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Kurzfassung
Im Rahmen dieser Arbeit wurde ein auf variable Nachbarschaftssuche (VNS) basierender
Algorithmus entwickelt, um eine Variante des Site-Dependent Vehicle Routing Problem
with Time Windows (SDVRPTW) zu lösen. Die Besonderheit dieser Variante ist, dass
zum einen nicht alle Kunden von allen Fahrzeugen beliefert werden dürfen und zum
anderen, dass jeder Kunde nur innerhalb eines vorgegebenen Zeitfensters beliefert werden
darf.

Motivation dieser Arbeit war weitere für die Praxis relevante Eigenschaften zu berücksich-
tigen, wie zum Beispiel große Test-Instanzen mit einen Planungshorizont über mehrere
Wochen. Der Planungshorizont wird dynamisch um jeweils einen Tag verschoben, sodass
neue Kundenaufträge hinzugefügt werden und alte Aufträge aus dem Planungshorizont
herausfallen. Ein anderes Szenario wäre, dass sich ein Zeitfenster von einem Kunden
ändert und dieser neu eingeplant werden muss oder, dass ein Kunde nur von einem
bestimmten Fahrzeug beliefert werden kann.

In dieser Arbeit wurden sowohl exakte als auch heuristische Methoden für das beschriebene
Problem entworfen. Die heuristische Methode basiert auf der VNS Metaheuristik, welche
systematisch und teilweise randomisiert nach besseren Lösungen sucht. Hierbei werden
mit der Cyclic Exchange Nachbarschaft, welche verschiedene Kunden von verschiedenen
Routen zirkular austauscht, auch Large Neighborhood Search Methoden eingesetzt.

Eine Besonderheit ist, dass der Algorithmus ohne einen expliziten Konstruktionsalgo-
rithmus auskommt, da die benutzten Nachbarschaften in der Lage sind, eine Lösung zu
erzeugen bzw. zu erweitern. Die VNS braucht daher keine Initial-Lösung, sondern kann
mit einer leeren Lösung oder einer Teillösung starten.

Die Ergebnisse des entwickelten Algorithmus wurden mit den publizierten Ergebnissen
von der Literatur verglichen. Es lässt sich zeigen, dass die Ergebnisse robust sind sowie
eine hohe Lösungsgüte besitzen.

Zusätzlich zur heuristischen Methode, wurde eine auf Techniken der mathematischen
Programmierung basierende exakte Methode entwickelt. Das zugrundeliegende Modell
basiert auf einer Miller-Tucker-Zemlin Formulierung, die durch die dynamische Separie-
rung von weiteren Ungleichungen gestärkt wird. Diese exakte Methode ist in der Lage,
kleine Problem-Instanzen des SDVRPTW zu lösen.

Trotz des Schwerpunktes auf der operativen Anwendbarkeit in der Praxis im dynamischen
Kontext erreichen die Algorithmen nahe state-of-the-art Ergebnisse auch auf akademischen
Benchmark-Instanzen für die statische Problemvariante.
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Abstract

In this work a Variable Neighborhood Search (VNS) algorithm is developed to tackle
an extension of the Site-Dependent Vehicle Routing Problem with Time Windows
(SDVRPTW). That is, not all vehicles are allowed to visit all customers and each
customer could only be serviced within a specific time window.

The motivation was to design algorithms which are able to solve large real-world instances
which have a planning horizon over several weeks. The planning horizon is shifted day
by day, such that customers continuously leave and enter the planning horizon. The
algorithms must handle cases where for instance customers are additionally added to the
original problem. Another scenario may be that a customer’s time window changed and
the customer must be rescheduled or there may be situations where a customer should
only be serviced by a particular vehicle.

Within this thesis, both, heuristic and exact methods are developed for the considered
problem. The heuristic method is based on VNS, which searches neighboring solutions of
a current incumbent solution in a systematic, but also randomized way. By using the
Cyclic Exchange Neighborhood, which exchanges several customers from several different
routes in a cyclic manner, large neighborhoods search techniques are also applied to the
problem.

One of the main characteristics of the presented algorithm is that it does not require
an explicit construction algorithm, since the neighborhoods are able to construct and
enhance solutions. Hence, the VNS does not need a feasible initial solution but can start
from an empty or old partial solution i.e. can do a warm start.

The results of the proposed algorithm are compared to recent results published in the
literature for some benchmark instances and it is shown that the algorithms have good
overall performance regarding robustness, solution quality and time.

In addition to the heuristic VNS approach, a mathematical programming formulation
based on Miller-Tucker-Zemlin inequalities is presented. Moreover, the approach is
extended to a branch-and-cut algorithm by separating set inequalities to eliminate invalid
subtours. These exact methods are able to solve small instances of the SDVRPTW.

Despite the strong focus on applicability for real world operational use in context of the
dynamic problem variant, the algorithms also closely achieve state-of-the-art results on
academic benchmark instances for the static problem variant.
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CHAPTER 1
Introduction

This chapter explains in Section 1.1 the motivation for this work. Furthermore an informal
problem description is presented in Section 1.2 followed by Section 1.3 which explains
the aim of this work. Section 1.4 describes the used methodological approaches to tackle
the described problem in Section 1.2. The last Section 1.5 gives insights in the structure
of this work.

1.1 Motivation

Logistics plays an important role in industry and economy. A lot of companies have
to deal with the transportation and distribution of goods. This often directly involves
production decisions and warehouse management. Hence, there are complex decisions to
make, which have a huge influence to delivery costs and therefore total logistic costs.

A huge reduction of costs could for instance be achieved by attempts to reduce the total
number of kilometers driven by the fleet of vehicles. It is worth mentioning, that this
has a significant impact to the environment, as CO2 emissions could be reduced by such
attempts. Another interesting and frequently arising goal is to determine the optimal
size of the fleet of vehicles to perform all required deliveries of goods to customers or
subsidiaries..

The importance of this field is also reflected in the scientific research in the last decades.
Many publications address the Vehicle Routing Problem (VRP) and its variations and
have presented a magnitude of solution techniques.

However, there is still some room for improvement, when it comes to applying those
techniques to complex real-world problems. Despite all academic research efforts there
are still some obstacles for a seamless and convenient application of these results to
planning scenarios in practice.

1



1. Introduction

1.2 Problem Description
A multitude of routing problems which deal with cost-optimal distribution of goods have
been studied in the literature. Many different operations research techniques of heuristic
and exact nature have been studied so far. There is, however, room for algorithmic
improvement, in particular regarding several problem aspects arising in the retail furniture
sector.

In addition to typical constraints like time-windows and maximal tour duration, this
variant contains restrictions regarding required qualifications of assembly crews. For
instance, some deliveries require electricians, where others might require a plumber or
a carpenter. An example of this circumstance is shown in Figure 1.1. The goal of the
considered optimization problem is to determine a high-quality, low-cost routing solution,
which is also robust regarding new or changed customer orders.

C M

M
B

BM

M

M

M

vehicle 1 M C

vehicle 2 M B

vehicle 3 M

Figure 1.1: Site Dependent Vehicle Routing Problem

Furthermore there are often dynamic aspects which arise in real-world planning scenarios.
In such cases, planning is usually done for time horizons of several weeks. New customer
orders continuously enter this planning horizon. Delivery times are proposed to customers
based on the planning solutions of the system. Hence, the algorithms need to be able to
handle situations with fixed appointments and assembly crews. This fixed appointments
are modeled with time windows, such that each customer with a fixed appointment could
only be serviced within a tight time window. Where in practice the term tight could range
from several minutes to several hours. The considered problem is a special variant of the
Site-Dependent Vehicle Routing Problem (SDVRP), however, with several extensions.
The SDVRP itself is an extension to the well known vehicle routing problem (VRP) with
additional constraints defined for each site such that only a subset of the defined vehicles
is allowed to visit them.

The projected work was realized in a cooperation of the Algorithm and Complexity Group

2



1.3. Aim of this Work

of TU Wien and Destion – IT Consulting & Software Solutions GmbH, an Austrian
operations research software company, where I am a 10% shareholder.

1.2.1 Problem Complexity

Since the described problem which covers some dynamic aspects of real-world planning
scenarios, is a special case of the SDVRP, the problem is NP-hard [CL01]. Hence, it is
very unlikely that there is an algorithm which could solve moderate to large size problem
instances to optimality in polynomial time. Therefore heuristic approaches must be
applied in order to solve such large instances efficiently.

1.3 Aim of this Work
The aim of this work is to develop a sophisticated algorithmic framework, which is
able to produce high quality solutions. In addition, the algorithms must handle several
requirements which arise in the field of furniture industry. In particular they must
produce planning solutions for planning horizons of several weeks, and enable to adopt
these solutions to new circumstances quickly.

Moreover the solution technique must deal with partial solutions where not all customers
are scheduled yet, or some customers are already fixed regarding a specific delivery time
and/or vehicle.

1.4 Methodological Approach
In order to be able to apply optimization methods to the considered problem, good
runtime performance and the ability to cope with large input data sets is essential in
practice. Hence, a Variable Neighborhood Search (VNS) algorithm is developed in this
thesis.

For the VNS several large neighborhoods are considered which are not only applied to
improve an existing solution, but also to construct solutions and add currently unscheduled
customers to it. Besides classical standard neighborhoods, we apply a cyclic exchange
neighborhood and a destroy and repair neighborhood. The cyclic exchange neighborhood
considers exchanges of customers not only between two routes, but rather between
multiple routes in a cyclic manner. The destroy and repair neighborhood destroys a
whole route and tries to reschedule the customers of the destroyed route.

Furthermore exact solution approaches based on existing mathematical programming
techniques are studied. In particular, a Branch & Cut (B&C) algorithm where several valid
inequalities are separated as cutting planes are presented in this work. The mathematical
programming formulation is based on Miller-Tucker-Zemlin. The formulation is further
strengthened by separating inequalities to cut away invalid tours. As invalid tour is
defined a tour with either time window violations or maximum tour duration violations
or a tour which does not start and end at the depot.

3



1. Introduction

1.5 Structure of this Work
Chapter 2 gives a brief overview over the VRP and its variants. Moreover the used
methodological approaches in the literature for both, exact and heuristic methods to
solve the Site-Dependent Vehicle Routing Problem with Time Windows (SDVRPTW)
are discussed. The next Chapter 3 gives an introduction to the used methodological
approaches of this work.

Chapter 4 gives a formal description of the problem and defines the set of feasible
solutions. After this formal problem description, Chapter 5 presents a B&C algorithm to
tackle the problem. The used cutting planes will be explained in detail as well as the
mathematical programming formulation.

The VNS algorithm is presented in Chapter 6 together with all used neighborhoods and
algorithmic details.

Chapter 7 compares the results obtained from the VNS algorithm and from the B&C
algorithm with results obtained from the literature for several benchmark instances.
Furthermore algorithmic parameters are determined and some algorithmic components
are analyzed.

Finally Chapter 8 gives a summery over this work with some outlook of further investiga-
tions.

4



CHAPTER 2
Related Work

The VRP was intensely discussed in the literature in the last decades. Both heuristic and
exact methods have been applied to the VRP. This Chapter first gives in Section 2.1 an
overview of publications regarding the classical VRP and its variants. Then Sections 2.2
and 2.3 present publications which tackle the SDVRPTW by applying heuristic and exact
methods, respectively.

2.1 Overview

The VRP became popular in the literature since Dantzig and Ramser [DR59] first
introduced it as "The Truck Dispatching Problem" in 1959. Dantzig and Ramser solved
the problem by generalizing the Traveling Salesman Problem (TSP) such that a central
bulk terminal must be revisited after the gasoline truck has visited several service stations.
The revisitation is necessary if the demand for oil of the service stations exceeds the
capacity of the gasoline truck.

Clarke and Wright [CW64] generalized the problem formulation such that more than
one vehicle is used to deliver goods. The authors developed one of the first construction
heuristics for the VRP known as the savings method.

Over the years several variants of the original VRP arose, which are more related to
practice. For instance popular extensions are to consider service times for each customer
or a maximum tour duration for each route. Hence, the vehicle has to wait a specific
amount of time before leaving the customer or the total tour duration must not exceed
the maximum tour duration. This extensions are often used in combination with time
window constraints. The Vehicle Routing Problem with Time Windows (VRPTW), first
introduced by Solomon [Sol83], considers time windows for each customer, such that the
arrival time of the vehicle must be within the customer’s time window. An overview

5



2. Related Work

of solution methods for the VRPTW is for instance provided by Bräsys and Gendreau
[BG05a], [BG05b].

Another extension of the VRP is the consideration of a heterogeneous vehicle fleet, known
as the Heterogeneous VRP (HVRP). Instead of assuming that every vehicle has the same
properties, vehicles can differ for instance with respect to the maximum load capacity or
the maximum tour duration.

One extension which is very important in practical logistics systems is the integration of
multiple depots. This variant is known as the Multiple Depots Vehicle Routing Problem
(MDVRP) and uses multiple depots instead of only one depot. A survey of the MDVRP
is presented in Montoya-Torres, Franco, Isaza, Jiménez and Herazo-Padilla [MTFI+15].

Another VRP variant which is closely related to the discussed problem in this work is the
Dynamic VRP (DVRP). This variant deals with dynamic and stochastic approaches such
that not all information is provided in advance. Hence, there are dynamic events which
indicate for instance a new customer request or a change of service times, travel times or
demands as well. Since these dynamic events arrive when the fleet is already executing
the current tours, the replanning has to be in real time. An overview of variants of the
DVRP can be obtained from Pillac, Gendreau, Guéret and Medaglia [PGGM13] as well
as from Ritzinger, Puchinger and Hartl [RPH16].

Over the last years more and more papers studied multiconstraint VRPs. Hence, the
VRP is extended by several constraints, for instance with time windows, multiple depots
or site-dependency constraints. Those multiconstrained VRPs form a new class called
Rich VRP (RVRP). A comprehensive taxonomy of the RVRP is presented by Lahyani,
Khemakhem and Semet [LKS15].

A classification of variants of the VRP is presented in Eksioglu, Vural and Reisman
[EVR09] as well as in Braekers, Ramaekers and Nieuwenhuyse [BRVN16].

2.2 Heuristic Methods

Although the VRPs have been studied extensively in the literature, to the author’s
best knowledge very few publications adressing the SDVRP do exist. In the taxonomy
of Eksioglu, Vural and Reisman [EVR09] there are only two papers dealing with the
SDVRP.

Cordeau and Laporte [CL01] show that the SDVRP is a special case of the Periodic VRP
(PVRP) and solve the problem with a Tabu Search (TS) heuristic for the PVRP [CGL97].
One disadvantage of this approach is that SDVRP instances are limited to a planning
horizon of one day, since the vehicle types of the SDVRP are mapped to single days
of the PVRP. Brandao and Mercer [BM97] consider a multi-trip vehicle routing and
scheduling problem with many constraints including that only certain vehicles can visit
certain customers. They also tackle the problem with a tabu search heuristic.

6



2.3. Exact Methods

Another tabu search heuristic is presented in Alonso, Alvarez and Beasley [AAB08] to
tackle the Site-Dependent Multi-Trip Periodic Vehicle Routing Problem (SDMTPVRP).
The problem extends the classical VRP in the manner that vehicles are allowed to have
multiple routes on the same day as long as the maximum operation time is not exceeded.
The tabu search heuristic is able to outperform the tabu search heuristic from [CL01].

Pisinger and Ropke [PR07] present a unified heuristic to solve five variants of the VRP
including the SDVRP. This is done by transforming the variants of the VRP instances
into a pickup and delivery problem instance and applying an adaptive large neighborhood
search heuristic to them. Amorim and Parragh [APSAL14] also use an adaptive large
neighborhood search framework to solve a heterogeneous fleet site dependent vehicle
routing problem with multiple time windows in collaboration with a Portuguese food
distribution company. The company has to face this problem in real live on a daily basis,
where customers have multiple interdependent time windows.

Belhaiza [Bel11] comes up with a hybrid VNS combined with a TS algorithm. Although
the algorithm improves 20 out of 24 best known solutions of the year 2010 for the
test instances created by [CL01], the algorithm is not very computation time efficient.
Another VNS algorithm, where the shaking phase of the VNS is replaced by a TS is
presented by Sicilia, Quemada, Beatriz and Escuín [SQRE16]. The algorithm solves the
RVRP, considering constraints which are important regarding freight distribution in
large urban areas. Considered constraints are among others time window constraints and
site-dependency constraints. The algorithm is tested on data extracted from real-world
scenarios which arise by a large transport company in Spain.

Zare-Reisabadi and Mirmohammadi [ZRM15] present two meta-heuristic algorithms for
solving the SDVRP with soft time windows: an Ant Colony Optimization (ACO) with
Local Search (LS), and a TS. These algorithms were compared to each other by adopting
the data sets from [Sol87]. The ACO finds better solutions in most cases, however, if the
size of the test instances increases, the runtime of the ACO exceeds the runtime of the
TS significantly. Therefore the ACO may not be practical for very large instances.

Vidal, Crainic, Gendreau and Prins [VCGP13] introduce theGenetic Search with Advanced
Diversity Control algorithm which can efficiently solve a wide range of large-scale VRPs.
The algorithm is a combination of the metaheuristics Genetic Algorithm (GA) and
LS with diversity management mechanisms. All classical benchmarks for the MDVRP,
PVRP and SDVRP are outperformed by the algorithm.

2.3 Exact Methods
Whereas, there are many publications with heuristic methods to tackle the VRPTW or
the SDVRPTW, there are only a few which use exact methods.

An exact method consisting of a dual ascent procedure in combination with a column-
and-cut generation algorithm, is presented in [BBMR10] where the SDVRP is treated as
a special case of the HVRP. The HVRP is mathematically modeled so that the routing

7



2. Related Work

cost of an edge in the routing graph does not only depend on the start and end location
but also on the vehicle using this edge. Hence, by setting the routing cost to infinity
of the corresponding edges one can treat each SDVRP instance as an HVRP instance.
However, for larger instances the runtime of exact methods is not acceptable.

A special case of the SDVRP is the Skill Vehicle Routing Problem in [CGS11], where an
ordering among the vehicle types exists, such that a customer which requires a certain
vehicle type can be delivered by vehicles with at least that type or vehicles with higher
type according the ordering of vehicle types. In [CGS11] there are various Integer Linear
Programming models developed and tested on randomly generated instances.

Regarding the considered problem variant, a key limitation of the above mentioned work
is that it does not address the dynamic aspects of the SDVRPTW. It is important that
new customers can be added to an existing solution rather than building up a solution
from the scratch. Therefore the new algorithm must be able to start from an existing
solution and try to schedule new customers, which are not yet in the solution.

8



CHAPTER 3
Heuristic Optimization Methods

This chapter first gives in Section 3.1 a common definition of combinatorial optimization
problems. Furthermore a brief overview will be given of the main solution approaches
of such problems. Particular different metaheuristics will be explained. Sections 3.2-3.4
describe in detail some metaheuristics which will be used in this work in later chapters.

3.1 Combinatorial Optimization Problems
In practice many problems arise where not only a feasible solution of a specific problem
is of interest, but rather the best solution among all possible solutions. Those problems
where the best solutions have to be found are called Optimization Problems (OP). OPs
can be divided into two categories: those where solutions can be expressed through real-
valued variables and those where solutions can be expressed through discrete variables
[PS82] and [BR03]. The latter ones are called Combinatorial Optimization Problems
(COP).

Definition 3.1.1.
A COP P = (S, f) consists of

• a set of variables X = {x1, . . . , xn} together

• with corresponding variable domains D1, . . . , Dn

• and a set of constraints C among variables,
defined on subsets of D = D1 ×D2 × · · · ×Dn.

Depending on the problem, the objective function f : D → R has to be minimized or
maximized. The set of feasible solution donated as solution space is defined as

S = {s = {(x1, v1), . . . , (xn, vn)} | vi ∈ Di, s satisfies C } (3.1)

9



3. Heuristic Optimization Methods

[BR03].

The goal of a COP is to find a solution s∗ ∈ S such that

f(s∗) ≤ f(s) ∀s ∈ S (3.2)

holds. The solution s∗ denotes the global optimal solution of P . Since every maximization
problem can by considered as a minimization problem by setting f(.) to −f(.), we will
only consider minimization problems.

Since the size of the solution space S for many COPs grows exponentially with the input,
finding a globally optimal solution s∗ ∈ S by performing an exhausted search in S is
therefore hardly possible. Often there is no algorithm known which is able to explore the
whole search space efficiently.

There are two approaches to solve a COP: Exact solution approaches and Heuristic
approaches. The former finds the global optimal solution s∗ by exploring the solution
space S such that areas of S are omitted where it is guaranteed that there could not be
the global optimal solution s∗ within that areas. Often such approaches are based on
the divide and conquer principle. Hence, the solution space is recursively partitioned
into subspaces. If it is guaranteed that s∗ can not be found in a specific subspace, that
subspace is ruled out and not further partitioned into smaller subspaces. The efficiency
of those algorithms strongly depends on how often subspaces could be ruled out during
the search. A typical example of such an algorithm is the Branch & Bound (B&B)
algorithm first introduced in [LD60] by Land and Doig. The B&B algorithm estimates
for each subspace an upper and a lower bound. If the lower bound exceeds the upper
bound, the corresponding subspace can be omitted. As already mentioned, because of
the exponentially growing of the solution space S with the input, even exact solution
approaches which use sophisticated methods like B&B are only practicable for small
instances.

Heuristic approaches on the other hand, use the fact, that in practice it is often sufficient
to find a solution which is near the global optimum solution s∗. In order to find such
near-optimal solutions it may not be required to explore the whole solution space S, but
rather to explore only a subset of S. Those subset can be efficiently found and explored
by metaheuristics.

Metaheuristics are high level strategies to explore the solution space efficiently, by using
different methods [BR03]. The suffix meta means that those search strategies are problem
independent, whereas the word heuristic indicates that the search procedure may not
find the global optimal solution s∗. The goal is to explore subsets of the solution space
efficiently to find near-optimal solutions. Metaheuristics are usually non-deterministic.

There are many ways to classify metaheuristics. Single solution based methods focus on
improving a single solution. Those methods are often called trajectory methods, because
they follow a single trajectory through the search space. Examples of metaheuristics which

10



3.2. Local Search

use such methods are LS, VNS, Simulated Annealing (SA) and TS. Most single solution
based metaheuristics are extension or modifications of LS. They are trying to escape a
local optima in different ways. Since this work is based on VNS, the metaheuristics LS
and VNS will be explained in more detail in the following subsections.

On the contrary, metaheuristics like ACO, GA or Particle Swarm Optimization (PSO)
use population based methods. Hence, they improve multiple solutions simultaneously.
Population based metaheuristics are often inspired by nature. The ACO for instance is
inspired by ants seeking a source of food. If an ant finds a source of food, the ant will lay
down a pheromone trail from the source of food back to their colony such that other ants
could follow the pheromone trail. The GA is inspired by the process of natural selection.
Hence, only the best solutions of the current solution population are selected in order to
generate new solutions by recombination and mutation. Furthermore the PSO is inspired
by the movements of a bird flock or a fish swarm.

The reason for the diversity of metaheuristics is explained by the no free lunch theorem
by Wolpert and Macready [WM97]. One simple interpretation of the theorem is that
"a general-purpose universal optimization strategy is theoretically impossible, and the
only way one strategy can outperform another is if it is specialized to the specific problem
under consideration" [HP02]. Therefore a metaheuristic must be applied and adapted to
a specific COP by making use of a prior problem specific knowledge. Only then it makes
sense to compare the metaheuristic with other metaheuristics which are also adapted to
the specific COP.

Chapter 2 already summarized metaheuristics which are applied to the SDVRP. The
next subsections will explain the ideas behind the LS and VNS methods. Chapter 6 will
then apply the VNS method to the SDVRP.

3.2 Local Search

Since an exhausted search through the solution space S is not practicable due to the
combinatorial explosion of S with respect to the input size, one approach is to scan only
a small subspace of S. This gives rise to the definition of a neighborhood N (.) [BR03].

Definition 3.2.1.
Let P = (S, f) be a COP, a neighborhood is a mapping

N : S → 2S (3.3)

that maps a feasible solution s ∈ S to a set of neighbor solutions N (s) ⊆ S.

Often the neighborhood N (s) of solution s is defined by the set of solutions which can
be obtained by applying a single operation on s.

The definition of a neighborhood allows us to define a locally optimal solution.

11
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Definition 3.2.2.
Let P = (S, f) be a COP and N be a neighborhood. A locally optimal solution ŝ ∈ S with
respect to N satisfies

f (ŝ) ≤ s ∀s ∈ N (ŝ) . (3.4)

A locally optimal solution ŝ is called strict locally optimal if

f (ŝ) < s ∀s ∈ N (ŝ) . (3.5)

holds.

Algorithm 3.1 finds such a locally optimal solution ŝ with respect to a neighborhood N .
Starting from a feasible solution sinit, Algorithm 3.1 selects a neighbor solution s′ from
s. If the objective value of the selected solution s′ is smaller than the objective value
of solution s, a better solution is found and stored into s. The procedure stops if some
stopping criteria are satisfied. For instance if there is no new best solution found in the
current neighborhood N (s) or the search time has expired. Another stopping criteria
could be that the number of steps exceeds a predefined threshold. The procedure is
called LS procedure.

Algorithm 3.1: Local Search
Input: An initial solution sinit, a neighborhood N
Output: A probably improved solution s

1 s← sinit;
2 repeat
3 select s′ ∈ N (s);
4 if f(s′) < f(s) then
5 s← s′;
6 end
7 until stopping criteria satisfied;
8 return s;

One critical aspect of the LS procedure is the select operator in line 3 of Algorithm 3.1.
The operator defines how the current neighborhood N (s) is scanned and how the solution
s′ is selected. The selection of a neighbor could have a great influence to the overall
performance of the LS procedure. Usually there are three possibilities to define the select
operator.

Best Improvement: In the first place the whole neighborhoodN (s) is searched through
and the best solution is returned.

First Improvement: Alternatively, one can search through neighborhood N (s) and
return the first solution s′ which is better than solution s. The order in which the
neighborhood is explored may play an important role.
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Random Neighbor: Another option is to randomly select a neighbor s′ of the neigh-
borhood N (s).

One important influence of the decision which select operator to use could be the size of
the considered neighborhood. If the size is rather small then Best Improvement could be
used to select a neighbor solution. Otherwise, First Improvement could be a better choice.
If the neighborhood is extremely large then only Random Neighbor may be practicable.

3.3 Variable Neighborhood Search

One disadvantage of the LS procedure is that it explores only the area around one local
optimum with respect to a specific neighborhood, although a COP could have many
local optima. Furthermore the objective value of the global optimum could extremely
differ from the average objective value of local optima. Hence, it is worthwhile trying to
explore different local optima to hopefully get better solutions near the global optimum.

One way to escape local optima is the VNS method, first introduced in [MH97] by
Mladenović and Hansen. VNS is based on the idea to not just only search through only
one neighborhood, but rather to use more than one neighborhood. Those neighborhood
structures are alternated in a systematic way. VNS relies on the following principles
[HMBP10]:

• A local optimum with respect to one neighborhood structure is not necessarily one
for another.

• A global optimum is a local optimum with respect to all possible neighborhood
structures.

• For many problems local optima with respect to one or several neighborhoods are
relatively close to each other.

The alternation of the neighborhoods could be in a deterministic and / or stochastic way.
Algorithm 3.2 shows the Variable Neighborhood Descent (VND) meta-heuristic which
alternates the neighborhood structure Nk, (k = 1, . . . , kmax) in a deterministic way. The
neighborhoods Nk are usually ordered with respect to their increasing sizes or after their
increasing effort to search through them. Typically best improvement is applied to find
the best solution s in the current neighborhood Nk(ŝ) of the current incumbent solution
ŝ. If the local optimum is found with respect to the current neighborhood Nk(ŝ), the next
neighborhood Nk+1(ŝ) in the neighborhood structure will be considered. Otherwise the
new solution s becomes the new incumbent solution ŝ and the neighborhood structure is
reset to the first neighborhood N1. If the local optimum of the last neighborhood Nkmax

in the neighborhood structure is found, the returned solution ŝ is locally optimal with
respect to all neighborhoods Nk(ŝ) with k = 1, . . . , kmax.
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Algorithm 3.2: VND
Input: An initial solution sinit, a neighborhood structure Nk
Output: A probably improved solution ŝ

1 ŝ← sinit;
2 k ← 1;
3 repeat
4 s← arg mins′∈Nk(ŝ) f(s′);
5 if f(s) < f(ŝ) then
6 ŝ← s;
7 k ← 1;
8 else
9 k ← k + 1;

10 end
11 until k = kmax;
12 return ŝ;

Algorithm 3.3 shows the Basic VNS (BVNS) method, which combines both deterministic
and stochastic changes of neighborhoods. The algorithm can be split into two parts.
Line 5 shows the shaking phase which represents the stochastic part. A solution s′

is randomly selected from the current neighborhood Nk(s) of the current incumbent
solution s. The deterministic part is listed in line 6 and refers to the descent phase of
Algorithm 3.3. Whereas in the descent phase a locally optimum solution ŝ with respect
to neighborhood Nls(s′) is found, in the shaking phase BVNS tries to get out of the
currently explored valley.

There exist many variants of the VNS. If the descent phase in Algorithm 3.3 is neglected,
the resulting algorithm is called Reduced VNS (RVNS). Another VNS variant is the
General VNS (GVNS), which is obtained by using a VND search instead of a local search
procedure in the descent phase.

3.4 Skewed Variable Neighborhood Search
The Skewed VNS (SVNS) is an extension of the VNS to explore valleys which are far
away from the current best solution [HJMP00]. If the local optimum is found within a
large region, then it may be necessary to move far away from the best solution to find
another better local optimum. Solutions in such a distant region could differ significantly
from the best solution found so far. The SVNS allows such far jumps from the incumbent
solution, without degenerating to the multistart heuristic [HMBP10]. This is avoided by
defining a distance metric

ρ(s1, s2) : S × S 7→ R≥0 (3.6)

between two solutions s1 and s2 and let the SVNS only jump into a far away region if
the distance between the incumbent solution and the new solution is wide enough.

14



3.4. Skewed Variable Neighborhood Search

Algorithm 3.3: Basic VNS
Input: A initial solution sinit, a neighborhood structure Nk, a neighborhood Nls
Output: A probably improved solution s

1 s← sinit;
2 repeat
3 k ← 1;
4 repeat
5 randomly select s′ ∈ Nk(s); // shaking phase
6 ŝ← LocalSearch(s′, Nls); // descent phase
7 if f(ŝ) < f(s) then
8 s← ŝ;
9 k ← 1;

10 else
11 k ← k + 1;
12 end
13 until k = kmax;
14 until stopping criteria satisfied;
15 return s;

Algorithm 3.4 shows in detail the SVNS method. Variable s stores the current incumbent
solution, whereas variable sbest stores the best solution found so far. As with the BVNS
Algorithm 3.3, the SVNS Algorithm 3.4 has a shaking phase and a descent phase. Variable
s′ is the randomly selected solution of the current neighborhood Nk(s) from the incumbent
solution s. The local optimum solution with respect to neighborhood Nls is stored into
variable ŝ after the descent phase. The core of Algorithm 3.4 is line 8. If the condition

f(ŝ)− αsvns ρ(s, ŝ) < f(s) (3.7)

holds, variable ŝ becomes the new incumbent solution. If the distance between solution s
and ŝ is wide enough, then ŝ is accepted as the new incumbent solution even if ŝ has a
worse objective value than s. Parameter αsvns controls how distant a solution ŝ must be
in order to perform the jump operation.

In the next chapter the variant of the vehicle routing problem with site dependencies will
be formally described. Then in Chapter 6 the VNS as well as the SVNS will be applied
to the problem. In Chapter 7 the results will be presented and compared with the results
from the literature.
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Algorithm 3.4: Skewed VNS
Input: A initial solution sinit, a neighborhood structure Nk, a neighborhood Nls
Output: A probably improved solution s

1 s← sinit;
2 sbest ← sinit;
3 repeat
4 k ← 1;
5 repeat
6 randomly select s′ ∈ Nk(s); // shaking phase
7 ŝ← LocalSearch(s′, Nls); // descent phase

8 if f(ŝ)− αsvns ρ(s, ŝ) < f(s) then
9 s← ŝ;

10 k ← 1;
11 else
12 k ← k + 1;
13 end
14 until k = kmax;
15 if f(s) < f(sbest) then
16 sbest ← s;
17 end
18 s← sbest;
19 until stopping criteria satisfied;
20 return s;
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CHAPTER 4
Formal Description

In this chapter we formulate first the Static Site-Dependent Vehicle Routing Problem with
Time Windows (SSDVRPTW) P = (S, f) as a mathematical model in Section 4.1-4.4.
The model consists of input parameters which describe a specific problem instance of the
SSDVRPTW together with decision variables and constraints which describes the set
of feasible solution S of the SSDVRPTW. Furthermore the objective function f will be
defined.

Based on the model for the SSDVRPTW the model P̆ = (S̆, f̆) for the Dynamic Site-
Dependent Vehicle Routing Problem with Time Windows (DSDVRPTW) will be defined
in Section 4.5.

4.1 Parameters

The formulation of the SSDVRPTW is based on the formulation of the SDVRP with soft
time windows from [ZRM15]. The SSDVRPTW is defined on a graph G = (N,A) with
a set of nodes N = {0, 1, . . . , nc, nc + 1} and a set of arcs A = {(i, j) | i, j ∈ N}. The
vertices correspond to nc customers except vertex 0 and nc + 1 which both represent the
depot. Hence, each tour has to start at the depot with vertex 0 and end at the depot
with vertex nc + 1 to indicate the start and end of a tour. Let N ′ = {1, . . . , nc} ⊂ N
further denote the set of all customers.

• For each arc (i, j) ∈ E there is a distance cdist
i,j ∈ R≥0 and a travel time ctime

i,j ∈ R≥0
defined. The distances and travel times are arranged in the distance matrix
Cdist = (cdist

i,j ), ∀i, j ∈ N and in the time matrix Ctime = (ctime
i,j ), ∀i, j ∈ N ,

respectively. We assume that all entries of this matrices are greater or equal
than zero and all diagonal elements are zero. Furthermore the matrices are not
necessarily symmetric and it can be assumed that the triangle inequality does hold.
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4. Formal Description

• The planning horizon D = {1 . . . , nd} is a non-empty finite total ordered set with
nd days.

• Each customer i ∈ N ′ has a demand di ≥ 0 of goods. The time it takes to deliver
this demand is denoted by the service time si ≥ 0. For simplicity the variables s0
and d0 for depot 0 are also defined and set to zero.
Furthermore for each customer i a set of allowed delivery days Di ⊆ D \ ∅ together
with a time window W cus

i = [ecus
i , lcus

i ] is defined so that the delivery of goods to
customer i can only take place on a day d ∈ Di between the earliest service time
ecus
i and the latest service time lcus

i .

• Each vehicle v ∈ V has a maximum load capacity Cmax
v .

Moreover each vehicle v is associated with an availability time window W veh
v =

[sveh
v , eveh

v ] such that the vehicle can only start from the depot and arrive at the
depot between the availability start time sveh

v and the availability end time eveh
v .

• Let Q = {1, . . . , nq} be the index set of nq qualifications. Each customer i ∈ N ′ is
associated with a set of required qualifications Qreq

i ⊆ Q, and each vehicle v ∈ V is
associated with a set of provided qualifications Qpro

v ⊆ Q.
A vehicle v ∈ V can only deliver goods to a customer i ∈ N ′ on day d ∈ D if and
only if the required set of qualifications of customer i is a subset of the provided
set of qualifications of vehicle v and day d is in the set of allowed delivery days Di.
Hence, let

Ai = {(d, v) ∈ D × V | d ∈ Di ∧Qreq
i ⊆ Qpro

v }, ∀i ∈ N ′ (4.1)

be the set of day and vehicle combinations which are allowed to visit customer i.

4.2 Variables
The decision variables are:

• Xdv
ij ∈ {0, 1} ∀d ∈ D, ∀v ∈ V, ∀(i, j) ∈ A,

indicates if vehicle v ∈ V travels by arc (i, j) ∈ A on day d ∈ D.

• Y dv
0 ∈ R≥0 ∀d ∈ D, ∀v ∈ V

indicates the start time from the depot of vehicle v ∈ V on day d ∈ D.

Furthermore we make use of the following auxiliary variables:

• Rdv ∀d ∈ D, ∀v ∈ V
indicates a path in graph G which is followed by vehicle v ∈ V on day d ∈ D.
A path is a finite sequence of vertices (τ1, τ2, . . . , τk), so that (τi, τi+1) ∈ A for
i = 1, . . . , k and there are no repeated vertices in the sequence. Furthermore let
|Rdv| = k be the length of the sequence.
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4.2. Variables

• Y dv
i ∈ R≥0 ∀d ∈ D, ∀v ∈ V, ∀i ∈ N \ {0}

indicates the arrival time of vehicle v ∈ V to customer i ∈ N ′ on day d ∈ D. The
variables Y dv

nc+1 denote the arrival time at the depot of vehicle v on day d.

• W dv
i ∈ R≥0 ∀d ∈ D, ∀v ∈ V, ∀i ∈ N

indicates the waiting time of vehicle v ∈ V while arriving at customer i ∈ N ′ on
day d ∈ D in order to hold the earliest service time ecus

i of the customer’s time
window [ecus

i , lcus
i ]. The variables W dv

0 and W dv
nc+1 are defined for simplicity and

set to zero.

• Lcus
dvi ∈ R≥0 ∀d ∈ D, ∀v ∈ V, ∀i ∈ N

indicates the lateness of vehicle v ∈ V while arriving at customer i ∈ N ′ on day
d ∈ D by exceeding the latest service time lcus

i of the customer’s time window
[ecus
i , lcus

i ]. The variables Lcus
dv0 and Lcus

dv(nc+1) are defined for simplicity and set to
zero.

• Lveh
dv ∈ R≥0 ∀d ∈ D, ∀v ∈ V

indicates the overtime of vehicle v ∈ V on day d ∈ D by exceeding the availability
end time eveh

v of the vehicle’s availability time window [sveh
v , eveh

v ].

• Odv ∈ R≥0 ∀d ∈ D, ∀v ∈ V
indicates the overtime related to the maximum tour duration Dmax of vehicle v ∈ V
on day d ∈ D.

which can be computed from Xdv
ij and Y dv

0 . These variables are used in Section 4.3 to
describe the constraints which must be fulfilled by a feasible solution.

Figure 4.1 shows an example of a feasible route of vehicle v ∈ V on day d ∈ D. The
vehicle starts from the depot at sveh

v and arrives too early at customer i ∈ N ′ at Y dv
i to

hold the customer’s time window. Therefore the vehicle waits to hold the time window
which is described through the waiting time W dv

i . If the earliest service time ecus
i is

reached, the vehicle starts to unload the goods (service time si). After that, the vehicle
leaves customer i and arrives at customer j ∈ N ′ at Y dv

j . This time the vehicle arrives
too late to meet the customer’s time window. This indicates the lateness variable Lcus

j .
After unloading the goods at customer j the vehicle drives back and reaches the depot at
Y dv
nc+1. The variable Odv indicates that the total tour duration Y dv

nc+1 − Y dv
0 exceeds the

maximums tour duration Dmax and variable Lveh
v indicates that the vehicle arrives too

late to hold the vehicle’s time window.
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tdepot i j depot

ctime
0i W dv

i si ctime
ij

Lcus
dvj

sj ctime
j(nc+1)

[sveh
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dv

Dmax Odv
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i , lcus

i ] [ecus
j , lcus

j ]cites
arrival
time

vehicle
availability

duration

Y dv
0 Y dv

i Y dv
j Y dv

nc+1

Figure 4.1: Example on a feasible route. The vehicle v ∈ V arrives at customer i ∈ N ′
too early. Hence, a waiting time W dv

i is added to hold the customer’s time window.
Furthermore the vehicle reaches customer j ∈ N ′ too late, which indicates the variable
Lcus
dvj .

4.3 Solution Space
Let S be the solution space of the SSDVRPTW. A feasible solution

s =
{(
Rdv, Y dv

0

)
| d ∈ D, v ∈ V

}
∈ S (4.2)

of the SSDVRPTW is a set of routes Rdv together with the corresponding start times
Y dv

0 for each vehicle v ∈ V and for each day d ∈ D.

A solution is feasible if and only if

• for each arc (i, j) ∈ A, vehicle v ∈ V and day d ∈ D holds that

Xdv
ij = 1⇔ (i, j) ∈ Rdvij ∀d ∈ D, ∀v ∈ V, ∀(i, j) ∈ A (4.3)

if arc (i, j) is used by vehicle v on d then arc (i, j) is also in route Rdv driven by
vehicle v starting on day d, and vice versa.

• each route Rdv =
(
τ1, τ2, . . . , τ|Rdv |

)
in solution s starts and ends at the depot.

Hence, it holds that τ1 = 0 and τ|Rdv | = nc + 1. Since it is possible that a vehicle is
not scheduled on all days in the planning horizon D, there are empty routes which
contains only the start depot 0 and the end depot nc + 1. Therefore∣∣∣Rdv∣∣∣ ≥ 2 ∀Rdv ∈ s (4.4)

must hold for reach route Rdv in solution s. Furthermore a route must not visit
the start depot 0 or the end depot nn + 1 more than once. Hence, the condition

(i, 0) /∈ Rdv ∧ (nc + 1, i) /∈ Rdv ∀Rdv ∈ s, ∀i ∈ N ′ (4.5)

must hold.
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• each customer i ∈ N ′ is served by a vehicle v ∈ V so that the customer’s required
set of qualifications Qreg

i are a subset of the vehicle’s provided set of qualifications
Qpro
v and the start day is in the set of allowed delivery days Di. Therefore the

condition
i ∈ Rdv =⇒ (d, v) ∈ Ai ∀Rdv ∈ s, ∀i ∈ N ′ (4.6)

must hold. Furthermore each customer i ∈ N ′ can only be served one time. Hence,
customer i can only be included into one Route Rdv of solution s.

• the arrival times Y dv
j for each customer j ∈ N \ {0} can be recursively computed

through

Y dv
j =

{
Y dv
i + si + ctime

ij +W dv
i if (i, j) ∈ Rdv

0 otherwise ∀d ∈ D, ∀v ∈ V (4.7)

together with the waiting times

W dv
j =

{
max

(
0, ecus

j − Y dv
j

)
if j ∈ Rdv

0 otherwise
∀d ∈ D, ∀v ∈ V. (4.8)

Note that these conditions make sure that the earliest service time ecus
j of customer

j is not violated.

• the lateness

Lcus
dvi =

{
max

(
0, Y dv

i − lcus
i

)
if i ∈ Rdv

0 otherwise
∀d ∈ D, ∀v ∈ V (4.9)

of vehicle v ∈ V arriving at customer i ∈ N ′ can be computed from the arrival time
Y dv
i and the latest service time lcus

i .

• the equation

Lveh
dv =

{
max

(
0, Y dv

nc+1 − eveh
v

)
if (0, nc + 1) /∈ Rdv

0 otherwise
∀d ∈ D, ∀v ∈ V (4.10)

of the overtime Lveh
dv holds as well as the equation

Odv = max
(
0, Y dv

nc+1 − Y dv
0 −Dmax

)
∀d ∈ D, ∀v ∈ V (4.11)

of the overtime Odv related to the maximum tour duration Dmax holds for each
vehicle v ∈ V and for each day d ∈ D.

• each vehicle v ∈ V does not violate the vehicle’s availability start time sveh
v .

Therefore the equation

sveh
v ≤ Y dv

0 ∀d ∈ D, ∀v ∈ V (4.12)

must hold for each vehicle v ∈ V on each day d ∈ D.
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• the amount of goods which are delivered by route Rdv ∈ s does not exceed the
maximum load capacity Cmax

v of vehicle v ∈ V . Thus the equation∑
i∈Rdv

di ≤ Cmax
v ∀Rdv ∈ s (4.13)

must hold for each route Rdv ∈ s.

4.4 Objective Function
Before the overall objective function f for feasible solutions s ∈ S of the SSDVRPTW is
discussed, the route objective function to evaluate a single route Rdv will be considered.
Function

fR
(
Rdv, Y dv

0

)
=

∑
(i,j)∈Rdv

(
α cdist

i,j + (1− α) ctime
i,j

)
(4.14a)

+
∑
i∈Rdv

(
βW dv

i + γ Lcus
dvi

)
(4.14b)

+ δ Lveh
dv + εOdv (4.14c)

consists of four terms and maps a route
(
Rdv, Y dv

0

)
∈ s together with the corresponding

start time Y dv
0 to a single real objective value. Term (4.14a) computes the total travel

costs consisting of the total driving time and the number of meters driven. The parameter
α ∈ [0, 1] describes in what extent the costs should be taken into account. If α = 1, only
the distance costs will be minimized. However, if α = 0, only the driving time costs will
be minimized. The second term (4.14b) penalizes the total waiting time by parameter β
as well as the total customer time window violation by parameter γ. The third and forth
term (4.14c) calculate the vehicle time window violation and the overtime of route Rdv
which are weighted by the parameters δ and ε, respectively.

The overall objective function f : S 7→ R maps a feasible solution s to a single real valued
objective value. Thus, the function

f (s) =
∑

(Rdv ,Y dv
0 )∈s

fR
(
Rdv, Y dv

0

)
(4.15a)

+ η
∑
j∈N ′

(1− isServed (j)) (4.15b)

+ θ
∑
Rdv∈s

(
1− isEmpty

(
Rdv

))
(4.15c)

is the additive sum (4.15a) of all routing objective values together with two additional
terms. Term (4.15b) penalizes each customer which is not visited by any vehicle on any
day. The function isServed : N ′ 7→ {0, 1},

isServed (i) =
{

1 if ∃Rdv ∈ s s.t. i ∈ Rdv
0 otherwise (4.16)
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4.5. Dynamic Problem

maps each customer i ∈ N ′ to one if i is included into any route of solution s and
zero otherwise. Term (4.15c) penalizes each used vehicle v ∈ V for each day d ∈ D by
parameter θ. Vehicle v is used on day d, if the corresponding route Rdv is not empty.
The function isEmpty : s 7→ {0, 1} maps each route Rdv ∈ s to one if

isEmpty
(
Rdv

)
=
{

1 if ∃ (0, nc + 1) ∈ Rdv
0 otherwise (4.17)

the arc (0, nc + 1) is included into route Rdv and zero otherwise.

Table 4.1 listed all used penalty factors in objective functions (4.15) and (4.14). The
setting minimizes the total travel time rather than the total distance.

α Distance and time factor
β Penalty factor for the waiting time
γ Penalty factor for customer time window violations
δ Penalty factor for vehicle time window violations
ε Penalty factor for exceeding the maximum tour duration
η Penalty factor for the number of unvisited customers
θ Penalty factor for each time a vehicle is used

Table 4.1: Penalty Factors used in Objective Functions f (4.15) and fR (4.14).

4.5 Dynamic Problem
The DSDVRPTW P̆ = (S̆, f̆) is modeled as a series of SSDVRPTWs. Hence, in order to
solve an instance of the DSDVRPTW a sequence of instances Pk(Sk, f) of the SSDVRPTW
with k ≥ 0 has to be solved such that a solution sk ∈ Sk of an instance Pk(Sk, f) is the
initial solution of the next instance Pk+1(Sk+1, f). Before the next instance Pk+1(Sk+1, f)
can be solved, there are usually some modifications regarding the problem parameters.
For instance the time window of a customer could be changed or a customer should only
be delivered by a certain vehicle. Moreover the current planning horizon could be shifted
such that new unscheduled customers enter the planning horizon and other customers
leave the planning horizon. Note, that this definition of the DSDVRPTW differs from
the definition of the DVRP from the literature. Since the DSDVRPTW is modeled as a
series of SSDVRPTWs, there does not occur any real time planning. The time between
the solving of two consecutive instances of the SSDVRPTW is not restricted.

Figure 4.2 visualizes the shift of the planning horizon. In this example the planning horizon
consists of six days and is shifted day by day (D̆1-D̆4). Each customer i ∈ N ′ = {1, 2, 3, 4}
has a different set of allowed delivery days Di. If Di∩ D̆k 6= ∅, then customer i is included
into the current static problem instance Pk(Sk, f).

Usually the first static problem instance starts with customers whose time window is set
to [0, ∞], meaning that the solver should plan optimal routes regarding logistic costs.
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4. Formal Description

d1 2 3 4 5 6 7 8 9 10 11 12

i ∈ N ′

planning
horizon

D̆1
D̆2
D̆3
D̆4...

1
2
3
4
...

Figure 4.2: Example about the day by day shift of the planning horizon of an instance of
the SDVRPTW.

Before the second static problem is solved, the customers are fixed such that a tight time
window is set according to the solution from the first static problem instance.
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CHAPTER 5
Mixed Integer Programming

Approaches

In this chapter a Mixed Integer Program (MIP) will be described to solve instances of
the SSDVRPTW in order to analyze the solution quality of the VNS algorithm presented
in chapter 6.

Section 5.1 gives a brief introduction into the field of integer linear programming. Then in
Section 5.2 and 5.3 a compact mathematical programming formulation will be presented
for the SSDVRPTW. Section 5.4 describes a B&C algorithm together with used cutting-
planes.

5.1 Introduction

For a deep insight into linear integer programming we refer to [NW88a] and [Lee04a].

A Linear Program (LP)

min cTx (5.1a)
s.t. Ax ≤ b (5.1b)

x ∈ Rn (5.1c)

consists of a vector x ∈ Rn of n variables together with vectors b ∈ Rm and c ∈ Rn of
coefficients and a matrix A ∈ Rm×n of coefficients. The task is to determine vector x
such that the objective function (5.1a) is minimized taking into consideration m linear
inequalities (5.1b). Those linear inequalities define geometrically a feasible region which
is a convex polyhedron. Since the objective function is also linear, therefore also convex
it can be shown that every local minimum is a global minimum. Assuming that a
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5. Mixed Integer Programming Approaches

solution exists, the solution must be on the border of the polyhedron formed by the linear
inequalities (5.1b).

LPs in the form of (5.1) are first independently studied by Leonid Kantorovich and
George B. Dantzig in 1939 and 1946, respectively [Dan02]. Dantzig invented the simplex
algorithm which can in most cases efficiently solve LPs.

Many practical problems can be formulated as a LP. However, to formulate COPs, a
more general formulation is needed since COPs are dealing with discrete variables and
constraint (5.1c) allows only real-valued variables. Therefore a MIP

min cT
1 x1 + cT

2 x2 (5.2a)
s.t. A1x1 + A2x2 ≤ d (5.2b)

x1 ∈ Zn1 (5.2c)
x2 ∈ Rn2 (5.2d)

consists in addition to a vector x2 ∈ Rn2 of n2 real-valued variables, of a vector x1 ∈ Zn1

of n1 discrete variables. Furthermore the MIP contains the vectors c1 ∈ Rn1 , c2 ∈ Rn2

and d ∈ Rm of coefficients together with the matrices A1 ∈ Rm×n1 and A2 ∈ Rm×n2 of
coefficients. Since the variables of vector x1 are discrete, the feasible region is restricted
to discrete points within the polyhedron formed by the m inequalities (5.2b). This makes
the MIP NP-hard.

If the real-valued variables in vector x2 are omitted by setting A2 = 0m×n2 , and c2 = 0n2 ,
the LP is called Integer Program (IP). Furthermore if the discrete variables are restricted
to {0, 1} the program is called Binary Integer Program (BIP).

One way to exactly solve an instance of a MIP is the combination of a B&B approach
together with relaxations and duality.

5.1.1 Relaxation

One of the key techniques in integer programming are relaxations, where some con-
straints (5.2b)-(5.2d) are omitted to obtain simpler problems. Those simpler problems
can hopefully be solved efficiently to get lower bounds which can be used in the B&B
algorithm to cut away branches of the B&B search tree.

The obtained solutions of the simpler problem need not be feasible regarding the original
problem. Therefore one relaxation is to neglect the discrete value constraint (5.2c) and
change the domain of vector x1 from Zn1 to Rn1 . The resulting problem is a LP which
can be efficiently solved with the simplex algorithm to obtain a lower bound of the
original problem.

5.1.2 Duality

The dual problem to a LP (5.1) is defined by

min bTy (5.3a)
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s.t. ATy ≤ c (5.3b)
y ∈ Rm (5.3c)

with the corresponding dual vector y ∈ Rm consisting ofm variables. While the relaxation
of a MIP to a LP provides a lower bound for the original MIP, the dual problem of the
relaxation provides an upper bound for the MIP. This upper bound can be used by the
B&B algorithm to cut away branches of the B&B search tree.

5.1.3 Branch and Bound

The B&B algorithm already mentioned in chapter 3 is an exact technique to solve a MIP
based on the divide and conquer principle. This is done by solving the LP relaxation of
the MIP. The solution of the LP relaxation will contain some variable xi with fractional
variable values x̃i. One way of branching is to create two new subproblems by adding to
subproblem one the inequality xi ≤ bx̃ic and to subproblem two the inequality xi ≥ dx̃ie.
For each new subproblem the corresponding LP relaxation as well as the dual LP is solved.
Then the B&B algorithm checks if the branch could be pruned due to the obtained
lower and upper bounds, otherwise the subproblem will be split again into two new
subproblems.

5.2 Objective Function and Basic Constraints
In order to solve even small instances of the DSDVRPTW exactly, the solution space
S must be reduced. Therefore we change some soft constraints to hard constraints by
setting the penalty factors γ, δ and ε from Table 4.1 to infinity. Hence, a solution of the
following MIP formulation is feasible if

Lcus
dvi = 0 ∀d ∈ D, ∀v ∈ V, ∀i ∈ N ′, (5.4)

Lveh
dv = 0 ∀d ∈ D, ∀v ∈ V and (5.5)
Odv = 0 ∀d ∈ D, ∀v ∈ V (5.6)

holds, or, in other words if there are not any time window violations, vehicle time window
violations or maximum tour duration violations. Furthermore by setting η to infinity
it will be claimed that all customers are served by one vehicle. Moreover the objective
function should not consider waiting times and open route costs. Therefore β and θ are
set to zero.

To reduce the complexity further, it is assumed that the planning horizon D = {1}
consists of only one day. Therefore, the day index d will be neglected in this chapter.

This restrictions lead to the following MIP formulation

min
∑
v∈V

∑
i,j∈N

(
α cdist

i,j + (1− α) ctime
i,j

)
Xv
ij (5.7)
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subject to

∑
v∈Aj

∑
i∈N\{nc+1}

Xv
ij = 1 ∀j ∈ N ′ (5.8)

∑
i∈N\{nc+1}

Xv
ij −

∑
i∈N\{0}

Xv
ji = 0 ∀j ∈ N ′, ∀v ∈ Aj (5.9)

∑
v/∈Aj

∑
i∈N

Xv
ij +Xv

ji = 0 ∀j ∈ N ′ (5.10)

∑
j∈N ′

Xv
0j = Zv ∀v ∈ V (5.11)

∑
j∈N ′

dj
∑
i∈N

Xv
ij − ZvCmax

v ≤ 0 ∀v ∈ V (5.12)

∑
v∈V

∑
i∈N\{nc+1}

∑
j∈N\{0}

Xv
ij =

∑
v∈V

Zv + |N ′| (5.13)

∑
v∈V

Xv
ij = 0 ∀i ∈ N ′, ∀j ∈ N ′, (5.14)

ecus
i + si + ctime

ij > lcus
j∑

(i,j)∈P
Xv
ij ≤ |P | − 1 ∀ invalid paths P ⊆ A of v ∈ V (5.15)

∑
v∈V

Xv
ii +Xv

i0 +Xv
(nc+1)i = 0 ∀i ∈ N (5.16)

∑
i∈N

Xv1
ij −

k<j∑
k=1

∑
i∈N

Xv2
ik ≤ 0 ∀j ∈ N ′ (5.17)

∀v1, v2 ∈ V,Qpro
v1 = Qpro

v2 , v2 < v1

Xv
ij ∈ {0, 1} ∀v ∈ V, ∀i, j ∈ N (5.18)
Zv ∈ {0, 1} ∀v ∈ V (5.19)

with the objective function (5.7) consisting of the total driving time and the number of
meters driven. The parameter α ∈ [0, 1] describes in what extent the costs should be
taken into account. If α = 1, only the distance costs will be minimized. On the other
hand, if α = 0, only the driving time costs will be minimized.

Constraint (5.8) restricts the number of visits to a customer to at most one visit over
all vehicles. Furthermore constraint (5.9) ensures that each vehicle which visits a
customer, leaves that customer again while (5.10) forbids vehicles to visit customers if
their qualifications do not match. Equation (5.11) puts variable Zv on par with the
number of routes of vehicle v ∈ V . Hence, variable Zv is set to one if vehicle v ∈ V is
used and set to zero otherwise. The maximum load capacity Cmax

v of each vehicle v ∈ V
is hold through constraint (5.12). Constraint (5.14) forbids arcs that are a priori invalid
due to a time window violation.
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Since there are vehicles which provide the same qualification, there are many solutions
which are in fact identical, except two vehicles are exchanged. This symmetry is prohibited
by the symmetry breaking constraint (5.17). The idea is to define an ordering between
customers as well as between vehicles. A vehicle v ∈ V can only visit a customer j ∈ N ′ if
there is at least one vehicle v′ ∈ V such that v′ < v and v′ provides the same qualifications
as vehicle v and visits a customer k ∈ N ′ such that k < j holds.

Note, that constraint (5.15) produce exponentially many inequalities to prohibit subtours
and time window violations. Since this is only for small instances practicable, in the
following sections, there are different approaches presented to avoid adding exponentially
many inequalities.

5.3 Miller-Tucker-Zemlin Constraints
The Miller-Tucker-Zemlin based formulation [MTZ60]

Y v
i + si + ctime

ij − Y v
j −

(
1−Xv

ij

)
Mij ≤ 0 ∀i ∈ N \ {nc + 1}, (5.20)

∀j ∈ N \ {0}, i 6= j,

∀v ∈ Ai ∩Aj ,
ecus
i + si + ctime

ij ≤ lcus
j

sveh
v ≤ Y v

0 ≤ eveh
v ∀v ∈ V (5.21)

sveh
v ≤ Y v

nc+1 ≤ eveh
v ∀v ∈ V (5.22)

Y v
0 − Y v

nc+1 ≤ 0 ∀v ∈ V (5.23)
Y v
nc+1 − Y v

0 − ZvDmax ≤ 0 ∀v ∈ V (5.24)
ecos
i − Y v

i ≤ 0 ∀v ∈ V, ∀i ∈ N ′ (5.25)

Y v
i − lcus

i

∑
j∈N

Xv
ij − ecus

i

1−
∑
j∈N

Xv
ij

 ≤ 0 ∀v ∈ V, ∀i ∈ N ′ (5.26)

Y v
i ∈ R ∀v ∈ V, ∀i ∈ N (5.27)

uses the variables Y v
i to define an ordering between customer i ∈ N \ {nc + 1} and

customer j ∈ N \ {0} to avoid subtours. Furthermore variables Y v
i represent the start

of service time of vehicle v ∈ V by customer i ∈ N ′, whereas Y v
0 and Y v

nc+1 represent
the start time from the depot and the arrival time at the depot, respectively. Hence, if
arc Xv

ij is used, the start of service time Y v
j of customer j ∈ N \ {0} must be greater or

equal to the start of service time Y v
i of customer i ∈ N \ {nc + 1} plus the service time

si of customer i and the travel time ctime
ij from customer i to customer j. If arc Xv

ij is
not used, the constant

Mij = max
(
lcus
i + si + ctime

ij − ecus
j , 0

)
(5.28)

ensures that constraint (5.20) is always fulfilled.
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Constraints (5.21)-(5.22) make sure that the start time from the depot Y v
0 and the arrival

time at the depot Y v
nc+1 are within the corresponding time window of vehicle v ∈ V .

Furthermore constraint (5.23) takes care that each vehicle v ∈ V starts from the depot
before it arrives at the depot. The tour duration Y v

nc+1 − Y v
0 is limited by the maximum

tour duration Dmax through constraint (5.24). Time window violations are prohibited by
constraints (5.25)-(5.26).

5.4 Cutting Plane Separation
Another approach to prohibit subtours and time window violations is the usage of cutting
planes. Cutting planes are basically linear inequalities which are not initially added to
the MIP, but dynamically separated. Those linear inequalities are also called cuts. At
each node at the B&B-tree those cuts are applied to the current LP to cut away invalid
IP solutions or to strengthen the LP-relaxation. The overall procedure is called Branch
& Cut (B&C).

The tasks of the cutting planes developed for the program (5.7)-(5.19) are to eliminate
subtours and time window violation as well as to eliminate maximum tour duration
violation. Furthermore one cutting plane tries to strengthen the LP-relaxation.

5.4.1 Subtour Elimination

We consider here two subtour elimination approaches [NW88b], [Lee04b]. The cycle
elimination cuts are based on the idea that if there is a path from the end point to the
start point of an arc, then there is an invalid subtour. This subtour is then prohibited by
adding an additional constraint to the MIP. The directed connection cuts separate cycle
elimination cuts based on the max-flow min-cut theorem.

Cycle Elimination Cuts

The constraints ∑
(i,j)∈C

Xv
ij ≤ |C| − 1 ∀v ∈ V, ∀ cycles C ∈ G (5.29)

are sufficient to enforce that an IP-solution of program (5.7)-(5.19) does not contain any
cycles. Unfortunately there are exponentially many inequalities (5.29), such that adding
them initially to the problem is only possible for very small instances. Therefore the
constraints (5.29) are added dynamically during the B&B procedure.

At each B&B-node Algorithm 5.1 is applied to the current LP solution to find invalid
cycles and cut them away. This is done by associating to each arc (i, j) ∈ A of the routing
graph G = (N,A) a weight

wij := 1− X̃v
ij ∀(i, j) ∈ A (5.30)

where X̃v
ij denotes the current fractional value of variable Xv

ij per vehicle v ∈ V . Next,
Algorithm 5.1 tries to find for each arc (i, j) ∈ A the shortest path p from j to i. If such
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a path exists and the sum of the fractional values is greater than the length of the path
minus one, Algorithm 5.1 has found an invalid cycle and adds a corresponding constraint

Xv
ij +

∑
(i′,j′)∈p

Xv
i′j′ ≤ |C| − 1 (5.31)

with C = p ∪ {(i, j)} to forbid the cycle.

Algorithm 5.1: Add Cycle Elimination Constraints
Input: A LP-solution sLP, a routing graph G = (N,A)

1 foreach v ∈ V do
2 foreach (i, j) ∈ A do
3 wij ← 1− X̃v

ij ;
4 end
5 foreach (i, j) ∈ E do

6 if X̃v
ij ≤ 0.5 then continue;

7 Find shortest path p from j to i;

8 if X̃v
ij +

∑
(i′,j′)∈p X̃

v
i′j′ > |p| − 1 then

9 Add constraint Xv
ij +

∑
(i′,j′)∈pX

v
i′j′ ≤ |p|;

10 end
11 end
12 end

Directed Connection Cuts

Algorithm 5.2 solves for each vehicle v ∈ V and for each customer j ∈ N ′ the max-flow
min-cut problem. This is done by creating a flow network such that each arc (i′, j′) ∈ A
of the routing graph G = (N,A) is associated with a capacity

ci′j′ = X̃v
i′j′ ∀(i′, j′) ∈ A (5.32)

where X̃v
i′j′ denotes the current fractional value of variable Xv

i′j′ . Furthermore the depot
is set as sink and customer j is set as target. Next Algorithm 5.2 calculates the minimum
cut set C with capacity c(C). If the capacity c(C) is smaller than the sum of the flow
entering customer j, then an invalid subtour is detected and can be prohibited by adding
constraint ∑

(i′j′)∈δ+(C)
Xv
i′j′ >=

∑
i∈N\{0}

Xv
ij (5.33)

to the MIP [NW88b], [Lee04b].
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Algorithm 5.2: Add Directed Connection Cuts
Input: A LP-solution sLP, a routing graph G = (N,A)

1 foreach (i, j) ∈ A do
2 wij ← X̃v

ij ;
3 end
4 foreach v ∈ V do
5 foreach j ∈ N ′ do
6 f ←

∑
i∈N\{0} X̃

v
ij ;

7 if f = 0 then continue;
8 Get minimum cut set C with the depot as source and customer j as target;
9 if c(C) ≥ f then continue;

10 Add constraint
∑

(i′j′)∈δ+(C)X
v
i′j′ >=

∑
i∈N\{0}X

v
ij ;

11 end
12 end

5.4.2 Time Window Cuts

In order to detect and eliminate time window violations, Algorithm 5.3 is applied to each
LP-solution at each node of the B&B-tree. Algorithm 5.3 applies a Depth-First Search
(DFS) for each vehicle v ∈ V and each node i ∈ N in the routing graph G = (N,A).

During the DFS, at each expanded node k the start of service time t is calculated with
respect to the current root node i. If t is between the customers time window [ecus

k , lcus
k ],

then node k will be further expanded. Hence k is pushed on the stack s. Otherwise, if t
exceeds the latest possible service time lcus

k , then a time window violation is detected.
The path p from the start node i to the current expanded node k is reconstructed from
the predecessor array pred. Since this path leads to a time window violation, the path is
prohibited by adding the constraint

∑
(i′,j′)∈p

Xv
i′j′ ≤ |p| − 1. (5.34)

5.4.3 Maximum Tour Duration Cuts

In order to detect routes which are violating the maximum tour duration constraint,
algorithm 5.4 is applied at each LP-solution.

As in Section 5.4.1 each arc (i, j) ∈ A from the routing graph G = (N,A) is associated
with weight wij (5.30). Next, algorithm 5.4 calculates the shortest path r from the start
depot to the end depot. If the duration of route r exceeds the maximum tour duration
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Algorithm 5.3: Add Time Window Violation Constraints
Input: A LP-solution sLP, a routing graph G = (N,A)
Data: Predecessor array pred[v], Stack s

1 foreach v ∈ V do
2 foreach i ∈ N do
3 Init(s);
4 Push(s, (i, ecus

i ));
5 pred[i]← i;
6 while ¬IsEmpty(s) do
7 (j, t)←Pop(s);
8 t← t+ sj ;
9 foreach k ∈ δ+(j) do

10 if X̃v
jk = 0.0 then continue;

11 if k is already discovered then continue;
12 if ecus

k ≤ t+ ctime
jk ≤ lcus

k then

13 Push(s, (k, t+ ctime
jk ));

14 pred[k]← j;
15 else if t+ ctime

jk > lcus
k then

16 Extract path p from i to k from pred;
17 Add constraint

∑
(i′,j′)∈pX

v
i′j′ ≤ |p| − 1;

18 end
19 end
20 end
21 end

Dmax, then r is prohibited by adding the constraint

∑
(i′,j′)∈r

Xv
i′j′ ≤ |r| − 2 (5.35)

to the MIP.

5.4.4 Packing Constraints Strengthening

This section describes the strengthening of packing constraint (5.12). A set I ⊂ N ′ is
called a cover if the condition ∑

i∈C
di > Cmax

v (5.36)
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Algorithm 5.4: Add Maximum Tour Duration Constraints
Input: A LP-solution sLP, a routing graph G = (N,A)

1 foreach v ∈ V do
2 foreach (i, j) ∈ A do
3 wij ← 1− X̃v

ij ;
4 end
5 Find shortest path r = (τ0 = 0, τ1, τ2, . . . , τ|r| = nc + 1) from start depot 0 to

end depot nc + 1;
6 Calculate start time from the depot Y v

0 ;
7 Calculate arrival time at the depot Y v

nc+1;
8 if Y v

τnc+1 − Y
v

0 > Dmax then

9 Add constraint
∑

(i′,j′)∈rX
v
i′j′ ≤ |r| − 2;

10 end
11 end

for some vehicle v ∈ V holds. Since constraint (5.12) will be violated if all customers of
I are visited by vehicle v, the inequality∑

i∈I

∑
j∈N\{0}

Xv
ij ≤ |C| − 1 (5.37)

will strengthen the LP-relaxation. Inequalities (5.37) are called Cover Inequalitys (CI)
and were simultaneously and independently introduced by [Wol75], [HJP75] and [Bal75].
A cover I is called minimal if the cardinality of I is minimal such that (5.36) still holds.
Minimal covers yield to stronger CIs than with non minimal covers.

Heuristic 5.5 computes such minimal covers for each LP-solution sLP. First, all customers
i ∈ N ′ are sorted in ascending order according to di

∑
j∈N\{0} X̃

v
ij . Next, the sorted list

is iterated, such that all customers are added to cover I until condition (5.36) is satisfied.
If the corresponding sum of the fractional variable values exceeds |I| − 1, the CI (5.37) is
added to strengthening the LP-relaxation.
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Algorithm 5.5: Add Minimal Cover Inequalities
Input: A LP-solution sLP, a routing graph G = (N,A)

1 foreach v ∈ V do
2 N̄ ← sorted list i ∈ N ′ in ascending order according to di

∑
j∈N\{0} X̃

v
ij ;

3 I ← ∅;

4 foreach i ∈ N̄ do
5 I ← I ∪ {i};
6 if

∑
j∈I dj > Cmax

v then break;
7 end

8 if
∑
i∈I
∑
j∈N\{0} X̃

v
ij > |I| − 1 then

9 Add constraint
∑
i∈I
∑
j∈N\{0}X

v
ij ≤ |I| − 1;

10 end
11 end
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CHAPTER 6
Variable Neighborhood Search

This chapter describes the VNS algorithm to tackle the SSDVRPTW. Section 6.1 presents
local search neighborhoods which are used within the descent phase of the VNS. The
shaking neighborhoods are described in Section 6.2. Overall there are seven different
shaking neighborhoods developed for the VNS. The ordering of execution of the shaking
neighborhoods is described in Section 6.3.

Algorithm 6.1 gives an overview of the VNS algorithm. The shaking neighborhood
structure Nk will be described in Section 6.3 together with the shaking neighborhoods
in Section 6.2. At the beginning of the loop, a neighbor solution s′ will be randomly
selected from the shaking neighborhood Nk(sbest) of the current incumbent solution sbest.
In the next step, the selected solution s′ will be improved by local search procedures to
obtain solution s′′. The neighborhoods used in the local search procedures are described
in Section 6.1. If the objective value of s′′ is less than the objective value of sbest, a new
incumbent solution is found. One more local search procedure will be applied to s′′ with
respect to neighborhood N2opt*. The obtained solution s′′′ will be assigned to sbest and
the shaking will be reset to k = 1. Because of the large size of neigborhood N2opt* the
local search will be applied only if a new best solution is found rather than applying the
local search in every step of the VNS.

6.1 Local Search Neighborhoods

For the local search procedures we use the well known 2-opt and 3-opt neighborhoods
which will be described in more detail in Section 6.1.1 and 6.1.2. Both neighborhoods
improve only one route of solution s′ in Algorithm 6.1. Therefore the local search
procedure is applied to every changed route during the shaking phase. Additionally every
new best solution is improved by a local search procedure using the inter-route exchange
neighborhood 2-opt* introduced by Potvin and Rousseau [JYP95].
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Algorithm 6.1: VNS
Input: An initial solution s
Output: A probably improved solution s′

1 sbest ← s;
2 k ← 1;
3 for stopping criteria satisfied do
4 Select s′ ∈ Nk(sbest);
5 s′′ ← LocalSearch(s′, N3opt);
6 s′′ ← LocalSearch(s′′, N2opt);
7 if f(s′′) < f(sbest) then
8 s′′′ ← LocalSearch(s′′, N2opt*);
9 sbest = s′′′;

10 k ← 1;
11 else
12 k ← k + 1;
13 end
14 if k > kmax then
15 k ← 1;
16 end
17 end
18 return sbest;

Each local search procedure uses first improvement, hence, they do not scan the whole
neighborhood but rather stop the search when the first improved solution is found.

6.1.1 2-opt Neighborhood

A move in the 2-opt neighborhood is performed by removing two edges from a route and
connecting the remaining two paths by adding two new edges such that a new route
arises. Figure 6.1 shows an example of a possible neighbor solution s′ ∈ N2opt(s) from
solution s. The two red arcs in solution s are replaced by two green arcs.

s ∈ S s′ ∈ N2opt(s)

Figure 6.1: 2-opt Neighborhood Example
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6.1.2 3-opt Neighborhood

A move in the 3-opt neighborhood is performed by removing three edges from a route and
connecting the remaining three paths by adding three new edges such that a new route
arises. On the contrary to the 2-opt neighborhood, where there is only one way to get a
new route from the remaining segments by adding new edges, the 3-opt neighborhood
has more than one option to get a new route from the remaining segments. The local
search strategy is to choose randomly one option at the start of the search and use this
option during the whole search. Figure 6.2 shows one possible neighbor solution s′ from
the 3-opt neighborhood N3opt(s) of solution s.

s ∈ S s′ ∈ N3opt(s)

Figure 6.2: 3-opt Neighborhood Example

6.1.3 2-opt* Neighborhood

The 2-opt* Neighborhood N2opt*(s) combines two routes by cutting each route into two
segments of customers. The resulting second segment of one route is exchanged with
the second segment of the other route. Figure 6.3 shows an example of a possible 2-opt*
move. The two routes are cut by the red edges and the resulting segments with the green
pigmented vertices are exchanged. In our application for each pair of routes starting on
the same day all possible cuts and exchanges are tried.

s ∈ S s′ ∈ N2opt*(s)

Figure 6.3: 2-opt* Neighborhood Example
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6.2 Shaking Neighborhoods

The shaking neighborhood structure used in Algorithm 6.1 and 6.10 consists of classical
neighborhoods as well as very large neighborhoods. All used shaking neighborhoods will
be described in detail in the following subsections.

6.2.1 Move Segment Neighborhood

The neighborhood Nmove(s, k) includes all solutions which can be obtained by moving
a segment of customers from one route Rdv ∈ s to another route Rdv2 ∈ s such that
both routes start on the same day d. Parameter k describes the maximum length of the
moved segment of customers. Figure 6.4 shows an example of a valid move operation
with k = 1. Algorithm 6.2 describes the random selection of a neighbor solution s′ from

s ∈ S s′ ∈ Nmove(s, 1)

Figure 6.4: Move Segment Neighborhood Example

the neighborhood Nmove(s, k). After the selection of two different routes Rdv1 and Rdv2

such that both routes starts on the same day d, a segment δ ∈ Rdv1 is moved from route
Rdv1 to route Rdv2 . The segment δ is inserted in a greedy way into Rdv2 .

Algorithm 6.2: Move Segment Neighborhood Nmove(s, k)
Input: A solution s, a parameter k
Output: A solution s′

1 Create a copy s′ from solution s;
2 Choose randomly two different routes Rdv1 , Rdv2 ∈ s′ so that both routes are

driven on the same day d;
3 repeat
4 Choose randomly a segment δ = (τi, . . . , τj) from route Rdv1

1 ;
5 until j − i ≤ k;
6 if v2 is not allowed to supply customers in δ then return s ;
7 Erase δ from route Rdv1

1 ;
8 Greedy insert δ into route Rdv2

2 ;
9 return s′;
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6.2.2 Exchange Segment Neighborhood

The neighborhood Nexchange(s, k) contains all solutions which can be derived from solution
s by selecting two routes Rdv1 , Rdv2 and exchange two segments δ1 ∈ Rdv1 and δ2 ∈ Rdv2 .
Parameter k limits the length of the segments δ1 and δ2. Figure 6.5 shows a possible
neighbor solution s′ ∈ Nexchange(s, 1) from solution s with k = 1. Hence, only two single
customers from two different routes are exchanged. Algorithm 6.3 selects randomly

s ∈ S s′ ∈ Nexchange(s, 1)

Figure 6.5: Exchange Segment Neighborhood Example

a neighbor solution s′ from the Exchange Segment Neighborhood Nexchange(s, k) of
solution s.

Algorithm 6.3: Exchange Segment Neighborhood Nexchange(s, k)
Input: A solution s, parameter k
Output: A solution s′

1 Create a copy s′ from solution s;
2 Choose randomly two different routes Rdv1 , Rdv2 ∈ s′ so that both routes are

driven on the same day d;
3 repeat
4 Choose randomly a segment δ1 = (τi, . . . , τj) from route Rdv1 ;
5 Choose randomly a segment δ2 = (τi′ , . . . , τj′) from route Rdv2 ;
6 until j − i ≤ k and j′ − i′ ≤ k;
7 if v2 is not allowed to supply customers in δ1 then return s ;
8 if v1 is not allowed to supply customers in δ2 then return s ;

9 Erase δ1 from route Rdv1 and greedy insert δ2;
10 Erase δ2 from route Rdv2 and greedy insert δ1;
11 return s′;

6.2.3 Use Edge Neighborhood

The idea behind the Use Edge Neighborhood Nedge(s) is to use an arc which is not
already used in solution s. Figure 6.6 shows an example of a possible neighbor solution
s′ ∈ Nedge(s). The red arc is not currently used in solution s and included in solution s′
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such that the adjacent customers are both moved from their original routes to a different
third route. Algorithm 6.4 describes how a random solution s′ ∈ Nedge(s) is selected

s ∈ S s′ ∈ Nedge(s)

Figure 6.6: Use Edge Neighborhood Example

from the Use Edge Neighborhood. After the selection of two customers n1 and n2 from
two different non-empty routes Rdv1 and Rdv2 , the newly created segment δ = (n1, n2) is
greedy inserted into one route of the set Rd \ {Rdv1 , Rdv2} under the condition that the
qualification constraint is fulfilled for segment δ. The set Rd contains all routes which
start on the same day d ∈ D.

Algorithm 6.4: Use Edge Neighborhood Nedge(s)
Input: A solution s
Output: A solution s′

1 Create a copy s′ from solution S;
2 Choose randomly two different routes Rdv1 , Rdv2 ∈ s′ so that both routes are

driven on the same day d;

3 Choose randomly a customer n1 from Rdv1 and a customer n2 from Rdv2 ;
4 Create new segment δ = (n1, n2);

5 Remove customer n1 from Rdv1 and n2 from Rdv2 ;
6 Greedy insert δ into one route of Rd \ {Rdv1 , Rdv2};
7 return s′;

6.2.4 Include Unserved Customers Neighborhood

Since we do not use a construction heuristic to create an initial solution for the VNS
Algorithm 6.1, it is up to the Include Unserved Customers Neighborhood Ninclude(s) to
fill up the solution with customers which are not already visited by a vehicle. Hence,
the neighborhood Ninclude(s) is defined as the set of solutions which serves one more
customer than solution s. If all customers are visited by a vehicle, the size of the
neighborhood decreases to zero. Figure 6.7 shows an example of a possible neighbor
solution s′ ∈ Ninclude(s). In this example two customers are not scheduled in the
current incumbent solution s. A possible neighbor solution s′ has included one of
the two unscheduled customers. Algorithm 6.5 selects randomly a neighbor solution
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s ∈ S s′ ∈ Ninclude(s)

Figure 6.7: Include Unserved Customer Neighborhood Example

s′ ∈ Ninclude(s). First the algorithm chooses randomly a not yet visited customer n ∈ N ′.
Customer n is greedy inserted into route Rdv such that the objective value is the smallest
among all other routes and vehicle v is allowed to visit customer n.

Algorithm 6.5: Include Unserved Customers Neighborhood Ninclude(s)
Input: A solution s
Output: A solution s′

1 Create a copy s′ from solution s;
2 Choose randomly an unserved customer n ∈ N ′;
3 if There are no unserved customer then
4 return s;
5 end
6 Rdv ← empty;
7 o←∞; // objective value

8 foreach Rd
′v′ ∈ s′ do

9 if v′ is not allowed to supply n then continue;
10 Greedy insert n into Rd′v′ ;
11 if f(Rd′v′) < o then
12 o← f(Rd′v′);
13 Rdv ← Rdv

′

14 end
15 end
16 if Rdv is not empty then
17 Replace Rdv in solution s;
18 end
19 return s;

6.2.5 Merge Routes Neighborhood

The Merge Routes Neighborhood Nmerge(s) tries to reduce the number of used vehicles
by merging two routes together. The neighborhood Nmerge(s) contains all solution s′
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which are obtained by appending all customers from one route Rdv1 ∈ s to another
route Rdv2 ∈ s such that route Rdv1 gets empty. Figure 6.8 shows an example of such
a neighbor solution s′ ∈ Nmerge(s) as well as Algorithm 6.6 describes how a neighbor
solution s′ is randomly selected.

s ∈ S s′ ∈ Nmerge(s)

Figure 6.8: Merge Routes Neighborhood Example

Algorithm 6.6: Merge Routes Neighborhood Nmerge(s)
Input: A solution s
Output: A solution s′

1 Create a copy s′ from solution s;
2 Choose randomly two different routes Rdv1 , Rdv2 ∈ s′ such that both routes

starting on the same day d ∈ D;
3 Append customers from route Rdv1 to route Rdv2 ;
4 if vehicle v2 is not allowed to supply customers in route Rdv2 then
5 return s;
6 else
7 Rdv1 ← empty;
8 return s′;
9 end

6.2.6 Cyclic Exchange Neighborhood

Instead of exchanging only two different customers from two different routes, the cyclic ex-
change neighborhood Ncyclic(s, k, δmax) exchanges up to k different segments of customers
from k different routes in a cyclic manner. The number of customers in one segment
does not exceed the maximum segment length δmax. Figure 6.9 shows an example of a
possible neighbor solution s′ of solution s.

The cyclic exchange neighborhood introduced by Thompson and Orlin [TO89] can be
applied to any COP where a set B = {b1, . . . , bn} of n elements must be divided into m
partitions B1, . . . , Bm, such that the objective function of each partition is independent.
Simple neighborhoods would be a two-exchange neighborhood which does exchange
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s ∈ S s′ ∈ Ncyclic(s)

Figure 6.9: Cyclic Exchange Neighborhood Example

two elements of two partitions or a move neighborhood which moves an element from
one partition to another partition. The cyclic exchange neighborhood can be seen as a
generalization of the two-exchange neighborhood by exchanging up to k elements from
k different partitions in a cyclic manner. The size of the cyclic exchange neighborhood
|Ncyclic(s, k, δmax)| = Ω(nk) can be exponential growing if k is not fixed, whereas the two-
exchange neighborhood has a size of Ω(n2). Thompson and Orlin [TO89] and Thompson
and Psaraftis [TP93] show how to find efficiently an improved neighbor solution by
searching the cyclic exchange neighborhood using network flow techniques. In particular,
a cyclic exchange move leads to an improved solution if a negative cost subset-disjoint
cycle in an improvement graph is found. The following definition describes such an
improvement graph for the SSDVRPTW.

Definition 6.2.1.
Let P = (S, f) be the SSDVRPTW, s ∈ S a solution, R ⊆ s a subset of routes and δmax
the maximum length of segments. The improvement graph

Gimp (R, δmax) = (Vimp, Aimp) (6.1)

is a weighted directed graph constructed from routes in R with vertex set

Vimp = Vδ ∪ V∅ ∪ {κ} (6.2)

and arc set Aimp. The vertex set Vimp consists of the set of segments

Vδ =
{(
Rdv, δ

)
,
(
Rdv, δ′

) ∣∣∣Rdv ∈ R, δ ⊆ Rdv \ {0, nc + 1}, |δ| ≤ |δmax|
}

(6.3)

together with the set of pseudo vertices

V∅ =
{(
Rdv, ∅

) ∣∣∣Rdv ∈ R} (6.4)

and the source vertex κ. There is an arc (v1
imp, v

2
imp) ∈ Aimp between two vertices

v1
imp ∈ Vimp and v2

imp ∈ Vimp if and only if one of the conditions
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• v1
imp = (Rd1v1 , δ1) ∈ Vδ, v2

imp = (Rd2v2 , δ2) ∈ Vδ ∪ V∅ s.t.

d1 6= d2 ∧ v1 6= v2 ∧ ∀i ∈ δ1 : (d2, v2) ∈ Ai ∧
∑

i∈Rd2v2\δ2∪δ1

di ≤ Cmax
v2 (6.5)

• v1
imp ∈ V∅, v2

imp = κ

• v1
imp = κ, v2

imp ∈ Vδ

is fulfilled. Furthermore let c : Aimp → R be the cost function of an arc with

c(v1
imp, v

2
imp) =


fR
(
Rd2v2 \ δ2 ∪ δ1

)
− fR

(
Rd2v2

)
if v1

imp ∈ Vδ, v2
imp ∈ Vδ ∪ V∅,

fR
(
Rd2v2 \ δ2

)
− fR

(
Rd2v2

)
if v1

imp = κ, v2
imp ∈ Vδ,

0 if v1
imp ∈ V∅, v2

imp = κ.
(6.6)

For each segment of customers δ = (τi, . . . , τj) ⊆ Rdv with Rdv ∈ R such that |δ| ≤ |δmax|
there is a vertex vimp = (Rdv, δ) and a vertex v′imp = (Rdv, δ′) in graph Gimp(R, δmax)
where δ′ = (τj , . . . , τi) denotes the reverse segment of customers. An arc (v1

imp, v
2
imp) ∈

Aimp in Gimp(R, δmax) means that the segment of customers δ2 in route Rd2v2 is replaced
by the segment of customers δ1 from route Rd1v1 by inserting δ2 into route Rd1v1 in a
greedy manner (expressed through Rd2v2 \ δ2 ∪ δ1). The arc exists if and only if vehicle
v2 ∈ V is allowed to visit all customers in segment δ1 on day d2 ∈ D and the maximum
load capacity of vehicle v2 is not exceeded. In order to not only perform cyclic exchanges
of segments of customers but also to perform moves of segments of customers, there is
for each route Rdv ∈ R an additional pseudo vertex (Rdv, ∅) and one additional source
vertex κ. An arc from a vertex associated with a segment of customers δ ⊆ Rd1v1 to
a pseudo vertex of a route Rd2v2 means that the segment is greedy inserted into route
Rd2v2 . The only outgoing arc from the pseudo vertex is to the source vertex κ. An arc
from the source vertex κ to a vertex associated with a segment of customers δ ⊆ Rdv

means that segment δ is removed from route Rdv. Costs c(v1
imp, v

2
imp) describe the benefit

of replacing the segment of customers δ2 by the segment of customers δ1.

Thompson and Orlin [TO89] prove that if the objective function fR(Rdv) of a route
Rdv ∈ R is independent of other routes in R, then there exists a valid cyclic exchange
move leading to an improved solution if and only if there is a negative cost subset-disjoint
cycle in improvement graph Gimp(R) such that the negative costs of the cycle describe
the benefit of the move.

A subset disjoint cycle means that all vertices of this cycle belong to different routes
(subsets). The Problem of finding such a cycle is called Subset-Disjoint Cycle Problem
(SDCP) and is NP-complete [TO89]. Unless NP = P , it is not possible that there is an
algorithm which can efficiently solve the SDCP. We thus use a heuristic based on a label
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Algorithm 6.7: Detect Minimum Cost Subset-Disjoint Cycle
Input: An improvement graph Gimp = (Vimp, Aimp)
Output: A possible empty cycle Cbest
Data: Distance array dist[v], Predecessor array pred[v], Queue q, Path p

1 Cbest ← empty;
2 while s ∈ Vimp do
3 dist[s]← 0;
4 pred[s]← s;
5 dist[v]←∞ ∀v ∈ Vimp \ {s};
6 Push(q, s);
7 while ¬IsEmpty(q) do
8 i←Pop(q);
9 if ¬IsSubsetDisjoint(p[i]) then continue;

10 foreach (i, j) ∈ Aimp do
11 if dist[j] > dist[i] + c(i, j) then
12 if j ∈ p[i] then
13 C ← subpath from j to p[i];
14 if c(C) < c(Cbest) then
15 Cbest ← C;
16 end
17 else
18 if j.Rdv is not in already in p[i] then
19 dist[j]← dist[i] + c(i, j);
20 pred[j]← i;
21 Pop(q,j);
22 end
23 end
24 end
25 end
26 end
27 end
28 return Cbest;
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correcting algorithm for finding shortest paths to find subset-disjoint cycles similar to
[AMO93] and [Sha02].

Algorithm 6.7 gets as input an improvement graph Gimp and returns a negative cost
cycle Cbest which could be empty if there was no cycle found during the search. Since the
algorithm is based on a label correcting algorithm, it starts from a start vertex s ∈ Vimp
and tries to find the shortest distances to all other vertices, considering that the vertices
in the shortest paths must be subset-disjoint, i. e. that each vertex in a path belongs to
a different route Rdv. The algorithm maintains three data structures. The distance array
dist[v] stores the shortest currently known distance from vertex v to the start vertex s
and the predecessor array pred[v] stores the predecessor vertex of vertex v. With pred[v]
it is possible to reconstruct the shortest path with distance dist[v] for each vertex v. The
third data structure is a queue, storing all vertices which must be explored during the
search. In the inner while loop of Algorithm 6.7 the next vertex i to be explored will be
taken from the queue. If this vertex belongs to a path p[i] which is not subset disjoint, the
algorithm continues with the next vertex from the queue. Otherwise each adjacent vertex
j will be considered. If the currently known distance dist[j] is greater than the distance
we get by taking the path from s via i to j and vertex j appears already in path p[i],
then obviously we have found a new negative cost cycle. Otherwise, if j does not appear
in p[i], we have found a new shortest path from s to j. Furthermore if the associated
route Rdv of vertex j does not already appear in path p[i], we have not only found a new
shortest path but also a new subset disjoint path from s to j. In this case, we update
the data structures accordingly and continue with the next vertex in queue q. The outer
loop starts the algorithm from each vertex in graph Gimp to increase the possibility of
finding a negative subset-disjoint cost cycle [AMO93]. Note, that Algorithm 6.7 does not
guarantee to find any negative subset-disjoint cost cycle even if there are some cycles in
graph Gimp.

Algorithm 6.8: Cyclic Exchange Neighborhood Ncyclic(s, k, δmax)
Input: A solution s, parameter k, maximum segment length δmax
Output: A solution s′

1 Create a copy s′ from solution s;
2 Choose randomly a day d ∈ D;
3 Choose randomly k non-empty routes R ⊆ Rd from all routes starting on day d;
4 Gimp(R, δmax)← CreateImprovementGraph(R);
5 cycle← DetectMinimumCostSubsetDisjointCycle(Gimp(R, δmax));
6 if IsEmpty(cycle) then return s ;
7 Apply cycle on s′;
8 return s′;

Algorithm 6.8 describes how an improved solution is obtained from the cyclic exchange
neighborhood Ncyclic(s, k, δmax) of solution s. The algorithm selects randomly k routes
R such that each of the selected route starts on the same day. The goal is to find a
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cyclic exchange move which can be applied on routes R such that the new obtained
solution is improved. Therefore an improvement graph Gimp(R, δmax) is created from the
selected routes R to search for a negative subset-disjoint cycle. If such a cycle is found,
the corresponding cyclic exchange move is applied and the new obtained solution s′ is
returned.

6.2.7 Rearrange Tours Neighborhood

To escape a local optimum, the Rearrange Tours Neighborhood Nrearrange(s, k) tries to
explore a valley far away from the incumbent solution. This is done in Algorithm 6.9
by selecting k randomly routes and removing all customers from them. The removed
customers are greedy inserted into the solution again by a random order. After each time
a customer is inserted into a route Rdv, two local search procedures are applied. The
local search procedures try to exchange two customers between route Rdv and another
route Rdv′ or move a customer from route Rdv to another route Rdv′ , respectively. The
local search procedures use best improvement to select an improved solution.

Algorithm 6.9: Rearrange Tours Neighborhood Nrearrange(s, k)
Input: A solution s, parameter k
Output: A solution s′

1 Create a copy s′ from solution s;
2 Choose randomly a day d ∈ D;
3 Choose randomly k routes R ⊆ Rd from all routes starting on day d;
4 Remove all customers from routes R and store them into set NR;
5 while ¬IsEmpty(NR) do
6 Choose randomly a removed customer n ∈ NR;
7 Greedy insert n into a route Rdv ∈ Rd such that f(s′) has the lowest increase;
8 Apply exchange customers local search procedure among Rdv and Rd;
9 Apply move customer local search procedure among Rdv and Rd;

10 Remove n from NR;
11 end
12 return s′;

6.3 Shaking Neighborhood Structure

Table 6.1 listens the used neighborhood structure Nk with over k = 48 different neigh-
borhoods. The constant κmax and δmax describe the number of rearrange tour neighbor-
hoods and the maximum length of considered segments in the cyclic exchange neigh-
borhoods Ncyclic(s, 3 − 5, δmax), respectively. The values for κmax and δmax are both
determined in Section 7.3. One important neighborhood is Ninclude(s), which includes
unserved customers. The task of the neighborhoods Nmove(s, 1− 15), Nexchange(s, 1− 15),
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Nedge(s) and Nmerge(s) is to quickly make place for new customers such that eventually
Ninclude(s) could include them. The very large neighborhoods Ncyclic(s, 3− 5, δmax) and
Nrearrange(s, 1 − κmax) should finally find new improved solutions in valleys far away
from the incumbent solution. The last neighborhood Ncyclic(s, 20, 1) try to find cyclic
exchange moves among up to 20 randomly selected routes. Since the exploration of this
neighborhood could take same time, the maximum segment length is restricted to one.

N1−20(s) Nmove(s, 1− 15)
N21−40(s) Nexchange(s, 1− 15)
N41(s) Nedge(s)
N42(s) Nmerge(s)
N43(s) Ninclude(s)
N44−46(s) Ncyclic(s, 3− 5, δmax)
N47−47+κmax(s) Nrearrange(s, 1− κmax)
N48+κmax(s) Ncyclic(s, 20, 1)

Table 6.1: Shaking Neighborhood Structure Nk

6.4 Skewed VNS

A skewed-VNS is implemented to escape local optima and explore valleys which are
far away from the incumbent solution. This is done by accepting a possible worse
solution if the found solution is far away from the current incumbent solution. This VNS
variant is called skewed-VNS described in Algorithm 6.10. The variable sref describes
the current incumbent solution whereas the variable sbest stores the best solution found
so far. Similar to the VNS Algorithm 6.1 a solution s′ is randomly selected from the
shaking neighborhood structure Nk(sref) at the beginning of the loop. After applying
local search procedures a new incumbent solution is accepted if

f(s′′)− αsvns ρ(s′′, sref) < f(sref) (6.7)

holds. The distance metric ρ : S×S 7→ R≥0 describes the distance between solution s′′ and
sref . Parameter α controls to which extent the distance between the two solutions goes
into the decision of accepting a worse solution. The number of different arcs in solution
s′′ and sref is used as distance metric ρ. Only if a new incumbent solution is accepted,
one more local search procedure will be applied to s′′ with respect to neighborhood
N2opt*. If the resulting solution sref is better than the best solution found so far, sbest will
be updated accordingly. Every time a new incumbent solution is accepted the shaking
neighborhoods are reset. Otherwise the next shaking neighborhood in the structure will
be selected.
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Algorithm 6.10: Skewed-VNS
Input: An initial solution s
Output: A probably improved solution s′

1 sbest ← s;
2 sref ← s;
3 k ← 1;
4 for stopping criteria satisfied do
5 Select s′ ∈ Nk(sref);
6 s′′ ← LocalSearch(s′, N3opt);
7 s′′ ← LocalSearch(s′′, N2opt);
8 if f(s′′)− αsvns ρ(s′′, sref) < f(sref) then
9 sref ← LocalSearch(s′′, N2opt*);

10 if f(sref) < f(sbest) then
11 sbest ← LocalSearch(s′′, N2opt*);
12 end
13 k ← 1;
14 else
15 k ← k + 1;
16 end
17 if k > kmax then
18 k ← 1;
19 end
20 end
21 return sbest;

6.5 Computation of Start Times
There are many ways to determine the start time Y dv

0 (see Section 4.2) from the depot
of a given route Rdv = (τ0, τ1, . . . , τ|Rdv |) of vehicle v ∈ V at day d ∈ D. The cheapest
method regarding computation time would be to always set Y dv

0 to the earliest possible
availability start time sveh

v of vehicle v, thus

Y dv
0 = sveh

v . (6.8)

This method minimizes time window violations, since the start from the depot is always
as earliest as possible. However this approach is not optimal regarding the tour duration
Y dv
nc+1 − Y dv

0 , since the tour duration could exceed the maximum tour duration Dmax

although this could maybe be avoided by starting later from the depot. Hence, this
method may cause maximum tour duration violations, although they could be avoided.

A simple improvement to reduce route duration is to set

Y dv
0 = max(sveh

v , ecus
τ1 − c

time
τ0τ1 ), (6.9)
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where τ1 denotes the first visited customer. However this approach has the same
disadvantages as the first described method.

There are cases where the start time Y dv
0 could be further delayed in order to minimize

the tour duration and without violating any time windows. The concept of delaying the
departure time from any node without violating any time window is called forward time
slack and was first introduced by Savelsbergh [Sav92]. The forward time slack for the
depot F0 can be recursively defined as

F0 = min
0≤i≤|Rdv |

 ∑
0<k≤i

Wτk
+ max

(
lcus
τj
− Y cus

τj
−Wτj , 0

) . (6.10)

By setting the start time to
Y dv

0 = sveh
v + F0 (6.11)

the route duration will be minimized without violating any time window if possible.
Although the computation of the slack time is more expensive regarding running time,
Cordeau, Laporte and Mercier [CLM04] could show that the obtained results for the
SDVRPTW instances from [CL01] are better when considering the time slack as without
it. Thus, in the successive experiments in Chapter 7 we always compute the starting
time of a route by considering the slack time.

52



CHAPTER 7
Computational Results

In this chapter I present the results of the computational experiments performed with
the algorithms described in the previous chapters. This chapter starts with a description
of the computational environment in section 7.1. In section 7.2 the benchmark instances
are described, and their transformation to the considered model is presented in 7.2.1.

7.1 Used Libraries and Framework

All tests are performed on a computing cluster consisting of 14 machines with two
Intel Xeon E5540 processors running on 2.53 GHz with 24 GB RAM. Furthermore two
machines with two Intel Xeon E5649 processors running on 2.53 GHz with 60 GB RAM
and one machine with two Xeon E5649 processors running on 2.53 GHz with 72 GB
RAM have been used for the tests.

The program was written in C++ and compiled with GCC version 4.8.4 and the following
additional software libraries and frameworks are used:

• Boost library (version 1.59.0): collection of many smaller C++ libraries;

• IBM ILOG CPLEX (version 12.6): A software package which can solve very large
MIPs.

7.2 Test Instances

The implementations of the VNS and SVNS algorithms are tested on several test instances
from the literature. There are all in all 36 test instances created by Cordeau and Laporte
in [CL01] and [CGL97] for the SDVRP and the SDVRPTW. The characteristics of the
test instances are shown in Table 7.1 and 7.2. In both tables the column n indicates the
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number of customers which have to be served. The column t and m corresponds to the
number of different vehicle types and the number of vehicles per vehicle type, respectively.
The number of customers ranges from 48 to 1008, whereas the size of the fleet ranges from
4 to 108 with up to 6 different vehicle types. Furthermore the developed algorithms will
be compared with 20 test instances from Vidal, Crainic, Gendreau and Prins [VCGP13]
listed in Table 7.2. These instances contain 360 to 880 nodes corresponding to customers
and up to 120 vehicles with up to 6 different vehicle types.

Instance n t m f(s∗)

1 48 4 1 1385.47
2 96 4 2 2322.08
3 144 4 3 2626.97
4 192 4 4 3575.79
5 240 4 5 4479.34
6 288 4 6 4583.46
7 72 6 1 1990.68
8 144 6 2 3103.40
9 216 6 3 3732.06
10 288 6 4 4782.17
11 1008 4 21 13479.90
12 720 6 10 9938.57

Table 7.1: Test Instances for the SDVRP from Cordeau and Laporte [CL01]

Moreover, there are 8 new reduced test instances for the SDVRPTW created from the test
instances of [CL01] to test the B&C algorithm. These instances are shown in Table 7.3
and contain 27 to 57 customers with a fleet size up to 8 vehicles and up to 6 different
vehicle types.

7.2.1 Transformation of the Benchmark Instances

Since the model of the SSDVRPTW differs from the models of the SDVRPTW used in
[CL01] and [VCGP13], a mapping from an instance of the SDVRPTW to the SSDVRPTW
must be provided.

The SDVRPTW from the literature is defined on a directed graph Ḡ = (V̄ , Ā) with
vertex set V̄ = {v̄0, . . . , v̄n} and arc set Ā = {(v̄i, v̄j) | v̄i ∈ V̄ , v̄j ∈ V̄ , v̄i 6= v̄j}. Vertex
v̄0 represents the depot where m vehicles of t different types are located. Each vehicle
type l ∈ {1, . . . , t} has a maximum capacity Q̄l. Each vertex v̄i ∈ V̄ is associated with
a time window [ēi, l̄i], a nonnegative service duration s̄i and a nonnegative demand d̄i.
Furthermore, each customer v̄i ∈ V̄ \ {v̄0} has a set R̄i ⊆ {1, . . . , t} of allowed vehicle
types. Moreover each arc (v̄i, v̄j) ∈ Ā is associated with a travel cost c̄ij .
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Cordeau and Laporte Vidal, Crainic, Gendreau and Prins

Instance n t m BKS Instance n t m BKS

1a 48 4 2 1658.84 11a 360 4 11 9924.11
2a 96 4 3 3003.21 12a 480 4 14 12251.66
3a 144 4 4 3450.46 13a 600 4 17 14491.25
4a 192 4 5 4746.27 14a 720 4 21 16547.89
5a 240 4 6 6521.95 15a 840 4 25 19090.19
6a 288 4 7 6066.22 16a 960 4 29 21413.65
7a 72 6 2 2179.06 17a 360 6 8 10547.07
8a 144 6 3 4029.71 18a 520 6 12 13963.49
9a 216 6 4 5085.57 19a 700 6 16 18855.51

10a 288 6 5 6218.15 20a 880 6 20 22513.44
11a 1008 4 27 16535.51 - - - - -
12a 720 6 14 12639.84 - - - - -

1b 48 4 2 1429.35 11b 360 4 9 7962.22
2b 96 4 3 2537.07 12b 480 4 11 9508.68
3b 144 4 4 2850.20 13b 600 4 14 11562.67
4b 192 4 5 3828.65 14b 720 4 17 13623.28
5b 240 4 6 4842.61 15b 840 4 20 15437.52
6b 288 4 7 5039.36 16b 960 4 23 17834.61
7b 72 6 2 1872.98 17b 360 6 6 8562.99
8b 144 6 3 3190.48 18b 520 6 9 11477.72
9b 216 6 4 4081.26 19b 700 6 12 14894.65

10b 288 6 5 5298.60 20b 880 6 15 18566.66
11b 1008 4 27 14263.65 - - - - -
12b 720 6 14 10382.74 - - - - -

Table 7.2: Test Instances for the SDVRPTW [CL01] and [VCGP13]

An instance of the SSDVRPTW can be created by setting

G := Ḡ (7.1)
nd := 1 (7.2)
nc := n (7.3)

[ecus
i , lcus

i ] := [ēi, l̄i] ∀v̄i ∈ V̄ \ {v̄0} (7.4)
si := s̄i ∀v̄i ∈ V̄ (7.5)
di := d̄i ∀v̄i ∈ V̄ (7.6)

Ctime := (c̄ij) ∀v̄i ∈ V̄ , ∀v̄j ∈ V̄ (7.7)
Cdist := 0. (7.8)
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Inst n t m

mip 1a 27 4 1
mip 2a 57 4 2
mip 3a 56 4 2
mip 4a 54 4 2
mip 5a 57 4 2
mip 6a 57 4 2
mip 7a 48 6 1
mip 8a 44 6 1

Table 7.3: B&C Results

Vehicles: The set of vehicles is defined by

V := {(l, i) | l ∈ {1, . . . , t}, i ∈ {1, . . . ,m}} . (7.9)

In contrary to the depot of the SSDVRPTW, the depot v̄0 is associated with a time
window. This time window is mapped to the vehicle time windows

[sveh
v , eveh

v ] := [ē0, l̄0] ∀v ∈ V. (7.10)

Furthermore the maximum load capacity

Cmax
v := Q̄l ∀v = (l, i) ∈ V (7.11)

is set to the maximum load capacity of the corresponding vehicle type l.

Qualifications: It remains to map the set of allowed vehicle types R̄i ∀vi ∈ V̄ \ {v0} to
the sets of provided and required qualifications Qpro

i ∀i ∈ N ′ and Qreq
v ∀v ∈ V , respectively.

This is done by interpreting the set of allowed vehicle types R̄i ∀vi ∈ V̄ \ {v0} as a t-bit
vector qi = (b1b2 . . . bt) such that

bj =
{

1 if j ∈ R̄i
0 otherwise ∀j ∈ {1, . . . , t}. (7.12)

The set of qualifications

Q :=
{
qi = (b1b2 . . . bt)|v̄i ∈ V̄ \ {v0}

}
(7.13)

contains all t-bit vectors. Furthermore, for each customer v̄i ∈ V̄ \ {v0} with qualification
qi = (b1b2 . . . bt) the sets

Qreq
i := {qi} (7.14)

Qpro
v := Qpro

v ∪ {qi} ∀v = (l, j) ∈ V : bl = 1 (7.15)

are filled.
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Objective Function: The objective function from the literature covers only the total
travel time of a solution s. Therefore the penalty factors from Table 4.1 must be set
accordingly and are shown in Table 7.4. Since in [CL01] and [VCGP13] only travel times

α 0 Distance and time factor
β 0 Penalty factor for the waiting time
γ 200 Penalty factor for customer time window violations
δ 100 Penalty factor for vehicle time window violations
ε 200 Penalty factor for exceeding the maximum tour duration
η 104 Penalty factor for the number of unvisited customers
θ 0 Penalty factor for each time a vehicle is used

Table 7.4: Penalty Factors

are used as distance measure between two customers, parameter α is set to zero. For the
same reasion parameter β and θ are set to zero, ignoring waiting times and open route
costs. To guarantee that scheduling a customer has a very high priority, the penalty
factor η is set very high in contrast to the other penalty factors η � γ, δ, ε. The values
for the penalties of time window violations, vehicle time window violations and maximum
tour duration violations were determined in extensive tests.

7.3 Determination of Strategic Optimization Parameters
There are some strategic optimization parameters which could be used for fine tuning
the overall performance of the algorithm. One important parameter which has a great
influence on the overall performance is the distance factor αSVNS of the SVNS algorithm.

Another parameter is the maximum number of rearrange tours κmax of the neighborhood
Nrearrange(s, κmax). The parameter controls how many tours are destroyed during the
execution of the neighborhood and has a great influence on the execution time of the
neighborhood.

The third parameter to fine tune the VNS algorithm is the maximum length δmax of
segments which are considered by a cyclic exchange move. This parameter has also a
great influence of the execution time of the neighborhood Ncyclic(s, k, δmax).

Hence, the focus lies on the parameter set (αSVNS, κmax, δmax), and they were tested in
the ranges

αSVNS ∈ {0.3, 0.4, 0.5, 0.6} (7.16)
κmax ∈ {1, 2, 3} (7.17)
δmax ∈ {1, 2, 3, 4}. (7.18)

This leads to 4× 3× 4 = 48 different combinations. To save running time, the different
parameter sets are not tested on all instances from [CL01]. Table 7.5 shows the used test
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instances for the parameter calibration. Furthermore for each combination of parameters,
there are 10 runs performed.

Inst n t m

2a 96 4 3
3a 144 4 4
6a 288 4 7
9a 216 6 4

2b 96 4 3
3b 144 4 4
6b 288 4 7
9b 216 6 4

Table 7.5: Test Instances for Parameter Calibration

The best results could be obtained by a distance factor of αsvns = 0.5, by destroying
only κmax = 1 route in neighborhood Nrearrange(s, kmax) and by considering a maximum
segment length of δmax = 3 in neighborhood Ncyclic(s, k). We therefore use these values
in all successive experiments.

7.4 Analysis of the Contribution of Individual
Algorithmic Components

In order to analyze the contribution of individual algorithmic components the shaking
neighborhood structure is changed such that only the currently analyzed neighborhoods
together with the Included Unserved Customers Neighborhood is included into the
structure.

The tests are performed on all test instances of Cordeau and Laporte [CL01] and are
executed with the VNS algorithm as well as with the SVNS algorithm. For each test
instance there were 15 runs performed. The obtained results are compared with the
results obtained by Vidal, Crainic, Gendreau and Prins [VCGP13].

In particular the neighborhoods Ncyclic(s, k, δmax) and Nrearrange(s, k) were analyzed.

7.4.1 Analysis of the minimal Neighborhood Structure

In this section, the VNS algorithm as well as the SVNS algorithm are executed with the
shaking neighborhood structure listed in Table 7.6. Hence, only standard neighborhoods
such as Move Segment Neighborhood Nmove(s, 1− 15) or Exchange Segment Neighbor-
hood Nexchange(s, 1− 15) together with the Include Unserved Customers Neighborhood
Ninclude(s) are used. Table 7.18 shows the results for both algorithms. The SVNS
algorithm produce 3 and the VNS algorithm produce 11 infeasible solutions, where some
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N1−20(s) Nmove(s, 1− 15)
N21−40(s) Nexchange(s, 1− 15)
N41(s) Nedge(s)
N42(s) Nmerge(s)
N43(s) Ninclude(s)

Table 7.6: Minimal Shaking Neighborhood Structure Nk

customers are not scheduled. The average gap between the obtained results and the
obtained results from [VCGP13] regarding the average objective values are 6.50% for
the SVNS algorithm and 9.99% for the VNS algorithm. The average gap regarding the
best solution found during the 15 performed runs obtained by the SVNS and the VNS
algorithm are 3.56% and 6.61%, respectively. Hence, the SVNS algorithm outperforms
the VNS algorithm.

7.4.2 Analysis of the Cyclic Exchange Neighborhood

Table 7.7 shows the shaking neighborhood structure used to analyze the Cyclic Exchange
Neighborhood Ncyclic(s, k, δmax). The VNS as well as the SVNS algorithm are applied
on the test instances from [CL01]. The obtained results are showed in Table 7.18. The

N1(s) Ninclude(s)
N2−4(s) Ncyclic(s, 2− 3, δmax)
N5(s) Ncyclic(s, 20, 1)

Table 7.7: Cyclic Exchange Neighborhood Structure Nk

average gap regarding the average objective values is 5.83% and 7.93% obtained by the
SVNS algorithm and by the VNS algorithm, respectively. Whereas the average gap
regarding the best objective value is 2.98% and 4.78% obtained by the SVNS algorithm
and by the VNS algorithm, respectively. The SVNS algorithm produces 17 infeasible
solutions where some customers are not scheduled, whereas the VNS algorithm could not
schedule all customers 26 times.

7.4.3 Analysis of the Rearrange Tour Neighborhood

Table 7.8 shows the shaking neighborhood structure used to analyze the Rearrange Tours
Neighborhood Nrearrange(s, k, δmax). The VNS as well as the SVNS algorithm are applied
on the test instances from [CL01]. The SVNS as well as the VNS algorithm could always
schedule all customers with the used neighborhood structure in Table 7.8. The average
gap is 3.41% and 1.65% regarding the average objective values and the best objective
values obtained by the SVNS algorithm, respectively.
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N1(s) Ninclude(s)
N2−κmax(s) Nrearrange(s, κmax)

Table 7.8: Rearrange Tours Neighborhood Structure Nk

7.4.4 Analysis Summery

Table 7.18 shows the results of the analysis of individual algorithmic components. There
are four different shaking neighborhood structures (Table 7.6-7.8) tested with both the
VNS and the SVNS algorithm. Two sample t-tests were conducted to compare the
different test cases. The results of the t-tests are shown in Table 7.10. It can be shown
that the SVNS algorithm outperforms the VNS algorithm in most test scenarios. The
best results could be obtained with the shaking neighborhood structure listed in Table 6.1.
Since it is very unlikely to find randomly a move or exchange maneuver between two
routes such that the incumbent solution could be improved when site dependency and
time window constraints have to be considered, the neighborhood structure with only
the standard neighborhoods in Table 7.6 produced the worst results.

VNS SVNS

Neighborhood Structure avg σ(avg) best avg σ(avg) best

Minimal 9.99% 2.98 6.61% 6.50% 2.09 3.56%
Cyclic Exchange 7.93% 2.23 4.78% 5.83% 1.86 2.98%
Rearrange Tours 4.20% 1.59 2.08% 3.41% 1.61 1.65%
All 4.30% 1.73 2.15% 3.11% 1.32 1.32%

Table 7.9: Results of the Analysis of Algorithmic Components. The values indicate the
averaged gap (7.19) over all instances from [CL01] compared with the results obtained
from [VCGP13].

Better results could be obtained by using the neighborhood structure with the Cyclic
Exchange Neighborhood Ncyclic(s, k, δmax) shown in Table 7.7. A major drawback of
this neighborhood are the huge computational costs to create the improvement graph
Gimp(R, δmax), where R is a set of routes such that |R| = k and δmax is the maximum
length of considered segments of customers. A graph with k > 5 routes and a maximum
segment length of δmax > 3 is already too expensive to create. Nevertheless the neigh-
borhood has a good performance for small k and small δmax in contrary to the Move or
Exchange Neighborhoods.

The neighborhood structure with the Rearrange Tours Neighborhood shown in Table 7.8
could clearly outperform the Cyclic Exchange Neighborhood Note that the number of
destroyed tours k is a critical parameter regarding the running time of the neighborhood.
Good results could only be obtained for small values of k.
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SVNS

VNS Minimal Cyclic Exchange Rearrange Tours All

Minimal (4.29/2.03) (1.07/2.03)
Cyclic Exchange (2.48/2.03) (2.24/2.03) (4.40/2.03)
Rearrange Tours (6.09/2.03) (1.57/2.02) (0.62/2.03)
All (-0.19/2.02) (2.43/2.03)

Table 7.10: Results of the t-Test: (t Stat / t Critical). If t Stat > t Critical, then there
is a significant difference between the two corresponding test cases. Cells in the upper
triangular matrix corresponds to results of t-tests where the compared neighborhood
structures are executed with the SVNS algorithm, whereas cells in the lower triangular
matrix corresponds to results of t-tests where the compared neighborhood structures are
executed with the VNS algorithm. Diagonal cells indicate the comparison between the
VNS and SVNS algorithm.

7.5 Computational Experiments with the VNS
Framework

Table 7.11 and 7.12 show the results of the SVNS algorithm executed on the test
instances from [CL01]. The parameter αSVNS of the SVNS was set to 0.5. The shaking
neighborhood structure from Table 6.1 in Section 6.3 was used during the execution of
the SVNS algorithm.

The algorithm was executed 15 times for each of the 24 instances. Column n in Table 7.11
and 7.12 correspond to the number of customers, whereas column t and column m
corresponds to the number of different vehicle types and the number of vehicles per type,
respectively.

The columns f and T in Table 7.11 show the average objective values and average running
times in seconds, respectively obtained from [VCGP13]. The Hybrid Genetic Search with
Advanced Diversity Control [VCGP13] algorithm was executed 10 times for each instance.
The next three columns listen the result of the SVNS algorithm. Column f reports the
average objective values of 15 test runs, whereas column σ(f) shows the corresponding
standard deviation. The average running time in seconds is shown in column T . The last
column reports the gap

gap = fVidal − fSVNS
fVidal

(7.19)

between the average objective values. The last row shows the average gap.

Table 7.12 compares the objective values of the best solution obtained during 15 test runs
in column fbest with the objective value of the best solution from [VCGP13] in column
fbest. The column T (fbest) lists the running time of the SVNS algorithm. The gap of the
two objective values is listened in column gap.
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Vidal Skewed-VNS

Inst n t m f T [s] f σ(f) T [s] gap

1a 48 4 2 1655.42 13.80 1661.04 7.42 15.00 0.34%
2a 96 4 3 2904.13 42.00 2961.58 39.60 66.00 1.98%
3a 144 4 4 3320.44 96.00 3436.24 61.19 162.00 3.49%
4a 192 4 5 4437.19 351.00 4548.63 57.50 608.00 2.51%
5a 240 4 6 5681.48 698.40 5876.16 101.62 1256.00 3.43%
6a 288 4 7 5666.20 760.80 5872.29 49.57 1281.00 3.64%
7a 72 6 2 2166.88 25.20 2233.08 53.87 32.00 3.06%
8a 144 6 3 3880.58 141.00 3980.92 31.54 206.00 2.59%
9a 216 6 4 4797.72 336.00 4931.65 58.19 602.00 2.79%
10a 288 6 5 5876.38 694.80 6086.26 76.63 1221.00 3.57%
11a 1008 4 27 15198.10 - - - - -
12a 720 6 14 11475.15 - - - - -

1b 48 4 2 1429.35 13.20 1442.76 9.61 15.00 0.94%
2b 96 4 3 2479.56 59.40 2555.37 34.69 91.00 3.06%
3b 144 4 4 2779.09 136.80 2856.85 22.66 231.00 2.80%
4b 192 4 5 3660.66 394.20 3821.25 55.36 654.00 4.39%
5b 240 4 6 4625.79 483.60 4780.21 46.67 787.00 3.34%
6b 288 4 7 4755.59 917.40 4979.94 60.76 1380.00 4.72%
7b 72 6 2 1837.94 30.60 1884.33 27.27 44.00 2.52%
8b 144 6 3 3149.49 129.00 3212.05 32.55 207.00 1.99%
9b 216 6 4 3894.67 534.00 4110.36 79.29 854.00 5.54%
10b 288 6 5 4962.62 721.80 5244.45 61.24 1146.00 5.68%
11b 1008 4 27 13226.60 - - - - -
12b 720 6 14 9857.89 - - - - -

3.12%

Table 7.11: SDVRPTW - Skewed VNS Results: Average Objective Function Values

Note that the SVNS algorithm has been implemented within a complex algorithmic
framework, designed to solve the DSDVRPTW. Hence, the framework supports many
complex operations like fixing service times or vehicles for some customer. These
operations are not necessarily needed to solve the SSDVRPTW. However, it can be
seen that the implemented SVNS algorithm is competitive with results obtained by the
literature in some cases. Table 7.12 shows that for some instances the same best objective
value could be obtained as in [VCGP13]. All other best solutions obtained by the SVNS
algorithm are close to the obtained solutions from [VCGP13] such that the average gap
is 1.32%.
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Vidal Skewed-VNS

Inst n t m fbest fbest T (fbest) [s] gap

1a 48 4 2 1655.42 1655.42 4.00 0.00%
2a 96 4 3 2904.13 2904.13 41.00 0.00%
3a 144 4 4 3304.13 3349.35 192.00 1.37%
4a 192 4 5 4427.25 4474.91 554.00 1.08%
5a 240 4 6 5647.76 5682.71 1329.00 0.62%
6a 288 4 7 5637.48 5792.68 1340.00 2.75%
7a 72 6 2 2166.88 2166.88 43.00 0.00%
8a 144 6 3 3873.40 3934.35 247.00 1.57%
9a 216 6 4 4777.61 4826.75 648.00 1.03%
10a 288 6 5 5858.82 5910.87 1355.00 0.89%
11a 1008 4 27 15080.68 - - -
12a 720 6 14 11402.01 - - -

1b 48 4 2 1429.35 1429.35 2.00 0.00%
2b 96 4 3 2479.56 2494.71 108.00 0.61%
3b 144 4 4 2775.61 2817.07 246.00 1.49%
4b 192 4 5 3649.72 3754.16 632.00 2.86%
5b 240 4 6 4611.16 4706.03 874.00 2.06%
6b 288 4 7 4729.96 4869.02 1495.00 2.94%
7b 72 6 2 1837.94 1837.94 48.00 0.00%
8b 144 6 3 3152.69 3163.12 231.00 0.33%
9b 216 6 4 3883.94 3983.38 695.00 2.56%
10b 288 6 5 4932.40 5137.58 1263.00 4.16%
11b 1008 4 27 13067.52 - - -
12b 720 6 14 9777.44 - - -

1.32%

Table 7.12: SDVRPTW - Skewed VNS Results: Best Objective Function Values

The average gap in Table 7.11 between the average objective values obtained by the
SVNS algorithm and the average objective values obtained from [VCGP13] is 3.12%.
Although the obtained average objective values are only in some cases close to the average
objective values from [VCGP13], it can be seen that the obtained standard deviation
values are rather small. Hence, the results of the SVNS algorithm are robust and reliable
and therefore well suited for practical applications.

Furthermore the SVNS algorithm is applied to the SDVRP instances from [CL01]. The
obtained results are compared with the results obtained from Pisinger and Ropke [PR07]
and listed in Table 7.13 and 7.14. For each instance 15 runs were performed. The
average gap regarding the average objective value and best objective value is 2.19% and
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Pisinger Skewed-VNS

Inst n t m f T [s] f σ(f) T [s] gap

1 48 4 1 1393.85 19 1381.24 0.70 61 -0.90%
2 96 4 2 2330.60 63 2339.85 27.17 210 0.40%
3 144 4 3 2607.66 140 2663.12 44.64 388 2.13%
4 192 4 4 3489.51 191 3597.11 49.06 510 3.08%
5 240 4 5 4431.16 251 4549.61 30.08 791 2.67%
6 288 4 6 4465.18 314 4623.06 50.40 772 3.54%
7 72 6 1 1916.50 39 1968.76 39.43 124 2.73%
8 144 6 2 3007.99 135 3049.51 33.01 413 1.38%
9 216 6 3 3567.15 226 3686.82 35.67 680 3.35%

10 288 6 4 4673.67 322 4839.76 46.22 729 3.55%

2.19%

Table 7.13: SDVRP - Skewed VNS Results: Average Objective Function Values

Pisinger Skewed-VNS

Inst n t m fbest fbest T (fbest) [s] gap

1 48 4 1 1380.77 1380.77 10 0.00%
2 96 4 2 2311.54 2316.51 112 0.22%
3 144 4 3 2602.13 2606.35 398 0.16%
4 192 4 4 3474.01 3519.08 583 1.30%
5 240 4 5 4416.38 4508.91 840 2.10%
6 288 4 6 4444.52 4532.65 930 1.98%
7 72 6 1 1889.82 1889.82 53 0.00%
8 144 6 2 2977.50 3004.52 436 0.91%
9 216 6 3 3536.20 3629.15 630 2.63%
10 288 6 4 4648.76 4734.87 825 1.85%

1.11%

Table 7.14: SDVRP - Skewed VNS Results: Best Objective Function Values

1.11%, respectively. Hence, the average gaps are lower than the average gaps obtained by
solving the SDVRPTW problem. However, there are 19 out of total 150 solutions, where
not all customers are included. One reason for this behavior may be that the number
of overall vehicles is smaller for each SDVRP instance as for the SDVRPTW instances.
Therefore it is harder for the Include Unserved Customers neighborhood Ninclude(s) to
find a free vehicle v without violating for instance the maximum load capacity Cmax

v

constraint.
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Vidal Skewed-VNS

Inst n t m f T [s] f σ(f) T [s] gap

11a 360 4 11 9958.05 834.60 10351.34 55.01 1620.00 3.95%
12a 480 4 14 8011.50 953.40 8238.96 8.05 1664.00 2.84%
13a 600 4 17 12371.95 1826.40 12849.86 175.02 3382.00 3.86%
14a 720 4 21 9566.13 2007.00 9978.21 3.70 3587.00 4.31%
15a 840 4 25 14562.53 2695.80 15118.54 78.82 6994.00 3.82%
16a 960 4 29 11609.39 4488.60 12199.40 130.82 7785.00 5.08%
17a 360 6 8 16620.70 4207.20 17103.68 89.83 8242.00 2.91%
18a 520 6 12 13693.79 9427.20 14450.40 55.83 16691.00 5.53%
19a 700 6 16 19283.90 6665.40 19843.28 128.92 13194.00 2.90%
20a 880 6 20 15589.83 11472.60 16141.80 0.00 18705.00 3.54%

11b 360 4 9 21803.57 10575.00 22260.72 204.65 20995.00 2.10%
12b 480 4 11 17920.79 15141.00 18678.56 2.55 29437.00 4.23%
13b 600 4 14 10581.02 732.00 11245.36 143.65 1445.00 6.28%
14b 720 4 17 8629.90 792.00 9018.76 34.12 1395.00 4.51%
15b 840 4 20 14009.53 1293.60 14415.82 54.83 2428.00 2.90%
16b 960 4 23 11525.05 3216.60 11992.72 140.25 5266.00 4.06%
17b 360 6 6 18998.48 5717.40 19407.30 18.79 11174.00 2.15%
18b 520 6 9 14918.54 5529.00 15591.28 70.74 10462.00 4.51%
19b 700 6 12 22655.72 9033.60 23163.76 28.24 17442.00 2.24%
20b 880 6 15 18666.10 13726.80 19394.72 137.60 23918.00 3.90%

3.78%

Table 7.15: SDVRPTW - Skewed VNS Results: Large Scale Instances - Average Objective
Function Values

Besides the instances from [CL01], the SVNS algorithm is applied to overall 20 large-scale
instances from [VCGP13] as well. The number of customers ranges from 360 to 880 with
a fleet size up to 120 vehicles with up to 6 different vehicle types. Table 7.15 and 7.16
reports the obtained results from the SVNS algorithm. For each instance only 5 runs
instead of 15 runs are performed to reduce running time. The obtained average objective
values are reported in column f together with the standard derivation in column σ(f)
and the average running time in seconds in column T in Table 7.15. The best objective
value fbest together with the corresponding running time T (fbest) in seconds is listed
in Table 7.16. In both tables the columns n, t and m corresponds to the number of
customer, number of vehicle types and number of vehicles per vehicle type, respectively.
The average gap (7.19) regarding the average objective value is 3.78%, whereas the
average gap regarding the best objective values is 3.97%.
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Vidal Skewed-VNS

Inst n t m fbest fbest T (fbest) [s] gap

11a 360 4 11 9924.11 10295.60 1653.00 3.74%
12a 480 4 14 7962.22 8235.36 1549.00 3.43%
13a 600 4 17 12251.66 12633.20 3376.00 3.11%
14a 720 4 21 9508.68 9975.35 3655.00 4.91%
15a 840 4 25 14491.25 15039.00 7169.00 3.78%
16a 960 4 29 11562.67 12118.70 8950.00 4.81%
17a 360 6 8 16547.89 17037.80 7757.00 2.96%
18a 520 6 12 13623.28 14386.90 15505.00 5.61%
19a 700 6 16 19090.19 19750.70 13002.00 3.46%
20a 880 6 20 15437.52 16141.80 17480.00 4.56%

11b 360 4 9 21413.65 22162.40 21029.00 3.50%
12b 480 4 11 17834.61 18674.30 29721.00 4.71%
13b 600 4 14 10547.07 11090.60 1447.00 5.15%
14b 720 4 17 8562.99 8995.72 1213.00 5.05%
15b 840 4 20 13963.49 14385.50 2418.00 3.02%
16b 960 4 23 11477.72 11930.00 4558.00 3.94%
17b 360 6 6 18855.51 19389.80 10987.00 2.83%
18b 520 6 9 14894.65 15509.50 11044.00 4.13%
19b 700 6 12 22513.44 23126.30 17986.00 2.72%
20b 880 6 15 18566.66 19286.90 25091.00 3.88%

3.97%

Table 7.16: SDVRPTW - Skewed VNS Results: Large Scale Instances - Best Objective
Function Values

7.6 Experiments with the Branch-and-Cut Algorithm

Primary goal of the development of the exact methods was to analyze the solution
quality of the VNS algorithm, i.e. to find optimal solutions for small problem instances.
The compact model (Miller-Tucker-Zemlin-Formulation) itself was able to find feasible
solutions, in particular when symmetry-breaking constraints (5.17) have been used. In
some cases it was even possible to prove the optimality, i.e. to close the gap between
primal solution and LP-relaxation. However, running times and memory consumption
was not really satisfactory. For instance it took approximately 10 hours to obtain optimal
solutions for the smallest instances from [CL01].

Significant improvements regarding the run-time behaviour could be obtained by sepa-
rating valid inequalities by means of cutting-plane separation. Various combinations of
these cuts have been implemented and tested.
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In order to analyze the B&C algorithm, eight new test instances are created from the first
eight instances pr01 - pr02 from [CL01]. This was done, by removing some customers
and reducing the number of vehicles per type. Table 7.17 shows the characteristics of the
new instances mip 1a - mip 8a as well as the results obtained by the B&C algorithm and
the SVNS algorithm. Furthermore smallest instance from [CL01] is listened. Column
n reports the number of customers for each instance, whereas columns t and m listen
the number of different vehicle types and the number of vehicles per type, respectively.
The obtained primal bound of the B&C algorithm is reported in column f as well as the
running time in seconds of the B&C algorithm in column T . The number of B&B-Nodes
is shown in column Nodes. The next five columns twc (time window cuts), cec (cycle
elimination cuts), dcc (directed connection cuts), tdc (tour duration cuts) and pcc (packing
constraints cuts) listen the number of separated inequalities. The column gap reports the
gap between the primal bound and the dual bound. Hence, if the column reports a value
of zero, then the B&C algorithm could prove the optimality of the obtained solution.
The obtained results from the SVNS algorithm are reported in column f and T . For each
instance there are 15 runs performed. The obtained average objective value is listened in
column f , whereas the average running time in seconds is listened in column T .

7.6.1 Time Window Cutting-Planes

Depending on the characteristics of the test instances the time window cutting planes
turned out to be more or less useful. In case the time-windows are very narrow, i.e. the
solution is already constrained very much, they were not really useful. In this situation
the LP-relaxation of the MTZ-model already provides a relatively good description of
the integral polyhedron. However, in case of wide time windows many of these cuts have
been separated and helped to close the LP-gap faster. In this case the LP-relaxation of
the compact model does not describe the polyhedron as good as in the case of narrow
time windows. However, the cutting planes are not even very strong from a theoretical
point of view. In most cases they were only able to cut off small parts of the polyhedron,
or, in other terms the valid inequalities were only violated by relatively small values.

7.6.2 Subtour-Elimination Cuts

In this work two different cycle-elimination cuts have been separated. Both, the cycle-
elimination-cuts 5.4.1 as well as the directed-connection-cuts 12 would ensure feasible
routes (without subtours) on integral solutions, and thus render the MTZ constraints
redundant. These MTZ-constraints give, however, a good polyhedral description when
time-windows do exist. On the other hand, subtour elimination constraints themselves
do not provide a full description of the facets of the integer polyhedron. Thus, they
cannot be used as an alternative to the MTZ-formulation. They can, however, be used
to strengthen the formulation.
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The computational experience showed, that cycle-elimination cuts do not contribute as
much as directed-connection-cuts do. The latter ones yielded a significant speedup of the
overall performance of the branch-and-bound algorithm. Regarding the small instances
the running times to find proven optimal solutions could be reduced in the order of
magnitude of 50% or more. Hence, the instance 11a (from Table 7.2) could be solved
within 3 hours as opposed to 10 hours without the cutting planes.

The number of branch-and-bound nodes could consequently also be reduced, from
approximately 81087 to 53501.

Different separation strategies have been investigated as well. In general it turned out to
be most beneficial to add all cuts to the global model, and not only to the considered
node and its subtree. Both cutting-planes have been separated in an aggregated way
(by computing sums over all vehicles for all customer nodes) and in a disagreggated way.
The latter way showed to be far superior to the first method.

The results of the exact methods helped to evaluate the performance of the VNS
framework, in particular in early stages. Altough the presented exact algorithm is not
competitive with state-of-the-art exact methods, it provided valuable insights for this
work. In particular when combined with the heuristic algorithms it is an important way
to assess the quality of the incumbent (heuristic) solutions. In order to be able to solve
larger instances, the application of column-generation techniques will further improve
the overall performance. As such approaches are not directly supported within ILOG
CPLEX, this is beyond the scope of this work.
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7.7 Experiments with the DSDVRPTW

For the application in operational practice the dynamic problem DSDVRPTW with a
sliding planning horizon is most important. In this case planning is performed every day
based on new customers. However, delivery times must be arranged with customers and
cannot simply be determined based on algorithmic planning. Operational experience
shows, that most customers will accept the proposed appointments, and only a small
fraction of them asks for different delivery times. In such a continuous planning scenario
it is thus crucial to propose appointments that already minimizes total logistics costs. If,
on the other hand, no appointments are proposed and delivery times are just arranged
based on the customers initial proposal, the total logistics costs might be significantly
higher.

In this section we show that good appointment proposals have a positive impact on total
logistics costs even tough further customer requests are unknown at the time the decision
is made. In practice, many aspects have to be considered: customers may want to change
already arranged appointments, in certain situations not only times but also a particular
vehicle needs to be planned for a customer, and service-times, fleet-availabilities and even
customer addresses could change. Although the SVNS is capable of dealing with all these
challenges, it is difficult to demonstrate the effects in this complex scenario.

Here, we restrict the analysis of the DSDVRPTW to the following scenario: customer-
driven appointment arrangements are simulated with a very quick execution of the SVNS,
as opposed to logistics-driven appointment arrangements simulated by SVNS results
obtained with reasonable runtimes.

The experiments are performed with a benchmark instance (6a from Table 7.2) with
288 customers and a fleet size of 28 vehicles with 4 different vehicle types. We split this
instance into five intervals, each containing approximately 20% of all customers. We
start the simulation without any time windows defined. In the first step, a solution is
computed for the first 20% of customers, for which appointments are then “arranged”
(in the above sense) by setting a tight time window. The remaining 80% of customers
are considered to be not yet known in this simulation. Nevertheless, the obtained new
instance with time windows for 20% of the customers is then resolved to obtain a lower
bound for the logistics costs at the end of the planning horizon. This process is then
continued with the next 20% of the customers, and so on and so forth.

In the experiments two configurations are compared: a very quick execution of the SVNS,
simulating the customer-driven appointment arrangement, and one with longer running
times, simulating the logistics-driven arrangement.

Table 7.18 and Figure 7.1 show the results, obtained for 8 runs of each variant. In every
single run the customers are considered in different permutations respectively. The results
are compared to the objective value fopt obtained by solving the whole instance in one
step. Obviously, the objective values in the simulation scenario are higher, when decisions
are made under incomplete knowledge (of future customers). The results also show, that
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even with such incomplete information, sophisticated planning decisions are crucial to
obtain a relatively small gap between the theoretical optimum (i.e. customers have no
influence on delivery times) and results obtained by iteratively shifting the planning
horizon. We obtain additional costs of ≈ 30% for the dynamic planning scenario, and
≈ 55% costs for customer driven planning. This is a ≈ 25% improvement compared to
the case when no operation-research techniques are used for planning.

percentage of apriori known customers

customer driven 20% 40% 60% 80% 100%

fixed customers 1581.74 2930.79 4173.30 5374.65 6722.86
remaining customers 5110.71 5533.00 5911.90 6360.36 7013.74

logistic driven 20% 40% 60% 80% 100%

fixed customers 1638.94 2717.17 3719.96 4755.14 5859.69
remaining customers 5062.09 5364.69 5723.16 5905.05 6122.26

Table 7.18: Obtained objective values from the SVNS algorithm by simulating the
customer-driven appointment arrangements and the logistics-driven appointment arrange-
ments scenario. The objective value fopt obtained by solving the whole instance in one
step is 4532.
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Figure 7.1: Simulation of customer-driven appointment arrangements (red) and logistics-
driven appointment arrangements (blue). Solid lines indicate the obtained objective
values from the two scenarios. Dashed lines indicates the obtained objective values when
the remaining customers are known and scheduled as well.
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7.8 Summary
The results presented in this chapter show the overall good performance of the VNS
algorithm. It is important to mention, that all algorithms have been implemented within
a complex algorithmic framework, and support many operations like fixing service times
and vehicles for particular customers. Altough current state-of-the-art results could only
be obtained in some cases, the average results clearly show that the algorithm is very
competitive in this regard. Furthermore the obtained heuristic results show to have small
variations, are thus reliable and robust and therefore well suited for practical applications.
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CHAPTER 8
Conclusion

In this work I presented novel solution approaches to tackle the DSDVRPTW. Primary
motivation for this work was to develop solution methods that are capable of solving
real-world size instances, but also support all requirements for an operative setup.

The main part of this thesis consists of the presentation of an algorithmic framework to
tackle difficult and large problem instances of the SDVRPTW. This goal has been primarily
fulfilled with a VNS framework. One of the most important novelties of this approach is,
that no construction algorithm is required prior to the neighborhood search. In contrast,
the neighborhoods themselves are capable of constructing or enhancing solutions. Hence,
no feasible solution is necessary as a starting point for the VNS algorithm. This is of
importance, as the prerequisite of construction algorithms introduces several difficulties
and problems. On the one hand, it may be very difficult to create feasible solutions by
means of (more or less) sophisticated greedy steps. On the other hand it is an important
requirement for practical purposes to be able to perform a warm-start, i.e. start the
optimization process with a partial solution.

The presented algorithms also support further important requirements for practical
applications. One important aspect is to compute solutions for planning horizons of many
weeks. This planning horizon is then shifted day by day to include later dates. During
this process new orders are considered within the planning horizon. Another important
aspect is to be able to fix certain parts of the solution. For example, delivery times need
to be arranged with customers at a certain point, and should not be changed afterwards.
In some situations it might be also necessary to not only fix delivery times, but also the
particular vehicle to supply this customer. Although these algorithmic components have
been implemented, they are not presented in this work, as they are not really of academic
interest.

In order to evaluate the solution quality of the VNS algorithms, certain exact approaches
have been developed within this work. A mathematical programming formulation based
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on Miller-Tucker-Zemlin inequalities is presented. This compact model is then enhanced
with cutting planes that are separated within a B&C algorithm. Small and moderate
sized instances can be solved to (proven) optimality with this approach.

Furthermore computational results are presented and compared to recent results published
in the literature for certain benchmark instances. The heuristic algorithms showed a
decent overall performance regarding robustness, solution quality and time. In many
cases results close to the state-of-the-art results could be obtained.

Beyond the presented results, many computational experiments have been performed
with real world instances provided by a customer of Destion. The preliminary results
obtained within these experiments clearly indicate that the algorithmic framework fulfills
all properties to be well suited for practical applications, and, in particular support all
the additional requirements described above. A thorough description of this experimental
setup and results is however beyond the scope of this work.

To demonstrate the dynamic aspects of the problem, the influence on logistic costs is
analyzed if appointments with customers are proposed based on algorithmic planning or
proposed by the customers. It turns out that proposals based on the SVNS algorithm
yield to better overall logistic costs even if the planning horizon is shifted and therefore
not all customers are known in advance.

Although many interesting results and insights have been obtained within this work,
there are also many aspects that could be subject to further investigations. It would, for
instance, be interesting to see how the proposed approach of constructing and enhancing
solutions within the VNS framework would perform on other, similar VRP problems. It
would also be very interesting to see how more shaking neighborhoods could possibly
improve the overall performance of the search method. Regarding exact solution methods,
techniques like column generation and more sophisticated cutting planes could also
further improve the performance. These aspects are, however, beyond the scope of this
thesis, and will be subject to future research.
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