
On Building Multidimensional
Workflow Models for Complex

Systems Modelling
DISSERTATION

zur Erlangung des akademischen Grades

Doktorin der technischen Wissenschaften

eingereicht von

Jasmine Malinao
Matrikelnummer e1429003

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: O.Univ.Prof. Dr. Walter G. Kropatsch

Diese Dissertation haben begutachtet:

(Prof. Jaime Caro, PhD) (Prof. Shin-ya Nishizaki, PhD)

Wien, 25.01.2017
(Jasmine Malinao)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

On Building Multidimensional
Workflow Models for Complex

Systems Modelling
DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktorin der technischen Wissenschaften

by

Jasmine Malinao
Registration Number e1429003

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: O.Univ.Prof. Dr. Walter G. Kropatsch

The dissertation has been reviewed by:

(Prof. Jaime Caro, PhD) (Prof. Shin-ya Nishizaki, PhD)

Wien, 25.01.2017
(Jasmine Malinao)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Jasmine Malinao
Vorgartenstraße 67/41, 1200 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die
verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Acknowledgements

“The isolated man does not develop any intellectual power. It is necessary for him to be
immersed in an environment of other men, whose techniques he absorbs during the first
twenty years of his life. He may then perhaps do a little research of his own and make a
very few discoveries which are passed on to other men. From this point of view the search
for new techniques must be regarded as carried out by the human community as a whole,
rather than by individuals.”

– Alan Turing

To AIT Austrian Institute of Technology. I wholeheartedly express my gratitude for
your very welcoming and supportive environment in doing research and development.
Research is a space without boundaries – you are one of the institutions who have shown
me that being a foreigner in Europe does not and cannot refute this as I go through
bureaucratic and academic processes as a resident and scientist in this continent. I thank
my supervisor in AIT, Dr. Florian Judex, for your wisdom, humor, trust, patience,
and understanding in guiding me with research tasks in AIT and in my PhD. I thank
Dr. Gerhard Zucker and DI Tim Selke for your help as I discovered profiles on energy
systems in the few months I gave assistance in the ExtrACT project. I thank Najd
Ouhajjou, Barbara Jandl, Maggie Schibor, Usman Habib, Ghazal Etminan, Bettina
Brunnader, Anna-Maria Sumper, and Elvira Welzig for your kindness, friendship, and
guidance.

To the Pattern Recognition and Image Processing Group(PRIP), Institute of Computer
Graphics and Algorithms, Vienna University of Technology. I am deeply honored to have
the opportunity to be a member of this research group, experience its practices, and
perform my research with the generous advisorship of its lead. To my professor and PhD
adviser, Dr. Walter Kropatsch, I am very lucky, honored, and grateful to have you as
my supervisor in TU Wien. You had been so open and generous of your advice and time
since I went through my admission until the completion of this dissertation. Thank you!
I am also grateful to Elfriede “Elfi” Oberleitner, together with Barbara Wiesböck of the
Office of the Dean of the Faculty of Informatics, for your kind assistance and coordination
especially when documentary requirements were needed to be processed in the many
stages of my academic life in the university.

iii

To the Algorithms and Complexity Lab of University of the Philippines Diliman. Time
and again, I always reflect how I am very blessed to have been developed as a scientist
in this lab since I started graduate school. I owe it to you that I am able to thrive in
research in whatever place and circumstance that I am in. I especially thank Sir Henry,
Francis, Jhoirene, Jan, Nestine, and Rich for a lifetime of friendship and collaborations
in research and development. I thank my former colleagues in the Computer Science
Department of the university, Kuya Nestor and Ate Mila, for your kindness and undying
support even when I am already abroad.

To my soul siblings in Vienna and Pinas. I thank Arlavinda Rezqita, Rasmiaditya Silasari,
Ulfah Nurzannah, and Claudia Zanabria for your sisterhood and companionship during
my stay and exploration of Europe. I appreciate all your help, advice, free-spiritedness,
understanding, patience, and empathy in all experiences we went through these years. I
thank Florian Miksch and Nelly Jean Forro for your care and huge help for my quest
and adventures in my PhD in Vienna. I thank this bunch of the most hilarious women I
have known – Kath Pusa, Kaysie Kalaykay, Tine Tirintin, Joyce Aloca, Apple Mansanas,
Jel, Mona, Haniel. A huge part of me and my brain had been kept intact by all of you
breaking it every now and then.

To Proficiency Evaluation Committee and Defense Panel. I thank Dr. Wolfgang Kastner,
Dr. Thilo Sauter, Dr. Jaime Caro, and Dr. Shin-ya Nishizaki for accepting to be part of
my Proficiency Evaluation Committee and/or Defense Panel. I thank you for taking time
and effort in providing reviews for the development and accomplishment of the research
goals in this dissertation.

Finally, I thank my family in the Philippines for the implicit trust, confidence, and
eternal support of all my decisions in life. I also thank God for the strength and wisdom
especially in my most trying times. I give all these back to you and to the world!

Abstract

From well-known, classical workflows such as Petri nets to one of the recent develop-
ments of modelling frameworks such as the Business Process Modelling Notation, the
development of system representations has long been established and improved through
the years. The common goal of such frameworks is to produce traceable, effective, and
well-understood functional and nonfunctional specifications of business and scientific
systems. This goal addresses issues from workflow design, verification, control and
monitoring, and continual improvement as systems evolve. Through the years, these
frameworks had been constructed, enabled, deployed and used under a singular or dual
perspective of modelling and verification relating to workflow dimensions, i.e. process,
resource, case. In literature, there is a huge gap for the support and enactment of all
three dimensions into one model for system representation and verification. That is, these
undertakings are mainly either process- or resource-centric. In terms of modelling with
all three dimensions in place, some support is observed in the Robustness Diagram(RD)
of the ICONIX framework. Because of its notational backbone, it was posed to serve as a
bridge for requirements traceability when using other workflows that focus solely on either
structure or behavior of system representations. It has potential in providing support
from requirements capture to testing to redesign of models. However, this diagram
has been underdeveloped with respect to these potentials in modelling and verification
especially for complex systems.

In this research, the Robustness Diagram with Loop and Time Controls(RDLT)
was introduced to support modelling and verification of complex systems. It is an
extension based from RDs. Building on RDs, we propose formalizations of RDLTs with
consideration for the use and representation of all three workflow dimensions in one
model. Additionally, by accounting the requirements of volatility, persistence, multi-state
configuration, and hierarchical structures and relationships present in complex systems,
the concept of a reset-bound subsystem(RBS) in RDLTs was also formulated. RBS enacts
capabilities of cancellation regions in well-known workflows in literature. However, RBS
enforces topological and behavioral requirements to perform resets in values in models.
Additionally, this research addressed the problems of explicitness and effectiveness of
representing data, control flow patterns(e.g. sequential, parallel, splits, n-out-of-k joins,
iteration, cancellation regions, etc.), and multi-level and multi-participant interactions.
These problems were also dealt under the specifications of all three workflow dimensions,
persistent and volatile structures and behavior in models.

v

In particular, this research introduced attribute-driven typing of vertices, arcs, and
substructures to enforce structural and functional specifications in RDLTs. The values of
the attributes and the resulting types of RDLT components directly influence their usage
and groupings for the execution of activities in models. Furthermore, they also influence
mechanisms for encapsulation of data and control flows in RDLTs. We proposed the
concept of Points-of-Interests(POIs) in RDLTs that also rely on these information. POIs
are then used to establish special regions in the model. We formally defined these regions
and characterize their neighborhood structures. We established encapsulation rules for
RBS and add its information to the characterized neighborhoods to determine metrics
for the analysis of RDLTs. In this research, the metrics that were developed mainly
focus on topological- and type-bound reachability, delays that cause bottlenecks, task
synchronicity, and activity completion. They are computed with consideration of the
presence of maximal substructures in RDLTs. Each substructure supports the execution
of an activity profile for the completion of a case in a multi-activity RDLTs.

Among the model properties in literature for workflows, this research adopted and
introduced soundness and free-choice for RDLTs. (We focus on these two properties
because many other properties can be implied from them.) Noting the types of components
and substructures and the presence of RBS in them, a behavioral profile of RDLTs that
satisfy the first property is initially provided. This profile is produced by the use of
the results from our proposed algorithm for activity extraction. However, this research
devised two independent approaches to prove this property through structural views
that account the types and the presence of RBS in RDLTs. The first approach was
constraint-driven. RLDT attributes that pertain to the enforcement of splits and joins of
type-alike components were used. We developed the concepts of an extended RDLT and
a vertex-simplified RDLT to support this approach. Meanwhile, the second approach was
component use-driven. Attributes that pertain to repeatability of task execution were
checked in type-alike/mixed-type components and hierarchical structures and interactions
in RDLTs. This approach used our proposed encapsulation rules for RBS. Collectively,
both approaches proved soundness based on statically-verifiable information in RDLTs.

Meanwhile, the free-choice property for RDLTs was proposed and built from using the
POI-driven metrics for reachability, boundedness, and synchronicity. In literature, this
property focused on place-task relationships in workflows. In this research, it is extended
by including combinations of topology-, constraint-, and type-driven free-choiceness in
models. There are two RDLT configurations that were proposed for these combinations.
One adopts the well-known view of free-choiceness while the latter its extension. However,
both configurations consider all the workflow dimensions in modelling RDLTs.

In addition, this research provides efficient verification schemes for soundness, free-
choiceness, and other proposed model properties for RDLTs. Real-world examples of
RDLT models, including that of a complex energy system, was provided to illustrate how
their structural and behavioral profiles were captured where these properties are checked.
Finally, this research proved the relationships and hierarchies of RDLTs based on the
properties that can be verified from them.

Contents

1 Introduction 1
1.1 Background of the Study . 1

On Workflows . 1
On Business Process Modelling for Complex Systems 6
A View of the state of UML Notations . 11
An Opportunity of Integrating Workflow Dimensions 12

1.2 Problem Statement . 16
1.3 Aim of the Work . 17
1.4 Methodological Approach and Structure of Work 20

2 Review of Related Literature 25
2.1 Workflows and Model Properties . 25

On Petri Nets and Workflow Nets . 25
Soundness in Workflows . 28
Free-choice Petri nets . 31

2.2 The Business Process Model and Notation 32
The Building Blocks in BPMN . 33
BPMN and the process dimension . 34
BPMN and the resource dimension . 39
BPMN and the case dimension . 43

2.3 Robustness Diagrams . 46

3 Robustness Diagrams with Loop and Time Controls 53
3.1 RDs with Loop and Time Controls . 54

Definitions and Basic Notations . 54
Activity Extraction in RDLTs . 55
Control Flow Designs in RDLTs and Notes in Construction 61

3.2 Reachability Profiles and Boundedness in RDLTs 66
On Constraint-dependent Paths and Diameters 66
Non-self controlling Structures and Bounds for Reachability 71

3.3 Free-choice Structures in RDLTs . 77
3.4 The Soundness Property of RDLTs . 82
3.5 Structural Properties of Reachability in RDLTs 85

vii

Reachability by C-based constraints . 85
A View of Compositionality of RDLTs . 87
Reachability by L-based constraints . 92

3.6 Proving Soundness by Structural Properties in RDLTs 93
3.7 Derivable Relations for Model Properties in RDLTs 94

On C-verifiability and NSC . 94
On Soundness and Reachability . 95
A Summarization of the Relations of Model Properties for RDLTs 98

4 RDLT Modelling for Real-world Complex Systems 99
4.1 On Applying the Proposed Framework On Energy Systems 99

5 Conclusions 107
5.1 Conclusions . 107

List of Figures 113

List of Tables 114

List of Algorithms 115

Bibliography 117

viii

1
Introduction

In this chapter, a general background of classical and recent modelling frameworks
are presented. The developmental issues pertaining to their notational construction,
control and management schemes, transformations from design to deployment, current
state of technological support, and their weaknesses in representation are provided
and analyzed. From these information and the analysis, lists of generic and specific
problems are collected. This chapter further provides assertions of possibilities for areas
of improvement in modelling with respect to addressing these problems. It presents
the foundation on the rationale and goals of this research. In particular, it focuses on
presenting well-established graphical frameworks, such as Petri nets, whose theoretical
backbone became a basis for the formulation of many other modelling and verification
frameworks in literature. With the growing development and use of concepts and
technologies of Business Process Modelling, this chapter also includes a discussion, brief
survey, and analysis of one of its core language for design – the Business Process Model
and Notation(BPMN). This chapter also includes the recent developments in diagramming
standards of the Unified Modelling Language(UML). This standard had long been widely
used for modelling especially in business and academic settings. From one lesser known
diagramming support inside this standard, this chapter presents the UML’s Robustness
Diagram(RD) and its potentials to help address the different problems cited in this
section. It also provides descriptions of the formalisms and schemes that enrich the
current state and use of RDs for supporting the modelling and verification of complex
systems.

1.1 Background of the Study

On Workflows

Workflows and Workflow Management Systems(WfMS) are undeniably a huge part of
understanding, characterizing, analyzing, and improving different types of systems from

1

the business to scientific domains. Workflows, as defined by the Workflow Management
Coalition [1], is “the automation of a business process, in whole or part, during which
documents, information or tasks are passed from one participant to another for action,
according to a set of procedural rules” [2]. Workflow models are “general models
workflow structure, data, agents and execution policies according to user and application
needs” [4]. Policies ensure correctness of workflows. Workflow models are generally
used to aid in the analysis, verification, and eventual modifications of specifications in
workflows when such are deemed necessary. Meanwhile, WfMS is “a software system
that defines, creates, and manages the execution of workflows through the use of software,
running on one or more workflow engines, which is able to interpret the process definition,
interact with workflow participants, and, where required, invoke the use of information
technology tools and applications” [2]. Although these definitions are mainly focused on
businesses, they can also be adopted in the scientific domain. A scientific workflow is the
assembly of sets of scientific data processing activities with data dependencies between
them [5]. These processes can include data transformations, data mining processes,
database queries, simulations done in high performance computers. In the same manner,
scientific workflows are handled by scientific workflow management systems such as
Kepler [6], Taverna [7], Triana [8], WOODSS(WOrkflOw-based spatial Decision Support
System) [9], etc. More concretely, these workflows had been used for modelling ranging
from simple systems, e.g. a recruitment process in human resource management [10],
to complex ones such as those found in contract net protocols in bidding [11], flexible
manufacturing systems [12], gas station servicing [15], biological systems [16, 17], etc.
The complexity of systems mainly concern with the magnitude of the state space that
can be generated from the system’s structure and behavior. In [19, 20], a complex
system can generate a huge state space because of its inherent processes which include
“asynchronous and sequential and stochastic behavior, by high level of concurrency and
conflict of its tasks and mutual exclusive resources. In general, a complex system
is an organization made up of many interacting components where these interactions
often lead to large-scale behaviors which are not easily predicted from a knowledge
only of the behavior of its individual components [21]. The unpredictability often arises
due to nonlinearity inherent in these behaviors. Nonetheless, such systems have the
capability to withstand failures from among these interactions. This is in part to the
hierarchical self-organization and its ability to withstand failures and perturbations by
use of memory [22, 23]. Persistence in memory, relates to the system’s capability to
store and access information that is usable for system recovery when needed [24], e.g.
when impending failures are expected. Volatility(or ephemerality) in such systems is
the opposite of persistence, i.e. an attribute of possessing transience in their system and
work specifications. Accounting all these aspects of complex systems, it is therefore not
hard to see that certain problems that are computationally hard, i.e. NP-complete [18],
arise in their modelling and verification with respect to both structure and behavior.

2

Workflow Dimensions and Existing Models and Issues

Workflows are formulated under the three workflow dimensions [25] namely (1) process,
(2) resource, and (3) case, as seen in Figure 1.1.

Figure 1.1: The three dimensions of a workflow. (Image source: [25])

Formally, the process dimension is a specification of processes, where a process is
a partial ordering of a set of tasks performed by a system. This includes routing
specifications of control schemes of these tasks like sequential, conditional, iteration, etc.
A task is an atomic computation done by a system. Atomic means that, for modelling,
the internal structure is not relevant [2]. One classic workflow model where the process
dimension is being used is a Petri net [27,86,87]. Petri nets provide graphical notation
showing step-by-step computations that are performed when conditions are satisfied given
some initial input configuration in the net. These nets, among many others, have an
exact mathematical definition of process executions with well-defined governing semantics
for an effective process analysis.

The resource dimension is a specification of resources, where a resource is an ob-
ject(e.g. user, database, component, etc.) with a determinable set of tasks to perform.
This set of tasks define the role of the resource in the system and therefore a part of the
functions in the organizational structure where a resource belongs in. In software engineer-
ing, this dimension is used in modelling some Unified Modelling Language(UML) [29]
diagrams such as Class and Component Diagrams. These types of diagrams are used to
model a system’s static, mostly structural information – i.e. the list of resources that
assist the accomplishment of the processes for some of the operations in a system.

The case dimension is a specification of cases, where a case represents an abstraction
of a set of entities that is processed from some point of execution of its workflow until its
corresponding output is produced. The concept of a case is equivalent to the concept
of tokens [2] in Petri nets [87]. As described in [2], a case is represented by a set of
tokens that are processed from an initial marking specification until one token arrives in
an output place in the net. Consider the case where the initial configuration has every

3

token in this set in their corresponding source place. By enabling and firing transitions
in the net from this initial configuration to its corresponding final configuration, the
behavioral profile of the net describes one complete functionality of a system. Note that
the final configuration, in this sense, implies there is one token in a sink node which forces
termination of process executions in the net. Under the assumption of this completeness
of the behavioral profile from source/s to sink descriptions of a functionality in the
net, it is further implied that there are no tokens in all intermediate places in the net.
Intermediate places are places which are not a source or a sink in the net. In system
representation, this means that there are no unnecessary components found in the model
to execute such a case specification.

Cases can be illustrated by an example of having different scenarios that different
students in a university face during an enrolment period in a semester. For this enrolment
workflow, one case can mean a student is at his initial stage of enrollment, i.e. he is
registered as a student in the semester he is enrolling in. For this case, a token in the
source place of the net represents the condition that he is registered. Another case can
mean another student is already registered and he has selected the minimum number of
lecture units for the semester. For this second case, there are no tokens in the source
place but one token in the place representing the check for the lecture units for the
enrollment. Note that both cases can be embedded into one enrollment workflow and be
processed simultaneously using process instances of the net with a WfMS that controls,
manages, and distinguishes the two case implementations.

Work is a specification of a case with its relevant processes that enable an execution
of a case. An activity is the actual performance of a resource on a work specification.
Activities are either atomic or non-atomic [2]. Tasks are activities which are atomic.
Atomicity refers to the attribute in a workflow where there is encapsulation of work and
their enabling resources by means of a unitary graphical representation in its design. In
Business Process Model and Notation(BPMN) [2], this type of encapsulation is achieved
by using a rounded rectangle which pertains to the atomic activity itself. Because of
the activity’s atomicity, there is only one entry point and exit point in send and receive
interactions. With this, activities can be implemented as nested activities to enable
the creation of subprocesses within encapsulations. In Petri nets and workflow nets,
tasks/activities are represented as transitions. In workflow nets, nesting is represented
by task refinements [25] where subprocesses(known as subflows) are encapsulated in
transitions. By a task refinement of a transition, the entire specification of the transition’s
subflow processes can be revealed and analyzed.

Workflow nets offer capabilities of distinguishing and tracking parallel executions of
different cases across splits and joins of processes. This is done by providing graphical
components in its framework. (In colored Petri nets [31], cases can be tracked by the use
of colorings on the tokens. The colors are used for flow control and tracking although
graphical representations to deal with these representations are not well supported in this
type of Petri nets.) Moreover, one of the weaknesses of workflow nets is its absence of
support in modelling resource-related information such as organizational structures and
role assignments. Data handling with respect to role execution and management amongst

4

resources in business processes are not fully and explicitly captured in workflows. Other
types of process models would have to be created and associated to these workflows, e.g.
human interaction workflows [2, 32,33], to enable specification of this information.

Another type of workflow model, YAWL(Yet Another Workflow Language) [34],
mainly relies on the framework of workflow nets. It provides enhancements of the latter
by supporting some aspects of execution control. That is, multiple cases (in the form
of process instances) are handled more effectively by associating each task with its own
individual state transition diagram. Tokens representing multiple cases are coursed
through the transition diagram’s components. These components represent various states
of case handling within the task. These states specify whether the instance execution is
“enabled”, “executing”, “completed”, and “active”. The transition “add” is supplemented
in YAWL for multiple instance handling. For handling multiple instances, each task
is associated to a vector specifying the minimum, maximum, thresholds on number of
completed cases, and whether the creation of new tokens for succeeding instances are
made dynamically or not. The “add” transition is fired to put a token to the “enable”
condition as soon as a new instance is introduced in the “active” condition when the
dynamic setting in the task is provided [34].

Another enhancement is the nonlocal firing behavior in YAWL. This supports the
enabling of processes in a workflow which are influenced by other processes that are
not locally connected to the former processes. Nonlocal firing behavior in YAWL is
supported by the use of a task t that performs cancellation on some predefined group G of
tasks/activities in a workflow which are associated to t. Cancellation is the interference
of the task t in the execution of the elements in G given some circumstance [46]. This
interference can either be disabling or withdrawing the execution every task/activity
in G, if it is already executing. Such a task t is referred to a cancellation task and
G is called its cancellation region. That is, a cancellation region are components in
workflows where cancellation occurs when its associated cancellation task is fired. A
real-world example for this control scheme is a cancellation of an order that is performed
by a customer in a workflow describing a product ordering system. When the cancellation
task is enabled and fired due to a message sent from a customer to a seller, all other tasks
such as product allocation, product delivery, invoice issuance, etc. are eliminated all at
once. For such a case, mechanisms in the workflow to remove other tokens that belong
to this case specification should be in place. In YAWL, this is achieved by associating a
cancellation region to each task. Note that connectivity among the cancellation task and
the members of its cancellation region is not required in a workflow.

Compared to other control flow languages, YAWL provides all but one control pattern,
i.e. implicit termination. Apart from the two enhancements above, YAWL also provides
effective support for OR-joins [46]. For models with both cancellation regions and OR-
joins, verifying certain properties such as soundness [25] becomes undecidable [46, 47].
The hardness in tackling this problem stems from the following: (a)the dependence
on nonlocal information that is used to trigger cancellations, and (b)the semantics of
OR-joins that is incapable of realizing such information when resolving the processes
leading to those joins. In addition to this, the choice of which paths in splits or joins are

5

still not explicit in YAWL. For instance, this choice made from using an “exclusive or
split” cannot be formally specified in YAWL. The “k-out-of-n join” is not fully supported
in YAWL. This type of join happens when multiple process specifications lead to this type
of join wherein one of these processes is disregarded/ignored when k out of n of them
has/have completed. This circumstance also implicitly brings up another shortcoming of
YAWL on specifying subsets of these n processes wherein their completion is sufficient to
proceed with the succeeding activities after the join component. This is also similar to
the problem of resolving OR-joins given that there are cancellation regions along these
components.

Two possible recommendations in tackling these problems in YAWL are the following
(i)enable aggregation of workflow components which are involved in a cancellation region
such that atomicity is enabled for these components, and (ii)provide explicitness of data-
driven conditions by directly associating them to arcs leading to the joins at design-time.
For (i), modellers should be able to abstract these components as one node in a graph
while tackling and resolving multiple interactions with some other system components.
That is, encapsulation is achieved while cancellations are still faithfully implemented
in the model. An option to enable this mechanism is to have a class/object view for
this node so it manages the cancellation region. With this view, those components will
be viewed as members of the class, either as task or an attribute that is involved in
data-driven conditions. This type of view, regardless if it is used on activities or resources
that are part of systems, induces the use and support of all the workflow dimensions [25]
in modelling. As a result, the explicitness of the structures and their relationships are
imposed in models. This also aids in the efficient and unambiguous mapping from one
type of model to another. In this research, this kind of abstraction is referred to as a
reset-bound subsystem(RBS) of the model. (For more information on other reset
mechanisms in process-centric modelling, see Reset Nets in [35,36]) Implicitly, RBS can
provide a platform to enable a multi-level analysis of the model itself. At a lower level,
we enable analysis and verification of the cancellation region and its interaction as a
subprocess with respect to its environment, i.e. those resources, tasks, or other systems
that interact with the subsystem and are not part of the subsystem itself. Meanwhile, the
decision on whether the OR-join is executed (and therefore, all other preceding processes
leading to the join are aborted/ignored) is deterministic due to the explicitness of the
workflow components mentioned in (ii).

On Business Process Modelling for Complex Systems

With the growth of the modelling and adoption of many process-centric system designs
and analysis, the Business Process Management Initiative(BPMI) [37] started efforts
in standardizing them for process design, deployment, execution, maintenance, and
optimization in Business Process Management [38]. BPMI began to develop the Business
Process Model and Notation(BPMN) that is now maintained by another consortium,
i.e. the Object Management Group(OMGr)1. OMGr has since focused on technology

1 TheWebsite of OMGr: About OMGr, http://www.omg.org/gettingstarted/gettingstartedindex.htm

6

standards since the two groups merged in 2005. BPMN is considered as a graphical
standard [48] in Business Process Management(BPM). The BPMN 2.0 version has
been released by OMGr last 20112. BPMN provides notations that is posed to be
easily understandable for users coming from either the business or technical aspects
of system design, management, and analysis. Furthermore, it also provides support
for modelling the different control schemes as in other workflows as well as process
choreographies [2]. Process choreographies show interactions across business entities.
BPMN provides some support to efficiently enact designs by enforcing some readily
mappable constructs for execution languages(e.g. Business Process Execution Language)
to adopt. It is also notable that the Workflow Management Coalition had recognized the
value of BPMN in modelling and has also enriched its support on executable aspects of
the notation [39]. BPMN is claimed to be the de-facto standard for process modelling [10].
The UML’s Activity Diagram and BPMN are considered the “two most expressive, easiest
for integration with the interchange and execution level, and possibly the most influential
in the near future” [48].

The backbone of BPMN in providing descriptions of processes and interactions in
systems is the concept of functional decomposition [2]. By the use of its elements for
describing flow, orchestrations, roles, and artefacts, the decomposition breaks down
coarse-grained functional specifications into fine-grained ones, i.e. atomic activities
themselves. In its attempt to perform this decomposition, the following criticisms and
drawbacks had been observed by researchers in the field of modelling:

(1) Concept excess. Concept excess pertains to the possibility of representing the
same semantics in multiple ways and has been found to negatively affect understand-
ability [10]. The drawback of frameworks which induce concept excess is having
modellers and/or nontechnical users to erroneously use and/or interpret another
notation in place of the appropriate one. By doing so with less consideration of
the significant effect of having minute alteration in representation, errors can be
brought up both during design and run-time specifications of the models. With
this, there is a gap that is created between the theoretical aspects and the actual
usage in practice of the modelling language.
With consideration to the latest release of BPMN, i.e. BPMN 2.0, a study in [10]
analyzed 585 process models from six different companies with variations on the
field of specialization, model sizes, and levels of experience of modellers in creating
such designs. The study was conducted in response to the lack of research in
analyzing the use of BPMN in actual practice. Their framework on analysis relies
on the checking techniques for structure, labelling, and layout that are founded on
35 well-known BPMN guidelines and correctness rules [49–51]. The paper reported
errors on the proper usage of muti-merges and the presence of deadlocks [25], i.e.
42% and 22%, respectively, in the models. Some elements of BPMN that are used
for orchestrations and process interactions, i.e. throwing message events [2] and

2 The Website of OMGr: Documents Associated With Business Process Model And
NotationTM(BPMNTM) Version 2.0, http://www.omg.org/spec/BPMN/2.0/

7

main-to-subprocesses associations, have 48% and 86% errors in them, respectively.
With these, the authors provided recommendations in avoiding these errors brought
about by concept excess. One of these recommendations is the prohibition of the
use of multiple arcs that compose implicit splits and joins in the model. They can,
in fact, be sufficiently and more simplistically modelled by the use of gateways in
BPMN [10].
Although BPMN attempts to provide notational convenience and clarity of control
flows in model construction by use of gateways, this effort also becomes a nuisance
for model size. For example, by not having activities used as starting points of
splits and joins to avoid errors in process representation [10], it is imperative that
these activities are limited to have one incoming and one outgoing arc. Resolving
control flows, whether it is determined to be a join or split, are therefore performed
on gateways. By this scheme of representation, it is unavoidable to have a huge
size for the model.

(2) Lack of support for explicit representation of data and rules in BPMN.

(a) methods and attributes that influence interaction flows in processes cannot
be explicitly added to models using BPMN. The use of artefacts which lack
support in the enactment of the design is insufficient to specify these objects3 [2].
Through his online article3, M. Pucher further states that because of this lack
of support, the specification of business rules in BPMN is also unsupported.
In fact, there is a problem of traceability with respect to the choice of process
paths for splits and merges in BPMN. This is due to the lack of explicit
information on the models themselves. Note that when the resource and
process dimensions are both in place in the frameworks of graphical standards,
the specification of these objects become natural and enforced in the design.

(b) there are no mechanisms to enable flow redirection in real-time using explicit
conditions that are based on data. Such redirections are essential for workflow
management when maximal use of a component is reached due to bottlenecks
in case executions. In real-world settings, resources are limited by nature
(e.g. number of personnel, memory capacity of disks used in databases),
therefore their corresponding BPMN designs must also reflect this and provide
a mechanism for such explicit re-routes at run-time during the enactment of
the business models. Mechanisms for resets, when effectively used, can help
deal with the limited storage capacity at run-time of system implementations.

(c) BPM resources are passive elements, i.e. they are not, by themselves, part of
dynamic aspect of the model itself. BPMN restricts interaction in orchestra-
tions between tasks/activities and/or events [2]. An attribute of a resource, e.g.
memory capacity of a storage disk, imposes that resources are also modelled as
with dynamic attributes whose values can be a reason for utility or non-utility

3 Pucher, M: The Problem with BPM Flowcharts, https://isismjpucher.wordpress.com/2010/10/04/the-
problem-with-bpm-flowcharts/ (2014)

8

of the components. Together with (a), BPMN inherently does not fully capture
structure and relations of resources.

(d) Ad-hoc tasks [2,52] in a subprocess in BPMN models do not have any form of
association to this subprocess based on control flows. These tasks can only be
executed upon an explicit specification of a choice given by a user through
the subprocess they are contained in. This choice pertains to the selected task
that is to be performed among the ad-hoc tasks in the subprocess. [52]. Real-
world processes need such kind of procedural support but the lack of explicit
representation of user-subprocess interactions induces the difficulty in the
immediate enactment of ad-hoc tasks from design into their implementation.
For the same reason, verification on model properties is hard to do for such
kind of abstraction in workflows.

(3) Problems in process orchestrations and information hiding. Orchestra-
tions are enabled by messages passed between two parties in a business system.
Under the BPMN framework, these message interactions provide another difficulty
in design and verification in models. Although multiple points of entries and exits
can be ideal to handle and manage bottlenecks, the framework of BPMN contradicts
its intent of process abstraction and information hiding. BPMN’s framework on
functional decomposition limits the view and representation of multi-level, organi-
zational structures and their interactions in models. As stated in [2], “there are
no formal investigations possible on the relationship between a business process
and its externally visible behavior” for these interactions. In practice, message
throwing and main to subprocess interactions lead to improper and/or incorrect
orchestrations for 48% and 86%, respectively, in the BPMN models in [10]. BPMN’s
foundation, alongside the possibilities of concept excess(see (1)) and the lack of
explicit representations for data and rules in modelling, easily induce confusion
and overwhelms designers. Misaligned interactions [2] between parties in an orches-
tration is therefore unsurprising in practice. Moreover, it is also notable that full
information hiding is unachievable whenever atomicity is not fully supported in
process specifications and interactions within and between participants of a business
process. Atomicity is eliminated when there exists multiple entries and exits of
communication arcs between swimlanes and pools in BPMN models. Structure of
processes which are internal to one party is partially revealed to the other. However,
when this structure can be encapsulated as one atomic activity, this revelation
is minimized or eliminated. Atomicity can also encourage, if not impose, proper
nesting and control of main and subprocesses in models. Note that by integrating
the resource, process, and case dimensions together in one design, atomicity and
encapsulation can be achieved in designing and verification of structural components
and their interactions.
In view of implementing multiple message interactions in multiple parties of an or-
chestration, a similar concept called workflow modules is found in workflow nets [25].
Such modules are disjoint in terms of process specifications and are only linked

9

by messages passed through interfaces. These interfaces correspond to specially-
marked places in workflow nets. An interface between two modules is represented as
one place in a workflow net where structural compatibility [2] is observed between
all interactions when these modules are merged as one net. However, despite
this compatibility and the satisfaction of soundness in the individual nets, the
integrated net may not be sound [25]. For this scenario, the resulting net contains
token/s in its intermediate place/s although one token has already reached a sink
that invokes an improper termination of the execution in the net. Additionally,
in obtaining the integrated net, the exclusivity of the relation of the interfaces
with their associated module is lost. This is another problem in identifying proper
grouping of components into their corresponding submodules when decomposition
of the net is performed.

(4) Functional decomposition in BPMN fails against model complexity The
functional decomposition framework that supports BPMN modelling aims at de-
scribing complex systems with their atomic activities and interactions. By the
decomposition, coarse-grained functionalities of complex systems are broken down
into their finest-grained activities. Much of this reductionist approach in complex
systems had been criticized by researchers in process modelling. A big part to this
criticism stems from the concept of complexity being a systemic property. That is,
the structure, behavior, and relationships of components with relation to others
that are found at a higher resolutions of complex system descriptions may not
entirely be determinable by those found at lower resolutions3 [53, 54]. For this
reason, every level of resolution must be accounted in the design and analysis of
models of complex systems. In his online article3, Pucher particularly pinpoints
the lack of ability of BPMN to support the modelling of complex systems due to
functional decomposition. Although it can be argued that the relationships of main
and subprocesses can be used to model hierarchical structures, the support on effec-
tive schemes for design, implementation, and verification of interacting structures
is lacking(see (3) above). (Despite the current limitations of BPMN modelling,
there are still some process-centric verification frameworks for BPMN. They are
implemented with the aid of transforming BPMN notations and structures to some
classical models such as Petri nets [55–58], π-calculus [59], Timed Automata [60],
agent-based representations [61], etc.).

(5) Lack of support in (re)design and diagnosis of BPM models From design,
implementation, and management of BPM models, there is a huge consideration
for an efficient and traceable transformation of representations throughout these
stages. The BPM life cycle [2] covers design, configuration, execution and control,
diagnosis, and intelligent redesign of models. Although it is well-known that
workflow management is just a component of BPM, a survey in [48] of BPM
standards and technologies in practice concludes another thing. [48] states that
BPM standards and technologies today are, by their essence, largely WfMS. This
claim is also consistent with the findings in [40]. In [40], there are gaps in the

10

standards and technologies that are available in practice today that make the
support of the cycle partial. A few of these gaps are found in the diagnosis and
intelligent redesign of BPM models. For example, redesign is still mainly powered
by user judgement and limited to “what-if scenarios” in proposing updates to
models. To pinpoint substructures(e.g. bottleneck sources and points, workload
and resource allocation descriptions, routing probabilities in design and run-time)
whose properties result to weaknesses in designs are still mainly dependent on the
ability of the modellers to interpret results from data mining and/or verification.
These gaps are even apparent in one of the leading commercial BPM systems,
i.e. FileNet P8 BPM Suite Version 3.54. The suite was also reinforced with the
Process Mining Framework(ProM)5, an open-source plug-in, that can perform
process mining and verification on models that are expressed as Event-Process
Chains, Petri nets, Colored Petri nets, etc. However, intelligent redesign of the
BPM cycle has yet to be fully supported. As for BPMN, it is already obvious that
there are still weaknesses even in the design and enactment stages as discussed in
the above items (1)-(4).
Although many issues have yet to be addressed in full to support the entire BPM
cycle, it is possible to address some of these issues by putting into models design-
driven mechanisms which help manage points and substructures that bring about
weaknesses such as bottlenecks. Process mining is mainly dependent on data.
However, by enforcing explicitness in data structures and rules rather than have
difficult-to-enact artefacts inside models, modellers can provide the workflows and
WfMS more effective controls for process utility, routing possibilities, structural
and behavioral associations at design and run time. When systems and system
parameters still have unknown values such that having monitoring data is a must in
defining and specifying workflows, it can be argued that their representations in an
initial workflow design can be preset to their real-world capacities, e.g. maximum
disk space of a storage device. When real-world data shows that actual processes
utilize much more of this capacity, therefore the initial design would already ideally
have a reroute mechanism at the onset since rules were already made explicit.

A View of the state of UML Notations

From these current problems in modelling, it is noticeable that a large portion of them
come from the fact that modelling and analysis are mainly process- or data-centric.
This is also due to the specificity of model construction that focus solely on describing
systems with only one or two workflow dimensions considered. These modelling and
analysis framework are akin to characterizing system structure and behavior by vertical
and horizontal abstraction [2]. That is, for vertical abstraction, high-level definitions of

4The Website of IBM: FileNet P8 BPM Suite Version 3.5 Documentation,
ftp://public.dhe.ibm.com/software/data/cm/filenet/docs/p8doc/35x/p8_35x_Release_notes.pdf
(2011)

5The Website of Process Mining: ProM, Process Mining Group, Math&CS department, Eindhoven
University of Technology, http://www.processmining.org (2016)

11

systems such that those expressed in textual, informal form are parsed first. Then the
sets of information pertaining to process, resource, and cases are isolated individually
and analyzed thereafter. Much of the characterization in literature focus on the process
dimension such as those modelling and analysis done on Petri nets, workflow nets,
π-calculus, UML, and BPMN. Examples to these undertakings focus on ensuring that
designs in these models satisfy certain conditions of workflow properties such as soundness,
deadlock-freeness, etc. [25]. (The formal definitions for these properties are given in
Section 2.) Meanwhile, horizontal abstraction looks at systems from its concrete to the
most abstract realizations of systems. That is, instances are identified such as those
groups of data derived from every instance of the enactment of workflows to the workflow
structure itself. By process and data mining, systems, subsystems, and their efficiency
can be analyzed and described by the patterns from monitoring data which are gathered
at different levels of design resolution.

Vertical abstraction is readily seen in the framework of UML modelling. In the latest
version of UML released last June 2015, i.e. UML 2.56, there is still a clear categorization
of models. This categorization captures either structure or behavior of systems as seen
in Figure 1.2. Note that the items in blue in the figure are not considered a part of the
official taxonomy of UML 2.5 diagrams. For example, there are no formal definitions
for the Manifestation Diagrams in UML 2.5. Manifestation diagrams intend to show
manifestations(i.e. implementations) of system components by artefacts(e.g. source files,
binary executable files, text documents, etc.) and their internal structures. With the
lack of this definition, the manifestation of components are represented by elements
of component diagrams or deployment diagrams. Meanwhile, in building a Network
Architecture Diagram, UML does not have a standard and specific elements which are
related to networking and network architectures. This diagram, despite its lack of formal
definitions in the release, are considered as Deployment Diagrams which are used to show
logical or physical network architecture in systems.

It is emphasized in aforementioned UML release that mixing of different kinds of
diagrams is allowed to combine both structure and behavior in modelling. This helps
illustrate the execution of cases/functionalities that a system provides. However, mixing,
in this sense, is more precisely described as a literal embedding of one UML diagram in
another, e.g. a class diagram embedded in a state machine diagram such as in [41]. With
the mixing of notations from different types of diagrams in one model, the problems on
explicitness of interactions, rules, and verification of model properties naturally arise.

An Opportunity of Integrating Workflow Dimensions

First called as “Objectory Process-Specific Extensions”, the Robustness Diagram(RD)
was just partially included as an appendage in the UML standard [28]. However, the
components and basic rules of construction of an RD provide a mechanism to partially
support a unified modelling scheme that uses all three workflow dimensions. When the

6 OMGr Unified Modeling LanguageTM, The Website of the UML 2.5 Release Documentation: UML
Diagrams Overview, http://www.uml-diagrams.org/uml-25-diagrams.html (2015)

12

Figure 1.2: The UML 2.5 Diagrams and their Categories. (Image from the UML 2.5
Release Documentation.

ICONIX Framework was introduced [30], it highlighted on the use of Robustness Analysis.
Its focus was on the use of RDs from design- to implementation-level representations of a
system. Because of this streamlined modelling framework that the ICONIX provides, it
is imperative that researchers look at its diagramming core, i.e. Robustness Diagram.
This is done to identify some of the diagram’s weaknesses and provide solutions to them
as well as opportunities for holistic representations of complex systems where all three
workflow dimensions are in place.

Developed by Doug Rosenberg, the ICONIX Framework [30] offers a minimalist,
streamlined approach for Use Case-driven UML modelling that is centered at using
Robustness Diagrams. It focuses on the use of a subset of the UML diagrams for object-
oriented analysis and design. Its major component in accomplishing its task is the usage
of robustness analysis. Robustness analysis provides capabilities to remove ambiguities

13

in use case descriptions by ensuring that domain models are consistently represented
both in structure and behaviour in the UML diagrams.

Shown in Figure 1.3 is the ICONIX Framework. This framework shows a Robustness
Diagram bridging the gap between modelling the static information of domain models
as represented by structural diagrams and their dynamic information as represented by
behavioral diagrams.

Figure 1.3: The Use Case Driven Object Modelling of the ICONIX Framework [30].
(Image from [29]).

Unlike other UML diagrams, a RD is capable of providing a holistic view of a domain
model. The current notations available in RD diagramming can, at the least, be used to
show domain objects, i.e. system resources, that can directly participate and support
the execution of tasks/ activities. A domain object can be either a boundary or an
entity object. Boundary objects represent resources which can interact with the system’s
environment and all other resources which are internal to the system, i.e. entity objects.
Tasks/activities are represented by RD controllers. A controller can therefore abstract
nested subprocesses where the controller itself acts as the subprocess’ interface to the
other components of the system. This means that the subprocess is only enacted when
its controller is reached.

In this research, we take advantage of these different categories of RD components to
establish structures, i.e. a class/object view, and therefore, roles and hierarchies. With
these natural grouping, the concept of cancellation regions can easily be adopted with
less utility of space and with distinguishable components for reset controls. This further

14

creates opportunities to have explicit and well-defined controls in interactions of the
group between its members and across components not belonging to the group but are
part of the system. For such a special type of group with reset schemes that are invoked
from system interactions, we call it as a reset-bound subsystem(RBS) of RDLTs.
RBS themselves can, in essence, be abstracted further as one activity, i.e. a controller, in
a RD. This can be used to include volatility in the RD diagramming framework.

In addition to the specification of the resource-process dimension in the RD diagram-
ming, we propose to complete the specification of a system in RDs by putting explicit
syntax and semantics for case execution and management in the designs. We do this by
enacting actionable rules of execution. They will be based on settings/conditions of sys-
tem parameters/input, bounding parameters for execution, system topologies, and typing
of structures inside the system. For the first and second bases of execution, RDs provide
opportunities to explicitly incorporate parameters/input information through system
attributes. For the third and fourth bases, connectivities, attribute-driven constraints,
and typing of components provide means to realize semantics of joins and splits. At the
least, these information integrates the following execution control schemes in BPMN
and other workflows: (1)topology-driven, (2)gateway-driven, (3)artefact- and user-driven,
and (4)local and nonlocal information(cancellation region)-driven process flows. With
complete specifications of systems using all three dimensions in the design, we further
propose algorithms to aid in effective isolation of resources and tasks which execute a
particular case. In effect, activity profiles that support the completion of their corre-
sponding cases are isolated. Needless to say, we propose to provide effective construction
and verification schemes for RDs containing multiple activities in one design.

With these support and opportunities for further development in RDs, various
mathematical, scientific and business systems can be represented at different levels
of resolutions of complexity. Because RD components are easily distinguishable as
either a resource or process type, the interpretability of RDs can cater to technical
or nontechnical users. For the same reason, RDs provide opportunities of efficient
and effective requirements traceability from design specifications to their corresponding
implementations. Despite these opportunities, the current state of RDs and RD modelling
for both theory and practice is still pretty much in its infancy. For the meantime, it is
still treated as a scratchboard diagram in the initial stages of requirements definition and
specification. Their usage, however simplistic as of the moment and most of the time
for illustrative purposes only, can be found in processes such as a reservation system7,
registration system [80], and human-computer interaction systems [74]. RDs in [74]
were also further used to measure the traceability of requirements across structural and
behavioral UML diagrams. With this significant absence of a pool of literature and use of
RDs, there are no definitions and verification schemes of properties to check their quality
and viability of system representation under a multidimensional view of workflows.

7 The Website of IBM: Robustness Diagram or Ideal Object Diagram Version 11.4.3, IBM Knowledge
Center. http://www.ibm.com/support/knowledgecenter/SS6RBX_11.4.2/com.ibm.sa.oomethod.doc/top
ics/c_Ideal_Object_Diagram.html (2016)

15

1.2 Problem Statement

In building models of complex systems [76], the recent releases of BPMN and other
existing workflow standards and technologies still do not resolve many gaps in effective
modelling of such systems. As discussed in Section 1.1, much of these gaps are brought
about by the lack of support in modelling and verification of workflows that utilize all
workflow dimensions [25,26], i.e. process, resource, and case, in one model. Even with the
latest release of the UML 2.5 last June 20156, these gaps have yet to be addressed. The
distinctive classifications of the UML diagrams, i.e. structural and behavioral diagrams
particularly impose design restrictions in constructing designs with such integrated
environment. For example, structural diagrams such as Class and Deployment diagrams
can only show abstractions of the static information of systems. Meanwhile, behavioral
diagrams such as Use Case and Activity Diagrams show abstractions of the behavior of the
static elements of systems being modelled. The UML’s Activity Diagram, for example, has
been shown to be advantageous in the context of workflow specification against commercial
Workflow Management Systems as it can effectively provide support for control and
data specifications [42]. On the side of process modelling [44], Activity Diagrams were
also shown to lack support for the design of resources and cases [42] in systems. For
these concerns, the Robustness Diagrams of the Unified Modelling Language [29,30] are
still highly underdeveloped in supporting such integration of the workflow dimensions
for modelling complex systems. Although the ICONIX Framework [30] attempts to
provide a bridge between the two diagramming classifications of UML through the use
of Robustness Diagrams, formalisms are lacking for such kind of construction and for
requirements traceability from requirements definition to implementation of complex
systems. By this state of RD-based modelling, along with the existing foundations of
BPMN and workflows which are either process- or data-centric, there is an absence of
definitions of model properties and their corresponding verification schemes for such
kind of multidimensional workflows. However, it is notable to mention that existing
verification schemes are already well-established, albeit dimension-specific, and provide a
ground and inspiration for developing similar workflow properties for RDs.

Moreover, in modelling complex systems, i.e. those which inherently possess a large
number of states that is induced by chaos and bifurcations [76, 77] due to their nonlinear
processes, there is a need for supporting designs of persistent and volatile components
due to the said nature of these systems. Persistence and volatile structures support the
need for memory – whether for state recovery and/or state modification due to irregular
or regular behavior of systems. Needless to say, state enumeration in workflows poses
problems for real-world complex systems. This is due to the exponential space explosion
in enumerating all of the states as in Continuous Petri nets [79] used for modelling
manufacturing systems [81]. For example, a model checking tool known as SPIN [82]
is limited to enumerating at most 1 million states [83] from workflows. Although the
number of states that is derivable from a model is unquestionably high, the presence
of bounding values and other control mechanisms can reduce this statistic significantly.
This can be achieved through aggregation of values and/or states and by explicitly

16

imposing reroutes using this mechanism when necessary(e.g. under the presence of
bottlecks). These bounds and control mechanisms can be embedded in persistent and
volatile components in workflows either in their structural profile or in the attributes
associated to these components. Because these structures provide means for storage of
data regarding the execution of processes and workload distribution for resources in case
handling, they can be used to lessen or remove certain weaknesses such as bottlenecks at
run-time in models. In the current results of literature, there is an absence of formalisms
in effective construction, implementation, and model verification of workflows wherein
all three workflow dimensions are in place and whose structures contain persistent and
volatile components.

1.3 Aim of the Work

The general aim of this research is the formalization of effective modelling and verification
of complex system representations which use all three workflow dimensions, i.e. process,
case, resource, under the Robustness Diagram with Loop and Time Controls(RDLT)
specifications. RDLTs are extensions proposed for Robustness Diagrams. Due to the
integration of the workflow dimensions into one design, multiple functional specifications
arise in RDLTs. Each of this functional specification imply a set of tasks constituting
one activity profile in the system. This profile describes the execution of a case through
the support of a set of resource and process specifications in a model. We establish a
framework that would support designs and model verification of multi-input, multi-output,
and multi-activity RDLTs. Activities in complex systems might include requirements
for persistent and/or volatile structures in their representations. This research addresses
the lack of literature to address both the integration of all workflow dimensions and the
persistence/volatility requirements for modelling complex systems. We aim to establish
mechanisms so as to support the creation and handling of these persistent and volatile
components in RDLTs. We provide design specifications that illustrate effective embedding
of such structures in the designs. These aims are supported by the the concept of explicit
typing of arcs and vertices that will impose restrictions on reachability and process
flow controls for substructures and components in the models. We propose metrics for
reachability and synchronicity of task executions in RDLTs with considerations of the
typing and connectivity profiles of components. One key difference of this research with
the results in literature with respect to establishing means for synching of tasks is that
synchronizations are not just imposed by connectivity. For this research, we collectively
account connectivity, typing of arcs and vertices and their attribute values, and dealing
with these information either individually or collectively to identify and measure aspects
of synching of task execution. We propose algorithms to isolate individual activities from
RDLTs by accounting all of these information during activity extraction for each output
vertices in the models. We propose instances of an RDLTs for real-world complex systems
and illustrate activity extraction from them.

Meanwhile, we propose different model properties to be used for modelling and model
verification for RDLTs with consideration of the integration of all workflow dimensions in

17

the designs. We focus on adopting and extending the properties that are established in
literature, e.g. deadlock-freeness, boundedness, free-choiceness, soundness [25], to the
proposed RDLTs. (The formal definitions for these properties are given in Section 2.)
Because of the introduction of persistence and volatility in our proposed modelling
framework, we formulate these properties in RDLTs to address these two aspects of
representing complex systems. The formulation of these properties mainly rely on identi-
fying different types of a Point-Of-Interest(POI) in the models. A POI is a vertex
in a models wherein possibilities of deadlocks, delays in reachability, task repetitions
and synchronizations are present. We propose formalisms to identify these points and
relate their structural placements, connectivities, and their relevant graph attributes with
other components in RDLTs. Furthermore, we establish different types of substructures
and neighborhood relative to the presence of these POIs. We prove and verify model
properties in these subgraphs and relations and establish generalizations of the properties
for the entire model. The introduction of an extended RDLT is proposed in this research
to establish these generalizations of the properties. Finally, we also aim to establish
hierarchies amongst these properties and provide polynomial time and space verification
of such relations in RDLT substructures and the whole model itself.

More specifically, this research aims to achieve the following,

1. Propose a framework for designing and handling multidimensional RDLTs with
support on persistence and volatility in structure and behavior. This framework
shall account abstractions, control schemes, and metrics for effective complex
systems modelling. Collectively, they will address modelling and verification under
the construction of an integrated representation of all workflow dimensions, i.e.
process, resource, and case. More specifically, the proposed framework shall address
the following,

a) Information Abstraction.
i. support for modelling static and modifiable components in RDLTs for iso-

lating activities embedded in RDLTs. Apart from connectivities, the model
shall support the use and modelling of (a) multi-type vertices, arcs, and
subgraphs, (b) time- and constraint-bound vertices, arcs, and subgraphs,
(c) system parameters and constraints imposed on them, e.g. bounds for
temperature, pressure, etc., (d) combinational relationships between two
or more constraints, e.g. disjunctions(i.e. splits), conjunctions(i.e. joins),
that are bound to the typing of RDLT components,

ii. support the modelling of explicit associations and controls of the system
components and the tasks that they execute. By these associations,
subgraphs in the model which correspond to volatile structures can be
discriminated from the others, and

iii. support the modelling of hierarchical relations of structures and processes
with the identification of system components and their associations with
the tasks they execute.

18

b) Control Abstraction.

i. enable the modelling of control schemes for sequential, parallel, condi-
tional(joins and splits), iterative, and time-bound resets in the RDLT
attributes,

ii. support sharing and exclusivity of information that are embedded in
modifiable RDLT attributes. This shall enable or disallow the execution
of processes despite the connectivities and type-related relations of the
static components in RDLTs, and

iii. enable embedding of multiple activities through the support of information
sharing, exclusivity, and time-bound attributes in RDLTs.

c) Persistence and Volatility. Provide mechanisms to maintain persistence
and enable volatile structures and behavior in RDLT modelling such as
i. storage for information that control vertex reachability and synching of

task executions in RDLTs, and
ii. definitions of types of RDLT vertices, arcs, and substructures(referred to

as “reset-bound subsystems”) that impose resets on the values of RDLT
attributes when they are used in some time steps during the execution of
activities.

d) Computable Metrics for Reachability, Delays, and Synchronizations.
Formulation of different types of a Point-of-Interest(POI), i.e. vertices in
the models wherein possibilities of deadlocks, delays in reachability, task
repetitions and synchronizations are present, as well as types of neighborhood
that are defined over them. More specifically,
i. definition of a POI, called a Point-of-Delays(POD), which is a vertex

in RDLTs where there is a delay of its reachability/use that is caused by
the settings of the attribute values in the model,

ii. definition of a POI, called a Point-Of-Reentry(POR), which is a vertex
in RDLTs that is the first point of reuse of components/substructures/tasks,

iii. definition of a POI, called a Point-of-Synching(POS), which is a vertex
in RDLTs where synching can be imposed for succeeding tasks account-
ing topological restrictions and/or constraints based on RDLT attribute
settings,

iv. formulation of definitions for metrics on reachability, delays, and syn-
chronicity for the aforementioned POIs in RDLTs,

v. provide computations of the metrics in polynomial time and space com-
plexity

vi. establish types of structures and neighborhood relations using these metrics
and attribute settings, e.g. nonself-controlling structures which relate
to the presence of deadlocks. These deadlocks can be brought about by
multiple constraints associated to type-alike components of RDLTs.

19

2. Real-world application. Provide instances of RDLT models of real-world com-
plex systems to illustrate designing and handling of RDLTs for such systems. We
shall focus on building RDLTs for energy systems, e.g. adsorption chiller. We model
its reactor chambers, condenser, evaporator, valve system, and different modes of
operations and illustrate how one of its activities relating to one of its modes, i.e.
adsorption, is extracted using our proposed algorithms. We describe substructures
in the model with relation to different model properties proposed in this research.

3. Model Properties and Verification. Propose formalisms of model properties
and verification schemes for RDLTs with persistence and volatility. We adopt and
extend model properties found in literature to the construction and semantics
of designing and handling of multi-activity RDLTs. In particular, we establish
properties, relationships, and computability of metrics supporting their identification
in RDLTs with certain focus on the following:

a) reachability of vertices bound to topology and constraints derivable from
RDLT attribute settings,

b) boundedness and delays of reachability for PODs that are influenced by the
presence of POR and POS vertices and with different types of structures
induced by these points of interests in RDLTs

c) free-choiceness for different types of structures mentioned above. In addition to
focusing on topology to define free-choice structures for PODs and the vertices
whom they share a common parent, we establish a relation of these vertices
with respect to their POS ancestors to define another aspect of free-choice
structures. This aspect considers the types defined over arcs, vertices, and
time-bound attributes in RDLTs.

d) soundness in multi-activity workflow designs that includes persistence and
volatility. We propose ancillary properties that can verify for soundness by
using information on the structure of RDLTs and by algorithms based on
graph reduction operations. These operations can be done on substructures
involved in individual activities or on the extension of the multi-activity RDLT
itself.

e) hierarchies and other relations between properties in RDLTs, and
f) proposing means of verification of model properties in substructures and the

entire model itself within polynomial amount of time and space.

1.4 Methodological Approach and Structure of Work
In this section, a layout of the research activities that are used in the accomplishment
of the research objectives is provided. They are enumerated based on the usage of the
proposed concepts and schemes from design to verification of RDLT models for complex
systems. Furthermore, the structure in discussing these activities is given by citing the

20

corresponding sections in this manuscript where they are provided. An activity diagram
that shows this ordering is given in Figure 1.4 as a graphical guide to the readers.

To create RDLT models for real-world complex systems, we propose RDLT constructs
and control schemes for effective and traceable designs in multidimensional workflows
with a supplementary task of model verification. Based on the constructs themselves,
static information such as task specifications, objects/resources, parameters, constraints,
subgroups supporting the execution of some cases are readily identifiable from the model
itself. Meanwhile, based on the control schemes, modellers are given rules and samples
of design specifications to handle the creation of process flows. These shall effectively
support multi-activity, -input, and -output RDLT despite the presence of persistent and
volatile structures in the design requirements. The formalisms for the construction of
multi-activity RDLTs and the specifications of embedding the different process flows and
controls are provided in Section 3.1.

Given an RDLT model of a real-world complex system, the proposed framework of
model analysis and verification comes in two approaches, i.e. holistic and compositional.
These approaches are represented as two independent flows emanating from the Abstract
Model node in Figure 1.4 and only merging at a time when the RDLT and/or its submodels
are verified. These approaches are detailed as follows:

Firstly, the holistic approach in designing and verifying RDLTs takes in an entire
specification of a system. An RDLT, possibly designed with multiple activities and time-
bound attributes, is analyzed using its entirety. In this approach, an extended RDLT is
created from the given model. Using the extended RDLT of a model, the framework
produces a vertex-simplified RDLT that only uses the information of the constraints
that are bound to system parameters. The model simplification also isolates each
RDLT subgraph wherein time-dependent and reset-bound attributes are present. This
subgraph is proposed in Section 3.1 as the reset-bound subsystem(RBS). The simplification
encapsulates every RBS with another representation, however, preserving pertinent
information with regard to interactions. Representation, for this case, would account to
the connectivities established between persistent components of the RDLT and some
vertices belonging to every RBS. Furthermore, the representation abstracts all volatile
components in the subgraph while summarizing the RBS’s topological information.
Summarization discounts constraints imposed by attribute values of the arcs in every RBS.
We refer to this simplification of RDLTs as a level-1 simplification of the model. A level-2
simplification of the model uses each RBS as input to the vertex-simplification process.
The formalisms of extended and vertex-simplified RDLTs, the simplification process and
rules, and the resulting multi-level perspectives of RDLT models and derivations thereof
are formally defined in Section 8. Using graph contraction rules on the simplified models,
the proposed framework assesses whether the static information in the model does not
impede with the continuous execution of processes that support the accomplishment
of every activity in the RDLT. Whenever this is the case, the contraction reduces the
entire model itself into a single vertex. The governing rules and the operations in graph
contractions in RDLTs are proposed in Section 3.5.

Meanwhile, because the bounded repeatability of tasks that influences the modification

21

of the time-dependent attributes in the design, the framework performs a separate
analysis for them. Note that this separation of analysis can be done since we can view
repeatability of tasks separate from the satisfiability of the constraints. The latter are
examined throughout the process of model simplification and contraction. For the former
analysis, models are assessed such that the total number of times the persistent/volatile
components are used in an activity corresponds to the total number of times their
consequent persistent/volatile components are used in an activity. Graphically speaking,
this analysis accounts indegrees and outdegrees of vertices, their associated arcs, and
the types that are defined over them based on the attributes in the model. Section 3.5
provides the definitions and steps that support these analyses on RDLTs. Collectively,
the results in this holistic approach can be used to verify the compliance of the entire
model with RDLT with respect to the properties that are proposed in this research.
However, it is notable that the results from the holistic approach is usable to determine
the compliance of substructures of RDLTs with respect to the workflow properties that
are formulated in this research. Moreover, they can also be used to produce lists of
substructures or aspects of the RDLT which can be targets of modification in the model.
They can be used in redesign whenever users want specific properties to be maintained
in these substructures.

On another hand, the compositional approach proposed in this research for model
construction, analysis and verification follows a bottom-up scheme. In contrast with the
holistic one, it splits an entire RDLT into its maximal substructures. Each maximal
substructure corresponds to a set of RDLT components that support at least one activity
corresponding to some case execution in the model. Each of these maximal substructures
is analyzed and verified. This is done by identifying every Point-of-interest(POI) and
studying the different types of substructures around this point. These POIs are vertices
where constraints associated to their incident arcs are present. These constraints affect
reachability of the POIs such that delays can be induced by them. Another consequence of
these constraints is synchronicity in using the tasks associated to these vertices, whether
desired by modellers or not. Moreover, the attributes in vertices and arcs in an RBS
are analyzed. Because of the possibilities for modifications on graph attributes induced
by such RBS, samples of design specifications to effectively designing and maintaining
them in RDLTs are also given in this research. Compared to the holistic approach,
the compositional approach checks POI- and RBS-based neighborhoods rather than
dealing with graph components based solely on topology and interactions. The second
approach also provides metrics from the information that are gathered from these local
neighborhood to establish a characterization of the models. These metrics provide bounds
for reachability, delays, and synchronizations whenever they exist in RDLTs. Each of
the maximal substructures can be verified and these substructures can be collectively
used to conclude generalizations for the entire model with respect to compliance of
RDLT properties. The formalisms of maximal substructures and how they are efficiently
determined from multi-activity RDLTs are provided in Section 3.5. The definition of
POIs, RBS, the neighborhood relations, and typing of components that they establish
are given in Section 3.2.

22

For both holistic and compositional approaches, their analyses rely on the pool of
model properties that are defined in this research for RDLTs as shown in Figure 1.4.
These properties are discussed in Chapter 3. Hierarchies and relationships among these
properties are proved in this research. The summarization of the hierarchies and other
relations of the proposed model properties can be seen in Section 3.7. We provide
instances of RDLT models for a real-world complex system, i.e. an energy system, and
illustrate activity extraction from it. Throughout the discussions of properties for RDLTs,
these instances are used to illustrate the verification process of these properties. Finally,
the computational complexity in extracting activities and model verification is also given.

23

Fi
gu

re
1.
4:

C
om

po
sit

io
na

la
nd

H
ol
ist

ic
A
na

ly
sis

an
d
M
od

el
Ve

rifi
ca
tio

n
of

R
D
LT

s

24

2
Review of Related Literature

In this chapter, a detailed look at the specifications of different classical workflows,
Business Process Model and Notation(BPMN), the Unified Modelling Language with
emphasis on Robustness Diagrams, and their supporting platforms and technologies
are given. These are additionally reviewed and analyzed for their capabilities, benefits,
and weaknesses in terms of complex system representation. Model properties for a
process-centric verification on models, particularly on workflow nets, are highlighted in
this chapter. A discussion about resource- and process-centric verification in BPMN is
also shown. The relationship of BPMN models and workflow nets are given to show
how this verification is performed on the former set of models. This chapter also looks
into modelling under the perspective of the approaches model abstractions, i.e. vertical
and horizontal. For the first approach, one illustrative discussion is given by the use of
the categorization of models/diagrams in the Unified Modelling Language. This shall
highlight the innate difficulty in providing modelling frameworks that have an integrated
environment for embedding all three workflow dimensions in one model. Under the
second approach, a detailed look at the modelling and management of process instances
in workflows are provided. Lastly, a discussion of the current formalisms and recent
literature for the UML’s Robustness Diagram are provided. The challenges on modelling
and verification in this diagramming framework are given with consideration of its
potential to support an integrated platform for all three workflow dimensions.

2.1 Workflows and Model Properties

On Petri Nets and Workflow Nets

Petri nets are often quoted to be the basis of the basic workflow patterns which many
modelling frameworks are based and/or inspired from. From graphical to execution
standards in modelling, the influence of Petri nets can be found in Business Process
Modelling technologies, UML modelling, YAWL, event-driven process chains, among

25

others [48]. Therefore, it is only fitting that the theory of modelling and verification
for systems as represented by their Petri nets model is discussed in this research. The
definitions in this section are mainly taken from [25, 84] with additional descriptions
supplemented for explanatory purposes. Although Petri nets and Workflow nets only
highlight the process and case dimensions, they provide a comprehensive theoretical
foundation that is needed in this research. In this research, we use this foundation to
help build up theories on modelling and verification of models wherein all three workflow
dimensions are used. For this section, soundness and free-choice properties are the
main foci because there are many other properties that are implicated by them [25].
Furthermore, these two properties also have relations to each other. That is, the latter
is usable to verify in efficient time the former in workflow models [84]. This research
takes inspiration from these relations to build hierarchies and relationships among RDLT
properties under the integration of all workflow dimensions in one model.

Definition 1 (Petri nets and Markings) A Petri net is a directed bipartite graph
where its nodes represent transitions(i.e. tasks) and places(i.e. conditions for task
execution) such that a place p is considered a pre-condition(post-condition) for a task t if
there is a directed arc from p(t) to t(p). p is called an input place(output place) of a
transition t if p is a pre-condition(post-condition) for t. The notations •t and t• refer to
the sets of input and output places of t, respectively. Similarly, p• and •p refer to the
sets of transitions that have p as an input and output place, respectively.

A place(condition) p is satisfied if there is at least one token in p. A transition t
is enabled if every input place of t has at least one token. If t is enabled, then it
may fire. Firing t means that every output place of t gets one token. Furthermore, every
input place of t loses one token. A distribution of tokens in all the places is called a
marking(i.e. state). A dead marking means that the marking does not enable any
transition. A dead transition t means that t can never be fired.

Formally, a Petri net is a 4-tuple (P, T, F,M0) where P and T are finite sets of places
and transitions such that P ∩ T = ∅, F ⊆ (P × T) ∪ (T × P) is a set of flow relations,
and M0 : P → N is its initial marking. A marking is defined by the function M : P → N
where M(p) denotes the number of tokens in p ∈ P . Transitions and places are graphically
drawn as rectangles and circles, respectively. Meanwhile, tokens are drawn as black dots
inside the circles. When a transition t is fired at a marking M , the firing produces a
successor marking M ′ of M (written as M t−→M ′) defined for every place p ∈ P where

M ′(p) =

M(p), if p /∈ •t and p /∈ t•, or p ∈ •t and p ∈ t•,
M(p)− 1, if p ∈ •t and p /∈ t•,
M(p) + 1, if p /∈ •t and p ∈ t•.

26

There are four routing schemes in Petri nets [87], namely, (a)sequential, (b)parallel,
(c)conditional, and (d)iteration as seen in Figure 2.1. From these schemes, different types
of joins and splits can be enabled.

Figure 2.1: Routing schemes: (a)sequential, (b)conditional, (c)parallel, (d)iteration
(Image source: [87])

Figure 2.1.(a) shows a sequential flow from using the token in p1 to enable A. A fires
thereby removing the token from p1 and producing one in p2.

Figure 2.1.(b) shows a conditional routing control whereby a choice for firing is made
on either B or C which are both enabled from the token in p3. This structure forms an
instance of an OR-split. With this, only one of the transition fires and then a token is
produced in p4 and the token in p3 is removed. Note that the structure of the transitions
B and C with respect to p4 is an OR-join. Only one of the process flows from p3 to p4 is
executed to put one token in p4 at the outset.

Figure 2.1.(c) shows the AND-split where a token in p5 enables and causes D to fire
such that both p6 and p7 contain one token each. Furthermore, the presence of tokens in
every input place of E enables E. Note that the structure of p6 and p7 with relation to
E is an instance of an AND-join. That is, all conditions(represented by p6 and p7) to
fire E must be satisfied(represented by the presence of at least one token in p6 and p7).

Meanwhile, Figure 2.1.(d) shows an iteration of process execution as one token is
repeatedly produced in p9 by a series of firing of F and G. For this Petri net, the output
place of G accumulates tokens indefinitely per iteration of the execution. This structure
can be used to simulate counting of the number of executions of tasks. There will always
be exactly one token that is removed or present/produced in p9 and p10 throughout the
series of firing of F and G. However, this will not be true if the output place of G is
assigned to be the sink place such that the execution of the processes stops at the first
firing of G. Upon this termination, there is also one token in p9 and one in the output
place of G.

27

For brevity, the following notations are used for the marking Mi,

(1) M1
t−→M2: M2 is produced from M1 with the firing of the transition t,

(2) M1 →M2: there exists a transition that produced M2 from M1,

(3) M1
σ−→Mn: the firing sequence σ = t1t2 . . . tn−1 that is used to produce Mn from

M1 by a series of firings M1
t1−→M2, M2

t2−→M3, . . . , Mn−1
tn−1−−−→Mn.

The notation M1 ≥ M2(M1 > M2) means that M1(p) ≥ M2(p)(M1(p) > M2(p)) for
every element p ∈ P .

Soundness in Workflows

Definition 2 (Reachable markings) A markingMn is reachable fromM1 in a Petri
net, denoted as M1

∗−→Mn, if and only if there is a firing sequence σ such that M1
σ−→Mn.

Note that the empty firing sequence is allowed, i.e. M1
∗−→M1.

Definition 3 (Deadlock-free) A Petri net is deadlock-free if every reachable mark-
ing enables some transition, i.e. if no dead marking can be reached from the initial
marking.

Definition 4 ((Elementary) Paths, Conflict-freeness) A path C = x1x2 . . . xn is
a series of nodes in a Petri net from x1 to xn such that (xi, xi+1) ∈ F for 1 ≤ i ≤ n− 1.
The set of nodes that is found in C is denoted as α(C). C is elementary if and only if
xi 6= xj for every xi, xj ∈ α(C) where i 6= j. C is conflict-free if and only if for any
transition xi ∈ α(C) and j 6= i− 1, xj /∈ •xi.

Definition 5 (Strongly connected) A Petri net is strongly connected if and only if,
for every pair of nodes x and y in the net, there is a path from x to y.

Definition 6 (Workflow nets) A Petri net PN is a Workflow net if and only if the
following hold,

(1) PN has two special places, i.e. a source place i where •i = ∅, and a sink place o
where o• = ∅,

(2) if a transition t∗ is added to PN and an arc connects o to t∗ and t∗ to i, i.e.
•t∗ = {o} and t∗• = {i}, then the resulting Petri net is strongly connected.

The notations i and o will be used to denote the initial and final markings of the workflow
net, respectively, where i has the configuration M(i) > 0(with M(i) = 1 for workflows
with one case being processed) and M(p) = 0 for p ∈ P\{i}, and o has M(o) > 0 and
M(p′) = 0 for p′ ∈ P\{o}.

28

Definition 7 (Soundness) A Workflow net PN = (P, T, F,i) is sound if and only if
the following hold,

(1) if i ∗−→M , then M ∗−→ o, i.e. for every reachable marking M from i, there is a firing
sequence usable to reach o from M .
This condition assures that all reachable markings in the net would also lead to the
final marking o. This means that the execution of the net will eventually terminate.

(2) if i ∗−→ M and M ≥ o, then M = o, i.e. o is the only marking reachable from i
with one token in place o.
This condition assures that when a token reaches o, all other places in the net has
no token inside. This corresponds to proper termination of all processes in the net
such that there are no computations that are halted when the sink place is reached.

(3) for every t ∈ T , there are M and M ′ satisfying that i ∗−→ M and M t−→ M ′, i.e.
there are no dead transitions in the net.
This condition assures that every transition is involved in at least one process
specification that the net executes.

Definition 7 was eventually referred to as “classical soundness” when variations of
this property were introduced [55,59] for verification of models with weaker or stronger
notions of this property.

Definition 7 offers a very strict criterion because it imposes that all process in-
stances/cases are completed with no tasks pending, cancelled, or withdrawn when one
token reaches the sink. For systems that can allow modelling and implementation wherein
at least every transition is involved in a case that is properly completed, i.e. the marking
o is reached, other less restrictive notions of soundness is investigated in [55, 59] for
Workflow and Petri nets. Some of these notions of soundness in these investigations are
as follows,

Definition 8 (Sound firing sequence) Let σ be a firing sequence and let M be a
marking in a workflow net PN = (P, T, F,i). σ is a sound firing sequence if i σ−→M

and M σ′−→ o for some firing sequence σ′.

Definition 9 (Relaxed Soundness) A workflow net PN is relaxed sound if and
only if each of its transition is an element of some sound firing sequence, i.e. ∀t ∈ T ,
∃M,M ′ such that i ∗−→M

t−→M ′
∗−→ o.

Relaxed soundness requires at least one case that completes with exactly one token
in the sink o and all other places have no tokens for each transition in the net. Implicitly,
transitions can participate in the execution of cases without a proper termination of all
the tasks in place.

29

Definition 10 (Weak Soundness) A workflow net PN is weak sound if and only if
the following hold,

(1) for every marking M where i ∗−→M , M ∗−→ o,

(2) for every marking M where i ∗−→M and M ≥ o, M = o.

Definition 10 removes the requirement that all transitions be involved in the execution
of cases as long as proper completion, i.e. o is reached, for every reachable marking
from i. Note that deadlocks can never occur in weak sound workflows. When workflows
of different functionalities are collected together and made to interact and coordinate
together by some interfacing specifications to serve another purpose, some of their built-in
tasks may not be needed in the latter job. For this, checking for weak soundness in the
aggregated workflows may be sufficient in checking whether they would indeed support
the expected functionality that they collectively provide.

Definition 11 (Lazy Soundness) A workflow net PN is lazy sound if and only if
the following hold,
(1) for every M where i ∗−→M , there exists M ′ such that M ∗−→M ′ and M ′(o) = 1,
(2) for every M where i ∗−→M , M(o) ≤ 1.

Lazy soundness imposes that every reachable marking from i will eventually lead
to a completion of a case that it helps to execute, thereby, putting one token in o.
However, when one token reaches o, no other tokens are allowed to be added to it by some
process instance that has yet to complete. Note that [2] emphasizes the difference between
“completion” and “termination” of process instances for this definition. That is, o is loosely
used in Definition 11 to mean the final node that is defined in the workflow. Nonetheless,
o does not have any outgoing arc yet putting one token in o(in Definition 11.(1)) only
implies the execution of its corresponding case is completed. Termination happens when
every process execution that is running in the net are terminated. Therefore, completion
is not allowed when a termination event has already been executed in the net.

Definition 12 (Easy soundness) A workflow net PN is easy sound if and only if
i ∗−→ o.

For the succeeding definitions from [55], the notations ik and ok mean that the
marking has M(i) = k and M(o) = k, k ∈ N, respectively, and all other places have
0 tokens.

Definition 13 (k-soundness) A workflow net PN with ik is k-sound if and only if
for every M where i ∗−→M , M ∗−→ ok.

The definition of classical soundness(Definition 7.(1)) anticipates exactly one token
when process executions in workflows terminate. Therefore, Definition 7).(1) implies
1-soundness. Weak soundness is also 1-soundness.

30

Definition 14 (up-to-k-soundness) A workflow net PN is up-to-k-sound if and
only if PN is l-sound for all 0 ≤ l ≤ k, k ∈ N.

Definition 15 (Generalized soundness) A workflow net PN is generalized sound
if and only if for all k ∈ N, PN is k-sound.

Figure 2.2: The relationships of the different notions of soundness in workflows. Arrows
refer to the “implies” relationship of one property to another, e.g. (classical) soundness
implies weak soundness. (Image source: [55])

Free-choice Petri nets

At a certain marking of the net, when two transitions are enabled and can be fired
simultaneously they are said to be concurrent. On another hand, for two transitions that
are enabled by a common input place, they are in conflict with each other whenever the
choice of firing one disables the other. That is, the transition which was not fired cannot
execute its computation as well as its succeeding ones which rely on its firing. For certain
business processes, the freedom to make this choice between executing the tasks must
not be impeded by the rest of the system. That is, every choice is free. A workflow that
satisfies this condition is said to be free-choice. The free-choice property can be enforced
by structural compositions as defined below,

Definition 16 (Free-choice) A Petri net is free-choice if and only if, for every two
transitions t1 and t2, •t1 ∩ •t2 6= ∅ implies •t1 = •t2.

Free-choice and (classical) sound workflows are closely related to each other. The latter
is verifiable in efficient time by using the former. By this way, the need for enumeration of
all reachable markings in Definition 7 is avoided. The size of the state space of arbitrary
workflow nets can easily become huge which poses the problem in enumeration. Deciding

31

the soundness of workflow nets may be intractable [84] and checking for model properties
that relates to it, i.e. liveness and boundedness in Definitions 17 and 18, respectively, is
EXPSPACE-hard [85].

Definition 17 (Live) A Petri net PN = (P, T, F,M0) is live if and only if, ∀M ′ where
M0

∗−→M ′ and every transition t ∈ T , there exists M ′′ where M ′ ∗−→M ′′ which enables t.

Definition 18 (Bounded) A Petri net PN = (P, T, F,M0) is bounded if and only if,
∀M ′ where M0

∗−→M ′ and ∀p ∈ P , there exists a b ∈ N such that M ′(p) ≤ b.

In [25], the following lemma was proven,

Lemma 1 Let PN be a Petri net and PN be its workflow net with the initial marking
i. A Petri net PN is sound if and only if PN is live and bounded.

By the use of the Rank Theorem [84], the relation of free-choice to liveness and
boundedness is established in workflows. This further establishes a relation of free-
choiceness to classical soundness in workflows(by Lemma 1). This way of proving
soundness by the free-choice property can be performed in efficient time(see Corollary 1).
(The Rank Theorem can help show liveness and boundedness in a net by characterizing
a net’s classes, i.e. S-systems and T-systems, and invariants thereof. S-systems are
nets where each transition has only one input place and one output place. By this way,
concurrency is absent in the net. Meanwhile, T-systems have every place with one input
transition and one output transition. Through this, conflicts never happen. The reader
is directed to [84] for a more detailed discussion on the proof of Corollary 1.)

Corollary 1 It is decidable in polynomial time whether a free-choice workflow net is
sound.

The reader is referred to [55] for the schemes and results with respect to the verification
of the different notions of soundness, as well as the computational complexity in proving
them.

Although Petri nets and workflow nets are mainly concerned with representations
using the process dimension, this research adopts the same kind of structurally-driven
perspectives of models to prove properties in efficient time. This adoption will now
consider models that have all three workflow dimensions, i.e. process, resource, and case,
in place.

2.2 The Business Process Model and Notation
Along with the Class Diagram of the UML, Business Process Model and Notation(BPMN)
is considered to be one of the two most expressive and easiest for integration for the
interchange and execution level of business process management as discussed in Section
1. With this view, this section provides the technical information of the BPMN and its
framework as well as a critical perspective on its advantages and weaknesses for systems
modelling in theory and practice.

32

The Building Blocks in BPMN

The components of BPMN are divided into four categories [2, 3]: (1)Flow objects,
(2)Connecting objects, (3)Artefacts, and (4)Swimlanes. Figure 2.3 presents the notational
elements in each of the categories and their corresponding graphical representations for
modelling.

Flow objects are the building blocks of business processes. An event is a stage of
execution of an activity, i.e. its start or termination, or an intermediate stage – an activity
momentarily suspends its termination while interactions between other activities are
performed. An activity/task encapsulates the process specifications that are performed
for some case with or without a set of resources that enact these processes. A rounded
rectangle, representing a task/activity, abstracts these information, and therefore, upholds
atomicity in its representation of the task/activity. The labels on each task/activity can
use a verb-case combination where the verb pertains to the type of enactment of the
task for some case, e.g. “Place Order”. Activities can be annotated graphically to signify
nesting of activities, i.e. subprocesses, and/or the presence of the execution of multiple
cases/process instances. Gateways represent joins and splits of processes that lead to or
from them, respectively. Symbols inside the graphical notation of the gateways specify
the type of split or join that they implement. For example, the ‘+’ signifies an AND split
or join of processes that are linked to the gateway.

Figure 2.3: Categories of elements in BPMN.(Image source: [3])

Artefacts are nonactionable information in BPMN models. That is, they do not
directly influence execution of process flows or choices thereof. They act as means
of support for model interpretability. They may be expressed in informal, textual or
graphical form for documentation purposes.

Connecting objects connect the components of BPMN models. Sequence and message
flow objects specify the order of the components’ execution and the type of the interaction,
i.e. sequential execution of the two components linked by the sequence flow or an indication
of a requirement in receiving/sending a message that triggers an execution of an event.

Swimlanes represent organizational/participant information, i.e. (1) a pool that
represents the name of an organization/participant, and (2) lanes that represent the
entities found in the organization, e.g. departments. Each lane can contain flow and
connecting objects that show some processes that are performed inside the business entity.

33

By the use of swimlanes and connecting objects, interactions can be done between and
within swimlanes of BPMN models.

Shown in Figure 2.4 is a MBPN model of a recruiting process illustrated in [10].
This model illustrates one specification of employee recruitment from the time the
applicant submits his application to the HR Department until a decision is made by the
latter regarding his acceptance or rejection of his application. The interactions between
the applicant and the HR Department can be seen by the messages sent along the
communication arcs that cross between swimlanes in the model. An XOR gateway joins
two process flows regarding acceptance or rejection of the applicant. The “Application
assessment” activity contains a subprocess which evaluates some requirements pertaining
to the qualifications of the applicant.

Figure 2.4: A BPMN model of a recruitment process in an organization.(Image source:
[10])

BPMN and the process dimension

Figure 2.4 can help show some of the immediate drawbacks in using implicit splits or
joins and the use of gateways in models. Apart from these drawbacks in the sample
BPMN model in this figure, the following are some other notational limitations of BPMN,

(i) BPMN provides freedom to connect components of the same category which can

34

lead to ambiguity in modelling. For example, such connection is seen in Figure 2.4
which involves three activities, namely, “Application assessment”, “Acceptance of
applicant”, and “Reject applicant”. This example shows an implicit split of process
flows from the first to the second and third activities. This split semantically means
a parallel execution of the latter set of activities. Conceptually, this parallelism
contradicts the intended business process of having exactly one of the processes
to be executed, i.e. either accept or reject an applicant. From this sample, it can
be seen that this freedom on notational convenience and concept excess can add
ambiguity and/or errors in representing process flows.

(ii) The splits and joins, either coming from activities themselves or from gateways, do
not explicitly provide information as to the basis of the choice of process execution.
For example, the implicit split such as the one mentioned in (i) do not state which
parameter is used to make the decision of acceptance or rejection of an applicant.
Annotations can be added however they are not readily actionable. They may
induce ambiguity when formalisms are absent in interpreting and transforming
them to executable entities in WfMS.

(iii) Implicit splits for process flows lead to mismatched split-join combinations in
designs. Note how the model uses an implicit split in (i) which induces two parallel
process that eventually converge to an XOR join gateway – a gateway that expects
exactly one incoming process flow to be executed.

(iv) The subprocess of the “Application assessment” activity in Figure 2.4 show a
syntactically erroneous nesting of activities. This error is induced by labelling the
subprocess’ pool as “Recruiting Department” albeit it is just semantically a part of
the “Application assessment” activity which is executed in the HR Department.

(v) Note that there is no explicit representation of rules that control the execution of
the subprocess in (iv) when its main process is reached in the flow.

The problems of implicit joins and splits in (i) and nesting in (iv) are mentioned
in [10]. This paper mentions that aforementioned errors, although preventable, happen
in actual BPMN models of real-world systems. These models were developed using
BPMN 2.0 and represent 585 business processes from six companies. They vary in size
as well as they come from differing industries. They are analyzed and checked using 35
well-known BPMN guidelines and correctness rules that were proposed/recommended
in [49–51].

One of the recommendations in [10] that help avoid the errors relevant to (i) is to
avoid implicit splits and joins. Gateways can substitute implicit splits and joins while
still able to capture the same relations that are intended to be modelled using the latter
but without ambiguity in notational representations. This duplication in intent among
these control constructs is known as “concept excess”. In particular, concept excess refers
to the possibility to represent the same semantics in multiple graphical ways [10]. It has
been shown to negatively affect understandability [62] of models. Furthermore, the use

35

Figure 2.5: Error percentages in modelling guidelines and correctness rules [49–51]
determined from real-world BPMN models as computed in [10].(Image source: [10])

of gateways enforces modellers to be explicit in the type of split or join that is required
in managing the process flows.

Model verification for process-centric workflows such as Petri nets and workflow
nets [25, 27] are well-known. In literature, this model verification is adopted for some
aspects in BPMN modelling which is mainly powered by BPMN to classic workflow
transformations. The issue in (iii) can also be addressed when these transformations
are checked for being well-structured nets. A hindrance to this adoption is the lack of
explicitness of BPMN models such as in (i), (ii), and (v), as well as lack of formalisms
for effective and rule-based interactions between interacting participants.

Another control scheme that is enacted using gateways are the k out of n process
executions in joins. For this, a complex gateway of BPMN is used with n preceding
process flows(and k of them are executed where k is less than or equal to n) that joins
at the gateway. This scheme is also offered as a means to enable representations of
fault tolerant systems wherein k out of n process need to be executed before activities
after the join are performed [63]. Implicitly, this means that there are at least n process
specifications which are actually performed and which ends at the join gateway. They
can correspond to different process flows that are taken by considering different process
flows from preceding split gateways in the designs.

36

Figure 2.6 illustrates the use of a complex gateway in a representation of a fault
tolerant system [63]. This gateway can aid in performing the “n out of k process” pattern
in a BPMN model for such real-world systems. In this example, all n process specifications
lead from a parallel gateway. Note that activities themselves may encapsulate subprocesses
such that their execution time may differ relative to each other. That is, some activities
might take longer than others to complete. A complex gateway waits for k of them to
finish and thereby execute Activity C. At this level of model resolution, it is not easily
determinable which subset of the processes are considered as the k processes that the
gateway anticipates for completion. Furthermore, there is also no means of imposing
certain subsets of process executions to be waited for by the complex gateway. Note that
the same problem of the lack of support for explicit rules are still seen in the split and
join in Figure 2.6.

Figure 2.6: A BPMN model of a fault tolerant system using a complex gateway for the
“k out n process” pattern.(Image source: [63])

Whenever there are still n−k activities that have not completed and a terminal event
is reached in the execution of the model, then the entire process instance is considered
completed. For a workflow net representation with this design involving such type of join
gateway, there will be tokens that are left out in non-terminal places in the net. This
implies that soundness will not hold for such kind of design.

In proving for properties in models that contain complicated process specifications,
e.g.n out of k process pattern, discriminator, multiple instances without synchronization,
there are efforts such as in [59, 65] that introduced different notions of well-known model
properties in workflows. An example of these properties is soundness, namely, (1)classical
soundness, (2)generalized soundness, (3)relaxed soundness, (4)weak soundness, (5)up-to-
k-soundness(k ≥ 2), (6)easy soundness, (7)lazy soundness, and (8)k-soundness(k ≥ 2)(see
Section 2.1). The results in these efforts also included specifications on the verification
process of these notions of soundness. The results on decidability of workflow nets that
contain different types of such control flow structures with respect to these notions of
soundness are detailed in [65].

37

On Process Interactions in BPMN modelling

The same problems for explicitness in designs and control schemes mentioned in Section 2.2
for BPMN modelling can still be found in interactions between swimlanes of its models.
Added to these problems are the lack of formalisms to establish effective and explicit
rules in interactions between process participants, e.g. message throws [10]. Note on the
high percentage of errors with respect to message flows seen in Figure 2.5.

Figure 2.7 shows a process interaction in an auctioning system [2, 3] with three
participants, namely, a Bidder, an Auctioning Service, and a Seller. In this auction
system, every bidder must ask an auctioning service to participate by sending a request.
As a response, the service may immediately send an acceptance or a rejection to the
bidder’s request. The service can alternatively forward such request to its seller. With
this, the seller can decide whether the request is accepted or rejected and then informs
the service of the decision. Thereafter, the service can send back this decision to the
requesting bidder. Notice how the exclusive nature of whether an acceptance or rejection
for the two interactions is not immediately apparent in the model. Furthermore, by
occluding their corresponding process specifications, it cannot be revealed that they
indeed are exclusive and for which conditions they are enacted upon.

Figure 2.7: The auctioning system viewed at the level of message passing in interactions
of process participants.(Image adopted from [3].)

The interactions and abstractions thereof in Figure 2.7 can be modelled by the
swimlanes of BPMN. The interactions are modelled by communication arcs that are
linked to events in the lanes for message passing. In order to prove properties and
correctness of these interactions and abstractions, some aspects of BPMN models can be
transformed to workflow modules [64] to help in verifying the effectiveness of interactions
among the participants. Workflow modules are essentially Petri nets with some places

38

which are identified as interfaces [64]. These interfaces serve as sending or receiving places
of tokens in the net. The net’s tokens correspond to messages sent between interacting
modules. The concept of structural compatibility [2] and the varying levels thereof for
interactions are used for verification of the models. For each of these levels, modules are
checked for their number of interfaces and how these interfaces are used in the module.
Furthermore, compatibility between modules is measured by the sufficiency of the number
of sending/receiving places and whether every message sent(received) from one module
is received(sent) by another. Pairs of interacting interfaces are identified and will be
merged as one when their interacting modules are integrated as a workflow net.

Figure 2.8 shows two workflow modules corresponding to the Auctioning Service and
Seller participants from Figure 2.7. Note that their interfaces (places) have been given
the same names to resolve the integration of of the two nets. These modules only show a
part of the interactions of the participants in Figure 2.7.

The interactions shown in the modules in Figure 2.8 correspond to their messaging
for acceptance and rejection recommendations in the auctioning process. The labelling
of the transitions/task imply the type of messaging involved, i.e. a prefix of ‘!’ is a
task corresponding to a sending of a message while ‘?’ a receiving message. By firing a
transition, a token can be distributed from one module to another when this token reaches
an interface place. Note that the integration of the modules is supported by creating
a workflow net with an added input place ‘i’, output place ’o’, two transitions ‘t1’ and
‘t2’, and arcs(drawn using dashed lines) that connect these additional components with
the components in the two modules as shown in the figure. Lastly, pairs of interacting
interfaces(i.e. places with the same names) are merged to create a unified workflow.

Note that from the process of integrating workflow modules, it is not hard to see
that there can be certain properties in the structure and behavior of the modules which
hold for each of them but not for their workflow net. For example, deadlock-freeness and
soundness may not hold in the integrated workflow [25].

BPMN and the resource dimension

As discussed in Section 2.2, the passiveness of resources/participants with respect to the
interactions in BPMN models(such as in Figure 2.7) is carried on through its workflow
net representation(such as in Figure 2.8). In design frameworks wherein resources are
essentially designed to act as containers and/or grouping symbols which cannot be
explicitly and/or readily usable throughout model transformations from their design to
implementation, the following issues arise,

• Resources do not and cannot directly interact with model components. They are
merely limited to being graphical guides to imply roles that are supported by a set
of events and activities in the workflow.

• Resources do not and cannot have modifiable attributes that can be used to control
and manage its set of model components.

39

Figure 2.8: Workflow modules that show the interaction between Auctioning Service and
Seller participants with respect to their messaging scheme of acceptance and rejection
recommendations in Figure 2.7. These modules can be integrated by using an additional
input and output places(‘i’ and ‘o’) and two transitions(‘t1’ and ‘t2’) as well as representing
each pair of interfaces with the same labels with one place and establishing the arcs(drawn
with dashed lines) between them to form a workflow net. (Image adopted from [2,3])

• Resources do not and cannot directly influence in the execution of activities and
contribute to (run-time) process flow specifications.

• Problems in requirements traceability, i.e. “the ability to describe and follow the
life of a requirement, in both a forwards and backwards direction” [66] would arise
with respect to the requirements engineering in modelling.

• Structural relations and dependencies are not readily determinable.

• Controls that affect entire subsystems are not fully enabled and supported from
design to enactment of models. A task-driven control of a group of graph compo-

40

nents can be seen in the form of cancellation regions8(see Section 1) in workflows.
Groupings are explicitly defined for each task in the model. When a task with a
cancellation region is executed, all tasks in its region is disabled and, when they
are already executing, withdrawn. Whenever this task is a part of its cancellation
region, it is also cancelled upon its completion.
Consider the following model in Figure 2.9 of a holiday scenario experienced by
students who are planning for their holidays after taking their exams. In this model,
the place c4(c5) contains a token if the student passes(fails) his exam. Furthermore,
the “Resit exam” task has a cancellation region that includes the places c2 and c3
and the task “Book flight”(all annotated by the region’s enclosing dashed lines).
Therefore, the student will take a holiday(“Take holiday”) if he passes his exam
and had booked his flight(“Book flight”). On another hand, if he fails his exam,
he resits on it(“Resit exam”) and must stop planning his holidays(not booking
a flight if he has not done so when concurrency is not imposed in the workflow
implementation for “Take exam” and “Book flight”). With this, the “Book flight”
task is disabled/withdrawn and any token in c2 or c3 is removed. Meanwhile, the
student might need to cancel his flight(“Cancel flight”) if he had previously made
the booking. With the completion of any of these process flows, the execution
ends at an XOR-join with the “Finalize plans” task performed by the student, and
thereafter a token is finally placed at the model’s output place.

Figure 2.9: Holiday scenario for students. (Image source: [47])

It is assumed that every task in a cancellation region has a corresponding “bypass”
task. The latter is executed instead of the former when a cancellation is triggered
using the task that is associated to the region.
With regard to the implementation of cancellation regions in modelling frameworks
and their supporting technologies, the Workflow Patterns Initiative8 lists some of
the following specifications,

– Staffware [67] supports withdrawal of tasks only if they have not been initiated.
8The Website of the Workflow Patterns Initiative: Pattern 25 (Cancel Region),

http://www.workflowpatterns.com/patterns/control/ new/wcp25.php (2011)

41

– FLOWer9 supports skipping of individual tasks rather than cancelling groups
of them.

– UML 2.0 Activity Diagrams [29] fully support the use of cancellation regions.
Cancellations can be accomplished by using interruption edges(i.e. arcs whose
line segment is rendered as lighting bolts) which are linked to the components
of the region.

– BPMN and XML Process Definition Language(XPDL) [1] partially support
cancellation regions through the use of subprocesses. These subprocesses
would have to be associated with an error event to trigger cancellations.

The semantics of cancellation regions shows that groupings are mainly (or ideally)
established with considerations of behavioral aspects of systems. This also means
that groupings can even be established without regard of structural/topological
aspects of systems. Due to the possibilities of disruptions in process executions which
are triggered by a non-local(topology-based) cancellations, model verification is also
a problematic undertaking. For instance, the verification of soundness in models
which contain both cancellation regions and OR-joins become undecidable [46, 47].
Furthermore, by the allowance of the grouping of topologically-unrelated tasks in
cancellation regions, it is difficult to establish and support encapsulation in many
aspects of workflow designs and implementation.

• Encapsulation of work specifications and details cannot be fully supported from
design to enactment of models. Note how alignments in interactions impose the
revelation of some aspects of the structural relations in process specifications in
pools and lanes such as in Figure 2.7. The lack of rules on how resources are
to be dealt as a part of the model itself and how to manage the interactions in
messaging become problems in BPMN modelling. These can easily be seen in the
high percentage of errors in linking the correct nodes found inside the pools [10] as
shown in Figure 2.5.

• With respect to handling a work specification in BPMN models where cases are
executed using multiple resources with their associated tasks, Figure 2.10 shows
a design recommendation from an online article10 of G. Polanc̆ic̆. Note that
Figure 2.10.(a) is marked as an erroneous design. This is because activity notations
cannot be aligned between two lanes. This is due to the exclusivity in assigning
them to one resource in a pool. The intent of this design is to show that Task
3 is executed for cases wherein Person A and Person B are both responsible for
its execution. The recommendation in Figure 2.10.(b) shows that Task 3 can be
duplicated in both lanes to establish the intended design.
As seen in Figure 2.10, the simple duplications of a task/activity to illustrate a joint
responsibility of resources may create ambiguity in role distribution and accounting.

9The Website of FLOwer: FLOwer, http://www.workflowpatterns.com/vendors/flower.php (2011)
10Polanc̆ic̆, G.: Common BPMN Modeling Mistakes - Activities, http://blog.goodelearning.com/bpmn/

common-bpmn-modeling-mistakes-activities/

42

Figure 2.10: Design recommendations10 in handling a task that is assigned to be executed
by multiple resources to support the processing of cases in BPMN models.

The duplication itself may incur inconsistencies in the intended business rules when
the number of interactions and requirements increase and become more complicated.

BPMN and the case dimension

Case handling in BPMN is mainly supported with view of horizontal abstractions [2] of
business process models. That is, different levels of models are considered in their design
and analysis. They are the (1)instance level, (2)model level, and (3)metamodel level.
In view of the instance level, tasks take in cases either singly or multiple, sequential or
parallel, and/or with inclusions of looping under some design- or run-time specification.
Figure 2.11 shows the graphical notations that are used in the BPMN representation of
a tasks/activitity. The loop symbol/curved arrow in Figure 2.11.(a) is used when a task
is repeated. The number of repetitions can be added as an attribute to the task. Thick
vertical and horizontal lines in the notation Figure 2.11.(b) and .(c) mean that there can
be multiple cases that are handled in the task executions in parallel or sequential manner,
respectively. Note that the boxed plus sign indicate subprocesses that are associated to
activity they are represented by in Figure 2.11.(d)-(f).

43

Figure 2.11: Variations of notations for task/activities in handling cases in BPMN
modelling.(Image source10)

In using a process specification that supports the execution of multiple cases, there
are different control flow patterns which include the following: (1)Multiple Instances
Without Synchronization, (2)Multiple Instances With A Priori Design Time Knowledge,
(3)Multiple Instances With A Priori Run Time Knowledge, (4)Multiple Instances Without
A Priori Run Time Knowledge, (5)Sequential Execution without A Priori Design Time
Knowledge. (Note that instances mean cases in this context.) For these patterns of
control flow, each of the cases may have design- and/or run-time specifications with
respect to (1) the time it is dealt with, and/or (the support for its implicit or explicit
(non)termination whenever their succeeding component in the model is a termination
event or a task.

Figure 2.12: Annotated BPMN models for some control flow patterns used in dealing
multiple instances(Image source: [70])

From the aforementioned control flow patterns for handling multiple cases, the first
three patterns can be captured using BPMN [70], however, with the use of texts per-
taining to coded attributes and their values as shown in Figure 2.12. Meanwhile, the
last two patterns have no direct support and/or cannot be explicitly represented using
BPMN [2,70]. In [2], a similar BPMN model is drawn for the Multiple Instances Without
A Priori Run Time Knowledge pattern. That is, using three activity nodes A, B, and C
with the same connectivities as in Figure 2.12 but without the texts. This is because the

44

number of instances for B cannot be explicitly set at design time nor is it known at any
stage during run time before the instances of B are enabled. A rough workaround in [2]
in dealing with this pattern is to create a management activity ‘b’ that can be linked
to B in the BPMN model. That is, this management activity ‘b’ controls the initiation
of the instances of the activity B when B is executed. Furthermore, ‘b’ suspends the
execution of Activity C until all instances of B has already completed.

For case handling in BPMN 2.0 and its supporting technologies, the following can be
observed:

• An activity with an internal loop does not allow time-, activity-, and/or requirement-
related executions to modify the execution of the loop itself, and vice-versa.

• Management activity tasks, such as ‘b’ in for managing the activities A, B, and
C in the Multiple Instances Without A Priori Run Time Knowledge pattern (as
discussed above), that control the initiation of task executions in multiple activities
cannot be explicitly represented in BPMN.

• Accumulated workloads in BPMN models and in their components cannot be
described fully at run time. This is because case executions are monitored and
handled individually at run-time by external workflow management tools. These
workload information is not explicitly represented within the models themselves.
Relying on external management systems and/or knowledge workers themselves
to continually monitor and control workloads at run time is not ideal for complex
systems with huge amount of state space. The resources and their associated
components in model representations should also be given explicitly-represented
attributes. These attributes can be used for automatic reroutes when bottlenecks
arise. This can aid in handling multiple instances in run-time while providing means
to check for static flow controls. Because this information is known at design-time,
it is readily usable for verification of models. Furthermore, resources themselves
should be able to use those attributes to perform automatic resets. These resets
are done when some control flow schemes are detected to have been used to trigger
them. Resets that are performed in subgroups of components in models can be
used to indicate availability for usage of system components or their transient
behavior in real-world systems. Essentially, atomicity and encapsulation in system
components and relationships can be effectively implemented using these schemes.
Another benefit that results from these schemes is the capability to perform localized
controls within well-defined substructures that are grouped together by topological
connectivities and bound by a common functional role inside the system.

• With the presence of problems regarding sufficient support for representations of
joint responsibilities among resources in task execution, a resulting problem arises
regarding the management of multiple cases in these shared tasks. Furthermore,
since resources act as passive containers of process specifications, they cannot
be used to enact subsystem-wide controls for explicit reroutes of process flows,

45

bottleneck-handling, and/or task delegation in a multi-case setting in design and
implementations of models.

• With respect to the representation and execution of ad-hoc tasks [2] in BPMN,
including aspects of which subsets of ad-hoc tasks to be executed together, cases
would have to be enumerated to cover all their possible combinations before any
further analysis can be done on the model. This problem on enumeration is further
complicated and the state space is further enlarged when gateways, such as the
k-out-of-n join, are included in the process flow where these tasks are involved in.
These problems implicitly lessen the possibilities to effectively describe, validate,
and verify models and real-world systems.

2.3 Robustness Diagrams
The building blocks of a Robustness Diagram(RD) are Nouns and Verbs representing
resources and tasks/atomic activities - i.e. boundary and entity objects; and controllers,
respectively, as seen in Figure 2.13. These components interact with each other through
arcs that connect them. Boundary objects support interaction of users with the system
being modelled. Entity objects are conceptual representations of the internal components
of a system. They have specific set of attributes and operations associated to them.
Controllers serve as the “glue” between boundary and entity objects. They are used to
implement the logic required to manipulate the nouns, their information, and interactions.
As a rule of thumb, no arcs connect the nouns to each other. Furthermore, arcs can be
made between a verb and a noun.

Figure 2.13: Robustness Diagram components. (Image source: [29])

From the time RDs were introduced as an appendage to the UML standard [28] until
the ICONIX Framework highlights its use in Robustness Analysis [30], the literature
for effective RD modelling and verification has remained lacking. They had remained
to be used as rudimentary guides and illustrative visuals in the first few stages of
system modelling7 [80]. A study in [74] provides a preliminary view of modelling and
activity extraction using RDs. An algorithm Alg was also introduced therein that uses arc
attributes which enforce condition-dependent joins and splits in RDs. This is implemented

46

by supplementing these attributes to the arcs in the model. The algorithm is based
on Depth-First Search(DFS) for graph traversals. These activities are represented as
sequences that list the order of the vertices which are reached by traversals. An attribute
of time is added to RDs to mark the time of traversals of arcs, and therefore, the time
that tasks are accomplished in the model. More formally, a Robustness Diagram in [74]
is defined as follows,

Definition 19 A Robustness Diagram(RD) is a graph representation R of a system that
is defined as R = (V1, V2, V3, E, C, T) where:

• V1 and V2 are sets of boundary and entity objects, respectively, and V3 is a set
of controllers where V1, V2, and V3 are disjoint with each other. A boundary
object represents a system component that receive(send) values from(to) a system’s
environment. An entity object represents an internal system component that interacts
with other components but not with the environment. A controller represents a task
that is executed by the system and is associated to some component in the system.
(Refer to Figure 2.13)

• E ⊂ ((V1 ∪ V2)× V3) ∪ (V3 × (V1 ∪ V2 ∪ V3)) is a set of arcs,

• C : E → Σ ∪ {ε} where Σ is a non-empty finite set of symbols and ε is the empty
string. Furthermore, C((x, y)) ∈ Σ represents a constraint to be satisfied to reach y
from x. This constraint can represent either an input requirement or a parameter
C((x, y)) which needs to be satisfied to proceed from using the component/task x to
y. C((x, y)) = ε represents a constraint-free process flow to reach y from x or a
self-loop when x = y.

• T : E → N assigns an integer to an arc marking the time of traversal of some
algorithm’s walk on R.

An algorithm proposed in [74] extracts an activity from a RD using the rules for
traversal as shown below. Note that for brevity, we shall denote this algorithm as Alg in
the entirety of this research. Alg initially uses s ∈ V1 ∪ V2 until an arc f ∈ E is reached
by using the following traversal-backtracking conditions,

(1) from x ∈ V1 ∪ V2 ∪ V3, select (x, y) ∈ E where T ((x, y)) = 0 for possible traversal
of Alg. (Alg starts with x = s.) If |{(x, z) ∈ E | z ∈ V1 ∪ V2 ∪ V3}| > 1, arbitrarily
choose any outgoing arc of x in this set for a possible traversal. We call any arc
(x, y) as unexplored if T ((x, y)) = 0.

(2) From the chosen outgoing arc (x, y) in (1) for possible traversal, set T ((x, y)) = k
where k = 1 + max(u,x)∈E{T ((u, x))}.

(3) If (x, y) is unrestricted, i.e. @v, v ∈ V1 ∪ V2 ∪ V3, (v, y) ∈ E, s.t. C((x, y)) 6=
C((v, y)) ∧ C((x, y)) ∈ Σ ∧ T ((v, y)) = 0, traverse (x, y) to reach y and execute its

47

process. Upon traversing (x, y), if C((x, y)) ∈ Σ, update T ((v, y)) = T ((x, y)) for
every (v, y) ∈ E.
When no unexplored outgoing arcs are found in x and f is still unexplored, Alg
backtracks to u ∈ V1 ∪ V2 ∪ V3 such that (u, x) ∈ E and there is an unexplored arc
(u, x′) for some x′ ∈ V1 ∪ V2 ∪ V3 and Alg proceeds from there. Alg stops when f is
explored. Finally, it outputs the sequence of vertices, the arcs traversed and their
corresponding times of traversals.

The nondeterministic choice of an outgoing arc (x, y) of x for Alg to traverse in
step (1) results to having equivalent time of traversals that are assigned to all outgoing
arcs of x. This equivalence will eventually not hold in case of updates to T (x, y) and
T (v, y) in step (3) of the algorithm. Such an update on (x, y) and every (v, y) in the RD
means that a join on y has already been resolved, i.e. all conditions imposed by every
incoming arc of y are already satisfied. Note that before Alg performs traversals in the
RD, T (.) = 0.

In [74], a sample Use Case Text(UCT) was given with its corresponding Robustness
Diagram. This UCT represents one of the basic functionalities of Fujitsu Ten’s Computer
Aided Multi-Analysis System Auto Test Tool (CATT) [75] that aids in analyzing embed-
ded systems in automobiles developed by Fujitsu Ten Limited - Japan in collaboration
with Fujitsu Ten Solutions Philippines.

Example 1 (A Sample UCT)
Name: Create Analog Signal
Precondition: User adds an analog series

1. User selects single/multiple empty cell(s) in the Chart worksheet

2. User creates an analog signal

• Pop Up Menu option
a) User right clicks on the selected cell(s)
b) System displays the pop up menu
c) User selects one of the following options:

– “Fixed Value Input”
– “Slope Input”

• Toolbar button
a) User clicks one of the ff. toolbar buttons:

– “Fixed Value Input”
– “Slope Input”

3. System gets the selected cell(s)

4. System gets the parent Row of one cell in the cell collection

48

5. System gets the boundary

6. Repeat steps 3-4 until all selected cells are traversed

a) System determine Min/Max boundary

7. System displays an input dialog box and asks the input value(s) from the user

a) System displays input dialog box
• If User selects “Fixed Value Input”, System asks for a single value from

the user
• Else If User selects “Slope Input”, System asks for start and end values

from the user
b) User inputs values in the dialog box

8. System restricts user’s entered values to Max/Min boundary values and Max/Min
time values

• If user input/s is/are out-of-range, System disables OK button.
• ELSE

– System enables OK button.
– User clicks “OK” or “CANCEL”

∗ If User Selects “OK”, perform steps 9-14
∗ Else, skip steps 9-14

9. System gets the user’s input

10. System gets the parent row and the parent column of once cell in the collection of
cells

11. System gets the time interval of the cells column

12. User creates an analog signal in that cell

a) setting Value(s) and Time(s) by calling Add Point

13. System plots an analog signal in that cell by performing createNewPlot() method

14. Repeat steps 10-13 until all selected cells are traversed

Alternate Methods: None

In Figure 2.14, the values highlighted in red and yellow font on the arcs correspond
to the time of a backtrack and the final traversal, respectively, that were done by the
algorithm on the RD for activity extraction. For this example, x0 is the start vertex and

49

Figure 2.14: The Robustness Diagram representing the process specified in the UCT in
Example 1.(Image source: [74])

the final arc is (x16, x0). For this activity extraction, the activity can be described using
the sequence

x0 x1 x2 x0 x4 x5 [x12 x13 x14][x6 x7 x8[x2 x9]x3 x10]x11 x15 x16 x0.

The symbol [] enclosing the nodes of the graph corresponds to tasks that may be
performed in parallel manner. The execution of such tasks do not depend on each other.
These are shown by the equality of the time that the algorithm traverses their associated
arcs.

From the specifications of modelling and activity extraction in RDs in [74], the
following problems can be identified,

(i) When the input RD of the algorithm for activity extraction contains multiple
activities, there might be components and conditions that are included in the
extraction which do not contribute to the execution of the intended case. This
happens due to the nondeterminism of the choice of outdegree in step 1 of Alg.
The traversals could still lead to an unintended output node and/or including

50

a subsystem which are entirely unnecessary for the reachability of the intended
output/s. This can lead to errors in the profile of the structure and behavior of the
subsystem being associated to the extracted activity.
With the aforementioned issue, the existing algorithm also fails to achieve the correct
temporal profile of the extracted components. That is, the time of traversals(which
implies the time of task executions) is wrongly set when components that are
unnecessary for the intended activity are included in the description of the activity.

(ii) The time of traversals for arcs leading to a join for which their arc attributes are
marked ε are not discriminated against those marked with Σ during updates of T in
step (3) of Alg. This discrimination is important because the former set of arcs must
not be affected by the arc that causes the update because they should not affect
the reachability of nodes in R. They, in fact, correspond to sequential executions
of two successive tasks which do not have input requirements/parameter-based
conditions.

(iii) Although the resource and process dimensions are inherently used in RDs(apart
from the case dimension) by the presence of objects and controllers, structural
relations of related components are still undefined. Therefore, the definition of
role-related subsystems are still undefined.

(iv) An immediate result to (iii) is the absence of support for subsystem-based controls
in RDs. The concept of resets or cancellation regions in workflows to support
volatility for complex systems modelling is unsupported.

(v) Explicit controls for effective loop mechanisms are absent in the current modelling
and activity extraction in RDs.

(vi) There are still no model properties for describing different aspects of RDs with
respect to structure and behavior with consideration of the integration of the three
workflow dimensions in one RD model. With this, there are also no verification
schemes for checking such properties in RDs.

51

3
Robustness Diagrams with Loop

and Time Controls

This chapter presents the core theoretical contributions of this research. It presents the
details of the proposed concepts and methods which are mentioned in the Methodological
Approach in Chapter 1. These concepts and methods shall address the problems and
achieve the goals that are established in this research for modelling and verification of
complex systems. In particular, the UML’s Robustness Diagram is extended to sup-
port the integration of all three workflow dimensions into one modelling framework.
This extension additionally includes the consideration of modelling complex systems
with requirements of multi-activity construction, persistence, and volatility for struc-
ture and behavioral profiles. Such an extension is referred to in this research as the
Robustness Diagram with Loop and Time Controls(RDLT). This chapter discusses the
structural and behavioral profiles and the methodologies that are used to extract them in
RDLTs. These profiles are either captured through a holistic or a compositional approach
in model analysis for RDLTs. The holistic approach takes in a multi-activity RDLT
and creates an extended RDLT thereof. From its extended RDLT, conclusions to each
substructure that supports the execution of an activity profile for a completion of a case
are derived. Meanwhile, the compositional approach decomposes the input RDLT into
these substructures. Each of them are analyzed to establish generalizations for the entire
model with respect to compliance of properties. These approaches are detailed in this
chapter. A set of these model properties are proposed to help in the verification of specific
aspects pertaining to these RDLT profiles. Lastly, this chapter provides proofs that
establishes the relationships and hierarchies of RDLTs with respect to their compliance
of the proposed properties in modelling.

53

3.1 RDs with Loop and Time Controls

Definitions and Basic Notations

Definition 20 (Robustness Diagram with Loop and Time Controls(RDLT)) A
Robustness Diagram with Loop and Time Controls(RDLT) is a graph representation R
of a system that is defined as R = (V,E, T,M) where

• V is a finite set of vertices where every vertex has a type Vtype : V → {‘b‘, ‘e‘, ‘c‘},
where ‘b‘, ‘e‘, and ‘c‘ means the vertex is either a “boundary object”, “entity object”,
or a “controller”, respectively.

• A finite set of arcs E ⊆ (V ×V)\E′ where E′ = {(x, y)|x, y ∈ V , Vtype(x) ∈ {‘b‘, ‘e‘},
Vtype(y) ∈ {‘b‘, ‘e‘}} with the following attributes with user-defined values,

◦ C : E → Σ∪{ε} where Σ is a finite non-empty set of symbols and ε is the empty
string. Note that for real-world systems, a task v ∈ V , i.e. Vtype(v) = ‘c‘,
is executed by a component u ∈ V , Vtype(u) ∈ {‘b‘, ‘e‘}. This component-
task association is represented by the arc (u, v) ∈ E where C((u, v)) = ε.
Furthermore, C((x, y)) ∈ Σ represents a constraint to be satisfied to reach
y from x. This constraint can represent either an input requirement or a
parameter C((x, y)) which needs to be satisfied to proceed from using the
component/task x to y. C((x, y)) = ε represents a constraint-free process flow
to reach y from x or a self-loop when x = y.
◦ L : E → Z+ is the maximum number of traversals allowed on the arc.

• Let T be a mapping such that T ((x, y)) = (t1, . . . , tn) for every (x, y) ∈ E where
n = L((x, y)) and ti ∈ N is the time a check or traversal is done on (x, y) by some
algorithm’s walk on R.

• M : V → {0, 1} indicates whether u ∈ V and every v ∈ V where (u, v) ∈ E
and C((u, v)) = ε induce a subgraph Gu of R known as a reset-bound subsys-
tem(RBS). The RBS Gu is induced with the said vertices when M(u) = 1. In this
case, u is referred to as the center of the RBS Gu. Gu’s vertex set VGu contains u
and every such v, and its arc set EGu has (x, y) ∈ E if x, y ∈ VGu.
Finally, (a, b) ∈ E is called an in-bridge of b if a /∈ VGu, b ∈ VGu. Mean-
while, (b, a) ∈ E is called an out-bridge of b if b ∈ VGu and a /∈ VGu. Arcs
(a, b), (c, d) ∈ E are type-alike if ∃y ∈ V where (a, b), (c, d) ∈ Bridges(y) with
Bridges(y) = {(r, s) ∈ E|(r, s) is either an in-bridge or out-bridge of y} or if
∀y ∈ V, (a, b), (c, d) /∈ Bridges(y).

Figure 3.1 shows an example of an RDLT R having 2 boundary and 1 entity objects and
an RBS(marked with a box) with center x1. The component-task relation is emphasized
by the sameness in vertex coloring. Note that (u4, x1) and (u5, x1) are type-alike since
they are in-bridges of x1. Also, (x6, x1) is not type-alike with (u4, x1) and (u5, x1).

54

(x6, y) is an out-bridge of x6. The arc attributes are shown as L((x, y)) : C((x, y)) for
every (x, y) ∈ E in the figure.

Figure 3.1: RLDT R with 1 entity and 2 boundary objects with an RBS with center x1.

Note that the default value of T ((x, y)) = 0, where (x, y) ∈ E, x, y ∈ V , and 0 is the
zero vector, before any traversal algorithm is implemented on R. Moreover, an RBS will
have the values of T (.) for all its arcs reset to 0 when some of its arcs are traversed. This
reset process is formalized in the succeeding subsection below.

Activity Extraction in RDLTs

We propose an algorithmA to perform activity extraction using RDLT R where R contains
(1)multiple activities by the integration of all three workflow dimensions, (2)typed arcs
and substructures by virtue of C andM , (3)attribute-dependent (i.e. C-, T - and L-based)
paths, loops, joins, and splits, and (4)persistent and volatile components in regions that
are defined to be a part of reset-bound subsystems. The algorithm A is an improvement
to the activity extraction algorithm from [74](see Section 2.3). A can generate an activity
profile with the four aforementioned specifications of structure, topology, and groupings
using a start vertex s and a goal vertex f . From this input pair, A identifies a set of
vertices which are used to execute one activity in R. Note that more than one activity
can be extracted from R.

One approach to perform extraction of multiple activities in R is implementing copies
of A in R with varying combinations of the said input pair. By using a parallelized
design, two copies will choose two different vertices in R when splits of process flows
are observed. However, this parallelized implementation is only effective when there
are no joins that are found in the set of succeeding tasks in R. A split is observed in
Figure 3.1 at u2 where two process flows are generated from u2 to u4 and from u2
to u5. Meanwhile, a merging point is seen at x6. However, x1 is not a merging point
of the flows. This is because splits and joins of process flows are bound to the values
of arc attributes C(.) and M(.) in R. In the succeeding subsection, different types of
process flows are illustrated where the role of attributes of R that affects these flows

55

is shown. In essence, prior checking on the connectivities and these arc attributes of
R is required before performing this parallel design. On this note, another approach
to achieve an efficient multi-activity extraction is to derive maximal subgraphs in R
whose vertices, arcs, and RDLT attributes are relevant to the given input pair. This
approach can adopt extraction of activities either one at a time using the entire R or by
the parallelized design using the maximal subgraphs of R. Therefore, we propose another
algorithm P as preprocessing step to discover these subgraphs accounting connectivities,
arc attributes, splits and merging of process flows. P uses the arc attribute C(.) to
generate maximal subgraphs in RDLTs containing multiple activities, inputs, and outputs.
We shall discuss how to deal with such RDLTs in activity extraction and identification
of maximal subgraphs and how model properties are checked for them in Section 3.5.
For the meantime, an algorithm that performs activity extraction using s and f in R is
proposed in the subsequent subsection. Consequently, the time and space complexity for
this algorithm is also provided.

Proposed Algorithm for Activity Extraction

To perform a step of an activity extraction from a vertex x, where x = s at the start of the
algorithm A, A performs a check on x and any other vertex w ∈ V where (x,w) ∈ E. A
check means that A arbitrarily selects (x, y) ∈ E where the number of traversals done on
(x, y) has not reached L((x, y)), if such y exists in V . If y exists, A gets the largest value
maxV from all the time of traversals T ((u, x)) for every (u, x) ∈ E. If such (u, x) /∈ E,
maxV = 0. The process of checking ends when A updates the leftmost zero of the vector
T ((x, y)) = maxV + 1. Note that two successive checks on (x, y) are not allowed in
Algorithm 3.1(Check(x)) by using the indicator vector CTInd(x,y)[.] associated to (x, y).
The values 0, 1, and 2 in an element of CTInd(x,y)[.] mean that (x, y) has been (a)neither
checked nor traversed, (b)checked, and (c)traversed, respectively, by A.

After the check, A evaluates whether every (v, y) ∈ E, v ∈ V , does not prevent
traversal on (x, y), where (x, y) and (v, y) are type-alike. Such an arc (v, y) does not
prevent traversal on (x, y) if either the following holds, (a) both arcs have the same value
of C or C((v, y)) = ε, (b) the number of traversals done on (x, y) has not exceeded that
of (v, y)’s (and L((v, y))), or (c) there is no unsatisfied constraint C((v, y)) (imposed by
(v, y)) to reach y from v since (v, y) was previously explored by A. The second constraint
implies that C((x, y)), C((v, y)) ∈ Σ, C((x, y)) 6= C((v, y)), while the third indicates a
loop where v, y, and x are present. Here, y is reached by A before x. We call (x, y)
unconstrained if any of these constraints are satisfied. On another hand, if (x, y) and
(v, y) are not type-alike, (v, y) will not prevent traversal of (x, y), i.e. (x, y) remains
unconstrained if it is such with respect to to other type-alike arcs incident to y. Formally,

Definition 21 (Unconstrained Arc) Let R = (V,E, T,M) be an RDLT(with the arc
attributes C and L). An arc (x, y) ∈ E is unconstrained if ∀(v, y) ∈ E where (x, y)
and (v, y) are type-alike, any of the following holds,

1. C((v, y)) ∈ {ε, C((x, y))},

56

Algorithm 3.1: Check(x): Determines if there exists some y ∈ V where (x, y) ∈ E
and its attribute L((x, y)) allows that at least one traversal on the arc. If y exists,
the algorithm updates T ((x, y)) and returns y, otherwise it returns ∅.
Input: x ∈ V
Output: y ∈ V if the arc attribute L((x, y)) allows that at least one traversal on

the arc, ∅ otherwise
1 y ← w where w ∈ V , (x,w) ∈ E and for 1 ≤ i ≤ |L(x,w)| such that either

CTInd(x,y)[i− 1] = 2 and CTInd(x,y)[i] = 0, or CTInd(x,y)[i = 1] = 0;
2 if y 6= ∅ then
3 if ∃u ∈ V such that (u, x) ∈ E then
4 ti ∈ T ((x, y)) : ti ← maxV + 1 where

maxV = max
(u,x)∈E

{max{tk | 1 ≤ k ≤ L((u, x)), tk ∈ T ((u, x))}}+ 1;

5 else
6 ti ∈ T ((x, y)) : ti ← 1;
7 end
8 return y;
9 else

10 return ∅;
11 end

2. |{ti ∈ T ((x, y))|ti ≥ 1}| ≤ |{tj ∈ T ((v, y))|tj ≥ 1}| ≤ L((v, y)),

3. C((v, y)) ∈ Σ ∧ C((x, y)) = ε ∧ T (v, y) 6= 0.

If (x, y) is unconstrained, A traverses it. A either retains or updates T ((v, y)) for every
(v, y) ∈ E where (x, y) and (v, y) are type-alike, depending on C((v, y)) and T ((v, y)).
For every such (v, y) ∈ E, T ((v, y)) is updated if either (1) C((v, y)) ∈ Σ, or (2) v ∈ V
is either an entity or a boundary object and y is a controller and C((v, y)) = ε and
|{tk ∈ T ((v, y))|tk ≥ 1}| = 0. For every (v, y) ∈ E that satisfies the first condition, A
updates its last value in T ((v, y)) where the last check was done on (v, y). On another
hand, for every (v, y) ∈ E that satisfies the second condition, A updates its first value
in T ((v, y)). This update signals the first use of the task represented by y as its object
v has already been previously reached by A. The value that is assigned by A to every
such component of T ((v, y)) is MAX + 1, where MAX is the maximum value of all
T (v′, y), ∀v′ ∈ V where (v′, y) and (v′, y) and (x, y) are type-alike. With this, y is
considered as reachable at time MAX + 1. In real world systems, this means that
constraints/preliminary tasks with respect to y had already been satisfied/executed by
this time step. Note that the updates on T ((v, y)) using MAX considers that A might
have previously explored vertices which generates bigger values of T ((v, y)) during the
last check on (v, y) as compared with (x, y)’s.

Note that two successive checks on (x, y) by A is not allowed, i.e. (x, y) needs to be
traversed by A first before it can be selected again by the check process. When (x, y) is

57

traversed and (x, y) is an out-bridge of x, every T ((a, b)) is reset to 0 where (a, b) is in
the arc set of the RBS where x belongs to in its vertex set. The process of checks and
traversals are repeated until the terminal vertex f is reached by A.

Meanwhile, if (x, y) is not unconstrained and checks are not allowed on any other
(x, y′) ∈ E, A backtracks to a ∈ V where (a, x) ∈ E and a was previously used by A to
reach x. Then, A proceeds with checking and traversals using a.

Profiles of Reachability in RDLTs

Definition 22 A reachability configuration S(t) in R = (V,E, T,M) contains the
arcs traversed by A at time step t ∈ N. We call a set S = {S(1), S(2), . . . , S(d)} of
reachibility configurations, d ∈ N, as an activity profile in R where ∃(u, v) ∈ S(1) and
(x, y) ∈ S(d) such that @w, z ∈ V where (w, u), (y, z) ∈ E.

Definition 23 Let R = (V,E, T,M) be an RDLT. A vertex vn ∈ V is reachable from
any vertex v1 ∈ V if there exists an activity profile S = {S(1), S(2), . . . , S(d)} of R,
d ∈ N, and a sequence of vertices p = v1 . . . vn, vi ∈ V where for some t ∈ {1, . . . , d} and
i = 1, . . . , n− 1 such that 1 ≤ n− 1 ≤ d− t+ 1, (vi, vi+1) ∈ S(t+ (i− 1)).

Algorithm 3.2(TraverseAndUpdate((x, y))) shows the process of updating an activity
profile S and all the arc attributes T of the arcs used in an activity where (x, y) ∈ E,
x, y ∈ V .

Applying A on the RDLT in Figure 3.1 using u1 and y as a start and goal vertices,
resp, we obtain one activity profile S = {S(1), S(2), . . . , S(6)} where S(1) = {(u1, u2),
(u1, u3)}, S(2) = {(u2, u4), (u3, u4), (u1, u4),}, S(3) = {(u4, x1)}, S(4) = {(x1, x3),
(x1, x4)}, S(5) = {(x3, x6), (x4, x6), (x1, x6)}, and S(6) = {(x6, y)}. Note that x1 is
immediately reached from u4 because (u4, x1) is unconstrained with respect to all of its
type-alike arcs, for this case, (u5, x1). This is because the first condition of Definition 21
to perform the traversal is satisfied. Also, (x6, x1) does not affect the traversal of
(u4, x1) because it is not type-alike with the latter. Furthermore, when (x3, x6) and
(x4, x6) at time t = 5, the latter becomes an unconstrained arc by satisfying the first
and second conditions of Definition 21. Therefore, (x4, x6) is traversed together with
(x3, x6) with updates to their arc attributes T ((x4, x6)) = T ((x3, x6)) = 5. Therefore,
x6 is reachable at t = 5. Finally, when (x6, y) is traversed at t = 6, the values of T will
be reset to 0 for the following arcs: (x1, x2), (x1, x3), (x1, x4), (x1, x5), (x1, x6),
(x2, x5), (x3, x6), (x4, x6). The values of T for the in-bridge (u4, x1) and out-bridge
(x6, y) are not affected by this reset.

Meanwhile, another activity can be generated using another reachability configuration
from u1 to y, i.e. S = {S(1), S(2), . . . , S(7)} where S(1) = {(u1, u2), (u1, u3)},
S(2) = {(u2, u5), (u3, u5), (u1, u5)}, S(3) = {(u5, x1)}, S(4) = {(x1, x2),(x1,
x3)}, S(5) = {(x2, x5), (x1, x5)}, S(6) = {(x3, x6), (x5, x6), (x1, x6)}, and
S(7) = {(x6, y)}.

Shown below is the entire algorithm A which uses Algorithms 3.1(Check()) and
3.2(TraverseAndUpdate()) to extract an activity profile from R.

58

Algorithm 3.2: TraverseAndUpdate((x, y)) Evaluating if (x, y) unconstrained. If
it is unconstrained, the algorithm updates T (v, y) and an activity profile S which
uses (x, y) accordingly, and then returns y, otherwise, it returns ∅.
Input: Checked (x, y)
Output: y if (x, y) is unconstrained, ∅ otherwise

1 if ∀(v, y) ∈ E, v ∈ V , where (v, y), (x, y) are type-alike, (C((v, y)) ∈ {ε, C((x, y))})
or (|{ti ∈ T ((x, y))|ti ≥ 1}| ≤ |{tj ∈ T ((v, y))|tj ≥ 1}| ≤ L((v, y))) or
(C((v, y)) ∈ Σ ∧ C((x, y)) = ε ∧ T (v, y) 6= 0) then

2 MAX ← max
type-alike (x,y),(v′,y)∈E

{ max
tk∈T ((v′,y))

{tk}};

3 CTInd(x,y)[i]← 2 where either CTInd(x,y)[i] = 1 and CTInd(x,y)[i− 1] = 2, or
CTInd(x,y)[i = 1] = 1;

4 ti ∈ T ((x, y)) : ti ← MAX + 1;
5 S(MAX + 1)← (x, y);
6 for each (v, y) ∈ E where (v, y) and (x, y) are type-alike, such that either

(1) C((v, y)) ∈ Σ, or (2) v ∈ V is either an entity or a boundary object and
y is a controller and C((v, y)) = ε and |{tk ∈ T ((v, y))|tk ≥ 1}| = 0 do

7 CTInd(v,y)[j]← 2 where either CTInd(v,y)[j] = 1 and
CTInd(v,y)[j − 1] = 2, or CTInd(v,y)[j = 1] = 1;

8 tj ∈ T ((v, y)) : tj ← MAX + 1;
9 S(MAX + 1)← (v, y);

10 end
11 if (x, y) is an out-bridge of x ∈ VGu of the RBS Gu (with arc set EGu), with

center u ∈ V then
12 T ((a, b))← 0, for every (a, b) ∈ EGu ;
13 CTInd(a,b)[i]← 0, for every (a, b) ∈ EGu ;
14 end
15 return y;
16 else
17 return ∅;
18 end

59

Algorithm 3.3: Algorithm A to extract an activity profile from R using s and f .
Input: RDLT R, and start s and goal f vertices, s, f ∈ V , where @w, z ∈ V where

(w, s), (f, z) ∈ E
Output: Activity profile S if an activity is extracted by A for s and f , otherwise

it returns ∅.
1 S ← {S(1), S(2), . . . , S(d)}, d ∈ N;
2 S(t)← ∅, t = 1, 2, . . . , d;
3 a← ∅;
4 x← s;
5 while x 6= f do
6 x0 ← x;
7 y ← Check(x);
8 while y 6= ∅ do
9 y ← TraverseAndUpdate(x, y);

10 if y 6= ∅ then
11 a← x;
12 //traverse (x, y)
13 x← y;
14 end
15 y ← Check(x);
16 end
17 if x0 = x then
18 //i.e. no traversal was done by A from x, A backtracks
19 if x 6= s then
20 //backtrack from x to a ∈ V is possible
21 x← a;
22 else
23 //activity extraction from s to f fails
24 return ∅;
25 end
26 end
27 end
28 return S;

60

Remark 1 The time and space complexity of A is O(|E| ∗ l), l = max
(x,y)∈E

{L((x, y))} and

O(|V |2), respectively.

Control Flow Designs in RDLTs and Notes in Construction

The checks and traversals of A are tied with the constraints imposed by R in terms of its
arc attributes T , C, and the structural composition of the vertices and their connectivities.
Traversals of some pair of arcs (u, v) and (w, v) in R, for instance, happen simultaneously
because of connectivities or the setting of their arc attributes C to a value in Σ or
both. Bearing in mind the check and traversal conditions in Definition 21, the following
discussions show the consequential connectivities and relationships of the components
and attributes with respect to designing control flows in RDLTs. These discussions also
include how these results for designing control flow schemes in RDLT relate to the ones
known in literature for well-known workflows.

Note that for simplicity, arcs with no annotations for T and L in the following figures
are understood to be set to 0 and 1, respectively. (When the reader desires to consider
process flows in the RDLT R′ where T (.) 6= 0 and L(.) 6= 1, the list of conditions for
traversals shown above can be easily applied.)

• Sequential Flow. Sequential flows from one task u to v in R, u, v ∈ V are modelled
by (u, v) ∈ E where for every w ∈ V where (w, v) ∈ E, C((w, v)) ∈ {ε, C((u, v))}.

Figure 3.2: Unconstrained arcs of sequential process flows for RDLTs. (Note that L(.) = 1
for this RDLT instance.)

Figure 3.2 illustrates sequential flows in the arcs (u, v), (u,w), (w, y). Similarly,
the same type of flow holds for (u, x), (x,w), (w, y). Note that at any arc (p, q) ∈ E
in this RDLT can be traversed because all of them are unconstrained arcs.

• Conditional Flow and Parallelism. Conditional flows pertain to process flow
specifications of splits and joins in RDLTs. In this research, they are determined
by the attributes for both vertices and arcs in the RDLT models.
A conditional split is a structural relationship involving the vertices u, v, w ∈ V
where (u, v), (u,w) ∈ E and C((u, v)) 6= C((u,w)) with C((u, v)), C((u,w)) ∈ Σ.
They imply two different constraints C((u, v)) and C((u,w)) that lead to two
different flows wherein each flow is executed when its corresponding constraint is

61

satisfied. Note that the inequality of the values of C on these arcs do not imply
mutual exclusivity of the two process flows that begin from u to v and from u to w.
That is, the execution of one does not imply the nonexecution of the other. However,
they imply that these process flows can induce the existence of at least two activity
profiles in the system. This happens when these process flows are designed such
that either of the two settings hold: (a)they meet at a vertex z ∈ V using their
corresponding flows’ arcs (v′, z) and (w′, z) where C((v′, z)) = C((w′, z)) ∈ {ε,Σ},
or (b) they do not meet at all. Disregarding the concept of reset-bound subsystems
in this research, the first setting is analogous to having a structure that is composed
of a well-structured OR-split-OR-join pattern [25] in workflows. This setting is also
shown in Figure 3.3.(i). Needless to say, to put a structure having the conditional
split and then having their process flows meet at z where none of these two settings
are satisfied, i.e. C((v′, z)) 6= C((w′, z)) and C((v′, z)), C((w′, z)) ∈ Σ defeat the
purpose of having the constraints C((u, v)) 6= C((u,w)) at the onset. However, by
not imposing mutual exclusivity on the process flows, there is freedom in giving
designers multiple capabilities for condition-driven flows. The problem of implicit
splits in BPMN is avoided because actionable attributes are expressed explicitly in
the arcs. Together with the mentioned settings, it is apparent in the model whether
the split induces process flows which can either be mutually exclusive or not given
the attributes in RDLTs.

Figure 3.3: Control flow structures showing instances of splits and a join in RDLTs.
(Note that L(.) = 1 for this RDLT instance.)

On another hand, a parallel split is a structural relationship involving u, v, w ∈ V
where C((u, v)) = C((u,w)) = ε. Roughly speaking, the arcs simply represent two
disjoint flows that are executed altogether and do not have constraints imposed in
their execution. Figure 3.3.(ii) shows this relationship for u, v, and w. Furthermore,
the two process flows that are induced from these relationships might support the
execution of one activity profile as can be seen in Figure 3.3.(ii).
A conditional join is a structural relationship between the vertices x, y, z ∈ V
where (x, z) and (y, z) are type-alike arcs in E and C((x, z)) 6= C((y, z)) with
C((x, z)), C((y, z)) ∈ Σ. This type of join imply the satisfaction of both require-
ments before z may be executed. (Note that the conditions for traversals still
consider L and T for the reachability of z.) Furthermore, this relationship also

62

imply that x, y, and z will altogether be present in every activity profile where z is
involved in. A structure that is composed of a parallel split where all its induced pro-
cess flow meet using conditional join can cover the modelling of the well-structured
nets with respect to AND-split-AND-join pattern [25]. Coverage, in this sense,
imply that the AND-split-AND-join pattern [25] is not semantically equivalent to
the parallel-split-parallel-join combination. This inequivalence is apparent because
the AND-split-AND-join pattern [25] cannot fully model parallel-split-parallel-join
combination because of the additional restrictions present when M(z) = 1, i.e. z is
a vertex in a reset-bound subsystem in the RDLT.

Remark 2 By simply looking at M of the vertices and C involved in process
flows that end up at a common vertex z, a k-out-of-n join can be enacted at z.
Furthermore, subsets of these flows with a subset size k can be explicitly represented
to discriminate which subsets are sufficient so z, and its succeeding tasks, are
executed. Both of these are possible because of the traversal conditions of the
proposed algorithm A for activity extraction(see Section 3.1). These mechanisms
for join specifications remain robust despite looped structures because the traversal
conditions also account looping in models.

• Iteration. Iteration is a process flow derivable from a structure in R where
(x1, x2), (x2, x3), . . . , (xn−1, xn), (xn, x1) ∈ E, xi ∈ V , and the arc (xn, x1) models a
sequential flow from xn to x1. In this case, the task x1 is executed again as well as
every (xi, xi+1) if the values of L((xi, xi+1)) support repeated checks and traversals
on (xi, xi+1), i = 1, 2, . . . , n− 1.

Figure 3.4: Iteration-conditional process flow for RDLTs. (Note that L(.) = 1 for this
RDLT instance.)

In Figure 3.4.(i), a precondition C((u, x)) = a is satisfied before an iteration
structure is encountered between x and y. When y is reached by the algorithm and
a check on (y) yields x, (y, x) will be marked as unconstrained because it satisfies
the third condition in Definition 21. In this case, the task x is reached/executed
again. When x is checked again, z is the sole output of Check(x) because the

63

number of check/traversals of (x, y) has reached L((x, y)). In this case, only x
is iterated for the structure and (x, z) is traversed instead. On another hand, a
similar control flow can be enforced for iteration as shown in Figure 3.4.(ii). For
this design, C((y, x)) = a is tested again after executing the task y. This design
can be used to evaluate whether a parameter considered in the constraint a has
reached a specific value for iteration purposes. Note that both (u, x) and (y, x) are
unconstrained when u and y are reached, respectively, since they satisfy the first
condition of Definition 21.

• Reset-bound subsystems(see Definition 20). The use of RBS in designs of
RDLTs can pose challenges for reachability and use of components and tasks.
However, due to its definition that induces a group-based control for constraint-
checking and resets of attribute values, these challenges are contained and easily
isolated from other substructures in RDLT models. Encapsulation and atomicity
in representation are therefore natural in their design. The following discussions
show scenarios of RBS designs in RDLTs and their implications to the execution of
activities when they are involved in processes such as conditional and parallel flows.

Scenario 1 (RBS in Parallel Flows)

Input Configuration: A pair of parallel flows that start at x ∈ V and merge
at q ∈ V which use the structures Q1 = {(x, y1), (y1, y2), . . . , (yn−1, yn), (yn, q)}
and Q2 = {(x, z1), (z1, z2), . . . , (zn−1, zn), (zn, q)} where Q1∩Q2 = ∅, Q1 ∪Q2 ⊆ E,
Q1 ∩ EVGu

6= ∅, Q2 ∩ EVGu
6= ∅, C((x, y1)) = C((x, z1)) = ε, with x, y1, and z1

being distinct from each other, and r 6= s for every (r, s) ∈ Q1 ∪Q2, xi 6= yj for all
vertices used in the arcs of Q1 and Q2

Design at Merging Point: C((yn, q)) 6= C((zn, q)), C((yn, q)), C((zn, q)) ∈ Σ
Design of Out-bridges:

– (xi, xi+1) ∈ Q1 is an out-bridge of xi ∈ VGu iff (yi, yi+1) ∈ Q2 is an out-bridge
of yi ∈ VGu

– (x, y1) is an out-bridge of x ∈ VGu iff (x, z1) ∈ Q2 is an out-bridge of x
– (yn, q) is an out-bridge of yn ∈ VGu iff (zn, q) ∈ Q2 is an out-bridge of zn and

@(w, q) ∈ E, w ∈ V , C((w, q)) ∈ Σ, where C((w, q)) ∈ {C((yn, q)), C((zn, q))}
and {(w, q), (yn, q), (zn, q)} are type-alike

Implication of Designs: These designs provide that no resets to T ((a, b)), for
every (a, b) ∈ EGu , are done at any time step of the check-traversal operations of A
that results to the loss of information of the time of reachability of all other vertices
in V . This loss induces erroneous values assigned to T (.) for some vertices that
are subsequently reached by using some arcs in Q1 ∪Q2. Furthermore, the design
specification at the merging point q of the two flows using Q1 and Q2 imposes that
they are completed simultaneously when q is executed by A.

64

Note that the equality in the number of arcs in Q1 and Q2 assures that for any
traversal made by A using any out-bridge (w, v) ∈ E of w ∈ VGu, v ∈ V , resets of
T ((xi, xi+1)) and T ((yi, yi+1)) happen simultaneously, as well as for (x, y1) with
respect to (x, z1) and (yn, q) with respect to (zn, q). This equality is particularly
necessary when every step of the checking of A on the arcs in Q1 and Q2 determines
that any of these selected arcs are unconstrained, therefore, no backtracks are
necessary.

Figure 3.5 provides an instance of Scenario 1. That is, u ∈ VGu and z ∈ V are
the vertices which start and end two parallel flows using Q1 = {(u, v), (v, x), (x, z)}
and Q2 = {(u,w), (w, y), (y, z)}.
Note that these designs in Scenario 1 can be extended to parallel flows using Q1
and Q2 where |Q1| 6= |Q2| and/or |Q1 ∩Q2| ≥ 1. This is seen by taking different
pairs of the parallel flows in Figure 3.5 and verifying that out-bridges for Q1 and
Q2 are traversed simultaneously when A uses all the arcs Q1 and Q2.

Figure 3.5: RBS process flow for RDLTs.

Scenario 2 (RBS in Conditional Flows)

Input Configuration: A pair of conditional flows that start at x ∈ V and merge
at q ∈ V which use the structures Q1 = {(x, y1), (y1, y2), . . . , (yn−1, yn), (ym, q)} and
Q2 = {(x, z1), (z1, z2), . . . , (zn−1, zn), (zn, q)}, where m 6= n, Q1 ∪Q2 ⊆ E, Q1 ∩
EVGu

6= ∅, Q2 ∩ EVGu
6= ∅, and C((x, y1)) 6= C((x, z1)), C((x, y1)), C((x, z1)) ∈ Σ

Design at Merging Point: C((ym, q)) = C((zn, q)) = ε

Implication of Designs: With the design specification at the merging point q ∈ V
for the two conditional flows that use Q1 and Q2, resets caused by the traversal
of an out-bridge (r, s) ∈ Q1(Q2) will not affect the reachability of q when Q1(Q2)

65

completes, i.e. (ym, q)((zn, q)) is traversed and q is executed by A. That is, q is
reached by using either Q1 or Q2.

The disjointness in conditional flows and the resets caused by a traversal of an
out-bridge, whether these flows eventually merge at such q ∈ V in Scenario 2, can
be seen in Figure 3.5. Note the conditional flows that start at w ∈ V in the said
figure. If (w, p) is checked and traversed by A, the attribute T (.) in the arcs of the
RBS Gu are reset to 0. The execution then proceeds from task p and to all of its
descendants while the flows that start at the other choice from w, i.e. y, are not
executed.

3.2 Reachability Profiles and Boundedness in RDLTs

The reachability of vertices in R does not depend only on arc connectivities. It also
considers the arc attributes C and L and the different types of control flows that use
them. In this section, we define reachability in terms of discoverable paths for pairs of
vertices in R that account these static, structural information and constraints. We define
bounds to the composition of paths, their lengths, the time of reachability of vertices, and
bounds for the entire RDLT itself. We define points of delay of reachability of vertices and
measure this delay when splits and merges of process flows are present. By identifying
these points, we can scrutinize substructures in R and verify whether these points and the
vertices which are connected to them induce unreachable vertices/subgraphs in R. We
subsequently use these measures in R to identify structural relations and synchronization
of the times of reachability for vertices which share a common structure in the process
flows they are involved in. We establish structural characterizations for subgraphs of
R under the presence of these point of delays, definable bounds for vertices and the
entire model itself, and sharing of structures for supporting activities in R. In this
section, we adopt and extend the free-choice property of workflows in RDLTs by using
the aforementioned characterizations on R.

On Constraint-dependent Paths and Diameters

Definition 24 (Path and Path Lengths) A path p = x1x2 . . . xn from x1 to xn is
a sequence of vertices xi ∈ V of R where (xi, xi+1) ∈ E and xi 6= x1 and xi 6= xn
(2 ≤ i ≤ n− 1).

If a path exists from x1 to xn, then x1 is called an ancestor of xn, and xn is called a
descendant of x1. Any vertex without an ancestor(descendant) and having at least one
descendant(ancestor) is called a source(sink). Any x and y in V are called siblings if
∃w ∈ V where (w, x), (w, y) ∈ E. Furthermore, with (w, x) ∈ E, w is called the parent
of x and x is the child of w.

66

Finally, the maximum number of occurrences of xi in p (2 ≤ i ≤ n− 1), n ∈ N, is
equal to N where

N =
2∏
l=1
{max{1, {{

∑
(a,b)∈In(xi,l),C((a,b))=ε

L((a, b))} − β(xi) + SumΣ(xi)}+RBS(xi, l)}}

where

(a) In(xi, l) = {(q, xi) ∈ E|(q, xi) is not an in-bridge of xi} if l = 1, otherwise
{(v, q) ∈ E| (v, q) is an in-bridge of q ∈ VGu, v ∈ V , where VGu is the vertex set
of an RBS Gu of R with center at u ∈ VGu, and q is an ancestor of xi ∈ VGu or
q = xi},

(b) β(xi) =
{

1, if ∃(a, b), (a′, b′) ∈ In(xi, l), C((a, b)) = ε, C((a′, b′)) ∈ Σ,
0, otherwise,

(c) SumΣ(xi) =

∑
(a,b)∈In(xi,l),C((a,b))∈Σ

L(a, b), if ∀(a, b), (a′, b′) ∈ In(xi, l)

where(a, b) 6= (a′, b′),
C((a, b)) = C((a′, b′)),
C((a, b)), C((a′, b′)) ∈ Σ

min
(a,b)∈In(xi,l),C((a,b))∈Σ

{L(a, b)}, if ∃(a, b), (a′, b′) ∈ In(xi, l)

where (a, b) 6= (a′, b′),
C((a, b)), C((a′, b′)) ∈ Σ,
C((a, b)) 6= C((a′, b′))

0, otherwise,

(d) RBS(xi, l) =

1, if ∃(q, xi) ∈ E that is an in-bridge of xi ∈ VGu , L((q, xi)) ≥ 1,

q ∈ V, l = 1, and ∃(v, xi) ∈ EGu ,
0, otherwise.

The length of p, denoted as |p|, is the number of arcs used in p, i.e. |p| = n− 1.
The alphabet of p, denoted as Lit(p), is the set Lit(p) = {xi ∈ V |xi occurs in p}.

Remark 3 In contrast to the definition of paths in literature(such as paths in Petri nets
in Section 2), connectivity is not the sole concern in constructing paths for RDLTs. In
addition to connectivity, the preset values of the maximum traversal of arcs, i.e. values
of L(.), and the combination of the dynamic values of the time of traversals of arcs, i.e.
T (.) and the definition of reset-bound subsystems by virtue of the preset value of M(v) of
some vertex v ∈ V and the typing of arcs induced by these values of M(.) influence the
construction of paths in RDLTs. By Definition 24, the maximum number that a vertex is
used in a path is determined by these values in these attributes in RDLTs.

For Definition 24.(a), the arcs considered when l = 1 are from xi to its parent q where
(q, xi) /∈ E ∩ EGu . Since any (q, xi) ∈ V where C((q, xi)) = ε does not depend on the

67

traversal of (v, xi), v ∈ V after (v, xi) has been traversed at least once, the number of
occurrence of xi can reach the sum of all L(q, xi) using every such arc (q, xi). Their sum
is used to anticipate modelling of systems having non-parallelizable tasks that are relevant
to the execution of xi. Definition 24.(b) subtracts 1 from this sum because every (v, xi)
where C((v, xi)) ∈ Σ, if such exists, must be traversed at least once so (q, xi) becomes
unconstrained by Definition 21 and traversed thereafter. Furthermore, SumΣ(xi) in
Definition 24.(c) considers every (q, xi) where C((q, xi)) ∈ Σ. Because of Definition 21,
any pair of parents q, q′ ∈ V where C((q, xi)), C((q′, xi)) ∈ Σ and C((q, xi)) 6= C((q′, xi)),
the arcs (q, xi) and (q′, xi) are traversed simultaneously. Since the values of the arc
attributes L(.)(i.e. the maximum number of traversals allowed on an arc) are preset by
user-designers themselves, these values can be differently set for (q, xi) and (q′, xi). In
this case, SumΣ(xi) is set to the minimum L(.) of any of these pairs because of imposed
synchronicity of the traversals by Definition 21. However, C((w, x)) = C((q′, x)) and
C((q, x)), C((q′, x)) ∈ Σ (for each q and q′) would imply this imposed synchronicity to
be invalidated by Definition 21, i.e. (q, x) and/or (q′, x) are unconstrained upon reaching
q and/or q′. This induces the same case as having every C((q, x)) = C((q′, x)) = ε
mentioned above. Because of the resets done on Gu by A, an in-bridge (q, xi) of xi is
viewed to add to the indegree of xi brought by the arcs (v, xi) ∈ EGu . Therefore, we add
1 to the first factor of N in Definition 24.(d) when at there is at least one (v, xi) ∈ EGu

in the RBS Gu and l = 1.
In Figure 3.6, In(y1, l = 1) = ∅, β(y1) = 0, SumΣ(y1) = 0, and RBS(y1, l = 1) = 0.
On another hand, when l = 2, the arcs and vertices considered are in-bridges and

out-bridges and every vertex xi ∈ VGu for some RBS Gu in R where xi at least one
ancestor q ∈ VGu having at least one in-bridge and/or q = xi itself has at least one
in-bridge. Since all the values of T ((a, b)) for all (a, b) ∈ E ∩ EGu are reset to 0 for each
time an out-bridge in Gu is traversed, (a, b) can be repeatedly checked and/or traversed
whenever Definition 24 allow traversals of in-bridges and ancestors of a and b in Gu.
Therefore, the values of L of every (v, q) ∈ E for v ∈ V where (v, q) is an in-bridge of q
also influences the number of occurrences of xi in p the same way as v with respect to q.

In Figure 3.6, In(y1, l = 2) = {(x7,y1), (x8,y1)}, β(y1) = 0, SumΣ(y1) = 2 where
SumΣ(y1) = L((x7,y1)) + L((x8,y1)) because every value of C(.) of all the arcs in
In(y1) are equal with respect to to each other, and RBS(y1, l = 2) = 0.

Finally, when all four addends – In(xi, l = 1), β(xi), SumΣ(xi), and RBS(xi, l = 1)
sum up to 0, the first factor of N is therefore 1. These values are derived when every
parent q of xi establishes the in-bridge (q, xi) ∈ E or xi is a source in R. Similarly, the
sum of these addends are 0 when l = 2 (and therefore the second factor of N is equal to 1)
implies that xi /∈ V ∩VGu or xi is a source. The second factor of N reflects the multiplier
effect of the repeatable reachability of xi and the resets performed on (w, xi) ∈ E, when
these resets are applicable, using the information of L and the presence of RBS in R
where xi can be part of.

Shown in Figure 3.6 is an instance of an RDLT model of the reactor and valve systems
of an adsorption chiller as described in [68]. More specifically, this shows a detailed
specification of the reactors, their modes of operation, i.e. desorption/adsorption and

68

idle(refrigerant and heat recovery), and the valve subsystem of the chiller. This subsystem
is a reset-bound subsystem whose center is y1, i.e. M(y1) = 1. Furthermore, it shows
one instance of labelling and settings of L and C. These labels and settings can illustrate
one cycle of operation of the chiller where the refrigerant is coursed through the reactor
chamber where it is adsorbed/desorbed and then passed to the condenser. We shall
discuss the details of these operations of the reactor and valve systems of this adsorption
chiller in Section 4.1. We shall also provide the model of the entire adsorption chiller in
the same section.

Note that the labelling l : c on an every arc (x, y) sets L((x, y)) = l and C((x, y)) = c
where c ∈ Σ ∪ {ε}, respectively. Furthermore, the label l : signifies that c = ε.

Figure 3.6: RDLT model of the reactors and valve subsystem of an adsorption chiller [68].

In Figure 3.6, the maximum number of occurrences of y1 for any path from w to z in
R is N = 2, i.e. N = (max{1, {{0}− 0 + {0}}+ 0}) ∗ (max{1, {{0}− 0 + {1 + 1}}+ 0}) =
(1)∗ (2) = 2. Meanwhile, x8 can occur in at most N = (max{1, {{1}−1 + min{1, 1, 1}}+
0}) ∗ (max{1, {{0} − 0 + {0}}+ 0}) = (1) ∗ (1) = 1 because C((x4,x8)) 6= C((x6,x8))
with C((x4,x8)), C((x6,x8)) ∈ Σ .

Definition 25 (Diameter between Two Vertices in R) Let R = (V,E, T,M) be
an RDLT. The diameter between two vertices of x, y ∈ V , denoted as diam(x, y), is
the largest length of a path, if such path exists, from x to y in R. If no such path exists,
then diam(x, y) =∞.

69

Definition 26 (Diameter of RDLT) The diameter of an RDLT R = (V,E, T,M),
denoted as diam(R), is the maximum diameter derivable from all pairs {x, y} ∈ V of R.

In the RDLT R in Figure 3.6 of the reactors and valve system of the adsorption chiller in
Figure 3.6, its diameter is computable between w and z, i.e. diam(w, z) = diam(R). Fur-
thermore, diam(w, x8) = 14 by the path p = wx1x2x4x6x7y1y3y2x9x1x3x5x6x8.
Note that x6 can appear in any path in R at most two times based in Definition 24.

Remark 4 The identifier/abbreviations of the name of the task/vertex in the adsorption
chiller model is fully described in Tables 4.1-4.3 in Chapter 4.

Definition 27 (Elementary Path) A path p = x1x2 . . . xn is elementary if for every
pair xi, xj ∈ Lit(p) where i 6= j, xi 6= xj.

Definition 28 (Connected RDLT) An RDLT is connected if for every x ∈ V and
a source w ∈ V of R, x 6= w, diam(w, x) <∞.

Points Of Interests in RDLTs

In this section, the concept and types of a Point-of-Interest(POI) are formally defined.
As discussed in Section 1, POIs are vertices in RDLT models wherein possibilities
of deadlocks, delays in reachability, task repetitions and synchronizations are present.
The different types of POIs are Point-Of-Reentry(POR), Point-of-Synching(POS), and
Point-of-Delays(POD). From each of these types, different types of relationships can be
established from them and their neighborhood. These relationships are described and
further investigated in the succeeding discussions, as follows,

Definition 29 (Antecedent set) An antecedent set of x ∈ V in an RDLT is a set
αx = {v ∈ V |v ∈ Lit(p) for every elementary path p from a source w ∈ V to x ∈ V }.
The maximal antecedent set of x, denoted as αx, is an antecedent set of x where there
is no antecedent set αx such that αx ⊂ αx.

Definition 30 (Consequent set) A consequent set of x ∈ V in an RDLT is a set
Ωx = {v ∈ V |v ∈ Lit(p) for every path p from x to u ∈ V ∩ αx where (u, x) ∈ E}\{αx}.
The maximal consequent set of x, denoted as Ωx, is a consequent set of x where there
is no consequent set Ωx such that Ωx ⊂ Ωx.

Definition 31 (Looping arc in R) An arc (a, b) ∈ E is a looping arc used by x ∈ V
where a, b ∈ V if any of the following holds,

• b ∈ Ωx and a ∈ αx

• (a, b) = (x, u) where (x, u) ∈ E, u ∈ αx, and Ωx = ∅

Definition 32 (Point-of-Reentry) A Point-of-Reentry(POR) b ∈ V for x ∈ V is
the child vertex in the looping arc (a, b) ∈ E used by x.

70

Definition 33 (Point-of-Synching) A Point-of-Synching(POS) v ∈ V ∩ αx for
some x ∈ V where v is either a source or a POR for x in R.

In Figure 3.6, the maximal antecedent set of x8 is αx8 = {w, x1, x2, x3, x4, x5, x6, x8}.
Note that no elementary path can be derived from the source w to x8 that uses
x9 (x7). Therefore, {x7, x9} /∈ αx8 . Meanwhile, the maximal consequent set of x8 is
Ωx8 = {y1, y2, y3, x9}. The looping arc used by x8 is (x9, x1). Therefore the POR
for x8 is x1 and its POS are w and x1.

Notice that the looping arc can be used to discriminate the vertices of R that can
be used to reach x8 from the source w against those that may not be necessary for
x8 ’s reachability. However, the presence of looping arcs can affect the reachability of x8
(or any other vertex in R) if the value of their arc attribute C(.) are not set properly,
i.e. an arc (v, x1) ∈ E of the POR x1, where v ∈ αx8 and (x9, x1) and (v, x1) are
type-alike, never becomes unconstrained when A starts its checks and traversal operations
from w to x8. When this happens, x1 and every descendant of x1 (including x8) are
never reachable from w. With this, we propose in Section 3.2 the non-self controlling
property for RDLTs which user-designers can use in building RDLTs and/or verifying
them to avoid such problems in reachability. Furthermore, we also propose a measure
of reachability of vertices accounting connectivities as well as the graph attributes C(.),
L(.) and M(.).

Non-self controlling Structures and Bounds for Reachability

Although paths and path lengths can be computable from R, it still important to note
that these do not by themselves determine the time vertices are reached from some
ancestors. In addition to these, the values of the arc attribute C of parents also determine
this time. This section shall discuss how this attribute influences reachability of vertices
and substructures in R. Additionally, these values also help in identifying vertices which
can cause delays in reachability of their descendants in R. Since C is a static information
in the design of R, user-designers can already check whether the values of C induce
non-reachability by verifying if a substructure in R(and therefore R as well) is non-self
controlling or not. This property is presented below and measures of delays in reachability
for models which satisfy this property are given.

Definition 34 (Point-of-Delay) A vertex x ∈ V is called a Point-of-Delay(POD)
if ∃u,w ∈ V where (u, x), (w, x) ∈ E are type-alike and C((u, x)) 6= C((w, x)).

A POD x ∈ V of R is the main cause that the algorithm A suspends traversals
from x to y where (x, y) ∈ E. In essence, they act as points of bottleneck where the
next set of tasks consequent of the task x. In terms of structure with respect to R,
they are a consequence of parallel process flows that merge at x. However, note that
the delay is imposed by merges that are induced by type-alike arcs (w, x) and (v, x) in
E of R. For some designs of RDLTs, when a mix of two (disjoint) sets of type-alike
arcs are encountered at x, the traversal and delays(if such exist) would depend on the

71

diameter of the most-recently checked arc and all its type-alike arcs. For example, if we
had set C((u4, x1)) 6= C((u5, x1)) and C((u4, x1)), C((u5, x1)) ∈ Σ of the sample
RDLT model in Figure 3.1, these sets are {(u4, x1), (u5, x1)} and {(u5, x1)}. In this
setting, x1 becomes a POD with respect to the first set but not for the second. The
delay in reaching x1 would depend on the diameters of u4 and u5 with respect to u1.
Furthermore, by this setting, the algorithm A would have to reach the vertices u1, u2,
u3, u4, and u5 before x1 is reached. The other PODs in this sample RDLT are u4, u5,
and x6.
To characterize the influence of ancestors and descendants of every POD in RDLTs with
respect to its reachability, Definitions 35 - 36 are first introduced.

Definition 35 (Antecedent set with Internal Loops) An antecedent set with in-
ternal loops(ASIL) of q ∈ V is a set Γq = {v ∈ V |v ∈ Lit(p) for every path p from a
source w ∈ V to q ∈ V }\Ωq. The maximal ASIL of q, denoted as Γq, is an ASIL of q
where there is no ASIL Γq such that Γq ⊂ Γq.

Definition 36 (POSΓq
-path) A POSΓq

-path p is a path from w ∈ V to q where w is a
POS for q and Lit(p) ⊆ Γq.

Definition 37 (POSΓq
-diameter) The POSΓq

-diameter from a POS w ∈ V to q ∈ V ,
denoted as diamPOS;Γ(w, q), is the largest length of all POSΓq

-paths from w to q.

Definition 38 (Non-self controlling) An RDLT R isNon-Self Controlling(NSC)
if R is connected and for every POD x ∈ V and every looping arc (a, b) ∈ E used by
x where C((a, b)) ∈ Σ, a ∈ Ωx, b ∈ αx, there exists an arc (q, b) ∈ E such that
C((a, b)) = C((q, b)), (a, b) and (q, b) are type-alike, and q ∈ αx.

Theorem 1 For an RDLT R that is not NSC, there exists a POD x ∈ V that is not
reachable from a source w ∈ V of R.

Proof 1 Suppose every POD x ∈ V is reachable in R where R is not NSC. By
Definition 23, there exists an activity profile S = {S(1), S(2), . . . , S(d)}, d ∈ N where
(w, x) ∈ S(1) and the following holds,

(i) ∃t < d, (u, x) ∈ S(t) where u ∈ Γx,

(ii) ∃t′ < t, (b, y) ∈ S(t′) where b, y ∈ Γx and y is a POS for x, and

(iii) ∃d > t′′ > t, (q, y) ∈ S(t′′) where q ∈ Ωx and C((q, y)) ∈ Σ. Moreover, since R is
not NSC, then C((q, y)) 6= C((b, y)), i.e. y is a POD of R where C((b, y)) ∈ Σ.

By Definition 21, (b, y), (q, y) ∈ S(t′′′) for every t′′′ < d for S. That is, both arcs are
traversed simultaneously at every time step t′′′. Therefore, we arrive at a contradiction.
�

Lemma 2 If every vertex v ∈ V of R is reachable from a source w ∈ V then R is NSC.

72

Proof 2 By Definition 23, there exists an activity profile S = {S(1), S(2), . . . , S(d)},
d ∈ N, where (u, v) ∈ S(t), 1 ≤ t ≤ d, u ∈ V , for every vertex v ∈ V of R that is
reachable from a source w ∈ V , and (w, x) ∈ S(1), x ∈ V . Since d ∈ O(max{L(.)} ∗ |E|),
therefore diam(w, v) ≤ d ≤ diam(R). This proves that R is a connected RDLT. Since
(u, v) ∈ S(t) in at least one activity profile S where S(t) ∈ S, (u, v) is an unconstrained
arc with respect to any of its type-alike vertex (q, v) ∈ E. By Definition 21, any (u, v)
where v is a POD can only be traversed at time step t in the reachability configuration
S(t) if any such (q, v) has either an equivalent value of its arc attribute C(.) ∈ Σ with
respect to (u, v)’s or (q, v) has been checked at a previous/same time step. For any parent
u′ ∈ V where (u′, v) ∈ E, u′ /∈ αv and (u, v) ∈ S(t) with C((u, v)) ∈ Σ, (u, v) and (u′, v)
are type-alike, (u′, v) is traversed at a later time t′, t < t′ < d ≤ diam(R), since u′ ∈ Ωu

and u′ ∈ Ωv, and u′ /∈ αu and u′ /∈ αv. That is, u′ is reached after u and v had been
reached, in that order, beforehand. This traversal also implies that C((u′, v)) allows (u, v)
to be unconstrained at t. Furthermore, this shows that (u′, v) is a looping arc used by u
and v in R. It is notable that looping arcs are differentiable from other arcs which are
involved in structures where iterations happen where such u and v exist. This is because
of the usage of a reference vertex, i.e. the source w ∈ V , and αv and Ωv. These prove
that R is NSC if every vertex v ∈ V of R is reachable from the source w ∈ V .
�

In Figure 3.6, the RDLT model of the adsorption chiller contains the PODs x1, x4, x5,
x6, x7, x8, x9, x10, and y2. The POD x8 has its parents x4, x5, x6 with the values of
their arc attributes {C((x4, x8)) = C((x5, x8))} 6= C((x6, x8)) 6= C((x1, x8)). For this
example, the maximal antecedent set of x8 is αx8 = {w, x1, x2, x3, x4, x5, x6, x8}.
Meanwhile, the maximal consequent set of x8 is Ωx8 = {y1, y2, y3, x9}. The looping
arc used by x8 is (x9, x1). This looping arc allows (w, x1) to be unconstrained at
t = 1(by Definition 21). x1 is reachable from w at t = 1 in executing A on R. Note that
there is no looping arc (a, b) ∈ E in R for any pair of its vertices where C((a, b)) ∈ Σ
that causes (q, b) ∈ E to be not unconstrained. In this case, the RDLT in Figure 3.6 is
an non-self controlling R.

Remark 5 The time and space complexity to check if R is NSC is O(|V |3) and O(|V |2),
respectively.

Upon knowing that any vertex x ∈ V is reachable from a source w ∈ V in R, a bound
for reachability of x when it is a POD is computed with respect to the time of reachability
of all its parents whose arcs towards x are type-alike. This bound describes how long it
takes for a POD to be reached by A from the time at least one of its parents are reached
until every such parent y where C((y, x)) ∈ Σ becomes unconstrained. This measures
how much delay there is to reach x when traversals of every (y, x) are suspended due to
nonsatisfiability of any of the conditions in Definition 21.

73

Bottlenecks in Reachability

Definition 39 (∆-delayed POD) A POD x ∈ V of a NSC R is ∆x-delayed with
respect to its parent q ∈ V and a POS w ∈ V for x such that 0 ≤ ∆x ≤ diam(R) where

∆x = max
l∈{1,2}

{
max

P (l:(q,x)∈E,Σ)
{diamPOS;Γ(w, q)} − min

P (l:(q,x)∈E,Σ∪{ε})
{diamPOS;Γ(w, q)}

}
+ 1

where P (1 : (q, x) ∈ E,A) = {q ∈ V |(q, x) ∈ E, (q, x) /∈ EGu and C((q, x)) ∈ A } and
P (2 : (q, x) ∈ E,A) = {q ∈ V |(q, x) ∈ E, (q, x) ∈ EGu and C((q, x)) ∈ A } for some arc
set EGu of an RBS Gu with center u ∈ V ∩ VGu of R, A ⊆ Σ ∪ {ε},

and if for every (a, b) ∈ E where a, b ∈ Γx,

L((a, b)) ≥ LreqMinimum((a, b))

where ∀v ∈ V where v is a POS of some g ∈ V ∩Γx and there exists a path p from v to x
such that v, a, b, x ∈ Lit(p),

LreqMinimum((a, b)) =
{
|{POS v ∈ VGu}| if (a, b) ∈ EGu ,
|{POS v /∈ VGr}| if a, b /∈ VGr for any RBS Gr in R, r ∈ V.

Definition 39 can be explained as follows,

(1) max
P (l:(q,x)∈E,Σ)

{diamPOS;Γ(w, q)} accounts the longest POSΓq
path from a POS w

to q where q is a parent of x with C((q, x)) ∈ Σ. The parent q (of x) that yields
the maximum distance with respect to w, accounting all loops in the antecedent
set of x, imposes the time of reachability of x. Accounting the worst-case time of
reachability q, whether by topological or constraint-based reachability, this time
is also used as an upper bound to reach x. Roughly speaking, this minuend gives
the longest path of the farthest parent of x with respect to w with the constraint
C((q, x)).

(2) min
P (l:(q,x)∈E,Σ∪{ε})

{diamPOS;Γ(w, q)} accounts the shortest POSΓq
path from a POS

w to q where q is a parent of x with C((q, x)) ∈ Σ or C((q, x)) = ε. For this,
the best-case time of reachability of a parent q (of x) from w are accounted for
from using the antecedent set of x. The parent that yields this minimum would
mark the time that x can be possibly reached. When a backtrack is imposed by
another parent of x due to the nonsatisfiability of traversal constraints, q implies
the lower bound of the waiting time that these constraints will be satisfied. Even
if C((q, x)) = ε, if the traversals are disallowed, this waiting time is still imposed.
Therefore, this lower bound accounts parent-child relationship accounting both Σ
and ε values of C. Roughly speaking, this subtrahend gives the longest path of the
nearest parent of x with respect to w.

74

(3) The delay δx of a POD x is therefore computable from the parent/s that yield/s
the values in (1) and (2). A parent can yield both the minimum and maximum
values in (1) and (2). Furthermore, note that there is a requirement of R to be
NSC for Definition 39. Therefore, the reachability of the concerned parent/s and x
are assured.

(4) max
l∈{1,2}

{.} imposes that two parents q and q′ of x which are being considered in the

computation of the maximum and minimum values in (1) and (2) have arcs (q, x)
and (q′, x) are type-alike. By Definition 21, traversals(and therefore reachability of
x) is also imposed by this pair-wise characteristic of incoming arcs of x. Therefore,
values for maximum and minimum values are separately computed for type-alike
arcs. When l = 1, the arcs that are considered do not belong to a reset-bound
subsystem. Otherwise, q, q′ and x belong to a vertex set of a reset-bound subsystem
in R.

(5) LreqMinimum((a, b)) accounts the number of POS w along a, b, x ∈ Γx. Note that
there is a consideration whether a, b, x belong to the same reset-bound subsystem
or not. If they do, their reachability solely depends on the number of POS inside
the RBS itself. This number sets the value of LreqMinimum((a, b)). That is, the
minimum number of traversals of (a, b) is LreqMinimum((a, b)) so x can still be
reached each time traversals go through every POS w in the RBS. This implies that
L((a, b)) for every a, b ∈ Γx is imposed by its inclusion to a “local” neighborhood.
That is, whether a, b, x belong to the same RBS or not. If they do not, it is also
equivalently implied that L((a, b)) is lower bounded by the number of POS (of
{g, x}) that are in Γx to guarantee the reachability of x with respect to to these
POS. For this, the inclusion/exclusion of such POS in an RBS is irrelevant in
adding it to the count in LreqMinimum((a, b)).
Note that this LreqMinimum((a, b)) only considers the existence of at least one
path from every POS w to every parent of x and measures delays of reachability
δx of x from them. Therefore, concerns about repeatability of executions tasks
corresponding to the vertices Γx along paths from w to x is irrelevant for this measure.
(Nonetheless, this research also proposes a property known as L-verifiability(see
Section 8) which tackles such concerns in checking these aspects of R.)

In Figure 3.6, x8 is 4-delayed, i.e. ∆x8 = diamΓ(w, {x6 :x8}) - diamΓ(w, {x1 :x8}) =
(4− 1) + 1 = 4. The value of the subtrahend in computing ∆x8 is the time x1 is reached
where x1 is a parent of x8 which is first parent to be reached from w. Meanwhile, the
latest to be reached is x6. The value ∆x8 = 4 means that x8 is reached 4 time steps
after x1 was reached. The last constraint C(x6, x8) =pc was satisfied by then. The
satisfaction of this constraint implies that the pressure difference between the reactor-
desorber and the condenser is sufficient so the succeeding tasks done by the system is to
open relevant valves to connect them and pass the vaporized refrigerant to the latter. By
that time, the other constraint C(x4, x8) = C(x5, x8) = br had already been satisfied
2 steps before. That constraint relates to the temperature value at the reactor-desorber

75

bed that vaporizes the refrigerant during desorption stage. The temperature causes the
change of the pressure at the bed, hence, opening the required valves in the succeeding
step.

For x8 in Figure 3.6, all arcs (a, b) that connect two vertices in Γx8 = {w, x1, x2,
x3, x4, x5, x6, x8} have L((a, b)) ≤ 2. This is because there are two POS in this set,
i.e. w and x1, and a, b, and x8 do not belong to the same RBS.

Definition 40 (Bounded RDLT) An RDLT R is bounded if R is connected and
every POD x of R, if it exists, is ∆x-delayed where 0 ≤ ∆x ≤ diam(R).

Theorem 2 Every x ∈ V of in an RDLT R is reachable iff R is bounded.

Proof 3 (=⇒) We first prove that every x ∈ V in R is reachable if R is bounded. If
R is bounded, then R is NSC(by Definition 39). By Definition 40, every arc (a, b) ∈ E
that is along a path p from any POS w ∈ V of some g ∈ Γx where w, a, b, x ∈ Lit(p)
is always traversable by A since R is NSC and L((a, b)) allows it. That is, every time
a POS w is reached by A and A carries on traversals through (a, b), the lower bound
LminRequired((a, b)) of L((a, b)) guarantees a correspondence of w being used/reached
and (a, b) being traversed (again) by A for an activity profile in R. Since R is bounded,
diamPOS;Γ(w, f) for a sink f ∈ V is computable where diamPOS;Γ(w, f) ≤ diam(R), f
is a descendant of x, w ∈ V is an ancestor of x and w is a source in R. Therefore, there
exists an activity profile S = {S(1), S(2), . . . , S(diamPOS;Γ(w, f))} where the following
holds,

1. ∃(w, v) ∈ S(1), where v is an ancestor of x,

2. (u, x) ∈ S(t + tx) for some t ∈ N, tx = diamPOS;Γ(w, x), w is a POS for some
g ∈ Γx, and 1 ≤ t+ tx ≤ diamPOS;Γ(w, f),

3. ∃V0 ⊆ Γx where for some a, b ∈ V0, (a, b) ∈ S(k), k = 1, 2, . . . , (t+ tx),

4. ∃V1 ⊆ Γx ∪ Ωx where for some c, d ∈ V1, (c, d) ∈ S(k′), k′ = (t + tx + 1),
(t+ tx + 2), . . . , diamPOS;Γ(w, f),

5. ∃(q, f) ∈ S(diamPOS;Γ(w, f)) for some q ∈ V1,

6. ∃a, b, c ∈ V1 where (a, b) ∈ S(i), (b, c) ∈ S(i+1), i = 1, 2, . . . , (diamPOS;Γ(w, f)− 1)
(by Definitions 38 and 37).

This proves that every vertex x ∈ V in R is reachable if R is bounded.
(⇐=) Next, we prove that R is bounded if every x ∈ V is reachable. From Lemma 2,

we know that R is NSC when every vertex x is reachable from a source w ∈ V . Hence,
there exists a path from every POS w ∈ V for some g ∈ Γx to every parent of q ∈ Γx.
From this, diamPOS;Γ(w,q) is computable where diamPOS;Γ(w,q) < diam(R), and therefore,
0 ≤ ∆x ≤ diam(R). (Note that every parent q′ ∈ Ωx of x does not prevent traversal
for (q, x) because R is NSC.) Since any sink f ∈ V is reachable, where f is an ancestor

76

of x and w – i.e. ∃t ≤ diam(R) where (q, f) ∈ S(t), therefore, every a, b ∈ V ∈ Γx
which are descendants of w and ancestors of x and f are reachable. Therefore, (a, b) can
be traversed when A checks it after using w at a previous time step. This shows that
L((a, b)) ≥ LreqMinimum((a, b)). This proves that R is bounded if every vertex x ∈ V in
R is reachable.
�

Remark 6 Boundedness in RDLTs have direct relations with the conflict-freeness and
deadlock-freeness in Petri nets(see Section 2). Like conflict-freeness in Petri nets in
Section 2, the NSC property in (bounded) RDLTs makes sure that every vertex x ∈ V
have their corresponding constraints, i.e. C(u, x) where u ∈ V , are set in such a way that
at least one path can be used to reach a parent of x that makes (u, x) unconstrained, i.e.
x would eventually be used. However, in contrast with conflict-freeness, the NSC property
in RDLTs considers the presence of reset-bound subsystems where x might be a vertex
therein. Whenever this happens, the type-alikeness of the arcs from every parent of x
is considered for the reachability of x. Moreover, because every vertex is reachable in a
bounded RDLT, this means that every reachability configuration in an activity profile has
at least one element where its non-sink, target vertex is usable to reach another vertex
in its succeeding reachability configuration. Therefore, this is operationally equivalent to
having Petri nets that are deadlock-free, i.e. typing of arcs by virtue of M(.) in RDLTs
is not considered.

3.3 Free-choice Structures in RDLTs
Definition 41 (Free-choice) A bounded RDLT R is free-choice if for any siblings
x, y ∈ V where x is a POD, any of the following holds,

1. Σ-distinct Parent-Child Structure(PCS):

• (q, x) ∈ E iff (q, y) ∈ E, ∀q ∈ V , and
• C((q, v)), C((q′, v)) ∈ Σ and C((q, v)) 6= C((q′, v)) where v ∈ {x, y} for any
q, q′ ∈ V such that (q, v), (q′, v) ∈ E, (q, v) and (q′, v) are type-alike, and
x 6= q 6= q′ 6= y. Furthermore, if (y, x) ∈ E, then C((y, x)) = ε = C((y, y)).
Similarly, if (x, y) ∈ E, then C((x, y)) = ε = C((x, x)).

• for every POS w ∈ V where w ∈ αx ∪ αy, there exist a POSΓx
-path from

w to x and a POSΓy
-path from w to y in R.

2. t0-step Parent-Child Neighborhood(PCN):
(u, x) ∈ S(t) then (v, y) ∈ S(t) for some u, v ∈ V , 2 ≤ t ≤ diam(R), and for some
t0 with 1 ≤ t− t0 < diam(R) and every q ∈ V where {(q, x), (q, y)} ∈ E, with
q, x, and y are distinct from each other, and

∃r ∈ V such that (r, q) ∈
t0⋃
j=1

S(t− j) and {(q, x), (q, y)} /∈
t0⋃
j=1

S(t− j),

77

where t0 is minimum, a, q ∈ V .

Lemma 3 establishes the relation of Σ-distinct PCS and PCN free-choice RDLTs by
identifying the value of t0 for a Σ-distinct PCS R.

Lemma 3 A free-choice PCS R is a t0-step PCN RDLT.

Proof 4 We prove that a free-choice PCS R is a t0-step PCN RDLT by a proof of
contradiction, i.e. for some POD x ∈ V and its sibling y ∈ V in a free-choice PCS RDLT,
∃t′ where t− t0 ≤ t′ < t ≤ diam(R) such that, without loss of generality, (q, x) ∈ S(t′),
(q, y) ∈ S(t), q ∈ V , (q, x) ∈ E.

By Definitions 40 and 41, every such pair x and y in a free-choice PCS R has
0 ≤ (diamPOS;Γ(w, x) = diamPOS;Γ(w, y)) ≤ diam(R) where w ∈ V is a POS vertex in
R. Let w0, w1 ∈ V be parents of x and y such that

diamPOS;Γ(w,w0) = min
u∈V,(u,v)∈E,v∈{x,y},{(w0,v),(u,v)} are type-alike

{diamPOS;Γ(w, u)}

and

diamPOS;Γ(w,w1) = max
u∈V,(u,v)∈E,v∈{x,y},{(w0,v),(u,v)} are type-alike

{diamPOS;Γ(w, u)}.

By Definition 41.(1), every pair of parents u, u′ ∈ V have the values of their arc
attributes C((u, x)) 6= C((u′, x)) (C((u, y)) 6= C((u′, y))) and C((u, x)), C((u′, x)) ∈ Σ
(C((u, y)), C((u′, y)) ∈ Σ). By Definition 21, neither (u, x), (u, y) ∈ E nor (u′, x), (u′, y) ∈ E
become unconstrained at time t′′ = [diamPOS;Γ(w,w0), diamPOS;Γ(w,w1)]. However, they
become unconstrained-traversed by the algorithm A at diamPOS;Γ(w,w1) + 1, such that
{(u, x), (u′, x), (u, y), (u′, y)} ∈ S(t) for t = diamPOS;Γ(w,w1) + 1 with t ≤ diam(R).
Hence, x and y are not reached at t′ = t′′ ∈ [(t − t0 = diamPOS;Γ(w,w0)), (t − 1 =
diamPOS;Γ(w,w1)]. We arrive at a contradiction. This proves that every free-choice PCS
R is a t0-step PCN RDLT.
�

For the Σ-distinct PCS case of the free-choice property in RDLTs, the difference
in the values of the arc attributes C(.) ∈ Σ of the arcs (u, x) and (u′, x) for every pair
of parents u, u′ ∈ V of x and y imposes that x and y are only reachable if all of their
parents have been reached beforehand, i.e. all constraints C((q, {x, y}))(∈ Σ), ∀q ∈ V ,
are already satisfiable. With this, since y has exactly the same set of parents as x with
the same scheme of the assigned values for C(.), therefore, x and y are reachable at the
same time. Furthermore, having C((y, x)) = C((y, y)) = ε(or C((x, y)) = C((x, x)) = ε)
ensures that x(y) is reachable.

Meanwhile, the t0-step PCN guarantees the simultaneous reachability of the POD x
and its sibling y either (1)by the connectivities of the arcs from a POS w to the parents

78

u and u′ of x and y, i.e. equality of the lengths of paths from w to u and u′ considering x
and y regardless of the values of their corresponding arc attributes, or (2) differing values
of C(u, v) and C(u′, v) for v ∈ {x, y}, or (3)a combination of (1) and (2). Note that the
t0-step PCN requires only one common parent for x and y. With this, the reachability of
y does not require the (simultaneous) reachability of x when y is not a POD itself.

In Figure 3.6, the subgraph induced by the vertex set {w, x1, x2, x3, x4, x5} is
a free-choice Σ-PCS RDLT. Meanwhile, the subgraph which is induced by the vertex
set {w, x1, x2, x3, x4, x5, x6, x7, x8, y1} and whose value C((x8, y1)) is changed to
C((x8, y1)) = r , Σ := Σ∪ {r} is a free-choice t0-step RDLT for the siblings x7 and x8 .
These siblings are both PODs inR. Note that retaining the original value C((x8, y1)) = s
and implementing R in a non-parallelized manner will extract two activities from this
subgraph where one activity S1 contains (x7, y1) ∈ S(6) and another activity S2 contains
(x8, y1) ∈ S(6). This is because the arcs contained in both terminal reachability
configurations of S1 and S2 are unconstrained when the corresponding parent vertices
of y1 are checked by A. Therefore, A does not backtrack to involve both siblings in
one activity profile for w and y1. However, when this change is done on C((x8, y1)),
there is only one activity profile S where S contains the reachability configuration
(x6, x7), (x6, x8) ∈ S(5). With this, the value t0 = 4 corresponds to the earliest time
of reachability of one of the siblings’ parents, i.e. x1 at t− t0 = 5 - 4 = 1. Furthermore,
t− 1 = 4 is the latest time of reachability of one of the siblings’ parents, i.e. x6. Here,
t = 5, i.e. when the siblings were reached by A. Note that both siblings are not reachable
when their parents x4 and x5 were reached at t− 2 because of the differing values of
the attribute C(.) of (x6, x7) and (x6, x8) with respect to {(x4,x7), (x5,x7)} and
{(x4,x8), (x5,x8)}, respectively. Therefore, none of the latter arcs are unconstrained
(Definition 21). Therefore from t− t0 to t− 1, neither of the siblings are reached by A.

Remark 7 The free-choice property of Petri nets(see Section 2) is equivalent to free-
choice Σ-distinct PCS RDLTs without reset-bound subsystems having their vertex set
containing two siblings where free choice is required with respect to their parents. More
specifically, the requirement of having a uniform set of input places for two transitions
t1 and t2 that share at least one parent, i.e. input place, in Petri nets(by Definition 16)
is conceptually equivalent to requiring two siblings x, y ∈ V in such RDLTs to have the
same set of parents and having differing values of C(.) for all arcs that connect a parent
u to x(y) where u 6= y(u 6= x). Furthermore, any POS w ∈ V in the third condition of
a free-choice Σ-distinct PCS RDLT(see Definition 41.(1)) is equivalent to having any
free-choice Petri net with t1 and t2 always enabled when either of these transitions have a
parent(input place) containing a token regardless of loops, i.e. task (re)executions, in the
Petri net. With all these, it can be seen that involving any of the transitions’ input places
inside a cancellation region(see Section 1) in existing workflows to simulate a reset-bound
subsystem in RDLT can lead to invalidating the free-choiceness in the former models.
This happens when a cancel task is executed in them and these input places are affected
in the cancellation and lose their tokens.

Meanwhile, the concept of free-choice property in Petri nets is further extended in
RDLTs with respect to having t0-step Parent-Child Neighborhood(PCN) structures in

79

RDLTs in Definition 41.(2). For this definition, connectivity with consideration of
reset-bound subsystems mainly drives the satisfiability of free-choiceness with or without
imposing the conditions in Definition 41.(1).

Definition 42 (Synched siblings) Given two siblings x, y ∈ V of a bounded RDLT R,
where x is a POD, x and y are synched if

δΣ(Px) = δΣ(Py) = δε(P ′x) = δε(P ′y)

where

δΣ(Pv) =
{ max

q∈Pv

{diamPOS;Γ(w, q)}, if |Pv| ≥ 1,
δε(Pv) otherwise,

and

δε(P ′v) =

⋂

q∈P ′v
{diamPOS;Γ(w, q)} if |P ′v| ≥ 1

δΣ(Pv) otherwise,

where Pv = {q ∈ V |(q, v) ∈ E and C((q, v)) ∈ Σ}, P ′v = {q ∈ V |(q, v) ∈ E and
C((q, v)) = ε}, and w ∈ V is a POS of some g ∈ Γx ∪Γy in R where there are paths from
w to x and from w to y, and every pair of arcs (a, b), (a′, b′) ∈ Pv ∪ P ′v are type-alike.

Remark 8 Whenever |P ′v| ≥ 1, note that δε(P ′v) is taken as the intersection of all
diamPOS;Γ(w, q) from every parent q ∈ P ′v for v ∈ V so that δε(P ′v) is positive if and only
if every path which gives diamPOS;Γ(w, q) from any POS w (in Definition 42) leading to
every such q ensures that each of these parents are reached simultaneously with respect to
each other.

Definition 43 A bounded RDLT R is diametrically-synched if ∀x, y ∈ V , where x
and y are siblings and at least one is a POD, x and y are synched.

Theorem 3 An RDLT R is diametrically-synched if R is a free-choice Σ-distinct PCS
where for every POD x and its sibling y and every w ∈ V that is a POS of some
g ∈ Γx ∪ Γy in R, there are paths from w to x and from w to y and every (a, b) ∈ E
along these paths have L((a, b)) ≥ LreqMinimum((a, b)).

Proof 5 We first prove that every POD x and its sibling y are synched from any such
POS w ∈ V for g ∈ Γx∪Γy. By Definition 41, any pair q, q′ ∈ V where (q, x), (q′, y) ∈ E,
diamPOS;Γ(w, q), diamPOS;Γ(w, q′) ≤ diam(R), v ∈ {x, y}, w ∈ V is a POS in R such
that there is a POSΓx

-path from w to x and a POSΓy
-path w to y. Since R is free-choice

Σ-distinct PCS, Px = Py, which results to δΣ(Px) = δΣ(Py) = δε(P ′x) = δε(P ′y). Note that
|P ′x| = |P ′y| = 0. Therefore, any such {x, y} of R are synched from any any POS w ∈ V
proving that R diametrically-synched.

80

Theorem 4 An RDLT R is diametrically-synched iff R is a free-choice t0-step PCN,
t0 < diam(R), where for every POD x and its sibling y and every w ∈ V that is a POS of
some g ∈ Γx ∪Γy in R, there are paths from w to x and from w to y and every (a, b) ∈ E
along these paths have L((a, b)) ≥ LreqMinimum((a, b)).

Proof 6 (Proof: ⇒) We first prove that a free-choice t0-step PCN R is diametrically-
synched where 1 ≤ t0 < diam(R) from any such POS w ∈ V .

For a free-choice t0-step PCN R where every POD x ∈ V and its sibling y ∈ V
have diamPOS;Γ(w, x) = diamPOS;Γ(w, y) = t for some t ≤ diam(R), w is a POS with
a POSΓx

-path from w to x and a POSΓy
-path w to y, 1 ≤ t0 < diam(R), and every

(a, b) ∈ E along these paths have L((a, b)) ≥ LreqMinimum((a, b)), the following structural
relations hold,

(a) for B = {x, y} for every q, q′ ∈ V such that (q, c) ∈ E and (q′, c) ∈ E are type-alike
and C((q, c)), C((q′, c)) ∈ Σ where c ∈ B, there exists paths p = u1u2 . . . un and
p′ = v1v2 . . . vm where ui, uj ∈ V , q = un−1, q

′ = vm−1, u1 = v1 = w, and

[|u1u2 . . . un−1| = t− 1 = diamPOS;Γ(u1, c)− 1] < diam(R), and
[|v1v2 . . . vm−1| = t− t0 = diamPOS;Γ(v1, c)− t0] < diam(R), and

for every q′′ ∈ V where (q′′, c) ∈ E and C((q′′, c)) ∈ Σ, there is a path p′′ = q1q2 . . . qk
where q1 = w, q′′ = qk−1 and qk = c and t− t0 ≤ diam(q1, qk−1) ≤ t− 1.

The first two relations above make sure the existence of parent q′ = vm−1(q = un−1)
of x and/or y which determines the earliest(last) time step t − t0(t − 1) when it
is reached as compared to every other parent q′′ of x and/or y. The last condition
makes sure that for all other remaining parents q′′ = qk−1 of x and/or y are reached
between t− t0 and t− 1.

(b) there is no path p = u1u2 . . . un′ where ui ∈ V , u1 = w, un′ ∈ B such that
(q, un′) and/or (q′, un′)(see (a) above) and (un′−1, un′) are type-alike such that
diamPOS;Γ(u1, un′) /∈ [t− t0, t− 1]. Therefore, every such parent q′′ of un′ where
C((q′′, un′) = ε has diamΓ((w, q′′)) = t− 1.

This relation assures that both x and y are not reached between t−t0 and t−1. They
are simultaneously reached at t when all of their parents had been reached during the
said time interval. This is guaranteed because any such parents q and q′ with the
same values for the attribute C have diamPOS;Γ(w, q) = diamPOS;Γ(w, q′) = t− 1.

With the relations in (a) and (b) of every POD x and its sibling y, it is implied that

diamPOS;Γ(w, pc) = diamPOS;Γ(w, c)− 1 = δΣ(Px) = δΣ(Py) =
δε(P ′x) = δε(P ′y) = diamPOS;Γ(w, q′′′),

81

where q′′′ ∈ P ′x ∪ P ′y and C((q′′′, c)) = ε, with pc ∈ {q, q′} and c ∈ B. This shows that
x and y are synched. This proves that R is diametrically-synched if R is a free-choice
t0-step PCN, 1 ≤ t0 < diam(R), where every POD x and its sibling y are reachable from
any POS w ∈ V for g ∈ Γx ∪ Γy.

(Proof: ⇐) Next, we prove that if R is diametrically-synched then it is a free-choice t0-
step PCN, t0 < diam(R), where every POD x and its sibling y are reachable from any such
POS w ∈ V for g ∈ Γx∪Γy. To do this, we first determine the value of t0 that satisfies the
second property of Definition 41. Note that for any q ∈ V where (q, c) ∈ E and C((q, c)) =
ε with c ∈ {x, y}, diamPOS;Γ(w, q) = t− 1 where w is a is a POS with paths from w to
x and w to y because R is diametrically-synched, i.e. δε(x) = δε(Py) = t − 1. Since x
is a POD and R is bounded, 1 ≤ δΣ(Px) < diam(R) and 1 ≤ t0 < (δΣ(Px) = δε(P ′x) =
δΣ(Py) = δε(P ′y)) < diam(R). More specifically, t0 = max{∆x,∆y} when y also a POD,
t0 = ∆x otherwise. Since R is diametrically-synched, every v ∈ V where (v, c) ∈ E and
C((v, c)) ∈ Σ, diamPOS;Γ(w, v) ≤ δΣ(Px). Therefore, for some v′ ∈ V where (v′, c) ∈ E
and C((v′, c)) ∈ Σ, t − t0 ≤ diamPOS;Γ(w, v)) ≤ (diamPOS;Γ(w, v′) = δΣ(Px) = t − 1).
Since C((v′, x)) ∈ Σ and R is diametrically-synched, then (q, x), (r, y) ∈ S(t) for every
q, r ∈ V where (q, x), (r, y) ∈ E, C((q, x)), C((r, y)) ∈ Σ where C((q, x)) 6= C((v′, x)) 6=
C((r, y))(by Definition 21) and @s ∈ V where {(s, x), (s, y)} ⊂ ⋃t0

j=1 S(t− j).
�

3.4 The Soundness Property of RDLTs
Definition 44 (Soundness of RDLTs) An RDLT R is sound if for every sink f ∈ V
and a source w ∈ R where w is an ancestor of f , there exists an activity profile
S = {S(1), S(2), . . . , S(k)} where 1 ≤ k ≤ diamPOS;Γ(w, f) ≤ diam(R), (w, v) ∈ S(1),
(q, f) ∈ S(k), v, q ∈ V , and S(k + 1) = ∅, the following conditions hold,

(i) ∀S(t) 6= ∅, 1 ≤ t ≤ k−2, there exists a sequence vS = NtNt+1 . . . Nk−1Nk of vertex
sets Ni ⊆ V such that ∃{a, b, c} ∈ V where a ∈ Nj , b ∈ Nj+1, and (a, b) ∈ S(j) and
(b, c) ∈ S(j + j′), j = t, t+ 1, . . . , k − 1, k − 2, and 1 ≤ j′ ≤ k − j,

(ii) ∀(x, y) ∈ S(k), y = f , x ∈ V ,

(iii)
t⊎
i=1

S(i) ⊂
t+1⊎
i=1

S(i) where ⊎ is the multi-set union operator used on S, 1 ≤ t < k,
and

(iv) ∀(x, y) ∈ E, there exists an activity profile with a reachability configuration S′(t)
where (x, y) ∈ S′(t), 1 ≤ t ≤ diam(R).

The first condition (i) in Definition 44 means that there is at least one vertex v ∈ V
where (u, v) ∈ S(j) that connects to the vertex q ∈ V where (q, r) ∈ S(j + 1) which A
traversed the latter arc at time j + 1(by Definition 21), t ≤ j ≤ k − 2. Furthermore, if
j + 1 ≤ k− 2, r is not a sink vertex, and therefore r connects to some other vertex c ∈ V

82

where (r, c) is traversed by A at a later time j+ j′ ≤ k where j′ ≥ 1, i.e. (r, c) ∈ S(j+ j′).
The second condition (ii) means that no other arc that does not end at the final vertex
f is included in the last reachability configuration S(k) of S. Altogether, (i) and (ii)
corresponds to the unhindered continuity of traversals of A from w to f , i.e. proper
termination of an activity.

Meanwhile, (iii) means that an arc (x, y) is always traversed at time t < k and y ∈ V
is connected to at least one vertex that is previously reached by A. Note that (x, y) can
be a self-loop, i.e. (x = y). The multi-set union operation is used in (iii) to account these
traversals which either reaches a vertex not in previously reached by A and those which
had been. The fourth condition (iv) means that all arcs in R is used at least once in
S. This means that the RDLT does not include connections and/or vertices that are
unnecessary in executing activities in R. We shall discuss in Section 8 how condition (iv)
is verified in R that contains multiple activities.

Remark 9 Soundness in RDLTs are operationally equivalent with classical soundness in
Petri nets(see Section 2), i.e. simply viewing reachability with respect to the reachability
configurations of activity profiles and disregarding the typing of arcs due to the values
of M(.). Additionally, every activity profile S that is derivable from an RDLT R for its
sink/output vertex f ∈ V can be a basis for constructing a sequence that is equivalent to
sound firing sequences of Petri nets(see Section 2). More specifically, the former sequence
is constructed by the string “S(1)S(2) . . . S(k)” where 2 ≤ k ≤ diamPOS;Γ(w, f) ≤
diam(R), S(i) ∈ S, i = 1, 2, . . . , k, and w ∈ V is a source vertex of R.

We illustrate soundness property in an RDLT model of a real-world complex system,
i.e. an adsorption chiller [68]. Shown in Figure 3.7 is an instance of an RDLT model of
the reactor and valve systems of this said chiller. (The model of all the chambers and
valve system of the chiller is shown in Section 4.1.) We abstracted the cooling and chilling
temperature sources into one source vertex, i.e. controller w, in the model. Furthermore,
this model shows a detailed specification of the reactors, their modes of operation, i.e.
desorption/adsorption and idle(refrigerant and heat recovery), and the valve subsystem of
the chiller. This subsystem is an RBS whose center is y1, i.e. M(y1) = 1. Furthermore,
it shows one instance of labelling and settings of L and C. These labels and settings can
illustrate one cycle of operation of the chiller, i.e. the refrigerant is coursed through the
reactor chamber where it is adsorbed/desorbed and then passed to the condenser. Note
that the labelling l : c on an every arc (x, y) sets L((x, y)) = l and C((x, y)) = c where
c ∈ Σ ∪ {ε}, respectively. (The label l : signifies that c = ε.)

From Figure 3.7, the continuity of the traversal of arcs from w to z as required by
(i) and (ii) of the soundness property is as follows: S = {S(1), S(2), . . . , S(19)}, where
S(1) = {(w,x1)},
S(2) = {(x1,x2), (x1,x3)},
S(3) = {(x2,x5), (x3,x5)},
S(4) = {(x5, x6), (x1,x6)},
S(5) = {(x6,x8),(x5,x8), (x1,x8)},
S(6) = {(x8,y1)},

83

Figure 3.7: RDLT model of the reactors and valve subsystem of an Adsorption Chiller

S(7) = {(y1, y3)},
S(8) = {(y3,y2), (y1,y2)},
S(9) = {(y2,x9), (x1,x9)},
S(10) = {(x9,x1)},
S(11) = {(x1,x2), (x1,x3)},
S(12) = {(x2,x4), (x3,x4)},
S(13) = {(x4,x6)},
S(14) = {(x6, x7),(x4, x7), (x1,x7)},
S(15) = {(x7,y1)},
S(16) = {(y1,y3)},
S(17) = {(y3,y2), (y1,y2)},
S(18) = {(y2,x10), (x1,x10)},
S(19) = {(x10,z)}.

Note that the values of the time of traversals shown in S(t) are the vectors in the red
font. The vectors on the arcs in Ey1 of the RBS Gy1 in Figure 3.7 are annotated as a
set to indicate that their arc attribute T are reset to 0, hence, the second vector in the
set corresponds to the second time the algorithm A uses Gy1 ’s in- and out-bridges.

Meanwhile, the conditions (iii) and (iv) of the soundness property can be easily shown
as A always explores new arcs from time step 1 until the last step to reach z. There is
also one activity for w and z in this example.

84

3.5 Structural Properties of Reachability in RDLTs

Reachability by C-based constraints

Definition 45 (Vertex-simplified R) A vertex-simplified RDLT G = (V ′, E′, C ′)
of R = (V,E, T,M)(with arc attributes C and L) is a multidigraph whose vertices v ∈ V
have Vtype(v) = ‘c‘ where G is derived from R such that the following holds,

1. x ∈ V ′ if any of the following holds,

• x ∈ V and x /∈ VGu of an RBS Gu in R, or
• there exists an in-bridge (q, x) ∈ E of x ∈ V ∩ VGu, q ∈ V of R, or
• there exists an out-bridge (x, q) ∈ E of x ∈ V ∩ VGu, q ∈ V of R

2. (x, y) ∈ E′ with C ′((x, y)) = C((x, y)) for x, y ∈ V ′ if (x, y) ∈ E

3. C((x, y)) = ε if x, y ∈ V ′ ∩ VGu and x is an ancestor of y in R and (x, y) /∈ EGu.

We refer to this simplification of R as level-1 vertex-simplification of R with respect
to every RBS Gu in R. A level-2 vertex-simplification of R with respect to its RBS
Gu is the level-1 vertex-simplification of Gu where Gu is treated as an RDLT where the
value of the vertex attribute M of u is redefined to 0, i.e. M(u) = 0. With this, the
verification of model properties(i.e. maximally composed, sound RDLTs in Section 3.5
and onwards) are separately done for the level-1 and level-2 vertex simplifications of R.
However, this separation does not affect the validity of proving for any of these properties
on the entire RDLT itself. Therefore, any discussion on vertex simplification of RDLTs
in the succeeding sections is assumed to be level-1.

In Definition 45.(1), the vertices of R that are present in its vertex-simplified RDLT G
are those that do not belong to any RBS or those that are inside an RBS but has an
in-bridge and/or an out-bridge. For the first set of vertices, any v ∈ V ′ ∩V of this set has
the values of the arc attributes C ′(q, v) and C ′(v, r) retained in G where q, r ∈ V ′ ∩ V
with respect to C(q, v) and C(v, r) in R, respectively, as stated in Definition 45.(2).
Furthermore, Definition 45.(2) specifies that the values of C(.) of all in-bridges of any
vertex v ∈ V ′ are retained from R to G. Finally, Definition 45.(3) establishes an arc
for every x, y ∈ V ′ ∩ VGu in G if there exists at least one path p from x to y in Gu
where |p| ≥ 2. This arc is labelled with C((x, y)) = ε to represent this path and the
(yet-to-be-verified) reachability of y from x (using the level-2 vertex simplification of R
with respect to to Gu).

By the use of the vertex-simplification G of R, we can verify many properties for R
and generalize the verification to R itself. Shown below are the operations that can be
performed in G to aid in these verifications.

Definition 46 (Contraction of arcs in RDLTs) Given an RDLT R = (V,E, T,M)
and its vertex-simplified RDLT G = (V ′, E′, C ′), a contraction of (x, y) ∈ E′ of G,
x, y ∈ V ′, x 6= y, results to a multidigraph G∗ = (V ∗, E∗, C∗) such that

85

1. V ∗ = V ′\{x, y} ∪ {x′}. Here, x′ is a dummy vertex representing x and y.

2. E∗ =
{
E′

⋃
∀z∈V ′,∃(z,v)i∈E′,v∈{x,y}

{
⋃
∀i
{(z, x′)i}}

⋃
∀z∈V ′,∃(v,z)j∈E′,v∈{x,y}

{
⋃
∀j
{(x′, z)j}}

}
\

{ ⋃
∀q∈V ′,∃(q,v)i∈E′,v∈{x,y}

{
⋃
∀i
{(q, v)i}}

⋃
∀q∈V ′,∃(v,q)j∈E′,v∈{x,y}

{
⋃
∀j
{(v, q)j}}

}
,

where z /∈ {x, y}, (a, b)i ∈ E′ is the ith arc from a ∈ V ′ to b ∈ V ′, i = 1, 2, . . . , n,
where n is the outdegree of a.

3. C∗((z, x′)i) = ε, ∀z ∈ V ′ where ∃(z, y)i ∈ E′, i ≥ 1,

4. C∗((x′, z)i) = C ′((v, z)i), v ∈ {x, y}, ∀z ∈ V ′ where (v, z)i ∈ E′, i ≥ 1.

Definition 47 (Feasible contraction) A contraction of (x, y) is feasible if @(u, x) ∈ E′
where C((u, x)) ∈ Σ, u ∈ V ′ and⋃

∀i
{C ′((x, y)i)} ∪ {ε} ⊇

⋃
∀z∈V ′, where ∃(z,y)j∈E′,j≥1

{
⋃
∀j
{C ′((z, y)j)}},

where (x, y)i ∈ E′ is the ith arc from x to y, i = 1, 2, . . . , n, and n is the outdegree of x.

In essence, contraction of (x, y) ∈ E would represent a merge of x and y in V ∗ of G∗. The
merging of the nodes results to x′ ∈ V ∗ which represents both x and y of R as described
in Definition 45.(1). This representation should therefore also account the connectivities
of x and y in R as shown in Definition 45.(2). With this, any arc with the vertex z
that is connected to either x or y in R, if it exist, is represented by the connectivity of
x′ and z in G∗. Since y is considered reachable at this contraction of (x, y), the value
of C∗((z, y = u′)i) is set to ε in G∗ to account that all constraints C ′((z, y)i) ∈ Σ for all
z ∈ V in R had been already satisfied, i.e. a feasible contraction of (x, y) ∈ E′ exists as
defined in Definition 47. Furthermore, every arc from x to y in E′ are not included in
E∗ to account the information that all ancestors of y, inclusive of x, which are required
to make (x, y) unconstrained(by Definition 21) and y reachable in R had already been
previously reached by the algorithm A. Note that every (q, x)i ∈ E′ has C ′((q, x)i) = ε
by Definition 46 since x had been reached at a previous time/contraction step. Finally,
Definition 46.(4) accounts C ′((v, z)), v ∈ {x, y}, in G′ by representing it as C∗((u′, z))
with the same values in G∗.

Definition 48 (Contraction Path in RDLTs) Given an RDLT R = (V,E, T,M)
and its vertex-simplified RDLT G1 = (V1, E1, C1), a contraction path from x1

1 to
xn in G1 is a sequence p = x1

1x2 . . . xn, n ≤ |V1|, where a contraction is feasible on
(xi−1

1 , xi) ∈ Ei−1 in Gi−1 resulting to Gi = (Vi, Ei, Ci) for i = 2, 3, . . . , n, and xi1 ∈ Vi
represents xi−1

1 ∈ Vi−1 and xi ∈ Vi−1 whose arc (xi−1
1 , xi) is contracted.

86

For the succeeding discussions, we shall simply use the name of the leftmost vertex in the
contraction path p without its superscript to refer to the dummy vertex that represents
the two vertices involved in the contraction of their corresponding arc.

Shown in Figure 3.8 is the RBS of the RDLT in Figure 3.1 with some arcs removed
to provide a clearer illustration of the contraction process.

Figure 3.8: Contraction of the RBS of the sample RDLT in Figure 3.1.

In Figure 3.8, x1 is always used as the parent vertex where contraction is performed
on Gi. The contraction path for this model is shown as the name of the vertex at step
i=6, i.e. p = x1 x2 x5 x3 x6 x4.

Meanwhile, a contraction path for the adsorption chiller model in Figure 3.7 is
p = w x1 x2 x3 x4 x5 x6 x7 x8 y1 y3 y2 x9 x10 z. Note that x7 can only be
contracted after x4 and x6. The same holds for y2 with respect to y1 and y3.

A View of Compositionality of RDLTs

Structural Composition of Multi-activity RDLTs

Definition 49 (Maximal substructures, deadlock-freeness of R) Given an RDLT
R = (V,E, T,M) and its vertex-simplified RDLT G = (V ′, E′, C ′), a support V ′′ ⊆ V ′
of x, y ∈ V ′, where x is an ancestor of y, is an intersection of the sets corresponding to
the descendants of x ∈ V ′ and the ancestors of y ∈ V ′ and includes {x, y} in G. The
union of the support of x and y, ∀x ∈ V ′, is called the maximal support Vmax ⊆ V ′ of
y. If y is a sink vertex of G, i.e. y has an outdegree 0, the subgraph RVmax of R that is
induced by the Vmax is referred to as a maximal substructure of R.

87

For x, y ∈ V ′, we say y is C-reachable from x in G (and in R) if there exists a
support V ′′ of x and y where there is a contraction path p = x1x2 . . . xn from x1 = x to
xn = y in G, xi ∈ V ′′, i = 1, 2, . . . , n, n = |V ′′|, where xi 6= xj, j = 1, 2, . . . , n, and i 6= j.
In this case, the subgraph RV ′′ of R that is induced by the V ′′ is called a C-deadlock-free
substructure of R.

An RDLT R can contain multiple activities such that it has a set of multiple out-
put/sink vertices O ⊂ V , |O| ≥ 1, and possibly a set of multiple input/source vertices
I ⊂ V , |I| ≥ 1. With this, there will be multiple maximal substructures in R with
vertices that can be shared or exclusively used in some activities corresponding to these
substructures. The algorithm A relies on the input specification of one start vertex s ∈ V
and one output vertex f ∈ V . If |I| ≥ 1, we can supplement a dummy vertex s0 to V of
R and connect every v ∈ I with C((s0, v)) = ε and L((s0, v)) = 1. From this, we would
be able to extract the maximal substructure that supports the execution of an activity
which uses f and all of v ∈ I. We can therefore use this maximal substructure to produce
the values of T to be able to realize the dependency of the vertices in this structure with
one another based on connectivities and arc attributes. Using A, the profile S(t) for an
activity Act is computed, where 1 ≤ t ≤ diam(R). This profile describes the arcs used
for accomplishing Act and their time of traversals. Therefore, from S(t), we can identify
processes, control and information flow, and constraints involved in Act as represented
by this profile. Since output vertices in R are distinct, there exists at least one arc
different in their respective activity profiles. With the nature of A arbitrarily choosing
the next arc to consider, it can select an arc that can be unnecessary to reach the desired
output vertex f or can lead to including another output vertex using an arc in S(t). The
backtrack process of A ensures that f is reached, though the time of traversal t is not
optimal, i.e. a smaller value of t exists which satisfy all requirements of f , and reaching
it. For real world systems, this time difference could be crucial and therefore should be
avoided. Furthermore, we can verify model properties in every maximal substructure in
R. Hence, we provide a preprocessing algorithm P to isolate these maximal substructures
before using A on these substructures as discussed below.

To ensure that Act is maximally composed(see Definition 53) with respect to its
output f , i.e. only those necessary inputs, tasks and requirements of f are executed
and satisfied at their optimal values of t (including the ε-labelled arcs), we supplement
pre-processing algorithm P to help in accomplishing this as shown in Algorithm 3.4.
Note that ε-labelled arcs are included in a profile since they can ensure reachability of f
from its corresponding input vertices.

Note that at Line 1 of P , we identify the set of all output vertices O in R. Output
vertices have zero outdegrees in R, i.e. sinks. A user can alternatively preset O ⊂ V in
Line 1. At Line 17, P stores in V ofOutput(f) for every f ∈ O such that V ofOutput(f)
contains v ∈ V when v is necessary to execute the activity that supports f .

Remark 10 The time and space complexity of P is O(|V |4) and O(|V |2), respectively.

88

Algorithm 3.4: P : Generate Maximal Composition of Activities in R
Input: RDLT R
Output: Maximal substructures in R for every v ∈ O where O is the set of sinks

in V of R
1 V ← {s0}, where s0 is a dummy input created in R;
2 Vtype(s0) = ‘c‘;
3 for each v ∈ I where I is the set of source vertices in V do
4 E ← E ∪ {(s0, v)};
5 C((s0, v))← ε;
6 L((s0, v))← 1;
7 T ((s0, v))← 0;
8 end
9 O ← {v ∈ V |@(v, w) ∈ E};

10 V ofOutput(v)← ∅,∀v ∈ V ;
11 for each f ∈ O do
12 Descendants← {f};
13 while Descendants 6= ∅ do
14 Ancestors← ∅;
15 for each v ∈ Descendants do
16 Ancestors← Ancestors ∪ {u ∈ V |(u, v) ∈ E};
17 V ofOutput(f)← V ofOutput(f) ∪ {v};
18 end
19 Descendants← Ancestors;
20 end
21 end
22 return V ofOutput;

To use P in conjunction with A, we first use P to generate the activity profiles found
in V ofOutput(f) for each f ∈ O. For each f ∈ O, a subgraph Rsub(f) of R which
represents an activity resulting to f is generated, where Rsub(f) is the graph induced
by the vertices in V ofOutput(f). Rsub is then used as input to A to produce a set
of optimal values of T for each vertex in Rsub(f). Due to the addition of the dummy
input vertex s0, A adds 1 to each value of T . We can simply adjust T to get a set of
optimal values for time of traversals by subtracting 1 from it and disregard s0 from
the output of A. Lastly, using A also shows if the values of L of Rsub(f) are correctly
set to ensure reachability of the activity’s input vertices to f . Shown in Algorithm 3.5
is the pseudocode ExtractActivityProfiles that performs P and sequentially provides
Rsub(f), and s0, f ∈ V found in Rsub(f), ∀f ∈ O as input to A.

Remark 11 The time and space complexity of ExtractActivityProfiles is O(|V |4) and
O(|V |2), respectively.

89

Algorithm 3.5: ExtractActivityProfiles: Generate ActivityProfiles in R
1 ActivityProfiles← ∅;
2 V ofOutput← P //preprocessing algorithm;
3 O ← {v ∈ V |@(v, w) ∈ E};
4 for each f ∈ O do
5 Rsub(f)← InducedGraph(V ofOutput(f)),∀f ∈ O;
6 ActivityProfiles(f)← A(Rsub(f),);
7 end
8 return ActivityProfiles;

Satisfiability of Model Properties in Multi-activity RDLTs

Apart from the presence of multiple maximal substructures in R, we also need to deal
with the entire design of R itself. Note that reachability also depends on the values of
the arc attribute L. For example, when a conditional structure is encountered that leads
to paths that are involved in multiple (and separate) maximal substructures, the values
of L must be set appropriately. Loosely speaking, the number of times a vertex v ∈ V is
reached because the condition of the maximum allowable traversals on (u, v) ∈ E is still
satisfied(by Definition 21, must be distributed properly to all the values of L(.) of all
outgoing arcs (v, q) ∈ E of v. This should be done so as to allow reachability of every
sink that uses the path that uses every such v, q.

To enable a holistic analysis of the properties of such multi-activity R, we define
the concept of an extended RDLT as shown below. From the extended RDLT of R, we
produce structural relationships that can be established between the substructures and
R itself with respect to the defined model properties in this research.

Definition 50 (Extended RDLT) An extended RDLT R′ = (V ′, E′, T,M), with
arc attributes C ′ and L′, is derived from R such that

1. V ′ = V ∪ {i} ∪ {o}, where i and o are dummy source and sink where Vtype(i) =
Vtype(o) = ‘c‘.

2. E′ = E ∪ {(i, u)} ∪ {(x, o)}, ∀u ∈ I\{i}, I ⊂ V , I = {u ∈ V |u is a source in V },
C ′((i, x)) = ‘ε‘, L′((i, x)) = 1, and ∀x ∈ O\{o}, O ⊂ V , O = {x ∈ V |x is a sink in
V }, C ′((x, o)) = ‘x_o‘, Σ := Σ ∪ {‘x_o‘}, and L′((x, o)) = 1. Note that the new
labels are distinguishable from each other.

Definition 51 (C-verifiability of RDLTs) We say that R is C-verifiable if its ex-
tended RDLT R′ is C-deadlock-free.

Lemma 4 Every maximal substructure of R is C-verifiable iff R is C-verifiable.

Proof 7 We first prove that every maximal substructure Rk of R is C-verifiable if R is
C-verifiable, where k = 1, 2, . . . , |O|, O = {x ∈ V |x has an outdegree 0}. By Definition

90

51, the extended RDLT R′ of R is C-deadlock-free. By Definitions 49 and 51, the vertex-
simplified RDLT G = (V ′, E′, C ′) of R′ contains i, o ∈ V ′ where a support Vsup of i
and o exists in G where there is a contraction path p = ix1x2 . . . xno from i to o, with
i, o, xj ∈ Vsup, n = |Vsup| − 2, and Vsup = V ′.

Let Rk be any maximal substructure of R. Let R′k = (Vk, Ek, Tk,Mk) be the extended
RDLT of Rk. Let Gk = (V ′k, E′k, C ′k) be the vertex-simplified RDLT of R′k where ik and ok
are the dummy source and sink vertices in V ′k, respectively. Let p′k = x(k,1)x(k,2) . . . x(k,m)
be a subsequence of the contraction path p from i to o in G, where x(k,j) 6= i 6= o, for
i, o ∈ V ′, m = |V ′k| − 2, x(k,j) ∈ V ′k ∩ Vsup, ∀j. Let pk = ikp

′
kok, where ik, ok ∈ V ′k.

By Definitions 47 and 50, a contraction from ik ∈ V ′k using any x(k,j) ∈ V ′k using pk
where x(k,j) has indegree 0 is feasible.

Let Gdk be the graph derived from Gk after performing d feasible contractions on
Gk using pk, d ∈ {1, 2, . . . ,m}. For any substring s of the contraction path p in G,
where s = x(k,j)s

′x(k,j′) that contains the substring s′ where Lit(s′) ⊂ Vsup\V ′k, and
x(k,j), x(k,j′) ∈ V ′k of the path pk, we know that there is no arc (a, x(k,j′)) in Gjk, where
a ∈ Lit(s′), 1 ≤ l ≤ t, which makes the contraction of ik using x(k,j′) in pk on Gj−1

k not
feasible because Gk itself is a maximal substructure.

Since ok has an indegree 1 in Gk with respect to x(k,m) ∈ V ′k, therefore contraction
on ik using ok in Gmk by pk can be performed. Therefore, pk is a contraction path from
ik to ok in Gk derived from the support V ′k of ik and ok. This proves that the extended
RDLT R′k C-deadlock-free and Rk is C-verifiable. Furthermore, this also proves that
every maximal substructure Rk of R is C-verifiable if R is C-verifiable.

(Proof: ⇐=) Secondly, we prove that R is C-verifiable if every maximal substructure
Rk is C-verifiable. We still use the definitions for R and its extended RDLT R′, the
vertex-simplified RDLT G of R′, Rk and its extended RDLT R′k, and the vertex-simplified
RDLT Gk of R′k as shown above, for k = 1, 2, . . . , |O|.

Let Ge(Gdk) be the graph derived from G(Gk) after performing e(d) feasible contractions
on G(Gk). Let pk = ikx(k,1)x(k,2) . . . x(k,m)ok be a contraction path derived from the
support Vk,sup = V ′k of ik and ok, where m = |Vk,sup| − 2 and ik, x(k,j), ok ∈ V ′k of Gk,
j = 1, 2, . . . ,m. Let p′k be equal to pk with ik and ok removed. Let q = p′1p

′
2 . . . p

′
|O|. Let

q′ = unique(q), where unique(q) removes xi from the sequence q if ∃xj in q, for i > j.
Let p = iq′o. We now prove that p is a contraction path from i ∈ V ′ to o ∈ V ′ in G where
the support Vsup of i and o is Vsup = V ′.

By Definition 47 and 50, by using p, we can contract i ∈ V ′ using any x ∈ V ∩ V ′ in
G where x has indegree 0 in R.

For any substring p′ = x(k,i)x(t,i+1) of p, 1 ≤ i, j ≤ |V ′| − 2, two cases arise:

• if p′ is equal to the substring x(k,i′)x(t,i′+1) of q, therefore, i can be contracted using
x(k,i) on Gi−1 and thereafter using x(t,i+1) on Gi since either (1) p′ in itself is a
part of a contraction path pk of Gk, where k = t and Gk is the vertex-simplified
RDLT of the maximal substructure Rk of R, or (2) x(k,i+1) has an indegree 0 in
Gk and therefore a contraction on i using x(k,i+1) is feasible in Gi by Definition 47.
In the latter case, k 6= t.

91

• if p′ is a subsequence of q, i.e. there exists the substring x(k,i′)yx(t,j′) of q where
y = x(k1,i′+1)x(k2,i′+2) . . . x(kn,i′+n), 1 ≤ n ≤ j′ − 1, then there exists a contraction
path pr of Gr where x(ke,i′+d) = x(r,l) in p of G, l < i, and therefore, a contraction
of i using x(r,l)(or x(ke,i′+d)) had already been performed on Gl−1, for d = 1, . . . , n.
(Note that y was removed from p by unique(q).) After contracting i using x(k,i) on
Gi−1, a contraction on i using x(t,i+1) in Gi is possible since pt is a contraction
path in Gt, i.e. a contraction on it using x(t,l) of pt is feasible in Gl−1

t , where
x(t,l) = x(t,i+1) of p.

With the contraction of i using x(k,m) of p on Gm−1, i can be contracted using o on
Gm since it is a feasible contraction. This finally proves that p is a contraction path from
i to o in G, where the support of i and o is V ′. This proves that R is C-verifiable if every
maximal substructure Rk is C-verifiable. �

Remark 12 The time and space complexity to check if R is C-verifiable is O(|V |3) and
O(|V |2), respectively.

Remark 13 The RDLT of the adsorption chiller in Figure 3.7 is C-verifiable.

Reachability by L-based constraints

Definition 52 (L-verifiability of graphs) R is L-verifiable(where L sets the maxi-
mum number of allowable traversals for each arc in R) if the following structural relations
are satisfied,

1. For any type-alike arc pair (x1, y), (x2, y) ∈ E, if C((x1, y)) 6= C((x2, y)), where
C((x1, y)), C((x2, y)) ∈ Σ, then L((x1, y)) = L((x2, y)).

2. For each y ∈ V where ∃(y, z) ∈ E and (y, z) is an out-bridge of y, and InP laces(y) =
{x ∈ V |x is an ancestor of y and ∃(w, x) ∈ E where (w, x) is an in-bridge of x},∑
x∈InP laces(y)

∑
(w,x)∈E,C((w,x))=ε

L((w, x)) + ∑
x∈InP laces(y)

W (x) ≥ sumOut(y),

whereW (x) = L((w′, x)), for (w′, x) ∈ E that is an in-bridge of x where C((w′, x)) ∈
Σ, sumOut(y) = ∑

∀(y,z)∈E
L((y, z)), where (y, z) is an out-bridge of y, and L((y, z)) ≥

1.

3. For y ∈ V , L_Sumin(y) + δ(InBridge(y)) ≥ L_Sumout(y) + |OutBridge(y)|
holds, where L_Sumin(y) = ∑

∀(x,y)∈E,C((x,y))=ε
L((x, y)) + L((w, y)), (w, y) ∈ E

where C((w, y)) ∈ Σ, w ∈ V , InBridge(y) = {(x, y) ∈ E|(x, y) is an in-bridge
of y}, δ(S) = 1 if |S| ≥ 1, else 0, and L_Sumout(y) = ∑

∀(y,z)∈E
L((y, z)), z ∈ V ,

OutBridge(y) = {(y, z) ∈ E|(y, z) is an out-bridge of y}.

Remark 14 The time and space complexity to check whether R is L-verifiable is O(|V |3)
and O(|V |2), respectively.

92

Remark 15 The RDLT model of the adsorption chiller in Figure 3.7 is L-verifiable.

Definition 53 (Maximal Compositionality) An RDLT R ismaximally composed
if R is C-verifiable and L-verifiable.

Remark 16 The time and space complexity to check whether R is maximally composed
is O(|V |3) and O(|V |2), respectively.

3.6 Proving Soundness by Structural Properties in
RDLTs

Theorem 5 An RDLT R is sound if R is maximally composed.

Proof 8 For any activity profile S = {S(1), S(2), . . . , S(k)} of a maximally composed
R = (V,E, T,M) where S(t) ⊆ E, 1 ≤ t ≤ k ≤ diamPOS;Γ(w, f) ≤ diam(R), for a
source w ∈ V , and its corresponding vertex sequence vS = NtNt+1 . . . NkNk+1, Nj ⊆ V ,
j = t, . . . , k + 1, which satisfies the first condition of soundness is determined as follows:

Since R is maximally-composed, we know R and its every maximal substructure Rq
is C-verifiable. Therefore, we can pick some Rq, and its extended RDLT R′q with its
vertex-simplified RDLT Gq = (V ′q , E′q, C ′q), where all the vertices in V ′q corresponds to all
the vertices v ∈ V of R where ∃(a, b) ∈ S(t), v ∈ {a, b}. Since Rq is C-verifiable, therefore
there exists a contraction path pq = iqx1x2 . . . xnoq from iq to oq in Gq, iq, xj , oq ∈ V ′q ,
n = |V ′q |, where the support of iq and oq is also V ′q . Therefore, such S(t) and S(t + 1)
of S is determinable where for 1 ≤ a ≤ b ≤ c ≤ n, (xa, xb) ∈ S(t), (xb, xc) ∈ S(t + 1)
for the subsequence xaxbxc of pq, with xa, xb, xc ∈ V ′q ∪ {∅}, and (xa, xb), (xb, xc) ∈ E′q.
Therefore, Nt = {xa ∈ V ′q |(xa, xb) ∈ S(t)} and Nt+1 = {xb ∈ V ′q |(xb, xc) ∈ S(t+ 1)}.

Since R′q is C-verifiable, we know iq can be contracted using xn by using the contraction
path pq on Gq. With reference to R, xn is a sink vertex. Therefore, @(xn, xs) ∈ S(k+1)∩E.
With this, the second condition for soundness is satisfied.

With the successive contractions performed on Gq using pq resulting to G
(g)
q =

(V (g)
q , E

(g)
q , C

(g)
q), g = 1, . . . , |V ′q |, i.e. G

(g)
k is the gth step of contraction from using

Gq, we know that either of the following cases is true,

• if V (i+1)
q ⊂ V i

q , then a node v ∈ V (i+1)
q ⊂ V i

q is usable for traversal at some time l
of the activity extraction algorithm A, wherein @(u, v) ∈ E which is unconstrained

for any time step l′ < l. (Note that G(0)
q = Gq.) For this case,

l−1⋃
l′=1

Nl′ ⊂
l⋃

l′=1
Nl′

and for some (xa, xb) ∈ S(l − 1), (xb, xc) ∈ S(l), xa 6= xb.

• if V (i+1)
q ⊆ V i

q , then this implies that a vertex v ∈ V (i+1)
q ⊂ V i

q was reused by A at
some time l and a (v, v) ∈ E(g)

q was deleted in the contraction using the subsequence

xaxb of pq where xa = xb = v. For this case,
l−1⋃
l′=1

Nl′ ⊆
l⋃

l′=1
Nl′ and for some

93

(xa, xb) ∈ S(l − 1), (xb, xc) ∈ S(l), xa = xb. However, we can hide this case from
the entire contraction process G(0)

q G
(1)
q . . . G

(|V ′q |)
q since there is no change in G(i+1)

q

from G
(i)
q other than a deletion of (v, v) ∈ E(i)

q .

Note that for either of the cases, the arcs (u, v) and (v, v) in the first and second cases
are unconstrained since R′q is both C-verifiable and L-verifiable. Thus, we have satisfied
the third condition for soundness.

By using Lemma 4, we know that all vertices for each maximal substructure Rq of R
are contracted to iq at Gnq , n = |V ′q |. Additionally, with both cases in a step of contraction,
we know that all incoming and outgoing vertex of v ∈ V of the vertex-simplified G derived
from R are used in the contraction process for all maximal substructures and G itself.
This proves that the fourth condition for soundness is satisfied. This proves that R is
sound if R is maximally composed.
�

Remark 17 The time and space complexity to check whether R is sound is O(|V |3) and
O(|V |2), respectively.

Remark 18 The RDLT of the adsorption chiller in Figure 3.7 is sound and maximally-
composed.

Corollary 2 An RDLT R is sound iff its extended RDLT R′ is sound.

3.7 Derivable Relations for Model Properties in RDLTs

On C-verifiability and NSC

Lemma 5 Every RDLT R is C-verifiable iff R is NSC.

Proof 9 (=⇒) First, we prove that if R is NSC then R is C-verifiable. To do this, we
use the extended RDLT R′ of R. Furthermore, we obtain the vertex simplified graph
G = (V ′, E′, C ′) of the extended RDLT R′. From V ′, we construct a contraction path
from the dummy source i ∈ V ′ to the dummy sink o ∈ V ′ of G. Using this pair, a support
V ′′ of i and o includes all the vertices of V of the RDLT R. V ′′ is also the maximal
support of i and o. From V ′′, a contraction path p = u1u2 . . . un such that u1 = i, un = o,
ui ∈ V ′′, n = |V ′′|, and for every uj , uj′ ∈ Lit(p) where 1 < j < j′ ≤ n, uj ∈ Γuj′ . That
is, uj precedes u′j in p if uj ∈ Γuj′ . Here, p is a contraction path because R is NSC
therefore every arc (q, x) in the derivations of G where q ∈ Γx ∩ Lit(p) is a parent of
(a POD) x ∈ Lit(p) with C((q, x)) ∈ Σ had already been contracted when x is used for the
next contraction. Note that a contraction on x is possible since every other parent q′ ∈ Ωx

has C((q′, x)) = ε since R is NSC. With respect to the contraction path p, x also precedes
q′. Since the dummy sink un = o ∈ V ′′ is a POD that is connected to every sink ok of R
where for every {ok, ok′}, k 6= k′, C((ok, o)) 6= C((ok′ , o)) and C((ok, o)), C((o′k, o)) ∈ Σ,
o is not used for contraction until every ok has been used for contraction in the last m+ 1

94

derivations of G, where m is the number of sinks in R. Note that Γo\{o} = V ′′\{o} = V
of R. This proves that R is C-verifiable if R is NSC.

(⇐=) Next, we prove that if R is C-verifiable then R is NSC. By Definitions 49 and
51, if R is C-verifiable, then there exists a contraction path p = x1x2 . . . xn where xi ∈ V ′
of the vertex-simplified RDLT G for the extended RDLT R′ of R, and x1 is a source,
xn is a sink. Suppose xj ∈ Lit(p) is a POD and a POS of some g ∈ V ′ in R where
g = xj′ ∈ Lit(p). That is, for some y ∈ Ωg where y = xj′′ ∈ Lit(p), (y, xj) is a looping
arc of g in R. With these relations of xj, g = xj′ , and y = xj′′ , the order of these vertices
in p would be p = . . . xj . . . xj′ . . . xj′′ . . ., i.e. 1 < j < j′ < n− 1 and j′ < j′′ < n. Since
p is a contraction path from x1 to xn, then C ′((y, xj)) ∈

⋃
q∈Γxj∩Lit(p)

{C ′((q, xj))} ∪ {ε}
in G by Definition 47. This proves that R is NSC if R is C-verifiable.
�

Corollary 3 From Lemma 5, the following are provable,

1. Every maximal substructure in R is NSC iff R is NSC.
(Follows from Lemma 4.)

2. Every maximally-composed RDLT R is NSC.
(Follows from Theorem 5.)

3. Every bounded RDLT is C-verifiable.
(By Definitions 38 and 40.)

4. Every sound RDLT R is NSC.
(Follows from Theorem 5.)

5. Every free-choice RDLT is C-verifiable.
(By Definitions 38, 40, and 41.)

6. If every vertex in R is reachable then R is C-verifiable.
(Follows from Theorem 2)

On Soundness and Reachability

Theorem 6 Every RDLT R is sound if every vertex v ∈ V of R is reachable.

Proof 10 (=⇒) First, we prove that if every vertex v ∈ V of R is reachable, then R is
sound. By Lemma 2, if every v ∈ V is reachable, then R is NSC. From Theorem 5 and
Corollary 2, R is sound if its extended RDLT R′ is sound. Furthermore, it is also trivially
provable that R′ is NSC iff R is NSC. That is, oj ∈ V of R is reachable, then the dummy
sink o ∈ V ′ of R′ is reachable. Furthermore, a source w ∈ V of R is reachable too since
the dummy source i ∈ V ′ of R′ has C ′((i, w)) = ε and @v′ ∈ V such that C ′((v′, w)) ∈ Σ.
Hence (i, w) ∈ E′ of R′ is always unconstrained(Definition 21). With these, use R′ that
contains reachable vertices to prove R′ is sound.

95

By Definition 23, every POD v ∈ V ′ of R′, there is an activity profile S = S(1), S(2), . . .,
S(k), k ≤ diam(R′), where S(1) = {(i, w)}, and (q, f) ∈ S(k) for some q ∈ V ′ and
f ∈ V ′ is a sink and a descendant of i. Since R′ is NSC, then there exists a contrac-
tion path p = x1x2 . . . xn for the vertex-simplified RDLT G where v = xj ∈ V ′. For
xj ∈ Lit(p), ∃(xj′ , xj) ∈ S(t), 1 ≤ t ≤ diam(R). Since xj is reachable, there is a
path p′ = x′1x

′
2 . . . x

′
m from x′1 = i to x′m = xj where x′j′ ∈ Lit(p′)∩ Γxj , Lit(p′) ⊆ Lit(p).

Therefore, (x′j′ , x′j′+1) ∈ S(j′) and (x′j′+1, x
′
j′+2) ∈ S(j′ + 1), j′ = 1, 2, . . . ,m. Similarly,

there is a path p′′ = x′′1x
′′
2 . . . x

′′
m′ from x′′1 = xj to x′′m′ = o where x′′j′ ∈ Lit(p′′)∩(Γxj ∪Ωx),

and Lit(p′′) ⊆ Lit(p). Since o is a sink, therefore and every pair of sink vertices o1, o2
in V of R have C ′((o1, o)) 6= C ′((o2, o)) in R′ where C ′((o1, o)), C ′((o2, o)) ∈ Σ, then
S(diam(i, o) = diam(R′)) = {(oj , o)|(oj , o) ∈ E′ of R′}. These satisfy the first and
second conditions for soundness. Since diam(R′) ∈ N and o is reachable using S,
therefore the third condition for soundness is satisfied. Lastly, because of the values
C ′((o1, o)), C ′((o2, o)) ∈ Σ of every pair (o1, o), (o2, o) ∈ E′ and there exists a contraction

path from i to o, therefore E′ =
diam(i,o)⋃
j=1

S(j). This satisfies the last condition for sound-

ness. These prove that R′ is sound. Finally, note that S(diam(i, o)) only contains arcs
from the sink vertices oj ∈ V of R to o ∈ V ′ of R′. This also shows that there exists at
least one activity profile for oj in R. By Corollary 2, R′ is sound iff R is sound. This
proves that R is sound if every vertex v ∈ V of R is reachable.

(⇐=) Secondly, we prove that if R is sound, then every vertex v ∈ V is reachable.
To establish this, we also use the extended RLDT R′ of R′. By Definition 44, there
exists an activity profile S = S(1), S(2), . . . , S(diam(R′)) for the source i and sink o of
R′. We establish that every v ∈ V ′ of R′ is reachable by obtaining an activity profile
Sv = {S′(1), S′(2), . . . , S′(k)}, k ≤ diam(R) for the RDLT R that uses i, v, and some
sink oj ∈ V of R, such that ∃(q, v) ∈ S′(t′) for some q ∈ V ′, 1 ≤ t′ ≤ k. Sv is
determinable from S using the following construction,

Note that we bypass t = 1 and t = diam(R′) because this corresponds to the arcs used
by the dummy source i and o in R′. Since the algorithm A reaches v ∈ V ′ by traversing
the arcs found in the activity profile S, extracting the same arcs that are used by paths
containing v gives a minimal subgraph of R′ that uses v and some output/s oj ∈ V ′. For
a sound RDLT R, every arc in R is used for some activity profile(see the fourth condition
of Definition 44), therefore there exists an activity profile Sv for every v ∈ V of R. Lastly,
by using only those paths that contain i, v, oj guarantees that only one activity profile is
generated and S(k) contains (q, oj) for any q ∈ V , and @(q′, oj′) ∈ S(k) where oj = oj′,
q′ ∈ V .
�

Corollary 4 Every RDLT R is bounded iff R is sound.
(Follows from Theorem 2.)

Corollary 5 From Theorem 6 and Corollary 4, the following are provable,

96

Algorithm 3.6: Construction of activity profile Sv that uses v ∈ V ′ using the
activity profile S of R′
Input: Activity Profile S of R′
Output: Activity profile Sv that uses v ∈ V

1 validIndices← ∅;
2 for 2, 3, . . . , diam(R′)− 1 do
3 Stemp(t)← {(a, b) ∈ S(t)|there exists a path p from i to oj where

a, b, v ∈ Lit(p)};
4 if Stemp(t) 6= ∅ then
5 validIndices← validIndices ∪ {t};
6 end
7 end
8 t′ = 1;
9 for t = 2, 3, . . . , diam(R′)− 1 do

10 if t ∈ validIndices then
11 Sv : S′(t′)← Stemp(t);
12 t′ ← t′ + 1;
13 end
14 end
15 return Sv;

1. Every maximally-composed RDLT R is bounded.
(Follows from Theorem 5.)

2. Every free-choice RDLT R is sound.
(By Definitions 40 and 41)

3. Every diametrically-synched RDLT is sound.
(By Definitions 40 and 43.)

4. Every vertex in R is reachable if R is maximally-composed.
(Follows from Theorems 5 and 2.)

5. Every vertex in R is reachable if R is free-choice.
(Follows from Theorem 2 and by Definitions and 40 and 41.)

6. Every vertex in R is reachable if R is diametrically-synched.
(Follows from Theorem 2 and by Definitions 40 and 43.)

97

A Summarization of the Relations of Model Properties for RDLTs

Shown below in Figure 3.9 is the Venn Diagram that pictorially presents the relationships
of these properties for RDLTs.

Figure 3.9: Venn Diagram of the model properties that can be used to verify RDLTs.

98

4
RDLT Modelling for Real-world

Complex Systems

In this chapter, we shall use our proposed framework of modelling and activity extraction
to profile and describe complex systems. In particular, we focus modelling adsorption
chillers and extract an activity from their modes of operations.

4.1 On Applying the Proposed Framework On Energy
Systems

Adsorption chillers are designed as closed-cycle (vacuum) machines with an evaporator,
adsorber/desorber reactor beds, and a condenser wherein the refrigerant is passed through
them during cycles of operation of chillers as shown in Figure 4.1. Associated to these
components are three main temperature loops, i.e. heating water circuit (HT), chilling
water circuit (LT), and cooling water circuit (MT) as seen in the figure. These loops
aid in circulating the refrigerant throughout all the components of the chiller by the
processes of evaporation, adsorption/desorption, and condensation.

We see in Figure 4.1 the chiller’s midsection that provides two reactor beds which
continuously alternate as an adsorber/desorber throughout the machine operation for
a stable and continuous cooling. The bed with its temperature line coloured in blue
performs adsorption, the red one desorption of the refrigerant. Adsorption takes place as
the refrigerant heated and vaporized in the evaporator. By pressure value differences
of the evaporator and the reactor bed, one valve is opened thereby transporting the
vaporized refrigerant to the adsorber bed. Simultaneously, the other reactor bed desorbs
the previously-adsorbed refrigerant. In a similar manner, opening of another valve
transports the desorbed refrigerant to the condenser. In the condenser, the refrigerant is
liquified and is eventually coursed back towards the evaporator to close the cycle. Before
the two beds switch roles as adsorber and desorber, the system of pneumatically-actuated

99

Figure 4.1: The adsorption chiller cooling specifications [68]

valves open and close to connect or disconnect appropriate chambers of the chiller to
enable mass and heat recovery periods(see details in [68]).

Shown in Figure 4.2 is the RDLT representing the 2-bed adsorption chiller in Figure
4.1. In this model, we created two (2) entity objects e1 and h1 to represent the evaporator
and the condenser, respectively. The two bed reactors are abstracted as g1 with a
controller g4 and g5 to accommodate the requirement of alternating bed states (i.e. either
act as an adsorber or desorber) and the change of states of operation (i.e. adsorption,
desorption, idle bed states (which covers the mass and heat recovery states)). Notice that
the set of valves of the chiller is modelled as a reset-bound system with center f1. We use
the boundary object a1 as a start node of our proposed algorithm’s walk. Furthermore,
the RDLT is modelled with L((x, y)) = 1, C((x, y)) ∈ {‘r’, ‘t’,‘p’, ‘b’, ‘s’, ‘v’}, where
‘r’ represents the refrigerant mass (either in liquid or vapor form), ‘t’ and ‘p’ represent
temperature and pressure values/conditions, ‘b’ represents the bed states, ‘s’ represents
the list of valves which needs to be change their state (either open or close), and ‘v’
represents the list of valves that actually changed in state based on ‘s’, ∀(x, y) ∈ E.
These labels are shown in black font texts alongside the arcs. The subsystems of this
RDLT have M(f1) = 1 and 0 for other objects in the model.

Figure 4.2 shows markings of T representing one of the many activities which we
can extract from RDLT model. These activities describe the various processes taking
place during duty cycles in adsorption chillers. In this model, the extracted activity
starts when the chiller is activated by starting at the boundary object a1 (at time
step 1) and ends when the liquid refrigerant exits the condenser and flowing back to

100

the evaporator. Essentially, the extracted activity models the refrigerant flow from its
stages of evaporation, desorption/adsorption, and condensation. The final arc which was
traversed by the algorithm that represents this terminal process of this activity is (h7, e1)
at time step 31. All other intermediate nodes which the algorithm walked through are
also annotated with their corresponding time of traversals shown in red font text. Note
on the values of T for the arcs of the reset-bound subsystem with center f1. For example,
we know that (f1, f2) was traversed at the 11th time step of the walk. When (f3, e7) was
traversed by the algorithm at the 12th time step, a reset was consequently performed on
the reset-bound system with center f1. With the valve state change request from g7 to f1
at time step 18, we know that the algorithm is capable of using/traversing f1 to f2, and f2
to f3 to comply with the request since T ((f1, f2)) and T ((f2, f3)) have been previously reset
to 0 and their maximum number of traversals L((f1, f2)) = L((f2, f3)) = 1. Traversals
on these arcs were done again at time steps 19-20 and 28-29.

The resets of T (or the absence thereof) on arcs which are not included in reset-bound
systems but when traversed triggers the reset, e.g. (f3, e7) at time step 12, is an important
aspect in effective activity extraction and system modelling. Notice that the algorithm
does not perform traversal (f3, e7) at any moment during the time steps {20, 21} and
{29, 30} since we obtain T ((f3, e7)) = L((f3, e7)) = 1 already. This correctly models
the real-world operation and thermodynamically-bound design of the chiller for which
only the valves involved during the adsorption/desorption and condensation are changed.
Had we set L((f3, e7)) > 1 with the assertion that the subsystem representing the valve
components are continually reused anyway, a wrong control scheme would have proceeded
after time step 12. This is one of the main reasons why a scheme for loops and resets are
disjointly formulated for modelling various systems.

With the application of our proposed algorithm on the RDLT in Figure 4.2, we obtain
the sequence of the extracted activity profile as:

a1 a2 [c1, b1, d1] b2 e1 [e2 e3] e4 e5 e6 (f1 f2 f3) e7 g1 [g2, g3, g5] g4 g6 g7 (f1 f2 f3) g8
h1 [h2, h3] h4 h5 h6 (f1 f2 f3) h7.

This sequence above shows the order of reachability and execution of the nodes of the
RDLT, i.e. from a1, the algorithm reaches and executes a2 at time step 1. The nodes
enclosed in square brackets [] represent nodes which are reachable at the same time
step by parallel flows of execution from its parent node (e.g. parallel flows from from
a2 to either c1 or b1 or d1). The nodes in parentheses represent those which belong to
reset-bound systems. Note that the algorithm can yield multiple (distinct) sequences
representing different process flows given the same starting input node to the same final
arc. These sequences can be further used to provide bases for isomorphisms, model
simplifications, and model validations across various designs of energy systems such as
chillers. On the application side, the results of this research shall support improved
energy system modelling, optimization, redesign schemes for system improvements, and
fault-detection and diagnosis on such systems.

101

Fi
gu

re
4.
2:

R
ob

us
tn
es
sD

ia
gr
am

wi
th

Lo
op

sa
nd

R
es
et

Co
nt
ro
ls
R
ep
re
se
nt
at
io
n
of

a
2-
be

d
ad

so
rp
tio

n
sy
st
em

.T
he

su
bs
ys
te
m
s

of
th
is

R
D
LT

ha
ve
M

(f1
)
=

1
an

d
0
fo
r
ot
he

r
ob

je
ct
s
in

th
e
m
od

el
.

102

O
bj
ec
t:

L
ab

el
O
bj
ec
t
Sp

ec
ifi
ca
ti
on

C
on

tr
ol
le
r:

L
ab

el
C
on

tr
ol
le
r
Sp

ec
ifi
ca
ti
on

a1
:C

hi
lle

rO
nO

ff
Sy

st
em

In
te
rfa

ce
to

ac
tiv

at
e
ch
ill
er

sy
st
em

as
on

/o
ff

a2
:C

he
ck
So

ur
ce
s

Su
rv
ey
s
ac
tiv

at
io
n
of

he
at

so
ur
ce
s
fo
r

ch
ill
in
g,

co
ol
in
g
an

d
he

at
in
g

b1
:C

hW
So

ur
ce

(w
:G

et
te
m
pS

ou
rc
es
)

Sy
st
em

In
te
rfa

ce
to

ac
tiv

at
e

C
hi
lli
ng

W
at
er
(C

hW
)
te
m
pe

ra
tu
re

so
ur
ce

b2
:
G
et
C
hW

Te
m
p

G
et
s
C
hW

te
m
pe

ra
tu
re

se
tt
in
g

c1
:H

W
So

ur
ce

(w
:G

et
te
m
pS

ou
rc
es
)

Sy
st
em

In
te
rfa

ce
to

ac
tiv

at
e

H
ea
tin

g
W
at
er
(H

W
)
te
m
pe

ra
tu
re

so
ur
ce

c2
:G

et
H
W

Te
m
p

G
et
s
H
W

te
m
pe

ra
tu
re

se
tt
in
g

d1
:C

W
So

ur
ce

(w
:G

et
te
m
pS

ou
rc
es
)

Sy
st
em

In
te
rfa

ce
to

ac
tiv

at
e

C
oo

lin
g
W
at
er
(C

W
)
te
m
pe

ra
tu
re

so
ur
ce

d2
:G

et
C
W

Te
m
p

G
et
s
C
W

te
m
pe

ra
tu
re

se
tt
in
g

e1
:E
va
po

ra
to
r

Sy
st
em

co
m
po

ne
nt

re
pr
es
en
tin

g
Ev

ap
or
at
or

e2
:G

et
C
hW

Te
m
p

G
et
s
C
hW

te
m
pe

ra
tu
re

se
tt
in
g

e3
:G

et
R
ef
Vo

l
G
et
s
re
fri
ge
ra
nt

vo
lu
m
e
in

ev
ap

or
at
or

e4
:E
va
pR

ef
Ex

ec
ut
es

ev
ap

or
at
io
n
of

re
fri
ge
ra
nt

e5
:G

et
Pr

es
su
re

G
et
s
pr
es
su
re

va
lu
es

in
sid

e
ev
ap

or
at
or

e6
:R

eq
Va

lv
es
Ev

ap
R
ea
ct
or
s

Tr
ig
ge
rs

va
lv
e
sy
st
em

to
ch
an

ge
st
at
es

of
va
lv
es

be
tw

ee
n
th
e
ev
ap

or
at
or

an
d

re
ac
to
rs

e7
:D

is/
C
on

ne
ct
A
ds
or
be

r
D
is/

co
nn

ec
tio

n
ev
ap

or
at
or

ch
am

be
r
an

d
th
e
ad

so
rb
er

th
ro
ug

h
ch
an

ge
s
of

va
lv
e

st
at
es

e8
:S
pa

ce
To

C
oo

l
Sy

st
em

In
te
rfa

ce
to

re
la
y
ch
ill
in
g

te
m
pe

ra
tu
re

to
th
e
in
te
nd

ed
sp
ac
e

fo
r
co
ol

Ta
bl
e
4.
1:

A
ds
or
pt
io
n
C
hi
lle

r
sp
ec
ifi
ca
tio

ns
an

d
la
be

lli
ng

re
fe
re
nc

e(
Pa

rt
1/

2)

103

O
bj
ec
t:

L
ab

el
O
bj
ec
t
Sp

ec
ifi
ca
ti
on

C
on

tr
ol
le
r:

L
ab

el
C
on

tr
ol
le
r
Sp

ec
ifi
ca
ti
on

f1
:V
al
ve
Tr

ac
ke
r
(y
1)

Sy
st
em

C
om

po
ne

nt
re
pr
es
en
tin

g
th
e
se
t
of

va
lv
es

in
th
e
ch
ill
er

f2
:G

et
C
hi
lle

rS
ta
te

(y
3)

G
et
s
th
e
st
at
e
of

th
e
ch
ill
er

f3
:O

pe
n/

C
lo
se
Va

lv
e
(y
2)

C
ha

ng
es

a
se
t
of

va
lv
es

fro
m

op
en

to
cl
os
e
or

vi
ce

ve
rs
a

g1
:R

ea
ct
or

(x
1:
R
ea
ct
or
Ch

am
be

r)
Sy

st
em

co
m
po

ne
nt

re
pr
es
en
tin

g
a
re
ac
to
r
be

d
g2

:G
et
C
W

/H
W

Te
m
p
(x
2)

G
et
s
th
e
te
m
pe

ra
tu
re

of
th
e
C
W

or
H
W

g3
:G

et
R
ef
Vo

l(
x3

)
G
et
s
th
e
re
fri
ge
ra
nt

vo
lu
m
e
in

th
e

re
ac
to
r
be

d

g4
:A
ds
or
bR

ef
/
D
es
or
bR

ef
/

Id
le
R
ea
ct
or
s

(x
4:
Id
le
R
ea
ct
or
s
+

x5
:D

e/
A
ds
or
bR

ef
)

Ex
ec
ut
es

a
ch
an

ge
of

st
at
e
of

a
re
ac
to
r

in
to

ei
th
er

of
th
e
fo
llo

w
in
g:

ad
so
rb
in
g

re
fri
ge
ra
nt

fro
m

its
va
po

r
st
at
e
to

so
lid

on
to

th
e
ad

so
rb
at
e,

de
so
rb
in
g
so
lid

re
fri
ge
ra
nt

to
va
po

r
fro

m
th
e
ad

so
rb
at
e,

ch
an

ge
s
th
e
re
ac
to
r
be

d
in
to

its
id
le

m
od

e

g5
:G

et
Be

dS
ta
te

G
et
s
th
e
st
at
e
of

th
e
be

d,
w
he

th
er

it
is

ad
so
rb
in
g,

de
so
rb
in
g,

or
id
le

g6
:G

et
Pr

es
su
re

(x
6)

G
et
s
pr
es
su
re

va
lu
es

in
sid

e
th
e
re
ac
to
r

be
d

g7
:R

eq
Va

lv
es

R
ea
ct
or
C
on

de
ns
er

(x
8)

Tr
ig
ge
rs

va
lv
e
sy
st
em

to
ch
an

ge
st
at
es

of
va
lv
es

be
tw

ee
n
th
e
re
ac
to
rs

an
d

co
nd

en
se
r

g8
:D

is/
C
on

ne
ct
C
on

de
ns
er

(x
10

)
D
is/

co
nn

ec
ts

re
ac
to
r
an

d
co
nd

en
se
r

th
ro
ug

h
ch
an

ge
s
of

va
lv
e
st
at
es

Ta
bl
e
4.
2:

A
ds
or
pt
io
n
C
hi
lle

r
sp
ec
ifi
ca
tio

ns
an

d
la
be

lli
ng

re
fe
re
nc

e(
Pa

rt
2/

3)

104

O
bj
ec
t:

L
ab

el
O
bj
ec
t
Sp

ec
ifi
ca
ti
on

C
on

tr
ol
le
r:

L
ab

el
C
on

tr
ol
le
r
Sp

ec
ifi
ca
ti
on

g9
:R

eq
Va

lv
eC

on
ne
ct
R
ea
ct
or
s

(x
7)

Tr
ig
ge
rs

va
lv
e
sy
st
em

to
ch
an

ge
st
at
es

of
va
lv
es

be
tw

ee
n
th
e
tw

o
re
ac
to
r
be

ds

g1
0:
D
is/

C
on

ne
ct
R
ea
ct
or
s

(x
9)

D
is/

co
nn

ec
ts

th
e
tw

o
re
ac
to
r
be

ds
th
ro
ug

h
ch
an

ge
s
of

va
lv
e
st
at
es

h1
:C

on
de

ns
er

(z
)

Sy
st
em

co
m
po

ne
nt

re
pr
es
en
tin

g
co
nd

en
se
r

h2
:G

et
C
W

Te
m
p

G
et
s
C
W

te
m
pe

ra
tu
re

se
tt
in
g

h3
:G

et
R
ef
Vo

l
G
et
s
re
fri
ge
ra
nt

vo
lu
m
e
in

co
nd

en
se
r

h4
:C

on
de

ns
eR

ef
Ex

ec
ut
es

co
nd

en
sa
tio

n
of

re
fri
ge
ra
nt

h5
:G

et
Pr

es
su
re

G
et
s
pr
es
su
re

va
lu
es

in
sid

e
co
nd

en
se
r

h6
:R

eq
Ex

pV
al
ve
To

Ev
ap

Tr
ig
ge
rs

va
lv
e
sy
st
em

to
ch
an

ge
th
e

st
at
e
of

th
e
ex
pa

ns
io
n
va
lv
e
to

se
nd

re
fri
ge
ra
nt

ba
ck

to
th
e
ev
ap

or
at
or

h7
:C
on

ne
ct
Ex

pV
al
ve
To

Ev
ap

Se
nd

s
th
e
re
fri
ge
ra
nt

fro
m

co
nd

en
se
r
to

ev
ap

or
at
or

th
ro
ug

h
th
e
ex
pa

ns
io
n
va
lv
e

i:C
H
/H

W
Te

m
pO

ut
let

Sy
st
em

in
te
rfa

ce
to

re
la
y

C
H

an
d
H
W

te
m
pe

ra
tu
re

to
ou

tle
t

Ta
bl
e
4.
3:

A
ds
or
pt
io
n
C
hi
lle

r
sp
ec
ifi
ca
tio

ns
an

d
la
be

lli
ng

re
fe
re
nc

e(
Pa

rt
3/

3)

105

5
Conclusions

5.1 Conclusions
In this chapter, the conclusions that are based from the theoretical and applied results in
this research are listed. A short discussion of the main contents pertaining to each of
these conclusions are provided for reference. These discussions and listing is enumerated
based on the ordering of the results from the main sections in the two previous chapters.
These are the following,

Section 3.1 provided the framework in constructing Robustness Diagrams with Loop
and Time Controls that can support modelling and verification of workflows with all
workflow dimensions, i.e. process, resource, and case, as well as persistence/volatility
included in one design. This framework is proposed in cognizance of the lack of literature
with such support on modelling particularly serving representations for complex systems.
The current literature provides business and scientific models and verification framework
that are either process-, resource-, case-centric, or a pairwise combination of them. This
research accomplishes its intended framework through the inclusion of multi-type vertices
that addresses the need for representations of resources, explicit associations of resources
to tasks(i.e. controllers), and the implied typing of the arcs through these associations.
Through these differentiations of types in vertices and arcs, both basic and advanced
process flows can be supported. In addition to sequential and looping, this research
enriches conditional control schemes by its use of arc attributes C, L, T . This enrichment
is apparent in a way that reachability does not only rely on topology but also parameter-
based constraints as well as bounded repeatability of resource/task reuse. Furthermore,
the inclusion of the vertex attribute M further provides more controls for process flow
execution by providing means to define substructures in RDLTs, the management thereof,
and their encapsulation from the entire model. Therefore, RDLTs do not only provide
means for nested activities/tasks, but also for role- or function-based encapsulation
of subsystems and their interactions in designs. Through the support of these basic
and advanced control schemes for splits and joins accounting all these attributes and

107

subsystems enables effective embedding and/or extraction of multiple activities in RDLTs.
Section 3.1 provides an algorithm for activity extraction from RDLTs with such required
specifications.

Section 3.1 provided a view of behavioral relations among components of RDLTs
with regard to the activities that these components support during case executions.
From this view, the concept of reachability of vertices with regard to the satisfaction
of attribute-driven traversal requirements is given. Furthermore, different schemes for
the construction of controls for process flows that account these traversal requirements
are also provided in this section. Samples of design specifications on the structural
profile in RDLTs are given so as to effectively implement the different control flows for
sequential, parallel, conditional(splits and joins), and iterative processes. Furthermore,
these design specifications also highlight the importance of using the attributes C,L, T,M
to enable more complex control flows such as the k-out-of-n join patterns, XOR and basic
OR-splits, AND-splits, AND-joins, or a combination thereof that establish well-structured
workflows in modelling. Furthermore, the concept of cancellation regions in workflows are
now adopted in RDLTs through the use of reset-bound subsystems. However, through
these subsystems, this research addresses the problems of encapsulation, memory utility,
interactions, and poor control schemes for resets in topologically- and behaviorally-related
components in workflows. Therefore, this section establishes the ability of these control
flow schemes in RDLTs to cover the modelling of these well-known patterns in workflows.
It is also illustrated how the latter set of patterns cannot be directly related to the former
because RDLTs now incorporate the resource dimension with profiles of persistence and
volatility. With this combination, it is concluded that RDLTs support the three workflow
dimensions altogether in terms of modelling both the structural and behavioral aspects
of complex system representations. Furthermore, this section also provided a structural
view of reachability of components in RDLTs. Without using the proposed algorithm for
activity extraction that is discussed in Section 3.1, the traversal conditions, and T , a set of
paths and diameters in RDLTs are established to determine whether a model is connected
or not. This is accomplished by considering the frequency of usage of every component in
a model in creating these paths. It is shown that this frequency is determined by using
the values of the attributes L, C, and M . In the succeeding discussions, it is proved that
this structural view can be used to conclude behavioral aspects of the models.

Section 3.2 presented concepts of Points-of-Interests(POIs) in RDLTs. These POIs
were conceptualized to enable structural characterizations in subsystems where delays of
reachability, profiles causing non-reachability, points of synching, and possible regions
of bottlenecks(though points of reuse) are present when handling multiple activities
in RDLTs. Results in Section 3.2 proved relationships between these POIs and the
resulting neighborhood types that are generated from them by providing metrics for
reachability, boundedness, and synchronicity of task execution. Note that these metrics
are determined with considerations of topological and attribute-driven relationships of
the model specifications in all three workflow dimensions. Additionally, this research has
also shown how these metrics are dealt with the addition of reset-bound subsystems in
RDLT models.

108

Section 3.3 contain results that address the aspect of the Free-choice property in
RDLTs. Although this property is mainly used in verifying process-centric workflows, this
research adopts to RDLTs under the multidimensional view of workflows that contain
persistent and volatile components. The adoption relies on the results of reachability
and boundedness in Section 3.2 to formulate the concept of Free-choice property for
such RDLTs. In this research, the aspect of this property with respect to the freedom in
selecting choices whenever they are posed during task execution is maintained in RDLTs.
This aspect is abstracted as the Σ-distinct PCS condition of the Free-choice property in
RDLTs. This condition provides that conditional joins are maintained between parent-
child arcs for every two sibling nodes. These siblings are also imposed to have the same
set of parents to enforce this condition. However, the Free-choice property is further
extended in this research by accounting paths and path lengths with consideration of the
three workflow dimensions and reset-bound subsystems. It is proved in this research that
a t0-step PCN condition can simulate structures with this freedom of making choices
for task execution. From this proof, it is concluded that a mixing of conditional joins,
parallelism in process flows, and certain topological configurations involving POIs can
duplicate the behavior of structures Σ-distinct PCS.

Section 3.4 proposed a definition of soundness in multi-activity RDLTs. This definition
relies on the behavioral aspects that are established from the relationships of reachability
during arc traversals of the algorithm for activity extraction in Section 3.1. This definition
maintains the concept of proper termination of case executions for every substructure
that support the execution of an activity. By its use of the concept of reachability
configurations in every activity profile in RDLTs, the concept of reachable markings in
the processing of tokens pertaining to a completion of case execution in nets. Furthermore,
the requirement that there are no dead markings, that every transition is used in at least
one case execution, and that the liveness property [25] in workflow nets are also carried
on through this proposed definition of soundness for RDLTs. Therefore, the concept
of classical soundness in workflows [55] is adopted in RDLTs. However, note that the
latter definition is further adjusted to support the composition of RDLTs where all three
dimensions in place. This adjustment is accomplished and well-supported through the
use of the results in Section 3.2 on POIs and their resulting neighborhoods. These are
used to identify the resources, process specifications, and the corresponding cases that
they support to determine disjointness of the multiple activities in RDLTs.

Section 3.5 showed two aspects of RDLTs can be used to provide an efficient means
to verify soundness(Definition 44) in these models. The aspect involving constraints
that mainly drive splits and joins is separated from the view of repeatability of usage
of tasks. The former mainly focuses on the use of the arc and vertex attributes C and
M , respectively. The formulation and detection of deadlocks by structural analysis
through these attributes are accomplished. With the presence of multiple activities
in RDLTs, this research provided an extension of these models to establish a holistic
analysis on them with respect to deadlock detection. In order to prove the absence of
deadlocks, and therefore, proper termination of process executions with respect to C and
M , this research established a multi-level yet simplified graph representations of RDLTs.

109

The levels are brought about by the presence of reset-bound subsystems in the models.
However, the introduction of levels in these simplifications do not hinder in a proper and
effective verification of deadlocks even for multi-activity RDLTs. This research provided a
provable means of effective encapsulation of the components and their interactions within
their subsystem and across other components in designs. Through these multi-level
encapsulations and simplifications, both level- and hierachical-based characterizations of
models are therefore achieved in this research. Regardless of the approach of analysis,
whether activity-based or holistic-based, properties can be verified and then specialized
or generalized in RDLTs using their multi-level and simplified representations.

Meanwhile, another aspect in RDLTs that is usable for an efficient verification of their
soundness(Definition 44) relies on the repeatability of usage of tasks. Checking for an
aspect of soundness using the latter is still driven by static information which are mainly
pertaining to the values of L and M . The multi-level view of RDLT representations
from Section 3.5 are still partially used in this checking. However, a holistic approach is
performed using this perspective of analysis. Different relationships among the values
of L were established in this research to guarantee the completeness of the execution of
each case that is handled by its set of activities. These relationships were established for
type-alike arcs, for in- and out-bridges of a reset-bound subsystem, and for mixed-type
of incoming and outgoing arcs of nodes.

Using these aforementioned aspects of structural composition in RDLTs, this research
concludes that soundness(Definition 44) in RDLTs can be verified in polynomial amount of
time and space. The details of the supporting proof was discussed in Section 3.6. It covers
both activity-based and holistic-based verification of soundness in RDLTs containing
multiple activities.

Section 3.7 showed provable relationships among the properties for RDLTs with
respect to verifying reachability, boundedness, deadlock-freeness, synchronicity, free-
choiceness, and soundness. With all these results, this research concludes that the
proposed formalizations of construction and verification of RDLTs address the lack of
frameworks for modelling and verification of workflows that support all three workflow
dimensions. A multi-level approach for modelling and analysis was also provided for
support, encapsulation, and verification of subsystems. In addition to this, this research
also addresses the need to have modelling and verification of such models where persistence
and volatility are required. These requirements are apparent when modelling complex
systems. Section 4.1 illustrated how these aspects of the proposed framework are used by
providing RDLT representations for real-world systems, i.e. energy systems particularly
on adsorption chillers. The algorithm for activity extraction in this proposed framework
was applied on this representation to illustrate the extraction of one activity profile in
the chiller representation. Finally, the core results of this research is summarized in
Table 5.1.

110

Result Label
For an RDLT R that is not NSC, there exists a POD x ∈ V that is
not reachable from a source w ∈ V of R. Theorem 1

If every vertex v ∈ V of R is reachable from a source w ∈ V then R
is NSC. Lemma 2

Every x ∈ V of in an RDLT R is reachable iff R is bounded. Theorem 2
A free-choice PCS R is a t0-step PCN RDLT. Lemma 3
An RDLT R is diametrically-synched if R is a Free-choice
Σ-distinct PCS where for every POD x and its sibling y and every
w ∈ V that is a POS of some g ∈ Γx ∪ Γy in R, there are paths
from w to x and from w to y and every (a, b) ∈ E along these paths
have L((a, b)) ≥ LreqMinimum((a, b)).

Theorem 3

An RDLT R is diametrically-synched iff R is a Free-choice t0-step
PCN, t0 < diam(R), where for every POD x and its sibling y and
every w ∈ V that is a POS of some g ∈ Γx ∪ Γy in R, there are
paths from w to x and from w to y and every (a, b) ∈ E along these
paths have L((a, b)) ≥ LreqMinimum((a, b)).

Theorem 4

Every maximal substructure of R is C-verifiable iff R is C-verifiable. Lemma 4
An RDLT R is sound if R is maximally composed. Theorem 5
An RDLT R is sound iff its extended RDLT R′ is sound. Corollary 2
Every RDLT R is C-verifiable iff R is NSC. Lemma 5
Every maximal substructure in R is NSC iff R is NSC. In Corollary 3
Every maximally-composed RDLT R is NSC. In Corollary 3
Every bounded RDLT is C-verifiable. In Corollary 3
Every sound RDLT R is NSC. In Corollary 3
Every free-choice RDLT is C-verifiable. In Corollary 3
If every vertex in R is reachable then R is C-verifiable. In Corollary 3
Every RDLT R is sound if every vertex v ∈ V of R is reachable. Theorem 6
Every RDLT R is bounded iff R is sound. Corollary 4
Every maximally-composed RDLT R is bounded. In Corollary 5
Every Free-choice RDLT R is sound. In Corollary 5
Every diametrically-synched RDLT is sound. In Corollary 5
Every vertex in R is reachable if R is maximally-composed. In Corollary 5
Every vertex in R is reachable if R is Free-choice. In Corollary 5
Every vertex in R is reachable if R is diametrically-synched. In Corollary 5

Table 5.1: Summary of the main results for modelling and verification of RDLT models
for complex systems modelling.

111

List of Figures

1.1 The three dimensions of a workflow. (Image source: [25]) 3
1.2 The UML 2.5 Diagrams and their Categories. (Image from the UML 2.5

Release Documentation. 13
1.3 The Use Case Driven Object Modelling of the ICONIX Framework [30].

(Image from [29]). 14
1.4 Compositional and Holistic Analysis and Model Verification of RDLTs 24

2.1 Routing schemes: (a)sequential, (b)conditional, (c)parallel, (d)iteration (Image
source: [87]) . 27

2.2 The relationships of the different notions of soundness in workflows. Arrows
refer to the “implies” relationship of one property to another, e.g. (classical)
soundness implies weak soundness. (Image source: [55]) 31

2.3 Categories of elements in BPMN.(Image source: [3]) 33
2.4 A BPMN model of a recruitment process in an organization.(Image source: [10]) 34
2.5 Error percentages in modelling guidelines and correctness rules [49–51] deter-

mined from real-world BPMN models as computed in [10].(Image source: [10]) 36
2.6 A BPMN model of a fault tolerant system using a complex gateway for the

“k out n process” pattern.(Image source: [63]) 37
2.7 The auctioning system viewed at the level of message passing in interactions

of process participants.(Image adopted from [3].) 38
2.8 Workflow modules that show the interaction between Auctioning Service and

Seller participants with respect to their messaging scheme of acceptance and
rejection recommendations in Figure 2.7. These modules can be integrated by
using an additional input and output places(‘i’ and ‘o’) and two transitions(‘t1’
and ‘t2’) as well as representing each pair of interfaces with the same labels
with one place and establishing the arcs(drawn with dashed lines) between
them to form a workflow net. (Image adopted from [2,3]) 40

2.9 Holiday scenario for students. (Image source: [47]) 41
2.10 Design recommendations10 in handling a task that is assigned to be executed

by multiple resources to support the processing of cases in BPMN models. . . 43
2.11 Variations of notations for task/activities in handling cases in BPMN mod-

elling.(Image source10) . 44

113

2.12 Annotated BPMN models for some control flow patterns used in dealing
multiple instances(Image source: [70]) . 44

2.13 Robustness Diagram components. (Image source: [29]) 46
2.14 The Robustness Diagram representing the process specified in the UCT in

Example 1.(Image source: [74]) . 50

3.1 RLDT R with 1 entity and 2 boundary objects with an RBS with center x1. 55
3.2 Unconstrained arcs of sequential process flows for RDLTs. (Note that L(.) = 1

for this RDLT instance.) . 61
3.3 Control flow structures showing instances of splits and a join in RDLTs. (Note

that L(.) = 1 for this RDLT instance.) . 62
3.4 Iteration-conditional process flow for RDLTs. (Note that L(.) = 1 for this

RDLT instance.) . 63
3.5 RBS process flow for RDLTs. 65
3.6 RDLT model of the reactors and valve subsystem of an adsorption chiller [68]. 69
3.7 RDLT model of the reactors and valve subsystem of an Adsorption Chiller . . 84
3.8 Contraction of the RBS of the sample RDLT in Figure 3.1. 87
3.9 Venn Diagram of the model properties that can be used to verify RDLTs. . . 98

4.1 The adsorption chiller cooling specifications [68] 100
4.2 Robustness Diagram with Loops and Reset Controls Representation of a 2-bed

adsorption system. The subsystems of this RDLT have M(f1) = 1 and 0 for
other objects in the model. 102

List of Tables

4.1 Adsorption Chiller specifications and labelling reference(Part 1/2) 103
4.2 Adsorption Chiller specifications and labelling reference(Part 2/3) 104
4.3 Adsorption Chiller specifications and labelling reference(Part 3/3) 105

5.1 Summary of the main results for modelling and verification of RDLT models
for complex systems modelling. 111

114

List of Algorithms

3.1 Check(x): Determines if there exists some y ∈ V where (x, y) ∈ E and its
attribute L((x, y)) allows that at least one traversal on the arc. If y exists,
the algorithm updates T ((x, y)) and returns y, otherwise it returns ∅. . . . 57

3.2 TraverseAndUpdate((x, y)) Evaluating if (x, y) unconstrained. If it is un-
constrained, the algorithm updates T (v, y) and an activity profile S which
uses (x, y) accordingly, and then returns y, otherwise, it returns ∅. 59

3.3 Algorithm A to extract an activity profile from R using s and f 60
3.4 P : Generate Maximal Composition of Activities in R 89
3.5 ExtractActivityProfiles: Generate ActivityProfiles in R 90
3.6 Construction of activity profile Sv that uses v ∈ V ′ using the activity profile

S of R′ . 97

115

Bibliography

[1] Hollingsworth, D.: Workflow Management Coalition The Workflow Reference
Model WFMC-TC-1003, v. 1.1. (1995)

[2] Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer-Verlag Berlin Heidelberg. ISBN 978-3-540-73521-2. (2007)

[3] Decker, G.: Design and Analysis of Process Choreographies. PhD thesis, Hasso
Plattner Institute, University of Potsdam, Potsdam, Germany. (2009)

[4] Belhajjame, K., Vargas-Solar, G., Collet, C.: A flexible workflow model for process-
oriented applications. Proceedings of the Second International Conference on Web
Information Systems Engineering, DOI: 10.1109/WISE.2001.996468. (2002)

[5] Deelman, E., Gannon, D., Shields, M., and Taylor, I.: Workflows and e-science:
An overview of workflow system features and capabilities. Future Generation
Computer Systems, 25(5):528–540 (2009)

[6] Ludäscher, B., Altintas I., Berkley C., Higgins, D., Jaeger-Frank, E., Jones, M.,
Lee, E., Tao, J., Zhao, Y.: Scientific Workflow Management and the Kepler
System. Concurrency and Computation: Practice & Experience, 18:1039–1065.
(2006)

[7] Oinn, T., Greenwood, M., Addis, M., Alpdemir, M.N., Ferris, J., Glover, K., Goble,
C., Goderis, A., Hull, D., Marvin, D., Li, P., Lord, P., Pocock, M.R., Senger,
M., Stevens, R., Wipat, A., Wroe, C.: Taverna: lessons in creating a workflow
environment for the life sciences. Concurrency and Computation: Practice and
Experience. 2005;18:1067–1100.

[8] Taylor, I., Shields, M., Wang, I., Harrison, A.: Visual Grid Workflow in Triana.
Journal of Grid Computing, 3:153–169. (2005)

[9] Medeiros, C.B., Perez-Alcazar, J., Digiampietri, L., Pastorello, G.Z., Jr, Santanche,
A., Torres, R.S., Madeira, E., Bacarin, E.: WOODSS and the Web: Annotating
and Reusing Scientific Workflows. SIGMOD Record, 34:18–23. (2005)

[10] Leopold, H., Mendling, J., and Gunther, O.: What we can learn from quality
issues of BPMN models from industry, IEEE Software 33(4), 1-9. (2015)

117

[11] Hsieh, F. S.: Analysis of a class of controlled Petri net based on structural decom-
position, In Proceedings of The 10th IFAC/IFORS/IMACS/IFIP Symposium on
Large Scale Systems: Theory and Applications, Osaka. (2004)

[12] Ballarini, P., Djafri, H., Duflot, M., Haddad, S., and Pekergin, N.: Petri nets
compositional modeling and verification of Flexible Manufacturing Systems,
2011 IEEE Conference on Automation Science and Engineering (CASE), DOI:
10.1109/CASE.2011.6042488. (2011)

[13] Lara-Rosano, F.: Petri Net Models of Purposeful Complex Dynamic Systems, ISCS
2014: Interdisciplinary Symposium on Complex Systems, Springer International
Publishing, ISBN 978-3-319-10759-2, pp. 183–191 (2015)

[14] Zhu, P., Schnieder, E.: Holistic modeling of complex systems with Petri nets,
2000 IEEE International Conference on Systems, Man, and Cybernetics, DOI:
10.1109/ICSMC.2000.884470. (2000)

[15] van der Aalst, W.M.P., Stahl, C., and Westergaard, M.: Strategies for Modeling
Complex Processes using Colored Petri Nets, Transactions on Petri Nets and Other
Models of Concurrency VII, Springer Berlin Heidelberg, ISBN 978-3-642-38143-0,
pp. 6–55. (2013)

[16] Verdi, K. K., Ellis, H. J., and Gryk, M. R.: Conceptual-level workflow modeling
of scientific experiments using NMR as a case study. BMC Bioinformatics, 8, 31.
(2007)

[17] Liu, F., and Heiner, M.: Colored Petri nets to model and simulate biological
systems, In International Workshop on Biological Processes and Petri. (2010)

[18] Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading, Mass.
(1994)

[19] Lima, I.S., Perkusich, A., and de Figueiredo, J.C.A.: An interactive Petri net tool
for modelling, analysis and simulation of complex systems, IEEE International
Conference on Systems, Man, and Cybernetics, DOI: 10.1109/ICSMC.1996.571156.
(1996)

[20] Zhou, M., and Dicesare, F.: Petri Net Synthesis for Discrete Event Control of
Manufacturing Systems. Kluwer Academic Publishers, New Jersey, USA. (1993)

[21] Mitchell, M., Newman, M.: Complex systems theory and evolution. Encyclopedia
of Evolution, Oxford University Press, New York. (2002)

[22] Rocha, L.M.: BITS: Computer and Communications News. Computing, Informa-
tion, and Communications Division. Los Alamos National Laboratory. (1999)

[23] Ladyman, J., Lambert, J., and Wiesner, K.: What is a complex system?. European
Journal for Philosophy of Science, Vol. 3, No. 1, p. 33-67. (2013)

118

[24] Kaplan, H.: Persistent data structures. Handbook on Data Structures and Appli-
cations. CRC Press. (2001)

[25] van der Aalst, W.M.P., Structural Characterizations of Sound Workflow Nets.
Computing Science Reports 96/23, Eindhoven University of Technology (1996)

[26] van der Aalst, W.M.P., Workflow Verification: Finding Control-Flow Errors
Using Petri-Net-Based Techniques. In Business Process Management: Models,
Techniques, and Empirical Studies, Springer Berlin Heidelberg, ISBN 978-3-540-
45594-3, DOI 10.1007/3-540-45594-9-11, pp. 161–183. (2000)

[27] Murata, T.: Petri Nets: Properties, analysis and application. Proc. of the IEEE,
77(4), 541-580. (1989)

[28] Rosenberg, D., and Scott K.:Applying Use Case Driven Object Modeling with
UML: An Annotated e-Commerce Example. Addison Wesley, First Edition, ISBN:
0-201-73039-1. (2001)

[29] Rosenberg, D., Stephens, M., Use Case Driven Object Modeling with UML: Theory
and Practice. Berkley: Apress. ISBN-10: 1590597745, (2007)

[30] Rosenberg, D., Stephens, M. and Collins-Cope, M.: Agile Development with
ICONIX Process. (2005)

[31] Jensen, K.: Coloured Petri Nets (2 ed.). Berlin: Heidelberg. p. 234. ISBN 3-540-
60943-1. (1996)

[32] Georgakopoulos, D., Hornick, M., and Sheth, A.: An Overview of Workflow
Management: From Process Modeling to Workflow Automation Infrastructure,
Distributed Parallel Databases, Vol. 3(2), ISSN 0926-8782, Kluwer Academic
Publishers, Hingham, MA, USA, DOI 10.1007/BF01277643, pp. 119–153. (1995)

[33] Oracler: Oracler Fusion Middleware Developer’s Guide for Oracle SOA Suite
11g, Release 1(11.1.1.5.0), Part Number E10224-09. (2012)

[34] van der Aalst, W.M.P., and ter Hofstede, A.H.M.: YAWL: yet another
workflow language, Information Systems, Vol. 30, No. 4, ISSN 0306-4379,
DOI 10.1016/j.is.2004.02.002, pp. 245-275. (2005)

[35] Dufourd, C., Finkel, A., and Schnoebelen, Ph.: Reset Nets Between Decidability
and Undecidability, In Proceedings of the 25th International Colloquium on
Automata, Languages and Programming, Vol. 1443, Lecture Notes in Computer
Science, Springer-Verlag, pp. 103-115. (1998)

[36] Dufourd, C., Jancar, P., and Schnoebelen, Ph.: Boundedness of Reset P/T Nets.
In Lectures on Concurrency and Petri Nets, Vol. 1644, Lecture Notes in Computer
Science, Springer-Verlag, pp. 301-310, Prague. (1999)

119

[37] Owen, M., and Raj, J.: BPMN and Business Process Management: An Introduc-
tion to the New Business Process Modelling Standard, Business Process Trends.
(2004)

[38] Omelayenko, B., Ding, Y., Klein, M., Flett, A., Schulten, E., Brown, M., Botquin,
G., Dabiri, G.: Intelligent Information Integration In B2B Electronic Commerce.
Kluwer Academics Publishers Boston, Dordrecht, London. (2001)

[39] The Workflow Management Coalition: The Workflow Management Coalition
Specification: Workflow Management Coalition Workflow Standard, Process
Definition Language, Document Number WFMC-TC-1025, Version 2.2. (2012)
(http://www.xpdl.org/standards/xpdl-2.2/XPDL%202.2%20(2012-08-30).pdf)

[40] van der Aalst, W.M.P., Netjes, M., and Reijers, H.A.: Supporting the Full BPM
Life-Cycle Using Process Mining and Intelligent Redesign, In Contemporary Issues
in Database Design and Information Systems Development, IGI Global, Hershey,
USA, pp. 100-132. (2007)

[41] Kohler, H.J., Nickel, U., Niere, J., Zundorf, A.: Integrating UML diagrams for
production control systems, Proceedings of the 2000 International Conference on
Software Engineering, IEEE, ISSN 1-58113-206-9, DOI 10.1145/337180.337207.
(2000)

[42] Russell, N., van der Aalst, W.M.P., ter Hofstede, A., and Wohed, P., On the
suitability of UML 2.0 activity diagrams for business process modelling. APCCM
‘06: Proceedings of the 3rd Asia-Pacific conference on Conceptual modelling, pp.
95–104. (2006)

[43] Eshuis, R., and Wieringa, R., Verification support for workflow design with UML
activity graphs. Proceedings of the 24rd International Conference on Software
Engineering (ICSE 2002), pp. 166–176. (2002)

[44] van der Aalst, W. M. P.: Business Process Management Demystified: A Tuto-
rial on Models, Systems and Standards for Workflow Management. Lectures on
Concurrency and Petri Nets: Advances in Petri Nets, Springer Berlin Heidelberg,
ISBN 978-3-540-27755-2, DOI 10.1007/978-3-540-27755-2-1. (2004)

[45] van der Aalst, W. M. P.: Business process management: a personal view. Business
Process Management Journal, Volume 10, Issue No. 2, Emerald. ISSN 1463-7154.
DOI 10.1108/bpmj.2004.15710baa.001. (2004)

[46] Verbeek, H.M.W., van der Aalst, W.M.P., and ter Hofstede, A.H.M.: Verifying
Workflows with Cancellation Regions and OR-joins: An Approach Based on
Invariants. Technical Report WP 156, Eindhoven University of Technology, The
Netherlands. (2006)

120

[47] Wynn, M.T., van der Aalst, W.M.P., ter Hofstede, A.H.M., and Edmond. D.:
Verifying Workflows with Cancellation Regions and OR-joins: An Approach Based
on Reset Nets and Reachability Analysis. In International Conference on Business
Process Management (BPM 2006), volume 4102 of Lecture Notes in Computer
Science, pages 389-394. Springer-Verlag, Berlin. (2006)

[48] Ko, R., Lee, S., and Lee, E.W.: Business process management (BPM) standards: a
survey, Business Process Management Journal, Vol. 15 Issue 5, pp.744-791. (2009)

[49] Silver, B.: BPMN Method and Style, with BPMN Implementer’s Guide, Cody-
Cassidy Press, 2nd Edition, ISBN 978-0982368114. (2011)

[50] Allweyer, T.: BPMN 2.0 - Business Process Model and Notation, Books on
Demand GMBH, Norderstedt, 2nd edition. (2009)

[51] White, S., and Miers, D.: BPMN Modeling and Reference Guide: Understanding
and Using BPMN, Future Strategies Incorporated. (2008)

[52] Stiehl, V.: Process-Driven Applications with BPMN, Springer International
Publishing Switzerland, DOI 10.1007/978-3-319-07218-0. (2014)

[53] Anderson, P. W.: More Is Different: Broken Symmetry and the Nature of the
Hierarchical Structure of Sciences. Science. 177: 4047. (1972)

[54] Castellani, E.: Reductionism, emergence, and effective field theories, Studies in
History and Philosophy of Science Part B: Studies in History and Philosophy of
Modern Physics, Vol. 33, No. 2, ISSN 1355-2198, pp. 251-267. (2002)

[55] van der Aalst, W. M. P., van Hee, K. M., ter Hofstede, A. H. M., Sidorova, N.,
Verbeek, H. M. W., Voorhoeve, M., and Wynn, M. T.: Soundness of workflow
nets: classification, decidability, and analysis, In: Formal Aspects of Computing,
Vol. 23, No. 3, pp. 333–363. (2011)

[56] van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N.,
Verbeek, H.M.W., Voorhoeve, M., and Wynn, M.T.: Soundness of Workflow Nets
with Reset Arcs is Undecidable!, In: Proceedings of the International Workshop
on Concurrency Methods Issues and Applications (CHINA‘08), pp. 57-72. (2008)

[57] Lyazidi, A., and Mouline, S.: Formal Verification of BPMN Models using Petri
Nets, Proc. of the The 1st International Workshop on Models and Algorithms for
Reliable and Open Computing. (2013)

[58] Kog, F., Dikbas, A., and Scherer, R.: Verification and validation approach
of BPMN represented construction processes, In the Proceedings of Creative
Construction Conference. (2014)

121

[59] Puhlmann, F., and Weske, M.: Investigations on Soundness Regarding Lazy
Activities, In: Proceedings of Business Process Management: 4th International
Conference (BPM 2006), Springer Berlin Heidelberg, ISBN 978-3-540-38903-3, pp.
145–160. (2006)

[60] Mendoza-Morales, L.: Business Process Verification: The Application of Model
Checking and Timed Automata, In: : Computing Conference (CLEI) Electronic
Journal, Vol. 17, No. (2). (2014)

[61] Szpyrka, M., Nalepa, G., Ligęza, A., and Kluza, K.: Proposal of Formal Verifi-
cation of Selected BPMN Models with Alvis Modeling Language, In: Intelligent
Distributed Computing V: Proceedings of the 5th International Symposium on
Intelligent Distributed Computing, Springer Berlin Heidelberg, ISBN 978-3-642-
24013-3, pp. 249–255. (2012)

[62] Recker, J., Rosemann, M., Green, P., and Indulska, M.: Do ontological deficiencies
in modelling grammars matter? MIS Quarterly, 35(1):57-79. (2011)

[63] Respicio, A., and Domingos, D.: Reliability of BPMN Business Processes, In
Procedia Computer Science 64:623-650. (2015)

[64] Martens, A.: On Usability of Web Services. In: Proceedings of 1st Web Services
Quality Workshop, Rome, Italy. (2003)

[65] van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N.,
Verbeek, H.M.W., Voorhoeve, M., and Wynn, M.T.: Soundness of Workflow
Nets: Classification, Decidability, and Analysis. Formal Aspects of Computing,
23(3):333-363. (2011)

[66] Gotel, O.C.Z., and Finklestein, A.C.W.: An analysis of the requirements trace-
ability problem (PDF). Proceedings of ICRE94, 1st International Conference on
Requirements Engineering, Colorado Springs. IEEE CS Press. (1994)

[67] van der Aalst, W.M.P., and van Hee, K.: Workflow Management: Models, Methods,
and Systems Information Systems, MIT Press, ISBN 026229690X. (2004)

[68] Rezk, A.: Theoretical and Experimental Investigation of Silica Gel/Water Adsorp-
tion Refrigeration Systems. PhD Dissertation, Univ. of Birmingham. (2012)

[69] van der Aalst, W. M. P., ter Hofstede, A. H. M., Kiepuszewski, B., and Barros, A.
P.: Workflow Patterns. Distributed and Parallel Databases, 14(3):5-51. (2003)

[70] Wohed, P., van der Aalst, W. M. P., Dumas, M., ter Hofstede, A. H. M., and Russell,
N.: On the Suitability of BPMN for Business Process Modelling, Proceedings in
the 4th International Conference: Business Process Management (BPM 2006),
ISBN 978-3-540-38903-3, pp. 161–176. (2006)

122

[71] Malinao, J., Judex, F., Selke, T., Zucker, G., Adorna, H., Caro, J., and Kropatsch,
W.: Robustness Diagram with Loop and Time Controls For System Modelling and
Scenario Extraction with Energy System Applications. Energy Procedia, Vol. 88,
pp. 537–543, ISSN 1876-6102. (2016)

[72] Malinao, J., Judex, F., Selke, T., Zucker, G., Caro, J., and Kropatsch, W.:
Pattern mining and fault detection via COPtherm-based profiling with correlation
analysis of circuit variables in chiller systems, Computer Science – Research and
Development, DOI 10.1007/s00450-014-0277-5, ISSN 1865-2034, Springer Berlin
Heidelberg. (2015)

[73] Zucker, G., Malinao, J., Habib, U., Leber, T., Preisler, A., and Judex, F.: Im-
proving Energy Efficiency of Buildings Using Data Mining Technologies, 2014
IEEE 23rd International Symposium on Industrial Electronics (ISIE), DOI
10.1109/ISIE.2014.6865041, pp. 2664-2669. (2014)

[74] Malinao, J., Tiu, K., Lozano, L.M., Pascua, S., Chua, R.B., Magboo, Ma. S., and
Caro, J.: A Metric for User Requirements Traceability in Sequence, Class Diagrams,
and Lines-of-Code via Robustness Diagrams. Proceedings on Information and
Communications Technology, Vol. 7, pp. 50-63, Springer Japan 2013, ISBN 978-4-
431-54435-7. (2013)

[75] Fujitsu Ten Limited, CATT Ver. 4.8.0: Reference Manual, 2000-2012 (2012).

[76] Nicolis, G., and Nicolis, C., Foundations of Complex Systems: Nonlinear Dynamics,
Statistical Physics, Information and Prediction. World Scientific, Singapore (2007).

[77] Sun, J.Q. and Luo, A.C.J., Bifurcation and Chaos in Complex Systems. Edited
series on advances in nonlinear science and complexity, ISBN 9780444522290,
Elsevier. (2006)

[78] David, R., Alla, H., Continuous Petri Nets. Proceedings of the 8th European
Workshop on Application and Theory of Petri Nets. (1987)

[79] Fraca, E., and Haddad, S., Complexity Analysis of Continuous Petri Nets. Proceed-
ings: Application and Theory of Petri Nets and Concurrency: 34th International
Conference, PETRI NETS 2013, Springer Berlin Heidelberg, ISBN 978-3-642-
38697-8, DOI 10.1007/978-3-642-38697-8-10, pp. 170–189. (2013)

[80] Ambler, S.: The Object Primer 3rd Edition: Agile Model Driven Development
with UML 2, Cambridge University Press, ISBN: 0-521-54018-6(2004).

[81] Zerhouni, N., Alla, H.: Dynamic Analysis of Manufacturing Systems using Contin-
uous Petri Nets. Proceedings of the IEEE International Conference on Robotics
and Automation. (1990)

[82] Holzmann, G.J., The SPIN Model Checker: Primer and Reference Manual,
Addison-Wesley. (2004)

123

[83] Ahmadon, MAB, and Yamaguchi, S.: On State Number Calculation in Petri Nets.
Proceedings: Second International Symposium on Computing and Networking,
IEEE, Electronic ISBN: 978-1-4799-4152-0, DOI: 10.1109/CANDAR.2014.114,
(2014)

[84] Desel, J., Esparza, J.: Free Choice Petri nets. Cambridge tracts in theoretical
computer science., Vol. 40, Cambridge University Press (1995)

[85] Cheng, A., Esparza, J., and Palsberg, J.: Complexity results for 1-safe nets. In:
Foundations of software technology and theoretical computer science, Lecture
Notes in Computer Science, Springer-Verlag, Berlin, Vol. 761 (326-337). (1993)

[86] F.G. Cabarle, H.N. Adorna: On Structures and Behaviors of Spiking Neural P
Systems and Petri Nets. Proceedings in the International Conference on Membrane
Computing 2012: 145-160. (2012)

[87] van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
Journal of Circuits, Systems and Computers. vol. 8(1), 21-66. (1998)

124

	Introduction
	Background of the Study
	On Workflows
	On Business Process Modelling for Complex Systems
	A View of the state of UML Notations
	An Opportunity of Integrating Workflow Dimensions

	Problem Statement
	Aim of the Work
	Methodological Approach and Structure of Work

	Review of Related Literature
	Workflows and Model Properties
	On Petri Nets and Workflow Nets
	Soundness in Workflows
	Free-choice Petri nets

	The Business Process Model and Notation
	The Building Blocks in BPMN
	BPMN and the process dimension
	BPMN and the resource dimension
	BPMN and the case dimension

	Robustness Diagrams

	Robustness Diagrams with Loop and Time Controls
	RDs with Loop and Time Controls
	Definitions and Basic Notations
	Activity Extraction in RDLTs
	Control Flow Designs in RDLTs and Notes in Construction

	Reachability Profiles and Boundedness in RDLTs
	On Constraint-dependent Paths and Diameters
	Non-self controlling Structures and Bounds for Reachability

	Free-choice Structures in RDLTs
	The Soundness Property of RDLTs
	Structural Properties of Reachability in RDLTs
	Reachability by C-based constraints
	A View of Compositionality of RDLTs
	Reachability by L-based constraints

	Proving Soundness by Structural Properties in RDLTs
	Derivable Relations for Model Properties in RDLTs
	On C-verifiability and NSC
	On Soundness and Reachability
	A Summarization of the Relations of Model Properties for RDLTs

	RDLT Modelling for Real-world Complex Systems
	On Applying the Proposed Framework On Energy Systems

	Conclusions
	Conclusions

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

