the standard redefinitions L+

0 → L+
0 + c

24 , L
−
0 → L−0 + c

24 change the algebra’s central extensions
to c

12m(m2 − 1) and therefore lead to the the Virasoro algebra with sl(2,R)-invariant subalgebra (2.90).
Furthermore, note that the central extensions already appear on the algebra level before the quantization
of the system by promoting the Dirac brackets to commutators.
The algebra (3.19) was first derived by Brown and Henneaux in their seminal paper [7] and gave rise to
the conjecture that the holographic dual of AdS3 is a conformal field theory in two dimensions, i.e. a
CFT2. Before closing this subsection, we explicitly calculate the angular momentum from (3.10) following
the discussion at the end of subsection 2.3.3 for constant L+, L−

δM
(2.73)= k

2π

∫
dϕ 〈A+

t δA
+
ϕ 〉 −

k

2π

∫
dϕ 〈A−t δA−ϕ 〉

(3.16)= k

2π

∫
dϕ
(
〈a+
t δa

+
ϕ 〉 − 〈a−t δa−ϕ 〉

)
= k

2π

∫
dϕ
{
−2π
kl

(δL+ + δL−)
}

= −2π
l

(δL+ + δL−) , (3.20)

δJ
(2.73)= k

2π

∫
∂Σ

dϕ 〈A+
ϕ δA

+
ϕ 〉 −

k

2π

∫
∂Σ

dϕ 〈A−ϕ δA−ϕ 〉
(3.16)= k

2π

∫
∂Σ

dϕ
(
〈a+
ϕ δa

+
ϕ 〉 − 〈a−ϕ δa−ϕ 〉

)
= k

2π

∫
dϕ
{

2π
k

(δL+ − δL−)
}

= 2π (δL+ − δL−) . (3.21)

This expression can be trivially functionally integrated and yields precisely the result we proposed above.

3.1.2 Addition of Chemical Potentials
We have seen that the Brown-Henneaux boundary conditions (3.10) lead to a CFT consisting of two
copies of the Virasoro algebra. Hence, on the CFT side we would have two quasi-primary fields of
conformal weight two. As usual in (quantum) field theory one can introduce source terms, which modify
the solutions of the field equations in question. In literature these source terms are usually referred
to as “chemical potentials” – we will expand on the reason for this name later on in this subsection.
As in the rest of this thesis we will discuss the effect of source terms exclusively on the gravitational
side – for more information consult for instance the excellent review [28]. In the case of the Brown-
Henneaux boundary conditions chemical potentials are introduced by adding ν±L± as additional terms
to the temporal component a±t of the auxiliary connections a± (3.10c) and making a general ansatz for
the other components, which are then fixed by solving (2.24). By making this ansatz the a±ϕ component
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and thus the asymptotic symmetry algebra is not modified. This leads to

a± = ±
(

L±1 + 2π
k
L±L∓1

)
dx± ± 1

l
Λ±(ν±) dt , (3.22a)

with
Λ±(ν±) = ν±L±1 ∓ ν′±L0 +

(
ν′′±
2 + 2π

k
L±ν±

)
L∓1 , (3.22b)

where x′ = ∂ϕx. Constant chemical potentials can be absorbed by performing a coordinate transformation
and therefore, the Brown-Henneaux boundary conditions with constant chemical potentials are equivalent
to the ones without chemical potentials. We note that (3.22b) has precisely the form of a gauge parameter
generating asymptotic symmetry transformations, see (3.13). This relation between gauge parameters and
chemical potentials is not a feature solely characteristic for the case at hand, but holds in general, since
any connection can be transformed into any other connection through an improper gauge transformation
(recall that we are dealing with a theory of locally flat connections). Hence, one would think that (3.22)
is already contained in the solution space spanned by (3.10c). Yet, this is not the case. While the state-
dependent functions L± vary under an asymptotic symmetry transformation, the chemical potentials ν±
are – per definition – fixed, i.e. δεν± ≡ 0.
Furthermore, note that the highest weight boundary conditions (3.22) can be brought into a different
form, which we will use in the following, via the redefinitions µ± = (1 + ν±)/l

A± = b−1
±
(
d + a±

)
b± , b± = e±ρL0 , (3.23a)

a±ϕ =
(

L±1 + 2π
k
L±L∓1

)
, a±t = ±

(
µ±L±1 ∓ µ′±L0 +

(
1
2µ
′′
± + 2π

k
L±µ±

)
L∓1

)
. (3.23b)

Comment

The fact that introducing constant chemical potentials leads to nothing new should not surprise us. In
fact, this was to be expected, since as in ordinary statistical mechanics each chemical potential comes
with a connected charge. However, one chemical potential is already present in the case of (3.10c) – the
temperature β, corresponding to the periodicity of imaginary time τ ∼ τ + β.
For simplicity’s sake we will restrict ourselves to constant chemical potentials µ+ = µ− = µ and constant
state-dependent function L+ = L− = L. A notion of temperature can then be defined by performing a
Wick rotation and computing the holonomy around the contractible τ -cycle [30]

HC = Pe
∫
C
a±τ dτ = 1 , (3.24)

which leads to the condition

βµ = nπ

√
k

2πL , (3.25)

where n is an arbitrary integer. Note that ordinary Brown-Henneaux boundary conditions without
chemical potentials can be reproduced by setting µ = 1/l. In the absence of rotation the black hole
partition function can then be defined as

Z(β) = Tr
[
e−βH

]
= Tr

[
e−αL

]
, (3.26)

where β is given by (3.25) and H given by (3.20). After the first equal sign we absorbed all irrelevant
constants via a redefinition of the chemical potential β. At this point we see that the introduction of a
constant chemical potential in the spin-2 case indeed does not lead to an additional chemical potential,
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since (3.25) relates β and µ. In the more general case of other charges Q (for instance higher-spin charges)
being present the partition function takes the form

Z(β, γ) = Tr
[
eαL+γQ] . (3.27)

where γ is the chemical potential connected to the charge in question. Thus, chemical potentials appear
in our theory as Lagrange multipliers in front of conserved charges, which is in complete analogy to the
way they are introduced in ordinary statistical mechanics.

3.2 Near Horizon Boundary Conditions
In the last section we discussed boundary conditions inspired by an asymptotic perspective. In particular,
we discussed the most general solution which asymptotically approaches AdS3 spacetime. In this section
we discuss boundary conditions first proposed in [4]. These boundary conditions are rather inspired
by a near horizon than by an asymptotic perspective. More specifically, we discuss the most general
solution subject to the condition that the metric approaches Rindler spacetime for r → 0. Rindler space
in Gaussian coordinates15 is given by

ds2 = −a2r2 dt2 + dr2 + γ2 dϕ2 , (3.28)

where a is the Rindler acceleration and r = 0 stands for the location of the Rindler horizon. The angular
coordinate is assumed to be periodic ϕ ∼ ϕ+ 2π. The horizon area is given by

A =
∫

dϕγ . (3.29)

with γ > 0 in order to always render the horizon area positive.
This setting is of interest, since spacetime geometry around non-extremal horizons is universally approx-
imated by Rindler space [37,38]. While there exists exhaustive literature on extremal black holes [39–41]
in the context of holography, non-extremal black holes are not that well investigated.
The convenient aspect of our boundary conditions is that they per definition guarantee the existence of
a regular16, non-extremal horizon and are thus very well suited when asking conditional questions like
“Given a black hole, what are the scattering amplitudes in a given channel?” or “Given a black hole, can
we microscopically account for the Bekenstein-Hawking entropy?” [4]. The most general solution of the
Einstein equations obeying (3.28) for small r is given by [5]

ds2 = dr2 − ((a2l2 − Ω2) cosh2(r/l)− a2l2) dt2 + 2(γΩ cosh2(r/l) + aωl2 sinh2(r/l)) dtdϕ
+ (γ2 cosh2(r/l)− ω2l2 sinh2(r/l)) dϕ2 , (3.30)

where ω, γ, Ω and a are arbitrary functions subject to

γ̇ = Ω′ , ω̇ = −a′ , (3.31)

where prime denotes ∂ϕ and dot denotes ∂t. One reason for interpreting Ω as an angular velocity is that
it appears as a leading order term in the dtdϕ component of the metric and thus, changes the sign under

15Gaussian coordinates are often useful if there exists a non-null-hypersurface S – in our case the horizon. On every
point P in S one can define a unique normal vector n to S with respect to the metric g. The geodesic, which starts at P
with tangent vector n is also uniquely defined by the fundamental theorem of ODEs. One can now label each point in a
sufficiently small neighbourhood of S by arbitrary coordinates on S and the affine parameter of the geodesic, which runs
through this point.

16In this context demanding regularity of the horizon means demanding the absence of singularities, in particular conical
singularities.
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time or ϕ reversal. We choose Ω = 0 for regularity, which corresponds to us adopting a corotating frame,
and a = const. This in turn means that the functions ω and γ depend on ϕ only, i.e. ω = ω(ϕ) and
γ = γ(ϕ). In consequence, (3.30) reduces to

ds2
∣∣∣a=const

Ω=0
= dr2 − a2l2(cosh2(r/l)− 1) dt2 + 2aωl2 sinh2(r/l) dtdϕ

+ (γ2 cosh2(r/l)− ω2l2 sinh2(r/l)) dϕ2 . (3.32)

The line elements (3.30) and (3.32), respectively, describe different exact solutions of Einstein’s EOM
parametrized by functions ω(ϕ) and γ(ϕ). While these functions are referred to as state-dependent
functions, since their value differs from solution to solution, the functions a and Ω are referred to as
chemical potentials, meaning that they are arbitrary, but fixed functions. As we will see later, a fixed
Rindler acceleration implies that all states in our theory have the same temperature

T = a

2π . (3.33)

On the one hand this does not seem like a good choice, since different states typically have different tem-
peratures as is the case for the BTZ black hole. On the other hand fixing the temperature is exactly the
setup one is looking for when investigating a certain macrostate – a black hole with fixed temperature and
angular velocity. Additionally, it is difficult to implement a Rindler acceleration that varies from solution
to solution. First of all, the line element is invariant under rescalings of the Rindler acceleration with
simultaneous rescaling of the coordinates17, which means that a statement like “the Rindler acceleration
is 42” has no meaning unless the scale is fixed [5]. A previous work [42] achieved this by periodically
identifying advanced/retarded time with a certain length scale L that breaks the scale invariance. How-
ever, the physical interpretation of this setup and the corresponding dual field theory is rather difficult,
see [42].
The geometry described by (3.32) is generically not spherically symmetric, since the different components
of the metric tensor contain functions of ϕ, i.e.γ = γ(ϕ) and ω = ω(ϕ). However, for the case of constant
γ and ω the metric (3.32) becomes spherically symmetric and reduces to the BTZ black hole, as we will
see in subsection 3.2.3. In ingoing Eddington-Finkelstein coordinates

v = t− 1
2a
−1 log

(
f(ρ)
ρ

)
, (3.34)

ρ = al2
(

cosh
(r
l

)
− 1
)
, (3.35)

the metric (3.30) becomes

ds2 = −2aρf(ρ)dv2 + 2 dv dρ+ 4ωρf(ρ) dv dϕ− 2ω
a

dϕdρ+
(
γ2 + 2ρ

al2
(
γ2 − l2ω2) f(ρ)

)
dϕ2 , (3.36)

where f(ρ) = 1 + ρ/(2al2). Requiring the absence of closed time-like curves leads to the constraint

γ > |ω|l . (3.37)

This may be for instance seen from (3.30) by taking the large r limit and chosing an azimuthal curve
η = {t = const, r = const}

lim
r→∞

ds2
∣∣∣
r,t=const

=
(
γ2 − ω2l2

) e 2r
l

4 dϕ2 . (3.38)

17This may be best seen by looking at the line element in Eddington-Finkelstein coordinates given below (3.36), which
stays invariant under a→ λa, ρ→ λρ and v → λ/v.
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The curve (3.38) becomes a closed timelike curve for ds2 < 0 and thus we arrive at the constraint
(3.37). After having discussed the motivation for our boundary conditions in the metric formalism,
which is geometrically more intuitive than the Chern-Simons formalism, we now switch to the latter,
which enables us to use all the machinery developed in chapter 2. The sl(2,R)-valued Chern-Simons
connections A± that precisely reproduce the line element in Gaussian coordinatese via (2.83) are given
by

A± = b−1
± (d + a±)b± , (3.39a)

with
b± = exp

(
± r

2l (L1 − L−1)
)

(3.39b)

and
a± = L0 (±J± dϕ+ ζ± dt) , (3.39c)

where
J± = γl−1 ± ω and ζ± = −a± Ωl−1 . (3.40)

At first, the particular form of (3.39) may look arbitrary, since it is not unambiguously defined by (3.36).
And while choosing boundary conditions involves usually a lot of educated guessing, the particular form
(3.39a) brings about the following advantages

• Capturing the entire radial dependence in the group element b± leads to radially independent
charges and hence, a radially independent asymptotic symmetry algebra.

• Choosing the auxiliary connection proportional to L0, the generator that is diagonal in the funda-
mental representation of sl(2,R), see (A.1), simplifies the calculation of the holonomy conditions
that assure regularity of the horizon.

The field equations (2.24) yield
J̇± = ±ζ ′± , (3.41)

which, with the use of (3.40), reduces to (3.31) as is needed for the two formulations to be equivalent.

3.2.1 Canonical Boundary Charges and Asymptotic Symmetry Algebra
We can now determine the canonical boundary charges and the asymptotic symmetry algebra in accor-
dance with (2.3). Again, as in the case of the Brown-Henneaux boundary conditions, see (3.11), it is
useful to choose the following form of the gauge parameters

ε̃± = b−1
± ε±(x) b± (3.42)

with b± given by (3.39b), which takes us to the gauge of the auxiliary connection a, and the gauge
parameters ε± given by

ε± = ε±−1 L−1 + ε±0 L0 + ε±1 L1 . (3.43)
Thus, the canonical boundary charges Q[ε+, ε−] = Q+[ε+] − Q−[ε−] associated with the theory defined
by the boundary conditions (3.39) may readily be computed via

δQ±[ε±] = k

2π

∫
dϕ 〈ε̃±, δA±ϕ 〉

δb±=0= k

2π

∫
dϕ 〈ε±, δa±ϕ 〉

= ± k

2π

∫
dϕ ε±0 δJ± 〈L0, L0〉 = ± k

4π

∫
dϕ ε±0 δJ± , (3.44)

where we used that 〈L0, L1〉 = 〈L0, L−1〉 = 0 and 〈L0, L0〉 = 1/2 . Therefore, we see that the parameters
ε±−1 and ε±1 lead to trivial gauge transformations (δQ± = 0) and thus, will not be considered in the
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following. To reduce clutter and to be in accordance with [4] we rename ε±0 = η±. We now derive the
most general non-trivial gauge transformation generated by ε±(x) = η±(x)L0 that preserves the boundary
conditions, see (3.12). Per definition ζ± does not vary if we move from one solution to another, i.e.

δε±a
± δζ±=0= ±δη±J±L0 dϕ . (3.45a)

Furthermore, we find that

dε± + [a±, ε±] = (∂ρη± dρ+ ∂ϕη± dϕ+ ∂tη± dt) L0 + (±J± dϕ+ ζ± dt) η± [L0, L0]︸ ︷︷ ︸
=0

= (∂ρη± dρ+ ∂ϕη± dϕ+ ∂tη± dt) L0 . (3.45b)

Therefore, the asymptotic symmetry algebra is spanned by all transformations, whose corresponding
gauge parameters η±(x) satisfy

δη±J± = ±∂ϕη± ≡ ±η′± and ∂ρη± = ∂tη± = 0 . (3.45c)

The global charges are then obtained by functionally integrating (3.44)

Q±[η±] = ± k

4π

∫
dϕη± J± (3.46)

and turn out to be finite, integrable and conserved in (advanced) time. Now we see explicitly what we
claimed above: The surface integral (3.46) does not depend on the radial coordinate r, which in turn
implies that our charges and hence, our boundary analysis does not depend on whether r is chosen to be
close to the horizon r = r0 or close to infinity.
The asymptotic symmetry algebra is spanned by the Dirac brackets of the canonical boundary charges
and can be readily determined via the relation δκQ [η] = {Q [η] ,Q [κ]}, see (2.71), where

δκ±Q± [η±] = ± k

4π

∫
dϕη± δκ±J±

(3.45c)= + k

4π

∫
dϕη± κ′± (3.47a)

and
{Q± [η±] ,Q± [κ±(ϕ)]} = k2

16π2

∫
dϕ
∫

dϕ̃ η±(ϕ)κ±(ϕ̃){J±(ϕ),J±(ϕ̃)} . (3.47b)

Expanding the state-dependent functions J± and the gauge parameters η± into Fourier modes

J±(ϕ) = 2
k

∞∑
n=−∞

J±n e
−inϕ , J±n = k

4π

∫
dϕeinϕJ±(ϕ) , (3.48a)

η±(ϕ) = 2
k

∞∑
n=−∞

η±n e
−inϕ , η±n = k

4π

∫
dϕeinϕη±(ϕ) (3.48b)

and inserting the Fourier expansion (3.48) into (3.47) gives

δκ±Q [η±] = + k

4π

∫
dϕ · 4

k2

∑
n,m

η±n κ
±
m(−im)e−i(n+m)ϕ = − 1

kπ

∑
n,m

im (2πδn+m,0)η±n κ±m

= −2
k

∑
n,m

imδn+m,0η
±
n κ
±
m (3.49a)
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and

{Q± [η±] ,Q± [κ±(ϕ)]} = k2

16π2
16
k4

∫
dϕ
∫

dϕ̃
∑

n,m,p,q

η±n κ
±
m{J±p , J±q }e−i(n+p)ϕe−i(m+q)ϕ̃

= 1
k2π2

∑
n,m,p,q

η±n κ
±
m{J±p , J±q }(2πδn+p,0) (2πδm+q,0)

= 4
k2

∑
n,m

η±n κ
±
m{J±−n, J±−m} , (3.49b)

where we have repeatedly exploited that∫
dϕei(n+m)ϕ = 2πδn+m,0 . (3.50)

Hence, we infer the following relation from (2.71) by comparing the summands

{J±−n, J±−m} = −k2 δn+m,0 im ⇒ {J±n , J±m} = −k2 δn+m,0 in . (3.51)

Furthermore, we immediately see that
{J+
n , J

−
m} = 0 , (3.52)

since δη+J− = δη−J
+ = 0. Thus, after quantization of our system via the replacement of the Dirac

brackets by commutators i{, } → [, ] we obtain

[J±n , J±m] = +k

2 n δm+n,0 and [J±n , J∓m] = 0 . (3.53)

The algebra (3.53) consists of two û (1) current18 algebras with levels +k
2 . In the context of AdS/CFT

this algebra may be interpreted as the current algebra of the two-dimensional conformal field theory living
at the “boundary”. This algebra is nothing else than the algebra of creation and annihilation operator for
a free boson. Note that the value of the levels in (3.53) is arbitrary, since a redefinition of the prefactors
in (3.48) leads to different levels. The algebra (3.53) may be brought into a more promising form by
linearly combining the generators according to

Xn = J+
n − J−−n , (3.54)

P0 = J+
0 + J−0 , (3.55)

Pn = i

kn

(
J+
−n + J−n

)
if n 6= 0 . (3.56)

With this change of basis (3.53) becomes

[Xn, Xm] = [Pn, Pm] = [X0, Pn] = [P0, Xn] = 0 . (3.57)
[Xn, Pm] = iδn,m if n 6= 0 (3.58)

Thus, X0 and P0 are Casimir operators and all other Xn, Pn form canonical pairs, which span the
Heisenberg algebra. This is a surprisingly simple result.

18In conformal field theory a current is a chiral field j(z) with conformal weight h = 1. For more information on conformal
weights consult appendix C.
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3.2.2 Hamiltonian and Soft Hair
As already discussed in detail in section 2.3.3, the Hamiltonian is defined as the charge connected with
the temporal Killing vector ξ = ∂t. The corresponding gauge parameter is related to the Killing vector
via (2.30) and thus

ε±
∣∣
∂t

= ξµa±µ
(3.39c)= ζ±L0

(3.40)= −aL0 . (3.59)
Hence, we get

H := Q[ε±
∣∣
∂t

] = Q+[ε+
∣∣
∂t

]−Q−[ε−
∣∣
∂t

] (3.46)= k

4π

∫
dϕ (−a){+J+ + J−}

= k

4π

∫
dϕ (−a){+J+ + J−}einϕδn,0

(3.48)= −a
(
J+

0 + J−0
)

= −aP0 . (3.60)

Therefore, the Hamiltonian commutes with all canonical coordinates Xn, Pn.
We can now consider vacuum descendants |ψ({q})〉, which are labelled by a set q of arbitrary, non-negative
quantum numbers {q} = {ni,mi}. One common way to define the vacuum state in a conformal field
theory is as a highest weight state. In quantum field theory one usually employs the convention that
generators Jn with n ≥ 0 are annihilators and the ones with n < 0 are creators of states. A highest
weight state is then a state that is annihilated by all annihilators of our theory, i.e. in our case

Jn |highest weight〉 = 0 ∀n ≥ 0 . (3.61)

Vacuum descendants are generated by acting with the generators J±n on the vacuum |0〉 just established,
i.e.

|ψ({q})〉 = N({q})
∏
ni>0

J+
−ni

∏
mj>0

J−−mj |0〉 . (3.62)

The normalization constant N({q}) is chosen such that 〈ψ({q})|ψ({q})〉 = 1. Since the Hamiltonian H
commutes with all generators J±n the energy of the vacuum descendants (3.62) is the same as for the
vacuum itself

H |0〉 = Evac |0〉 and H |ψ({q})〉 = Evac |ψ({q})〉 . (3.63)
This implies that all descendants of the vacuum have the same energy as the vacuum itself and are thus
zero-energy excitations. Therefore, they may be referred to as “soft hair” in the sense of Hawking, Perry
and Strominger [8].

Discussion: Soft Hair

The term “soft hair” was first coined by Hawking, Perry and Strominger in their paper “Soft Hair on
Black Holes” [8]. While “soft” is a term from particle physics and just means “zero-energy”, hair refers
to the phrase “Black holes are bald, they have no hair” by John Archibald Wheeler. This describes the
fact that black holes can be completely characterised by only three classical parameters mass, electric
charge and angular momentum. In that sense they are bald – they have no “hair” emerging from other
properties. However, this immediately gives rise to a paradox, the “black hole information paradox”,
emerging from the fact that physical information, for instance realized by a particle carrying a certain
spin, could permanently disappear and therefore, get lost after passing the black hole horizon. Although
Hawking, Perry and Strominger’s paper does not propose a solution to the problem, it pinpoints a problem
in the formulation of the black hole information paradox, namely the assumption that black holes have
no hair. In their paper they suggest the existence of soft hair at the black hole horizon, which could
possibly be excited by particles falling into the black hole. These excited states could then possibly store
information of particles, which transfer this information before passing the black hole horizon. This in
turn would resolve the problem of information loss. Nevertheless, these speculations are a far stretch and
the problem is still far from being solved.
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3.2.3 Near Horizon and Asymptotic Boundary Conditions
After having established the near horizon boundary conditions and discussed their consequences it is
natural to ask how these boundary conditions relate to boundary conditions which are inspired by an
asymptotic perspective. To avoid confusion we want to stress again that the form of the connection
(3.39) holds in the entire spacetime, not just at the horizon. Therefore, it might be confusing to call
the connection (3.39) a boundary condition and talk about a near horizon or an asymptotic perspective,
respectively. The reason for these names is that the boundary conditions in question are most naturally
obtained from requiring a specific form of the connection at the horizon and are thus inspired by a “near
horizon” prespective. The standard Brown-Henneaux boundary conditions, see section 3.1, were originally
obtained by requiring a certain fall-off behaviour at infinity and solving Einstein’s equations under this
requirement. They are not given in the diagonal gauge, but rather in the so-called highest weight gauge19.
For a generic choice of unspecified chemical potential µ± the standard boundary conditions in highest
weight gauge, which we already discussed in section 3.1.2 are given by [43], [30]

Â± = b̂−1
±
(
d + â±

)
b̂± , b̂± = e±ρL0 , (3.64a)

â±ϕ =
(

L±1 −
1
2L±L∓1

)
, â±t = ±

(
µ±L±1 ∓ µ′±L0 +

(
1
2µ
′′
± −

1
2L±µ±

)
L∓1

)
, (3.64b)

where L± and µ± are arbitrary functions of t and ϕ. Note that in comparison to (3.23) we have absorbed
factors of −4π/k in the state-dependent functions L± to be in accordance with [4]. Since the connections
A± and Â± are connected to a± and â±, respectively through a gauge transformation that does not
change the canonical boundary charges, see (3.16), it is sufficient to map a± to â±. The respective gauge
transformation is given by

g± = exp (x±L±1) exp
(
−1

2J±L∓1

)
, (3.65)

where x = x(v, ϕ) is a function subject to the conditions

±∂vx± − ζ±x± = µ± , x′± − J±x± = 1 . (3.66)

Consistency of (3.66), i.e. ∂v∂ϕx± = ∂ϕ∂vx± implies that

µ′± − J±µ± = −ζ± . (3.67)

Note that the “asymptotic” chemical potentials µ± depend on the “near horizon” chemical potentials ζ±
and the “near horizon” state-dependent functions J±, which is one way to see that near horizon boundary
conditions (3.39) are inequivalent to the Brown-Henneaux boundary conditions with chemical potentials
(3.23). Furthermore, the asymptotic state-dependent function L± must fulfill

L± = ±
(

1
2J

2
± + J ′±

)
. (3.68)

The relation (3.67) for the “near horizon” and “asymptotic” chemical potentials ζ± and µ± implies an
analogous relation for the near horizon and asymptotic gauge parameters η± and λ± as was discussed in
subsection 3.1.2

λ′± − J±λ± = −η± . (3.69)
19The name diagonal gauge comes from the fact that the generator L0 is diagonal in the fundamental representation of

sl(2,R), see appendix A.1. Highest weight gauge refers to the fact the component of aϕ with respect to L1 (= highest weight
operator) is fixed. Note that highest and lowest weight in this context are not related to the discussion of vacuum descendants
given before, but refer to the lowering/raising operators well known from a spin-1/2 system in quantum mechanics, since
sl(2,R) ∼ su(2), see appendix A.1.
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From (3.69), (3.68) we can derive the transformation behaviour of the state-dependent functions

δλ±L± = ±
(
J±δη±J± + δη±J ′±

) (3.45c)= ±
(
J±η′± + η′′±

)
= ±

(
−J±

(
λ′′± − J ′±λ± − J±λ′±

)
− λ′′′± + J ′′±λ± + 2J ′±λ′± + J±λ′′±

)
= ±

(
2L±λ′± + L′±λ± − λ′′′±

)
(3.70)

Expanding (3.68) in Fourier modes yields

kL±n = ±
∑
p∈Z

J±n−pJ
±
p ± iknJ±n , (3.71)

which is the standard twisted Sugawara construction, see comment below. The generators L±n now fulfill
the Virasoro algebra with the Brown-Henneaux central extension, i.e.

[L±n , L±m] = (n−m)L±n+m + 1
2 k n

3 δn+m,0 . (3.72)

The Virasoro algebra may be brought into the standard form via the redefinition of L±0 discussed in
subsection 3.1.1. The gauge transformation defined through (3.65) and (3.66) is a proper gauge transfor-
mation, since it does not change the global charges, which we compute now explicitly

δQ± = ± k

4π

∫
dϕη±δJ± = ∓ k

4π

∫
dϕ
(
λ′± − J±λ±

)
δJ±

= ∓ k

4π (λ±δJ±)
∣∣∣2π
0︸ ︷︷ ︸

=0

± k

4π

∫
dϕ
(
λ±δJ ′± + J±λ± δJ±

)

= ± k

4π

∫
dϕλ±

(
J±δJ± + δJ ′±

) (3.68)
≡ ± k

4π

∫
dϕλ± δL± , (3.73)

which precisely coincides with (3.17). Thus, the near horizon boundary conditions (3.39) can be brought
into the standard highest weight gauge through a gauge transformation that does not change the boundary
charges. For constant chemical potentials and constant state-dependent functions L+, L−, which by virtue
of (3.68) and (3.40) means γ = const, ω = const, we obtain the BTZ black hole.
Note that although the spin-2 currents fulfill the Virasoro algebra, the corresponding global charges span
the û (1) algebra (3.53). This is the case, because the chemical potentials µ± are not held constant
as in the Brown-Henneaux case, but are allowed to vary under boundary conditions preserving gauge
transformations space, see (3.67).

Comment: Sugawara Construction

The Sugawara construction is a procedure used in conformal field theory to reconstruct the Virasoro
algebra spanned by the Fourier modes Ln of the energy-momentum tensor T from the algebra of the
currents Ja. The standard Sugawara ansatz is given by

T = γ
∑
a

JaJa , (3.74)

where γ is a constant depending on the dual coxeter number and the central extension, which are both
defined by the current algebra. The twisted Sugawara construction is then obtained by adding to (3.74)
a “twist term” of the form

T = γ
∑
a

JaJa + Ja′ . (3.75)

For more details consult [44] or other textbooks on conformal field theory.
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3.2.4 Entropy of Black Hole Solutions
Due to the fact that Chern-Simons theory is a theory of flat connections (F = 0), gauge invariant
information can not be found in any local quantity (locally everything appears identical). However,
holonomies, which measure the extent to which a group element changes when being transported around
a closed loop, give gauge invariant information. The standard trick [28, 30, 45] to obtain a notion of
temperature is to use the holonomy condition of the Chern-Simons gauge field around the contractible
Euclidean time cycle. The Wick rotation to Euclidean time τ = −it leads to a deformation of the
manifold into a solid torus, where τ corresponds to the contractible cycle and ϕ to the non-contractible
one. Requiring the absence of conical singularities at the horizon corresponds to the condition that the
holonomy of the Chern-Simons connection around this closed loop be trivial [30], i.e.

HC = Pe
∫
C
a± → exp

(∫
ρ=0

A±τ dτ

)
= 1 , (3.76)

where 1 stands for the sl(2,R) identity and the thermal cycle runs from τ = 0 to τ = β. This in turn
gives us the following condition in the diagonal gauge

exp
(∫

ρ=0
a±τ dτ

)
= exp (±ζ±βL0) = 1

⇒ ζ±
(3.40)= −a = 2πn

β

n=−1= −2π
β
. (3.77)

Here we set n = −1, since this corresponds to the solution that is obtained from the same requirement,
i.e. absence of conical singularities at the horizon, in the metric formalism. Note that if we had not set
Ω = 0, then we would have obtained the condition −a± Ω/l = −2π/β by virtue of (3.40), which is only
fulfilled if Ω = 0. The corresponding condition for µ+ in the highest weight gauge leads to

µ+µ
′′
+ −

1
2µ
′2
+ − µ2

+L+ = −2π2

β2 , (3.78)

which for constant chemical potential µ+ = const reduces after redefinition of the state-dependent func-
tions L+ to (3.25). Thus, because of the appearance of L+ in (3.78) imposing regularity in the highest
weight gauge leads to restrictions on the states. Note that an analogous condition can be written down
for the (L−, µ−)-sector. Here, we explicitly see one advantage of our boundary conditions, namely the
regularity of all solutions contained therein. Now, we can compute the entropy using the first law of
thermodynamics and find

δS = −βδH = 2π
a
a(J+

0 + J−0 ) = 2π(J+
0 + J−0 ) . (3.79)

Thus, the entropy is linear in the zero-mode charges J+
0 , J−0 .
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4 Boundary Conditions for Spin-3 Gravity in Flat
Space

In this chapter we discuss two sets of boundary conditions for spin-3 gravity in flat space. More precisely,
we discuss spin-3 gravity exclusively in the principal embedding isl(2,R) ↪→ isl(3,R), see section 2.5,
which is the simplest higher-spin extension to flat space and was first discussed in [19,20]. We show that
the near horizon boundary conditions in diagonal gauge can brought into the standard highest weight
form through a proper gauge transformation, see subsection 4.2.3. Furthermore, we compute the entropy
for the near horizon boundary conditions and find that for solutions which are continuously connected
to flat space cosmologies the entropy is linear in the spin-2 zero-mode charges and independent from the
spin-3 charges, i.e.

S = 2π
(
J+

0 + J−0
)
. (4.1)

Precisely the same result was found in AdS3 Einstein gravity [4] (see also subsection 3.2.4), in AdS3
higher-spin gravity [6], in flat space Einstein gravity [5] and higher derivative gravity [46]. This suggest
a universal form of the entropy in terms of the zero-mode charges.
Before discussing the extension of the near horizon boundary conditions (3.39) to spin-3 gravity in flat
space, we give a short review of the analogue of the Brown-Henneaux boundary conditions for spin-2
gravity in flat space and then proceed to discuss the highest weight boundary conditions for spin-3
gravity in flat space.

4.1 Highest Weight Boundary Conditions

4.1.1 Asymptotically Flat Boundary Conditions
In three dimensions asymptotically flat space boundary conditions and their asymptotic symmetries have
been studied and the asymptotic symmetry algebra was found to be the BMS algebra [47, 48] in three
dimensions [49], which has a non-trivial central extension [50]. As in the case of asymptotically AdS
boundary conditions the notion of asymptotically flat space must be defined precisely. It was shown
in [36] that asymptotically flat boundary conditions may be obtained from asymptotically AdS boundary
conditions by taking a flat space limit. Asymptotically flat space metrics in the so-called BMS gauge are
then given by [36]

ds2 =Mdu2 − 2 dudr + 2N dudϕ+ r2 dϕ2 , (4.2)

where 0 ≤ r <∞ is the radial coordinate, −∞ < u <∞ is the retarded time coordinate and ϕ ∼ ϕ+ 2π
is the angular coordinate parametrizing the boundary of our cylinder. The functions M, N are state-
dependent functions and thus describe the particular solution taken by our system. The Einstein equations
(2.1) yield the on-shell conditions

Ṁ = 0 , 2Ṅ =M′ , (4.3)
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Figure 4.1: Spectrum of the asymptotically
flat space boundary conditions taken from
[36]. Flat space cosmologies exist for M ≥ 0.
Minkowski space is separated by a gap from
the continuous flat space cosmologies spec-
trum. For M < 0 conical defects and conical
excesses appear.

where ẋ = ∂ux and x′ = ∂ϕx. These equations are only satisfied iffM =M(ϕ), N (u, ϕ) = L(ϕ)+u
2M

′(ϕ)
for some function L = L(ϕ). The metric (4.2) contains the following solutions:

• ForM = −1, N = 0 we obtain global flat space in Eddington-Finkelstein coordinates, which may
be brought into the form ds2 = −dt2 + dr2 + r2 dϕ2 via the coordinate transformation u = t− r.

• For generic M ≥ 0 and N 6= 0 we obtain so-called “flat space cosmologies” [51], see Figure 4.1.
Flat space cosmologies represent the flat space analogon to the BTZ black hole in AdS3. Similar
to a black hole, they carry a mass M and an angular momentum N and exhibit a cosmological
horizon.

In [36] it was shown that the asymptotic symmetry algebra of these solutions is spanned by the centrally
extended bms3 algebra

[Ln, Lm] = (n−m)Ln+m , (4.4a)

[Ln,Mm] = (n−m)Mn+m + cM
12 n(n2 − 1)δn+m,0 , (4.4b)

[Mn,Mm] = 0 , (4.4c)

where cM = 3/GN . As in the AdS case, these boundary condtions can be rewritten in the Chern-Simons
formulation in terms of a gauge field A that is an element of the isl(2,R) algebra

[Ln, Lm] = (n−m)Ln+m , (4.5a)
[Ln, Mm] = (n−m)Mn+m (4.5b)
[Mn, Mm] = 0 (4.5c)

with n,m = −1, 0, 1. The boundary conditions are then given by

A = b−1 (d + a) b (4.6a)

with the auxiliary connection a

a =
(

M1 −
M
4 M−1

)
du+

(
L1 −

M
4 L−1 −

N
2 M−1

)
dϕ (4.6b)

and the group element b
b = e

r
2 M−1 . (4.6c)
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The field equations (2.24) yield (4.3) as expected. The connection (4.6) exactly reproduces (4.2) via the
usual contraction over the local dreibein, i.e. (2.9). Note that similarly to the corresponding boundary
conditions in AdS, capturing the entire radial dependence in b and choosing b such that δb = 0 is
advantageous, as this yields radially independent charges and enables the computation of the charges in
the gauge of the auxiliary connection a.

4.1.2 Spin-3 Highest Weight Boundary Conditions
In this subsection we discuss the extension of the boundary conditions (4.2) to spin-3 gravity in flat space.
The easiest way to obtain a isl(3,R) valued connection A in the principal embedding. is by appropriately
modifying the auxiliary connection a such that it becomes an element of the isl(3,R) algebra, while leaving
the form of the group element b, see (4.6c), invariant. The isl(3,R) algebra is spanned by Li, Mi, Un, Vn
with i = −1, 0, 1 and n = −2,−1, 0, 1, 2

[Ln, Lm] = (n−m)Ln+m , (4.7a)
[Ln, Mm] = (n−m)Mn+m , (4.7b)
[Ln, Um] = (2n−m)Un+m , (4.7c)
[Ln, Vm] = (2n−m)Vn+m , (4.7d)
[Un, Um] = σ(n−m)(2n2 + 2m2 − nm− 8)Ln+m , (4.7e)
[Un, Vm] = σ(n−m)(2n2 + 2m2 − nm− 8)Mn+m . (4.7f)

The generators Li and Mi span the isl(2,R) subalgebra. The constant σ fixes the overall normalization of
the spin-3 generators Un and Vn and can be chosen arbitrarily. In this thesis we follow the convention of [52]
and choose σ = − 1

3 . Explicit expressions for the isl(3,R) valued connections that obey asymptotically
flat boundary conditions were established independently in [19] and [20] and read

A = b−1 (d + a) b (4.8a)

with the auxiliary connection a given by

a = aϕ dϕ+ au du , (4.8b)

where

aϕ = L1 −
M
4 L−1 −

N
2 M−1 + V2 U−2 + ZV−2 , (4.8c)

au = M1 −
M
4 L−1 + V2 V−2 . (4.8d)

The equations of motion (2.24) yield

Ṁ = V̇ = 0 , Ṅ = 1
2M

′ , Ż = 1
2 V
′ . (4.9)

These constraints are solved in terms of four arbitrary functions of the angular coordinate ϕ [19]

M =M(ϕ) , V = V(ϕ) , N = L(ϕ) + u
2 M

′(ϕ) , Z = U(ϕ) + u
2 V
′(ϕ) . (4.10)

By setting the spin-3 generators Un and Vn to zero, (4.8) and (4.9) precisely reduce to (4.6) and (4.3).
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4.1.3 Spin-3 Highest Weight Boundary Conditions with Chemical Potentials
In this section we generalize the discussion from section 4.1.2 to spin-3 gravity with chemical potentials
for the spin-2 and the spin-3 fields µM, µL, µV, µU, which were first introduced in [52, 53]. Following
the procedure of [30], chemical potentials may be introduced by leaving the form of aϕ (and therefore
the charges) invariant and making a general ansatz for au with arbitrary coefficients. The form of the
coefficients can then be determined by solving the field equations (2.24). Associating the coefficients
of the highest weight components with the corresponding chemical potentials, i.e. αM1 → µMM1 one
obtains [21] [52]

au = a(0)
u + a(µM)

u + a(µL)
u + a(µV)

u + a(µU)
u , aϕ = a(0)

ϕ (4.11a)

with a(0)
u , a(0)

ϕ being the connection (4.8) in the absence of chemical potentials and

a(µM)
u = µMM+ − µ′MM0 + 1

2
(
µ′′M − 1

2MµM

)
M− + 1

2 V µM V−2 , (4.11b)
a(µL)
u = a(µM)

u

∣∣
M→L −

1
2 N µLM− + Z µL V−2 , (4.11c)

a(µV)
u = µV V2 − µ′V V1 + 1

2
(
µ′′V −MµV

)
V0 + 1

6
(
− µ′′′V +M′µV + 5

2Mµ′V
)
V−1

+ 1
24
(
µ′′′′V − 4Mµ′′V − 7

2M
′µ′V + 3

2M
2µV −M′′µV

)
V−2 − 4V µVM− , (4.11d)

a(µU)
u = a(µV)

u

∣∣
M→L − 8Z µUM− −N µU V0 +

( 5
6Nµ

′
U + 1

3N
′µU

)
V−1

+
(
− 1

3Nµ
′′
U − 7

24N
′µ′U − 1

12N
′′µU + 1

4MNµU

)
V−2 , (4.11e)

where the subscript M → L denotes that in the corresponding quantity all odd generators and chemical
potentials are replaced by corresponding even ones, Mn → Ln, Vn → Un, µM → µL and µV → µU, i.e.

a(µM)
u

∣∣
M→L = µL L+ − µ′L L0 + 1

2
(
µ′′L − 1

2MµL

)
L− + 1

2 V µL U−2 , (4.11f)
a(µV)
u

∣∣
M→L = µU U2 − µ′U U1 + 1

2
(
µ′′U −MµU

)
U0 + 1

6
(
− µ′′′U +M′µU + 5

2Mµ′U
)
U−1

+ 1
24
(
µ′′′′U − 4Mµ′′U − 7

2M
′µ′U + 3

2M
2µU −M′′µU

)
U−2 − 4V µU L− . (4.11g)

As before, dots (primes) denote derivatives with respect to retarded time u (angular coordinate ϕ). The
equations of motion (2.24) impose the conditions

Ṁ = −2µ′′′L + 2Mµ′L +M′µL + 24Vµ′U + 16V ′µU , (4.12a)
Ṅ = 1

2 Ṁ
∣∣
L→M + 2Nµ′L +N ′µL + 24Zµ′U + 16Z ′µU , (4.12b)

V̇ = 1
12 µ

′′′′′
U − 5

12Mµ′′′U − 5
8M

′µ′′U − 3
8M

′′µ′U + 1
3M

2µ′U

− 1
12M

′′′µU + 1
3MM

′µU + 3Vµ′L + V ′µL , (4.12c)
Ż = 1

2 V̇
∣∣
L→M −

5
12 Nµ

′′′
U − 5

8 N
′µ′′U − 3

8 N
′′µ′U + 2

3MNµ
′
U

− 1
12 N

′′′µU + 1
3 (MN )′µU + 3Zµ′L + Z ′µL , (4.12d)

which after applying the inverse substitution rules to above becomes
1
2 Ṁ

∣∣
L→M = −µ′′′M +Mµ′M + 1

2M
′(1 + µM) + 12Vµ′V + 8V ′µV , (4.12e)

1
2 V̇
∣∣
L→M = 1

24 µ
′′′′′
V − 5

24Mµ′′′V − 5
16M

′µ′′V − 3
16M

′′µ′V + 1
6M

2µ′V

− 1
24M

′′′µV + 1
6MM

′µV + 3
2 Vµ

′
M + 1

2 V
′(1 + µM) . (4.12f)

The chemical potentials µM, µL, µV and µU are arbitrary functions of the angular coordinate ϕ and the
retarded time u. The most general gauge transformations δε̃A = dε̃+ [A, ε̃] that preserve the boundary
conditions (4.11) are given by parameters

ε̃ = b−1εb (4.13)
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with

ε = ε L+ − ε′ L0 + 1
2
(
ε′′ − 1

2Mε− 8Vχ
)
L−

+ τ M+ − τ ′M0 + 1
2
(
τ ′′ − 1

2Mτ −N ε− 8Vκ− 16Zχ
)
M−

+ χU2 − χ′ U1 + 1
2
(
χ′′ −Mχ

)
U0 − 1

6
(
χ′′′ − 5

2Mχ′ −M′χ
)
U−1

+ 1
24
(
χ′′′′ − 4Mχ′′ − 7

2M
′χ′ −M′′χ+ 3

2M
2χ+ 12Vε

)
U−2

+ κV2 − κ′ V1 + 1
2
(
κ′′ −Mκ− 2Nχ

)
V0

− 1
6
(
κ′′′ − 5

2Mκ′ −M′κ− 5Nχ′ − 2N ′χ
)
V−1 + 1

24
(
κ′′′′ − 4Mκ′′ − 7

2M
′κ′

−M′′κ+ 3
2M

2κ− 8Nχ′′ − 7N ′χ′ − 2N ′′χ+ 6MNχ+ 12Vτ + 24Zε
)
V−2 , (4.14)

where the gauge parameters ε, σ, χ and ρ depend on ϕ only. Additionaly, we introduce new parameters
τ = σ + uε′ and κ = ρ+ uχ′. The canonical boundary charges can then be calculated using (2.67)

δQ[ε] = k

2π

∫
dϕ 〈ε̃δAϕ〉

δb=0= k

2π

∫
dϕ 〈εδaϕ〉 . (4.15)

Insertion of the expressions (4.8c) and (4.14) yields

δQ[ε] = k

2π

∫
dϕ
(
ε δL+ 1

2σ δM+ 8χ δU + 4ρ δV
)
. (4.16)

Since the parameters ε, σ, χ and ρ are independent of the state-dependent functions, equation (4.16) can
be integrated trivially in field space and we obtain

Q[ε, τ, χ, κ] = k

2π

∫
dϕ
(
εL+ 1

2σM+ 8χU + 4ρV
)
. (4.17)

Thus, the canonical charges are integrable, finite and conserved in (retarded) time, ∂uQ = 0. Expanding
the state-dependent functions L, M, U and V into Fourier modes leads after a suitable shift of the
zero-modes to the following relations

[Ln, Lm] = (n−m)Ln+m , (4.18a)
[Ln, Mm] = (n−m)Mn+m + k (n3 − n)δn+m, 0 , (4.18b)
[Ln, Um] = (2n−m)Un+m , (4.18c)
[Ln, Vm] = (2n−m)Vn+m , (4.18d)

[Mn, Um] = (2n−m)Vn+m , (4.18e)
[Un, Um] = − 1

3 (n−m)(2n2 + 2m2 − nm− 8)Ln+m

− 16
3k (n−m)Λn+m + 88

45k2 (n−m)Θn+m , (4.18f)

[Un, Vm] = − 1
3 (n−m)(2n2 + 2m2 − nm− 8)Mn+m

− 8
3k (n−m)Θn+m −

k

3 n(n2 − 1)(n2 − 4)δn+m, 0 , (4.18g)

with
Θm =

∑
p

MpMm−p Λm =
∑
p

:LpMm−p : − 3
10 (m+ 2)(m+ 3)Mm . (4.18h)

Normal ordering is defined by :LnMm : = LnMm if n < −1 and :LnMm : = Mm Ln otherwise. The
Fourier modes of the state-dependent functions L,M, U and V are denoted by Ln, Mn, Un and Vn. In
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these relations we have already quantized the system by replacing the Dirac brackets by commutators via
i{, } → [, ]. This is an İnönü–Wigner contraction20 of two copies of the W3 algebra, which is also referred
to as an FW3 algebra.

Entropy for Spin-3 Flat Space Cosmologies

It was shown in [52, 53] that the spin-3 entropy of the branch that is continuously connected to the flat
space cosmologies of Einstein gravity, i.e. [53]

SGR = 2π
√
πk

P̂
|Ĵ | , (4.19)

is given by

S = 2π
√
πk

P̂
sec (Φ)

{
|Ĵ | cos

(
2Φ
3

)
+
√

3k
πP̂

V̂

4 sin Φ
3

}
, (4.20)

with

Φ = ∓ arcsin
(

3
8

√
3k
πP̂3
Ŵ

)
, (4.21)

where consistency implies that the sign of Ĵ coincides with the sign of (4.21). The map between the
zero-modes of the state-dependent functions in [53] P̂, Ĵ , Ŵ and V̂ and the state-dependent functions
we were using until nowM, N , V and Z [52] is provided via

P̂ = k

4πM , Ĵ = k

2πL , Ŵ = 2k
π
V , V̂ = 4k

π
U . (4.22)

For constant state-dependent functions these equations reduce to

P̂ = k

4πM , Ĵ = k

2πL
(4.10)= k

2πN , Ŵ = 2k
π
V , V̂ = 4k

π
U

(4.10)= 4k
π
Z . (4.23)

where M , L N , V , U , Z and P̂ , Ĵ , Ŵ , V̂ denote the zero-modes of the state-dependent functions M,
L, N , V, U , Z and P̂, Ĵ , Ŵ, V̂, respectively. Note that this result can also be brought into the form
presented in [52]

STh = πk
N
(

2R− 6 + 3P
√
R
)

4
√
M(R− 3)

√
1− 3

4R

, (4.24)

where we have introduced the dimensionless ratios
V

2M 3
2

= R− 1
R

3
2
,

Z

N
√
M

= P. (4.25)

4.2 Near Horizon Boundary Conditions for Spin-3 Gravity
In this section we discuss the extension of the near horizon boundary conditions (3.39) to spin-3 gravity
in flat space21. The starting point is once more the Chern-Simons action given by (2.18), where the

20In 1953 [54] Erdal İnönü and Eugene Wigner discussed the possibility of obtaining certain groups from other groups
through a limiting procedure – the İnönü–Wigner contraction, for more details refer to [21].

21Note that, since this chapter is based on a collaboration with Martin Ammon, Daniel Grumiller, Stefan Prohazka and
Max Riegler, several parts of this chapter coincide with the forthcoming publication [55].
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connection A is now an element of isl(3,R), see appendix A.2. Furthermore, as we already discussed in
section 2.5, since in higher-spin gauge theories the metric is not a higher-spin gauge invariant object, we
will directly propose a form for the higher-spin analog of the near horizon boundary conditions (3.39) for
the gauge field A. Considering other, prior work on near horizon boundary conditions in spin-3 AdS [6]
and flat space [5], the choice of the corresponding boundary conditions for spin-3 gravity in flat space is
natural. To motivate this choice, we review the already existing boundary conditions and also present
their asymptotic symmetry algebras in Table 4.1. It is easiest to promote the spin-2 to spin-3 gravity
boundary conditions by switching on the generators which span the higher-spin part of the gauge algebra
exclusively in the auxiliary connection a, while leaving the group element b invariant. The near horizon
boundary conditions are then extended most naturally by only switching on the generators, U0 and V0
of the respective Lie algebra. This way we obtain correspondent characteristic features of the ones for
Einstein gravity in AdS (such as regularity of the fields regardless of the charges) also in spin-3 gravity
theories. The flat space boundary conditions can be obtained in two different ways: either by directly
working in flat space or by taking the Λ = − 1

l → 0 limit of the spin-3 AdS results [6]. Since the limiting
procedure is sometimes subtle, we choose to work directly in flat space. However, taking the limit from
AdS to flat space serves as a non-trivial check for our results22. The spin-2 boundary conditions for flat
space, see Table 4.1, were already computed in [5] and can be obtained by taking Λ = − 1

l → 0 limit
of (3.39). Now, following the discussion above these boundary conditions can be extended naturally to
spin-3 gravity in flat space by switching on the generators U0 and V0, while leaving the group element b
invariant. Following the notation of [55] the proposed form of the connection is given by

A = b−1(a+ d ) b, (4.26a)

where the radial dependence is encoded in the group element b as

b = exp
(

1
µP

M1

)
exp

(
+ρ

2 M−1

)
(4.26b)

and the auxiliary connection a reads
a = aϕ dϕ+ av dv (4.26c)

with

aϕ = J L0 + P M0 + J (3) U0 + P(3) V0, (4.26d)

av = µP L0 + µJ M0 + µ
(3)
P U0 + µ

(3)
J V0. (4.26e)

All the functions appearing in (4.26) are in principle free functions of the advanced time v and the angular
coordinate ϕ. However, the functions µa will be identified as chemical potentials and thus will be fixed
such that δµa = 0 under an asymptotic symmetry transformation. The functions J , P, J (3) and P(3) are
state-dependent functions and are thus allowed to vary in the solution space described by our boundary
conditions. The equations of motion (2.24) give constraints on the functions J ,P, J (3) and P(3):

∂vJ = ∂ϕµP , ∂vP = ∂ϕµJ , ∂vJ (3) = ∂ϕµ
(3)
P , ∂vP(3) = ∂ϕµ

(3)
J . (4.27)

4.2.1 Canonical Boundary Charges and Asymptotic Symmetry Algebra
The next step in the asymptotic symmetry analysis is to determine the gauge transformations
δε̃A = dε̃+ [A, ε̃] that preserve the boundary conditions (4.26). As in the case of the Brown-Henneaux

22In fact, this check was performed by our collaborators, Martin Ammon and Max Riegler, who instead of working directly
in flat space obtained their results by taking the limit of the spin-3 AdS results [6]. Our results precisely agree with theirs.
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AdS [4] spin-3 AdS [6] flat space [5] spin-3 flat space [55]
gauge
algebra sl(2,R)⊕sl(2,R) sl(3,R)⊕sl(3,R) isl(2,R) isl(3,R)

Li, i = −1, 0, 1 Li, i = −1, 0, 1
Wn, n = −2,−1, 0, 1, 2 Li, Mi, i = −1, 0, 1 Li, Mi, i = −1, 0, 1

Ui, Vi, i = −2,−1, 0, 1, 2

b.c.
for A

A± = b−1
± (d + a±)b±

b± = exp
[
± 1
lζ± L1

] [
±ρ2 L−1

] A± = b−1
± (d + a±)b±

b± = exp
[
± 1
lζ± L1

] [
±ρ2 L−1

] A = b−1(d + a)b
b = exp

[
1
µP

M1 + ρ
2 M−1

] A = b−1(d + a)b
b = exp

[
1
µP

M1 + ρ
2 M−1

]
b.c.
for a

a±ϕ = ±J±L0
a±t = ζ±L0

a±ϕ = ±J±L0 + J±(3)W0

a±v = ζ±L0 + ζ±(3)W0

aϕ = J L(0) + PM(0)
av = µPL(0) + µJ M(0)

aϕ = J L0 + P M0 + J (3) U0 + P(3) V0

av = µP L0 + µJ M0 + µ
(3)
P U0 + µ

(3)
J V0

a.s.a. [J±n , J±m] = 1
2knδn+m,0

[J±n , J±m] = 1
2knδn+m,0

[J (3)±
n , J

(3)±
m ] = 2

3knδn+m,0
[Jn, Pm] = knδn+m,0

[Jn, Pm] = k n δn+m,0

[J (3)
n , P

(3)
m ] = 4k

3 n δn+m,0

entropy S = 2π
(
J+

0 + J−0
)

S = 2π
(
J+

0 + J−0
)

S = 2πP0 = 2π
(
J+

0 + J−0
)

S = 2πP0 = 2π
(
J+

0 + J−0
)

Table 4.1: Near horizon boundary conditions (b.c.) and their corresponding asymptotic symmetry algebra (a.s.a) for spin-2 / spin-3 gravity in
flat and AdS space: We see that the entropy for all boundary conditions takes the same form in terms of the zero-modes of the state-dependent
functions. Please note that in the spin-3 AdS/flat space case this statement only holds for the entropy branch continuously connected to BTZ
black hole/cosmological spacetimes of Einstein gravity. Note that all connections are presented in ingoing Eddington-Finkelstein coordinates, the
connection for spin-2 gravity in Gaussian coordinates is given in (3.39). For more information on the given algebras (invariant, non-degenerate
bilinear form, representation) see appendix A.2.
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boundary conditions, see (3.11), and also in the case of the near horizon boundary conditions in AdS
space, see (3.42), it is again useful to choose the gauge parameter ε̃ as

ε̃ = b−1ε b = b−1(εPL0 + εJ M0 + ε
(3)
P U0 + ε

(3)
J V0) b. (4.28)

This takes the gauge parameter into the gauge of the auxiliary connection a; thus we only have to consider
gauge transformations δεa = dε+ [a, ε]. As a consequence, the infinitesimal transformation behaviour of
the state-dependent fields takes a particularly simple form

δεJ = ∂ϕεP , δεP = ∂ϕεJ , δεJ (3) = ∂ϕε
(3)
P , δεP(3) = ∂ϕε

(3)
J . (4.29)

The conserved charges Q [ε] associated to boundary conditions preserving transformations may then be
computed using (2.67) and (A.9). Evaluating this expression for the case at hand, we obtain the following
expression for the variation of the canonical boundary charge

δQ[ε] = k

2π

∫
dϕ 〈ε δAϕ〉 = k

2π

∫
dϕ
(
εJ δJ + εPδP + 4

3ε
(3)
J δJ (3) + 4

3ε
(3)
P δP(3)

)
. (4.30)

The global charges may now be obtained by functionally integrating (4.30)

Q[ε] = k

2π

∫
dϕ 〈εAϕ〉 = k

2π

∫
dϕ
(
εJJ + εPP + 4

3ε
(3)
J J

(3) + 4
3ε

(3)
P P

(3)
)
. (4.31)

After having determined the canonical boundary charges, the Dirac bracket algebra of the charges can
be calculated from the transformation behaviour under infinitesimal gauge transformations
δYQ [X] = {Q [X] , Q [Y ]}, see section 2.3.3 for more information. After expanding the state-dependent
functions in Fourier modes

J (ϕ) = 1
k

∑
n∈Z

Jne
−inϕ, P(ϕ) = 1

k

∑
n∈Z

Pne
−inϕ, (4.32a)

J (3)(ϕ) = 3
4k
∑
n∈Z

J (3)
n e−inϕ, P(3)(ϕ) = 3

4k
∑
n∈Z

P (3)
n e−inϕ, (4.32b)

and replacing the Dirac brackets by commutators using i{·, ·} → [·, ·] we obtain the following asymptotic
symmetry algebra for the boundary conditions (4.26)

[Jn, Pm] = k n δn+m,0, [J (3)
n , P (3)

m ] = 4k
3 n δn+m,0. (4.33)

At this point it should also be noted that the algebra (4.33) can be brought to the same form as in [6]
by making the redefinitions

J±n = 1
2(Pn ± Jn), J (3)±

n = 1
2(P (3)

n ± J (3)
n ). (4.34)

The generators J±n and J (3)±
n then satisfy

[J±n , J±m] = k

2nδn+m,0, [J (3)±
n , J (3)±

m ] = 2k
3 nδn+m,0 . (4.35)

43



4.2.2 Hamiltonian and Soft Hair
In this subsection we show that the states associated to the near horizon symmetries (4.33) all have the
same energy and thus correspond to higher-spin soft hair. In order to show this, we first determine the
Hamiltonian in terms of near horizon variables and then proceed in building vacuum descendants using
(4.33). Finally, we show that all states have the same energy as the vacuum.
As already discussed in subsection 2.3.3, the Hamiltonian is associated to the charge that generates time
translations. In the metric formalism this would correspond to the Killing vector ∂v. Since the gauge
transformations (4.28) are related to the asymptotic Killing vectors ξµ via (2.30), the variation of the
charge associated to translations in the retarded time coordinate v can be determined via

δH := δQ[ε
∣∣
∂v

] = k

2π

∫
dϕ 〈ξµaµ δaϕ〉 = k

2π

∫
dϕ 〈av δaϕ〉

= k

2π

∫
dϕ
(
µJ δJ + µPδP + 4

3µ
(3)
J δJ (3) + 4

3µ
(3)
P δP(3)

)
. (4.36)

This expression can be trivially functionally integrated and yields the Hamiltonian

H = k

2π

∫
dϕ
(
µJJ + µPP + 4

3µ
(3)
J J

(3) + 4
3µ

(3)
P P

(3)
)
. (4.37)

For constant chemical potentials µa and µ(3)
a the Hamiltonian thus reduces to

H =
(
µJ J0 + µPP0 + 4

3µ
(3)
J J

(3)
0 + 4

3µ
(3)
P P

(3)
0

)
. (4.38)

After having determined the Hamiltonian, the next step in our analysis is to build vacuum descendants
using the algebra (4.33). There are two ways of building vacuum descendants relevant to our analysis.
One is via highest weight representations whereas the other one uses a construction similar to induced
representations.
We first start with descendants built from highest weight representations of (4.33), which works anal-
ogously to the discussion in subsection 3.2.2. We again assume that the vacuum state |0〉 is a highest
weight state, i.e. a state that satisfies

Jn|0〉 = Pn|0〉 = J (3)
n |0〉 = P (3)

n |0〉 = 0, ∀n ≥ 0 . (4.39)

New states can then be constructed from such a vacuum state by repeated application of operators with
n < 0, i.e.

|ψ({p})〉 ∝
∏
ni>0

J−ni
∏

n
(3)
i
>0

J−n(3)
i

∏
mi>0

P−mi
∏

m
(3)
i
>0

P−m(3)
i

|0〉, (4.40)

where {p} ≡ {ni, n(3)
i ,mi,m

(3)
i }. Since the Hamiltonian (4.38) is a linear combination of J0, P0, J (3)

0 and
P

(3)
0 , it is evident that these operators commute with any element appearing in the asymptotic symmetry

algebra (4.33). In particular, this also means that H commutes with all Jn and J (3)
n . Thus, when acting

with H on any vacuum descendant ψ({p}), one obtains the same value for the energy as for the vacuum
|0〉.
After having shown that highest weight modules constructed from (4.33) all correspond to soft excitations,
we consider modules built from representations that are similar to the induced representations found in
flat space holography, see e.g. [56, 57].
In the induced representation vacuum descendants can be built from a vacuum state |0〉 via

|ψ({q})〉 ∼
∏
ni

(Jni)
∏
n

(3)
i

(
J
n

(3)
i

)
|0〉, (4.41)
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where {q} ≡ {ni, n(3)
i }. The vacuum state has to satisfy

Pn|0〉 = P (3)
n |0〉 = 0, ∀n ∈ Z . (4.42)

These conditions are similar to the ones presented in [57], where Jn and Pn span a BMS/Poincarè
algebra and generate (super-)rotations and (super-)translations, respectively. In [57] the vacuum state
corresponds per definition to a state with momentum p = 0 and “boosted” states are obtained by acting
with Jn on |0〉, which motivates (4.41) and (4.42). Since in our case Jn and Pn span û(1) current algebras,
the physical interpretation of this setup requires further investigation.
We can now act once more with the Hamiltonian (4.38) on all states in the module (4.41). Using the same
line of argument as for the highest weight representations, one finds that all states built from induced
representations also have the same energy eigenvalue and can thus be interpreted as soft excitations.

4.2.3 Near Horizon and Asymptotic Boundary Conditions
In this subsection we discuss the relationship between the boundary conditions we established in the last
section, see (4.26), and the ordinary highest weight boundary conditions for spin-3 gravity in flat space
with chemical potentials, see (4.8) and (4.11), introduced in [52], discussed in subsection 4.1.3. As in the
spin-2 AdS, see subsection 3.2.3, the spin-2 flat [5] and the spin-3 AdS space [6] case the near horizon
boundary conditions can be brought from diagonal to highest weight gauge through a proper gauge
transformation. It is algebraically interesting that by performing such a gauge transformation, spin-2
and spin-3 charges of higher-spin cosmological solutions in flat space emerge as composite operators
constructed from the û(1) charges (4.33).
The next step is to find an appropriate gauge transformation that maps the connection a in (4.26) to
the connection ã in (4.11) via ã = g−1(a + d)g. As in the AdS case discussed in subsection 3.2.3, it
is sufficient to map the auxiliary connections to one another. This is the case, since the additional
gauge transformation b that takes the auxiliary connection a to the connection A is a proper gauge
transformation and thus does not change the canonical boundary charges. Since the gauge algebra in
the case of isl(3,R) is 16-dimensional, this involves a fair amount of algebraic manipulation. However,
this algebraic manipulation may be done in a systematic manner – as is presented in appendix D.4. The
group element that provides the appropriate map is then given as g = g(1)g(2) with

g(1) = exp [l L1 + m M1 + u1 U1 + v1 V1 + u2 U2 + v2 V2] , (4.43a)

g(2) = exp
[
−J2 L−1 −

J (3)

3 U−1 + 1
6

(
JJ (3) + J

(3)′

2

)
U2

−J2 M−1 −
P(3)

3 V−1 + 1
6

(
PJ (3) + JP(3) + P

(3)′

2

)
V−2

]
. (4.43b)

The functions l, m, ua and va depend on v and ϕ only and have to satisfy

l′ = 1 + lJ + 2u1J (3), (4.44a)
m′ = lP + mP + 2u1P(3) + 2v1J (3), (4.44b)
u′1 = u1J + 2lJ (3), (4.44c)
v′1 = u1P + v1J + 2lP(3) + 2mJ (3), (4.44d)

u′2 = −u1

2 + 2u2J , (4.44e)

v′2 = −v1

2 + 2u2P + 2v2J , (4.44f)
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and

µL = 4
3µUJ

(3) − µP l− 2µ(3)
P u1 + l̇, (4.45a)

µM = 4
3µUP

(3) + 4
3µV J

(3) − µPm− µJ l− 2µ(3)
P v1 − 2µ(3)

J u1 + ṁ, (4.45b)

µU = −2µPu2 + µ
(3)
P l2 + µ

(3)
P u2

1 + 1
2u1 l̇−

1
2 lu̇1 + u̇2, (4.45c)

µV = −2µPv2 − 2µJ u2 + 2lmµ(3)
P + 2u1v1µ

(3)
P + µ

(3)
J l2 − µ(3)

J u2
1

+ 1
2v1 l̇ + 1

2u1ṁ−
1
2mu̇1 −

1
2 lv̇1 + v̇2. (4.45d)

Consistency of (4.44) with (4.45), e.g. ∂v∂ϕl = ∂ϕ∂vl, leads to the following relation for the “asymptotic”
chemical potentials in terms of the “near horizon” variables

µP = µLP + 8
3µUJJ

(3) + 4
3µUJ

′ − 2
3µ
′
UJ − µ′L, (4.46a)

µJ = µMP + 8
3µUPJ

(3) + 8
3µUJP

(3) + 8
3µV JJ

(3)

+ 4
3µUP

′ + 4
3µV J

′ − 2
3µ
′
UP −

2
3µ
′
V J − µ′M , (4.46b)

µ
(3)
P = µLJ (3) + µUJ 2 − 4

3µU
(
J (3)

)2
− µUJ ′ −

3
2µ
′
UJ + 1

2µ
′′
U , (4.46c)

µ
(3)
J = µLP(3) + µMJ (3) + 2µUPJ + µV J 2 − 8

3µUP
(3)J (3) − 4

3µV
(
J (3)

)2

− µV J ′ − µUP ′ −
3
2µ
′
V J −

3
2µ
′
UP + 1

2µ
′′
V . (4.46d)

The gauge fields a and ã are then mapped to each other, provided that

M = J 2 + 4
3

(
J (3)

)2
+ 2J ′, (4.47a)

N = JP + 4
3J

(3)P(3) + P ′, (4.47b)

V = 1
54

(
18J 2J (3) − 8

(
J (3)

)3
+ 9J ′J (3) + 27JJ (3)′ + 9J (3)′′

)
, (4.47c)

Z = 1
36

(
6J 2P(3) − 8P(3)

(
J (3)

)2
+ 3P(3)J ′ + 3J (3)P ′

+9JP(3)′ + 9PJ (3)′ + 12PJJ (3) + 3P(3)′′
)
. (4.47d)

Additionally, it is possible to explicitly check that the equations of motion in the highest weight gauge
(4.12) indeed reduce to the very simple ones given by (4.27). The relations (4.46) show that the “asymp-
totic chemical potentials” µL, µM, µU, µV depend not only on the “near horizon chemical potentials”
µP , µJ , µ(3)

P , µ(3)
J , but also on the state-dependent functions P, J , P(3), J (3), which is one way to see

that our near horizon boundary conditions (4.26) are inequivalent to the asymptotic ones given by see
(4.8) and (4.11). Moreover, the same relations directly map the corresponding gauge parameters that
preserve the respective boundary conditions by replacing µL → ε, (1 + µM) → τ , µU → χ, µV → κ as
well as µJ → εJ , µP → εP , µ(3)

J → ε
(3)
J and µ(3)

P → ε
(3)
P . Therefore, also the infinitesimal transformation

laws for N , M, V and Z can be directly read off from (4.12) by replacing e.g. Ṁ by δεM as well as
all occurrences of chemical potentials µa and µ

(3)
a by the corresponding gauge parameters εa and ε

(3)
a ,
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respectively. This holds, since precisely this replacement leads from the EOM for the auxiliary connection
∂vaϕ = ∂ϕav+[aϕ, av], inferred from (2.24), to the transformation behaviour under gauge transformation
δεaϕ = ∂ϕε + [aϕ, ε]. Thus, one can readily see that the fields N , M, V and Z transform precisely the
same way as would generators satisfying an FW3 algebra. However, their associated canonical charges
still satisfy û(1) current algebras as before. This can be seen by looking at the variation of the canonical
boundary charge. In particular, after using the relations between the “near horizon” and “asymptotic”
gauge parameters, defined by the corresponding relations between the chemical potentials (4.46), and
(4.47) we find that the variation of the “asymptotic” charges (4.17) just reduces to the one of the “near
horizon” charges (4.31)

δQ = k

2π

∫
dϕ

(
εδL+ 1

2σδM+ 8χδU + 4ρδV
)

≡ k

2π

∫
dϕ
(
εJ δJ + εPδP + 4

3ε
(3)
J δJ (3) + 4

3ε
(3)
P δP(3)

)
. (4.48)

with

L = N − v
2M

′ U = Z − v
2 V
′ , (4.49a)

and

σ = τ − v ε′ ρ = κ− vχ′ . (4.49b)

4.2.4 FW-Algebras from u(1)-Algebras23

Using (4.47) as well as the mode expansions (4.32) and

N (ϕ) = 1
k

∑
n∈Z

Lne
−inϕ, M(ϕ) = 2

k

∑
n∈Z

Mne
−inϕ, (4.50a)

Z(ϕ) =
√

3
8k
∑
n∈Z

Une
−inϕ, V(ϕ) =

√
3

4k
∑
n∈Z

Vne
−inϕ, (4.50b)

δ(ϕ− ϕ̄) = 1
2π
∑
n∈Z

e−in(ϕ−ϕ̄), (4.50c)

we find that the twisted Sugawara construction for the FW3 algebra is given by

Ln = 1
k

∑
p∈Z

(
Jn−pPp + 3

4J
(3)
n−pP

(3)
p

)
− inPn, (4.51a)

Mn = 1
2k
∑
p∈Z

(
Jn−pJp + 3

8J
(3)
n−pJ

(3)
p

)
− inJn, (4.51b)

Un =
√

3
k2

∑
p,q∈Z

[(
Jn−p−qJp −

3
4J

(3)
n−p−qJ

(3)
p

)
J (3)
q + 2Jn−p−qJ (3)

p Pq

]

−
√

3i
2k

∑
p∈Z

[
(3n− 2p) J (3)

n−pPp + (n+ 2p)Jn−pP (3)
p

]
−
√

3
2 n2P (3)

n , (4.51c)

23The explicit computations in this section were performed by our collaborator Max Riegler.
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Vn =
√

3
k2

∑
p,q∈Z

(
Jn−p−qJp −

1
4J

(3)
n−p−qJ

(3)
p

)
J (3)
q −

√
3i

2k
∑
p∈Z

(3n− 2p)J (3)
n−pJp −

√
3

2 n2J (3)
n . (4.51d)

At this point it is important to note that we already implicitly assumed some kind of normal ordering
prescription for the constituents of the operators appearing in (4.51). The ordering prescription we chose
is in accordance with the ones for induced representations as shown in [57]. Computing the commutation
relations of these new operators, we find that they satisfy the FW3 algebra, see (4.18), however, with
different Λn and Θn

Λn =
∑
p∈Z

MpLn−p, Θn =
∑
p∈Z

MpMn−p , (4.52)

since the normal ordering is performed with respect to induced representations, instead of being performed
with respect to highest weight representations. In addition to the commutation relations of the spin-2 and
spin-3 generators, we find the following non-vanishing commutation relations with the spin-1 currents

[Ln, Jm] =−mJn+m − in2kδn+m,0, (4.53a)
[Ln, Pm] =−mPn+m, (4.53b)

[Ln, J (3)
m ] =−mJ (3)

n+m, (4.53c)

[Ln, P (3)
m ] =−mP (3)

n+m, (4.53d)
[Mn, Pm] =−mJn+m − in2kδn+m,0, (4.53e)

[Mn, P
(3)
m ] =−mJ (3)

n+m, (4.53f)

[Un, Jm] =− 2
√

3
k

m
∑
p∈Z

Jn+m−pJ
(3)
q +

√
3i
2 m(3n+ 2m)J (3)

n+m, (4.53g)

[Un, Pm] =− 2
√

3
k

m
∑
p∈Z

(
Jn+m−pP

(3)
q + J

(3)
n+m−pPq

)
+
√

3i
2 m(3n+ 2m)P (3)

n+m, (4.53h)

[Un, J (3)
m ] =

√
3
k
m
∑
p∈Z

J
(3)
n+m−pJ

(3)
q + 2i√

3
m(3n+ 2m)Jn+m −

2k√
3
n3δn+m,0, (4.53i)

[Un, P (3)
m ] =2

√
3

k
m
∑
p∈Z

(
J

(3)
n+m−pP

(3)
q − 4

3Jn+m−pPq

)
+ 2i√

3
m(3n+ 2m)Pn+m, (4.53j)

[Vn, P (3)
m ] =

√
3
k
m
∑
p∈Z

J
(3)
n+m−pJ

(3)
q + 2i√

3
m(3n+ 2m)Jn+m −

2k√
3
n3δn+m,0, (4.53k)

[Vn, Pm] =− 2
√

3
k

m
∑
p∈Z

Jn+m−pJ
(3)
q +

√
3i
2 m(3n+ 2m)J (3)

n+m. (4.53l)

4.2.5 Entropy of Cosmological Solutions
After having found a map between the boundary conditions in diagonal and highest weight gauge, one
can show explicitly that the entropy calculated using the near horizon boundary conditions also coincides
precisely with the one given in [52,53]. Note that this has to be the case, since we have already shown that
our charges precisely coincide with the ones in [52,53] and the entropy is given as S = −βH = −βQ[ε|∂v ].
As discussed in [4–6] one advantage of the near horizon boundary conditions is that regularity of the
solutions holds regardless of the value of the global charges, since the corresponding holonomy conditions
are solved trivially. We assume that our Euclidean manifold has the topology of a solid torus, where the
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Euclidean time coordinate τ = iv with 0 ≤ τ < β corresponds to the contractible cycle.
Regularity of the solution requires the holonomy of the gauge fields around any contractible circle be
trivial. Hence,

HC = Pe
∫
C
a → exp

(∫
ρ=0

aτ dτ
)

= 1 . (4.54)

For our boundary conditions, which are in diagonal gauge, this holonomy condition is trivially solved by

µJ = µ
(3)
J = 0 , µP = −mπ

β
and µ

(3)
P = −mπ − 2nπ

2β with n,m ∈ Z. (4.55)

Hence, as already stated above regularity holds regardless of the value of the state-dependent functions
J , P, J (3) and P(3). The entropy can now be computed via

S = −β H = − k

2πβ
∫

dϕ 〈AτAϕ〉 = − k

2πβ
∫

dϕ 〈aτaϕ〉 . (4.56)

Using (4.26) and (4.55) we get

S = kπ

3

(
3mP + 2(m− 2n)P (3)

)
. (4.57)

For simplicity’s sake we restrict ourselves to zero-modes only. Since flat space cosmologies are solutions
with constant state-dependent functions, this is the most important case. Thus,

J (ϕ)→ J := 1
k
J0 , P (ϕ)→ P := 1

k
P0 , J (3) (ϕ)→ J (3) := 3

4kJ
(3)
0 , P(3) (ϕ)→ P (3) := 3

4kP
(3)
0 ,

M (ϕ)→M = const , V (ϕ)→ V = const , Z (ϕ)→ Z = const , N (ϕ)→ N = const .

For the branch m = 2, n = 1 the entropy (4.57) reduces to

S = 2kπP . (4.58)

We will see that it is exactly this branch that is connected continuously to the cosmological spacetimes
in pure Einstein gravity and coincides with the results from [52,53]. The expression for P in terms of the
asymptotic charges is given as (for details of the calculation refer to appendix D.4)

P = ±
N
√
M cos

( 2x
3
)
− 4
√

3Z sin
(
x
3
)

M
√

1− 108V 2

M3

where x = arcsin
(

6
√

3
(

1
M

)3/2
V

)
. (4.59)

The form of (4.59) makes it easier to compare our result to the explicit expression given in [53], see also
subsection 4.1.3, where a different basis was used. In terms of the asymptotic charges given in [53], see
(4.23), the entropy (4.58) may be rewritten as

S = ±2π
√
kπ

P̂
sec(Φ)

[
+Ĵ cos

(
2Φ
3

)
−
√

3k
πP̂

V̂

4 sin
(

Φ
3

)]
with (4.60a)

Φ = arcsin
(

3
8

√
3k
πP̂ 3

Ŵ

)
. (4.60b)

In order to make contact with the cosmological configurations in pure Einstein gravity (4.20) we have to
restrict ourselves to the branch

S = 2π
√
kπ

P̂
sec(Φ)

[
+|Ĵ | cos

(
2Φ
3

)
+
√

3k
πP̂

V̂

4 sin
(

Φ
3

)]
with (4.61a)
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Φ = ∓ arcsin
(

3
8

√
3k
πP̂ 3

Ŵ

)
, (4.61b)

where the sign of Φ has to be the opposite sign with respect to Ĵ such that consistency with (4.60) is
guaranteed. Equation (4.61) coincides precisely with formula (65) given in [53]. Thus, we see that the
branch of the entropy that is continuously connected to the cosmological spacetimes in pure Einstein
gravity only depends on the P0 = kP mode, see (4.58). Equation (4.58) can be brought into a more
suggestive form by linearly combining the zero-modes (4.34) such that (4.61) becomes

S = 2kπP = 2πP0 = 2π(J+
0 + J−0 ) , (4.62)

which is precisely the result, already found in the spin-2 AdS [4], spin-3 AdS [6] and spin-2 flat space
case [5]. This suggests a universal relation for the entropy in terms of the spin-2 (near horizon) zero-mode
charges. It is surprising that the entropy does not at all depend on the spin-3 zero-modes.
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5 Conclusion and Outlook

In this work, novel boundary conditions for spin-3 gravity in flat space were introduced. In chapter
3 we reviewed the asymptotically AdS (Brown-Henneaux) boundary conditions and the “near horizon”
boundary conditions for spin-2 gravity in AdS. In chapter 4 we proposed new boundary conditions for
spin-3 gravity in flat space with chemical potentials (4.26) and showed that they lead to finite, integrable
and conserved charges. Furthermore, we showed that, similarly to the already existing cases of “near
horizon” boundary conditions [4–6], the asymptotic symmetry algebra for spin-3 gravity in flat space is
given by four û(1) current algebras (4.33). We also showed that all vacuum descendants of our theory
are soft, in the sense of having zero energy while still being non-trivial; they thus may be regarded
as higher-spin soft hair. We found that through a proper gauge transformation our “near horizon”
boundary conditions can be translated from the diagonal gauge into the standard highest weight gauge.
This made it possible to relate the remarkably simple entropy in terms of near horizon variables to the
more complicated one in terms of asymptotic variables. We found that the branch that is continuously
connected to the cosmological spacetimes of general relativity only depends on the spin-2 (near horizon)
zero-modes (4.58). The result is precisely the same as was found in [4–6], which suggests a universal
relation.
However, many questions remain open. First of all, it would be interesting to investigate the universality of
the entropy result by generalizing our considerations to conformal gravity, supersymmetric gravity, higher
dimensions and non-principally embedded higher-spin theories. To do so, it would be useful to investigate
a more systematic way of proposing extensions of the near horizon boundary conditions. Furthermore,
it would be interesting to explicitely construct higher-spin microstates along the lines of [58]. Our
considerations have focused on the (higher-spin generalization) of future null infinity. Investigations using
the full structure of asymptotically flat spacetimes [59] have provided fascinating connections between
soft modes and conservation laws [60–62]. Furthermore, such investigations might even provide insights
into the black hole information paradox [8].
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A Algebras and their Matrix Representations

A.1 sl(2,R)

Algebra

[Ln, Lm] = (n−m)Ln+m (A.1)

with n,m = −1, 0, 1.

Non-Degenerate Invariant Bilinear Form

〈Ln, Lm〉 =


L1 L0 L−1

L1 0 0 −1
L0 0 1

2 0
L−1 −1 0 0

 (A.2)

Fundamental Representation

L1 =
(

0 0
1 0

)
, L0 = 1

2

(
1 0
0 −1

)
, L−1 =

(
0 −1
0 0

)
. (A.3)

Connection to su(2)

The fundamental representation of su(2) is given by

S1 = 1
2

(
0 1
1 0

)
, S0 = 1

2

(
0 −i
i 0

)
, S3 =

(
1 0
0 −1

)
. (A.4)

We know from quantum mechanics that one can define a raising and lowering operator of a spin-1/2
system via

S+ = S1 + iS2 =
(

0 1
0 0

)
= −L−1 , S− = S1 − iS2 =

(
0 0
1 0

)
= L1 (A.5)

which act on 〈↓| = (0, 1) or 〈↑| = (1, 0) via

S+ |↓〉 = |↑〉 , S− |↑〉 = |↓〉 , S+ |↑〉 = S+ |↓〉 = 0 . (A.6)

Thus, up to a sign in (A.5) we find that L1 and L−1 are nothing else than the raising and lowering
operators of a spin-1/2 system, which in turn coins the term highest weight gauge in section 3.2.3.
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A.2 isl(3,R) algebra

Algebra

[Ln, Lm] = (n−m)Ln+m , (A.7a)
[Ln, Mm] = (n−m)Mn+m , (A.7b)
[Ln, Um] = (2n−m)Un+m , (A.7c)
[Ln, Vm] = (2n−m)Vn+m , (A.7d)
[Un, Um] = σ(n−m)(2n2 + 2m2 − nm− 8)Ln+m , (A.7e)
[Un, Vm] = σ(n−m)(2n2 + 2m2 − nm− 8)Mn+m , (A.7f)

with i = −1, 0, 1 and m = −2,−1, 0, 1, 2. The Ln generate rotations, the Mn generate translations and
Un, Vn generate spin-3 transformations. The factor σ fixes the normalization of the spin-3 generators Un
and Vn. We choose

σ = −1
3 . (A.8)

Non-Degenerate Invariant Bilinear Form

〈Ln Mm〉 = −2


M1 M0 M−1

L1 0 0 1
L0 0 − 1

2 0
L−1 1 0 0

 , (A.9a)

as well as

〈Un Vm〉 = 2


V2 V1 V0 V−1 V−2

U2 0 0 0 0 4
U1 0 0 0 −1 0
U0 0 0 2

3 0 0
U−1 0 −1 0 0 0
U−2 4 0 0 0 0

 . (A.9b)

All other pairings of generators inside the bilinear form 〈·, ·〉 are zero.

(8 + 1)-Matrix Representation

Throughout this work we have used the following matrix representation of the isl(3,R) generators G

G =
(
ad8×8 odd8×1
O1×8 0

)
, (A.10)

with ad8×8 being an 8× 8 matrix and odd8×1 being an 8× 1 column vector. The even generators Ln and
Un have ad 6= O, odd = O, while the odd generators Mn and Vn have ad = O, odd 6= O. If we now use the
odd generators as unit basis vectors we get

oddMn = En+2 , oddVn = En+6 (A.11)

with
Ei = (0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
8−i

)T , i = 1 . . . 8 . (A.12)
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The ad-parts of the even generators are then given by

adL−1 = −



0 1 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 4
0 0 0 0 0 0 0 0


, adL0 =



1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −2


,

adL1 =



0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 1 0


, adU−2 =



0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 16
0 0 0 0 0 0 0 0
0 −2 0 0 0 0 0 0
0 0 −4 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,

adU−1 =



0 0 0 0 0 −2 0 0
0 0 0 0 0 0 −2 0
0 0 0 0 0 0 0 4
1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −3 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, adU0 =



0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −2 0
0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −2 0 0 0 0 0
0 0 0 0 0 0 0 0


,

adU1 =



0 0 0 −4 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0


, adU2 =



0 0 0 0 0 0 0 0
0 0 0 −16 0 0 0 0
0 0 0 0 −4 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0


.

(6 × 6) representation

Another useful representation of the isl(3,R) algebra is given in terms of 6× 6 block-diagonal matrices24.
It is convenient to write them as 3×3 matrices tensored by 2×2 diagonal matrices. The block structure is
a remnant of the decomposition of the AdS algebra so(2, 2) ∼ so(2, 1)⊕ so(2, 1) before the İnönü–Wigner

24Our collaborators Max Riegler and Martin Ammon used this representation to perform their calculations.
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contraction. In this representation the generators are given as

L1 =

0 0 0
1 0 0
0 1 0

⊗ 12×2 , L0 =

1 0 0
0 0 0
0 0 −1

⊗ 12×2 , L−1 =

0 −2 0
0 0 −2
0 0 0

⊗ 12×2 ,

U2 =

0 0 0
0 0 0
2 0 0

⊗ 12×2 , U1 =

0 0 0
1 0 0
0 −1 0

⊗ 12×2 , U0 =

 2
3 0 0
0 − 4

3 0
0 0 2

3

⊗ 12×2 ,

U−1 =

0 −2 0
0 0 2
0 0 0

⊗ 12×2 , U−2 =

0 0 8
0 0 0
0 0 0

⊗ 12×2 . (A.13)

All odd generators can be written as a product of corresponding even generators times a γ∗-matrix,

Mn = ε Ln × γ∗ , Vn = ε Un × γ∗ , (A.14)

where ε is a Grassmann parameter (ε2 = 0) and

γ∗ =
(
13×3 O3×3
O3×3 −13×3

)
. (A.15)
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B Differential Forms25

In this appendix we provide a short collection of useful definitions and relations for differential forms,
which have been used throughout this work – we closely follow the textbook by Nakahara [64].
Def: A differential form of order p is a totally antisymmetric tensor of type (0, p), where the entry “0”
denotes the number of contravariant indices and p denotes the number of covariant indices.
Def: The wedge product ∧ of p one-forms is defined by the totally antisymmetric tensor product

dxµ1 ∧ dxµ2 ∧ · · · ∧ dxµp =
∑
P∈Sp

sgn(P ) dxµP (1) ⊗ dxµP (2) ⊗ · · · ⊗ dxµP (p) , (B.1)

where P is an element of Sp, the symmetric group of order p and sgn(P ) is +1 for even and −1 for
odd permutations. If we denote the vector space of p-forms at a certain point m of our manifold M
as Ωpm(M), then the set of p-forms (B.1) forms a basis of Ωpm(M). An element α ∈ Ωpm(M) can be
expanded as

α = 1
p!αµ1µ2···µp dxµ1 ∧ dxµ2 ∧ · · · ∧ dxµp . (B.2)

For the p-form α and the b-form β the definition of the exterior product ∧ leads to a (p + b)-form and
can be written as

α ∧ β = 1
p! b! αµ1µ2···µpβµp+1µp+2···µp+b dxµ1 ∧ dxµ2 ∧ · · · ∧ dxµp+b . (B.3)

Def: The exterior derivative d is defined as

dα = 1
p!∂ραµ1µ2···µp dxρ ∧ dxµ1 ∧ dxµ2 ∧ · · · ∧ dxµp . (B.4)

From this one may infer other useful relations

α ∧ β = (−1)pbβ ∧ α , (B.5)
α ∧ α = 0 , (B.6)

(α ∧ β) ∧ γ = α ∧ (β ∧ γ) , (B.7)
d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ , (B.8)

d2 = 0 . (B.9)

Def: The Hodge dualization of a generic antisymmetric tensor with (n− k)-indices is defined as

(∗η)i1,i2,...,in−k = 1
k!ηj1,j2,...,jk

√
|detg|εj1,...,jk

i1,in−k
, (B.10)

where g is the metric tensor.
25This appendix is based on a file originally written by Stefan Prohazka as part of his Master thesis [63]
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C Conformal Weight

We have already mentioned in section 1.3 that a notion of spin s can be introduced through the trans-
formation behaviour of fields under conformal transformations26. In conformal field theory the property,
which characterizes the transformation behaviour of a conformal field is called conformal weight h. The
two terms spin and conformal weight are used synonymously in this thesis, i.e. s = h. For more infor-
mation on conformal field theory consult e.g. [44, 65].
A field Φ(z) that transforms under conformal transformations z → f(z) as

Φ′(z) =
(
∂f(z)
∂z

)h
Φ(z) . (C.1)

is called a primary field of conformal weight (or conformal dimension) h. Therefore, as already mentioned
in section 1.3 higher-spin fields are equivalent to higher-rank fields. For instance, the metric, a rank two
tensor, has conformal weight two.
Under infinitesimal transformations z → f(z) = z + ε(z) the primary field Φ(z) transforms as

δεΦ = Φ (z + ε(z))−Φ(z) ≈ (1 + h∂zε(z)) (Φ(z) + ε(z)∂zΦ(z))−Φ(z) = h
∂ε(z)
∂z

Φ(z)+ε(z)∂Φ(z)
∂z

. (C.2)

Expanding ε(z) into Fourier modes
ε(z) =

∑
n

εnz
n+1 (C.3)

leads to
δεΦ = znεn ((n+ 1)h+ z∂z) Φ(z) . (C.4)

If we now assume that Ln is the generator of these conformal transformations and acts on the field Φ(z)
via a commutator, we may rewrite (C.4) as

[Ln,Φ(z)] = zn ((n+ 1)h+ z∂z) Φ(z) . (C.5)

Expanding the field Φ(z) into Fourier modes leads to

[Ln,Φ(z)] =
∑
m

[Ln,Φm]z−m−h =
∑
m

zn ((n+ 1)h+ z∂z) Φmz−m−h

=
∑
m

((n+ 1)h+ (−m− h)) Φmz−m+n−h =
∑
m

((n+ 1)h+ (−m− n− h)) Φm+nz
−m−h

=
∑
m

(n(h− 1)−m) Φm+nz
−m−h , (C.6)

26Note that conformal transformations also include Lorentz transformations.
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where we have performed an index shift in the second line. By comparing the summands we find that

[Ln,Φm] = (n(h− 1)−m) Φm+n . (C.7)

Thus, for the Fourier modes of a spin-2 field Mn we find the relation

[Ln, Mm] = (n−m) Mm+n , (C.8)

while the Fourier modes of a spin-3 field Un satisfy

[Lm, Un] = (2m− n)Um+n . (C.9)

The generators Ln, which generate such infinitesimal conformal transformations span the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n + c

12m(m2 − 1)δm+n,0 , (C.10)

where c denotes the central extension. In a conformal field theory Ln are the Fourier modes of the
energy-momentum tensor, a quasi-primary field of conformal weight two. Equipped with this knowledge
we are now able to identify the generators in e.g. (4.18) as the Fourier modes of spin-2 and spin-3 fields,
respectively.

Comment
Until now we have restricted the discussion to chiral fields Φ = Φ(z). However, note that in two-
dimensional conformal field theories fields Φ can generally depend on both coordinates, i.e. Φ = Φ(z, z̄).
In two dimensions the conformal field theory is spanned by two copies of the Virasoro algebra, generated
by Ln and L̄n, see (3.19). In this case the Hamiltonian and the angular momentum (= spin) operator are
given as the sum or the difference of the Virasoro zero-modes, i.e. H = L0 + L̄0 and J = S = L0− L̄0 with
eigenvalues E = h+ h̄ and j = s = h− h̄.
A chiral quasi-primary field of conformal weight (h, h̄) = (2, 0) can thus be generated by acting with L−2
on the vacuum |0〉, i.e. via L−2 |0〉. This excitation carries spin two and energy two. However, if we
consider the vacuum descendant L−2L̄−2 |0〉, a quasi-primary field of conformal weight (h, h̄) = (2, 2), we
readily infer that it corresponds to a spin-0 and energy-4 excitation.
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D Calculations

D.1 Symmetries and DOF of the Riemann Tensor
According to equation (2.4) the Riemann tensor is antisymmetric in α and β

Rαβγδ = −Rβαγδ . (D.1)

Now, we explicitly derive other symmetry properties of the Riemann tensor, which will impose restrictions
on the number of degrees of freedom in our theory.

Antisymmetry in the second index pair
One may easily proove the antisymmetry of the Riemann tensor in the second index pair by using the
metric compatibility of the covariant derivative

∇γ gαβ = 0 (metric compatibility) , (D.2)
0 = [∇α,∇β ]gγδ = R ζ

αβγ gζδ +R ζ
αβδ gγζ = Rαβγδ +Rαβδγ = 0 , (D.3)

⇒ Rαβγδ = −Rαβδγ . (D.4)

Rαβγδ = −Rαβδγ = Rβαδγ . (D.5)

A general rank 4-tensor in d dimensions has d4 entries. Due to the antisymmetry in the first and second
index pair I = {i, j} and J = {k, l}, respectively, each one considered alone would give us d·(d−1)

2
independent entries, i.e.

I = {i, j} → d · (d− 1)
2 , (D.6)

J = {k, l} → d · (d− 1)
2 . (D.7)

Bianchi identity
After encountering the antisymmetry of the Riemann tensor in both index pairs, one would expect the
number of degrees of freedom to be

#R =
(
d (d− 1)

2

)2
. (D.8)

However, the Bianchi identity restricts the number of degrees of freedom further

Rα[βγδ] = 1
3 (Rαβγδ +Rαγδβ +Rαδβγ) = 0 , (D.9)
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where the square brackets denote total antisymmetrization27. The Bianchi identity gives another d ·
(
d
3
)

independent equations which reduce the number of degrees of freedom to

#R =
(
d (d− 1)

2

)2
− d · d!

(d− 3)!3! =
(
d2 − d

)2
4 − d2 (d− 1) (d− 2)

6

= d4 − 2d3 + d2

4 − d4 − 3d3 + 2d2

6 = 1
12
(
d4 − d2) . (D.10)

Additional Symmetries of the Riemann Tensor
Furthermore, the Riemann tensor is symmetric in the index pair {I, J}, i.e.

Rαβγδ = Rγδαβ . (D.11)

For the derivation of this relation we need the first Bianchi identity. Furthermore, we use the antisym-
metry of the Riemann tensor in the first and second index pair

Rαβγδ = −Rβαγδ , Rαβγδ = −Rαβδγ . (D.12)

Note that this symmetry does not restrict the number of degrees any further, since this symmetry follows
directly from the Bianchi identity. We start by considering

Rαβγδ −Rγδαβ
(D.9)= Rαβγδ − (−Rγαβδ −Rγβδα) (D.12)= Rαβγδ −Rαγβδ −Rβγδα
(D.9)= Rαβγδ − (−Rαβδγ −Rαδγβ)− (−Rβαγδ −Rβδαγ)

= Rαβγδ +Rαβδγ︸ ︷︷ ︸
=0

+Rαδγβ +Rβαγδ +Rβδαγ
(D.12)= Rαδγβ −Rαβγδ +Rβδαγ

= (−Rαδβγ −Rαβγδ) +Rβδαγ
(D.9)= Rαγδβ +Rβδαγ = −Rαγβδ +Rβδαγ . (D.13)

Interchanging the names α↔ β and γ ↔ δ gives

Rαβγδ −Rγδαβ = −Rβδαγ +Rαγβδ . (D.14)

Adding (D.13) to (D.14) gives 2 (Rαβγδ −Rγδαβ) = 0 and thus we arrive at

Rαβγδ = Rγδαβ , (D.15)

as proposed.

D.2 Equivalence of EHP and CS action
We explicitly derive that the Einstein-Hilbert-Palatini action is equivalent to the Chern-Simons action
up to a boundary term. Starting from the Chern-Simons-action

ICS [A] = k

4π

∫
M
〈A,dA〉+ 2

3 〈A ∧A,A〉 (D.16)

27The Bianchi identity can be derived by using the Jacobi identity and torsion freedom of the covariant derivative.
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and inserting A = eaPa + ωaJa yields

ICS [A] = k

4π

∫
M
ea ∧ dωa + dea ∧ ωa

+ k

4π

∫
M

2
3 〈e

a ∧ eb (−ΛεabcJc) + 2ea ∧ ωb (εabcP c) + ωa ∧ ωb (εabcJc) , edPd + ωdJd〉

= k

4π

∫
M
ea ∧ dωa + dea ∧ ωa + 1

3
(
−Λεabcea ∧ eb ∧ ec + ωa ∧ ωb ∧ ecεabc + 2ea ∧ ωb ∧ ωcεabc

)
= k

4π

∫
M
d (ea ∧ ωa) + 2ea ∧ dωa −

1
3Λεabcea ∧ eb ∧ ec + εabce

a ∧ ωb ∧ ωc , (D.17)

where we have used properties of the wedge product, see appendix B, the algebra relation (2.20) and the
bilinear form (2.21). Here, the first term is a boundary term which shall be neglected in our discussion
and the rest can be written as

ICS [A] = k

2π

∫
M
ea ∧Ra −

Λ
6 εabce

a ∧ eb ∧ ec , (D.18)

which is exactly the Einstein-Hilbert-Palatini action (2.15) after setting k equal to 1
4GN .

D.3 EOM of a Constrained System
The following analysis is based on [66]. In a gauge system defined by the Lagrangian L(q, q̇) the matrix
∂2L
∂q̇i∂q̇j is typically not invertible, which implies that one cannot uniquely recover the velocities q̇i in terms
of the momenta pi = ∂L

∂q̇i . In fact, non-trivial relations φm(q, p) = 0 between the coordinates and the
momenta called primary constraints exist. The construction of the Hamiltonian is now slightly more
involved than usual. The canonical Hamiltonian is given by

HC = piq̇
i − L. (D.19)

This Hamiltonian is not yet complete because it tells us nothing about the primary constraints. Varying
(D.19) yields

δHC = δpiq̇
i + piδq̇

i − ∂L

∂qi
δqi − ∂L

∂q̇i
δq̇i = δpiq̇

i − ∂L

∂qi
δqi , (D.20)

which can be rewritten as (
∂HC

∂pi
− q̇i

)
δpi +

(
∂HC

∂qi
+ ∂L

∂qi

)
δqi = 0. (D.21)

To analyze this equation further, one has to make use of the fact that p and q are varied on the constrained
surface, which is an embedded submanifold of dimension 2N −M (where N is the number of degrees of
freedom and M the number of primary constraints). For the whole expression to be zero, the coefficients
of δpi and δqi must be vectors within the complement of the tangent space of the constrained surface,
which is aM -dimensional subspace of the whole tangent space of the phase space. Clearly, theM vectors
∂φm
∂pi

δpi,
∂φm
∂qi δq

i also lie in this subspace. If the constraints obey certain regularity conditions, see [66],
they are all linearly independent and provide a basis. Hence, the coefficients of (D.21) can be expanded
in this basis, which yields

q̇i = ∂HC

∂pi
+ um

∂φm
∂pi

(D.22)
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− ∂L
∂qi

= ∂HC

∂qi
+ um

∂φm
∂qi

. (D.23)

The um can be thought of additional coordinates of the configuration space which guarantee that the
Legendre transformation from (q, q̇) to (q, p, u) is invertible. After using the Lagrange equation ∂L

∂qi =
d
dt
∂L
∂q̇i we arrive at the final form of the Hamiltonian equations

q̇i = ∂HT

∂pi
(D.24)

ṗi = −∂HT

∂qi
(D.25)

with the total Hamiltonian
HT = HC + umφm. (D.26)

D.4 Sketch of the Transformation to Highest Weight Boundary
Conditions

In the following we sketch how the diagonal boundary condition can be systematically transformed into
the highest weight boundary conditions through a gauge transformation. We recall that the diagonal
boundary conditions for spin-3 gravity are given by

a = av dv + aϕ dϕ (D.27)

with

aϕ = J L0 + P M0 + J (3) U0 + P(3) V0, (D.28a)

av = µP L0 + µJ M0 + µ
(3)
P U0 + µ

(3)
J V0. (D.28b)

The highest weight boundary conditions are given by

ãϕ = L1 −
M
4 L−1 −

N
2 M−1 + V2 U−2 + ZV−2, (D.29a)

ãv = a(0)
v + a(µM)

v + a(µL)
v + a(µV)

v + a(µU)
v , (D.29b)

where

a(0)
v = M1 −

M
4 M−1 + V2 V−2, (D.30a)

a(µM)
v = µM M1 − µ′M M0 + 1

2
(
µ′′M − 1

2MµM

)
M−1 + 1

2 V µM V−2, (D.30b)
a(µL)
v = a(µM)

v

∣∣
M→L −

1
2 N µL M−1 + Z µL V−2, (D.30c)

a(µV)
v = µV V2 − µ′V V1 + 1

2
(
µ′′V −MµV

)
V0 + 1

6
(
− µ′′′V +M′µV + 5

2Mµ′V
)

V−1

+ 1
24
(
µ′′′′V − 4Mµ′′V − 7

2M
′µ′V + 3

2M
2µV −M′′µV

)
V−2 − 4V µV M−1, (D.30d)

a(µU)
v = a(µV)

v

∣∣
M→L − 8Z µU M−1 −N µU V0 +

( 5
6Nµ

′
U + 1

3N
′µU

)
V−1

+
(
− 1

3Nµ
′′
U − 7

24N
′µ′U − 1

12N
′′µU + 1

4MNµU

)
V−2. (D.30e)

First, we concentrate on the aϕ component of the connection only and try to find a gauge transforma-
tion that maps aϕ into ãϕ. Following this we read off the relation between the near horizon and the
asymptotic state-dependent functions. Then we explicitly check that this transformation also maps the
av components, from which we then read off the relation between near horizon and asymptotic chemical
potentials.
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Mapping aϕ to âϕ

We consider a gauge transformation g(1) of the form

g(1) = exp [l L1 + m M1 + u1 U1 + v1 V1 + u2 U2 + v2 V2] . (D.31)

After performing a gauge transformation g−1
(1) (∂ϕ + aϕ) g(1) on aϕ we arrive at

â(1)
ϕ = L1 + J L0 + P M0 + J (3) U0 + P(3) V0 (D.32)

if we demand that

l′ = 1 + lJ + 2u1J (3), (D.33a)
m′ = lP + mP + 2u1P(3) + 2v1J (3), (D.33b)
u′1 = u1J + 2lJ (3), (D.33c)
v′1 = u1P + v1J + 2lP(3) + 2mJ (3), (D.33d)

u′2 = −u1

2 + 2u2J , (D.33e)

v′2 = −v1

2 + 2u2P + 2v2J . (D.33f)

The motivation for doing this is that we can see from the structure of the Lie algebra, see (A.7), that
by acting on (D.32) with generators Ti = {Li, Mi, Un, Vn|i, n < 0}, we only change the components of
aϕ with respect to the generators Ti = {Li, Mi, Un, Vn|i, n ≤ 0}. Thus, we now act on â(1)

ϕ with a gauge
transformation of the form

g(2) = exp [a L−1 + b U−1 + c U2 + d M−1 + e V−1 + f V−2] . (D.34)

Requiring that the subsequent connection a(2)
ϕ takes the form (D.29) leads to the relations

a = −J2 , (D.35)

b = −J
(3)

3 , (D.36)

c = 1
6

(
JJ (3) + J

(3)′

2

)
, (D.37)

d = −J2 , (D.38)

e = −P
(3)

3 , (D.39)

f = +1
6

(
PJ (3) + JP(3) + P

(3)′

2

)
(D.40)

with the identifications of the asymptotic state-dependent functions via

M = J 2 + 4
3

(
J (3)

)2
+ 2J ′, (D.41a)

N = JP + 4
3J

(3)P(3) + P ′, (D.41b)
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V = 1
54

(
18J 2J (3) − 8

(
J (3)

)3
+ 9J ′J (3) + 27JJ (3)′ + 9J (3)′′

)
, (D.41c)

Z = 1
36

(
6J 2P(3) − 8P(3)

(
J (3)

)2
+ 3P(3)J ′ + 3J (3)P ′

+9JP(3)′ + 9PJ (3)′ + 12PJJ (3) + 3P(3)′′
)
. (D.41d)

Now we can act on the av component of the gauge field with the gauge transformation g = g(1)g(2) and
find that it indeed takes the form (D.28b) if we identify the asymptotic chemical potentials with

µL = 4
3µUJ

(3) − µP l− 2µ(3)
P u1 + l̇, (D.42a)

µM = 4
3µUP

(3) + 4
3µV J

(3) − µPm− µJ l− 2µ(3)
P v1 − 2µ(3)

J u1 + ṁ, (D.42b)

µU = −2µPu2 + µ
(3)
P l2 + µ

(3)
P u2

1 + 1
2u1 l̇−

1
2 lu̇1 + u̇2, (D.42c)

µV = −2µPv2 − 2µJ u2 + 2lmµ(3)
P + 2u1v1µ

(3)
P + µ

(3)
J l2 − µ(3)

J u2
1

+ 1
2v1 l̇ + 1

2u1ṁ−
1
2mu̇1 −

1
2 lv̇1 + v̇2. (D.42d)

The consistency requirement ∂v∂ϕy = ∂ϕ∂vy for all parameters y ∈ {l,m, u1, v1, u2, v2} leads to an explicit
relation between the near horizon and asymptotic chemical potentials

µP = µLP + 8
3µUJJ

(3) + 4
3µUJ

′ − 2
3µ
′
UJ − µ′L, (D.43a)

µJ = µMP + 8
3µUPJ

(3) + 8
3µUJP

(3) + 8
3µV JJ

(3)

+ 4
3µUP

′ + 4
3µV J

′ − 2
3µ
′
UP −

2
3µ
′
V J − µ′M , (D.43b)

µ
(3)
P = µLJ (3) + µUJ 2 − 4

3µU
(
J (3)

)2
− µUJ ′ −

3
2µ
′
UJ + 1

2µ
′′
U , (D.43c)

µ
(3)
J = µLP(3) + µMJ (3) + 2µUPJ + µV J 2 − 8

3µUP
(3)J (3) − 4

3µV
(
J (3)

)2

− µV J ′ − µUP ′ −
3
2µ
′
V J −

3
2µ
′
UP + 1

2µ
′′
V . (D.43d)

Mapping the Entropy of Spin-3 Cosmologies
Here we solve the relations given between asymptotic and near horizon zero-mode charges, see (D.41), in
terms of near horizon charges. Under restriction to constant state-dependent functions (D.41) reduces to

M = J2 + 4
3

(
J (3)

)2
, (D.44a)

N = JP + 4
3J

(3)P (3), (D.44b)

V = 1
54

(
18J2J (3) − 8

(
J (3)

)3
)
, (D.44c)

Z = 1
36

(
6J2P (3) − 8P (3)

(
J (3)

)2
+ 12PJJ (3)

)
. (D.44d)
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Solving (D.44a) for J2

J2 = 1
3

(
3M − 4

(
J (3)

)2
)

(D.45)

and inserting the expression into (D.44c) leads to a cubic equation in terms of J (3)

16(J (3))3 + 27V = 9J (3)M . (D.46)

The general solution of this cubic equation can be looked up, see e.g. [67], and is given by

J (3) = 1
2
√

3
√
M sin

(
1
3 arcsin

(
6
√

3
(

1
M

)3/2
V − 2πg

3

))
, (D.47)

where the three roots are labelled by integers g = 0, 1, 2. We choose g = 0 since this is the branch
connected to the cosmological solutions of Einstein gravity (4.19). Solving (D.44b) in terms of JP

JP = 1
3

(
3N − 4J (3)P (3)

)
(D.48)

and inserting (D.45) and (D.48) into (D.44d) gives

P (3) = −
6
(
3Z − J (3)N

)
16
(
J (3)

)2 − 3M
. (D.49)

This in turn can be reinserted into (D.44b) such that (D.44b) can be solved in terms of P

P =
−8
(
J (3))2N − 24J (3)Z + 3NM

J
(

3M − 16
(
J (3)

)2) . (D.50)

Inserting (D.47) into (D.50) and simplifying the expression leads to

P = ±
N
√
M cos

( 2x
3
)
− 4
√

3Z sin
(
x
3
)

M
√

1− 108V 2

M3

with x = arcsin
(

6
√

3
(

1
M

)3/2
V

)
. (D.51)
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