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Abstract

The ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antipro-
tons) collaboration at CERN will perform an experiment using Rabi’s mag-
netic resonance method to measure the frequencies of ground state hyperfine
transitions of antihydrogen. Since antihydrogen is the CPT symmetric part-
ner of hydrogen and the frequency of these transitions in hydrogen are very
well known, such measurements will provide a very sensitive test of CPT
symmetry.

To prepare and characterize the spectroscopy apparatus for measure-
ments with antihydrogen atoms, measurements with hydrogen atoms are
performed. A beam of atomic hydrogen is used instead of the ASACUSA
antihydrogen source, and a quadrupole mass spectrometer instead of an anni-
hilation detector. A hyperfine spectroscopy apparatus (consisting of a cavity
tuned to measure one of the two possible transitions, the σ-transition, and
a superconducting sextupole magnet) has already been commissioned and
is currently in operation at the ASACUSA antihydrogen hyperfine structure
experiment at CERN.

In this work a second cavity is prepared, which enables simultaneous
measurement of the two possible transitions, the σ- and π-transition. For
operation with hydrogen the superconducting sextupole magnet is replaced
by permanent sextupole magnets, which are built and characterized in the
course of this work. The velocity and state selection properties of a sextupole
doublet are simulated and measured. Numerical simulations of trajectories
of hydrogen atoms in the spectroscopy apparatus are performed to obtain a
quantitative understanding of the beam transport. These simulations lead
to a new beam optics, based on ring apertures, which is implemented and
tested. Finally, the σ and π hyperfine transitions of ground state hydrogen
are measured with the spectroscopy apparatus in earth’s magnetic field.
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Zusammenfassung

Die ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antipro-
tons) Kollaboration am CERN wird ein Experiment unter Nutzung der
Magnetresonanz-Methode von I. I. Rabi durchführen um die Frequenzen
der Hyperfeinstruktur-Übergänge des Grundzustands von Antiwasserstoff zu
vermessen. Da Antiwasserstoff der CPT-symmetrische Partner von Wasser-
stoff ist, und die Frequenzen dieser Übergänge inWasserstoff sehr gut bekannt
sind, stellen solche Messungen einen sehr empfindlichen Test der CPT Sym-
metrie dar.

Um den Spektroskopieapparat für den Betrieb mit Antiwasserstoffatomen
vorzubereiten werden Messungen mit Wasserstoffatomen durchgeführt. Es
wird ein Strahl von atomarem Wasserstoff anstelle der ASACUSA Anti-
wasserstoffquelle und ein Quadrupol-Massenspektrometer anstelle des Anni-
hilations-Detektors verwendet. Ein Spektrometer (bestehend aus einer Kav-
ität um einen der beiden möglichen Übergänge, den sogenannten σ- Über-
gang, zu messen und einem supraleitenden Sextupolmagneten) wurde bere-
its gebaut und charakterisiert und ist derzeit im Einsatz am ASACUSA
Antiwasserstoff-Hyperfeinstruktur Experiment am CERN.

In dieser Arbeit wird eine zweite Kavität vorbereitet, die eine gleichzeit-
ige Messung beider möglicher Übergänge (der σ- und π-Übergänge) erlaubt.
Für den Betrieb mit Wasserstoff wird der supraleitende Sextupolmagnet
durch permanente Sextupolmagnete ersetzt, die im Zuge dieser Arbeit gebaut
und charakterisiert werden. Die Geschwindigkeits- und Zustandsselektion
eines Duplets aus Sextupolmagneten wird simuliert und vermessen. Nu-
merische Simulationen zu den Trajektorien der Wasserstoffatome in dem
Spektroskopieapparat werden durchgeführt, um ein quantitatives Verständ-
nis des Strahltransports zu erhalten. Diese Simulationen führen zu einer
neuen Strahloptik, basierend auf Ringblenden, die implementiert und getestet
werden. Schließlich werden die σ und π Hyperfein-Übergänge des Grundzu-
stands von Wasserstoff mit dem Spektroskopieapparat im Erdmagnetfeld
vermessen.
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1 Introduction

In a process called pair production, matter can be created from the energy
of photons or the kinetic energy of colliding particles. It is called pair pro-
duction because in such events it is observed that for every matter particle
created, there is also created an antimatter particle. Fundamental proper-
ties of matter and antimatter particles are either equal or opposite in sign,
such that quantities as charge are conserved in these reactions. This matter
antimatter symmetry is also included in the model that best describes the
interaction of elementary particles – the Standard Model.

According to the Big Bang theory, at the origin of the universe there was
a very high energy state. From this energy all the particles in the universe
were created as the universe expanded and cooled. Applying the above rules,
matter and antimatter should have been created in equal amounts. However,
astronomical observations carried out to count the number of matter and
antimatter particles in the universe show that our universe consists almost
entirely of matter. This matter antimatter asymmetry in the universe is one
of the important unresolved questions in physics.

In the Standard Model, the CPT symmetry is conserved. The CPT the-
orem states that processes in nature are invariant under simultaneous trans-
formations of charge conjugation C, parity operation P and time reversal T .
Therefore, properties of matter atoms and antimatter atoms like mass, spin,
lifetime and their energy spectrum should be the same, while their charge
and magnetic moments should be opposite. Several beyond the Standard
Model theories, e.g. [1, 2], incorporate a violation of the CPT symmetry. It
could help to explain the observed matter antimatter asymmetry.

To test the CPT symmetry, properties of particles and antiparticles have
to be compared very precisely. Recent comparisons of mass over charge
ratio [3] and magnetic moment [4] of single antiparticles have revealed no
CPT violation. Antihydrogen is the simplest two particle system consisting
entirely of antimatter. Furthermore, some properties of the hydrogen atom,
such as the frequency of the 1s-2s transition [5] or the frequency of the zero
field hyperfine splitting [6], are one of the most precisely known quantities
in physics. For that reason, the comparison of the hydrogen atom with the
antihydrogen atom will enable precise tests of the CPT symmetry.

Antihydrogen was first produced at CERN in 1996 by the PS210 experi-
ment [7]. However, only 9 antihydrogen atoms were detected that travelled at
velocities close to the speed of light. After the antiproton decelerator [8] has
been installed at CERN, the first cold antihydrogen was produced in 2002 by
trapping large numbers of antiprotons and mixing them with positrons [9,10].
The neutral antihydrogen however escaped from the traps and annihilated.
The first trapping of antihydrogen was achieved by the ALPHA collabora-
tion in 2010 [11]. At the moment several experiments are using the slow
antiprotons provided by the antiproton decelerator to produce and trap cold
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antihydrogen for experiments [11, 12].
The ACACUSA (Atomic Spectroscopy And Collisions Using Slow An-

tiprotons) collaboration intends to measure the frequencies of the ground
state hyperfine transitions in antihydrogen [13–15]. Antiprotons are trapped
within a cusp trap and mixed with positrons. A slow beam of polarized an-
tihydrogen atoms emerges from the cusp trap [16,17]. This beam is sent to a
spectroscopy apparatus using the principle of Rabi’s resonance method [18]
to measure the transition frequencies between the different energy levels of
ground state antihydrogen.

The spectroscopy apparatus for antihydrogen [19] consists of a microwave
cavity, an analysing sextupole magnet and an annihilation detector. At the
right frequency the microwave cavity [20] drives the transition between the
hyperfine levels. This leads to a flip of the positron spin. The supercon-
ducting sextupole magnet defocusses those antihydrogen atoms for which
the transition occurred, while otherwise they get focussed onto the annihila-
tion detector. To discriminate the annihilation signal of antihydrogen from
background two layers of hodoscope bars around a central BGO detector are
used, which enable vertex reconstruction [21,22].

To prepare and characterize the spectroscopy apparatus for measure-
ments with antihydrogen atoms, measurements with hydrogen atoms are
performed [23]. A beam of atomic hydrogen [24] is used instead of the
ASACUSA antihydrogen source, and a quadrupole mass spectrometer is used
instead of the annihilation detector. A hyperfine spectroscopy apparatus
(consisting of a cavity tuned to measure one of the two possible transitions,
the σ-transition, and a superconducting sextupole magnet) has already been
commissioned and is currently in opreation at the ASACUSA antihydrogen
hyperfine structure experiment [25,26].

In the course of this work a second spectroscopy apparatus making use
of a cavity which enables simultaneous measurements of the two possible
transitions, the σ- and π-transition, is prepared. The experimental setup is
described in chapter 3 after a short summary of the spectrum of the hydrogen
atom in the next chapter. For operation with hydrogen the superconduct-
ing sextupole magnet is replaced by permanent sextupole magnets, which
are built at the SMI1 and are characterized in chapter 4 of this work. In
chapter 5 the velocity and state selection properties of a doublet of perma-
nent sextupole magnets are analyzed. Numerical simulations of trajectories
of hydrogen atoms in the spectroscopy apparatus are reported in chapter 6.
Finally, in chapter 7, a measurement of the σ and π hyperfine transitions of
ground state hydrogen with the spectroscopy apparatus in earth’s magnetic
field is presented.

1Stefan Meyer Institute for Subatomic Physics, Vienna, Austria.
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2 The Spectrum of the Hydrogen Atom

Hydrogen is the simplest atom, consisting only of one proton surrounded
by one electron. At first glance the spectrum of the hydrogen atom is very
simple as well. However, the details of the spectrum reveal the influence
of many interactions between the fundamental properties of the proton and
the electron. Because of this, the hydrogen atom has been crucial to the
understanding of quantum mechanics and quantum electrodynamics. And
it will continue to be an interesting test object for the open questions in
physics, especially in view of the recent progress in antihydrogen research.

The simplest quantum mechanical description of the hydrogen atom, tak-
ing into account only the Coulomb interaction of the electrical charge of the
proton and the electrical charge of the electron in a non-relativistic way, is
the Schrödinger model [27, 28]:[

~p 2

2m
− e2

4πε0r

]
ψ = Enψ (1)

where ψ is the scalar wave function, En the eigen energy and ~p the momen-
tum of the electron. The other symbols and quantities of the above and the
following equations are defined in Appendix A. As a result the energies of
the eigenstates depend only on the principal quantum number n:

En = − me4

2 (4πε0)
2 ~2
· 1

n2
= −mc2α

2

2
· 1

n2
= −Ry · 1

n2
. (2)

Dirac succeeded in giving the Schrödinger equation a Lorentz invariant
form. Thereby relativistic effects2are taken into account, which naturally
leads to a description of spin and antimatter [29, 30]. The Dirac equation
reads (

c~α · ~p+ βmc2 − e2

4πε0r

)
Ψ = En,jΨ (3)

where Ψ is now a 4-component spinor wave function. As a result the energies
of the eigenstates depend also on the total angular momentum quantum
number j = l ± 1

2 :

En,j = mc2


1 + α2

(
n− j − 1

2
+

√
(j +

1

2
)2 − α2

)−2− 1
2

− 1

 (4)

≈ mc2
(
− α2

2n2
+
α4(6j + 3− 8n)

8(2j + 1)n4
+ · · ·

)
(5)

This splitting of energy eigenstates is called fine structure of the hydrogen
atom because the correction due to j is small. Note that eigenstates with
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different orbital angular momentum l but the same total angular quantum
number j are still degenerate in this model.

Taking into account quantum fluctuations of the electron field and quan-
tum fluctuations of the photon field described by the theory of quantum
electrodynamics [31, 32] there is a further contribution to the energy of the
eigenstates. The shift depends on the orbital angular momentum l such that
the energy of states with different n, j and l is different. This shift in energy
of the eigenstates is called Lamb shift and its magnitude is to first order:

En,l,j = En,j +mc2
α2

2

8α3

3π

1

n3

(
log

(
mec

2

2(E − E0)avg

)
+

5

6
− 1

5

)
, l = 0 (11)

= En,j +mc2
α2

2

α3

2π

1

n3

(
1

(l + 1/2)(l + 1)

)
, l 6= 0, j = l + 1/2 (12)

= En,j +mc2
α2

2

α3

2π

1

n3

(
− 1

l(l + 1/2)

)
, l 6= 0, j = l − 1/2 (13)

See also chapter 8 in the lecture notes of Dyson [33].
Taking into account the interaction of the magnetic moment of the proton

with the magnetic moment of the electron using the hamiltonian

H = −2µ0
3

~µe · ~µpδ( ~xe − ~xp)−
µ0
4π

1

r3

[
3
~µ1 · ~r
r

~µ2 · ~r
r
− ~µ1 · ~µ2

]
(14)

there is an even smaller splitting of the energy of the eigenstates. This
splitting is the so called hyperfine splitting. The first term in equation 14 is

2In the non-relativistic limit the hamiltonian of the Dirac equation can be expressed
as [

~p 2

2m
− ~p 2~p 2

8m3c2
+

~2

8m2c2
(~∇ 2V (r)) +

1

2m2c2
1

r

dV

dr
~L · ~S + V (r)

]
ψ = En,lψ (6)

with V (r) = − Ze2

4πε0r
. The three terms are the relativistic mass increase

En,l = En

[
1− α2Z2

n2

(
3

4
− n

l + 1/2

)]
, (7)

the Darwin term (a result of the zitterbewegung of the electron)

E = 4Z4mc2α4δl0, (8)

and the spin orbit interaction

En,l,j = En

[
1− 1

2

Z2α2

nl(l + 1/2)(l + 1)
[j(j + 1)− l(l + 1)− s(s+ 1)]

]
. (9)

In total the energy shift according to the hamiltonian (equation 6) is

En,j = En

[
1− α2Z2

n2

(
3

4
− n

j + 1/2

)]
(10)

which agrees with the expansion of equation 4.
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the Fermi contact interaction [34] and for the l = 0 states of the hydrogen
atom the contribution to the energy of the eigenstates is:

En,l,j,F = En,l,j −
2µ0
3
gegp

me

mp
µ2B

~̂se · ~̂sp
~2

|Ψn(0)|2 . (15)

Because both electron and proton are spin-12 particles and

~̂se · ~̂sp =
~2

2
[(se + sp)(se + sp + 1)− se(se + 1)− sp(sp + 1)] =

{
+1

4~
2

−3
4~

2

(16)
there are (for l = 0) two states with energy difference

−2µ0
3
gegp

me

mp
µ2B |Ψn(0)|2 . (17)

Expressing µB as a function of α and using |Ψn(0)|2 = m3c3α3

π~3 , the hy-
perfine splitting of the ground state of the hydrogen atom therefore becomes

hν0 = ∆EHFS = −2

3

(
m3

m3
e

)
gegpmec

2α4me

mp
. (18)

where m = memp/(me+mp) is the reduced mass, me the electron mass, and
mp the proton mass.

Even smaller contributions such as the magnetic size of the proton (Zemach
correction) and polarizability of the proton have to be taken into account if
the theoretical values are compared with the extremely precise measurements
of ν0 utilizing the hydrogen maser [6].

To summarize the above, many different effects influence the spectrum
of such a simple system as the hydrogen atom. Interestingly the order of
magnitude of these influences can be described in terms of the fine structure
constant:

• The mass energy of the electron: mec
2.

• The binding energy due to the electromagnetic interaction: mec
2α2.

• The magnitude of relativistic corrections: mec
2α4.

• The magnitude of corrections due to quantum field theory: mec
2α5.

• And the magnitude according to spin spin interaction: mec
2α4me

mp
.
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2.1 Zeeman Effect

Above only the interaction of the magnetic moment of the electron with the
magnetic moment of the proton was discussed. In the presence of an external
magnetic field ~B the magnetic moments of electron and proton also interact
with the external field. As one can read for example in chapter 12 in [35],
this can be expressed using the hamiltonian

H = −2µ0
3
~µe · ~µp |Ψ1(0)|2 − ~µe · ~B − ~µp · ~B. (19)

Using the positive constant A = −1
4
2µ0
3 gegp

me
mp
µ2B

m3c3α3

π~3 , which describes
the coupling of the two spins, this can also be expressed in terms of the spin
operators

H = A
4

~2
~̂se · ~̂sp − geµB

1

~
~̂se · ~B − gp

me

mp
µB

1

~
~̂sp · ~B. (20)

Using the following complete basis∣∣sze, szp〉 =

∣∣∣∣12 , 1

2

〉
,

∣∣∣∣12 ,−1

2

〉
,

∣∣∣∣−1

2
,
1

2

〉
,

∣∣∣∣−1

2
,−1

2

〉
(21)

and ~B = B~ez the hamiltonian becomes

H =


µB +A 0 0 0

0 µ′B −A 2A 0
0 2A −µ′B −A 0
0 0 0 −µB +A

 (22)

with the positive constants

µ =− 1

2
(geµB + gp

me

mp
µB) (23)

and

µ′ =− 1

2
(geµB − gp

me

mp
µB). (24)

To obtain the eigenstates and their energies the eigenvalue problem

H |Ψ〉 = E1 |Ψ〉 (25)

must be solved. By expanding |Ψ〉 using the above basis3

|Ψ〉 = 1 |Ψ〉 =
4∑

n=1

|n〉 〈n|Ψ〉 =
4∑

n=1

an |n〉 (28)

3the base states |n〉 are numbered by roman numerals

|I〉 =
∣∣∣∣12 , 12

〉
|II〉 =

∣∣∣∣12 ,−1

2

〉
(26)

|III〉 =
∣∣∣∣−1

2
,
1

2

〉
|IV 〉 =

∣∣∣∣−1

2
,−1

2

〉
(27)

6



with the coefficients an one obtains the equations

Ea1 =(A+ µB)a1 (29)
Ea2 =(−A+ µ′B)a2 + 2Aa3 (30)
Ea3 =(−A− µ′B)a3 + 2Aa2 (31)
Ea4 =(A− µB)a4 (32)

The first and the last equation are independent of all others and the two
solutions

E1 = A+ µB with a1 = 1, a2 = a3 = a4 = 0 (33)
E3 = A− µB with a1 = a2 = a3 = 0, a4 = 1 (34)

are immediately found.
For the other two solutions equations 30 and 31 must be solved simulta-

neously. The energies obtained by solving are:

E2 = −A+
√
µ′2B2 + 4A2 (35)

E4 = −A−
√
µ′2B2 + 4A2 (36)

For the energy E2 the coefficients a1 = 0 and a4 = 0 and the ratio

a2
a3

=
E2 +A+ µ′B

2A
(37)

=

√
1 +

(
µ′B

2A

)2

+
µ′B

2A
. (38)

Using the ansatz
a2 = cosϑ, a3 = sinϑ (39)

which satisfies
a22 + a23 = 1 (40)

leads to the equation for the mixing angle

ϑ = arctan(
1√

1 + x2 + x
) (41)

where x = B/BC with BC = 2A/µ′. The eigenstate |2〉 to the energy E2

becomes:
|2〉 = cosϑ

∣∣∣∣12 ,−1

2

〉
+ sinϑ

∣∣∣∣−1

2
,
1

2

〉
. (42)

A similar ansatz for the energy E4

a2 = − sinϑ, a3 = cosϑ (43)
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gives the eigenstate to energy E4

|4〉 = − sinϑ

∣∣∣∣12 ,−1

2

〉
+ cosϑ

∣∣∣∣−1

2
,
1

2

〉
(44)

with the same mixing angle ϑ as above.
To get the magnetic moment of the eigenstates the operator

~̂µ = geµB
1

~
~̂se + gp

me

mp
µB

1

~
~̂sp (45)

is applied to the eigenstates: For state |4〉 as an example µ4 is〈
4
∣∣∣~̂µ∣∣∣ 4〉 =

(
− sinϑ

〈
1

2
,−1

2

∣∣∣∣+ cosϑ

〈
−1

2
,
1

2

∣∣∣∣)(geµB 1

~
~̂se + gp

me

mp
µB

1

~
~̂sp

)
(46)

·
(
− sinϑ

∣∣∣∣12 ,−1

2

〉
+ cosϑ

∣∣∣∣−1

2
,
1

2

〉)
(47)

=− 1

2
(geµB − gp

me

mp
µB)

B/BC√
1 + (B/BC)2

~ez (48)

and similarly for the other states.
For B = 0 the energy difference between the degenerate states |1〉, |2〉,

and |3〉 and the state |4〉 becomes 4A. Therefore, A can be expressed in
terms of the frequency of the hyperfine transition in zero magnetic field ν0:

A =
1

4
hν0. (49)

To summarize all the above, the ground state of the hydrogen atom
actually consists of the following 4 eigenstates

|1〉 =

∣∣∣∣12 , 1

2

〉
(50)

|2〉 = + cosϑ

∣∣∣∣12 ,−1

2

〉
+ sinϑ

∣∣∣∣−1

2
,
1

2

〉
(51)

|3〉 =

∣∣∣∣−1

2
,−1

2

〉
(52)

|4〉 =− sinϑ

∣∣∣∣12 ,−1

2

〉
+ cosϑ

∣∣∣∣−1

2
,
1

2

〉
(53)
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with the eigen energies

E1 = +
hν0
4
− 1

2
(geµB + gp

me

mp
µB)B (54)

E2 =− hν0
4

+
hν0
2

√
1 + (B/BC)2 (55)

E3 = +
hν0
4

+
1

2
(geµB + gp

me

mp
µB)B (56)

E4 =− hν0
4
− hν0

2

√
1 + (B/BC)2. (57)

The magnetic momenta of the 4 eigenstates of hydrogen are:

µ1 = +
1

2
(geµB + gp

me

mp
µB) (58)

µ2 = +
1

2
(geµB − gp

me

mp
µB)

B/BC√
1 + (B/BC)2

(59)

µ3 =− 1

2
(geµB + gp

me

mp
µB) (60)

µ4 =− 1

2
(geµB − gp

me

mp
µB)

B/BC√
1 + (B/BC)2

(61)

with

ϑ = arctan

(
1√

1 + (B/BC)2 +B/BC

)
=

1

2
arctan (BC/B) (62)

BC =
hν0
2µ′

=
hν0

−(geµB − gp mempµB)
. (63)

The angle ϑ describes the mixing of the base states |II〉 and |III〉 into
the eigenstates |2〉 and |4〉. For zero magnetic field the mixing angle is ϑ = π

4
(maximal mixing) and the eigenstates |2〉 and |4〉 become

|2〉 = +
1√
2
|II〉+

1√
2
|III〉 (64)

|4〉 = − 1√
2
|II〉+

1√
2
|III〉 (65)

For infinitely large magnetic fields the mixing angle is ϑ = 0 (minimal mix-
ing) and the eigenstates become

|2〉 = |II〉 (66)
|4〉 = |III〉 (67)

At the characteristic magnetic field Bc the mixing angle is ϑ = π
8 , half its

maximal value. The mixing changes from maximal to minimal mixing at the
characteristic magnetic field.
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The energies and magnetic momenta of the four eigenstates are shown in
figure 1. For state |1〉 and |3〉 the energy depends linearly on the magnetic
field. Therefore the magnetic moment is constant. States |2〉 and |4〉 are a
mixture of base states. Because of that, the magnetic momenta of the states
|2〉 and |4〉 vary with the magnetic field. They are zero for zero magnetic
field and become ±µ′ for large magnetic fields.
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Figure 1: Energies (left) and magnetic momenta (right) of the four eigen-
states of the ground state of hydrogen in dependence of the external magnetic
field.
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3 The Hydrogen Beam Experiment

The aim of the antihydrogen programme of the ASACUSA collaboration is
the measurement of the hyperfine structure of antihydrogen in a beam. The
first beam of antihydrogen atoms was produced by ASACUSA in 2012 [17].
Despite a production rate of several 1000 hydrogen atoms per cycle, the
number of antihydrogen atoms that reach the detector as a beam currently
is only ≈ 1 per cycle (≈ 20 minutes). This rate is too small for calibration
and testing purposes. For this reason, the hydrogen beam experiment was set
up in order to prepare the spectroscopy apparatus for the hyperfine structure
measurement.

Both, the antihydrogen experiment and the hydrogen beam experiment
use the magnetic resonance technique of I. I. Rabi [18]. The antihydrogen
spectroscopy apparatus is designed to receive a polarized beam of antihydro-
gen atoms. It consists of a cavity to induce transitions, a sextupole magnet
to perform state selection, and an annihilation detector [19].

The different elements between the first configuration of the hydrogen
beam experiment and the antihydrogen experiment are the source and the
detector, which both need to be very different for hydrogen and antihydro-
gen. The common elements, which are the main part of the spectroscopy
apparatus, are the strip line cavity and the superconducting sextupole mag-
net. In this first setup the constant magnetic field at the cavity is parallel
to the oscillating field inside the cavity, therefore, only the σ-transition can
be detected.

For the second configuration of the hydrogen beam experiment the super-
conducting sextupole magnet was not available, because it was in operation
at the antihydrogen experiment. Therefore, permanent magnets were built
at SMI to replace the superconducting sextupole magnet. The main pur-
pose of the second configuration of the hydrogen beam experiment is the
preparation of a second cavity where the constant magnetic field has com-
ponents both parallel and orthogonal to the oscillating field, which enables
the measurement of both, σ- and π-transitions.

A detailed description of the hydrogen beam experiment can be found
in [19] and [26]. A short summary is provided below.

3.1 Rabi’s Resonance Method

The magnetic resonance method was introduced by Rabi in 1937 [36] and
was subsequently used to measure the spin and the magnetic moment of
several nuclei [18, 37].

The apparatus (see figure 2) consists of two magnets with inhomoge-
neous field (magnet A and magnet B) and a magnet with homogeneous field
(magnet C) in between. The magnetic field is strong and points in the same
direction from the start of magnet A to the end of magnet B. The gradient
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in magnet A and magnet B is of opposite direction.
A beam of molecules is emitted from an oven (O). Because of their nuclear

magnetic moment, the molecules are deflected in the inhomogeneous fields
of magnet A and magnet B. The deflection is opposite in direction for the
magnet A and magnet B such that the path of the molecules is s-shaped.
The magnitude of the fields in magnet A and magnet B is such that the
deflection cancels for molecules that pass the slit (S), and the beam arrives
at the detector (D).

A magnetic moment with an angular momentum will precess in an ex-
ternal magnetic field with the Larmor frequency4 νL. The projection of
the magnetic moment onto the magnetic field determines the magnitude of
deflection. If the orientation of the magnetic moment is altered5 by an os-
cillating field with frequency ν in the region of the constant field of magnet
C, the molecules are deflected differently and do not arrive at the detector
(dashed lines).

The magnetic moment is only altered by the oscillating field if its fre-
quency is close to the Larmor frequency. Therefore, the resonance can be
observed as a drop in signal at the detector when ν is close to νL.

Figure 2: A schematic diagram of the experimental setup used by Rabi et
al. to measure the nuclear magnetic moments of 6Li, 7Li and 19F. From [18].

4The Larmor frequency is νL = γB with the gyromagnetic ratio γ defined by ~µ = γ~L.
For an elementary particle γ = gxqx/(2mx) with mass mx, charge qx, and Landé factor
gx of the particle.

5The classical magnetic moment can be altered continuously, while the magnetic mo-
ment of an elementary particle can jump between discrete states that depend on the spin
projection. This quantum jump corresponds to a transition.
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3.2 Resonance Method of the Hydrogen Beam Experiment

The hydrogen beam setup features a rotationally symmetric beam and de-
flecting magnet configuration6. A cylindrical coordinate system with the
z-axis coaxial to the beam is chosen, where the radius r measures the dis-
tance to the beam axis. The arrangement is independent of ϕ.

The apparatus (schematically shown in figure 3) consists of two magnets
with a sextupole field (A and B) and a section with a constant homogeneous
field in between (C). In the area of the constant homogeneous field a cavity
is installed, which enables the application of an oscillating field. The field
gradient of the sextupole magnets increases linearly with the radius.

A beam of hydrogen atoms is emitted from the source (S). Because of
their magnetic moment (see figure 1) the hydrogen atoms are deflected in
radial direction. The deflection is larger for larger radii, such that all will
be focussed at the same point downstream of the magnet if their magnetic
moment and their velocity is the same. The deflection is either focussing or
defocussing, depending on the sign of the magnetic moment.

Magnet A focusses the states with negative magnetic moment (thick
lines) onto a focal point7. Magnet B focusses the diverging beam again
onto the detector (D). Both magnets are arranged in such a way that the
signal at the detector is a maximum. Only atomic states with negative
magnetic moment will arrive at the detector, because atomic states with
positive magnetic moment will be defocussed (thin lines).

If an oscillating field with frequency ν is applied in addition to the con-
stant homogeneous field in the area between the sextupole magnets (C),
a transition to another atomic state may occur. If the final state of the
transition has the opposite magnetic moment, the atom will be deflected by
magnet B and will not arrive at the detector.

Transitions only occur if the frequency of the oscillating field is close
to the transition frequency νT = ∆E/h. Therefore, the transition can be
observed as a drop in signal at the detector when ν is close to νT .

3.2.1 Hyperfine Transitions in Ground-state Hydrogen

The eigenstates of the hydrogen atom in its ground state have been discussed
in section 2.1. The ground state actually splits up in four states due to the
hyperfine interaction, their energy (in frequency units) is shown in figure 4
as a function of the magnetic field.

6The rotationally symetric configuration with sextupole magnets for deflection was
introduced by D. R. Hamilton, a former student of I. I. Rabi.

7In figure 3 the focal point is displayed between magnet A and B. But any point
downstream of magnet A is possible depending on the velocity of the atoms (smaller
velocity atoms are deflected more and the focal point is closer to magnet A). If the focal
point is chosen to be at infinity, there is a parallel beam between magnet A and B.
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S D

A C B

Figure 3: A schematic diagram of the experimental setup of the hydrogen
beam experiment.

In the hydrogen beam experiment, transitions from states with negative
magnetic moment (states |1〉 and |2〉) to states with positive magnetic mo-
ment (states |3〉 and |4〉) can be detected. An additional limitation is the
frequency range of the cavity, which rules out transitions to state |3〉.

Therefore, two transitions can be measured by the hydrogen beam exper-
iment: The σ-resonance is the transition from the state |2〉 to the state |4〉.
The π-resonance is the transition from state |1〉 to state |4〉. See figure 4.
Their transition frequencies are:

νσ =ν0
√

1 + (B/BC)2 (68)

νπ =
ν0
2

(
1 +

√
1 + (B/BC)2

)
− 1

2

(
geµB + gp

me

mp
µB

)
B

h
(69)

For low magnetic fields the frequency of the σ-transition depends quadrat-
ically on the magnetic field. Therefore, influences of inhomogeneities of the
magnetic field on the transition frequency are small. The frequency of the π-
transition depends linearly on the magnetic field. Therefore, this transition
is more sensitive to magnetic field inhomogeneities.

3.3 Hydrogen Source

To create atomic hydrogen, molecular hydrogen needs to be dissociated. In
this experiment a radio frequency discharge tube is used for this purpose. A
pyrex glass tube contains the hydrogen gas. It is encapsulated by a water
cooled radio frequency antenna to couple the electromagnetic waves to the
plasma. On one end molecular hydrogen is fed into the glass tube with
constant mass flow rate. On the other end the pyrex glass tube narrows and
forms a pipe with a diameter of 1 mm, where atomic hydrogen is extracted
(figure 5).
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Figure 4: Breit Rabi diagram (left). Magnetic field dependence of the tran-
sition frequency for σ- and π-transitions (right).

(a) Pyrex tube with radio frequency an-
tenna.

(b) Atomic hydrogen source assembly.

Figure 5: Atomic hydrogen source. Pyrex tube and radio frequency antenna
(left) and full assembly (right).
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The source is mounted transverse to the beam axis. A pipe of teflon
with a 90◦ bend is used to transfer the atomic hydrogen from the source to
the beam axis. At the bend the teflon pipe is encapsulated in an aluminum
block, which is cooled to 20 K by a helium cryostat. The gas of atomic
hydrogen enters the teflon pipe at room temperature, is cooled to ≈ 20 K
through collisions with the wall of the cooled teflon tube, and exits the teflon
tube as a beam of cold hydrogen atoms.

3.4 Alignment Laser and Photo Diode

A small hole, coaxial with the exit of the teflon tube, is drilled into the
aluminum block of the source. This allows an alignment laser to be projected
through this hole, such that the axis of the laser and the axis of the atomic
beam of hydrogen are coaxially aligned.

The laser beam is introduced through a glass window in the source vac-
uum chamber. It travels through all subsequent components of the setup
and is detected by a photo diode with a filter matched to the laser fre-
quency. The laser beam is used for two purposes: Optical alignment of the
beam line components, and determination of the amplitude and phase of the
chopper opening (see section 3.6).

3.5 Velocity Selection and Polarization

For initial beam polarization and velocity selection a doublet of permanent
sextupole magnets is used. Those are referred to as the CERN magnets, be-
cause they were built by the CERN normal conducting magnets laboratory.
A detailed description of these magnets can be found in [38].

The CERN magnets are 65 mm long, with an aperture diameter of 10 mm
and an integrated gradient8Gs of 7435 T m−1. The field at the poles is 1.36 T.
Both magnets are identical and mounted on a slide which enables the vari-
ation of the distance between the magnets from 16 mm to 116 mm. In the
middle of the two magnets an aperture with a diameter of 3 mm is installed.
This aperture can be exchanged and several diameters from 1 mm to 5 mm
are available.

When the hydrogen atoms enter the first magnet, a force is exerted onto
the hydrogen atoms by the gradient of the magnetic sextupole field. The force
is directed either radially inwards or outwards, depending on the magnetic
moment of the state of the hydrogen atom. For the states with negative
magnetic moment the force is directed radially inwards and they are focussed
onto the aperture, if the velocity matches. For states with positive magnetic
moment the force is directed radially outwards. Such atoms are removed
from the beam.

8The integrated gradient Gs =
∫∞
−∞ gs(z)dz is the integral of the parameter gs which

describes the strength of the sextupole field ~B = (gsxy, gsx
2/2− gsy2/2, 0).
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(a) CERN magnets assembly for ve-
locity selection and polarization. The
aperture has been removed for this im-
age.
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(b) Beam trajectories in the velocity selec-
tion area. The magnets are marked in grey.
States |3〉 are stopped by the aperture in
black.

Figure 6: Velocity selection and polarization magnets. Assembly (left) and
beam trajectories (right).

The aperture selects only the part of the beam that is focussed onto
it. The second magnet focusses the beam again. Because the arrangement
is symmetric, the second magnet ensures that the beam leaves the second
magnet with the same divergence the beam entered the first magnet.

The distance of the focal point from the magnet depends on the veloc-
ity of the beam. Therefore, for different distances of the magnets different
velocities are selected. In this way polarization and velocity selection of the
beam is achieved simultaneously.

A measurement of the velocity selection of the assembly is described in
chapter 5.

3.6 Chopper and Lock-in Amplifier

The beam is chopped by a tuning fork chopper (model Scitec CH-10) with
a duty cycle of 50%. The tuning fork chopper consists of two blades which
oscillate with a frequency of ≈ 180 Hz. As a result, the transmitted beam
intensity varies in time as the positive half-wave of a sine9.

The detector readout is based on a lock-in amplification scheme [39]
utilizing the chopper frequency. First the phase of the chopper signal is
binned into 200 bins, where every phase bin corresponds to a time bin.
Then the counts of the detector signal that occur in a given time bin are
assigned to the corresponding phase bin. The counts are summed over a
time period much larger than the oscillating period of the chopper. The
result is a histogram of detector counts versus phase.

9This is only true under the condition that the beam size is larger than the chopper
amplitude, which is satisfied in the used setup.
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This histogram is used to reconstruct two parts of the signal: The con-
stant part corresponds to the signal of a constant background and is called
background rate. The time (phase) varying part corresponds to the signal
of the chopped beam and is called beam rate. Figure 7 schematically shows
a typical histogram of detector count rate versus chopper phase.

Figure 7: Schematic diagram of detector count rate versus chopper phase.
The beam rate and background rate are indicated in blue and red, respec-
tively.

3.7 Cavity

A microwave cavity (figure 8) tuned to the transition frequency of 1420 MHz
is used to drive the transitions. A low Q factor allows the frequency to
be scanned over a range of ≈ 6 MHz. The cavity features a special design
making use of striplines (thin parallel plates of conductive material). This
provides a homogeneous oscillating field at each cross section of the active
volume of 100 mm diameter and 105.5 mm length. Four antennas equally
spaced around the cylinder enable the coupling of the radio frequency to the
cavity [20].

The radio frequency is supplied by a ZVB20 vector network analyzer
and amplified by a radio frequency amplifier with an amplification factor
of 52 dB. The amplified radio frequency signal is coupled to the cavity via
a stub tuner. One antenna is used to couple the radio frequency to the
cavity. The second one is used to pick up the signal and analyze it with
the vector network analyzer. The two other antennas are terminated by a
50 Ω load. The vector network analyzer is stabilized with a rubidium clock
from Stanford Research, which in turn is stabilized using the pps-signal of
the GPS satellite network.
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(a) Open cavity: The flange is removed
to reveal the striplines (parallel plates),
wings and antennae.

(b) Installed cavity with coils and the
bottom half of the three layer magnetic
shielding.

Figure 8: Microwave cavity.

3.8 Analysis Magnets

The analysis magnets have two purposes: State selection of the beam after
the cavity, and focussing of the beam onto the detector. In configuration 1 of
the hydrogen beam experiment the superconducting sextupole magnet was
used. Information regarding the superconducting sextupole can be found
in [19]. In the second configuration of the hydrogen beam experiment the
SMI magnets have been used. They consist of an array of permanent magnets
in a Halbach configuration and are described in detail in chapter 4.

3.9 Ring Aperture

Two ring apertures (figure 9) are used to select atoms at a defined radius
and to block the central part of the beam. They have got a hole of 1 mm
diameter in the center to allow the laser to pass through. The apertures are
aligned with respect to the laser by optical means. Both ring apertures have
been manufactured at the SMI workshop.

3.10 Detector

The beam of hydrogen atoms is detected with a quadrupole mass spectrome-
ter (QMS), which is mounted perpendicular to the beam axis. A hole of 3 mm
diameter allows the beam to enter the QMS. The model MKS Microvision2
RGA is used.

Electrons are emitted from a filament, collide with the hydrogen atoms
and ionize them. The resulting proton enters the analyzer of the quadrupole
mass spectrometer. The selected mass of the QMS is set to 1 atomic mass
unit. The proton, therefore, can pass the analyzer and cause a signal at the
channeltron while a large fraction of ionization products from residual gas is
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(a) Ring aperture 1 with an inner diam-
eter of 12mm and an outer diameter of
20mm.

(b) Ring aperture 2 with an inner diam-
eter of 23mm and an outer diameter of
38mm.

Figure 9: Ring apertures. The 1 mm hole in the center is used for alignment
purposes.

suppressed.
The resulting signals of the channeltron are amplified and converted to

a digital signal using NIM modules and counted with a NI PCIe-6361 data
acquisition card. The data is transferred to the measurement PC, and the
counts are processed by the lock-in amplifier program. Further information
on the data acquisition scheme can be found in [26].

3.11 Setup Configurations of the Hydrogen Beam Experi-
ment

Several configurations of the hydrogen beam experiment have been used
and are discussed in multiple sections of this work. An overview of their
characteristics and differences is provided in this section.

The antihydrogen setup is not discussed in detail in this work. For a
reference see [19] and references therein.

3.11.1 Configuration 1

This setup consists of: the hydrogen source, the CERNmagnets, the chopper,
cavity 1, the superconducting sextupole magnet, and the QMS detector.

It was used to characterize the spectroscopy apparatus, consisting of
cavity 1 and the superconducting sextupole magnet, for antihydrogen oper-
ation [23,25,26].

3.11.2 Configuration 2.1 "Permanent Magnets"

This setup (figure 10) consists of: the hydrogen source, the CERN magnets,
the chopper, cavity 2, the SMI magnets, and the QMS detector. The setup
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is different from configuration 1 in two aspects:
Cavity 1 is replaced by cavity 2, which is identical in construction. How-

ever, 4 McKheehan coils instead of 2 Helmholtz coils are used to produce a
more homogeneous magnetic field inside the cavity. The coils are arranged
such that there is a component of the constant field in direction of the os-
cillating field as well as perpendicular to the oscillating field, which enables
both σ- and π-transitions to occur.

The superconducting sextupole magnet is replaced by several SMI mag-
nets. Five of the SMI magnets are used, they have a similar integrated gra-
dient as the superconducting sextupole magnet at a current of 350 A. The
inner diameter of the SMI magnets is 40 mm, much smaller than the inner
diameter of the superconducting sextupole magnet. This is not a problem
for the hydrogen beam, because it is limited by the opening of the chopper
rather then by the inner diameter of the SMI magnets.

Configuration 2.1 was used to measure simultaneously the σ- and π-
transition in earths magnetic field (see chapter 7).

Figure 10: Beam line configuration 2.1: "permanent magnets".

3.11.3 Configuration 2.2 "Short Setup"

This setup (figure 11) consists of: the hydrogen source, the CERN mag-
nets, the chopper, the SMI magnets, and the QMS detector. The difference
between this setup and configuration 2.1 is the following:

Cavity 2 was removed because some modifications were necessary, which
were made at the CERN workshop. Therefore, the beam line was shortened
accordingly.

Configuration 2.2 was used for tests of the new SMI magnets and to
evaluate the velocity selecting properties of the CERN magnet assembly
(see chapter 5).

3.11.4 Configuration 2.3 "Ring Aperture"

This setup (figure 12) consists of: the hydrogen source, the chopper, ring
aperture 1, three SMI magnets, cavity 2, ring aperture 2, two SMI magnets,
and the QMS detector. The difference of this setup from configuration 2.1
is the following:
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Figure 11: Beam line configuration 2.2: "short setup".

The CERN magnets for velocity selection are replaced by a different
method for velocity selection: The divergent beam passes a ring shaped
aperture (aperture 1) and is made parallel by three SMI magnets. The
parallel beam passes the cavity and a second ring shaped aperture (aperture
2). The second ring aperture selects hydrogen atoms in a very narrow band
of velocities, which are defined by the geometry and the strength of the first
three SMI magnets. Then the two SMI magnets focus the beam onto the
detector. For this setup it is necessary to mount the chopper as close to
the source as possible because the beam diameter of the divergent beam
is already considerably large at the chopper position. For trajectories of
hydrogen atoms in this configuration see section 6.7.

Configuration 2.3 was used to measure simultaneously the σ- and π-
transition in earths magnetic field (see chapter 7).

Figure 12: Beam line configuration 2.3: "ring aperture".
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4 Magnetic Field Measurement of Analysis Sex-
tupole Magnets

For charged particle beams, sextupole magnets are commonly used to correct
for chromatic aberrations. However, for beams of neutral particles with
magnetic moment, sextupole magnets act as a (velocity dependent) focusing
lens. The focusing effect on neutral particles with magnetic moment ~µ is
described in detail in chapter 6.

The hydrogen beam experiment makes use of several identical permanent
sextupole magnets to focus the beam of hydrogen atoms onto the detector.
These magnets are built at SMI utilizing a Halbach-like configuration of
cuboid permanent magnets. In order to characterize the quality of the sex-
tupole magnetic field of these magnets, maps of the magnetic field of several
sextupole magnet assemblies are recorded and analyzed.

4.1 Magnetic Field of an Ideal Sextupole

Because of ∇ × ~B = 0 in the inner area of an ideal sextupole magnet, the
magnetic field can be expressed as gradient of a scalar magnetic potential
Φ(x, y, z). For an (in z-direction) infinitely extended sextupole the scalar
potential is

Φ(x, y, z) =
gs
2

(
x2y − y3

3

)
(70)

where gs is a constant that describes the strength of the sextupole field.
Using ~B = −~∇Φ the components of the sextupole field are calculated as

Bx = gsxy, (71)

By =
gs
2

(
x2 − y2

)
, (72)

Bz = 0. (73)

The absolute value of the sextupole field depends only on the square of the
radius and the constant gs:

| ~B| = |gs|
2
r2. (74)

4.2 SMI Sextupole Magnets

A hollow cylinder with magnetization

~M(ρ, φ, z) = Mr

(
cos (kφ) ρ̂+ sin (kφ) φ̂

)
, k ∈ Z (75)

is called an ideal Halbach cylinder [40–43]. The magnetization of the ideal
Halbach cylinder generates flux only on one side, producing either a strong
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magnetic field confined inside the cylinder with zero magnetic field outside,
or a strong magnetic field outside the cylinder with zero magnetic field inside.
In the above equation |k| is the number of pole pairs, the sign of k is positive
for magnetic fields inside of the cylinder and negative for magnetic fields
outside of the cylinder.

For a dipole, the magnetic field within the cylinder is given by

B = BR ln

(
ro
ri

)
(76)

where BR is the remanence of the magnetic material, ri and ro the inner and
outer radius, respectively. To achive large magnetic fields, Br and the ratio
of outer to inner radius ro

ri
need to be large.

Magnets with continuously varying magnetization are not easy to pro-
duce, therefore, the ideal Halbach cylinder is usually approximated using seg-
ments of uniformly magnetized material. The design of the SMI permanent
sextupole magnets [44] uses 12 cuboid magnets with uniform magnetization
which are arranged in a circular pattern to get a magnetization close to the
ideal Halbach cylinder.

The cuboid magnets are made of blocks of NdFeB material 15 mm ×
15 mm × 50 mm in size [45] and are magnetized along the short direction.
In the sextupole assembly (figure 13) the 12 NdFeB magnets are supported
by a 3d-printed holder (green) and mounted onto the beam pipe with the
aluminum enclosing. From a large batch of magnets groups of 12 magnets
with homogeneous properties are selected for the individual Halbach arrays.

Figure 13: SMI sextupole magnet of configuration A.

The SMI sextupole assembly deviates from the circular Halbach approxi-
mation in that sense that every second magnet is shifted inwards. There are
two possible configurations to realize this. In configuration A the magnets
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with magnetization in radial direction are shifted inwards, while in config-
uration B the magnets with tangential magnetization are shifted inwards.
The layout of these two versions is depicted in figure 14.

(a) Configuration A (b) Configuration B

Figure 14: Configuration A and configuration B of magnet assembly.

4.3 Measurement Device

To characterize the magnetic field of the sextupole magnet assembly, a device
to accurately take measurements of the magnetic field inside the cylindrical
hole was built (figure 15).

Figure 15: Device to record field maps of SMI sextupole magnets.

A mounting plate to attach the magnet assembly and a 3d positioning
system are mounted on a common aluminum frame, manufactured by the
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SMI workshop. The mounting plate is designed to allow the magnet assembly
to be rotated by 90◦, 180◦ and 270◦. The 3d positioning system is used to
scan the cylindrical volume inside the sextupole magnet with a magnetic
field sensor.

The hardware for the 3d positioning system was reused from an earlier
experiment, but the electronics and the software to control the 3 axes had
to be developed. Every single axis is manipulated by a stepper motor [46].
Arduino motor shields [47] are used to drive the stepper motors. An Arduino
Leonardo board [48] with an ATmega32u4 microcontroller is used to control
the stepper motor drivers.

As a magnetic field sensor a hall probe has been chosen for the very
small dimensions of the sensor. The measurements of the magnetic field were
recorded using a Hirst GM 08 Gaussmeter with a transverse hall probe [49].
This sensor can only measure the magnetic field in one direction. There-
fore, the magnet assembly was rotated on the mounting plate to enable
measurements in the perpendicular direction. Measurements of the fields in
z-direction were not taken, because they are comparatively small and less
relevant.

4.4 Data Acquisition

The data acquisition scheme is displayed in figure 16. The Hirst GM08
Gaussmeter is able to measure magnetic fields up to 3 T in four measurement
ranges (see table 1). The analog output of the Hirst GM 08 Gaussmeter
delivers a voltage signal between −3 V and 3 V, which is proportional to
the measured magnetic field with a conversion factor which depends on the
selected measurement range. This analog signal is digitized using a 16 bit,
4 channel ADS1115 analog to digital converter on an Adafruit board [50].

Figure 16: Data acquisition scheme for sextupole field maps.
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As the output signal consists of positive and negative voltage values, the
differential read out mode between two channels of the ADS1115 is used.
The Hirst GM08 Gaussmeter is battery operated.

The digitized values are read out with the microcontroller on the Arduino
Leonardo board via two wire interface (TWI). At every coordinate, 100 mea-
surements are taken in succession. The mean m and standard deviation sig
are calculated online using the following stable numerical algorithm [51]:

m = 0; m2 = 0;
for (int l=0; l<n; ){
value = readadc();

l++;
delta = value - m;
m += delta/l;
m2 += delta * (value - m);

}
m2 = m2/(n-1);
sig = sqrt(m2);

It was necessary to implement this algorithm, because the numerical capa-
bilities of the microcontroller are not sufficient to perform the computation
according to the usual formulas

m =
1

n

n∑
i=1

xi, (77)

σ2 =
1

n− 1

(
n∑
i=1

x2i − nm2

)
(78)

where the sum and the sum of the squares are used.
When the measurement at one point is finished, the calculated mean and

standard deviation together with the coordinates of the measurement point
are transferred to the PC via serial connection (USB) and the positioning
stage moves on to the next coordinate. On the PC the values are received
and stored in a data file for analysis.

4.5 Field Reconstruction

For all points on a grid of 1.88 mm spacing in x- and y-direction and 5.65 mm
spacing in z-direction (see figure 17(b)) that also lie within the cylindrical
volume of radius r ≤ 18 mm, a measurement of the magnetic field is recorded.
The recorded magnetic field measurement of the hall probe is the value of
Bx′(x

′, y′, z′), the magnetic field in x′-direction in the coordinate system
(x′, y′, z′) of the measurement device (see figure 17(a)).

To map the recorded field Bx′(x′, y′, z′) to the coordinate system (x, y, z)
of the magnet, a coordinate transformation has to take place: In the case of
0◦ rotation the transformation is only a shift in z-direction.
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Specification Value
Range 1 0.000 - ±3.000 Tesla
Range 2 000.0 - ±299.9 milliTesla
Range 3 00.00 - ±29.99 milliTesla
Range 4 0.000 - ±2.999 milliTesla
Frequency Range DC and 15Hz to 10kHz
DC Accuracy Better than ±1 %

Probe and Gaussmeter (NPL Traceable)
Temperature coefficient Better than ±0,1 % of reading /◦C

including probe
Analogue Output ±3 Volts full scale

Table 1: Excerpt of technical specifications of Hirst GM 08 Gaussmeter [49].

(a) (x′, y′, z′) coordinates (b) (x, y, z) coordinates

Figure 17: Coordinate system of measurement device and coordinate system
of SMI sextupole magnet.
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After recording Bx′(x′, y′, z′) the magnet is rotated by 90◦ on the holder
and Bx′(x

′, y′, z′) is measured again. However, now the measurement of
Bx′(x

′, y′, z′) in the coordinate system of the measurement device corre-
sponds to By in the coordinate system of the magnet. After that, measure-
ments with the magnet rotated by 180◦ and 270◦ are recorded as well. The
coordinate transformations for all four rotations are summarized in table 2.

angle 0◦ 90◦ 180◦ 270◦

x = x′ −y′ −x′ y′

y = y′ x′ −y′ −x′
z = z′ − zoffset z′ − zoffset z′ − zoffset z′ − zoffset

Bx = Bx′ 0 −Bx′ 0
By = 0 Bx′ 0 −Bx′

Table 2: Coordinate transformations for the four different angles of rotation
of the magnet. The offset zoffset = 42.5 mm.

After these four field maps are recorded, two values for each Bx or By are
available (one value for 0◦ rotation denoted Bx,180 and one for 180◦ rotation
denoted Bx,180). For the rest of the analysis the mean of both values is
taken. This leads to the cancellation of errors from a background field, a
sensor offset, and a position offset, as can be seen as follows:

The mean
Bx =

1

2
(Bx,0 +Bx,180) (79)

actually corresponds to

Bx =
1

2
(Bx′,0 −Bx′,180) (80)

where the second index refers to the rotation in degrees.
If a sensor reading is estimated as:

Bx′,0 = Bt +Bbg +Bso (81)
Bx′,180 = −Bt +Bbg +Bso (82)

where Bt is the true value of the magnetic field produced by the perma-
nent magnets, Bbg is the magnitude of a time and coordinate independent
background field (e.g. earth’s magnetic field), and Bso is the magnitude of
a constant sensor offset, this leads to the cancellation of Bbg and Bso:

Bx =
1

2
(Bx′,0 −Bx′,180) (83)

Bx =
1

2
(Bt +Bbg +Bso (84)

− (−Bt +Bbg +Bso)) (85)

Bx =
1

2
(Bt +Bt) (86)
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Therefore, this measurement method cancels automatically a time and co-
ordinate independent background field and a constant sensor offset at the
same time.

The same argument holds for By as well.
Cancellation of positioning errors: The hall probe is centered to the axis

of the magnet at the beginning of the measurement, yet a small offset in
position ∆x′ or ∆y′ cannot be excluded. If one measurement is taken at the
coordinates (x, y, z) = (x′+ ∆x′, y′, z′), the rotated measurement is taken at
(x, y, z) = (−x′ + ∆x′,−y′, z′). Taking the average, this becomes

B(x, y, z) =
1

2
(B′0(x

′, y′, z′)−B′180(−x′,−y′, z′)) (87)

B(x, y, z) =
1

2
(B0(x−∆x′, y, z) +B180(x+ ∆x′, y, z)) (88)

which linear interpolates B(x, y, z).
The same argument holds for ∆y′ and the y-coordinate as well.

4.6 Analysis Method

The field maps obtained with the reconstruction method described above are
used to determine the quality of the SMI permanent sextupoles magnetic
field.

As a first step, the equation for the sextupole field

B(r) =
gs
2
r2 (89)

is fitted to the measurement points for every z-plane (see figure 18).
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Figure 18: Measured values of the magnetic field of magnet C at z = 2.74 mm
and fit of B(r) = gs

2 r
2.

This results in a value of the sextupole strength gs in dependence of
the z-coordinate. It is a measure of the strength of the sextupole field as a
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function of the z-coordinate. As an example the resulting z-dependence for
magnet C is shown in figure 19.
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Figure 19: Sextupole strength gs(z) of magnet C, determined by fitting all
measurements for a given z-plane, and fit of f4(z) (upper graph). Residuals
of fit (lower graph).

In the second step, an analytic equation is fitted to the determined values
of gs(z) in order to get an analytic function of the z-dependence of the
sextupole strength. This function will be used in the trajectory simulations
described in chapter 6.

In a third step, the sextupole strength gs(z) is integrated along the z-axis
to get a measure of the total strength of the sextupole field

Gs =

∫ +∞

−∞
gs(z)dz (90)

of a magnet and to be able to compare different magnets.
The following functions are evaluated as model for the sextupole strength

gs(z):

f1(z) =a exp

(
−
(
z −m
s

)2
)(

(z −m)2 + b
)

(91)

f2(z) =
a

2

(
z −m+ L/2√

R2 + (z −m+ L/2)2
− z −m− L/2√

R2 + (z −m− L/2)2

)
(92)

f3(z) =
a

2
(tanh(b(z −m+ L/2)) + tanh(b(−z +m+ L/2))) (93)
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f4(z) =
a

2

(
z −m+ L/2

(Rc + |z −m+ L/2|c)1/c
− z −m− L/2

(Rc + |z −m− L/2|c)1/c

)
(94)

f5(z) =
a

π
(arctan(b(z −m+ L/2)) + arctan(b(−z +m+ L/2))) (95)

where m is the center of the magnet, L the length of the magnet, a describes
the magnitude, and b, c and R are parameters that describe the shape.

Except for f1(z) all of these functions are superpositions of functions that
go smoothly from 0 to 1 and are symmetrical with respect to a point where
they are at half maximum. From theoretical considerations [42] follows that
this point should be at the end of the magnet where z = ±L/2.

These functions are fitted to measurements of 9 magnets and the root
mean squared error10 (RMSE) of the fit is determined. For every function
the mean and standard deviation of the RMSE of these 9 measurements is
displayed in table 3. As can bee seen from table 3 the function f4(z) best
describes the measurements.

function mean of RMSE standard deviation of RMSE
f1(z) 9.25 1.26
f2(z) 9.63 1.49
f3(z) 5.80 0.78
f4(z) 2.90 0.80
f5(z) 24.6 3.02

Table 3: Root mean squared error (RMSE) of fitting functions.

4.7 Comparison of Magnet Configurations

One set of the same 12 NeFeB magnets were used to build first a magnet of
configuration A and then of configuration B in order to compare the field of
both configurations.

The results are shown in figure 20. The maximum of the sextupole field
for configuration A is 5% larger than for configuration B. The full width at
half maximum is almost the same for both configurations and is equal to
the physical length of the magnets, which is 50 mm. In comparison with
configuration B, for configuration A the magnetic field is larger inside the
magnet (|z| < L/2), than outside of the magnet (|z| > L/2).

In table 4 the maximum of the field strength gs,max, the integrated gra-
dient and the fitting parameters are summarized for both configurations.

Another advantage of configuration A is the attractive force between the
individual magnets. This avoids instabilities during assembly and makes it
also preferable from a safety point of view over configuration B, where the

10see page 41
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Figure 20: Comparison of gs(z) for configuration A (red) and configuration
B (blue). Magnet C was used for this comparison. The grey area indicates
the physical length of the magnets.

parameter configuration A configuration B unit
gs,max 1.590 1.511 mT mm−2

Gs 85.15 83.25 T m−1

L 50.04 ± 0.11 49.99 ± 0.15 mm

R 12.68 ± 0.16 15.19 ± 0.14 mm

a 1.7017 ± 0.0077 1.6654 ± 0.0072 mT mm−2

c 2.473 ± 0.068 2.525 ± 0.051 -
m −0.918 ± 0.028 −1.231 ± 0.033 mm

Table 4: Comparison of parameters for configuration A and configuration B.
Magnet C was used for this comparison.
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magnets strongly repel each other. Because the half shells are held together
by the magnetic force, they can be installed at the beam pipe without any
screws.

4.8 Results

All 9 SMI permanent magnet assemblies have been analyzed using the method
described above. The resulting measurements are shown in figure 21 and the
results of the fits to the measured values are summarized in table 5.

As can be see in figure 21, the variation between the individual magnets
is very small. There is however one group of magnets (D, E, F and G) for
which the amplitude a is higher by 2%. As expected, for all magnets the
length L at half maximum corresponds to the physical length of the magnets
within the error. It is interesting to note that the exponent c in equation 94
is ≈ 5

2 for all magnets.
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Figure 21: Sextupole strength gs(z) for all 9 SMI sextupole magnets. The
physical length of the magnets is indicated in grey.

For his summer student report M. Huzan [52] carried out further analysis
on the SMI sextupole magnets: The approach is to fit

B(x, y) =
gs
2

((
x− x0
a

)2

+

(
y − y0
b

)2
)

(96)

to every x-y-plane for an individual magnet and to determine gs as well
as the parameters a, b, x0 and y0 as a function of the z-coordinate. The
parameters a and b describe the ellipticity, and the parameters x0 and y0 an
offset in x- and y-direction, respectively.
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The results show no ellipticity within the error and no offset in neither
x- nor y-direction for all 9 SMI magnets.

magnet L [mm] R [mm] a [mT mm−2] c [1] m [mm]
A 49.87 ± 0.13 12.72 ± 0.17 1.7028 ± 0.0087 2.505 ± 0.076 −1.167 ± 0.031
B 49.89 ± 0.18 13.13 ± 0.22 1.7034 ± 0.0077 2.567 ± 0.077 +0.816 ± 0.060
C 50.04 ± 0.11 12.68 ± 0.16 1.7017 ± 0.0077 2.473 ± 0.068 −0.918 ± 0.028
D 50.04 ± 0.12 12.48 ± 0.14 1.7382 ± 0.0078 2.395 ± 0.061 −1.576 ± 0.033
E 49.99 ± 0.11 12.42 ± 0.14 1.7439 ± 0.0079 2.420 ± 0.063 −1.519 ± 0.029
F 49.92 ± 0.10 12.44 ± 0.12 1.7462 ± 0.0060 2.407 ± 0.047 −1.343 ± 0.026
G 49.92 ± 0.11 12.42 ± 0.13 1.7442 ± 0.0077 2.419 ± 0.061 −1.475 ± 0.030
H 49.96 ± 0.14 12.61 ± 0.16 1.6937 ± 0.0089 2.410 ± 0.069 −1.194 ± 0.032
I 49.93 ± 0.09 12.65 ± 0.11 1.7026 ± 0.0047 2.488 ± 0.036 −1.018 ± 0.025

Table 5: Fit parameters: results of fitting f4(z) to the measurements of gs(z)
of all 9 SMI magnets.
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5 Velocity Selection of Polarizing Sextupoles

The hydrogen beam experiment features a permanent sextupole magnet du-
plet (the CERN magnets) whose purpose is to polarize the beam and to
select a narrow band of velocities from the Maxwell-Boltzmann distributed
velocities of the hydrogen atoms emitted by the source. In this chapter
measurements of the velocity selecting properties of the CERN permanent
sextupole magnets are presented.

5.1 Setup

This measurement uses the configuration 2.2 "short setup" of the hydrogen
beam experiment (see section 3.11.3). The beam of atomic hydrogen from the
source is collimated by a 2 mm diameter skimmer. The skimmer is mounted
between the source and the CERN magnet doublet with a distance of ≈
170 mm between the skimmer and the CERN magnet doublet. Hydrogen
atoms of certain velocities are selected by passing through both magnets
and the aperture in between, as described in section 3.5.

The distance between both magnets of the CERN magnet doublet is
varied by a rack and pinion gear and a manual rotation feedtrough, which
can be locked to a set of mounting holes for reproducibility of each position.
A mounting hole mh corresponds to a distance d between both magnets of

d = 16 mm +mh× 1.875 mm. (97)

The tuning fork chopper is mounted downstream of the CERN magnet
doublet with a distance of 2.2 m between the chopper and the QMS detector.
The beam is chopped with a frequency of ≈ 178.5 Hz. Five SMI sextupole
magnets are used to focus the beam onto the QMS detector.

5.2 Method

The setup is aligned by optical means with the help of the laser beam. A
beam of hydrogen atoms is introduced into the setup. The chopper is acti-
vated and its amplitude set close to its maximum amplitude. The alignment
of the QMS detector is adjusted in the plane perpendicular to the beam such
that the rate at the detector is at a maximum.

Then the distance between the two CERN sextupole magnets is varied in
steps of 5 mounting holes. For every step several sets of histograms of count
rate versus chopper phase are recorded by the software lock-in amplifier. The
recording time for one histogram was set to 60 s. The number of histograms
recorded for every step is shown in table 6.

At the end of the measurement campaign the QMS detector is adjusted in
the plane perpendicular to the beam such that the laser signal is a maximum.
Then the chopper amplitude is varied within ±10% of the original amplitude
and histograms of the laser signal are recorded.
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# of measurement mounting hole # of histograms
1 40 50
2 45 50
3 50 100
4 35 50
5 30 50
6 15 5
7 20 5
8 25 5
9 31 5
10 10 5
11 5 5
12 0 5
13 5 10
14 0 10
15 10 10
16 20 10
17 25 10
18 15 10
19 35 30
20 30 30
21 40 30
22 45 60
23 50 60

Table 6: List of velocity selection measurements. The measurement num-
ber together with the mounting hole setting and the number of recorded
histograms are listed. The recording time of one histogram is 60 s.
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5.3 Analysis

The beam velocity v is calculated from the time of flight t of the hydrogen
atoms traversing the distance L between the chopper and the QMS detector.
Because the time of flight of the laser signal is negligible, it corresponds
directly to the chopper opening. Therefore, comparison of the phase of the
laser φL signal and the phase of the beam signal φ with respect to the
chopper reference signal with frequency fch yields the time of flight. The
velocity becomes

v =
L

t
=
L 2πfch
φ− φL

(98)

where φ and φL are in units of rad.

5.3.1 Laser Phase

The phase of the reference signal of the chopper does not correspond directly
to the phase of the opening of the chopper. Therefore, the phase of the
opening is determined by the signal of the chopped laser beam on the photo
diode. The shift relative to the chopper reference signal is referred to as laser
phase.

The laser phase is determined from histograms of the photo diode signal
(figure 22). The laser signal is truncated, because the laser beam is smaller
in diameter than the chopper opening. Therefore, the photo diode signal is
fitted with a truncated positive half-wave of a sine, and the phase is extracted
from the fit.
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Figure 22: Lock-in amplifier histogram of the laser signal. The fit with a
truncated positive half-wave of a sine yields the laser phase.

The laser signal, however, is not always available when the QMS detector
is adjusted to the maximum of the hydrogen beam signal. Therefore, a linear
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relationship between the laser phase and the chopper frequency is used to
reconstruct the laser phase when the laser signal is not available.

To determine the relationship between laser phase and chopper frequency,
histograms of the laser signal for several different chopper amplitudes are
fitted with the method described above. The values for the laser phase
extracted from the fits are shown in figure 23 as a function of the chopper
frequency.
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Figure 23: Measurements of laser phase as a function of copper frequency.

A model for prediction of the laser phase

φL[rad] = a× (fch[Hz]− 178.5) + b (99)

is fitted to the data. The results for the coefficients a and b are:

a = −0.0342± 0.0030 (100)
b = +0.2722± 0.0001 (101)

An estimated value of the laser phase using this equation is used when the
laser signal is not available.

5.3.2 Beam Phase

The lock-in amplifier returns histograms of count rate versus phase of the
reference signal (figure 24). The count rate shows two components: a con-
stant background, and the signal of the beam, which is modulated with the
chopper frequency. The beam phase is determined from these histograms by
fitting a suitable function, where the beam phase is a fit parameter. Several
fit functions are evaluated:

• a positive half-wave of a sine.
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• a truncated positive half-wave of a sine (as used for the laser signal).

• a truncated positive half-wave of a sine convoluted with a gaussian.

All three fit functions allow for a determination of the beam phase, from
which the mean velocity of the hydrogen beam can be calculated. However,
only the last one also allows for the determination of the width of the velocity
distribution. The width of the velocity distribution is determined by the fit
parameter sigma of the gaussian.

As an example the histogram of beam counts for measurement 1 (table 6),
fitted with a positive half-wave of a sine is shown in figure 24. The same
histogram, fitted with a truncated positive half-wave of a sine is shown in
figure 25. And the fit of the truncated positive half-wave of a sine convoluted
with a gaussian is shown in figure 26.

The following goodness-of-fit parameters are calculated to evaluate the
three fit functions:

• SSE: sum of squares due to error

SSE =
n∑
i=1

wi(xi − x̂i)2 (102)

where wi = 1/σ2i = 1/xi the weight, xi the measurement and x̂i the
prediction.

• DOF: residual degrees of freedom

• RMSE: root mean squared error

RMSE =

√
SSE
DOF

(103)

The RMSE is also known as the square root of the reduced χ2.
Table 7 shows the goodness-of-fit parameters for the three fit functions.

Measurement # 1 was used for this evaluation. From the values of the RMSE
can be deduced that the truncated sine is a much better fit function than
the sine. Best is the convolution of the truncated sine with a gaussian.

fit function SSE DOF RMSE
sine 556.6 197 1.68
trunc 272.7 196 1.18
conv 233.2 195 1.09

Table 7: Goodness-of-fit parameters for the three different fit functions.
Sine: Positive half-wave of sine. Trunc: Truncated positive half-wave of sine.
Conv: Convolution of truncated positive half-wave of sine with gaussian.
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Figure 24: Histogram of count rate versus phase of reference signal (mea-
surement # 1). Top: Count rate and fit with positive half-wave of a sine.
Bottom: Residuals of fit.
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Figure 25: Histogram of count rate versus phase of reference signal (mea-
surement # 1). Top: Count rate and fit with truncated positive half-wave
of a sine. Bottom: Residuals of fit.
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Figure 26: Histogram of count rate versus phase of reference signal (mea-
surement # 1). Top: Count rate and fit with truncated positive half-wave
of a sine convoluted with a gaussian. Bottom: Residuals of fit.
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5.4 Result

For 23 measurements (see table 6) the beam phase φ and the laser phase
φL are determined according to the methods described above. The chopper
frequency is determined by the lock-in amplifier software and read from the
log files of the measurement. The flight path is determined by the setup
configuration and 2.2 m long.

The velocities calculated according to equation 98 are plotted against
the distance between the CERN sextupole magnets in figure 27. The beam
velocity varies linearly between approximately 1200 m s−1 for the smallest
distance and approximately 1600 m s−1 for the largest distance. The results
are independent of the fit function used.
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Figure 27: Beam velocity versus distance between the CERN magnet dou-
blet. The colors indicate the fit function used. Red points (truncated sine)
have been shifted to the right by one unit for better visibility. Black points
(convolution) have been shifted to the right by two units.

Typical relative errors of the physical quantities that enter equation 98
are listed in table 8. The largest contributions come from the laser phase
and the beam phase. The relative error of the calculated velocity values is
approximately 0.02.

Systematic errors that have not been taken into account and may influ-
ence the estimate of velocity:

• Ionic delay: A delay in the signal of the QMS detector due to the time
of flight of the ions from the ionization region to the channeltron. A
delay would increase the velocity estimates.
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quantity symbol relative error
length L 0.005

chopper frequency fch 0.0001
beam phase φ 0.01
laser phase φL 0.01
velocity v 0.02

Table 8: Typical relative errors of quantities entering the velocity measure-
ments and typical estimated error of calculated velocity values.

• Diode delay: A delay in the signal of the photo diode. A delay would
decrease the velocity estimates.

• Beam components with different velocity distributions: The approxi-
mation of a gaussian velocity distribution would not be valid any more.
A deconvolution analysis of the count rate signal may be attempted.

The results in section 7.5 show that the velocities, determined using this
method, are potentially overestimated by 2-13%.
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6 Trajectory Simulations

To obtain a quantitative understanding of the optical characteristics of the
beam line and the transport of atoms through our setup, a simplified model
of the hydrogen beam is created. It is presented in this chapter.

6.1 Force on Hydrogen Atoms

The force acting on a particle in a static inhomogeneous magnetic field ~B
and a static inhomogeneous electric field ~E is

~F = q( ~E + ~v × ~B)− ~∇(E) (104)

where q is the charge of the particle, ~v its velocity, and E the energy of the
particle in the electric and magnetic field. The first term is the Lorentz force.
The second term results from the potential energy of the electric and mag-
netic moment of the particle in the electric and magnetic field, respectively.

Classically the energy may be

E = −~d · ~E − ~µ · ~B (105)

where ~d is the electric dipole moment and ~µ the magnetic moment.
However, for a quantum mechanical system such as the hydrogen atom,

the energy is the solution of the eigenvalue problem11 H|Φ〉 = En|Φ〉 (equa-
tion 25), therefore

E = En. (110)

The force acting on the neutral hydrogen atom in an inhomogeneous
magnetic field is

~F = −~∇(En). (111)

Inserting the eigen energy for the states |2〉 and |4〉 into equation 111,
the force becomes

~F = ∓µ′ B/BC√
1 + (B/BC)2

~∇B (112)

where B = | ~B|, the upper sign is for state |2〉 and the lower one for state |4〉.
11For the hydrogen atom in its ground state the solutions of the eigenvalue problem are

the eigen energies (see section 2.1):

E1 =+
hν0
4

+ µB (106)

E2 =− hν0
4

+ µ′BC
√

1 + (B/BC)2 (107)

E3 =+
hν0
4
− µB (108)

E4 =− hν0
4
− µ′BC

√
1 + (B/BC)2 (109)

where B denotes the absolute value of the magnetic field.
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Note that the force does depend on both the absolute value of the mag-
netic field and the gradient of the absolute value of the magnetic field.

For the states |1〉 and |3〉 the resulting force is

~F = ∓µ~∇B (113)

where the upper sign is for state |1〉 and the lower sign for state |3〉. In
this case the force depends only on the gradient of the absolute value of the
magnetic field.

6.2 Equations of Motion

Equations of motion for the hydrogen atom in state |1〉, |2〉, |3〉, or |4〉 in the
magnetic sextupole field of the beam line are derived. To treat the problem,
cylindrical coordinates (r, ϕ, z) are chosen. The z-axis is coaxial to the beam
and is positive in flight direction.

The magnetic field gradient of the sextupole field

~∇B = ~∇gs
2
r2 = gsr~er (114)

points in radial direction (~er is the unit vector in radial direction). Its
strength gs(z) is a function of z.

Effects of the gradient at the end of the magnets, where the gradient
points in z-direction, are neglected.

The equation of motion for states |1〉 and |3〉 becomes

mr̈~er = ∓µ~∇B = ∓µgsr~er (115)
mz̈~ez = 0 (116)

and for states |2〉 and |4〉

mr̈~er = ∓µ′ B/BC√
1 + (B/BC)2

~∇B (117)

= ∓µ′ gsr
2/2BC√

1 + (gsr2/2BC)2
gsr~er (118)

mz̈~ez = 0 (119)

In the field of the magnetic sextupole, the acceleration in z-direction is
zero, therefore the velocity along the beam axis is constant.

The acceleration in radial direction depends on the radius. For a hy-
drogen atom in a sextupole field of strength gs = 1600 T m−2 (the typical
strength of the SMI magnets) the relative acceleration r̈/r for state |1〉 and
|2〉 is shown in figure 28. The acceleration divided by the radius is constant
for state |1〉. For state |2〉 it depends strongly on the radius, because the
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Figure 28: Relative acceleration r̈/r in radial direction for hydrogen atoms
in state |1〉 or |2〉 within a sextupole field of gs = 1600 T m−2 (the typical
field strength of the SMI magnets). Indicated in grey is the opening of the
ring aperture.

magnetic moment depends on the magnetic field, which – in the sextupole
magnet – depends on the radius.

For states |3〉 and |4〉 with positive sign, the motion in radial direction is
directed outwards, such that these states are defocused. For the special case
of state |3〉 and constant gs, the solution of the radial equation is described
by hyperbolic functions.

For states |1〉 and |2〉 with negative sign, the motion in radial direction is
an oscillation around the beam axis. For a constant gs, the motion of state
|1〉 is a harmonic oscillation. For state |2〉 the motion is still an oscillation,
but because of the magnetic field dependence of the magnetic moment, it is
an anharmonic oscillation.

The behavior described above is shown in figure 29. Trajectories of all
four states are plotted for a hypothetical sextupole field of 400 mm length and
gs = 114 000 T m−2 (the typical strength of the CERN magnets). A feature
of the harmonic oscillation of state |1〉 is, that the oscillation frequency is
independent of the radius. Therefore, a beam of state |1〉 emerging form a
point-like source will get refocussed onto a single point independent of the
initial angle, whereas the focal point of state |2〉 strongly depends on the
initial angle. For large initial angles both trajectories are close, because the
deflection happens mostly in the area where the field (and the radius) is large
and the acceleration is similar for both states.
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Figure 29: Trajectories of the four ground states of atomic hydrogen in
a magnetic sextupole field of strength gs = 114 000 T m−2 extended from
100 mm to 500 mm (indicated in grey). The initial velocity is vi = 1300 m s−1

and the angles α between vi and the z-axis are α = 0.5◦, 1◦, and 1.5◦.
States |1〉 and |2〉 oscillate around the beam axis, while states |3〉 and |4〉 are
deflected radially outwards.

6.3 Numerical Algorithm

The above equations of motion for hydrogen atoms in their particular state
are solved numerically using the Euler method.

The problem is to simultaneously solve

r̈(t) =
µHgs
m

r(t) (120)

z̈(t) = 0 (121)

where µH = µH(r, gs) stands for ∓µ or ∓µ′ gsr2/2BC√
1+(gsr2/2BC)2

.

Because the solution for the second equation is

z(t) = vt (122)

where v is the initial velocity in z-direction, the radial coordinate r can be
expressed as a function of z

r′′(z) =
µHgs
mv2

r(z) (123)

The second order differential equation can be transformed to two first
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order equations

r′ = k (124)

k′ =
µHgs
mv2

r (125)

by introducing r′ = k.
The Euler method for the radial coordinate is then

rn+1 = rn + l kn (126)

kn+1 = kn + l
µH(rn, gs(z)) gs(z)

mv2
rn (127)

where l is the step size in z-direction, such that z = nl. Values for the initial
radius r0 and the initial slope k0 of the beam trajectory have to be provided.
As well as the initial velocity v of the particle and the sextupole strength
gs(z) as a function of z.

First this algorithm is applied to gain a better understanding of the ve-
locity selection and polarizing properties of the CERN sextupole magnet
doublet. Then the trajectories of several hydrogen beam setups are investi-
gated. Finally the algorithm is used to design the layout of the new beam
optics using ring apertures.

6.4 Velocity Selection of a Sextupole Doublet

The CERN sextupole magnet doublet consists of two magnets 65 mm long
with strength gs = 144 000 T m−2 (calculated from the given values in refer-
ence [38]). As a model of gs(z) a rectangular function is used which is equal
to gs at the magnets position and zero otherwise. Boundary effects of the
magnets, therefore, are not taken into account.

Figure 30 shows simulated trajectories of hydrogen atoms traversing the
CERN magnet doublet for the 4 ground states of hydrogen for one initial
velocity and multiple initial angles.

The hydrogen atoms in state |1〉 are refocussed onto a point at z =
160 mm by the first magnet. The focal point of the atoms in state |2〉 strongly
depends on the radius at which they are deflected. For large radii the focal
point is close to the focal point for state |1〉, for small radii the deflection
becomes weaker and the focal points shifts downstream. Atoms in state |3〉
and |4〉 are defocussed and removed from the beam.

In the setup the paths of the hydrogen atoms depend on the velocity of
the atom. Atoms with larger velocity are deflected less and their focal point
is farther downstream than for atoms with small velocity. By increasing the
distance between the magnet doublet, atoms of larger velocities are focussed
at the position of the aperture. If an aperture of appropriate size is placed
at this point, atoms with a certain velocity are selected. By variation of
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Figure 30: Top: Trajectories of hydrogen atoms in the CERN sextupole
doublet. For the initial velocity vi = 937 m s−1 multiple angles are simulated.
The aperture with diameter 3 mm at z = 160 mm is indicated in black. The
source is placed at position z = 0 mm. Bottom: sextupole strength gs(z) of
the assembly.
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the distance between the magnet doublet, the transmitted velocity can be
selected. The width of the transmitted velocity distribution depends on the
diameter of the aperture.

Figure 31 shows the results of a simulation to determine the transmitted
velocity of the CERN magnet doublet as a function of distance between
both magnets for an infinitely small aperture placed in the center between
the magnets.

0 20 40 60 80 100 120

700

800

900

1000

1100

1200

d [mm]

v
 [
m

/s
]

 

 

|1>

|2>

2°

1°

1.5°

0.5°

(a) Divergent beam. For a distance of
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Figure 31: Simulation of transmitted velocity as a function of distance be-
tween both magnets of the CERN sextupole doublet for a divergent beam
(a) and a parallel beam (b). The divergent beam originates from a source
160 mm upstream of the magnet doublet. The simulation assumes an in-
finitely small aperture. For state |1〉 the transmitted velocity depends only
on the distance, for state |2〉 it depends also on the initial angle of a divergent
beam (a) or on the initial radius of a parallel beam (b).

Velocity selection works very well for hydrogen atoms in state |1〉. For
atoms in state |2〉, for different initial angles different velocities are allowed to
pass through the aperture. Therefore, the width of the transmitted velocity
distribution is broader for state |2〉 than for state |1〉.

6.5 Setup Configurations 2.1 and 2.2

In the setup configurations 2.1 and 2.2 the CERN magnet doublet is applied
as velocity selector. The difference between configurations 2.1 and 2.2 is
the cavity, which is removed in configuration 2.2. Trajectories of hydrogen
atoms in setup 2.1 are shown in figure 32. The trajectories and effects in
setup 2.2 are similar, with the positions of the second set of SMI magnets
and the QMS detector 560 mm further upstream.

As can be seen in figure 32, the beam is divergent downstream of the
CERN magnet doublet until it is refocussed onto the detector by the SMI
magnets. Because this refocussing is velocity dependent, the velocity selected
by the CERN magnets has to match the velocity for which the SMI magnets
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Figure 32: Trajectories in setup configuration 2.1 "permanent magnets"
(top) and sextupole strength gs(z) (bottom). The beam emerges from the
skimmer at z = 0 mm. The sextupole doublet (with an aperture of 3 mm
diameter between the two magnets) is centered at z = 160 mm. The chop-
per position at z = 715 mm is indicated in black. Apertures for differential
pumping at z = 580 mm and z = 850 mm are shown in black. And the
QMS detector is located at z = 3477 mm. The gs of the analysis magnets at
z = 2480 mm is amplified by a factor of 100.
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focus the beam onto the QMS detector.
A narrow band of velocities is selected for state |1〉, such that most atoms

are focussed onto the QMS detector. A broad band of velocities is selected
for state |2〉 and only a small fraction is focussed onto the sensitive area of
the QMS detector, most of the beam is focussed to points in front of, or
behind the QMS detector. The transmitted velocities for a beam with initial
angle ≤ 1.2◦ and a distance between the sextupole doublet of d = 53.5 mm
is shown in figure 33.
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Figure 33: Velocity transmission of the setup configurations 2.1 and 2.2. A
beam with initial angle ≤ 1.2◦ is simulated for a sextupole distance d =
53.5 mm.

As a result the LFS-polarization12 PLFS = N1−N2
N1+N2

is large because much
more atoms in state |1〉 arrive at the detector than atoms in state |2〉.

The fact that the trajectories of the hydrogen atoms in state |1〉 are
focussed onto the detector, but atoms in state |2〉 are not, led to the devel-
opment of the new beam optics described in the next section.

6.6 Principle of New Beam Optics

From equation 112 follows that the deflection of state |2〉 depends strongly
on the magnetic field. At a field of B = BC the force on state |2〉 is 71% of
the force for state |1〉, at B = 3BC the force is already 95% of that on state
|1〉.

In the sextupole magnet the radius and the magnetic field are related.
12Usually the polarization is defined as P = NHFS−NLFS

NHFS+NLFS
(where HFS denotes states |3〉

and |4〉 and LFS denotes states |1〉 and |2〉) and describes the excess of HFS states over
LFS states. Here the LFS-polarization PLFS = N1−N2

N1+N2
describes the excess of states |1〉

over states |2〉 in the transmitted beam of LFS. For equal statistics of π- and σ-resonances
PLFS should be close to zero.
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For every magnet a characteristic radius

rc =

√
2BC
gs

(128)

can be calculated (table 9). At this radius the force on state |2〉 is 71% lower
compared to state |1〉. At r =

√
3rc this factor is already 95%.

The principle of the new apertures is based on blocking the central part
of the beam, where the deflection of states |1〉 and |2〉 are very different. For
the parts of the beam that are able to reach the detector, the difference in
deflection is smaller than ≈ 5%. Furthermore, the arrangement of magnets
and following from this the trajectories of the atoms are rather symmetric
with respect to the plane equidistant from the source and detector.

magnet strength gs [T m−2] radius rc [mm]
SMI 1600 8.0

CERN 114000 0.94
SC at 350 A 2000 7.1

Table 9: Characteristic radius rc for different types of sextupole magnets.
SC = superconducting magnet.

6.7 Setup Configuration 2.3

The setup configuration 2.3 is designed according to the principles discussed
above. Trajectory simulations (figure 34) show that – for the right velocity –
the beam is made parallel by the first set of magnets, and focussed onto the
detector by the second set of magnets. The velocity at which that happens
is slightly different for atoms in state |1〉 and state |2〉.

To determine the velocity transmission of the setup, trajectories for 180
angles and 180 velocity values are calculated. They are filled into a histogram
if they hit the detector within a diameter of 3 mm. The resulting histogram
is shown in figure 35. Only particles within a narrow window of velocities
will arrive at the detector. The mean velocity v and velocity width σv for
states |1〉 and |2〉 are:

v1 = 1040.4 m s−1 v2 = 974.1 m s−1 (129)

σv1 = 13.4 m s−1 σv2 = 26.3 m s−1 (130)

The LFS-polarization is defined as

PLFS =
N1 −N2

N1 +N2
(131)
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Figure 34: Simulated trajectories in setup configuration 2.3 "ring aperture"
(top) and sextupole strength gs(z) (bottom). Trajectories for 4 different
angles and 2 velocities (990 m s−1 and 1040 m s−1) are shown. The beam
emerges from the source at position z = −80 mm. The ring aperture 1
with inner diameter 12 mm and outer diameter 23 mm is displayed at z =
410 mm and ring aperture 2 with inner diameter 24 mm and outer diameter
38 mm is displayed at z = 2560 mm. SMI magnets are shown at positions
z = 635 mm, 715 mm, 795 mm, 2910 mm and 2990 mm. An aperture for
differential pumping at position z = 4065 mm is indicated in black. And the
QMS detector is located at position z = 4215 mm.
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where N1 and N2 are the number of atoms in states |1〉 and |2〉, respectively.
For setup 2.3 the calculated LFS-polarization is:

PLFS = −0.18 (132)
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Figure 35: Velocity transmission of ring aperture setup. The mean velocity
for state |1〉 is 1040.4 m s−1. For state |2〉 it is 974.1 m s−1. State |3〉 and |4〉
do not reach the detector at all.

6.8 Summary of the Trajectory Simulations

The here developed simplified model of the hydrogen beam provided useful
insights into the transport of atoms through the setup. As well as into the
results of the quantum mechanical effect of the mixing of states |1/2,−1/2〉
and | − 1/2, 1/2〉 which leads to a drop > 5% in the magnetic moment of
state |2〉 for fields lower than 3BC .

Trajectory simulations of hydrogen atoms in ground state show that the
behavior of states |1〉 and |2〉, which are usually called low field seekers, is very
different in low magnetic fields (lower than 3BC). The simulations further
show that, because the states are deflected differently, the LFS-polarization
is highly dependent on the position of the detector.
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7 Resonance Measurements

In this chapter the measurements of both the σ- and π-transition using setup
configurations 2.1 and 2.3 are reported.

7.1 Line Shape

In the magnetic field of the earth the frequencies of the σ- and π-transition
are sufficiently separated to treat each transition in the framework of a 2-level
system:

π : |1〉 ↔ |4〉 (133)
σ : |2〉 ↔ |4〉 (134)

The line shape is calculated by solving the optical Bloch equations for each
2-level system. Because of the cosine shaped oscillating magnetic field inside
the strip line cavity, the transition probability has two peaks (figure 36).
They are symmetric with respect to the central frequency, which is the tran-
sition frequency.

Simulations of the line shape have been carried out by C. Sauerzopf [21].
For a given interaction time t, the transition probability depends on the
amplitude of the oscillating magnetic field B0 and the frequency detune
∆ = ν − νT , the difference between microwave frequency ν and transition
frequency νT . Figure 37 shows the transition probability as a function of
B0 and ∆ for a beam with velocity v = 1000 m s−1 in a cavity of length
l = 100 mm (with an interaction time of t = l/v = 100 µs).
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Figure 36: Transition probability of a v = 1000 m s−1 beam at an oscillating
field amplitude of B0 = 6.0× 10−7 T for a cavity of length l = 109.5 mm
(the length of the strip line cavity used, see section 3.7).

Because the transition probability depends on the interaction time t, the
line shape is different for different velocity components of the beam. The
simulation was carried out for one specific velocity v. The line shape for
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Figure 37: Simulated transition probability as a function of oscillating
field amplitude B0 and frequency detune ∆ for a beam with velocity
v = 1000 m s−1 in a cavity of length l = 100 mm.
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a different velocity v′ can be calculated by scaling the magnitude of the
oscillating field B′0 = B0

v′

v and frequency detune ∆′ = ∆v′

v .
The line shape which takes into account a velocity spread is a sum of

line shapes for several velocities, calculated as follows: For a given velocity
v, the transition probability at B0 and ∆ are determined by 2d spline in-
terpolation13 on a grid of simulated values. The line shapes for n velocities
v− n

2 ×dv, v− (n2 +1)×dv, · · · , v+ n
2 ×dv are summed with weights accord-

ing to the binomial factor, as discrete approximation to a gaussian velocity
distribution. This results in the transition probability

ρ = ρ(v, σv, B0,∆). (135)

To fit the measured data the line shape is shifted by the transition fre-
quency νT and scaled with the count rate drop a. A constant baseline rate
b is added:

N = b− a ρ(v, σv, B0,∆− νT ). (136)

By fitting this line shape to the measured data of beam rate versus microwave
frequency, the transition frequency νT , the mean beam velocity v and the
beam velocity width σv are determined.

7.2 Measurement Method

The setup is aligned by optical means with the help of a laser beam. A beam
of hydrogen atoms is introduced into the setup, the chopper is activated, and
the QMS detector is adjusted in the plane perpendicular to the beam such
that the rate at the detector is a maximum.

Then microwaves of a certain frequency and amplitude are introduced
into the cavity. Two histograms of count rate versus chopper phase are
recorded by the software lock-in amplifier for every setting of frequency and
amplitude. The recording time for one histogram is set to 30 s. Therefore,
the recording time per frequency or amplitude point is 60 s.

First the microwave frequency is scanned at a certain oscillating mag-
netic field amplitude. Then the frequency is set to the maximal transition
probability (minimum count rate) and the amplitude is scanned. After this
scan, the amplitude is set to the maximal transition probability and this
amplitude setting is used throughout the following measurements.

Then a range of typically 51 frequencies are scanned in random order.
The result is a histogram of count rate versus microwave frequency with a
total recording time of 3060 s. This scan process is then repeated several
times for the σ-transition (see # of repetitions in table 10).

After this process for the σ-transition, the frequency is switched to a
range covering the π-transition and one histogram of count rate versus mi-
crowave frequency is recorded. Then the frequency is set to one of the peaks

13The MATLAB function griddata with the option ’cubic’ was used to perform the two
dimensional cubic spline interpolation.
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in transition probability (minimum in count rate) and a scan in amplitude is
performed. The amplitude is set to the maximal transition probability. Then
several histogram of count rate versus microwave frequency are recorded for
the π-transition.

An overview of the recorded measurements is provided in table 10.

measurement # transition # of frequencies # of repetitions beamline
1 σ 51 14 2.3
2 π 51 22 2.3
3 π 41 3 2.1
4 σ 41 9 2.1
5 π 41 6 2.1

Table 10: Overview of measurements of the σ- and π-transition frequency.
The recording time for one repetition is 3060 s for measurements 1 and 2.
For measurements 3 to 5 the recording time of one repetition is 2460 s.

7.3 Analysis of π- and σ-Resonances in Earths Magnetic Field

The beam rate of one repetition is determined by fitting a positive half-
wave of a sine14 to the histogram of count rate versus chopper phase, as
already described in chapter 5. This results in n estimates for the beam
rate, where n is the number of repetitions. As the beam rate is determined
by the fit function, it is not associated with a poisson error. The error of
the fit parameter is used instead. For a certain frequency the final beam
rate is determined by a weighted mean of the n beam rate values for the n
repetitions. The error is estimated by the standard deviation of the weighted
mean.

7.3.1 Configuration 2.1 "Permanent Magnets"

The beam rate around the σ- and π-transition frequency for configuration
2.1 is shown in figure 38, 39, and 40.

These plots of beam rate versus microwave frequency are fitted with
the line shape function discussed above. In table 11 the results of the fit
are summarized. The fit results for the velocity of atoms in state |1〉 is
v1 ≈ 1260 m s−1 and of atoms in state |2〉 it is v2 ≈ 1090 m s−1. Both are
compared to simulated values in section 7.4.

The results in table 11 show large fit errors on the count rate drop a and
oscillating magnetic field amplitude B0 originating from a strong correlation
of these two fit parameters. Therefore, the count rate drop is determined by

14The positive half-wave of a sine was used instead of the truncated and convoluted
version because both the truncation factor and the width of the gaussian are typically
associated with large fit errors.
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quantity π-measurement (3) σ-measurement (4) π-measurement (5) unit
B0 521 ± 93 319 ± 500 473 ± 100 10−7 T
b 1232.8 ± 5.7 1229.9 ± 2.6 1177.7 ± 3.8 Hz
νT 1 420 746 970 ± 19 1 420 405 897 ± 41 1 420 746 503 ± 14 Hz
a 1 021 ± 180 309 ± 730 1102 ± 280 Hz
σv 71 ± 18 92 ± 29 82 ± 12 m s−1

v 1261 ± 16 1094 ± 44 1 264 ± 14 m s−1

SSE 69.9 49.6 84.8
DOF 35 35 35
RMSE 1.41 1.19 1.56

Table 11: Fit results for configuration 2.1 "permanent magnets".

a fit with the magnitude of the oscillating magnetic field B0 fixed at a value
where the transition probability is a maximum (B0 = 6.5× 10−7 T). This is
justified, as B0 has been set to the optimal value after the power scan. The
results of the fit with the fixed B0 are summarized in table 12.

The rates of atoms in state |1〉 and |2〉 are denoted N1 and N2, respec-
tively. N1 and N2 are determined by the count rate drop of the π- and
σ-transition, respectively. The results determined by the fit with fixed B0

are

N1 ≈ 807 Hz N2 ≈ 153 Hz (137)

quantity π-measurement (3) σ-measurement (4) π-measurement (5) unit
b 1248.7 ± 5.2 1230.5 ± 2.5 1185.0 ± 4.7 Hz
a 830 ± 12 153.2 ± 5.5 783 ± 10 Hz

SSE 111 54 141
DOF 36 36 36
RMSE 1.76 1.22 1.98

Table 12: Results of fit with oscillating magnetic field fixed at B0 =
6.5× 10−7 T. For configuration 2.1.

The LFS-polarization then becomes

PLFS =
N1 −N2

N1 +N2
= 0.68 (138)

As expected from the simulations in section 6.5 the value is large.
There is a discrepancy, because the sum of N1 and N2 is not equal to the

baseline rate b of ≈ 1220 Hz. Additional states other than |1〉 and |2〉 are
present in the measured beam at a rate of ≈ 260 Hz.

As one can see from table 11, the errors of the estimates for the am-
plitude of the oscillating magnetic field B0 and the count rate drop a are
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very large. The aforementioned correlation between these two fit parameters
can be avoided by choosing a wider scan range, which covers the side lobes
in addition to the two main peaks. Therefore, for future measurements a
wider range of frequencies is chosen. As can be seen in the next section on
the resonance measurements using the configuration 2.3, the errors of the
estimates for B0 and a are smaller.

7.3.2 Configuration 2.3 "Ring Aperture"

The beam rate versus frequency plots of the σ- and π-transition in the setup
configuration 2.3 are shown in figure 41 and 42, respectively.

In table 13 the results of the fit (as discussed above) are summarized.
The fit result for the velocities of atoms in state |1〉 or |2〉 are:

v1 = 1043.7± 7.8 m s−1 v2 = 975.3± 6.3 m s−1 (139)

quantity σ-measurement (1) π-measurement (2) unit
B0 599 ± 22 515 ± 37 10−7 T
b 730.7 ± 2.0 740.3 ± 2.0 Hz
νT 1 420 406 019 ± 29 1 420 849 899 ± 29 Hz
a 331.3 ± 4.3 390 ± 18 Hz
v 975.3 ± 6.3 1 043.7 ± 7.8 m s−1

SSE 62.9 98.9
DOF 46 46
RMSE 1.17 1.47

Table 13: Fit results for configuration 2.3 "ring aperture".

The error on the count rate drop a is small, therefore a is used as estimate
for the rates N1 and N2. The LFS-polarization becomes

PLFS =
N1 −N2

N1 +N2
= 0.08 (140)

For configuration 2.3 the sum of N1 and N2 is consistent with the baseline
rate b within one standard deviation.

In comparison with the configuration 2.1 the rate of atoms in state |2〉 is
larger by a factor of 2. However, the rate of atoms in state |1〉 is smaller by
a factor of 2. In configuration 2.3 the LFS-polarization is close to 0, which
provides beams of almost equal intensity. This enables the measurement of
both the σ- and the π-transition with comparable statistics.

7.3.3 Comparison of Beam Rate and Total Count Rate

A fit to the total count rate is shown in figure 43 for measurement # 1. As
the total rate is the number of counts in the measurement interval of 60 s,
poisson errors are used.

64



400

600

800

1000

1200

1400

b
e
a
m

 c
o
u
n
ts

 [
H

z
]

 

 

measurement

fit

1420.730 1420.740 1420.750 1420.760 1420.770
−30

−20

−10

0

10

20

30

40

microwave frequency [MHz]

 

 

residuals

Figure 38: Top: measurements of beam rate versus microwave frequency at
the π-resonance in setup configuration 2.1 ("permanent magnets"). Bottom:
residuals.
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Figure 39: Top: measurements of beam rate versus microwave frequency at
the σ-resonance in setup configuration 2.1 ("permanent magnets"). Bottom:
residuals.
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Figure 40: Top: measurements of beam rate versus microwave frequency at
the π-resonance in setup configuration 2.1 ("permanent magnets"). Bottom:
residuals.

67



400

500

600

700

800

900

b
e

a
m

 c
o

u
n

ts
 [

H
z
]

 

 

measurement

fit

1420.380 1420.390 1420.400 1420.410 1420.420 1420.430
−30

−20

−10

0

10

20

30

microwave frequency [MHz]

 

 

residuals

Figure 41: Top: measurements of beam rate versus microwave frequency
at the σ-resonance in setup configuration 2.3 ("ring aperture"). Bottom:
residuals.
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Figure 42: Top: measurements of beam rate versus microwave frequency
at the π-resonance in setup configuration 2.3 ("ring aperture"). Bottom:
residuals. The remaining structure in the residuals is likely caused by fluc-
tuations of earth’s magnetic field. As the π transition frequency is very
sensitive to shifts in the magnetic field, this leads to a smearing of the reso-
nance structure. The smearing would lead to negative residuals in the center
and positive residuals at the fringes, as observed. Since the cavity was not
shielded, other sources of varying magnetic field are also a possible cause.
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The scatter in the total rate signal is larger compared to the beam rate
signal, and the higher order peaks are barely visible. The fit result for the
transition frequency νT is:

νT = 1 420 406 096± 133 Hz (141)

The error in the transition frequency is much larger than the one determined
by the beam rate signal.

A varying background rate is the most probable cause for the degradation
of the total rate signal. The varying background rate leads to the large
scatter in the total rate. In the signal of the beam rate this effect is entirely
absent because of the lock-in detection scheme.

An overview of the other fit parameters is shown in table 14.

fit parameter beam rate fit total rate fit unit
B0 599 ± 22 634 ± 140 10−7 T
νT 1 420 406 019 ± 29 1 420 406 096 ± 133 Hz
a 331.3 ± 4.3 378 ± 58 Hz
v 975.3 ± 6.3 943 ± 39 m s−1

SSE 62.9 19.2
DOF 46 45
RMSE 1.17 0.65

Table 14: Comparison of fit values for fits of beam rate and total rate for
measurement #1

The situation was different in previous measurements by M. Diermeier [26]
where the total count rate resulted in better fit errors. However, the configu-
ration featured the cold bore of the superconducting sextupole and omitted
the aperture upstream of the QMS detector. Therefore, the transmitted
hydrogen atoms accumulated in the QMS chamber and were detected as
background rate, while the chopped signal of the hydrogen atoms in the
beam was relatively small.

7.4 Comparison with Simulation

The fit result for velocities of the atoms in states |1〉 and |2〉 in setup config-
uration 2.1 is

v1 = 1263± 16 m s−1 v2 = 1094± 44 m s−1 (142)

They are within the simulated values for a divergent and parallel beam
at a CERN magnet distance of d = 44 mm:

v1,sim = 1072− 1373 m s−1 v2,sim = 1064− 1269 m s−1 (143)
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Figure 43: Top: measurements of total rate versus microwave frequency
at the σ-resonance in setup configuration 2.3 ("ring aperture"). Bottom:
residuals.
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The measured LFS-polarization is PLFS = 0.68. This large value is ex-
pected from the simulations of the transmitted velocities in the CERN mag-
net doublet (see discussion in section 6.5).

For setup configuration 2.3 the fit results for the velocities of the |1〉 and
the |2〉 component are

v1 = 1043.7± 7.8 m s−1 v2 = 975.3± 6.3 m s−1 (144)

They agree very well with the simulated values of

v1,sim = 1040.4 m s−1 v2,sim = 974.1 m s−1 (145)

The LFS-polarization in setup configuration 2.3 is measured to be PLFS =
0.08 while the simulation value is PLFS = −0.18. This small discrepancy can
be explained if the diameter of the sensitive area of the QMS detector is
effectively smaller than d = 3 mm, which was used in the simulation.

7.5 Comparison with Time of Flight Velocity Measurements

A time-of-flight (TOF) analysis is carried out for a frequency where only one
beam component is present. The second beam component is removed by the
transition to state |4〉 in the microwave cavity and the subsequent sextupole
magnet. The method for the velocity measurement is the same as used to
characterize the CERN sextupole doublet and is described in chapter 5.

For configuration 2.1: The frequency of the σ-transition with the lowest
count rate is selected and taken as data point for the TOF analysis of the
state |1〉 beam. Equally, the frequency of the π-transition with the lowest
count rate is selected as data point for a TOF analysis of the state |2〉 beam.

For configuration 2.3: In addition a dedicated measurement with high
statistics is performed, which enables the reconstruction of both the mean
velocity and the velocity width.

The results of the TOF analysis for configuration 2.1 are:

v1 = 1316± 4 m s−1 v2 = 1241± 19 m s−1 (146)

The results of the TOF analysis for configuration 2.3 are:

v1 = 1074± 15 m s−1 v2 = 997± 12 m s−1 (147)

and the result of the dedicated measurement:

v1 = 1069± 12 m s−1 v2 = 1008± 11 m s−1 (148)

σv1 = 32± 8 m s−1 σv2 = 44± 6 m s−1 (149)

In comparison with the velocity determined by the fit of the resonance
line shape, the velocities measured with the time-of-flight method are larger
by 2-3% for configuration 2.3 and 4-13% for configuration 2.1.
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7.6 Result

Combining the measurements of the σ- and the π-transition of the ground
state hyperfine splitting, the zero-field hyperfine transition frequency ν0 and
the amplitude of the static magnetic field can be calculated:

ν0 =
µ′2

µ2 + µ′2
(2νπ − νσ)± µ2

µ2 + µ′2

√
ν2σ + 4

µ′2

µ2
(νσ − νπ) νπ (150)

B =
h

µ

(
νπ −

νσ
2
− ν0

2

)
(151)

For setup configuration 2.1 the result is:

ν0 = 1 420 405 732± 41 Hz (152)
B = 24.3669± 0.0025 µT (153)

with a deviation from the literature value of ν0 [6] of:

ν0 − ν0,lit = −19± 41 Hz (154)

For setup configuration 2.3 the result is:

ν0 = 1 420 405 740± 29 Hz (155)
B = 31.7357± 0.0025 µT (156)

with a deviation from the literature value of ν0 [6] of:

ν0 − ν0,lit = −12± 29 Hz (157)

From the comparison of both measurements follows that the magnitude
of earths magnetic field shifted from 24.367 µT to 31.736 µT over the course
of 64 days between the measurements. This change of earths magnetic field
is confirmed by the measurements of a flux-gate magnetometer positioned
close to the cavity.

The errors of the quantities entering equation 150 are summarized in
table 15 and the error budget of the zero-field transition frequency is sum-
marized in table 16 (for the measurement with setup configuration 2.3).

The zero-field hyperfine transition frequency has been determined with
a relative accuracy of

σν0
ν0

= 2.0× 10−8 (158)

Note that this is the result of a single measurement with a recording time of
30.6 hours. The measurement was carried out in the (time varying) magnetic
field of the earth. However, small variations of the earths magnetic field
during the recording did not influence the result at the presented level of
accuracy. The result can be improved by controlling the magnetic field and
by the statistics of multiple measurements.
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quantity symbol relative error of quantity
π-transition frequency νπ 2.0× 10−8

σ-transition frequency νσ 2.0× 10−8

magnetic moment µ 6.1× 10−9

magnetic moment µ′ 6.1× 10−9

Table 15: Relative errors of quantities entering the zero-field transition fre-
quency reconstruction (see equation 150).

quantity relative error of ν0
π-transition frequency 2.6× 10−11

σ-transition frequency 2.0× 10−8

magnetic moment µ 2.4× 10−15

magnetic moment µ′ 2.4× 10−15

total 2.0× 10−8

Table 16: Relative error of the zero-field transition frequency ν0 due to the
quantities in the left column. The total error is determined by gaussian error
propagation.
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8 Conclusion

Work has been carried out to prepare a spectroscopy apparatus for simul-
taneous measurement of the σ- and π-transition frequency of antihydrogen
atoms in ground state. The apparatus, equipped with a new strip line cavity,
has been tested with a beam of hydrogen atoms in earths magnetic field:

Nine permanent sextupole magnets have been built and assembled at
SMI. A 3-d positioning stage for recording field maps has been designed and
built. The analysis of the recorded field maps showed the high quality of
the sextupole magnetic field, and an analytic function suited to describe its
strength gs(z) has been found. Two configurations have been compared and
one of them has been selected to replace the superconducting magnet in the
hydrogen beam setup.

The velocity selection properties of a sextupole doublet has been inves-
tigated. A beam of hydrogen atoms with Maxwell-Boltzmann distributed
velocities has been introduced and the velocities of transmitted atoms have
been measured by time-of-flight analysis. The velocity distribution of the
transmitted hydrogen atoms is of gaussian shape. The mean velocity de-
pends on the distance between the sextupole doublet. It has been shown that
the velocity can be selected within a window of 1200 m s−1 to 1600 m s−1 by
adjusting the distance between the sextupole doublet.

A simple model of the hydrogen beam has been created and numerical
simulations of hydrogen atoms in the spectroscopy apparatus have been car-
ried out. The simulations of the transmitted velocities of the permanent
sextupole doublet assembly showed a good agreement with the time-of-flight
measurements. They revealed a very different behavior of atoms in state
|1〉 and |2〉 for magnetic fields lower than BC = 0.05 T. This is because the
magnetic moment of atoms in state |2〉 is not constant.

The simulations of trajectories in the spectroscopy apparatus and sim-
ulations of the transmitted velocity distribution led to the development of
new beam optics. These are based on the blocking of the central part of the
beam and have been realized using ring apertures. The new beam optics en-
able the measurement of both σ- and π-transitions with similar measurement
time and statistics.

An extremely good agreement between the simulated velocities and the
velocities determined by fits of the line shape has been found for the setup
employing the new beam optics.

Measurements of the σ- and π-transitions in earths magnetic field have
been carried out for both setup configurations. It has been shown that the
velocity determined by the line shape of the transition is in agreement with
the time-of-flight measurement of the velocity of both beam components.
Further it has been shown that the zero-field transition frequency ν0 can be
determined with a relative accuracy of 2.0 × 10−8 in a single measurement
lasting 30.6 hours by making use of the new beam optics.
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In the future a controlled magnetic field in the area of the strip line cavity
will be provided by the installation of McKheehan coils within a mu-metal
shielding. It is also planned to perform long-term measurements to search
for sidereal variations or drifts in ν0.
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9 Appendix A: Physical Constants and Symbol Def-
initions

With exception of ν0, which is taken from [6], the values of the physical
quantities used are taken from CODATA-2014 [54].

The values of Ry, m, µ, µ′, and BC are calculated according to the given
formulas using values from CODATA-2014 and ν0 from [6]. Their errors are
determined using gaussian error propagation.

Quantity Symbol Value Unit

speed of light c 299 792 458 (exact) m s−1

magnetic constant µ0 4π × 10−7 (exact) N A−2

electric constant 1/µ0c
2 ε0 8.854 187 817... ×10−12 F m−1

planck constant ~ 6.582 119 514(40) ×10−16 eV s
elementary charge e 1.602 176 6208(98) ×10−19 C
bohr magneton e~/2me µB 5.788 381 8012(26) ×10−5 eV T−1

fine structure constant
e2/4πε0~c

α 7.297 352 5664(17) ×10−3

Rydberg constant mec
2α2/2 Ry∞ 13.605 693 009(84) eV

hydrogen Rydberg constant
Ry =

mp
me+mp

Ry∞

Ry 13.598 287 150(84) eV

electron mass me 0.510 998 9461(31) MeV
proton mass mp 938.272 0813(58) MeV
reduced mass m =

memp
me+mp

m 0.510 720 7989(31) MeV

electron g-factor ge −2.002 319 304 361 82(52)
proton g-factor gp 5.585 694 702(17)
magnetic moment
µ = −1

2(ge + gp
me
mp

)µB

µ 5.786 289 9956(26) ×10−5 eV T−1

magnetic moment
µ′ = −1

2(ge − gp memp )µB

µ′ 5.803 898 6259(26) ×10−5 eV T−1

hydrogen hyperfine frequency ν0 1 420 405 751.768(2) Hz
magnetic field BC = 2π~ν0

2µ′ BC 0.050 606 725 87(32) T

Table 17: CODATA-2014 values and derived quantities used in this work.
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