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Kurzfassung

So genannte Cyber-Physical Systems (CPSs) sind Systeme, die nicht nur aus einer
Software, oder einem mechanischen Teil bestehen, sondern aus der Kombination aller
Teile, zusammen mit der Umwelt, in der sie eingesetzt werden. Ein Beispiel ist die Smart
City, in der intelligente Verkehrsleitsysteme helfen, Staus und Unfälle zu vermeiden. In
diesem Beispiel bilden die intelligenten Ampeln, die Sensoren auf den Straßen, und die
Autos ein großes CPS.

Aber nicht nur solch großen Systeme werden CPS genannt, auch die Autos an sich sind
solche Systeme. Heutige Autos enthalten viele Computer und Mikrocontroller, welche
miteinander kommunizieren. Zum einen gibt es das System, welches den Motor mit
seinen Komponenten steuert. Zum anderen gibt es Systeme, die dem Lenker und den
Passagieren helfen, wie zum Beispiel ein integriertes Global Positioning System (GPS),
oder Unterhaltungssysteme. Außerdem können Systeme vorhanden sein, die helfen, Unfälle
zu verhindern, indem sie den Lenker warnen, oder das Auto bremsen. All diese Systeme,
zusammen mit den mechanischen, elektrischen und elektronischen Teilen, bilden ein CPS.

Um solche Systeme zu bauen wird ein Designprozess verwendet, welcher hilft, die Arbeiten
an die verschiedenen Abteilungen optimal zu verteilen, und Fehler früh zu finden oder
gänzlich zu verhindern.

Diese Diplomarbeit beschäftigt sich mit der Definition eines neuen Designprozesses,
welcher verwendet werden kann, um CPSs zu bauen. Dieser Designprozess sollte es den
Abteilungen ermöglichen, parallel zueinander zu arbeiten. Ein kleiner Anwendungsfall
sollte dann zeigen, dass der Designprozess praktisch angewendet werden kann. Zu diesem
Zweck wurde ein kleiner Quadcopter gebaut, wobei die Kosten so gering wie möglich
gehalten werden sollten, und außerdem sollte er in zukünftigen Projekten als Grundlage
für Forschungsarbeiten verwendbar sein.

Um diese Ziele zu erreichen wurden folgende Schritte unternommen: Am Anfang wurden
Informationen zu existierenden Designprozessen eingeholt. Danach wurde unser neuer
Designablauf definiert und in einem Anwendungsfall getestet. Nach dem Erstellen der
generischen Modelle wurden die Schaltpläne und das Board entworfen, welche anschließend
an einen Leiterplattenhersteller geschickt wurden. Der letzte Schritt beinhaltete einen
einfachen Test der Hardware, welcher zeigt, dass der Quadcopter seine Position während
des Fliegens halten kann. Für uns hieß das, dass der Designprozess praktisch angewendet
werden kann.
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Abstract

Cyber-Physical Systems (CPSs) are systems, which not only consist of a software, or a
mechanical part, but are a combination of the two parts, together with the environment
in which they are used. One example of such a system are Smart Cities, which use
intelligent traffic routing systems to route the cars in an optimal way to their destination,
while also avoiding traffic jams. In this example, intelligent traffic lights, intelligent
transportation systems, sensors on the roads, and the cars form a big CPS.

But not only such big systems are called a CPS, but a car as such is also such a system.
Today’s cars contain many computers and microcontrollers, which communicate with
each other. For one, there is the system, which controls the motor and its components,
such as the valves, the injection and exhaustion systems. And then there are the systems,
which help the driver and the passengers, such as an onboard Global Positioning System
(GPS), or an entertainment system. There are also systems, which help the driver in
reducing accidents, by warning him of dangers, or by automatically braking the car. All
these systems, together with the mechanical, electrical and electronical parts they control,
form a CPS.

When creating such systems a design flow is used to help distributing the work to the
different departments in an optimal way, and to find errors in the requirements as early
as possible, or to avoid them altogether.

For this work we focused on the definition on a new design process, which can be used to
create CPSs either from scratch, or from existing templates. This design process should
enable the different departments to work in a parallel way. A small use case was then
used to show that the defined design process can be used practically. This use case was
the construction of a palm-sized quadcopter with some additional requirements. These
requirements were that the quadcopter had to be as cheap as possible, and that it should
be able to be used in future project as a research platform for formation flight.

To reach these goals the following steps were executed: At first information about existing
design processes was gathered. After that we defined our model-based design process and
used it in a simple use case. After defining the generic models we created the schematics
and the board design files of the quadcopter, which were then sent to a manufacturer to
produce. The last step included a simple test case, which shows that the quadcopter is
able to steadily hold its position while being airborne. For our work this meant that the
defined design process can be used in real world applications.
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CHAPTER 1
Introduction

1.1 Problem Statement

In the last few years there has been substantial progress in the field of autonomously
flying quadcopters, also called drones or Unmanned Aerial Vehicles (UAVs)1. Much
research is going in the direction of how to control these drones such that each one flies
autonomously while maintaining a certain formation [BVD14][BFV09]. Some research
focuses on protocols, which will enable a swarm of these drones to reach a given goal.
One example of such a swarm application is distributed Simultaneous Localization And
Mapping (SLAM) [CPD10][SK07]. Other examples are surveillance of an area using UAV
swarms [JKG08], or wireless sensor networks [HGS+13].

Every application has a different set of requirements the drone has to fulfill, which means
that either for different applications different drones are necessary, or the drones have to
be easily configurable and extendable. For example, if one wants to implement a SLAM
algorithm a high computing power is needed. This means that either every drone has
to have a powerful microprocessor or a robust communication network to offload the
computations to a stationary computer.
Irrespective of the exact application-specific requirements it is also desirable that the
resulting quadcopter is as cost-effective as possible.

There exist some low-cost quadcopters, but most of these systems are not meant to
be used as a research platform, because they either are only meant to be controlled
manually or they lack the necessary sensors and cannot be extended (see Section 3.3).
One big challenge in designing cost-effective drones is to find the right balance between
size, capability of communication and computation resources.

1The words “quadcopter”, “quadrocopter”, “multicopter”, “drone”, . . . are sometimes used synony-
mously in literature. In this thesis quadcopters are a certain type of multicopters, as they have 4 rotors.
Multicopters are a type of drones and they all fall under the category “UAV”
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1. Introduction

For this work we focused on gathering requirements concerning a distributed quadcopter
application, specifically formation flight, which we then used to design and build an
extendable, low-cost quadcopter by adhering to a parallel design process.

1.2 Aim of the Work
The main result of this work is the proposal of a new design workflow for the parallel
development of Cyber-Physical Systems (CPSs). To reach this goal we first had to gather
information on current design processes, which was a challenging task, because most
companies keep their design processes in secret. After that we adapted these processes to
reduce waiting times between different departments, such as the mechanical design and
the electrical or the software one. This step enables these departments to use a generic
model, which is first refined for the respective department, and then used together with
the general requirements as a base for the work of the departments. Using these models
in the different departments then enables them to work in parallel, which should save
some time, and therefore also money, in the whole design cycle.

This thesis further aims to validate the proposed design process by building a small,
low-cost quadcopter, which can be used as a formation flight research platform. We
want to be able to assemble this quadcopter in-house, as this reduces the dependence on
external manufacturers. The drone has to be optimized for cost, which means that the
sum of the costs of all required components had to be as little as possible. It also has to
be as small as possible for this amount of money.

The quadcopter has to be usable in future projects, which means that it should feature
sensors, which are required for typical swarm applications (for example communication
modules and optionally Global Positioning System (GPS) modules). Finally we want the
design of the whole project to be open, so that one will be able to enhance the quadcopter
for future research. This means that if additional sensors or actors are needed, one will
be able to include them in the design and build an extended version of the quadcopter
just by following our proposed design approach.

2



1.3. Methodological Approach

1.3 Methodological Approach
The following plan was executed step-by-step to reach the goal of the thesis:

Literature Review / Requirements
At the very beginning some information about current design processes for CPSs
as well as their respective requirements were gathered. For the use case, namely
the model, design and construction of the quadcopter, the specific requirements for
formation flight had to be investigated.

Design Process
At the beginning a new parallel design process was designed. This process had
to be evaluated, which was done with the construction of the quadcopter while
adhering to this process. The next steps are therefore substeps of the proposed
design process.

Modeling / Design
The gathered requirements were taken as a starting point to create a model of the
quadcopter.

Simulation
Using these requirements some simulations were made in suitable software, in
our case Autodesk Inventor [aut]. For these simulations some constraints, e.g.
a maximum size, had to be defined, and then a quadcopter, which fulfills these
constraints, was simulated to test its properties. In this stage it was simple to see,
which constraints would work in the real world and which would not. The outcomes
of these simulations included a comparison between the maximum payload of the
quadcopter versus its own size or weight, amongst others. Another outcome was a
comparison between the maximum time of flight versus the weight or size.

Platform Implementation
The next step was the construction of the quadcopter from the design. This step
included a list of vendors which can provide the respective parts for the specified
cost. The circuit board was not built on our own, but we used a professional
manufacturer for this. The result of this step was a working quadcopter, which was
as small as possible for the specified costs.

Use Case
The main functional requirement of the quadcopter was hovering, because this shows
that all relevant sensors can be read, the main controller works, and the motors
can be controlled in software. After the future implementation of the centralized
base station and the communication, one can then rely on the quadcopter to work
in the expected way. In the last step a simple use case was therefore developed to
show that the constructed quadcopter is indeed able to fly. The use case shows
that the quadcopter is able to steadily hold its position while being airborne.

3



1. Introduction

1.4 Structure of the Work
This thesis is structured as follows:

Chapter 2 introduces some basic knowledge, which is needed in the rest of this thesis.
The first section shows an overview of current model-based design processes of software,
mechanical, electrical and electronical systems. The second section introduces some
formulas, which are used in the following chapters. In the last section the necessary and
optional components of a basic quadcopter are summarized.

Chapter 3 gives an overview of available research papers and ready-to-fly quadcopters.
The first section shows some research papers, which deal with the problems of designing
a quadcopter from scratch. The last section gives an overview of currently available
quadcopters, their features, advantages and disadvantages.

Chapter 4 shows our proposed model-based design process, which can be used to
construct CPSs. First a flowchart of the overall design process is shown and the three
sections then describe the respective stages of the design process.

Chapter 5 describes how the use case of the design process, namely the quadcopter,
was built. The first section shows how we employed our new design process and describes
the results of the different stages. The next section then describes the hardware of the
created quadcopter, i.e. which components were used and why they were chosen. The
last section gives an overview of the software, which controls the quadcopter to hold its
position while being airborne.

Chapter 6 first compares the results of this work with other existing products. The
second part of this chapter then gives an overview of unfinished parts of this work. As
all requirements of this work have been fulfilled this section shows what still has to be
done to use this work as a research platform for swarm applications.

Chapter 7 first gives a summary of the results of this thesis. After that some necessary
future work on the proposed design flow and some future projects using our quadcopter
are discussed.

Appendix A holds some manuals to better understand how to use the quadcopter. The
first manual describes how the different mechanical parts have to be assembled on the
Printed Circuit Board (PCB). The next one then shows how the assembled quadcopter
can be programmed and which software is needed. After that the wireless capabilities of
the quadcopter are introduced, and it is described how to connect the quadcopter to a
PC to be able to receive debug messages or to control it. The last manual describes how
to charge the battery of the quadcopter using the onboard charging controller.

Appendix B contains the 3D-model of the quadcopter, the schematics and the board
design files, as well as the bills of materials.

4



CHAPTER 2
Basic Concepts

In the first section of this chapter we present traditional approaches to mechanical,
electrical, electronical and software design processes and give a small overview on how
these processes are being combined. The second section presents some formulas which
are used in the next chapters. The last section then gives an overview of the necessary
and optional components of a basic quadcopter.

2.1 Design Processes

2.1.1 Software Design Process

If the hardware system is finished one has to write software for it, which controls the
hardware. Often some kind of controller has to be implemented if the hardware interacts
with other systems or the environment. The traditional approach to writing this controller
can be divided into 5 steps:

1. Design
Design a block-based representation of the controller

2. Implementation
Implement this design in a programming language

3. Integration
Integrate the controller on hardware

4. Testing
Adjust the parameters of the controller through testing

5. Acceptance
If the result is not satisfactory, restart at step (1)

5



2. Basic Concepts

This so-called waterfall model was first proposed in 1970 and was reprinted in 1987.
[Roy87]

As one can see this process is very time consuming and often tedious because sometimes
the software can not be tested and adjusted on real hardware (think of controllers in
planes). This is why more and more controllers are designed not on real hardware, but on
models of the hardware and the environment. The key part of this so called Model-Based
Design (MBD) approach is the model, which has to be created at the beginning. The
design of the controller is then done using this model, which has to represent the physical
system as close as possible (see [NM10] for more information on model-based designs for
embedded systems):

1. System identification
In this step an existing real world system is analyzed and a mathematical represen-
tation of the behaviour is built.

2. Controller analysis and synthesis
Next the dynamic characteristics of the model are analyzed and an appropriate
controller is designed.

3. Offline simulation
The controller is then tested on the model of the system. No real hardware is used,
which means that errors can be found early in this step.

4. Deployment
If the controller behaves as expected it is implemented on real hardware.

This model-based approach only works if the hardware is finished and can be analyzed.

2.1.2 Mechanic Design Process

If the hardware also has to be built, another kind of model-based design, which works
better on mechanical parts, can be used.

This mechanical approach works a bit different to the software design process (this is a
short summary of the process described in [Ull10]):

1. Model creation
A model of the mechanical part is created using suitable software. Very often this
model is a 3D representation of a real component, which has yet to be created.

2. Mechanical analyses
Stress tests and stability analyses are done on the model. This can be done on the
model of one single component or on the model of the whole assembly. Often the
software which was used to create the model can also be used in this step, but with
limited functionality. If the model does not have the required fitness, one has to
return to step (1) to change it to better perform at these tests.

6



2.1. Design Processes

Today the finished component is not produced using the final materials in the last step,
but it is built using plastics. The reason for this is that the component could depend on
other parts or could be part of a greater system itself. The engineers will then built a real
model using plastics and do some real-world tests. One possible mistake in the design
process could be that the component passes all tests, but it can not be used in the final
system, because it can either not be produced, or it physically clashes with other parts.

This approach is today’s standard if one has to built a new system, which consists of
mechanical components. The most important reasons for this are cost and time. In
the past if one had to construct a small mechanical component, they did not create a
model for it, because computer-aided techniques were not widespread. A model and the
mechanical stability analyses of small parts had therefore be created and done by hand,
which was very tedious. That is why this was not done very often and therefore it could
happen that the component did not fit in the greater system, or it broke too early. If
that happened today the loss in time and money would be too much, and therefore a
model representation of the whole system is often created at the beginning.

One big reason for the use of models in mechanical tests is that engineers do not have
to manufacture a mechanical part if they have to perform stability tests on that part.
Today’s engineers can perform all kinds of mechanical tests on the digital model using
appropriate software-suites.

Another reason for the creation of 3D models today is that suitable software has become
widespread and easy to use. These software products very often also have plug-ins, which
can perform the required mechanical analyses. Past engineers had to undergo special
training if they wanted to do these analyses manually, whereas today the designers can
do some preliminary tests themselves and alter the design if they find some mechanical
flaws.

2.1.3 Electric / Electronic Design Process

The electric design process is a little bit different from the mechanical or software
processes:

1. Design
The circuit is designed on paper or on a PC. In this step components with ideal
properties are assumed.

2. Select components
In this step the components are replaced by real ones, which are selected to fit their
specific requirements.

3. Simulation
The result is simulated on a PC to see if the circuit fulfills the requirements and
whether the selected components work in an acceptable way. If there is an error
one has to return to step (2) or even step (1) to correct the circuit.

7



2. Basic Concepts

For more information on electronic design processes see [CH16].

The first step has not changed since the past, because there is no software where you can
just input the requirements and it outputs the complete circuit. This is of course also true
for the mechanical and software design processes. The second step has become easier in
today’s times, because there are software products which can assist in the selection of the
components. The third step has changed the most, because in the past one had to derive
and solve the equations of the circuit themselves. These equations are very hard to solve,
because they are differential equations, which very often can not be solved analytically.
Today one just has to input the circuit into the software, select the components, and
the software simulates how the circuit and the components behave. Modern simulation
software even shows if there are errors in the design, for example if the property of a
component exceeds its limit, where in the real world it would break.

Pure electronic circuits are the simplest to create, because there is no loop in the design
process:

1. Select components
The requirements are analyzed and the components, which fulfill the requirements
are selected.

2. Draw schematic
The schematic is created using the information in the data sheets of the components.

3. Draw board
The circuit board is then created from the schematic. This step determines the
resulting size of the Printed Circuit Board (PCB), depending on other factors, such
as the number of layers.

The simplicity of the whole design process renders the first step the most important one:
The selection of the components determines if the resulting PCB fulfills the requirements
or not. One wrongly selected component can only be detected by careful reviews, or
only at the end when the whole board is tested, in which case the whole process has
to be restarted at the first step. The second step is a very mechanical one, because
all information one needs to create the schematic is written in the data sheets of the
components. Very often the data sheets even contain examples of the required connections.
The last step can be a very time consuming one, because if the schematic has many
components the placement and the routing of the board can be very complex. There are
software products, which can help in the routing or even the placement of the components,
but very often the result is far from optimal and a human designer has to correct some
wrong decisions of the software.

The argument of simplicity is only true on pure electronic circuits, which are very rare in
real designs. It is very often the case that the electronic circuit controls some kind of
electric process, in which case the complexity of the design increases.

Here is a selection of features ordered by increasing complexity of the design process:

8



2.1. Design Processes

1. Pure electronic designs
Only digital signals like buttons, Light Emitting Diodes (LEDs), . . .

2. Mixed designs
Electronic/Electric or Electronic/Analog or other combinations

3. Special function signals
Clock signals, Pulse-Width Modulation (PWM) signals, . . .

4. Serial buses
Serial Peripheral Interface (SPI), Inter-Integrated Circuit (I2C), . . .

5. Parallel buses Peripheral Component Interconnect (PCI), Double Data Rate
(DDR) interface, . . .

Keep in mind that the first 4 features are pretty close in terms of design complexity1,
but there is a huge jump in complexity when designing parallel buses, especially when
the bus is very wide or has a high data rate. The reason for this is that one has to keep
an eye on the length of the signals to minimize the skew.

2.1.4 Combined Design Process

Please note that this section may not apply to all companies and may also be inaccurate,
because most companies do not disclose their design processes to the public. The following
section is a summary of some topics learned at university and some information from the
internet, such as [PK05].

Long times the design process of a new product was highly serialized. At first the
mechanical design was created, which dictated the overall measures of the product. After
that the electrical and electronical schematics were built with respect to the mechanical
design. The software was then created and tested on the real hardware at the end of
the process. As one can easily see this serial workflow is highly inefficient, because every
department has to wait for the other departments to finish their parts.

In recent years this design strategy was changed to a combined serial/parallel workflow,
meaning that the mechanical design was either done at the beginning or at the end
of the workflow. The electrical and electronical design were done in parallel and some
independent parts of the software were also created at the same time. As one can see
this workflow is vastly better than the completely serial process, but there is still room
for improvement. For our quadcopter we therefore applied a completely parallel design
workflow, which is described in detail in Chapter 4.

1We use the term design complexity as a synonym for cognitive complexity as defined by Kopetz
[Kop08].
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2. Basic Concepts

2.2 Formulary

2.2.1 Flight Time

To approximate the flight time of a quadcopter the following formula can be used.

t = C

Itot
(2.1)

C is the nominal capacity of the battery, and Itot is the total current, which is dominated
by the current draw of the four motors.

2.2.2 Horizontal and Vertical Speed

According to [qua] the maximum horizontal speed of a quadcopter can be estimated with
the formula

vhor = 4

√
1− 1

TR2 ·
√

2mg0
ρcDA

· TR (2.2)

where

TR = 0.9T
m

(2.3)

and

A = 1
2MTM2 + 3πr2

prop (2.4)

TR is the so-called thrust ratio and should only use 90% of the peak thrust T to allow
the flight controller to keep the position of the quadcopter. MTM is the motor-to-motor
distance, g0 is the gravity of earth (9.81 m/s2), ρ is the density of air (1.2 kg/m3) and m
is the estimated mass of the quadcopter. The calculation of the top area A uses rprop,
which is the radius of the propellers.

The maximum vertical speed, also known as the climb rate, can be calculated with the
formula

vver =
√

2mg0
ρcDA

·
√
TR− 1 (2.5)

2.3 Components of a Quadcopter

In this section we give an overview about which components are needed to let a quadcopter
fly. Additionally some optional components which enhance the navigation abilities are
also shown.
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2.3. Components of a Quadcopter

2.3.1 Microcontroller

The microcontroller is the most important digital part of a quadcopter, as it is used to
read the sensors, control the actors, and optionally communicate with other systems.
There are many types of microcontrollers available, from very small 8-bit ones with as
little as 4 user-configurable pins, up to powerful 32-bit microprocessors with hundreds of
pins.

When selecting a microcontroller for a quadcopter, one has to find the right balance
between the capabilities and the power consumption of a microcontroller. It does not
make sense to just use the most powerful microcontroller one can find to control such a
small quadcopter, as the power consumption will be considerably higher.

It is usually best to first make a list of the required capabilities and then select a
microcontroller based on that list. The first property every microcontroller has to fulfill
is the number of user configurable pins. The microcontroller needs at least as many pins
to interface with every sensor.

It is also an advantage if the microcontroller has some serial communication module, as
this will considerably simplify the communication with the external sensors, such as the
Inertial Measurement Unit (IMU).

As power consumption is a concern in small systems, such as quadcopters, one may want
to use an 8-bit controller whenever possible, as they often use less power than the bigger
ones. Of course, if highly complex algorithms are run on board, one may nevertheless
want to use a 32-bit microcontroller to decrease the time needed to run the algorithm.

At last the personal familiarity may also play a role in the selection of a microcontroller.
If two microcontrollers are up for selection, it is better to choose the one, one has more
familiarity with to decrease the time needed to write and debug the software.

2.3.2 IMU

The IMU is the second most important part of a quadcopter, because it measures the
attitude, and without it a quadcopter could not fly in a stable manner.

One of the most important properties for our application is the number of Degrees of
Freedom (DOF). There are sensors which only have 3 DOF, and there are ones which
have 9 or 10. Strictly speaking the ones with 3 DOF can’t be called an IMU, because
they can only measure one type of inertia, i.e. either orientation, acceleration or direction.

A 9 DOF IMU consists of a gyroscope, which measures the orientation, an accelerometer,
which measures the acceleration, and a magnetometer, which measures the direction.
Some types of IMUs also have a barometer integrated, which can be used to measure the
height, and are then known as a 10 DOF IMU.

The reason why not just a gyroscope is used is that gyroscopes are very inaccurate and
known to drift over time and temperature. An accelerometer can be used to compensate
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2. Basic Concepts

Frequency Range Type of antenna
433 MHz >1 km wire aerial
868 MHz >100 m wire aerial; SMD
2.4 GHz <50 m SMD, PCB

Table 2.1: Properties of different RF modules

that drift, but they also become inaccurate if the sensor is tilted. The magnetometer
is then used to compensate for the error when the sensor is tilted. The more advanced
IMUs also have a temperature sensor integrated, which can be used to compensate for
the drifts, which are caused by the changing temperature.

Most IMUs only provide the raw data of the three sensors, and leave the sensor fusion to
the microcontroller, but there are more advanced types available, which have such an
algorithm integrated.

2.3.3 Height sensor

A height sensor can be used to measure the height of the quadcopter while flying.

There are many ways to measure the height, but they can be grouped in two types of
operation: relative sensors, such as infrared, or ultrasonic sensors, which only measure the
distance to a known surface, and absolute ones, such as barometers, which can measure
the absolute height in reference to the sea level.

Relative sensors work by measuring the distance to a known surface, and this brings
them their great disadvantage: If the quadcopter is flying over a desk or some other
unevenness of the surface, the sensor values are completely wrong.

Most of the time barometers are used, because they are independent of the composition
of the surface. They work by measuring the barometric pressure of the air, which can
then be converted to a height value. Barometers have two great disadvantages: they are
pretty inaccurate when measuring heights in the mm range, and they are susceptible for
changes in the barometric pressure, which can be caused by winds or indoors by opening
or closing the door to the room.

2.3.4 Optional: Radio Frequency (RF)-module

If an RF module is used the quadcopter can send messages, such as its position and
other debug outputs, to a base station, which could in turn send commands back to the
quadcopter.

There are many types of small low-cost and low-power modules available, so the easiest
classification is done by their frequency. Depending on the frequency of the modules they
have different properties, as shown in Table 2.1.
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2.3. Components of a Quadcopter

Protocol Frequency Power consumption Standard
ZigBee 433 MHz, 868 MHz, 2.4 GHz small IEEE 802.15.4

6LoWPAN 433 MHz, 868 MHz, 2.4 GHz small IEEE 802.15.4
BLE2 2.4 GHz small IEEE 802.15.1

Bluetooth 2.4 GHz considerable IEEE 802.15.1
Wi-Fi 2.4 GHz, 5 GHz considerable IEEE 802.11

Table 2.2: Some RF protocols sorted in ascending order based on their complexity

When selecting an RF module the working frequency is an important criterion, because
it influences the required type of antenna. A frequency of 433 MHz may not be the best
choice for small quadcopters, because it requires an external wire aerial, which could
negatively impact the stability of the quadcopter. That means that for small quadcopters
a frequency of 868 MHz or 2.4 GHz should be used, because they can be used with either
SMD or PCB antennas. The best choice is a module in the 2.4 GHz band, because they
use a PCB antenna, which is just a specially designed short copper trace on the board.

RF modules can also be categorized into the communication protocol. The most important
and wide-spread protocols are shown in Table 2.2.

ZigBee is the most basic network of this list because it is very easy to implement, while it
also offers advanced networking capabilities such as routing. 6LoWPAN is an advanced
network for small sensors, because it uses IPv6 headers and addresses and can easily
be integrated in existing networks via a router. Bluetooth features many networking
capabilities and can easily be used to send messages and commands to modern smart
phones or computers. BLE is part of the Bluetooth specification 4.0 and is specifically
made for small low-power sensors. Wi-Fi, or Wireless LAN, is the most advanced wireless
communication protocol in this list, and such a module can be used to easily integrate a
system into an existing network. This complexity also brings a great disadvantage, which
is the high power consumption of Wi-Fi modules.

When one wants to use a RF module in their project, they can either use a dedicated chip,
which implements the protocol, or they can use an extra module. The advantage of the
dedicated chip is that the application software can also be run on that chip, which means
that an extra microcontroller is not needed. The disadvantage is that the antenna has to
be routed oneself, which is a very complex task, which is often done by experts. People
who are not well-versed in high frequency board design should therefore use dedicated
modules, which already incorporate the antenna.

2.3.5 Optional: Global Positioning System (GPS) module

GPS modules can be used in bigger quadcopters to measure their absolute position while
flying. They are often fused with the sensor values to reduce their inaccuracies to a

2Bluetooth Low Energy (BLE) is part of the Bluetooth specification 4.0, but is shown here as an
extra entry, because it has several advantages for low power systems.
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minimum. These modules are pretty big and most of the available modules use a ceramic
antenna, which adds a considerable amount to the weight of the quadcopter.

More advanced sensors not only use the American GPS satellites, but also the Russian
GLONASS, the Chinese Beidou, and the European Galileo system to increase their
accuracy. Especially the Russian GLONASS system is many times more accurate than
GPS for civilian uses.

Small quadcopters, such as ours, often don’t use a GPS module because of their weight
constraints.

2.3.6 Battery

The selection of the right battery can be a tedious process (see Section 5.1.1).

There are different types of rechargeable batteries available, such as Nickel-Metal Hydride
(NiMH), Lithium-Ion (Li-ion), Lithium Polymer (LiPo) ones.

Most of the times LiPos3 are used because they offer the highest capacity-to-weight ratio
for their small size and are available in many capacities and forms. LiPos also offer the
highest charge ratios of up to 10 C and discharge ratios of up to 100 C, which means
that they can be discharged with up to 100 times their capacity in amperes. E.g. a 1 Ah
battery with a discharge ratio of 100 C can provide continuous currents of up to 100 A
until the battery is in danger of breaking down.

2.3.7 Frame

The frame is the most important mechanical part of a quadcopter and is used to hold all
parts in position and to provide enough stability while also dampening the vibrations.

Bigger quadcopters use frames, which are built of iron bars or even fiber glass or carbon
fiber. Smaller quadcopters often only use small plastic plates to offer additional stability,
while reducing the weight as much as possible. The smallest quadcopters very often omit
the frame and just use the PCB to hold the motors.

2.3.8 Motors

The selection of the right motors is very important when building a quadcopter. If the
motors are too small the quadcopter won’t fly and if they are too big and powerful the
battery will be drained before the quadcopter could lift off.

There are many types available for bigger quadcopters, but most of the time brushless
DC motors with external rotors are used. They are available in many sizes and torques,
and the selection of the correct ones is the subject of many manuals on the internet.

3In literature the term “LiPo” is often used as a shorthand notation for “LiPo battery”. In this thesis
we also use this shorthand notation.
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2.3. Components of a Quadcopter

When building a small quadcopter the selection is reduced, because only standard coreless
DC motors with internal rotors are available in these sizes. If the quadcopter is very
small, every small motor with a diameter of about 7 mm can be used if their speed is
high enough (more than 30 000 rpm and a rated current of about 1 A should be enough
for palm-sized quadcopters).

2.3.9 Motor driver

The purpose of a motor driver is to provide high currents to the motors without straining
the PWM outputs of the microcontroller too much.

The motor driver has to be adapted to the current rating of the motor, otherwise its
efficiency is too low or it gets too hot and breaks down.

2.3.10 Propellers

The selection of the right propeller can be a very tedious process, because they have
to be selected based on the size of the quadcopter, its weight, its maximum speed and
most importantly the speed of the motors. There are many manuals and formulas on the
internet which help in this process.

It is very important to use two clockwise propellers and two counter-clockwise ones in a
diagonal fashion, because otherwise the quadcopter would spin around its axis and it
won’t be possible to stabilize it.
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CHAPTER 3
Requirements and Related Work

The first section of this chapter shows the requirements of the proposed design process
and the application requirements of the quadcopter. The second section then presents
some available quadcopter projects and their relation to the requirements of our thesis.

3.1 Requirements

Before we present some related work we want to describe the requirements of our thesis.
The design process had to have the following properties:

• Allows for integrated development of physical, electrical, electronic and
software departments
Cyber-Physical Systems (CPSs), as per their definition, consist of not only an
independent electronic or software part, but they are defined as the integration
and interaction of software and physical components. The design process therefore
needs to be able to account for all departments.

• Allows the design of CPSs, like quadcopters, taking application require-
ments into account
Even the best design process may be useless if it cannot be adapted for different
applications. As each application has a different set of requirements and specifi-
cations the design process has to be defined in a generic way to be able to easily
adapt it for each CPS.

• Independent departments
The departments should be able to work with as much independence on other
departments as possible.
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• Parallel workflow
When the work in the departments can be done independently, the departments
can deploy a parallel workflow. This means that they can complete their work
without having to wait on other departments.

• Model-based design
The definition of a model enables the departments the formal verification of the
results of their work against the model and the specification of the application. The
design process should work for both, top-down and bottom-up methods for creating
the model. In the top-down approach a model is created from a set of specifications
and requirements, while in the bottom-up approach the model is created from an
existing application.

• Independent validation of departments
When a model and requirements are defined for each department, this allows
independent tests to be performed on each part of the whole system. Of course,
a positive test in a single department does not mean that the whole system will
work as specified, but these independent tests enable the departments to find
fundamental errors early in the design process.

The application requirements of the quadcopter were defined as follows:

1. Small size with a diameter of less than 150mm

2. Reasonable flight time of not less than 3minutes

3. Costs for a theoretical series production similar to that of other available quad-
copters, i.e. the total costs for a series production should be less than 200e

4. Open design to allow future hardware modifications

5. Open source to allow future software enhancements

6. Suitable for swarm applications, i.e. possibility to exchange messages with a
stationary base station

7. Ability of autonomous flight without the help of a base station

When we refer to item numbers in the next sections we refer to this definition of the
application requirements.

3.2 Current Research
While there has been done some research on how to construct a low-cost quadcopter,
almost none of them deal with our problem.
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We will discuss some of the most important research papers on this topic in this section.

There is already a master’s thesis on how to construct a low-cost quadcopter for research
purposes [Bur10], but this thesis had a different goal than our thesis. Their goal was to
use Commercial Off-The-Shelf (COTS) parts to construct a working quadcopter. This
approach lead to a quadcopter with total costs of the components of $313.60. The size of
the resulting quadcopter was also not a design criterion, which means that the diameter
was about 600 mm, according to the used frame. This design therefore violates items 1
and 3 of our application requirements.

In the paper “Design and Assembling of a low-cost Mini UAV Quadcopter System”
[PDC15] the authors used a commercial quadcopter, the 450 ARF [con] and improved
it by adding additional sensors. These sensors include a magnetic sensor, a Global
Positioning System (GPS) receiver, a temperature and humidity sensor, and a Bluetooth
module. Unfortunately the paper is only a technical report and the authors did not write
about the total cost of their work.

The papers “Design considerations of a small UAV platform carrying medium payloads”
[BGdRGP14] and “Multicopter UAV Design Optimization” [MHO14] propose a new way
to configure UAV platforms from scratch. The authors of both papers present a tool,
which can compose a UAV from different versions of the components. One just has to
enter the optimization criteria, e.g. the payload or flight time, and the tools configure a
quadcopter, which is ready to be built. Unfortunately the resulting configurations are far
from perfect, because the controlling unit is the same in every configuration, which means
that it features unnecessary parts, which may not be needed in a specific configuration.
The downside, and the reason why these tools could not be used for our thesis was that
they require different variations for each part of the quadcopter, i.e. different sizes and
materials for the frame, different sets of batteries, motors and propellers. These tools
are of use when one already has a wide range of these components available and wants
to build a quadcopter which optimizes a certain property. They are also a good way
to determine which components one has to use for each quadcopter when one wants to
build different quadcopters with different requirements. Therefore we could not use these
tools for our quadcopter, because we only have one set of requirements, and we also
didn’t have a large variation of different components. It would have been more work to
search these components and input them into the tools than to just select the usable
components right away.

Another paper, “Development of a Low Cost Quadrotor Platform for Swarm Experiments”
[DNY13], shows another quadcopter with the total costs of less than $400. The diameter
of this UAV is approximately 500 mm, which means that this is also quite large. The
authors made a comparison of different commercial control systems and show how the
resulting software was written. This project also violates the items 1 and 3 of our
application requirements.

Of course, there are not only papers, which describe the mechanical aspect of quadcopters,
but also how such a UAV can be controlled. For example, the papers [CTK11], [EA07],
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[HGB10] and [ZWX12] describe how the whole control system works. The authors in
the respective papers show how a Kalman filter can be implemented to filter the noisy
signals. These filtered signals are then used by PI and PID controllers to control the
motors of the drone.

3.3 Commercial Products and Open-Source Projects
There are many commercial drones available, but almost none of them could be used as
a research platform, because they are not open and therefore can not be extended with
additional sensors or actors. Most of these drones can only be controlled via Remote
Control (RC) and are incapable of autonomous flight.

The prices of these products range from about 25e [ama] to more than 1000e [asc] 1.
The former product is very small, as its diameter is about 55 mm, but it can only be
controlled via RC and it can not be extended in any way. The latter product is not so
small, with a diameter of about 650 mm, but it is a research platform, which can host
various sensors, like GPS modules, cameras, laser scanners, etc. This quadcopter can also
be programmed by the user, which enables it to fly autonomously. As a summary these
low-cost quadcopters violate the items 4, 5, 6 and 7 of our application requirements.

Another commercial product is the “Parrot AR Drone 2.0” [par], which costs 299e. This
drone has a diameter of about 550 mm, it can not be extended with additional sensors,
but it can be controlled with a computer or a smartphone. This way one can implement
the algorithm for autonomous flight on a computer and let it control the drone. One
disadvantage is that the design is not open, so one can not alter the drone and build
a replica to allow additional sensors. A big advantage is that the software Application
Programming Interface (API) is well documented, which makes it easy to build a program
which controls the drone. In fact if you search the internet with your favourite search
provider you can find many open-source projects for this task. This product violates the
items 1, 3 and 4 of our application requirements.

One of the most successful commercial quadcopters is the “MikroKopter”, which was
developed by a German company. The reason for its success is that it is an open platform,
which means that everyone can download the schematics and source code and build the
drone on their own. This also means that one can easily extend the quadcopter and let
it fly autonomously. The smallest kit, which is currently available, costs about 680e and
has a diameter of about 480 mm [mik]. This quadcopter violates the items 1 and 3 of
our application requirements.

There are also some open source projects, such as the “Paparazzi UAV”[pap], or the
“LibrePilot”[lib], which are centered around tools to ease the development of own drones.
Both projects introduce a software-stack, which can be used to create an autonomous
flying drone. One just has to configure the stack for the used components (for example
microcontroller, motor controller, sensors) and the software automatically creates a first

1All prices in this thesis are current as of 01 July 2016.
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version of the firmware for the drone.
Both projects also introduce several ready-to-fly controller-boards, which can be used to
build one’s own drone.

At time of writing only one board had the right specifications to be useful for this thesis.
The only downside of the Lisa/S[bitb] controller board is its prize of $300.0. Aside
from that it has every component, which is useful in a swarm application: a powerful
microcontroller, a built-in GPS module, built-in motor controllers and an optional RC
module. The most important feature, and the reason why all other boards can not be
used for this thesis, is that it can be powered by a single-cell lithium polymer battery.
Because of the high cost of this board it violates item 3 of our application requirements.

The most promising project for this thesis is the “Crazyflie 2.0”[bita], which has almost
every feature needed for swarm applications. The downsides are its high price of $180
for the complete quadcopter, and that it does not feature a GPS module, which is only
a minor downside considering that these small drones are best used indoors. Some big
advantages are that the design and the software are open, which means that one can
easily adapt the schematics or the source code to meet one’s needs. Please note that the
design is not completely open, because the manufacturer only provides the schematics,
and not the board files. So if one wants to build their own drone, they have to create
the board files from scratch. We therefore decided to use the schematics of this project
as a starting point to develop our own controller board, which will be cheaper and a
better fit for our design. This quadcopter violates none of the items of our application
requirements.

Table 3.1 gives a qualitative assessment of popular quadcopter projects. In that table
the results can be in the range [--, ∼, +, ++, +++], where -- means that the respective
requirements is strongly violated, and +++ means that the respective requirement is
strongly met.

Attribute Low-cost toys AR Drone 2.0 Crazyflie 2.0 TU Drone

Size +++ -- +++ +++
Open Design -- -- ∼ +++
Open Source -- + +++ +++
Extensibility -- -- ++ +
Swarm applications -- ++ ++ +++
Autonomous flight -- + ++ ++
Price 20e 349e 160e 2 135e
Violates requirements 4, 5, 6, 7 1, 3, 4 -- --

Table 3.1: Comparison of quadcopters

2Euro-price as of 25 September 2016, given for comparison to other quadcopters. The original price
was $180.
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CHAPTER 4
Model-Based Design Flow

In this chapter we propose a workflow for designing Cyber-Physical Systems (CPSs),
which require parts from different departments, such as the mechanical, electric, electronic
and software department. One of the main focuses of this workflow is an independent
workflow for each department such that they can do their work in parallel, which enables
them to do their work in a very efficient way. This parallel workflow was furthermore
tested on a real-world application, namely the design of a quadcopter.

A parallel design flow enables each department to start their work at the earliest time
possible, and the departments are not dependent on each other. Although some extra
work has to be done in the beginning, such as the generation of a generic model and
the definition of test cases, this approach should nevertheless be more efficient than the
traditional design flows where each department had to wait until the previous ones had
finished their work.

As can be seen in Figures 4.1 and 4.2, our design flow can be divided into three stages,
which have to be done one after the other. Nevertheless, the most time-consuming work,
namely the implementation in the different departments can be done in parallel. This
can be seen in our figure in the second stage.

Stage 1 consists of the preparatory work, such as the definition of requirements, the
creation of generic models and the extraction of test cases. This work cannot be done in
parallel to the other stages as all further stages rely on the results of these steps.

Stage 2 is the implementation stage, where the generic model is first turned into a specific
one for each department. This can be seen in Figure 4.1 in the first four parallel steps.
After that the models, which now consist of real components, are further refined with the
help of the extracted test cases, as is shown in Figure 4.2. The last steps in this stage
consist of a check to see if all requirements can be met by the combined results of the
departments.
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Figure 4.1: Flowchart of the design flow
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Figure 4.2: Flowchart of the design flow (cont.)
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Stage 3 is the last stage, as this is where the results of the previous steps are gathered
and the whole system is assembled and finally tested. At first all required mechanical,
electric and electronic parts are produced and assembled. After that the whole system is
tested using the software written in the previous stage. When all tests were successfully
completed, this marks the end of the design flow and the system is ready for operation.

The next sections describe each step of the design flow in detail.

4.1 Stage 1 - Preparation

The very first step is to gather the requirements and to create the specification sheet.
This procedure is of course the same regardless of which type of design flow is employed.
The specifications have to be complete and accurate as this is the base of the subsequent
work. An error in this step may render the final product useless as it either does not
work or is not what the customer wanted. For detailed explanations of the required parts
of a specification sheet one can refer to the norms [VDIb], [VDIa] and [IEE98].

The next step is the creation of a generic model, which acts as the base of the work for
each department. One can think of this model as a summary and mathematical design of
the specification sheet. The generic model consists of an abstract description of the CPS
under design and its relevant environment. For the creation of this model, a top-down,
a bottom-up or a mixed approach can be employed. In the top-down approach the
generic model is created from the specifications of the application. This model will later
help to check the results of the departments against the specifications. The bottom-up
approach on the other side takes a finished application and creates a model based on
the physical implementation. This model can then be checked against the requirements.
The mixed approach can be used when a similar physical implementation, which fulfills
some of the specifications, is available. In this case a model is created from the available
implementation and then altered for the new specifications. Irrespective of the used
approach the generic model will be refined by each department in the later steps of the
design flow.

The generic model is then used to extract test cases for each department to test their
solutions upon. E.g. for a particular product the outer dimensions may be extremely
important. This means that one test case for the mechanical department may be that the
product does not exceed some maximal size. As one can see, together with the generic
model these test cases are what every department needs to begin its work.

Please note that formal methods are beneficial to describe the requirements and the
subsequent generic model, as this enables one to compare the specific models in each
department against the generic one and test that they are compatible among each other.
These formal methods are not described in this thesis and are subject to future work
(see Chapter 7).
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4.2 Stage 2 - Implementation

This is where the design flow splits into the different departments and everything is done
in parallel without having to wait for the other departments to finish.

The main work of the mechanical department is to create a mechanical design of the
product. Depending on the particular product this can include a design of a case, or the
design of some other mechanical parts. Every mechanical part which is important for the
product to work is designed here. The particular design flow in this department may vary
depending on the product. It may be important to start with a 3D model of a mechanical
part, followed by some numerical simulations, for example a Finite Element-Analysis
(FE-Analysis), or the department may decide to skip this step and just create a drawing
of the part without any model or analysis.

After the mechanical model is created it is verified against the generic model and the
extracted test cases. In Figure 4.2 this is shown exemplary with an FE-Analysis of the
mechanical model. The requirements for this department may include that the mechanical
part does not break or has the required safety margins, which can both be tested this
way.

The main focus of the electric department is to design and test the electric parts of
the product. This process can include the design of an electric schematic and the
selection of the required components, such as resistors, capacitors, inductors and other
parts. Depending on the particular product the workload increases or decreases. E.g.
a quadcopter requires very few purely electric components, as most of the resistors or
capacitors belong to the electronic design. This is in contrast to the workload of a big
industrial system, where every motor has to be specifically selected.

The figure shows that the validation of the electric design can be done with a simulation.
Of course the main requirement for the electric design is that the final product does what
it is intended to do. Other requirements may include the maximum power consumption,
or a minimum power output.

The electronic department deals with the design and validation of the digital parts.
This includes the selection of microcontrollers, drivers and other digital chips, and their
necessary electric parts. For example, most interface drivers which translate between
different voltages need external capacitors for their charge pumps. Other extremely
important parts are the decoupling capacitors, which should be included such that every
chip has at least one on each power input, and which have to be placed as near as possible
to the respective chip.

The electronic design can be tested and verified in parts with a simulation, but most of
the validation work still has to be done by humans. This is because the whole digital
design is very complex, and depends on the information in data sheets, which can not
be validated by simulations. E.g. according to the data sheet of a digital chip a resistor
with a particular value has to be placed between two pins. If the value of the resistor
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depends on the whole design, or if it is used to select a particular operation mode of the
chip, this design is impossible to verify with a computer program.

In the figure you can see an arrow going from the electric design to the electronic
refinement. This expresses that often the electric schematic influences parts of the
electronic design. For example, the selection of a particular high current driver depends
on the electric circuit it is supposed to drive.

The fourth department is responsible for software development. This step includes not
only the development, but also the tests, such as validation and simulation of the software.
At first a software model of the environment has to be created to be able to simulate
the software. This can be done using the generic model and the specification sheet.
This procedure is called Software in the Loop (SIL) and has to be used because at
the beginning of the process no information about the physical hardware is available.
This does not mean that software development is useless at this stage, because even if
the low-level drivers can not be created, the main algorithms can still be implemented.
Instead of real low-level drivers, generic ones are used. This has the advantage that
simulation, testing and debugging becomes easier, because these generic drivers can be
adapted to print out as much information about the program as needed.

After the electronic department has fixed the hardware components, the software can be
adapted to run on the hardware. In the figure this is shown with the arrow going from
the selection of electronic components to the refinement of the software. This so called
Hardware in the Loop (HIL) process is then better suited to simulate the software in
real world environments. In this step the generic drivers are removed and replaced by
real low-level drivers, which are adapted to the actual hardware. This process makes
debugging and testing easier because in this stage the developers can be sure that the
high-level algorithms work, because they have already been tested. That means that
locating a potential error is easier because the developers know that the error can only
be in the low-level drivers.

When the mechanical, electric and electronic designs are finished the last step of this
stage can be performed, which is the check for inter-department design failures. In
this step all models from the departments are verified against each other to make sure
that they are compatible. Some requirements may be fulfilled by each department on
their own, but when the models are brought together, they may not be realizable. One
easy to understand example is the following: The application requirements for a new
quadcopter state that it should weigh at most 30 g and have a flight time of at least 5
hours. These requirements are split for the different departments, which means that
the mechanical department gets the requirement for the weight, among others, and the
electric department has to fulfill the requirement for the flight time. On their own, both
requirements are realizable, but when the results from both departments are brought
together, they will contradict each other. I.e. the main problem is that the battery will
be far too heavy to be able to fulfill the flight time. Currently there are no batteries
commercially available, which have enough capacity for the required flight time, and still
weigh less than the required 30 g.
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At the end of this second stage the software, the electronic designs, some additional
electric designs, and the design of the mechanical parts are finished and ready to be
manufactured, which is done in the next stage.

4.3 Stage 3 - System Assembly
The first step of this stage is to manufacture all parts which were designed in the previous
stage. This includes the production of all mechanical parts, all electrical designs, all
Printed Circuit Boards (PCBs) and the subsequent assembly into the final product.
Please note that the production of the parts can of course be done in parallel. This is
not shown in the figure because it would have made the whole picture more complex.

When the product is finished the main software test is performed. As the software has
already been tested and simulated numerous times before that test, the expectation is
that this last test has to be successful. Reality is of course different, because very often
this test is not 100 percent successful and small errors are still found. Sometimes these
errors stem from inaccuracies in the mechanical parts, and sometimes there are errors in
the electrical or electronical design. Software is also not perfect and some bugs may still
linger. Minor errors may stem from inaccurate models of the environment such that the
designed controllers are not adjusted correctly. Sometimes the controllers are not set at
all and have to be optimized in the real world environment.

So if there are still some errors, the next step is to locate the relevant department
and refine the relevant part. Sometimes only the relevant department has to do some
adjustments, but it can also be the case that the modification is not so minor and other
departments have to be involved to adjust their respective parts. Of course, this second
case should not happen frequently, because these modifications, which involve more
departments are very time consuming. If that occurs frequently in reality, more emphasis
has to be put on the work in the first stage such that these errors are caught earlier in
the design process where they can be fixed more easily.

At the end when all tests are completed successfully the product is finished and ready
for series production.
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CHAPTER 5
Use Case: Implementation

In this chapter we will first show you how we employed the design process introduced in
the previous chapter. The next section then describes which components were selected
for our quadcopter. The last part of that section then discusses the total costs of the
production of our quadcopter.

5.1 Design Process
Please bear in mind that the quadcopter was built by a single person, namely the
author of this thesis. It is therefore hard to speak of a parallel workflow, but the author
nevertheless employed the underlying process described before.

5.1.1 Generic Model

At first some theoretical calculations were done to be able to approximate the resulting
sizes, weight, flight time and maximum speed based on a few parameters.

The approximation of the resulting size was done the following way: At first some existing
quadcopters (most prominently the “Crazyflie 2.0”[bita]) were taken as a base to study
their properties and the relationships between them. For example, there is a complex
relationship between the size of a quadcopter, the size of the battery, the size and thrust
of the propellers, the weight of additional loads, and the flight time. The following
relationships are the most obvious (please note that for the following items it holds that
only the mentioned part of the quadcopter is taken into account, e.g. in the first item
only the physical size of the quadcopter is changed, but not the battery):

• The larger a quadcopter is, the heavier it is, and the lower its flight time is.

• The larger the battery is, the higher its weight is, and the lower the flight time is.
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Figure 5.1: Plot of the flight time over the capacity of the battery

• But also, the larger the battery is, the higher its capacity is, and the higher the
flight time is.

• All in all, the curve of the capacity rises faster than the weight of a battery, so the
net outcome of a larger battery is, that the quadcopter can fly a longer time (see
Figure 5.1).

• The larger the propellers are, the larger the thrust is, and the higher the speed of
the quadcopter is.

• The larger the propellers are, the larger the motors need to be, the higher the
weight is, and therefore the lower the flight time is.

• The higher the payload is, the higher the weight is, and the lower the flight time is
(see Figure 5.2).

As one can easily see, because of these complex relationships it is not possible to design
a quadcopter from scratch in one go, but one has to employ an iterative design process,
such as the one in Figure 5.3, which we used to create a generic model.
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Figure 5.2: Plot of the flight time over the weight of the payload

At first the size of the quadcopter was defined and the motors, propellers, frame and the
battery were selected to fit the size. After that the flight time was calculated and checked
if it was high enough. If that was not the case a better battery, which has the same size
but a higher capacity, was sought. If such a battery was found, the resulting flight time
was checked again. If no such battery was available, the resulting size of the quadcopter
was increased and the process began at the beginning. The end of the process resulted in
the selection of the motors and propellers, which can be seen in Section 5.2.

To calculate the flight time the formula1 2.1 was used. Using a capacity of 240 mAh and
a total maximum current of approximately 4.44 A (see [bitc]) we calculated a flight time
of 3.2 min when all motors are running at full power.

As the approximate weight of the whole quadcopter was estimated to be about 35 g, we
could also calculate the flight time when the quadcopter is hovering. Figure 5.4 shows the
thrust characteristic of a similar quadcopter, the “Crazyflie 2.0” (see [bitc]). According
to that figure the quadcopter draws about 2.8 A (= 4 · 0.7A) when the quadcopter is

1All formulas are described in Chapter 2.2.
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Figure 5.4: Plot of the thrust characteristic

hovering. Again using Formula 2.1 the flight time in this case is about 5.2 min, which
can also be seen as the zero-payload case in Figure 5.2.

To get an estimate on how fast such a small quadcopter will be able to fly we used the
Formulas 2.2 and 2.5.

Inserting the approximated values for our quadcopter, which are a peak thrust T of
57.9 g, a motor-to-motor distance MTM of 94 mm, and a radius of the propellers rprop
of 45 mm, gives a maximum horizontal speed of approximately 9 m/s and a maximum
vertical speed of 5 m/s.

At the end of the preparatory work the generic model consisted of a rough sketch of
the outline of the quadcopter, its resulting size and the selection of the most important
components. This model was then used in the four departments to refine the sketch and
to create the resulting hardware.

Here is a short summary of the most important results of this stage:

• Diameter similar to the Crazyflie [bita], in our case 100± 10mm.

• Total weight of about 40± 10 g
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• Motors, propellers and the battery are the same as on the Crazyflie [bita].

• Flight time of more than 3 min.

5.1.2 Mechanical Design

The main work in the mechanical department was to derive a concept of the mechanical
structure of the quadcopter. This concept was then realized in a 3D model, which was
used to simulate the mechanical stability of the system. The most important outcomes
at this stage were the measurements of the Printed Circuit Board (PCB), including the
thickness, which have a great influence on the stability, and the design of the motor
mounts. After the 3D model was created a Finite Element-Analysis (FE-Analysis) was
performed to calculate the maximum deformation of the board when the quadcopter is
accelerating.

The 3D model, which can be seen in Appendix B.1, shows how the quadcopter will look
like when it is assembled, including the main sizes, which are the diameter of 102.8 mm,
and the height of 20.4 mm. The outcome of the FE-Analysis was that a thickness of
1 mm for the PCB should be enough to provide enough robustness for all reasonable use
cases. This thickness also provides enough safety margins for the quadcopter to survive
some crashes, which are inevitable when the software controllers are not optimized.

We will now briefly explain how the FE-Analysis was performed. For the design of the
3D model and the FE-Analysis Autodesk Inventor [aut] and its included tools were
used. At first the reference area was defined to be at the bottom of the main body of
the board (Figure 5.5a). This is the case because prior considerations showed that the
arms would be the weak points and would be the first parts to break if the dimensions of
the board were wrong. That means that the FE-Analysis can be reduced to only set the
focus on them. This was then done by setting a load of 0.57 N onto the end of one arm
(Figure 5.5b). This load was calculated using the data of the motor and propellers [bitc],
which show that at full speed the thrust of one arm would be about 14.5 g. Then using
the formula F = m · a and using the mean gravitation of 9.81 m

s2 we got a force of 0.14 N.
In the analysis we then used four times the maximum thrust, which should give enough
margin to also include minor crashes. As one can easily see, the board is symmetrical,
which means that only one arm has to be tested, because the results have to be the same
for the others as well.

The next step was then to let the program simulate this use case, and to verify if the
results were plausible. After some iterations a thickness of 1 mm, together with a width
of the arms of 4 mm, were found to offer enough safety margins for our application. The
length of the arms were fixed beforehand, because their minimum length depends on the
radius of the propellers. The maximum length is not restricted, but one should leave
them as short as possible to avoid instabilities because of vibrations or oscillations. In
our case, as we used the same propellers as the Crazyflie [bita], which have a diameter of
45 mm, we chose a length of 20 mm for the arms. Figure 5.6 shows that the maximum
mechanical stress would be 12.55 MPa and located on the transition from the arm to the
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(a) Reference area (b) Simulation load

Figure 5.5: Constraints of the FE-Analysis

Figure 5.6: Maximum stress

main body. This is plausible, because that is the location where the arm would break
in case of a heavy crash. Figure 5.7 shows that the deformation of the arm under the
applied load would only be about 0.4 mm and its main location would be at the end of
the arm. Figure 5.8 shows that the minimum safety factor would be about 9.2 in this
situation. A safety margin of 9.2 means that the board can be burdened with 9.2 times
the load of this simulation until it breaks.

At the end of the mechanical design process the model of the motor mounts was converted
to a format for a 3D printer2 to be able to print them. Figure 5.9 shows a comparison
between the 3D model of the motor mounts and the printed ones. As one can easily
see the differences between them are negligible, which means that 3D models on the
computer are a good way to simulate mechanical properties of real parts.

2We used an Ultimaker 2 [ult] with default settings to print our parts.
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Figure 5.7: Maximum deformation

Figure 5.8: Minimum safety factor
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(a) Model (b) Real

Figure 5.9: Comparison between the model and the real part

5.1.3 Electric Design

The electric design consisted of the design of the motor driver, and the design and
simulation of the passive filter, which is used to filter the Pulse-Width Modulation
(PWM) noise from the power supply of the sensors.

The motor driver, whose circuit can be seen in Figure 5.10, is needed because the motors
draw currents of up to 1 A, but the microcontroller can not supply these currents on its
pins. Here is an explanation on how one of the four drivers works (see the leftmost part
of Figure 5.10): P1 is the mechanical connector where the motor is connected. Its first
connector holds the battery voltage and the other connector goes to the MOSFET. D1
is a so-called flyback diode and filters the high voltages, which the motor generates when
the PWM has a transition from the nominal voltage back to 0. This diode protects the
rest of the circuit from these inductive voltages. The MOSFET T1 is the main driver
and can supply continuous currents of up to 5.4 A. It gets driven by the microcontroller,
which is connected to the gate via the resistor R7. This resistor is needed to protect the
microcontroller from high currents when the gate is driven with a PWM. The resistor
R8 is used to pull the gate to ground when the microcontroller is not configured and its
pins are set as inputs.

To protect the sensors from the PWM noise of the motors on the power supply a passive
lowpass filter was implemented (see Figure 5.11). At first the cutoff frequency was
calculated using the standard formula, and then the circuit was simulated in Linear
Technology LTSpice [lin] to better see the frequency response. According to the
standard formula for LC-filters, fg = 1

2π
√
L·C , the cutoff frequency is at 8.9 kHz. The

simulation, which can be seen in Figure 5.12, shows that the filter is useful even at low
PWM frequencies of about 20 kHz.
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Figure 5.10: The four motor drivers

Figure 5.11: Passive lowpass filter

Figure 5.12: Simulation of the lowpass filter
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5.1.4 Electronic Design

The electronic design of the quadcopter was a straightforward process. At first some
research was performed to determine which components would be needed, whereupon
the components were selected with the help of the online catalog of a distributor.

The results of this step was the selection of the following components:

• a microcontroller (Atmel ATxmega32C4 ), which controls the other sensors and
actors

• an Inertial Measurement Unit (IMU) (ST LSM9DS0 ), which measures the
attitude of the quadcopter

• a barometer (ST LPS25H ), which can be used to determine the height of the
quadcopter

• a Radio Frequency (RF) module (Microchip MRF24J40MA), which exchanges
messages with other quadcopters or a computer

• some passive elements, such as a voltage regulator, resistors, inductors, capacitors,
Light Emitting Diodes (LEDs), buttons, connectors

• the motor driver, which was developed in the electric department

• a Li-Ion charger (TI BQ24075 ), which is nice to have to be able to charge the
battery without an external charger

After these components were chosen the creation of the schematic was a straightforward
process, because most of the passive elements were described in the datasheets of the
components. E.g. the datasheet of the IMU says that a 220 nF capacitor has to be placed
between its SETC and SETP pins. For the creation of the schematic and the board
design the free version of CadSoft EAGLE [cad] was used.

The passive parts, which were not mentioned in the datasheets were inferred from the
following common electronic design rules:

• A capacitor should be placed near each power supply pin to filter the noise from
the voltage. Normally a 100 nF capacitor is used.

• Every LED needs a resistor to limit the current flowing through it. Its value has to
be calculated such that the current does not exceed the forward current from the
datasheet of the LED.

• A flyback diode should be placed between the connectors of each inductive load to
protect the rest of the system from inductive voltages.
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• The ground should be the reference of the power supply, therefore it should be
realized as a ground plane.

After the schematic, which can be seen in Appendix B.2, was created the board files were
designed (Appendix B.3). Most of this work, such as the placement and routing, was
done manually because this approach left us with the most freedom for the constrained
size and form of the board.

5.1.5 Software Design

At the start of the software design a flowchart of the initialization routine and the main
software was created. This was done to reflect the refinement of the general model and
the creation of hardware independent routines of the general design process described in
Chapter 4.

The resulting flowcharts can be seen in Figure 5.13 and 5.14.

After the hardware was finalized these flowcharts were realized in software. For this part
Atmel Studio [atm] was used because it offers supreme debugging capabilities of its
microcontrollers.

After power up the software initializes the microcontroller, such as the clock system,
sleep modes, timers, and configures its pins. Directly afterwards the external sensors are
set up. This includes the initialization and configuration of the IMU, barometer and
the RF module. In the next step the charging controller for the battery is checked to
see if the battery is currently being recharged. If this is the case the software enters an
error state, which it only exits when the microcontroller is reset by powering it off and
on again. This is an optional feature to make sure the quadcopter does not start flying
when the USB cable is still connected. The next part of the initialization process is a
loop, which is only exited when the start condition is detected. This start condition can
be triggered either by a press of the onboard button or by sending the letter “g” via RF
to the microcontroller. When the battery is not being recharged and the start condition
has been detected the microcontroller waits for some time to make sure the user has
removed the hands from the button. After that the internal timer is activated and the
program enters its main loop.

The main loop sleeps until the internal timer has fired and a time of 5 ms has elapsed.
When that happens the new attitude values from the IMU are refreshed and fed into a
sensor fusion algorithm, namely the Madgwick Quaternion Update [MHV11], which
fuses the values from the accelerometer, gyroscope and magnetometer into quaternions,
which are then converted into the attitude values roll, pitch and yaw 3. When the
new attitude has been calculated it is fed into a Proportional-Integral-Derivative (PID)
controller, which then calculates the PWM values for the four motors. At the end the
program enters the sleep mode again, which is interrupted by the next timer interrupt.

3The author of the paper also provides an open source implementation of his algorithm, which can
be downloaded at [mad]. This source code served as the base for our implementation.
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Figure 5.13: Flowchart of the software initialization
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Whenever the RF module triggers an interrupt the software copies the message from the
module, decodes and sets a flag for the main loop, which then executes the command.
Possible commands can be seen in Appendix A.3.

5.2 Component Selection
In this section we show which components were used for our quadcopter, and why. A
small overview of the components was already given in Section 5.1.4.

As a microcontroller we selected an ATxmega32C4 from Atmel, which is a small but
powerful 8-bit microcontroller with a clock rate of up to 32 MHz. It has every required
digital interface integrated, and is fast enough to perform sensor fusion on board.

The IMU is an LSM9DS0 from ST, which has 9 Degrees of Freedom (DOF) and an
integrated temperature sensor. It is known for its low drifts and it has an embedded
buffer which can be used to perform a first filtering of the data.

To measure the current height of the quadcopter we use a barometer, more precisely
an LPS25H from ST. This sensor is highly accurate in the mm range and also has an
embedded data buffer, which is used as a mean filter.

As we have to send commands to the quadcopter, an RF module is required. For
this we use a dedicated module, the MRF24J40MA from Microchip. It implements
the ZigBee protocol in the 2.4 GHz range and uses very little power while providing a
higher range (>10 m) than similar modules. The limited range is not a concern for our
application, because our quadcopter should nevertheless only be used indoors.

The battery is the same as on the Crazyflie [bita], which is a small Lithium Polymer
(LiPo) battery with a capacity of 240 mAh and a weight of 7.1 g.

Our quadcopter is quite small, which enables us to use the PCB as the frame and
additional 3D-printed motor mounts to hold the motors.

The motors are also the same as on the Crazyflie [bita], which uses coreless DC motors
with a diameter of 7 mm, a maximum speed of 58 800 rpm and a rated current of 1000 mA.

To drive these motors we built the motor driver ourselves and used a SI2366DS as a
MOSFET for the high currents. It is rated for currents of up to 5.4 A, which means that
it won’t get too hot in our application.

For our quadcopter we used the same propellers as the Crazyflie [bita], because we could
not find any others in that size, which also fit onto the shafts of the motors. They have a
diameter of 45 mm and are available as clockwise and counter-clockwise versions.

5.2.1 Costs

The result of this design process and the selected components was a small quadcopter
with a unit price of 370e if one prototype is ordered, or a price of about 135e if it is
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manufactured in large quantities. The bill of materials can be seen in the appendix in
Table B.1 and B.2.

Most of the costs of the prototype are dictated by the manufacturing of the PCB and
its assembly4. As can be seen in Figure 5.15a if only one board is manufactured and
assembled, the costs are very high with 370e. These costs decrease to about 250e if
50 boards are manufactured. The only way to further decrease the costs is either to
manufacture and assemble the boards on one’s own, or to increase the quantities and
order a series production of more than 1000 pieces. That way the costs should decrease
to less than 100e per PCB, which is depicted in the figure by the large step at the end.

Of course, not only the production of the PCB amounts to the costs, but also the
electrical and mechanical components of the quadcopter. Figure 5.15b shows the costs of
all components, which were used to build the quadcopter, as a function of the number of
quadcopters built. As can be easily seen, the more quadcopters are built, the less one
has to pay for the parts of one quadcopter. The figure only shows the costs for up to
200 quadcopters, because this value is still reasonable. If one wants to buy many more
quadcopters, the prices would further slowly fall until they converge to about 45e per
piece for 10000 quadcopters.

Figure 5.15c shows the sum of the costs as a function of the number of quadcopters. As
one can see the total costs per quadcopter total to about 135e per quadcopter if 200
quadcopters are built at once.

4We want to again give our thanks to PIU-Printex for their fast production and list of prices for
higher quantities.
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Figure 5.15: Different kinds of costs as a function of the number of quadcopters
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CHAPTER 6
Critical Reflection

A comparison to existing design flows is not really feasible, because the available ones
are very general and do not discuss the cases where more departments have to work
together to create a new Cyber-Physical System (CPS). The reason for this is that most
companies keep their internal processes in secret, as discussed in Chapter 2.1.4.

We are nevertheless confident that our proposed model based design flow can be used
in the upcoming “Industry 4.0” to create CPSs either from scratch or from existing
templates. To test this assumption we used this design flow to implement a simple use
case, namely a palm-sized quadcopter. Of course, as the author was only a single person,
it is very hard to speak of a “parallel” work flow. The obvious limitation was of course that
the work in the departments could not be done in parallel, but the author nevertheless
tried to adhere to the parallelism by not using results from previous departments when
working on an other one. During this work the design flow was revised multiple times to
be able to better react on problems, which arose during work. Some of these problems
included inconsistent data sheets for our sensors and actors, such as misprints or missing
but very important design constraints. Even at the end of this work the design flow was
revised once more to account for mistakes, which did not happen in our case, such as
inconsistent and therefore impossible to fulfill requirements. At the end of the work we
are confident that our design flow can account for most of the errors, which can happen
in practice.

When looking at the definition of our design flow, one will see that we did not include a
formal definition of the general model, the requirements and the test cases. These formal
definitions are very important and help to automatically test each of the models and
results of the departments against the requirements. We did not include these in our
work, because they were not in the scope of the thesis, as such definitions would have
blown up the work on this thesis.
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The first focus of our work was to adopt existing design flows to work into a fully
parallel fashion. The second focus was then to show that this design flow works by
creating a CPS ourselves, which was the quadcopter. Of course, even if there are similar
products available on the internet we still had to develop our own quadcopter, because
our specifications were different and could not be fully met with existing quadcopters.

The reason we used some components of the “Crazyflie 2.0”[bita], such as the motors,
propellers and the battery, for our quadcopter is that these components have the lowest
costs when compared to similar parts from other distributors. When one selects the
motors, the requirements of the propellers will also be fixed, because they will have to be
compatible with the motors. For example, when someone selects a motor with a shaft
diameter of 1 mm and a maximum speed of 60 000 rpm1, the propeller also must have
a hole diameter of 1 mm and be able to operate at 60 000 rpm. When one searches the
internet for such small motors, such as ours, they will see that there are not many that
can be used based on the power requirements. When searching for usable propellers the
variety decreases even more, because suitable propellers with a diameter of about 45 mm
are pretty rare, because both kinds, clockwise and counter-clockwise, are needed. All in
all, the reason why we used the parts of the Crazyflie, was that similar components were
either not available, not fully suitable, or they were too expensive.

When one looks at the price of a series production, like the Crazyflie, they will see that
the price of our quadcopter seems to be much higher than the price of the Crazyflie
(180 $ compared to our 370e). But this comparison is not suitable, because they are
comparing the price of a series production to the price of a prototype. When comparing
the price for a reasonably large series production of both quadcopters, one will come
to the conclusion that ours is much cheaper with a total price of only about 135e (see
Chapter 5.2.1).

6.1 Open Issues
As already discussed, an open issue of the proposed design flow is that most of the work
in the preparatory stage was not done in a formal way, which makes this a matter of
future projects, see Section 7.2 for details.

Our requirements for the exemplary use case implementation to test the design flow were
to implement a small, low-cost quadcopter, which can be used in future projects as a
research platform for swarm applications. Additionally we had to implement a small
sample software to show that our quadcopter is indeed able to hold its position while
being airborne. For this the software had to hold the quadcopter as steady as possible in
the air, without rising or falling too much.

Of course there is still room for improvement such as better sensor fusion algorithms,
better smoothing of raw sensor values, calibration of sensors, but that would go beyond
the scope of this work. Especially the magnetometer has to be calibrated to eliminate

1This is not a misprint. Very small motors, such as ours, typically have a very high revolution speed.
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the drifts from hard iron distortions and soft iron distortions. Hard iron distortions stem
from constant magnetic fields, which are added to the earth’s field. They are produced
by magnets in the vicinity of the sensor, in our case the motors are a small source of
this type of distortion. Soft iron distortions stem from materials, which are not magnetic
themselves such as iron and nickel, but nevertheless influence the earth’s magnetic field
in a non-constant manner. Hard iron distortions can easily be eliminated by determining
the magnitude of the distortion and calculating a respective offset. Soft iron distortions
require a more complex algorithm, because they are not constant with the orientation of
the sensor. More information can be found at [mag].

When one wants to use our quadcopter for future research in swarm applications, one
will have to solve the following problems first, which were not part of this work:

• Search for a way to reliably measure the position of the quadcopter

• Implement the desired application on a computer in a suitable environment, such
as Robot Operating System (ROS)[ros] or OpenCV [ope]

• Adapt our software to implement the Path Tracker part of the advanced flight
controller (see Figure 6.1)

• Optionally implement a calibration routine for the sensors

• Optionally implement some kind of notification when a charging process ends

While working on the software for our quadcopter we already devised a high level
decomposition of the software architecture, which is able to achieve this feat. Our
proposal can be seen in Figure 6.1.

The reactive layer is the only layer which has already been implemented by us and
consists of the controller, which stabilizes the quadcopter. This is done by using a
Proportional-Integral-Derivative (PID) controller and a set point of 0 to prevent the
quadcopter from tilting and therefore from leaving the position in the air. Only small
modifications have to be done to allow for arbitrary set points to let the quadcopter
change its attitude and therefore its position.

The State Estimation is the part of the software which calculates the actual position
of the quadcopter. This layer can be implemented as shown in the figure to only use the
sensors of the quadcopter, such as the gyroscope and the accelerometer, to estimate the
position. Of course, this estimation will not be usable for real applications as errors will
quickly add up to falsify the calculated position. This estimation using only the onboard
sensors can even be implemented on the quadcopter, because it does not need excessive
computational power. If one wants better estimations of the position they will have to
use external sensors, and offload this estimation to an external computer. In all cases
this component has to send the estimated position back to the quadcopter to let it follow
a set path.
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The Path Tracker component can be implemented on the microcontroller of the quad-
copter. It uses the set point from the Planner and the estimated position from the State
Estimation to calculate the set points of the attitude, which are then fed back to the
Reactive Layer to let the quadcopter change its course.

The Planner is the most complex part of the system because it enables the quadcopters
to fly in a swarm. The main task of this component is to monitor the position of each
flying quadcopter in a swarm and to calculate the next positions for all of them. This
component gets the current positions from the State Estimation and may use some
pre fixed path to let the swarm follow that path while also making sure that none of
the quadcopters crash into each other or into an external obstacle. The output of this
component is a position set point which is then sent to the Path Planner on board of the
quadcopters.

A flowchart of a first version of this advanced swarm software can be seen in Figures
6.2 and 6.3. This software uses the onboard sensors to estimate the position of the
quadcopter and sends that information to an external computer, which in turn returns
the new position set point.

The initialization routine is the same as for the current software and can be seen in Figure
5.13. Most of the program which belongs to the Reactive Layer will not be described
here as it is the same as in Section 5.1.5 and was already highlighted there.

The two most notable changes are the blocks highlighted in Figure 6.3. The first block
uses the internal sensors, such as the Inertial Measurement Unit (IMU), to estimate the
current position, which is then sent to the base station. This can be done by integrating
the values from the accelerometer twice to end up with a first estimation of the position.
A more advanced algorithm could also integrate the other sensor, such as the gyroscope,
magnetometer and barometer in this calculation to reduce the errors of this estimation.
Of course the errors will still be substantial, especially if this algorithm is performed for
a longer time, as the small errors will quickly add up.

The second new block uses the position set point from the external base station to
calculate the new set point of the attitude. This set point is then fed into the PID
controllers to calculate new Pulse-Width Modulation (PWM) values for the motors.
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State Estimation

Planner

Path Tracker

Reactive Layer

attitude, sensors

position position setpoint
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Figure 6.1: Proposed functional decomposition for the advanced flight controller
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Figure 6.2: Proposed flowchart for the advanced flight controller
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Figure 6.3: Proposed flowchart for the advanced flight controller (cont.)
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CHAPTER 7
Summary and Future Work

7.1 Summary
The focus of this work was to create a design process, which is fully parallel in the
departments. We therefore devised a flowchart of this new design flow (see Chapter
4), which was then tested with a practical application, namely the construction of a
palm-sized, low-cost quadcopter. Because the author of this thesis was only a single
person, a fully parallel workflow could not be applied, but the author nevertheless tried
to adopt the new design flow. This was done by only working on one department at a
time without using the results of prior departments.

The results of the use case implementation should then be a quadcopter and a small
software to test if it is indeed able to fly. This exemplary use case should show that the
design process is indeed suitable for creating Cyber-Physical Systems (CPSs) either from
scratch or from existing templates.

At the end the result was indeed a small low-cost quadcopter, which can hold its position
while being airborne.

The next items show the main features of our proposed design flow (see Chapter 3.1 for
desriptions of the items):

• Allows for integrated development in different departments

• Allows the design of CPSs

• Independent and parallel workflow of departments

• Model-based design

• Independent validation of departments
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Next are some of the main features of the designed quadcopter:

• Low-Cost design of only about 135e if it is produced in large quantities

• Small size with a diameter of only 108 mm

• Created using existing components from a similar quadcopter (motors, propellers,
battery), and newly designed parts (main board, motor mounts)

• Powerful 8-bit microcontroller running with up to 32 MHz

• 9-Degrees of Freedom (DOF) Inertial Measurement Unit (IMU) to measure the
attitude

• Barometer to measure the height while flying

• Onboard Radio Frequency (RF) module running the ZigBee protocol to be able to
exchange commands and messages with a computer

• Integrated charging controller and Micro-USB-port to be able to recharge the
Lithium Polymer (LiPo) battery

7.2 Future Work

The focus of this thesis was to define a model based design flow for the construction of
CPSs. As the focus did not lie in a complete formal description of the overall requirements
and the generic model, this is left as a future work, to be able to formally proof the
adherence to the requirements in the different departments. When such descriptions
are ready the next step will be the implementation of a formal method to compare the
models and test cases of the mechanical, electric, electronic and software departments
against the generic model to show that they do not contradict each other. One further
step in the software department would then be to formally proof that the created software
adheres to the formal requirements.

Some future work also has to be done on the quadcopter because it is not yet suitable
for swarm applications as it does not have the possibility to reliably measure its own
position. It is only able to stay at a given position because the controller is configured
with a set point of “0” for roll and pitch, which means that the quadcopter will not
tilt in a direction, which enables it to stay at the starting position. If one would move
the quadcopter to another position, it will only compensate for the change in roll and
pitch, but not for the change in position. The next steps will therefore have to be the
implementation of some kind of local positioning system to reliably measure the position
of a quadcopter in the room. One possibility would be to use external cameras and image
processing software, such as Robot Operating System (ROS) [ros] or OpenCV [ope], for
this part.
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When the problem of how to measure the position of the quadcopter has been solved,
the next part will be to adapt the current software to accept commands from an external
computer.
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APPENDIX A
Manuals

A.1 Construction Manual
Before you begin building the quadcopter check if you have all needed parts (for more
information on the parts, check the bill of materials):

• The assembled Printed Circuit Board
(PCB)

• One black and one red cable of size
AWG 28-24 (corresponds to 0.2 mm2

- 0.08 mm2)

• Two crimp terminals

• One housing for the crimp terminals

• Four 3D printed motor-mounts

• Four Motors

• Two Clockwise (CW) and two
Counter Clockwise (CCW) propellers

• A short cable tie Figure A.1: All components

Further you will need the following tools:

• A tube superglue

• A soldering iron
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• Optionally a hand crimp tool

Before we begin assembling the copter we define a the directions for easier references. As
shown in Figure A.2 the Radio Frequency (RF)-module is on the bottom of the board
and on the upper-left side. The side facing you now is the top side, with the left arm
defining the left side of the copter.

Figure A.2: Definition of directions

Start with the cable which connects the battery to
the PCB: First cut the two cables to a length of
about 20 mm and strip both ends. Using a hand
crimp tool you have to put the crimp terminals onto
one end of both cables. If you don’t have such a
tool you can also solder the crimp terminals onto
the cables, in which case you have to be careful
not to use too much tin-solder, otherwise the crimp
terminals will not fit into the housing. Put the two
crimp terminals into the housing such that the red
cable is in position 1. Details can be seen in Figure
A.3.

Figure A.3: Placement of the cables
in the housing
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The next step is to solder the cables onto the PCB.
Put the cables through the holes on top of the board,
such that you solder the cables on the bottom side.
Be careful to put the cables into the correct holes!
The red cable goes into the hole, which has two
thick copper traces on the top side, and the black
one goes into the hole, which connects directly to
the ground plane on both sides. I.e. the black cable
goes into the hole, which is closer to the RF-module.
See Figure A.4 for further help.

Figure A.4: Correct placement of
the cables on the PCB

After that check if the 3D-printed motor-mounts
have the correct sizes. First check if all motor-
mounts fit onto the four arms of the board. If one
does not fit you have to smoothen the inner walls
of the mount until it fits. Next check if the motors
fit into the round hole of the motor-mounts. Bear
in mind that the cables of the motors have to go
through the motor-mounts, i.e. the bottom halves
of the motors are enclosed in the motor-mounts.

The next step is to glue the motor-mounts onto
the PCB, but before that make sure to remove the
motors from the motor-mounts. Put some superglue
on one of the motor-mounts and press it on one arm
of the PCB for a few seconds. Make sure to glue it
to the correct side of the board: The open side of
the arm of the motor-mount has to face the bottom
side of the board. Figure A.5 shows the correct
placement of the motor-mounts. Repeat this step
until all four motor-mounts are properly attached.

Figure A.5: Placement of the motor-
mounts on the PCB
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For the next procedures make sure you do not touch
the bottom side of the motors, otherwise the super-
glue might not be working ideally. Put one motor
into a motor-mount, such that the cables go through
the mount. Pull out the motor a bit and put some
superglue on the bottom half of the metal case, and
be extra careful not to touch the glued side. Then
press the motor into the motor-mount for a few
seconds until it sits tight. Repeat this step for all
four motors and then let the superglue dry for a
few minutes before continuing the assembly. Figure
A.6 shows how the result should look like. Continue
with carefully twisting the cables of the motors a bit
(3-5 windings) and connect the connectors with their
respective counterpart on the board. Be careful not
to rip the cables out of the motors!

Figure A.6: Motors glued onto the
motor-mounts

Then we have to attach the propellers to the motors:
First take the CW propellers, i.e. the ones with the
letter ’A’ on them, and attach them to the two
motors on the left and on the right side. Be careful
not to put the propellers on the motors upside-down.
All propellers have a small ring at the center, which
indicates the top side, i.e. you should be able so
see those rings when the propellers are properly
mounted! Now take the CCW propellers, i.e. the
ones without any letter on them, and attach them
to the two remaining motors on the upper and lower
side. The correct location of the propellers can be
seen in Figure A.7. Figure A.7: Correct location of the

propellers

At last bend the power cables to the bottom of the quadcopter, where the battery should
be fixated using a short cable tie. For best performance you should pay attention to the
balance of the quadcopter, i.e. place the battery in such a way that the balance point lies
in the middle of the quadcopter.

A.2 Programming Manual

In this section we will show you how to program the quadcopter.

You will need the following tools:

• Atmel Studio (version 7.0 or greater) or any compiler which can compile to
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XMEGA targets.1

• JTAGICE3 or Atmel-ICE or any programmer which has a 10-pin 50-mil con-
nector and the ability to program over the Program and Debug Interface (PDI).

• A micro-USB cable

First open Atmel Studio, load the respective project and compile it. Then connect the
micro-USB cable and the programmer to the quadcopter as shown in Figure A.8. The
micro-USB cable has to be connected to a computer as it is responsible for powering
the board. Alternatively you can connect the battery to the board, but this setup will
only work for a few minutes as the battery will also discharge when you program the
microcontroller.

Figure A.8: Correct connections of the cables

In Atmel Studio you now have to open the Device Programming dialog and flash the
device. Alternatively you can also click on Start Debugging as this will also flash the
board. If you get an error you have to check if the correct programmer, microcontroller
(ATxmega32C4), interface (PDI) and the correct interface speed (≤1 MHz) are set!
When the device is flashed you can disconnect the programmer and the USB cable
and connect the battery to execute the program. You can also leave the programmer
connected and debug the device. Be careful not to turn on the motors in this case if the
propellers are already attached, as the cable may get entangled!

If you don’t need debug outputs, you can disable them in the project settings to save some
flash-space. To do this, open the file defines.h in Atmel Studio and comment out the line
#define DEBUG_OUTPUT. Also open the project settings and select Toolchain on

1You can download Atmel Studio at Atmel’s official homepage
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the left side. Navigate to AVR/GNU Linker and disable the checkbox “Use vprintf
library”. These settings will save at least 3 kB of space in flash-memory, depending on
the number of used debug-strings.

A.3 Wireless Communication
The copter has a ZigBee RF-module on-board, which can be used to control it or to
receive status messages from the quadcopter. For the PC you will need a module with a
USB-connector, such as the Digi XBee XBP24-AWI-001 and the appropriate USB-
dongle. Other ZigBee-modules may also work, but they must have at least the following
specifications:

• Operating frequency of 2.4 GHz

• Standard ZigBee-protocol (IEEE 802.15.4), no additions (such as ZigBee Mesh)

The following steps assume you have the Digi XBee module.
Download XCTU from Digi’s homepage [dig], install and open it. Plug in your XBee
module and click on Add a radio module. In the next window confirm that the correct
Serial/USB port is selected and set the correct interface settings. After clicking on Finish
you have to select the module on the left side of the main window. The software now
reads all configuration parameters from the device and displays them on the right side.

You have to correctly set the following parameters:

Parameter Setting
CH Channel2 C
ID PAN ID 2200
DH Destination Address High 0
DL Destination Address Low FFFF
MY 16-bit Source Address 2
MM MAC Mode 802.15.4 no ACKs
CE Coordinator Enable Coordinator

After setting these parameters you can either use XCTU’s integrated terminal or an
external application to connect to the corresponding port and exchange commands and
messages with the copter.

2Other modules may have a different naming style. In that case select the setting which corresponds
to ZigBee channel 12.
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The following commands are included in the standard version of the software:

Command Meaning
"p <value>" Set the p-value of the PID controller to <value>
"i <value>" Set the i-value of the PID controller to <value>
"d <value>" Set the d-value of the PID controller to <value>
"s" Save the PID values in the internal EEPROM
"r" Restore the PID values from the internal EEPROM

"g" Start the main program and the motors when it is not running
Stop the main program and the motors when it is running

A.4 Charging the Battery
The battery can be recharged directly by the quadcopter, without having to use a special
external Lithium Polymer (LiPo) charger.

To charge the battery the following procedure should be used:

1. Connect the battery to the quadcopter

2. Do not press the button to start the program!

3. Connect a micro-USB cable to the respective connector and connect the other end
to a suitable power supply, such as a phone’s charging adapter. The USB port of a
computer may also work, but the charging time will be substantially longer, as the
computer only provides 100 mA in this situation.

4. The charging controller on board the quadcopter automatically begins the charging
process. Now the button on the quadcopter may be pressed, but it has no function
as the software does not start when the battery is being charged.

5. After at most 3 hours the battery is fully charged. Now you can disconnect the
battery and the USB cable from the quadcopter.
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Figure B.1: 3D model of the quadcopter
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Figure B.2: Schematic of the quadcopter
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(a) Top side

(b) Bottom side

Figure B.3: Board of the quadcopter
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Glossary

cognitive complexity In short, cognitive complexity refers to the cognitive effort
needed to understand a model [Kop08]. In our thesis we use this term to describe
the complexity of different hardware features.. 9

DDR A parallel bus operating with Double Data Rate uses both, the rising and falling
edge of the clock signal to transfer data.. 9

FE-Analysis The finite element method can be used to numerically approximate a
solution for partial differential equations. This method breaks a large problem
down into smaller, simpler ones. These simple equations are then assembled into
the large system and numerical methods are then used to solve these equations
while minimizing the error. In mechanical systems this analysis can be used to
compute the maximum mechanical stress and its location, amongst other features,
for complex components.. 27, 36, 73

mechanical stress Mechanical stress, with the physical unit Pascal (Pa), is a quantity,
which describes the forces the particles in a material exert on each other. In this
thesis we use the term in the looser sense as a synonym for the internal force in
a mechanical component. The following short summary is enough background
knowledge for our thesis: Each mechanical component has a certain maximum
stress, which it can handle until it deforms. This maximum stress depends on many
factors, such as the material, physical forms and sizes, magnitude and direction
of the external force. When an external force is exerted on the component, this
creates a certain mechanical stress on it. Depending on the size of the stress the
component may bend reversibly. If the mechanical stress is greater than a certain
maximum mechanical stress the component deforms irreversibly and may even
break.. 36

PDI The Program and Debug Interface (PDI) is a proprietary interface for programming
and debugging of Atmel’s XMEGA microcontrollers. PDI is a 2-wire interface and
uses a 10-pin or a 6-pin physical interface.. 63
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PID A Proportional-Integral-Derivative (PID) controller is a type of controller to calcu-
late a set point from an error input. It uses a proportional part to calculate the
overall set point. The integral part reduces the error from long-term drifts, and the
derivative part dampens possible oscillations.. 42, 51

skew Skew describes the difference in arrival time of simultaneously transmitted bits in
parallel busses.. 9

76



Acronyms

API Application Programming Interface. 20

BLE Bluetooth Low Energy. 13

CCW Counter Clockwise. 59, 62

COTS Commercial Off-The-Shelf. 19

CPS Cyber-Physical System. xi, xiii, 2–4, 17, 23, 26, 49, 50, 55, 56

CW Clockwise. 59, 62

DDR Double Data Rate. 9

DOF Degrees of Freedom. 11, 45, 56

FE finite element. 25

FE-Analysis Finite Element-Analysis. 27, 36, 37, 73

GPS Global Positioning System. xi, xiii, 2, 13, 14, 19–21

HIL Hardware in the Loop. 28

I2C Inter-Integrated Circuit. 9

IMU Inertial Measurement Unit. 11, 12, 41–45, 52, 54, 56, 71

LED Light Emitting Diode. 9, 41, 71

Li-ion Lithium-Ion. 14

LiPo Lithium Polymer. 14, 45, 56, 65

MBD Model-Based Design. 6
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NiMH Nickel-Metal Hydride. 14

PCB Printed Circuit Board. 4, 8, 12–14, 29, 36, 45–47, 59–61, 71, 73, 74

PCI Peripheral Component Interconnect. 9

PDI Program and Debug Interface. 63

PID Proportional-Integral-Derivative. 42, 51, 52, 54

PWM Pulse-Width Modulation. 9, 15, 39, 42, 44, 52, 54

RC Remote Control. 20, 21

RF Radio Frequency. 12, 13, 41–45, 53, 54, 56, 60, 61, 64, 71, 74

ROS Robot Operating System. 51, 56

SIL Software in the Loop. 28

SLAM Simultaneous Localization And Mapping. 1

SPI Serial Peripheral Interface. 9

UAV Unmanned Aerial Vehicle. 1
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