
The end of the password era
Towards password-less authentication based on

enhanced FIDO

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Mathias Bachl, BSc
Matrikelnummer 1125616

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Privatdoz. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Edgar Weippl
Mitwirkung: Univ.Lektorin Dipl.-Ing. Dr.techn. Katharina Krombholz-Reindl

Wien, 22. Dezember 2016
Mathias Bachl Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

The end of the password era
Towards password-less authentication based on

enhanced FIDO

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Mathias Bachl, BSc
Registration Number 1125616

to the Faculty of Informatics

at the TU Wien

Advisor: Privatdoz. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Edgar Weippl
Assistance: Univ.Lektorin Dipl.-Ing. Dr.techn. Katharina Krombholz-Reindl

Vienna, 22nd December, 2016
Mathias Bachl Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Mathias Bachl, BSc
Schopenhauerstraße 21/24, 1180 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 22. Dezember 2016
Mathias Bachl

v

Danksagung

An erster Stelle möchte ich mich bei meiner assistierenden Betreuerin Katharina Krombholz-
Reindl bedanken. Ihre zahlreichen Tipps haben sich während der Entstehung dieser Arbeit
immer wieder als sehr wichtig erwiesen. Natürlich möchte ich mich auch bei meinem Be-
treuer Edgar Weippl für die unkomplizierte und flexible Abwicklung dieser Diplomarbeit
bedanken.

Zu guter Letzt möchte ich allen Menschen danken, die mich während meines Studiums
in den unterschiedlichsten Lebenslagen unterstützt haben.

vii

Acknowledgements

I would like to thank my assisting advisor Katharina Krombholz-Reindl for giving me
important and helpful hints regarding numerous aspects of this work, and of course my
advisor Edgar Weippl for his uncomplicated and flexible supervision throughout the
entire time of creation of this thesis.

Last but not least, I would like to thank all people who supported me in all kinds of
regards during the entire time of my studies.

ix

Kurzfassung

Sicherheitsvorfälle, die auf kompromittierte Passwörter zurückzuführend sind, sind ein
allgegenwärtiges Problem. Entsprechende Lösungen für sicherheitskritische Anwendungen
existieren zwar, sind aber für viele Dienste aufgrund zahlreicher Einschränkungen im
Hinblick auf deren Benutzerfreundlichkeit und Einsetzbarkeit ungeeignet.
Unter der Vielzahl an Ansätzen, die eine Lösung dieses Problems versprechen, scheint der
FIDO Standard der vielversprechendste Kandidat zu sein. Einige Größen der IT-Industrie
haben bereits begonnen, diesen Standard in ihren Produkten zu implementieren.
Dennoch gibt es nach wie vor einige zu lösende Probleme, bevor FIDO das Ende des
Passwortzeitalters einläuten und der Standard-Authentifizierungsmechanismus für das
Internet of Things werden kann.
FIDO bietet einen hohen Sicherheitsstandard, da sowohl ein Gerät im Besitz des Be-
nutzers (mittels asymmetrischer Kryptographie) als auch der Benutzer gegenüber dem
Gerät selbst (mittels Biometrie, PINs, etc.) authentifiziert wird. Unglücklicherweise birgt
dieses Konzept Probleme, wenn ein Client-Gerät authentifiziert werden soll, welches sich
nicht unter der exklusiven Kontrolle des Benutzers befindet (z.B. an dessen Arbeitsplatz).
In solchen Szenarien ist ein zusätzliches Gerät (Authenticator) im Besitz des Benut-
zers notwendig, welches den Benutzer authentifiziert. Die dazu benötigte Schnittstelle
zwischen den beiden Komponenten birgt allerdings potentielle Sicherheitsrisiken (bei
drahtlosen Verbindungen), als auch mögliche Einschränkungen im Hinblick auf die Ein-
setzbarkeit (v.a. bei kabelgebundenen Schnittstellen). Diese Arbeit präsentiert sowohl eine
benutzerfreundliche Lösung zur Sicherung dieses Kommunikationskanals, als auch eine
Erweiterung des Authentifizierungsprotokolls, wo der Kommunikationskanal komplett
entfällt.
Da der Authenticator einen Single point of failure (SPoF) im Hinblick auf die Sicherheit
darstellt, besteht zudem die Notwendigkeit, kompromittierte Geräte auf globaler Ebene
widerrufen zu können. Diese Arbeit schlägt mehrere Ansätze zur zentralen Widerrufbar-
keit vor, welche die Privatsphäre des Benutzers nicht gefährden (Unlinkability).
Die letzten Kapitel dieser Arbeit widmen sich der kritischen Evaluierung der präsentierten
Lösungen, und zeigen Themen für weitere Forschungsarbeit auf.

xi

Abstract

Security incidents related to breached passwords are an omnipresent issue. Solutions for
security-critical applications like two-factor authentication exist, but are no option for
intensively used applications, especially due to usability- and deployability-issues.
Under the huge amount of scientific work and (commercial) products that address this
issue, the FIDO specification seems to be the most promising candidate. Some of the
major players in the IT industry already started adopting this standard in their products.
However, there are still a number of problems that need to be solved before FIDO can
herald the end of the password era and become the standard authentication mechanism
for the Internet of Things (IoT).
FIDO brings strong security by authenticating a device in possession of the user (using
asymmetric cryptography) as well as the user operating this device himself (using biomet-
rics, PINs, etc.). Unfortunately, this concept involves issues if a client device should be
authenticated that is not under the user’s exclusive control, e.g. at the user’s workplace.
In such situations, an additional authenticator device owned by the user is needed.
However, the required interface between the two components involves potential security
risks (with wireless connections), as well as potential limitations regarding deployability
(especially for wired interfaces). This thesis proposes both a usable solution for securing
this communication channel, and an extension of the authentication protocol that allows
to go without the direct interconnection at all.
Aside from that, as the authenticator device introduces a Single point of failure (SPoF)
regarding security, a method that allows to globally invalidate a compromised authenti-
cator is needed. This work proposes multiple approaches for central revocation, that do
not threaten the user’s privacy (unlinkability).
In the final chapters of this work, the proposed approaches are evaluated critically, and
directions for future research on this topic are given.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 2
1.3 Aim of the work . 3
1.4 Methodological approach . 4

1.4.1 Literature research . 4
1.4.2 Evaluation of the FIDO architecture & design of improvements . . 4
1.4.3 Prototype design & implementation 5
1.4.4 Verification & Critical reflection 6

1.5 Structure of the work . 6

2 State of the art / analysis of existing approaches 9
2.1 Scientific literature . 9

2.1.1 Improving password security . 9
2.1.1.1 Tapas . 9
2.1.1.2 UniAuth & Knock x Knock 10
2.1.1.3 WebTicket . 10

2.1.2 New authentication mechanisms 11
2.1.2.1 UbiKiMa . 11

2.2 Standards & specifications . 11
2.2.1 Fast IDentity Online (FIDO) Alliance 11
2.2.2 W3C Web Authentication . 12

2.3 Commercial services & products . 12
2.3.1 LaunchKey . 12
2.3.2 Nok Nok . 12
2.3.3 Windows Hello & Microsoft Edge 12

2.4 The FIDO UAF specification . 12

xv

2.4.1 A note on FIDO versions . 12
2.4.2 Overview . 13

2.4.2.1 Components of the UAF architecture 13
2.4.3 Privacy considerations . 14
2.4.4 Important security concepts . 14

2.4.4.1 Application isolation . 14
2.4.4.2 Authenticator attestation 16
2.4.4.3 Implementation challenges 18

3 Improvements to FIDO specification 19
3.1 Centralized authenticator revocation . 19

3.1.1 Challenges . 19
3.1.1.1 Unlinkability considerations 20

3.1.2 Online vs. offline revocation list querying 21
3.1.3 Related work . 21
3.1.4 Revocation protocols with offline-verification 23

3.1.4.1 Offline revocation with foreign post-revocation unlinkability 24
3.1.4.2 Offline revocation with local pre-revocation unlinkability

and foreign post-revocation unlinkability 25
3.1.4.3 Issues with both offline revocation schemes 27

3.1.5 A revocation protocol with online-querying 28
3.1.5.1 Performance considerations 30
3.1.5.2 A security note on concatenated arguments of hash functions 30
3.1.5.3 Implementation considerations 31

3.2 Securing wireless ASM-Authenticator connections 31
3.2.1 Protocol description . 32

3.3 Indirect authentication . 33
3.3.1 Protocol description . 34
3.3.2 Security aspects of the indirect-authentication token 34

4 Prototype 37
4.1 Prototype components . 37
4.2 Design decisions & specification coverage 38

4.2.1 No component identification . 38
4.2.2 No utilization of hardware-assisted security 38
4.2.3 Simplified but secure application isolation 38

4.3 Authenticator application . 38
4.3.1 Authenticator commands . 38

4.4 ASM . 41
4.4.1 ASM API . 41

4.5 Client browser plugin . 42
4.5.1 JavaScript API . 42

4.6 Demo web application . 44
4.6.1 HTTP API . 44

4.7 Revocation service . 44
4.7.1 HTTP API . 44

5 Critical reflection 47
5.1 Verification against FIDO security requirements 47

5.1.1 Security goals & definitions . 47
5.1.1.1 UAF Security Goals . 47
5.1.1.2 Refined and new security goals 49

5.1.2 Relevant security goals . 49
5.1.3 Threat analysis . 51

5.1.3.1 Attacks against the revocation mechanism 51
5.1.3.2 Attacks on the communication channel between ASM and

authenticator . 52
5.1.3.3 Attacks on the indirect authentication mechanism 54

5.2 Evaluation using Bonneau’s framework . 55
5.2.1 Usability . 56
5.2.2 Deployability . 57
5.2.3 Security . 58
5.2.4 Overview of results . 60

5.3 Relevance of the work . 60
5.3.1 Security aspects . 60
5.3.2 Usability aspects . 60
5.3.3 New deployment options . 60

5.4 Usability considerations . 62
5.5 Known issues . 62

5.5.1 Missing application isolation for indirect authentication 62

6 Summary and future work 65
6.1 Unsolved problems . 65

6.1.1 Implementation challenges . 65
6.2 Future work . 65

6.2.1 Client & ASM Attestation . 65
6.2.2 Offline revocation . 66
6.2.3 Application isolation . 66
6.2.4 Prototype . 66

6.2.4.1 Silent authentication . 66
6.2.5 Publish/subscribe-based central revocation 67

6.3 Conclusion . 67

List of Figures 69

List of Tables 69

Listings 69

Acronyms 71

Bibliography 75

CHAPTER 1
Introduction

1.1 Motivation

Security incidents related to breached passwords are an everyday issue. This is not very
surprising, as passwords can be seen as the de-facto authentication mechanism on the
Web. If passwords are used properly, they are a very simple to implement and secure way
of authenticating to a computer system. But unfortunately, there is always a trade-off
between security and usability. To use passwords properly, they need to be complex,
unique for every service and stored securely, ideally only in the user’s memory. However,
if these criteria are fulfilled, passwords are usually not usable. For convenience, people
tend to use weak passwords, write them down on Post-its and use the same password for
multiple services. As long as users are not forced to use an authentication mechanism in
a secure way, there is a high risk that they won’t do so.
Securely maintaining a list of dozens of good passwords and keeping this list within reach
is not a trivial task. Unluckily, the current situation is not expected to get better: Due
to the rising adaption of mobile computing, the existing problems will get even worse and
new challenges will be introduced. People will need to authenticate to a single service
from an ever-changing set of multiple devices, which implies that current „solutions“ like
password-managers are unlikely to be used in a secure way. Also the issue of entering a
password on a mobile device in public is a well-known problem which is intensively being
researched on, but where still no proper or elegant solution has been found for.
If we go one step further, and think about authentication for the „Internet of Things“, it
is obvious that the mentioned issues will become even more problematic, and as long
as we are not able to solve them, the authentication- or security-aspects in general will
probably prevent the ideas of ubiquitous computing from becoming reality at all.

1

1. Introduction

1.2 Problem statement

Replacing the password as the de-facto authentication mechanism on the Web is not a
straightforward task. Apart from the central question of this paper, finding an mecha-
nism that allows usable authentication on multiple and mobile devices, there are further
challenges that need to be coped with:
Various service providers that tried to improve their password-based authentication pro-
cesses using 2-factor authentication, like Facebook [1] or Outlook.com [2], implemented
the mechanism insufficiently. Facebook enforces enabled two-factor authentication only
if accessed using the web-site, but not on the mobile app. Outlook.com has to cope with
the fact that Hypertext Transfer Protocol (HTTP) isn’t the only protocol that is used
on the Internet, and developed a very unusable workaround: Users can configure their
account to require an additional authentication step to protect it if it’s accessed via the
web portal, but the users, or an attacker, can still access the mailbox via Post Office
Protocol version 3 (POP3) or Internet Message Access Protocol (IMAP) using password-
based authentication only. Microsoft introduced special auto-generated passwords for
non-HTTP access, however the number of users that actually understands this feature is
probably very low.
Furthermore, the typical „cheap“ implementation of 2-factor authentication, where a
smart-phone is used to deliver a one-time password, has a fundamental security issue per
design: If a user utilizes the same smart-phone for accessing a service and for generating
the one-time password, the second authentication factor is worthless and does not add
additional security.
Last but not least, if the password is going to be replaced, various authentication related
processes like handling users with forgotten passwords or lost devices need to be thought
over.

Certainly there exist well-known alternatives to passwords, like biometric authentication
methods or smart-cards. However, all of these technologies have serious disadvantages in
respect of security, usability, costs or complexity.

Of course, there also exists a lot of current research that tries to solve the problem: A
typical approach is to improve the security of the password without changing the core
authentication mechanism, as proposed with Tapas [3] or UniAuth [4].
Also completely new authentication mechanisms are proposed, like UbiKiMa [5] or some
commercial solutions around the Universal Authentication Framework (UAF) standard
of the FIDO Alliance [6].
However, all of the stated attempts have serious security and usability issues, or do not
cover enough real-world usage scenarios.

2

1.3. Aim of the work

1.3 Aim of the work
The aim of this thesis is to show how public-key cryptography can be used to build a
secure and usable authentication mechanism that is a real alternative to passwords. The
basic idea of public-key authentication is nothing new and has been successfully used in
high-security smart-card based authentication scenarios for years.

The UAF standard of the FIDO Alliance defines an authentication architecture where
public-key cryptography is used to authenticate a device to an online service, and the
private key on the user’s device is protected by a local authentication mechanism like a
PIN or fingerprint.
However, the FIDO specification does not cover a couple of security and usability chal-
lenges that arise in real-world usage scenarios. Therefore, simply adopting this standard
is not enough.

FIDO’s idea assumes that the user’s client device is trustworthy. However, this assump-
tion does not hold for some environments, especially where multiple persons use a single
machine. This situation is obviously given in business environments, universities or public
Internet terminals for example, but the problem basically occurs in all situations where a
user wants to log-in on a machine other than his own.
As the FIDO specification even defines the interface for the communication between
the user agent (application client) and the FIDO authenticator, it is basically possible
to use a separate, trustworthy device as an authenticator to log-in on a foreign ma-
chine. However, the specification does not define how a secure communication channel
between these devices can be established. This is one of the problems this thesis addresses.

Furthermore, the hardware that is required to interconnect the user’s workstation with the
authenticator might not be given. The specification as well as the few implementations
that are available consider the smartphone as the typical authenticator-device for FIDO.
Obviously, this is for a reason, as the smartphone has ideal hardware preconditions for
protecting the keys (e.g. fingerprint reader, camera, microphone, secure element, ...) or
communicating with other devices (e.g. Near Field Communication (NFC), Bluetooth,
Universal Serial Bus (USB), ...).
However, password-based authentication ideally should be replaced everywhere. Hence,
there exist potential deployments that don’t offer the required hardware, like client
machines without USB and Bluetooth for example. A way to allow FIDO authenticators
to be used without a direct, bidirectional data interface is needed. This is a topic this
thesis addresses as well.

Last but not least, the specification does not provide the ability to block stolen or lost
devices centrally without having to revoke them individually for each registered account.
In a future Internet of Things, authenticating devices might require dozens of registrations

3

1. Introduction

with depending services. Without a standardized mechanism for central revocation, lost
devices might pose an extreme privacy issue to the user.

To sum it up, the aim of this work is to design adaptations and enhancements of the
FIDO specification, to be able to implement an authentication system that takes over
the ideas of the FIDO standards, but represents a more comprehensive solution, that can
replace the password for as many of the typical end-user scenarios as possible.

1.4 Methodological approach

The results of this work have been achieved by performing the following steps:

1.4.1 Literature research

Search for related and state-of-the-art work using the literature databases of field-related
scientific societies like ACM or IEEE. Investigation of the work of known researchers in
the field, like Blase Ur, Joseph Bonneau or Alexander de Luca. Review of current articles
of related popular scientific conferences like CCS or SOUPS.

1.4.2 Evaluation of the FIDO architecture & design of improvements

This phase started with the analysis of the UAF architecture and the identification
of potential issues. Afterwards, possible solution approaches have been designed and
analyzed theoretically.
During the design phase of the adaptations, various aspects have been taken into account,
including:

• Does the adaptation affect security/privacy goals of the original specification?

• Does the specification/a third party already address this problem?

• Does the developed concept have platform limitations, e.g. requirement of a Trusted
Platform Module (TPM).

• Is the scheme secure (intensive examination using common attack models).

• Is the scheme feasible regarding usability, deployability or scalability?

• Is it beneficial to stick to the FIDO architecture?

• Is the targeted usage scenario relevant?

4

1.4. Methodological approach

1.4.3 Prototype design & implementation

To show that the proposed concepts can be implemented in practice, a prototype has
been developed.

The released FIDO UAF 1.0 specification already must be considered obsolete, as the
structure of the WebAuthn/FIDO 2.0 draft has changed completely. This also explains
why there seems no well-documented FIDO library available in public.

For this reason, our prototype does not use a FIDO library nor is fully compatible to
the specification. However, proposed concepts are designed to be compatible with the
specification, e.g. be implementable as an extension (the UAF specification1 as well as
the WebAuthn draft2 provide means for doing this).

Furthermore, the concepts of the FIDO specification were adopted whenever possible.
Anyway, the aim of the prototype is to demonstrate the proposed concepts rather than
covering details of the FIDO protocols.

FIDO-based authentication can be realized for numerous usage scenarios. As some of
our proposed approaches specifically target distributed deployment of FIDO/application
client and authenticator, a prototype that is feasible for this usage scenario was created,
although it might be not the most common one. Hence, it consists of the following
components:

FIDO authenticator An Android application, authenticating the user using the fin-
gerprint scanner.

FIDO Authenticator-Specific Module (ASM) A Windows application, communi-
cating with the authenticator over Bluetooth.

FIDO Client A browser plugin for Google Chrome, communicating with the ASM over
HTTP.

Demo application A fictional web application, consisting of
a frontend part, communicating with the FIDO client using HTTP AJAX-

requests,
and a backend part, the FIDO server (Relying Party (RP)).

Revocation authority (RA) A web service that manages a list of revoked authenti-
cator devices.

1https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/
fido-uaf-protocol-v1.0-ps-20141208.html#extension-dictionary (accessed 2016-12-22)

2https://www.w3.org/TR/2016/WD-webauthn-20160531/#extensions
(accessed 2016-12-22)

5

https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-protocol-v1.0-ps-20141208.html#extension-dictionary
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-protocol-v1.0-ps-20141208.html#extension-dictionary
https://www.w3.org/TR/2016/WD-webauthn-20160531/#extensions

1. Introduction

1.4.4 Verification & Critical reflection

Fortunately, there already exist methods to verify authentication schemes in a formal
way, thus we also used these methods to show the relevance of our work.
As already mentioned, there is a close link between security and usability. It is important
to push the user to utilize the system in a secure way. But of course, it is also important
that the usability is sufficient enough to encourage users to accept the new authentica-
tion mechanism. Therefore, usability considerations have been part of our verification
methodology as well.

Verification against FIDO security requirements The FIDO Security Reference
[7] provides a detailed elaboration of Security goals the FIDO specification is
intended to meet, including a detailed threat analysis. We showed that our adap-
tations of the specification do not weaken the compliance with these goals by
performing a threat analysis analogous to the one done by the FIDO document [7].

Evaluation using Bonneau’s framework Bonneau et al. proposed a framework[8]
for comparative evaluation of password alternatives. Using this framework, we
performed an evaluation of the FIDO standard, with and without our adaptations,
which shows that our proposed ideas improve the results of the evaluation.

Relevance of the work We could show that our adaptations improve FIDO-like au-
thentication in security-, usability- as well as deployability-aspects.

Design with usability in mind We showed that our adaptations can be implemented
in a usable fashion and are not just theoretically feasible.

1.5 Structure of the work

Chapter 2 gives an overview of the state of the art regarding scientific work, open stan-
dards & specifications but also (commercial) services & products that provide alternatives
to password-based authentication. Particular attention is given to the FIDO specification,
which is elaborated in detail in this chapter.

Chapter 3 is the main part of this work, and proposes three major enhancements to the
FIDO specification.

Chapter 4 describes the most important aspects of the prototype, including design deci-
sions, APIs, etc.

To show the scientific relevance of this work, chapter 5 critically analyzes our proposed
adaptations of the FIDO specification. This is done, among others, by comparing them

6

1.5. Structure of the work

with the original specification using a formal framework for evaluating password alterna-
tives. It also points out potential issues with our adaptations.

Chapter 6 finally summaries the results of this thesis, but also gives directions for future
research in this field.

7

CHAPTER 2
State of the art / analysis of

existing approaches

2.1 Scientific literature

The approaches of the related and state of the art scientific literature can be divided into
two categories: Attempts to improve the security of password-based authentication, by
helping or forcing the users to use passwords in a more secure way, and the attempts
to establish new, conceptually different authentication mechanisms, usually based on
public-key cryptography, and/or improving their usability.

Bonneau et al. [8] developed a framework for comparison of current and future approaches
to replace the password as the de-facto authentication mechanism on the Web, including
even exotic ones that are beyond the scope of this thesis. However, Bonneau et al.’s paper
gives an excellent overview of how many aspects need to be taken into account, to be
able to find a realistic candidate for replacing password-based authentication.

2.1.1 Improving password security

2.1.1.1 Tapas

McCarney et al. [3] propose Tapas, a distributed password manager to solve typical
security issues of currently established password managers. The key idea is that two
devices are needed to use the password manager, a manager-device, where the stored
passwords can be used to login to services, and a wallet-device, where the passwords are
stored encrypted. The concept does not need a master password, and therefore solves the
related security issues. Security is guaranteed in the way that user-interaction on both
devices in a narrow time-frame is needed to retrieve a password.

9

2. State of the art / analysis of existing approaches

However, aside from the obvious usability issues, i.e. feasibility for mobile-only users,
the concept requires a basic understanding of how to use passwords properly, regardless
of whether a password manager is used or not. Therefore, improving the security of
password managers can not be seen as the ideal solution for solving the security issues of
password-based authentication.

2.1.1.2 UniAuth & Knock x Knock

Hayashi and Hong [4] propose UniAuth and Knock x Knock, a novel password manager
architecture and the corresponding implementation for the iPhone and the Mac, an
approach very similar to Tapas. However, it introduces a lot of advanced features that
tackle many of the usability and security risks Tapas cannot solve.
They use Bluetooth Low Energy (BLE) for the communication channel between the
password vault (the smartphone) and the user’s desktop computer. This approach does
not only allow the system to be used in offline scenarios, it further increases security, as
an attacker would need to be physically co-located to be able to attack it.
Furthermore, the paper introduces the Universal Identity Management Protocol (UIMP),
that allows the password manager (the smartphone) to communicate with web services
that might support this protocol in the future. This not only enables the system to
reliably and fully automate the registration or login processes, it furthermore enables the
system to enforce password-quality, renewal or revocation rules.
Due to its design, the system can immediately be used for password-based services, but
provides additional features which, if service providers adopt UIMP, further increase
security and usability.
Unfortunately, as most of the other related work, UniAuth does not cover various real-
world usage-scenarios sufficiently, like mobile-only usage (utilization of the system directly
on the password vault device), or scenarios where the (master) vault is not available.

2.1.1.3 WebTicket

Hayashi et al. [9] propose WebTicket, a sort of paper-based password manager. The
prototype encodes the username- and password combinations as Quick Response (QR)
codes and prints them out on paper, one „ticket“ per account. To add additional security,
the login information is encrypted using a key stored on a computer, which can be printed
out as a QR code analogously. To be able to used the tickets on another machine, the
user has to import the key first.
The design has many obvious usability issues, as devices with a camera and the paper-
based tickets are required to authenticate to a service. Similar to Tapas, the system does
not force the user to utilize it in a secure way. People might keep the tickets together
with the decryption key and/or keep them insecurely otherwise. The users would need to
understand the security concept, which cannot be expected from the average user.

10

2.2. Standards & specifications

2.1.2 New authentication mechanisms

2.1.2.1 UbiKiMa

Everts et al. [5] propose UbiKiMa, and idea very similar to Tapas. However, the proposed
prototype offers two operating modes. The first one is more or less equivalent to the
distributed password-manager architecture of Tapas. The second one solves the mentioned
security issues by replacing the password completely and utilizing public-key cryptography
based authentication. It adopts the abstract concept of authenticating a web browser to
a web service using an additional device like a smart-phone, however uses asymmetric
encryption to transparently authenticate the user.
Obviously, this idea also does not cover usage scenarios where only a single device
is available, and also shares many of the other mentioned usability issues of related
approaches.

2.2 Standards & specifications

2.2.1 FIDO Alliance

The FIDO (Fast IDentity Online) Alliance is a 501(c)6 non-profit organization
nominally formed in July 2012 to address the lack of interoperability among
strong authentication devices as well as the problems users face with creating
and remembering multiple usernames and passwords. The FIDO Alliance
plans to change the nature of authentication by developing specifications
that define an open, scalable, interoperable set of mechanisms that supplant
reliance on passwords to securely authenticate users of online services. This
new standard for security devices and browser plugins will allow any website
or cloud application to interface with a broad variety of existing and future
FIDO-enabled devices that the user has for online security. [6]

FIDO develops two standards: Universal Authentication Framework (UAF) and Universal
Second Factor (U2F). The former describes a protocol for public-key cryptography-based
authentication and key management, the latter describes a protocol for two-factor au-
thentication and the related procedures. As we want to replace passwords, we give our
attention especially to the former standard, UAF.
UAF combines public-key based authentication of a trustworthy device under the user’s
exclusive control with simple authentication methods like biometrics or PINs that are used
to approve the trusted device’s actions. However, for deployments where the user’s client
device cannot be trusted (because multiple users have access to it for example), a separate
secure authenticator device is needed. The UAF architecture principally supports such
deployments, as it also defines interfaces between the user agent and the authenticator
component, however it doesn’t specify how this interface can be implemented securely.
This thesis will address this issue in detail.

11

2. State of the art / analysis of existing approaches

2.2.2 W3C Web Authentication

The World Wide Web Consortium (W3C) develops the WebAuthn-specification („Web
Authentication“): It describes an API for web developers that allows to utilize FIDO
authenticators from within a web browser, independent of the underlying implementation.
A first draft has already been released. [10]

2.3 Commercial services & products

2.3.1 LaunchKey

LaunchKey [11] offers commercial authentication services based on similar concepts as
proposed by the FIDO Alliance. Unfortunately, their solution does not consider many
potential real-world usage scenarios, such as authenticating without a smart-phone.
Furthermore, a commercial product that doesn’t rely on open standards can never be the
answer to the global authentication problem, as it is unlikely that such a product will
be adapted by a majority of service providers as well as users. It isn’t even clear if the
product can be used in a global environment, without having to rely on their commercial
service, which acts as an authentication proxy.

2.3.2 Nok Nok

Nok Nok Labs [12] is one of the major stakeholders behind the FIDO Alliance, and offers
a complete authentication solution based on the UAF specification, including server and
client components. Unfortunately, there are many real-world use cases this specification
does not propose solutions for, which their commercial solution does not do either. These
issues and missing features is where this thesis ties on.

2.3.3 Windows Hello & Microsoft Edge

Microsoft announced that their browser Edge includes an experimental implementation
of the WebAuthn Application Programming Interface (API) [13]. Windows Hello, the
Windows 10 feature that allows biometric authentication to the operating system [14],
can be used as a compatible FIDO authenticator.

2.4 The FIDO UAF specification
The aim of the following section is to give an overview of the UAF specification and the
most important concepts. The latest version of the specifications can be downloaded
here [15].

2.4.1 A note on FIDO versions

FIDO 1.0 is the only version that has been released as a final version [15]. Therefore,
the UAF part of this specification, which is the part relevant for our work, is elaborated

12

2.4. The FIDO UAF specification

Figure 2.1: FIDO UAF High-Level Architecture [16]

here in detail.
FIDO 2.0 hasn’t been published by the FIDO alliance at of this writing. However, parts
of the specification have been submitted to the W3C and were published as draft of
the Web Authentication API[10]. According to the W3C, FIDO 2.0 will unify the two
standards of FIDO 1.0, UAF and U2F, to a single specification1.
As the overall concepts stayed the same, the specification is principally simply referred
to as FIDO. However, if an aspect only concerns a certain version of the standard, this is
stated accordingly, e.g. UAF refers to FIDO 1.0 and WebAuthn refers to WebAuthentica-
tion/FIDO 2.0.

2.4.2 Overview

Figure 2.1 shows the overall architecture of the UAF specification.

2.4.2.1 Components of the UAF architecture

FIDO Authenticator The authenticator generates and stores the private keys that
are used to sign the server’s authentication challenges. To initiate a registration or
authentication operation he authenticates the user by biometric or other methods.
An important design aspect of this component is how the private data can be
protected from unauthorized access.

1https://www.w3.org/Submission/2015/02/Comment/ (accessed 2016-12-22)

13

https://www.w3.org/Submission/2015/02/Comment/

2. State of the art / analysis of existing approaches

FIDO Client The FIDO client negotiates authentications and related processes between
the user agent (e.g. web browser) and the authenticator. It locates available
authenticators using the ASM API.

ASM Authenticator-Specific Modules are the link between FIDO clients and authentica-
tors, and provide an API that allows clients to detect available authenticators. On
Windows platforms for example, the location of the ASM libraries can be detected
by looking into predefined registry paths (e.g. HKLM\Software\FIDO\UAF\ASM).

FIDO server The FIDO server is the counterpart to the authenticator, and negotiates
authentications, registrations or related processes with it. It stores the required
information like the authorized public keys and related metadata.

FIDO metadata service The metadata service is operated by the FIDO Alliance and
provides compliance information like attested authenticators to FIDO servers.

2.4.3 Privacy considerations

The following privacy goals stated in the FIDO specification [16] are important to
understand the concepts proposed by the standard:

User accounts are not correlatable. There exists no global identifier that allows to
link together two FIDO accounts that originate from the same authenticator device.
Key-pairs are generated on a per-device, per-user account and per-relying party
basis. If a user creates two accounts for the same relying party using the same
authenticator, the relying party has no possibility to link the two accounts together,
using the FIDO information alone. Furthermore, if two relying parties exchange user
data, they cannot conclude from their accounts to a single user device respectively
person.
To preserve anonymity despite authenticator attestation, attestation data is always
shared among a large user base (at least 100000 installations).

Biometric data never leaves the authenticator. Biometric data is just used to lo-
cally authenticate the user against the FIDO authenticator. It never gets transmit-
ted to the relying party or other entities.

2.4.4 Important security concepts

2.4.4.1 Application isolation

It is important to allow the user to limit generated keys to certain applications, FIDO
clients and ASMs. Otherwise, malicious software could try to temp the user to grant it
access to credentials created for legitimate applications. To know which Relying Partys
(RPs) the user is registered with is not that important, as the attacker can simply try
popular services. Of course, the user needs to approve the authentication operation to
the FIDO client by sweeping his finger over the sensor. However, the probability that a

14

2.4. The FIDO UAF specification

careless user does this without questioning the reason for the authentication request is
very high. The fingerprint prompt could easily be taken for an unlock request for example.

A paranoid solution to this problem would be to further tighten the security concept of
the FIDO specification, and generate key-pairs on a per-account, per-device and per
client application basis. It is obvious, that this approach wouldn’t be acceptable from
a usability point of view, as a browser change for example would force the user to register
the new browser for every service he utilized on the old browser. Therefore, we need
something more flexible.

Furthermore, in some situations even more flexible access to the keys is necessary, e.g.
when a user wants to use his smartphone as a FIDO authenticator to authenticate on a
public desktop computer. For that reason, the UAF specification defines two use-cases
for application isolation: Bound and roaming authenticators.

For these reasons, the UAF ASM API specification [17] proposes a complex application
isolation concept. It introduces a number of identifiers and secret tokens, that are used
to recognize trusted FIDO components:

AppID Identifies the relying party, e.g. the Uniform Resource Locator (URL) of a web
application. Points to a list of FacetIDs.

FacetID A relying party specifies a list of trusted FacetIDs, which are allowed to access
the application’s credentials. What this FacetID is generated from, depends on
the user agent of an application. In the case of a web application, FacetIDs may
constitute subdomains or paths that are allowed to access the credentials stored
for a specific AppID. This is necessary as complex web applications typically have
more than one HTTP endpoint. Additionally, users may want to use the same
credential for a completely different user agent, e.g. access their e-mails using a web
browser and a native application, without having to register each application to
the FIDO authenticator individually. In this case, a FacetID also may represent an
identifier for a native application, e.g. the hash of the Android application package
(APK) signing certificate on the Android platform. See the FIDO AppID and Facet
specification for details [18].

CallerID Identifies the FIDO client. How the CallerID is determined depends on the
environment. On Android platforms for example, this could be the hash of the
APK signing certificate of the FIDO client application.

PersonaID In typical multi-user environments, like on desktop computers, it is desirable
to limit the accessible credentials to the user account that created them. Therefore,
the PersonaID typically represents the operating system user account.

15

2. State of the art / analysis of existing approaches

ASMToken The ASM generates this random secret on first use.

KHAccessToken Key Handle Access Token. The specification distinguishes bound and
roaming authenticators.

KHAccessTokenbound = Hash(AppID|ASMToken|PersonaID|CallerID)

KHAccesstokenroaming = Hash(AppID)

(Note: „|“ denotes byte wise concatenation.)

2.4.4.2 Authenticator attestation

Authenticator attestation allows the FIDO server to verify, that the authenticator appli-
cation is what it claims to be, e.g. is a serious product and no malware. This allows
the relying party to allow only software products that comply with certain security
requirements, for example.

The FIDO 1.0 UAF protocol specification[19] supports the following attestation flavours:

Full Basic Attestation All authenticator models of a specific type share a key-pair
that is used to sign their compliance metadata. The private key is stored within
the authenticator application and must not be extractable by the user. The
authenticator vendor provides the public key to the relying parties to allow them
to verify the authenticator’s attestation information. The specification prescribes
that at least 100000 installations must share the same key-pair, otherwise the
unlinkability of user accounts cannot be ensured. This attestation flavour only
makes sense if the target platform provides the possibility to store the attestation
private key in a way that nobody except the manufacturer can extract it. An
example for such platform could be dedicated hardware authenticators that are
delivered with a pre-installed attestation key.

Surrogate Basic Attestation There is no dedicated attestation key-pair, instead, the
account-specific authentication keys are used to sign the attestation information.
This scheme cannot provide a real compliance proof.

Additionally, the current working draft of the WebAuthn/FIDO 2.0 specification [10],
published by the W3C, lists the following additional attestation models:

Privacy Certificate Authority (CA) The Privacy CA is a service which is assumed
to be operated by the vendor of the authenticator software in most cases. Each
deployment of the authenticator gets equipped with an endorsement key-pair,
with the public part being preserved by the Privacy CA. This key-pair is specific
to a single installation of the authenticator software, therefore the integrity of
the attestation architecture is not threatened if the user manages to extract the

16

2.4. The FIDO UAF specification

corresponding private key. The public part of the endorsement key-pair is used to
authenticate against the Privacy CA. The authenticator generates a new attestation
key-pair for each account, and signs the public part with the private endorsement
key.
For each transaction with a relying party, the Privacy CA checks the validity of
the attestation key by verifying if the associated public endorsement key hasn’t
been revoked. On success, it issues a certificate for it using a private key. The
key-pair that is used by the Privacy CA for this process is the same for a large
number of installations, like for Full Basic Attestation, and therefore is an extremely
threatened secret.

Direct Anonymous Attestation (DAA) DAA is a concept also known from the
TPM specification and is based on the idea of group signatures. There exists a
group private key, which is needed to generate new member private keys, and a
single group public key. The idea is that group members can use their individual
private key to sign messages, while their anonymity is preserved, as a single group
public key can be used to verify the signatures. However, group signatures are still
researched very actively, as there are still some unsolved issues, e.g. how member
keys can be revoked.
Brickell and Li from Intel proposed Enhanced privacy ID (EPID) [20], a DAA scheme
with enhanced revocation capabilities. However, the efficiency of the proposed
algorithms practically is still very limited, as both the member and the verifier
have to perform computations linear to the size of the list of revoked members.
Furthermore, similar as for the Privacy CA model, some data that was used for
member key-pair generation needs to be preserved by the issuer/revocation manager
to be able to revoke members in the future. This limitation might be problematic
for some deployments (see [20] for details about the revocation protocol).
The W3C announced that a DAA algorithm based on elliptic curve cryptography,
called Elliptic Curve DAA (ECDAA) is going to be published [10].

Android Attestation This attestation strategy is conceptually completely different
from the others. It is based on Google’s SafetyNet2 API and Google Play Services,
hence it can only be utilized on Android based authenticators. With the SafetyNet
API, Android applications can request a signed statement from Google’s servers,
that attests that the operating environment fulfils certain security requirements.
These might include security relevant system settings, but also the absence of known
dangerous software for example. Relying parties can verify the authenticity of the
attestation information using a public key provided by Google. In contrast to the
other attestation models, this model doesn’t really provide information about the
authenticator application itself, but rather about the system environment of the
authenticator. However, this information might also be very valuable.

2https://developer.android.com/training/safetynet/index.html
(accessed 2016-12-22)

17

https://developer.android.com/training/safetynet/index.html

2. State of the art / analysis of existing approaches

2.4.4.3 Implementation challenges

How the AppID, FacetID, CallerID and PersonaID can be reliably determined by the
FIDO components depends on the operating environment and may be problematic to
implement on some platforms. While application isolation in Android3 for example, was
built in and enforced from the ground up, comparable concepts for Windows are very
new4 and are not enabled by default. This explains why the the prevalence of this feature
still seems to be very low.

Similar challenges come along with the requirement to store secret information. Not only
the keys on the authenticator, but also the ASMToken and KHAccessToken must be
stored privately. While the Android Keystore System[21] supports storage of private data
even without special hardware, Windows requires a TPM per design, as user applications
can be run with unrestricted privileges as long as application isolation is not enforced
consequently.

3https://source.android.com/security/ (accessed 2016-12-22)
4https://msdn.microsoft.com/en-us/library/dd548340(v=ws.10).aspx

(accessed 2016-12-22)

18

https://source.android.com/security/
https://msdn.microsoft.com/en-us/library/dd548340(v=ws.10).aspx

CHAPTER 3
Improvements to FIDO

specification

3.1 Centralized authenticator revocation

The UAF specification does not propose a concept for centralized authenticator revocation.
This means that if an authenticator device gets lost, stolen or compromised in another
way (e.g. by malware) so that the private authentication keys cannot be longer considered
safe, the device needs to be revoked for each relying party individually. There doesn’t
exist a centralized global list of stolen authenticator devices.

The associated usability and implicated security issues are obvious: The probability that
the user does not even remember which services his authenticator device was linked to is
very high, and despite of this issue the possibility to revoke keys in a user-friendly way
might not be given for every relying party at all.

Implementing a centralized revocation scheme while maintaining anonymity is non-trivial.
The subsequent section explains why.

3.1.1 Challenges

Traditional Public Key Infrastructure (PKI)-based environments use a well established
concept named Certificate Revocation Lists (CRLs). The CRL is an autonomous service
that provides a list of revoked certificates. It is queried online by the relying parties on
every authentication request, or downloaded for offline use and refreshed from time to
time, depending on the security requirements of the application.

19

3. Improvements to FIDO specification

However, the FIDO UAF specification prescribes a unique key-pair for every account, on
every device and for every RP. This ensures that an RP cannot link two accounts of the
same user together and two RPs cannot link requests to a single user, respectively (see
Security goal (SG)-4 Unlinkability in the FIDO Security Reference [7]). This fact makes
it hard to implement a CRL-based key-revocation scheme, as there is not a single public
key respectively certificate that can simply be put on the revocation list.

Furthermore, a CRL-alike revocation scheme for FIDO authentication implicates further
privacy challenges traditional PKIs do not face, imposed by the Unlinkability property of
the specification. However, as a revocation scheme is not part of the specification, the
question to which degree a revocation scheme must guarantee unlinkability isn’t neither.
Unfortunately, it is important to clearly define what privacy requirements a revocation
scheme must meet before developing one. Therefore, this question is discussed in detail
in the subsequent section.

3.1.1.1 Unlinkability considerations

Note: For further reference, we define the term Revocation authority (RA). A RA is the
entity that manages and provides the CRL.

SG-4 of the FIDO Security Reference is defined as follows:

Unlinkablity: Protect the protocol conversation such that any two relying
parties cannot link the conversation to one user (i.e. be unlinkable). [7]

However, to be able to determine the necessary privacy measures for a revocation protocol,
the term unlinkability needs to be defined even more precisely. Concretely, the following
three important aspects need to be addressed:

Pre-revocation unlinkability/Revocation-query unlinkability A revocation list
may be either queried online for a specific account respectively public key, or offline
by querying a list that is refreshed from time to time. In the case of online access,
it must be ensured that the RA is not able to link a querying relying party to a
specific user device. For this reason, we define a new security goal, SG-4.1.

Post-revocation unlinkability The question if the unlinkability property still needs
to be fulfilled even if the authenticator device has been revoked further constrains
the possible approaches for a revocation scheme. We define a new security goal,
SG-4.2. Some of our proposed approaches will meet even this requirement. Note:
Post-revocation unlinkability entails pre-revocation unlinkability.

Local vs. foreign unlinkability Independent of any revocation aspects, the wording
of the definition of the unlinkability security goal is unlcear. The definition of
SG-4 describes the term unlinkability as a measure to ensure that two relying

20

3.1. Centralized authenticator revocation

parties cannot link actions to a single user. For further reference, this is what we
call foreign unlinkability. Section 4, Privacy Considerations of the architectural
overview-document of the UAF specification [16] however, states the following:

Similarly, if two users share a UAF device and each has registered their
account with the same relying party with this device, the relying party will
not be able to discern that the two accounts share a device, based on the
UAF protocol alone. [16]

As this privacy goal also can be classified as an unlinkability requirement, we need
to define the security goal more fine-grained.
Therefore, we introduce the security goals SG-4.3 Foreign unlinkability and SG-4.4
Local unlinkability. Local unlinkability is the stricter variant and entails remote
unlinkability, as when even a single relying party cannot link two user accounts to
a single authenticator device, another foreign relying party won’t be able to do so
either.

Note: Section 5.1.1.2 summarizes all security goals defined in this work.

3.1.2 Online vs. offline revocation list querying

Table 3.1 compares the strengths and drawbacks of online- and offline revocation list
querying.

As the comparison shows, each approach has benefits and drawbacks. The suitability for
a specific use case highly depends on the application’s and user’s needs. Therefore, this
work proposes an online- as well as an offline-revocation protocol. The two protocols are
fully compatible, this means every involved actor (relying party, revocation authority
and client) can operate both protocols simultaneously.

3.1.3 Related work

With its authenticator attestation concept (see section 2.4.4.2), the FIDO specification
provides some schemes that might also be used for implementing central authenticator
revocation. Only those attestation models that attest authenticator instances individually
(not by model type like Full Basic Attestation for example), are eligible: These are
Privacy CA and DAA (or the improved variant EPID). Unfortunately, both models have
several weaknesses regarding deployability, security, availability, scalability or privacy
(for details about the weaknesses, see section 2.4.4.2):

hardware dependence Both schemes require the authenticator key-pair to be tamper-
proof. The Privacy CA scheme however, might be slightly adapted to get rid of
this requirement: RPs could store a fingerprint of the authenticator public key
anonymized with the account-specific public key. This would allow RPs to detect
altered keys.

21

3. Improvements to FIDO specification

online querying offline querying
availability For maximum security, online query-

ing requires the RA to be queried for
each authentication request, which
makes the RA a SPoF. Without fur-
ther considerations, an outage of the
RA’s infrastructure prevents users
from authenticating to relying par-
ties.

In the case of an outage of the
RA, the revocation list cannot
be refreshed. This prevents re-
cent revocations from being en-
forced by the relying parties,
but doesn’t prevent eligible users
from authenticating successfully.

performance For maximum security, online query-
ing requires the RA to be queried for
each authentication request. This
implies bundled load on the RA’s
infrastructure. However, a well-
scalable revocation scheme might be
able to handle the load.

Low refreshing-rates entails low
load on the RA servers.

privacy Without further considerations, on-
line querying allows the RA to iden-
tify the querying relying parties by
their IP addresses. As the RA needs
to identify user devices per design,
it would be able to determine which
services are used by a certain user.
This would pose an unacceptable
privacy violation.

For offline-querying, relying par-
ties fetch the list with all revoked
devices at once. The RA can de-
termine which relying party con-
nects, but cannot link it to a spe-
cific user.

security For maximum security, online query-
ing requires the RA to be queried for
each authentication request. This
ensures that if a user puts his de-
vice on the revocation list, all re-
lying parties refuse authentication
immediately.

Obviously, offline revocation lists
pose the risk that a revoked de-
vice can still authenticate suc-
cessfully, because the list hasn’t
been refreshed yet. There is a
trade-off between security and
performance.

Table 3.1: Online- vs. offline revocation list querying

RA data loss Both schemes need to store data about all valid (unrevoked) authentica-
tors. If the RA looses this data because of a system crash for example, Privacy CAs
cannot perform revocation status attestations anymore. EPID-based deployments
continue working as long as the RA’s public key is available, as revocation status
verifications do not involve the RA directly. However, no new devices can be
revoked. To restore full functionality, both schemes require all authenticators to
generate new key-pairs.

22

3.1. Centralized authenticator revocation

RA data leakage For both schemes, the RA uses a single key-pair that is used for all
revocation status attestations. For EPID, if the private part of this key-pair is
leaked and the key-pair needs to be re-generated, all authenticator key-pairs become
invalid. As stated above, Privacy CA could be adapted to allow re-generation of
the authenticator key-pairs. EPID requires that the authenticator key-pair isn’t
modifiable by the user, therefore key-regeneration is very problematic. It would
require manual out-of-band re-attestation of all issued authenticator devices, e.g.
the user would have to prove by other means that his authenticator device hasn’t
been revoked before the data crash. As Privacy CA-based revocation schemes
could be realized without tamper-proof authenticator key-pairs (see above), key
re-generation would be possible, at least theoretically, because this would invalidate
all registered accounts.

Scalability EPID doesn’t scale well for a large number of revoked devices: Both the
authenticator and the RP have to perform computations linear to the size of the
list of revoked authenticators (see [20] for details about the revocation protocol).

Post-revocation unlinkability EPID does not provide Post-revocation unlinkability:
The revocation list contains data that can be used to uniquely identify an authenti-
cator (see [20] for details about the revocation protocol).

Fortunately, in contrast to attestation schemes, a revocation scheme doesn’t necessarily
require an authenticator to be able to proof it’s validity without any data being stored
about it at registered RPs. This means that during registration of a new account with
a RP, we can store information that can be used later to verify the authenticator’s
revocation status. Of course, it is important that this information does not threaten the
stated privacy requirements, i.e. does not violate the unlinkability property.
In the following sections, we propose offline revocation schemes that meet this require-
ment nearly completely, and an online revocation scheme that meets this requirement
completely. All proposed schemes can be implemented independently of the FIDO UAF
code, and therefore might be enforced by relying parties optionally only, depending on
the security requirements of the application or the user.

3.1.4 Revocation protocols with offline-verification

This section proposes two offline revocation protocols, which differ in their unlinkability
properties.
The first scheme guarantees foreign post-revocation unlinkability. Local unlinkability isn’t
provided by this scheme at any time.
The second scheme provides foreign post-revocation unlinkability, as well as local pre-
revocation unlinkability. This means that after an authenticator device has been revoked,
if two accounts had been registered with this authenticator at a single RP, this RP can
link the two accounts together.

23

3. Improvements to FIDO specification

As offline revocation offers some benefits over online revocation per design, and such
strict unlinkability characteristics might not be required or maybe even not desired, this
section describes both protocols in detail.

3.1.4.1 Offline revocation with foreign post-revocation unlinkability

The concept uses the following entities:

• A relying-party identifier Idrp. It is important that the relying party is something
the authentication client is able to verify. Otherwise, multiple relying parties could
share an identifier intentionally to be able to link user accounts together. The
AppID defined by the FIDO specification[18] meets this requirement and can be
used as Idrp, for example.

• A device identifier Idd

• The revocation hash Hr = Hash(Idrp + Idd)

• A revocation list RL, consisting of multiple revoked Idd, maintained by the RA
and kept private.

• An anonymized revocation list RLa, consisting of corresponding Hr entries.

• An URL Ur that locates the offline revocation list. This can be an HTTP or File
Transfer Protocol (FTP) endpoint for example, depending on the implementation.

The following step needs to happen before an actual registration or authentication
operation is performed:

• Idd is generated on the first use of the authenticator application.

On registration of an authenticator with a RP, the following steps are performed addi-
tionally to the registration steps defined by the FIDO specification:

1. Idrp is verified by the authenticator.

2. Hr is computed.

3. Hr and Ur are transmitted to the relying party and stored permanently.

4. The relying party starts fetching the anonymized revocation list RLa periodically.

The anonymized revocation list RLa is generated by the RA for each relying party
individually. This happens in the following way:

24

3.1. Centralized authenticator revocation

1. The relying party requests its anonymized copy of RL by sending its Idrp to the
RA.

2. The RA calculates Hr for each entry of RL.

3. The RA randomizes the order of the entries. This is important because otherwise
two relying parties could link two accounts together by comparing the positions of
the corresponding Hr in the revocation list.

4. The RA sends RLa to the requesting relying party.

5. The relying party stores RLa permanently.

The actual revocation status verification, which needs to be performed for every authen-
tication procedure, consists of the following steps:

1. RP looks up the stored Hr of the authenticating account in RLa.

2. If the hash can be found, the corresponding device has been revoked, otherwise the
authentication process was successful.

3.1.4.2 Offline revocation with local pre-revocation unlinkability and
foreign post-revocation unlinkability

The concept uses the following entities:

• A RP identifier Idrp. It is important that this identifier is something the authen-
tication client is able to verify. Otherwise, multiple relying parties could share
an identifier intentionally to be able to link user accounts together. The AppID
defined by the FIDO specification[18] meets this requirement and can be used as
Idrp, for example.

• A device identifier Idd

• An account salt Saa

• The revocation hash Hr = Hash(Idrp + Idd)

• The per-account revocation hash Hra = Hash(Hr + Saa)

• A revocation list RL, consisting of multiple revoked Idd, maintained by the RA
and kept private.

• An anonymized revocation list RLa, consisting of corresponding Hr entries.

• An URL Ur that locates the offline revocation list. This can be an HTTP or FTP
endpoint for example, depending on the implementation.

25

3. Improvements to FIDO specification

The following step needs to happen before an actual registration- or authentication
operation is performed:

• Idd is generated on the first use of the authenticator application.

On registration of an authenticator with a RP, the following steps are performed addi-
tionally to the registration steps defined by the FIDO specification:

1. Idrp is verified by the authenticator.

2. Saa is generated by the authenticator. This is important, because if Saa would be
generated by the relying party, two relying parties could use a static, identical value
for Saa intentionally, to be able to link user accounts to an authenticator device.

3. Hr and Hra are computed.

4. Hra, Saa and Ur are transmitted to the relying party and stored permanently.

5. The relying party starts fetching the anonymized revocation list RLa periodically.

The anonymized revocation list RLa is generated by the RA for each relying party
individually. This happens in the following way:

1. The relying party requests its anonymized copy of RL by sending its Idrp to the
RA.

2. The RA calculates Hr for each entry of RL.

3. The RA randomizes the order of the entries. This is important because otherwise
two relying parties could link two accounts together by comparing the positions of
the corresponding Hr in the revocation list.

4. The RA sends RLa to the requesting relying party.

5. The relying party stores RLa permanently.

The actual revocation status verification, which needs to be performed for every authen-
tication procedure, consists of the following steps:

1. For each Hr in RLa, the RP computes Hra with Saa of the authenticating account,
and compares the resulting hash with the Hra stored with the account information.

2. If a matching hash can be found, the corresponding device has been revoked,
otherwise the authentication process was successful.

26

3.1. Centralized authenticator revocation

3.1.4.2.1 Performance considerations We can observe that a large revocation list
will constitute a performance issue, as the relying party needs to compute nRL hashes
for every authentication operation, where nRL is the number of revoked devices for the
RA. (Note: A RP only needs to check the revocation list of the RA the authenticating
client utilizes.)
To handle this issue, precomputed hashes or caching of already computed values for Hra

could be used. However, the size of the cache might become very large, especially if the
relying party has a large number of accounts, as the following calculation shows:

Let sH be the size of a hash, na the number of accounts at a relying party, and scache be
the size of the cache. Let sH = 32 bytes, na = 1000000 and nRL = 100. Then

scache = sH ∗ na ∗ nRL = 3, 2 GB

To reduce the size of the cache, a truncated version of Hra, H ′
ra could be used to generate

the cache. Due to the low size, the probability that for multiple Hra the resulting hashes
are identical is very high. As these duplicate hash entries do not need to be stored, the
size of the cache can be reduced significantly. The worst case size of the hash cache can
be calculated as follows:

Let sH′ be the size of the truncated hash, and R(s) be the function that calculates the
number of possible hash values for a given size s. Let sH = 32 bytes, sH′ = 2 bytes and
nrl = 100. Then

scache = (sH + sH′) ∗R(sH′) ∗ nRL = 844, 8 KB

As we can see, the size of the cache is significantly smaller with this improvement.

For every authentication operation, the RP first performs the revocation lookup using
H ′

ra. If there is no match, it can be concluded that the device isn’t revoked. If there is a
match, the RP needs to calculate Hra for every Hr stored in the cache with the matched
H ′

ra. In the worst case, nRL computations have to be performed.

3.1.4.3 Issues with both offline revocation schemes

Privacy issues in small deployments For both proposed offline revocation protocols,
it is important to point out that the grade of anonymity of revoked devices depends
on the number of revoked devices. If a RA only revoked one or a few devices, it is
easy for two relying parties to link accounts to a single authenticator device.

Hash collisions Due to the nature of hash functions, it is possible that two authentica-
tor devices produce identical values for Hr or Hra, even if all the values that are
used to compute these hashes are distinct. This can lead to the situation where a
valid authenticator device is blocked because another, revoked authenticator device

27

3. Improvements to FIDO specification

produces an identical value for Hr or Hra.

As this issue cannot occur for the online revocation scheme proposed in the subse-
quent section, offline revocation verification could always be deployed in combination
with online verification: An unintentionally blocked authenticator device could be
given the possibility to proof its valid status by performing an online revocation
verification request in the case the offline verification results in a rejection.

Fortunately, we were able to develop an revocation scheme that uses online-querying
and isn’t susceptible to the issues stated above. Furthermore, it can guarantee local
post-revocation unlinkability. This approach is proposed below.

3.1.5 A revocation protocol with online-querying

Note: As the previously described revocation schemes that use offline-checking have serious
drawbacks (see above) and require further research, the following protocol, which is based
on online-querying, is considered the final solution relating to this work.

To recapitulate, the relevant involved parties are the

• FIDO authenticator

• Relying Party (RP)

• Revocation authority (RA)

The concept uses the following entities:

• A per-account key-pair, consisting of a private key ka and a public key Ka

• An authentication challenge ca

• An authentication signature Sa = Sign(ca, ka)

• A randomly generated account salt Saa

• A device identifier Idd

• The revocation hash Hr = Hash(size(Idd) + Idd + Saa)

• A key-pair the revocation service uses to sign query responses, consisting of a
private key kr and a public key Kr

• The revocation signature Sr = Sign(Hr + ca, kr)

• An URL Lr that locates the revocation service. This can be a HTTP or Domain
Name System (DNS) endpoint for example, depending on the implementation.

28

3.1. Centralized authenticator revocation

The following steps need to happen before an actual registration or authentication
operation is performed:

1. Idd is generated on the first use of the authenticator application.

2. kr and Kr are generated by the revocation service and are only changed in the case
of a leakage of kr.

3. Kr is published on Lr.

To register an authenticator with a RP, the following steps are performed:

1. ka and Ka are generated by the authenticator.

2. Saa is generated by the authenticator.

3. Hr is calculated.

4. Ka, Hr and Lr are transmitted to the relying party and stored permanently.

The actual authentication procedure consists of the following steps:

1. RP generates a challenge and sends it to the authenticator.

2. The authenticator computes the authentication signature Sa with the challenge ca

and ka.

3. RP verifies the signature with Ka.

4. The authenticator sends ca, Saa and Idd to the RA.

5. RA looks up Idd in its list of blocked devices. If the identifier is found, RA sends an
error response and the authentication procedure is aborted. If not, the procedure
continues.

6. RA calculates Hr, and computes the signature Sr = Sign(Hr + ca, kr) and returns
it.

7. The authenticator forwards the signature to the RP.

8. RP decrypts the signature with Kr and checks if Hr and ca match the stored
versions.

9. If both match, the authentication process was successful.

29

3. Improvements to FIDO specification

3.1.5.1 Performance considerations

It is obvious that the RA is a SPoF regarding availability as well as performance, as
it is involved in every authentication operation. The following paragraphs discuss who
unavailable RAs can be handled and how the load on their infrastructure can be limited.

3.1.5.1.1 Query intervals To reduce the associated risk of inability to perform
authentications, the revocation verification mechanism at the RP might tolerate a certain
number of failed revocation checks, or perform a check only every n authentication
operation to reduce the load on the RA’s infrastructure. RPs may enforce different check
intervals, according to the maximum time a blocked device can be tolerated with regard
to the level of security required by the application.
RAs might limit the number of possible revocation queries per timespan, and customers
could be forced by RPs to purchase premium versions of authenticator software that
utilizes RAs which allow more frequent revocation checks than others to be compatible
with security-critical services.

3.1.5.1.2 Caching Aside from that, the load on the RA could be slightly lowered by
caching the results of the computation of Hr. As the value doesn’t change over time, it
could be cached using efficient data structures like trees and looked up by the parameters
of the hash function on demand.

3.1.5.1.3 Load balancing As the only permanent data the RA’s servers depend
on is the list of revoked device identifiers, which should be a relatively small dataset,
multiple instances of revocation servers can be deployed easily. An issue could be the
size of an eventually used revocation hash cache, which might grow to large for a single
machine. However, instead of randomly balancing the load on the revocation servers, it
might be balanced by device identifier, which will keep the size of the revocation hash
cache small.

3.1.5.2 A security note on concatenated arguments of hash functions

The size parameter size(Idd) in the definition of the revocation hash function, Hr =
Hash(size(Idd) + Idd + Saa), is a very security critical component.

Example: Let Idd = ”imei : 239480234802123” and Saa = a3254bcb2356de65.

If the definition of the revocation hash function would be Hr = Hash(Idd + Saa),
where + denotes byte wise concatenation, an attacker that possesses a revoked authen-
ticator device could send the following tampered parameters to the revocation service:
Idd = ”imei : 23948023480212” and Saa = 3a3254bcb2356de65.
Note: The only thing that has changed is that one character of the device identifier was

30

3.2. Securing wireless ASM-Authenticator connections

shifted to the account salt.

Due to the changed device identifier, the revocation service would not identify the re-
questing authenticator device as a revoked one, and as the concatenated value of both
parameters results in the same value as for the original ones, it would generate the valid
values for the hash and the associated signature!

With the inclusion of the calculated size of the device identifier into the calculation of
the hash, the described attack becomes impossible. It is enough to include the size of
one parameter only.

Other possibilities to prevent this attack would be to combine the two parameters by
XOR operations, or to pass hashed values as parameters to the revocation hash function,
e.g. Hr = Hash(Hash(Idd) + Hash(Saa)) or Hr = Hash(Hash(Idd) + Saa). However,
the proposed method above is more efficient regarding performance, which can be an
important factor in large deployments.

3.1.5.3 Implementation considerations

A further interesting aspect is that the proposed protocol has some similarities with
DNS Security extensions (DNSSEC). DNSSEC protects DNS responses with digital
signatures, and DNS implementations itself should be very efficient and matured handling
extreme loads of small queries and load balancing. These opportunities could allow the
proposed revocation concept to be quickly implemented using the DNSSEC protocol,
without having to reinvent the wheel, as the signing mechanism is already provided by
the DNSSEC implementation.

A DNS query to the RA might look like this:
<ca>.<Saa>.<Idr>.ra.authenticator-vendor.com

The response might be a signed TXT resource record and look like this:
ns1.authenticator-vendor.com. <TTL> IN TXT "<Sr>"

3.2 Securing wireless ASM-Authenticator connections
If FIDO authenticator and ASM respectively client are located on different devices, the
physical connection between these devices might not be able to guarantee integrity and
confidentiality of the transmitted data.

Bluetooth for example, must be considered as a potentially insecure communication
channel. First, the PIN-based pairing mechanism should enforce very complex PINs to
be secure. Furthermore, the built-in security mechanisms require the user to be aware of

31

3. Improvements to FIDO specification

how they actually work, to be really safe against Man-in-the-middle (MITM)-attacks
(e.g. be aware that repeated PIN-prompts after an already successful pairing procedure
are likely to be caused by an attacker [22]). With the introduction of Bluetooth 2.1,
many security-related issues have been fixed, however the user still plays an active role
in establishing a secure connection, e.g. when numeric comparison is used, he needs to
assure himself that the connection is secure [23].

Due to the design of the FIDO UAF protocol, there is no need for a communication
channel between ASM and authenticator that guarantees confidentiality of the transmit-
ted data, as the protocol messages never contain sensitive unencrypted data. However,
it is important that the underlying communication channel guarantees integrity and
authenticity. Otherwise, there would be no protection mechanism that guarantees the
user that an authentication request actually comes from the client device he is working
on, rather than from an attacker’s machine.

This issue can be solved by attaching Hash Message Authentication Codes (HMACs) to
every message exchange between ASM and authenticator, exchanging the HMAC secret
using asymmetric encryption, and verifying the integrity of the key exchange using an
out-of-band mechanism.

Our proposed approach uses QR-codes displayed on the client machines to provide the
fingerprint of the public key that is used to encrypt the HMAC secret to the authenticator
device. The authenticator device needs to be equipped with a camera to be able to
scan the QR-code. The use of QR-codes additionally brings the possibility to transmit
protocol-dependent pairing information (e.g. Bluetooth device names) at one go, hence
reducing the number of required user interactions. Our proposed approach assumes that
Bluetooth is used as the underlying communication channel.

3.2.1 Protocol description

The concept uses the following entities:

• An ASM key-pair consisting of a private key kasm and a public key Kasm.

• The fingerprint of the ASM key-pair fpasm = Hash(Kasm)

• The random HMAC secret key khmac.

• The pairing information PI (e.g. Bluetooth device name).

Before secure messages can be exchanged, the ASM needs to generate the ASM key-pair.

32

3.3. Indirect authentication

Pairing an authenticator to an unkown ASM is done by the following steps:

1. The ASM application encodes PI + fpasm as QR-code and displays it.

2. The user scans the QR-code with his authenticator device/application.

3. The authenticator uses PI to connect to the desired ASM.

4. The ASM sends Kasm to the authenticator.

5. The authenticator validates the received Kasm by computing fpasm and comparing
it to the value received via the QR-code. If the values don’t match, the connection
is aborted.

6. The authenticator generates a random khmac, encrypts it with Kasm and sends the
resulting ciphertext back to the ASM.

7. The ASM decrypts the ciphertext to gain khmac.

For every subsequent UAF message, whether it goes from the ASM to the authenticator
or the other way round, a HMAC hash of the message payload is computed, attached to
the message and verified by the other end.

To be able to communicate with each other in the future without having to pair again,
both the key-pair at the ASM and PI + fpasm at the authenticator might be stored
permanently for a certain period of time.

Note: The data encoded in the QR-code is not private. Attackers spying the QR-code
displayed on the users monitor cannot extract any secret information from it.

To be able to attack the connection, e.g. making the authenticator use a malicious public
ASM-key, the attacker would need to have the ability to modify the QR-code displayed
on the user’s client machine.

3.3 Indirect authentication

There exist a number of potential use cases where FIDO authenticator and ASM respec-
tively FIDO client do not reside on the same device, and no physical connection between
the stated components is possible. A possible scenario might be a user that wants to use
his smartphone as an authenticator to login in on a public desktop in an Internet cafe, or
on an office computer that isn’t equipped with a Bluetooth interface for cost- or security
reasons, for example.

33

3. Improvements to FIDO specification

The UAF specification does not cover such use cases. For this reason, we propose a
mechanism called Indirect authentication. The proposed protocol allows camera-equipped
devices (e.g. smart phones) to be used as authenticators without the need for a physical
connection between the authenticator and the ASM.

3.3.1 Protocol description

The concept uses the following entities:

• An indirect authentication token tia

• The URL that is used as an authentication endpoint by the authenticator, Uia.

No steps need to be performed before indirect authentication operations can be performed.
The relying party allows indirect authentication by specifying an a Uia in its published
list of valid FacetIDs [18].

The indirect authentication procedure consists of the following steps:

1. The user requests indirect authentication in the client application.

2. The relying party generates a random tia and stores it temporarily until the
authentication procedure is completed or a timeout is reached.

3. The relying party encodes Uia + tia

(e.g. http://www.myapp.com/fido/ia.php?tia=ab33fcd3e3557acf8bdb8954678686bc)
as QR code and displays it to the user.

4. The user opens his FIDO authenticator application on his authenticator device and
scans the QR code.

5. The authenticator performs a regular FIDO authentication procedure using Uia +tia

as endpoint.

6. The relying party authenticates the session associated with tia and invalidates the
token.

3.3.2 Security aspects of the indirect-authentication token

tia is no secret. The person that knows tia can only authenticate the session that is
associated with it, if she possesses a registered authenticator, of course. She cannot steal
associated sessions or gain any other private information.

Theoretically, there is no need to encode tia as a QR code. A human-readable string that
is displayed on the client device and entered manually using a (virtual) keyboard on the

34

3.3. Indirect authentication

authenticator device would also be a possible solution for transferring tia, that would
even obviate the need for a camera on the authenticator device.

However, the length of tia is still a relevant security factor. If the token is very short, and
the user has to enter it manually, the probability that a single erroneously entered character
makes the user authenticating a foreign session unintentionally because he accidentally
entered a valid token of another session, is very high. Theoretically, undetected errors
also might occur with QR codes, however due to the integrated error correction1, the
probability is very low.

1http://www.qrcode.com/en/about/error_correction.html (accessed 2016-12-22)

35

http://www.qrcode.com/en/about/error_correction.html

CHAPTER 4
Prototype

4.1 Prototype components

There are dozens of scenarios FIDO-based authentication can be implemented for. The
UAF architecture consists of numerous components, including authenticator, ASM, FIDO
client, client application, Relying Party and other optional components like the Revoca-
tion authority introduced in this work. Some of them may reside on the same physical
devices or be distributed across multiple ones, on different hard- and software platforms
and interconnected using various communication technologies.

The architecture of the prototype’s components was designed in a way, that the three key
improvements to the FIDO specification proposed in this work, Centralized authentication,
Integrity protection of ASM/authenticator-communication and Indirect authentication, can
be implemented and that their usefulness can be shown using appropriate usage scenarios.

The following listing describes the key aspects of the prototype’s components:

• A native Android Java application serving as FIDO authenticator, authenticating
the user using the fingerprint scanner, and communicating with the ASM over
the Bluetooth interface. Some use-cases use the built-in camera to scan QR-codes
displayed on the user’s client device.

• A Windows application serving as the ASM, communicating with the authenticator
over Bluetooth, and providing the ASM API to the FIDO client via a HTTP web
service. The application is based on the Microsoft .NET-framework and written in
C#.

37

4. Prototype

• A browser plugin for Google Chrome, written in JavaScript, that provides a FIDO-
alike JavaScript API to the demo website and communicates with the ASM’s web
service over HTTP.

• A fictional web application, consisting of
a frontend part, utilizing the FIDO JavaScript-API provided by the browser

plugin,
and a backend part, the FIDO server (relying party), written in PHP.

• The revocation service, a PHP-based web service, providing an online revocation
verification service via HTTP.

4.2 Design decisions & specification coverage

4.2.1 No component identification

As we chose a distributed scenario with Windows as the platform for the authenticating
client and ASM, we didn’t have the possibility to implement secure component identi-
fication, as it would have been possible for a single-device scenario using Android, for
example (see section 2.4.4.1 for theoretical background information).

4.2.2 No utilization of hardware-assisted security

Unfortunately, our client- as well as our authenticator hardware we developed on also
wasn’t equipped with a TPM. Therefore we couldn’t make use of the security features it
would have provided. Fortunately, Android provides near TPM-grade secure generation
and storage of private keys implemented in software, thus we made use of this feature
called Android Keystore System[21].

4.2.3 Simplified but secure application isolation

The UAF specification defines complex mechanisms for application isolation, that cannot
be implemented on our target platforms in a reasonable way (see section 2.4.4.1 for
details). Therefore, for our prototype, we had to choose between security and versatility.
We decided to focus on security: A credential can only be used to authenticate to websites
using the hostname or IP address it was registered with.

4.3 Authenticator application

4.3.1 Authenticator commands

The ASM and the authenticator use JavaScript Object Notation (JSON)-encoded mes-
sages to communicate over the Bluetooth Radio Frequency Communication (RFCOMM)-
channel. The JSON messages are encoded by the respective libraries in a single line, and

38

4.3. Authenticator application

terminated by a Line feed (LF) symbol. This allows the receiver to detect the end of a
message.

Only the ASM can trigger operations on the authenticator, but not vice versa. Therefore,
messages sent from the ASM to the authenticator are referred as Commands, whereas
messages sent from the authenticator to the ASM are referred as Responses.

Nested data structures are always stored in encoded form in their respective parent
structure. This allows a party to pass on the data contained in child fields without having
to know their structure.

The message structures of the prototype are loosely based on the structures described in
the Authenticator Commands document[24] of the FIDO 1.0 specification. As the message
formats described in this document aren’t even mentioned in the draft of the newer Web
Authentication standard published by the W3C, we expect them not to be standardized
in the future anymore or at least to change fundamentally. Therefore, strict protocol
conformance was not an objective of the protocol design for the prototype. Anyway, the
standards conformance of the protocol for ASM/authenticator communication would only
be relevant if it should be possible to communicate between ASMs and authenticators of
different vendors.

As already stated, the prototype’s protocol uses JSON-encoded messages, whereas the
UAF standard proposes a Tag Length Value (TLV)-based protocol. This decision was
made in favor of better understandability in consequence of the decision to neglect
standards compliance for this protocol.

Listing 4.1 describes the JSON data structures of the various messages using Web Inter-
face Definition Language (IDL) (Second Edition) [25].

Listing 4.1: Authenticator commands - JSON data structures

typede f DOMstring Base64 ; //maps a Base64 encoded byte array
typede f DOMstring JSON; // escaped JSON data

d i c t i ona ry HmacMessage {
r equ i r ed DOMString jsonPayload ;
r equ i r ed DOMString hash ;

} ;

enum Command {
GetInfo ,

39

4. Prototype

Regi s te r ,
Sign

} ;

d i c t i ona ry AuthenticatorCommand {
requ i r ed Command commandType ;
r equ i r ed JSON args ;

} ;

d i c t i ona ry Authent icatorResponse {
r equ i r ed boolean statusCode ;
r equ i r ed JSON responseData ;
r equ i r ed DOMString deviceID ;

} ;

d i c t i ona ry RegisterCommand {
requ i r ed DOMString appID ;
r equ i r ed DOMString username ;

} ;

d i c t i ona ry Regis terResponse {
r equ i r ed Base64 a s s e r t i o n ;
r equ i r ed Base64 f i n g e r p r i n t ;
r equ i r ed DOMString revocat ionPubl icKeyUrl ;

} ;

d i c t i ona ry SignCommand {
requ i r ed Base64 f i n a lCha l l e n g e ;
r equ i r ed DOMString appID ;

} ;

d i c t i ona ry SignResponse {
r equ i r ed Base64 a s s e r t i o n ;
r equ i r ed Base64 f i n g e r p r i n t ;
r equ i r ed DOMString revocat ionCheckUrl ;
r equ i r ed DOMString username ;

} ;

40

4.4. ASM

4.4 ASM

4.4.1 ASM API

The FIDO client communicates with the ASM over a HTTP API. However, to stay
compliant with the ASM API specification[17] of the FIDO alliance as much as pos-
sible, the interface was not designed as a Representational State Transfer (REST)-like API.

Instead, there is only one HTTP-endpoint, /ASM, accepting a single POST-parameter
message that must contain a JSON-encoded ASMRequest data structure. If the query
is correct, the web service always responds with the status code 200 OK and a JSON-
encoded ASMResponse structure. Detailed status information is encoded in the data
structure.

Listing 4.2 describes the mentioned data structures and there respective child structures
using Web IDL (Second Edition) [25].

Listing 4.2: ASM HTTP API - JSON data structures

typede f DOMstring Base64 ; //maps a Base64 encoded byte array
typede f DOMstring JSON; // escaped JSON data

enum Request {
GetInfo ,
Reg i s te r ,
Authent icate

} ;

d i c t i ona ry ASMRequest {
r equ i r ed Request requestType ;
r equ i r ed JSON args ;

} ;

d i c t i ona ry ASMResponse {
r equ i r ed boolean statusCode ;
r equ i r ed JSON responseData ;

} ;

d i c t i ona ry Reg i s t e r In {
r equ i r ed DOMString appID ;
r equ i r ed DOMString username ;

} ;

41

4. Prototype

d i c t i ona ry RegisterOut {
r equ i r ed Base64 a s s e r t i o n ;
r equ i r ed Base64 revocat ionHash ;
r equ i r ed DOMString revocat ionPubl icKeyUrl ;

} ;

d i c t i ona ry Authent icateIn {
r equ i r ed Base64 f i n a lCha l l e n g e ;
r equ i r ed DOMString appID ;

} ;

d i c t i ona ry AuthenticateOut {
r equ i r ed Base64 a s s e r t i o n ;
r equ i r ed Base64 r evoca t i onS igna tu r e ;
r equ i r ed DOMString username ;

} ;

4.5 Client browser plugin

4.5.1 JavaScript API

Listing 4.3 describes the JavaScript API provided to web sites by the Chrome browser
plugin to allow them to utilize the connected FIDO authenticators on the local system.
The API is based on the draft of the Web Authentication API published by the W3C [10].

The original specification uses quite complex data types as it also includes mechanisms
for negotiating various FIDO features and is intended to provide maximum flexibility. As
these mechanisms are not the focus of this thesis, our prototype’s interface only imple-
ments a subset of the interfaces described in the W3C specification, and sometimes uses
simplified data types. However, it should give a reasonable insight how our adaptations
could be implemented within the Web Authentication API in a non-interfering way.
Anyway, we unfortunately couldn’t find any publicly available website which fully sup-
ports this specification that would have enabled us to evaluate the compatibility of our
implementation in practice.

As the W3C draft, the interfaces of the prototype’s API are described using Web IDL
(Second Edition) [25].

Note: Parameters with the data type any and the keyword optional are not handled by
the prototype in any way. They just exist in the method declaration to allow the methods
to be potentially called by web sites implementing a larger subset of the specification.

42

4.5. Client browser plugin

Listing 4.3: Client browser plugin - JavaScript API

typede f DOMstring Base64 ; //maps a Base64 encoded byte array

p a r t i a l i n t e r f a c e Window {
readonly a t t r i b u t e WebAuthentication webauthn ;

} ;

i n t e r f a c e WebAuthentication {
Promise < ScopedCredent ia l In fo > makeCredential (

Account accountInformation ,
op t i ona l any cryptoParameters ,
op t i ona l any a t t e s t a t i onCha l l enge ,
op t i ona l any credent ia lTimeoutSeconds ,
op t i ona l any b l a c k l i s t ,
op t i ona l any c r ed en t i a lEx t en s i on s

) ;

Promise < WebAuthnAssertion > ge tAs s e r t i on (
Base64 as s e r t i onCha l l enge ,
op t i ona l any assert ionTimeoutSeconds ,
op t i ona l any wh i t e l i s t ,
op t i ona l any a s s e r t i onEx t en s i on s

) ;
} ;

d i c t i ona ry Account {
r equ i r ed DOMString name ;

} ;

i n t e r f a c e ScopedCredent ia l In fo {
readonly a t t r i b u t e Base64 publicKey ;
readonly a t t r i b u t e Base64 revocat ionHash ;
readonly a t t r i b u t e DOMString revocat ionPubl icKeyUrl ;

} ;

i n t e r f a c e WebAuthnAssertion {
readonly a t t r i b u t e DOMString c r e d e n t i a l ;
readonly a t t r i b u t e Base64 s i gna tu r e ;
readonly a t t r i b u t e Base64 r evoca t i onS igna tu r e ;

} ;

43

4. Prototype

4.6 Demo web application

4.6.1 HTTP API

All server-side actions of the demo web application are handled over a REST-like HTTP-
API.
Endpoint Method Parameters Response Description

/authenticate.php GET - 200 OK: {
challenge: Base64
}

Generates an authenti-
cation challenge, tem-
porarily stores it as ses-
sion variable and re-
turns it as JSON-field

/authenticate.php POST assertion: {
username: String,
assertion: Base64,
revocationSignature:
Base64
},
indirectToken: String

200 OK: <Info
message>
403 Forbidden:
Revocation verification
failed.
403 Forbidden:
Authentication failed.
404 Not Found: User
not found.
424 Failed Dependency:
Need to generate
challenge first.

Validates the revoca-
tion signature. Val-
idates the authentica-
tion signature (asser-
tion). On Success, it au-
thenticates the session
identified by the given
session ID, or the ses-
sion associated with an
optionally given indirect
authentication token.

/register.php POST username: String,
assertion: {
publicKey: Base64,
revocationHash:
Base64,
revocationPublicK-
eyUrl:
String
}

200 OK: <Info
message>
409 Conflict: User
exists.

Persists all the given
parameters into a
user-specific, JSON-
formatted file.

/createIndirect
Token.php

POST - 200 OK: <Token as
hexadecimal number>

Creates and temporar-
ily persists a randomly
generated token.

/loginStatus.php GET - 200 OK: <Info
message>

Returns the login status
for the given session ID.

/logout.php POST - 200 OK: - Deauthenticates the
given session.

Table 4.1: Demo web application - HTTP API

Note: All endpoints respond with a 400 Bad Request status code if required parameters
are missing, and with a 500 Internal Server Error on unexpected errors like failed
file operations.

4.7 Revocation service

4.7.1 HTTP API

The revocation service provides a REST-like HTTP-API.

44

4.7. Revocation service

Endpoint Method Parameters Response Description

/public.pem GET - 200 OK: —–BEGIN
PUBLIC KEY—– ...
—–END PUBLIC
KEY—–

The PEM-encoded pub-
lic revocation key

/checkRevocation
Status.php

GET deviceId: String,
fingerprint: Base64,
challenge: Base64

200 OK: {
revocationHash:
Base64,
signature: Base64
}
403 Forbidden: Device
has been revoked.

The signature of the
revocation hash, and
the computed revoca-
tion hash (for debug-
ging purposes)

Table 4.2: Revocation service - HTTP API

45

CHAPTER 5
Critical reflection

5.1 Verification against FIDO security requirements
The FIDO Security Reference [7] already provides a systematic security analysis of the
UAF specification. It defines Security goals, and shows how the specification meets this
goals by means of a detailed threat analysis.

The aim of this section is to show that our extensions of the FIDO specification proposed
in chapter 3 do not violate these security goals and even meet additional goals defined in
this work.

Note: As our proposed revocation scheme with online-querying provides significant benefits
over the scheme based on offline-verification, the comparative evaluations in this chapter
primarily consider the online variant.

5.1.1 Security goals & definitions

5.1.1.1 UAF Security Goals

For better understandability of the subsequent relevance analysis, this section cites the
UAF Security goals defined by the FIDO Security Reference [7].

SG-1 Strong User Authentication Authenticate (i.e. recognize) a user and/or a
device to a relying party with high (cryptographic) strength.

SG-2 Credential Guessing Resilience Provide robust protection against eavesdrop-
pers, e.g. be resilient to physical observation, resilient to targeted impersonation,
resilient to throttled and unthrottled guessing.

47

5. Critical reflection

SG-3 Credential Disclosure Resilience Be resilient to phishing attacks and real-
time phishing attack, including resilience to online attacks by adversaries able to
actively manipulate network traffic.

SG-4 Unlinkability Protect the protocol conversation such that any two relying parties
cannot link the conversation to one user (i.e. be unlinkable).

SG-5 Verifier Leak Resilience Be resilient to leaks from other relying parties. I.e.,
nothing that a verifier could possibly leak can help an attacker impersonate the user
to another relying party.

SG-6 Authenticator Leak Resilience Be resilient to leaks from other FIDO Authen-
ticators. I.e., nothing that a particular FIDO Authenticator could possibly leak can
help an attacker to impersonate any other user to any relying party.

SG-7 User Consent Notify the user before a relationship to a new relying party is
being established (requiring explicit consent).

SG-8 Limited Personal identifiable information (PII) Limit the amount of per-
sonal identifiable information (PII) exposed to the relying party to the absolute
minimum.

SG-9 Attestable Properties Relying Party must be able to verify FIDO Authenticator
model/type (in order to calculate the associated risk).

SG-10 Denial of Service (DoS) Resistance Be resilient to Denial of Service At-
tacks. I.e. prevent attackers from inserting invalid registration information for a
legitimate user for the next login phase. Afterward, the legitimate user will not be
able to login successfully anymore.

SG-11 Forgery Resistance Be resilient to Forgery Attacks (Impersonation Attacks).
I.e. prevent attackers from attempting to modify intercepted communications in
order to masquerade as the legitimate user and login to the system.

SG-12 Parallel Session Resistance Be resilient to Parallel Session Attacks. Without
knowing a user’s authentication credential, an attacker can masquerade as the
legitimate user by creating a valid authentication message out of some eavesdropped
communication between the user and the server.

SG-13 Forwarding Resistance Be resilient to Forwarding and Replay Attacks. Hav-
ing intercepted previous communications, an attacker can impersonate the legal user
to authenticate to the system. The attacker can replay or forward the intercepted
messages.

SG-14 Transaction Non-Repudiation Provide strong cryptographic non-repudiation
for secure transactions.

48

5.1. Verification against FIDO security requirements

SG-15 Respect for Operating Environment Security Boundaries Ensure that reg-
istrations and key material as a shared system resource is appropriately protected
according to the operating environment privilege boundaries in place on the FIDO
user device.

5.1.1.2 Refined and new security goals

To be able assess our introduced security features that are not covered by the UAF
security goals, we refine some of them and introduce new ones.

SG-4.1 Pre-revocation unlinkability/Revocation-query unlinkability See section
3.1.1.1 for details.

SG-4.2 Post-revocation unlinkability See section 3.1.1.1 for details.

SG-4.3 Remote unlinkability See section 3.1.1.1 for details.

SG-4.4 Local unlinkability See section 3.1.1.1 for details.

SG-A1 RA Leak Resilience Be resilient to leaks from the RA, i.e. data leaked by
the RA cannot be used to evade the revocation check.

5.1.2 Relevant security goals

The objective of this security analysis is to show that our improvements do not violate the
security goals specified by the FIDO security reference. However, only a small subset of
them are relevant in the context of our improvements. Therefore, table 5.1 first identifies
relevant and irrelevant FIDO security goals.

Note: To keep the size of the table small, the proposed improvements are abbreviated as
follows: Centralized authenticator revocation (CAR), Secure ASM-authenticator channel
(SAAC) and Indirect authentication (IA).

Security goal Relevant
features

Justification

SG-1 Strong User
Authentication

None of the proposed improvements affect the
core principles of the authentication mecha-
nism.

SG-2 Credential
Guessing Resilience

SAAC, IA CAR: The user doesn’t have to enter any
information nor gets shown any relevant in-
formation.

SG-3 Credential
Disclosure Resilience

IA CAR & SAAC are not affected by the user’s
behavior regarding usage of the web browser.

49

5. Critical reflection

Security goal Relevant
features

Justification

SG-4 Unlinkability CAR SAAC does not affect the RP. For IA, no
additional information is sent to the RP by
the user.

SG-5 Verifier Leak
Resilience

CAR SAAC does not affect the verifier (RP). IA
does not store any additional non-public in-
formation.

SG-6 Authenticator
Leak Resilience

None of the proposed improvements share
information among authenticators.

SG-7 User Consent IA SAAC does not affect RPs. CAR-related
communication with RPs is only initiated
after successful authentication.

SG-8 Limited PII CAR, IA SAAC does not affect RPs.
SG-9 Attestable
Properties

None of the proposed improvements intro-
duce new independent user-sided software or
hardware components.

SG-10 DoS Resistance CAR SAAC doesn’t affect publicly accessible com-
ponents. IA doesn’t process user-created
data/input (aside from the data also pro-
cessed by ordinary authentication).

SG-11 Forgery
Resistance

CAR, SAAC IA doesn’t process user-created data/input
(aside from the data also processed by ordi-
nary authentication).

SG-12 Parallel Session
Resistance

SAAC, IA CAR: A revoked device is blocked by the RPs.
Therefore, there are no sessions that could be
spied on in parallel.

SG-13 Forwarding
Resistance

CAR, SAAC,
IA

SG-14 Transaction
Non-Repudiation

None of the proposed improvements affect the
transaction feature.

SG-15 Respect for
Operating
Environment Security
Boundaries

None of the proposed improvements intend an
operating environment differing from those
covered by the FIDO specification.

SG-A1 RA Leak
Resilience

CAR RAs are only relevant for CAR.

Table 5.1: FIDO UAF security goals relevance

50

5.1. Verification against FIDO security requirements

5.1.3 Threat analysis

5.1.3.1 Attacks against the revocation mechanism

Table 5.2 shows a detailed threat analysis of attacks against the proposed (online)
revocation mechanism.

Affected
security
goal

Attack action Consequences
of a successful
attack

Countermeasures Consequences
of a prevented
attack

SG-4 Attacker tries
to identify user
accounts on one
or multiple RPs
that registered the
same authentica-
tor.

The privacy of the
user is affected.

The revocation hash
stored by the RP is
based, among other in-
formation, on a random
salt generated by the au-
thenticator for each ac-
count.

The revocation
hash is different
for every account,
correlation is
impossible.

SG-5 The RP leaks
revocation related
data.

The leaked data
could be used by
attackers to evade
revocation checks.

The revocation mecha-
nism only stores the pub-
lic key of the RA and the
revocation hash at the
RP.

This information
cannot be used to
evade the revoca-
tion check.

SG-8 The RP leaks
revocation related
data.

The leaked data
could be used by
attackers to iden-
tify the person as-
sociated with the
account.

The revocation mecha-
nism only stores the pub-
lic key of the RA and the
revocation hash at the
RP.

This information
cannot be used to
identify the person
associated with an
account.

SG-10 An attacker
performs a DoS-
attack on the RA’s
infrastructure.

Users might not be
able to authenti-
cate as mandatory
revocation checks
cannot be per-
formed due to
unavailability of
the RA.

RPs might allow the
revocation check to be
skipped if the RA is
down.

Authentication op-
erations can be
completed without
a revocation check.
However, this low-
ers the level of se-
curity, of course.

SG-11 Attacker sends
forged device ID.

The authenticator
device is not recog-
nized as a revoked
one.

The RP stores a hash
that is based, among
other information, on
the device ID.

The revocation au-
thority generates
an invalid revoca-
tion hash. The re-
lying party refuses
authentication be-
cause of the invalid
revocation hash.

SG-13 The attacker sends
a previously gener-
ated valid revoca-
tion signature to
the relying party.

The RP approves
the authenticator
as a valid, non-
revoked device,
even if it’s on the
list of revoked
devices.

The RP generates a ran-
dom challenge for each
revocation check, which
is used as input to the re-
vocation signature func-
tion.

The signature ver-
ification fails, as
the used challenge
is not the current
one.

51

5. Critical reflection

Affected
security
goal

Attack action Consequences
of a successful
attack

Countermeasures Consequences
of a prevented
attack

SG-A1 The attacker gains
access to the pri-
vate key of the re-
vocation authority.

The attacker can
generate valid
revocation signa-
tures for arbitrary
device IDs, ac-
count salts and
authentication
challenges.

A compromised revoca-
tion key-pair can be re-
placed easily, as the RPs
do not store the cor-
responding public key
permanently. Instead,
they need to fetch it dy-
namically using an URL
transmitted by the au-
thenticator during reg-
istration of an account.
The public key may be
cached of course to limit
the load on the RA’s
infrastructure, but it
should be refreshed fre-
quently to limit the im-
posed security risk.

If the new public
key of the replaced
key pair has been
fetched by all RPs,
the compromised
old private key is
worthless.

Table 5.2: Threat analysis - Attacks on the revocation mechanism

5.1.3.2 Attacks on the communication channel between ASM and
authenticator

Table 5.3 shows a detailed threat analysis of attacks on the communication channel
between ASM and authenticator.

Affected
security
goal

Attack
action

Consequences of a suc-
cessful attack

Countermeasures Consequences
of a prevented
attack

SG-2 Attacker
scans and
decodes the
QR-code
displayed on
the user’s
client ma-
chine during
pairing.

The attacker could use the
information to attack the
integrity of the communi-
cation between ASM and
authenticator.

The QR-code only
contains the Bluetooth
MAC-address of the
client machine and
the fingerprint of the
ASM’s public key.

The information
cannot be used
to gain sensitive
information like
the ASM’s pri-
vate key or the
HMAC-secret.

52

5.1. Verification against FIDO security requirements

Affected
security
goal

Attack
action

Consequences of a suc-
cessful attack

Countermeasures Consequences
of a prevented
attack

SG-11 Attacker ma-
nipulates the
key exchange
of the HMAC
secret.

If the attacker manages
to gain knowledge of the
HMAC secret or even man-
ages to slip the ASM a
faked one, he might be
able to send forged FIDO
commands to the ASM or
authenticator.

The authenticator uses
the public key received
from the ASM to en-
crypt the randomly gen-
erated HMAC secret.
Furthermore, the au-
thenticator receives the
fingerprint of the public
key from the ASM over
an independent commu-
nication channel (QR-
code). Before sending
the HMAC secret to
the ASM, the authen-
ticator verifies the re-
ceived public key by
computing the finger-
print of the public key
himself and comparing
it to the fingerprint re-
trieved from the QR
code.

If the fingerprint
check fails, the
authenticator
aborts the pair-
ing process and
does not send the
HMAC secret.

SG-11 Attacker mod-
ifies a FIDO
message.

If the attacker can mod-
ify FIDO messages, he can
create faked ASMs or au-
thenticators.

Modification of FIDO
command messages is
prevented by protect-
ing every message sent
from the ASM to the
authenticator or vice
versa with a HMAC.

If a tampered
message is de-
tected, the com-
mand is ignored.

SG-13 Attacker
imperson-
ates FIDO
messages.

If the attacker can send
valid FIDO messages to a
proper ASM or authenti-
cator, while pretending to
be the proper counterpart,
he can create faked ASMs
or authenticators.

Impersonated FIDO
command messages are
prevented by protect-
ing every message sent
from the ASM to the
authenticator or vice
versa with a HMAC.

If a tampered
message is de-
tected, the com-
mand is ignored.

SG-12,
SG-13

Attacker cre-
ates a fake
ASM.

If an attacker manages to
persuade an authenticator
to communicate with a
faked ASM under his con-
trol, while keeping the user
believing that he is com-
municating with the gen-
uine ASM, the attacker
can persuade the user to
authenticate a session con-
trolled by the attacker.

To prevent faked ASMs,
authenticators only ac-
cept HMAC protected
messages.

If the HMAC
check fails, the
authenticator ig-
nores the com-
mand.

53

5. Critical reflection

Affected
security
goal

Attack
action

Consequences of a suc-
cessful attack

Countermeasures Consequences
of a prevented
attack

SG-12,
SG-13

Attacker cre-
ates a fake au-
thenticator.

If an attacker manages to
persuade an ASM to com-
municate with a faked au-
thenticator under his con-
trol, while keeping the
user believing that he is
communicating with his
genuine authenticator de-
vice, the attacker can per-
suade the user to regis-
ter a credential generated
by the attacker’s authen-
ticator with his account.
From now on, the attacker
can authenticate with his
faked authenticator on the
users behalf, while the le-
gitimate user cannot. If
the hijacked account is an
existing one, sensitive data
could be stolen.

To prevent faked
authenticators, ASMs
only accept HMAC
protected messages.

If the HMAC
check fails, the
ASM ignores
the command
response.

Table 5.3: Threat analysis - Attacks on the ASM-authenticator interconnection

5.1.3.3 Attacks on the indirect authentication mechanism

Table 5.4 shows a detailed threat analysis of attacks on the proposed indirect authentica-
tion mechanism.

Affected
security
goal

Attack action Consequences
of a successful
attack

Countermeasures Consequences
of a prevented
attack

SG-2 Attacker scans
and decodes
the QR-code
displayed on
the user’s client
machine when
initiating indirect
authentication.

The attacker
could use the
information to
impersonate the
user.

The QR-code only contains
a randomly generated to-
ken that allows the RP
to associate the authentica-
tion request performed by
the authenticator with the
user’s session on the client
device.

The token does
not represent
sensitive informa-
tion.

54

5.2. Evaluation using Bonneau’s framework

Affected
security
goal

Attack action Consequences
of a successful
attack

Countermeasures Consequences
of a prevented
attack

SG-3 Attacker triggers
authentication to
a trusted site the
user’s authentica-
tor is registered
with, by encod-
ing the respective
URL in a QR code
and tempting the
user to scan it
with his authenti-
cator.

If the user
completes the
authentication
request with
the respective
authenticator,
the attacker
gains access to
an authorized
session of the
service he per-
suaded the user
to authenticate
to.

The service identifier (e.g.
domain name) indirected
authentication is requested
for is displayed on the au-
thenticator’s display. The
user is responsible for de-
ciding if authenticating the
website that initiated the
process with the creden-
tials he is asked for is his
intended action. By the
design of indirect authen-
tication, the web browser
has no possibility to pre-
vent this kind of attack.

If the user does
not complete the
indirect authenti-
cation request on
the authenticator,
the attacker’s ses-
sion isn’t authen-
ticated.

SG-7 Attacker triggers
an authentication
operation without
the user’s consent.

The attacker
could imperson-
ate the user.

The proposed indirect au-
thentication mechanism re-
quires the user to scan a
QR-code on the client de-
vice with his authenticator,
i.e. requires physical ac-
tion.

-

Table 5.4: Threat analysis - Attacks on the indirect authentication mechanism

5.2 Evaluation using Bonneau’s framework
Bonneau et al. [8] proposed a framework for comparative evaluation of alternative
authentication mechanisms. They defined a list of benefits an arbitrary authentication
mechanism can either provide or not, and analyzed a handful of more or less well-known
password alternatives using this framework, but also the classical method of authenticat-
ing using a simple password. The benefits are composed of various characteristics of the
three categories Usability (U), Deployability (D) and Security (S).

This section analyzes the authentication mechanism as defined in the FIDO specification
(without our proposed improvements), as well as with our adaptations and enhancements
taken into account.

Finally, a tabular breakdown shows that with our proposed enhancements, FIDO-like
authentication can provide even more benefits than without them.

Note: The analysis only includes a short description of the benefits defined by the
framework. For a detailed explanation see the paper that introduces the framework [8].

55

5. Critical reflection

5.2.1 Usability

U1 Memorywise-Effortless Do the users have to remember any secrets to use the
scheme? As opposed to passwords, users of FIDO-based authentication principally
do not have to remember any secrets, and our adaptations do not impact this prop-
erty. An exception is if it is used with PIN-based authenticator protection, of course.

U2 Scalable-for-Users Can the user manage dozens of accounts, without having to
remember separate information for each account for example? To use classical
passwords in a secure way, a user has to remember an individual password for each
account, which is obviously not scalable. FIDO-based authentication doesn’t have
this issue, as the individual secrets are stored by the authenticator. However, as the
FIDO specification doesn’t provide a mechanism for central revocation, revoking
all credentials of a compromised authenticator device for a large number of ac-
counts individually poses an non-scalable task from a user’s perspective. Therefore,
the original FIDO-specification can only partially provide this benefit, whereas
our adapted version can do fully, as we proposed a mechanism for central revocation.

U3 Nothing-to-Carry Does the user need anything else other than himself to authen-
ticate? Unfortunately, as opposed to passwords, neither the original specification
nor our adapted version can fully satisfy this property, as an authenticator device
is needed. However, the framework defines that if the scheme only depends on a
device that usually is carried anyway, like a smart phone, partial fulfillment of this
benefit can be awarded to FIDO-like authentication schemes.

U4 Physically-Effortless Does the user need to be able to perform particular physical
actions to authenticate? As opposed to passwords, which the user has to type
in using a keyboard, FIDO-like schemes do not demand potentially challenging
actions from the user. Of course, some authenticator protection mechanisms change
this situation, but there are enough alternatives available (e.g. fingerprint). Our
adaptations do not impact this property.

U5 Easy-to-Learn Are the steps required for an authentication operation hard to learn?
For both original and adapted FIDO authentication, all associated use cases consist
of just one or a few steps.

U6 Efficient-to-Use Can authentication and registration operations be performed in
a short time? For both original and adapted FIDO authentication, all associated
actions (pressing some buttons, swiping over the fingerprint sensor, scanning a
QR-code) should be completable in a short period of time.

56

5.2. Evaluation using Bonneau’s framework

U7 Infrequent-Errors Are the physical actions that are required for authentication
prone to errors (e.g. typos)? As opposed to passwords, the only scheme-specific
physical action of both FIDO variants are scanning QR-codes and approving the
operation on the authenticator. The former hardly can be influenced by the user,
and also for the latter several relatively failsafe methods exist (e.g. fingerprints,
short Personal Identification Numbers (PINs)).

U8 Easy-Recovery-from-Loss If the authentication token is lost, can the access be
restored easily? FIDO-like authentication potentially offers similar backup strategies
as passwords (e.g. backup of private keys). However, note that such measures
might nullify some security advantages of FIDO-like authentication over passwords
(e.g. storage of private keys in secure elements).

5.2.2 Deployability

D1 Accessible Are there any physical requirements that might not be given in certain
usage scenarios? If client and authenticator reside on different physical devices,
the deployability of original FIDO authentication might be limited, e.g. when
no USB port is available. Our adaptations can help in these situations, with the
introduction of indirect authentication and the possibility to establish wireless
connections between client and authenticator in a secure and accessible way.

D2 Negligible-Cost-per-User Does the user or verifier need special equipment? FIDO
authenticators can be implemented on common devices like smart phones or even
on the client devices themselves.

D3 Server-Compatible Do service providers need to adapt their password-based au-
thentication systems to support the scheme? Trivially true for password-based
authentication. Not satisfiable for FIDO-like mechanisms, as they are conceptually
different.

D4 Browser-Compatible Do users have to install additional software on the client
device? Original FIDO requires browser support, either natively or through a plugin
(like the one provided as part of our prototype). With the proposal of indirect
authentication, our adapted FIDO-variant can provide this benefit!

D5 Mature Is the authentication scheme widespread? As many of the big players in
the software industry are involved in the specification [6] and adoption [13] of
FIDO authentication, and even the W3C is adopting the standard [10], FIDO
authentication can definitely be classified as being on the way becoming mature.

57

5. Critical reflection

Obviously, this cannot be true for our adaptations at the moment.

D6 Non-Proprietary Can anyone implement the scheme? Neither original FIDO
nor our enhancements depend on proprietary software and the specifications are
published openly [15].

5.2.3 Security

S1 Resilient-to-Physical-Observation Can an attacker watching a user while au-
thenticating gather enough sensitive information to impersonate him? At least for
the authentication process itself, no sensitive information needs to be entered nor
is displayed during a FIDO authentication operation. The data encoded in the
QR-codes used in our adaptations is not private. User-verification mechanisms on
the authenticator that are susceptible to such kinds of attacks (e.g. PIN entry) are
not considered here, of course.

S2 Resilient-to-Targeted-Impersonation Can a user be tempted to reveal secret in-
formation accidentally? The core authentication mechanisms of the original FIDO
specification as well as our enhanced version solely rely on randomly generated
secrets that the user never gets to know. User-verification mechanisms on the
authenticator that are susceptible to such kinds of attacks (e.g. PINs, especially
ones that can be chosen by the user) are not considered here, of course.

S3 Resilient-to-Throttled-Guessing Can the authentication service be brute-forced,
even if the service limits the number of authentication requests per timespan? All se-
curity relevant mechanisms of both original FIDO and our added/adapted concepts
rely on secret keys whose sizes are only limited by computing power. Therefore,
brute-force attacks are not realistic, especially if the verifier can limit the number
of requests per timespan. User-verification mechanisms on the authenticator that
are susceptible to such kinds of attacks (e.g. PIN entry) are not considered here, of
course.

S4 Resilient-to-Unthrottled-Guessing Can the authentication service be brute-forced
at all? See S3. Note that if an attacker manages to retrieve public keys from the
verifier for example, brute-forcing the associated private key might be eased, but
still practically impossible if the key size is large enough.

S5 Resilient-to-Internal-Observation Can malware perform authentication opera-
tions autonomously? Generally true for both original FIDO and our adaptations,
but if client and authenticator are different physical devices, both devices need

58

5.2. Evaluation using Bonneau’s framework

to be infected. For this case, the evaluation framework intends to award partial
satisfiability of the benefit.

S6 Resilient-to-Leaks-from-Other-Verifiers Can a compromised verifier be a threat
to another verifier and its users? Neither the original specification nor our adapta-
tions use concepts where secret information is shared among verifiers.

S7 Resilient-to-Phishing Is the authentication scheme phishing-safe? Original FIDO
is safe as the client reports the real hostname of the verifier to the authenticator,
which verifies it. Our proposed revocation scheme and security improvements of the
communication channel do not weaken this immunity. Our proposed mechanism for
indirect authentication however, cannot be phishing-safe per design, as the browser
is not involved in the authentication process.

S8 Resilient-to-Theft If the user’s account still safe if the authenticator device is
stolen? Both original FIDO and our adaptations intend to require user verification
on the authenticator for all security relevant operations. As today’s smartphones,
which are suitable to be used as authenticator device, usually provide secure pos-
sibilities for user verification like fingerprint scanners, this benefit can be fully
awarded here.

S9 No-Trusted-Third-Party Does the authentication scheme rely on a trusted third
party? FIDO-like authentication does not rely on a third party. Indeed, our
proposed revocation mechanism relies on a third party, however, this third party
(the RA) does not process confidential information that can be abused by a public
attacker. Note that potentially leaked revocation query data might be abused by a
verifier to detect multiple accounts of a single authenticator device, but this risk is
rated so minimal here that it does not justify to award this benefit partially only.

S10 Requiring-Explicit-Consent Can authentication operations be performed without
the user’s awareness? Both original FIDO and our adaptations require verification
of the user on the authenticator for all security-critical operations.

S11 Unlinkable Can colluding verifiers determine if the same authenticator is used
for respective accounts? The core authentication mechanisms of both original
FIDO and our adaptations do not send data to the verifier which can be used to
unambiguously identify an authenticator. Also our proposed revocation scheme
was designed with unlinkability in mind.

59

5. Critical reflection

5.2.4 Overview of results

Table 5.5 shows the results of the evaluation [8]. A filled circle (•) means that the
authentication scheme provides the benefit. An empty circle (◦) means the scheme offers
the scheme in most aspects but not in all. No circle means the scheme doesn’t offer the
benefit. Note: The evaluation of classical password-based authentication (Web passwords)
has been borrowed from Bonneau’s paper [8].

Note: To keep the size of the table heading small, the proposed improvements are abbrevi-
ated as follows: Centralized authenticator revocation (CAR), Secure ASM-authenticator
channel (SAAC) and Indirect authentication (IA).

5.3 Relevance of the work
Our proposed work could enhance FIDO-based authentication in security- and usability
aspects but also regarding potential deployment scenarios. This section summarizes the
improvements that have been achieved.

5.3.1 Security aspects

Centralized revocation Without centralized revocability users would have to block
stolen authenticator devices at each relying party separately. As some service
providers must be expected to neglect to offer such a possibility at all, and users
tend to neglect security if it requires cumbersome work, the possibility to revoke an
authenticator device with a single step definitely is a security benefit. See section
3.1

Secure communication between ASM and authenticator If the deployment sce-
nario requires a wireless communication channel between these FIDO components,
our proposed secure key exchange scheme is a must to protect the user from certain
attacks. See section 3.2 but also 5.1.3.2 for a detailed discussion of the potential
threats prevented by this improvement.

5.3.2 Usability aspects

Centralized revocation From a usability perspective, centralized revocability reduces
the number of revocation steps from n steps for n accounts to a single step.

5.3.3 New deployment options

Wireless communication channels between ASM and authenticator If the se-
curity threats stated above and in the referenced sections are not acceptable for a

60

5.3. Relevance of the work

We
b p

ass
wo
rds

FI
DO

FI
DO

+C
AR

/S
AA

C

FI
DO

+C
AR

/IA

U1 Memorywise-Effortless • • •
U2 Scalable-for-Users ◦ • •
U3 Nothing-to-Carry • ◦ ◦ ◦
U4 Physically-Effortless • • •
U5 Easy-to-Learn • • • •
U6 Efficient-to-Use • • • •
U7 Infrequent-Errors ◦ • • •
U8 Easy-Recovery-from-Loss • • • •
D1 Accessible • ◦ • •
D2 Negligible-Cost-per-User • • • •
D3 Server-Compatible •
D4 Browser-Compatible • •
D5 Mature • ◦
D6 Non-Proprietary • • • •
S1 Resilient-to-Physical-Observation • • •
S2 Resilient-to-Targeted-Impersonation ◦ • • •
S3 Resilient-to-Throttled-Guessing • • •
S4 Resilient-to-Unthrottled-Guessing • • •
S5 Resilient-to-Internal-Observation ◦ ◦ ◦
S6 Resilient-to-Leaks-from-Other-Verifiers • • •
S7 Resilient-to-Phishing • •
S8 Resilient-to-Theft • • • •
S9 No-Trusted-Third-Party • • • •
S10 Requiring-Explicit-Consent • • • •
S11 Unlinkable • • • •

Table 5.5: Bonneau-framework evaluation - Condensed results

specific deployment scenario, the stated security improvements bring the possibility
to use wireless communication channels like Bluetooth for connecting FIDO au-
thenticators with clients. This could be the case especially for public client devices
(like Internet terminals at airports), where users can’t be expected to carry an USB
cable with them.

No connection between ASM and authenticator The proposed indirect authenti-
cation scheme allows FIDO-like authentication to be used even in deployments
where no connection between the stated components is available at all. Again, this

61

5. Critical reflection

could be relevant especially for public usage scenarios.

No FIDO support on the client platform The proposed indirect authentication scheme
even allows FIDO-like authentication if the client platform doesn’t specifically sup-
port the protocol. This allows the usage of FIDO-like authentication not only for
devices where the system maintainer doesn’t intend to ensure compatibility, but
also for platforms that cannot be made compatible due to technical reasons.

5.4 Usability considerations

This section intends to show, that the proposed adaptations and the use-cases introduced
with them were designed with usability in mind. We analyze our improvements of the
FIDO specification by discussing the associated use cases individually.

Revoking an authenticator device Revoking a stolen device can be done by simply
entering the device ID of the stolen authenticator device within a revocation
user interface provided by the RA. The device identifier can be the smartphone’s
International Mobile Equipment Identity (IMEI) for example (like in our prototype).

Pairing an authenticator device with an ASM The proposed pairing scheme uses
a single QR-code to encode the information which client device to connect to as
well as the information that guarantees that a secure communication channel is
established. Thanks to this design decision, aside from starting the respective
applications on both devices, only a single step is required to complete the pairing
process (scanning the QR-code).

Authenticating indirectly Also the proposed scheme for indirect authentication en-
codes all required information in a single QR-code. Aside from choosing indirect
authentication in the client- as well as the authenticator-application, the only
required step to initiate the authentication process is to scan the QR-code.

5.5 Known issues

5.5.1 Missing application isolation for indirect authentication

Due to the architecture of classical direct FIDO authentication, phishing attacks can be
prevented easily: As the browser is responsible for forwarding FIDO commands to the
authenticator, he can ensure that the website triggering an authentication operation is
authorized to do that by verifying the URL.

Unfortunately, as one of the design goals of indirect authentication has been to be indepen-
dent of browser support, the browser is not involved in forwarding FIDO commands (the
authenticator directly communicates with the relying party over the Internet). Therefore,

62

5.5. Known issues

phishing protection, as it can be implemented for direct authentication, cannot be realized
for indirect authentication, at least not the same way.

To minimize the associated risks, it is important to display a warning message on the
authenticator’s display, that requests the user to check the hostname displayed in the
browser’s address bar, and asks him to confirm that it is his intention to authenticate to
that website with the respective credentials.

63

CHAPTER 6
Summary and future work

6.1 Unsolved problems

6.1.1 Implementation challenges

To be able to unveil its full security potential, FIDO-like authentication schemes, including
some of our adaptations, require certain features to be supported by the underlying
hardware platforms and operating systems. Unfortunately, there are lot of potential
target platforms that probably do not support some or all of these requirements at this
time. See section 2.4.4.3 for a more detailed discussion which and why some platforms
are affected.

Component identification Some of the security concepts described in the FIDO
specification can only be implemented in a meaningful way if the underlying
operating system provides FIDO software components a meaningful way to verify
the identity and integrity of calling software components.

Storage of private data Some potential target platforms do not provide methods to
prevent secret data from being accessed by unauthorized processes. However, this
capability is required to store private keys securely.

6.2 Future work

6.2.1 Client & ASM Attestation

To further improve security, the attestation concept like it is proposed in the FIDO
specification for verifying authenticators could be inherited for FIDO clients and ASMs.

65

6. Summary and future work

6.2.2 Offline revocation

Aside from the problem that the proposed schemes for offline revocation checking cannot
provide local (post-revocation) unlinkability, both schemes have two serious flaws.
The first is that anonymity may not be guaranteed in small deployments when the
revocation list is too small. Maybe this issue can be coped with by filling the revocation
list with dummy entries, but this idea needs further research.
The other disadvantage compared to online revocation checking is that hash collisions
can occur, which lead to false positives. A solution to this problem could be perfect hash
functions, but as perfect hash functions require a specific finite input set, a revocation
scheme using them could be unfeasible in global deployments and therefore requires
further research.

6.2.3 Application isolation

The application isolation concept of the UAF ASM API specification[17] ensures that
unauthorized and potentially malicious service providers or client applications cannot
access the credentials registered with a relying party, by allowing the RP to specify a list
of trusted FacetIDs (see section 2.4.4.1 for details). This however, prevents trustworthy
service providers or applications to allow their users authenticating with the credentials
of another relying party they are already registered with. On the other side, without this
feature, users would be completely unprotected from phishing threats. Further research
might bring out an application isolation strategy that represents a reasonable tradeoff
between security and versatility.

6.2.4 Prototype

The primary design goal of the prototype was to show that the theoretical concepts
proposed in this paper actually work rather than developing a perfectly usable software
product. Therefore, several features that would be required by a complete software suite
for FIDO authentication are missing. This section lists some of them to show that these
issues were considered during the design of the theoretical concepts and the prototype,
but also to give hints for further development.

6.2.4.1 Silent authentication

There exist numerous use cases where authentication needs to happen without any user
interaction. Let’s take an E-Mail client application for example. In password-based
authentication scenarios, this problem is simply solved by permanently storing the cre-
dentials in a more or less secure way, and the E-Mail client can authenticate the user
unattended every time the server asks for it. Having to provide your fingerprint every
time you perform an action in your E-Mail client however would depict an unacceptable
usability issue.

66

6.3. Conclusion

A simple solution would be to allow the user to approve subsequent authentication requests
for a limited period of time for certain credentials. However, far more complex approaches
are imaginable, like allowing to enable silent authentication for specific FacetIDs only,
or developing elaborate algorithms that decide if user verification is required based on
security biasing factors, like authenticator location or preceding successful authentications
with other credentials.

6.2.5 Publish/subscribe-based central revocation

Theoretically, pushing the information about revoked authenticators to relying parties
should be the best strategy regarding security as well as infrastructure load. New
revocation information is propagated to the relying parties nearly in real time, and the
load on the revocation authority’s infrastructure is minimal, as it only transfers data if a
authenticator is revoked, or if a relying party subscribes to the revocation authority and
requests the revocation data about all already revoked devices.
However, as the issues with offline revocation showed, developing such a scheme isn’t
trivial and requires further research.

6.3 Conclusion
We could develop a feasible method for centrally managing revocations of compromised
FIDO authenticators. This achievement makes FIDO-based authentication a real alter-
native to passwords even for users with a large number of accounts.
Furthermore we could improve the security and deployability of dedicated authenticator
devices by developing our methods for secure pairing of wireless ASM-authenticator
interconnections and indirect authentication.
Together, the proposed techniques brought FIDO-based authentication one step further
in becoming the new standard authentication mechanism on the Internet.

67

List of Figures

2.1 FIDO UAF High-Level Architecture [16] . 13

List of Tables

3.1 Online- vs. offline revocation list querying . 22

4.1 Demo web application - HTTP API . 44
4.2 Revocation service - HTTP API . 45

5.1 FIDO UAF security goals relevance . 50
5.2 Threat analysis - Attacks on the revocation mechanism 52
5.3 Threat analysis - Attacks on the ASM-authenticator interconnection 54
5.4 Threat analysis - Attacks on the indirect authentication mechanism 55
5.5 Bonneau-framework evaluation - Condensed results 61

Listings

4.1 Authenticator commands - JSON data structures 39
4.2 ASM HTTP API - JSON data structures 41
4.3 Client browser plugin - JavaScript API . 43

69

Acronyms

AJAX Asynchronous JavaScript and XML. 5

API Application Programming Interface. 6, 12–15, 17, 37, 38, 41–45, 66, 69

APK Android application package. 15

ASM Authenticator-Specific Module. 5, 14–16, 31–34, 37–39, 41, 49, 52–54, 60–62,
65–67, 69, 72

BLE Bluetooth Low Energy. 10

CA Certificate Authority. 16, 17, 21–23

CAR Centralized authenticator revocation. 49, 50, 60

CRL Certificate Revocation List. 19, 20

DAA Direct Anonymous Attestation. 17, 21, 71

DNS Domain Name System. 28, 31, 71

DNSSEC DNS Security extensions. 31

DoS Denial of Service. 48, 51

ECDAA Elliptic Curve DAA. 17

EPID Enhanced privacy ID. 17, 21–23

FIDO Fast IDentity Online. xi, xiii, xv, 2–6, 11–16, 18, 20, 21, 23–26, 28, 31–34, 37–39,
41, 42, 47, 49, 50, 53, 55–62, 65–67, 69

FTP File Transfer Protocol. 24, 25

HMAC Hash Message Authentication Code. 32, 33, 52–54

HTTP Hypertext Transfer Protocol. 2, 5, 15, 24, 25, 28, 37, 38, 41, 44, 45, 69

71

IA Indirect authentication. 49, 50, 60

ID Identifier. 17, 44, 51, 52, 62, 71

IDL Interface Definition Language. 39, 41, 42

IMAP Internet Message Access Protocol. 2

IMEI International Mobile Equipment Identity. 62

IoT Internet of Things. xi, xiii, 3

IP Internet Protocol. 38

IT Information technology. xi, xiii

JSON JavaScript Object Notation. 38, 39, 41, 44, 69

LF Line feed. 39

MAC Media Access Control. 52

MITM Man-in-the-middle. 32

NFC Near Field Communication. 3

PEM Privacy Enhanced Mail. 45

PHP PHP Hypertext Preprocessor. 38, 72

PII Personal identifiable information. 48

PIN Personal Identification Number. xi, xiii, 11, 31, 32, 56–58

PKI Public Key Infrastructure. 19, 20

POP3 Post Office Protocol version 3. 2

QR Quick Response. 10, 32–35, 37, 52–58, 62

RA Revocation authority. 5, 20, 22–31, 37, 49–52, 59, 62

REST Representational State Transfer. 41, 44

RFCOMM Radio Frequency Communication. 38

RP Relying Party. 5, 14, 20, 21, 23–30, 37, 50–52, 54, 66

SAAC Secure ASM-authenticator channel. 49, 50, 60

72

SG Security goal. 6, 20, 21, 47–49

SPoF Single point of failure. xi, xiii, 22, 30

TLV Tag Length Value. 39

TPM Trusted Platform Module. 4, 17, 18, 38

U2F Universal Second Factor. 11, 13

UAF Universal Authentication Framework. 2–5, 11–13, 15, 16, 19–21, 23, 32–34, 37–39,
47, 49, 50, 66, 69

UIMP Universal Identity Management Protocol. 10

URL Uniform Resource Locator. 15, 24, 25, 28, 52, 55, 62

USB Universal Serial Bus. 3, 57, 61

W3C World Wide Web Consortium. 12, 13, 16, 17, 39, 42, 57

XML Extensible Markup Language. 71

73

Bibliography

[1] Introducing Login Approvals. Accessed 2016-04-17. [On-
line]. Available: https://www.facebook.com/notes/facebook-engineering/
introducing-login-approvals/10150172618258920/

[2] About two-step verification. Accessed 2016-04-17. [Online]. Available: http:
//windows.microsoft.com/en-GB/windows/two-step-verification-faq

[3] D. McCarney, D. Barrera, J. Clark, S. Chiasson, and P. C. van Oorschot, “Tapas:
Design, implementation, and usability evaluation of a password manager,” in
Proceedings of the 28th Annual Computer Security Applications Conference, ser.
ACSAC ’12. New York, NY, USA: ACM, 2012, pp. 89–98. [Online]. Available:
http://doi.acm.org/10.1145/2420950.2420964

[4] E. Hayashi and J. I. Hong, “Knock x knock: The design and evaluation of a
unified authentication management system,” in Proceedings of the 2015 ACM
International Joint Conference on Pervasive and Ubiquitous Computing, ser.
UbiComp ’15. New York, NY, USA: ACM, 2015, pp. 379–389. [Online]. Available:
http://doi.acm.org/10.1145/2750858.2804279

[5] M. Everts, J.-H. Hoepman, and J. Siljee, “Ubikima: Ubiquitous authentication
using a smartphone, migrating from passwords to strong cryptography,” in
Proceedings of the 2013 ACM Workshop on Digital Identity Management, ser.
DIM ’13. New York, NY, USA: ACM, 2013, pp. 19–24. [Online]. Available:
http://doi.acm.org/10.1145/2517881.2517885

[6] FIDO Alliance. Accessed 2016-04-17. [Online]. Available: https://fidoalliance.org/

[7] FIDO Security Reference. Accessed 2016-07-11. [Online]. Avail-
able: https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-security-ref-v1.
0-ps-20141208.html

[8] J. Bonneau, C. Herley, P. C. v. Oorschot, and F. Stajano, “The quest to replace
passwords: A framework for comparative evaluation of web authentication schemes,”
in 2012 IEEE Symposium on Security and Privacy, May 2012, pp. 553–567.

75

https://www.facebook.com/notes/facebook-engineering/introducing-login-approvals/10150172618258920/
https://www.facebook.com/notes/facebook-engineering/introducing-login-approvals/10150172618258920/
http://windows.microsoft.com/en-GB/windows/two-step-verification-faq
http://windows.microsoft.com/en-GB/windows/two-step-verification-faq
http://doi.acm.org/10.1145/2420950.2420964
http://doi.acm.org/10.1145/2750858.2804279
http://doi.acm.org/10.1145/2517881.2517885
https://fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-security-ref-v1.0-ps-20141208.html
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-security-ref-v1.0-ps-20141208.html

[9] E. Hayashi, B. Pendleton, F. Ozenc, and J. Hong, “Webticket: Account management
using printable tokens,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’12. New York, NY, USA: ACM, 2012, pp.
997–1006. [Online]. Available: http://doi.acm.org/10.1145/2207676.2208545

[10] Web Authentication: A Web API for accessing scoped credentials. [Online].
Available: https://www.w3.org/TR/2016/WD-webauthn-20160531/

[11] LaunchKey. Accessed 2016-04-17. [Online]. Available: https://launchkey.com/

[12] Nok Nok Labs, Inc. Accessed 2016-04-17. [Online]. Available: https:
//www.noknok.com/

[13] A world without passwords: Windows Hello in Microsoft Edge. Accessed
2016-06-20. [Online]. Available: https://blogs.windows.com/msedgedev/2016/04/12/
a-world-without-passwords-windows-hello-in-microsoft-edge/

[14] Windows Hello. Accessed 2016-06-20. [Online]. Available: http://windows.microsoft.
com/de-at/windows-10/getstarted-what-is-hello

[15] FIDO Alliance - Download Specifications. Accessed 2016-07-02. [Online]. Available:
https://fidoalliance.org/specifications/download/

[16] FIDO UAF Architectural Overview. Accessed 2016-07-05. [Online]. Avail-
able: https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-overview-v1.
0-ps-20141208.html

[17] FIDO UAF Authenticator-Specific Module API. Accessed 2016-07-05. [Online]. Avail-
able: https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-asm-api-v1.
0-ps-20141208.html

[18] FIDO AppID and Facet Specification v1.0. Accessed 2016-07-05.
[Online]. Available: https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/
fido-appid-and-facets-v1.0-ps-20141208.html

[19] FIDO UAF Protocol Specification v1.0. Accessed 2016-07-05. [Online]. Avail-
able: https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-protocol-v1.
0-ps-20141208.html

[20] E. Brickell and J. Li, “Enhanced privacy id: A direct anonymous attestation scheme
with enhanced revocation capabilities,” in Proceedings of the 2007 ACM Workshop
on Privacy in Electronic Society, ser. WPES ’07. New York, NY, USA: ACM, 2007,
pp. 21–30. [Online]. Available: http://doi.acm.org/10.1145/1314333.1314337

[21] Android Keystore System. Accessed 2016-12-01. [Online]. Available: https:
//developer.android.com/training/articles/keystore.html

76

http://doi.acm.org/10.1145/2207676.2208545
https://www.w3.org/TR/2016/WD-webauthn-20160531/
https://launchkey.com/
https://www.noknok.com/
https://www.noknok.com/
https://blogs.windows.com/msedgedev/2016/04/12/a-world-without-passwords-windows-hello-in-microsoft-edge/
https://blogs.windows.com/msedgedev/2016/04/12/a-world-without-passwords-windows-hello-in-microsoft-edge/
http://windows.microsoft.com/de-at/windows-10/getstarted-what-is-hello
http://windows.microsoft.com/de-at/windows-10/getstarted-what-is-hello
https://fidoalliance.org/specifications/download/
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-overview-v1.0-ps-20141208.html
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-overview-v1.0-ps-20141208.html
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-asm-api-v1.0-ps-20141208.html
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-asm-api-v1.0-ps-20141208.html
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-appid-and-facets-v1.0-ps-20141208.html
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-appid-and-facets-v1.0-ps-20141208.html
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-protocol-v1.0-ps-20141208.html
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-protocol-v1.0-ps-20141208.html
http://doi.acm.org/10.1145/1314333.1314337
https://developer.android.com/training/articles/keystore.html
https://developer.android.com/training/articles/keystore.html

[22] Y. Shaked and A. Wool, “Cracking the bluetooth pin,” in Proceedings of the
3rd International Conference on Mobile Systems, Applications, and Services, ser.
MobiSys ’05. New York, NY, USA: ACM, 2005, pp. 39–50. [Online]. Available:
http://doi.acm.org/10.1145/1067170.1067176

[23] Bluetooth SIG. Simple Pairing Whitepaper. Accessed 2016-11-30. [Online]. Available:
https://web.archive.org/web/20061018032605/http://www.bluetooth.com/NR/
rdonlyres/0A0B3F36-D15F-4470-85A6-F2CCFA26F70F/0/SimplePairing_WP_
V10r00.pdf

[24] FIDO UAF Authenticator Commands v1.0. Accessed 2016-09-03. [On-
line]. Available: https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/
fido-uaf-authnr-cmds-v1.0-ps-20141208.html

[25] WebIDL (Second Edition). Accessed 2016-09-02. [Online]. Available: https:
//heycam.github.io/webidl/

77

http://doi.acm.org/10.1145/1067170.1067176
https://web.archive.org/web/20061018032605/http://www.bluetooth.com/NR/rdonlyres/0A0B3F36-D15F-4470-85A6-F2CCFA26F70F/0/SimplePairing_WP_V10r00.pdf
https://web.archive.org/web/20061018032605/http://www.bluetooth.com/NR/rdonlyres/0A0B3F36-D15F-4470-85A6-F2CCFA26F70F/0/SimplePairing_WP_V10r00.pdf
https://web.archive.org/web/20061018032605/http://www.bluetooth.com/NR/rdonlyres/0A0B3F36-D15F-4470-85A6-F2CCFA26F70F/0/SimplePairing_WP_V10r00.pdf
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-authnr-cmds-v1.0-ps-20141208.html
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-authnr-cmds-v1.0-ps-20141208.html
https://heycam.github.io/webidl/
https://heycam.github.io/webidl/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem statement
	Aim of the work
	Methodological approach
	Literature research
	Evaluation of the FIDO architecture & design of improvements
	Prototype design & implementation
	Verification & Critical reflection

	Structure of the work

	State of the art / analysis of existing approaches
	Scientific literature
	Improving password security
	Tapas
	UniAuth & Knock x Knock
	WebTicket

	New authentication mechanisms
	UbiKiMa

	Standards & specifications
	fido Alliance
	W3C Web Authentication

	Commercial services & products
	LaunchKey
	Nok Nok
	Windows Hello & Microsoft Edge

	The FIDO UAF specification
	A note on FIDO versions
	Overview
	Components of the UAF architecture

	Privacy considerations
	Important security concepts
	Application isolation
	Authenticator attestation
	Implementation challenges

	Improvements to FIDO specification
	Centralized authenticator revocation
	Challenges
	Unlinkability considerations

	Online vs. offline revocation list querying
	Related work
	Revocation protocols with offline-verification
	Offline revocation with foreign post-revocation unlinkability
	Offline revocation with local pre-revocation unlinkability and foreign post-revocation unlinkability
	Issues with both offline revocation schemes

	A revocation protocol with online-querying
	Performance considerations
	A security note on concatenated arguments of hash functions
	Implementation considerations

	Securing wireless ASM-Authenticator connections
	Protocol description

	Indirect authentication
	Protocol description
	Security aspects of the indirect-authentication token

	Prototype
	Prototype components
	Design decisions & specification coverage
	No component identification
	No utilization of hardware-assisted security
	Simplified but secure application isolation

	Authenticator application
	Authenticator commands

	ASM
	ASM API

	Client browser plugin
	JavaScript API

	Demo web application
	HTTP API

	Revocation service
	HTTP API

	Critical reflection
	Verification against FIDO security requirements
	Security goals & definitions
	UAF Security Goals
	Refined and new security goals

	Relevant security goals
	Threat analysis
	Attacks against the revocation mechanism
	Attacks on the communication channel between ASM and authenticator
	Attacks on the indirect authentication mechanism

	Evaluation using Bonneau's framework
	Usability
	Deployability
	Security
	Overview of results

	Relevance of the work
	Security aspects
	Usability aspects
	New deployment options

	Usability considerations
	Known issues
	Missing application isolation for indirect authentication

	Summary and future work
	Unsolved problems
	Implementation challenges

	Future work
	Client & ASM Attestation
	Offline revocation
	Application isolation
	Prototype
	Silent authentication

	Publish/subscribe-based central revocation

	Conclusion

	List of Figures
	List of Tables
	Listings
	Acronyms
	Bibliography

