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Abstract

This thesis deals with the creation of software components for the control
and execution of measurement tasks in a complex system of elechtrochemical
instruments. Many of these measurements require a coordinated cooperation
between instruments and measurement devices of di�erent vendors. This is
a big challenge for all those who execute and observe the measurement tasks.
Many of these instruments are shipped out with an additional software in
order to facilitate complicated settings on the front panel of such an in-
strument. In most cases, such programs only support the functions of the
instrument self. The work of this thesis presents software components which
focus on the cooperation between the instruments. This is the point where
many of the existing software begin to fail. The main aspect of these com-
ponents is the dynamic embedding of new instruments without the need to
change the existing system. The creation of the integration modules as well
as the interpretation and execution of measurement tasks and the supporting
frameworks are discussed in this work.

Kurzfassung

Diese Diplomarbeit befasst sich mit der Erstellung von Software Kompo-
nenten für die Steuerung und Durchführung von Messaufgaben in einem kom-
plexen System von elektrochemischen Messgeräten. Viele solche Messauf-
gaben erfordern eine koordinierte Zusammenarbeit von Geräten verschieden-
ster Hersteller. Dies ist eine groÿe Herausforderung für diejenigen, die die
Messabläufe durchführen und überwachen. Die meisten Geräte werden mit
einer Steuerungssoftware geliefert welche sich jedoch im groÿteil der Fälle
auf die Funktionen des Gerätes beschränkt. Im Rahmen dieser Diplomarbeit
werden Software Komponenten vorgestellt, die sich im wesentlichen auf die
Zusammenarbeit von mehreren Messinstrumenten konzentriert welche mit
herkömmlichen Programmen nahezu unrealisierbar ist. Das Hauptaugen-
merk der vorgestellten Software Komponenten ist das dynamische Einbinden
von neuen Geräten ohne das bestehende System zu verändern. Die Erstellung
solcher Module, sowie die Interpretation und Ausführung von Messaufgaben
und der Frameworks die dafür zur Verfügung stehen werden dieser Arbeit
besprochen.
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Introduction

This thesis is about the creation of software components which allow the
controlling, performing and execution of electrochemical measurements in a
system of electrochemical instruments. Due to the complexity of these mea-
surements, there are many software programs around the world which are
designed to interoperate and to help humans when using electrochemical de-
vices, since the usage of the front panel of such an instrument often requires
a detailed knowledge about the instrument itself. These programs often help
users to by-pass complicated settings on the front panel of such instruments
by doing many settings automatically. Not only the complexity itself, but
also the iterations of measurements, changing some measurement parameters,
require a constant presence of humans. A well known program is LabVIEW
(short for Laboratory Virtual Instrumentation Engineering Workbench), a
platform and development environment for a visual programming language
from National Instruments. It is commonly used for data acquisition, instru-
ment control, and industrial automation on a variety of platforms [wik06c].

Motivation

The creation of this software is part of a project, formely called MessTool,
which has been called into life from Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Gün-
ter Fa�lek and Projektass. Dipl.-Ing. Bernhard Egger in autumn 2004. I
joined in May 2006 within the context of a Diploma Thesis of Informatics.
The intention of this project was to create a system that allows to do mea-
surements which are not possible at all or very un�exible with these popular
software environments on the one side, and the possibility to expand the
system when new requirements arise on the other side.

Goals

1. Data collection: One of the main goals is to collect measurement
data for further analysis. Measurement data should be collected in a
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way, that does not require constant presence of a human, doing pa-
rameter changes and starting new iterations or �lling parameters into
measurements on other instruments.

2. Data exchange between instruments: Measurement data col-
lected while doing some measurement should not only be available as
an output, but in the same moment, also as an input for other com-
mands on other devices, perhaps on other computer stations. This is
the point where many of the existing software begin to fail.

3. Extension: It should be possible to extend the system and accord-
ingly the software when attaching a new measurement device without
having expertise programming knowledge. One should be able to �ll
out a template by writing the neccessary base functions and/or base
commands to generate a plugin for a new DLL module.

In order to satisfy the former speci�ed requirements, I did some research
work on the existing software programmed by Schmidt David and Kalchgru-
ber Martin. The graphical user inteface has been programmed by Schmidt,
and the Hardwarecontroller (which controls communiction between measure-
ment instruments) by Kalchgruber. My experience in modelling and pro-
gramming led me quickly to the conclusion that the existing software could
not satisfy �exibility, maintainability and extensibility. So I decided to do
some changes in the existing database design and start a new approach of
the controller components behind the GUI. I spent a few weeks, thinking and
modelling before doing implementation.

The �rst meetings with Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Günter
Fa�lek, Projektass. Dipl.-Ing. Bernhard Egger, Schmidt David and Kalch-
gruber Martin took place at the end of April 2006. At the beginning, of
course, I didn't know about the structure and the idea behind the project.
The task given to me in the �rst days was to create a tool with which it would
be possible to build or generate DLL modules wich would act as plugins when
adding a new electrochemical instrument to the software system.

Problems

I already mentioned the challenge to perform inter-instrumental measure-
ments, meaning the usage of devices from di�erent vendors using di�erent
connections or busses. Most of the the electrochemical devices are shipped
with software tailored to this product or product family, making it almost
impossible to perform measurements by exchanging results or by using result

v



of measurements as input parameters of others respectively.

Solutions

The already existing version called MessTool, programmed by Schmidt D.
and Kalchgruber M. allowed only a subclass of the desired �exibility. The
core of the entire system is a database based on MySQL. All data used by
the system, like available functions, completed measurements and results are
stored here. The database can be accessed from anywhere in the system from
any client knowing the credentials.

I decided to review database. It has a tree like table structure which my
changes didn't a�ect. The table �elds underlied some changes. I wanted to
create a unique application programming interface (short API) which both
sides of the software system (client and controller) can use.
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Chapter 1

Hardware

1.1 The General Purpose Interface Bus

Great part of todays electronic instruments, such as meters and analyzers,
make use of the advantages of cost-e�ective and powerful desktop and note-
book computers. Together with software, we can speak about the birth of
virtual instruments. Application software empowers the user with the tools
necessary to build virtual instruments and expand their functionality by pro-
viding connectivity to the enormous capabilities of PCs, workstations, and
their assortment of applications, boosting performance, �exibility, reusability
and recon�gurability while diminishing at the same time development and
maintenance costs [Zso].

1.1.1 History

The General Purpose Interface Bus (short GPIB, IEEE488) also called Gen-
eral Purpose Instrumentation Bus has its roots in the 1960's. In these days,
Hewlett Packard (HP) was a manufacturer of test and measurement instru-
ments, such as multimeters and analyzers.

To enable easier interconnection between instruments and controllers,
such as computers, HP developed the HP - Interface Bus (HP-IB) which was
relatively easy using the technology at this time. Now, the need for a stan-
dard interface for communication between instruments and controllers from
various vendors arose. Other manufactors copied the HP-IB by giving it the
name GPIB. It's high transfer rate of 1 Megabyte per second, quickly led the
GPIB to gain popularity, so that the bus was standardized by the Institute of
Electrical and Electronics Engineers as the IEEE Standard Digital Interface
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for Programmable Instrumentation. This bus is now used worldwide and is
known by three names:

• General Purpose Interface Bus (GPIB)

• Hewlett-Packard Interface Bus (HP-IB)

• IEEE 488 Bus

The original document for the IEEE 488 Bus, contained no guidelines
for a preferred syntax and format conventions. So work on the speci�cation
continued to enhance system compatibility and con�gurability. The result
was a supplemented standard named IEEE488.2 which didn't replace the
old standard IEEE488 which has been renamed IEEE488.1. The IEEE 488.2
speci�cation provides a basic syntax and format conventions, as well as device
independent commands, data structures and error codes. Many instruments
still do not conform to the IEEE 488.2 standard.

To stop the increase of di�erent vendor solutions, the IEEE 488.2 has been
extended to the Standard Commands for Programmable Instrumentation
(SCPI). Each class, also from di�erend vendors, must obey to this standard,
in order to guarantee system compatibility and con�gurability among these
instruments.

1.1.2 Design

The IEEE 488 Bus is an 8 bit communication system between 2 or more
electronic devices. 30 devices could be addressed, but the bus only allows
15 to be connected at the same time. Address limits can be circumvented
directly by the use of bus expanders or indirectly through the use of an iso-
lator or an extender. The device addresses are set with mechanic switches
on the devices or digitally on more sophisticated ones. For some devices
(i.e. 1286 electrochemical interface), two GPIB ports are provided. One is
used for ASCII commands and data, and the other for high speed binary
(DUMP) output [Ins88]. The address for the ASCII input/output is called
the MAJOR address and is always an even number. The address immedi-
ately following a MAJOR address is called the MINOR address and is, of
course, an odd number.

When a computer is used as a device on the bus, it acts as a controller
and is supervising the communication exchange between the other devices.
Figure 1.1 shows a female IEEE488 Bus connector, it uses 24 pin most com-
monly in a stackable male/female combination that allows a daisy chain of
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Figure 1.1: A female IEEE488 connector (origin: [wik06b])

devices. Total cable length, the sum of chained connectors, is limited to 20
meters. The stacked connectors should be less or equal to 4.

Only one device can talk at a time, and it is called the active talker.
On the other side, all devices which are listening are referred to as active
listeners. In order to optimize bus speed, the controller instructs all other
devices to unlisten [Kei03].

1.1.3 Interface signals

The IEEE-488 interface system consists of 16 signal lines and 8 ground lines.
The 16 signal lines are divided into 3 groups (8 data lines, 3 handshake lines,
and 5 interface management lines) [Sof05].

Pin Function Group

1-4 DIO 1-4 (Data input-output) Data
5 EOI (End or identify) Controller
6 DAV (DAta Valid) Transfer
7 NRFD (Not Ready For Data) Transfer
8 NDAC (No Data ACcepted) Transfer
9 IFC (InterFace Clear) Controller
10 SRQ (Service ReQuest) Controller
11 ATN (ATteNtion) Controller
12 SHIELD Common
13-16 DIO 5-8 Data
17 REN (Remote enable) Controller
18-24 GND (GrouND) Common

The bus operates at the speed of the slowest device and all devices have
to be in ready state before some operation begins.
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Data lines

The data lines (DIO1 trough DIO8) are used to transfer addresses, control
information and data. The talker is sending data on the data lines, and the
listener is receiving them. DIO1 is the least signi�cant bit, and the bus uses
negative logic with standard TTL (Transistor-Transistor-Logic).

Handshake lines

The handshake lines guarantee an error free transmission of the data on the
data lines. They operate in an interlocked sequence and ensure a reliable
data transmission regardless of the transferrate, since the transferrate is the
rate of the slowest device on the bus.

DAV (DAta Valid)
The source controls the state of the DAV - line. If this line is set to
low, it indicates to all listening devices that the data lines contain valid
data.

NRFD (Not Ready For Data)
The listeners on the bus indicate with this signal, that they have not
handled yet the data on lines DIO1-DIO8. The line is driven by all
devices when receiving commands, and by Listeners when receiving
data messages.

NDAC (Not Data ACcepted)
This line indicates wheter the data on the data lines has been accepted
or not. The line is driven by all devices when receiving commands, and
by listeners when receiving data messages.

Figure 1.2 shows the complete handshake sequence for one data byte.

The handshaking takes place as follows:

1. The talker or controller that wants to push data on the bus sets the
DAV line to high, indicating that the data is not valid. It must ensure,
that the NRFD and NDAC lines are both low, than it can put the data
on the data lines.
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Figure 1.2: The handshake sequence for one data byte (origin: [Kei03] �gure
G-2)

2. When all listeners are ready for receiving data, each releases the NRFD
(not ready for data) signal. When the last listener releases the NRFD,
the signal goes high and the talker takes DAV to low. Now the data
lines are set to the valid state.

3. In response, each listener takes NRFD low again indicating its busy
status while reading from the data lines. When �nished, it releases
NDAC (not data accepted). The NDAC remains low until the las lis-
tener has accepted the data. Now the controller or talker can set DAV
high again to transmit the next byte of data.

Bus management lines

There are �ve lines, which control the bus activities.

ATN (ATteNtion): This signal indicates that a command byte is present
on the data lines (e.g. an address)

IFC (InterFace Clear): The systemcontroller can reset the bus and become
the active controller.

REN (REmote Enable): If activated, all bus members go into remote modus,
and into local modus when released.
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EOI (End or Identify): Becomes active with the last data byte, indicating
the end of a message.

SRQ (Service ReQuest): Whenever a device is requesting a service, this line
is asserted. The controller then polls the devices to �nd the requesting
one and performs whatever action is neccessary (equivalent of a hard-
ware interrupt [Ryn05]).

Ground lines

The eight remaining lines are ground-return or shield-drain lines.

1.1.4 The High-Speed GPIB protocol

In 2003, National Instruments, has developed the high-speed GPIB hand-
shake protocol. Normal transfer rates on the GPIB bus are on the order of
1Mbyte/s. The motivation to increase the transfer rate of a GPIB system led
to the developement of the patented high-speed GPIB handshake protocol
called HS488 [Ins03].

All devices in the GPIB system must be compliant to use the HS488
protocol. If non-HS488 devices are involved, the HS488 devices automatically
use the standard IEEE 488.1 handshake to ensure compatibility.

1.1.5 A GPIB replacement

Many customers, especially those sensitive to price, are saying that the 25-
plus year old IEEE std. 488.1 (GPIB) needs to be replaced [Pur99].

There where many discussions about a replacement of the GPIB through
one out of USB, IEEE 1394 (also known as Firewire) or network I/O. The
reason is, that customers prefer I/O that is built into the computer.

The good of GPIB

• IEEE 488 is a widely used interface which has reached a high level of
maturity. It has been around 25+ years and is a widely trusted and
reliable communication bus.

6



Figure 1.3: IEEE488 bus con�guration (origin: [Kei03] �gure G-1)
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• It has lines dedicated for speci�c functions: SRQ (equivalent of a hard-
ware interrupt), local lockout, etc.

• A lot of software has already been written for the countless number of
GPIB devices around.

The bad of GPIB

• Maximum cable length is 2 meters.

• Maximum of 15 instruments on the bus at one time (including the
controller).

• Bus speed (theoretical max 1.5MB/s, this doesn't take into considera-
tion HS488).

• Cables are expensive.

• Need a GPIB controller card.

• The number of slots in PCs is being reduced each year.

• Costs around $500.

• Installation hassle with drivers.

1.2 Electrochemical Measurements / Devices

The idea behind the project was to perform local corrosion measurements
with an electrode array. Corrosion is bounded locally, so it would be a great
help to know the exact parameters leading to corrosing process [Kal06].

Corrosion tests can take several days even weeks, so an automatic way
would be great. To perform an e�cient measurement the need of at least
two devices arises. A Multimeter/Switch device is needed to select the ac-
tual electrodes while the second one, that could be a frequence analyzer or a
voltmeter which does the actual measurement. This requires interoperability
between at least two interfaces.
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For testing the operability of the software, following devices have been used:

• Solartron 1286

• Keithley 2750 Multimeter / Switch

• HP4192A Impedance Analyzer
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Chapter 2

Software

2.1 De�nition

Software is a program that enables a computer to perform a speci�c task, as
opposed to the physical components of the system (hardware). This includes
application software such as a word processor, which enables a user to per-
form a task, and system software such as an operating system, which enables
other software to run properly, by interfacing with hardware and with other
software [wik06e].

2.2 Software libraries

A program usually requires additional software from a software library in
order to be complete for execution. Libraries are not independent units,
they are helping modules which can be used by other programs. All of the
larger programs are constituted in a modular way by subcomposing the entire
application into libraries. They contain software routines, which gives the
possibility to share code and data over di�erent modules or over the entire
system.

Software libraries can be categorized by three ways:

Source libraries contain collections of value de�nitions, declarations, func-
tions, classes, etc.

Static libraries become linked after the compiling process to the program.
For execution, one �le is enough, which could become very large.
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Dynamic libraries can avoid the programs to become very large by linking
it to dynamic libraries instead of static libraries. Dynamic libraries are
accessed during runtime when a funtion or some data from this library
is needed.

More about linking in a next chapter.

2.3 Programming language

For the project this thesis is about, my colleagues have chosen C++ as im-
plementation language. The reason for this choice is simple. C++ is a
general-purpose, high-level programming language with low-level facilities
[wik06a]. Many devices are shipped out with the relating libraries to com-
municate with. Since C++ is one of the most common user programming
languages in the industrial section, all of the libraries shipped with are at
least written in C. Though there are some incompatibilities between C and
C++, Bjarne Stroustrup, the creator of C++, has suggested that the in-
compatibilities should be reduced as much as possible in order to maximize
inter-operability between the two languages [Str02].

So, with a few exceptions, C++ is downward compatible to a well written
(ANSI) C code and should pass every C++ compiler.

2.4 Linking

Linking is known as the process done by a program, usually called linker
(also binder or loader), that takes the object generated by a compiler and as-
sembles them together into an executable single program that can be loaded
into memory. The objects generated by the compiler usually contain machine
code which can be executed. But that's not all. The objects also include
other useful information like relocation information, program symbols and
debugging information.

I would like to mention the di�erences between static and dynamic link-
ing and also examine why dynamic linking is the better choice.

Before explaining the di�erence between static linking and dynamic link-
ing, we have to explain the terms interface and implementation.
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Figure 2.1: Linking input/output

2.4.1 Interfaces versus Implemenation

Interfaces are the expression of "what" something does. Interfaces are de-
signed to remain stable over many releases of the product.

Consider the controls used to drive a car. The driver's interface remains
relatively constant. The basic controls for stop, go, and steer stay in the
same place. You don't need to know how many cylinders your engine
has before you can drive your car. Likewise, a computer's interface must
maintain some consistency at many levels to prevent leaving users and
administrators in the dark [Coc96a].

Implemenation hides behind the interface and does the actual work. So it
di�ers from interfaces since implementation is the expression of "how"
something is done and does the actual work that the "what" expression
promises.

Implementation changes from one release to the next, ususally without
any a�ection to the interface. It can contain bug �xes, performance
enhancements, security issues, etc. Also hardware di�erencies are han-
dled by changes in the implementation.

If a car engine starts to mis�re and you need to lift the hood and tinker
with the ignition timing, you suddenly face a lot of implementation
details. Outwardly identical cars may harbor major di�erences under
the hood (such as completely di�erent engines). Furthermore, many
components change year by year as well [Coc96a].

Linking can be done at compile time, at load time or at run time.
When executing a program, the executable object �le is loaded into the main
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memory and puts the program in a ready-to-run state. It might involve stor-
age space allocation and virtual address mapping to disk spaces [Gro02]. For
each input module, the compiler generates an object which has a speci�ed
format. Known formats are the ELF (executable and linking format) for
executables on the x86 architecture (Linux) and the PE-COFF (Portable
Executable and Common Object File Format) on a Microsoft environment.
The name "Portable Executable" refers to the fact that the format is not
architecture-speci�c [Mic].

Now each object module has a starting address of zero and a next step
called relocation must be done. All symbolic references or names of libraries
are beeing replaced with the actual usable address in memory. The zero
addresses must be adjusted so they point to the correct runtime addresses.
A program is made up of di�erent subprograms which are referenced through
symbols. The linker resolves the references and re-targets the absolute jumps
and patches the callers object code.

2.4.2 Static Linking

When linking statically, the compiler combines an application by joining it
with all the parts of various library routines it uses. Static linking is the
original method and occures usually while development. In this case, the
output is a unique executable �le.

Libraries in Microsoft Windows have the ending .lib (library) while in
Linux and Unix systems they have the ending .a (archive).

2.4.3 Dynamic Linking

When linking dynamically, the symbol resolution gets deferred until the pro-
gram is executed. This makes use of a dynamic or shared library with the
ending .so (shared objects) in Linux and Unix systems and .dll in the Win-
dows environment (dynamic link library). A shared or dynamic link library
can be loaded into an arbitrary memory address during runtime. The exe-
cutable simply contains some relocation and symbol table information that
allow references to code and data in the dynamic link library to be resolved
at run time. Such a library can be loaded from an application at an arbitrary
time of execution.

When loading a dll in a program, the exported dll-functions are called
with 2 di�erent linkage methods. In this case we speak of Load-Time Dy-
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namic Linking (dynamic linking at program execution) and Run-Time Dy-
namic Linking (dynamic linking at runtime).

Load-Time Dynamic Linking

When using Load-Time Linking, the application makes calls to exported
dll-functions which in this case act like local functions. When using this ap-
proach, we need a header �le (.h) and an import library (.lib) when compiling
the application. Thus, the linker gives information to the system to load the
DLL and to resolve the DLL-function at execution time.

Run-Time Dynamic Linking

When using Run-Time Linking, the application calls LoadLibrary or Load-
LibraryEx to load the DLL �le at runtime. After a successful loading of
the DLL, the GetProcAddress is used to resolve the symbolic name of the
exported function to get it's address which in turn is used to call it. For this
approach, no import library is needed.

The following criteria should ease the decision of choice between the 2
linking methods above.

• Startup power
When the startup process should be very fast, so one should use Run-
Time Dynamic Linking

• Simplicity
When using Load-Time Dynamic Linking, the exported functions of
the DLL behave like local function. This simpli�es their calling.

• Application logic
Run-Time Dynamic Linking allows the possibility to load di�erent
modules as the need arises. I.e. when developing multilingual versions
[Mic06].

2.4.4 Reasons why Dynamic Linking is superior

Many people think that static linking has bene�ts. This has never been the
case and will never be the case [Dre].

• Physical memory is used more e�ciently by sharing the library over
all processes using its code. Consider standard functions like printf(...)
or scanf(...) which are used by almost every application. Now, if a
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system is running 50-100 processes, each process has its own copy of
executable code for printf and scanf.

• A security �x or a bug �x is achieved by simply replacing the shared
object implementing this issue. When linking statically at compile
time, one cannot remind easily which library has been linked a program
to. In this case, every program built with the critical library has to
be relinked. This alone (with the next) is considered to be the killer
arguments [Dre].

• Address space layout randomization cannot be used with position inde-
pendent executable (PIE). Fixed addresses (or even only �xed o�sets)
are the dreams of attackers, and when linking statically, all text has a
�xed address in all invocations.

In this project, dynamic binding becomes of relevant importance.

2.5 MySQL

2.5.1 MySQL Database Server

The reason of selecting MySQL as the database management system (DBMS)
is that the MySQL Server is available at the GNU General Public License
(GPL). The MySQL DBMS is owned by the swedish company MySQL AB
which also o�ers a commercial licence for cases where the intended use is
incompatible with the GPL [wik06d].

An enormous popularity is found in the area of webservers, since normally
it can be used as a free licence which is very attractive for providers.

2.5.2 The values of MySQL AB

MySQL AB wants the MySQL server to be:

• The best and the most used database in the world

• Available and a�ordable for all

• Easy to use

• Continuously improved while remaining fast and safe
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• Fun to use and improve

• Free from bugs

MySQL AB and the people of MySQL AB:

• Subscribe to the Open Source philosophy

• Aim to be good citizens

• Prefer partners that share our values and mindset

• Answer emails and give support

• Are a virtual company, networking with others

2.5.3 MySQL++ API

MySQL++ is a C++ wrapper for MySQL's C API. It is built around STL1

principles, to make dealing with the database as easy as dealing with an STL
container. MySQL++ relieves the programmer of dealing with cumbersome
C data structures, generation of repetitive SQL statements, and manual cre-
ation of C++ data structures to mirror the database schema.

1Standard Template Library (STL) is a software library included in the C++ Standard
Library. It provides containers, iterators, and algorithms.

16



Chapter 3

Implementation

The existing software was strictly divided into a graphical user interface pro-
grammed by Schmidt, and the HardwareController programmed by Kalch-
gruber. The database has been destined to be the only "interface" to the com-
ponents are exchanging data. The Database has been designed by both pro-
grammers (Kalchgruber and Schmidt) and shows a tree-like or even directory-
like structure. The speci�cation of the database was also a little rudimentary.
After spending a few thoughts about the database, i agreed with the tree-like
structure and took it as a basis for a brand new start of the formerly called
HardwareController.

I saw that the database access was implemented twice, one time in the
GUI, the other time in the HardwareController. Everyone did it in it's own
way, so I saw a potential redundancy in code which led me quickly to the con-
clusion to implement a database access API which would be called Task++.
The inspiration of the name was given by the fact that the application should
deal with measurements that in turn are made up of tasks. The ++ because
of the using of C++ as implementation language and mysql++ as the mysql
database wrapper. My idea was to spend work into programming the base-
classes which map the database tables into objects.

The developed software components can roughly be devided into Task++,
TaskDLL and TaskMachine. The idea behind this separation was to create
reusable modules which are independent from each other to enhance main-
tainability and reusability.
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3.1 Database

3.1.1 Design

The database is the only way the components in the measurement system
interact. On one side, the GUI clients access the database to gather infor-
mation about the available objects in the system which become registered
from the TaskMachine described in section 3.4. The other side make(s) up
the TaskMachine(s) again which take an event from the GUI client whenever
some data in the database is present to start a measurement.

The database design is made up of a distinction between the tables that
represent the availabe objects and the ones which store the measurements
done. The tables shown in �gure 3.1 are placeholders for the available objects
in the measurement system and have the pre�x A. The tables shown in
�gure 3.2 store the actual persistent data. Once a measurement has been
started, these tables contain information about the measurement structure.
The pre�x used is H which should stand for history. The tables Measurement
and Result are unique in database and do not need a pre�x for distinction.

Figure 3.1: The data tables for available objects
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Figure 3.2: The data tables for measurement objects

19



3.1.2 Description

A_STATION

�eld type option note
id_station INTEGER PK A computer station with a unique

number in the network.
name VARCHAR(63) NN The name of the station.
description VARCHAR(1023) A description of the station.
server_ip VARCHAR(63) NN The IP in the network.
server_port INTEGER NN The port the station is listening onto.

A_DEVICE

�eld type option note
id_station INTEGER PK The id of the station this device is at-

tached onto.
id_device INTEGER PK The number of the device which is

unique on this station.
name VARCHAR(63) The name of the device appearing in

the GUI
description VARCHAR(1023) A description of the device.
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A_TASK

�eld type option note
id_station INTEGER PK The id of the station which the de-

vice is attached onto this task be-
longs to.

id_device INTEGER PK The id of the device which this task
belongs to.

id_task INTEGER PK The id of the task which must be
unique on this device.

id_parent INTEGER NN The id of the parent task which this
task belongs to if it is not a root
task. For root tasks, the id_parent
is 0.

name VARCHAR(63) NN The name of the task appearing in
the GUI.

description VARCHAR(1023) A description for this task. What
does this task?

value VARCHAR(255) NN The value is the token which is in-
terpreted by the device or the in-
terpreter in the TaskMachine.

type CHAR NN A character �ag indicating if this
task is (p)hysical, (v)irtual or
(l)ogical.

pre�x VARCHAR(20) The pre�x added to the task when
rendering the command.

post�x VARCHAR(20) The post�x added to the task when
rendering the command.

reads_device CHAR A boolean �ag indicating if the de-
vice provides a result. This �ag is
only set to physical tasks.
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A_TASKPARAMETER

�eld type option note
id_station INTEGER PK The id of the station...
id_device INTEGER PK The id of the device...
id_task INTEGER PK The id of the task...
id_taskparameter PK INTEGER
name VARCHAR(127) NN The name of the taskparam-

eter shown in the GUI.
description VARCHAR(1023) A description of the taskpa-

rameter.
value VARCHAR(255) The actual value of the

taskparameter.
parameter_index INTEGER The position of the taskpa-

rameter.
type CHAR A character �ag indicating

the type of the taskparam-
eter. (s)tring, (i)nteger,
(d)ouble, (b)ool, (v)ariable
or (r)eference.

option_type CHAR A character �ag indicat-
ing if this taskparameter
is (o)ptional, (u)nique,
(r)equired. The combina-
tion of unique and required
is called (s)elect.

item_list VARCHAR(1023) An optional list of se-
lectable items sepa-
rated by the following
item_list_separator.

item_list_separator CHAR A single character separator
for the itemlist.

min FLOAT An optional lower bound for
a numeric taskparameter.

max FLOAT An optional upper bound
for a numeric taskparame-
ter.

pre�x VARCHAR(20) A pre�x added to the pa-
rameter when rendering.

post�x VARCHAR(20) A post�x added to the pa-
rameter when rendering.
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MEASUREMENT

�eld type option note
id_measurement INTEGER PK, AUTO The id of the measurement.
name VARCHAR(127) NN The name of the measure-

ment.
description VARCHAR(1023) A description of the mea-

surement.
start DATETIME The start time of the mea-

surement.
stop DATETIME The stop time of the mea-

surement.

In the following tables, H_STATION, H_DEVICE, H_TASK and H_TASK-
PARAMETER only the added �elds are listed.

H_STATION

�eld type option note
id_measurement INTEGER PK This station has been used for the mea-

surement with id_measurement.

H_DEVICE

�eld type option note
id_measurement INTEGER PK This device has been used for the mea-

surement with id_measurement.

H_TASK

�eld type option note
id_measurement INTEGER PK This task has been used

for the measurement with
id_measurement.

sequence_id VARCHAR(127) PK The sequence id of this task. (i.e.
1.3.2)
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H_TASKPARAMETER

�eld type option note
id_measurement INTEGER PK This taskparameter belongs to

a task of measurement with
id_measurement.

sequence_id VARCHAR(127) PK The sequence id of the task this
taskparameter belongs to.

RESULT

�eld type option note
id_measurement INTEGER PK The id of the measurement.
id_task INTEGER FK The id of the task.
sequence_id PK FK The sequence id of the task.
id_result INTEGER PK The id of the result.
value VARCHAR(1023) The value of the result.
type CHAR A character �ag, (s)tring,

(i)nteger, (d)ouble or (b)ool.

3.2 Task++ classes

Task++ is the collection of classes which, amongst others, implement the
database access functionality. These classes are packed into a dynamic li-
brary which can be used by every software component needing to deal with
database access. Mainly, this library is used from the TaskMachine, which is
described later, and the graphical user interface (GUI).
The classes re�ect the database tables, so a database access is provided in
an object oriented way.

The creation of this library features the Load-Time Dynamic Linking
since the DLL is bound at the loading time of the program. The program
using the library is compiled using the appropriate header �les and the be-
longing .lib �le which contains linkage information. The dynamic link library
taskpp.dll is copied into the programs execution folder.

For each database table, the library contains a class of a simliar name.
Each class provides getter and setter methods1 for it's attributes as well as
methods for writing, reading, deleting and updating the database with the

1By convention, setAttribute and getAttribute methods are abbreviated by setter and
getter methods

24



data encapsulated into these objects.

3.2.1 Measurement classes

Station

A station is a uniquely identi�ed computer in the network which can have
measurement interfaces attached onto. A std :: vector of devices gives infor-
mation about the devices attached onto. A station object is contructed the
following way:

Stat i on s t a t i o n = new Stat i on (name , d e s c r i p t i on , ip , port ) ;

Device

Once a station object has been created, it is possible to create a device
which will be automatically attached to the station. To avoid inconsistency,
the default constructor 2 is declared as protected and cannot be accessed
from outside 3.
The only available constructor takes 3 arguments shown in the listing below.
Therefore it is not possible to create a device hanging around alone in the
system.

// Create Device
Device dev i c e = new Device ( s ta t i on , name , d e s c r i p t i o n ) ;
% device−>set IdDev i ce ( id_device ) ;

This technique of object construction is also used in the other classes, so
relation consistency is guaranteed and memory clean up can be simply done
by calling the destroy() method of the root object. Due to the tree-like or
directory-like structure of the database and of the objects respectively, when
destroying an arbitrary object, all subjects are destroyed too, and memory
clean up is done by the library itself.

Devices, in turn, have a std :: vector containig Task elements.

2The constructor which takes no arguments, for example Device()
3outside is meaning from a class which does not stand into an inherit or a friend

relationship to the implementing class

25



Task

A task is an abstract representation of a function or a sequence of functions
(which could also be an entire program). This is the part where most of the
designing time elapsed.
A Task can represent many di�erent things, therefore 3 types of tasks are
distinguished:

• physical task

• virtual task

• logical task

A physical task is the low level representation. It's value is the actual
ASCII command string which will be sent to the corresponding measurement
instrument. In most cases the entire ASCII command is not formed from a
single task element but together with taskparameters or other tasks. So there
is another distinction between root tasks and sub-tasks. There are command
protocol speci�cations which show a tree-like command set, therefore many
tasks have the same pre�x task which describes a taskgroup or whatever else.

Example commands are:

STATUS:OPERATION:ENABLE 2
STATUS:OPERATION:ENABLE?
STATUS:PRESET
STATUS:QUEUE:ENABLE
STATUS:QUEUE:ENABLE?

Without explaining the semantics of these commands, we can describe
this command set as a tree structure with a root element containing the
value STATUS having the sub-tasks OPERATION, PRESET and QUEUE.
Apart from the PRESET task, the nodes have children too. The colons be-
tween the commands can be seen as part of the root command or as a pre�x
of it's children. If also STATUS? would be a valid command, it would not be
a good idea to make the colon part of the root command since a second root
node labeled STATUS? would be needed. Figure 3.3 shows the tree represen-
tation of the command set listened above.

When we load the available tasks from the database we have the possibil-
ity to load just a single task or the entire subtree recursively by setting the
appropriate �ag. Now a single path in the command tree is selected to form
the command string before sending it to the device (�gure 3.4).
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Figure 3.3: The command set as a tree representation

Rendering the command

After a tree has been selected the entire command string can be obtained
by calling the task's render(SymbolTable∗) method. Either a pointer to a
SymbolTable or null can be passed. If a SymbolTable∗ is passed, the symbols in
the task parameter (see 3.2.1) get substituted by the associated values.

Listing 3.1: The render function of a task
std : : s t r i n g Task : : render ( SymbolTable ∗ s t ) {

std : : s t r i n g s = "" ;
s += this−>pr e f i x ;
s += this−>value ;
i f ( ! this−>subta skL i s t . empty ( ) ) {

s += subta skL i s t . at (0)−>render ( s t ) ;
}
i f ( ! this−>parameterLis t . empty ( ) ) {
for ( std : : vector<TaskParameter ∗>:: i t e r a t o r

i = parameterLis t . begin ( ) ; i != parameterLis t . end ( ) ;
i++) {

s += (∗ i )−>render ( s t ) ;
}

}

s += this−>po s t f i x ;
return s ;

}
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Figure 3.4: A selected path in the command tree

The render - function takes a symbol table as an argument, which will
be passed to the render - function of the TaskParameter class which will be
described below. We start with an empty string and add the pre�x variable
which can be empty or not. After that, the actual value (or the value of this
node) is added to the string before adding the value recursively of it's child.
Since we have chosen a unique path in our command tree, every task has at
most one child node.

After that we have an iteration over a list of elements of type TaskParam-
eter. This sounds a little confusing at the �rst moment. The fact is that an
invariant4 prohibids a task having subtasks and taskparameters at the same
time. So if the subtask is rendered, we can be sure that the parameterlist is
empty, since only a leaf node can have taskparameters.

A virtual task describes a set of tasks or a sequence of phsysical tasks
between programming statements implemented by a device-module5 devel-
oper. In chapter 4 we show the development of a new DLL-module.

4A constraint that ensures a consistent state of an object
5A device-module is considered as the DLL implementation belonging to a measurement

device.
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Virtual tasks represent already implemented functionalities. It would also
be possible to achieve the same functionality by merging physical and logical
tasks which increases complexity notably. Not every user has the su�cient
knowledge about every single command accepted by a measurement device,
and so it should be possible for him to use the virtual tasks doing the work.

A logical task belongs to a prede�ned set of tasks which control a log-
ical sequence of the other 2 task types described above. This type of task
becomes interpreted by the later described TaskHandler and becomes then
mapped to a logical function which controls the sequence.

In logical task we use the symbol $ to identify a variable and the symbol #
to identi�y a reference. A reference means a link to an already present result
in the database. This will be described later when talking about Results.

1. For loops

A for loop is identi�ed by the value FOR and takes 4 parameters:

FOR(FROM, TO, STEP, VAR_NAME)

The VAR_NAME parameter is the symbolic name used for the loop
counter. If we use $i as the variable name, we can use this value in any
task belonging to the scope of the loop.

2. If statements

An IF statement takes 3 arguments

IF (VAL_1, OP, VAL_2)

where VAL_1 and VAL_2 are number representations, variables or
references to number representation. The OP parameter is the com-
paring operator out of the set {==, ! =, <=, <, >, >=}

3. Else statements

An else statement simply describes the branch that is executed when
the evaluation of the last if statement returned a negative value.

TaskParameter

Each leaf task can have a list of taskparameters. Consider a command string
formed up of STATUS:ENABLE <NRf> where <NRf> is a number represen-
tation format and takes an integer argument between an upper and a lower
bound. Then, <NRf> can be a simple number, a variable representing a
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number or even a reference to a result in a number representation format.

We get the a list of parameters by calling the task's getParameterList() func-
tion which returns a copy of a vector containing pointers to TaskParameter
classes. See the API for more details.

Like the Task class, it has a pre�x and a post�x variable which is used
when rendering the command. Consider the following ASCII command:

ROUTE : CLOSE < clist >

where < clist > de�nes a list of channels in the form < clist >= (@SCH)
where S = mainframe slot number and CH = switching module channel
number.

So we would have 2 task nodes, one for ROUTE and the other for
[:]CLOSE and in turn a taskparameter which describes the list for the chan-
nels to close6. We don't want to ask too much of so to the user by asking
him to enter the right syntax for the task parameter. He just has to enter a
comma separated list of SCH's in the form 101, 201, 202 and the belonging
syntax (pre�x and post�x) is added automatically. Listing 3.2 shows the
function that does the work.

Listing 3.2: The render function of a taskparameter
std : : s t r i n g TaskParameter : : render ( SymbolTable ∗ s t ) {
using namespace std ;

s t r i n g s ;
s t r i n g va l ;

// add p r e f i x
s += this−>pr e f i x ;

// i f SymbolTable i s not NULL
i f ( s t != NULL) {

s += this−>parseValue ( s t ) ;
}
// i f SymbolTable i s NULL, render normal ly !
else {

s += this−>getValue ( ) ;
}

6ROUTE:CLOSE belongs to the command set of the Keithley Multimeter/Switch and
closes the channels
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// add p o s t f i x
s += this−>po s t f i x ;
return s ;

}

The function is called from the task's render function. The symboltable
can either be NULL or a symboltable containing symbol to value mappings
which in turn may be used as variables in the taskparameter. If the Symbol-
Table is NULL, the value is rendered without symbol substitution, otherwise
the value is parsed using the parseValue(SymbolTable∗) function shown in the
following listing:

Listing 3.3: The function for parsing the taskparameter's value
std : : s t r i n g TaskParameter : : parseValue ( SymbolTable ∗ s t ) {
using namespace std ;
s t r i n g r e t v a l ;

s t r i n g : : s ize_type l oc_re f = value . f i nd ( "#" ) ;
s t r i n g : : s ize_type loc_var = value . f i nd ( "$" ) ;
s t r i n g : : s ize_type loc_ind = value . f i nd ( " [ " ) ;

// Search f o r a Reference
i f ( l o c_re f != s t r i n g : : npos ) {

s t r i n g var ;
s t r i n g index ;
s t r i n g r e f ;
// Search f o r an Index
i f ( loc_ind != s t r i n g : : npos ) {

// t h i s parameter i s an indexed r e f e r ence
i f ( loc_var != s t r i n g : : npos ) {

// t h i s parameter i s indexed wi th a v a r i a b l e
while ( loc_var < value . s i z e ( ) ) {

char c = value . at ( loc_var ) ;
i f ( c == ' ] ' ) break ;
i f ( c != ' ' && c != ' [ ' ) var += c ;
loc_var++;

}
}
while ( loc_ind < value . s i z e ( ) ) {

char c = value . at ( loc_ind ) ;
i f ( c == ' ] ' ) break ;
i f ( c != ' ' && c != ' [ ' ) index += c ;
loc_ind ++;

}
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}

while ( l o c_re f < value . s i z e ( ) ) {
char c = value . at ( l o c_re f ) ;
i f ( c == ' $ ' | | c == ' [ ' ) break ;
i f ( c != ' ' && c != '#' ) r e f += c ;
l o c_re f ++;

}

int i = 1 ;
i f ( ! index . empty ( ) ) {

i f ( index . f i nd ( "$" ) != s t r i n g : : npos ) {
i = a t o i ( st−>get ( index ) . c_str ( ) ) ;

}
else {

i = a t o i ( index . c_str ( ) ) ;
}

}

Result ∗ r e s = Result : : loadFromDb( st−>getIdMeasurement ( ) ,
r e f , i ) ;

i f ( r e s ) {
r e t v a l = res−>getValue ( ) ;

}
res−>dest roy ( ) ;

}
// Search f o r a Var iab l e
else i f ( loc_var != s t r i n g : : npos ) {

// t h i s parameter i s a v a r i a b l e
r e t v a l = st−>get ( va lue ) ;

}
else {

// t h i s parameter i s a normal va lue , no pars ing .
r e t v a l = value ;

}
return r e t v a l ;

}

A taskparameter has three special character symbols to in�uence the
rendering output. These special symbols are:

Dollar sign $: marks a variable, i.e. $i in a for loop.

Rhomb #: reference to a result in database, i.e. #1.2.1

Angular brackets [ ]: for indexing a reference, i.e. #1.2.1[2] or #1.2.1[$i]
(indexed).

The above code listing �rst uses the �nd method of the value string which
returns a pointer unequal to string :: n_pos if the character given as argument
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(in our case one out of $, #, [) was found. If a reference sign (#) was found,
we also check if there is also an index present. If it is, we check if the reference
is indexed with a variable or a constant and store them into the index string
which is used to get the value from the symboltable if it contains the variable
name, or simply parsed into an integer7. All gained information is used to
load the referenced data from the database by creating a result object and
returning its value.

In the other case, the parameter value only contains a variable which is
used to get the actual value from the symboltable. If neither a reference, nor
a variable sign has been found, the value becomes returned as it is and no
processing is needed.

Measurement

Once the system has loaded successfully, we can start creating a measure-
ment. A measurement is identi�ed by a unique id in the system, has a name
and an optional description. A start and a stop timestamp should give in-
formation about the execution duration.

Measurement m( "He l lo measurement ! " , "He l lo d e s c r i p t i o n ! " ) ;

Between others, the class provides methods like execute() and stopExecute() for
starting and aborting a measurement. We'll see the usage of them later.

HStation

The classes with an H pre�x are derivated classes and describe the actual
usage in a measurement, while the base8 classes describe the available ob-
jects9 in the system.

When creating an object of type HStation, we say that we are using this
station in our measurement, so we create a measurement station the follow-
ing way:

Stat i on ∗ s t a t i o n = Stat i on : : loadFromDb (1 , true ) ;
HStation hStat ion(&m, s t a t i o n ) ;

7An index is always an integer
8A base class is the class where it is inherited from
9An available object is one out of a station, a device, a task and a taskparameter
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First we need to search for an available station in the database. With
the assumption we already know about the available stations in the system,
we load the station with id=1. The second parameter sets recursive to true
meaning that all subelements (devices, tasks and taskparameters) are also
loaded.

Now we can use the available station to create a measurement station.
The measurement object is also passed to the constructor, so that the class
automatically attaches the station to the measurement.

HDevice

Once having attached a station to a measurement, we can use this station to
attach a device. For this purpose we select an available device and pass it as
a parameter to the constructor.

Device ∗ dev i c e = sta t i on−>getDevice ( 0 ) ; // l o g i c a l d ev i c e
HDevice hDevice(&hStation , dev i c e ) ;

Here, the same happens as when creating a measurement station. An
available device is selected from the station and used as a parameter when
constructing a device object used for the measurement.

HTask

We follow the technique and choose a task o�ered by our available device
and use it for the measurement.

Task ∗ taskLoop = device−>getTask ( 0 ) ;
HTask hLoop1(&hDevice , taskLoop ) ;

Consider the �rst task of our selected device beeing a loop task explained
above in the section of logical tasks; we are now going to create a loop by
the construction with the device and selected loop task as parameters.

The next step is to complete our structure by adding the taskparameters
needed by this task. After that, we assign a sequence id which controls the
position in our task tree or the execution order respectively. More about that
later.

HTaskParameter

Assuming that we know about the available task parameters of a given task,
we use them to create the actual task parameter for the measurement task.
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HTaskParameter htp(&measurementTask , avai lableTaskParameter ) ;
hWaitTaskParameter1 . setValue ( " 101 , 201 , 202" ) ;

Result

A result always belongs to a task, be it pysical or virtual.

Listing 3.4: Creating and saving a result
/∗ Create a Resul t , s e t Value and save ! ∗/
Result r e s u l t ( htask ) ;
r e s u l t . setValue ( r e s ) ;
r e s u l t . Write2db ( ) ;

3.2.2 Connection classes

For this thesis, all devices work with the same connection type (IEEE488
Bus), but the system has been designed in a way, that it would be easily
possible to add another connection for communication between devices and
the computer. Figure 3.5 is showing an abstract class which should act like
an interface for extending classes and forcing them to be a singleton classes
by providing a static Instance() function.

There must be an instance for every connection type, so it is not possible
to hold the static instance object in the Connection class, but every extend-
ing class must do it by itself. While there are some possibilities in the Java
programming language, the C++ language is very severe and this is the only
solution I've found.

Figure 3.5 shows the IEEE488 connection class which is actually an im-
plementation of the singleton pattern but in the same time an object of type
Connection. This matter of fact is very useful, since every connection can
be accessed over the Connection class10. On the other way, a programmer of
DLL modules has the possibility to use connection speci�c functions when
creating virtual tasks. The IEEE488 connection for example has the addi-
tional functions ppoll(int channel) and spoll (int channel) for a serial or parallel
polling. These 2 functions are not implemented in a standard connection
since it is a connection dependent behavior.

10When the TaskMachine sends or reads from a device, it doesn't care of which connec-
tion is actually being used. This is done by dynamic binding of virtual functions
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Figure 3.5: The connection interface
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3.3 Using Task++

Now let's do a simple example. We will create a for loop and load a refer-
ence from database. We take the assumption that the references are already
stored.

Listing 3.5: An example of using Task++
// Get Ava i l a b l e Data ( S ta t ions , Devices ,
// Tasks and TaskParameters )
Stat i on ∗ s t a t i o n = Stat i on : : loadFromDb (1 , true ) ;

// Load the de v i c e s we need
Device ∗ l o g i c a l = s ta t i on−>getDevice ( 0 ) ;
Device ∗ ke i th l ey2750 = sta t i on−>getDevice ( 1 ) ;
Device ∗ s o l a r t r on1286 = sta t i on−>getDevice ( 2 ) ;

// Load the t a s k s we need
Task ∗_loop = l o g i c a l−>getTask ( 0 ) ;
Task ∗_if = l o g i c a l−>getTask ( 1 ) ;
Task ∗_else = l o g i c a l−>getTask ( 2 ) ;
Task ∗_wait = l o g i c a l−>getTask ( 4 ) ;
Task ∗v_task = ke i th l ey2750−>getTask ( 3 ) ;
Task ∗p_task = so la r t ron1286−>getTask ( 1 ) ;

// Define the taskparameters we need
TaskParameter ∗ loop_from = _loop−>getParameter ( 0 ) ;
TaskParameter ∗ loop_to = _loop−>getParameter ( 1 ) ;
TaskParameter ∗ loop_step = _loop−>getParameter ( 2 ) ;
TaskParameter ∗ loop_var = _loop−>getParameter ( 3 ) ;

TaskParameter ∗ i f_arg1 = _if−>getParameter ( 0 ) ;
TaskParameter ∗ i f_op = _if−>getParameter ( 1 ) ;
TaskParameter ∗ i f_arg2 = _if−>getParameter ( 2 ) ;
TaskParameter ∗_wait_time = _wait−>getParameter ( 0 ) ;

TaskParameter ∗delay = v_task−>getParameter ( 0 ) ;

// Create a new measurement
Measurement ∗m =
new Measurement ( "M1" , " F i r s t Measurement" ) ;

// Define a new measurement s t a t i o n ( HStation )
HStation ∗h_stat ion = new HStation (m, s t a t i o n ) ;

// Define new measurement d e v i c e s (HDevice )
HDevice ∗ h_log i ca l = new HDevice ( h_station , l o g i c a l ) ;
HDevice ∗h_keithley =
new HDevice ( h_station , ke i th l ey2750 ) ;
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HDevice ∗h_solartron =
new HDevice ( h_station , s o l a r t r on1286 ) ;

// Define new measurement t a s k s (HTask)
HTask ∗h_loop1 = new HTask( h_log ica l , _loop ) ;
HTask ∗h_loop2 = new HTask( h_log ica l , _loop ) ;
HTask ∗h_if = new HTask( h_log ica l , _i f ) ;
HTask ∗h_else = new HTask( h_log ica l , _else ) ;
HTask ∗h_wait = new HTask( h_log ica l , _wait ) ;
HTask ∗h_v_task = new HTask( h_keithley , v_task ) ;
HTask ∗h_p_task = new HTask( h_solartron , p_task ) ;

// Loop 1 Parameters
HTaskParameter ∗h_loop1_from =
new HTaskParameter ( h_loop1 , loop_from ) ;

HTaskParameter ∗h_loop1_to =
new HTaskParameter ( h_loop1 , loop_to ) ;

HTaskParameter ∗h_loop1_step =
new HTaskParameter ( h_loop1 , loop_step ) ;

HTaskParameter ∗h_loop1_var =
new HTaskParameter ( h_loop1 , loop_var ) ;

// Loop 2 Parameters
HTaskParameter ∗h_loop2_from =
new HTaskParameter ( h_loop2 , loop_from ) ;

HTaskParameter ∗h_loop2_to =
new HTaskParameter ( h_loop2 , loop_to ) ;

HTaskParameter ∗h_loop2_step =
new HTaskParameter ( h_loop2 , loop_step ) ;

HTaskParameter ∗h_loop2_var =
new HTaskParameter ( h_loop2 , loop_var ) ;

// I f 1 Parameters
HTaskParameter ∗h_if_arg1 =
new HTaskParameter ( h_if , i f_arg1 ) ;

HTaskParameter ∗h_if_op =
new HTaskParameter ( h_if , i f_op ) ;

HTaskParameter ∗h_if_arg2 =
new HTaskParameter ( h_if , i f_arg2 ) ;

// Wait t a s k parameter
HTaskParameter ∗h_wait_time =
new HTaskParameter ( h_wait , _wait_time ) ;

// Vi r tua l t a s k parameter
HTaskParameter ∗h_delay =
new HTaskParameter (h_v_task , de lay ) ;
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// Set loop1 parameters
h_loop1_from−>setValue ( "1" ) ;
h_loop1_to−>setValue ( "20" ) ;
h_loop1_step−>setValue ( "1" ) ;
h_loop1_var−>setValue ( " $ i " ) ;

// Set i f parameters
h_if_arg1−>setValue ( " $ i " ) ;
h_if_op−>setValue ( Logic : :OP_GREATER) ;
h_if_arg2−>setValue ( "10" ) ;

// Set loop2 parameters
h_loop2_from−>setValue ( "500" ) ;
h_loop2_from−>setType ( TaskParameter : :TYPE_VARIABLE) ;
h_loop2_to−>setValue ( "1000" ) ;
h_loop2_step−>setValue ( "100" ) ;
h_loop2_var−>setValue ( " $ j " ) ;

// Set v_task parameters ( de lay )
h_delay−>setValue ( " $ j " ) ;
h_delay−>setType ( TaskParameter : :TYPE_VARIABLE) ;

// Set wai t time
h_wait_time−>setValue ( "500" ) ;

// Set Sequence Id to the Tasks
// SequenceID de f i n e s execu t ion order

h_loop1−>setSequenceId ( "1" ) ;

h_if−>setSequenceId ( " 1 .1 " ) ;
h_loop2−>setSequenceId ( " 1 . 1 . 1 " ) ;

h_v_task−>setSequenceId ( " 1 . 1 . 1 . 1 " ) ;

h_else−>setSequenceId ( " 1 .2 " ) ;
h_wait−>setSequenceId ( " 1 . 2 . 1 " ) ;
h_p_task−>setSequenceId ( " 1 . 2 . 2 " ) ;

try {
m−>write2db ( true ) ;
s td : : cout << "\n\n\n" ;
t ree<HTask∗> tr = m−>getTaskTree ( ) ;
U t i l : : In s tance ()−>printTaskTree(& t r ) ;
m−>execute ( ) ;

}
catch ( std : : except ion &ex ) {

std : : cout << ex . what ( ) << std : : endl ;
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}

The code listing shown above is actually what the GUI does and produces
the following which can by graphically understood like shon in �gure 3.6. At
the �rst moment, this short syntax seems to need much code. Consider that
in the same moment, the object tree becomes also stored in the database and
all relations are set correctly.

Listing 3.6: The console output of the tasktree
0 − # ROOT #
1 − FOR( from 1 to 20 ; s tep 1 ; v a r i ab l e $ i )
1 . 1 − IF ( $ i > 10)
1 . 1 . 1 − FOR( from 500 to 1000 ; s tep 100 ; v a r i ab l e $ j )
1 . 1 . 1 . 1 − KEITHLEY2750V1( $ j )
1 . 2 − ELSE
1 . 2 . 1 − WAIT(500)
1 . 2 . 2 − BK

Figure 3.6: The Syntaxtree
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3.4 The TaskMachine

The controller module in the system was formerly called HardwareController.
It has been programmed by Kalchgruber Martin. In order to satisfy the ur-
gently needed functionality, only a subset of task was possible to execute. Is
very hard coded and does not feature the design of a good object oriented
programming.

The TaskMachine is the actual reimplementation of the HardwareCon-
troller. It has been a brand new start using some requirement knowledge
gained while analyzing the old program. The TaskMachine is a server-side
program running on a windows system. Once started successfully, it is lis-
tening for a START signal of a measurement from any client in the network.

Figure 3.7: The TaskMachine

3.4.1 Startup

In �gure 3.8 we see that the TaskMachine works in singleton modus11 We can
obtain our singleton class by calling the TaskMachine::Instance() method. Be-

11Singleton is a design pattern that ensures the existence of maximal one instance of a
class.
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Figure 3.8: Class diagram for the TaskMachine

fore starting the TaskMachine we need to initialize it with some parameters
which are read from the taskmachine.ini con�guration �le shown in listing
3.7.

Listing 3.7: The TaskMachine's con�guration �le
; TaskMachine ( c ) Conf igurat ion F i l e
[ S ta t i on ]
Name=My Stat i on
Desc r ip t i on=A Stat i on f o r Measurements
IP=192 .168 .0 .10
Port=2343
Number=1
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[ Database ]
db_host=192 .168 .0 .11
db_port=3306
db_name=taskpp
db_user=taskpp
db_pass=taskpp

The con�guration �le gives the TaskMachine a name, a description, an
ip address, a port and a unique number in the system. It also provides
database access information. After the database connection has been estab-
lished successfully, we simply call the TaskMachine::start() method to start the
TaskMachine.

When starting up the TaskMachine, the program loades the dynamic
libraries containing the devices functionality. For this purpose the TaskMa-
chine scans the con�guration directory /conf which should contain a con-
�guration �le for each device attached onto the station the TaskMachine is
running on.

The con�guration �le is in the windows .ini format and contains the
following information divided into 2 sections:

Device: The settings for the device

Name: The name of the device (e.g. Solartron 1286)

Description: A short description which helps the user to understand
or to remember it's functionality.

Number: A unique number given to the device onto the station. De-
vices on di�erent stations may have the same numbers.

dll: This is the main con�guration of .ini �le. It tells the TaskMachine
where to �nd the dynamic library that implements the device
functionality. More about this in a later section.

Connection: The settings for the connection

Name: The name of the connection this device uses to communicate
with the TaskMachine. At the moment only the IEEE488 connec-
tion is available. Aliases are IEEE488.1 and GPIB.

Channel: Depending on the communication interface the device is
using to talk to the computer, a channel can be assigned when
the connection supports the devices to talk onto di�erent channel.
I.e. the GPIB bus allows the assignment of 30 di�erent channels.
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Listing 3.8: Sample con�guration �le for a device
; Con f igurat ion F i l e f o r Device
; KEITHLEY 2750

[ Device ]
Name=Kei th ley 2750
Desc r ip t i on=Model 2750 Multimeter / Switch System
Number=2

; DLL F i l e implementing the f u n c i o n a l i t y
d l l=ke i th l ey2750 . d l l

[ Connection ]
Name=IEEE488
; Channel on GPIB Bus
Channel=16

Once we know the location of our dynamic link library (DLL), we make
use of Run-Time Dynamic Linking to load the library into runtime. This is
done with the function LoadLibrary or LoadLibraryEx respectively. After a
successful loading of the library, we use GetProcAddress to get the function
pointer of the exported function.

Listing 3.9: Run-time linking to the DLL
HINSTANCE dev i ce = LoadLibrary ( f i l e S r c . s t r ( ) . c_str ( ) ) ;

i f ( dev i c e ) {
_getDllDevice = ( getDl lDev ice )

GetProcAddress ( device , " ge tDl lDev i ce " ) ;

i f ( _getDllDevice ) {
Dl lDevice ∗d = _getDllDevice ( ) ;
d−>setChannel ( channel ) ;
in s tance−>dllMap [ u−>in t 2 s t r i n g ( id ) ] = d ;
cout << " [ " << cc : : fg_green << "ok"

<< cc : : fg_white
<< " ] " << endl ;

}
else {

std : : cout << " [ "<< cc : : fg_red << " f a i l e d "
<< cc : : fg_white
<< " ] \ n" ;

}
}
else {

std : : cout << " [ "<< cc : : fg_red << " f a i l e d "
<< cc : : fg_white << " ]\ n" ;
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}
}

3.4.2 Running

Once the TaskMachine has been started successfully, the RequestListener
(see class diagram in �gure 3.8) is listening on the port we set in the ini con-
�guration �le. As soon as a connection is accepted, the RequestListener del-
egates its work to the RequestHandler which reads the command bu�er from
the socket and handles accordingly. For the moment, only the commands
START and STOP with the measurements id appended are recognized.

Listing 3.10: Handling a request and executing a measurement
// Get the s i n g l e t o n ins tance o f the TaskMachine
TaskMachine ∗tm = TaskMachine : : In s tance ( ) ;

// Get the measurement id
int mId = a to i ( s . subs t r ( 5 ) . c_str ( ) ) ;

// Add the RequestHandler to the TaskMachine
tm−>addRequestHandler (mId , this ) ;

// Load the en t i r e measurement from database
m = Measurement : : loadFromDb(mId , true ) ;

// Create a new SymbolTable f o r t h i s measurement
s t = new SymbolTable (mId ) ;

// S ta r t the measurement
taskHandler−>s t a r t (m, s t ) ;

// Remove the measurement from the TaskMachine
tm−>removeRequestHandler (mId ) ;

// Clean up memory
m−>dest roy ( ) ;
delete s t ;

3.4.3 Shutdown

For simplicity reasons, the TaskMachine works in command line modus and
can be terminated by pressing enter or the CTRL-C signal. All devices
become detached from the TaskMachine until the TaskMachine removes itself
from memory.
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3.5 The TaskDLL framework

TaskDLL is the framework which is used when creating new DLL modules for
new devices. It is a very basic library and is essentially an implementation
of the command pattern.

Figure 3.9: Class diagram for the TaskDLL framework

Each DLL �le scanned by the TaskMachine provides an exported function
named getDLLDevice(). This function is implemented in the DLL generator
and simply returns a DLLDevice object. The creation of DLL modules is
shown in the next chapter.

Listing 3.11: Attaching a device
void DllDevice : : attach ( Stat i on ∗ s ta t i on , int id_device ) {

using namespace std ;

// Avoid a t t a ch in g a dev i c e tw ice
i f ( dev i c e == 0) {
// s e t s t a t i o n the DLL dev i c e be l ong s to
this−>s t a t i o n = s t a t i o n ;

// Create the dev i c e and s e t the number ( id_device )
this−>dev i ce = new Device ( s ta t i on , name , d e s c r i p t i o n ) ;
this−>device−>set IdDev i ce ( id_device ) ;
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// Load ph y s i c a l Tasks
for ( std : : vector<Phys ica lTasks ∗>:: i t e r a t o r

i = p_tasks . begin ( ) ;
i != p_tasks . end ( ) ; ++i ) {

(∗ i )−>load ( dev i c e ) ;
}

// Load v i r t u a l Tasks
for ( std : : vector<VirtualTask ∗>:: i t e r a t o r

i = v_tasks . begin ( ) ;
i != v_tasks . end ( ) ; ++i ) {

(∗ i )−>load ( dev i c e ) ;
}
// Write the dev i c e to database
this−>device−>write2db ( true ) ;

}
}

Once we have the DLLDevice object, we can attach it to the station
which loaded the DLL �le by calling its attach(Station∗, int) method with our
station object as the �rst argument and the device number (gained from
the devices .ini �le) as second argument. We only load the device if we
already didn't ( if (device==0)). We create the device, set the id and load all
belonging virtual and physical tasks before writing it to the database. From
this moment on, all information about the device can be accessed by the GUI
client.
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Chapter 4

Creating DLL modules

The creation of DLL modules is the point this project builds up. When
creating DLL modules, we make use of the TaskDLL framework described
previously.

4.1 Overview

Physical tasks: We create the physical tasks by extending the class
PhysicalTasks of the namespace taskdll and implementing it's
load(Device∗) function. The loading procedure of a device has been
shown above and for each PhysicalTaks element present, the load func-
tion becomes executed. Creating physical tasks should not really be the
problem, since the load implementation only contains an instantiation
list of tasks and taskparameters, where the tasks values correspond to
the ASCII command sent to the device. An example is shown later.

Virtual task(s): These type of tasks just di�er from physical tasks in the
way that sending and reading from/to the device must be implemented
by the programmer. A virtual task can be considered as a logical
sequence of some physical tasks. In this case, for each virtual task, the
class VirtualTask must be extended and the functions load(Device∗) and
execute(HTask∗, SymbolTable∗) must be implemented. The load function
acts in the same way as the function of the physical tasks does.

4.2 Creating physical tasks

Consider a subset of the command set for the Keithley Multimeter/Switch
System shown in chapter 3:
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Listing 4.1: A command subset of Keithley2750
STATUS:OPERATION:ENABLE 2
STATUS:OPERATION:ENABLE?
STATUS:PRESET
STATUS:QUEUE:ENABLE
STATUS:QUEUE:ENABLE?

These commands are considered to be physical tasks, since they are sent
to and interpreted from the device directly. In this case, the DLL �le does not
execute the commands but it acts as an information holder. The information
is held in an object oriented way.

Listing 4.2: Header �le for the physical tasks
#include " t a s k d l l . h"
#include " task++.h"

using namespace t a s k d l l ;
using namespace taskpp ;

class Keithley2750P1 : public Phys ica lTasks {
public :

inl ine Keithley2750P1 ( Dl lDevice ∗ d l lDev i c e )
: Phys ica lTasks ( d l lDev i c e ) { }

void load ( Device ∗ dev i ce ) ;
} ;

Listing 4.3: Implementation of the physical tasks
#include "Keithley2750P1 . h"

void Keithley2750P1 : : load ( Device ∗ dev i ce ) {
/∗ Create some handy shor t forms ;−) ∗/

typedef TaskParameter TP;
typedef Task T;
char INT = TaskParameter : :TYPE_INTEGER;
char p = Task : :TYPE_PHYSICAL;
Device ∗d = dev i ce ;

/∗ STATUS branch ∗/
T ∗ s t a tu s = new T( device , " Status " , "STATUS" ) ;

/∗ OPERATION branch ∗/
T ∗op = new T( status , "Operation " , "OPERATION" , p , " : " ) ;

T ∗en = new T(op , "Enable" , "ENABLE" , p , " : " ) ;
T ∗en1_= new T(op , "Enable ?" , "ENABLE?" , p , " : " ) ;

T ∗ pr e s e t = new T( status , " Preset " , "PRESET" , p , " : " ) ;
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/∗ QUEUE branch ∗/
T ∗queue = new T( status , "Queue" , "QUEUE" , p , " : " ) ;

T ∗en2 = new T( queue , "Enable" , "ENABLE" , p , " : " ) ;
T ∗en2_= new T( queue , "Enable ?" , "ENABLE?" , p , " : " ) ;
TP ∗tp_en1 = new TP( en1 , " S l o t number" , "" , INT , " " , "" ) ;

TP ∗tp_en2 = new TP( en2 , "Queue number" , "" , INT , " " , "" ) ;
}

So what is happening here? Every header �le of a PhysicalTasks deriva-
tion is same except the name of the class. The implementation of the phys-
ical tasks (shown in listing 4.3) includes the according header �le. The
load(Device∗) function becomes overridden which follows the command pat-
tern approach. The �rst part of the function just contains some shortform
de�nitions which make life easier (instead of writing Task, we just write T,
etc.). After that, we create a task by telling to the constructor that this task
belongs to our device, which has been passed as a parameter to the function.
The task is named "Status" and it's physical value1 is STATUS.

For the command set shown in listing 4.1, the "Status" command de�nes
a command group and so cannot stand alone. Another command group is
the "Operation" command which is a subgroup of the "Status" command.
We create this command group by telling to the constructor that this task
belongs to the "Status" task. The API automatically hooks it into the "Sta-
tus" task. This approach could be repeated in�nitely. It is not always the
best solution to nest the commands. Every command could also be created
with a single task, setting the task's value to the entire ASCII string (i.e.:
STATUS:QUEUE:ENABLE?). It depends on the command set's complexity
which approach to use.

Creating a TaskParameter follows the same approach: the constructor is
told which task it belongs to, the name, a preset value which in most cases
is empy, the type, a pre�x and a post�x. See the Task++ API for details.
We don't have to worry about memory clean up, since this is done automat-
ically from the TaskMachine when the device gets detached.

4.3 Creating virtual tasks

Listing 4.4: Header �le of a virtual task
#include " t a s k d l l . h"

1The pysical value is the ASCII command (or command part) sent directly to the device
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#include " task++.h"

using namespace taskpp ;
using namespace t a s k d l l ;

class Solartron1286V1 : public VirtualTask {

public :
inl ine Solartron1286V1 ( Dl lDevice ∗ d l lDev i c e )

: VirtualTask ( d l lDev i c e ) { }

void load ( Device ∗ dev i c e ) ;
void execute (HTask ∗htask , SymbolTable ∗ s t ) ;

} ;

Listing 4.5: Implementation of a virtual task
void Solartron1286V1 : : execute (HTask ∗htask , SymbolTable ∗ s t ) {

using namespace std ;
typedef TaskParameter P;
Ut i l ∗u = Ut i l : : In s tance ( ) ;

// Get (H)TaskParameters from (H)Task .
P ∗p1 = htask−>getParameter ( 0 ) ;
P ∗p2 = htask−>getParameter ( 1 ) ;

int sample_count = a to i ( p1−>parseValue ( s t ) . c_str ( ) ) ;
int sample_interva l = a t o i ( p2−>parseValue ( s t ) . c_str ( ) ) ;

Send ( "BK4" ) ;
S leep ( 1000 ) ;
Send ( "GP1" ) ;
Send ( "TR1" ) ;
Send ( "PW1" ) ;
Send ( "RU1" ) ;

for ( int i = 0 ; i<sample_count ; i++) {
/∗ Read data ∗/
s t r i n g r e s = Read ( ) ;

/∗ Create a Resul t , s e t va lue and save ! ∗/
Result r e s u l t ( htask ) ;
r e s u l t . setValue ( r e s ) ;
r e s u l t . Write2db ( ) ;

S leep ( sample_interva l ) ;
}

}
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Creating virtual tasks is slightly more di�erent to the creation of physical
tasks. Basically, for each virtual task a new class must be generated (every
command is encapsulated into an object[Vli95]). Generally, this requires a
little bit of typing work, but the abstraction is high enough that a code gen-
erator or a class generating tool could assume the work. But now let's see
how the things work.

The header �le of a virtual task is almost the same as the one for physical
tasks, in addition there is an execute function which takes an HTask and a
SymbolTable as parameters. While the PhysicalTasks class only contains a
list of task objects which are attached to the device when calling the load
function, the load function of the class VirtualTask only loads one virtual
task. The implementation is shown in listing 4.5. In the load function we
create a single Task which can also have TaskParameters. The value given to
the tasks must be unique for this DLL since this value acts as an identi�er
for our virtual task. The creation of a TaskParameter should be a known
process. When the load function becomes executed while the TaskMachine
is starting, the virtual task becomes written to the database and is shown as
available in the GUI.

The execute function contains the actual implementation of the virtual
task. It is a mixture of ASCII commands sent to device as well as C++
code. When in the GUI the virtual task is selected, all of the stu� in the
execute function becomes executed. We have the possibility of fetching task
parameters and creating results. See the Task++ API for details.

4.4 Creating the DLL

In an early discussion we talked about the need of exporting the function
which the TaskMachine's device loader uses as the entry point to the DLL
�le. For this purpose we make use of the exporting directive de�ned in the
preprocessor variable DEVICEDLL_EXPORT.

Let's assume we're having a list of physical tasks and two virtual task
implementations. So we would have three classes. Listing 4.6 shows how a
DLL is created and how the tasks are attached to it.

Listing 4.6: Exporting the linking function
#include " t a s k d l l . h"
#include "Keith ley2750 . h"
#include "Keithley2750V1 . h"
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#include "Keithley2750V2 . h"

EXPORT_DLL Dl lDevice ∗ getDl lDev i ce ( ) {
// Create a new DLL
DllDevice ∗ d l lDev i c e = new DllDevice ( ) ;
// Set the connect ion
d l lDev i ce−>setConnect ion ( IEEE488 : : In s tance ( ) ) ;

// Create the Tasks
Phys ica lTasks ∗pt = new Keith ley2750 ( d l lDev i c e ) ;
VirtualTask ∗vt1 = new Keithley2750V1 ( d l lDev i c e ) ;
VirtualTask ∗vt2 = new Keithley2750V2 ( d l lDev i c e ) ;

return d l lDev i c e ;
}

After a succesful compilation, the DLL �le has been created and can be
copied into the TaskMachine's /devices directory. A con�guration �le must
be created and copied into the /conf directory (see 3.8).
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Chapter 5

Conclusions

In this thesis, many aspects of modularization have been shown. After a
detailed description of the communication bus in chapter 1, chapter 2 shows
the basic aspects of linking. Both, dynamic linking and static linking have
been used for the creation of the software this thesis is about. Since a main
aspect is the creation of DLL modules, we also explained the distinction be-
tween Load-time- and Run-time dynamic linking. The bene�ts of Load-time
dynamic linking have been used by the creation of reusable objects, saying
the Task++ and the TaskDLL API which is implemented once and used by
the TaskMachine and the client GUI respectively. Changes done in the im-
plementation do not a�ect the API and in turn the functionality of the using
components. So the library can simply be replaced. This feature covers the
aspects of Load-Time Dynamic Linking while the creation of DLL modules
covers the aspects of Run-Time Dynamic Linking.

Chapter 3 shows the most important implementation aspects and the un-
derlying database. This chapter is important for those who want expand or
refactorize the functionality of the basic modules Task++ and TaskDLL. It
is also important to the person who integrates the functionality into the GUI
client. At this moment, the assembly of the client with the Task++ compo-
nents was not completely done, but our test clients proved the functionality.

Chapter 4 gives an introduction to the creation of DLL modules and
some examples. This chapter helps to give a basic overview and should be
the starting point of the creation of an instruction manual which gives a
detailed overview how to create DLL's.
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