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Kurzfassung

Gebäudeautomationssysteme gewinnen in modernen Bauvorhaben zunehmend an Rele-
vanz, typischerweise um Energieeffizienz und Raumkomfort zu steigern. Eine der großen
Herausforderungen bei solchen Systemen ist Netzwerksicherheit. Insbesondere drahtlose
Kommunikationswege zwischen einzelnen Netzwerkknoten sollten verschlüsselt und au-
thentifiziert sein. Dabei ist besonderes Augenmerk auf die Effizienz der Verschlüsselung
zu legen, da die meisten Geräte, die typischerweise im Einsatz sind, nur über sehr geringe
Rechenleistung verfügen. Aufgrund dieser Performance-Einschränkungen sind poten-
zielle Lösungen auf effiziente, symmetrische Kryptographieverfahren angewiesen. Die
daraus resultierende Schwierigkeit liegt darin, ein passendes Schlüsselaustauschschema
zu finden, welches es ermöglicht, die geheimen Schlüssel effizient zwischen einzelnen
Geräten auszutauschen, ohne dabei die Skalierbarkeit und Erweiterbarkeit des Systems
zu gefährden.

In dieser Arbeit wird ein zentralisiertes Schlüsselaustauschschema vorgestellt, bei
dem symmetrische Schlüssel mithilfe einer vertrauenswürdigen dritten Partei erzeugt
und ausgetauscht werden können. Dabei wird die Tatsache zu Nutze gemacht, dass
Gebäudeautomationssysteme typischerweise bereits über eine zentrale Kontrollstelle
verfügen, die als Mittelsmann bei dem Schlüsselaustausch dienen kann. Ein Prototyp
wurde implementiert, um die Realisierbarkeit dieses Vorgehens zu demonstrieren und
dessen Performance zu evaluieren, wobei ein besonderes Augenmerk auf Speicher- und
Energieeffizienz liegt. Der Vergleich zwischen einem ungesicherten Verfahren sowie der
sicheren Implementierung zeigt einen akzeptablen Anstieg der gemessenen Kennwerte.
Des Weiteren sollte es möglich sein, das vorgeschlagene Schema in Zukunft mit flexiblen
Verschlüsselungsprotokollen wie etwa DTLS zu integrieren.
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Abstract

Building automation systems are becoming increasingly relevant in modern building
projects to improve energy efficiency and increase inhabitant comfort. One of the on-
going challenges in such systems is providing security to the network. In particular,
wireless message exchanges between individual network nodes need to be encrypted and
authenticated efficiently, since the wireless devices typically deployed in most building
automation systems are low-powered microcontrollers. Due to these performance con-
straints, potential solutions are limited to using efficient, symmetric cryptography. The
resulting challenge lies in finding a suitable key-exchange scheme to establish the shared
keys that is both scalable and extensible.

In this thesis, a centralized key exchange scheme is proposed that is capable of
establishing secret keys for arbitrary node pairs by using the building controller as a
trusted third party. The proposed scheme is well suited for the particular network
topology typically found in building automation systems while requiring only symmetric
cryptography. A prototype was implemented to demonstrate the feasibility of the
proposed approach and to evaluate the performance of the implementation with regard to
memory and energy efficiency. The evaluation shows an acceptable overhead when using
end-to-end encryption compared to an unsecured approach. In addition, the proposed
scheme could also be easily integrated with more flexible encryption protocols such as
DTLS in the future.
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CHAPTER 1
Introduction

1.1 Motivation

The Internet of Things (IoT) as a whole has come to represent a very broad and popular
field of research in recent years. With its numerous facets and application domains it
covers a wide range of topics and presents new challenges in those fields. Due to this
inherent variety, the Internet of Things typically doesn’t allow for blanket solutions
or one-size-fits-all approaches. Different research domains often have vastly different
requirements and assumptions that they are built upon, and, as a result, require the
development of new approaches and solutions that are specifically tailored to their
particular problem spaces. Ongoing research shows progress on individual issues and
challenges, but due to the relative novelty of the field as a whole, there is still a shortage
of tailor-made, future proof solutions for most application domains. One such problem
domain are building automation systems (BAS), which play an increasingly important
role in modern building projects.

Building Automation Systems

Historically, the primary functionality of building automation systems used to be the
automation of heating, ventilation and air-conditioning systems. Today, the goal usually
is to improve overall system efficiency and reduce the resulting energy consumption.
Over time, their application has been extended to cover other basic functionality such
as lighting, as well as safety critical services such as fire and smoke detectors. These
automation networks typically consist of a wire-based backbone network which fulfills
most of the core functions. In addition, small, wireless microcontrollers are often used
that fulfill supporting roles, such as sensor devices. The advantage of their wireless nature
lies in the fact that they can operate in environments that are difficult to access physically
and don’t require additional wiring. Networks utilizing such wireless components are
usually called wireless sensor networks, or WSNs for short. With the increasing relevance
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of the Internet of Things and the resulting growing integration and networking capabilities
comes a necessity to properly secure the network and its individual devices in order to
maintain the expected functionality.

To achieve this, much like in traditional networks, a secure BAS solution first and
foremost needs to guarantee data confidentiality and integrity. Improving availability
and reliability in addition to this would be desirable, but isn’t always possible due to
device and performance constraints. In order to find a suitable solution, it is necessary
to take into account the particular limitations and characteristics of building automation
systems and work around them or use them to an advantage.

1.2 Problem Statement

At this time, an ideal solution for providing security to building automation systems
hasn’t emerged yet. The inherently different nature of wireless sensor networks and
building automation systems as opposed to traditional network models causes a range of
new problems, which require the development of new technologies and solutions.
The two following factors in particular are the cause of most security issues faced by
WSNs and BAS. As a result, these two factors will be the defining criteria when designing
a suitable solution:

• The open and accessible nature of wireless sensor networks: Most sensor nodes run
unguarded in a public environment, which allows potential attackers to physically
access the hardware itself and possibly tamper with it. Traditional networks are
generally based on the assumption that the devices are protected and a breach
of hardware security presents an uncommon worst-case scenario. Sensor networks
on the other hand must be able to withstand such attacks in a reliable manner
which does not interfere with the correct operation of the network as a whole.
Additionally, accessing and manipulating a hardware node can provide relatively
easy access into the underlying network, which makes it necessary for the system
to remain stable in the face of malfunctioning or malicious nodes.

• The constrained nature of the networked devices: Sensor nodes in WSNs usually
consist of low-power microcontrollers with very limited hardware. In addition, they
sometimes have to be powered solely by batteries. In order to increase their battery
lifetime, it is necessary to use very energy efficient protocols and implementations.
This holds especially true for cryptographic functions, as those tend to be rather
resource-intensive. The fact that most devices in use today do not include a
dedicated cryptography co-processor further exacerbates this problem, as software
implementations of most cryptographic functions (especially those based on public-
key cryptography) are not particularly efficient. This further limits the number of
practically usable protocols and cryptographic systems even further.
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These two factors unfortunately make tried-and-trusted security approaches that find
widespread use in other application domains rather unsuitable for adoption in a building
automation context. Finding a solution that provides security (primarily in the form
of confidentiality and integrity) to the network while taking the above problems into
consideration will be the primary challenge of this thesis.

1.3 Aim of the Work
The goal of this thesis is to develop a communications protocol which fulfills the security
requirements presented by the building automation domain, while at the same time taking
into consideration the specific characteristics and restrictions of building automation
networks. Aside from the essential message encryption and authentication mechanisms,
this protocol will also need to provide some additional functions, such as key-exchange
and key-revocation capabilities. The development will be guided based on a number of
assumptions regarding the nature and topology of these networks, as well as potential
threats they are faced with. The scope of the solution will be confined to the building
automation domain, as the assumptions that the approach will be based on might not
hold true for other application domains in the Internet of Things.
In particular, the goal is to develop a protocol that is able to withstand the most
prevalent attack types against building automation systems, as well as provide an energy-
efficient solution which offers acceptable performance and longevity even when running on
constrained sensor nodes, while not compromising important factors such as extensibility.

1.4 Methodological Approach
Initially, an extensive literature analysis is conducted to establish an overview of the
problem domain, the current state of the art in building automation, as well as existing
approaches for dealing with security issues in building automation networks. Alternatively,
promising approaches for less specific problems can be investigated, such as wireless
sensor networks or the Internet of Things in general. While some of these approaches
may not be directly applicable to the building automation domain, they could provide
some fundamentals and valuable insight into related problems and partial solutions.
Next, the primary threats involved in running a building automation network have to be
identified. This will allow the security requirements necessary for developing a robust
protocol suitable for deployment in a building automation environment to be established.
Based on these requirements, existing technologies will be evaluated for their applicability
to the problem domain. Since it is unlikely that a single solution that covers all the given
requirements already exists, different approaches will probably have to be combined and
extended to fulfill the stated design goals.
After this analysis, the design and a first version of the protocol will be presented. Suitable
technologies identified in the previous step can be used as partial solutions to specific
problems. Consequently, a prototype will be implemented in order to demonstrate the
feasibility of the proposed approach on a constrained hardware platform. This prototype
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will then be evaluated in the context of the stated design goals as well as in terms of
performance.

1.5 Structure of the Work
In the next chapter, the basic concepts and functions of building automation systems
are outlined, along with some of the technologies commonly used in such systems.
Additionally, existing approaches are presented that deal with the security of building
automation systems and the resulting challenges. Chapter 3 covers the core assumptions
that the proposed solution is built upon, along with an attack analysis in the context of
building automation. Subsequently, the final design requirements that guide the remaining
work are defined. Chapter 4 describes the solution in detail, as well as some potential
pitfalls and vulnerabilities that were identified during design, along with suggestions
on how to deal with those. In Chapter 5, the implementation and hardware details are
discussed and various performance evaluations are performed. Chapter 6 concludes this
thesis and proposes some future work.
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CHAPTER 2
State of the Art

This chapter is meant to provide an overview over the fundamentals of building automation
and related security concepts in general. Initially, the basics of building automation
systems will be explained as well as a number of involved technologies. This will be
followed by a more detailed analysis of existing approaches typically taken in regards to
security and cryptography in such systems.

2.1 Basic Concepts

2.1.1 Wireless Technologies in Building Automation Systems

Traditionally, building automation systems were built around wired networks. Individual
components were usually connected to each other as well as the backbone through wired
connections, such as Ethernet- or fieldbus-based networks or other proprietary technologies.
Increasingly, wireless technologies have been finding their way into automation systems as
part of the integration effort caused by the popularity of the IoT. These wireless devices
are usually connected to the backbone network through the use of gateways and can
often form individual mesh networks. In such a mesh network, all devices (or “nodes”)
are able to fulfill routing functions to create a large, interconnected network of devices
without the use of dedicated routing hardware.
When looking at automation systems at large, their individual components and layers can
often be viewed as a pyramid. Figure 2.1.1 shows such a pyramid, with the management
level at the top including the overall management functions as well as visualizations of
output and operating parameters. Below that is that automation level, with various
control and metering units, as well as access control mechanisms and possible data
aggregation and evaluation devices. At the bottom of the pyramid lies the field level,
consisting of sensors and actuators, as well as user-operated I/O devices such as light
switches. Wireless technologies such as 6LoWPAN typically operate at the field level
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Figure 2.1: The automation pyramid

too, often forming independent mesh networks and connected to the upper levels of the
system through gateways and routers.

The wireless nodes in such systems are mostly small, cheap devices with limited
computing capabilities, which are able to communicate with each other through wireless
radios. They are spread throughout a building and fulfill various roles in the system, but
they can typically be classified as either sensors or actuators. Sensors include data aggre-
gation devices such as temperature sensors and light detectors as well as user-controlled
input devices such as light switches. Actuators are mostly remote controllable devices
such as lights, blinds or HVAC systems.
BAS nodes are usually based on some form of microcontrollers – constrained devices
with very limited memory and low computing power. Due to the fact that sensor nodes
are often located in places that are hard to access and maintain, some of them have to be
powered by batteries. This is one of the most important limitations to keep in mind, as
any software running on the devices must attempt to be as efficient as possible in order
to reduce power consumption and maximize battery life. This is further exacerbated by
the fact that radio transmitters, both when sending and receiving, tend to consume a lot
of power.
For devices such as these, energy harvesting techniques can often be utilized to prolong
their battery life [1]. However, especially in indoor environments the available options are
rather limited, and, as a result, harvesting techniques typically employed in WSNs are
mostly constrained to solar power (when available) and radio energy. Radio-frequency
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(RF) based harvesting techniques usually rely on collecting ambient RF energy stemming
from the constant broadcasts by countless radio transmitters in operation today (such
as mobile phones, wireless routers or radio and television broadcasts) [2]. Alternatively,
dedicated RF transceivers can be used to transmit energy directly, similar to wireless
charging techniques.

Regardless of potentially used harvesting techniques, energy efficiency is still a primary
constraint when designing any sort of WSN or BAS application. To enable an energy-
efficient information exchange between nodes, low-rate wireless personal area networks
(LR-WPANs) can be utilized. The IEEE 802.15.4 standard, defined in 2003, was designed
to provide a low-complexity specification of the physical and media access control layers
to be used by low-cost and low-power devices. The upper layers are not defined by IEEE
802.15.4, which allowed various extensions to be built on top of it, some of which enjoy
successful widespread adoption in contemporary sensor networks (the most prominent
among them probably being the ZigBee standard).

One such extension which will be important throughout this paper is the 6LoWPAN
specification [3]. 6LoWPAN (IPv6 over Low power Wireless Personal Area Networks)
was an attempt to extend the use of IPv6 to even small sensor devices. The Internet of
Things (and subsequently also wireless sensor networks and building automation systems)
with its large number of connected devices is particularly constrained by the lack of
available address space offered by the aging IPv4 protocol [4]. To mitigate this problem,
the adoption of its successor protocol IPv6, which offers a virtually unlimited address
space, has been strongly pushed in IoT-circles.
And while IPv6 can alleviate some of the major problems that the IoT is faced with,
supporting it within a WSN is not trivial. The IEEE 802.15.4 standard [5], which
constitutes the basis on which most wireless communication in a WSN is built, is not
inherently compatible with a comparatively complex protocol such as IPv6. In order to
support IPv6 and allow the interconnection of WSN devices and the rest of the Internet,
an adaptation layer is required. 6LoWPAN provides such an adaptation layer. It allows
fully IPv6-conform packets to be translated and travel over IEEE 802.15.4 links, as well
as providing 802.15.4 devices with directly addressable IPv6 addresses. To facilitate this
translation one or more border routers that connect the 802.15.4 wireless network to
the full IPv6 network are required. They are able to compress and decompress packets
traveling in and out of the 6LoWPAN, as well as providing routing capabilities for
messages inside the network. Since 802.15.4 mesh networks cannot support the routing
protocols typically employed by IPv6 based networks, new protocols had to be developed
[6][7][8].

The 802.15.4 standard as well as the 6LoWPAN form a common base upon which
many contemporary solutions are being built. A number of high-level protocols and
multi-layer frameworks exist on top of 6LoWPAN and 802.15.4. One example of such a
framework is Thread [9], which is an IoT networking protocol primarily focused on home
automation devices. While still relatively new, it is currently being pushed by numerous
companies in an effort to become the de-facto industry standard in the field of home
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Figure 2.2: 6LoWPAN protocol stack

automation.
Another popular and well-documented example is ZigBee [10], which is more often found
in industrial control settings and, while not utilizing 6LoWPAN, is also based on the
802.15.4 standard.

An important mode of message exchange in building automation networks that is
typically less relevant in the Internet at large are broadcast messages. These can fulfill
various functions in a WSN – global broadcasts can transmit commands to all nodes
within a network, local broadcasts are typically used for routing functions or neighbor
discovery, and multicast groups (such as those implemented in IPv6) can be used to
address a specific subset of nodes. An example use-case for multicast groups would be a
light switch that can remotely toggle a group of lamps. The lamp controllers could all
be part of the same multicast group, and the switch would only have to send a single
command to that group address in order to toggle all the lamps.
IEEE 802.15.4 does not inherently support message multicasting, but some efforts have
been made to implement support for IPv6 multicasts over 6LoWPAN. Early imple-
mentations such as the Trickle Multicast [11], which was later incorporated into the
Multicast Protocol for Low-Power and Lossy Networks [12], came with a number of
significant drawbacks, namely high complexity which results in bad scalability, and low
performance in general. Later attempts have tried to alleviate some of these problems
by using different approaches. Stateless Multicast RPL Forwarding (SMRF) is a more
lightweight mechanism and considerably outperforms the Trickle Multicast algorithm in
both transmission delay as well as energy efficiency [13].

2.1.2 Physical Security

Since sensor nodes typically run unattended in an uncontrolled environment, they
can be susceptible to physical compromises. Nodes located in public spaces can be
accessed by potential attackers and tampered with. Once a node has become physically
compromised, an attacker can be assumed to be able to take full control of the device by
modifying its software or firmware. While tamper-proof hardware exists, it is typically not
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widely deployed due to being expensive. Also, the efficiency of most tamper-protection
mechanisms is questionable given a sufficiently motivated and equipped attacker [14]. So
while heightened physical security and increased tamper-resistance can help to improve
the overall security of a system, they should never be considered to be perfectly secure
and as such aren’t sufficient to provide a truly secure environment on their own.
A typical BAS can’t be expected to provide even basic physical security, so the designed
software solution should be able to continue operating to an acceptable degree even in
the face of individual node compromises.

2.1.3 Information Security

The fact that many message exchanges in an IoT-enabled BAS happen over wireless
connections makes them particularly susceptible to various forms of eavesdropping. As
a result, securing the information exchange between nodes will be one of the primary
goals of this thesis. Typically, this can be achieved by encrypting and authenticating the
content of the messages (payload) that are exchanged between nodes. There are two basic
families of cryptographic functions that are in widespread use when it comes to encryption
– symmetric and asymmetric ones. The primary functional difference between the two lies
in how the secret key is utilized. Symmetric cryptography requires the same key to be
used when encrypting and decrypting information, while asymmetric cryptography uses
separate keys for encryption and decryption, only one of which typically has to remain
secret. This distinction is very important, as it restricts the way that the secret keys can
be generated and exchanged.

Due to the long-standing necessity of securing sensible information on the Internet,
efficient and functional systems have been developed in the past. Widespread and well-
proven protocols such as Transport Layer Security (TLS) are able to provide confidentiality
and authenticity for classical networks and devices [15]. Unfortunately, TLS itself was
designed to be used with reliable, stream-based protocols such as TCP. As such, it
is not well suited for use in a wireless sensor network, where message exchanges are
often unreliable and based on connectionless protocols such as UDP. This led to the
development of Datagram Transport Layer Security (DTLS), which will be explained in
more detail below. On the cryptography side, TLS supports the majority of common
algorithms and ciphers that are in use today. In practical terms, the TLS handshake
most often uses asymmetric cryptography to establish a secure symmetric key, which is
then used for encrypting the actual communication payload.

Unfortunately, adapting asymmetric cryptography for use in wireless sensor networks
is rather impractical on current hardware. While offering many desirable properties, such
as not requiring a secure channel to exchange the encryption key and providing message
authentication capabilities through signed certificates, asymmetric cryptography suffers
from performance issues especially on constrained devices [16]. Commonly employed
asymmetric techniques such as RSA (named after its designers Rivest, Shamir and
Adleman) [17] are considerably slower when compared to symmetric approaches such as
AES (Advanced Encryption Standard) [18][19]. At the same time, they require a much
larger key size to achieve the same level of security, which leads to increased memory
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requirements and further exacerbates the performance issues on an already constrained
platform. These issues currently make them mostly unfeasible for application in wireless
sensor networks, as the high computational complexity causes bad performance and high
energy consumption.
Symmetric cryptography on the other hand is very efficient and offers acceptable perfor-
mance even on constrained devices. The drawback is that it requires the two communi-
cating parties to first establish a shared secret before being able to securely communicate
with each other. Finding a suitable key exchange process is one of the primary challenges
when dealing with security on constrained devices.
In general, it can be said that it is currently not possible to design a universal protocol
that is based solely on symmetric cryptography and suits all applications in the Internet
of Things. It is however possible to find acceptable solutions for specific problem domains,
as long as one is willing to accept some trade-offs and make certain assumptions that limit
the problem space. Various approaches to handling specific security issues on constrained
devices have been explored in literature, some of which will be outlined in more detail
below.

2.2 Existing Approaches

2.2.1 Asymmetric Cryptography

As mentioned above, asymmetric or public-key cryptography systems (such as RSA and
Elliptic Curve Cryptography, ECC) tend to be very slow and resource intensive. This is
especially true when they are implemented in software and run on a microcontroller’s
CPU. RSA, which currently is the most widely adopted public-key cryptosystem (PKC),
requires key sizes of at least 1024 bit and subsequently suffers from poor performance
on memory constrained devices. Elliptic Curve Cryptography (ECC) is an attempt
to alleviate some of RSA’s problems by employing considerably smaller keys and thus
resulting in a much better performance across the board (a 256-bit ECC key is roughly
equivalent to a symmetric 128-bit AES implementation, where RSA would require a
3072-bit key to achieve the same level of security) [20]. When compared at a 128-bit
security level, private key operations of ECC are reported to be 10 times faster than
RSA [21]. This performance difference is even more pronounced at larger key sizes.
ECC is increasingly being adopted into industry standards and it looks promising that
it will eventually be able to replace most of the less efficient RSA implementations.
Using ECC on constrained hardware is possible, although the performance of software
implementations is still subpar when compared to symmetric approaches.

One possible solution to this would be to use dedicated cryptographic co-processors,
which are able to perform commonly used operations such as those required by RSA and
ECC with a much higher performance and lower energy consumption. Unfortunately, they
are not yet widely adopted in the domain of building automation. The primary reasons
behind this are likely financial constraints, as using more complex devices with integrated
co-processors is considerably more expensive than using simpler hardware. So while
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approaches utilizing asymmetric cryptography might not be very feasible today, they are
likely to become more appealing as devices with integrated cryptographic co-processors
become cheaper and more ubiquitous.

To bridge this gap, Pecho, Nagy and Hanáček propose using smartcards (based on the
ISO 7816 standard) as a replacement for dedicated cryptography hardware [22]. Modern
smartcards offer the advantage of supporting not only popular encryption systems, such
as RSA-2048 and occasionally even ECC, but also a secure element for key storage. The
authors tested and compared the performance of RSA cryptographic primitives on such
a microcontroller/smartcard hybrid as opposed to a typical software implementation and
were able to achieve a speedup and reduction in power consumption by a factor of up to
30 when using RSA-1024 and a factor of 70 to 90 when using RSA-2048. These results
seem very promising, and while installing a smartcard in every sensor node might not
be practical or particularly cost-efficient either, it goes to show that by using dedicated
hardware it is possible to considerably reduce the power consumption of PKC, increase
the battery life to acceptable levels as well as achieve a high degree of security at the same
time. While the authors mention ECC as an alternative, they limit themselves to RSA
due to the lack of ECC support in most of today’s smartcards. It stands to reason that as
ECC becomes more prevalent, even higher time and power savings could be achieved, as
the smaller key sizes used by ECC allow for faster implementations compared to similarly
secure RSA keys.

Another approach at offloading computationally intensive operations to more powerful
hardware was suggested by Huang et al. [23]. They propose to execute most of the
expensive cryptographic operations, such as public key operations, on fully powered
devices instead of doing so on the constrained sensor nodes themselves. This approach
does not directly solve the issues that sensor networks are typically faced with, but it
could be useful in certain scenarios where public key operations are less common and
the infrastructure of the network allows nodes to offload specific tasks to more powerful
devices.

2.2.2 Symmetric Cryptography and Key Exchange

Having established asymmetric cryptography as currently not feasible, the main focus
will be on symmetric encryption systems. Even software implementations offer high
performance on constrained devices, and hardware implementations of common algorithms
such as AES are much more widespread than their asymmetric counterparts. The primary
challenge when utilizing symmetric cryptography in a BAS context lies in securely
exchanging the encryption keys. Since both communicating parties must share the same
secret key and public-key cryptography cannot be relied upon to establish it, a different
approach has to be taken. One advantage that can be leveraged in a BAS is the fact
that every node has to be configured at some point during its deployment. During this
node configuration phase, it is trivial to generate keying material and include it in the
configuration. Keys deployed in such a manner are referred to as pre-loaded or pre-shared
keys (PSK).
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In an attempt to secure the traffic traveling through a WSN, a few basic key exchange
schemes have been identified in literature as well as multiple more complex ones [24]. The
basic schemes will be briefly described, along with their disadvantages and vulnerabilities.

• Network-wide shared key
In this scheme, there exists a single secret key that is shared between all nodes.
Each node is able to communicate with every other node using this key. At the same
time, each node is able to decipher the traffic of any other node, since they all use
the same key. While this scheme is very efficient in terms of memory consumption
due to requiring only a single key, the obvious drawback is security.
An attacker would only need to compromise any one node in order to extract the
global key. He would then be able to not only decrypt all traffic exchanged on
the network, but also to inject arbitrary messages into the network, potentially
impersonating selected nodes.

• Fully-pairwise keys
On the other end of the spectrum, there is the fully-pairwise key scheme, where each
pair of nodes in the network has its own, unique secret key. This allows each node
to communicate securely with every other node, while keeping the consequences of a
node compromise to a minimum. A compromise would only reveal the pairwise keys
of the compromised node, allowing the attacker to decipher any traffic traveling to
and from this particular node. Presumably, this is information that the attacker is
already able to obtain through having compromised the node in the first place, so
there is no additional security risk involved.
The obvious disadvantage of this scheme is the bad scalability of the network. The
fact that each node has to save a pairwise key for every other node means that this
scheme is not feasible in a large network consisting of devices with very limited
memory. Even for smaller networks the scheme is impractical, as adding new nodes
to the network would require all existing nodes to be updated using the new nodes’
keys in order to be able to communicate with them.

• Random pairwise keys
To find a middle ground between using a global key and a fully pairwise scheme,
Eschenauer and Gligor [25] proposed using a probabilistic approach, where each
node stores only a limited number of randomly chosen keys, taken out of a key
pool. Two neighboring nodes that share a common key are able to communicate
securely with each other. Given a sufficiently dense network, the likelihood of the
network being fully connected is very high. For example, in a network of 10000
nodes, where each node has an expected number of 40 neighbors, every node has to
store 250 keys out of a pool of 100000 in order to have a 0.99999 probability of the
network being fully connected [25]. The authors propose that two nodes that wish
to communicate with each other can attempt to establish a pairwise key through
the secure link formed by a sequence of nodes using the randomly distributed keys.
The main disadvantages of this scheme lie in its inherent randomness and its unsuit-
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ability to sparsely connected networks, where the probability of link establishment
is low.

The above three schemes are rather basic approaches for exchanging symmetric keys
in WSNs. Neither of them is universally applicable to WSNs at large or even particularly
useful in practice, since their drawbacks either prevent efficient use (fully pairwise and
random schemes) or present a security liability (network wide key). However, there exist
some advanced approaches that build upon these basic schemes but provide additional
flexibility, and as such, are better suited to WSNs in general.

6LoWPAN Security

When communicating over a 6LoWPAN, security mechanisms of the lower layers can be
used as a means to provide confidentiality and authenticity to the network. In particular,
the MAC layer of the IEEE 802.15.4 standard specifies a number of security modes which
support encryption, freshness checks and some simple access controls. Due to 802.15.4
being such a low-level protocol however, some features had to be left unspecified due to
being reliant on the implementation of the upper layers. As a result, key exchange and
revocation mechanisms aren’t specified and must be implemented manually based on
their particular operating environment.

Krentz, Rafiee and Meinel describe such a security sublayer for 6LoWPAN which pro-
vides an adaptable pairwise key-exchange scheme (APKES) [26]. The key establishment
is based upon a plug-in system which supports various key exchange schemes. Depending
on the specific requirements, an appropriate one can be selected, which is then extended
using additional security measures to prevent flooding and replay attacks. The supported
schemes include the above mentioned random pairwise keys scheme, Blom’s Scheme
(which attempts to derive keys from a small amount of secret data) [27], and the Localized
Encryption and Authentication Protocol (LEAP) [28], which will be described in more
detail below. Using the established pairwise keys it is then possible to use hop-to-hop
encryption and authentication to secure the data traveling over the network. In addition
to this, they also propose the easy broadcast encryption and authentication protocol
(EBEAP), which can be used to secure local broadcast frames. Due to the energy and
performance drawbacks of public-key cryptography the authors opted to use exclusively
symmetric encryption in the form of CCM* mode for AES to provide authentication and
confidentiality in their implementation.

An attempt at integrating existing solutions and providing end-to-end security to
WSNs was made by Raza et al. [29]. They designed a compressed lightweight implemen-
tation of IPsec for 6LoWPAN, which is typically used by the IP protocol stack to provide
authentication and encryption between communicating entities. Their implementation
enables the communication between IP enabled sensor networks and the traditional
Internet. This approach seems very promising due to the tried and tested nature of the
underlying technology. Unfortunately, typical key exchange mechanisms employed in
IP networks are based on IKE (Internet Key Exchange) and are yet to be tested for
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feasibility in 6LoWPAN-based networks. As a result, Raza et al. limit their current
implementation to the use of pre-shared keys.

A topic that is often left out or unspecified in many security implementations is that
of broadcast encryption. Securing broadcast or multicast frames is an important feature
for some applications in the BAS domain. An example for such an application could be
a control element that supports multiple distributed devices, such as a group of remotely
controllable lights.

Research into broadcast encryption has been undertaken with various intentions and
using different approaches. Fiat and Naor formally defined broadcast encryption for the
first time in 1994 [30]. Boneh and Franklin devised a simple identity-based encryption
scheme (IBE) [31] which is able to derive encryption keys based on a node’s identity.
This scheme has then been extended by Baek et al. in order to improve computational
efficiency by reducing the number of required computations [32]. Other groups have
conducted research into increasing the performance of these schemes to make them
more suitable for wireless sensor networks and resource constrained devices in particular
[33][34].

LEAP+

In order to deal with the varying security requirements posed by different message
exchange schemes (for example: broadcast vs. end-to-end) Zhu et al. argue that a
single keying mechanism is not sufficient [28]. They propose LEAP+, a combined
approach which uses four different types of keys for every sensor node, each of which
fulfills a different purpose. They also describe the key establishment and exchange as
well as a re-keying mechanism to deal with compromised nodes. Their approach seems
promising, since they accept the fact that no single solution is sufficient to deal with
all the requirements. Instead, they attempt to combine partial solutions to solve the
individual sub-problems. The design of LEAP+ is based on a number of assumptions
and restrictions that are a good fit for the building automation domain, such as limiting
itself to symmetric cryptography which is more resource-friendly than public-key based
systems. Since the key establishment scheme of LEAP+ plays a role in the proposed
prototype implementation, its structure is described in more detail below.
Networks in LEAP+ consists of a single base station and an arbitrary number of sensor
nodes. To be able to handle the different communication patterns, all nodes in LEAP+
contain the following four key types:

• Individual key: Every node has its own unique key which is shared only with the
base station. It is used for securing communications between the node and the base
station, such as encrypting and authenticating sensor readings. Conversely, the
base station can use this key to encrypt sensitive information, such as new keying
material, when transmitting it to the sensor node.
This key is generated based on the base station’s master key and the node’s ID,
and is pre-loaded into the node before deployment. To save space, the base station
only needs to store the master key and can generate the individual node keys on
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demand based on the nodes’ IDs. This way the base station doesn’t have to save
all the individual node keys permanently.

• Global key: A single, network-wide shared key which is primarily used by the base
station for broadcasting messages to the entire network, such as commands or
queries. Using a global key in this scenario is not a disadvantage from a security
standpoint, as a compromised node which reveals the global key would reveal the
broadcast traffic regardless of the encryption scheme in use. What is necessary
however, is an efficient re-keying mechanism to update the global key in case a
compromised node is detected and revoked in order to prevent future broadcast
messages from being compromised.
Much like the individual keys, the global key can be easily established by pre-
sharing. Node revocation is realized using the µTESLA protocol for broadcast
authentication [35] and key updates use a secure distribution protocol based on
cluster keys (see below).

• Pairwise key: A node shares a pairwise key with each of its immediate neighbors.
These keys can be used for general communications that are routed through multiple
nodes and require privacy or source authentication, such as sensor readings or
control commands. Message contents are always encrypted during individual hops
by using the pairwise keys of the communicating nodes. Note that message contents
are visible in the clear to the relaying node in between two hops. This makes LEAP
alone insufficient for securing message transfers over multiple hops and requires the
addition of an end-to-end security solution.
The authors of LEAP present two schemes for establishing these pairwise keys:
A basic one, which rests on the assumption that a newly deployed node will not
be physically compromised within seconds of its deployment. Therein a node
broadcasts a HELLO message to its neighborhood, and for every ACK reply
received it generates a pairwise key for that neighbor. These keys are based on
a pre-loaded initial key, which is erased from a node after the pairwise keys have
been established. That way, if a node becomes compromised after the initial setup
interval has expired, the attacker can only access the established pairwise keys. He
cannot infer or generate any further keys since the initial key used for generating
them has already been erased. The scheme also allows adding new nodes after the
initial deployment, as long as the initial key is stored in a secure place and can
be loaded into a newly deployed node. The author also describes an extended key
establishment scheme, which is capable of dealing with more powerful attacks (such
as an attacker obtaining the initial key by either compromising a node within the
assumed “secure” time limit or by attacking the key authority).

• Cluster Key: This key is shared by a node and its direct neighbors and is used
for local broadcast messages such as routing control information. Each node holds
its own unique cluster key, as well as the cluster keys of all its neighbors. The
neighbors can then use a node’s key to decrypt or verify its messages, and use their
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own cluster keys for encrypting messages.
Cluster key generation directly uses the previously established pairwise keys. A
node generates a new cluster key for its neighborhood, encrypts it with the pairwise
key of each neighbor and then transmits the encrypted keys to its neighbors.
If a compromised node is revoked, its neighbors generate new cluster keys and
re-establish them the same way.

While these key mechanisms cover a number of typical building automation use-cases,
the system has been designed with general sensor networks in mind. As such, there are
some shortcomings when trying to adapt it for use in a building automation network, in
particular the lack of end-to-end encryption between two nodes which are not in a direct
neighborhood relation. In order to comply with the design requirements of a BAS, some
adjustments and extensions to LEAP+ would be necessary.

DTLS

Datagram Transport Layer Security (DTLS) [36] is an adaptation of TLS for use with
datagram-based network protocols such as UDP. Analogous to TLS it offers various
key exchange mechanisms and message encryption and authentication options. DTLS’
reliance on asymmetric cryptography during key exchanges currently makes it unsuitable
as a stand-alone solution in a building automation context due to the aforementioned
performance concerns. It does however offer support for a key exchange scheme based
on pre-shared keys (PSKs) and identities. While PSKs are impractical to use in open
networks such as the Internet, they can represent an efficient way of establishing keys in
an environment with somewhat limited network complexity, such as a BAS.
In such a context, it is possible to use DTLS-PSK as a useful building block for a bigger
solution. This could be achieved by combining the tried and tested secure message
exchange and handshake protocols offered by DTLS with an external key establishment
protocol or even just pre-loaded keys. DTLS, being based on TLS, also offers the upside of
continued development and support into the future. This fact could prove advantageous
in terms of extensibility and maintainability. If constrained devices eventually become
powerful enough, the established DTLS framework should allow for an easy transition
from PSK-based solutions to more flexible approaches such as ECC.

Additionally, efforts are being undertaken towards adapting DTLS for use with
multicast group messages. Nikitin et al. have proposed a DTLS modification [37] that
allows secure two-way group communication built on top of the CoAP protocol. Their
work was then further expanded as an IETF Internet-Draft [38], which could provide a
solid starting point for implementing a workable multicast security solution.
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Key exchange scheme Cryptography Performance End-to-end
encryption

Compromise
resilience

Scalability

Global key Symmetric High No Very low Good
Fully pairwise keys Symmetric High Yes High Bad
Random pairwise keys Symmetric High No High Variable1

LEAP+ Symmetric High No High Good
Centralized key exchange Symmetric High Yes High2 Good
Asymmetric schemes Asymmetric Low Yes High Good

Table 2.1: Comparison between various key exchange schemes
1 Scalability depends largely on network density. Sparse networks can end up not being

fully connected
2 Compromise resilience of individual nodes is good, but the central server can pose a

single point of failure
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CHAPTER 3
Methodology

In the Internet of Things, varying application domains are faced with different require-
ments and threats. Considering this fact is crucial for developing a suitable solution for a
given problem, since there doesn’t exist a single ideal solution covering all the use-cases
and application domains.
Conducting an analysis to identify the technical and security requirements of the building
automation domain will be the first step toward finding an acceptable solution.

The usage of the term building automation will be limited to systems which manage
a building’s electrical and mechanical equipment. Traditionally, this included HVAC
(heating, ventilation and air conditioning) systems as well as lighting and power man-
agement. Today, security-critical services (such as fire detectors) are increasingly being
integrated into building automation systems. Throughout this work, the term building
automation system (BAS) is used to reference these kinds of devices as well as their
underlying infrastructure.
As already mentioned, the primary goals of using a building automation system are
to reduce the overall energy consumption of a building (for example by automatically
turning off lighting or HVAC systems in currently uninhabited areas) as well as increasing
the comfort of its inhabitants. Secondary uses can include managing security systems,
such as fire alarms and access controls. These two groups represent the usecases that will
be primarily considered going forward, and any threats will be examined based on their
adverse impact on these application areas. This chapter will not take into consideration
the impact on more general-purpose connected devices, such as those typically found in
home automation or the Internet of Things in general.
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3.1 Network Assumptions

3.1.1 Components

When considering a building automation system, a typical model is assumed that is
based on a wired backbone network that houses most critical functions. This network
can be supported by a wireless mesh network, which is connected to the backbone
through a number of gateways or routers. Since the focus of this thesis lies on the
wireless components, the wired backbone network will be largely disregarded in terms of
functionality. The wireless mesh network (Figure 3.1) typically consists of the following
components:

• Sensor nodes and input devices: Sensor nodes function as the data aggregation
devices in a building automation system. They automatically relay their sensor
readings to either the controller or to other nodes. Other input devices, such as
switches, control panels or alarms can be manually interacted with by building
inhabitants or personnel. They generate control signals which, similarly to sensor
readings, are relayed either to the controller or to other nodes.
In a mesh-based wireless network, they also fulfill the secondary role of providing
routing capabilities when no dedicated access point is nearby. In terms of computing
power, these are usually constrained devices with little resources. While most input
devices will generally have a constant power supply, sensor nodes can often operate
solely on batteries.

• Actuators: These react to control signals originating either from other nodes or
the controller. They can cover a variety of usually physical functions, such as
lighting, HVAC or door controls. Similar to sensor nodes, actuators contain only
limited computational capabilities. However, due to the mechanical nature of their
attached devices, they tend to be connected to a constant power supply in some
way, making restrictions caused by batteries less of a concern.

• Controller: In this model, the existence of a single base station or building controller
is assumed. It will usually be located on the backbone network and fulfills the role
of the central controlling entity of a building, the aggregation point for all sensor
data, as well as the key-management authority. In practice, these roles can be split
between various devices, but for the sake of simplicity a single entity is assumed.
Unlike sensor nodes and actuators, the controller is not computationally limited but
represents a server-class device with powerful computing and storage capabilities,
as well as a constant power supply.

• Routing Hardware: This class includes gateways, wireless routers, and access points.
They form the bridges between the controller (which sits on the backbone network)
and the wireless, 6LoWPAN-based components.
In this model they operate as dumb devices which only fulfill routing functions and
serve to connect the sensor nodes to the controller.
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Figure 3.1: Sample image of a mesh network, consisting of a multiple sensor nodes
connected to the backbone network through a gateway.

Due to the common nature of sensor nodes and actuators as constrained devices, they are
considered as the same class of device. While they fulfill different practical functions, this
distinction is not relevant when developing a communication protocol. For the remainder
of this thesis, whenever nodes or sensor nodes are referred to, those considerations equally
apply to actuator devices.
Furthermore, it is assumed that there are no mobile nodes in a building automation
network. In other words, after being deployed, a node doesn’t change its physical location
anymore. This restriction is important since it enables the use of simpler, more efficient
routing and key exchange strategies.

3.1.2 Message Exchange Schemes

In addition to the network components, it is also important to consider the types of
messages being exchanged in a network. During operation, building automation networks
generally have a limited number of relevant communication modes. The following modes
will be primarily considered during development, as they represent the most common
and important use-cases:

• Node-to-controller (and vice versa): This communication mode is in effect whenever
a node sends data directly to the controller, such as sensor readings or user inputs.
Conversely, the controller can also send messages to specific nodes. Examples for
this could be control commands or security-related data such as new cryptographic
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material. This is likely to be the most common message exchange pattern in a
functioning BAS, and as such requires an efficient implementation.

• Node-to-node: In some networks, nodes have the capability of communicating
directly with each other. This can be useful to realize simple sensor/actuator
relationships without having to route control information through the controller,
such as when operating a remote light switch. Depending on the nature of the
nodes, this message exchange pattern can also occur very often in a BAS and
requires an efficient implementation.

• Local broadcasts: These are usually broadcasts by a node to its immediate neigh-
borhood and are often used for relaying or gathering routing control information,
as well as for neighbor discovery during node deployment.

• Group multicasts: Nodes have the ability to join multicast groups and send messages
to all members of a group. In practice, this can be used to control multiple actuators
that belong together (such as all the lights in a room) using only a single multicast
message.

3.2 Security Assumptions

When determining possible threats and attack vectors, a number of assumptions about
the components of a BAS have to be made:

I Sensor devices are publicly accessible. While this does not necessarily hold true
for all of the devices, at least some number of them will generally be in openly
accessible places, which allows a potential attacker direct physical access to them.

II Sensor devices are not tamper-proof. After an attacker has obtained physical access
to a device, they are able to modify both the soft- and even hardware of said device.

III The medium air is publicly accessible, meaning that an attacker can freely listen in
on the raw transmissions occurring over wireless links in their vicinity, as well as
inject arbitrary frames into the network.

IV After deployment of a sensor node, there is a short time window where the node
can be considered secure. In combination with assumption II this means that
while an attacker is able to take over a node eventually, they are not able to do so
immediately after deployment. The reason for this is that accessing as well as the
process of compromising a node take a non-zero amount of time. This window can
generally be assumed to be in the order of a few seconds to minutes.
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3.3 Attack Motivation

Knowing the possible motivations of an attacker can be very helpful when trying to
secure a system from intrusion. In this case, what does an attacker stand to gain from
attacking and compromising a building automation system?

• Disrupting regular system operation: Based on various kinds of denial-of-service
attacks, a malicious attacker can attempt to prevent the system from functioning
correctly. This can take different forms, such as shutting down sensor or actuator
devices or feeding malicious data into the system to prompt incorrect reactions,
such as excessive heating or cooling. This in turn can manifest itself as decreased
comfort of the building’s inhabitants and increased operating costs.
These attacks are typically purely destructive in nature by causing damage to the
building operator, but gain the attacker little or no direct value. They are usually
also the easiest to detect due to their immediate effects on observable factors.

• Breaching confidentiality: An attacker can attempt to read the data being trans-
mitted over a BAS network. While building control data itself is generally not
particularly sensitive or financially valuable, it can provide insight into the system’s
inner mechanisms, which in turn can help an attacker gain access to the system or
building in a subsequent attack.
Passive eavesdropping attacks can be among the hardest to detect, as they are
non-intrusive and can often be conducted without the need to modify or tamper
with any hardware or network traffic.

• Gaining unauthorized physical access: In some scenarios, attacks like this can be
the most critical in terms of exploitability – if the BAS includes access control
mechanisms such as door controls, compromising the system can gain an attacker
illegitimate access to a building or to specific areas of a building. This access could
then be used to further facilitate theft, espionage or sabotage.
Preparations leading up to an attack like this can often be carried out without
attracting much attention, making them hard to prevent. For this reason, special
care should be taken when integrating physical access controls with a BAS.

• Gaining unauthorized access to an internal network: In a networked system where
the BAS is connected to a building’s local area or corporate network, vulnerabilities
in the BAS can provide an attacker with an entry point to the rest of the network.
This access can be further leveraged to facilitate espionage, deploy malware or
conduct other malicious activities in a corporate network.
The detection and prevention of attacks in this category is mostly reliant on having
a solid network design and effective intrusion detection and prevention mechanisms
for the internal network.

Cyber attacks against IT systems are usually conducted with a specific goal in mind. This
goal typically involves gaining either physical access to a facility or access to networked
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resources in order to steal information or deploy additional malware that enables follow-up
attacks. Attacks that are purely destructive in nature, such as increasing the power
consumption of a system or depleting sensor batteries, without providing a financial or
informational incentive for an attacker are usually less likely to occur.

3.4 Attack Analysis

Attacks against BAS can generally be separated into two groups – network attacks and
device attacks [39].

Network attacks aim to access, modify or interrupt data while it is being transmitted.
This is usually achieved by either accessing the network medium directly or by using
an already compromised device to access its network interface. Common attacks in this
category are listed below, as well as the primary measures for dealing with them:

• Sniffing: An attacker can eavesdrop on the network traffic that is being exchanged
between two nodes. This occasionally happens by wiretapping wired networks, but
is mostly relevant in wireless networks, where it is possible to listen in on network
traffic with as little as a laptop with a wireless receiver. Any potential attacker
must be assumed to be able to read and record the raw network packets being
transmitted by nodes in their vicinity. To prevent eavesdropping and breach of
confidentiality, an encrypted communication channel can be employed, which allows
two endpoints to communicate securely with each other. Most encryption schemes
require the two endpoints to first establish a shared secret key somehow. While
robust key exchange schemes for classical networks already exist, finding a suitable
scheme for networks of constrained devices will be one of the main challenges of
this thesis.

• Replay attacks: After listening in on the network traffic, an attacker can save the
raw network packets sent by a legitimate device and re-send (replay) them at a
later point in time, hoping to trigger a reaction from the system. For instance, by
re-sending the command to open an electronically locked door, an attacker could
attempt to gain access to it. This attack even works with encrypted packets, as the
attacker doesn’t need to know the decrypted content of the message when replaying
it.
Preventing replay attacks is fairly straightforward – a simple way to do so is to add
a sequence number to every message, and accepting only messages with increasing
sequence numbers. An old, replayed message would have a lower sequence number,
and hence it would be rejected by the receiver. This typically requires the sequence
number to be encrypted and authenticated along with the contents of the message
to prevent an attacker from modifying the number.

• Modifying messages: After first obtaining legitimate network packets, an attacker
can attempt to modify and then feed them back into the network in order to force
a specific reaction from the system. This is possible if the network uses a weak
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message encryption or authentication scheme.
To prevent an attacker from being able to read or modify a message, a node
can encrypt its outgoing messages using a robust encryption scheme and append
a message authentication code (MAC) to ensure that the message can not be
tampered with.

• Denial of service: The term denial of service includes all attacks that disrupt the
correct functioning of a system. Typically, this includes flooding a part of the
network with a high volume of messages in a short time frame in order to cause the
system to start discarding messages (including legitimate ones) by taking up all the
available bandwidth. Depending on the computing power of the hardware being
targeted, denial of service attacks could traditionally require a lot of resources.
Unfortunately, constrained devices are especially vulnerable to this kind of attack
as they are not only very limited in terms of computing power, but can also offer
additional restrictions such as limited battery life. An attacker could attempt to
repeatedly connect to a device or cause unnecessary workload in order to quickly
deplete its battery or render it inaccessible.
Various detection and mitigation strategies have been developed over time to deal
with classical denial of service attacks, but dealing with battery-draining attacks
could prove more challenging. In general though, performing expensive operations
on demand on battery-powered devices should be avoided as long as the requesting
device is not fully trusted.

The other group of attacks are device attacks, where an attacker attempts to gain
access to the functions of a device or to take over control of the device completely. These
attacks are generally either enabled by remotely exploiting faults in the device software
or by physically accessing the device and manipulating it directly. While the possibility
of these device attacks creates certain requirements for the development of a secure
communication system, preventing them altogether is an unrealistic prospect. Rather,
the aim should be to develop a robust protocol which mitigates the impact of individual
node compromises. The following are some attacks that can result from an attacker being
able to compromise a device:

• Compromise of keying material: An attacker that has physically compromised a
device will generally have access to all stored data, including encryption keys and
certificates. Depending on the encryption scheme in use, this can pose a threat to
the network or localized parts of it, as the confidentiality of communications might
no longer be guaranteed.
To mitigate the impact of such an attack, a good keying mechanism is necessary.
In the event of a breach where keying material of individual nodes is leaked, the
network traffic of unaffected nodes shouldn’t be compromised. Additionally, a
mechanism for revoking and issuing new keys is helpful to further reduce the
consequences of a node compromise.
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• Feeding malicious data: If an attacker manages to gain full control over a sensor
device, they might be able to provide arbitrary data readings to the system. The
consequences of such an attack largely depend on the kind of data that is being
manipulated. Taking temperature data as an example, such an attack could
lead to the air conditioning system behaving incorrectly, excessively heating or
cooling the room, reducing comfort while increasing operating costs. Alternatively,
manipulating routing control data in a network can lead to lost or delayed messages
and can be considered a form of denial-of-service.
Preventing a compromised node from sending false data is only possible after the
compromise has been detected. Inconsistent data or statistical analysis can reveal
a malfunctioning or misbehaving node, after which it can be blacklisted or have its
keys revoked in order to prevent the system from reacting to the incorrect data.

• Providing access to the system: Compromising a sensor node gives an attacker direct
access into the underlying system. Depending on the interfaces and authentication
mechanisms used, a compromised node can provide access to many functions or
services of the system that would be unnecessary during normal node operation.
For example, an insecure interface or lacking access control mechanisms could allow
an attacker to access actuators or control functions such as HVAC or even door
controls from a simple sensor node.
To prevent a compromised node from accessing arbitrary data or services, a robust
access control mechanism is required.

In general, as long as a node does not misbehave, detecting a node compromise can
be a difficult task. This makes it necessary to have authentication and access control
mechanisms in place to reduce the impact of an undetected node compromise as much as
possible. These mechanisms are typically implemented at the data and application layers
and have to be customized individually for each system. As a result, describing and
implementing access controls is out of scope for this thesis and won’t be covered further.

3.5 Design Requirements

The definite aim of this paper is to design a secure communications protocol for use in
building automation networks. This protocol should protect from network attacks and
mitigate the impact of most device attacks as far as possible. Based on the above assump-
tions, threats, attacks and usecases, the primary design requirements for such a protocol
have been identified. Existing technologies as well as the prototype implementation are
evaluated according to their adherence to these requirements.

• Provide confidentiality and integrity: An attacker should not be able to read or
decipher the contents of any messages exchanged on the network. Neither should
they be able to alter the message without the receiver being able to detect that a
modification has occurred.
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• Survivability: Since the physical security of individual sensor nodes cannot be
guaranteed, the network at large must be able to operate even in the case of
node compromises. Individual undetected compromises should not break the
confidentiality of the entire network by revealing sensitive information to an attacker.

• Energy efficiency: The limited battery life of sensor nodes requires the protocol
design and implementation to be energy efficient and to avoid computationally
expensive operations as much as possible.

• Extensibility: In the case of expanding building infrastructure, it should be possible
to securely integrate new nodes into the network without having to re-configure
existing ones.

In addition to the above properties, the implementation also has to fulfill the following
two functional requirements:

• Provide an efficient key-exchange mechanism: In order to be able to provide the
aforementioned confidentiality and integrity properties, a key-exchange mechanism
is required. Functionally, two arbitrary nodes on the network must be able to
securely establish a common cryptographic key, regardless of their physical location
in the network. The exchange mechanism must be suitable for use on constrained
hardware platforms while offering an acceptable performance.

• Provide a key-revocation mechanism: In the scenario of a node compromise, the
system should be able to notify individual nodes about the compromise and revoke
any affected key if necessary. This way the compromised node can be prevented
from initiating or continuing communications with legitimate nodes.
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CHAPTER 4
Solution

The primary goals of the desired security protocol are to provide confidentiality and
authenticity for the communicating devices. The two most important message exchange
patterns that have to be covered in a building automation system are usually direct
communication between either two nodes, or a node and the control server.

In networked systems there is usually a multitude of approaches that can provide
the desired security properties. Each of them comes with its own advantages and dis-
advantages, and they typically differ in what network layer they operate on. The most
commonly found classifications are transport security and message security.

• Transport Security: Transport security mechanisms attempt to secure data at a low
level, independently of the upper layers. That way the security mechanism doesn’t
interfere with application layer protocols and can be implemented transparently.
Security options are usually limited by and dependent on the specific transport
layer implementation, and can vary greatly based on the circumstances. As an
example, 6LoWPAN offers a limited form of transport security by means of the
802.15.4 MAC security specified in the standard. More flexible approaches such
as DTLS are becoming increasingly mature and are on track to be adopted in
frameworks such as CoRE (Constrained RESTful Environments).

• Message Security: In this case, security is applied to individual messages themselves
rather than the underlying connection as a whole. This way, encryption and
authentication metadata is embedded in the message itself, making each message
self-contained. Message security also decouples the security from the underlying
transport protocol, effectively making it usable regardless of the specifics of the
lower layers. Especially when implementing end-to-end security solutions, message
security is often the preferred approach.
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Since end-to-end encryption coupled with message authentication is one of the most
straightforward ways of providing confidentiality and authenticity to a message exchange,
message security was chosen as the preferred approach. Unfortunately, implementations
that can be typically found in IP networks are generally not viable for sensor networks
due to performance reasons. The goal is to provide a more lightweight approach that
is limited to symmetric cryptography, which provides an acceptable performance even
on constrained devices. Regardless of the chosen security scheme, the main challenge
that needs to be solved when using a symmetric approach is the secure establishment of
encryption keys.

4.1 Design Fundamentals
Due to the nature of building automation systems, the message exchange patterns remain
predictable and mostly limited in scope. Specifically, not every node needs to be able
to communicate with every other node. Most wireless nodes will only ever need to
communicate with a control server (usually through means of a gateway) as well as a
small number of other nodes that fulfill related functions. Since building automation
systems typically don’t require support for mobile nodes with changing locations, these
communication patterns remain static and don’t change throughout the lifetime of a
building.

In practice, these limitations result in each node only needing to store the keys of
its relevant communication partners. This is feasible even on constrained devices, since
the number of required keys will generally be small, as opposed to a fully pairwise key
scheme as described in Section 2.2.2. With that in mind, the primary challenge is how to
exchange encryption keys between related nodes in a secure and efficient manner. There
are two different cases that need to be covered: Establishing keys between a node and
the controller, and establishing keys between two arbitrary nodes.

Establishing a pairwise key between node and controller

Solving this scenario is rather trivial. These key pairs (henceforth referred to as individual
keys) are unique to each node and can simply be preloaded into a node’s memory and
added to the controller’s keyring during the node deployment phase. While this means
that the controller has to save the individual key of each node in order to be able to
communicate with it, this shouldn’t be an issue in practice, as symmetric keys are
generally very small in size and the storage and memory of the controller are virtually
unlimited. Should a node become compromised by an attacker, only its own individual
key is revealed, while the individual keys of all other nodes remain secure.

Establishing a pairwise key between two arbitrary nodes

This scenario is considerably more challenging, since the system needs to be designed
with extensibility in mind. This means that new nodes can be added to the network
after the initial deployment phase. These new nodes should be able to exchange keys
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and communicate with previously deployed nodes. Loading the new keying material into
existing nodes manually is not practical, which is why a different approach is suggested.

The idea is to use a trusted third party, the controller, to generate the secret keys for
any node pairs (henceforth referred to as partner nodes, respectively partner keys). The
already established encrypted channels between nodes and the controller can then be
used to transfer the keying material securely to the two partner nodes. At a basic level,
the key exchange works as follows:

A node wishing to establish a secure key with another node can simply send a request
including the target’s address to the controller. The controller will then generate a new
key and send it, along with the two nodes’ addresses, to both parties (see Figure 4.1).
The nodes can now store this pairwise key and use it to communicate securely with each
other. All message exchanges with the controller during this process are secured using
the nodes’ individual keys. The controller immediately discards any partner keys after
generating them, so a potential compromise of the controller would not retroactively
reveal any of the previously generated pairwise keys.

Controller

Node A

Node B

Figure 4.1: Schematic example of a basic key exchange
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This key exchange design using a trusted intermediary was selected due to the nature
of building automation systems. Most such systems already include some sort of central
management server which supervises building activity, accumulates data, is sufficiently
secure and by extension lends itself to managing keys as well. It also offers the additional
advantage of being able to verify all key requests at a central entity, potentially filtering
out bogus requests before they can consume the limited computing resources of the
constrained nodes. Furthermore, it can be assumed that the communication patterns
within building automation systems rarely, if ever, change – sensor/actuator relationships
will remain mostly static throughout the lifetime of a building, with only occasional
additions or repairs happening. New nodes typically need to be configured on a per-node
basis anyway, making the pre-loading of keying material only a small additional effort.
The combination of these properties makes a complex dynamic system, which supports
mobile and frequently changing nodes, unnecessary in the building automation domain.

One disadvantage of the basic approach described above is that while keys generated
in the past are not recoverable outside of compromising one of the two communicating
nodes, nothing prevents the controller from issuing new keys and sending key update
instructions to chosen nodes. This way, a compromised controller or leaked individual
keys could allow an attacker to issue fabricated keys to arbitrary node pairs, thereby
breaking the confidentiality of their exchanged messages. Alternatively, the attacker
could disrupt communications between existing partner nodes by issuing both of them
new, but differing keys, which would effectively render them unable to communicate with
each other.
While a compromise of the control server represents a worst-case scenario in terms of a
security breach, it is still possible to mitigate the effects of such an incident. In order
to do so, a node will additionally attempt to verify a newly issued key with its partner
before overwriting any previous keys. This way, the nodes can make sure that the key
request was legitimate.
This verification process consists of a random challenge, encrypted using the new partner
key. Upon receipt of the verification request, the partner node will reply with an ACK
message including the challenge. After a final RE-ACK the verification process is closed
and both nodes can save the new partner key for future communications (see Figure 4.2).
If the partner hasn’t actually requested a new key, it will not send the ACK message,
causing the first node to discard the newly issued key after a specified timeout period.

Key Revocation

Secure key revocation can be realized using a method similar to the key exchange. The
controller can send an encrypted key revocation request to any target node. This request
has to include the address of the compromised node whose key is being revoked and is
authenticated using the individual key of the target node. The target node can verify
the authenticity of the revocation request by using its individual key, removing the
compromised node and any associated keying material from its memory.
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Figure 4.2: Schematic example of a key exchange with verification

4.2 Detailed Key Exchange Process

Let A and B be two nodes, where A wishes to establish a new partner key with B. A will
start the key exchange procedure by sending a key request to the controller C. This key
request is encrypted and authenticated using A’s own, individual key ikA, and contains
B’s node address, addrB. Node A will also save this key request in order to be able to
confirm it later.
The controller will then generate a new, random partner key pkA,B . This key, along with
the IP address of the other node, will be sent to both nodes.
These two messages are separately encrypted and authenticated using the individual
keys of nodes A and B (ikA and ikB, respectively). This can be achieved using an
authenticated encryption mechanism that provides both these features in a single pass.
After sending out the key, the controller has to discard any sensitive information, in
particular the key pkA,B itself, to prevent a potential future attacker from obtaining or
deriving it.
Upon receiving the generated key, node B will wait for a short period of time and then
send a verification request to node A, whose address was included in the key message. This
verification request consists of a random challenge and is encrypted and authenticated
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using pkA,B.
At the same time, node A should have also received the key message and assigns the new
key pkA,B to node B as a preliminary key. It will now be waiting for a key verification
request from node B. Once it receives the verification request, it should be able to
successfully decrypt it using pkA,B and obtain the challenge. At this point, if node A
has legitimately requested a key exchange with the source of the verification request,
it will respond with an ACK message including the challenge that is encrypted and
authenticated using pkA,B. If node A hasn’t requested a key, or the key request has
timed out in the meantime, it will discard the verification request.
Node B, upon receipt of the ACK, will decrypt it and compare the challenge in the
ACK message to the original challenge. If the challenges match, the node can assume
that the key request was legitimate and permanently store pkA,B along with node B’s IP
address for future communications. To finish the transfer, it will send a last RE-ACK
message to node A, which, upon receipt, can now also save pkA,B.
In summary, the protocol trace looks as follows:

A → C : {REQUEST_KEY (addrB)}ikA

C → A : {NEW_KEY (pkA,B, addrB)}ikA

C → B : {NEW_KEY (pkA,B, addrA)}ikB

B → A : {REQUEST_V ERIFY (challenge)}pkA,B

A → B : {ACK_V ERIFY (challenge)}pkA,B

B → A : {RE_ACK}pkA,B

Symbol Meaning
A,B,... nodes A,B,...
{...}k message whose payload is encrypted using the key k
A → B A sends a message to B
addrN IPv6 address of node N

Table 4.1: Notations

Using a random challenge in this exchange is necessary, otherwise a compromised
controller could simply issue a bogus partner key to an arbitrary node, immediately
followed by a forged ACK message to confirm it. Including the challenge will instead
cause a node to discard the spoofed ACK since the response doesn’t match the challenge.

4.2.1 Reliability of the Key Exchange

Owing to the fact that the entire key exchange happens over an unreliable communication
medium, it is important that the protocol is robust and can handle lost or delayed packets.
To achieve this, time-out periods can be utilized to make sure that node pairs don’t end
up in inconsistent states, where one of the nodes has saved a new key while its partner
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ControllerNode BNode A

{REQUEST_KEY(addrB)}ikA

{NEW_KEY(pkA,B, addrA)}ikB

{NEW_KEY(pkA,B, addrB)}ikA

{REQUEST_VERIFY(challenge)}pkA,B

{ACK_VERIFY(challenge)}pkA,B

{RE_ACK}pkA,B

Figure 4.3: Sequence diagram of the key exchange process

has discarded the key exchange. At the same time, the re-transmitting and re-requesting
of messages should be kept to a minimum to reduce the possibility of a malicious node
continually draining the power and resources of other nodes by repeatedly requesting key
verification. In general, each time a node has completed a step of the key exchange, it will
start a timer. Should this timer expire before the next phase of the exchange is complete,
it will discard all previous progress and any received keying material. The nodes will
not attempt to re-transmit any messages, with the exception of the final RE-ACK, the
reason for which will be explained below.
This means that usually any lost messages will cause the key exchange to time out and
be discarded. If that happens, the requesting node has no choice other than restarting
the process and sending another key request to the controller.

The following scenarios describe in detail how packet loss is handled at particular
points during the key establishment process:

• If the initial key request message gets lost, the requesting node A will simply time
out and discard its key request. At this point, the target node B is still unaware of
the exchange process, so it is unaffected by the lost packet.

• If the key request comes through to the controller, but one (or both) of the key
notifications from the controller become lost, one of two things can happen:
In case the message to node B or both messages are lost, B will once again be
unaware of the exchange process and not react in any way. Node A will time out
eventually while waiting for the verification request from B, discarding a potentially
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received key.
Should the message to node A get lost, node B will receive the new key, triggering
a key verification request, which will be discarded by A, as it has not received a
new key yet. Node B will time out waiting for an ACK message, assume that the
key request wasn’t legitimate and discard the exchange.

• The above thing also happens when both nodes receive the key, but the verification
request is lost. In this case node A will time out waiting for the verification request,
while node B will time out waiting for an ACK message and assume that the
request wasn’t legitimate.

• If the verification request is successful but the ACK message is lost, node A will be
waiting for the RE-ACK until its timer expires, while node B times out waiting
for the ACK, at which point both nodes will discard the key exchange.

• A problematic situation arises when the ACK message is successful, but the RE-
ACK is lost. What would happen then is that node B would store the key upon
receiving the ACK, but node A, not having received the RE-ACK, would assume
that the ACK has been lost somewhere and discard the exchange. This would
result in a one-sided key establishment, effectively rendering the two nodes unable
to communicate with each other.
To reduce the probability of such an event occurring in practice, node A will
attempt to re-transmit the ACK a specified number of times if it doesn’t receive a
RE-ACK immediately. Only after multiple failed attempts it will finally discard
the exchange. While this doesn’t entirely eliminate the possibility of a failed key
exchange, it considerably reduces the likelihood of it happening due to a random
link failure.

Optionally, a number of re-transmissions could be included on most of the message
exchanges to further improve the overall reliability of the key establishment process at
the expense of energy efficiency in the situation of illegitimate exchange or verification
requests.

It should also be noted that in the proposed solution nodes are identified based on
their IP address in the 6LoWPAN. This approach could be impractical in a real-world
application, as nodes requesting new keys would need to know their partner’s IP addresses.
If node IP addresses in the network aren’t assigned statically, figuring out specific node
addresses could be non-trivial. Despite these concerns it was decided to use this IP-based
scheme for the proof-of-concept due to its simplicity. A more reasonable approach for a
real application would be to instead use some sort of node ID in the request. This ID
would ideally have to be known during deployment time and assigned statically to all
nodes. The controller could maintain a database of all node IDs and their corresponding
addresses and would then be able to handle the request and forward it to the correct node.
Regardless, the choice of a different addressing scheme doesn’t introduce any additional
security vulnerabilities, making it primarily an issue of practicality.
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4.2.2 Key Exchange Vulnerabilities

Notably, the proposed scheme is still vulnerable to forged key notifications if the attacker
controls a node or radio transceiver within radio range of one of the two partner nodes,
in addition to having compromised the controller. In such a scenario, they can send
a fabricated key notification from the controller and listen to the resulting verification
request. They can then decrypt this message using the fabricated key, obtain the correct
challenge value and reply with a spoofed ACK message, again encrypted using the
fabricated key.
This attack can be mitigated by employing link-layer security, which ensures that all
message exchanges between arbitrary nodes are always encrypted and verified during
individual hops using additional neighborhood or cluster keys (as described in Section
2.2.2). That way an attacker can no longer obtain the contents of the verification request
message by passively listening, since the packet is additionally encrypted during trans-
mission using the pairwise keys of the nodes on the route between the two endpoints.
To be able to access the contents of the message, the attacker would have to control a
legitimate node on that route in order to intercept the request challenge between two
hops and inject a spoofed ACK message into the exchange.
As a result, utilizing link layer security can considerably reduce the impact of a com-
promised controller, as it no longer represents a single point of failure in regards to the
operation of the entire system. In order for an attacker to disrupt the secure communica-
tion between existing nodes, it would now be necessary to additionally gain control of a
node capable of intercepting and modifying network traffic during the key verification
process. In practice, this can be considered sufficiently secure, since a situation where an
attacker is able to compromise not only the controller, but also arbitrary nodes in the
network can already be considered a catastrophic security failure.

4.2.3 Key Revocation Vulnerabilities

As described above, a simple centralized key revocation scheme could be realized in a
manner analogous to the key establishment process, that is by authenticating and verifying
key revocation requests using nodes’ individual keys. Unfortunately, implementing a
key revocation scheme this way nullifies the advantages achieved by verifying new key
requests between nodes. In particular, a compromised controller could simply send
forged key revocation requests to arbitrary nodes, causing them to delete selected keys
and being unable to securely communicate with the targeted nodes. This way, the
controller would once again pose a single point of failure in the system. While this may
be acceptable in some settings due to the low likelihood of a controller compromise, it
would be desirable to circumvent this issue altogether, while still supporting efficient,
centralized key revocation.

One possible way of achieving that goal would be to use a separate set of individual
keys (unique to each node) for key revocations. Storing this key set offline and separate
from the controller’s other keying material would make it more resilient to a controller
compromise. If a node compromise would be detected that required a revocation,
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the necessary revocation keys could be obtained from the offline storage and used to
authenticate the revocation requests. Using an offline solution like this seems justifiable
based on the fact that key revocations should represent a rare scenario that typically
requires intervention from a system operator anyway. This way the additional overhead
caused by having to access the offline key storage poses less of an issue in practice.
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CHAPTER 5
Implementation

5.1 Architecture

To show the feasibility of the suggested approach, a sample system that demonstrates the
core features was implemented. This prototype implementation is able to communicate
through 6LoWPAN and its architecture consists of two primary parts:

• Demo-node: A small sensor node running a simple application in Contiki OS
that sends periodic temperature readings over a 6LoWPAN-based network to the
controller. It supports the designed key-exchange scheme as well as link-layer
security in the form of APKES [26].

• Controller application: A Java application running on a desktop-class device which
represents the building control server. It can send and receive UDP messages over
an IPv6 link and supports key and node management.

In order for the IPv6 backbone to be able to communicate with the 6LoWPAN-based
sensor network one additional component is required:

• Border-router: The border-router is essentially a bridge that connects the 6LoWPAN
to the Ethernet-based network that houses the control server. It runs on the same
hardware as other sensor nodes, but uses two network interfaces and is able to
pass traffic from one network to the other. In practice, a border-router would be
required at every point in the building where traffic passes from an IPv6-based
backbone network to the 6LoWPAN or vice versa.
Since devices on either side of the bridge can be addressed using their full IPv6
addresses, the border-router appears transparent to all actors, and, together with
the 6LoWPAN adaptation layer, provides the impression of one interconnected
IPv6 network.
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Node B

Node C

Node A

Border-Router

Figure 5.1: Schematic view of the network architecture and its components

Test setup

The test setup consists of a single controller and a number of demo nodes. The demo
nodes can communicate with each other through a 6LoWPAN and are connected to the
controller by the means of a border-router, which forwards IPv6 traffic originating at the
controller to the 6LoWPAN-based node network and vice versa. The schematic view of
an example test setup is visible in Figure 5.1.

5.2 Components

5.2.1 Software

The sensor node component of the prototype is implemented in Contiki OS [40]. Contiki is
an open-source operating system specifically designed for low-power devices that supports
most popular microcontrollers and hardware configurations. Additionally, it offers various
development tools such as the Cooja network simulator, which was the primary tool used
for testing and debugging during development. Cooja allows simulating 6LoWPAN-based
networks consisting of arbitrary numbers of various node types (called motes) and device
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configurations while providing considerably higher testing throughput than running the
applications on physical hardware. This is achieved by virtually eliminating any waiting
periods present in physical hardware testing, such as the need for repeated flashing of new
software versions onto the device EPROM each time changes are made to the program
code. Naturally, after the prototype was implemented, the functionality of the solution
was also tested on physical devices to show the feasibility of running it on real hardware.

5.2.2 Hardware

The node demo application was ultimately run and tested on Zolertia Z1 motes [41],
which are based on the MSP430 16-bit microcontroller and specifically designed for use
in sensor networks. They include an IEEE 802.15.4 compliant CC2420 radio transceiver
[42] as well as an on-board temperature sensor and accelerometer.

5.2.3 Cryptography

To provide message encryption and authentication for the system, AES in CCM* mode
[43] was chosen. CCM* is a slightly extended version of CCM mode (Counter with CBC-
MAC) [44], which is an authenticated encryption algorithm that provides a combination
of confidentiality as well as authentication. It uses 128-bit AES as its underlying cipher.
Unlike pure CCM, CCM* also supports encryption-only in addition to authenticated
encryption. When using authenticated mode, a MAC is generated over the plaintext and
encrypted along with the message. During the message decryption process the received
MAC is compared against the MAC generated from the decrypted message. Should they
not match, the message is discarded.

CCM Fundamentals

CCM* is a counter-based cipher, which means that it requires not only a secret key,
but also an initialization vector (IV, sometimes called nonce). To preserve the security
properties of the cipher, it is important to never use an IV with any given key more
than once. Notably, the IV does not have to be secret though, which means it can be
prepended to the message as plaintext. A common way of preventing reuse of an IV is to
use a sequential counter value, which is incremented by one after each message. Unless
the counter reaches its maximum value and overflows, this ensures that an IV will never
be reused.
CCM* uses a 13 byte IV, 8 of which represent the last 8 bytes of the link-local IP address
of the source node. The last 5 bytes of the IV are the counter value, incremented by
one after every message. A 5 byte counter allows for a maximum unsigned value of
approximately 1012, which represents the maximum number of messages that can be
exchanged before the counter overflows. In case this value is ever reached, the counter
has to be reset and a new key must be assigned to prevent the reuse of counter values
with the previous key. One simple way of doing so is to apply a one-way function to the
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old key to generate a new one. However, due to the high message cap and the resulting
unlikelihood of an overflow in day-to-day operations (sending 1000 messages per second,
which is a highly unrealistic assumption for a BAS, it would take over 31 years to reach
the maximum value), a counter overflow handling wasn’t implemented in the prototype
solution.
The MACs generated by CCM* support variable length, but are typically set to 8 bytes.
Combined with the 13 byte IV, this results in a total overhead of 21 bytes per encrypted
message transfer.

The choice fell on CCM* primarily because there already exist efficient implementa-
tions for Contiki OS and because the combined nature of the authenticated encryption
makes an additional message authentication mechanism unnecessary. That being said, any
sufficiently secure symmetric cipher coupled with some form of message authentication
should be suitable for use in this design.

5.2.4 Link-Layer Security

In addition to providing end-to-end encryption between nodes and/or the controller,
it was also decided to incorporate link-layer security to increase the robustness of the
solution to random node compromises. Contiki OS does not support link-layer security
out of the box, but there exists a working implementation developed by Konrad-Felix
Krentz [26]. While link-layer security alone doesn’t provide all the desired properties,
such as end-to-end encryption between individual nodes, it helps alleviate some of the
issues identified in the system. Primarily, it offers hop-to-hop encryption based on an
adaptable pairwise key establishment scheme (APKES). One of the supported schemes is
based on LEAP, which has been described in detail in Section 2.2.2. It allows new nodes
to establish secure keys with their immediate neighbors, as long as there is a short time
frame after deployment during which the node can be considered secure.
An additional advantage of combining APKES with the proposed solution is that APKES
prevents injection attacks by rejecting packets from unknown or unverified neighbors.
This property greatly reduces the viability of some attacks, such as the key-invalidation
attack described in Section 4.2.2, where an attacker could use a compromised controller
or leaked keystore to disrupt already established key pairs.
Furthermore, the security layer also provides authentication and encryption of broad-
cast frames, based on the keys established through APKES. This is mostly useful for
securing local broadcasts, such as those used by 6LoWPAN routing and neighborhood
discovery protocols. Notably, the proposed end-to-end encryption scheme runs at the
application layer, so it doesn’t conflict with the security layer in any way. As a result,
using APKES is optional, and in fact it could even be replaced with any other link-layer
security implementation that provides similar properties. Further details regarding the
exact functionality of the security layer implementation will be omitted at this point
and instead, the interested reader is pointed to the associated papers by Krentz et al. [26].
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Figure 5.2: 6LoWPAN protocol stack with possible security features

5.2.5 CoAP / DTLS Integration

Many building automation usecases rely on RESTful web services. In order to be able to
support such services even on constrained devices, the Constrained Application Protocol
(CoAP) was developed. It is currently widely in use in the IoT and in WSN environments.
In an attempt to integrate this solution with CoAP, it was looked into existing ways
of securing CoAP traffic. One promising approach was to use CoAP in combination
with DTLS. DTLS, as described in Section 2.2.2, is an adaptation of Transport Layer
Security (TLS) for use with UDP. While its PKC-based key exchange mechanisms aren’t
particularly well suited for use in a constrained environment, it offers the ability to
use pre-shared keys (PSKs) for secure communication. Thereby a pre-shared key is
used during the DTLS handshake to establish a secure connection with the peer. This
PSK-based key scheme could theoretically be adapted to work in combination with the
proposed centralized key exchange. In particular, the keys established through this
scheme could be further utilized as PSKs in DTLS-secured communication channels.
This approach would have the advantage of making the solution independent of any
higher-level protocols or layers, such as CoAP. Once the key exchange is complete and the
necessary keys are saved in the DTLS keystore, CoAP (or any other high-level protocol)
can take over and utilize the secure communication channel provided by DTLS without
having to interact directly with any secure keys or cryptographic mechanisms.
Some research into using CoAP over DTLS in Contiki was conducted and found that the
6lbr project [45] offers a functioning DTLS-CoAP integration for Contiki. Unfortunately
tinyDTLS, the underlying DTLS implementation, didn’t seem to support using multiple
identities in conjunction with pre-shared keys at the time of writing, preventing a
straightforward integration of the centralized key exchange. Nevertheless, the general
concept of using the key exchange with DTLS-PSK seems sound and creating a working
implementation, while out of scope for this thesis, should only be a matter of extending
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tinyDTLS to support the necessary features.

5.3 Evaluation
One of the primary goals when designing the system was to ensure acceptable performance
even on constrained hardware. The two most important metrics evaluated were power
consumption and memory usage. These properties were compared across various security
configurations in order to show the performance implications of the suggested approach
and to demonstrate its viability. The following four configurations were tested:

• No end-to-end encryption, no link-layer security

• End-to-end encryption, no link-layer security

• No end-to-end encryption, link-layer security

• End-to-end encryption, link-layer security

When comparing the various configurations, option 1 (no encryption, no link-layer secu-
rity) served as a baseline value that the other configurations were matched against.

In addition to power and memory requirements, a number of measurements regarding
the time required for completing various security related tasks were also conducted, both
concerning the duration of the key exchange as well as DTLS/CoAP-based functions.
These measurements were performed in a simple testbed which is not fully representative
of a complex live system. Nevertheless, they were able to provide a general impression of
the temporal overhead caused by including the various security features.

5.3.1 Power Consumption

Ensuring a reasonable power consumption was one of the most important aspects of the
proposed solution. It is made necessary due to the presence of devices with a limited
power supply, such as a battery. In order to achieve this goal, computationally intensive
operations, such as asymmetric cryptography, had to be avoided and replaced by more
efficient albeit less flexible approaches.

To actually evaluate the power consumption of the implementation, the Powertrace
tool offered by Contiki-OS was used. Powertrace estimates the energy consumption during
operation by continuously monitoring the state of the hardware components, specifically
the CPU and radio transceiver. It records the time spent in each state measured in
CPU ticks, which can then be converted to the absolute time based on the CPU clock
frequency.
The total time a component spends in a specific state can then be used to obtain its net
power consumption by multiplying the time with the estimated power draw of the given
component in that state. The average power consumptions of the individual components
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Component Current Consumption Notes

MSP430f2617 0.5ma Active Mode @1MHz (LPM)
< 10ma Active Mode @16MHz

CC2420 <1µA OFF Mode
18.8mA Receive Mode
17.4mA Transmit Mode @0dBm

Table 5.1: Approximate power consumption of Z1 components [41]

on the testing devices were obtained from the Zolertia Z1 datasheet [41]. Table 5.1
provides a listing of the relevant components and their electrical characteristics. For
the actual evaluation of the power consumption, it was chosen to compare the power
required to complete a single message sending or receiving operation. Since individual
nodes typically either send (sensors, control elements) or receive (actuators) the majority
of the time, but not both, those two scenarios are evaluated separately.

Regardless of the chosen mode, the CPU spends most of its time between individual
message exchanges in low power mode (LPM). The remaining time between exchanges is
taken up by tasks regularly scheduled by the OS. As a result, the total power consumption
between two send or receive cycles is largely dependent on the length of the idle period
between them. Longer waiting periods cause a higher total consumption, reducing
the relative difference when comparing various security configurations. Since the main
focus lies on the power required by sending/receiving and the associated cryptographic
operations, it was attempted to minimize the influence of the idle period. To achieve this,
all time spent in LPM mode was disregarded and a period of only one second between
individual message exchanges was chosen, reducing unrelated CPU usage and idle radio
time to a minimum. This way, the largest part of power usage can be attributed to
actual cryptographic and network operations, allowing the comparison of the overhead
caused by the different security configurations. Additionally, the time that the radio
transceiver spends in transmit and receive modes is factored in, since longer messages
require increased radio activity.

Additional workload generated by the partner key establishment process was not
considered, as it typically only happens a limited number of times throughout the lifetime
of a device, unlike day-to-day operations which will represent the majority of the energy
consumption. Furthermore, the key establishment process follows a normal message
exchange cycle and doesn’t involve any additional high-complexity computations, putting
its power consumption in line with normal node operations.

The power consumption of the node startup phase, during which a node sets up its
basic functions and networking capabilities was not included in the final evaluation either.
This process typically takes around a minute, but only needs to to be performed once
during the lifetime of a node and would unnecessarily increase the total power consumption
and thus reduce the relative differences between the individual test configurations. An
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additional factor that needs to be taken into consideration is RPL convergence. Especially
during the early message exchanges, the RPL routing algorithm is still attempting to
establish the network topology, causing considerably higher than usual radio traffic,
significantly increasing power consumption during some measurement cycles. Much
like the node startup phase, this process cannot be avoided entirely and would skew
the evaluation results. To avoid this, all measurement cycles that had significantly
increased CPU and radio usage due to RPL exchanges were filtered out. For the actual
measurement, the nodes completed a total of 110 message exchange cycles each. Of these
110, typically around 5 had to be dropped due to RPL. The power consumption during
the remaining message exchanges was then averaged and compared between the various
security configurations. Figures 5.3 and 5.4 give a breakdown of the power required by
the CPU and radio in the four different configurations.
The evaluation indicated an increase in power consumption of approximately 50% during
both sending and receiving. While this number seems rather high, it is limited to the
actual encryption, sending and receiving operations due to the measurement methodology.
In a real-world application a node consumes a considerable amount of power even when
idle, mostly due to the CPU still drawing power even in LPM and the radio periodically
turning on to listen for traffic. Measuring the total power consumption during normal
operations would therefore result in a much lower relative overhead. With that being
said, the measured overhead during send/receive operations appears to be within an
acceptable range.
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5.3.2 Memory Usage

The second important aspect to keep in mind while designing a solution for constrained
devices is memory consumption. The RAM and ROM available on most devices is
typically fairly limited. The Z1 mote that was used for evaluating the implementation
offers 92kB of Flash Memory and 8kB of RAM, the majority of which is already occupied
by the operating system. The implemented solution has to fit within the remaining
memory and still offer at least some upward room for implementing additional features
in the future.
As it turns out, enabling end-to-end encryption requires approximately an additional
3400 bytes of program memory and 550 bytes of RAM, which represents an overhead of
8% and 11%, respectively.
Adding link-layer security further increases the memory requirements, making the imple-
mentation move rather close to the 8kB RAM limit of the device. While some further
micro-optimization may be possible, substantial improvements are unlikely. The RAM
requirements of the end-to-end encryption are largely dependent on the number of known
nodes, and since the size of the table storing these nodes is chosen statically, a large
table size can considerably increase the RAM footprint. Each entry, consisting of node
address, state, permanent key, preliminary key, verification challenge, frame counters and
an associated timer, takes up approximately 88 bytes of RAM. The above measurements
were taken with a table size of 5, allowing each node to store 4 partner nodes in addition
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to the controller, which always takes up the first table entry. In practice, the table size
should be chosen according to system requirements and available memory.
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5.3.3 Timing Measurements

In order to provide a general impression of the temporal overhead of both the proposed
solution as well as a possible DTLS-based approach, some additional timings were
compared. In particular, the following measurements were performed (Table 5.2):

• Duration of the centralized key exchange: First, the time elapsed between the
sending of the initial key request message from the node to the controller and the
receipt of the final RE-ACK message from the partner node was measured.
On average this process took 72 milliseconds, with individual measurements varying
between 64 and 79 milliseconds.

• Duration of a DTLS handshake: The time required for completing a DTLS-PSK
handshake between a node and the control server was measured. This handshake
has to be performed before any DTLS-CoAP requests can be handled.
Completing the DTLS handshake on average took 604 milliseconds, with values
varying between 500 and 776 milliseconds. While this is rather long, it should
be acceptable due to the fact that the handshake, as well as the centralized key
exchange, only have to be completed a single time. Repeating them at a later point
is not needed as long as keys or DTLS cookies don’t have to be renewed.

Additionally, the performance of the DTLS-PSK-based approach described in Section
5.2.5 in comparison to a plain CoAP approach was evaluated. To that end, the two
following metrics were measured (Table 5.3):

• Duration of a plain CoAP request/response cycle: The response time of a simple
CoAP GET request by the controller, sent to a node.
Here, the measured duration was an average of 39 milliseconds, with values between
25 and 65 milliseconds.

• Duration of a DTLS-CoAP request/response cycle: The response time of a DTLS-
secured CoAP GET request by the controller, sent to a node. This excludes the
handshake duration.
In contrast to the plain CoAP request, DTLS-CoAP took slightly longer with an
average of 63 milliseconds, with values between 54 and 84 milliseconds.

Considering the obtained values, using DTLS shouldn’t cause a substantial slowdown of
system response times, assuming that any required key exchanges and DTLS handshakes
have been completed in advance. Since most functions in a BAS are not time-critical, the
additional delays caused by using DTLS instead of plain CoAP are insignificant. Even
for tasks where an immediate response would be desirable due to user input (such as
light or door switches), the increased response times would be well within the acceptable
margin of 100 milliseconds suggested by interface usability guidelines [46].
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Key Establishment DTLS Handshake
77 ms 543 ms
66 ms 566 ms
78 ms 572 ms
71 ms 500 ms
79 ms 549 ms
71 ms 569 ms
64 ms 584 ms
71 ms 729 ms
72 ms 776 ms
69 ms 650 ms

Average 72 ms 604 ms

Table 5.2: Individual duration measurements for the centralized key establishment and
the DTLS handshake

Plain CoAP DTLS-CoAP
52 ms 57 ms
43 ms 81 ms
40 ms 54 ms
31 ms 55 ms
35 ms 57 ms
45 ms 58 ms
56 ms 57 ms
39 ms 82 ms
43 ms 84 ms
32 ms 77 ms
38 ms 61 ms
33 ms 63 ms
38 ms 55 ms
38 ms 62 ms
27 ms 62 ms
27 ms 61 ms
27 ms 57 ms
65 ms 57 ms
37 ms 58 ms
25 ms 68 ms

Average 39 ms 63 ms

Table 5.3: Individual duration measurements for plain CoAP requests in comparison to
DTLS-CoAP requests
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CHAPTER 6
Conclusion and Future Work

As building automation systems become more ubiquitous, it gets increasingly important
to properly secure them. While a number of approaches and partial solutions for securing
and authenticating the network traffic of wireless sensor networks exist, none of them
offers an adequate, overarching solution, yet. Even technologies such as DTLS, while
well-tested and proven in practice due to the related TLS, cannot solve all of the problems
faced by WSNs. In particular, avoiding asymmetric cryptography due to performance
reasons and finding a suitable key-exchange based solely on symmetric methods has
proven challenging.

In this thesis, such a key-establishment scheme is proposed. It is primarily focused
on deployment in building automation systems due to the centralized network structure
and architecture typically found in those systems. It allows arbitrary nodes in a network
to exchange secure keys by using a trusted intermediary. Some problems and possible
attacks related to this scheme are described as well as means by which they can be
prevented. To demonstrate the feasibility of this approach, a prototype implementation
is provided that allows secure key establishment, end-to-end encrypted communication
between two nodes and additionally supports link-layer security over a 6LoWPAN. It
was implemented in Contiki-OS, an operating system focused on low-power devices.
The prototype was then evaluated in terms of energy consumption and memory usage,
the two primary considerations when developing solutions for constrained devices. The
evaluation showed that even with the added end-to-end encryption, both the energy
consumption as well as memory usage remained at an acceptable level. These results
indicate that this approach to implementing authenticated end-to-end security in the
context of building automation is feasible as long as certain requirements, such as a
trusted entity, can be guaranteed.
Nevertheless, it is accepted that a centralized approach is not necessarily usable in
or suited to all WSN scenarios, and as such, additional research into more flexible
approaches is recommended. However, due to the diverse nature of WSN and IoT
applications, a single one-size-fits-all solution is unlikely to exist. That being considered,

51



reducing the problem space to particular problem domains can yield solutions that, while
not necessarily flexible, are much more effective and better suited to their respective
environments. Furthermore, it can be expected that as technology continues evolving,
less compromises regarding hardware and performance will be necessary. This should
make more flexible approaches, such as those using asymmetric cryptography, increasingly
feasible in sensor networks.

In addition to the provided prototype implementation, further research was con-
ducted into integrating the solution with existing, more versatile approaches, such as the
aforementioned DTLS. Initial testing shows promising results with DTLS-PSK, which
is based on pre-shared keys and offers most features required by a BAS while in theory
being possible to combine with the proposed centralized key-exchange approach. Fur-
thermore, DTLS-CoAP performance was tested and compared to an unsecured, plain
CoAP approach, illustrating an acceptable overhead. For the future, further research
into designing a flexible DTLS framework based around pre-shared keys and identities
is recommended. Ideally, this would allow custom key exchange schemes to be easily
plugged into the PSK system. This way, existing applications that currently rely on
widespread protocols such as CoAP could easily incorporate a secure DTLS layer that
offers centralized (or other) key exchange capabilities.

Another area with numerous open questions is that of broadcast encryption. A
number of theoretical approaches to realizing broadcast encryption has been described
in Section 2.2, but none of them so far offer a really practical solution. One promising
approach was proposed recently by Tiloca et al. [38]. It is based on DTLS, which
again offers the potential advantage of allowing easy integration of efficient key exchange
schemes in the future.

In general, flexible integration approaches such as DTLS should be preferred over ones
that are more limited in scope. The primary contribution of this thesis is a centralized
key exchange scheme that could be easily integrated with such frameworks. Moreover, the
conducted performance evaluation shows acceptable performance and memory overheads
when using symmetric cryptography compared to an unsecured solution, both in a direct
AES-CCM* implementation as well as when integrating with DTLS-CoAP. The proposed
approach, potentially in combination with DTLS, offers a solution that should be well
suited to providing security in a building automation context.
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