
A Graph-based Model for
Multimodal Information Retrieval

PhD THESIS

submitted in partial fulfillment of the requirements for the degree of

Doctor of Technical Sciences

within the

Vienna PhD School of Informatics

by

Serwah Sabetghadam
Registration Number 1128896

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dr. Andreas Rauber
Second advisor: Dr. Mihai Lupu

External reviewers:
Univ.Prof. Dr. Fabio Crestani. University of Lugano, Italy.
a.Univ.Prof. Dr. Josef Küng. Johannes Kepler University of Linz, Austria.

Vienna, 17th January, 2017
Serwah Sabetghadam Andreas Rauber

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Declaration of Authorship

Serwah Sabetghadam
Favoritenstrasse 9-11, 1040, Wien

I hereby declare that I have written this Doctoral Thesis independently, that I have
completely specified the utilized sources and resources and that I have definitely marked
all parts of the work - including tables, maps and figures - which belong to other works
or to the internet, literally or extracted, by referencing the source as borrowed.

Vienna, 17th January, 2017
Serwah Sabetghadam

iii

To My Loved Ones

Acknowledgements

When I look back over the last few years, I see that this PhD journey could not be
accomplished without the presence and support of precious people in my life.

First and foremost, I want to express my gratitude to my advisor, Andreas Rauber,
who agreed to work with me. I am so grateful for his confidence in my ability to
develop new ideas, for mentoring me finding my way through research challenges with
his inspiring guidance and encouragement, and for his support at critical moments. I am
also very thankful to my co-advisor, Mihai Lupu, for his constant presence and patience
in discussions, for his guidance and suggestions, and for his availability at any time.

A special appreciation goes to my doctoral thesis committee, Fabio Crestani and Josef
Küng, who accepted to review my thesis. I am also thankful to all anonymous reviewers
of my papers who provided valuable feedback to improve my work. I want to express
my thanks to the PhD school committee for making it possible to pursue my studies at
TU Wien. Notably, Clarissa Schmid for her constant kindness and help in study-related
problems, from the very beginning until these last days of defense. Also I am thankful to
Katharina Engel and Mamen for their help in different issues that happened in this way.

I am also thankful to Martha Larson for providing me an opportunity to join their
team for a research visit at Delft University and Radboud University in the Netherlands.
Although short, it was a valuable experience for me to collaborate with a new group in
another university.

Further, I want to thank all my colleagues at the IR group for fruitful discussions and
collaborations. In particular, my office mates, João and Navid, and later Florina and
Aziz, for their feedbacks and for tolerating me in difficult moments. In particular, João
for his continuous positive energy, good mood and smiling face during hard days, Aziz
and Aldo for helpful discussions any time needed, and Linda for the fun during long
working days and weekends at university. I also thank Ralf for his informative discussions
and reviews, particularly reading some chapters of my thesis.

Special thanks goes to the friends who accompanied me in this way. Notably, Rostik
for being always and always ready for any help, and for all the memorable times we
had. Peter Kan for encouraging me in difficult times and for sharing his enthusiasm and
inspiration in research, and Soheil for his empathy in tough days. I am specially thankful
to my close friend Mitra from the IBS group for sharing the ups and downs of this path

ix

together, for the encourages we would get at the end of each appointment to tackle the
problems again and again, and for the memorable afternoons and all the Hafiz poems we
read together.

I am particularly thankful for the very close friendship of Tara and Mansooreh, who were
like family members for me in Vienna. Tara became my very first and one of the best
friends and roommates I had in Vienna. Her positive energy and attitude were a great
help for me especially at the beginning of this journey. I am thankful for her company
and creating an atmosphere of “feeling at home”. I am equally thankful to Mansooreh
for her open heart, presence and help in different challenges I faced in my academic and
non-academic life, and for her very helpful negotiations and encourages.

I want also to thank all those people who made these years much easier and fun, in
particular Mona, Peyman, and Amir for all memorable nights we created together. I am
also thankful to all PhD school colleagues for the parties and get-togethers we had. I
miss those times these days.

When it comes to my family, I can only express my deep gratitude for their faith and
trust in me to pursue my life path freely. I express my special thanks to my mom and dad,
Hajyeh and Abbas, for their constant support and encouragement to continue and never
give up, and for their unconditional love. I sincerely thank my siblings for their unfailing
support in thick and thin, which gave me peaceful mind to go ahead. I am thankful to
my sister, Somayeh, who was like part of me in sorrow and joy, just kilometres away, and
for her inner peace that would calm me down in unbalanced days. To my brother, Arash,
the one I could always rely on in everything, and for his open arms whenever I needed
help. I love you all and thank you being pillars in my life.

I dedicate this work to my loved ones, especially, to my mom and dad who nourished all
moments of my life with love and love and love.

Abstract

Finding useful information from large multimodal document collections such as the WWW
is one of the major challenges of Information Retrieval (IR). Nowadays the proliferation
of available information sources—text, images, audio, video and more—increase the
need for multimodal search. Multimodal information retrieval is about the search for
information of any modality on the web, with unimodal or multimodal queries. For
instance, a unimodal query may contain only keywords, whereas multimodal queries may
be a combination of keywords, images, video clips or music files.

Users have learnt to explain their information need through keywords and expect the
result as a combination of different modalities. Search engines like Google and Yahoo
often show related videos or images in addition to the text result to the user. Usually, in
a keyword based search, only the metadata information of a video or an image (e.g. tag,
caption or description) is used to find relevant results. This approach is limited to textual
information only and does not include information from other modalities. There is few
options such as Google image search, which considers the image features to perform the
image search task based on. In case the user query is an image, or a combination of a
video file and keywords, the question arises how can a search engine benefit from different
modalities in the query to retrieve multimodal results.

Usually, search engines build upon text search by using non-visual information associated
with visual content. This approach in multimodal search does not always result in
satisfying results, as it completely ignores the information from other modalities in
ranking. To address the problem of visual search approaches, multimodal search reranking
has received increasing attention in recent years.

In addition to the observation that data consumption today is highly multimodal, it is
also clear that data is now heavily semantically interlinked. This can be through social
networks (text, images, videos of users on LinkedIn, Facebook, or the like), or through
the nature of the data itself (e.g. patent documents connected by their metadata -
inventors, companies, semantic connections via linked data). Structured data is naturally
represented by a graph, where nodes denote entities and directed/indirected edges
represent the relations between them. Such graphs are heterogeneous, describing different
types of objects and links. Connected data poses a challenge is traditional IR method
which is based on independent documents. The question arises whether structured IR
can be an option for retrieving more relevant data objects.

xiii

In this thesis, we propose a graph-based model for multimodal information retrieval. We
consider different relation types between information objects from different modalities.
A framework is devised to leverage individual features of different modalities as well as
their combination through our formulation of faceted search. We denote an inherent
feature, metadata or property of an information object as its facet. We highlight the
role of different facets of the user’s query in visiting different parts of the graph. We
employ a potential recall analysis on a test collection and further highlight the role of
multiple facets, relations between the objects, and semantic links in recall improvement.
Furthermore, we perform an analysis on score distribution on the graph at large number
of steps to investigate the role of different facets and link types in the final performance
of the system. The experiments are conducted on ImageCLEF 2011 Wikipedia collection,
as a multimodal benchmark dataset containing approximately 400,000 documents and
images.

Contents

Acknowledgements ix

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 1
1.2 Challenges . 2
1.3 Research Questions . 4
1.4 Contributions . 5
1.5 Thesis Structure . 6
1.6 Publications . 7

2 Context 9
2.1 Background . 9
2.2 Related Work . 22

3 Astera Model 35
3.1 Model Definition . 35
3.2 Evaluation Design . 40

4 Reachability Analysis 47
4.1 Relevant Objects Distribution . 47
4.2 Reachability from Different Facets . 48
4.3 Reachability through Different Links . 51
4.4 Recall Analysis of Different Topic Categories 57
4.5 Graph Visit from Different Facets . 63
4.6 Summary . 67

5 Precision Analysis 69
5.1 Precision Analysis with Different Facets 69
5.2 Precision Analysis by Adding Semantic and Similarity Links 74
5.3 Score Analysis in the Graph - α, β, δ, γ . 79

xv

5.4 Summary . 89

6 Conclusion 91
6.1 Summary . 91
6.2 Research Questions Revisited . 92
6.3 Future Work . 94

A Computational Complexity Analysis 97
A.1 Matlab Matrix Sizes and Memory Requirement 98
A.2 Conclusion . 101

B Astera Software Architecture Document (SAD) 103
B.1 Introduction . 103
B.2 Architectural Representation . 104
B.3 Logical View . 104
B.4 Process View . 106
B.5 Implementation View . 108
B.6 Deployment View . 110
B.7 Data View . 110
B.8 Configuration . 110
B.9 Similarity Links . 115
B.10 Semantic Links . 116
B.11 Implementation Strategies . 117

List of Figures 125

List of Tables 126

Bibliography 129

CHAPTER 1
Introduction

1.1 Motivation

There is a rapid growth of online multimodal content as well as personal data generation
in our daily life. This trend creates the need for seamless information retrieval from
different modalities such as video, audio, image, and text. Multimodal information
retrieval is about the search for information of any modality on the web, with unimodal
or multimodal queries. For instance a unimodal query may contain only keywords or
only image examples, whereas multimodal queries may be a combination of images, video
clips or music files. Web search engines over the past decade have evolved into being
the primary gateways to accessing the ever-growing amount of data available online.
Multimodal IR presents a great challenge since it deals with several data types and
modalities, each having its own underlying retrieval model.

In order to successfully manage large multimedia resources, search engines should provide
results to users in different modalities. However, users rather keep their conventional
method of search by entering some keywords and receiving a multimodal result. Using
different modalities —text, image, audio, or video—to improve an IR System is challenging
since each modality has a different concept of similarity underneath. There has been a
long stream of research in this area, ranging from associating image with text search
scores, to sophisticated fusion of multiple modalities [FFFPZ05, MDS05, MS07, DLTX11,
KKW+14].

Popular search engines like Google, Yahoo and Bing build upon text search by using
non-visual information associated with visual content. This approach in multimodal
search does not always produce satisfying results, as it completely ignores the information
from other modalities in ranking. To address the problem of visual search approaches,
multimodal search reranking has received increasing attention in recent years.

1

Reranking leverages different sources and methods to create a new ranked list with
relevant results in higher ranks. Mei et al. [MRLT14] performed a survey on reranking
models of multimodal retrieval. In their view, work on multimodal reranking is divided
into four categories: 1) Self-reranking: methods that include data from the original
ranking result such as Pseudo-Relevance Feedback, where the top-ranked results are
regarded as “positive” in learning a ranking model. 2) Example-based reranking: methods
to understand the query using accompanying examples. One instance of such query
example is to upload an image to find similar ones in addition to textual query. 3) Crowd
reranking: leverages crowd-sourced knowledge on the web to mine relevant patterns for a
query. 4) Interactive reranking: a user edits a part of the search results, e.g. deletes or
emphasizes a result.

We refer to related work that is principally based on similarity between independent
documents as non-structured IR (i.e. category 2). Going beyond the document itself,
in modern IR settings, documents are usually not isolated objects. Instead, they are
frequently connected to other objects, via hyperlinks or meta-data [MCN06]. They
provide mutual information on each other—forming a background information model that
may be used explicitly. Sometimes this information link is explicit as related information
(e.g. a Wikipedia document and its images), resulting in a network of related objects.
Sometimes it is inherent in the information object, e.g. the relation between the subtitles
and frames of a video file. Moreover, user-generated multimodal content, domain-specific
multimodal collections, or platforms like the semantic web impose structured IR based
on links between different information objects. Graph-based methods for reranking are
a subset of self-reranking methods (category 1), in which a graph oriented search is
performed based on relations between objects. Since 2005 there is a trend towards a
combination of these search methods, leveraging both structured and non-structured
IR [KSI+08, DTCT10, EB11]. This offers new opportunities for multimodal retrieval,
utilizing link information for reranking.

1.2 Challenges

Mostly, research in the area of structured search creates a graph of one type of relations
e.g., similarity links with one modality (images/videos) [YMN10, HKC07, WLT+12].
Others use only semantic relations between information objects based on various semantic
databases [RSA04, TdM14, EB11]. For instance, Rocha et al. [RSA04] model the
knowledge-base of a sample website by adding semantic links between various entities of
the website.

Considering only one type of relation limits us to perceive information only from one
perspective. Suppose that we have a Wikipedia collection, containing pages with images
inside them. Assume that the search task is to perform a text-based image search.
The collection is indexed for each language separately and the search engine finds the
Wikipage containing the image and shows the image to the user. If the user can search
only in English, she is limited to the result from the English collection, as some images

2

may have only German caption or metadata. However, if we use a semantic link that
links the same pages in two languages, we can reach in one step to German Wikipages
and also their images, leading to retrieve a much richer result set.

Another example is a semantic relation between two images in a collection (e.g. two
flower types from the same height in mountains), which are not similar to each other.
Including both similarity and semantic connections in the retrieval process helps reaching
a more diverse set of relevant results. How to exploit various relations to achieve a better
performance is one challenge in graph-based multimodal IR.

Another challenge is the multimodality of information. In pure text retrieval, both an
information need and the results are text-based. One aspect is information from one
modality that is contained in another one. For example, a Wikipedia page may contain
an image. This image can be indexed, processed and retrieved independently if we extract
the image from the Wikipage.

Yet another aspect is multimodality of an information object itself. A website has textual
features such as TF.IDF (Term Frequency.Inversion of Document Frequency), as well as
visual facets as page layout or style. This is true for images as well. They can have visual
features as SIFT (Scale-Invariant Feature Transform) [BETVG08] or CEDD (Color Edge
Histogram) [CB08], as well as textual features based on their sub-titles, OCR’-text from
logos. Hence, we can observe that any information object is inherently multimodal. How
to take advantage of these included information is another challenge in multimodal IR.

There is an additional aspect of multimodal retrieval when we meet the challenge of
variety of different features in each modality. In Information Retrieval, we search an
information object based on one or more features of that modality. We compute the
similarity between the same features of a query and each information object. For instance,
for images, we can find similar images based on different features like edge histogram or
color histogram of that image. We call these features of a document or an image, facets
of that modality. In a text search engine, we index the available documents based on
their containing terms/words and their frequencies. When a user searches based on some
keywords, we find similar documents. This similarity is computed e.g. based on Cosine
similarity of the query word vector and document word vector. However, a multimodal
collection contains different modalities each having different features.

A multimodal query can be as simple as keywords (uni-modal) used in daily search
for finding text, video or audio. It can be as complex as a combination of an image,
an audio file, or a video fragment. For instance, a user loves nature and has seen a
new flower. In this case, the features may be the color histogram or edge histogram of
the image of the flower. However, if she uses a picture of this flower and the keyword
“species”, then the information from both the query example and the keywords are needed.
This brings up the challenge of dealing with a rich number of features in retrieving
relevant information objects for users. However, there are still challenges of how to
combine the result of features of different modalities. Some related work use early fusion
to consider different features in the retrieval. In early fusion, a long feature vector is

3

created from concatenating multimodal features. The search is conducted on this vector.
Early fusion suffers from the curse of dimensionality problem, i.e. with high dimensional
features, the distance between the information objects become very similar [AHK01].
For late fusion, the result of individual modalities are combined with different weighting
strategies. One problem with late fusion is choosing the optimal weighting strategy for
different modalities. Further, the fusion may not be good due to poor result of individual
modalities. This brings the challenge of how to leverage features from different modalities
in multimodal IR, meanwhile avoiding the shortcomings of early and late fusion.

1.3 Research Questions
As we have seen so far, on one side we have implicit and explicit relations between
information objects. On the other side, we have heterogeneous modalities and their
features or facets. There are numerous challenges in this context. The following are the
research questions and a number of associated sub-questions that we attempt to answer
in this thesis:

• RQ1: Can we define a graph-based model for multimodal multi-faceted information
retrieval?

– What are the nodes in such a model?
– What kind of links can we leverage between different information objects?
– How can retrieval be modelled in such a graph?
– How are the result of different features utilized in the retrieval process?

• RQ2: In such a graph model, can the relevant nodes be reached?

– How much can we improve reachability of relevant objects by leveraging
multi-facet/poly-representation of query and information objects?

– What is the effect of different facet combinations on recall behaviour of different
query categories by their difficulty rating in benchmark evaluations?

– What is the effect of adding semantic links between information objects?
– Do different facets with the same recall value visit the same parts of the graph

or the same relevant information objects?

• RQ3: In such a model can scores identify the relevant nodes?

– What is the effect of facet combinations on precision?
– Is the initial score of the nodes affecting the final score distribution in the

graph? What is the effect of Metropolis-Hastings traversal?
– Do the scores in the graph converge (i.e. does the graph stabilize in stationary

distribution state)? and if so after how many steps?
– What are the factors explaining the convergence state?

4

1.4 Contributions
To address these challenges, we propose a model and prototype, named Astera1, to
leverage hybrid search (structured and non-structured search) in order to handle the
diverse nature of the nodes and edges in the multimodal content domain [SLR13, SLBR14].
We can model domain specific collections with the help of different relation types, and
enrich the available data by extracting characteristic information from data objects, in
the form of facets. By facet we mean any inherent feature or property of an information
object. This definition allows considering a document under several points of view, each
one being associated to a specific space. For instance, text documents have primarily a
textual facet, but also others such as stylistic/layout facets (covered partially by image
features), may contain images, or have time/versioning aspects (recency of information).
Another example is image files which primarily have image facets (comprising several
actual feature spaces such as color, edge or texture) but also other facets such as written
information (as detected with OCR), metadata such as time, owner, etc.

This model decomposes the multimodal query in different representations/facets. For
instance, we assume that a user has a query such as “red or black mini cooper”. She can
specify her request by determining which aspects of this Mini Cooper have attracted her,
such as color and brand name here. We can take advantage of color histogram of images
in the collection in addition to finding mini cooper cars to provide the results for the
user.

In our model, we extract different facets of the query example. We extract different facets
of all information objects in the collection too. Based on the query facets, we use top
standard search results to activate a subset of points in the graph of information objects.
From the activated points we continue the search in two dimensions: non-structured
search (through similarity links) and structured search (through semantic links). After a
defined number of steps in the graph, each information object receives scores from the
combination of all its neighbours propagated from starting point sores. We show that
our model matches the efficiency of non-graph based indexes, while having the potential
to exploit different facets for better retrieval [SBR14].

Another distinguishing point of our work is the enriched connections between information
objects. When the user searches for a movie such as “Pride and Prejudice”, she does not
necessarily know that this movie is in the category of movies in 1940-1950 (facet), it is
one of the top products of director “Robert Z. Leonard” (semantic), or it is based on
the Book “Pride and Prejudice” (semantic) of which there are many other books from
the same author (semantic), that there are movies about them as well (semantic), or
that there is another movie (semantic) from another author (semantic) but with highly
similar characteristics (facet). These are instances of information that are modelled via
different relation types and representations in our graph. These links can be supplied by
the collection provider, or from external database, such as Linked Open Data for the
semantic links.

1Astera is open-source and available at http://www.ifs.tuwien.ac.at/∼sabetghadam/Astera.html

5

The contributions of this work can therefore be summarized as below:

• A generic model for multimodal collections. In this model, information objects may
be from any modality. This results in various types of relations between them.

• We formulate a form of faceted search. We define a facet as an inherent feature of
an object. With respect to this definition, we decompose an information object to
its facets. For example we could extract visual and textual facets of an image, or
visual, textual and acoustic facets of an audio file. We can calculate similarity and
relevancy based on common facets of these objects and the query. We investigate
the effect of leveraging different facets in system performance. We show that based
on the idea of poly-representation [LIK06], we reach higher precision and recall,
when we use diverse facets.

• We present a highly configurable framework for multimodal information retrieval.
Different traversal methods, facets and weighting strategies can be defined to
configure this framework.

• We define the concept of reachability of relevant information objects. We define
reachability as the possibility to reach to relevant information objects in the graph
starting from some query. We investigate the role of different facets and links
in improving recall. We demonstrate that our graph model of the collection
outperforms standard indexed search results.

• We develop an approach to compare the query-dependent and query-independent
Random Walks in the graph. We show the graph behaviour in the stationary
distribution state with each of these methods.

• We show the applicability of our model on a multimodal domain by using the
ImageCLEF 2011 Wikipedia collection dataset [TPK11].

1.5 Thesis Structure
Chapter 2 of this thesis is an introductory chapter to familiarize the reader with the field
of multimodal Information Retrieval. The proposed model and evaluation methodology
are presented in Chapter 3. We address RQ1 in this chapter. Chapters 4 and 5, each
address the set of research questions introduced earlier. Finally we present concluding
remarks in Chapter 6. What follows is a more detailed summary of each chapter’s content:

• Chapter 2 (Context) The first part of this chapter provides fundamental infor-
mation about the technologies and concepts used in the remainder of this thesis.
We particularly focus on the research domain of Information Retrieval and multi-
modality, faceted search, graph-based search are described. Further, we investigate
two well-known graph search methods: Random Walks and Spreading Activation,

6

and select the appropriate method for our model. We compare both in two cases of
query-dependent and query-independent routing. In the second part of this chapter,
we present the related work that influenced and motivated this dissertation.

• Chapter 3 (Astera Model) describes the fundamental contribution of the thesis—
the Astera framework. Different characteristics of this framework are described in
this chapter. We investigate our first research question (RQ1) in this chapter, and
introduce the evaluation methodology and the experimental setup that forms the
basis of our empirical evaluations. The test collections, the set of test queries, and
evaluation metrics are then introduced.

• Chapter 4 (Reachability Analysis) This chapter provides answers to sub-
questions in RQ2. It focuses on the most important aspect of reachability, and
discusses how solutions can leverage poly-representation in order to optimize the
cost of visiting more nodes to the benefit of higher recall.

• Chapter 5 (Precision Analysis) discusses particularly how scores are distributed
over the graph and how these affect precision. This chapter provides answers to
sub-questions in RQ3.

• Chapter 6 (Conclusions) summarizes and concludes the thesis and presents
future research directions that emerged from this work.

1.6 Publications

This thesis is based on several published works.

Chapter 2 which shows a theoretical comparison of the two traversal methods is based
on the paper:

• Sabetghadam S., Lupu M., and Rauber A., Which one do you choose? Spreading
Activation or Random Walks?. In Proceedings of Information Retrieval Facility
Conference (IRFC), 2014

Chapter 3 which presents the model is based on these papers:

• Sabetghadam S., Lupu M., Rauber A., Astera - A generic model for multi-modal In-
formation Retrieval, In Proceedings of the Workshop on Integrating IR Technologies
for Professional Search, held in ECIR, 2013

• Sabetghadam S., Lupu M., Bierig R., and Rauber A., A combined approach
of structured and non-structured IR in multi-modal domain, In Proceedings of
International Conference on Multimedia Retrieval (ICMR), 2014

7

• Sabetghadam S., Doctoral Symposium in International Conference on Multimedia
Retrieval, In Proceedings of International Conference on Multimedia Retrieval
(ICMR), 2014

Chapter 4 which investigates the role of facets and links in reachability is based on
these papers:

• Sabetghadam S., Lupu M., Bierig R., and Rauber A., Reachability Analysis of Graph
Modelled Collections, In Proceedings of 37th European Conference on Information
Retrieval (ECIR), 2015

• Sabetghadam S., Lupu M., Bierig R., and Rauber A., A Faceted Approach to
Reachability Analysis of Graph Modelled Collections. Under review.

Chapter 5 which elaborates the score distribution in the graph is based on the paper:

• Sabetghadam S., Bierig R., and Rauber A., A Hybrid Approach for Multi-Faceted
IR in multi-modal Domain, In Proceedings of Image Retrieval Conference and Labs
of the Evaluation Forum (CLEF), 2014

• Sabetghadam S., Lupu M., and Rauber A,. Leveraging Metropolis-Hastings Algo-
rithm on Graph-based Model for multimodal IR. In Proceedings of First Interna-
tional Workshop on Graph Search and Beyond (GSB), held at SIGIR 2015

• Sabetghadam S., Lupu M., Rauber A., Random Walks Analysis on Graph Mod-
elled Multimodal Collections, In Proceedings of Second International KEYSTONE
Conference, 2016

8

CHAPTER 2
Context

In the first part of this chapter we introduce a few background concepts in the context of
multimodal Information Retrieval. Afterwards, a survey of the related research work is
presented in the second part. Primarily the focus is on the current research trends that
are related to the important parts of this thesis.

2.1 Background
This section introduces some basic concepts that are crucial for understanding the
remainder of the thesis. First of all, we define the concept of Information Retrieval and
multimodal Information Retrieval in Section 2.1.1, which are the target environment for
every presented contribution of this thesis. The notion of multimodality, discussed in this
section, is one of the essential characteristics of Information Retrieval [HM09, WLT+12]
and plays a vital role and main motivation for the contributions presented in this work.
Following, Section 2.1.2 presents the probability concepts used in this thesis. Section
2.1.3 describes two well-known methods of graph traversal in Information Retrieval:
Spreading Activation and Random Walks. In this section, we compare these methods
from two aspects of query-dependent and query-independent routing. Based on the
findings we choose which one to use in our work. Finally, Section 2.1.4 presents the
Metropolis-Hastings algorithm which is based on Random Walks, and is used in the
experiments in Chapter 5.

2.1.1 Information Retrieval

The meaning of Information Retrieval (IR) is very broad. Very simple looking for infor-
mation such as reading a number from a card can be defined as Information Retrieval.
However, academically it is defined as finding material (usually documents) of an un-
structured nature. The result of this finding is to satisfy an information need from large
collections [SRM09].

9

Previously, Information Retrieval was mainly to find documents based on keywords.
In recent decades, the digital content of web has increased dramatically. High rate of
production of images, audio and video contents has created the web as a multimedia
platform. Multimodal Information Retrieval is defined as the search for information of
any modality on the web with an information need that can be unimodal or multimodal.
A unimodal query may contain only keywords or an image example, whereas multimodal
queries may be a combination of images, video clips, or music files. For instance, we can
search a video clip with a query of text and image example.

To measure the performance of an IR system, we usually use two well-known measures:
Precision and Recall. Precision is a measure of result relevancy. It is the ratio of the
number of relevant documents found to the top N documents. For example P@20 shows
the percentage of relevant documents in the top 20 results. Recall is the fraction of found
relevant results for a specific query. It is the ratio of the number of relevant documents
to the number of all relevant ones for that query.

Here, we define some IR concepts used in this thesis:

• Information Object: We call any kind of individual data object an information
object.

• Modality: We call Text, Image, Audio and Video different modalities.

• Facet: We define a facet as an inherent property of an information object. It can
be a feature like color histogram of an image, or metadata information of an object
such as genre of a music file, or tags of an image.

• Unimodal Information Object: An information object which contains only one
modlity, e.g., a text document or an image.

• Multimodal Information Object: An information object which contains more
than one modality e.g. a video clip with subtitle, a document containing an image.

2.1.2 Probability Concepts

In this section we define probability concepts used in this thesis, particularly used in
Random Walks (Section 2.1.3), and Metropolis-Hastings algorithm (Section 2.1.4) as
traversal methods.

The Probability Ranking Principle

Assume Rd,q be a random variable that says whether d is relevant to a query q. It takes
a value of 1 if the document is relevant and 0 otherwise. In context, we write just R for
Rd,q. Based on a probabilistic model, the order to present documents to the user is to
rank documents by their estimated relevance probability to the query: P (R = 1|d, q).

10

Robertson defines the probability ranking principle as follows [Rob97]: “If a reference
retrieval system’s response to each request is a ranking of the documents in the collection
in order of decreasing probability of relevance to the user who submitted the request,
where the probabilities are estimated as accurately as possible on the basis of whatever
data have been made available to the system for this purpose, the overall effectiveness
of the system to its user will be the best that is obtainable on the basis of those data.”
Probabilistic models treat the process of document retrieval as a probabilistic inference.
Similarities are computed as probabilities that a document is relevant for a given query.
Based on Bayes theorem we have: p(d|q) = p(q|d)p(d)

p(q) where p(q|d) is the probability of
occurrence of query q if we have document d. The Bayes Optimal Decision rule returns
documents which are more likely relevant than nonrelevant [SRM09]:

d is relevant iffP (R = 1|d, q) > P (R = 0|d, q) (2.1)

Markov Chain

Markov chain is a random process that transits randomly from one state to another. Let
Xt denote the value of a random variable at time t. Markov chain is usually characterized
by the memorylessness property—the transition probabilities in the state space depend
only on the current state of the random variable.

Pr(Xt+1 = sj |X0 = sk, . . . Xt = si) = Pr(Xt+1 = sj |Xt = si) (2.2)

Thus for a Markov random variable, the only knowledge needed to predict the next state
is the current state of the random variable. Markov chain is referred to a sequence of
random variables (X0, . . . , Xn) generated through a Markov process. A chain is defined
through its transition probabilities, which are the probabilities of going to state sy from
state sx in one step,

W (x, y) = Pr(Xt+1 = sy|Xt = sx) (2.3)

The chain is started with a starting vector π(0). Usually all elements are 0 except
one element with value 1 which is the particular starting point. In further steps, the
probability values spread over the possible state space. We have the probability of
transition from any random state to all other states. Thus we define a probability
transition matrix W where the probability of moving from state x to state y is W (x, y).
We write:

π(t+ 1) = π(t)W (2.4)

Using the matrix form, we see the equation as

π(t) = π(t− 1)W = (π(t− 2)W)W = π(t− 2)W 2 (2.5)

Continuing in this fashion we obtain:

π(t) = π(0)W t (2.6)

11

A Markov chain may reach a stationary distribution state π∗, where the vector of
probabilities in this state is independent from the initiating state values. The stationary
distribution satisfies

π∗ = π∗W (2.7)

A Markov chain is given by a set of states X = x1, ..., xn and a transition matrix W , such
that W (x, y) is the probability of jumping from node x to y. The property of Markov
chain model is that for any probability distribution π over the state space X, and for
any ε ∈ R, a transition matrix W can be built such that ∃t : ||W t(x,Xi) − π(X)i)|| <
ε,∀x ∈ X,∀i ∈ 1, n. This means that there is an iteration t that the probability of going
from node x to any of the other nodes (W t(x,Xi)) does not change the distribution of
the state π(X)i. After a sufficiently large number of steps t, we can be in any state with
a fixed probability.

We mention some properties of a Markov chain used in this thesis:

• Irreducible chain: a chain is irreducible if for any state, the probability of getting
there given any starting point is more than zero. In this case, there is a positive
number of steps that one can go from one state to another.

• Aperiodic chain: in an aperiodic chain, there is no rhythm in which states can be
reached given a starting point. The number of steps to move between each two
states is not multiple of some integer.

• Ergodic Chain: A Markov chain is ergodic if it is both irreducible and aperiodic.

• Stationary Distribution: After a sufficient number of steps, an ergodic chain
converges to fixed probabilities for each of the states in the chain, which is called
stationary distribution. This probability distribution is independent of initial
probability in the chain.

• Largest eigenvalue is 1: Suppose Wx = λx for some λ > 1. Since the rows of W
are non-negative and sum to 1, each element of vector Wx is a convex combination
of the components of x, which can be no greater than xmax, the largest component
of x. On the other hand, at least one element of λx is greater than xmax, which
proves that λ > 1 is impossible.

Monte Carlo

Monte Carlo is originally developed by physicists to use repeated random sampling
to compute a complex integral. It needs a probability distribution to generate inputs
randomly. Usually the Monte Carlo method requires a large number of inputs to reach
an accurate approximation of the solution. This method is utilized to draw samples
from a hard distribution based on constructing a Markov chain, so called Monte Carlo
Markov Chain (MCMC). After a large number of sampling they can integrate the complex
function [MU49, Has70].

12

2.1.3 Traversal Methods

One of the main challenges in graph modelled data is how to “intelligently” traverse the
graph and exploit the associations between the data objects. Two highly used methods
in retrieving information on structured data are: Markov Chain Random Walks and
Spreading Activation. Crestani [Cre97] explains Spreading Activation as a method of
associative retrieval to identify relevant information based on the associations between the
information elements. Random walks is defined as a sequence of independent, distributed
discrete random path selection in a graph of objects - also the basic method for PageRank
[Ber05]. Using Random Walks to find related data objects has been investigated for
example in [CTC05, Ber05, SJ01].

In this section, we investigate these two approaches from a theoretical point of view.
We categorize the routing in a graph, as query dependent and query independent. We
compare Spreading Activation and Random Walks according to these two categories and
select the appropriate method for our model.

Spreading Activation The idea of application of Spreading Activation in IR originates
from the works on Associative Retrieval, in which an explicit information objects are
represented in the form of nodes and associations by links connecting these nodes.

This information is either already retrieved and is static, like the relation between the
objects of information and indexings, or is dynamically achieved like based on user
behaviour in the search session [Cre97].

Spreading activation has various utilizations, for instance, Salton and Buckley [SB88]
leverage spreading activation for identifying related terms and documents to improve the
retrieval process. Rocha et al. [RSA04] propose a model utilizing spreading activation
for search in Semantic Web. Hussein and Ziegler use spreading activation in determining
important elements in an ontology according to user’s current context and past interactions
[HZ08].

Random Walks Random Walk is a chain of states created by some stochastic process.
A simple example is a random surfer moving randomly from one place to another. The
Random Walk method considered in this thesis is Markov chain. With Markov property,
the conditional probability of being in next state is dependent only on the current state,
not any of the other past states. PageRank is one of the most prominent examples
leveraging Random Walks. It ranks websites based on the authority weights given to each
page of a web graph. This authority weight is independent of textual content and is based
on the web hyperlink structure. PageRank is based on a random surfer model that can
be viewed as a stationary distribution of a Markov chain [Ber05]. Another application of
Random Walks is in Craswell and Szummer work, who model queries and clicked images
in a graph [CS07]. They use Random Walks to retrieve more relevant images for each
textual query. Furthermore, Clements et al. [CDVR10a] use Random Walks through
a social annotation graph, comprising of people, tags, and content. They identify the

13

influence of the design choices in social annotation systems on ranking tasks. Random
walks has also been used in query expansion modelling. Collins et al. [CTC05] identify
whether a potential expansion term reflects aspects of the original query in the stationary
distribution of their model. They create a Markov chain framework based on different
knowledge sources for term associations. This model in the stationary distribution is
used to obtain probability approximates of different expansions of the query to use in
query expansion.

Query Independent Routing

Random walks’ most famous instance is PageRank, which is query independent, while
for Spreading Activation Berthold et al. [BBK+09] has shown that “Pure Spreading
Activation is pointless”. What is the difference?

Spreading Activation Spreading Activation is inspired by simulated neural networks
without any training phase. Edge weights are based on the semantics of the modelled
domain. The Spreading Activation procedure always starts with an initial set of activated
nodes. Different values can be given to the initial nodes according to the task being
solved. They are usually the result of a first stage processing of the query, e.g. a distance
measure between the information objects and the query. During propagation, other nodes
are activated and ultimately, a set of nodes and their respective activation values are
obtained. Here we explain how to compute the activation values of the nodes after some
iterations in the graph, independently of the query.

We denote the initial activation of the nodes as a(0) and the activation in t-th iteration
as a(t). Three phases are commonly defined: preprocessing, spreading and postprocessing
[BBK+09]. The preprocessing phase consists of calculating an input value inv for each
node v by aggregating output values of its neighbours:

in(t)
v =

∑
u∈V

o(t−1)
u ·Wu,v (2.8)

where ou is the output value of node u and V is the set of the nodes. Based on the
input value, different functions are used to determine the activation value [Cre97], such
as linear, sigmoid, threshold, or step function. We denote any of these functions as act.
Based on it, we calculate the activation value of each node:

a(t)
v = act(in(t)

v) (2.9)

Finally, an output function out determines how much output of a node is passed to its
neighbours. We define it as:

o(t)
v = out(a(t)

v) (2.10)

This function can be defined in a way to avoid retentioning of activation from previous
iterations. This way it helps control the overall activation in the graph [Cre97]. Putting

14

all these equations together, we obtain the following general formula to calculate the
activation for the next step:

a(t+1)
v = act

(∑
u∈V

out(a(t)
u) ·Wuv

)
(2.11)

Weighting in Spreading Activation There is no specific constraint in Spreading
Activation on weight definition or weight values on the edges. It is generally application
dependent. For example, Rocha et al. [RSA04] define the edge weight based on the ratio
of common semantic neighbours of nodes u and v to all semantic neighbours of node
u. Hussein and Ziegler [HZ08] define the weighting based on the context defined by an
expert in the preliminary step of system definition.

Memory Spreading Activation algorithm In this variation of spreading activation,
we propose an input function on received energy to manage the amount of energy
spreading in the network. The amount of energy a node receives in each step t is the sum
of the energy of its neighbours. Part of this received energy has been sent two steps before
from the same node to its neighbours. We subtract this part from the whole received
energy to prevent energy bias near activated nodes. We define the energy capacity of
nodes as a vector sm, which contains the sum of the edge weights for each node. We
define the energy capacity of node i as smi =

∑n
j=1Wij where j goes over the columns

for row i. This is the energy it is able to carry to its neighbours. It may be less or more
than the energy it has at any point in time, as a function of the weights of its neighbours.
We assume m as diag(sm) which converts vector sm to the diagonal matrix with the
vector values on the diagonal. Here, we define the energy received in step t as follows:

m = W · 1 · Ir (2.12)

where W is r × r matrix, 1 is r × 1 vector, and Ir is identity matrix of size r .

a(1) = a(0) ·W
a(2) = a(0) ·W 2 − a(0) ·m
a(3) = a(0) ·W 3 − a(1) ·m

a(t−2) = a.W t−2 − a(t−4) ·m
a(t−1) = a.W t−1 − a(t−3) ·m
a(t) = a(0) ·W t − a(t−2) ·m

= a(0) ·W t − a(0) ·W t−2 ·m+ a(t−4) ·m2

= a(0) ·W t − a(0) ·W t−2 ·m+ a(0) ·W t−4 ·m2 − a(t−6) ·m3

= a(0)
t−1∑
k=0

(−1)k ·W (t−2k) ·mk

(2.13)

15

where a(0) is the activation vector and a(t) is the energy distribution in step t.

Substituting Equation 2.12, we have:

a(t) = a(0)
t−1∑
k=0

(−1)k ·W t−2k · (W · 1 · Ir)k

= a(0)
t−1∑
k=0

(−1)k ·W t−2k+k · 1k · Ikr

= a(0)
t−1∑
k=0

(−1)k ·W t−k · 1k · Ir

(2.14)

In each step, we decrease the self-energy received by subtracting the multiplication of
activation value of two steps before to the energy capacity of this node (at−2 ·m).

Random Walks Different variants of Random Walks exist, but the Markov Chain
Random Walks is by far the most commonly used in the IR literature, and we focus on it
here. The transition probabilities between the states in a Markov chain form a matrix.
In our case, they are represented by the W matrix of transition weights. By Wu,v we
now understand P (v|u), the probability of moving from node u to node v. The matrix
W is row-stochastic, i.e. the probabilities on one row sum up to 1. The objective of
Random Walks is to reach a probability distribution over the set of nodes V . If we view
this as a vector p ∈ Rn, we can denote by p(0) and p(t) the initial probability distribution,
and respectively the probability distribution over the set of nodes at time t, which is
computed by:

p(t) = p(t−1)W = p(0)W t (2.15)

Weighting in Random Walks Weighting the edges for Random Walks presents as
much flexibility as in Spreading Activation, with the one constraint that the matrix must
be row-stochastic. For example, Craswell and Zsummer [CS07] define the weight based on
the normalized value of the number of clicks between two nodes: Pt+1|t(k|j) = Cjk/

∑
iCji.

They define the nodes in the graph based on queries and documents. The edge between
a document and a query indicates a click for that query-document pair. The weight on
the edge is proportional to the total number of clicks from all the users. Also they utilize
the factor of self-transitivity (st). This parameter helps significantly to control the walk
pace. It can be interpreted as the importance of staying in the same node.

Comparing Spreading Activation and Random Walks in Query-independent
Routing To compare these two methods, in using Spreading Activation the graph
should be in the form of a stochastic matrix. Each row shows the probability of moving
from a node to its neighbours summed to 1. We can have still customized weightings on
the edges, but it should satisfy the stochastic property of the matrix. Random Walks
based matrices are stochastic inherently, as they are created based on a stochastic process.

16

Based on Equation 2.10, the output of a node in Spreading Activation is the result of
applying the activation and output functions on the input of the node. If the input
function is defined as the linear function and the output and activation functions are the
identity function, then Equation 2.11 in Spreading Activation can be written as

a(t+1)
v =

∑
u∈V

a(t)
u ·Wuv (2.16)

which in compact form is:
a(t+1) = a(0) ·W t+1 (2.17)

Comparing Equations 2.15 and 2.17 we observe that in a query independent case, both
Random Walks and Spreading Activation are identical. In this case, the convergence of
the weighting matrix is important since there is no limit to stop the walk in the graph.
Another important factor is the required time for convergence. The reason is that most
of the observations in Random Walks are in the stationary distribution state. This state
is when the matrix has converged.

According to the Perron-Frobenius Lemma [GVL96], the power iteration of a matrix W
converges to its stationary distribution if the matrix is ergodic (irreducible and aperiodic).
In graph terminology, ergodic refers to a connected and not bipartite graph.

Stationary distribution in Random Walks has its own applications (e.g. in PageRank).
It provides the probability distribution over all nodes after convergence. However, as
Berthold et al. [BBK+09] proved, pure Spreading Activation is meaningless. They show
that without any constraints such as fan-out or path constraint, Spreading Activation
converges to query-independent fixed states. Spreading Activation provides customized
solutions. It uses different activation and output functions (e.g. to control the input/out-
put energy of a node) and heuristic restrictions (e.g. activation constraint to not activate
all nodes on the propagation path) in various applications.

Self-transitivity One of the factors affecting convergence speed in Markov chain is
the self-transitivity value (st). A high st value slows down the walk while a low value
speeds up. The probability to reach neighbour v from node u is updated as:

Pt+1|t(v|u) =
{

(1− st)Wu,v v 6= u

st v = u
(2.18)

In compact form, the transition matrix becomes stI + (1− st)W which has st+ (1− st)λ
as eigenvalue. We know the largest eigenvalue of the stochastic matrix W is 1. Therefore,
the eigenvalue of the new matrix remains 1 as well. In addition, the new matrix remains
stochastic and its largest eigenvalue with value 1 is the same as the largest eigenvalue of
the old matrix W .

In Spreading Activation, self-transitivity is referred to as “inertia”. It can be used to
retain the previous state partially during iteration: a(t) = a(t−1) +Wa(t−1). In a closed

17

form is a(t) = (I +W)ta(0) [BBK+09] with the same eigenvector of W . Using inertia, the
weight matrix is changed to add a self loop of unit weight to each node.

We observe that the self-transitivity factor is applicable in both methods without affecting
the eigenvector of the weighting matrix.

Query Dependent Routing

It is usually desirable in IR that graph traversal be dependent on the query. We look
now at how this has been done in the literature, for the two methods studied.

Spreading Activation In order to avoid pure Spreading Activation, leading to query
independent results, common heuristic constraints are defined:

• Distance constraint [Cre97]: imposes a hard limit on the number of iterations the
activation can traverse.

• Fan-out constraint [Cre97]: to cease activation in very high fan-out nodes (indicating
common nodes).

• Path constraint [Cre97]: some edges are preferred to others in transferring the
activation energy. This is applicable by using preferential paths reflecting application
dependent preference.

• Concept type constraint [RSA04]: some nodes are not traversed in the activation
process. In this case we do not propagate through special types of concepts.

• Accumulation [BBK+09]: as a form of iteration with memory, this approach mod-
ifies the iterations to take into account not only the last state (of the activation
propagation), but the sequence from the beginning. As a closed formula, we have:

a∗ =
∞∑
t=0

η(t) · a(t) =
∞∑
t=0

η(t)W ta(0) (2.19)

where η is decaying factor. It is used to ensure convergence.

Random Walks One of the methods in Random Walks is to compute the probability
dependent on the query. For instance, Richardson and Domingos [RD02] modify the
random surfer model used in PageRank by considering the query in the probability
computation. Assuming Rq(u) as a measure of relevancy between query q and page u,
they suggest: Pq(v|u) = Rq(u)/

∑
k∈V (u)Rq(k) where Pq(v|u) is the probability of going

from node u to v, and V (u) is the set of neighbours of u.

Another way of query dependent Random Walks is to employ the Metropolis-Hastings
algorithm (detailed explanation is in Section 2.1.4). In this method, a Markov chain is
created based on existing adjacency matrix to approximate a distribution which is hard

18

to sample from. This algorithm starts from a random candidate node as the first state.
Choosing each next state of this Markov chain is based on the ratio of relevancy-of-the-
candidate-node/relevancy-of-the-current-node to the query. If the candidate node is more
relevant to the query, then it is chosen as target node for the next jump. Otherwise, the
jump is decided with a probability.

Comparing Spreading Activation and Random Walks in Query-Dependent
Routing Comparing the two methods, we find that simple constraints like the distance
threshold are applicable in both methods to make the traversal query dependent. For
example, we can stop Random Walks after a number of steps [CS07], or applying distance
threshold in Spreading Activation [CS07, RSA04]. The path and concept type constraints
in Spreading Activation (as applied in [RSA04]) make the graph traversal domain or
context dependent, rather than strictly query dependent. Translated to a Random Walks
model, the type and path constraints, would assign zero probability to certain edges or
nodes of specific types.

By defining different types of constraints, Spreading Activation provides more options to
customize the traversal. An example is to define edge constraint; another instance is to
filter some edge types in the traversal. Further, we can define edge weighting which does
not necessarily comply with stochastic property. Whereas in Random Walks, probabilities
are assigned based on assumed relevance in the context of IR.

2.1.4 Metropolis-Hastings Algorithm

Metropolis-Hastings is one of the algorithms based on Monte Carlo Markov Chain
(MCMC) to obtain samples from a complex probability distribution π(x), which is hard
to draw samples from. Suppose that we know a π̃(x) as a function that is proportional
to the desired probability distribution π(x), and the relation between π(x) and π̃(x) is
like π(x) = π̃(x)

K . The normalizing constant K may not be known. It is not necessary to
calculate the normalization factor K, as it is often extremely difficult to compute.

Through Metropolis-Hastings algorithm, we generate a sequence of sample values from
π̃(x). The more we produce samples, the more the distribution of values approaches to
the desired distribution π(x). The samples are generated iteratively. We need a jumping
distribution W , which holds the information about each sample and its neighbours. The
next candidate sample (y) is dependent only on the current sample value (x), found from
W (x, y). At the end, we create a sequence of samples into a Markov chain which has the
same stationary distribution of π(x).

When the algorithm picks a candidate sample value, with some probability, this candidate
is either accepted (the candidate value is used in the next iteration) or rejected and the
candidate value is used with a probability. This probability is determined based on the
π̃(x) value for current and candidate sample with respect to the desired distribution π(x).
The algorithm is shown in the following steps:

19

1. Start with initial value x that π̃(x) > 0

2. Using the current x value, sample a candidate point y from jumping distribution
W (x, y), which is the probability of returning the value of y giving the previous
value of x.

3. Given this candidate of y, the transition probability is calculated as follows:

Pr(x, y) = W (x, y)λ(x, y) (2.20)

where λ is defined as:

λ(x, y) = π̃(y).W (y, x)
π̃(x).W (x, y) (2.21)

Note that λ(x, y) does not require knowledge of the normalizing constant because
reducing the equation π̃(y)/π̃(x) eliminates K. It is dependent on the values of π̃(x)
and π̃(y); and also on the weight of edges between these two nodes. If this jump
increases the density (λ > 1), accept y and set the next sample xt = y. Repeat
step 3. If choosing y decreases the density (λ < 1), accept u with the probability of
λ, else reject it and return to step 2. In other way, when (λ < 1), we draw a sample
S from the uniform probability of (0,1). If S ≤ λ we accept it, if not we reject it.
The final value of λ can be summarized as

λ(x, y) = min

[
π̃(y).W (y, x)
π̃(x).W (x, y) , 1

]
(2.22)

In order to reach a unique equilibrium state for a Markov chain, the chain should be
ergodic (both irreducible and aperiodic). There may be different jumping distributions for
Metropolis-Hastings—based on the way we generate the next candidate to generate the
chain of samples. Two general approaches are [Wal04]: 1) Random Walks - the new state
y is dependent on the current state x. 2) Independent chain - the probability of jumping
to point y is chosen from a distribution of interest, independent of the current value.
This method is usually used in asymmetric Metropolis-Hastings: a jump distribution is
symmetric if W (x, y) = W (y, x). Where in asymmetric version W (x, y) 6= W (y, x).

In practice, either Metropolis-Hastings accepts y as next candidate (when λ > 1) and
xt = y, or modifies the weight of W (x, y) with the factor of λ. The weight of this
link for the next step is W (x, y) · λ. According to the stochastic property, sum of the
probabilities on outgoing edges of a node is 1. As in each step, edge weights are adjusted
by Metropolis-Hastings, the sum may get lower than 1. In this case, the link is accepted
with the probability of λ < 1. The decreased value of the weight of this edge is given as
self-transitivity value to the node. This implies that staying in this state is preferred to
choosing that specific jump.

20

The application of Metropolis-Hastings method in information retrieval is mostly in search
in peer-2-peer networks [FRA+05, AFJG06]. Ferreira et al. [FRA+05] have designed a
protocol for locating a specific object regardless of the topology of the network through
uniform sampling from peer-to-peer networks. Zhong et al. [ZSS08] use random walks
and focus on convergence time for different network sizes. They investigate the probability
distribution of visiting nodes. In order to go beyond peer-2-peer networks and apply
Metropolis-Hastings in IR, we need a jumping distribution, i.e. weighted links between
nodes. Such links may be similarity/semantic or a mixture of the two. The difficulty, as
we will see, is ensuring the stochastic and ergodic nature of the chain.

After we obtained an understanding about Metropolis-Hastings algorithm, we define
some concepts in this algorithm in more detail as follows:

Reversibility The candidate-generating density W holds the stochastic property of∑k
y=1W (x, y) = 1, where k is the number of objects that are possible to reach in one

step from x. If W (x, y) satisfies the reversibility condition for all x, y, we have:

π̃(x)W (x, y) = π̃(y)W (y, x) (2.23)

However, usually this is not the case. For instance, for some x, y we have:

π̃(x)W (x, y) > π̃(y)W (y, x) (2.24)

This way, the process moves often from x to y and rarely vice versa. To reduce the
number of moves from x to y, later in Metropolis-Hastings algorithm, λ is modified to:

λ(x, y) = min

[
π̃(y).W (y,x)
π̃(x).W (x,y) , 1

]
. If λ = 1, then xt = y, otherwise if λ < 1, we select y with

probability of λ.

Transition Function According to Metropolis-Hasitng algorithm, we sample from
W (x, y) = Pr(x −→ y|q) and accept the move with probability λ(x, y). The transition
probability is given by:

Prq(x, y) = W (x, y)λ(x, y) = W (x, y).min
[
π̃(y).W (y, x)
π̃(x).W (x, y) , 1

]
(2.25)

This implies on how we define high-order transition probabilities after t steps:

Prt+1
q (x, y) =

k∑
i=1

Prtq(x, zi)(zi, y) (2.26)

where k is the number of common nodes z between x and y, and Prt is the transition
probability of starting from x and moving t steps further.

21

Stationary Distribution/Convergence We want to achieve a query dependent sta-
tionary distribution such that:

1. The probability in node x is proportional to the probability that this node is
relevant to the query

2. At any other node (non-relevant) the probability is zero

Mixing Time Number of steps to reach a stationary distribution is a key issue in
successful implementation of Metropolis-Hastings, which is called mixing time. After this
time, the probability to be in any specific node x will be π(x).

2.2 Related Work

We divide the related work on multimodal information retrieval (IR), in respect with
relations between information objects, in two categories of non-structured and structured
IR. Fundamental IR is based on retrieval from independent documents. We refer to this
type of IR as non-structured IR, in which an explicit relation between the information
objects is not considered. We provide a brief overview on this part of related work
in Section 2.2.1. Leveraging a graph of relations between information objects imposes
structured multimodal IR. We provide the related work in this area in Section 2.2.2.
Another challenge in the context of multimodal retrieval is how to fuse the results of
different modalities or how to use a combination of different features in the retrieval
process. Hence, we provide an overview on fusion methods in Section 2.2.3. Finally, as a
part of the study in this thesis is primarily based on Poly-representation principle in IR,
we provide an overview on the related work in this area in Section 2.2.4

2.2.1 Non-structured Multimodal IR

Most popular search engines like Google, Yahoo, and Bing, build upon text search
techniques by using e.g. user-provided tags or related text for images or videos. This
approach for multimodal search ignores the visual information completely and does
not always achieve satisfying results [HKC07, CMS07, DJLW08, HCY08, LSW10]. Ap-
proaches which leverage only text search techniques have limited access to the data as
they ignore totally the information of visual content and the indexes do not contain
multimodal information. Another reason is that the surrounding text is usually noisy and
this decreases the performance of text-based multimodal search engines. Content-Based
Image Retrieval (CBIR) is one of the earliest methods that started to consider image
content in the retrieval process. Datta et al. [DJLW08] did a thorough survey on this
subject. Many systems considered similarity measures only based on the content of the
images, which are called as pure CBIR systems [CBGM02, MM99, PPS96, SWS+00].
One of the earliest research in this category is to utilize low level features representation
of image content and calculate the distance to the query examples to capture similarity.

22

Top documents in the result list are the ones which are visually similar to the query
example. On the other hand, systems that include a combination of text and image
content in addition to a flexible query interface are considered as composite CBIR systems
[FPZ04, JWL06], which complies principally with the definition of multimodal IR. This
category is suitable for web image retrieval as most images are surrounded by tags,
hyperlinks and other relevant metadata. For example, in a search engine the text result
can be reranked regarding the similarity of the results to a given image example of the
query [Bin15, Goo15]. Kennedy and Chang [KC07] use concept detectors to improve
the video search performance. They mine the initial search result to discover contextual
related concepts. Their method is unsupervised. They leverage these concepts to refine
the initial video search result. Martinent et al. [MS07] propose to generate automatic
document annotations from inter-modal analysis. They consider visual feature vectors and
annotation keywords as binary random variables. They create the multimodal indexing
process through inter-modal analysis. In particular, they use the textual modality and
image features to annotate images in a test collection. The more mutual information be-
tween modalities exists, the stronger is the dependency between the modalities. Lazaridis
et al. [LARD13] leverage different modalities such as audio and image to perform a
multimodal search. Their project named I-Search is a multimodal search engine, in which
a multimodality relation is defined between different modalities of an information object,
e.g. between an image of a dog, its sound (barking) and its 3D representation. They
define a neighbourhood relation between two multimodal objects which are similar in at
least one of their modalities. However, in I-Search, neither semantic relations between
information objects (e.g. a dog and a cat object) is considered, nor the importance of
these relations in answering a user’s query.

One of the well-known methods in IR to improve the results is relevance feedback, which
can be applied on multimodal IR as well. In this method, the system receives information
from an external source to provide a better representation of user needs. This information
can be obtained from assessors or user clicks who mark the results as relevant or non-
relevant. Pseudo-Relevance Feedback (PRF), also known as blind relevance feedback,
automates the manual part of relevance feedback. This method is usually based on
three steps: first, selecting the pseudo-positive and pseudo-negative samples from the
initial ranked list; second, training classifier on both categories of the samples, and third,
reranking the results with the relevance scores predicted by the classifiers. As an instance
of leveraging PRF in multimodal retrieval, Yan et al. [YHJ03a] propose an algorithm for
video retrieval based on the results from both text and image modalities. For the image
retrieval, they use basic nearest neighbour image matching combined with classification
based PRF. In the retrieval algorithms with poor performance, it is no more appropriate
to consider the top-ranked results for positive feedback. Using negative pseudo-relevance
feedback, Yan et al. [YHJ03b] sample from bottom-ranked results for negative feedback
in video retrieval. They consider the positive examples from user’s query, and for negative
examples they use the worst matching examples identified based on a generic similarity
metric.

23

In addition to using features from different modalities, the interaction process with
users is considered in multimodal retrieval as well. Cheng et al. [CYK+05] suggest
two interactive retrieval procedures for image retrieval. The first method incorporates
a relevance feedback mechanism based on textual information while the second one
combines textual and image information to help users find a target image. Hwang
and Grauman [HG10] have also explored ranking object importance in static images,
learning what people mention first from human-annotated tags. One of the ideas in
query formulation for multimodal IR is to integrate different modalities to initialize
the query. Hubert and Mothe [HM09] suggest a combination of ontology browsing and
keyword-based querying. Combining these two modes enables users to complement their
queries with keywords for which they do not identify corresponding categories. Natsev
et al. [NNT05] add to this method leveraging a bagging strategy. They create multiple
ranking lists using only positive examples and use both positive and negative examples
to learn models for a query or a concept. These lists are combined to generate the final
results.

Wang et al. [WYJ16] propose a model for search which is based on semantic similarity of
a query and documents. They target social network systems, in which social documents
are fed into a concept extractor. Queries are considered in two modalities of text and
image. For each of these modalities they find its concepts based on the concepts of the
top ranked results of that modality. They calculate the relevance to the query based
on two defined measures of informativeness and semantic relevance. This model can be
mapped to Astera by adding a facet that contains semantic information, which Wang
et al. [WYJ16] propose to provide for an information object. Semantic similarity can
be computed between semantic facets of each two information objects. Astera has the
advantage of considering different relation types between information objects, while
Wang et al. [WYJ16] calculate the relevance score only based on semantic facets of the
information objects.

Sometimes in literature, multimodal IR is called as reranking. For instance, Mei et
al. [MRLT14] definition of reranking (leveraging different modalities, like image or
video, rather than only text to find a better ranking) is compatible to what we define
as multimodal IR. Mei et al. [MRLT14] did a thorough survey on reranking methods
in multimodal information retrieval. They categorize related work in four groups: 1)
Self-reranking: mining knowledge from the initial ranked list. They define self-reranking
method as discovering relevant visual patterns from the initial ranked list. The top
ranked results are objective for mining relevant information. This is based on the analysis
on click-through data from a large search engine log that users are more interested in the
top-ranked part of search results [WZZL10]. 2) Example-based reranking: leveraging few
query examples (e.g. images or video clips) that the user provides along with the textual
query. These examples are used to improve the search performance. 3) Crowd-reranking:
utilizing knowledge obtained from crowd as user-labelled data to perform meta-search in
a supervised manner. 4) Interactive reranking which reranks involving user interactions.

Regarding this categorization, graph-based methods belongs to self-reranking category.

24

We explore this category in more detail. Mei et al. [MRLT14] divide the self-reranking
methods in the following sub-categories based on how the initial ranked list is mined. 1)
Clustering-based reranking [WZZL10, WJH+07]: this method is based on the assumption
that relevant documents tend to be more similar to each other. Therefore, clustering the
initial ranked results filters non-relevant documents. However, the challenge is to cluster
initial noisy result and rank inside each cluster. 2) Pseudo-relevance feedback (PRF)
which is described earlier in some paragraphs above. 3) Graph-based methods: Mostly
the methods in this category are inspired by Page-Rank techniques for document search.
In this way, the relevance score of a document is propagated through the entire graph
structure, and the traversal method is Random Walks. Usually a graph G =< V,E >
is made based on the initial ranked list, where v ∈ V corresponds to a node of any
modality and e ∈ E is the similarity link between the two objects. The links between the
images/videos are similarity links. The initial relevance scores of each document can be
propagated to other similar nodes until the graph reaches a stationary distribution state.
The Random Walks is biased with the initial score, whereas the stationary distribution
probability as final relevance score is used for reranking.

Structured IR is similar to the above graph-based methods, with the difference that
the nodes in the graph are not necessarily from top ranked list. This means that our
definition of structured IR is not limited to only a part of information objects of a sample
collection.

2.2.2 Structured Multimodal IR

By structured IR we denote those approaches that consider the explicit relations between
information objects. Usually in such models, a graph is created, which may be based
on similarity or semantic relations between information objects. Nodes and edges may
hold different definitions in each model. For example in Liu et al. [LLH+07] graph-based
model, the video search reranking problem is formulated in a PageRank fashion using
Random Walks. The video shots are the nodes and the multimodal similarity (i.e., the
textual and visual similarities) are taken as hyperlinks. The relevance score is propagated
per topic through these hyper-links. Another example of leveraging graph-based search is
what Srinivasan and Slaney [SS07] did by using a bipartite graph. They add content based
information to image characteristics as visual information to improve the performance of
their algorithm. They use Bag of Visual Words to represent image content, and apply
Salient-point detection on images through SIFT descriptors. Each descriptor represented
by codebook index provides the linguistic description of an image. A bipartite graph is
created. One partition corresponds to linguistic words and one is mapped to visual words.
Their model is based on Random Walks on bipartite graphs, representing joint models
of images and textual content. The score of a link is based on the number of times a
visual word is selected for an image. The stationary distribution in this graph shows the
visual words that are more related to an image. This model is limited to images and only
one feature of visual words. In Astera we have no limitation on the number and type of
features used for an information object.

25

Jing and Baluja [JB08] cast the image-ranking problem into the task of identifying
“authority” nodes on a visual similarity graph and propose VisualRank to analyze the
visual link structure among images. Zitouni et al. [ZSOD08] find that the subset of
image results based on text search which are relevant, are highly similar. They show that
in a fully connected graph of images with similarity links between them, these relevant
images create a dense component. Based on this observation, after they create a graph
of images, they find the densest component in the graph and assign higher ranks to these
images.

Clements et al. [CDVR10b] propose the use of a personalized RandomWalk on a tripartite
graph, which connects users to tags and tags to items. The stationary distribution of
the Random Walk shows the probability of relevance of the items. Jing et al. [JB08]
employ PageRank to rerank image search results. The hyperlinks between images are
based on their visual similarities. They choose the “authority” nodes to answer the image
queries. Yao et al. [YMN10] make a similarity graph of images and aim to find authority
nodes as results for image queries. Through this model, both visual content and textual
information of the images is explored. Hsu et al. [HKC07] leverage context reranking
as a Random Walk over a graph of video stories. The links in the graph are based on
similarities between different video stories. The final scoring value is a combination of
the initial text similarity and stationary distribution scores. Tian et al. [TYW+08] use a
graph-based approach to formulate video search reranking into a Bayesian optimization
problem. They maximize the consistency of ranking score between visually similar video
shots, while they maintain the minimum ranking distance.

The structured search engine NAGA [KSI+08] provides the results of a structured (not
keyword) query by using subgraph pattern on an Entity-Relationship graph. They find
subgraphs of the whole graph which matches the query graph. They define matching
for each word vertex in the query graph, if there is the same vertex in the whole graph.
Targeting RDF data, Elbassuoni and Blanco [EB11] select subgraphs to match the query
and do the ranking by means of statistical language models. As a desktop search engine,
Beagle++ utilizes a combination of indexed and structured search [MPC+10]. Magatti
[MSBT11] provides a combination of graph and content search as well. For example,
in an organization, members have hierarchical relations by their roles, meanwhile there
are related documents to them. The related concepts are leveraged for unsupervised
search reranking. They train an SVM model based on the pseudo-positive and -negative
samples from initial ranked list of results. Wang et al. [WLT+12] propose a graph-based
learning approach with multiple features for web image search. They create one graph
per feature. Links in each graph are based on the similarity of the images in each graph
based on that feature. The weight of different features and relevance scores are learned
through this model.

Related research on the ImageCLEF 2011 Wikipedia collection is generally based on a
combination of text and image retrieval [TPK11]. To our best knowledge, there is no
approach that has modelled the collection as a graph structure and no approach has
therefore leveraged the explicit links between information objects and between information

26

objects and their features.

According to the categories defined by Mei et al. [MRLT14], our model belongs to the
first category, as we create a graph of information objects, and also to the second category,
as we use query examples in addition to the textual query to find relevant information
objects. However, it is different in creating the graph, as we include all information
objects in the collection, not only the top-ranked results of facets’ search. We use the
top results as initiators in the graph as starting points of the traversal in the graph. In
addition, we utilize different types of relations between information objects of a collection.
In related work it is mostly similarity links, however in our model we add part-of and
semantic links as well.

Graph-based Learning Graph-based learning approach is one of the semi-supervised
learning methods which has attracted great research interest in the past years [ZBL+04,
ZGL+03]. In this approach, a graph is defined where the vertices are labelled and
unlabelled examples in the dataset, and edges (may be weighted) reflect the similarity
between each two examples. These methods can be viewed as estimating a function
f on the graph with satisfying two conditions: 1) The function should be smooth on
the whole graph. 2) The function should be consistent with prior information, such as
labeling information of several instances. The availability of large collections of data
and limited labelled data has turned semi-supervised learning as one of the methods to
deal with large amount of data [CSZ09]. Yang et al. [YH10] extract different features
from each image. They create a training set based on labelled search results. Yuan et
al. [YHWW06] apply a graph-based learning method named manifold-ranking on video
annotation, and He et al. [HLZ+04] use the same algorithm in image retrieval. They use
supervised learning to perform reranking.

There are also graph-based learning approaches that are used for reranking [HKC07,
JB08, TYW+08]. Wang et al. [WLT+12] propose a multi-graph learning method for
web-based image retrieval. They define different graphs for each feature of image modality.
Each element in the graph matrix is the similarity between xi and xj indicating the
same feature of image i and image j. They create an elementary ranked list which is
updated in each iteration of learning to minimize the rank score difference of highly
similar images. They assign different weights for each feature and use linear combination
on their corresponding graph matrices.

However, Astera is a different approach towards multimodal retrieval. The proposed
model of Wang et al. [WLT+12] is limited to image retrieval, whereas in Astera we can
have different modalities. Further, we combine the multi-layer graph in one graph. We
consider each information object as one node. Its different features are connected as
separate nodes (facet node type) to the information object node. Moreover, in Astera, in
addition to similarity links we consider semantic links between the information objects.
Structurally it is allowed in Astera to have multiple edges between two information
objects.

27

Semantic link search There are related works in utilizing semantic links in the task
of IR [TdM14, CLM+13, DMDH02, SSH14, TDCM12]. One of the relation types in
Astera is semantic links. If we model a collection containing only semantic links, then
we can relate Astera to the related work in semantic web. For example, Tonon et al.
[TDCM12] use a hybrid search on Linked Open Data. They follow semantic links in the
scope of one and two steps, and show the effect of different types of semantic links in
precision and recall. They retrieve better result by exploring selected semantic links than
any semantic links (e.g. following sameAs links gives better performance compared to
following wikilink types). Experiments are performed on the effect of different semantic
links on precision and recall in SemSearch collection 2010 and 2011. They rank all
properties with likelihood of leading to a relevant result in one and two steps. They find
that although some links like wikilink is highly frequent, it does not lead to promising
pages. However, links like sameAs – linking the same pages with different languages –
result in higher precision and recall.

Some related works leverage semantic links to find interesting subgraphs. An example
is the work by Chen et al. [CLM+13] to create a multimedia story of related images
and videos through navigating related nodes in Linked Open Data (LOD). They utilize
a node recommendation mechanism to choose next nodes to follow. Choosing a link is
based on interestingness of each connection. They use a machine learning algorithm to
calculate the interestingness of connections based on rarity of the subject or object with
a specific predicate, and the number of incoming links to a subject or an object.

Tiddi et al. [TdM14] propose to follow semantic links to search for the objects sharing the
same path or walk. They create a cluster of the link traversal to discover new knowledge.
They create clusters from the nodes visited on the way, indicating the optimal cluster as
C+ and not desired cluster as C−. The defined traversal method does not need prior
knowledge and neither uses indexing. They simply traverse the links to gather new
unknown knowledge. They use A∗ search to find the lowest cost path from a given initial
node to another node. They do not have a preference but only any node in the distance
of j from the initiative node. Each time a new path is chosen, a new part of the graph is
revealed. They chain the walks to the entities discovered at the current iteration and
evaluate them based on a defined F measure. Doan et al. [DMDH02] introduce GLUE as
a system which utilizes machine learning techniques to find Semantic mappings between
different ontology elements. Safadi et al. [SSH14] utilize the combination of textual and
visual features to improve video retrieval. They use video subtitles to enrich with textual
information the scenes of a movie. They use WordNet to capture concepts related to
the textual information, and to map visual scenes to the concepts. They improve the
performance of video retrieval by combining the text and semantic information they
obtain.

In Astera we provide a hybrid search model that is not limited to work on RDF data.
Our work deals with different modalities and relation types.

28

2.2.3 Multimodal Fusion

Pradeep et al. [AHESK10] provide a survey on multimodal fusion for multimedia analysis.
They give an overall view on fusion methods with different levels of multimodal fusion.
We briefly summarize it here.

Different Fusion Levels

Fusion of different modalities is performed at two levels, feature level (known as early
fusion) and decision level (known as late fusion). In early fusion, different features are
extracted, concatenated and make a larger feature vector, which is given as input to the
search task. Existing studies reveal that high dimensional feature space leads to similar
distances between the samples [BGRS99, WCCS04a], which degrades performance in
distance based algorithms. This is one of the main drawbacks of using early fusion with
combination of different features. One way to deal with this issue is to use separate ranked
list for each feature, and then fuse the results [WCCS04b]. This method is usually called
“late fusion”, “multimodal fusion” or “multimodality learning” [SWS05]. In late fusion,
local decisions are made based on individual features, then a fused decision is taken. This
approach is mostly applied in image and video retrieval analysis [SC96, VNH03]. Chang
et al. [WCCS04a] provide a framework to find independent modailities for multimodal
fusion. They find the best combination of multiple modalities through supervised learning.

Wang et al. [WHH+09] propose an algorithm which integrates the graph representations
from multiple features for video annotation. In this algorithm, they create a graph for each
feature. They fuse multiple graph features into a regularization framework. Then, they
run semi-supervised learning on this fused graph. Zhao et al. [ZYYZ14] make a graph
of each feature, test its performance and combine all features in a multimodal learning.
They use three levels of low-, medium - and high-level features. Hybrid multimodal
fusion is a hybrid fusion strategy which combines both feature- and decision-level strategy.
In principle graph-based approaches can be seen as non-linear fusion of heterogeneous
ranked lists.

With a labelled fusion set, the task of fusion can be formulated as a learning issue.
For instance, Iyengar et al. [IN03] and Snoek et al. [SWS05] perform the fusion with
Support Vector Machine (SVM) models. Wu et al. [WLCS04] propose a combinatory
model for fusing different features with two constraints. First an optimal weighted
linear combination of single modalities is learned. Second, they maximize the feature
independence. They run separate classifiers for each feature, then utilize a meta-classifier
on the result of these individual classifiers.

Both feature level and decision level fusion methods can be divided in three categories as
follows:

(1) Rule-based Fusion Method First are the rule-based fusion methods which
include the most widely used approach of weighted linear fusion. Weighted linear fusion
can be applied on feature level and decision level fusion. In this method the decision of

29

different methods may use normalized weighting. There are different methods of weight
normalization such as z score, min-max, decimal-scoring or sigmoid function [JNR05a].
Wang et al. [WKYJ03] apply linear weighted fusion on different feature results of video
color, motion and texture results. The same approach is applied in Kankanhalli et
al.’s [KWJ06] work on results of color, motion and texture features for face detection,
monologue detection and traffic monitoring. In late fusion, Lucey et al. [LSC01] use
individual decisions of audio MFCC and video Eigenlip features, and combine them
linearly with different weightings. They use the final result for recognizing spoken words.
Hua and Zhang [HZ04] apply weighted linear combination on individual results of six
image features (color histogram, color moment, wavelet, block wavelet, correlagram,
blocked correlagram) for the task of image retrieval. Yan et al. [Yan06] use the same
approach on Text (closed caption, video OCR), audio, video (color, edge and texture
histogram), and motion for video retrieval.

Another approach of rule-based fusion methods is the majority voting method. It is
a special case of weighted combination that an equal weight is given to all individual
decision results. The final result is based on the majority of the classifiers that reach
similar decisions [SP04]. The third approach in rule-based fusion is custom-defined rules.
Holzapfel et al. [HNS04] use this approach in multimodal integration. They combine 3D
pointing gestures and speech features of robots in a room as natural interactions. Based
on the n-best lists generated by each of the event parsers they perform multimodal fusion
in the decision level.

(2) Classification based Method The second category of feature fusion comprises
the classification-based methods. A range of classification techniques are used to classify
the multimodal features into different classes. Given D features, we need to fuse the result
of D classifiers, one for each feature. One of the very well-known methods is Support
Vector Machine (SVM). For example, the result of different intermediate classifiers for
video, audio and text scores is concatenated into a large vector and is given to another
classifier to identify the concept class. Adams et al. [AIL+03] leverage a late fusion
approach to detect semantic concepts in videos (e.g. sky or fire-smoke). They use separate
classifiers for each modality (textual, visual and audio) and create a semantic vector of
scores of these intermediate concept classifiers. This vector is given as a semantic feature
to a meta-classifier. Iyenger et al. [INN03] use the same method on audio and video
results for semantic concept detection.

Bayesian Inference is another method located in the classification-based methods. In
this method, the multimodal information is combined based on the rules of probability
theory [LYS02]. It can be applied both at the feature level and at the decision level. The
result from different classifiers or the observations obtained from multiple modalities
are combined, and an inference on the joint probability is derived [RG03]. In Bayesian
inference, we assume that the modalities are independent and the joint probability of
hypothesis H is computed.

30

p(H|I1, I2, ..., In) = 1
N

n∏
k=1

p(Ik|H)wk (2.27)

where N is the normalization factor of posterior probability p(H|I1, I2, ..., In), term wk
is the weight of kth modality, and

∑n
k=1wj = 1. One of the main advantages of using

Bayesian inference is the possibility of including prior knowledge about the likelihood of
the hypothesis H in the inference. However, without knowing about the prior probabilities
Bayesian inference does not perform well [Red07]. It can be based on fused decision or
combined feature vectors. Pitsikalis et al. [PKPM06] apply Bayesian inference on MFCC
feature of Audio and Shape and texture features of video for speech recognition. Xu and
Chua [XC06] apply this method on a hybrid decision result on multiple features of audio,
video, text and weblog in sport video analysis.

(3) Estimation-based Fusion Methods The methods in this category are used
to estimate the state of a moving object by processing data from multiple modalities.
Usually these methods are used to track an object based on the information from multiple
modalities as video and audio. Kalman filter [Kal60, RG99] is one of these methods, in
which real-time dynamic low-level data can be processed. Leo et al. [LGG04] proposed a
method to estimate the position of a single speaker based on Kalman filter. They utilize
audio features like velocity and acceleration of the single sound source, and also the
camera image point. Town [Tow07] applies a decision level fusion on Video (face and
blob), and ultrasonic sensors features for human tracking.

Estimation-based methods are mainly used to find a moving object, which does not
comply with the target of this thesis. Further, in the current version of Astera we use
no learning in the feature or decision level. Therefore, no classification-based method
is used. However, we connect extracted facets to their information objects and treat
them as individual nodes. This provides possibilities for both early and late fusion. We
provide the linear late fusion of normalized weighted scores of facets like in the rule-based
fusion method. In addition to the first level of fusion, we leverage the graph model of a
collection to leverage relations as well.

2.2.4 Poly-representation

The poly-representation principle is based on utilizing different cognitive and functional
representations of information objects to enhance the quality in IR [LIK06]. We refer to
the definition that Ingwersen and Järvelin [IJ06] gave on poly-representation: “the more
interpretations of different cognitive and functional nature, based on an IS & R situation,
that point to a set of objects in so-called cognitive overlaps, and the more intensely they
do so, the higher the probability that such objects are relevant (pertinent, useful) to a
perceived work task/interest to be solved, the information (need) situation at hand, the
topic required, or/and the influencing context of that situation.”

31

Figure 2.1: The extended structural poly-representation continuum ([LI05])

White [Whi06] shows that relevance feedback methods based on the poly-representation
idea improve the retrieval performance. Further, poly-representation has been used to
help the user describe her information need in different forms [Ing96] and increases IR
performance [KF07].

Larsen et al. [LIK06] show a spectrum on query modifications from highly structured
queries to unstructured queries (Figure 2.1). The query formulated with Boolean operators
is a highly structured query compared to Bag-of-words query which is in the unstructured
query end-point (pole E on Figure 2.1). Using facets with different weighting or using
concept structure with operators are considered as structured queries as well.

In addition, they show another continuum for search engine retrievals in Figure 2.1,
which ranges from exact match on structured pole W to the best match on unstructured
pole. For example, Larsen [Lar02] and Christoffersen [Chr04] who use “One Boolean
engine” and “Several DBs” are placed at the structured retrieval axis. Larsen [Lar04]
applies multiple databases and is located more in unstructured retrieval pole. Kelly et al.
[KDF05] are placed in the SE part as they use one system and no different representations
of documents but with weighting of different representations of the user’s cognitive space.
The common baseline retrieval in IR evaluation tests is placed at the outmost corner of
SE.

Larsen and Ingwersen [LI05] divide the poly-representation in two kinds of representations:
first cognitively different representations which is based on interpretations by different
users; second functionally different representations derived from the same actor such as
writing image and diagram captions or adding references in a document.

In cognitive poly-representation scenarios the cognitive space of the user is utilized. In this

32

approach, beside different representations of the query, different actors in the interaction
process contribute in enriching the representations (e.g., how the user formulates her
request and problem state [IJ06]). Ingwersen and Järvelin [IJ06] list many possibilities to
enrich the cognitive representation such as the search profile content of the user, which is
utilized in recommender systems. Another way is to use information extracted from the
current user such as her domain knowledge or describing the problem statement. Kelly
et al. [KDF05] performed experiments on this type of poly-representation . They asked
13 users with 45 topics on 2004 TREC HARD track. There were four questions that
the users had to answer before they do the search: the time of searching, describe if she
knows already about the topics, what she wants to know about the topic and any other
keywords or tagging about the topic.

There are different ways of representing an information space. The varieties are combina-
tion of two or more databases, applying different indexing methods, applying ontologies on
data, or utilizing external features contextual to the document contents like inlinks/out-
links [LIK06]. Skov and colleagues [SPLI04] use different representations of a document
like abstract, titles, or titles of the references as different representations of a document.
Skov et al. [SLI08] run poly-representation tests on overlaps between five functionally
and/or cognitively different representations of documents. They show that the results
generated from the overlap of three or four representations of different nature are higher
than those generated from two representations or only single field. These experiments
are run with both structured and unstructured queries. Highly structured queries show
higher precision compared to queries expressed in natural languages. They conclude that
using structured queries is a necessity to implement poly-representation more efficiently.

Further, Larsen et al. [LIL09] show that the result fusion based on cognitively/algorith-
mically different retrieval models perform significantly better. They define two types
of dissimilarity: cognitive dissimilarity which is between different IR models (TF.IDF,
BM25, LM); functional dissimilarity which is based on different versions of the same
fundamental retrieval model (different values for b coefficient in BM25). They compare
combinations of equally/unequally performing and cognitively dissimilar models per-
formance with fusion of similar retrieval models. They design experiments to validate
poly-representation for the retrieval platform. They compare the performance of 11
logical late fusion combinations with the performance of four individual models and their
intermediate fusions based on the principle of poly-representation. Their results show that
fusion of IR models does not always provide better results than an individual IR model.
Only fusion of equally good IR models but conceptually/algorithmically dissimilar ones
may outperform their intermediate fusions [LIL09]. For example, a retrieval model based
on BM25 is conceptually and algorithmically different than one based on the language
modelling (LM). They define three factors for best possible combination of different
IR models. First is the level of dissimilarity conceptually/algorithmically between the
constituent IR models; second, how equal and third, how well the component models
perform.

33

CHAPTER 3
Astera Model

As mentioned in Chapter 2, there are several graph-based models for information retrieval
in literature. Most of these models create a graph based on similarity links between
images or videos. However, the data available today, especially user-generated data, is
multimodal. For example, the user posts a video in a social network. Comments are
written about this video (text modality), or some related images are posted. This is an
example that shows the heterogenity of related information objects in today’s generated
data. Moreover, there are different relation types between these information objects,
which is clearly beyond only similarity relation type. In principle, these objects are related,
which could be from different aspects. To address these challenges in multimodal IR,
we propose a model named Astera—a generic model for multimodal IR. In this chapter,
we describe the characteristics of this graph-based model in Section 3.1. We represent
information objects from different modalities and their relationships in this model. In
the first part, we define the characteristics of our graph-based model. We then define our
faceted search to compute the relevancy of an information object to the query. In the last
part, we define our hybrid search on the graph. Afterwards, we instantiate the model
based on the test collection in Section 3.2. We describe our evaluation methodology in
this section in detail.

3.1 Model Definition
Astera is a general framework to compute similarity. We see the information objects as
a graph G = (V,E), in which V is the set of vertices (including data objects and their
facets) and E is the set of edges.

In this model, we define facet as an inherent feature or property of an information object,
otherwise referred to as a representation of the information object. This definition allows
considering a document under several points of view, each one being associated to a
possible space. For instance, text documents have primarily a textual facet, but also

35

others such as stylistic/layout facets (covered partially by image features), the number of
images they contain, or have time/versioning aspects (recency of information). Another
example is image files which primarily have image facets (comprising several feature
spaces such as color, edge, rotation) but also other facets such as written information
(as detected with OCR), time, owner, etc. Each of these is a node linked to the original
image object. Each object in this graph may have a number of facets. This has support in
the principles of Information Retrieval, most notably in the theory of poly-representation
[LIK06]. The aim is to leverage cognitive and functional representations of information
objects to improve IR results.

We define four types of relations between the information objects in the graph. Together
with their weights, they are as follows:

• Semantic (α): any semantic relation between two objects in the collection (e.g. the
link between lyrics and a music file). The weight is defined based on the number of
semantic relations between two nodes [RSA04]: wik = Nik/Ni, where Nik represents
the number of information objects that both nodes i and k are related to, and Ni

is the number of information objects connected to the node i.

• Part-of (β): a specific type of semantic relation, indicating an object as part of
another object, e.g. an image in a document. This is a containment relation as an
object is part of another one, and therefore we set the default weight to 1.

• Similarity (γ): relation between the facets of the same type of two information
objects. The weight is the similarity value between the facets according to some
facet-specific metric. For instance, we can compute the similarity between Edge
Histogram facet of two images, or TF.IDF facet of two documents.

• Facet (δ): linking an object to its representation(s). Weights are given by perceived
information content of features, with respect to the query type. For instance, with
a query like "blue flowers", the color histogram is a determining facet that should
be weighted higher. We find different facet weights experimentally. These weights
should be learned for a specific domain, and even for a specific query e.g. via
relevance feedback.

In addition to the edge weights just defined, we consider the use of a self-transitivity
value (st) to emphasize remaining in a specific state. This value leaves part or all of
the initial score/energy with the current node. The self-transitivity is also justified by
the necessity of the graph to be aperiodic in order to reach a stable distribution when
traversing it using Random Walks.

We can define a transition matrix W as follows:

Wv|u =
{

(1− st)wuv u 6= v

st u = v
(3.1)

36

where u, v ∈ V .

A sample of the model is shown in Figure 3.1. We show the relations between three
documents of Elvis Presley, Graceland and Rockability. The relation between each
document and contained images is shown by β relations. For example, the node Rockability
has two images. There is δ relation between each node and its facets, e.g. between
a document and its TF.IDF facet, and an image and its Color Histogram facet. The
similarity relation between the nodes is shown via γ relation between their correspondent
facets, e.g., between TF.IDF facets of two documents or between Edge Histogram facets
of two images. Semantic relations are shown between Elvis Presley and Rockability (via
semantic relation Genre), and between Elvis Presley and Graceland (via semantic relation
Resting place).

Figure 3.1: Different types of relations in the model

3.1.1 Query Formulation and Relevancy Computation

A query may contain different modalities. Our approach is to decompose the query into
a list of facets of each modality. For instance, if a query is formed of keywords and image
examples, we leverage the combination of its textual and visual facets. Relevance of
a document to a text query is defined as similarity of the vectors of the words in the
document to the query. How to define the similarity of a multimodal query with different
types of information objects in the graph is a challenge.

37

We define the node u ∈ V , where V is the set of vertices in the graph. It has facet of
f(u), where f(u) = {v ∈ V,∃δ(u, v)}. For simplicity of notation, we will denote the ith
facet of node u as ufi

, although it is still a node. We define the same for the query q as
follows:

u = ∪ni=1ufi

q = ∪mj=1qfj

l = |{qf |qfi
= ufi

}|

where N is the number of facets of the node u, m is the number of facets of the query,
and l is the number of the common facet types of qfi

and ufi
. We define the relevance

score value function (RSV) as follows:

RSV (q, u) =
l∑

i=1
norm(sim(qfi

, ufi
)) · wfi

(3.2)

where sim is the similarity function between the two facets, norm is the normalizing
function and wfi

is the weight of facet fi for this query. We compute the similarity (sim)
between facet values of qfi

and ufi
. Usually the value of a facet is in the form of a feature

vector. In case of no common facet, the RSV function output is zero.

We compute the similarity of all objects for each query facet and normalize. As we have
a multimodal graph and in each step we may visit a node with different modality, we
require a normalized value to be able to compare the relevancy values.

Different modalities have different facets. Reaching nodes of the same modality of query
examples, we have all the facets in common (e.g. an image query and an image node).
Visiting nodes with different modality than query examples, we calculate similarity for
common facets. For instance, if we have an audio object and an image query, we can
compare their textual facets (the TF.IDF facet of image metadata or OCR’ed text and
TF.IDF facet of the audio tags or lyrics).

Facet Fusion As described in detail in Chapter 2 Section 2.2.3, the model supplies
different levels and methods for feature fusion. Two well-known methods are early and
late fusion. Early fusion is referred to as fusion in feature space, uni-modal features
extracted from different modalities, concatenated into a long feature vector. This is
opposed to late fusion, where we integrate the individual similarity results of different
features of different modalities. Early fusion is conceptually more attractive because it
addresses the problem of representation for multimodal objects. However, it suffers from
curse-of-dimensionality, whereas late fusion is influenced by the quality of ranking of
individual features.

38

The effect of each facet on transferring the energy is controlled by weight of that facet.
In our model, facet nodes may have an initiating score. This implies that a similarity
retrieval has already been applied. They have zero scores, if they are not selected in
the top results. Each node may have multiple facets. The score of these facets are
integrated based on weighted linear combination method and then propagated to the
node’s neighbours. Therefore, first we start from the results of different facets which
places our method in the category of late fusion. However, this is not the only factor
affecting the final score of a node. After top ranked node activation, we propagate the
score of activated nodes into the graph. The final score is a function of both individual
facet results in addition to the effect of link weights on propagating to the neighbours.

In this thesis, our multimodal graph approach can seamlessly integrate the result of
multiple modalities. We make a form of late facet fusion by combining different facet
scores and giving one score to the parent information object. In practice, we have no more
a modality but a set of facets/features defining that modality. Starting from different
facet results, we integrate results of different facet indexings, then propagate the energy
to their neighbourhood. After a predefined number of steps, we rank the result based on
their final energy. In the implementation of Astera, facet fusion is implicitly calculated
by matrix multiplication.

Bipartite Graph Before moving on to the next section, on graph traversal, it should
be pointed out that in any instantiation of the Astera model with only β relation between
modalities, we end up with a bipartite graph. For instance, in the ImageCLEF 2011
Wikipedia collection with documents and images as part of a document, we observe
that the modelled collection is a bipartite graph combined of images on one side and
documents on the other side. There is no relation between images or between documents.
In this case, energy flows totally from one side to the other.

One solution to avoid a bipartite graph, is to add the self-transitivity (st) value, in which
a percentage of the energy of a node returns to itself. Another option that we investigate
is to utilize other types of links, such as semantic and similarity between the information
objects. This prevents a bipartite graph by construction.

3.1.2 Hybrid Search

Our hybrid ranking method consists of two steps: 1) First, an initial search with Lucene1

for the text, and Lire2 for the image modality elements of a query is performed. We obtain
a set of activation nodes from these results. The computed scores, in both modalities,
are normalized per query between (0,1) based on the min-max method [JNR05b]. 2)
Second, using the initial result set of data objects (with normalized scores) as seeds,
we activate the graph from N starting points per query facets. In each starting point,
parallel multimodal search is conducted based on graph traversal method.

1https://Lucene.apache.org/
2http://www.lire-project.net/

39

Graph Traversal Method One of the main challenges in graph modelled data, is how
to “intelligently” traverse the graph and exploit the associations between the data objects.
Two highly used methods in retrieving information on structured data are Spreading
Activation and Markov Chain Random Walks.

As described in detail in Chapter 2, we found that these two methods are identical—if
Spreading Activation complies with the stochastic property in its weight definition. We
use Spreading Activation in first part of our experiments (Chapter 4 and Chapter 5
Section 5.1). One reason is our customized definition of weighting on different relation
types, which does not necessarily satisfy the stochastic property. Another reason is to
apply different constraints such as distance constraint or path constraint in the traversal.

In Chapter 5, we investigate the score distribution in the graph in very large number
of steps and stationary distribution. We cannot reach this state by using Spreading
Activation method in our defined model. Therefore, we create a normalized weighting
on the graph edges to satisfy the stochastic property and use Random Walks traversal
method.

3.2 Evaluation Design

In this section we instantiate our model and describe the evaluation methodology we
employ to evaluate retrieval effectiveness. It is necessary to use a standard dataset
to evaluate the effectiveness of an information retrieval model. This dataset is mainly
composed of three parts: the document collection, a set of test query topics and a
corresponding set of relevance judgements to each query. This section is organized as
follows: we first explain the benchmark data collection in subsection 3.2.1. We then
discuss how we use different links in our model to enrich the dataset in subsection 3.2.2.
In subsection 3.2.3 we describe the score normalization method we use in our experiments.
As we use different modalities in our model, it is necessary to apply normalization on the
search result of different modalities. Finally we explain the strategies we choose in our
implementation due to hardware restrictions.

3.2.1 Data Collection

The ImageCLEF 2011 Wikipedia dataset is based on Wikipedia pages and their associated
images. It comes with a set of 50 topics used for evaluation. The topics of this collection
are classified based on the AP (Average Precition) values per topic averaged over all runs
as follows [TPK11]:

easy: MAP > 0.3
medium: 0.2 < MAP <= 0.3
hard: 0.1 < MAP <= 0.2
very hard: MAP < 0.1

40

Figure 3.2: Topics categories based on their difficulty [TPK11]

The topics in each class are shown in Table 3.2. The topics are divided into four categories
of easy (17 topics), medium (10 topics), hard (16 topics) and very hard (7 topics). A
large number of topics in easy and medium topics refer to a named entity, and are easily
retrieved with textual approaches. On the other hand the hard and very hard topics
are highly semantic. They cover types of queries that are supposedly better solved by
textual, visual or multimodal retrieval.

The ImageCLEF 2011 Wikipedia collection is multimodal and therefore an appropriate
choice for testing the rich and diverse set of relations in our model. The goal of this
test collection is to retrieve images. Each image has one metadata file that provides
information about name, location, one or more associated parent documents in up to
three languages (English, German, and French), and textual image annotations (i.e.
caption, description, and comment). The collection consists of 125,828 documents and
237,434 images. We parse the image metadata and create nodes for all parent documents,
images, and corresponding facets. We enrich the collection by adding various link types,
which we describe in the following section.

3.2.2 Adding Links

In the ImageCLEF 2011 Wikipedia collection we have images and documents. In addition
to the part-of (β) relation between an image and its parent document, we add the three
other: facet (δ), similarity (γ) and semantic (α) links to the collection.

Facet Links The facet (δ) relation between each information object and its correspond-
ing facets are added to the graph. In order to perform the search, we extract facets from
both images and documents. We use textual facets for documents. We utilize default
configuration of a Lucene indexer, for three document textual facets of TF.IDF, BM25,
and Language Model (LM) with Bayes Smoothing.

41

For images, we use both visual and textual facets. For visual facets, we use the four
image features provided by the collection, as follows:

• CEDD: The Color and Edge Directivity Descriptor combines color and texture
information of an image in a histogram [CB08]. It is represented in a 144 dimensional
space.

• CIME: A border/interior classification algorithm which classifies pixels into interior
or border and then builds a 64 bins histogram for each pixel type [SNF02], resulting
in a 64 dimensional feature space.

• SURF: The Speeded-up Robust Features is a descriptor and detector, used for
finding discrete image point correspondence where the image is transformed into
coordinates. It is principally based on SIFT feature with small differences. The
three main steps in SURF algorithm are: first, detecting interest points, second,
representing the neighbourhood of each interest point by a feature vector, and
third, matching the feature vectors between different images. SURF can be used for
tasks such as object recognition, locating and recognizing objects, people, or faces,
making 3D scenes, tracking objects, and extract points of interest [BETVG08]. It
is represented in a 5000 dimensional space.

• TLEP: Cheng and Chen [CC03] suggest to segment the image into different regions,
and collect useful features from each region to classify. They propose a descriptor
which adopts two texture descriptors of color histogram and local-edge pattern (LEP)
histogram [CC03]. The LEP histogram originates from LBP texture descriptor
[OP99], which describes the spatial structure of a local texture. It considers the 3x3
neighbourhood of a pixel. For each pixel, we have 64 bin RGB (4x4x4), resulting
in a 576 dimension descriptor.

For textual facets of the images, we consider the meta-data XML files of each image.
These files include textual fields (caption, comment and description) of images. Using
Lucene we index them as separate fields, and search based on a multi-field indexing. We
use TF.IDF, BM25 and LM facets for each of these fields.

Similarity Links Similarity links (γ) connect the same facet type of two information
objects. Theoretically we can add a similarity link based on a specific facet between an
information object and all other information objects in the collection. For example, it
can be between color histogram facets of all images, or between textual TF.IDF facets of
documents. These connections create a highly connected graph. However, there would
be a lot of weak similarity links in such a graph. In order to filter weak links, we set a
limitation for adding a similarity link. For current experiments, we take top 10 similar
neighbours of documents/images based on their textual/visual facets. The weight of
these links is based on the similarity value between the same facets of an information
object and its neighbour.

42

We perform similarity computations separately for English (EN), German (DE) and
French (FR) fields as textual facets of each image. For example, we get the FR comment,
caption and description of an image, create a document of these fields, and find similar
images based on these fields. An image may have 30 similar neighbours in the case
of having textual fields in all languages. We perform the same scenario separately for
documents. For each document, we find top 10 similar ones in each language. In total
we added 3,535,437 similarity links in the graph.

Semantic Links We use Linked Open Data to add semantic links. We connect
the ImageCLEF 2011 Wikipedia collection to DBpedia through the equivalent pages
in DBpedia for each wiki page in the collection. We map the correspondent version
of DBpedia for Wikipedia 2011. The ImageCLEF2011 Wikipedia collection uses the
ImageCLEF 2010 Wikipedia collection, which is based on the September 2009 Wikipedia
dumps. Therefore, we used DBpedia version 3.4 which is based on Wiki dump September
2009. Each triple in DBpedia RDF is in the form of <source, predicate, target>. We
only add a link from DBpedia if both source and target documents are in the collection.
By adding all DBpedia links, a more connected, large scale graph is obtained.

We observed from DBpedia that there are representations of different concepts in one
language, as well as representations of the same concepts in different languages. We refer
to the links between the concepts in one language as intra-lingual semantic links, and
between the same concepts in different languages as inter-lingual semantic links.

For adding intra-lingual links, we add semantic connections between English documents.
These links are normal DBpedia properties like http://DBpedia.org/property/
type or http://DBpedia.org/property/title. This way, after visiting a docu-
ment, we follow its neighbours that may be images or other documents that are connected
through semantic links. For instance, a document named Battle of Leyte Gulf contains 6
images as neighbours. After adding semantic links, this document connects to 13 other
documents in the collection (e.g. Pacific War and World War II). In total, 55,544 links
are added, which is considerable considering that the total number of documents in the
collection is 125,828. These links are valuable in the sense that they provide a more
connected graph of information objects.

For inter-lingual links, we consider the statistics Tonon and colleagues [TDCM12] provided
on different link types. They rank all properties by their observed likelihood of leading
to relevant entities. Their results demonstrate that links like <DBpedia:wikilink>
are too general links that broaden to non-related objects. However, links like sameAs
are more promising. It leads to better precision as they refer to the same or similar real
world entity [TDCM12].

In order to add the sameAs link, we need the interlingual link information from DBpedia.
This information is not available for the working dump version 3.4. This information
is added from version 3.8 of DBpedia. We used the inter-lingual link information from
this version. For each English document, we found the corresponding triple in French

43

http://DBpedia.org/property/type
http://DBpedia.org/property/type
http://DBpedia.org/property/title

Table 3.1: Top 7 most frequent semantic links after adding DBpeida links to ImageCLEF
2011 Wikipedia collection

link type frequency

FR-DE sameAs 36,295
EN-DE sameAs 34,530
EN-FR sameAs 29,828
http://dbpedia.org/property/birth 5556
http://dbpedia.org/property/birthPlace 5551
http://dbpedia.org/property/death 3695
http://dbpedia.org/property/deathPlace 3672
http://dbpedia.org/property/location 2019
http://dbpedia.org/property/instrument 1302

and German. This triple is added via sameAs link to the collection. We added 29,828
available links for EN-FR documents, 34,530 links for EN-DE documents, and 36,295
between FR and DE documents.

3.2.3 Normalization

As we work with textual facets of both documents and images for similarity links, we
have two different collections of documents (Wikipedia pages) and images metadata. An
information object may receive activation score/energy through each of its links. For
instance, an image may receive energy from its parent documents in English and German
as well as from its similar image neighbours. In order to combine the received energy,
we normalize the similarity values in each collection. There are different methods of
modelling score distribution in information retrieval, like normal-exponential models,
gamma distribution or z-score [AR11]. The distribution result is not necessarily between
0 and 1. The range and distribution of scores varies across different models. As a result,
they cannot be compared between different engines [Rob07]. One main purpose of score
distribution methods is to provide a score normalization to map the score into a probability
of relevance. Cooper et al. [CGD92] argue that the systems should provide users an
estimate of probability of relevance through logistic regression techniques. Robertson
and Bovey [RB82] were the first ones who had the idea of using logistic regression. Given
some training data, the role of logistic regression is to calibrate scores in a system.
Mainly it is performed based on a view of the ranking result of the system [RB82].
To map this distribution to probability of relevancy, we use the regression function by
Nottelman and Fuhr [NF03]. They compare logistic functions with linear function for
different retrieval methods. They show that logistic function provides better estimation
of relevance probability (Equation 3.3).

flog(x) = exp(b0 + b1.x)
1 + exp(b0 + b1.x) (3.3)

44

They calibrate their logistic function (via two parameters b0 and b1) based on the collection
and the retrieval method.

In our case, we use a heuristic method to find the b0 and b1 parameters (because of lack
of training data for images and documents in the collection). We consider the top 10
results of a specific facet for each query topic. The reason is to have a range of possible
similarity values. Other values for the number of top results might have been chosen.
We leave those for later experiments. We create a set of these top results. We define two
conditions to find these parameters. As the first condition, we take the median (med) of
this result set, and set the probability of the median to 0.5. This way, half of the scores
have probability less than 0.5 and half more than that.

flog(med) = 0.5

flog(med) = exp(b0 + b1.med)
1 + exp(b0 + b1.med) = 0.5

b0 = −b1 ·med

(3.4)

As the second condition, we assume that f(min) = 0.05 where min is the minimum value
in this collection. The target is to map probability 0 for minimum score: f(min) = 0,
but the logistic function is of course always strictly greater than 0. So instead, in the
absence of anything else, we consider f(min) = 0.05. This arbitrary value is in this case
no better justified than in the case of the p-value threshold in statistical testing.

flog(min) = 0.05

flog(min) = exp(b0 + b1.med)
1 + exp(b0 + b1.med) = 0.05

b0 + b1(min) = −2.94

(3.5)

Based on these conditions, we find the fixed value of b0 = −b1 · med, and b1 =
−2.94/(min−med). For instance, for image with Id 1537, we search for top 10 similar
images based on the metadata TF.IDF facet. The similarity score results is the set: [0.15,
0.14, 0.13, 0.12, 0.11, 0.08, 0.075, 0.06, 0.045, 0.041]. The median of this list is 0.095.
Based on Equations 3.4 and 3.5, parameters b1 and b0 take the values 30.42 and 2.88.
Having these two parameters, we calculate the normalized value for all scores which is:
[0.84,0.79, 0.74, 0.68, 0.61, 0.30, 0.35, 0.25, 0.17, 0.16]. These are the weights we assign
to each neighbour as normalized similarity value. We perform this calculations for each
image/document in the collection at index creation time.

3.2.4 Implementation Strategies

Subgraph Traversal The ImageCLEF 2011 Wikipedia collection contains 363,262
information objects (images and documents without considering the facet nodes). A
matrix of this size, requires about 983GB RAM for matrix multiplication. In order

45

to make the computation feasible for large collections, our strategy in Astera is to
only consider nodes that are potentially reachable after N steps to generate a smaller
adjacency matrix. However, this set of reachable nodes depends on the query. Therefore,
for different query topics and different number of steps, we work with different subgraphs.

Starting from top ranked nodes for a query topic, we visit next round neighbours in
each step. After visiting all neighbours to a specific step in the graph, we create the
adjacency matrix W . The cell values of the adjacency matrix are the edge weights
between visited nodes. We compute the steps in the graph by matrix multiplication,
based on the following formula [SLR14]

a(t) = a(0) ·W t (3.6)

where the a(0) vector is composed of top ranked nodes of query facets (as non-zero
elements), and visited neighbours through traversal (as zero elements). The final vector,
a(t), provides the final activation value of all nodes. We select the images and calculate
precision and recall based on their scores.

In this version of our model, we use the distance constraint to stop the traversal [Cre97].

Weighting Strategy Each information object (e.g. image, document or any other
type of information object) may have many facets. By construction, they can receive
at maximum, a score of 1 from facets. The general formula for the combined scoring is:
obj_score =

∑z
i=0wi.fi where

∑z
i=0wi = 1. Variable z is the number of facets, and wi

is the weight of facet fi. For this collection—having textual and visual facets—we found
experimentally the (0.7 · TextualFacet + 0.3 · V isualFacet) as the best combination
(Table 5.2). We have three textual facets and four visual facets. Based on this weighting,
the combination of scores in a node, with all of these facets is as follows:

(0.7 ·
n∑
i=1

f̃i · wi) + (0.3 ·
m∑
j=1

f̃j · wj) (3.7)

where n is the number of textual facets, f̃i is one of the textual facets with weight wi, m
is the number of visual facets, and f̃j is one of the visual facets with weight wj .

For images, we have visual facets (CEDD, SURF, CIME and TLEP), and metadata
information as textual facet. Mapped to the score formula, it is (0.7 · TextualFacet+
0.3 · V isualFacet). For document objects, if for instance, we have only textual facet
TF.IDF, we give (1.0· TF.IDF) as weighting. In this version of Astera, we find different
facet weights experimentally. These weights should be learned for a specific query or
domain, e.g. via relevance feedback.

46

CHAPTER 4
Reachability Analysis

The use of different facets in Astera has support in the principles of IR, most notably in
the theory of poly-representation [LIK06]. The aim is to leverage different cognitive and
functional representations of information objects to improve IR results. There is currently
little understanding of how using different representations of the same objects (what we
call here facets) affect the reachability of relevant items. Moreover, in a graph model
of information objects, different types of links play an important role in reachability to
relevant information objects.

In this chapter, we investigate whether the graph structure is conductive to better
reachability (RQ2) [SLBR15]. We start with an exploratory data analysis over the
collection in Section 4.1. In the second section, we show the effectiveness of our model
leveraging different facets. We then elaborate whether using semantic/similarity links
helps reaching relevant information objects in Section 4.3. We show the effect of different
facets and links in reachability for different categories of topics in Section 4.4. Finally as
some facets show the same recall behaviour, in the last section we address the research
question whether similarity in the recall behaviour is due to the fact of visiting the same
parts of the graph (Section 4.5).

To keep track of which links are present in the graph in different experiments, the
following section titles contain the link types (α=semantic, β= containment/part-of,
γ=similarity). The like type δ which is used for facets is always included as it connects
an information object to its facets.

4.1 Relevant Objects Distribution
As a first experiment, we want to obtain an understanding of the collection in particular
of how the relevant images are distributed in the graph. The relation types used in this
section are β and δ links. Through these investigations, we want to see how far, and up

47

to how much recall we are able to reach in the graph using only the basic connections
(part-of and facet). There are 50 topics in ImageCLEF 2011 Wikipedia collection. We
conduct the traversal up to 40 steps for each of these topics. In each step, we check if we
visit new relevant images for a specific topic.

Figure 4.1 shows the distribution of relevant nodes in the collection as we start from
three facets (document TF.IDF, CEDD and image tags TF.IDF). We will come back
to the discussion of the choice of these facets in the following section. The x axis is the
number of steps we traverse the graph, and y axis is the Id of the query topics we have.
In each step we count the number of new relevant images we visit. Existence of a shape
(circle/square/star/triangle) indicates visiting at least a true positive. The size of a shape
is the ratio of number of relevant nodes seen in this step, normalized by the total number
of relevant nodes for a query topic Id.

We observe a large number of large shapes in the first steps. It indicates visiting more
relevant images initiating from different facet results. We observe that easy and medium
topics (circles and diamonds) are mostly reachable at the very beginning steps. For hard
and very hard topics (squares and triangles) there are more distributed relevant nodes as
we continue the traversal. They show almost constant increase as we traverse the graph.
This observation demonstrates that we reach a larger fraction of relevant results for hard
and very hard topics after 15 steps.

0 5 10 15 20 25 30 35 40

easy
medium
hard
very hard

 very
 hard

hard

med

easy

Figure 4.1: Overall recall aggregated per category over steps

4.2 Reachability from Different Facets

Here we investigate the behaviour of potential recall when using not only the basic facets
as we have just observed, but rather a variety of combinations of text and image facets,
including β and δ links in the graph.

48

4.2.1 Textual Facets Only

We start with document textual facets (TF.IDFD, BM25D and LMD). We take top 10
results based on each of these facets for different queries, and traverse the graph starting
from them. We calculate recall in each step, i.e. we calculate the recall based on all the
nodes visited up to this step. We observe very similar behaviour of different document
textual facets in Figure 4.2a, with a high shift in recall in the first step.

We perform the same analysis for images with TF.IDFI , BM25I and LMI tag facets.
Figure 4.2b shows the recall for image textual facets. We observe that they show also
the same behaviour, but LMI and BM25I show slightly higher recall than TF.IDFI .

4.2.2 Visual Facets Only

In Section 4.1, the experiment was only based on the CEDD facet, as visual facet. In
this section, we add three other image features provided by the collection: SURF, CIME
and TLEP. We show their individual effects on recall in Figure 4.2c.

All four image facets demonstrate approximately the same behaviour. We observe that
there is a shift in steps between the 2nd and 6th with slightly more increase for CEDD.
Also, there is an increase between the 8th and 12th steps for SURF. However, pure visual
facets do not start from promising points in the graph.

4.2.3 Different Facet Combinations

According to the analysis so far, each category of facets (textual, visual) shows ap-
proximately the same recall behaviour. A question arises whether each of these facets
are qualitatively similar too. (i.e. do they visit the same images?) To answer this
question, we investigate different information objects visited through each of these facets
in Section 4.5.

To continue with facet combination, we performed a thorough test on different com-
binations of document textual facets with image textual facets. For instance, some
combinations are TF.IDFD-TF.IDFI , TF.IDFD-BM25I , or BM25D-LMI . The result of
different combinations showed similar behaviour. For instance, Figure 4.2d shows the
effect of combining TF.IDFD with image textual facets. In all combinations the recall
shifts upwards about 19% in the first steps. The total recall is increased by 4% as well.
Therefore, for further investigations on the effect of facet combinations, we define the
variable RD for document textual facets, and the variable RIT for image textual facets.
For upcoming particular experiments, we choose RD =TF.IDFD and RIT =TF.IDFI .
The value of these variables can be any of TF.IDF, BM25 or LM facets.

Figure 4.2e shows the combination of TF.IDFD with image visual facets. We observe
that the final recall with TF.IDFD-CEDD combination is slightly increased. There is no
explicit increase with other visual facets. Comparing Figures 4.2d and 4.2e, we find that
with the combination of textual facets, we reach more relevant objects earlier.

49

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

steps

av
er

ag
e

re
ca

ll

TF.IDF
D

BM25
D

LM
D

(a) Recall with different document textual
facets

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

steps

av
er

ag
e

re
ca

ll

TF.IDF
I

BM25
I

LM
I

(b) Recall with different image textual facets

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

steps

av
er

ag
e

re
ca

ll

CEDD
SURF
CIME
TLEP

(c) Recall with different image visual facets

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

steps

av
er

ag
e

re
ca

ll

TF.IDF
D

TF.IDF
D
−TF.IDF

I

TF.IDF
D
−BM25

I

TF.IDF
D
−LM

I

(d) Recall comparison of combining TF.IDFD

with image textual facets

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

steps

av
er

ag
e

re
ca

ll

TF.IDF
D

TF.IDF
D
−CEDD

TF.IDF
D
−SURF

TF.IDF
D
−CIME

TF.IDF
D
−TLEP

(e) Recall comparison of combining TF.IDFD

with image visual facets

Figure 4.2: Recall with different document or image facets

50

Similarly for image visual facets, we define the RIV variable that could be any of the
visual facets. According to Figure 4.2c, CEDD shows slightly better recall at first steps.
CEDD has been shown as the best feature to extract purely visual results on ImageCLEF
2011 Wikipedia Collection [BVO+11]. Therefore, we choose CEDD as the value of RIV
in the following experiments.

We perform the experiment for different combinations of facets: RD, RD-RIV , RD-RIT ,
and RD-RIV -RIT (Figure 4.3). The upper set of lines shows the average recall obtained
through each combination. The lower set of lines indicates the percentage of the graph
visited through each combination of these facets. To clarify whether recall increase is
the effect of simply visiting more nodes or traversing through a meaningful path in the
graph, we added the lower diagram to Figure 4.3.

We observe the changes in the recall values using each combination. The recall results of
RD-RIV are nearer to those of RD, while RD-RIT obtains higher recall values, closer to
those obtained when using all features (RD-RIV -RIT). Looking at the lower diagram, we
observe that the combination with RIV (CEDD) outpaces the one with RIT (TF.IDFI)
in visiting more nodes in the graph. The opposite occurs in the recall diagram - the RIT
facet outpaces the RIV facet. This observation confirms the result we had with recall
increase through adding textual facet compared to visual facet. Clearly, in this case, we
visited fewer nodes, but obtained higher recall.

Another observation is the RD-RIV -RIT combination, which show higher recall value
than the other two combinations. This highlights the importance of different, diverse
representations of the query to reach more relevant objects.

Continuing this experiment, we combine separately all document and image textual facets.
We compare the result with the diverse facet combination of RD-RIV -RIT . Figure 4.4
demonstrates that combination of document textual facets outpaces the image textual
mixture. However, the RD-RIV -RIT combination, again outperforms the other two. It
confirms the effect of leveraging diverse sets of facets towards better reachability.

4.3 Reachability through Different Links
Up to here, we used various facets in our recall investigation, leveraging only δ and β
links. Now, we investigate the role of adding further links to improve reachability. All
experiments are started based on the set of top 20 results of standard search on RD-RIV -
RIT facets with TF.IDFD, CEDD and TF.IDFI values. The reason to not include all
facets is to begin with a smaller number of starting points (meanwhile containing at least
one facet from each category) to demonstrate the effect of different links.

The baseline recall is what we had in Figure 4.2a. We used the RD facet to define starting
points. As a baseline for comparison, it is visible in Figure 4.5 as “base-graph”. We
observe that this curve reaches a plateau after step 17, with 76% of recall.

One claim could be that going through Lucene results, we could reach the same recall.
In order to compare with Lucene results, we take the same number of results as the

51

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

steps

av
er

ag
e

re
ca

ll

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
is

ite
d

pe
rc

en
ta

ge
 o

f t
he

 g
ra

ph

TF.IDF
D

TF.IDF
D
, LM

I

TF.IDF
D
, CEDD

TF.IDF
D
, CEDD, LM

I

Figure 4.3: Average recall obtained compared to the percentage of the graph seen through
different fact combinations of RD = TF.IDFD, RIV = CEDD, and RIT =TF.IDFI

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

steps

av
er

ag
e

re
ca

ll

TF.IDF
D
, CEDD

I
, TF.IDF

I

TF.IDF
D
, BM25

D
,LM

D

TF.IDF
I
, BM25

I
,LM

I

Figure 4.4: Recall comparison of combination of document textual facets with image
textual facets with RD-RIV -RIT (TF.IDFD, CEDD, TF.IDFI) combination

52

number of new nodes seen in each step in the base-graph. For instance, if we visit 430
new nodes in the third step, we add the subsequent 430 results from the ranked list.
We calculated the recall for each of them. We observe that our model holding only β
relations (base-graph curve) is more promising than Lucene results which has a plateau
at 0.67 recall (Figure 4.5). After the first 3 steps, it outpaces the Lucene curve to the
plateau of 0.76.

4.3.1 Semantic Links - β, δ, α

We add intra- and inter-lingual semantic links, and perform the same experiments again
(Figure 4.5). We observe a steeper slope in the first steps, up to 0.84 recall in 15th step.
We obtain 10% increase in the overall recall. This demonstrates that adding semantic
links leads to higher reachability, to a larger number of relevant nodes.

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

steps

av
er

ag
e

re
ca

ll

sem & sim links − β, δ, α, γ
sim links − β, δ, γ
sem links − β, δ, α
base−graph − β, δ
lucene

Figure 4.5: Average recall of all topics after 40 steps with different links

After observing high increase in recall by adding semantic links, the question may arise
whether any additional set of links would lead to such an improvement. Do we reach the
same recall value by adding the same number of random semantic links? To examine, we
compare the result of adding semantic links with adding the same number of pseudo-
random semantic links. Based on Table 3.1, we add the same number of random links
between EN-DE, EN-FR and DE-FR documents. We run the same scenario on the
collection with the new added links. Figure 4.6a compares the recall value of adding
semantic links with the one from adding random links. We observe that after 12 steps,

53

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

steps

A
ve

ra
ge

 R
ec

al
l

0 5 10 15 20 25 30 35 40
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

P
er

ce
nt

ag
e

of
 n

od
es

 s
ee

n

recall−semantic
recall−random
graph−seen−semantic
graph−seen−random

(a) Recall and graph percentage seen, from adding semantic links compared
to added randomly semantic links

5 10 15 20 25 30 35 40

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

steps

P
re

ci
si

on
 lo

ss

(b) Precision loss in each step: comparing precision value with random semantic
links to the value with real semantic links. For instance, we observe 88%
precision loss in the 6th step.

Figure 4.6: Comparing the effect of adding semantic links and random semantic links on
recall and precision loss in the graph
54

with random semantic links, we reach a very high recall of 0.97. We visit 95% of the
graph nodes. While we reach 0.84 recall with real semantic links by visiting only 66%
of the graph size. We want to investigate this in more detail. We compare the amount
of precision we lose, with the increase rate of the number of visited nodes. Figure 4.6b
shows that how much adding random semantic links deteriorates the precision. In each
step, we calculate the precision loss based on:

precLoss = 1− (precision with random semantic links
precision with real semantic links). (4.1)

For instance, in step 6, we lose up to 88% precision compared to using real semantic
links. The result of this step shows that the addition of semantic links contributes to
higher recall with meaningful links. The precision loss from any of these additional links
is lower than if we had added the same number of links randomly.

4.3.2 Similarity Links - β, δ, γ

After adding similarity links the graph becomes highly connected. We reach a recall of
98% in the 6th step (Figure 4.7a). The total graph has 363,252 nodes, of which we see
352,208 nodes. This way we reach approximately all nodes in the graph.

We reached very high recall (98%) in only 6 steps by adding similarity links. The questions
is whether we reach the same amount of recall by adding the same number of random
links. We perform the same scenario of checking the contribution of added links for recall
as in Section 4.3.1 for similarity links. The number of 3,535,437 real similarity links are
added in the graph between documents and images. We add the same number of links
randomly to the graph. We observe in Figure 4.7a that we reach 98% of recall after 7
steps for real similarity links. The same happens with random similarity links in the 5th
step (we reach 99% of recall). After that, there are few relevant images remaining to
be reached. However, we should consider the expense of this high recall based on the
number of visited nodes in each step. We compare the percentage of the graph seen in
the other two diagrams in Figure 4.7a for real and random similarity links respectively.
We observe a higher slope in the triangle diagram, which reaches the 99% visit of the
graph in the 5th step. Whereas, given real similarity links (circle diagram), we reach the
same recall with lower number of visited nodes.

To show the expense of visiting this large number of nodes, we calculate the precision in
each step in the graph with real/random similarity links. Figure 4.7b shows the precision
loss in each step based on Equation (4.1) as before.

We observe that we lose more than 50% in the first four steps that we reach to 98% of
recall. In steps 5, 6, 7, and 8 the precision in both graphs is approximately equal. In step
9 (the last step of visiting relevant nodes in the graph with random similarity links), there
are not many relevant nodes remaining to be seen in the graph with random similarity
links (Figure 4.7a). This is because of the high connectivity in the graph with random
similarity links. However, with similarity links, there are still relevant nodes to be seen

55

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

steps

A
ve

ra
ge

 R
ec

al
l

0 5 10 15 20 25 30 35 40
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

P
er

ce
nt

ag
e

of
 n

od
es

 s
ee

n

recall−similarity
recall−random−similarity
graph−seen−similarity
graph−seen−random−similarity

(a) Recall and graph percentage seen, from adding similairty links compared
to added randomly similarity links

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

steps

P
re

ci
si

on
 lo

ss

(b) Precision loss in each step: comparing precision value with random simi-
larity links to the value with real similarity links. For instance, we observe
67% precision loss in the 2nd step.

Figure 4.7: Comparing the effect of adding similarity links and random similarity links
on recall and precision loss in the graph56

in this step, leading to larger value in the denominator of Equation 4.1. We observe
that although we visit a larger number of relevant nods in pursuing random similarity
links, the number of visited nodes is too high (e.g. 215588 nodes in the 4th step) that we
observe in Figure 4.7b higher percentage for loss of precision in the first steps.

This observation demonstrates the effective contribution of adding similarity links to the
collection to increase the reachability.

After elaborating the effect of different links on reachability, we want to zoom in this
time, and investigate the effect of different facet combinations on recall behaviour of
various topic categories.

4.4 Recall Analysis of Different Topic Categories
In this section, we show the effect of different facet combination on recall behaviour of
various topic categories (easy, medium, hard, very hard). We partitioned the results based
on the topic categorization done by Tsikrika et al. [TPK11]. The three representative
facets RD (TF.IDFD), RIV (CEDD), and RIT (TF.IDFI) are used in these experiments.

4.4.1 Base Graph - β, δ

We start the experiments on the graph containing δ (facet) and β (part-of) relations.

Text facet - RD
In this experiment, we include only RD results to start the search in the graph. Figure 4.8a
shows the average recall for different categories. We observe that easy topics meet 0.86
recall after 20 steps and this value remains constant thereafter. For medium topics is
the same after the 21st step with maximum value of 0.73. Hard and very hard topics
continue increasing the recall value also until the 21st step and up to the values of 0.66
and 0.71, respectively. An interesting observation is the behaviour of very hard topics
after the 3rd step: they outpace hard topics. This demonstrates that as we go farther in
the graph we cover a higher percentage of recall for very hard topics rather than hard
topics.

Another observation is the increase rate in each category. Easy topics show the increase
rate of 138% (from 0.36 to 0.86), where it is 128% for medium topics (from 0.32 to 0.73),
266% for hard topics (from 0.18 to 0.66) and 373% for very hard topics (from 0.15 to
0.71). The values show that easy and medium topics are apparently answerable by direct
querying, while it is in the hard and very hard topics that the graph model shows most
promise.

Further, we observe that recall is increasing up to 21st step and then goes to a plateau for
all categories. Two results are obtained from this observation: first is that by conducting
the traversal, we can expect increase in recall in the graph to about 21 steps. Because
we are still visiting relevant nodes as we go farther every one or two steps. Second is

57

that after the 21st step we do not visit relevant images any more, and recall is still less
than 0.86 even for easy topics. This shows that the graph is not connected. Our log
files show that no more new nodes are reached after the 40th step for any of the topics.
Therefore, the probability of continuing the traversal and seeing new relevant new nodes
is zero (when using only the textual facet in this set-up).

All Facets - RD, RIV , RIT

In this experiment, we use the RD, RIV , and RIT results to start the propagation
(Figure 4.8b). We observe the effect of multiple facets in the first steps (1st to 10th) with
higher recall values. In addition, the recall plateau in each category can be reached earlier
with all facets. We have the same values between 5th and 10th steps comparable to the
recall value for 10th to 15th with only text facets (RD). Further, recall has increased to
0.71 for hard topics. The final recall for different categories did not show a significant
difference. The reason is the connectivity of the graph that after a number of steps, all
reachable relevant nodes are visited.

The ImageCLEF 2011 has 363,262 nodes. We included the percentage of the nodes seen
in both experiments. The result shows that we visit the majority of relevant nodes by
passing less than 10% (about 36000 nodes) of the graph. However, the total number of
the nodes seen at plateau is about half of the collection (average of 178,620 nodes). This
illustrates that we have access to almost half of the graph. In addition, the convergence of
traversal performance at about 20th step for all topic categories is another confirmation
that we do not have access to all the graph. To tackle this challenge we add semantic
links to the collection.

4.4.2 Semantically Enhanced Collection - β, δ, α

We perform the same experiments for the collection enhanced with semantic links. Again
the experiments are based on RD, RIV , and RIT facets.

Text Facet - RD

In this experiment, we conduct the test based on RD facet top results. It is apparent
that we obtain a more connected graph and consequently expect higher recall. We show
the reachability result starting from the Text facet in Figure 4.9a. We observe that recall
in all categories reaches a plateau as it did in the graph version without semantic links,
but with a clear shift in recall value for all categories (easy topics from 0.86 to 0.90,
medium from 0.73 to 0.81, hard from 0.66 to 0.74, and very hard from 0.71 to 0.77).
In this experiment again, hard and very hard topics, with 13% and 8% increase rate
compared to the graph without semantic links, outpaced other categories.

58

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

steps

av
er

ag
e

re
ca

ll

easy
medium
hard
veryHard
perc. node seen

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Average recall using TF.IDFD - Base graph (β, δ)

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

steps

av
er

ag
e

re
ca

ll

easy
medium
hard
veryHard
perc. node seen

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Average recall using TF.IDFD, CEDD, TF.IDFI - Base graph(β, δ)

Figure 4.8: Average Recall in the base graph on different categories of topics

59

All Facets - RD,RIV ,RIT

By starting from RD, RIV , and RIT results, we observe approximately the same behaviour
in different categories (Figure 4.9b). The two Figures 4.9a and 4.9b, are rather similar.
The reason is high connectivity in the graph. It does not show much difference if we
start from RD or RD-RIV -RIT results. However, there are two obvious differences. First
is recall increase in the first steps. Second is the shift in the final recall value of each
category. The reason is that we have a highly connected graph, where the starting points
for search do not have a major impact. However, starting from different facets has an
effect in the initiating steps (1st to 5th step) leading to a steep slope at the beginning.

The same pattern of seen nodes is observed for the traversal in the graph with semantic
links. This shows on one side the importance of the starting points in reachability to the
relevant information objects. On the other side, we observe the role of added semantic
links in reaching higher recall values by visiting the same percentage of 10% of nodes in
the graph. Another observation in both Figures 4.8 and 4.9 is that we are visiting the
majority part of relevant objects in the first five steps, while visiting about 1% of the
graph.

4.4.3 Similarity Links Added - β, δ, γ

In this experiment we add the similarity links (γ) to the base graph. Figures 4.10a
and 4.10b show the recall behaviour after adding similarity links for only text facet (RD)
and for all facets. It is clear in both figures that the graph is highly connected – more so
than by adding only semantic links. We observe a very high slope at the beginning of
each category, and all reach the plateau of 0.98 or 1 after 7 steps. However, it is worth
to notice that we visit a large number of nodes in each step (about 30k new nodes),
from which is challenging to prioritize the relevant nodes to the top results to improve
precision. The detail is described in Section 4.3.2

4.4.4 Discussion

From the experiments on reachability in different links and topic categories, we can thus
draw the following initial conclusions:

• Adding semantic links increases the potential recall, especially for hard and very
hard topic by 13% and 8% whereas easy topics may not need the graph.

• Leveraging multiple facets, we saved at least 5 steps to reach the same potential
recall compared to using only one facet.

• Leveraging semantic links shifted highly the recall value already in the first few
steps.

60

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

steps

av
er

ag
e

re
ca

ll

easy
medium
hard
veryHard
perc. node seen

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Semantic links added (β, δ, α), average recall using TF.IDFD

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

steps

av
er

ag
e

re
ca

ll

easy
medium
hard
veryHard
perc. node seen

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Semantic links added (β, δ, α), average recall using TF.IDFD, CEDD,
TF.IDFI

Figure 4.9: Average Recall in the graph with semantic links on different categories of
topics

61

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

steps

av
er

ag
e

re
ca

ll

easy
medium
hard
veryHard
perc. node seen

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Similarity links added (β, δ, γ), average recall using TF.IDFD

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

steps

av
er

ag
e

re
ca

ll

easy
medium
hard
veryHard
perc. node seen

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Similarity links added (β, δ, γ), average recall using TF.IDFD, CEDD,
TF.IDFI

Figure 4.10: Average Recall in the graph with similarity links on different categories of
topics

62

5 10 15 20 25 30 35 40

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

steps

N
ew

 n
od

es
 s

ee
n

(a) Number of new nodes seen per step in the
collection (β, δ), 178,620 nodes in total

5 10 15 20 25 30 35 40

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

steps

N
ew

 n
od

es
 s

ee
n

(b) Number of new seen nodes per step, semantic
links added (β, δ, α,), 217,395 nodes in total

Figure 4.11: Number of new seen nodes per step in the collection

• We demonstrated the effect of different facets leading to visiting different parts of
the collection. This reinforces the importance of the poly-representation idea to
identify the relevant objects.

Further, we provide an analysis on the number of nodes visited. Figure 4.11a shows the
average number of new nodes seen for all topics in each step. We observe that it starts
to increase after the 5th step up to the 25th to the total size of 178,620 nodes. The
oscillation of the seen nodes in even steps is because of reaching documents in even steps
and images in odd steps. The number of images are more than twice that of the number
of documents in the collection.

The same analysis on the collection containing semantic links demonstrates that the
number of nodes are mainly increasing in the first steps up to the 25th step again
(Figure 4.11b), to the total size of 217,395 nodes. We observe 22% increase in the number
of nodes seen compared to the baseline graph. This observation indicates that a lower
number of steps is needed to traverse the relevant nodes with semantic links. However, it
challenges the precision, as we visit new nodes in the scale of thousands including only
few relevant nodes.

4.5 Graph Visit from Different Facets

In Section 4.2, we observed very similar recall behaviour of different visual and textual
facets. We want to understand whether with the same recall value, we visit the same
relevant nodes as well.

63

We calculate the percentage of different nodes visited in a step as:

dfi
= |Cfi

| − |M |
|Cfi
|

(4.2)

where Cfi
represents the nodes seen in a step for facet fi, and M =

⋃
fj∈F\{fi}Cfi

∩ Cfj
,

where F is the set of facets, the set of nodes also seen by other facets. This way, by
|Cfi
| − |M | we count the nodes only reachable through the facet fi. The value dfi

is the
ratio of nodes reachable only through this facet.

We calculate the same ratio for seen relevant images. In this case, Cfi
is all the relevant

images seen in a step for facet fi.

4.5.1 Document Textual Facets

We start with the nodes visited from the result of document textual facets. We perform
this experiment with TF.IDFD, BM25D and LMD facets. Figure 4.12a shows that in the
starting steps (up to 10), TF.IDFD and BM25D show the same behaviour. They visit in
average 13% different nodes compared to the other two, while LMD starts from different
nodes in the graph. After the 10th step, LMD and BM25D show the same behaviour,
where TF.IDFD visits 20% different nodes. However, we observe in Figure 4.12b that
all these three facets visit approximately the same relevant images. They show small
differences at the beginning, but after 5 steps, there is no difference.

4.5.2 Image Textual Facets

Figure 4.13a shows the ratio of different visited nodes through TF.IDF, BM25 and LM
facets of image metadata. We observe that TF.IDF and BM25 start with 20% different
points in the graph. Each keep visiting on average 15% different nodes compared to the
other two facets. However, LMI proposes a rather divergent view. It starts with 48%
different nodes. It starts with different top results and keeps this different view to the
end. Its impact on visiting relevant images is clear in Figure 4.13b. Up to step 15, LMI

visits more different relevant images than the other two facets.

From the results of document and image textual facets (Figures 4.12a, 4.12b, 4.13a, and
4.13b), we observe that the LM facet shows different behaviour compared to TF.IDF and
BM25. A probable reason is the structural difference of these facets. Both TF.IDF and
BM25 are based on tf and idf factors, while LM holds a completely different probabilistic
view.

Figures 4.12a shows less ratio of visiting different parts of the graph compared to Figure
4.13a. When we start the traversal based on document textual facets, we traverse less
divergent parts of the graph, compared to the graph parts visited as we start with image
textual facets (Figure 4.13a). The reason is that starting with document textual facets,
we touch documents in the first place. In each next step, we see all images inside a
document, covering a large number of images in one step. Whereas, starting with image

64

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

io
 o

f d
iff

er
en

t n
od

es
 s

ee
n

steps

TF.IDF
BM25
LM

(a) Ratio of different nodes visited through doc-
ument textual facets

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

io
 o

f d
iff

er
en

t r
el

ev
an

t i
m

ag
es

 s
ee

n

steps

TF.IDF
BM25
LM

(b) Ratio of different relevant images visited
through document textual facets

Figure 4.12: Ratio of different nodes visited from document textual facets

textual facet results, we touch individual images in the first level. These images may be
part of different documents which lead to the broader view to the graph. This results in
visiting more divergent relevant nodes as well, as we observe large difference in starting
steps in Figure 4.12b compared to Figure 4.13b. We observe that, the LM facet not
only visits different parts of the graph, but also keeps visiting different relevant images.
This observation reinforces the poly-representation principle [LIK06] in using cognitively
dissimilar facets.

4.5.3 Image Visual Facets

We calculated the dfi
values (Equation 4.2) in each step for all four image visual facets

(Figure 4.14a). We observe that each of these facets starts from totally different parts of
the graph (dfi

= 1). However, it decreases with a high slope to dfi
= 0.2 after 10 steps.

Afterwards, they keep visiting different nodes with different ratio (between 20% and
35%). Facets CIME and TLEP show very similar behaviour, while CEDD and SURF are
more divergent.

Figure 4.14b shows the ratio of relevant images seen through each of these facets. In the
first steps, each facet visits different relevant nodes (correspondent to Figure 4.14a). For
instance, in step 7, CEDD has the highest difference with CIME. After step 18, relevant
nodes seen through CIME, TLEP and SURF show overlap with seen relevant nodes by
CEDD. However, CEDD keeps visiting 2% different relevant nodes.

Comparing Figures 4.2c and 4.14a, we observe that although the visual facets demonstrate
the same recall value, they visit different relevant nodes at least in the first 15 steps.

65

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

io
 o

f d
iff

er
en

t n
od

es
 s

ee
n

steps

TF.IDF
BM25
LM

(a) Ratio of different nodes visited through im-
age textual facets

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

io
 o

f d
iff

er
en

t r
el

ev
an

t i
m

ag
es

 s
ee

n

steps

TF.IDF
BM25
LM

(b) Ratio of different relevant images visited
through image textual facets

Figure 4.13: Ratio of different nodes visited from image textual facets

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

io
 o

f d
iff

. n
od

es
 s

ee
n

steps

CEDD
SURF
CIME
TLEP

(a) Ratio of different nodes visited through im-
age visual facets

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

io
 o

f d
iff

. r
el

ev
an

t i
m

ag
es

 s
ee

n

steps

CEDD
SURF
CIME
TLEP

(b) Ratio of different relevant images visited
through image visual facets

Figure 4.14: Ratio of different nodes visited from image visual facets

66

4.6 Summary
In this chapter, we designed experiments to evaluate our model in reachability to relevant
information objects. The experiments were performed on the ImageCLEF 2011 Wikipedia
collection. Astera is able to enrich the modelled collection in two ways: 1) Extracting
inherent information of data objects as facets. 2) Adding semantic/similarity links
between information objects. We evaluated this model with ImageCLEF2011 Wikipedia
test collection. We demonstrated the effect of different facet combination on recall.
Further, we observed how connected the collection is. We provided an understanding of
reachability to relevant information objects. In addition we found the minimum number
of steps that still there is a chance to see relevant information objects.

In the first part of the experiments, we presented a reachability analysis of relevant
objects from different facets. We showed the effect of choosing effective diverse facets in
reachability, as the combination of document and image textual facets resulted in better
recall than document textual and image visual facet. We observed that by leveraging
multiple facets, we saved at least 5 steps to reach the same potential recall compared to
using only one facet. Further, we showed that not necessarily using larger number of
facets leads to higher recall.

In the second part of our experiments, we showed the effect of adding semantic and
similarity links in increasing the reachability in the graph. We observed 22% increase
rate of the number of nodes seen in the graph, by adding real semantic links, compared
to the 10% recall gain. The difference shows that we cannot easily increase recall, when
the baseline is already 0.76. This highlights the importance of type and number of the
links we choose to add. Further, we showed the contribution of adding similarity links to
increase reachability to 98% of relevant information objects. In both cases, we compared
the result in the graph with the same number of random links. The rate of precision loss
in the graph with random links showed the contribution of real semantic and similarity
links to the graph.

In the third part of our analysis, we looked at the effect of different facets and links on
different topic categories (easy, medium, hard, very hard). We observed that easy and
medium topics are mainly reachable in initial steps. However, the relations in the graph
and semantic links helped significantly in reachability to hard and very hard relevant
information objects. We observed the recall increase of 266% and 373% for hard and
very hard topics, respectively.

In the last part of the reachability analysis, we demonstrated the effect of different facets
leading to visiting different parts of the collection. This reinforces the importance of the
poly-representation idea to identify relevant information objects. We found that although
the image visual facets show the same recall behaviour, they visit totally different relevant
images at the beginning steps (up to 10). This encourages to leverage more than one
facet to start traversing the graph from, as they help to see relevant nodes earlier. In
addition, the analysis on textual facets showed that the Language Model (LM) facet has
more divergent view than BM25 and TF.IDF facets.

67

We conclude that, not necessarily adding more facets leads to a better recall value.
We should consider that adding more facets increases the size of the visited graph and
increases computational complexity. However, leveraging facets with different aspects of
the information object speeds up the time to reach the recall plateau.

From comparing the graph enriched with real semantic links to the one with random
semantic links, we learned that adding new links should be chosen meaningfully. We
reach higher recall by adding random semantic links, but lost up to 88% precision in
some steps compared to using real semantic links.

After accomplishing experiments on recall analysis, we are motivated to consider the role
of different facets and link types on precision value. In next chapter, we show experiments
on score distribution and precision value in small and large number of steps in the graph.

68

CHAPTER 5
Precision Analysis

In Chapter 4, we investigated the reachability of relevant information objects and recall.
In this chapter, we answer RQ3 which discusses whether the top ranked results based on
the graph traversal identify the relevant information objects. We start with the effect of
different facets and links on performance in the first section. This analysis is concentrated
in the initial steps based on Spreading Activation as traversal method. However, by using
this method, we do not reach a stationary distribution state in the graph, as the weighting
in the graph does not match the stochastic property. In Chapter 2, we described the
two well-known traversal methods in IR: Spreading Activation and Random Walks. We
associate Spreading Activation method to not normalized weighting in the graph. We
want to leverage the score distribution in the stationary distribution state. Therefore,
in the second part of this chapter, we define a normalized weighting on the links in the
graph and effectively, this is now Random Walks (as shown in Section 2.1.3). In this
part, we also explain the graph behaviour when considering a larger number of steps.

To keep track of which links are present in the graph in different experiments, the section
titles contain the link types (α=semantic, β= containment/part-of, γ=similarity). The
link type δ for facets is assumed to be always included, as it connects an information
object to its facets.

5.1 Precision Analysis with Different Facets
For further investigations on the effect of facet combinations, as we defined in Chapter
4 Section 4.2, we use the variable RD for document textual facets, and RIT for image
textual facets. The value of these variables can be any of TF.IDF, BM25 or LM facets.
We performed thorough analysis on the effect of each of these facets in visiting relevant
information objects in Chapter 4. We showed that they show a similar recall behaviour, as
we used different facet values for RD and RIT variables. Therefore we take a representative
from each category for upcoming particular experiments. As in Chapter 4, we choose

69

Table 5.1: Results for baseline standard search

docw imgw p@10 r@10 p@20 r@20

1 0 0.311 0.105 0.247 0.129
0.7 0.3 0.34 0.109 0.281 0.133

RD =TF.IDFD and RIT =TF.IDFI for experiments in this section. Further, we define
the RIV variable that could be any of the image visual facets such as SURF, TLEP,
CEDD and CIME. The CEDD facet has shown better performance result in purely visual
results on ImageCLEF 2011 Wikipedia Collection [BVO+11] than the other three visual
facets. Again as defined in Chapter 4 Section 4.2, we choose CEDD as the value of RIV
in the following experiments.

5.1.1 Baseline

We start the experiments with a baseline test which uses only standard Lucene without
leveraging the graph model. We get the top 20 result of standard Lucene search based
on the RD facet. For each ranked document result, we extract its associated images and
rank them based on the score of the parent document. This score is constant for the set
of images in a document. Secondarily, we rank the images alphabetically based on their
names. The result is shown in the first row of Table 5.1. For instance the precision at
cut-off 10 (P@10) is 0.311. The variable docw is the weight given to the document-based
similarity results and imgw is the weight given to image-based similarity results. We
show the precision and recall values in the cut-off 10 (p@10 and r@10). In the first part
of this experiment, result images are ranked only based on their parent score, we have
docw = 1 and imgw = 0.

In the next step, we additionally refine the baseline by computing the similarity between
each of the query images (qimgi) and each of the result list images resimg. We compute
the maximum similarity value (SV) as reference. It is shown in the following formula:

SVqimgs,resimg = max(Sim(qimgi , resimg)), 1 ≤ i ≤ 5 (5.1)

where the index i ranges between 1 and 5 indicating the 5 image examples of each query.

Now each image result has two scores: the text score and the image similarity score. We
apply a range of different weightings for linear combination of text and image score. As
shown in Table 5.2 the best result is obtained by assigning weight 0.7 to the text score
and weight 0.3 to the image score.

Results obtained from image-only searches (using LIRE) had very low recall and are
not presented here. There are other experiments that confirm the poor result of using
only visual features [AOB+11, ZB11]. As stated in the review of the ImageCLEF 2011
Wikipedia collection [TPK11], none of the top runs are based on pure visual features.

70

Table 5.2: Different combinations of weightings on document and image similarity results

docw imgw p@10

1.0 0.0 0.311
0.9 0.1 0.329
0.8 0.2 0.337
0.7 0.3 0.34
0.6 0.4 0.331
0.5 0.5 0.322
0.4 0.6 0.310
0.3 0.7 0.305
0.2 0.8 0.294
0.1 0.9 0.282

The result based on RIT = TF.IDFI as the result of image metadata indexing showed
lower performance (with p@10 of 0.26 and p@20 of 0.20). Therefore, we choose the RD
based results, refined with RIV = CEDD as the baseline for our experiments.

5.1.2 Different Facets Combination - β, δ

From this experiment, we start the graph-based search for precision on the collection.
We design several experiments based on RD, RIV , and RIT facets, as well as various
self-transitivity values. Link types β and δ are used to focus on the effect of different
facets in the graph.

In these experiments, we set positive values for the self-transitivity parameter. With no
self-transitivity value, we end up with zero value for precision in the even steps. The
reason is that the graph is bipartite and we visit no images in the even steps (Figure
5.1). Another reason is that we would only count the images visited in a particular step
in the precision, as all of the energy is shifted in each step to the next. Therefore, we
set a non-zero value for the st parameter. This way, all visited images up to this step
participate in the final ranking. Any positive value for st would have this effect. We set
st = 0.9 to slow down the pass of energy to the neighbours.

To choose the number of steps to traverse in the graph, we designed experiments to take
many steps in the graph. The results for different facets showed the decreasing trend of
precision, which ended up with 0.03 value at step 24 (Table 5.3). On the other hand, as
the weighting in the graph does not satisfy the stochastic property, we generate energy
in each step, such that in the 87th step we reached the Double max value (more detail is
described in Appendix A). We begin by analysing the result of starting steps up to the
9th step in this section, and focus on the effect of facet combinations in the initial steps
in this section.

71

Figure 5.1: Bipartite graph, in odd steps we visit only images and in even step only
documents

Document Textual Facet - RD
In this experiment, we use the TF.IDFD facet results as initiating points in the graph.
We do not include any visual or textual facet of the images. From Table 5.4, we observe
0.34 for P@10 by using the graph structured data. Compared to the baseline result
(Table 5.1, row 1), we obtain 8.5% increase in the precision value.

As the activation is propagated further up to 9 steps, we observe a decrease in the
precision. We obtain almost the same precision in even steps compared to their prior odd
steps. The reason is that self-transitivity holds the value of 0.9, and we count all images
visited up to the current state in each step. In even steps, we visit only documents, and
we have the same (number of) images as in odd steps.

Document Textual and Image Visual Facets - RD, RIV
In this experiment, in addition to the TF.IDFD results, the top images (based on CEDD
similarity) are added to the list of activation points. The activation vector is therefore a
combination of indexed documents and images.

First, we consider no self-transitivity value. This way, in each step, only the images seen
in this step are included in the final ranked list. We receive worse results compared to
the RD result, especially in the even steps (Figure 5.2). The reason is that starting from
top image nodes, we visit more images in even steps and they are mostly non relevant.
In these steps we have the results from both document textual facets and CEDD with no
preference. This result confirms that pure image-based retrieval is not informative.

In order to remove the high influence of top image results in the propagation, we weight
the document and image score results in the initial vector. To compare with the best

72

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

steps

pr
ec

p@10,st:0.0
p@10,st:0.1
p@10,st:0.9

Figure 5.2: Prec@10 using TF.IDFD, CEDD, not weighted

result we had in the baseline search, we perform the same weighting here (with 0.7 weight
to the RD and 0.3 to RIV). We observe in Table 5.5 that the weighted result is much
better in even steps than Figure 5.2. The reason is that the scores of visual facet (RIV)
are reduced to match their perceived importance for retrieval. The precision results in
Table 5.5 are approximately the same as the results in Table 5.4. However, we obtain
better recall in the first four steps. Going further in the graph, we see a higher number
of images, which decrease the precision of the system.

Document and Image Textual Facets - RD, RIT

In this experiment, we perform the search based on TF.IDFD and TF.IDFI facet results.
We see an increase of 6% in the first step (Table 5.6). Also in the third step, we have
better precision. This shows that we visit relevant documents, not only after one step,
but also after three steps. We observe that by using RIT , we have better recall in the first
three steps as well. In these experiments the st value is 0.9, which means that energy is
predominantly retained in the nodes. Therefore, all image nodes visited in the traversal
are included in our calculations.

All Facets - RD, RIV , RIT

We included all three result sets of TF.IDFD, CEDD, and TF.IDFI in this experiment
(Table 5.7). Precision in the first step is the same as combination of RD and RIT results.
This means that CEDD top ranked nodes did not help. In the second step, starting
from document top results (RD), we visit documents again (no new images) which do
not affect the result of this stage. As we use only δ and β links, the graph is bipartite.
However, starting from images top results (RIV and RIT), we visit new images in the

73

Table 5.3: The results of 24 steps in the graph starting from TF.IDFD. We observe the
descending order of precision and recall.

steps p@10 r@10 p@20 r@20

1 0.34 0.136 0.25 0.161
2 0.34 0.136 0.25 0.161
3 0.286 0.114 0.208 0.158
4 0.28 0.112 0.206 0.149
5 0.252 0.104 0.188 0.144
6 0.244 0.104 0.18 0.138
7 0.218 0.095 0.176 0.138
8 0.194 0.081 0.158 0.124
9 0.19 0.08 0.148 0.115
10 0.146 0.126 0.065 0.1
11 0.134 0.122 0.053 0.088
12 0.13 0.11 0.049 0.081
13 0.116 0.102 0.045 0.077
14 0.116 0.1 0.045 0.076
15 0.104 0.094 0.042 0.073
16 0.104 0.093 0.042 0.072
17 0.1 0.087 0.038 0.063
18 0.088 0.081 0.032 0.055
19 0.088 0.069 0.026 0.048
20 0.076 0.063 0.027 0.05
21 0.066 0.051 0.024 0.042
22 0.048 0.04 0.016 0.033
23 0.048 0.039 0.016 0.03
24 0.032 0.031 0.01 0.024

second step. Precision increase to 0.372 demonstrates that leveraging diverse facets (RIV
and RIT) lead to visiting more relevant images. We gain 9% increase compared to using
only TF.IDFD facet. The precision gain is statistically significant based on t-test with p
value of 0.05; the same holds for the previous experiment.

5.2 Precision Analysis by Adding Semantic and
Similarity Links

In this section, we test the performance with the collection enriched with semantic (α)
and similarity links (γ). We investigate the role of these links on improving the precision.

74

Table 5.4: Results with RD, st:0.9, links: β, δ

steps p@10 r@10 p@20 r@20

1 0.34 0.136 0.25 0.161
2 0.34 0.136 0.25 0.161
3 0.286 0.114 0.208 0.158
4 0.28 0.112 0.206 0.149
5 0.252 0.104 0.188 0.144
6 0.244 0.104 0.18 0.138
7 0.218 0.095 0.176 0.138
8 0.194 0.081 0.158 0.124
9 0.19 0.08 0.148 0.115

Table 5.5: Results with RD, RIV , st:0.9,
links: β, δ

steps p@10 r@10 p@20 r@20

1 0.34 0.135 0.25 0.188
2 0.338 0.133 0.257 0.193
3 0.29 0.115 0.207 0.163
4 0.266 0.101 0.175 0.131
5 0.234 0.093 0.165 0.122
6 0.136 0.052 0.098 0.068
7 0.11 0.039 0.077 0.055
8 0.094 0.032 0.065 0.042
9 0.084 0.056 0.062 0.038

Table 5.6: Results with RD, RIT , st:0.9,
links: β, δ

steps p@10 r@10 p@20 r@20

1 0.362 0.139 0.265 0.189
2 0.346 0.132 0.259 0.175
3 0.308 0.119 0.224 0.165
4 0.24 0.088 0.187 0.135
5 0.212 0.081 0.164 0.118
6 0.158 0.06 0.133 0.097
7 0.164 0.06 0.128 0.091
8 0.144 0.56 0.113 0.085
9 0.084 0.027 0.062 0.038

Table 5.7: Results with RD, RIV , RIT ,
st:0.9, links: β, δ

steps p@10 r@10 p@20 r@20

1 0.358 0.14 0.27 0.195
2 0.372 0.137 0.272 0.193
3 0.308 0.12 0.22 0.166
4 0.25 0.093 0.186 0.127
5 0.218 0.083 0.162 0.113
6 0.114 0.037 0.088 0.06
7 0.114 0.037 0.085 0.056
8 0.138 0.056 0.113 0.085
9 0.068 0.055 0.107 0.083

75

Figure 5.3: In the second step with st = 0, reachable images are the ones through
sameAs links

5.2.1 Semantic links - α, β, δ

We described in Chapter 3 that we enrich the collection with two types of semantic links:
inter-lingual and intra-lingual. As we consider only English metadata in our experiments,
therefore, only the English documents of the collection and their images are connected.
We utilize the inter-lingual links to reach the German and French documents as well.
The only inter-lingual link used is the sameAs link. The reason for choosing this link
is described in Section 3.2.2. Adding a semantic link like sameAs also has the side
effect of removing the bipartite nature of the graph. The energy is no longer completely
transferred between the images and documents, as we have new document neighbours for
the documents.

Here, we compare reachability to relevant images in each step with/without semantic
links. Figure 5.3 shows the graph when we use the TF.IDFD facet result as starting
points with st = 0. Without any semantic link, all the energy goes to the neighbours in
each step and we visit images only in odd steps. However, if we consider the sameAs
links in the first step, the energy goes not only to the images, but to the semantically
related documents as well. In the second step, the energy shifts from images to their
parent documents, and from new semantically related documents to their images. In this
step, we see images only reachable through sameAs links.

We designed two experiments in this section. As shown in Table 5.8, without sameAs
links we have precision zero in even steps. The reason is that we visit only documents
in this step. In Table 5.9, we see the result of adding sameAs links. In the second step
we see the images reachable only through sameAs links. We observe the amount of
0.22 increase in the precision value in the second step, and 0.2 in the fourth step. Two
examples are shown in Figures 5.4a and 5.4b, one as a sample of easy topics and the
second one as an example of very hard topics. We observe from these figures that we can
reach more relevant images following the semantic links.

76

(a) For the query of “Elvis Presley” (as an easy topic), we visit one of the relevant
images in the first document in the first step. In the second step, focusing on semantic
links, we reach three more relevant ones through German and French documents.

(b) For the query of “house in mountain” (as a very hard topic), we visit no relevant
images in the first document (Anti-Atlas) in the first step. In the second step, we reach
a relevant image through the French document.

Figure 5.4: Two examples of following inter-lingual semantic link

77

Table 5.8: Result without semantic links, st
= 0, β, δ

steps p@10 r@10 p@20 r@20

1 0.34 0.13 0.25 0.16
2 0 0 0 0
3 0.28 0.11 0.20 0.15
4 0 0 0 0

Table 5.9: Result with semantic links
(sameAs), st = 0, β, δ, α

steps p@10 r@10 p@20 r@20

1 0.34 0.13 0.25 0.16
2 0.22 0.1 0.2 0.14
3 0.28 0.11 0.22 0.14
4 0.2 0.07 0.16 0.11

5.2.2 Similarity links - α, β, δ, γ

In this experiment we include the similarity links added to the collection. We design
experiments with/without similarity/semantic links. By adding any of these links, the
graph is no more bipartite. We set the st = 0.9 in these experiments to include all the
visited images up to this step in the performance of the current step. In Table 5.10, we
show the results without adding any similarity/semantic links. Table 5.11 shows the
results by adding only similarity links. In this table, we observe almost no difference
in the results. It seems that adding similar documents and images does not help with
improving the precision. The results of Table 5.12 show that in the absence of similarity
links and existence of only inter-lingual semantic links and st = 0.9, we have the best
precision of 0.37 in the second step. By leveraging semantic links we gain 9% increase in
the precision value in this step, as the images form other relevant documents (French,
German) are added to the result list.

Table 5.13 shows the result of adding both similarity and semantic links. We observe less
increase in the precision than adding only semantic links. The reason is that, by adding
both links we reach a large number of images in each step. In addition, with semantic
links new images from German or French documents are added to the final ranking list.

5.2.3 Discussion

With Astera we can search the collection from different points of view by using different
facets. We showed the effect of using textual facets in combination with visual facets on
precision value. We were able to improve the results by using a weighted combination of
textual and visual facets. Utilizing image textual facet increased precision by 6%. Further,
combination of two different facets of images (RIV and RIT) with document textual facet
(RD) leaded to better result than the sum of their individual results. This demonstrates
the positive effect of the combination of different facets and poly-representation in Astera.
Adding inter-lingual semantic links increased the precision value by 9%. However, adding
similarity links did not help with the performance.

78

Table 5.10: Result without semantic/simi-
larity links, st = 0.9, β, δ

steps p@10 r@10 p@20 r@20

1 0.34 0.13 0.25 0.16
2 0.34 0.13 0.25 0.16
3 0.28 0.11 0.20 0.15
4 0.2 0.09 0.20 0.14

Table 5.11: Result with similarity links, st
= 0.9, β, δ, γ

steps p@10 r@10 p@20 r@20

1 0.34 0.12 0.25 0.16
2 0.34 0.12 0.24 0.16
3 0.27 0.09 0.24 0.15
4 0.24 0.08 0.22 0.13

Table 5.12: Result with semantic links
(sameAs), st = 0.9, β, δ, α

steps p@10 r@10 p@20 r@20

1 0.34 0.12 0.25 0.16
2 0.37 0.12 0.25 0.16
3 0.35 0.10 0.22 0.14
4 0.26 0.09 0.20 0.13

Table 5.13: Result with both semantic and
similarity links, st = 0.9, β, δ, α, γ

steps p@10 r@10 p@20 r@20

1 0.34 0.11 0.25 0.16
2 0.34 0.11 0.24 0.16
3 0.27 0.09 0.24 0.15
4 0.24 0.08 0.19 0.12

5.3 Score Analysis in the Graph - α, β, δ, γ

In previous section, we investigated the role of different starting points and their com-
binations in improving the precision value. In addition, we performed experiments to
examine the role of enriching the collection with similarity and semantic links. The
results showed that we obtain better performance by adding semantic links. However,
adding only similarity links or combination of the two, degraded performance. With
these findings, we are interested to find what is happening in the score distribution in
the graph [SLR15]. Why do we not see a significant increase in the precision values? To
answer this question, we designed experiments to observe the score distribution in very
large steps in the graph. We normalize the weights in the graph to examine graph score
distribution in the convergence state. Practically, this is now Random Walks (as shown
in Chapter 2).

5.3.1 Experiment Design

We described in Section 3.2.4 that for efficiency reasons we create query-dependent
sub-graphs, as we start from top results of that query as starting points. For each topic
we start from top 20 results based on one or more facets. According to the hardware
feasibility analysis of our resources in Appendix A, we are limited to have sub-graphs
of 70,000 nodes. This size of a sub-graph does not influence our model and traversal
method. We check the total number of visited nodes after each step and if it is exceeding

79

the limit, we remove randomly from the neighbors of the last visited nodes. For each
topic, we trim the graph to 70,000 nodes.

Based on the size of the neighbour list of each node (N), we simply calculate the weight
of 1/N for each neighbour. This way, we create a sub-graph with normalized weighting
on the edges, satisfying the stochastic property. Now, the sub-graph is ready to perform
the iterations. We use the term step as theoretical multiplication of the graph matrix.
From an iteration, we mean each mathematical matrix multiplication, which may include
one or many steps.

Number of Iterations It usually takes more than 1000 steps that we reach the
stationary distribution state [Wal04]. We choose steps of power of 2 to create big jumps.
It helps recognizing convergence in the graph. To determine the number of steps needed,
we check the convergence in each step. At each iteration, we calculate the difference
between the score vector of the previous iteration a(t−1) and the current one a(t). We
check the convergence in each iteration based on the absolute error and relative error.
The absolute error shows the difference of the value of each node in the two vectors a(t−1)

and a(t) as abserr = |a(t) − a(t−1)|. Based on the precision we want to obtain, we define
the relative error. This error shows the magnitude of the difference between each value
in a(t−1) and a(t) vectors as relerr = abserr/|a(t−1)|.

We consider the score values larger than 1e− 3 in our ranked list. Therefore, we choose
1e− 4 as the absolute error value of convergence, indicating no difference between a node
score in two iterations. We set the accuracy value of 5e− 2 for relative error as enough
accuracy between two iterations. According to our checking for different topics, we reach
the convergence after step 2048 (12 iterations).

5.3.2 Score distribution in the graph

To start the experiments, we take snapshots from Random Walks steps to obtain an
understanding of score distribution in the graph. We show the results for a sample topic
(Topic 83). The score distribution is shown in steps of 1, 23, 25, 27, 29, and 211 (Figure
5.5).

We observe that in the starting steps, fewer nodes have received the energy/score from
starting points with higher values. As we traverse further in the graph, the energy is
more evenly distributed. After many iterations, we have the same amount of energy
spread over the nodes. This energy is the sum of normalized scores of the top results of
a query. However, there are some nodes which have still higher energy than the others,
and are returned as ranked list.

5.3.3 Query-dependent and Query-independent Routing

By query-independent routing, we mean that the traversal in each step is independent
from the relevance to a query. It is only based on the pre-defined weighting in the graph.
We use Markov Chain Random Walks for this traversal.

80

(a) Step 1 (b) Step 8

(c) Step 32 (d) Step 128

(e) Step 512 (f) 2048

Figure 5.5: Score distribution in the graph in different steps for topic 83. The x axis is
all the nodes in the graph which is 70,000. Units are in the scale of 104.

81

In the literature, Random Walks and its stationary distribution have been mostly used to
benefit from the graph structure. The question arises whether we obtain different results
if we use a query-dependent routing [SLR16]. To answer this question, we employ one of
the query-dependent Random Walks methods named Metropolis-Hastings [CG95]. This
algorithm is described in detail in Section 2.1.4. By query-dependent routing we mean
that in each step we consider the relevance of each node and that of its neighbour to the
query.

Metropolis-Hastings properties in Astera

Here we check how our instantiated model satisfies Metropolis-Hastings restrictions.

• Irreducibility: To check irreducibility we should prove that our graph is connected.
By adding different relations of β, γ and α, we have a connected graph. For this
purpose, starting from top ranked results for a sample query we traverse the graph.
In each step we visit new neighbours and continue until we see no more new nodes.
In addition, we add similarity links between the top results of a query topic. The
number of nodes seen in this traversal is the whole graph size. This construction
and observation, even for one query, demonstrates the connectivity of our graph.

• Aperiodicity: There is no rhythm in moving from one state to another. The
number of states in each move is not multiple of some integer. We satisfy this
constraint by construction.

• Stochastic property: According to the weight definition in Astera for β links,
the sum of weights on a row may be more than one. However, semantic (α) and/or
similarity (γ) links can be used in a normalized form, complying with stochastic
property. In addition, in experiments with Random Walks as traversal method,
we define the weight of 1/N for N neighbours of a node to satisfy the stochastic
property.

Transition Matrix

According to the Metropolis-Hastings algorithm defined in Section 2.1.4 and Equation
2.21, we sample from W (x, y) and accept the move with probability λ(x, y). This has
implications on how we define high-order transition probabilities after t steps:

Prt+1
q (x, y) =

k∑
i=1

Prtq(x, zi) · Prtq(zi, y) (5.2)

where q is the query, Prt is the transition probability of starting from x and moving t
steps further, zi can be any node in the matrix, and k is the number of the nodes. The
new matrix with updated weight is called the transition matrix. Leveraging Metropolis-
Hastings, the edge weights are affected by λ in each step (Eq. 2.21). We repeat the λ

82

formula here:

λ(x, y) = min

[
π̃(y).W (y, x)
π̃(x).W (x, y) , 1

]
(5.3)

Updating each edge in each iteration slows down the matrix multiplication. The reason
is that, in each iteration, the matrix W is affected by λ. It will be W · λ in the first
iteration and W · λ · λ in the second iteration.

However, Hlynka et al. [HC09] proved that the transition matrix Pr does not change
in further steps. Therefore, we need to compute only once the matrix of Pr(x, y) =
W (x, y) · λ(x, y) for all the nodes and their links. We can use this matrix in further
multiplications.

We compute the final score as a(t) = a(0) · Prt after t steps. This computation is needed
for intermediary steps, since in ideal case the multiplication is performed many times
until the matrix converges. In the stationary distribution, the nodes’ probabilities are
independent of starting scores in the graph.

Metropolis-Hastings Algorithm in Astera

To apply Metropolis-Hastings in Astera, first we need to define what we we are looking
for in the stationary distribution of π(x). As a stationary distribution over the set of
nodes, we would like to approach the true relevance probability distribution by the
indexing ranked results. It will be a query dependent stationary distribution such that
the probability in node x is proportional to the probability that this node is relevant to
the query, and at any other node (non-relevant) the probability is zero. This is the π(x)
distribution from which we cannot directly sample. Instead, we have the π̃(x) which can
be a relevance scoring function (e.g. a BM25 score between the information object xi
and the query). Metropolis-Hastings formally provides a method to sample from the
probability distribution, if the approximate probability π̃(x) is properly chosen. Further,
we need a probability which suggests the neighbour y, when we are in the node x. This
is in the form of the matrix W , which plays the role of jumping distribution. Mapped to
Astera, the proposed matrix W is our stochastic transition matrix. We use this transition
matrix as jumping distribution to find the next neighbour.

Now, we have the graph of different relations in the adjacency matrix W . To generate
π̃(x) values, we need the relevancy of each node to the query in each step. For this reason,
we provide the relevancy of each node based on their facets to the query. Assuming the
true relevancy of the nodes to the query as π(x), we define the π̃(x) as the relevance
score value function (RSV) in our model, as defined in Section 3.1.1. To perform any
jump in Metropolis-Hastings, we need to compute λ (Equation 5.3), so we need RSV
values of the source and destination node. Suppose that we start from similarity with
TF.IDFI results, we will have a set of images as starting points to do the traversal. Each
image is connected to at least one parent document (D) through a β link. To compute

83

the Pr(I,D) = W (I,D) · λ(I,D), we need the λ value, which is:

λ(I,D) =
[
RSV (Q,D)
RSV (Q, I) ·

W (D, I)
W (I,D) , 1

]
(5.4)

where

RSV (Q, I) = norm(sim(QTF.IDF , ITF.IDF)) · wTF.IDF+
norm(sim(QCEDD, ICEDD)) · wCEDD

(5.5)

where an image object (I) has two facets of {TF.IDF,CEDD}. The common set of
facets of l between the query and image is l = {TF.IDF,CEDD}. For RSV (Q,D) we
have

RSV (Q,D) = norm(sim(QTF.IDF , DTF.IDF)) · wTF.IDF (5.6)

The RSV value is computed based on the normalized Lucene and LIRE similarity score
for TF.IDF and CEDD facets respectively. The wCEDD and wTF.IDF are facet weights
for this query.

Uni-modal IR and Metropolis-Hastings

We can easily satisfy the stochastic property with one modality in our model. For
example, we can include only the relations between the documents and get their images
in the final list as they are ranked. This way, the relations in the graph consist of δ
relation between RD facet and the document, and γ relation between the same RD facets
of two documents. To compute the weights on γ edges, we find similar documents for
each top document result. It can be based on its TF.IDF facet, using standard search.
We normalize the similarity values for each document.We add these similarity links for
each document. This way, the stochastic property is met:

∑N
i=1W (x, yi) = 1, where N

is the number of the neighbours. Our graph is asymmetric, i.e., W (d1, d2) may have
different value than W (d2, d1). This means that two neighbour documents do not have
the same ranked similarity for each other. Mapped to the Equation 5.3 and our model, λ
is:

λ(d1, d2) =
[
RSV (Q,D2)
RSV (Q,D1) ·

W (D2, D1)
W (D1, D2) , 1

]
(5.7)

where RSV (Q,D1) = norm(sim(QTF.IDF , DTF.IDF).wTF.IDF). The RSV value is com-
puted based on normalized Lucene result value for this facet. The relevancy is computed
between document TF.IDF and the query TF.IDF facet. We take this value as relevancy
value of each document for this specific query, and the probability of going from d1 to d2
is Prq(d1, d2) = W (d1, d2) · λ(d1, d2).

84

Multimodal IR and Metropolis-Hastings

In multimodal IR, the nodes in the graph may be of any modality. This way, having a
node x, the next node may be based on any of its relations: α, β, γ or δ. One approach
to satisfy the stochastic property is to define the same weighting of 1/N for N neighbours
of a node. However, it remains as a challenge to define different weightings for various
link types with the constraint of stochastic property.

For example, assume that the query is a combination of text and image (a multimodal
query). As we reach a node with Text or Image modality, we compute the relevancy
of that node to the query. In each node, we consider facets of the same type with the
query. For instance, if the object is an image, we find the relevancy based on CEDD and
TF.IDFI facets, and only based on TF.IDFD facet if it is a document.

5.3.4 Experiments

To compare the query-dependent and query-independent routing in our model, we design
different experiments in this section. From here, we compare the two methods of Random
Walks and Metropolis-Hastings as query-independent and query-dependent Random
Walks in our experiments.

Precision Analysis

We compare the performance of Random Walks and Metropolis-Hastings in this experi-
ment. We calculate the precision and recall using both methods. We choose TF.IDFD
and TF.IDFI facets for computing relevancy in each step. As before, we start with
top 20 results based on these facets for each query. We traverse the graph from these
40 starting points. We consider all three languages (English, German and French) for
finding relevancy of an information object to the query. This is especially needed for
image metadata indexes, as many images do not contain metadata information in all
languages. We consider the relevancy of an image in the three languages. This way, the
relevance value is influenced by the relations of that node.

The result in Table 5.14 shows that by leveraging Random Walks, in the steps higher than
16, the precision value is zero. This indicates that the top ranked results in stationary
distribution are not relevant to the query. With these two algorithms, we are more
interested in graph behaviour in steps higher than 16. We observe from Table 5.15
that with Metropolis-Hastings we obtain positive values for precision and recall in all
iterations. Comparing the two tables, we observe lower values only in the first step for
Metropolis-Hastings. The reason is that our relevancy function considers only metadata
indexes and all images do not have enough text in this part. However, from the 2nd step,
Metropolis-Hastings shows higher values in precision and recall.

In the stationary distribution with Random Walks, the only influencing parameter in the
result vector is the graph structure. However, with Metropolis-Hastings, we include in

85

addition the relevancy to the query of each information object in each step. The precision
values could increase by using better relevancy functions for images and documents.

Correlation Analysis

In previous experiments on precision at cut-off, we found that in higher steps, the top
ranked results are rarely relevant to the query. Why have these images obtained high
scores?

We perform rank correlation analysis based on the top ranked results and the number of
their neighbours. We want to investigate the result bias to the number of neighbours of
a node. In each step, we get the top ranked images. For each image we find the number
of its neighbours and create another ranked list. We calculate the correlation between
these two lists. We use Spearman correlation, as it does not make any assumption about
the distribution of data. It is an appropriate choice when the variables are measured on
an ordinal scale. We compute the correlation values in each step for both algorithms.

We observe from Figure 5.6a that both methods show low correlation value between the
top ranked results and the number of incoming links. However, Metropolis-Hastings as a
query-dependent traversal method, shows lower correlation values than Random Walks
up to the step 29. We performed the same analysis with the number of outgoing links of
top ranked results (Figure 5.6b). We observe that the correlation between the rank and
the number of outgoing links in both methods is less than 0.5. However, both algorithms
show higher correlation value to the number of outgoing links. This shows that nodes
with high fan-outs in the graph influence both algorithms.

Further, we investigate the rank correlation of top ranked images to the sum of the
weights around a node. In Figure 5.6c and 5.6d, we show the correlation result between
the top ranked nodes and the sum of the weights on the incoming and outgoing edges
of each top result node. We observe that Metropolis-Hastings holds higher value for
correlation value in both cases. We find that this method is more influenced by the
weighting in the graph. According to Metropolis-Hastings algorithm, to find the next
jumping destination, besides the relevancy of the destination node to the query, the
incoming weight of potential destination node influences the choice of next neighbour
(Equation 2.21). Therefore, the weights on incoming links of a node influences the jump
decision to the next neighbour in Metropolis-Hastings algorithm. However, the number
of incoming links is not a factor.

Query influence versus graph structure

After correlation analysis, we want to investigate how fast the initial score influence is
overriden by the graph structure using these methods. We compare two result vectors
(a(t)

1 , a
(t)
2) in each iteration: one computed based on initial vector (a(0)

1) composed of
Lucene results; one computed based on equal score of 1/N for all nodes (a(0)

2). This
way, there is no preference between initiating points and we have only the effect of the

86

Table 5.14: Performance result with Random Walks

iter steps p@10 r@10 p@20 r@20

1 1 0.2267 0.0815 0.1767 0.1111
2 2 0.1571 0.0478 0.15 0.0866
3 4 0.1 0.0293 0.1067 0.0523
4 8 0.0857 0.0209 0.0643 0.0364
5 16 0.0133 0.0027 0.0333 0.0175
6 32 0.0 0.0 0.0 0.0
7 64 0.0 0.0 0.0 0.0
8 128 0.0 0.0 0.0 0.0
9 256 0.0 0.0 0.0 0.0
10 512 0.0 0.0 0.0 0.0
11 1024 0.0 0.0 0.0 0.0
12 2048 0.0 0.0 0.0 0.0
13 4096 0.0 0.0 0.0 0.0

Table 5.15: Performance Result with Metropolis-Hastings

iter steps p@10 r@10 p@20 r@20

1 1 0.1958 0.0501 0.1479 0.0711
2 2 0.216 0.065 0.16 0.0836
3 4 0.175 0.0432 0.1562 0.0787
4 8 0.1333 0.029 0.1292 0.0582
5 16 0.1125 0.0284 0.0833 0.0354
5 32 0.068 0.0145 0.056 0.0189
7 64 0.032 0.0079 0.018 0.0081
8 128 0.0042 0.0038 0.0021 0.0038
9 256 0.0042 0.0038 0.0021 0.0038
10 512 0.0042 0.0038 0.0021 0.0038
11 1024 0.0042 0.0038 0.0021 0.0038
12 2048 0.0042 0.0038 0.0021 0.0038
13 4096 0.0042 0.0038 0.0021 0.0038

87

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

S
pe

ar
m

an
 c

or
re

la
tio

n
fo

r
lin

ks

Random Walks
Metropolis Hastings

(a) Correlation between the top ranked results
and the number of incoming links

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

S
pe

ar
m

an
 c

or
re

la
tio

n
fo

r
lin

ks

Random Walks
Metropolis Hastings

(b) Correlation between the top ranked results
and the number of outgoing links

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

S
pe

ar
m

an
 c

or
re

la
tio

n
fo

r
w

ei
gh

ts

Random Walks
Metropolis Hastings

(c) Correlation between the top ranked results
and the incoming weights

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

S
pe

ar
m

an
 c

or
re

la
tio

n
fo

r
w

ei
gh

ts

Random Walks
Metropolis Hastings

(d) Correlation between the top ranked results
and the incoming weights

Figure 5.6: Correlation between top results and the links/weights of these nodes

graph structure. We compute the result vector in each step based on Equation 5.3. With
the second initial vector (a(0)

2), we remove the effect of scores of starting points in the
traversal.

For each topic, in steps of power 2 (1, 2, 4,..., 4096), we calculated the a(t)
1 = a

(0)
1 ·W t

and a(t)
2 = a

(0)
2 ·W t vectors. We perform this analysis for both methods. We calculate

the Cosine similarity between a(t)
1 and a(t)

2 (Figure 5.7). We observe that, in the first
and second iterations in both methods, the similarity is very low—the results are highly
dependent to the starting point scores. Surprisingly, after step 26, the result vectors
are converging. We observe that the result vectors of both methods approach to highly
similar values of a(t)

2 . This is exactly what the stationary distribution means that the

88

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

C
os

in
e

S
im

ila
rit

y

Random Walks
Metropolis Hastings

Figure 5.7: The rate that the initial score is overriden by the graph structure with
Random Walks and Metropolis-Hastings

stabilized values in each node is independent of initial values. However, we observe
that with Metropolis-Hastings, we have lower similarity values in the initial steps. This
observation is consistent with the results in Tables 5.14 and 5.15 that we obtain better
precision with Metropolis-Hastings algorithm as a query-dependent traversal method.

5.3.5 Discussion

We formulated a Random Walks problem on our proposed model for graph-based multi-
modal IR. We have the opportunity to examine query dependent traversal, as weights
in the graph are affected by relevancy of source and target nodes to the query. We
compared the performance of the model leveraging query-dependent and independent
Random Walks in our graph model. The results show that by considering query relevancy
in each step, we obtain higher precision results. This result can be improved by using
better relevance functions. Moreover, we showed that query-dependent results are more
influenced by the graph structure. Finally, we found that with Metropolis-Hastings as a
query-dependent method, we can expect more relevant results not only in the first 32
steps.

5.4 Summary

We investigated the role of different facet combination on precision in the first part
of this chapter. We showed that leveraging different facet types supports the poly-
representation idea in IR. We obtained higher precision value by using both textual and
visual facets. Further, we showed that by using semantic links, we can reach to a new set

89

of relevant information objects and increase precision as well. However, the increase in
precision values was mostly in the initial steps. This motivated us to investigate the score
distribution in very large steps. We designed query-dependent and query-independent
Random Walks in the graph. We showed that using query-dependent traversal leads
to more promising results. However, the value of precision is low in the stationary
distribution state.

We performed rank correlation analysis between the top ranked results and the number of
incoming/outgoing links of these nodes. The results showed that with Metropolis-Hastings
we observe less correlation to the number of incoming links. Further, the correlation
analysis results with the sum of the weights on incoming/outgoing links showed that
weighting in the graph influences the Metropolis-Hastings results.

90

CHAPTER 6
Conclusion

In this chapter, we present the conclusion of our research by highlighting the significance
of this thesis in terms of summarizing the contributions and their implications for the
performance analysis in graph modelled multimodal collections. After giving a summary,
we revisit the research questions in Section 6.2. Section 6.3 states the ongoing trends and
open topics in related research areas for future research to build upon the contributions
presented in this work.

6.1 Summary

The work within this thesis is to answer the question: How can we benefit from different
modalities to improve performance in the task of multimodal Information Retrieval?

To address this question we proposed a generic model for multimodal Information
Retrieval. It is a graph-based model, in which the nodes are the modalities and different
relations between information objects are the links. However, there are challenges in such
a model such as how to model this heterogeneous data, how to define different relations
between information objects, how to traverse the proposed graph, how much this graph
model helps with reaching relevant objects, and how to affect different modality features
in the final result.

We tackled these challenges in this thesis by describing the model in Chapter 3 and
investigating the reachability to relevant information objects in Chapter 4. Finally we
analysed the score distribution in the graph in Chapter 5. We evaluated this model with
ImageCLEF2011 Wikipedia 2011 test collection as a multimodal collection.

91

6.2 Research Questions Revisited

The research questions introduced in Section 1.3 are revisited here. In the following,
we summarize how the research questions were addressed within this work and what
limitations still remains.

6.2.1 RQ1:Can we define a graph-based model for multimodal
multi-faceted information retrieval?

We defined a generic model, named Astera, for multimodal Information Retrieval based
on a graph of information objects. It is a generic model as the nodes can be from any
modality (Text, Audio, Video, Image, etc), and the links include both similarity and
semantic. One characteristic of this model is a multi-faceted view to an information object.
From facet we mean an inherent feature, a property or metadata of an information object.
It is based on the poly-representation principle in IR [Ing96, IJ06] to leverage different
representations of a modality to perform a better search. We see an information object
as a set of facets, so there in no difference of how to deal with an image, a document or
a video clip file. By adding a separate node for each facet of an information object, we
provide the possibility of utilizing each of them in the retrieval process. We used our
defined faceted-search in this graph. The standard indexed results of facets are used to
find the starting points in the graph, from which the traversal begins.

In Astera we can model different types of data collections with various modalities and
different link types. We can enrich the modelled collection by extracting features of
information objects as facets. Further, we can add semantic/similarity links between
information objects. The relevancy of an information object to a query is calculated based
on the similarity between their common facets. The search in the graph is performed in
two phases. We start from the result of an indexed search to find good starting points in
the graph, then continue with a graph traversal method. Two well-known graph traversal
methods, Spreading Activation and Random Walks, are utilized in this thesis.

6.2.2 RQ2: In such a graph model, can the relevant nodes be
reached?

To tackle this question we designed a series of experiments to test the reachability of
relevant information objects. The experiments are based on different facets and links to
explore the effect of each separately on reachability to relevant information objects.

First, we examined the effect of leveraging multiple facets. We designed experiments to
start from the top results based on textual facets of the documents and textual and visual
facets of images. The results show that the combination of document and image textual
facets shows better results than only document textual facet. Another observation was
that easy and medium topics are mainly reachable in initial steps. However, we observed
an increase in recall of 266% and 373% for hard and very hard topics, respectively by
traversing the graph. Furthermore, combining textual facet from documents and images

92

led to higher recall than using different textual facets of only one modality as document
or image. These observations confirm the effect of poly-representation to reach a higher
number of relevant information objects.

In addition, enriching the collection with semantic links from corresponding DBpedia
dump helped with 13% and 8% in reachability of relevant information objects for hard
and very hard query topics. We compared the result of graph enriched with real semantic
links to the one with random semantic links. We learned that in the process of enriching
the graph with more links, these links should be chosen meaningfully. We lost 88%
precision by adding random semantic links compared to adding real semantic links.

In these experiments, we observed similar recall behaviour in each category of document
textual, image textual and image visual facets. We designed experiments to investigate
whether we visit the same relevant nodes starting from different facet results. We found
that facets with the same recall behaviour do not visit necessarily the same relevant
nodes. This motivates to use diverse facets as starting points to traverse the graph.
The comparison results about three textual facets (TF.IDF, BM25 and LM), both for
documents and images, showed that the Language Model (LM) facet has more divergent
view than the other two textual facets. In addition, in image visual facets, CEDD passed
through parts of the graph that the other three visual facets did not. These findings
encourage to utilize different facets. Mapped to poly-representation principle, cognitively
different facets (e.g. LM and CEDD) lead to visit more parts of the graph than only
functionally different ones (e.g. TF.IDF and BM25).

We conclude that although starting from different facet results helps reaching more parts
of the graph, which is a potential to obtain a higher recall, we should consider the much
higher computational complexity that is required for reaching more nodes. As we saw
in the experiments, although some facets show low overlap in the visited nodes in the
graph, the recall difference is low. Therefore, finding optimal set of facets to traverse
the graph with minimum overlap is a challenge ahead to be tackled in our future work.
Further, we observed how connected the collection is. We found the minimum number of
steps of 30 that still there is a chance to see relevant information objects.

6.2.3 RQ3: In such a model can scores identify the relevant nodes?

Besides finding relevant nodes, we were curious about the score distribution in the graph.
First, we started with the role of different facets in precision. The results demonstrate
the positive effect of the multi-faceted view (poly-representation) on precision. The best
result was obtained by combination of document textual, image textual, and image visual
facets. We obtained 9% increase in precision compared to using only document textual
facets. In addition, we showed that using semantic links helps reaching relevant images
which have only German or French metadata.

However, the precision increase was only at the starting steps. We designed experiments
to traverse the graph in very large steps to reach the stationary distribution state. We
formulated query-dependent and query-independent Random Walks. We used Metropolis-

93

Hastings as query-dependent Random Walks. In this method, weights in the graph are
affected by relevancy of the source and target nodes to the query. We found that with
Metropolis-Hastings as a query-dependent method, we can expect more relevant results
and a higher precision not only in the first 32 steps. We were curious how much the final
ranking is affected by the graph structure. Hence, we investigated the contribution of the
graph structure (quantified by the number and weights of incoming and outgoing links)
to the final ranking in both types of Random Walks. As correlation of both Random
Walks and Metropolis-Hastings to the number of incoming links was lower than 0.2, we
conclude that the result of none of these methods is dependent to the number of incoming
links. Based on the weight correlation analysis, we found that Metropolis-Hastings, as
query-dependent Random Walks, is more influenced by the weighting in the graph. The
reason stems in the definition of this method which may change the weighting of the
graph in each step of traversal.

6.3 Future Work

While this thesis presented solutions to a number of important issues, there are still some
questions that could not be fully addressed. These questions define the starting point for
the future research and the further improvement of Astera as a model for multimodal IR.

Performance and Scalability We had to limit the graph size to traverse large
number of steps in the graph. We map the graph to a matrix in Matlab to perform matrix
multiplications. Although we use sparse matrices, in higher number of multiplications,
the matrix is not sparse any more. One approach to keep the matrix sparse is to define
a threshold to keep values higher than this threshold in the matrix and to assign zero
value to cells with values less than it. This way, we can manage larger size of the graph
in its sparse matrix format. As a solution we used Vienna Scientific Cluster1 (VSC) to
target parallel running of the program with high hardware configuration. However, our
bottleneck is RAM of the system. The ImageCLEF 2011 Wikipedia collection requires
high RAM configuration in the scale of 300GB. The VSC nodes have at most 128GB of
RAM.

Probability In order to satisfy the stochastic property in Random Walks, we
defined simple normalized weighting on edges of a node based on the number of its
neighbours. This affects the meaning of the weights in our model. For example, if a
document has 10 images as neighbours, each of them receives 0.1 weight, and if 2, they
receive 0.5. We see that in this case we are biased to the number of images in a document.
In this example, the equal values on probabilities give the same chance to any image
in the document as the next step in traversal. However, as the scores propagate in the
graph, the value of the weights on edges play role as well. This is the challenge ahead that
should be addressed when Random Walks method is applied in the graph. As another

1http://vsc.ac.at/

94

example, if a document has 5 images and is semantically related to 2 other documents
and has 10 similar neighbours, the questions is how do we properly define the probability
of moving from this document to each of its neighbours with different relation types.
This is in our future work to define the probability in a multimodal graph with different
link types to satisfy stochastic property.

Stationary Distribution Cost We used two approaches in considering the score
distribution in the graph. First, we considered the scores in the initial steps; second, in
the stationary distribution state. However, it takes more than 1000 steps normally to
reach to the stationary distribution state [Wal04]. We used matrix multiplications in
the power of two to reduce the computational time in reaching high number of steps.
However, we miss the results of the steps in between. How expensive is our approach
regarding the need of high number of transitions until the matrix converges? One future
work is to find a compromise between computational time requirement and snapshot
results that we require.

Further Semantic Analysis We leveraged DBpedia semantic links only inside
the collection. Another approach to explore is to further explore the semantic relations
between the ImageCLEF 2011 Wikipedia collection and DBpedia. For example, we can
traverse the graph starting from the collection, go through DBpedia links until we return
to the collection again. The semantic length between the source and destination nodes
can be used as semantic distance of these two objects.

Further, we can create semantic facets for the images in the collection. We can use
concept detection methods [BBB+14] to extract image concepts. The concepts can be
seen as a document and be added to the images as textual semantic facet. In this case, we
extract the semantic facet of the query image example, and the search can be performed
based on this facet as well.

Learning the Weights In the current version of Astera, we set the weights of
different facets based on our analysis of their best combination. Further, we define
weighting strategies for different relation types in our model. One future direction is to
apply machine learning algorithms in both cases. For example, we can use Relevance-
Feedback methods to leverage user clicks in learning the weights on the edges of a clicked
result, or use SVM method to learn the optimal weight of each facet for different queries.

95

APPENDIX A
Computational Complexity

Analysis

The ImageCLEF 2011 Wikipedia collection contains a total of 363,262 information objects
(images and documents). We show the number of nodes needed in the graph for adding
different parts in Table A.1. In the basic model of the collection (without adding facet,
similarity, and semantic links), we have images and documents. To simulate the graph
traversal, we make an adjacency matrix out of this graph (2.11). The full matrix is of
size 363, 262× 363, 262× 8B (matrix elements are saved in double with 8 bytes memory).
With matrix in this size, we need about 1TB RAM to perform matrix multiplication,
which is not practical.

As mentioned in Section 3.2.4, we leverage a subgraph strategy to minimize the RAM
requirement. Our strategy is to only consider the set of nodes that will be potentially
reachable after N steps, and generate a smaller adjacency matrix only for them. With
this subgraph approach, the average number of seen nodes after 21 steps is 178,620,
requiring 121.7GB RAM with Matlab single precision. This is still a large amount of
memory. However, the matrices we make are highly sparse and we take advantage of
Matlab sparse matrices. It reduces the required memory down to 47GB.

Parallel Threads Configuration Our system is easily parallelizable. To run the
experiments efficiently in time, we run a thread for each topic separately. In each run,
we visit a different subgraph, needing a large amount of RAM. For this reason, we used
the Vienna Scientific Cluster configuration. The VSC clusters contain nodes with 32GB
to 128GB RAM. Based on memory requirement, we configure different threads to run on
nodes of the cluster.

97

Table A.1: Different categories of nodes in the graph

node type number

doc 125,828
img 237,434
total 363,262

A.1 Matlab Matrix Sizes and Memory Requirement

In this section, we analyse different sub-graph sizes mapped to matrices in Matlab based
on both single and double precision. The purpose is to find the limit on size of the
sub-graph which can fit into memory to perform the matrix multiplications.

For any matrix size we need double of its size to fit into memory. The reason is that we
have the matrix itself and also b = b ∗ a or b = a2 where a is the matrix and b is the
result of multiplications. In Table A.2, we show the memory needed in each case. In any
case the memory should not be used up and we need about 10GB for the Java program
itself to run.

For single matrices we need the memory of size of a double size matrix in addition to a
single size matrix. The reason is that we cannot directly create a single matrix in Matlab.
We should first create a double matrix and then apply single function on that matrix.
Of course we can delete the double matrix after creating the single matrix, but this does
not change the memory requirement.

Table A.2: Memory needed to create a matrix in Matlab. The available memory of
our machine is 100GB. The real free memory is about 90GB. If we touch the border of
available memory it needs to swap and performance will degrade substantially. We work
with matrix sizes that need less than 90GB.

matrix size precision memory real need
(program requirement) total practical

50000 double 19GB 38GB + 10GB 48GB yes
60000 double 27.5GB 55GB+ 10GB 65GB yes
70000 double 38GB 75GB + 10GB 85GB no
50000 single 9.5GB 19GB+19GB+ 10GB 48GB yes
60000 single 14GB 27.5GB + 28GB+ 10GB 66GB yes
70000 single 19GB 38GB+ 38GB+ 10GB 90GB no

A.1.1 Matrix Multiplication

In this section we compare the time taken for double and single precision matrix mul-
tiplication for different matrix sizes. With double precision, the matrix of size 50,000

98

Table A.3: The time needed for one iteration (one matrix multiplication) in Matlab

matrix size precision one iteration
50,000 single 18 m
60,000 single 32 m
70,000 single 59 m
50,000 double 47.5 m
60,000 double 4h 37m

takes 47.5min for each multiplication (Table A.3)). This takes 3.125 days for 100 steps
for just one topic, more than 5 months for all topics. Then we calculated the matrix
multiplication with power operator. We compared the time needed to multiply iteratively
with using mpower operator of Matlab (e.g. for m4 we have m ·m ·m ·m as iterative
multiplication, and mq = m · m,mqq = mq · mq using power operator). We use the
mpower function of Matlab, which is an efficient way to multiply a matrix to itself.

Table A.4: Matlab matrix multiplications with different matrix sizes and operators

matrix size steps precision multiply
for one topic

power
for one topic

50 topics
(iteratively)

50 topics
(with mpower)

50,000 50 single 15h 2h 24m 31d 5h 5d
60,000 50 single 1d 1h 4h 16m 52d 2h 9d
70,000 50 single 2d 2h 6h 37m 104d 4h 14d
50,000 50 double 1d 153h 5h 48m 83d 7h 12d 2h
60,000 50 double 9d 5m 20h 30m 450d 4h 42d 17h
50,000 100 single 1d 6h 2h 55m 62d 10h 6d
60,000 100 single 2d 2h 4h 31m 104d 4h 9d 11h
70,000 100 single 4d 4h 7h 23m 208d 8h 15d 7h
50,000 100 double 3d 3h 6h 40m 166d 14h 13d 18h
60,000 100 double 18d 10m 22h 18m 900d 8h 50d

The results for a sample topic and 50/100 steps are shown in Table A.4. As shown in
the table, multiplications with single precision using mpower function is much faster
than what we have for double precision, or in cases that we perform the multiplications
iteratively. Therefore, we use the mpower to perform the multiplications. This way, we
have the results in binary steps (2,4,8,16,...). In addition, we can reach high number of
steps like 128 or 512 with only 6 or 7 times of multiplications. The pseudo code is shown
as below:

n = number o f i t e r a t i o n s ;
m = matrix ;
a = act ivat ion_vec
f o r i = 1 to log (n) do

z = mpower(m)

99

r e s = a . z
m = z

end

The question arises whether we lose precision in case of using matrices with single
precision. Therefore, we verify the result of matrix multiplication of single and double
precision values in the next section.

A.1.2 Results of Single and Double Multiplication

First, let us have a look at max/min values in Matlab for single and double precision.
The MATLAB functions realmax and realmin return the maximum and minimum values
that can be represented with the double data type: The range for double is:

−1.79769 e+308 to −2.22507e−308 and
2.22507 e−308 to 1 .79769 e+308

Numbers larger than realmax or smaller than -realmax are assigned the values of positive
and negative infinity, respectively:

realmax + .0001 e−308 = In f

−realmax − . 0001 e−308 = −I n f

The MATLAB functions realmax and realmin, when called with the argument ’single’,
return the maximum and minimum values that you can represent with the single data
type:

ans = The range for single is:
-3.40282e+38 to -1.17549e-38 and
1.17549e-38 to 3.40282e+38

In the single precision interval (1.17549e-38 to 3.40282e+38), the results of multiplication
with single or double precision are completely the same. We tested with Matlab rand
function. For the numbers bigger than this interval it goes to Infinity value and create
Inf values in the matrix. For numbers less than the min value, it rounds to 0.

A.1.3 Test in Astera

To analyse what happens in practice, we performed the real matrix multiplications
in Astera. These matrices are not normalized and they are generated as before. We
compare the result of using Matlab file with double precision matrices with the result of
single precision matrices. In small number of iterations, the results (the final calculated
precision) are the same. When it reaches higher multiplications, it may cross the margins.
Once it happened in the 88th step; as in step 87 all numbers were greater than 1.0e+ 38.

100

In the next iteration, some cells had Inf value, since it goes beyond the single max value.
Another time it happened in the 110th step - depending on the topicID that we start
from, we have different sub-graphs and matrices. We cannot identify a step number that
all matrices from different topics will cross the upper margin. This happens since we
generate energy, and this value explodes in larger steps. We did not cross the lowest
margin, as in the case of Spreading Activation, the generated value is always getting
larger and larger.

A.2 Conclusion
The goal of this appendix is to find the maximum size of the matrix that can fit into
memory, meanwhile to find a method to perform the matrix multiplications faster. We
considered different matrix sizes, two multiplication methods (iteratively and using
Matlab power function), with single and double precisions in Matlab. The findings are
listed as follows:

• Matrix size: for 60,000 and 70,000 graph size, both single and double matrices fit
into our memory.

• Matrix precision/Time needed: with single precision the time needed for
power multiplications are acceptable. For double precision and also iterative
multiplications the time is too long. Therefore, we create matrices with single
precision.

• Snapshots to the iterations: we will have the results only in 2nd, 4th, 8th, 2nth
steps.

101

APPENDIX B
Astera Software Architecture

Document (SAD)

B.1 Introduction

Astera is a generic model for multimodal information retrieval1. Finding useful infor-
mation from large multimodal document collections such as the WWW is one of the
major challenges of Information Retrieval (IR). The many sources of information now
available - text, images, audio, video and more - increases the need for multimodal search.
Particularly important is also the recognition, that each information item is inherently
multimodal (i.e. has aspects in its information character that stem from different modal-
ities) and forms part of a networked set of related information items. We proposed a
model for multimodal IR named Astera. This model works on multimodal collections
(like image, patent or medical collection). This model is under test with ImageCLEF
2011 multimodal collection. The system design is combined of a core which performs
the main functionality and plug-ins. These plug-ins can be in different categories like
different indexers, parsers, for new features.

This appendix provides a comprehensive architectural view of the system. It contains
different architectural views to picture different aspects of the Astera system. It is
envisioned to convey the important architectural decisions, which are made on the system.
These are views on an underlying Unified Modeling Language (UML) model developed
using Rational Rose.

1Astera is open-source and available at http://www.ifs.tuwien.ac.at/∼sabetghadam/Astera.html

103

B.2 Architectural Representation
This document presents the Astera architecture as a series of views: logical, process,
deployment, data, and implementation.

B.3 Logical View
The Astera architecture follows the principle of three layer architecture design. It consists
of presentation, business and data layer (Figure B.1).

Figure B.1: Astera three layer architecture

B.3.1 Presentation layer

This layer is the interface with the user. It receives the query from the user and passes it
to the business layer. After the query is processed and results are ready, it shows the
results back to the user. The only package in this layer is querymanager.

B.3.2 Business layer

As in the three layer model of architecture, this layer interacts with the presentation and
the data layer. It contains packages for managing the logic of the system, as follows:

• textmanager.index: Indexing of all the data is performed in this package. We can
index multiple collections through classes of this package, e.g., a text collection or
a metadata collection.

• textmanager.Search: This package receives the query and performs the standard
search task. We have separate classes for each indexed collection.

104

• image: We perform image similarity computations in this package. Similarity
computation can be based on the facets provided by the collection for both query
and information objects. We create a query based on available facets from the
collection, and compute similarity with the same facet of all information objects in
the collection (managed through image/ImageSimilarityManager.java class). In
addition, it can be performed by standard search engines such as LIRE for image
similarity (managed through image/lire/Searcher.java class).

• image.lire: We handle the image search task by LIRE in this package.

• eval: This package conveys the logic of different graph traversal methods and
calculation of the final result.

• semantic: This package manages the data retrieved from DBpedia.

• analysis: This package holds all the logic needed for preparing the output files of
recall analysis.

B.3.3 Data Layer

We read the information about different types of information objects and their relation-
ships in this layer. This procedure may differ for each new collection. After the metadata
is parsed, we save the information objects in the database. The design is independent of
underlying database type, which could be a graph DB like Neo4j or Jena, or other types
of databases like MySQL. Packages in this layer are:

• crawler: This package contains the main class of Crawler.java. This class runs a
thread which is responsible for reading data from different resources such as file
or database. Crawler is responsible to work with different types of data and parse
them to add to the Astera database. It gets help from Parser package to parse
different file types, and then adds them to a queue.

• parser: This package is responsible for parsing different types of input files. For
example, the information object can be in csv format file, or list of feature values
in the format of arff. In addition, a new file format with its defined parser can be
added to the system.

• worker: This package is responsible for getting the parsed ready data from queued
data and add them to the graph database.

• dbmanager: This package is responsible for interaction with the database. It
provides generic interface for business layer classes. For any new database, we
should implement this generic interface to be able to interact with business layer.
In the current version, we have implemented the interface to work with the Neo4j
graph database.

105

Figure B.2: Crawling data, parsing and saving in the Graph DB. These stages are
managed through packages of crawler, worker, parser and data.

• data.dbpedia: This package is responsible for interaction with DBpedia for fetching
related information and adding semantic links.

B.4 Process View

The process view describes the processes and threads involved in the execution of the
system, their interaction and configuration (Figure B.3).

B.4.1 Data Crawling Process

The tasks of crawling and handing data to be saved in the database are handled in
crawler, worker, and parser packages. Raw data for Astera can be in any format, as
long as the appropriate parser is defined. As is shown in Figure B.2, the data is fetched
(crawled) from a pre-specified folder address. Data can be in different files or be read from
database. The files are read and put in a queue for the data/Worker.java class to fetch
and process. Whenever a file is dequeued, it is given to data/parser/ParserProvider.java
class to find the appropriate parser for this file according to its extension. As is shown in
the configuration part (Table B.2), there is a configuration variable for defining parsers.
All parsers should be defined in this field. If we receive a file with a new extension,
the new file type should be added to the ext parameter (Table B.2). After a data file
is parsed, it is given to an instantiation of IDBManager.java interface to store in the
database.

B.4.2 Query Process

In order to test the system, query information is read from the test collection. This is
managed in the Query package by QueryManager.java class. We create queries from
the test collection through QueryFactory.java. This class reads the query facet files and
creates a query object out of them..

106

Figure B.3: Different processes in Astera

B.4.3 Indexing Process

We create two types of indexes in Astera: Standard indexing and Graph indexing. Any
collection that is given to the system as input is indexed by standard search engines
like Lucene. Afterwards when the query is given or parsed from the given query files,
QueryManager.java gives the query objects to the TextSearchManager.java, and provides
the first level results of information objects.

We use different facets of the query modalities to perform standard indexing. For example,
if the query is a combination of text and image, we can use textual facets of the keywords
and query image example tags, and visual facets of the image example. The result is
a ranked list of information objects. We use Lucene for textual facets (TF.IDF, BM25,
LM), and LIRE for visual facets.

To provide the graph indexing of the data, the data collection is crawled. The relation
between information objects is created based on the given metadata. As a result, we
obtain a relational indexing of the given data.

B.4.4 Search Process

The search procedure in Astera is composed of two steps of standard search and graph
search. First, the top results of the standard search (from any defined facet) form the
starting points in the graph. Second, based on the result list, the starting points in the

107

graph is determined and the graph traversal begins. In each traversal step, we fetch the
neighbours of current nodes with the weights on edges. We create a matrix out of visited
nodes and edges. Each step in the graph is simulated as a matrix multiplication. The
result vector in each step is calculated based on Equation 2.17, which we repeat here:

a(t) = a(0) ·W t (B.1)

where a(0) is the initial score vector, W (t) is the matrix in step t, and a(t) is the result
vector. We receive a ranked list in each step based on the node scores in this step (a(t)).

For the specific collection of ImageCLEF2011 Wikipedia, we have the task of image
retrieval. We filter the images in each step and calculate the precision. The final ranked
list is checked with the ground truth data and precision and recall is calculated. This
filtering may differ for other collections based on the retrieval task.

B.4.5 Evaluation Process

The evaluation task in Astera, starts with receiving the top ranked nodes from the search
result. The Evaluator.evaluate() method calls Neo4jDBManager.makeMatrix() to create
the output files needed for matrix multiplication (Figure B.3). Then, it calls Matlab-
Manger.run() to calculate the result of each step. Finally, it calls Evaluator.calcPrec() to
calculate the performance of this run in different steps.

B.5 Implementation View

The design of Astera to support different collections and combinations of search procedures
is shown in Figure B.4. As shown, a query is received from the user, or from some input
files in the case of a test collection data. The QueryManager module provides the query
objects, and delegates to the Indexed Search Manager module, which provides the first
level results. The result is given to the Evaluator module to perform the search through
Graph Search Manager module. This module provides the result for Ranking step which
provides the final output result.

B.5.1 Important Classes

Here, we list some important classes in Astera.

AsteraManager.java This is the starting class which calls different configurations
to run. The primary.properties is called through this class, from which we read the
configuration of different runs. Different configurations are loaded from this class to run
in each iteration. We check first if it is an index, search, or evaluate run and call the
correspondent methods from business/Evaluator.java.

108

Figure B.4: Design of Astera architecture

Table B.1: Some methods of Neo4jDBmanager.java

Method Description
saveInfObj() This method saves an information object with

its properties in the graph DB. This information
object can be a document, an image or any other
type of information object.

addRelationship(infObj,
infObj)

This method adds relationship with specific type
(α, β, γ, δ) between two information objects.

business/Evaluator.java This class is responsible for performing the evaluation.
It starts from the top results of the standard search to traverse the graph. It calls
Neo4jDBManager.makeMatrix() method to perform the traversal to the number of
defined steps in the configuration of this run. Then, it calls Matlab function via Matlab-
Manager.run() to perform the matrix multiplications. It reads the result vector files (row
7 of Table B.12), calculates the precision, and saves in the database.

data/Neo4jDBManager This class acts as an interface to the Neo4j graph database.
It traverses the graph and generates the output files needed in Matlab (rows 1 to 6 in
Table B.12). All methods needed to save node information and relationships to the
neighbours are included in this class. Some of the methods are listed in Table B.1

data/Neoj4QueryManager This class contains libraries and methods to query di-
rectly the Neo4j graph database. For example, if we want to check the number of semantic

109

Figure B.5: Deployment diagram of Astera

or similarity links in the graph database, we can simply write a query and call it via
execQueryManyCol() method of this class.

B.6 Deployment View

Here, we show how to run Astera as a standalone application. The design of Astera
allows to run it on multiple servers as well. As shown in Figure B.5, the Astera program
is deployed on an Astera server. Different data collections are read and processed through
this system. External (semantic) sources such as Linked Open Data can be used to enrich
the collection. Evaluation results are saved into a MySQL database.

B.7 Data View

We design database tables to store the required information (Table B.3). To speed up
the evaluation process for different runs, we store the search results in the Evaluation
table. We keep the similarity information of different information objects in different
tables (e.g. we keep the similarity between documents in Doc2doc table). In the current
version, we have documents and images, and keep their similar results in different tables.
The final evaluation result (performance of the system) is saved in the result table.

B.8 Configuration

Astera is generic in its basic architecture, however equipped with a flexible configuration
mechanism to support collection-specific evaluation tasks. Astera’s configuration is
divided into two levels of configuration:

110

Table B.2: Configuration variables in secondary.properties file

Variable Description
do.index true to build the indexes, false otherwise
do.search true to perform the search, false otherwise
do.evaluate true to evaluate the results, false otherwise
add.semantic.relation true, if linking to DBPedia is included.
facets Astera can work with any number of facets. When a new facet is

added to the system, its name should be added here. In this case
when system starts up, reads the allowed facets like CEDD and
TF.IDF.

parser.arff New features/facets may be encoded in different way. Either the
encoded format of this feature is parsable by existing parsers,
or a new parser should be added to the system. When Astera
reads a facet file, it asks for appropriate parser from the Parser-
Provider.java class. When a new parser e.g for arff file is added,
the line in the configuration file should be like this: Parser.arff =
data.parser.Arffparser which adds an arff parser to the system. The
same scenario holds for , or Parser.csv = data.parser.CSVParser.

exts Accepted extensions of different files like txt, arff, csv.
text.weight
img.weight
meta.data.weight

In order to give different weights to different types of nodes, related
parameters are defined. The value given is between 0 and 1 and
also the sum of them should not be more than 1.

prec.at To determine the precision@ value, e.g. 10, 20.
img.on True if image similarity is included in the ranking procedure, false

otherwise
clean.eval.db True if the evaluation DB should be cleaned, false otherwise
db.type Database could be of any type, graph, file or sql. In this parameter

the exact type of the DB is determined, which for example Neo4j
is used in the current version.

similarity.function The method to compute the similarity between vectors
normalize.start.range
normalize.end.range

Normalization start and end range values

doc.dir
meta.dir
doc.index.dir
meta.index.dir

Addresses of the directory paths

topics.file The collection topics file path, which includes queries
ground.truth.file The collection ground truth file

111

Table B.3: Database tables

Table Description
Evaluation Top similar document results of the standard search engine, Lucene
Doc2doc Similarity information between documents
Img2img Similarity information between images
LIREimgsimiinfo Top similar image results from LIRE
Result The evaluation result and graph performance in different steps

1. Primary Configuration: Astera requires basic settings that are needed to generally
operate the system independent from what is done specifically with respect to
collection(s). Such basic settings are kept in the primary configuration file called
“primary.properties”. An example for such primary properties are the database
settings to store Astera-wide evaluation results.

2. Secondary Configuration: Astera also manages additional configurations that
is optional and specific to particular collections and particular evaluations on
these collections. These secondary configurations are linked with the primary
configuration file. Multiple secondary configurations can be listed and thus chained
into sequences. This introduces a range of flexibilities to the system:

• Specificity: Configurations can be made specific to collections, evaluations,
researchers and tasks and can define different qualities (e.g. testing versus
production-level).

• Partitioning: Configuration settings can be clearly separated from each other
and exchanged easily without touching the logic of the source code.

• Batch Mode and Workflows: Astera performs in batch mode on its configura-
tions and executes a configuration as a so-called “Run”. Multiple secondary
configurations can be listed which means that Astera chains them into work-
flows and executes them one after another.

B.8.1 Design of configuration files

Figure B.6 shows an example configuration infrastructure within Astera that consists
of five configuration files. The primary configuration provides the basic settings (e.g.
information of how to connect to the Astera evaluation database). It either triggers two
test runs (e.g. trying out a experimental weighting scheme on two local collections) or
two production runs (e.g. two search evaluations on a collection that are compared for a
publication).

These features enable that every collection can be configured with Astera and that
available tools can be adapted to process these collections. Furthermore, it allows
creating sequences of runs each operating with multiple collections and alternative
settings to test different variables in the hypotheses space. The list of runs can be

112

Figure B.6: The configuration of primary and secondary runs in Astera

arbitrarily long thus enabling to design and run complex research agendas in batch mode.
Each configuration contains all decisions that have been made in addition to the Astera
code. This means, each configuration file is a descriptive research document that can
be useful for later and it worth keeping. In the following two sections, we highlight the
internal structure of the two levels of configuration — the primary and the secondary
configuration file.

B.8.2 Structure of the Primary

In the configuration design of Astera, the primary and secondary configurations are
separate now and we can specify different second configuration for different collections.
These configurations can be run separately. The step to run them in parallel is in the next
design steps of the system. The primary configuration (filename: “primary.properties”)
contains two types of information:

• A set of variables that define the absolute core of the Astera system configuration
the is required to run its basic functionality.

• A list of secondary configurations as an IR Evaluation Process for a unit of research
(e.g. a paper, deliverable or even a test procedure). Each secondary configuration
file is also called a “Run”.

The following list (Table B.4) shows variables that are part of the primary with a
description and its default: The variable “runs.properties” can list a number of additional
secondary configuration files. This list represents the IR Evaluation batch process. Each
configuration file from this list is loaded in isolation from each other, in that sequence,
and executed as a run. Each run loads its variables on top of the variables defined in
the primary. When switching to the next run, the variables from the previous run are
removed which means that each run is executed in its own environment.

113

Table B.4: Configuration variables in primary.properties file

Variable Description Default
run.properties Ordered list of file names with

run configurations
secondary.properties e.g.
run1.properties, run2.properties

driver JDBC Database driver for
MySQL with reference to
Astera database name

jdbc:mysql://localhost:3306/astera

user Astera database user root
pass Astera database password.

Must be set.
N/A

clean.eval.db When set true, removes every-
thing for evaluation DB

true

Figure B.7: Run cycle in Astera: Each collection is indexed, searched, and then evaluated

B.8.3 Structure of a Secondary (Run)

Each secondary configuration is a potential run. It is potential in the sense that it only
becomes a run when listed in the primary configuration. A run is a single iteration
through the three stages of indexing, searching and evaluating (Figure B.7):

• Indexing: This configures the indexing fields and where the content for this fields
resides (e.g. extracting the authors of documents with a XPath statement and
putting it in a field called “author”). This configuration in this section highly
depends on the collection.

• Searching: This part determines which queries are used for the search and how
they are generated, how they are processed, how many results are extracted per
query, and the scoring algorithms used.

114

Table B.5: Different configurations in Astera to index a collection or run the search and
evaluate the indexed collection

id Description Indexing Searching Evaluating
1 Pure indexing: For testing or preparing an index X
2 Pure searching: For testing a search algorithm

on an existing index
X

3 Pure evaluating: For testing an evaluation al-
gorithm on an existing index, and use searched
result

X

4 Evaluated Search: Allows evaluating a search
algorithm on an existing index

X X

5 Index and search: For testing a search on a newly
created index

X X

6 Full Run: A full IR evaluation from scratch X X X

• Evaluating: This section defines a set of measures and their parametrization. These
depend highly on the kind of research that is created.

The cycle of all three stages represents a complete IR evaluation. However, it is also
possible to disable some of its parts. Table B.5 shows all sensible combinations that are
supported within Astera:

Most arrangements are used when developing or testing a search strategy with a new
collection. However, the arrangements without indexing (2 and 4) are generally useful
when a complex index is previously built, to save system resources. The following table
shows the variables that are required for a secondary configuration. Some parameters are
specific for CLEF2011 collection as a sample collection like the address of the directories.

The class property points to the full path of a Java class that is used for this run. It
allows connecting the execution with Java code that understands additional properties
on top of the basic ones listed above. The three properties do.index, do.search and
do.evaluate can be used to control the evaluation cycle.

B.9 Similarity Links

We define the classes and configuration variables involved in adding similarity links
between information objects. To add similarity links, first we find similar information
objects based on the defined facets. For instance if we define the text.facet = LM, we find
similar information objects for each document in the collection. Then we add similarity
links between these similar objects. Related configuration variables are listed in Table
B.6.

115

Table B.6: Configuration variables related to similarity links in the graph DB

Field Description
Similiarity_on True, if we include similarity links in the traver-

sal, false otherwise
SimilarityNo The maximum number of similar neighbours to

be added for an information object
Weight_threshold If the weight on a link (the similarity value of

two nodes) is higher than this value we create
the similarity link

similarity.function The type of the similarity function like Cosine.

Table B.7: Configuration variables related to semantic links in the graph DB

Field Description
Semantic_on If we include semantic links in the traversal
Semantic_weight If we set a default weight for semantic links, this

field can have a value between (0,1)
Allowed_semantic_links To put constraints in the traversal and limit the

semantic links which are allowed to pass through
Not_allowed_semantic_links To put constraints in the traversal and limit the

semantic links which are not allowed to pass
through

We can use different functions such as Cosine or Euclidean distance for similarity
computation. Both of these methods are implemented in the current version of Astera.
The configuration variable similarity.function determines which method to be used. The
result of similarity computations are normalized to combine different facets as one single
score of a node.

We can weigh the effect of each facet in the final score of a node. This weighing can be
used or defined via configuration variables. We have defined text.weight, img.weight and
meta.data.weight parameters for weights.

B.10 Semantic Links

Astera has the possibility to enrich the collection by adding semantic links. We can add
semantic links with the help of external sources such as Linked Open Data. For example,
as we work with the Wikipedia collection in this thesis, we use the corresponding DBpeida
dump to add semantic links. We read all semantic information in the format of <subject,
predicate, object> from the DBpedia dump. For each, we check if both subject and
object are in the collection. If so, we add the corresponding semantic links. The semantic
links are added through Neo4jDBManger.addRelation() method with relation type α

116

Figure B.8: We add sameAs links between the Wikipedia pages that have correspondent
relation in DBPedia

Table B.8: Fields needed to be changed if we change the traversal method. The first field
exists only in the Astera_randomWalks branch.

Field Description Sample value
do.metropolis.hastings If we set the traversal method to

Metropolis-Hastings
true

node.id.list.file This is a sample configuration vari-
able that changes if we change the
traversal method. This file contains
the visited node Ids.

output_MH/NodeIdListFile.txt
output_RW/NodeIdListFile.txt
output_SA/NodeIdListFile.txt

nodes.no.file This is another sample variable that
should change, which logs the num-
ber of the nodes seen in the traversal.

output_MH/NodesNoFile.txt
output_RW/NodesNoFile.txt
output_SA/NodesNoFile.txt

B.11 Implementation Strategies

B.11.1 Different Traversal Methods Configuration

We can configure three different traversal methods Spreading Activation, Random Walks,
or Metropolis-Hastings in Astera. We use Spreading Activation when we set our defined
weighting on the edges, or apply constraints on the traversal. We use Random Walks
or Metropolis-Hastings settings in the configuration file when we want to see the graph
behaviour in stationary distribution. With these two methods, the weighting on the
edges satisfy the stochastic property—we use the weighting of 1/N on all edges of a node.
Metropolis-Hastings methods is applied based on the algorithm described in Section 2.1.4.
In each of these methods, a different weighting method is used. This decision is made in
the Neo4jDBManager.calcWeight() function. The output of any of these methods are
saved differently. The path to save the results is changed accordingly in the configuration
file (secondary.properties). We show sample configuration variables in Table B.8 for
Metropolis-Hastings algorithm.

117

B.11.2 Different Implementation Branches

In the current implementation, we have three implementation branches of Astera. Two
branches are based on the traversal methods, and one branch is for doing the recall
analysis part. The details of each branch are as follows:

Astera Spreading Activation The setting and weight definition on edges for Astera
with Spreading Activation traversal method are located in this branch. Two projects
are created here: Astera_breadthFirst and Astera_depthFirst. In Astera_breadthFirst,
we go through all topics in each step, and accordingly calculate the performance. In
Astera_depthFirst project (current version of Astera for Spreading Activation method),
we go through all steps for each topic. This way, we calculate the performance in all
steps for each topic. The three phases of interaction between Java and Matlab program
(Section B.11.3) is implemented in this project. Further, we can run different threads
for each topic to run in Parallel. We do not have any configuration variable to set
the traversal method in secondary.properties, as the default method here is Spreading
Activation.

Astera Random Walks This implementation branch is based on Random Walks
method for graph traversal. In addition, the configuration and weighting method for
Metropolis-Hastings goes into this branch. The reason is that Metropolis-Hastings
is a version of Random Walks with different weighting method during traversal. As
shown in Table B.8, in the Astera_randomWalks path, we add a configuration variable
(do.metropolis.hastings) to set the traversal method. If it is set to false, Random Walks
as the default method in this branch is used.

AsteraAnalyser Branch We created another branch in the implementation for recall
and reachabiltiy analysis. Two of the important classes in this branch are business/e-
val/DistManager.java and business/eval/DistResult.java. The class business/eval/Dist-
Manager.java is responsible for calculating recall in each step for each topic. Important
methods of this class are listed in Table B.10. Output of the DistManager.logRelImgs()
method is the recall analysis information in each step for different topics. The output
files are shown in Table B.9.

In our recall analysis, we can configure Astera to start from different facet results or
consider semantic or similarity links and calculate recall in each step. Another part of
this analysis is to check if we visit the same (relevant) information objects if we obtain
the same recall of the facets. This analysis is performed in DistManager.java class. Two
important methods of this class are shown in Table B.10. For each facet, we check the
relevant information objects and calculate the ratio of the nodes visible only to a specific
facet. This calculation is based on Equation 4.2. The output files of this analysis are
shown in Table B.11.

118

Table B.9: Output files of the recall analysis in AsteraAnalyser branch, saved in output/-
analysis/ path

Output File path Description
recall.log.file recallLogFile.txt Logs the recall in each step for each topic
step.rel.count.file stepRelCount.txt The number of relevant information ob-

jects in each step for each topic
total.rel.count.file totalRelCount.txt The cumulative number of relevant infor-

mation objects in each step for each topic
img.seen.file imgSeen.txt Log of the image IDs seen in each step for

each topic
rel.img.seen.file relImgsSeen.txt Log of relevant image IDs seen in each step

for each topic

Table B.10: Important methods of DistManger.java class

Method Description
logRelImgs This method checks the number of relevant nodes

in each step and logs it.
logRatioDiffFacets This method logs the ratio of information objects

seen for different textual facets.
logRatioDiffFacetsDocImg We log the ratio of information objects seen for

different visual facets. This method specifically
compares different images seen for a doc and a
img facet.

Table B.11: Graph visit configuration variables and output files in the secondary.properties,
save in output/analysis path

Variable Value Description
cedd.step.seen.img.file stepSeenImg.txt Log of the image Ids seen from CEDD facet

in each step. This type of output file is
generated for each facet separately.

cedd.ratio.file ceddRatio.out Log of the ratio of relevant images visible
only by CEDD facet compared to other
visual facets. This type of output file is
generated for each facet separately.

119

Figure B.9: Data flow between Java and Matlab programs

B.11.3 Java and Matlab

As mentioned in Section B.5, we call a Matlab program from Java to perform matrix
multiplications. In this procedure, we design a three phase implementation (Figure B.9).
In the first phase (in the Java program), we traverse the graph from starting points of
a topic to the number of defined steps. The files needed for the Matlab program to do
the matrix multiplications are generated. In practice, we visit a sub-graph of the whole
graph. The output files shown in Figure B.9 are shown in Table B.12.

The nodes and the edge weights are logged in an output file like MatlabGraphWeightLogFile.txt-
83. One sample line in this file is like: 1,2,0.5,3,0.5: node with ID 1 has neighbours node
2 with weight 0.5 on the link to this neighbour; the same holds for neighbour node 3.
This is a map of the part of the graph seen. This map will be used as input of the Matlab
file to perform Matlab multiplications (step 3 in Figure B.9). The activation vector
consists of all nodes initial scores. We use the score of the starting nodes, which are the
result of standard search (e.g. Lucene search), plus zero value for other nodes in this
vector.

In the second phase, the row.txt-83, col.txt-83, and val.txt-83 are loaded in Matlab to
create the sparse matrix (step 3). We perform the matrix multiplications in Matlab based
on the Equation 2.15. The a(0) is created based on the NodesLogFile.txt-83 file. In each
step, the a(t) result is calculated and saved in the result vector file Res-sstep-ttopicid.txt,
e.g. Res-s2-t83.txt in step 2 for topicid 83.

In the third phase, we read the result vector file. This is performed in the business/Eval-
uator.java class, readBatchResult() method. To calculate the precision in each step, we
need the correspondent result vector files from Matlab, and the nodeIdList file to map
the result scores to the node Ids in the graph. We filter the images from this result map
and calculate the recall and precision.

Different settings for small and large graphs If the generated graph size fits the
memory size of the Java program, we call Matlab program from Java and all these

120

Table B.12: The output files from Java or Matlab program. All files are saved in the
output folder, e.g., output/res_vec/res-s2-t77.txt.

File name Description Generated
from

GraphWeightLogFile.txt-
topicid

Log of each node seen and its neighbors and the
edge weight to the noighbours, e.g., 335748,I-
164945, 1.0, I-116763,1.0, means that node Id
335748 has two neighbours of I-164945 and I-
116763, each with weight of 1.0. This file is
created for a specific topic topicid.

Java program

MatlabGraphWeightLog
File.txt-topicid

Input for Matlab program. Log of each node
seen and its neighbors and the edge weight to
the neighbours. The nodeIds start from 1 in
this file for simplicity in the Matlab program,
e.g., 1,2,1.0,3,1.0, means that node Id 1 has two
neighbours of 2 and 3, each with weight of 1.0.
This file is created for a specific topic topicid.

Java program

col.txt-topicid Information about the values of the matrix of the
visited graph seen for a specific topic. This file
is needed for creating a sparse matrix in Matlab.

Java program

row.txt-topicid Information about the rows of the matrix of the
visited graph for a specific topic. This file is
needed for creating a sparse matrix in Matlab.

Java program

val.txt-topicid Information about the columns of the matrix of
the visited graph for a specific topic. This file is
needed for creating a sparse matrix in Matlab.

Java program

NodesLogFile.txt-
topicid

This file contains the initial score of all the nodes
for a specific topic

Java program

nodeId_list/NodeIdList-
ttopicid.txt

This file contains the nodeId (e.g. 345000, or
I-547778) of all the nodes for a specific topic.

Java program

res_vec/Res-sstep-
ttopicid.txt

This file contains the results from the Matlab pro-
gram in step s for a specific topic t. It contains
the scores of all nodes in this step of multiplica-
tion. The score order is mapped to the correspon-
dent NodeIdList file. For example, NodeIdList-
t83.txt is mapped to res-s2-t83.txt.

Matlab program

121

three phases are performed in one thread of implementation. In this case, we set the
configuration variable matlab.on=true in the secondary.properties. The Matlab function
is called from the business/Evaluator.java class. In larger steps, e.g. after step 30, we
visit a large part of the graph leading to large matrices. As we call Matlab from Java,
the Matlab Java library reads the graph output files and transfers the data to Matlab
via marshaling.

When the matrix size is larger than the memory limit of Java program, we have problem
with transferring large matrices. When the graph size mapped to a Matlab matrix
(requires nodesize * nodesize * 8 bytes) exceeds the memory limit of the Java program,
then the marshaling cannot be performed successfully. In this case, we perform the three
phases in three steps, separately. In the first phase, the output result files are written to
disk (files 1 to 7 in Table B.12). In the second phase, we do not call Matlab function
from Java, but call it directly from the Matlab program. This way, the Matlab program
uses the system memory directly. The result of this phase is the result vector files (file
row 8 in Table B.12). In the third phase, we call the Evaluator.readBatchResult() to read
the results, and then Evaluator.saveResults() to save in DB.

B.11.4 Matlab Files

In this section, we list the Matlab functions called from Java, or called directly from a
function in Matlab environment (Table B.13). To handle the memory limit with large
matrices, we use the sparse matrix option in Matlab. In addition to speed up later
computations, we use Mat files in Matlab to save snapshots from the matrices in different
steps. Later, we can load this Mat files in memory and save the time needed to reach
this step of multiplication.

B.11.5 Executing Astera

There is a bash file named run.bat in the src directory. This file compiles the project, and
runs AsteraManager.java class loading primary.properties file. The run(s) to be called
respectively are configured in primary.properties file in runs variable. There is another
bash file, named run_backup.bat in the src directory, which is responsible to perform
backup process of output files generated. This file is called as the last step in Astera
project before the last run finishes.

B.11.6 Mapping different collections

First we need the path of the files of a new collection to be indexed. Second is to add the in-
formation objects and their defined relationships from the collection to the graph DB. This
is performed via data/Crawler.java, data/Worker.java, and data/Neo4jDBManager.java.
The features of the query and information objects can be provided by the collection in e.g.
csv formats, or we can extract features. If the collection provides a new feature format,
there is the possibility to define its own parser and set it in the configuration file in our
model. Astera loads that specific parser, when it reaches files with the defined suffix.

122

Table B.13: Matlab functions to be called from Java or Matlab in a run of Astera

Id Function name Description
1 calcMatrix1050.m This function reads the output files from java,

creates the matrix and performs the multiplica-
tions. This function works on full matrix rather
than sparse matrices. This was to work with
Mat files in Matlab.

2 calcMatrix1050fullmatrix.m The same as the function in row 1, This function
works on full matrix rather than sparse matrices.
This was to work with Mat files in Matlab.

3 calcMatrix1050NoMemory.m The same as the function in row 1, we use the
normal Spreading Activation algorithm, which
does not use any memory.

4 calcMatrix1050WithMemory.m The same as the function in row 1, this time
we use the Spreading Activation algorithm with
memory based on the algorithm described in
Section 2.1.3.

5 runMatlab.m As mentioned in Section 2.1.1, in case we run the
algorithm in three phases. This function reads
the Java output files for defined topics in the
function and calls one of the functions from row
1, 2, or 3.

6 calcMatrixFullMatrixWithMatRW.m The same as the function in row 1, This function
works on full matrices, and also saves the result
of matrix multiplications in each step in Mat
files. Paths are customized for Random Walks
run and output location.

7 calcMatrixFullMatrixWithMatMH.m The same as the function in row 1, This function
works on full matrices, and also saves the result of
matrix multiplications in each step in Mat files.
Paths are customized for Metropolis-Hastings
run and output location.

8 runMatlab70000rw.m Manages to load the results with Random Walks
traversal from Java output and then call calcMa-
trixFullMatrixWithMat

9 runMatlab70000metHas.m Manages to load the results with Metropolis-
Hastings traversal from Java output and then
call calcMatrixFullMatrixWithMatMH

123

Table B.14: Technologies used in Astera

Programming language Java
Indexing library Lucene & LIRE
Graph database Neo4j
Semantic relation library Jena
Database for evaluation data MySQL

B.11.7 Technologies

Different technologies used in Astera are listed in Table B.14.

124

List of Figures

2.1 The extended structural poly-representation continuum ([LI05]) 32

3.1 Different types of relations in the model . 37
3.2 Topics categories based on their difficulty [TPK11] 41

4.1 Overall recall aggregated per category over steps 48
4.2 Recall with different document or image facets 50
4.3 Average recall obtained compared to the percentage of the graph seen through

different fact combinations ofRD = TF.IDFD, RIV = CEDD, andRIT =TF.IDFI 52
4.4 Recall comparison of combination of document textual facets with image

textual facets with RD-RIV -RIT (TF.IDFD, CEDD, TF.IDFI) combination . 52
4.5 Average recall of all topics after 40 steps with different links 53
4.6 Comparing the effect of adding semantic links and random semantic links on

recall and precision loss in the graph . 54
4.7 Comparing the effect of adding similarity links and random similarity links

on recall and precision loss in the graph . 56
4.8 Average Recall in the base graph on different categories of topics 59
4.9 Average Recall in the graph with semantic links on different categories of topics 61
4.10 Average Recall in the graph with similarity links on different categories of topics 62
4.11 Number of new seen nodes per step in the collection 63
4.12 Ratio of different nodes visited from document textual facets 65
4.13 Ratio of different nodes visited from image textual facets 66
4.14 Ratio of different nodes visited from image visual facets 66

5.1 Bipartite graph, in odd steps we visit only images and in even step only
documents . 72

5.2 Prec@10 using TF.IDFD, CEDD, not weighted 73
5.3 In the second step with st = 0, reachable images are the ones through sameAs

links . 76
5.4 Two examples of following inter-lingual semantic link 77
5.5 Score distribution in the graph in different steps for topic 83. The x axis is

all the nodes in the graph which is 70,000. Units are in the scale of 104. . . . 81
5.6 Correlation between top results and the links/weights of these nodes 88

125

5.7 The rate that the initial score is overriden by the graph structure with Random
Walks and Metropolis-Hastings . 89

B.1 Astera three layer architecture . 104
B.2 Crawling data, parsing and saving in the Graph DB. These stages are managed

through packages of crawler, worker, parser and data. 106
B.3 Different processes in Astera . 107
B.4 Design of Astera architecture . 109
B.5 Deployment diagram of Astera . 110
B.6 The configuration of primary and secondary runs in Astera 113
B.7 Run cycle in Astera: Each collection is indexed, searched, and then evaluated 114
B.8 We add sameAs links between the Wikipedia pages that have correspondent

relation in DBPedia . 117
B.9 Data flow between Java and Matlab programs 120

List of Tables

3.1 Top 7 most frequent semantic links after adding DBpeida links to ImageCLEF
2011 Wikipedia collection . 44

5.1 Results for baseline standard search . 70
5.2 Different combinations of weightings on document and image similarity results 71
5.3 The results of 24 steps in the graph starting from TF.IDFD. We observe the

descending order of precision and recall. 74
5.4 Results with RD, st:0.9, links: β, δ . 75
5.5 Results with RD, RIV , st:0.9, links: β, δ . 75
5.6 Results with RD, RIT , st:0.9, links: β, δ . 75
5.7 Results with RD, RIV , RIT , st:0.9, links: β, δ 75
5.8 Result without semantic links, st = 0, β, δ . 78
5.9 Result with semantic links (sameAs), st = 0, β, δ, α 78
5.10 Result without semantic/similarity links, st = 0.9, β, δ 79
5.11 Result with similarity links, st = 0.9, β, δ, γ 79
5.12 Result with semantic links (sameAs), st = 0.9, β, δ, α 79
5.13 Result with both semantic and similarity links, st = 0.9, β, δ, α, γ 79
5.14 Performance result with Random Walks . 87
5.15 Performance Result with Metropolis-Hastings 87

A.1 Different categories of nodes in the graph . 98

126

A.2 Memory needed to create a matrix in Matlab. The available memory of our
machine is 100GB. The real free memory is about 90GB. If we touch the
border of available memory it needs to swap and performance will degrade
substantially. We work with matrix sizes that need less than 90GB. 98

A.3 The time needed for one iteration (one matrix multiplication) in Matlab . . . 99
A.4 Matlab matrix multiplications with different matrix sizes and operators . . . 99

B.1 Some methods of Neo4jDBmanager.java . 109
B.2 Configuration variables in secondary.properties file 111
B.3 Database tables . 112
B.4 Configuration variables in primary.properties file 114
B.5 Different configurations in Astera to index a collection or run the search and

evaluate the indexed collection . 115
B.6 Configuration variables related to similarity links in the graph DB 116
B.7 Configuration variables related to semantic links in the graph DB 116
B.8 Fields needed to be changed if we change the traversal method. The first field

exists only in the Astera_randomWalks branch. 117
B.9 Output files of the recall analysis in AsteraAnalyser branch, saved in output/-

analysis/ path . 119
B.10 Important methods of DistManger.java class 119
B.11 Graph visit configuration variables and output files in the secondary.properties,

save in output/analysis path . 119
B.12 The output files from Java or Matlab program. All files are saved in the

output folder, e.g., output/res_vec/res-s2-t77.txt. 121
B.13 Matlab functions to be called from Java or Matlab in a run of Astera 123
B.14 Technologies used in Astera . 124

127

Bibliography

[AFJG06] Asad Awan, Ronaldo A Ferreira, Suresh Jagannathan, and Ananth Grama.
Distributed uniform sampling in unstructured peer-to-peer networks. In
Proceedings of the 39th Annual Hawaii International Conference on System
Sciences (HICSS), volume 9, 2006.

[AHESK10] Pradeep K Atrey, M Anwar Hossain, Abdulmotaleb El Saddik, and Mohan S
Kankanhalli. Multimodal fusion for multimedia analysis: a survey. Journal
of Multimedia Systems, 16(6):345–379, 2010.

[AHK01] Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. On the sur-
prising behavior of distance metrics in high dimensional space. In Proceedings
of Database Theory Conference, pages 420–434, 2001.

[AIL+03] WH Adams, Giridharan Iyengar, Ching-Yung Lin, Milind Ramesh Naphade,
Chalapathy Neti, Harriet J Nock, and John R Smith. Semantic indexing of
multimedia content using visual, audio, and text cues. EURASIP Journal
on Advances in Signal Processing, 2003(2):1–16, 2003.

[AOB+11] Adil Alpkocak, Okan Ozturkmenoglu, Tolga Berber, Ali Hosseinzadeh Vahid,
and Roghaiyeh Gachpaz Hamed. DEMIR at imageclefmed 2011: Evaluation
of fusion techniques for multimodal content-based medical image retrieval.
In Proceedings of Conference and Labs of the Evaluation Forum (CLEF),
2011.

[AR11] Avi Arampatzis and Stephen Robertson. Modeling score distributions in
information retrieval. Information Retrieval, 14(1):26–46, 2011.

[BBB+14] Petra Budikova, Jan Botorek, Michal Batko, Pavel Zezula, et al. Disa at
imageclef 2014: The search-based solution for scalable image annotation. In
CLEF (Working Notes), pages 360–371, 2014.

[BBK+09] Michael R. Berthold, Ulrik Brandes, Tobias Kotter, Martin Mader, Uwe
Nagel, and Kilian Thiel. Pure spreading activation is pointless. In Proceedings
of Conference on Information and Knowledge Management (CIKM), 2009.

129

[Ber05] Pavel Berkhin. Survey: A survey on pagerank computing. Journal of
Internet Mathematics, 2(1):73–120, 2005.

[BETVG08] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up
robust features (surf). Journal of Computer Vision and Image Understanding,
110(3), 2008.

[BGRS99] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft.
When is “nearest neighbor” meaningful? In Proceedings of International
Conference on Database Theory (ICDT), pages 217–235. 1999.

[Bin15] Bing homepage, 2015.

[BVO+11] Tolga Berber, Ali Hosseinzadeh Vahid, Okan Ozturkmenoglu,
Roghaiyeh Gachpaz Hamed, and Adil Alpkocak. Demir at image-
clefwiki 2011: Evaluating different weighting schemes in information
retrieval. In Proceedings of Conference and Labs of the Evaluation Forum
(CLEF), 2011.

[CB08] Savvas A Chatzichristofis and Yiannis S Boutalis. Cedd: color and edge
directivity descriptor: a compact descriptor for image indexing and retrieval.
In Proceedings of International Conference on Computer Vision Systems,
2008.

[CBGM02] Chad Carson, Serge Belongie, Hayit Greenspan, and Jitendra Malik. Blob-
world: Image segmentation using expectation-maximization and its appli-
cation to image querying. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24(8):1026–1038, 2002.

[CC03] Ya-Chun Cheng and Shu-Yuan Chen. Image classification using color,
texture and regions. Journal of Image and Vision Computing, 21(9), 2003.

[CDVR10a] Maarten Clements, Arjen P. De Vries, and Marcel J. T. Reinders. The
task-dependent effect of tags and ratings on social media access. ACM
Transactions on Information Systems (TOIS), 28(4), November 2010.

[CDVR10b] Maarten Clements, Arjen P De Vries, and Marcel JT Reinders. The task-
dependent effect of tags and ratings on social media access. ACM Transac-
tions on Information Systems (TOIS), 28(4):21, 2010.

[CG95] Siddhartha Chib and Edward Greenberg. Understanding the metropolis-
hastings algorithm. Journal of The American Statistician, 49(4), 1995.

[CGD92] William S Cooper, Fredric C Gey, and Daniel P Dabney. Probabilistic
retrieval based on staged logistic regression. In Proceedings of Special
Interest Group on Information Retrieval (SIGIR), pages 198–210, 1992.

130

[Chr04] Mikkel Christoffersen. Identifying core documents with a multiple evidence
relevance filter. Journal of Scientometrics, 61(3):385–394, 2004.

[CLM+13] Jianliang Chen, Yuting Liu, Dipanwita Maulik, Linda Xu, Hao Zhang,
Craig A Knoblock, Pedro Szekely, and Miel Vander Sande. Lodstories:
Learning about art by building multimedia stories. Technical report, 2013.

[CMS07] Shih-Fu Chang, Wei-Ying Ma, and Arnold Smeulders. Recent advances and
challenges of semantic image/video search. In Proceedings of the Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP),
volume 4, pages IV–1205, 2007.

[Cre97] Fabio Crestani. Application of spreading activation techniques in information
retrieval. Artificial Intelligence Review, 11(6):453–482, 1997.

[CS07] Nick Craswell and Martin Szummer. Random walks on the click graph. In
Proceedings of Special Interest Group on Information Retrieval (SIGIR),
2007.

[CSZ09] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised
learning (chapelle, o. et al., eds.; 2006)[book reviews]. IEEE Transactions
on Neural Networks, 20(3):542–542, 2009.

[CTC05] Kevyn Collins-Thompson and Jamie Callan. Query expansion using random
walk models. In Proceedings of Conference on Information and Knowledge
Management (CIKM), 2005.

[CYK+05] Pei-Cheng Cheng, Jen-Yuan Yeh, Hao-Ren Ke, Been-Chian Chien, and
Wei-Pang Yang. Comparison and combination of textual and visual features
for interactive cross-language image retrieval. In Multilingual Information
Access for Text, Speech and Images. 2005.

[DJLW08] Ritendra Datta, Dhiraj Joshi, Jia Li, and James Z Wang. Image retrieval:
Ideas, influences, and trends of the new age. Journal of ACM Computing
Surveys, 40(2):5, 2008.

[DLTX11] Lixin Duan, Wen Li, Ivor W Tsang, and Dong Xu. Improving web image
search by bag-based reranking. IEEE Transactions on Image Processing,
20(11), 2011.

[DMDH02] AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Halevy. Learn-
ing to map between ontologies on the semantic web. In Proceedings of the
11th international conference on World Wide Web (WWW), 2002.

[DTCT10] Renaud Delbru, Nickolai Toupikov, Michele Catasta, and Giovanni Tum-
marello. A node indexing scheme for web entity retrieval. In Proceedings of
Extended Semantic Web Conference (ESWC), 2010.

131

[EB11] Shady Elbassuoni and Roi Blanco. Keyword search over RDF graphs. In
Proceedings of Conference on Information and Knowledge Management
(CIKM), 2011.

[FFFPZ05] R. Fergus, L. Fei-Fei, P. Perona, and A. Zisserman. Learning object categories
from Google’s image search. In Proceedings of International Conference on
Computer Vision, 2005.

[FPZ04] Robert Fergus, Pietro Perona, and Andrew Zisserman. A visual category
filter for google images. In Proceedings of European Conference on Computer
Vision (ECCV), pages 242–256. 2004.

[FRA+05] Ronaldo A Ferreira, Murali Krishna Ramanathan, Asad Awan, Ananth
Grama, and Suresh Jagannathan. Search with probabilistic guarantees
in unstructured peer-to-peer networks. In Proceedings of the Fifth IEEE
International Conference on Peer-to-Peer Computing (P2P), 2005.

[Goo15] Google homepage, 2015.

[GVL96] Gene H. Golub and Charles F. Van Loan. Matrix Computations (3rd ed.).
Johns Hopkins University Press, 1996.

[Has70] W Keith Hastings. Monte carlo sampling methods using markov chains and
their applications. Journal of Biometrika, 57(1):97–109, 1970.

[HC09] Myron Hlynka and Michelle Cylwa. Observations on the Metropolis-Hastings
Algorithm. University of Windsor, Department of Mathematics and Statistics,
2009.

[HCY08] Alexander G Hauptmann, Michael G Christel, and Rong Yan. Video retrieval
based on semantic concepts. Proceedings of the IEEE, 96(4):602–622, 2008.

[HG10] Sung Ju Hwang and Kristen Grauman. Accounting for the relative impor-
tance of objects in image retrieval. In Proceedings of British Machine Vision
Conference (BMVC), pages 1–12, 2010.

[HKC07] Winston H Hsu, Lyndon S Kennedy, and Shih-Fu Chang. Video search
reranking through random walk over document-level context graph. In
Proceedings of the 15th ACM International Conference on Multimedia, 2007.

[HLZ+04] Jingrui He, Mingjing Li, Hong-Jiang Zhang, Hanghang Tong, and Changshui
Zhang. Manifold-ranking based image retrieval. In Proceedings of the 12th
Annual ACM International Conference on Multimedia, pages 9–16, 2004.

[HM09] Gilles Hubert and Josiane Mothe. An adaptable search engine for multimodal
information retrieval. Journal of the American Society for Information
Science and Technology, 60(8):1625–1634, 2009.

132

[HNS04] Hartwig Holzapfel, Kai Nickel, and Rainer Stiefelhagen. Implementation
and evaluation of a constraint-based multimodal fusion system for speech
and 3d pointing gestures. In Proceedings of the 6th International Conference
on Multimodal Interfaces, pages 175–182, 2004.

[HZ04] Xian-Sheng Hua and Hong-Jiang Zhang. An attention-based decision fusion
scheme for multimedia information retrieval. In Proceedings of Pacific-Rim
Conference on Multimedia, pages 1001–1010, 2004.

[HZ08] Tim Hussein and Jürgen Ziegler. Adapting web sites by spreading activation
in ontologies. In Proceedings of International Workshop on Recommendation
and Collaboration, 2008.

[IJ06] Peter Ingwersen and Kalervo Järvelin. The turn: Integration of information
seeking and retrieval in context, volume 18. Springer Science & Business
Media, 2006.

[IN03] Giridharan Iyengar and Harriet J Nock. Discriminative model fusion for
semantic concept detection and annotation in video. In Proceedings of
the Eleventh ACM International Conference on Multimedia, pages 255–258,
2003.

[Ing96] Peter Ingwersen. Cognitive perspectives of information retrieval interaction:
elements of a cognitive ir theory. Journal of Documentation, 52(1):3–50,
1996.

[INN03] Giridharan Iyengar, Harriet J Nock, and Chalapathy Neti. Audio-visual
synchrony for detection of monologues in video archives. In Proceedings of
International Conference on Multimedia and Expo (ICME), pages I–329,
2003.

[JB08] Yushi Jing and Shumeet Baluja. Visualrank: Applying pagerank to large-
scale image search. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 30(11):1877–1890, 2008.

[JNR05a] Anil Jain, Karthik Nandakumar, and Arun Ross. Score normalization in
multimodal biometric systems. Journal of Pattern recognition, 38(12):2270–
2285, 2005.

[JNR05b] Anil Jain, Karthik Nandakumar, and Arun Ross. Score normalization in
multimodal biometric systems. Journal of Pattern Recognition, 2005.

[JWL06] Dhiraj Joshi, James Z Wang, and Jia Li. The story picturing engine—a
system for automatic text illustration. ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM), 2(1):68–89, 2006.

[Kal60] Rudolph Emil Kalman. A new approach to linear filtering and prediction
problems. Journal of Basic Engineering, 82(1):35–45, 1960.

133

[KC07] Lyndon S Kennedy and Shih-Fu Chang. A reranking approach for context-
based concept fusion in video indexing and retrieval. In Proceedings of the
6th ACM International Conference on Image and Video Retrieval, pages
333–340, 2007.

[KDF05] Diane Kelly, Vijay Deepak Dollu, and Xin Fu. The loquacious user: a
document-independent source of terms for query expansion. In Proceedings
of Special Interest Group On Information Retrieval (SIGIR), pages 457–464,
2005.

[KF07] Diane Kelly and Xin Fu. Eliciting better information need descriptions from
users of information search systems. Journal of Information Processing &
Management, 43(1):30–46, 2007.

[KKW+14] Ashnil Kumar, Jinman Kim, Lingfeng Wen, Michael Fulham, and Dagan
Feng. A graph-based approach for the retrieval of multi-modality medical
images. Journal of Medical Image Analysis, 18(2):330–342, 2014.

[KSI+08] G. Kasneci, F.M. Suchanek, G. Ifrim, M. Ramanath, and G. Weikum. Naga:
Searching and ranking knowledge. In Proceedings of IEEE 2008 Conference
Data Engineering (ICDE), 2008.

[KWJ06] Mohan S Kankanhalli, Jun Wang, and Ramesh Jain. Experiential sampling
in multimedia systems. IEEE Transactions on Multimedia, 8(5):937–946,
2006.

[Lar02] Birger Larsen. Exploiting citation overlaps for information retrieval: Gener-
ating a boomerang effect from the network of scientific papers. Journal of
Scientometrics, 54(2):155–178, 2002.

[Lar04] Birger Larsen. References and citations in automatic indexing and retrieval
systems-experiments with the boomerang effect. PhD thesis, Københavns
University, Faculty of Humanities, School of Library and Information Science,
2004.

[LARD13] Michalis Lazaridis, Apostolos Axenopoulos, Dimitrios Rafailidis, and Pet-
ros Daras. Multimedia search and retrieval using multimodal annotation
propagation and indexing techniques. Journal of Signal Processing: Image
Communication, 28(4):351–367, 2013.

[LGG04] Ai Poh Loh, Feng Guan, and Shuzhi Sam Ge. Motion estimation using audio
and video fusion. In Proceedings of International Conference on Control,
Automation, Robotics and Vision (ICCARV), pages 1569–1574, 2004.

[LI05] Birger Larsen and Peter Ingwersen. Cognitive overlaps along the polyrepre-
sentation continuum. In New Directions in Cognitive Information Retrieval.
2005.

134

[LIK06] Birger Larsen, Peter Ingwersen, and Jaana Kekäläinen. The polyrepresenta-
tion continuum in IR. In Proceedings of Information Interaction in Context
(IIiX), 2006.

[LIL09] Birger Larsen, Peter Ingwersen, and Berit Lund. Data fusion according to
the principle of polyrepresentation. Journal of the American Society for
Information Science and Technology, 60(4):646–654, 2009.

[LLH+07] Jingjing Liu, Wei Lai, Xian-Sheng Hua, Yalou Huang, and Shipeng Li. Video
search re-ranking via multi-graph propagation. In Proceedings of the 15th
ACM International Conference on Multimedia, pages 208–217, 2007.

[LSC01] Simon Lucey, Sridha Sridharan, and Vinod Chandran. Improved speech
recognition using adaptive audio-visual fusion via a stochastic secondary
classifier. In Proceedings of the International Symposium on Intelligent
Multimedia, Video and Speech Processing, pages 551–554. IEEE, 2001.

[LSW10] Xirong Li, Cees GM Snoek, and Marcel Worring. Unsupervised multi-feature
tag relevance learning for social image retrieval. In Proceedings of the ACM
International Conference on Image and Video Retrieval, pages 10–17, 2010.

[LYS02] Ren C Luo, Chih-Chen Yih, and Kuo Lan Su. Multisensor fusion and
integration: approaches, applications, and future research directions. IEEE
Sensors Journal, 2(2):107–119, 2002.

[MCN06] Einat Minkov, William W Cohen, and Andrew Y Ng. Contextual search
and name disambiguation in email using graphs. In Proceedings of Special
Interest Group on Information Retrieval (SIGIR), pages 27–34, 2006.

[MDS05] Kieran Mc Donald and Alan F Smeaton. A comparison of score, rank and
probability-based fusion methods for video shot retrieval. In Image and
Video Retrieval, pages 61–70. 2005.

[MM99] Wei-Ying Ma and Bangalore S Manjunath. Netra: A toolbox for navigating
large image databases. Journal of Multimedia Systems, 7(3):184–198, 1999.

[MPC+10] Enrico Minack, Raluca Paiu, Stefania Costache, Gianluca Demartini, Julien
Gaugaz, Ekaterini Ioannou, Paul-Alexandru Chirita, and Wolfgang Nejdl.
Leveraging personal metadata for desktop search: The Beagle++ system.
Journal of Web Semantics: Science, Services and Agents on the WWW,
8(1):37–54, 2010.

[MRLT14] Tao Mei, Yong Rui, Shipeng Li, and Qi Tian. Multimedia search reranking:
A literature survey. Journal of ACM Computing Surveys (CSUR), 46(3):38,
2014.

135

[MS07] Jean Martinet and Shin’ichi Satoh. An information theoretic approach for
automatic document annotation from intermodal analysis. In Proceedings
of the Workshop on Multimodal Information Retrieval, 2007.

[MSBT11] D. Magatti, F. Steinke, M. Bundschus, and V. Tresp. Combined Struc-
tured and Keyword-Based Search in Textually Enriched Entity-Relationship
Graphs. In Proceedings of the Workshop on Automated Knowledge Base
Construction, 2011.

[MU49] Nicholas Metropolis and Stanislaw Ulam. The monte carlo method. Journal
of the American Statistical Association, 44(247):335–341, 1949.

[NF03] Henrik Nottelmann and Norbert Fuhr. From retrieval status values to
probabilities of relevance for advanced ir applications. Journal of Information
Retrieval, 6(3-4), 2003.

[NNT05] Apostol (Paul) Natsev, Milind R. Naphade, and Jelena TešiĆ. Learning
the semantics of multimedia queries and concepts from a small number of
examples. In Proceedings of the 13th Annual ACM International Conference
on Multimedia, 2005.

[OP99] Timo Ojala and Matti Pietikäinen. Unsupervised texture segmentation
using feature distributions. Journal of Pattern Recognition, 32(3):477–486,
1999.

[PKPM06] Vassilis Pitsikalis, Athanassios Katsamanis, George Papandreou, and Petros
Maragos. Adaptive multimodal fusion by uncertainty compensation. In
Proceedings of INTERSPEECH Conference, 2006.

[PPS96] Alex Pentland, Rosalind W Picard, and Stan Sclaroff. Photobook: Content-
based manipulation of image databases. International Journal of Computer
Vision, 18(3):233–254, 1996.

[RB82] S. E. Robertson and J. D. Bovey. Statistical problems in the application of
probabilistic models to information retrieval. Technical Report Report No.
5739, Microsoft Research, January 1982.

[RD02] Mathew Richardson and Pedro Domingos. The Intelligent Surfer: Prob-
abilistic Combination of Link and Content Information in PageRank. In
Proceedings of Neural Information Processing Systems (NIPS), 2002.

[Red07] Bakkama Srinath Reddy. Evidential reasoning for multimodal fusion in
human computer interaction. 2007.

[RG99] Sam Roweis and Zoubin Ghahramani. A unifying review of linear gaussian
models. Journal of Neural Computation, 11(2):305–345, 1999.

136

[RG03] Ali Rashidi and Hassan Ghassemian. Extended dempster–shafer theory
for multi-system/sensor decision fusion. In Proceedings of the Commission
IV Joint Workshop on Challenges in Geospatial Analysis, Integration and
Visualization II, pages 31–37, 2003.

[Rob97] S. E. Robertson. Readings in information retrieval. chapter The Probability
Ranking Principle in IR, pages 281–286. 1997.

[Rob07] Stephen Robertson. On score distributions and relevance. Springer, 2007.

[RSA04] Cristiano Rocha, Daniel Schwabe, and Marcus Poggi Aragao. A hybrid
approach for searching in the semantic web. In Proceedings of World Wide
Web Conference (WWW), 2004.

[SB88] G. Salton and C. Buckley. On the use of spreading activation methods
in automatic information. In Proceedings of Special Interest Group on
Information Retrieval (SIGIR), 1988.

[SBR14] Serwah Sabetghadam, Ralf Bierig, and Andreas Rauber. A hybrid approach
for multi-faceted IR in multimodal domain. In Proceedings of Conference
and Labs of the Evaluation Forum (CLEF), 2014.

[SC96] John R Smith and Shih-Fu Chang. Automated image retrieval using color and
texture. IEEE Transactions on Pattern Analysis and Machine Intelligence,
1996.

[SJ01] Martin Szummer and Tommi Jaakkola. Partially labeled classification with
markov random walks. In Proceedings of Neural Information Processing
Systems (NIPS), 2001.

[SLBR14] Serwah Sabetghadam, Mihai Lupu, Ralf Bierig, and Andreas Rauber. A
combined approach of structured and non-structured IR in multimodal
domain. In Proceedings of International Conference on Multimedia Retrieval
(ICMR), 2014.

[SLBR15] Serwah Sabetghadam, Mihai Lupu, Ralf Bierig, and Andreas Rauber. Reach-
ability analysis of graph modelled collections. In European Conference on
Information Retrieval (ECIR), 2015.

[SLI08] Mette Skov, Birger Larsen, and Peter Ingwersen. Inter and intra-document
contexts applied in polyrepresentation for best match IR. Journal of Infor-
mation Processing & Management, 44(5):1673–1683, 2008.

[SLR13] Serwah Sabetghadam, Mihai Lupu, and Andreas Rauber. Astera - a generic
model for multimodal information retrieval. In Proceedings of Integrating
IR Technologies for Professional Search Workshop, 2013.

137

[SLR14] Serwah Sabetghadam, Mihai Lupu, and Andreas Rauber. Which one to
choose: Random walk or spreading activation? In Proceedings of Information
Retrieval Facility Conference (IRFC), 2014.

[SLR15] Serwah Sabetghadam, Mihai Lupu, and Andreas Rauber. Leveraging
metropolis-hastings algorithm on graph-based model for multimodal IR.
In Proceedings of the First International Workshop on Graph Search and
Beyond (GSB), 2015.

[SLR16] Serwah Sabetghadam, Mihai Lupu, and Andreas Rauber. Random walks
analysis on graph modelled multimodal collections. In Second International
KEYSTONE Conference, 2016.

[SNF02] Renato O Stehling, Mario A Nascimento, and Alexandre X Falcão. A
compact and efficient image retrieval approach based on border/interior pixel
classification. In Proceedings of Conference on Information and Knowledge
Management (CIKM), 2002.

[SP04] Conrad Sanderson and Kuldip K Paliwal. Identity verification using speech
and face information. Journal of Digital Signal Processing, 14(5):449–480,
2004.

[SPLI04] Mette Skov, Henriette Pedersen, Birger Larsen, and Peter Ingwersen. Testing
the principle of polyrepresentation. In Proceedings of the SIGIR Workshop
on Information Retrieval in Context, pages 47–49, 2004.

[SRM09] Hinrich Schütze, P Raghavan, and Christopher Manning. An introduction
to information retrieval, 2009.

[SS07] S. Srinivasan and M. Slaney. A bipartite graph model for associating
images and text. In Proceedings of the Workshop on Multimodal Information
Retrieval, 2007.

[SSH14] Bahjat Safadi, Mathilde Sahuguet, and Benoit Huet. Linking text and visual
concepts semantically for cross modal multimedia search. In Proceedings of
the IEEE International Conference on Image Processing (ICIP), 2014.

[SWS+00] Arnold WM Smeulders, Marcel Worring, Simone Santini, Amarnath Gupta,
and Ramesh Jain. Content-based image retrieval at the end of the early
years. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(12):1349–1380, 2000.

[SWS05] Cees GM Snoek, Marcel Worring, and Arnold WM Smeulders. Early versus
late fusion in semantic video analysis. In Proceedings of the 13th Annual
ACM International Conference on Multimedia, pages 399–402, 2005.

138

[TDCM12] Alberto Tonon, Gianluca Demartini, and Philippe Cudré-Mauroux. Com-
bining inverted indices and structured search for ad-hoc object retrieval. In
Proceedings of Special Interest Group on Information Retrieval (SIGIR),
2012.

[TdM14] Ilaria Tiddi, Mathieu d’Aquin, and Enrico Motta. Walking linked data: a
graph traversal approach to explain clusters. In Proceedings of the Fifth
International Workshop on Consuming Linked Data (COLD), 2014.

[Tow07] Christopher Town. Multi-sensory and multi-modal fusion for sentient com-
puting. International Journal of Computer Vision, 71(2):235–253, 2007.

[TPK11] Theodora Tsikrika, Adrian Popescu, and Jana Kludas. Overview of the
wikipedia image retrieval task at imageclef 2011. In Conference and Labs of
the Evaluation Forum (CLEF), 2011.

[TYW+08] Xinmei Tian, Linjun Yang, Jingdong Wang, Yichen Yang, Xiuqing Wu, and
Xian-Sheng Hua. Bayesian video search reranking. In Proceedings of the
16th ACM International Conference on Multimedia, 2008.

[VNH03] Atulya Velivelli, Chong-Wah Ngo, and Thomas S Huang. Detection of
documentary scene changes by audio-visual fusion. Journal of Lecture notes
in computer science, pages 227–237, 2003.

[Wal04] Brian Walsh. Markov chain monte carlo and gibbs sampling, 2004.

[WCCS04a] Yi Wu, Edward Y. Chang, Kevin Chen-Chuan Chang, and John R. Smith.
Optimal multimodal fusion for multimedia data analysis. Proceedings of the
12th annual ACM international conference on Multimedia, 2004.

[WCCS04b] Yi Wu, Edward Y Chang, Kevin Chen-Chuan Chang, and John R Smith.
Optimal multimodal fusion for multimedia data analysis. In Proceedings
of the 12th Annual ACM International Conference on Multimedia, pages
572–579, 2004.

[WHH+09] Meng Wang, Xian Sheng Hua, Richang Hong, Jinhui Tang, Guo Jun Qi,
and Yan Song. Unified Video Annotation via Multigraph Learning. IEEE
Transactions on Circuits and Systems for Video Technology, 19(5):733–746,
May 2009.

[Whi06] Ryen W White. Using searcher simulations to redesign a polyrepresen-
tative implicit feedback interface. Journal of Information Processing &
Management, 42(5):1185–1202, 2006.

[WJH+07] Shuo Wang, Feng Jing, Jibo He, Qixing Du, and Lei Zhang. Igroup:
presenting web image search results in semantic clusters. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, pages
587–596, 2007.

139

[WKYJ03] Jun Wang, Mohan S Kankanhalli, Weiqi Yan, and Ramesh Jain. Experiential
sampling for video surveillance. In Proceedings of the First ACM SIGMM
International Workshop on Video Surveillance, pages 77–86, 2003.

[WLCS04] Yi Wu, C-Y Lin, Edward Y Chang, and John R Smith. Multimodal infor-
mation fusion for video concept detection. In Proceedings of International
Conference on Image Processing (ICIP), volume 4, pages 2391–2394, 2004.

[WLT+12] Meng Wang, Hao Li, Dacheng Tao, Ke Lu, and Xindong Wu. Multimodal
graph-based reranking for web image search. IEEE Transactions on Image
Processing, 21(11), 2012.

[WYJ16] Wei Wang, Xiaoyan Yang, and Shouxu Jiang. Cross-modal search on social
networking systems by exploring wikipedia concepts. In Digital Libraries:
Knowledge, Information, and Data in an Open Access Society, pages 381–393.
Springer, 2016.

[WZZL10] Shikui Wei, Yao Zhao, Zhenfeng Zhu, and Nan Liu. Multimodal fusion
for video search reranking. IEEE Transactions on Knowledge and Data
Engineering, 22(8):1191–1199, 2010.

[XC06] Huaxin Xu and Tat-Seng Chua. Fusion of AV features and external infor-
mation sources for event detection in team sports video. ACM Transactions
on Multimedia Computing, Communications, and Applications (TOMM),
2(1):44–67, 2006.

[Yan06] Rong Yan. Probabilistic models for combining diverse knowledge sources in
multimedia retrieval. PhD thesis, IBM, 2006.

[YH10] Linjun Yang and Alan Hanjalic. Supervised reranking for web image search.
In Proceedings of the 18th ACM International Conference on Multimedia,
pages 183–192, 2010.

[YHJ03a] Rong Yan, Alexander Hauptmann, and Rong Jin. Multimedia search with
pseudo-relevance feedback. In Proceedings of International Conference on
Image and Video Retrieval, 2003.

[YHJ03b] Rong Yan, Alexander G Hauptmann, and Rong Jin. Negative pseudo-
relevance feedback in content-based video retrieval. In Proceedings of the
eleventh ACM International Conference on Multimedia, pages 343–346, 2003.

[YHWW06] Xun Yuan, Xian-Sheng Hua, Meng Wang, and Xiu-Qing Wu. Manifold-
ranking based video concept detection on large database and feature pool.
In Proceedings of the 14th Annual ACM International Conference on Multi-
media, pages 623–626, 2006.

140

[YMN10] Ting Yao, Tao Mei, and Chong-Wah Ngo. Co-reranking by mutual reinforce-
ment for image search. In Proceedings of the ACM International Conference
on Image and Video Retrieval, pages 34–41, 2010.

[ZB11] David Zellhöfer and Thomas Böttcher. BTU DBIS’ multimodal Wikipedia
retrieval runs at ImageCLEF 2011. In Proceedings of Conference and Labs
of the Evaluation Forum (CLEF), 2011.

[ZBL+04] Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and
Bernhard Schölkopf. Learning with local and global consistency. Journal of
Advances in Neural Information Processing Systems, 16(16):321–328, 2004.

[ZGL+03] Xiaojin Zhu, Zoubin Ghahramani, John Lafferty, et al. Semi-supervised
learning using gaussian fields and harmonic functions. In Proceedings of
International Conference on Machine Learning (ICML), pages 912–919,
2003.

[ZSOD08] Hilal Zitouni, Sare Sevil, Derya Ozkan, and Pinar Duygulu. Re-ranking of
web image search results using a graph algorithm. In Proceedings of 19th
International Conference on Pattern Recognition (ICPR), pages 1–4, 2008.

[ZSS08] Ming Zhong, Kai Shen, and Joel Seiferas. The convergence-guaranteed ran-
dom walk and its applications in peer-to-peer networks. IEEE Transactions
on Computers, 57(5):619–633, 2008.

[ZYYZ14] Sicheng Zhao, Hongxun Yao, You Yang, and Yanhao Zhang. Affective image
retrieval via multi-graph learning. In Proceedings of the ACM International
Conference on Multimedia, pages 1025–1028, 2014.

141

	Acknowledgements
	Abstract
	Contents
	Introduction
	Motivation
	Challenges
	Research Questions
	Contributions
	Thesis Structure
	Publications

	Context
	Background
	Related Work

	Astera Model
	Model Definition
	Evaluation Design

	Reachability Analysis
	Relevant Objects Distribution
	Reachability from Different Facets
	Reachability through Different Links
	Recall Analysis of Different Topic Categories
	Graph Visit from Different Facets
	Summary

	Precision Analysis
	Precision Analysis with Different Facets
	Precision Analysis by Adding Semantic and Similarity Links
	Score Analysis in the Graph - , , ,
	Summary

	Conclusion
	Summary
	Research Questions Revisited
	Future Work

	Computational Complexity Analysis
	Matlab Matrix Sizes and Memory Requirement
	Conclusion

	Astera Software Architecture Document (SAD)
	Introduction
	Architectural Representation
	Logical View
	Process View
	Implementation View
	Deployment View
	Data View
	Configuration
	Similarity Links
	Semantic Links
	Implementation Strategies

	List of Figures
	List of Tables
	Bibliography

