
Protecting 4-Phase
Delay-Insensitive Communication

Against Transient Faults

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Florian Ferdinand Huemer BSc.
Matrikelnummer 0828465

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Andreas Steininger

Wien, 19. Jänner 2017
Florian Ferdinand Huemer Andreas Steininger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Protecting 4-Phase
Delay-Insensitive Communication

Against Transient Faults

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computer Engineering

by

Florian Ferdinand Huemer BSc.
Registration Number 0828465

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Andreas Steininger

Vienna, 19th January, 2017
Florian Ferdinand Huemer Andreas Steininger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Florian Ferdinand Huemer BSc.
Spengergasse 28/21, 1050 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit
– einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

Wien, 19. Jänner 2017
Florian Ferdinand Huemer

v

Acknowledgments

First of all, I want to thank my parents for their great support throughout my studies. I would
further like to thank my advisor for the opportunity to work on this very interesting topic. His
excellent guidance, the continuous discussions and meaningful remarks were essential in the
process of writing this thesis. Special thanks go to Jakob Lechner for his valuable suggestions
and feedback.

vii

Kurzfassung

Mit ihrer Robustheit gegen Signallaufzeitschwankungen bieten asynchrone delay-insensitive (DI)
Übertragungsstrecken vorteilhafte Eigenschaften im Vergleich zu synchronen Lösungen. Dabei
ist allerdings zu beachten, dass dafür spezielle DI Codes notwendig sind. Diese Codes sind aber in
der Regel sehr anfällig für transiente Fehler, die während einer Übertragung auftreten können, da
bei vielen dieser Codes bereits ein einzelner Fehler (im schlimmsten Fall) eine völlige Änderung
des Nachrichteninhaltes zur Folge haben kann. Wenn dem Empfänger einer solchen Nachricht
keine zusätzlichen Informationen zur Verfügung gestellt werden, hat dieser keine Möglichkeit,
diese Übertragungsfehler zu erkennen, was natürlich schwerwiegende Konsequenzen für ein
System an sich sowie dessen Umgebung haben kann.

In dieser Arbeit werden daher Möglichkeiten zur Absicherung von DI Kommunikation
untersucht. Darüber hinaus wird ein neuartiges, zweistufiges Kodierungsverfahren vorgestellt,
das auf der Kombination von fehlererkennenden und DI Codes basiert. Diese Lösung nützt
dabei die inhärente Fehlerwiderstandsfähigkeit von DI Codes aus und erreicht damit eine gute
Kodierungseffizienz bei gleichzeitig niedrigem Implementierungsaufwand. Um die Fehleran-
fälligkeit der Codes zu analysieren und um gültige Lösungen zu ermitteln, kommen Methoden
der Graphentheorie zum Einsatz. Im Vergleich zu existierenden Lösungen wird hier sehr genau
darauf geachtet, keine Annahmen über das Signallaufzeitverhalten zu treffen. Die vorgeschlagene
Lösung ist sehr generisch und kann prinzipiell mit jedem vierphasigen DI Code verwendet
werden.

Mittels einer repräsentativen Auswahl von m-aus-n Codes wird gezeigt, wie das Kodierungsver-
fahren angewendet wird und welche Kodierungseffizienz dabei zu erwarten ist. Zusätzlich wird
eine Metrik eingeführt, die es erlaubt geeignete Codes für gegebene Anforderungen an fehlertol-
erante Übertragungsstrecken zu identifizieren.

Weiters stellen wir eine Reihe von Sender- und Empfängerschaltungen vor, die verwendet
werden können, um das neue Kodierungsverfahren zu implementieren. Zwei detaillierte Im-
plementierungsbeispiele auf Gatterebene für Vertreter der m-aus-n Codeklasse demonstrieren
dabei die Machbarkeit des Lösungsansatzes und geben einen Einblick in die zu erwartenden
Implementierungskosten.

ix

Abstract

Compared to synchronous approaches, asynchronous delay-insensitive (DI) communication links
have very interesting and desirable properties with respect to their robustness against timing
variations and delay assumptions required to implement them. However, special DI codes have to
be used to encode the data being transmitted. These codes are usually prone to transient faults
occurring during an ongoing transmission, since, in the worst case, even a single transient fault is
sufficient to completely change the contents of a message. Unless further redundant information
is provided, the receiver has no means to detect such an erroneous transmission. This can, of
course, have severe consequences on a system and the environment depending on it.

In this thesis we therefore investigate existing approaches to secure DI communication against
transient faults and propose a novel two-step data encoding scheme that combines DI and error
detecting codes. Our solution exploits the inherent fault resilience of DI codes to achieve a low
overhead and hence good coding efficiency. We use methods from graph theory to analyze this
fault resilience and identify appropriate solutions. In contrast to existing approaches we carefully
avoid the introduction of timing assumptions to mask faults. The proposed coding scheme is
generic and can, in principle, be used with any 4-phase DI code. We give examples on how
to apply it to selected representatives of the important class of m-of-n codes and analyze the
resulting coding efficiency. Additionally, we provide a metric that allows to identify which codes
are well suited for fault-tolerant communication.

We, furthermore, provide a range of transmitter and receiver circuit variants that implement
the presented coding scheme. In particular, we give detailed gate-level implementation examples
for two m-of-n codes, that demonstrate the feasibility of our approach and give some insight into
the required implementation overhead.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

List of Figures xiv

List of Tables xv

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Structure of the Thesis . 2

2 Theory and Background 3
2.1 Coding Theory . 3
2.2 Asynchronous Circuits . 7
2.3 Fault Tolerance and Delay-Insensitive Codes 18

3 Related Work 27
3.1 Cheng & Ho . 27
3.2 Agyekum & Nowick . 28
3.3 Pontes, Calazans & Vivet . 29
3.4 Lechner et. al. 29

4 A New Fault-Tolerant Coding Scheme 31
4.1 Hardware Model and Fault Hypothesis . 31
4.2 Fault Model . 33
4.3 Encoding . 35
4.4 Decoding . 40
4.5 Decoding with Error Correction . 45

5 Link Architecture 49
5.1 Transmitter . 49

xiii

5.2 Receiver . 55
5.3 Metastability Concerns . 62

6 Results 65
6.1 Theoretical Results . 65
6.2 Implementation Examples . 66
6.3 Behavioral Simulation . 70

7 Conclusion and Future Work 77

Bibliography 79

List of Figures

2.1 Asynchronous handshaking protocols . 8
2.2 Asynchronous circuit model . 9
2.3 Muller C-Element . 10
2.4 Mutex . 11
2.5 Muller pipeline . 12
2.6 4-Phase bundled data pipeline . 13
2.7 4-Phase DI protocol . 13
2.8 Single bit dual rail pipeline (3 stages) . 14
2.9 2-Phase DI protocol . 16
2.10 LEDR/FSL state chart . 17
2.11 C gate specifications . 17
2.12 Dependability and security tree . 19
2.13 Transmission faults on a DI communication link 20
2.14 Example of overlapping code words . 21
2.15 Example SOGs (f = 1) . 24
2.16 Fault-tolerant coding scheme . 25

3.1 5-bit Zero-Sum encoding example . 28

4.1 Delay-insensitive link . 32
4.2 Fault-tolerant receiver model . 32
4.3 Encoding overview . 36
4.4 Example: 3 bit Zero-Sum code . 37
4.5 Example: 2-of-5 code . 39

xiv

4.6 Decoding overview . 41
4.7 Code word analysis example . 44

5.1 AND-masking transmitter . 50
5.2 AND-masking transmitter controller . 51
5.3 D flip-flop based transmitter . 52
5.4 D flip-flop based transmitter controller circuit . 52
5.5 Transmitter using D flip-flops with asynchronous reset 53
5.6 Simple controller circuit . 53
5.7 Advanced controller circuit . 54
5.8 Reset generator circuit variants . 55
5.9 Base receiver . 55
5.10 Base receiver controller . 56
5.11 Sampler circuit variants . 56
5.12 Sampler timing diagrams . 57
5.13 Protocol controller STGs . 58
5.14 Receiver with parallel completion detection and DI decoding 60
5.15 Dual-use completion detector receiver . 61
5.16 Controller STG . 62
5.17 Single stage synchronization . 62
5.18 Problematic metastability path . 63

6.1 2-of-5 circuits (f = 1) . 66
6.2 3-of-6 code partitioning and code word mapping 67
6.3 3-of-6 circuits (f = 1) . 68
6.4 Completion detector circuits (f = 1) . 68
6.5 3-of-6 circuits (no fault tolerance) . 69
6.6 Simulated DI Link . 71
6.7 Transmission fault generating a different valid code word 73
6.8 Transmission fault generating an unused code word 74
6.9 Transmission fault generating an invalid code word 75

List of Tables

2.1 Vertex degrees in m-of-n SOGs . 23
2.2 Maximal clique size in m-of-n SOGs . 23

xv

6.1 SOG partitionings for m-of-n codes (f = 1) . 66
6.2 SOG partitionings for m-of-n codes (f = 2) . 66
6.3 Implementation costs m-of-n codes (f = 1) . 69
6.4 Implementation costs for different bus widths . 70
6.5 Efficiency comparison to existing solution . 70

CHAPTER 1
Introduction

1.1 Motivation and Problem Statement

Modern semiconductor technology allows the integration of an ever increasing number of tran-
sistors into a single integrated circuit. However, with these huge advances in technology, the
traditional synchronous design approach to digital circuits faces new problems and challenges.
Over the last decades the feature (i.e. transistor) size shrank from around 10 µm in the 1970s to
today’s 22 nm [1]. While smaller transistors can operate at a much higher speed (resulting in a
lower gate delay), the metal wires connecting them, i.e. the interconnect, suffer from this minia-
turization trend. Thinner wires have a higher resistance which results in greater switching delays.
This especially affects long distance wires, like communication links connecting functional units
of a chip. In the beginning of integrated circuit design, due to relatively slow transistors, the
interconnect delay was negligible. However, the continuous miniaturization led to the situation
that it now exceeds the gate delay and became the dominant source of delay in integrated circuits.
While gate delays are known very early in the design process, the interconnect delay is difficult
to estimate and remains unknown until the actual layout process.

Another problem are process variations during production, as a consequence of which different
chips from the same product line have different delays. Delays are also affected by environmental
conditions such as temperature and supply voltage. To accommodate for such variations, delay
assumptions and safety margins have to be chosen pessimistically, which may unnecessarily slow
down the device (e.g. lower clock frequency).

The fundamental concept that makes synchronous design so practical to work with, is the
common time base, i.e. the clock, that is used to coordinate all operations in a circuit. Today
the distribution of the clock signal to all parts of a design accounts for a considerable part of the
overall power consumption of a chip [2].

One option to tackle these problems are asynchronous circuits utilizing delay-insensitive (DI)
codes [3, 4, 5]. As the name suggests these circuits don’t need a global clock source to drive their
operation. Additionally, DI codes offer an inherent robustness against delay variations. This is
because the receiver of a DI code word can detect the arrival of complete and valid data solely by

1

checking the received bit pattern for certain properties. Examples for such codes are m-of-n and
Berger codes [4]. On the other hand, the use of DI codes comes at the cost of a greater overhead
and increased design complexity. Thus, it makes sense to use DI codes to implement global chip
or inter-chip communication and use the synchronous or asynchronous bundled data [5] design
approach for the actual functional units of a design. In literature this concept is often referred to
as GALS (Globally Asynchronous Locally Synchronous) [5].

Another challenge for integrated circuit design are safety-critical applications, like trans-
portation systems (cars, planes, trains etc.), space flight or (nuclear) power plants. For those
applications dependable systems are needed because one failure in such a system can have
severe consequences on human lives or the environment. Many of these systems also have to
operate under harsh environmental conditions, like high radiation levels or ambient temperature
fluctuations. Integrated circuits can be affected by permanent and transient faults which can both
cause a malfunction of the chip. Permanent faults result in physical damage to the circuit and can
not be corrected (although they may be tolerated to some degree). Transient faults only affect the
circuit over a limited period of time. However, it is possible that they manifest themselves in a
storage element (soft-error), i.e. the state of the circuit, and cause unintended circuit behavior.
Dependable systems must be able to cope with faults to a defined extent and still be able to
guarantee safe operation. As discussed in [6], transient faults in today’s designs are mainly caused
by cosmic radiation. The trend to smaller transistors and lower supply voltages further increases
the sensitivity to radiation which makes fault-tolerant design also an issue for non-safety-critical
applications. While fault-tolerant coding has already been studied intensively, the combination of
fault-tolerant and DI coding has not yet been addressed sufficiently.

For these reasons, this work will investigate methods to build and improve fault-tolerant
delay-insensitive communication links, which are able to cope with transient faults.

1.2 Structure of the Thesis

First, Chapter 2 presents the theoretical foundation the following chapters build upon. Further-
more, a precise problem definition and a detailed analysis of current fault modeling techniques is
provided. Chapter 3 covers related work that also aims at securing DI communication against
faults. The main contributions of this thesis are provided in Chapters 4 and 5. While Chapter 4
introduces a novel fault-tolerant delay-insensitive coding scheme from a theoretical point of
view, Chapter 5 presents circuits that can be used to actually implement the proposed coding
scheme in hardware. Chapter 6 discusses the efficiency of our approach and shows two gate-level
implementation examples. Finally, Chapter 7 concludes the thesis and gives a short outlook on
what research directions can be explored further.

2

CHAPTER 2
Theory and Background

This chapter presents a summary of the theory and background information, required to understand
the concepts and circuits discussed in the following chapters.

2.1 Coding Theory

In this section we provide a brief introduction into the field of coding theory with a special focus
on linear block codes. There is a variety of good references on this subject. We have based
this section on the books by Blahut [7] and Roth [8]. Coding theory plays an important role in
modern digital communication and storage systems. Digital communication channels, i.e. the
physical media that are used to transport information (metal wires, air), are always affected by
some form of disturbances (noise, interference, crosstalk, etc.). Likewise, digital storage systems
suffer from similar problems (e.g. scratches on an optical disk, change in charge in a flash cell).
If data would be transmitted or stored without any encoding, errors would directly change the
contents of a message, which can have severe consequences on the overall system. Proper codes
allow the receiver to detect and even correct erroneous messages. However, these properties
also come at a price. A code always adds a certain amount of redundancy to information, which
obviously increases the amount of data that needs to be transmitted. The component that takes
the (unencoded) input data, i.e. the information or data word, and applies the desired code to
create a code word is referred to as encoder. A decoder is then used to restore the original data
word and apply error detection or correction.

A block code always takes a block of data (i.e. the data word) and converts it to a code
word. Every data word is assigned exactly one code word. This means that the encoder does not
have an internal state. The encoding of a data word is independent of the history of previously
encoded information. This is in contrast to convolutional codes, where the encoding and decoding
processes are dependent on the internal state of the encoder and decoder, respectively. The field
of convolutional codes gives rise to a more general coding model. However, since this work only
uses (linear) block codes, we won’t go into further detail on this subject. Linear block codes are

3

widely used and some well known codes such as Parity, Hamming, Reed-Muller, Reed-Solomon,
etc. fall into this category. In the following Section 2.1.1 provides a basic introduction to coding
theory in general while Section 2.1.2 explains the special properties of linear codes, relevant to
this work.

2.1.1 Introduction

A code C is always defined over some alphabet F of size q. Since our discussion is focused on
linear block codes, we restrict the alphabet to be a Galois or finite field, denoted by GF(q) or
Fq

1. This implies that the size of the alphabet is always a prime power. The simplest finite field
is F2 = {0,1}, which contains exactly two elements and gives rise to the well known class of
binary codes. We will refer to the elements of F as the symbols of the code. The code C is a
(nonempty) subset of the vector space Fn, and its elements are referred to as code words. The
size of C is denoted by M, whereas n is referred to as code or block length. In the following we
will discuss some fundamental definitions important to coding theory.

Definition 1 (Hamming distance). The Hamming distance d between two code words x =
(x1, ..,xn) and y = (y1, ...,yn) of some code C is the number of positions where xi 6= yi, i.e. the
number of positions where x and y differ.

The Hamming distance is a metric for how much two code words differ. It is always greater
or equal to zero, symmetric (d(x,y) = d(y,x)) and satisfies the triangle inequality (d(x,y) ≤
(d(x,z)+d(z,y)).

Definition 2 (Hamming weight). The Hamming weight of a code word x = (x1, ...,xn) ∈C is the
number of positions where x is not zero.

In this context zero means, equal to the zero element of the algebraic structure which makes
up the alphabet F of the code. Note that the Hamming distance and weight are related by
Equation 2.1.

d(x,y) = w(y− x) (2.1)

Consider, for example, the code words x = (0,1,2) and y = (2,1,1) of some code C ⊂ F3
3

over F3 = {0,1,2}. Their respective Hamming weights are given by w(x) = 2 and w(y) = 3,
while for their Hamming distance we have d(x,y) = 2. By calculating the Hamming weight of
y− x = (2,0,2), the same value for the Hamming distance of x and y is obtained.

Definition 3 (Minimum distance). The minimum distance of a code C (M > 1) is defined as the
smallest Hamming distance between any two code word pairs of C.

dmin(C) = minx,y∈C,x 6=yd(x,y)

1Henceforth, we will only use the latter notation

4

The minimum distance determines a code’s error detecting and correcting capabilities. Let
f denote the number of errors affecting a code word x of some code C. A single error causes
the symbol in one position of x to change into some other (arbitrary) symbol of F . For example,
let C ⊂ F3

5 be a code over F5 = {0,1,2,3,4}, then the transformation (0,1,2)→ (4,1,2) would
constitute a single error (f = 1), while for (0,1,2)→ (4,1,3) a double error (f = 2) would be
required. For every code C there exists a decoder that is able to correct up to b(dmin− 1)/2c
(symbol) errors. If the decoder is only concerned with detecting errors rather than correcting
them, this is possible for up to dmin−1 errors. Intuitively this is easy to understand because we
know that there exist (at least) two code words x and y in C with d(x,y) = dmin. Hence, dmin
symbol flips are necessary to transform x to y. If x is affected by less than dmin errors, no (valid)
code word of C is reached and the error must be visible to the decoder. Detailed proofs for these
propositions can be found in [8].

2.1.2 Linear Block Codes

In the following we will focus our discussion on linear block codes. A block code C over a finite
field Fq is linear if C is a linear subspace of the vector space Fn

q. Since C is a subspace of Fn
q,

there exists a set of vectors g1, ...,gk ∈C, called the basis of C. Every code word in C can be
written as a linear combination of these base vectors. Formally we can thus write

x ∈C⇔ x =
k

∑
i=0

ai ∗gi, where a0, ...,ak ∈ Fq . (2.2)

The parameter k is called the dimension of C. Since every code word is generated by a unique
linear combination of the base vectors (unique values for the scalars a0, ...,ak), the code’s size M
is given by qk. The parameters k and n are used to calculate the code rate R. This ratio basically
measures the amount of actual information contained in a code word with respect to overall length
of the code. Hence, it must always be a value smaller than or equal to one.

R =
k
n

(2.3)

The value n− k is also referred to as the redundancy of the code.
The base vectors of C can be combined into the so called generator matrix G (Equation 2.4),

which comprises k rows and n columns.

G =

 g1
...

gk

 (2.4)

Using this matrix the encoding function f : Fk
q 7→ Fn

q can simply be defined by a matrix multi-
plication. As shown in Equation 2.5 the k-element row vector, representing the unencoded data
word, is multiplied by G to generate the corresponding n-element code word (row vector).

f (x) = x∗G (2.5)

5

A code is completely specified by its generator matrix. If the generator matrix exhibits the form
G = (Ik|A), where Ik denotes the k× k identity matrix then it is called systematic. Code words of
systematic codes contain their corresponding (unencoded) data words as their first k elements,
which can simplify the decoding process. This means that every element in such a code word is
either a data or a check symbol, hence these codes are also called separable. Note that the check
symbols are generated solely by the k× (n− k) matrix A. If a linear code is not systematic it is
always possible to transform it into an equivalent systematic code, i.e. a (different) code with the
same properties.

Another very important matrix, that like the generator matrix, also completely defines a linear
code is the parity-check matrix H. As shown in Equation 2.6 multiplying H with a transposed
code word cT yields the all zero vector iff c is a code word of C.

c ∈C⇔ H ∗ cT = 0 (2.6)

This matrix can hence be used to perform error detection. A decoder can simply multiply the
received code word with the parity-check matrix and check whether the result is zero. For
systematic codes, the (n− k)×n parity-check matrix can immediately be calculated from the
generator matrix G.

H = (−AT |In−k), if G = (Ik|A) (2.7)

A commonly used notation for linear block codes over Fq with length n, dimension k and minimal
distance d is [n,k,d]q. To illustrate the presented concepts, consider the the following examples.
Equation 2.8 shows two examples for generator matrices for the [5,4,2]2 parity and [7,4,3]2
Hamming code.

GP =

1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

 GH =

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 (2.8)

Both codes are systematic and encode 4 bits of information. The Hamming code offers a minimal
distance of three, allowing the correction of one error or the detection of up to two errors. The
parity code, on the other hand, is only able to detect single bit errors (correction is not possible).
Note that the parity code’s generator matrix GP basically works for arbitrary field sizes. The 0 and
1 entries in the matrix simply have to be regarded as the zero and one-element of the particular
field. Equation 2.9 shows the corresponding check matrices.

HP =
(

1 1 1 1 1
)

HH =

 1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

 (2.9)

In the next section another code class will be introduced, the so called unordered codes. These
codes have a special property that makes them applicable to asynchronous circuit design.

6

2.2 Asynchronous Circuits

Storage elements such as flip-flops or latches play a vital role in digital design. Without them it
would not be possible to implement any state holding circuits such as state machines or pipelines.
The fundamental problem that needs to be solved when constructing digital circuits is how to
organize the transfer of data between those elements. To illustrate this problem, consider two
storage elements (source and sink) connected back-to-back (i.e. the output of the first one is
connected to the input of the second one). Now, for a data transfer to take place, there must be
means to answer the following two questions.

• When is the source allowed to apply new data to its output?

• When is the sink allowed to consume the data at its input?

In [9] these two questions are referred to as issue and capture condition. Moreover, it is shown
how different design styles approach and solve this problem.

The widely used synchronous design style uses a (global) clock signal that triggers both the
issue and capture operation. This means that at the active clock edge every (enabled) storage
elements consumes the data at its input (stores it internally) and applies the new data to its output.
Because of this common time base, the synchronous design style offers a good abstraction and
makes it relatively easy to design circuits. However, this abstraction is based on the assumption
that the clock signal reaches all flip-flops of a design simultaneously. The low clock skew required
to maintain this assumption is increasingly hard to maintain in modern semiconductor technology.
This has led to the situation that the clock distribution network (i.e. the clock tree) of a chip
now consumes a high portion (sometimes more than 25%) of the total power [10]. The maximal
allowed clock frequency of a synchronous circuit is determined by the static timing analysis. A
process that basically localizes the longest path (in terms of delay) between any two registers in a
design, which is also referred to as the critical path. Obviously this value poses an upper bound
for the maximal clock frequency a circuit can be operated with, because there must be enough
time between two clock edges for all signals in a design to reach their destinations. However, to
accommodate for PVT variations it is necessary to apply some safety margin to the delay of the
critical path. If this value is chosen too pessimistic the circuit suffers a (maybe unnecessarily high)
performance penalty. A margin that is too small may, on the other hand, have a negative impact
on the yield of the chip. Note that another implication of the critical path is that a processing
pipeline can only operate with the speed of the slowest stage.

Asynchronous circuits and design styles use local handshaking signals instead of a global
trigger like the clock to coordinate the data transfer between storage elements. Here neighboring
stages communicate locally to inform each other when the next data item is available and when
the previous data item has been consumed. Because of this locality of control, asynchronous
circuits don’t suffer from many of the the problems inherent to the synchronous design style. This
makes asynchronous design styles a worthwhile alternative in many application areas. Without
the (global) clock net they are, for example, an interesting and promising approach for low power
devices. The more flexible timing models allow for the design of very robust circuits with respect
to PVT variations. It also makes sense to combine asynchronous and synchronous methodologies

7

in a single design to leverage the advantages of both worlds, which leads to the concept of GALS
(Globally Asynchronous Locally Synchronous) circuits.

The remainder of this section is mainly based on [5], which provides an excellent introduction
to the field of asynchronous circuits.

2.2.1 Handshaking Protocols

All asynchronous circuits use some form of handshaking protocol to transfer data between storage
elements. Depending one which component (source or sink) initiates the transfer push and pull
channels can be distinguished. In a push channel, such as the one shown in Figure 2.1a, the
source uses the request (req) signal to notify the sink that new data is available. After the sink
has consumed the data it uses the acknowledgment (ack) signal to in turn notify the source that it
is ready for new data. In a pull channel the sink requests new data from the source, hence the
signal directions are reversed. However, since this work only uses push channels, we won’t go
into further details on this topic.

Generally the handshaking protocols, i.e. the actual sequence of transitions on the req and ack
signals as well as their meaning can be classified as 2-phase or 4-phase. Figure 2.1b illustrates the
difference between these two possibilities. In 4-phase protocols only two of the altogether four
transitions involved in one handshaking cycle (hence the name 4-phase), carry actual meaning.
The other two are only used to reset the handshaking signals to their initial values. The rising
edge of the req signal is usually used as indicator for when the data is valid. Hence, when the req
signal reaches the sink the data must already be stable at the sink’s input.

The 2-phase protocol, on the other hand, does not incorporate an additional reset phase for the
handshaking signals, which can lead to a performance advantage. Here every pair of transitions
constitutes a complete handshaking cycle.

Source Sink

req

ack
data

(a) Asynchronous (push) channel

Event 0

Event 0

Event 1

Reset

Event 2

Event 1

Event 3

Reset

2 Phase:

4 Phase:

req
ack

(b) Handshaking timing diagram

Figure 2.1: Asynchronous handshaking protocols

As we will see in Section 2.2.4.2 it is not always the case that the request mechanism is
implemented by an explicit request signal. The request can also be implicitly encoded in the
transmitted data and the receiver has to use a completion detector to decide whether the applied
data can be consumed or if further transitions have to be awaited.

2.2.2 Delay Models

Asynchronous circuits can be classified on the basis of the delay assumptions imposed on them.
The class of delay-insensitive (DI) circuits uses the weakest timing assumptions. The only

8

restriction on gate and wire delays is that they have to be positive and finite. For the example
circuit, shown in Figure 2.2, this means that all gate delays ∆A to ∆C and wire delays ∆1 to ∆3
may be chosen completely arbitrary and the circuit would still work correctly. However, as shown
by Martin [11], the class of circuits which can be constructed with this timing model is very small.
This is because the only gates that can be used in DI circuits are inverters and C gates.

To overcome these limitations, isochronic forks [12] are introduced, leading to the class of
quasi-delay-insensitive (QDI) circuits. With this extension to the DI timing model, arbitrary
circuits can be constructed. While there are effectively no restrictions on the delays in DI circuits,
QDI circuits require that (some selected) wire forks are isochronic, i.e. both signal paths after the
fork must have the same delay. For the circuit in Figure 2.2 this means that ∆2 = ∆3. A detailed
discussion of isochronic forks is given in [11].

∆A ∆1

∆2

∆3

∆B

∆C

Figure 2.2: Asynchronous circuit model

For the class of speed-independent (SI) circuits, we again have arbitrary gate delays, however
the wire delays are assumed to be zero (∆1 = ∆2 = ∆3 = 0). Obviously, this timing model is the
least realistic one, since interconnect delays play an important (and sometimes even dominating)
role in modern chip technology. However, if the forks are regarded as isochronic, it is possible to
combine the wire delays with the delay of the gate driving the wire (e.g. add ∆1 and ∆2 to ∆A),
which again yields a QDI circuit.

Finally we also want to mention the term self-timed (ST) circuits. The other models presented
so far are precise (mathematical) concepts and apply to the gate-level of asynchronous circuits.
ST circuits is a more general term and refers to circuits that need higher-level timing constraints
or assumptions to work as intended. Such an assumption can for example state that the result
of a certain (sub-) circuit must be available before another signal reaches its destination. These
constraints are often enforced by the use of delay elements.

2.2.3 Asynchronous Circuit Primitives

Before it is possible to discuss the implementation level aspects of asynchronous circuits, some
basic circuit primitives must be introduced.

2.2.3.1 Muller C-Element

A very basic gate found in nearly every asynchronous circuit is the Muller C-Element (henceforth
simply referred to as C gate). Figure 2.3a shows the symbols that are commonly used for this

9

gate. In simple terms its operation can be described as an AND gate with hysteresis. As shown in
the truth table in Figure 2.3b, in order to set the output of a C gate to one, both inputs must be set
to one (similarly to an AND gate). However, to reset the output back to zero again, both inputs
must be set to zero as well. If only one input changes its logical value the output of the gate does
not change (“keep” entries in the truth table). Figure 2.3c further illustrates this behavior with a
simple timing diagram. To implement this functionality the C gate obviously needs an internal
storage to keep track of its current state.

CA
B Y

C
A

B
Y

(a) Circuit symbols

A B Y
0 0 0
0 1 keep
1 0 keep
1 1 1

(b) Truth table

A
B
Y

(c) Timing diagram

Figure 2.3: Muller C-Element

There are basically three popular ways to implement the C gate in CMOS logic. Since a
detailed discussion on the implementation details would go beyond the scope of this work, we
refer to [13], which presents the different CMOS circuits and compares their advantages and
disadvantages.

2.2.3.2 Mutex

The other important component, we briefly want to present here, is the Mutex. As shown in
Figure 2.4a it has two inputs (R1 and R2) and two outputs (G1 and G2). A rising edge (i.e. request)
on one of the inputs is acknowledged (i.e. granted) by a rising edge on the associated output.
The output is kept asserted until the input goes low again. The purpose of this component is to
provide mutual exclusion for input requests. Thus at any given time at most one of its outputs can
be asserted. This behavior is illustrated in the timing diagram in Figure 2.4b. In the left part of
the figure there is a clear difference in the arrival times of the input requests. Hence R1 will be
granted first and R2 has to wait until the first request is withdrawn. The right part shows what
happens when both requests arrive virtually simultaneous. Similarly to the case in synchronous
circuits when the clock and data edge arrive too close to each other at the inputs of a flip-flop,
also the Mutex can go into a metastable state, where it is unable to decide which input request
should be granted first. Like with flip-flops the result of this metastability can be a late transition
on the output. However, unlike flip-flops, the outputs of a Mutex will not go into an undefined
voltage range but rather both stay low until the metastability has been resolved. Note that this
time period (marked ∆D in the timing diagram) can be arbitrary long.

10

Mutex
R1

R2

G1

G2

(a) Circuit symbol

∆D

R1

R2

G1

G2

(b) Timing diagram

Figure 2.4: Mutex

2.2.4 Pipeline Implementations

There are various ways to use the protocols discussed in Section 2.2.1 to implement pipelined
circuits. However, before we can discuss the implementation details of the different pipeline
styles, we first need to introduce a very basic asynchronous circuit.

Figure 2.5a shows the Muller pipeline, as presented in [14]. Basically, the purpose of this
circuit is to store and transport handshakes from its input (reqin, ackout) to its output port (reqout ,
ackin). To understand how it works consider the timing diagram in Figure 2.5b. For this diagram
it is assumed that initially all C gates are set to zero and that the C gate and the inverter have a
combined delay of one time unit. The circuit operates according to a very simple rule. Every C
gate (i.e. stage) changes its output Qi if Qi−1 and Qi+1 differ in value. Hence a C gate forwards
a one from the preceding stage if the succeeding stage is zero (and vice versa for zeros). This
behavior is highlighted for Q3 by (blue) arrows in the timing diagram. As the pipeline is initially
empty the first rising transition on reqin can immediately ripple through the whole circuit until
it appears at the output reqout . The input handshakes, as produced by the environment of the
circuit, are marked with arrows. The following transitions on reqin fill up the pipeline. A full
Muller pipeline can be identified by alternating logical states in each C gate. Notice that the full
pipeline does not provide an acknowledgment for the last rising input transition at reqin. The
input transitions can be viewed as waves traveling through the circuit. In the second half of the
diagram the environment toggles the ackout input to “read out” the stored transitions.

The Muller pipeline by itself is not a very useful circuit. However, it is nevertheless very
important as it is an often reoccurring structure in asynchronous designs and forms the (basic)
control circuit for many pipelines. In the next section, we will see how the Muller pipeline is
basically everything that is needed to control the data flow though an asynchronous (bundled
data) pipeline.

Finally it is important to stress that this circuit is in principle completely agnostic to the
handshaking protocol. As can be seen in the timing diagram it is only a matter of interpretation if
the input transitions form a 2-phase or 4-phase handshake. Moreover, notice that since the Muller
pipeline is only built from C gates and inverters it is one of the few really DI circuits.

11

C

C
C

CQ1

Q2

Q3

Q4

reqin

ackout

reqout

ackin

(a) Muller pipeline circuit

full pipeline → no immidiate ack

empty pipeline empty pipeline

reqin

ackout/Q1

Q2

Q3

reqout/Q4

ackin

(b) Example timing diagram

Figure 2.5: Muller pipeline

2.2.4.1 Bundled Data Pipelines

Figure 2.6 shows an example for an asynchronous 4-phase bundled data (BD) pipeline. Notice
the control structure that generates the enable signals for the data latches. Except for the delay
elements, it resembles the Muller pipeline from Figure 2.5. The purpose of the delay elements
is to ensure that the request signals reach the next stage only after the associated data is stable
and valid at the input of the latches. Since the data usually passes some combinational logic the
delay element has to be tuned to the critical path of this circuit. This is why these circuits are also
referred to as matched delay pipelines. Notice that in contrast to synchronous circuits a slow path
between two storage elements only affects the delay (i.e. performance) of the associated stage and
does not necessarily have an impact on the overall circuit. It is even possible to make the delay
element data dependent (i.e. multiplex between different delays) to optimize the performance for
different use cases.

Recall that a full Muller pipeline stores alternating values in its C gates. This means that if
the presented pipeline becomes full, only every second latch contains data (the other latches are
transparent). Note, however, that there is a similar situation with the master and slave latch of a
flip-flop in synchronous pipelines.

There are a lot of different pipeline styles that can be found in literature. The original
way to utilize the Muller pipeline as proposed by Sutherland in [14] was to use the 2-phase
protocol in combination with special capture/pass registers. Another interesting approach is
the MOUSETRAP pipeline proposed by Singh et. al [15], which uses XOR gates instead of C
gates to implement the latch controllers. Another approach, aimed at increasing the degree of

12

C

en

latch

∆comb

combinational
logic

C

en

latch

∆comb

combinational
logic

C

en

latch

reqin

ackout ackout

reqin

datain dataout

Latch
Controller

Figure 2.6: 4-Phase bundled data pipeline

decoupling between stages in 4-phase pipelines was proposed by Furber et. al. [16]. This paper
uses Signal Transition Graphs (see Section 2.2.5) to model and implement more sophisticated
latch controllers (compared to the single C gate in Figure 2.6), that ultimately also allow for a
pipeline to fill up all its stages.

A data item that travels through a pipeline is often referred to as data token. An empty
place in a pipeline is called a bubble. Data tokens travel in forward direction through a pipeline
and replace bubbles, which hence move backwards. This means that a functional asynchronous
pipeline always needs at least one bubble for data tokens to move to. A pipeline ring without
bubbles is deadlocked.

2.2.4.2 4-Phase Delay-Insensitive Codes

In contrast to the bundled data circuits discussed in the previous section 4-phase (or return-to-zero)
DI circuits don’t use an explicit request signal. The request is rather implicitly encoded in the
transmitted data and it is the responsibility of the receiver to decide when this data is complete
(i.e. valid) and can thus be consumed. This process is referred to as completion detection and is
only possible if the code that is used to encode the transmitted data has certain properties. Two
successive code words (data phase) are always separated by a spacer (zero or null phase), which
does not carry any information and is usually encoded by logical zeros on all bus wires. Figure 2.7
shows a timing diagram of the 4-phase protocol. Note that the arrival times of the transitions on

data

ack

Spacer Data (DI code word) Spacer (00...00) Data

Figure 2.7: 4-Phase DI protocol

the individual bus wires, also referred to as rails, at the receiver are unknown and don’t matter
for the correct operation of the protocol. The fact that it is not necessary to impose any timing
assumption (except for some isochronic forks) on QDI circuits makes them very robust against

13

(PVT) variations. The completion detector (CD) at the receiver is attached to all data rails and
has exactly one output, which will be referred to as the done signal throughout this thesis. As
soon as the bit pattern on the data rails forms a complete (i.e. valid) code word the done output is
asserted. The signal is then kept asserted until the CD detects the spacer word.

The simplest DI code is the dual rail (DR) encoding, which is widely used for asynchronous
circuit design. As the name suggests the DR code uses two rails to encode one bit of information.
In the data phase of the 4-phase protocol exactly one of the two rails makes a transition to one.
The CD for a DR bit can thus be implemented by a simple OR gate. The individual wires of a
DR bit are also referred to as the true and false rail. Figure 2.8 shows a three stage one bit DR
pipeline. Notice that this pipeline can also be viewed as two interlocked Muller pipelines.

Because of its simplicity and the systematic encoding it is also possible to perform logical
operations on DR encoded data, although with a lot more overhead than with combinational logic
in synchronous or BD designs. The simplest, but also most expensive (in terms of area overhead)
is the Delay Insensitive Minterm Synthesis (DIMS) [17]. DIMS uses an array of C gates to
exclusively map every possible (valid) input data word to a dedicated signal (one-hot code). In a
second stage OR gates map this code to the desired output signals. The actual logical function
depends only on these OR gates. Note that, despite the name, circuits obtained by applying this
design style are only QDI. The forks in the input rails which are used to connect the inputs to
the C gate stage must be isochronic. Further note that the DIMS design style is not restricted to
function blocks operating on DR coded data and can in principle be applied to every 4-phase DI
code. In particular it can also be used to construct CDs for arbitrary DI codes.

A more efficient design style was proposed by Theseus Logic [18], with the disadvantage
of requiring special threshold gates. Another very efficient approach was proposed in [19],
which has the big advantage of requiring only standard gates. Note that we don’t use the term
combinational logic for these types of functions blocks because the 4-phase protocol requires this
logic to contain storage elements (i.e. C gates), to keep track of the current protocol phase.

C

C

C

C

C

C

ackout

din.t

din.f

dout.t

dout.f

ackin

Completion
Detector

Stage 1 Stage 2 Stage 3

Figure 2.8: Single bit dual rail pipeline (3 stages)

Clearly the DR encoding is not the only DI code. The DR code is basically one representative
of the class of constant-weight (m-of-n) codes, which are all DI. Other examples are Berger and

14

Zero-Sum codes, which will be presented in more detail in Section 3.2.
In the following we will discuss the mathematical properties that make a code DI. Verhoeff [4]

shows that a DI code has to be unordered.

Definition 4 (Unordered Bit Vectors). Let x = (x0, ...,xn−1) and y = (y0, ...,yn−1) be two bit
vectors of length n. Further let Sx = {i|xi = 1} and Sy = {i|yi = 1} be two sets that only contain
the bit positions where the associated vector is one. The bit vectors x and y are unordered iff
Sx * Sy and Sy * Sx. If Sx ⊂ Sy we say that y covers or contains x, denoted by x≤ y.

The sets Sx and Sy in Definition 4 are referred to as the support of x and y [20]. Note that the
term unordered bit vectors comes from the relation of these two sets. If there can be established
an order between the support Sx and Sy (i.e. one is a subset of the other) then the associated bit
vectors cannot be unordered.

Definition 5 (Unordered Code). A code C is unordered iff every pair of code words x ∈C and
y ∈C (x 6= y) is unordered (i.e. x� y and y� x).

From this definition the following theorem immediately follows.

Theorem 1. The minimal Hamming distance (dmin) between any two code words in an unordered
code is two.

Proof. Assume that there exist two code words c1 and c2 in some unordered code C with a
Hamming distance of one. Hence in order to transform c1 into c2 one must either change a one in
c1 to a zero or a zero into a one. For the first case this would mean that c1 is contained in c2 and
vice versa for the latter case. However, now we arrive at a contradiction because if code words
are contained in one another C cannot be unordered.

A very important property of DI codes is that the result of their (bit wise) inversion as well
as concatenation is again DI. The size of a concatenated code, i.e. the number of representable
symbols, is obtained by multiplying the sizes of the individual codes. Completion detection is
then performed separately on the individual (sub-)codes and the results are joined by a C gate.

There are many properties to analyze when assessing the quality of a DI code. If function
blocks should operate on the encoded data (e.g. in a 4-phase QDI processor) then the DR code is
generally the only viable option. Other DI codes are, with some exceptions [21], not well suited
for this task but are rather only used to transmit information in a DI fashion. This is because more
sophisticated codes often have some desirable properties with regard to data transmission. When
transmitting data a high coding efficiency and a low (dynamic) power consumption are of interest.
As already discussed in Section 2.1 the coding efficiency R relates the number of bits encoded
by a certain code word to the total number of rails required to transmit it. To minimize dynamic
power during a transmission the number of transitions in the data phase should be kept as low
as possible. This code property is captured by the power metric P which specifies the number
of transitions required to transmit one bit of data. For the DR code R = 0.5 bits/rail and P = 2
transitions/bit. Note, however, that there is a certain trade-off between these two parameters
P and R. The 1-of-16 code has, for example, a rather low coding efficiency (R = 0.25), while
requiring only two transitions to transmit four bits of information (P = 0.5). The 3-of-6 code, on

15

the other hand, has a far better coding efficiency (R = 0.66) but requires six transitions for the
same amount of information (P = 1.5).

Other very important properties of DI codes are the overhead for completion detection as
well as for encoding and decoding to and from e.g. the binary representation of the data. There
are several publications proposing and discussing efficient CD designs [22, 23, 3, 24].

2.2.4.3 2-Phase Delay-Insensitive Codes

For the sake of completeness we also want to briefly mention 2-phase DI codes. As shown in
Figure 2.9, these protocols don’t use a spacer to separate the data phases, which can obviously
lead to a performance gain. However, there are of course also some drawbacks associated with
these protocols. Generally, the required CDs as well as the encoder and decoder circuits are more
complex and have a higher overhead than for 4-phase codes.

data

ack

Data Data (DI code word) Data (DI code word) Data

Figure 2.9: 2-Phase DI protocol

Basically, 2-phase protocols can be classified as transitional or level encoded. Using tran-
sitional encoding only signal transitions (rising and falling) transmit information. They actual
state of the rails does not carry any information. Hence, here the notion of code words is a little
different when compared to 4-phase codes, were a code word basically referred to a certain state
of the data rails. Notice that a 4-phase code word can also be defined by the subset of rails that
need be one. With this definition in mind, a 2-phase transitional code word can be defined as the
subset of rails that need to make a transition. Hence, every DI code (in the sense of Definition 5)
can be used for a 2-phase transitional protocol. Because of this similarly it also possible to adapt
4-phase CDs for transitional encodings [24].

Level encoded protocols like Level Encoded Dual Rail (LEDR) and Level Encoded Transition
Signaling (LETS) [25] use a different approach to separate two successive data phases. Here the
set of code words is divided into two groups, where each of these groups is assigned a phase.
The protocol then alternates between code words of these two phases. This means that there are
always two code words that convey the same logical information.

LEDR or FSL (Four State Logic) use two rails (data and parity) to encode one bit of in-
formation. The data rail carries the binary representation of the transmitted information, while
the parity is used to indicate the current phase. Figure 2.10 shows a state chart of the encoding
scheme. Note that only one rail (data or parity) toggles its logical value per phase. The states on
the left encode logical zeros and while the states on the right encode logical ones. Note that the
CD for a single LEDR bit can be implemented by an XOR gate.

Further details on 2-phase coding schemes can be found in [25]. Furthermore, [26] provides
a brief comparison of different 2-phase and 4-phase coding schemes.

16

(0,0) (1,1)

(0,1) (1,0)

Phase 1 (even parity)

Phase 2 (odd parity)

Figure 2.10: LEDR/FSL state chart

2.2.5 Control Circuit Synthesis

Control circuits play an important role in asynchronous circuits design. This section will briefly
discuss a process that can be used to automatically create these circuits from a more abstract
specification.

Consider the example of a Muller C gate. The timing diagram of Figure 2.3c, describing the
behavior of the C gate, can also be formalized in a Petri net (PN), which is shown in Figure 2.11a.
Basically a PN is a directed graph that can be used to model concurrent systems. It consists of
places (gray circles) and transitions (black bars). The PN is “executed” as tokes flow through
it. Tokens (black circles) are stored in places. A transition can fire if there are tokens on all its
inputs. If that is the case the tokens are removed from the inputs and placed at the outputs of the
transition.

Y+

A+ B+

A- B-

Y-

(a) Petri Net

Y+

A+ B+

A- B-

Y-

(b) Signal Transition Graph

Figure 2.11: C gate specifications

An STG is a special PN, where some restrictions apply. Here the transitions model real signal
transitions and the edges of the graph basically indicate the causal and temporal order of these
events. For a PN to be a meaningful STG it must be free from deadlocks, never have more than
one token in a place and the signal transitions must strictly alternate between rising (+) and falling
(-) transitions. Moreover, it must be guaranteed that once a transition is enabled it must fire, i.e. it
may not be disabled again by another signal transition. All these restrictions as well as “input
free choice” (not presented here) are discussed in more detail in [5].

17

For STGs, such as the one in Figure 2.11b, the places are not explicitly drawn. Every edge
can be considered to contain a place. The initial state is indicated by the tokens on the appropriate
edges.

Note that the STG (as well as the PN) also has to model a (well-behaved) environment of the
circuit. In the example at hand the environment simply sets both inputs when the output of the C
gate is zero and resets them when the output is one. By convention we draw transitions that must
be fulfilled by then environment with dashed lines.

The advantage of STGs over PNs is that they can automatically be converted into (speed-
independent) circuits. For this task tools like Petrify [27] or Workcraft [28] can be used. Workcraft
is particularly interesting since it provides a graphical front-end to Petrify and also offers STG
and circuit editors.

2.3 Fault Tolerance and Delay-Insensitive Codes

This section first introduces important concepts and terminology regarding the field of fault
tolerance and dependable computing. After establishing this basis we then take a closer look at
how faults affect delay-insensitive communication systems and how to deal with them.

2.3.1 Introduction and Terminology

Avizienis et. al. define dependability in the following way [29]. Dependability of a system is the
ability to avoid service failures that are more frequent and more severe than is acceptable.

Figure 2.12 shows an overview of the different aspects of dependability as well as security.
These concepts can be characterized with respect to the attributes a system (or service) must
provide, threats to these attributes and means to uphold (correct) operation and avoid failures
despite the presence of these threats. Note that although security and dependability are related
concepts their main priorities lie on different aspects (i.e. attributes). This fact is indicated by the
letters D and S in Figure 2.12. Detailed definitions for these attributes can be found in [29].

The terms fault, error and failure have a certain, well-defined relation to each other. A failure
is the transition of a system that delivers a correct (i.e. intended) service to a state where this
service is no longer provided or provided in an incorrect way. Failures are caused by errors. An
error refers to an unintended system state, e.g. an erroneous value in the register file of a processor.
If the processor uses this value in a subsequent instruction the system may exhibit a failure (e.g. a
deadlock). Errors are in turn caused by faults. Faults can be classified as internal or external to
a system. However, for an external fault to cause an error there must already be an associated
internal vulnerability (i.e. fault) present in the system. Furthermore, we can distinguish between
transient and permanent faults. Permanent faults are caused by physical damage to a system (e.g.
a stuck-at fault in a digital circuit) and cannot be recovered without physical repair. Transient
faults have, as the name suggests, only temporary effects on a system and thus also disappear
without active intervention. An error is the manifestation of a fault in a system’s state. This event
is referred to as fault activation. Note that a failure of a subsystem can cause a fault on higher
system level.

18

Reliability [D]
Availability [D,S]
Safety [D]
Confidentiality [S]
Integrity [D,S]
Maintainability [D]

Fault
Error
Failure

Fault Prevention
Fault Tolerance
Fault Removal
Fault Forecasting

Threats

Means

Attributes

Dependability &
Security

Figure 2.12: Dependability and security tree [29]

Transient faults in integrated circuits, which are the main focus of this thesis, are mainly
caused by external sources. These include for example radiation effects, electromagnetic in-
terference, electrostatic discharge, supply voltage drops and temperature changes. Due to the
aggressive technology scaling in recent years, semiconductors became especially sensitive to
radiation-induced faults [6]. Radiation, i.e. ionized particles hitting a circuit, can cause an
unintended (short) voltage pulse on the affected node of the circuit. This pulse is referred to as
Single Event Transient (SET). The situation where a SET directly hits a storage element and
(directly) changes its state or causes an erroneous value at some other node of a circuit that is then
captured by a storage element is referred to as Single Event Upset (SEU) or soft error. However,
note that, due to temporal, logical or electrical masking not every SET may necessarily result in a
soft error.

Figure 2.12 also lists the means that can be applied to mitigate faults or the effects thereof. In
this thesis the concept of fault tolerance is used. However, this does not mean that arbitrary faults
can be tolerated. The fault hypothesis exactly defines which types of faults a system can cope
with and how many are to be expected within certain amount of time. Detailed discussion of the
other concepts can again be found in [29].

2.3.2 Transient Faults and Delay-Insensitive Communication

As already discussed in Section 2.2.4.2, there are no assumptions on signal delays in (4-phase) DI
communication schemes. Transitions of the individual rails of a DI bus may arrive at the receiver
in any order and a CD is used to decide whether the input bit pattern is a valid (i.e. complete)
code word or if further transitions have to be awaited.

19

The fact that a single transition, if considered as the last one, completes a transmission, makes
DI codes specially prone to (single) faults. To illustrate this problem, consider the example
transmission of a 3-of-6 code word shown in Figure 2.13.

A B C
x0

x1

x2

x3

x4

x5

ack

E

Figure 2.13: Transmission faults on a DI communication link

First two valid transitions happen on the rails x0 and x1. Hence, only one transition is missing
to complete a 3-of-6 code word. At A a transient fault strikes, which causes rail x5 to go high
and completes the code word. Without further information the receiver is not able to identify
this error and may erroneously and prematurely assert the ack signal (dashed line). After the last
valid transition happens on rail x2 (B) the code word becomes invalid and the receiver would
(theoretically) be able detect that something went wrong. At C the transient fault vanishes and the
correct code word emerges at the receiver’s input. Hence, in our proposed approach (presented in
Chapter 4) the receiver will be provided with just enough redundant information to detect that
a transmission was affected by transient faults and to delay the ack signal to the point in time
where all faults have vanished.

Another challenge that arises with DI codes is how the encoded data is affected by faults.
Assume that the fault-free code word 111000 is mapped to the data word 0000 and the erroneous
code word 110001 is mapped to 1111, then a single transient fault caused a quadruple bit error in
the encoded data. This example demonstrates that the mapping of code words to data words is
critical and that special care must be taken, when constructing fault-tolerant DI communication
systems.

To characterize and reason about the fault resilience of DI codes the next section presents a
graph theoretical approach to model their, rather unique, fault behavior.

2.3.3 Safe Overlap Graph

In [30] Lechner et. al. present a comprehensive analysis on how transient faults can affect the
transmission of 4-phase DI code words. In the following we discuss these concepts in extended
detail, because they are essential to the proposed coding scheme.

The Safe Overlap Graph (SOG) offers a compact way to characterize the fault resilience of
a DI code. However, before the SOG can be defined formally, the notion of overlapping code
words must be introduced (Definition 6).

20

Definition 6 (Overlapping Code Words). Two code words x = (xn−1,xn−2, . . . ,x0) and y =
(yn−1,yn−2, . . . ,y0) overlap iff there exists a bit position i, where xi = 1 and yi = 1. This re-
lation is reflexive, symmetric but not transitive. We denote the number of overlapping bit positions
as c(x,y). The number of bit positions of x that do not overlap with y can then be calculated by
subtracting c(x,y) from the Hamming weight of x. We write: u(x,y) = w(x)−c(x,y). Analogously,
u(y,x) = w(y)− c(x,y) denotes the number of bit positions of y that do not overlap with x.

Note that since u(x,y) counts the bit positions where x is one and y is zero and u(y,x) counts
the bit positions where y is one and x is zero adding these two values yields the Hamming distance
of the two code words (d(x,y) = u(x,y)+u(y,x)).

Given two code words x and y the function u(x,y) returns the minimum number of faults
necessary to transform an incomplete bit pattern of y into (the complete pattern of) x. To visualize
this property consider the example shown in Figure 2.14. The code words x and y belong to a
four bit Berger code. The bit positions (i.e. rails) are labeled with r0, ...,r6. The Hamming weight

r6 r5 r4 r3 r2 r1 r0

x 0 0 0 1 0 1 1

y 0 1 1 1 0 0 1

Figure 2.14: Example of overlapping code words

of x is three and it does not overlap with y in exactly one position (r1). Hence, calculating u(x,y)
yields 3−2 = 1. This means that a single transient fault (affecting r1) is enough to transform the
intermediate pattern 0001001 of y into x.

The above example also demonstrates the asymmetric nature of the function u (u(x,y) = 1
while u(y,x) = 2). While it only takes a single fault to confuse y with x, at least two faults (at the
positions r4 and r5) are required to transform (an intermediate pattern of) x into y. In general we
can state that a code word y cannot be confused with code word x iff u(x,y)> f , where f is the
number of faults in the fault assumption.

By calculating the function u for every code word pair in a particular DI code C the SOG can
be constructed.

Definition 7 (Safe Overlap Graph). Let C be an unordered code and f be the number of transient
faults that can affect the transmission of a code word of C, then the undirected graph G = (V ,E)
is the Safe Overlap Graph of C (under the fault assumption f), where

V =C, E = {(x,y)|x,y ∈C,u(x,y)> f ∧u(y,x)> f}.

Two code words are connected in the SOG if it is not possible that they can be confused with
one another under the fault assumption of up to f faults. Some examples for SOGs can be found
in Figure 2.15.

In the course of the work done for this thesis, we identified further properties of the SOG. For
the sake of clarity and completeness we also included these findings into this section.

21

Theorem 2. The minimal Hamming distance between two code words which are connected in
the SOG is 2 f +2.

Proof. We know that for two nodes represented by the code words x and y to be connected in the
SOG u(x,y)> f ∧u(y,x)> f must hold. This can be rewritten as u(x,y)≥ f +1∧u(y,x)≥ f +1.
By inserting these inequalities into d(x,y) = u(x,y)+u(y,x), we arrive at d(x,y)≥ (f +1)+(f +
1)→ d(x,y)≥ 2 f +2.

Note that the converse is not true in general. However, for the class of m-of-n codes the
implications are valid for both directions. Since the code words of an m-of-n code have constant
Hamming weight u is symmetric for this code class. In this case u(x,y) is simply given by
d(x,y)/2. Hence, the definition of the edge set of the SOG can be rewritten as E = {(x,y)|x,y ∈
C,d(x,y) > 2 f}. Because of the symmetry of the Hamming distance the resulting graphs are
regular (see Theorem 3).

Theorem 3. A SOG constructed from an m-of-n code is k-regular (the vertex degree is constant),
where k is given by

k(m,n, f) =
m− f−1

∑
j=0

(
m
j

)(
n−m
m− j

)
.

Proof. Let c be an arbitrary code word of an m-of-n code. We know that there are exactly m
positions in c which are one. To calculate the number of code words which do not overlap with c
in more than f positions (i.e. safe code words) we can now use the following iterative process.
First consider the set A j of code words which overlap with c in j = m− f −1 positions. Note
that j is the minimum distance to c a code word must have in order to be considered safe by the
definition of the SOG (see Theorem 2). Hence, j is also the maximum number of overlapping bit
positions a safe code word is allowed to have with c. The number of code words in A j is given
by
(m

j

)
multiplied by

(n−m
m− j

)
. The first term calculates the number of combinations how j ones

can be arranged in the m bit positions where c is one. These j ones constitute the overlapping bit
positions. The second term calculates the number of combinations how the remaining m− j ones,
which are needed to form a valid m-of-n code word, can be arranged in the n−m bit positions
where c is zero (non-overlapping bit positions). This process can be repeated for all A j−x, where
x > 0 and j− x≥ 0, until all cases for the number of overlapping bit positions have been covered.
The overall number of safe code words with respect to c is then obtained by summing up the sizes
of the sets A0, ...,A j. Since we did not make assumptions about c, this holds for every code word
and therefore every node of the SOG.

Tables 2.1a and 2.1b show the vertex degrees of SOGs constructed from m-of-n codes for all
n≤ 12 and fault assumptions f = 1 and f = 2, respectively. Note that the first row (m = 1) in
Table 2.1a and the first two rows (m ≤ 2) in Table 2.1b are zero, i.e. the corresponding SOGs
don’t have edges. This is the case, because in a 1-of-n code a single fault can change the spacer
(all zero pattern) to every possible valid code word. The same is true for 2-of-n codes under the
fault assumption f = 2. Hence, all code words can be confused with one another and no safe
code words pairs exist.

22

m

6 0 0 15 65 185 431 887
5 0 0 10 40 105 226 431 756
4 0 0 6 22 53 105 185 301 462
3 0 0 3 10 22 40 65 98 140 192
2 0 1 3 6 10 15 21 28 36 45
1 0 0 0 0 0 0 0 0 0 0

3 4 5 6 7 8 9 10 11 12
n

(a) f = 1

m

6 0 0 0 20 95 281 662
5 0 0 0 10 45 126 281 546
4 0 0 0 4 17 45 95 175 294
3 0 0 0 1 4 10 20 35 56 84
2 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0

3 4 5 6 7 8 9 10 11 12
n

(b) f = 2

Table 2.1: Vertex degrees in m-of-n SOGs

m

6 1 4 12 30
5 1 3 8 18 36
4 1 3 7 14 18 30
3 1 2 4 7 8 12 13
2 2 2 3 3 4 4 5
1 1 1 1 1 1 1 1

4 5 6 7 8 9 10
n

(a) f = 1

m

6 1 1 1 5
5 1 1 2 3 6
4 1 1 2 2 3 5
3 1 1 2 2 2 3 3
2 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

4 5 6 7 8 9 10
n

(b) f = 2

Table 2.2: Maximal clique size in m-of-n SOGs

Another point worth noting is that, although some SOGs have the same vertex degrees,
this does not imply that there exists a (subgraph) isomorphism (e.g. 2-of-7, 3-of-6) between
them. The following subsections present two applications of the SOG proposed in [30], to create
fault-tolerant DI coding schemes. Note that both methods aim to mitigate the effects of transient
faults only. Furthermore, it is assumed that the DI communication channel does not contain
storage elements (i.e. pipeline stages).

2.3.3.1 Fault-Tolerant Subcodes

For the first approach the SOG is used to find a fault-tolerant subcode to the original DI code.
This process generally results in a code with fewer symbols.

The problem of generating the subcode can be reduced to the well-known graph theoretical
problem of finding the largest clique in a graph. A clique is a fully connected subgraph and
represents a (safe) group of code words that cannot be confused with each other in the presence
of f faults. Hence a DI link that only uses code words of such a clique is able to tolerate up to
f transient faults. This obviously implies that the CD used in the receiver must not react to the
unused code words (i.e. code words that are not element of the safe group).

Tables 2.2a and 2.2b show the maximal clique sizes for m-of-n codes of different sizes for the
case of f = 1 and f = 2, respectively.

Figure 2.15a shows the SOG of the 3-bit Zero-Sum code (see Section 3.2) with fault as-
sumption f = 1. Note that, since this code is systematic, the data part of each code word has

23

been highlighted. The largest clique in this SOG comprises four nodes. This means, however,
that this Zero-Sum code is (without reduction of the code size) not able to tolerate one arbitrary
transient fault. Consider for example the code words c1 = 1100011 and c2 = 1110000, which
are not connected in the SOG. When c1 is being transmitted, a single fault striking on the fifth
position, i.e. rail, is able to transform the intermediate pattern 1100000 into the valid code word
c2. Without additional information the receiver would not be able to detect this incidence and
might erroneously process the wrong code word.

Notice, that a DI code that is by itself fault tolerant can be easily identified by the means of its
SOG. Figure 2.15b shows the SOG of a Dual Rail Parity Code (see Section 3.1). Since this code
is systematic as well, we again highlighted the data part and the associated parity bit of each code
word. It can be seen that the SOG resembles a complete graph with 8 nodes. Hence, trivially the
largest clique also has 8 nodes and we can conclude that this code is tolerant against one fault.

0001110

0011011

0101001

0110110

1001000

1010101

1100011

1110000

(a) 3 bit Zero-Sum code

00001111

00111100

01011010

01101001

10010110

10100101

11000011

11110000

(b) 3 bit Dual Rail Parity Code

Figure 2.15: Example SOGs (f = 1)

The maximal clique problem is NP-complete, which makes it intractable for large SOGs and
their associated codes. Note, however, that in the case of m-of-n codes, it is not necessary to use
the whole graph, when searching for a maximal clique. It is sufficient to pick one code word
c ∈C as “fixed” member of the maximal clique and remove all nodes from the SOG that are not
direct neighbors to c. The maximal clique that can be found in this sub graph is also a maximal
clique of the SOG. This simplification follows from the symmetric nature of SOGs of the m-of-n
code class.

Theorem 4. For every code word c ∈C in an m-of-n code there exists a maximal clique that
contains c.

Proof. Let K denote a maximal clique in the SOG of C and c some code word of K. Since every
code word in C has the same Hamming weight, it is possible to transform c into any other code
word c′ by applying a certain permutation to the individual bit positions. By applying the same
transformation to the other code words in K, a new maximal clique K′ containing c′ is constructed.
Note that by permuting the bit positions the overlapping property (Definition 6) is preserved.

24

Theorem 4 allows the reduction of the size of the input graph for the maximal clique problem
from

(n
m

)
to k(n,m, f)+1 nodes, where k is defined in Theorem 3.

2.3.3.2 Combining Error Detecting and Delay-Insensitive Coding

The other application utilizing the SOG is the combination of error detecting and DI coding.
Here the data is secured by an error detecting code before the actual DI code is applied. The
SOG is used to find an optimal mapping of data words to code words of a particular DI code that
minimizes the required strength of the error detecting code that provides the fault tolerance. As
shown in Section 2.3.2 the mapping of data words to code words is crucial, because a single fault
in the code word can, in theory, lead to arbitrarily many bit errors in the decoded data word.

Figure 2.16 shows an overview of the proposed coding scheme. In the first step a (binary)
error detecting code is used to calculate the check bits. Then the resulting bit vector (data and
check bits) is partitioned into equally sized blocks and encoded with the desired DI code.

input data

data bits check bits

b0 b1 bn−1bn−2

di(b0) di(b1) di(bn−1)di(bn−2)

Encode data with error detecting code

Partition into blocks

Encode blocks with m-of-n code

Figure 2.16: Fault-tolerant coding scheme [30]

The question that must be answered now is how strong the error detecting code must be
chosen, such that all bit errors that can be produced in the encoded data by transient faults
affecting the DI code word can be detected. The code’s strength is of course measured in terms
of number of detectable bit errors. As mentioned before this number depends on the chosen
mapping of data words to DI code words.

To find this mapping an iterative process is applied. In the core of this process again lies
a graph theoretical problem namely the task of finding a subgraph isomorphism between two
graphs.

First, a candidate error detecting code is selected, starting with a simple parity code. Then the
error detection capability of this code is modeled in the graph ED. The vertices of this graph are
the data words encoded by the selected DI code. Edges are added between two data words d1 and
d2, if the error detecting code would not be able to detect if an error changed the contents of a DI
block from d1 to d2 or vice versa. Hence, the ED graph basically models the shortcoming of the
selected code. In the second step the SOG of the DI code is generated. To find a suitable mapping
of code words to data words, we must now try to establish a subgraph isomorphism between the
SOG and the ED graph. If such an isomorphism exists, then every problematic data word pair

25

can be mapped to a code word pair that cannot be confused under the fault assumption. In the
case that no subgraph isomorphism exists, the error detecting code was chosen too weak and the
process must be repeated with a stronger code (higher error detection capability).

Note that the coding scheme proposed in Chapter 4 is inspired by these techniques and uses
similar concepts.

26

CHAPTER 3
Related Work

DI codes and communication architectures have been widely studied in literature [3, 31, 25, 5].
This section covers those techniques and approaches that are conceptionally related to ours in
that they aim to increase the fault resilience of such communication schemes.

3.1 Cheng & Ho

The first paper that investigates the effects of transient as well as permanent faults on 4-phase
DI communication channels was presented by Cheng & Ho [32]. In their work they define three
error models and propose possible solutions to deal with a certain number f of faults. While the
two asymmetric models only assume unidirectional (i.e. either 0→ 1 or 1→ 0) faults, the general
model allows both fault types to occur. For the asymmetric 1→ 0 model not all transitions always
arrive at the receiver. To solve this problem the authors propose to use an m-of-n code and a CD
that prematurely triggers when only m− f transitions have arrived. Hence the used code must
provide an error-correcting capability of 2 f bits. To provide the required fault tolerance in the
case of the asymmetric 0→ 1 model a normal CD can be used. However, the code must still be
able to correct 2 f faults, since in DI coding one fault can lead to two bit errors in the code word.
For the reset phase a timeout mechanism is used. If the spacer does not emerge on the DI bus
after a certain amount of time, the acknowledgment signal is deasserted anyway. This behavior is
required to be able to deal with permanent (stuck-at-one) faults. The paper further shows that
for the general fault model, the used DI (m-of-n) code must be able to correct 3 f faults. Again a
prematurely triggering CD must be used.

Finally the so called Dual Rail Parity Code (DRPC) is proposed, which can be employed
when either one of the asymmetric error models with the fault assumption of f = 1 is assumed.
The encoding process for this code works by taking the binary input data and appending a parity
bit. The resulting vector is then dual-rail encoded.

27

3.2 Agyekum & Nowick

In [33] and [34] Agyekum & Nowick propose Zero-Sum codes, a new class of unordered codes
that are conceptionally related to Berger codes[35] and can be viewed as a generalization thereof.
Berger codes are systematic unordered codes. Hence their code words can be separated into a
data part d (containing the unencoded binary representation of the data) and a synchronization
(or check) part s = sync(d), which makes the code unordered. The Berger code uses the binary
representation of the number of zeros in the data part as synchronization bits.

Zero-Sum codes additionally associate a weight to every (bit) position in the data part. The
synchronization part is then calculated by summing up the weights of the bit positions, which are
zero in the data part (hence the name). Figure 3.1 shows an example of the encoding process for
a 5-bit Zero-Sum code.

9 7 6 5 3 16 8 4 2 1
0 0 1 0 0 1 1 0 0 0

+

data bits check bits

weights:

code word:

Figure 3.1: 5-bit Zero-Sum encoding example

The data part sum of this code word is 24, yielding 11000 for the synchronization bits. The
required number of digits for the synchronization part is given by binary logarithm of the sum
over all weights rounded up to the next integer. In this example the maximal possible sum value
is 3+5+6+7+9 = 30, thus five check bits are required.

It is easy to show that every possible weight assignment for the data part guarantees that
the resulting code is DI. However, the class of Zero-Sum codes explicitly demands ascending
non power-of-two values. Using this weight assignment a code with minimal Hamming distance
of dmin = 3 is generated, which allows for the correction of one or the detection of up to two
errors. Moreover, [34] also introduces the class of Zero-Sum+ and Zero-Sum∗ codes. Using an
additional parity bit the Zero-Sum+ code offers three bit error detection as well as detection for
all odd numbers of errors. The Zero-Sum∗ code employs a slightly different weight assignment
and can thereby support multi-bit error correction.

However, as shown by Lechner et. al. [30] none of the proposed Zero-Sum codes offers
sufficient error-detecting capabilities, when used in a purely DI communication scheme. Since
it can be shown that there are always some unconnected nodes (i.e. code words) in the SOGs
generated from these codes, there is always a possibility that some code words may be confused
with each other. Such a confusion can not be detected solely based on the check information
provided by the different Zero-Sum codes.

28

3.3 Pontes, Calazans & Vivet

Pontes et. al. propose two different approaches to add fault tolerance to DI codes. In [36], the
Temporal Redundancy Delay Insensitive Code (TRDIC) is introduced. This coding scheme can
only be applied to DI data that is already encoded with a 1-of-n code. The data (i.e. the 1-of-n
code words) that should be transmitted is combined with the data sent in the previous transmission
cycle and transformed into a 2-of-(n+1) code. This transformation is achieved by a bit-wise
OR operation between the two successive (1-of-n) code words di and di−1. If both code words
are equal, i.e. the same data is transmitted in two successive transmission cycles, the last bit of
TRDIC code word is set to one (see Equation 3.1).

cT RDIC = (di
0∨di+1

0 , ...,di
n−1∨di+1

n−1,di = di−1) (3.1)

Obviously this construction always leads to a 2-of-(n+1) code word. The paper argues that a DI
channel using the proposed code is less prone to faults because single faults can no longer produce
new data tokens, as would be the case using a 1-of-n code. Furthermore, since the receiver has
knowledge about the previous transmitted (1-of-n) code word (di−1) it is able to predict one bit
position in cT RDIC that must be one. If the received data does not have the expected shape, a
transmission fault occurred.

The other approach presented in [37] can be applied to arbitrary m-of-n codes. The data to be
transmitted is first divided into equally sized blocks. Each of these blocks is then individually
encoded with an m-of-n code. In a second step n parity bits are calculated, one for each bit
position in the m-of-n code words. These parity bits are in turn divided into blocks, encoded with
the same m-of-n code and transmitted alongside the actual data blocks. Based on the provided
redundant information the receiver is able to detect and correct a single fault. As we will see in
Chapter 4, this approach has some similarities to the coding scheme proposed in this thesis. Both
schemes use a combination of DI and error detecting codes. However, here the error detecting
code is applied to the DI data whereas the new approach calculates the check information before
DI encoding is performed.

3.4 Lechner et. al.

Besides the theoretical results on DI codes from [30] (already discussed in Section 2.3.3) Lechner
et. al also propose a generic fault-tolerant DI communication link architecture [38, 39]. This
architecture is basically applicable to arbitrary DI codes. However, an implementation example
is only given for the dual rail (1-of-2) encoding. In this approach the data is first extended by a
parity bit and then encoded by the dual rail code, similarly to the DRPC introduced in [32]. The
receiver captures the transmitted data word in an input register and uses the redundant information
of the dual rail encoding and the parity bit to either perform forward error correction or issue a
re-capture of the DI code word, if correction is not possible. Interestingly, [38] is the only work
that also considers the possibility of metastability. We will use the idea of re-capturing erroneous
data for the solutions provided in this thesis. In particular the proposed circuits will serve as a
basis for the implementation of our link architecture discussed in Chapter 5.

29

CHAPTER 4
A New Fault-Tolerant Coding Scheme

As the main contribution of this thesis, this chapter covers the new fault-tolerant delay-insensitive
coding scheme. Parts of this work have already been published in [40]. The proposed coding
scheme is based on a combination of error detecting and delay-insensitive coding. While similar
approaches have already been proposed (see Section 2.3.3.2), the solution at hand generally offers
a better coding efficiency while retaining a relatively small implementation overhead.

This chapter is structured in the following way. First Section 4.1 defines the requirements
and assumptions we impose on the hardware implementing the proposed coding scheme and
formulates the fault hypothesis. Section 4.2 presents an extension to the SOG fault model, which
also includes invalid code words. The actual encoding and decoding processes are discussed in
Sections 4.3 and 4.4, respectively. Finally, Section 4.5 briefly shows how the proposed coding
scheme can also be used to perform forward error correction.

4.1 Hardware Model and Fault Hypothesis

Figure 4.1 shows an outline of the type of DI link the coding scheme proposed in this chapter can
be applied to. The sender and receiver both have bundled data interfaces to receive data from
preceding components and to transmit it to succeeding ones. For these interfaces the 4-phase
protocol is used.

As indicated in Figure 4.1 this work is focused on mitigating the effects of transient faults
affecting the data rails of the DI bus. We do not address faults interfering with the internal
components of the transmitter or receiver circuits. This issue could, for example, be handled by a
TMR solution [41].

Another problem, that may arise, are faults that erroneously trigger the acknowledgment
signal ack. Such faults can of course have severe consequences on the handshaking protocol.
By wrongly notifying the transmitter that the current protocol phase has completed, data may
be corrupted or the whole link can get dead locked. However, the protection of a single control
signal is a rather simple task and could for example be solved by triplicating the acknowledgment
signal for transmission and rejoining the replicas at the receiver by a C gate.

31

(bundled) data

req

ack

Sender

ack

req

(bundled) data

Receiver
ack

data rails
E transient fault

Unreliable
Interconnect

Figure 4.1: Delay-insensitive link

Similar to the approach described in [39] and [30] there may not be any storage elements, i.e.
pipeline stages, along the DI bus. With this constraint it is possible to safely assume that transient
faults will eventually vanish after a certain amount of time and cannot manifest themselves in
storage elements (along the link). This is a very fundamental requirement, because a large part of
the concepts and techniques discussed in this work do not work otherwise. Figure 4.2 shows a
general model of the receiver circuit.

Input
Register

Controller

Completion
Detector

Error
Detection

DI input data

ack

Figure 4.2: Fault-tolerant receiver model

The DI input data is captured into the input register when the CD notifies the controller that it
is complete. Next the receiver performs error detection on this snapshot of the input data. If it
detects that data has been corrupted (i.e. a transient fault occurred), the controller will recapture
the input data and the whole process starts over. This way the receiver can simply wait for all
transient faults to disappear until it finally acknowledges the reception of the data by asserting the
ack signal.

Although the proposed approach is focused on error detection and resampling of data, we
will nevertheless also briefly investigate how the presented scheme can be extended and modified
in order to allow for forward error correction.

Throughout the chapter f will denote the number of (single bit) faults possible under the fault

32

assumption. Note that a sufficiently large amount of faults happening simultaneously could even
produce new data tokens. However, to rule out this possibility, we assume that the total number
of transitions in the transmitted data is greater than f .

4.2 Fault Model

As we have seen in the discussion in Section 2.3.2, it is easily possible that a fault changes one
valid code word of a DI code into another. It has further been shown how the SOG can be used to
capture this behavior and identify code words that can be confused with each other and others that
don’t. However, the example transmission of Figure 2.13 also demonstrated that the point in time,
when the receiver actually captures the state of the DI bus into its input register is crucial. Due to
a delay between completion detection and the actual latching event, the code word that triggered
the CD is not necessarily the one that is finally latched. This holds for late valid transitions as
well as late faults that may supersede a previous different trigger. Hence, the first contribution
of this chapter is a fault model describing which invalid code words are to be expected at the
receiver’s input and which valid code words may have been the original, i.e. fault free, versions
of them. This model is complementary to the SOG and provides vital information to prove that
the proposed coding scheme operates correctly under all circumstances (covered by the fault
hypothesis). In our model we consider both 0→ 1 as well as 1→ 0 faults.

For the following sections let C ⊂ F2k′ be a DI code. Note that the representation of code
words as elements of a finite field with a size of a power of two is equivalent to a bit vector
representation. The elements of F2k′ can also be represented as polynomials of degree less than k′

and coefficients from F2 (i.e. {0,1}). These coefficients exactly resemble the bit vector.
A code word is regarded as element of C if the CD at the receiver is triggered by it. Con-

sequently C′ ⊆C denotes the set of actually used code words, i.e. code words with data words
mapped to them. Further let U denote the set of unused code words and I the set of invalid code
words reachable over f faults from the set of actually used code words C′.

A code word is unused if there is no data word mapped to it although the CD at the receiver
reacts to it, hence U =C \C′. This means that a correctly working transmitter will never apply
such a code word to the DI data bus. However if, due to a transmission fault, the code words
appears at the receiver’s input the CD is triggered and it can be captured in its input register.
While for Berger and Zero-Sum codes, the sets C and C′ are equal (i.e. all valid code words are
used, hence U = {∅}), the size of constant weight codes is generally not a power of two and only
a subset of the available code words can actually be used. For these codes the CD implementation
is decisive. Consider for example a 2-of-5 code, which is able to encode ten symbols. If a sorting
network based CD [22] is used, all ten code words trigger the CD. Hence U encompasses two
code words. If, on the other side, the CD is constructed from the DIMS approach, two unused
code words can simply be left out from membership test, resulting in U = {∅}.

The definition of the set of invalid code words is a little bit more involved. A simple approach
would be to declare all F2k′ \C′ vectors as invalid code words. However, depending on the fault
assumption not all of these vectors can actually appear at the decoder’s input, which makes this
approach too restrictive. In order to calculate the set I, we apply the following procedure. For
every valid code word c sent by the transmitter, we use the function NI(c) to calculate the set of

33

“neighboring” invalid code words, i.e. vectors to which c can be transformed in the presence of f
faults. For this task we need the following auxiliary functions (Equations 4.1-4.4).

NH(x, f) = {z ∈ F2k′ |h(x,z)≤ f} (4.1)

N+
V (x, f) = {z ∈C|u(z,x)≤ f} (4.2)

N−V (x, f) = {z ∈C′|u(x,z)≤ f} (4.3)

T (x,y) = {z ∈ F2k′ |z∨ (x= y) = x∨ y} (4.4)

The function NH(x, f) calculates the set of code words (valid or invalid) reachable from x over
(up to) f bit flips, i.e. the set of vectors with a Hamming distance smaller or equal to f (note that
x ∈ NH(x, f)). N+

V (x, f) computes the set of valid code words (i.e. code words that can trigger the
CD), reachable from an intermediate pattern of the code word x over f faults (N+

V (x,0) = {x}).
For the sake of completeness we also define the function N−V . Given a code word x (that triggered
the CD), it returns the set of code words that could have been sent by the transmitter, if up to f
faults affected the transmission. It basically answers the complementary question to N+

V . Note,
however, that in contrast to N+

V , here only code words of C′ are considered, because an unused
code word can never be a candidate for the originally transmitted code word. Finally the function
T (x,y) returns the set of vectors which lie “between” x and y. This is the case for all vectors
that constitute a possible intermediate pattern on a bus that switches from x to y. Note that x and
y themselves are element of T (x,y). The symbols ∨ and = in the definition of T (x,y) denote
bitwise OR and COR operations. Now we have all that we need to specify NI(c).

NI(c) =

 f⋃
v=0

⋃
x∈N+

V (c,v)

⋃
y∈T (c,x)

NH(y, f − v)

\C (4.5)

To understand the intuition behind Equation 4.5 consider a DI communication link such as the
one shown in Figure 4.1 in its null phase (all data rails are zero). Now the transmitter applies
the code word c to the DI bus. Remember that due to the DI timing model the transitions can
arrive at the receiver in any order. At this point we make a case distinction, which corresponds
to the first union operator in 4.5. Assume that the transmission of c is affected by v transient
faults, where 0≤ v≤ f . This changes the code word c to another code word x ∈ N+

V (c,v) (second
union operation), which then triggers the CD of the receiver. The output of the CD ultimately
causes the receiver to capture the current data on the DI bus into its input register. However in the
time window, spanning from the point in time where there is a valid code word (x) at the input of
the CD and the actual triggering of the input register, the DI bus can still change its value. The
transient fault(s) that led to the erroneous code word x can disappear. Simultaneously missing
transitions of the code word c can reach the receiver. Thus if c has originally been applied to
the DI bus, but x triggered the CD every code word y ∈ T (c,x) can end up at the receiver’s input
register. However, to make matters worse, further f − v faults can additionally happen in the

34

same time window. Hence to cover all cases we also have to consider all vectors that lie within
a Hamming distance of f − v of all possible values for y, given by NH(y, f − v) (third union
operation). Finally, all valid code words that where reached by the described enumeration process
are removed from the result. By calculating NI for all code words in C′ the set I of invalid code
words that can appear at the receiver’s input is obtained.

I =
⋃

c∈C′
NI(c) (4.6)

Using NI we can further define the function Θ, which basically answers the opposite question
to NI . If an invalid code word x is received, Θ(x) returns the set of valid code words that could
have been sent by the transmitter. Thus we know that the code word c originally transmitted is an
element of the set Θ(x).

Θ(x) = {z ∈C′|x ∈ NI(z)} (4.7)

4.3 Encoding

Figure 4.3 shows an overview of the steps involved in the encoding process of the proposed
fault-tolerant DI coding scheme. In the first step the binary input data is partitioned into equally
sized blocks of k bits. The result of this step are n data blocks d0, ...,dn−1 ∈ F2k . These blocks are
then encoded with the function did : F2k 7→ F2k′ to generate the DI data blocks D0, ...,Dn−1, which
are ready to be transmitted over a DI communication channel. The approach basically works with
every DI code. Note, however, that the selection of the code as well as the mapping of data words
to code words affect others parts of the encoding process (especially fc, which is defined below).

The actual check information for the transmitted data is generated in a second processing
path. For each data block d0, ...,dn−1, the function fc : F2k 7→ F2 j calculates the so called Per
Block Check Bits (PBCB). The purpose of this function is to reduce the number of bits in the data
blocks in such a way that every fault possible under the fault assumption is still “visible” in the
PBCB after DI decoding. Since the error detecting code (ed : (F2 j)n 7→ (F2 j)m), which creates
the check blocks c0, ...,cm−1, is calculated based on the results of this step, a smaller bit width
will result in a simpler encoder as well as smaller check blocks.

Finally the function dic : F2 j 7→ F2 j′ is used to generate the DI check blocks C0, ...,Cm−1,
which are then transmitted alongside the DI data blocks. Unlike to did , for dic the mapping from
code words to data words is uncritical, with respect to error detection, as we will see in the next
sections.

In the following the functions fc and ed are discussed in more detail. Both processing steps
are of course dependent on the number f of faults defined by the fault assumption. Note that the
variables as well as functions introduced so far, will be used throughout the next (sub)sections,
e.g. k always denotes the number of bits in a data block.

4.3.1 Per Block Check Bits (fc)

Basically fc depends on the mapping of code words to data words of the selected DI code as
defined by did . In Section 2.3.3 it was shown how DI codes can be analyzed for their fault

35

Partitioning into Blocks

did (d0)

d0

fc(d0)

did (dn-1)

dn-1

fc(dn-1)

PBCB
Generation

PBCB
Generation

Input Data

dic(c0)

c0

dic(cm-1)

cm-1

Check Blocks Generation
ed(fc(d0), ..., fc(dn-1))

DI Encoder DI Encoder DI Encoder DI Encoder

k

k

k ′

j

k

j ′

j

Figure 4.3: Encoding overview

resilience using the SOG. Recall that the SOG provides means to identify code word pairs that
can be confused under a certain fault assumption (f) and others that can not (i.e. safe pairs). The
basic idea is now to define fc in such a way that data words, whose associated code words can be
confused, are mapped to different check bit patterns. Code words that can not be confused can
have the same check bits. Hence the receiver will be able to detect if an incomplete intermediate
bit pattern in a DI data block has been transformed into a complete but erroneous code word. In
other words, by exploiting the fact that not all DI code words can be confused with each other,
the required amount of check information is reduced.

We have identified two strategies which can be applied to define fc. In both cases the SOG is
used to find a suitable definition.

did→ fc: Sometimes the mapping of data words to code words is fixed, e.g. if there already
exist efficient hardware implementations for encoder and decoder circuits or if the used DI code
is systematic, like in the case of Berger or Zero-Sum codes (see Section 3.2). In these cases fc

needs to be defined based on a predefined did . To visualize the steps involved in this procedure
we use the example of a 3 bit Zero-Sum code and a fault assumption of f = 1. Figure 4.4a shows
how this code maps the data words d to its code words. Since the used code is systematic, observe
that each data word is contained in the three MSBs of its corresponding code word.

To define fc, first the fault resilience of the used DI code is modeled using the SOG (see

36

d diZS3(d)
000 0001110
001 0011011
010 0101001
011 0110110
100 1001000
101 1010101
110 1100011
111 1110000

(a) DI encoding function

0001110

0011011

0101001

0110110

1001000

1010101

1100011

1110000

(b) SOG (f = 1)

0001110

0011011

0101001

0110110

1001000

1010101

1100011

1110000

(c) Partitioning: K4,K3,K1

0001110

0011011

0101001

0110110

1001000

1010101

1100011

1110000

(d) Partitioning: 4×K2

Figure 4.4: Example: 3 bit Zero-Sum code

Figure 4.4b). Now the graph is partitioned into a set of non-overlapping, i.e. vertex disjoint
cliques. Figures 4.4c and 4.4d show two possibilities how this can be done for our example code.
Notice that these cliques don’t need to have the same size. Every clique (or partition) represents
a group of code words, which cannot be confused with each other under the fault assumption.
Therefore every code word in such a group can be assigned the same check bit pattern. If a
transmission fault transforms an incomplete intermediate pattern into a valid but incorrect code
word, we can be sure that this code word will have different PBCB. The total number of cliques
yields the bit width of the PBCB, which is denoted by j. In our example, two check bits would
be required, to uniquely identify every clique. If this number is smaller than the data block width,
a reduction has been achieved.

Note, however, that this is not possible for every DI code. For instance, SOGs derived from
1-of-N codes, don’t have any edges. Hence a partitioning into cliques always results in N K1
graphs1, which in turn requires k = log2(N) PBCB. This observation can also be generalized in
the following way. SOGs derived from m-of-n codes where f ≥ m don’t have edges and hence
don’t allow for j < k PBCB.

1In graph theory Kn denotes a complete graph with n nodes, i.e. a graph where every vertex is connected the every
other vertex.

37

fc→ did: For this approach we fix fc and try to find a suitable definition for did , i.e. a mapping
from data words to code words. Note that this is not always possible. If fc is chosen too weak
then there does not exist a corresponding did . The example code that will be used in this section
is a 2-of-5 code, which is able to encode three bits of data. The fault assumption is f = 1.

With a potential hardware implementation in mind the function fc should be defined as simple
as possible. It should only perform very simple or no computations at all. Figure 4.5a shows
the selected definition for fc for the example code. Note that here fc is simply a mapping to the
left-most two bits of every data word, hence no actual computation is required. Now the error
detecting capability of fc is modeled in the graph ED. The vertices of this graph are the data
words that are encoded with the selected DI code. Edges between two data words are added if
they have the same PBCB. This means that the ED graph specifies which data words could not
be distinguished based on their PBCB. The formal definition is given in Equation 4.8. Note that,
this definition implies that ED is a disconnected graph, where the connected components are
complete graphs.

ED = (V ,E),V = F2k ,E = {(x,y)| fc(x) = fc(y)} (4.8)

In the second step the SOG of the selected DI code is constructed (Figure 4.5c). Now the task of
finding a suitable definition for did can again be reduced to a graph theoretical problem. Similar
to the approach discussed in [30], we try to find a subgraph isomorphism between ED and the
SOG, i.e. find a subgraph in the SOG which is isomorphic to ED. If such an isomorphism exists,
a mapping of data words to code words can be derived. As shown in Figure 4.5d this is indeed
possible for our example. The bit pattern below the horizontal line represents the data word which
is mapped to the respective code word.

Now the question arises whether in this case it would have also been possible to use PBCB
with just a single bit in width. Note that no matter how fc would defined in this case, the graph ED
would always be composed of two disconnected complete subgraphs Kx and Ky, where x+ y = 8.
It is easy to see that the biggest clique contained in the SOG is only a K2, hence there cannot exist
a subgraph isomorphism.

A simple algorithm to calculate the minimum number of PBCB required for a particular DI
code, can thus be implemented by a linear search over all values for 1≤ j ≤ k.

Note that both of the approaches discussed in this and the previous section, basically perform
the same operation. The SOG is partitioned into a set of cliques Π, where each element P ∈Π

represents a set of code words which cannot be confused under the fault assumption and which are
thus assigned the same PBCB. In the following subsections we will refer to Π as the partitioning
of the SOG.

4.3.2 Check Blocks (ed)

After all PBCB have been generated, the function ed is used to calculate the actual check blocks
c0, ...,cm−1 ∈ F2 j . As shown in the previous section the construction of fc ensures that every
transmission fault possible under the fault assumption is “visible” in the PBCB. Note, however,
that this reasoning is only valid, if we assume that the decoder at the receiver only has to deal with
valid code words. Thus, for now we restrict the discussion to faults that change an incomplete

38

d fc(d)
000 00
001 00
010 01
011 01
100 10
101 10
110 11
111 11

(a) fc : F8 7→ F4

010

011

100

101

110

111

000

001

(b) ED Graph

00101
00011

11000

10100
1001010001

01100

01010

01001
00110

(c) 2-of-5 SOG (f = 1)

00101
101 00011

001
11000
- -

10100
11010010

100
10001
001

01100
010

01010
000

01001
111

00110
- -

(d) Isomorphic subgraph

Figure 4.5: Example: 2-of-5 code

intermediate bit pattern into a valid but incorrect code word and omit the case where invalid code
words are presented to the decoder. For now we may simply assume that the receiver is able to
detect invalid code words.

Let us first consider the case where f = 1. In this scenario a fault affects exactly one DI data
or check block. If a DI check block is changed obviously also the encoded data changes. If the
fault hits a DI data block, we can be sure that the PBCB which are calculated from the decoded
DI data block will be different from the ones originally generated for this block. Hence, to be
able to detect a transmission fault, the used error detecting code must be able to detect exactly
one block error. A single block error can be detected by a simple j-ary parity code over the vector
(fc(d0), ..., fc(dn−1)), which will generate exactly one check block c0 ∈ F2 j . We can conclude that
for the single fault assumption one check block is sufficient to secure the transmission, regardless
of the number of data blocks.

In the general case, where f ≥ 1, at most f (data or check) blocks can be affected by a
transmission fault. Consequently a j-ary linear systematic error detecting code with an error
detecting capability of at least f symbols (i.e. blocks) has to be used. As discussed in Section 2.1.2
linear codes can always be specified in form of a generator matrix. Equation 4.9 shows the general
form of the n+m × n generator matrix used to calculate the check blocks. Since the code is
also systematic, the matrix is decomposeable into an identity matrix In and a part which actually
generates the check blocks, denoted by A.

39

Med =

1 0 . . . 0 a0,0 . . . a0,m−1
0 1 0 a1,0 . . . a1,m−1
...

. . .
...

...
. . .

...
0 0 . . . 1 an−1,0 . . . an−1,m−1

= (In|A) (4.9)

Hence ed can now be defined as

ed(v) = v∗A . (4.10)

By inserting the PBCB vector (fc(d0), ..., fc(dn−1)) into Equation 4.10, the check blocks are
finally given by

(c0, ...,cm−1) = (fc(d0), ..., fc(dn−1))∗A . (4.11)

4.4 Decoding

Figure 4.6 shows an overview of the decoding process. D0, ...,Dn−1 and C0, ...,Cm−1 denote the
DI data and check blocks as received over the DI communication link (i.e. the data captured by
the receiver’s input register). First DI decoding is performed on these blocks using the functions
di−1

d : F2k′ 7→ F2k and di−1
c : F2 j′ 7→ F2 j respectively. As result of this step, we again obtain the

binary representation of the transmitted data blocks d′0, ...,d′n−1 and check blocks c′0, ...,c′m−1.
However, due to transmission faults one or more of these blocks may be incorrect. Based on
the decoded data blocks, all check information is now recalculated by applying the functions
fc and ed, resulting in the check blocks c′′0 , ...,c′′m−1. Finally, these check blocks are compared
to the ones received over the DI bus. If they match, no fault occurred during the transmission.
Hence the received data is correct and the acknowledgment signal can be asserted. If, however, a
mismatch is detected, the data has been corrupted and the receiver has to resample the DI data
and start the whole decoding process over.

The scheme described above works fine if the receiver is confronted with valid, but possibly
incorrect, code words. However, we still need to analyze how invalid and unused (IaU) code
words are handled. Without proper handling of these cases, transmission faults might slip through
the error detection mechanism with severe consequences on the overall system.

To illustrate this potential problem consider a DI communication link implementing the
discussed coding scheme under the fault assumption of f = 1. Further assume that the data blocks
are encoded using a 3-of-6 code. This code comprises 20 symbols and is hence able to carry four
bits of information, which in turn means that four symbols are unused. It can be shown that the
SOG of the 3-of-6 code can be partitioned into 4×K4. Hence the PBCB need to be two bits wide.

Assume that, due to a transmission fault, one of the four unused code words cu is received.
Now the question arises to which data word this (erroneous) code word should be mapped such
that the transmission fault is visible in the PBCB fc(di−1

d (cu)) generated from it. To answer this
question we first need to investigate what a problematic mapping looks like, such that it can be

40

DI Decoder DI Decoder DI Decoder DI Decoder

=

D0

d ′0

fc(d0)

er(D0)

Dn-1

d ′n-1

fc(dn-1)

er(Dn-1)

C0

c ′0

c ′′0

Cm-1

c ′m-1

c ′′m-1

PBCB
Generation

PBCB
Generation

Check Blocks Generation
ed(fc(d ′0), ..., fc(d ′n-1))

decode
error

decode
error

check block
error

k

k ′

j

k

j ′

j1

Figure 4.6: Decoding overview

avoided. Recall that each clique in the SOG is assigned a unique PBCB pattern. Hence code
words (and ultimately data words), which are part of the same clique are indistinguishable based
on their PBCB. However, since (based on the fault assumption) we know that such code words
cannot be confused anyway, this property does not pose a problem. If cu can be confused with
more than one code word of a particular clique P, it may not be assigned the same PBCB as P, i.e.
it may not be mapped to one of the data words to which the other code words in P are mapped to.
Unfortunately, it can be shown, that such a mapping does not exist for the 3-of-6 code. Hence, in
this case some other means are necessary to deal with this situation.

A similar problem arises if the receiver has to process invalid code words. For our example
this would be vectors with two or four bits set to one. As shown by this example the special
treatment of IaU code words is crucial for the proposed coding scheme to work correctly in all
cases. We have thus developed strategies, that allow to cope with these situations.

4.4.1 Omit PBCB Generation

The simplest way to deal with the problem of invalid and unused code words is to not perform
the step of calculating the PBCB. In this case fc(d) = d is simply given by the identity function.
The error detecting code is then calculated solely over the data blocks themselves. Hence a k-ary
error detecting code is required (j = k). This means that every transmission fault directly alters a
symbol which is protected by the error detecting code. Note that the fact that a single transmission

41

fault can, in the worst case, cause a k-bit error in the encoded data is not important here, because
this situation is still considered as a single symbol (i.e. block) error. The DI decoder can now
map invalid and unused code words to arbitrary data words. If the invalid or unused code word is
decoded into a data word which is different from the data word that the transmitter intended to
send, the error detecting code will reveal the transmission fault. If, on the other hand, the decoder
by chance outputs the “right” data word, the receiver won’t even notice the error.

The obvious advantage of this approach is that the mapping of data words to code words is
completely uncritical. This may be beneficial for the design of the encoder and decoder circuits,
since it allows to select a mapping, which is well suited for a hardware implementation (small
area or delay). However, since we don’t try to leverage the inherent fault resilience of the used
DI code, this approach leads to a more complex ed function which also increases the number of
check rails required.

Notice that the that Dual Rail Parity Code [32], is a special case of this encoding scheme.

4.4.2 Error Detection

This approach is based on the fact that the receiver exactly knows which code words have to be
expected at its input. Hence, if an invalid or unused code word arrives, the DI decoder is able
to detect it and can assert an error signal. This approach is also depicted in Figure 4.6. Besides
the actual binary data extracted from the DI data block (di−1

d), the decoder now also generates
an error signal given by the function er : F2k′ 7→ F2. This function basically maps all IaU code
words, which can, based on the fault assumption, be expected to appear on the decoder’s input to
1. Formally er can be defined as follows.

erdecode(x) =

1 if x ∈ Z
0 if x ∈C′

⊥ otherwise

(4.12)

Here the set Z is given by U ∪ I. Note, however that it is generally not necessary to generate the
error signal for all IaU code words. Hence, in practice the size of Z can be reduced drastically.
This is discussed in more details in the next section. For vectors which neither lie in Z nor in C′

the behavior of the function is undefined (indicated by ⊥). Since, due to the fault assumption,
these vectors can never appear at the decoder’s input, this information can be used to optimize
the decoder circuit in a real hardware implementation (don’t care output).

For the case of m-of-n codes with a single fault assumption (f = 1) invalid code words can
easily be identified by a parity function. Since, in this case, all valid code words have the same
constant Hamming weight (and thus the same parity) an additional or missing one always changes
the parity of the code word.

4.4.3 Decoder Analysis

This approach tries to map IaU code words to suitable data words. For each of these code words
the DI decoder at the receiver basically “guesses” a possible data word, which might have been
sent by the transmitter. However, special care must be taken, because if the guess is not correct,

42

it must be guaranteed that the error introduced by it is visible to the error detection mechanism.
As we have seen with the example of the 3-of-6 code this is not always possible. In such cases a
different approach has to be applied.

Let G = (C′,E) denote the SOG constructed from the code C′. By applying the procedures
from Section 4.3.1 a partitioning Π = {P0, ...,Px} of G into a set of cliques is obtained (∪P∈ΠP =
C′). Hence the members of Π are sets of code words. Recall that every code word in such a set is
assigned the same PBCB.

In order to find a suitable mapping for all IaU code words, we propose the following procedure:
For every IaU code word x construct a set Π′x by intersecting every element P ∈Π with the set
Θ(x) or NV (x, f) depending on whether x lies in I or U . Formally this is defined by Equation 4.13.

Π
′
x = {P∩N(x)|P ∈Π}, where N(x) =

{
Θ(x) if x ∈ I
N−V (x, f) if x ∈C

(4.13)

Note that N(x) returns the set of candidate code words that could have been sent by the receiver
if x was received. Based on the size of the members P′ = P∩N(x) of Π′x the following case
distinction is possible.

i. |P′|= 0:
In this case, none of the code words N(x) which can be confused with x are part of the
clique represented by P. This means that, if x is mapped to any of the data words where
members of P are mapped to, the PBCB generated from di−1

D (x) will certainly be different
from the PBCB generated by the transmitter from the original, i.e. fault-free, version of x.
Thus the fault will be detected.

ii. |P′|= 1:
Here there is exactly one code word y∈ P′ that is a candidate for a code word originally sent
by the transmitter. If we now map x to the same data word as y, there are basically two cases
that need to be considered. If y indeed was the code word transmitted, then the performed
mapping to a data word is correct and we actually performed some kind of forward error
correction. However if some other code word z ∈ N(x)\{y} is the fault-free version of x,
the error detection still works correctly, since the PBCB generated from di−1

D (x) = di−1
D (y)

will again be different from the ones originally generated by the transmitter.

iii. |P′|> 1:
In the last case a safe mapping to one of the elements of P is not possible, because there
exist at least two code words y and z with the same PBCB (fc(di−1

D (y)) = fc(di−1
D (z))).

This means that if x would for example be mapped to the same data word as y a fault that
actually changed z to x would not be detectable.

Obviously the goal must be to find at least one member of Π′x which falls into the first two
categories, since this guarantees that a fault detection (and sometimes correction) is always
possible.

If such a mapping can be found for all elements of U ∪ I, then a DI decoder that safely deals
with all possible code words (valid and invalid) can be constructed. Of course it is also possible

43

to use the presented procedure to analyze a particular hardware implementation of a decoder
circuit. In this scenario, the mapping of IaU code words is already fixed and the analysis is simply
used to find the problematic cases where the mapping is ambiguous and error detection would
fail. Hence, we now have a method to precisely determine the elements of the set Z used in the
definition of the decode error detection function of Equation 4.12. In contrast to the general IaU
detection logic discussed in the previous section this circuit only needs to cope with a subset of
all IaU code words and might hence be cheaper to implement.

To visualize the presented process consider the following example. Figure 4.7 shows a
possible partitioning of the 3-of-6 code. For the sake of clarity the code words are labeled
c0, ...,c15. The code words in the middle are three representative examples of IaU code words
that need to be analyzed for a fault assumption of f = 1. The topmost code word (011010) is one
of the four unused code words, while the other two (100001 and 110011) are invalid ones. The
edges indicate whether a valid (and used) code word is member of the set N(x), i.e. a possible
candidate for the originally sent code word if x was received. Using this information the sets Π′x
can be constructed, which are shown in Equations 4.14-4.16.

Π
′
011010 ={{c1,c2},{c4,c6},{c8,c11},{c13,c14,c15}} (4.14)

Π
′
100001 ={{∅},{c5},{∅},{c13}} (4.15)

Π
′
110011 ={{c2},{c4},{c8},{c13}} (4.16)

For the two invalid code words safe mappings to data words can easily be found. The code
word 100001 can, for example, be mapped to the corresponding data words of every element
of the partitions P0 and P2 as well as the code words c5 and c13. However, for the unused code
word cu = 011010 a safe mapping is not possible, since every element of the set Π′011010 contains
more than one element. If cu would, for example, be mapped to the same data word as c1, the
receiver could not detect a fault that changed (an intermidiate pattern of) c2 to cu, since the PBCB
generated from c1 and c2 are the same.

(110100)c0
(101010)c1
(010011)c2
(001101)c3

(110010) c4
(101001) c5
(011100) c6
(000111) c7

(111000)c8
(100110)c9
(010101)c10
(001011)c11

(101100) c12
(100011) c13
(011001) c14
(010110) c15

P0 P1

P2 P3

011010

100001

110011

Figure 4.7: Code word analysis example

The question that remains to be answered is what are the benefits of this solution to the
previous one discussed in Section 4.4.2. A slight advantage over error detection is that in the case

44

of a transient fault there is a chance that the assigned data word is the right one and no re-sampling
is required. However, this is only a very marginal benefit and should thus not be assigned too
much weight. If we compare both approaches based on their implementation (hardware) costs, it
strongly depends on the actual case, whether the enhanced decoder is cheaper to implement than
the error detection circuit. However, if the decoder is constructed using a lookup table (which
may possibly be the case in an FPGA implementation) the extension of the decoder has zero
overhead and is therefore the preferable solution because no additional logic for error detection is
needed.

4.4.4 Forward Error Correction

This approach is actually very similar to the previous one. Here, we assume that the used DI code,
has by itself certain error correcting capabilities. This is, for example, the case for Zero-Sum
codes. For this code the decoder can automatically correct invalid code words. However, it must
be ensured that if an invalid code word has more than one potential candidate for its fault-free
version, that these candidates are from different partitions of the SOG. If they originate from the
same partition, they are also assigned the same PBCB which makes them indistinguishable for
the error detection logic. Note that this basically corresponds to case |P′| > 1 of the previous
section, which means that a safe mapping to either of these code words is not possible.

4.5 Decoding with Error Correction

This section describes how the proposed coding scheme can be modified to support forward error
correction (FEC). A receiver using FEC can immediately acknowledge the reception of a DI code
word to the transmitter, even if it contains errors. This can obviously speed up the transmission,
because there is no need to stall the receiver until the faults vanish.

Lets assume that we have a transmitter that implements a variant of the proposed encoding
scheme. In this scenario, the PBCB are generated by the identity function (fc(x) = x), which
means that the check and data blocks will have the same size (j = k). For the function ed a k-ary
Hamming code is used. If normal error detection is performed by the receiver, it is thus able to
detect up to two erroneous (data or check) blocks. Hence we are able to detect and tolerate f = 2
faults.

However, as discussed in Section 2.1, a Hamming code is not only able to detect up to two
symbol errors but can also correct one. If we thus restrict the fault assumption to f = 1 the
receiver would be able to correct one erroneous symbol (i.e. block). Note that this property is
independent of the used DI code.

This observation is very trivial. A k-ary Hamming code is used to correct one symbol of a
k-ary block code. The interesting question is, if this still works for other non-trivial functions fc.
Or in other words, is it possible to exploit the fault resilience of the DI code in order to reduce the
amount of check information transmitted, but be still able to perform FEC.

A very basic constraint that can immediately be established is that for FEC to work in the
presence of f faults the function ed must be able to correct f symbols. However, if fc is different
from the identify function (j < k) we are only able to reconstruct the correct PBCB of each data

45

block. This information is generally not enough to assign a data word to an erroneous code word
ce, because there are cases in which more than one data words are assigned the same PBCB.
However, with the information about the corrected PBCB z it is possible to cut down the set of
candidates for the fault free version of ce to the elements of the partition identified by z. In the
following we will refer to this partition as the source partition of a code word. Consequently,
to be able to perform error correction, we also have to take ce into account. Hence it must be
ensured that the combination of z and erroneous code word ce is unique and can therefore be
unambiguously mapped to a data word using some appropriate function ec.

We will now examine the criterion which must be fulfilled such that FEC is possible for a
particular code and SOG partitioning Π and how the function ec can be defined. Basically we
perform the same procedure as described in Section 4.4.3 with the slight difference that now all
code words (valid and invalid), i.e. not only the IaU ones, must be analyzed.

For every code word x in C∪ I (recall that C =C′∪U) the set N(x)⊂C′, i.e. the set of code
words which constitute candidates for the fault free version of x is calculated. Then the set Π′(x)
(Equation 4.13) are constructed and its members are examined. Again there are three different
cases of how the elements P′ ∈Π′ (which are themselves sets) can look like. For the following
case distinction P denotes the partition used to generate P′ (P′ = P∩N(x)).

i. |P′|= 0:
In this case there is no code word in P that can be confused with x, hence P′ is empty. It is
not possibly that a fault changes a code word in P to x, hence no error correction is required
in this case.

ii. |P′|= 1:
Here, the set P contains exactly one code word, which may have been the fault free version
of x. Observe, that since we can identify the source partition of x based on the corrected
PBCB there are two cases that need to be considered. If P indeed was the source partition
of x, we can conclude that the fault free version of x is the only element left in P′. If on the
other hand, P is not the not the source partition then all code words in P can be excluded
from the set of candidates for x.

iii. |P′|> 1:
In this case error correction is not possible, because there are more than one elements in P,
which may have been the fault free version of x. If the corrected PBCB identify P as the
source partition of x then there is no way to decide which element of P′ is the correct one.

Hence, we conclude that in order for FEC to be possible, the last case where |P′|> 1 may
never happen.

∀x ∈C∪ I∀P′ ∈Π
′(x) : |P′| ≤ 1⇒ FEC possible (4.17)

Furthermore, we can now define the function ec as shown in Equation 4.18.

ec(x,z) = N(x)∩{c ∈C′| fc(c) = z} (4.18)

46

The function basically calculates the intersection between the set of possible candidates for the
fault free version of x and the set of code words contained in the partition identified by the
corrected PBCB z. The result of this operation is again a set. However, for all possible values for
x and z this set must only contain a single element, the fault free version of x. If there is one case,
where |ec(x,z)|> 1 FEC is not possible. Hence, an alternative form of the condition shown in
Equation 4.17 can be written as follows.

∀x ∈C∪ I∀z ∈ F2 j |ec(x,z)| ≤ 1⇒ FEC possible (4.19)

47

CHAPTER 5
Link Architecture

This chapter presents circuits that can be used to implement the coding scheme proposed in
Chapter 4 and discusses the advantages and drawbacks associated with the different approaches.
The different transmitter and receiver circuits discussed in Sections 5.1 and 5.2 can be used in
arbitrary combinations. To close the chapter, Section 5.3 presents a brief analysis of metastability
hazards in the proposed circuits. Metastability mainly poses a thread to the receiver since it could
cause a malfunction of the circuit that is not detectable by the coding scheme.

5.1 Transmitter

The transmitter circuits mainly differ in the approach that is used to generate the null phase of the
4-phase protocol. Note that there are essentially two ways to accomplish this. Either an array of
AND gates, or an output register, composed of resetable D flip-flops or D latches, can be used to
force all output rails to zero in the null phase.

5.1.1 AND-Masking Transmitter

Figure 5.1 shows a high-level overview of the AND gate based transmitter circuit. The binary
input data of the BD interface is fed into the check bits generator, which basically applies the
functions fc and ed as described in Section 4.3. The output of this block, the check bits, is then
encoded alongside the actual input data with some suitable DI code. Note that it is not required
for the DI encoder or the check bits generator to be QDI circuits, since they both operate in the
BD domain. This is also true for every other circuit presented in this section. However, it must be
guaranteed that the delay ∆req is long enough such that the outputs of the encoder are stable and
valid when the req signal reaches the controller. The spacer insertion block consists of an array of
2-input AND gates, one for each output rail of the encoder. The other input of each AND gate is
driven by the en output of the controller. This allows the controller to force all output rails of the
transmitter to zero in order to generate the null phase. The spacer insertion block can be viewed
as the border between the BD and the DI protocol. In the beginning the en output of the controller

49

is zero, thus the AND gates are masking the output of the encoder. The encoder can now make
arbitrary transitions until it finally stabilizes. As soon as the controller receives a rising edge on
the req input it asserts the en output to activate the AND gates. The DI data emerges at the output
of the transmitter and eventually causes the receiver to assert the ackin signal. The controller now
asserts the ackout signal, while it simultaneously deasserts the en output to switch the AND gates
back into the masking state again, effectively generating the null phase on the output. The delay
element ∆ack in the acknowledgment path must ensure that all AND gates are definitely in the
masking state, before the acknowledgment causes the preceding logic to change, i.e. invalidate,
the input data to the transmitter. Eventually, the null phase is acknowledged by the succeeding
logic stage (the receiver) by deassertion of the ackin signal. Meanwhile, the handshaking protocol
on the input side of the transmitter is completed (deassertion of req and ackout) and the circuit is
finally ready to process the next input request.

data rails

n∗k′

check rails

m∗ j′

en

ackin

n∗k

input
data

n∗k′+m∗ j′
DI output

data
check bits

m∗ j

∆req

∆ack

req

ackout

Spacer
Insertion

DI
Encoder

Check Bits
Generator

Controller

Figure 5.1: AND-masking transmitter

The behavior of the controller circuit is described by the STG in Figure 5.2a. Using the tool
Petrify a (speed-independent) circuit can be generated from this specification. The result of this
process is shown in Figure 5.2b. The initial, i.e. reset, values for both C gates is one. Note that
this STG contains a Complete State Coding conflict which is automatically resolved by Petrify by
introducing a new state internal variable csc. For most of the controller circuits in the following
sections we will only show the STG specifications, since the process of generating circuits out of
them is completely automated.

A slight optimization to the transmitter’s operation speed can be achieved by using asymmetric
delay elements for ∆req and ∆ack. For both signals it is sufficient to only delay the rising edges.
The falling edges do not need to be delayed because they do not indicate the validity of data.
These transitions are only required by the 4-phase protocol, in order to reset all handshaking
signals to their initial value (zero). Note that for a two phase implementation of the BD interface,
this optimization would not be required, because there the handshaking signals don’t return to
zero after each data transmission.

50

req+ en+ ackin+

ackin- en-

ackout- req- ackout+

(a) Controller STG

C

C

en

reqin

ackin

ackout

csc

(b) Controller circuit

Figure 5.2: AND-masking transmitter controller

5.1.2 D Flip-flop Transmitter

This version of the transmitter circuit is based on the approach presented in [39], which could
(in its original form) also be used with the presented coding scheme. However, we implemented
slight optimizations that allow for considerable hardware savings and faster operation speed. In
the following, we will now briefly present the original approach and then discuss its drawbacks
and show how to overcome them.

Figure 5.3 shows the adaptation of the transmitter circuit of [39] for the proposed coding
scheme. The delay element ∆req ensures that the DI data (or the spacer) is stable and valid
at the input of the output register before the req signal reaches the controller. The gate-level
implementation of the controller is shown in Figure 5.4. As soon as it receives a rising edge on
the req signal the output of the C gate is set to one. This transition generates a pulse at the trg
output which is used to clock the output register and capture the DI data. The output of the C gate
is also used as ackout signal to notify the preceding logic that the input data has been consumed.
The acknowledgment eventually causes the req input to be deasserted. This event is propagated to
the DI encoder through its phase input, which reacts with resetting all its outputs to zero. If req
is zero and ackin is one (acknowledgment from the DI channel) the controller generates another
pulse on the trg signal to capture the spacer into the output register. The spacer is eventually
acknowledged by a falling transition on the ackin signal, which makes the controller ready to
receive the next input request.

The observation that led to the improved circuit was made by investigating the start up/reset
behavior of the original circuit. To ensure correct operation after start up, it must be ensured that
the output register is reset to zero. A different initial value would violate the 4-phase protocol and
could potentially lead to a malfunction of the circuit. Thus the D flip-flops forming the output
register must be equipped with (asynchronous) reset inputs. This raises the question if this reset
logic can also be used to generate the null phase of the 4-phase protocol. For this purpose we
propose the circuit shown in Figure 5.5.

The big advantage that comes with this modified circuit is that the DI encoder no longer needs
the phase input, because the null phase is now generated by the register reset signal rst. This
saves a considerable amount of hardware, because in order to enable the encoder to force all of its
output signals to zero (regardless of the input), a mechanism similar to the spacer insertion block
discussed in the previous section would be required. Apart from the hardware savings, the depth

51

data rails

n∗k′

check rails

m∗ j′

trg

ackin

n∗k

input
data

n∗k′+m∗ j′
DI output

data

ackout

check bits

m∗ j

∆reqreq

phase

Output
Register

DI
Encoder

Check Bits
Generator

Controller

Figure 5.3: D flip-flop based transmitter [39]
C

∆pulse
ackout

trg

ackinreq

Figure 5.4: D flip-flop based transmitter controller circuit [39]

of the decoder circuit is also reduced, which has a positive effect on the circuit’s delay and thus
the operation speed. Like with the previous approach the delay element ∆req can be implemented
asymmetrically, to reduce the time required for resetting the handshaking signals.

Depending on how much parallelism is allowed between the execution of the two handshaking
protocols on the BD input and the DI output channel, the controller circuit must be implemented
accordingly. In the following we will present two possible versions.

Simple Controller (Low Parallelism) The simple version of the controller circuit is shown
in Figure 5.6. Consisting of just a single C gate and a pulse generator, it is very similar to the
one proposed by [39]. It can be divided into two main blocks, the acknowledgment and the reset
generator. The former generates the ackout signal for the BD channel, whose rising edge is also
used to trigger the D flip-flops. The reset generator is triggered by the falling edge at the output of
the C gate and produces a pulse, which resets the output register to generate the null phase. The
delay element ∆rst pls must be chosen long enough to fulfill the requirements of the output register,
but must also be short enough such that the reset is completed before the next rising edge at the
output of the C gate (i.e. ackout). The main drawback of this circuit is that the two handshaking
protocols on the BD input and DI output channel are interlocked. This issue becomes apparent,
if the STG describing the behavior of the acknowledgment generator is investigated. As can be

52

data rails

n∗k′

check rails

m∗ j′ cl
ea

r

rsttrg

ackin

n∗k

input
data

n∗k′+m∗ j′
DI output

data

ackout

check bits

m∗ j

∆reqreq

Output
Register

DI
Encoder

Check Bits
Generator

Controller

Figure 5.5: Transmitter using D flip-flops with asynchronous reset

C

acknowledgment
generator

reset generator

∆rstpls

ackout
rst

ackinreq

trg

(a) Controller circuit

ackout+

req+ ackin-

req- ackin+

ackout-

(b) Acknowledgment generator STG

Figure 5.6: Simple controller circuit

seen in Figure 5.6b the ackout− transition is beside req− also dependent on ackin+. Furthermore
ackin− is dependent on ackout−. Obviously these preconditions are necessary for the controller to
work correctly. However, they are actually a result of the fact that the rst signal is generated from
ackout . If it would be possible to generate the rst signal solely based on ackin these dependencies
and the tight coupling between the handshaking protocols could be eliminated.

Advanced Controller (High Parallelism) The advanced controller, as shown in Figure 5.7a,
is able to overcome the tight coupling disadvantage of the simple controller. It again consists of
an acknowledgment and a reset generator. However, in this circuit the rst signal is generated from
ackin. The behavior of the acknowledgment generator is described by the STG in Figure 5.7b. As
can be seen there is no coupling between the handshaking protocols. The only time where the
protocols are “synchronized” is when the rising edge of the ackout signal is generated. Since this
edge is used to capture new data into the output register, it must be ensured that both the input
and the output channel are ready for this event.

53

The actual gate-level circuit implementation of the acknowledgment generator can again be
generated by the tool Petrify. However, in order for Petrify to process the STG, an additional
(internal temporary) state variable t must be introduced. Notice that the rising edge on the ackin

signal essentially generates the null phase which in turn leads to a falling edge on ackin. However,
the sequence ack′in−→ ack′in+ would be problematic because there are two subsequent transitions
in the STG that must be fulfilled by the environment and not by the actual controller that should
be described. This causes a conflict that cannot be automatically resolved by the tool. Hence, the
state variable t is inserted into the affected part of the STG, changing the dependency relation
to ack′in+→ t+→ ack′in−→ t−. The internal variable essentially indicates whether the (rising)
acknowledgment transition has already happened.

acknowledge-
ment

generator

reset
generator

ack’in ackin

rst

ackout

req

trg

(a) Controller circuit

ackout+

req+ ackin-

req- t+

ackout-

ackin+

t-

(b) Acknowledgment generator STG

Figure 5.7: Advanced controller circuit

As shown in Figure 5.8 there are two possibilities of how to implement the reset generator.
Version A simply uses the acknowledgment signal itself as reset signal for the output register.
Hence, the output register is kept in the reset state until ackin goes low again. The delay element
∆rst ensures that there is enough time between the end of the reset phase (deassertion of ackin)
and the next rising edge of ackout caused by a (potentially) pending input request.

Version B only reacts to the rising edges of the acknowledgment signal and uses a pulse
generator to generate the reset signal. This behavior makes it very similar to the reset generator of
the simple controller. Hence, the same constraints on the delay element ∆rst pls, i.e. the reset pulse
width, apply here. Regarding performance version B has a slight advantage over the alternative
because in version A the cycle time is extended by ∆rst for cases where new data is already
pending on the input side of the transmitter.

5.1.3 D-Latch Transmitter

This version of the transmitter is very similar to the previous one, but uses pulsed D latches [1]
instead of D flip-flops to implement the output register. For this to work, obviously the register
trigger signal trg generated by the controller circuits must be converted to a pulse. This modifica-
tion has the advantage that the hardware costs for the output register can be reduced significantly.
On the downside, the complexity of the controller is increased (additional pulse generator) and a
few new timing constraints are introduced.

54

ac
k

co
nt

ro
lle

r

∆rst ackin

rst

ack’in

(a) Version A

ac
k

co
nt

ro
lle

r

∆rst
rst

ackin
ack’in

(b) Version B

Figure 5.8: Reset generator circuit variants

5.2 Receiver

For the receiver circuits, we only consider the error detecting and resampling scheme discussed
in Sections 4.1 and 4.4, i.e. we won’t present circuits that perform error correction as introduced
in Section 4.5. First Sections 5.2.1 and 5.2.2 introduce the base version of the receiver circuit.
Then Sections 5.2.3 and 5.2.4 discuss some modifications to this base version that potentially
offer advantages in some use cases.

5.2.1 Base Receiver

The base version of the receiver circuit is shown in Figure 5.9. It is essentially an adaptation of
the circuit presented in [39]. However, we modularized and extended the controller circuit to
allow for higher parallelism between the DI input and BD output channels.

data rails

n∗k′

check rails

m∗ j′

done trg decode
error

check bits
error

req

ackin

ackout

n∗k+m∗ j

DI input
data

output
datan∗k

Completion
Detector

Input
Register

DI
Decoder

Check Bits
Generator

Controller

=

Figure 5.9: Base receiver

For this purpose, we have divided the controller circuit into two sub components (see Fig-
ure 5.10). The sampler generates the trigger signal trg, whose rising edge causes the input register

55

to capture the DI input data. It is further responsible to resample the input data until the error
detection circuit confirms a fault free transmission. The protocol controller contains the actual
logic that handles the handshaking protocols on the input and output channels.

Sampler

Protocol
Controller

s c

done
ackout

req
ackin

trg error
decode error
check bits error

Figure 5.10: Base receiver controller

Sampler Figure 5.11 shows two possibilities how the sampler can be implemented. Both
versions use the same interface. A logical one on the s input starts the sampling process. The
circuit immediately produces a rising edge on the trg output to capture the DI input data. After the
time period ∆ED the decoding and error detecting circuit is ready and the error signal becomes
valid. Depending on whether a transmission fault has been detected the circuit either resamples
the input data (by producing another rising edge on the trg output) or in the case of a fault-free
transmission asserts the c output to indicate completion. Deasserting the s input resets the circuit
(i.e. clears the output c).

∆Ps A1 ∆ED
A2

D
clr

c

errortrg

(a) Version A [39]

∆ED

T Q

D
clr

Q

∆P

errortrg

c

s

(b) Version B

Figure 5.11: Sampler circuit variants

Version A of the sampler, shown in Figure 5.11a, is directly adopted from [39]. It works by
initially generating a pulse of length ∆P using a delay element and gate A1. This pulse is then

56

used to produce the rising edge at the trg output. If an error is detected, the pulse is fed back into
the circuit using the AND gate A2 to generate another rising edge at the trg output.

Version B is an alternative implementation proposed by this work. It has the slight advantage
that there is only a single gate between the s input and the trg output. Hence, the delay between
the assertion of the s input and the initial rising edge on trg is slightly smaller than with version A.
In case of an error, the feedback path of the circuit generates a pulse that is used by the AND
gate to force the trg output to low (for the time period ∆P) generating another rising edge on
trg. Note that the difference in the behavior of the circuits is that in the idle phase, i.e. the time
period where the circuits “wait” for the error detection logic to finish (∆ED) the trg output stays
high in version B while it goes low in version A. Hence, in the case of a transmission fault, the
performance of version B is a little worse, since the trg signal must first be reset to zero for the
period ∆P, before a new rising edge is generated. Figure 5.12 illustrates the difference in the
signal trace of trg. The (red) lines between the high and low levels in the traces of the error
signals indicate the period in which this signal is invalid and must not be sampled.

∆P
∆ED

s
error

PGout

trg
trg+∆ED

c

(a) Version A

∆P∆ED

s
error

trg
trg+∆ED

TFFout

c

(b) Version B

Figure 5.12: Sampler timing diagrams

Protocol controller Similar to the controller variants of the D flip-flop based transmitter, the
protocol controller can also be implemented with varying degrees of parallelism between the
handshaking protocols on the input and output channels.

57

s+

done+ ackin-

done- ackin+

s-

(a) Simple STG (c = req = ackout)

req- ackin+ s+ c-

ackin- req+ c+ s-

done+ ackout+

ackout- done-

(b) Advanced STG

Figure 5.13: Protocol controller STGs

Figure 5.13 shows two possible STGs describing the controller’s behavior. The low paral-
lelism controller basically boils down to a simple C gate (see Figure 2.11b) with the inputs done
and (not) ackin. The output signals req and ackout are directly connected to the c output of the
sampler. Note that this is exactly the circuit proposed in [39]. It is easy to see that in this version
the handshaking protocols are interlocked. There are situations where the DI protocol on the
input side cannot proceed until the BD output has reached a certain state and vice versa.

To overcome these limitations, the advanced controller represented by the STG in Figure 5.13b
has been developed. As can be seen in the Figure, there are no dependencies between the
handshaking protocols except for the s+ transition which triggers the input register and captures
new input data. This is the only point in time where all parallel operations of the circuit need to
be “synchronized”.

5.2.2 Base Receiver with D Latches

It is also possible to implement the receiver with D latches instead of D flip-flops for the input
register. Since a D flip-flop is essentially composed of two latches this would effectively halve
the implementation overhead for the input register. The trg output of the controller is hence
connected to the enable input of the D latches instead of the clock input of the D flip-flops.
However, depending on which sampler version of Figure 5.11 is used for the circuit, there are
some things to consider.

Sampler A: Figure 5.12a shows that version A of the sampler generates pulses on the trg
output that are ∆P long. This signal can directly be used to switch the input latches to transparent
mode and hence capture the current state of the DI input data bus. This means that the input
flip-flops are basically replaced by pulsed latches[1] and no other modifications to the circuit are
necessary.

58

Sampler B: Notice that this sampler keeps the trg output asserted (Figure 5.12b) during the
sampling process. Only if resampling is required, a negative pulse is generated on the trg output
causing it to go low for the duration ∆P. This means that it is not possible to simply use the trg
output of the sampler as enable signal for the latches. Doing so would inhibit the generation of a
consistent snapshot of the DI input data, which is required for the error detection logic to work
correctly.

There are essentially two possibilities to work around this problem. The first approach uses
an additional pulse generator to transform the rising edge of the trg signal to a short pulse that
then triggers the input latches.

For the other approach the trg signal is inverted, which means that the latch only holds
its value when trg is asserted and is transparent otherwise. Hence resampling makes the latch
transparent for ∆P to capture the new state of the DI input data. However, for this to work it must
be ensured that the s input of the sampler is not deasserted before the BD channel on the output of
the receiver has acknowledged the reception of the transmitted data. Note that the deassertion of s
in turn causes trg to go low which makes the input latches transparent again. Hence a premature
deassertion of s could lead to the output data being invalidated before the succeeding logic had a
chance to capture it. Notice that the simple controller (Figure 5.13a) guarantees this behavior.
However, to use the advanced controller one additional edge from ackin+ to s− has to introduced.

5.2.3 Parallel Completion Detection and DI Decoding

Notice that the circuits discussed in the previous sections first capture the DI input data into their
input registers and then perform the error detection process. This is consistent with the fault
tolerant receiver model shown in Figure 4.2. The circuit shown in Figure 5.14 places the decoder
in front of the input register. This arrangement has the advantage that while completion detection
takes place the DI data can already be decoded, which can obviously increase the performance
of the receiver. Moreover, since the DI data always needs more rails (i.e. bits) than the binary
representation, the size of the input register can also be reduced. However, this increased level of
parallelism also has some drawbacks.

Consider the fork in the DI data bus, that provides the input to both the decoder as well as the
CD. For the base version it was only necessary to ensure that the path from the fork to the register
inputs is faster than the delay added by the CD (i.e. when the CD asserts the done signal the data
must be stable and valid at the input register). This timing requirement is not very difficult to
fulfill, since the path to the registers does not contain any logic. However, if the placement of the
input register and the decoder is reversed this constraint may become harder to satisfy.

In Section 4.4 we have seen that there are basically two methods of dealing with IaU code
words in the proposed coding scheme. Either the decoder guarantees that these code words are
never mapped to problematic data words or it has to provide an additional decode error signal
for cases where this is not possible. For the normal (i.e. fault-free) operation of the circuit this
means that it must never be the case that the error signal switches to zero (indicating validity of
the output data) while the output is still invalid. By invalid we mean that the output of the decoder
constitutes a problematic mapping of a code word to a data word as discussed in Section 4.4.3.
However as soon as a fault strikes the error signal must be asserted before the output of the
decoder can become invalid. This asymmetric behavior of the error signal for rising and falling

59

edges and the fact that every single possible case of a fault affecting the transmission would have
to be analyzed makes a decoder circuit that fulfills this requirement very hard or even impossible
to implement. Hence, we see that there is an inherent race condition to this circuit that is not
present in the base version of the receiver.

A similar problem arises with the data outputs of the decoder. Here it must be guaranteed
that during the transition from one output data word to the other (which was caused by a fault),
the intermediate bit patterns never pose a problematic code word to data word mapping, which
can be captured into the input register.

For these reasons this version of the receiver is only practical if no PBCB are used (Sec-
tion 4.4.1). If the “full” check information is transmitted the actual effects of faults on encoded
data blocks are irrelevant, because the receiver is able to detect errors at the block level. This is
because multiple bit errors in a single block are only seen as a single error by the error detecting
code. Moreover, it would even be possible to detect and tolerate faults that happen inside the
decoder itself.

The controller can basically be implemented the same way as for the base version. Further-
more it is obviously also possible to use D latches for the input register.

data rails

n∗k′

check rails

m∗ j′

done trg error

req

ackin

ackout

n∗k+m∗ j

DI input
data

output
datan∗k

Completion
Detector

Input
Register

DI
Decoder

Check Bits
Generator

Controller

=

Figure 5.14: Receiver with parallel completion detection and DI decoding

5.2.4 Dual-Use Completion Detector

In this receiver variant the CD is placed after the input latches. Notice, that in contrast to the
previous circuits, here it is necessary to use latches because flip-flops can not be switched into a
transparent mode. This is however necessary, since the CD must be connected directly to the DI
input rails.

The advantage that is gained from this arrangement is that parts of the CD can be reused for
the tasks of decoding and, if necessary, detecting IaU code words. Sorting network based CDs, as
discussed in [22], can for example easily be extended to detect invalid code words. Note, however,

60

that since (parts of) the CD are now also used in the BD domain, it can no longer be treated as a
purely QDI circuit. This means that the static timing analysis that ultimately determines the delay
∆ED must now also take paths through the CD into consideration.

en

error

done

fen

n∗k′+m∗ j′

req
ackinackout

DI input
data

output
datan∗k

c

Completion
Detector

Input
Latches

DI
Decoder

Check Bits
Generator

Controller

Sampler

=

trg

Figure 5.15: Dual-use completion detector receiver

Figure 5.16 shows the STG specifying the behavior of the controller for this receiver version.
In the beginning all input rails as well as ackin are zero. Hence the done output of the CD, which
is connected to the s input of the sampler is deasserted. The trg output of the sampler as well as
the fen output of the controller are zero. This leads to a logical one at the en input of the input
latch causing it to be transparent.

If a DI input data is applied to the CD the done output is triggered and the sampling process is
started. It is important to note that here only version B of the sampler can be used. While the error
detection process takes place, the sampler asserts the trg output to make the input latch opaque. If
an error is detected a short (negative) pulse (∆P) on trg is used to recapture the input data. After
successful completion the sampler asserts the c signal, which causes the controller to generate the
request for the BD output channel and the acknowledgment for the DI input channel. As soon
as the output channel acknowledges the transmitted data, the controller asserts fen which forces
the input latches to become transparent again. Eventually the spacer word appears at the CD,
resetting the done signal to zero. Meanwhile the BD handshake can be completed. The falling
edge of the done signal resets the c output of the sampler which in turn signals the controller that
fen can be deasserted, since now the logical zero at trg ensures that the latch stays transparent.
Finally ackout is deasserted as well to complete the handshake on the DI input channel.

To avoid glitches at the en input of the latches during the phase where trg and fen are
subsequently reset to zero, it must be guaranteed that the falling edge on trg reaches the OR gate
before the one on fen.

61

ackout- ackout+ c+ req+ ackin-

fen- c- fen+ ackin+ req-

Figure 5.16: Controller STG

5.3 Metastability Concerns

Since we cannot make any assumptions about when a transient fault occurs, it is possible that the
erroneous edge it produces violates a setup and hold window of a storage element [42].

This problem only affects the receiver, because we assumed that only the actual data rails can
be affected by transient faults. The usual formula to calculate the Mean Time Between Upset
(MTBU) for a single stage synchronizer (Figure 5.17) is shown in Equation 5.1.

MT BU =
1

fclk ·λdat ·T0
· e

tr
τ (5.1)

The parameters T0 and τ are technology dependent and essentially characterize the used
flip-flops. The time tr specifies the resolution time, i.e. the time FFsync has to resolve a possible
metastable state and provide a correct input value to FFsys without violating its setup and hold
window. Hence tr is simply given by the clock period Tclk minus the setup time of FFsys, the
(combinational) path delay ∆p between both flip-flops and the nominal clock-to-output delay tCO

of FFsync (Equation 5.2).

tr = Tclk− tSU −∆p− tCO (5.2)

The frequency of the clock signal is denoted by fclk while λdat refers to the rate of input data
changes at asyncin (i.e. the average number of edges per second).

D QD Q
∆p

FFsysFFsync

asyncin

clk

Figure 5.17: Single stage synchronization

In the receiver circuit FFsync corresponds to the input register, while FFsys would be the
flip-flop sampling the error signal (inside the sampler). This is shown in Figure 5.18. Recall that

62

D QD Q Error
Detection

FFerror

Input
Register

DI input
data

∆ED

trg

Figure 5.18: Problematic metastability path

the error signal is used to decide whether the input data is correct or if it has to be resampled.
Hence, an upset on this signal may lead to incorrect data being forwarded to the BD interface.

However, since the circuits discussed in this chapter obviously don’t operate in a synchronous
way, Equation 5.1 can not be used directly, but needs to be adapted for this special purpose. First
of all asynchronous circuits naturally don’t have a clock signal. Hence, we replace fclk by λtx,
which denotes the average transmission rate, measured in handshaking cycles per second. This
rate can basically be interpreted as the frequency with which the input register of the receiver is
triggered. Since, an upset can only occur in the case of a fault, λdat can simply be replaced by λ f ,
which denotes the average fault rate. Equation 5.3 shows the resulting expression.

MT BUrx =
1

λtx ·λ f ·T0
· e

tr
τ (5.3)

The last question that needs to be answered is what value to use for the resolution time tr.
On the path between the input register and the error flip-flop resides the whole error detection
logic, which essentially has the combinational delay ∆ED. After this time (plus some safety
margin) an edge is generated that captures the error signal. Hence, in our case, the resolution
time is essentially zero, which simplifies the exponential term of Equation 5.3 to one. However,
to improve the resilience against metastability the delay ∆ED can be increased. On the downside
this unfortunately also leads to a performance penalty on the receiver circuit.

Note that the possibility for a failure of the receiver due to metastability is the exception of
the already rare event of a transient fault happening. Hence, the residual risk for the receiver
circuit to fail can be classified as rather low. To substantiate this claim consider the following
estimation. We assume a reasonable average transmission rate of λtx = 108 transmissions per
second. For modern technologies the flip-flop parmeters T0 and τ usually lie in the lower
picosecond range [43]. For this example we assume T0 = 10ps. The resolution time tr will be
specified by multiples of τ . In Equation 5.4 we calculate the residual metastability risk factor R.
Multiplying the fault rate λ f by this factor yields the MTBU of the receiver. Thus R basically
specifies rate with which faults lead to upsets on the error signal due to metastability.

R(n) = λtx ·T0 · e−t = 10−3 · e−n (5.4)

63

Notice the exponential dependency of R on the resolution time. This shows that by degrading
the performance of the receiver by approximately 7τ , which basically sums up to value less than
100 picoseconds, the residual risk can easily be improved by another factor 103.

64

CHAPTER 6
Results

This chapter shows examples on how the proposed coding scheme can be applied to m-of-n codes.
First, Section 6.1 discusses theoretical results concerning the fault resilience of the analyzed codes.
Section 6.2 presents two circuit level implementation examples and shows how they perform in
terms of coding efficiency and area complexity. Finally, Section 6.3 shows a behavioral simulation
to give a better understanding on how the circuits introduced in Chapter 5 operate.

6.1 Theoretical Results

Table 6.1 shows how the SOGs of the analyzed m-of-n codes can be partitioned into cliques under
the fault assumption of f = 1. The presented partitionings are optimal in a sense that there does
not exist a partitioning that will result in fewer PBCB. Consequently a selection of possible check
codes is shown in the last column of the table. Recall that for the fault assumption f = 1 a single
check (i.e. parity) block is sufficient. To characterize the quality of a code with respect to fault
tolerance, we define the inherent fault resilience as shown in Equation 6.1.

Ff = 1− j
k

(6.1)

This parameter relates the number k of bits a code word can contain to the number j of PBCB
required to secure a transmission against f faults. It basically specifies how much the information
in a data block can be reduced by the function fc. Hence, Ff is always greater than or equal to
zero and less than or equal to one. A zero value, like in the case of 1-of-N codes, indicates no
fault resilience. If Ff is one, the code is by itself able to tolerate f faults and no check blocks are
required. Consider for example the 3-of-6 and 2-of-7 codes. While both codes allow the encoding
of four bits of information, the 3-o-6 code has a better inherent fault resilience, because it only
requires two PBCB.

Table 6.2 shows the same information for the case of f = 2. Note that here we have only
included entries for which F2 is greater than zero. As already mentioned before, for the fault
assumption f = 2 the number of check blocks depends on the actual number of data blocks.

65

Table 6.1: SOG partitionings for m-of-n codes (f = 1)

Code Encoded Partitioning PBCB F1 (possible)
Databits (k) Width (j) Check Block Code

1-of-4 2 4×K1 2 0 1-of-4/1-of-2
2-of-5 3 4×K2 2 0.33 1-of-4/1-of-2
2-of-7 4 8×K2 3 0.25 2-of-5
3-of-6 4 4×K4 2 0.5 1-of-4/1-of-2
3-of-7 5 8×K4 3 0.4 2-of-5
4-of-8 6 8×K8 3 0.5 2-of-5

Table 6.2: SOG partitionings for m-of-n codes (f = 2)

Code Encoded Partitioning PBCB F2 (possible)
Databits (k) Width (j) Check Block Code

3-of-6 4 8×K2 3 0.25 2-of-5
3-of-7 5 16×K2 4 0.2 2-of-7/3-of-6
4-of-8 6 32×K2 5 0.17 3-of-7

6.2 Implementation Examples

For the implementation examples we have selected the 2-of-5 and 3-of-6 codes. According to
Table 6.1 both codes require two PBCB, which will be encoded with the 1-of-4 code. Figure 6.1
shows the encoder and decoder circuits that we have developed for the 2-of-5 code. These circuits
perform the mapping introduced in Figure 4.5. Notice that the bit d0 is directly mapped to the
rail x0 and vice versa. This allows for a very efficient circuit design. A similar mapping has

d2
d1
d2
d1
d2
d1
d2
d1

x4

x3

x2

x1

x4

x2
x3

x1

d2

d1

4

1

4
0 x4

...
x0

d0

(a) Encoder

x3
x1
x4
x2

d2

d1

d2
d1

x4
x2

2
1

2
0 d2

d1
d0

x0

(b) Decoder

Figure 6.1: 2-of-5 circuits (f = 1)

been chosen for the 3-of-6 code. Figure 6.2 shows the corresponding SOG partitioning and code
word mapping (the unused code words were omitted from the figure). Here the two right-most

66

bits in every code word and data word (i.e. (x1,x0) and (d1,d0)) coincide. These bits are used
to control the encoding and decoding process. If (d1,d0) is (1,1) or (0,0), the remaining bits in
the code word (x5, ...,x2) form a one-hot or one-cold code, respectively. For the cases (0,1) and
(1,0) an “almost” systematic mapping can be achieved for the bits (x4,x3). The resulting circuits
are shown in Figure 6.3. As already discussed in Section 4.4, there does not exist a decoder for
the 3-of-6 code that is able to safely handle the unused code words. Hence the decoder circuit
must be extended with a special error detection circuit that detects the unused code words. In
particular this is necessary for the code words 001101, 110010, 010101 and 101010. This is of
course only necessary, because the used CD is also triggered by these code words. However, the
simpler design of the CD offsets the costs for the additional error detection logic.

111000
0000

100101
0001

001110
0010

010011
0011

110100
0100

101001
0101

011010
0110

000111
0111

011100
1000

110001
1001

100110
1010

001011
1011

101100
1100

011001
1101

010110
1110

100011
1111

Figure 6.2: 3-of-6 code partitioning and code word mapping

Figure 6.4 shows the CDs for both codes. The design for the 2-of-5 code is inspired by the
CD of the incomplete 2-of-7 code proposed in [3]. For the 3-of-6 code a sorting network based
approach was chosen [22, 23].

The invalid code words are handled safely by both decoder circuits. Notice, however, the
AND gate labeled with the ∗ symbol in the 3-of-6 decoder depicted in Figure 6.3b. For the normal
circuit operation on valid code words this gate is redundant. It is, however, required to safely map
the invalid code word 010100 to something different from 1100, which would be an ambiguous
mapping.

As can be seen in Equations 6.2 and 6.3 the PBCB for both codes are simply a subset of the
data bits, hence no calculations are involved.

f 2-of-5
c (d2,d1,d0) = (d2,d1) (6.2)

67

d3
d2
d3
d2
d3
d2
d3
d2

x5

x4

x3

x2

d3
d2

d3
d2

x5

x4d3
x3d2
x2

d3
d2

d3
d2

x5

x4d2
x3d3
x2

d3
d2
d3
d2
d3
d2
d3
d2

x5

x4

x3

x2

x5
...
x0

d1d0

4

01

4

10

4

00

4

11

(a) Encoder

∗
x5
x4
x3
x4
x3

d3

d2

d3x4 d2x3

d2x4

d3x3

x5
x3
x5
x2

d3

d2

00

01

10

11

d3
...
d0

d1d0

2

2

2

2

error

x5
x1

x0
x2

x4
x3

(b) Decoder

Figure 6.3: 3-of-6 circuits (f = 1)

C

C

C

done

x0
x1

x4

x2
x3

(a) 2-of-5

x0
x1
x2
x3
x4
x5

T6

Sorting
Network

C done
T6

1
T6

2
T6

3

(b) 3-of-6

Figure 6.4: Completion detector circuits (f = 1)

f 3-of-6
c (d3,d2,d1,d0) = (d3,d2) (6.3)

Table 6.3 summarizes the implementation costs for the required circuits in number of transistors.
To calculate the transistor counts in this section we used two and three input NAND/NOR gates
(4 and 6 Transistors), Inverters (2 Transistors), XOR/XNOR gates (12 Transistors) and inverting
two to one multiplexors (10 Transistors). Additionally two and three input C gates are used (8 and
10 Transistors). To make these values comparable, we have also implemented non fault-tolerant
versions of these circuits. However, this only led to a reduction for the 3-of-6 code. The simplified,
i.e. non-fault-tolerant, encoder and decoder circuits for the 3-of-6 code are shown in Figure 6.5.
Here a different, more regular mapping was used to achieve less area complexity.

Table 6.4 shows the results of the proposed coding scheme for different input data widths.

68

Table 6.3: Implementation costs m-of-n codes (f = 1)

f = 0 f = 1
Code CD Encoder Decoder Encoder Decoder

1-of-4 12 24 12 – –
2-of-5 40 62 34 62 34
3-of-6 110 112 68 164 92+26

d3
d2
d3
d2
d3
d2
d3
d2

x5

x4

x3

x2

4
0

1x4

x2

x5d3
x3d2 4

1
0 x5

...
x0

d0d1 d0d1 d0 d1

(a) Encoder

x5
x4
x4
x3

d3

d2
2

0
d3x5 d2x3 2

1
x5
x3
x5
x2

d3

d2
2

1

0 d3
...
d0

x0x1 x0x1 x0 x1

(b) Decoder

Figure 6.5: 3-of-6 circuits (no fault tolerance)

Since the 2-of-5 code can hold three data bits, the last data block can never be fully used in the
case of a power-of-2 bus width. For efficiency reasons we therefore use a 1-of-2 or 1-of-4 code
for the last block. The columns labeled with f = 0 show the results for a non fault tolerant DI
communication link. The parameter R denotes the coding efficiency (measured in bits/rails),
while P specifies the number of transitions required to transmit one data bit, which gives some
insight into the dynamic power consumption of the DI bus. The decoding costs also include the
costs for the required CDs. The next set of columns show the corresponding values for a fault
tolerant version of the same link. As can be seen the encoding overhead lies between 42 and 80%,
while decoding has 33 to 59% higher implementation costs. When comparing both codes, it turns
out that the 2-of-5 circuits are significantly cheaper, but also require more rails (worse coding
efficiency). This is mainly due to the much less expensive encoding and decoding logic.

Table 6.5 shows R and P for a similar coding scheme proposed in [30] and briefly discussed
in Section 2.3.3.2. In contrast to this scheme, which has logarithmic overhead (in terms of check
information), our solution requires only constant overhead for the f = 1 case. This is because our
scheme is specifically tailored for the special problems inherent to DI coding and leverages the
knowledge that all effects of a single fault remain confined to the affected DI block. Hence we
get better results for all cases.

69

Table 6.4: Implementation costs for different bus widths

f = 0 f = 1
bu

s
si

ze

C
od

e

#r
ai

ls
R P en

c.
co

st
s

de
c.

co
st

s

#r
ai

ls

R P en
c.

co
st

s

de
c.

co
st

s

en
c.

ov
er

he
ad

de
c.

ov
er

he
ad

8 2-of-5 14 0.57 1.25 148 182 18 0.44 1.50 248 290 1.68 1.59
3-of-6 12 0.67 1.50 224 364 16 0.50 1.75 404 552 1.80 1.52

16 2-of-5 27 0.59 1.38 312 404 31 0.52 1.50 472 578 1.51 1.43
3-of-6 24 0.67 1.50 448 730 28 0.57 1.63 780 1072 1.74 1.47

32 2-of-5 54 0.59 1.31 644 814 58 0.55 1.50 936 1114 1.45 1.37
3-of-6 48 0.67 1.50 896 1462 52 0.62 1.56 1532 2116 1.71 1.45

64 2-of-5 107 0.60 1.34 1304 1668 111 0.58 1.38 1848 2226 1.42 1.33
3-of-6 96 0.67 1.50 1792 2926 100 0.64 1.53 3036 4204 1.69 1.44

Table 6.5: Efficiency comparison to existing solution [30]

Results of [30] Improvement

bu
s

si
ze

C
od

e

#r
ai

ls

R P R P

8 2-of-5 20 0.40 2.00 1.11 1.33
3-of-6 18 0.44 2.25 1.13 1.29

16 2-of-5 35 0.46 1.75 1.13 1.17
3-of-6 36 0.44 2.25 1.29 1.38

32 2-of-5 65 0.49 1.63 1.12 1.08
3-of-6 60 0.53 1.88 1.15 1.20

64 2-of-5 120 0.53 1.50 1.08 1.09
3-of-6 108 0.59 1.69 1.08 1.10

6.3 Behavioral Simulation

For the simulation we have selected the AND-masking transmitter and the base receiver with
version B of the sampler. The DI link is eight bits wide and uses the 3-of-6 code for its data
blocks. To order to keep the simulation simple we use the fault assumption f = 1. This means
that the encoder and decoder circuits, discussed in the previous section, can be used and that
one check block is required. This (single) check block will be encoded using the 1-of-4 code.
Figure 6.6 shows an overview of the simulated DI link.

Moreover, the following values are used for delay elements in the transmitter and receiver
circuits.

∆req = 1.5ns, ∆ack = 0ns, ∆ED = 1.5ns, ∆P = 250ps

70

tx_data

tx_req

tx_ack

rx_data

rx_req

rx_ack

6

6

4

8 8datablock0

datablock1

checkblock0

dibus_ack

Base
Receiver

AND-Masking
Transmitter

Figure 6.6: Simulated DI Link

The simulated BD input and output channels provide rising and falling transitions for the tx_req
and rx_ack signals 250ps after the the associated signal event on tx_ack and rx_req. The
individual rails of the DI bus have been assigned arbitrary delays between 300 and 1000ps.

As discussed in Chapter 4 a transient fault can transform a valid code word to a bit vector that
falls into one of the following categories.

• other valid code word

• unused code word

• invalid code word

We simulated these three scenarios in Modelsim to demonstrate how the different fault types are
handled by the receiver. In all simulations the data word 0x00 is transmitted. Thus in a fault-free
transmission both data blocks should transmit the code word diD(0000) = 111000 (notice that
fc(0000) = 00). The transient fault, which is introduced into the system by using the “force”
command, affects one of the rails of datablock0.

Figure 6.7 shows the scenario, where a fault, striking at rail zero of datablock0, changes the
code word being transmitted to 101001. Notice that the rising edge of the fault completes the 3-of-
6 code word which causes the done output of the CD and consequently the trg signal to go high.
Hence the erroneous code word is captured into the receiver’s input register (dibus_in_reg). Now
the error detection process is started. The decoded value for datablock0 is di−1

D (101001) = 0101,
which means that its PBCB are given by fc(0101) = 01. This value is obviously different from
the PBCB generated for this block by the transmitter (fc(0000) = 00). Thus the error detecting
code is able to detect this change and eventually the error signal checkblock_error is raised,
indicating that the check block calculated from the received data blocks does not match the
received check block. The err signal, which is given by the logical or between checkblock_error
and decode_error, then triggers the resampling event (negative pulse on trg). Since the transient
fault disappeared in the meantime the correct data can be captured. After the error detection logic
confirms the correct reception the output data can finally be forwarded to the BD output channel.

Figure 6.8 shows how an unused code word is handled by the receiver. Here the transient fault
affects rail one and ultimately causes the input register to capture the unused code word 101010.
Notice that with this code word as input the decoder produces the data word 0010, which in turn
results in fc(0010) = 00 for the PBCB. However, these PBCB match the ones of the original

71

(i.e. fault free) data block. Hence the error detecting code is unable to detect this change and the
decoder must itself provide an appropriate error signal (decode_error).

Finally Figure 6.9 demonstrates how a fault can lead to an invalid code word (in this case
111001) being captured by the receiver. The fault strikes at rail zero shortly after the code word
presented to the CD is already complete and is hence stored into the input register when the trg
signal reaches it. However, the PBCB generated from the data word di−1

D (111001) = 1101 are
fc(1101) = 11 and the error is hence visible to the error detecting code.

To make the timing diagrams easier to understand, we highlighted (letters A-D) four important
events that occur in all of the three fault scenarios discussed above.

A) The transient fault strikes and changes the code word transmitted in datablock0.

B) The CD recognizes complete code words in all blocks of dibus_in and asserts its done
output, which leads to the current state of the bus being captured into the receiver’s input
register (dibus_in_reg).

C) Since the error detecting logic indicates a transmission error, a negative pulse is produced
on the trg signal to recapture the DI input data.

D) After error detection confirms a correct reception, the acknowledgment signal of the DI
link (dibus_ack) is asserted.

72

E
A

B
C

D

Figure 6.7: Transmission fault generating a different valid code word

73

E
A

B
C

D

Figure 6.8: Transmission fault generating an unused code word

74

E
A B

C

D

Figure 6.9: Transmission fault generating an invalid code word

75

CHAPTER 7
Conclusion and Future Work

Due to their robustness against timing variations, delay-insensitive codes present an interesting
and very promising approach to implement asynchronous communication links. However, as we
have shown, these codes are, without further measures, typically not resilient against transient
faults. Moreover, the task of protecting this communication against such faults is nontrivial and
requires a good understanding of the fault behavior of DI codes.

Hence, the first contribution of this thesis was an in-depth analysis of the Safe Overlap Graph
fault model as well as an extension thereof that also takes invalid code words into account. This
extended model allows us to determine every possible fault scenario and check whether a possible
solution works in all of these cases. Using this as foundation, we have developed a new fault
tolerant DI coding scheme that is based on a two level encoding process comprising an error
detecting and DI coding layer. In particular, the payload data is divided into blocks that are then
reduced to their so called Per Block Check Bits. The error detecting code, which ultimately yields
the check blocks, is then only calculated over these reduced versions of the data blocks which
results in less check information and simpler encoding circuits. This reduction is performed
using a graph theoretical approach by leveraging the particular properties of the used DI code.
In a second step the actual DI encoding is applied to the data and check blocks that can then be
transmitted over an appropriate DI channel. The provided redundant information is sufficient to
allow the receiver to detect erroneous (even though valid in the DI code space) vectors. In such a
case the acknowledgment is deferred until the transient has ceased and the correct data can be
read.

Based on existing solutions, we then developed a range of transmitter and receiver circuits
that can be used for an actual implementation of the proposed coding scheme. Moreover, we
presented two circuit level implementation examples for the 2-of-5 and 3-of-6 code, which show
that the approach is feasible and can be implemented with reasonable area overhead.

We have analyzed the coding efficiency and the required number of check bits for representa-
tives of the important class of m-of-n codes. Our results show that the proposed coding scheme
scales better than existing approaches and has a considerably better coding efficiency.

77

Since every thesis has a bounded scope some interesting topics and directions are left
unexplored. One interesting point for future research is to expand the proposed approach to
permanent faults and pipelined links. These two problems are actually quite closely related in
that in both cases faults cannot be recovered by simply waiting for a certain amount of time,
because they have manifested themselves somewhere in the circuit (either in a storage element
or in the form of a stuck-at fault or broken connection). To find a solution for these cases the
forward error correction mechanism, briefly described in Section 4.5 can be a good starting
point. However, care must be taken because by allowing a wider range of fault scenarios also
the possibility of deadlocks becomes an issue. Another direction worth pursuing are 2-phase
codes and communication links, which were not addressed in this thesis. Because of the close
relationship between 4-phase and transition encoded 2-phase communication, the proposed fault
model and coding scheme could be extended for this case.

78

Bibliography

[1] N. Weste and D. Harris, Integrated Circuit Design. Pearson Education, Limited, 2011.

[2] M. Donno, A. Ivaldi, L. Benini, and E. Macii, “Clock-tree power optimization based on rtl
clock-gating,” in Design Automation Conference, 2003. Proceedings, pp. 622–627, June
2003.

[3] W. Bainbridge, W. B. Toms, D. Edwards, and S. Furber, “Delay-insensitive, point-to-point
interconnect using m-of-n codes,” in Ninth International Symposium on Asynchronous
Circuits and Systems, pp. 132–140, 2003.

[4] T. Verhoeff, “Delay-insensitive codes - an overview,” 1988.

[5] J. Sparsø, “Asynchronous circuit design - a tutorial,” dec 2001.

[6] R. Baumann, “Radiation-induced soft errors in advanced semiconductor technologies,”
IEEE Transactions on Device and Materials Reliability, vol. 5, pp. 305–316, Sept 2005.

[7] R. E. Blahut, Algebraic codes for data transmission. Cambridge, New-York: Cambridge
University Press, 2003. Autres tirages : 2004, 2006.

[8] R. Roth, Introduction to Coding Theory. New York, NY, USA: Cambridge University Press,
2006.

[9] M. Delvai and A. Steininger, “Solving the fundamental problem of digital design - a
systematic review of design methods,” in 9th EUROMICRO Conference on Digital System
Design (DSD’06), pp. 131–138, 2006.

[10] E. G. Friedman, “Clock distribution networks in synchronous digital integrated circuits,”
Proceedings of the IEEE, vol. 89, pp. 665–692, May 2001.

[11] A. J. Martin, “The limitations to delay-insensitivity in asynchronous circuits,” in Proceedings
of the Sixth MIT Conference on Advanced Research in VLSI, AUSCRYPT ’90, (Cambridge,
MA, USA), pp. 263–278, MIT Press, 1990.

[12] K. van Berkel, “Beware the isochronic fork,” Integr. VLSI J., vol. 13, pp. 103–128, June
1992.

79

[13] M. Shams, J. C. Ebergen, and M. I. Elmasry, “A comparison of cmos implementations of an
asynchronous circuits primitive: the c-element,” in International Symposium on Low Power
Electronics and Design, pp. 93–96, Aug 1996.

[14] I. E. Sutherland, “Micropipelines,” Commun. ACM, vol. 32, pp. 720–738, June 1989.

[15] M. Singh and S. M. Nowick, “Mousetrap: High-speed transition-signaling asynchronous
pipelines,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 15,
pp. 684–698, June 2007.

[16] S. Furber and P. Day, “Four-phase micropipeline latch control circuits,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 4, pp. 247–253, June 1996.

[17] J. Sparso and J. Staunstrup, “Design and performance analysis of delay insensitive multi-
ring structures,” in Proceeding of the Twenty-Sixth Hawaii International Conference on
System Sciences, 1993, vol. i, pp. 349–358 vol.1, Jan 1993.

[18] G. Sobelman and K. Fant, “Cmos circuit design of threshold gates with hysteresis,” in
Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, vol. 2,
pp. 61–64 vol.2, May 1998.

[19] I. David, R. Ginosar, and M. Yoeli, “An efficient implementation of boolean functions as
self-timed circuits,” IEEE Transactions on Computers, vol. 41, no. 1, pp. 2–11, 1992.

[20] M. Blaum and J. Bruck, “Unordered error-correcting codes and their applications,” in
Twenty-Second International Symposium on Fault-Tolerant Computing, 1992. FTCS-22.
Digest of Papers, pp. 486–493, July 1992.

[21] D. Lloyd and J. Garside, “A practical comparison of asynchronous design styles,” in Seventh
International Symposium on Asynchronus Circuits and Systems, pp. 36–45, 2001.

[22] S. Piestrak, “Membership test logic for delay-insensitive codes,” in Fourth International
Symposium on Advanced Research in Asynchronous Circuits and Systems, pp. 194–204,
1998.

[23] F. Huemer, M. Schütz, and A. Steininger, “Revisiting sorting network based completion
detection for 4 phase delay insensitive codes,” in Austrian Workshop on Microelectronics
(Austrochip), pp. 3–8, Sept 2015.

[24] M. Cannizzaro, W. Jiang, and S. Nowick, “Practical completion detection for 2-of-n delay-
insensitive codes,” in 2010 IEEE International Conference on Computer Design (ICCD),
pp. 151–158, 2010.

[25] P. McGee, M. Agyekum, M. Mohamed, and S. Nowick, “A level-encoded transition sig-
naling protocol for high-throughput asynchronous global communication,” in 14th IEEE
International Symposium on Asynchronous Circuits and Systems, pp. 116–127, 2008.

80

[26] M. Schütz, F. Huemer, and A. Steininger, “A practical comparison of 2-phase delay insen-
sitve communication protocols,” in Austrian Workshop on Microelectronics (Austrochip),
pp. 15–20, Sept 2015.

[27] S. Universitat PolitÃĺcnica de Catalunya, Barcelona, “Petrify Website.” http://www.
lsi.upc.edu/~jordicf/petrify/, Dez. 2016.

[28] I. Poliakov, V. Khomenko, and A. Yakovlev, Workcraft – A Framework for Interpreted
Graph Models, pp. 333–342. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.

[29] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxonomy
of dependable and secure computing,” IEEE Transactions on Dependable and Secure
Computing, vol. 1, pp. 11–33, Jan 2004.

[30] J. Lechner, A. Steininger, and F. Huemer, “Methods for analysing and improving the fault
resilience of delay-insensitive codes,” in 33rd IEEE International Conference on Computer
Design (ICCD), pp. 519–526, Oct 2015.

[31] J. Bainbridge and S. Furber, “Chain: a delay-insensitive chip area interconnect,” Micro,
IEEE, vol. 22, pp. 16–23, Sep 2002.

[32] F.-C. Cheng and S.-L. Ho, “Efficient systematic error-correcting codes for semi-delay-
insensitive data transmission,” in International Conference on Computer Design, ICCD
2001. Proceedings., pp. 24–29, 2001.

[33] M. Agyekum and S. Nowick, “An error-correcting unordered code and hardware support
for robust asynchronous global communication,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2010, pp. 765–770, March 2010.

[34] M. Agyekum and S. Nowick, “Error-correcting unordered codes and hardware support
for robust asynchronous global communication,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 31, pp. 75–88, Jan 2012.

[35] J. Berger, “A note on error detection codes for asymmetric channels,” Information and
Control, vol. 4, no. 1, pp. 68 – 73, 1961.

[36] J. Pontes, N. Calazans, and P. Vivet, “Adding temporal redundancy to delay insensitive codes
to mitigate single event effects,” in 18th IEEE International Symposium on Asynchronous
Circuits and Systems (ASYNC), pp. 142–149, May 2012.

[37] J. Pontes, N. Calazans, and P. Vivet, “Parity check for m-of-n delay insensitive codes,” in
2013 IEEE 19th International On-Line Testing Symposium (IOLTS), pp. 157–162, July
2013.

[38] J. Lechner, M. Lampacher, and T. Polzer, “A robust asynchronous interfacing scheme
with four-phase dual-rail coding,” in 12th International Conference on Application of
Concurrency to System Design (ACSD), pp. 122–131, June 2012.

81

http://www.lsi.upc.edu/~jordicf/petrify/
http://www.lsi.upc.edu/~jordicf/petrify/

[39] J. Lechner and R. Najvirt, “A generic architecture for robust asynchronous communication
links,” in Integrated Circuit and System Design. Power and Timing Modeling, Optimization
and Simulation (J. Ayala, D. Shang, and A. Yakovlev, eds.), vol. 7606 of Lecture Notes in
Computer Science, pp. 121–130, Springer Berlin Heidelberg, 2013.

[40] F. Huemer, J. Lechner, and A. Steininger, “A new coding scheme for fault tolerant 4-phase
delay-insensitive codes,” in 2016 IEEE 34th International Conference on Computer Design
(ICCD), pp. 392–395, Oct 2016.

[41] E. Dubrova, Fault-Tolerant Design. Springer New York, 2013.

[42] L. Kleeman and A. Cantoni, “Metastable behavior in digital systems,” IEEE Design Test of
Computers, vol. 4, pp. 4–19, Dec 1987.

[43] T. Polzer and A. Steininger, “An approach for efficient metastability characterization of
fpgas through the designer,” in 2013 IEEE 19th International Symposium on Asynchronous
Circuits and Systems, pp. 174–182, May 2013.

82

	Kurzfassung
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation and Problem Statement
	Structure of the Thesis

	Theory and Background
	Coding Theory
	Asynchronous Circuits
	Fault Tolerance and Delay-Insensitive Codes

	Related Work
	Cheng & Ho
	Agyekum & Nowick
	Pontes, Calazans & Vivet
	Lechner et. al.

	A New Fault-Tolerant Coding Scheme
	Hardware Model and Fault Hypothesis
	Fault Model
	Encoding
	Decoding
	Decoding with Error Correction

	Link Architecture
	Transmitter
	Receiver
	Metastability Concerns

	Results
	Theoretical Results
	Implementation Examples
	Behavioral Simulation

	Conclusion and Future Work
	Bibliography

