
Semantic Interoperability Layer
for oBIX

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Igor Pelesić
Matrikelnummer 0006828

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner
Mitwirkung: Projektass. Dipl.-Ing. Bakk.techn. Andreas Fernbach

Wien, 10. Jänner 2017
Igor Pelesić Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Semantic Interoperability Layer
for oBIX

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computer Engineering

by

Igor Pelesić
Registration Number 0006828

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner
Assistance: Projektass. Dipl.-Ing. Bakk.techn. Andreas Fernbach

Vienna, 10th January, 2017
Igor Pelesić Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Igor Pelesić
Braungasse 27/3, 1170 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 10. Jänner 2017
Igor Pelesić

v

Danksagung

Zuallererst möchte ich mich ganz herzlich bei meiner Ehefrau Karin für ihre großartige
Unterstützung und den grenzenlosen Optimismus bedanken. Ich möchte mich auch
beim Wolfgang Kastner bedanken, der mir die Gelegenheit geboten hat, diese Arbeit in
der Automation Systems Group zu schreiben und der immer beratend zur Seite stand.
Andreas Fernbach gebührt ganz großer Dank von meiner Seite, da die Diskussionen mit
ihm und seine Ratschläge einen ganz großen Einfluss auf diese Arbeit hatten und ganz
wesentlich zur Verbesserung derselben beigetragen haben.
Ich möchte auch meinen Eltern, Mira und Aladin, für die Geduld und Unterstützung
danken, die ich Zeit meines Lebens von ihrer Seite erfahren habe. Ich möchte mich
auch bei meiner Schwester Ida bedanken, die immer für mich da war und auch für das
Korrekturlesen dieser Arbeit.

vii

Acknowledgements

Foremost, I would like to thank my beloved wife Karin for her great support and the
inspiring motivation that accompanied me during the evolution of this thesis. I would
also like to express my gratitude to Wolfgang Kastner, who gave me the opportunity to
write this thesis at the Automation Systems Group and supported me with his advice
throughout this work. Likewise, I want to give a big thanks to Andreas Fernbach for the
great help he offered me. These advices and discussions have had a great impact on this
thesis and majorly contributed to the improvement of it.
I want also to thank my parents, Mira and Aladin, for encountering me with patience
and support throughout my whole life. Furthermore, I want to thank my sister Ida for
her steady encouragement and for reviewing this document.

ix

Kurzfassung

Die Integration verschiedener Building Automation Systems (BAS) Technologien ermög-
licht es, die Gebäudeenergieeffizienz zu steigern und gleichzeitig den Bewohnerkomfort
zu erhöhen. Web Services (WS) erlauben einen technologieunabhänigen Datenaustausch
und gelten als vielversprechendes Vehikel um die Integration heterogener Systeme in
das Internet of Things (IoT) voranzutreiben. Das Zusammenspiel von BASs und Smart
Grids eröffnet großes Potential, um die Energieeffizienz zu steigern. Um dieses Potential
zu realisieren, sollte der Großteil der Energie dann konsumiert werden, wenn genügend
erneuerbare Energie produziert wird. Dafür bedarf es aber einer bidirektionalen Verbin-
dung zwischen den Abnehmern und den Stromerzeugern, die aber durch eine Vielzahl
heterogener Geräte, Protokolle und Technologien erschwert wird. open Building Infor-
mation eXchange (oBIX) ist ein offener Standard, der einen technologieunabhängigen
Zugang zu BASs bietet. Die Semantik der ausgetauschten Daten ist dennoch nicht ex-
plizit formalisiert und ist Gegenstand weiterer Interpretationen. Eine vollumfassende
Integration verschiedener BASs kann aber nur unter der Voraussetzung gelingen, dass
die ausgetauschten Daten semantisch konsistent sind. Semantische Interoperabilität er-
laubt den Datenaustausch eindeutig bestimmter Daten innerhalb des IoT und erleichtert
die Kommunikation zwischen den Dingen(things). Das Ziel dieser Arbeit ist es einen
semantischen Interoperabilitätslayer für oBIX zu definieren. Ausgehend von typischen
Anwendungsfällen aus der Gebäude- und Heimautomatisierung soll eine Web Ontology
Languagy (OWL) Ontologie erstellt werden, die den Austausch semantisch konsistenter
Daten unterstützt. In einem weiteren Schritt sollen die ausgetauschten Daten semantisch,
mittels des Vokabulars der Ontologie, angereichert werden, damit eine Transformation
vom oBIX Modell zu OWL möglich wird. Hierfür ist der Einsatz von XSLT angedacht.
Nicht nur statische Daten, sondern auch Laufzeitdaten, wie aktuelle Sensorenwerte, sollen
während der Transformation berücksichtigt werden. Um die Evaluierung zu erleichtern,
soll ein Prototyp im Zuge dieser Arbeit erstellt werden.

xi

Abstract

The integration of different Building Automation System (BAS) technologies in coopera-
tion with smart grids shows great potential for enhancing the energy efficiency of buildings
and inhabitant comfort. In order to realize this potential, smart buildings should consume
most of their energy when there is enough of renewable energy available and postpone or
reduce their consumption otherwise. The communication between devices on the demand
side the whole way up to power distributors is aggravated by a great diversification of
BASs, which is caused by a variety of devices, protocols and technologies. Web Services
(WS) provide a technology independent way of accessing data. Therefore, they represent
a viable path to ease integration of various systems and technologies into an Internet of
Things (IoT). The open Building Information eXchange (oBIX) is an open standard which
offers a technology independent access to BASs and allows integration on a syntactical
level by abstracting from different control protocols and network technologies. Still, the
data exchanged does not necessarily bear the same semantics and thus requires further
interpretation. In order to reach the goal of a comprehensive integration of different BAS
technologies, this semantic incompatibility has to be resolved by enabling the distribution
of semantically consistent data by various diversified devices. Semantic interoperability
allows different interconnected agents to interpret the exchanged data without ambiguity
and further empowers automated communication between things. The aim of this work
is to provide a Semantic Interoperability Layer for the oBIX standard. Starting from a
set of use cases describing typical home and building automation scenarios, an ontology
shall be designed which will allow to exchange semantically consistent data across various
BASs. The intention is to use the Web Ontology Languagy (OWL) for this task. An
extension or integration of existing ontologies from the building automation sector should
be considered. In a second step, the oBIX standard shall be enriched with meta-data
annotations, whereby the semantic of these annotations should be taken from the created
ontology in order to ensure consistent data across various devices. Further, a transfor-
mation from oBIX to OWL needs to be performed. Not only static data like e.g. the
location of a sensor should be considered for the transformation but also runtime data,
such as current sensor values. In order to ease the evaluation of the project, a working
prototype shall be developed as part of this work.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 2
1.3 Aim of the work . 3
1.4 Methodological approach . 3
1.5 Structure of the work . 4

2 State of the art 7
2.1 Related work . 7
2.2 Internet of Things . 7
2.3 Open Building Information Exchange . 10
2.4 KNX . 14
2.5 Semantic Web . 18
2.6 IoTSys . 25

3 Semantic Interoperability Layer for oBIX (SILo) 27
3.1 Model transformation . 28
3.2 Data synchronisation . 32
3.3 Error handling . 34

4 Implementation - Case Study for IoTSys and ThinkHome 35
4.1 Model transformation . 35
4.2 SILoTool . 55

5 Test Lab 67

6 Conclusion 73
6.1 Summary . 73

xv

6.2 Further work . 74

List of Figures 77

List of Tables 78

Acronyms 79

Bibliography 81

CHAPTER 1
Introduction

1.1 Motivation
The integration of different Building Automation System (BAS) technologies allows incre-
asing both the energy efficiency of buildings and inhabitant comfort. Web Services (WS)
provide a technology independent way of accessing and representing data and represent
a promising approach to ease integration of heterogeneous systems and technologies
[1] into an Internet of Things (IoT) [2]. The term IoT basically refers to a network
of connected things such as sensors, embedded devices or phones. The fundamental
objective of interconnecting things is to empower them to create a more precise model of
their context thus allowing them to provide services which react intelligently to dynamic
changes within their environment [3].

Buildings are responsible for about one third of the world wide overall energy consumption
and thus represent the sector with the highest energy demand [4]. Building Automation
System (BAS) in cooperation with smart grids, which are considered as one of the most
important applications of the IoT [5], show great potential for enhancing the energy
efficiency of buildings. In order to realize this potential, smart buildings should consume
most of their energy when there is enough of renewable energy available and postpone or
reduce consumption otherwise.

The intelligent bidirectional interaction from devices on the demand side the whole way
up to power distributors is hindered by a great heterogeneity of BAS, which is caused by
the various devices, protocols and technologies produced by different vendors [6].

The open Building Information eXchange (oBIX) [7] is an open standard which offers a
technology independent access to BAS and eases integration on a syntactical level by
abstracting from different control protocols.

Still, the data exchanged does not necessarily bear the same semantics and thus requires
further interpretation. In order to reach the goal of a comprehensive integration of

1

different BAS technologies, this semantic incompatibility has to be resolved by enabling
the distribution of semantically consistent data by various diversified devices.

Overcoming this limitation would make it possible to share data across a distributed BAS
that is compatible in terms of semantic aspects and to implement a common knowledge
base which in turn will enable the realization of more comprehensive automation scenarios
that support the objective of improving the energy efficiency of buildings [8].

1.2 Problem statement

The interconnection of things based on WS can only be seen as an intermediate step
towards the fulfillment of the IoT vision. On this level, heterogeneous devices are enabled
to interact via a formally specified application protocol. However, reasoning about the
meaning of the exchanged messages requires human interaction. In order to empower the
collaboration of autonomous devices and agents, a common understanding between them
has to be established. This requires the utilization of Semantic Web technologies.

Semantic interoperability allows different agents connected to the IoT to interpret the
exchanged data unambiguously and furthermore empowers automated communication
between things. Unambiguous data descriptions that are interpretable by machines and
software agents are a major driver for automated information exchange within the IoT.
SPARQL queries and semantic reasoning could be used to solve problems related to
knowledge extraction, data abstraction and discovery of resources [3]. Thus, by achieving
semantic interoperability, autonomous distributed devices and agents would be enabled
to collectively answer questions respectively perform actions like:

• Is every switching actuator of a distinct floor in "off" state?

• How many rooms of a building are occupied?

• Which lamps in a building have exceeded a distinct operating time?

• Turn on the light in a specific room!

• Turn on all electrical boilers of a site having a distinct offset between current
temperature and setpoint!

In order to provide a Semantic Interoperability Layer for oBIX (SILo), as a first step, a
transformation of the oBIX object model to an OWL ontology is required. The generic
transformation process has to consider the flexible nature of the oBIX object model and
a possible gap in the level of abstraction between the oBIX model and the target OWL
ontology. As the oBIX standard offers little implicit semantic meaning, a mechanism has
to be designed which allows to enrich the oBIX model with further meta-data. It has to
be investigated whether the transformation process can be fully automated.

2

Generally, it has to be verified whether a semantic interoperability layer allowing to
monitor and control a BAS, based on oBIX is achievable. Therefore, a SPARQL interface
is proposed which should allow to retrieve data from the knowledge base describing the
actual status of the underlying BAS. Further, it should provide the means to change the
state of the BAS by executing SPARQL update statements, thus providing the means
to actively control a BAS. In order to be of use SILo has to provide a scalable solution
which also takes the timing requirements of BASs into account.

1.3 Aim of the work

The aim of this work is to provide a Semantic Interoperability Layer for the oBIX standard.
Starting from a set of use cases describing typical home and building automation scenarios,
an ontology shall be designed which will allow to exchange semantically consistent data
across various BASs. The intention is to use the Web Ontology Languagy (OWL) [9] for
this task. An extension or integration of existing ontologies from the building automation
sector should be considered.

In a second step, the oBIX standard shall be enriched with meta-data annotations,
whereby the semantic of these annotations should be taken from the created ontology in
order to allow consistent data across various devices.

Further, a transformation from oBIX to OWL needs to be performed. Not only static
data like e.g. the location of a sensor should be considered for the transformation but
also live data like current sensor values. It is envisaged to use an XSL Transformation
(XSLT) for this task.

In order to ease the evaluation of the project, a working prototype shall be developed
as part of this work. For the prototype, we will concentrate on a KNX [10] based BAS.
The prototype shall support the engineer throughout the SILo transformation and will
maintain a common knowledge base as a Resource Description Framework (RDF) [11]
triple store. Therefore, a Semantic Web crawler will be developed which recurrently
searches for devices and updates the RDF triple store with fresh data transformed from
the oBIX interfaces of the devices.

The prototype should also provide means to query the data from the RDF triple store
with SPARQL [12].

1.4 Methodological approach

The methodical approach will include the following steps:

Literature review
A literature review will be performed in order to collect all the required information
necessary for the theoretical part of the work.

3

OWL ontology
Existing ontologies from the home and building automation area will be investigated
and searched for reusable components. Based on a set of typical automation scenario
use cases, an OWL ontology shall be created.

Semantically enriched oBIX
An already existing mapping of KNX to oBIX [13] will be enhanced by semantic
meta-data annotations.

oBIX to OWL transformation
An XSL Transformation will be developed which will allow the mapping of seman-
tically enhanced oBIX data to RDF triples in XML format.

Semantic Web crawler
A Web crawler will be developed that autonomously gathers all the RDF triples
from a BAS and stores the data in an RDF triple store.

SPARQL interface
An interface will be developed that allows querying the RDF triple store via
SPARQL.

Evaluation
The implemented prototype will be evaluated against the basic use case set. During
the assessment it should be verified that SPARQL queries are returning the correct
and desired information.

1.5 Structure of the work

This section provides a short overview of the structure of this work. In Chapter 2, required
information on the building blocks of SILo is presented. A short excerpt of related works
in these fields is provided as a description of the IoT, which is currently an extensively
discussed topic in the research community. Additionally, the semantic evolution of the
IoT is presented, together with a short introduction to smart grids. In the oBIX section,
an overview of the oBIX specification is provided, offering details about its object model
and network bindings. The KNX section describes the control network technology that
is used for the prototype implementation in this work, providing a short introduction
on the new KNX Web Service specification draft. Besides, a summary of the Semantic
Web and its technologies is delivered as well. Furthermore, this chapter provides a short
introduction to the ThinkHome ontology and is concluded with a presentation of IoTSys,
the oBIX server implementation used for the proof-of-concept implementation.

In Chapter 3, the Semantic Interoperability Layer for oBIX (SILo) is presented. It contains
a detailed description of the transformation process required to map an oBIX model to an
arbitrary OWL ontology. Additionally, it describes the binding of SILo to oBIX used for
the data synchronization. In Chapter 4, the prototype implementation based on IoTSys

4

and the ThinkHome energy-resource OWL ontology is described. Chapter 5 presents
the evaluation results from the test lab, where the usability of the proposed solution is
discussed. The thesis is finalized with a conclusion and a description of possible further
research tasks in Chapter 6.

5

CHAPTER 2
State of the art

2.1 Related work
The IoTSys [13] developed at Vienna University of Technology realizes the IoT concept
within the sphere of BAS. It provides basic means to interconnect various different
building automation technologies by applying various protocol bindings between field
level protocols and management level WS protocols such as oBIX and OPC UA [14].
The data provided by WS protocols may not necessarily be semantically consistent as,
e.g., the units used may differ.

The integration of BAS into the Semantic Web has been in focus of research as indicated
by a number of ontologies from this area, such as ThinkHome [15], SSN-XG [16] or
SensorML [17]. The goal of these ontologies is simply put to provide a generic vocabulary
which eases the interpretation of data provided by BASs. This allows more complex
scenarios to be implemented.

The SPITFIRE [18] project also defines an own OWL ontology. It already contains
the idea of a Semantic Web crawler collecting the data from all the sensors currently
present and feeding the sensor values to an RDF triple store. Additionally, an approach
is presented which allows to recognize the type of newly deployed sensors, by statistically
comparing their data with already present sensors.

2.2 Internet of Things
The term Internet of Things (IoT) basically refers to a network of connected things such
as sensors, consumer electronics or smart phones. A concise definition as “a world-wide
network of interconnected objects uniquely addressable, based on standard communication
protocols” is provided in [19]. Thus, the Web paradigm is extended to include the things
of everyday life and features of Internet applications are usable for Machine-to-Machine

7

(M2M) and Human-to-Machine (H2M) interactions [20]. The fundamental objective of
interconnecting things is to empower them to create a more precise model of their context
allowing them to provide services which react intelligently to dynamic changes within
their environment [3].

The huge amount of interconnected devices and the data they expose uncloses a set of new
application scenarios currently not available and simultaneously imposes a considerable
amount of challenges to be solved. New applications related to smart environments
(home, office, plant), transportation and logistics, healthcare, the energy sector (smart
grids) will emerge provided that the participating things are connected to the IoT. In
order to unlock the full potential of the IoT, several challenges related to the huge amount
of data involved, the heterogeneity of the connected things, privacy and security issues
still need to be solved [2]. Searching for specific data and discovery of services in the
IoT represents one of the major challenges [3]. Semantic technologies could provide a
solution to problems arising due to the expected high amount of data that are related to
storage, searching, interconnection and organization of data [2]. Semantic technologies in
the sphere of the IoT have generally received a lot of interest in the research community
[21] [17] [22] [23].

Semantic interoperability would allow different agents connected to the IoT to interpret
the exchanged data unambiguously and further would empower automated communication
between things. Unambiguous data descriptions which are interpretable by machines and
software agents are a major driver for automated information exchange within the IoT.
SPARQL queries and semantic reasoning could be used for solving problems related to
knowledge extraction, data abstraction and discovery of resources [3].

A proposal utilizing semantic technologies is the evolution of the IoT to the Semantic
Web of Things (SWoT) as shown in Figure 2.1 [24]. According to that, the IoT is a first
step where all the things should be connected to a global network and the interoperability
between heterogeneous devices should be enabled. In a second step, all things should
be connected via the same application protocol, preferably HTTP, to the global Web
of Things. In the third step, all things are integrated into the SWoT where a common
understanding between all objects is established by utilizing Semantic Web standards.
It is recommended to use ontologies to create a common semantic reference in order to
enable M2M interactions, thus allowing to provide services with higher context awareness,
knowledge and reusability [24].

Still, there are some challenges when it comes to semantic technologies in the domain
of the IoT. There is a need for standardized ontologies that are widely adopted within
the IoT. Semantic annotations allow to create machine-readable and interpretable data.
Nevertheless, as this data is not necessarily machine-understandable there is a need
for advanced methods to create useful abstractions. Additionally, lightweight semantic
technologies that can be executed on devices with limited resources are of importance [3].

8

 Semantic Web
 of Things

 Web of Things

Connect things to the
Internet

Connect things
to the Web

Share things and
compose services

Internet of
Things

Common Network Protocol

Common Application Protocol

Device Abstraction

Common Description

Global Interoperability

Figure 2.1: Semantic Web of Things (adopted from [24])

2.2.1 Smart Grid

The smart grid is considered as one of the most important applications of the IoT [5]. The
core element of the smart grid is a bidirectional communication between energy producers
and energy consumers. It is expected that smart grids will change the paradigm of energy
distribution from a centrally controlled system to a system where the control is distributed
to various objects. This should allow a more precise monitoring and controlling of the
system which should result in less energy loss and higher efficiency [25].

The current approach of energy producers to adapt the production to a given energy
demand is about to be reversed to adjustment of the demand according to the current
production possibilities. Provided that a precise metering of the energy consumption
over time is possible, energy producers could introduce time-dependent tariffs in order to
animate the consumers to flatten their peak demand. It is not enough to publish the
tariffs as due to the increased amount of renewable energy that is injected into the power
grid the tariffs might change in timely manner and therefore a real-time communication
between consumers and operators is required [5].

The combination of IoT technologies with the energy domain is denoted as Internet
of Energy (IoE) [26]. Achieving the goal of higher energy efficiency is only possible

9

by combining users, operators, and intermediaries into such an IoE while complying
with the climate protection goals. For this to be successful, some obstacles still have to
be overcome, such as defining missing standards related to the semantics of the data
exchanged [27].

2.3 Open Building Information Exchange

The open Building Information eXchange (oBIX) specification is released and maintained
by the Organization for the Advancement of Structured Information Standards (OASIS).
The purpose of oBIX [7] is to empower communication between heterogeneous devices by
abstracting from their actual hardware and low-level protocols they use. It provides a
common and standardized interface that models a device to a set of datapoints allowing
to access them via Web Services (WS). A similar WS based approach is also possible via
OPC UA [14] and BACnet/WS [28].

Every accessible oBIX object is identified by its URI [29]. The according information is
exchanged in XML or JSON format over HTTP, which makes the information available
to every Web browser. Essentially oBIX provides the means to enable and improve
the Machine-to-Machine (M2M) communication. oBIX complies very well to the Re-
presentational State Transfer (REST) paradigm which is a core concept in the IoT. A
RESTful service is characterized through a set of principles such as resource-orientation,
identification of resources, a uniform interface and stateless requests which are all essential
to oBIX as well.

oBIX provides a central access object termed lobby, which provides a central access
point to the oBIX server. It offers information about the supported encodings and
bindings of the server, as well as additional information about the specific oBIX server
implementation. In order to start a discovery of provided oBIX objects, a client basically
just needs to connect to the well known lobby (http://server/obix) address.

Additionally, oBIX supports an alarm management mechanism to handle situations
which require the propagation of an alarm state to a responsible agent. It also provides a
logging mechanism to store the history of a datapoint which is essentially a timestamped
list of datapoint values. A batch functionality allows to trigger the execution of multiple
actions with a single request in order to reduce the network overhead. Handling of partial
failures during a batch operation is left to the server implementations [7].

2.3.1 Object Model

oBIX provides a flexible and extendible object model which is depicted in Figure 2.2
[7]. The common base primitive of this model is the object abstraction obix:obj. An
exemplary obix:obj implementation is shown in Listing 2.1.

Every further object type like real, int, str is an extension of the base object. Any object
type can contain further objects, i.e. the concept of composition (has-a relationship) is

10

1 <obj href="/devices/light_switch/" is="obix:Point">
2 <bool name="value" href="value" val="false" writable="true"/>
3 </obj>

Listing 2.1: obix:obj Example

property description
name name of the object
href URI Reference to the object
is Contracts that the object implement
null assertion whether the object contains a value
val value of an object
ts tag of an object

Table 2.1: obix:obj properties

Type name Payload
bool true or false
int integer value
real floating point value
str UNICODE string
enum enumerated value within a fixed range
abstime timestamp
reltime duration or timespan
date date as day, month, and year
time time of day as hour, minutes, and seconds
uri URI

Table 2.2: oBIX Value Types [7]

supported. The extendibility of the model is based on the concept of contracts, which act
as templates for inheritance (is-a relationship). Contracts additionally define properties
for each object type such as default values and attributes attached to it. Properties
supported by all object types are name, href, is, null, val, ts. The meaning of these
properties is explained in Table 2.1.

Further properties e.g. min, max, displayName, unit, range that provide meta-data
about objects are named facets. The unit facet supports most relevant SI-units and the
range, min and max facets limit the range of values which an object may store. The
oBIX standard contains a set of core value objects, each of them storing a different value
type. These are explained in Table 2.2 [7].

11

Obj

display
displayName
href
icon
is
name
status
null
ts
writable

Bool

range
val

Int

max
min
unit
val

Real

max
min
precision
unit
val

Str

max
min
val

Date

max
min
val

AbsTime

max
min
tz
val

RelTime

max
min
val

Time

max
min
val

List

max
min
of

Op

in
out

Feed

in
out

Err

Ref

Uri

Figure 2.2: oBIX object model (adapted from [7])

2.3.2 Contracts

In order to group different object instances sharing common properties, oBIX introduces
the concept of contracts, which are comparable to classes in object oriented languages.
Contract definitions are templates which are expressed as simple oBIX objects and can
be referenced by their URI using the is attribute. The contract definition for the base

12

1 <obj href="obix:obj" null="false" writable="false" status="ok" />
Listing 2.2: obix:obj Contract [7]

oBIX Request HTTP Method
read GET
write PUT
invoke POST
delete DELETE

Table 2.3: oBIX HTTP mapping [30]

object obix:obj is shown in Listing 2.2 [7].

Contracts are proper for modelling inheritance relationships in oBIX. Even multiple-
inheritance is supported. By defining a type, it is possible to assign default values to
its instances and agree on the semantics of an object across different vendor systems
e.g. an obix:Alarm instance has the same object structure on different vendor systems
and implicitly provides information about an alarming condition. The object structure
is explicitly defined by a contract, whereas the reasoning about its semantics usually
demands human interaction.

The concept of contracts is simple and flexible and allows to introduce new abstractions
without inserting new syntax elements to the standard.

2.3.3 Networking

The communication in oBIX conforms to a client/server paradigm, where a client sends
service requests to a server that is handling these requests. The supported service requests
are Read, Write, Invoke and Delete. There exist different protocol bindings for these
atomic operations as REST [30], SOAP [31] and Websockets [32].

The mapping of oBIX service requests to HTTP request methods is shown in Table 2.3
according to [30].

Different encodings such as XML, JSON and EXI are provided for the oBIX standard.

In order to allow a client to keep track of real time information e.g. a temperature sensor
value, the oBIX watch mechanism is presented. The client creates an obix:Watch object
where it registers all the datapoints it is interested in and gets informed if any of these
get updated. Using bindings where it is not possible to push events from server to client
e.g. HTTP, the client has to continuously poll the server for updates, by sending a
pollChanges request, whereas using the Websocket binding allows the server to directly
push events to the client in case of changes on registered datapoints [7].

13

2.4 KNX

The KNX Association, founded in 1999, was the result of a merge between three different
European associations active in the sphere of building automation, each of them providing
an own BAS: Batibus, European Installation Bus (EIB) and the European Home System
(EHS). The association provides an open standard [8] and offers certification services
related to it [5].

The KNX architecture is decentralized which means that all nodes can directly com-
municate with each other without requiring a central control unit to coordinate the
communication [5]. This structure allows for building reliable systems as there is no
single point of failure.

KNX supports a set of different physical layers as Twisted Pair (KNX TP1), Powerline
(KNX PL), Radio Frequency (KNX RF) and Ethernet (KNX IP). The access to KNX
TP1 is regulated with a CSMA/CA access control [5]. KNX IP allows to access a KNX
network via Ethernet and supports two different mechanisms KNXnet/IP routing and
KNXnet/IP tunneling which allows for integrating KNX into IP based networks. The
first one allows to send telegrams simultaneously and connectionless to multiple receivers
via a KNXnet/IP router. KNXnet/IP tunneling allows to address a single receiver in a
connection oriented manner [33].

The functionality of KNX devices is expressed by functional blocks (FB). FBs consist
of inputs, outputs and parameters that are required to perform a given functionality
e.g. sunblind actuator basic [5]. An example from [10] is shown in Figure 2.3. FBs
are defined by a set of datapoints (DPs) specified by the KNX standard that provide
access to the functionality of a block. DPs e.g. switch on/off are determined by the KNX
specification in format and encoding of the according datapoint type (DPT) as range and
unit. They are exposed either as group objects (GO) or as interface objects properties
(IOP). GOs may be read or written over the network using a multicast transmission in
order to exchange sensor or actuator data. IOPs are mostly used for management tasks
like configuration and programming of devices and rely on unicast communication with
individual addresses [34].

14

Figure 2.3: KNX function block [10]

2.4.1 KNX Web Services

The KNX specification is about to be extended with a KNX Web Service specification
[35] which defines a standardized interface that allows to integrate KNX networks with
other IT systems like e.g. the IoT. The interconnection between KNX devices and other
IT systems is enabled by the introduction of a KNX Gateway as shown in Figure 2.4.
The KNX Web interface of the KNX Gateway has to support either oBIX, OPC UA and
BACnet/WS and allows Web clients to read and modify data within the KNX network.
The KNX Network access interface is responsible for the communication to KNX devices.
The KNX information model specifies the structure of the input model that is used to
represent the KNX Network within the KNX Gateway [35].

Figure 2.4: KNX gateway (adapted from [35])

15

The KNX information model is based on the KNX Tag vocabulary which specifies a
set of tags and their relations to each other. It is an extension to the already existing
ETS object model and determines the static structure of a KNX Network whereas the
runtime values are accessed via the KNX Network interface. The presented model foresees
additional sources of information as input to the KNX information model which could
provide required information missing in the ETS e.g. semantic annotations. The KNX
information model allows to specify entities by assigning them tag-value pairs as shown
in Figure 2.5. Tags with a null are named marker tags and define a is-a relationship
whereas the tags ending with ‘Ref ’ are reference tags pointing to other entities. The
entities used to model the general KNX Network structure are shown in Figure 2.6 [35].

Tag Value

Id temp_value

datapoint null

name Temperature Value

direction out

datapointTypeRef DPST_9_001

Figure 2.5: KNX model of a datapoint

The specification provides a mapping from the KNX information model to each of the
supported WS technologies such as oBIX. An exemplary REST GET response from an
oBIX based KNX Gateway is shown in Listing 2.3.

16

1 <obj name="example" href="/installation/example/" is="/knx/Installation" displayName="
Example">

2 <list name="views" href="views" of="obix:ref /knx/View">
3 <ref name="view_heating" href="view_heating" is="/knx/View"/>
4 <ref name="view_alarm" href="view_alarm" is="/knx/View"/>
5 </list>
6 </obj>

Listing 2.3: KNX Gateway oBIX response

Installation

View Device

Functionality

Datapoint

AccessMethod

Figure 2.6: Abstract model of KNX network [35]

2.4.2 ETS

The Engineering Tool Software (ETS) is used to develop and deploy KNX installations.
The software allows to model the building hierarchy, network topology and to create
group objects in order to obtain the desired functionality [36]. It is also possible to name
and describe the group objects with meaningful names. The ETS additionally provides
the means to deploy an application on a given device.

17

Figure 2.7: ETS user interface

The ETS provides an XML export functionality for projects. The files exported contain
all DPs used in the project as well as DPTs, the building structure, the group objects.
These data can be transformed to oBIX as shown in [36] or [37] or to OPC UA as shown
in [38].

2.5 Semantic Web
The Semantic Web provides the means to categorize and classify items and to reason
about the relationships between these items. The idea of the Semantic Web as presented
by Berners-Lee in 2001 [39] is to extend the current Web, where most of the available
data is designed for humans, and to improve the structure of the data by giving the
provided information a well defined meaning empowering advanced H2M and M2M
cooperation opportunities. This provided meaning in which items are logically structured
and connected enables the interoperability of systems [40].

The following features of the Semantic Web are observable: anybody can say anything
about any topic (AAA slogan), the provided information is never complete as new data
can be added any time (open world/closed world) and that semantically equal things can
be named differently in different contexts (nonunique naming) [41].

The World Wide Web Consortium (W3C) has developed a set of technologies and
languages to share meaning across the Semantic Web. The usage of Internationalized
Resource Identifiers (IRIs) [42] in order to uniquely identify items is essential to the
Semantic Web. Basically, an IRI is an extension of a URI as it allows a wider range
of UNICODE characters. As IRIs have a global scope, anyone can reference resources

18

1 <Thermostat_1> <isLocatedIn> <Living Room>
Listing 2.4: RDF statement

associated with them [40]. This allows to semantically reuse or extend existing concepts
and to model relationships amongst them. In the beginnings of the Semantic Web, most
of the proposed technologies were based on the Extensible Markup Language (XML) [43]
which for itself does not provide any means to model semantics. In the meantime, a
wider spectrum of serialization formats has been introduced.

The Resource Description Framework (RDF) [11] is a framework for expressing informa-
tion about resources which can be anything like documents, people or abstract concepts.
It is designed for scenarios where data should be processed by applications instead of
displayed to humans. RDF allows us to make statements about resources. The statements
or triples consist of a subject, predicate and object. An exemplary statement is shown in
Listing 2.4. Subjects and objects are resources. The predicate or property models the rela-
tionship between the resources and is always directed from a subject to an object. Triples
can be visualized as a directed graph as shown in Figure 2.8. They are usually stored
in an RDF store. RDF supports a variety of serialization formats e.g. Turtle [44], N-3 [45].

Figure 2.8: RDF graph visualization

RDF makes statements about resources, but it does not allow to make any statements
about the nature of the resources or what they stand for. In order to enable the
classification of resources, the RDF Schema [46] language was presented. The RDF
Schema introduces the notion of a class expressed through the type property, which allows
to build hierarchies of classes, subclasses, properties and subproperties. This concept is
comparable to classes in object oriented programming languages. However, adding new
properties to existing classes in object oriented programming languages means changing

19

1 <Thermostat_1> <type> <Thermostat>
2 <Thermostat> <subClassOf> <Device>
3 <Living_Room> <type> <Location>
4 <isLocatedIn> <type> <Property>
5 <isLocatedIn> <range> <Location>
6 <isLocatedIn> <domain> <Device>

Listing 2.5: RDF Schema triples

the class, whereas the RDF Schema allows to adapt an existing class to new requirements
without changing the original class [47]. Restrictions on types are expressed through the
domain and range properties. A simple RDF Schema class model is shown in Listing 2.5.
The same hierarchy is visualized as graph in Figure 2.9.

Figure 2.9: RDF Schema graph visualization

RDF Schema is a primitive ontology language [47]. Ontologies are collections of informa-

20

1 PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
2 SELECT ?device
3 WHERE {
4 ?device isLocatedIn Living_Room .
5 ?device rdf:type Thermostat
6 }

Listing 2.6: Simple SPARQL query

tion which formally define relations among terms [39]. As both RDF and RDF Schema
are rather restricted in their expressiveness, the Web Ontology Languagy (OWL) [9] was
introduced. It is designed to model knowledge about things, groups of things and relations
between them, which can be exploited by computer programs. OWL ontologies consist
of classes, properties, individuals and data values. Classes define a concept while the
properties model the relations between these concepts. Individuals are the instantiations
of these concepts. The main exchange syntax for OWL is RDF/XML. Additionally
to the features already supported by RDF Schema, it provides the means to express
equality/inequality of classes, to specifically exclude membership from classes (disjoint
classes), or to apply cardinality restrictions on properties. OWL distinguishes between
datatype properties and object properties. The range of datatype properties is always
a datatype such as string or date. Object properties always point to another resource
object. The relation between RDF/RDF Schema and OWL is depicted in Figure 2.10
according to [47]. The hierarchy from Figure 2.9 after translation to OWL is shown in
Listing 2.8.

An important aspect of the Semantic Web is the possibility to search for semantic data.
Therefore, the W3C has provided the SPARQL Protocol and RDF Query Language
(SPARQL) [12]. This allows to query and even to update RDF stores. SPARQL provides
an HTTP and SOAP binding which allow to remotely execute SPARQL queries. In many
aspects, SPARQL is comparable to the Structured Query Language (SQL) used with
relational databases. The basic primitives of SPARQL queries are the triple patterns
which are similar to normal RDF triples, but instead of the subject, predicate or object
they contain a variable placeholder prefixed with the character ‘?’. Combining multiple
triple patterns which all have to be satisfied is called a group pattern. Group patterns are
enclosed by curly brackets [41]. The simple SPARQL query shown in Listing 2.6 searches
for all thermostats located in the living room. As already mentioned, it is also possible
to update RDF stores with a SPARQL Update [48]. Updates contain a delete and insert
clause specifying which triples to delete and insert, respectively. The simple SPARQL
update shown in Listing is moving a thermostat from the kitchen to the living room.

21

1
2 PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
3 DELETE
4 {
5 ?device isLocatedIn Kitchen
6 }
7 INSERT
8 {
9 ?device isLocatedIn Living_Room

10 }
11 WHERE
12 {
13 ?device isLocatedIn Kitchen .
14 ?device rdf:type Thermostat
15 }

Listing 2.7: Simple SPARQL update

Figure 2.10: RDF/RDF Schema relation to OWL [47]

22

1
2 <owl:Class rdf:about="&testowl;Device">
3 <rdfs:label rdf:datatype="&xsd;string">Device</rdfs:label>
4 </owl:Class>
5
6 <owl:Class rdf:about="&testowl;Thermostat">
7 <rdfs:label rdf:datatype="&xsd;string">Thermostat</rdfs:label>
8 <rdfs:subClassOf rdf:resource="&testowl;Device"/>
9 </owl:Class>

10
11 <owl:Class rdf:about="&testowl;Location">
12 <rdfs:label rdf:datatype="&xsd;string">Location</rdfs:label>
13 </owl:Class>
14
15 <owl:NamedIndividual rdf:about="&testowl;Living_Room">
16 <rdf:type rdf:resource="&testowl;Location"/>
17 </owl:NamedIndividual>
18
19 <owl:ObjectProperty rdf:about="&testowl;isLocatedIn">
20 <rdfs:range rdf:resource="&testowl;Location"/>
21 <rdfs:domain rdf:resource="&testowl;Device"/>
22 </owl:ObjectProperty>
23
24 <owl:NamedIndividual rdf:about="&testowl;Thermostat_1">
25 <rdf:type rdf:resource="&testowl;Thermostat"/>
26 <isLocatedIn rdf:resource="&testowl;Living_Room"/>
27 </owl:NamedIndividual>

Listing 2.8: OWL ontology example

OWL comes with two sublanguages: OWL Full and OWL DL (descriptions logic). OWL
Full is syntactically fully compatible to RDF Schema and is theoretically undecidable.
OWL DL is syntactically restricted and thus less expressive, but due to its restrictions
is decidable, which allows the implementation of reasoners e.g. Pellet [49] that are able
to answer with true or false. Reasoners can be used to check if an ontology is logically
consistent and further might be utilized to gain new knowledge.

2.5.1 ThinkHome

The major goal of the ThinkHome Smart Home System (SHS) [50] [15] is to increase
the energy efficiency of smart homes while assuring a desired level of user comfort. The
system consists of an extensive knowledge base formally specified as an OWL ontology
and an intelligent multi-agent system controlling the smart home functions (cf. Figure
2.11). The agents are capable of making logical decisions on grounds of the knowledge
sourcing from the knowledge base. They might also interact with other agents in order
to perform complex control functions using the ontology as a common vocabulary.

23

Figure 2.11: ThinkHome smart home system [15]

The ontology provided is composed of different modules each of them modelling another
important aspect relevant to the energy efficient operation of residential buildings.
Eventually the full ThinkHome ontology consists of five different ontologies as shown in
Figure 2.12. The building ontology describes all relevant details related to the structure
of the building which are important to allow an energy efficient control of the building.
Therefore, the Green Building XML (gbXML) Schema [51] is integrated into the building
ontology part as presented in [52]. The user preferences ontology allows to model
expectations of users on the system such as a desired temperature at a given schedule.
The weather and exterior part of the knowledge base provides the means to include
exterior parameters as current weather conditions into the SHS. The set of features and
processes which are available to the SHS e.g. heating, opening windows are expressed
by the processes ontology. The energy and resources module provides information on
the available low-level building automation technologies together with a model of energy
related parameters such as energy tariffs and energy providers [50].

The energy and resource ontology contains models of devices commonly used in BASs
such as temperature sensors, presence sensors or light switches. Furthermore, it allows to
locate these devices within a building structure.

24

Figure 2.12: ThinkHome ontology [53]

2.6 IoTSys

IoTSys is an integration middleware for the IoT with focus on building automation
technologies [13]. It is published as an open source [54] Java framework based on OSGi,
consisting of various bundles allowing to specifically tailor the system to a given building
automation scenario. The IoTSys architecture is depicted in Figure 2.13. It provides a
transparent IPv6 based multi-protocol gateway interface for various building automation
technologies such as KNX and BACnet, offering bindings to different data-link and
physical layers. The protocol adapters like the KNX adapter are crucial elements of the
architecture as they provide the binding to BAS specific protocols. The gateway interface
maps different technologies to the oBIX object model and abstracts from the underlying
BAS specific application protocol. The oBIX handler takes care of oBIX Read, Write and
Invoke requests and is independent of the underlying BAS protocol. It provides access to
the oBIX watch mechanism used to monitor changes of runtime data. The presentation
of the oBIX lobby object is also in the scope of the oBIX handler [55].

Additionally to an HTTP binding to oBIX, IoTSys provides a Constrained Application
Protocol (CoAP) [56] binding which supports asynchronous communication between
a server and a client. Further, IoTSys supports the Efficient XML Interchange (EXI)
encoding of the oBIX model. The EXI parser component is responsible for compression
and decompression of the oBIX data between the oBIX handler and the CoAP/HTTP
handler which offer a centralized oBIX compliant network interface [55].

25

Figure 2.13: IoTSys architecture [55]

Due to the fact that reasoning about the semantics of oBIX contracts requires human
interaction, as laid down in [55], it is proposed to enrich the oBIX data with semantic
annotations, that allow a transformation to OWL ontologies targeting the building
automation sector. As described in [13] [37], IoTSys supports the automated configuration
of KNX projects by importing the ETS export file. This approach allows to use the
ETS directly for the semantic annotation of oBIX objects. In the course of the mapping
of KNX to oBIX, the KNX datapoint types are transformed to oBIX objects and the
according datapoint type is preserved in the oBIX model as a contract.

26

CHAPTER 3
Semantic Interoperability Layer

for oBIX (SILo)

In order to enable semantic interoperability that allows to exchange semantically consis-
tent data unambiguously between different machines on basis of oBIX, a transformation
of oBIX resources is required. The data presented at the oBIX interface is syntactically
formalized but the meaning of the representation is not implicit. Semantic Web technolo-
gies provide the means to model the meaning implicitly. Therefore, a transformation of
the oBIX representation to an OWL ontology is proposed. This ensures that the static
structure of the BAS as provided at the oBIX interface is semantically well defined. This
provides the means to use the resulting ontology as a common vocabulary for autonomous
agents, to execute SPARQL queries and to gain new insights through semantic reasoning.

Nevertheless, the runtime data of BASs like sensor and actuator values require an
additional consideration. The transformed ontology depicts the state of a BAS at the
moment of the transformation. An energy efficient operation of BASs which satisfies
the requirements related to comfort necessitates an access to runtime data. Therefore,
a synchronization mechanism needs to be implemented which ensures that the data
presented by the OWL ontology are always up-to-date.

The proposed Semantic Interoperability Layer for oBIX (SILo) as shown in Figure 3.1
is tailored to the oBIX REST binding [30] syntactically encoded in XML. It provides a
SPARQL binding that allows to query and update the values of the BAS in control. The
binding to oBIX is based on HTTP. It provides the means to read the actual data at
the oBIX interface and further to write values of the BAS by exchanging REST calls
between the oBIX server and the SILo implementation.

27

oBIX

KNX ZigBee Modbus ...

SILo

SPARQL

HTTP

Figure 3.1: SILo stack

3.1 Model transformation

Herein, a general concept of the transformation from oBIX to an arbitrary OWL ontology,
providing the means to model a building automation scenario, shall be introduced.

Following observations have an immediate impact on the transformation concept:

• oBIX provides a very flexible object model that allows to describe a BAS.
Different implementations of oBIX servers might represent the same BAS differently
both on the syntactic level and at a different level of abstraction.

• The objects are syntactically well defined by the standard, but the specification
itself shows a lack of inherent semantic information.

• It is expected that in most cases the transformation will need to provide a lift
in the level of abstraction i.e. the resulting ontology will provide a model of
the BAS at a higher level of abstraction, thus providing a wider set of controlling
features.

28

• An oBIX resource is uniquely identified by its URI. OWL classes, properties and
individuals are uniquely identified by an IRI which is an extension of the former.

• As oBIX complies to the RESTful paradigm, information about various resources
of the BAS might not be accessible via a single WS call but may require mul-
tiple interactions in order to gather all the relevant data related to a building
automation scenario.

As both the oBIX source and the resulting ontology can be encoded in XML, the
transformation is based on XSLT. Due to the flexible object model of oBIX, it can be
concluded that an approach as presented in [57] including a mapping of the XML Schema
Definition Language (XSD) [58] Schema to an ontology is not useful as it would allow only
to model the formal syntactical model of oBIX. This concept does not provide the means
to model server specific oBIX contracts which provide explicit semantic information
extremely useful to the transformation. It further can be argued that every specific oBIX
server implementation, as long as there is no standardized oBIX interface, will require a
customized transformation implementation regardless of the used ontology.

As the oBIX standard does not provide the means to model semantic information
implicitly, it is up to server developers to communicate such. Therefore, it can not be
generally expected for such information to be provided by the oBIX server. If required
semantic information is missing, a transformation is only possible provided that the
required semantic information is obtained from a different source. Commonly, providing
semantic information requires a human interaction and is considered as a necessary part
of the transformation engineering process. This needs to be adapted to different oBIX
server implementations. The higher the gap in the level of abstraction between the
oBIX server implementation and the targeted ontology, the more semantic information
needs to be provided in order to allow a transformation, i.e., if the oBIX server delivers
information on the level of datapoints and the targeted ontology models the BAS at the
same level, no or little additional semantic annotations will be required. On the other
hand, if the ontology assigns datapoints to devices, an information will be required as to
define which datapoints should be grouped together to model a device.

As a result of the REST paradigm, which is a core concept in oBIX and the supported
reference feature, it might be necessary to traverse the complete or multiple parts of
the oBIX object tree in the course of the transformation process in order to obtain all
the required information. A specific WS call might return only the relevant data to
this specific resource whereas information about its child objects might be provided as
references. These child references have to be resolved by separate WS calls. Depending
on the specific oBIX server implementation it might be required to traverse the whole
oBIX object tree, starting from the oBIX lobby object, which acts as an entry point to the
services provided by an oBIX server. This might result in an extensive oBIX document,
which contains a lot of non-essential information and thus adds complexity to the XSL
stylesheet implementation. In order to reduce the complexity of the transformation, it
should be possible to specify a set of relevant oBIX object tree nodes which are traversed

29

1 <obj name="example" href="/installation/example/" is="/knx/Installation" displayName=
"Example">

2 <list name="views" href="views" of="obix:ref /knx/View">
3 <ref name="view_devices" href="view_devices" is="/knx/View"/>
4 </list>
5 </obj>

Listing 3.1: oBIX REST response to GET request

and transformed independently and the resulting artefacts are combined to an OWL
ontology representation.

On the grounds of the provided arguments, a generic transformation concept as depicted
in Figure 3.2 for each of the relevant oBIX object nodes is proposed. According to that,
the transformation is performed in an iterative three step process which is described in
the following:

1. Traverse and Combine - In this step, the oBIX server object tree is traversed, starting
from a specified node via multiple WS requests. Subsequently, the responses are
combined into a complete oBIX document, which provides a complete view on the
relevant parts of the oBIX representation of the BAS.

2. Annotate - This optional step allows to introduce semantic data annotations to
the complete oBIX document. This can be omitted if the oBIX server of interest is
already providing the required information. The result of this step is a complete
semantic oBIX document. The semantic annotations should be attached to required
resources via the oBIX contract mechanism.

3. Transform - In a final step, an XSL transformation is performed resulting in the
desired OWL ontology. It is recommended to preserve oBIX URIs as unique
identifiers for OWL individuals during XSL transformation.

Traverse and Combine

Starting from a defined start node of the oBIX object tree, identified by its URI, the
results of single REST calls (GET) have to be combined into the complete oBIX document.
If an oBIX object node contains a reference object (cf. Listing 3.1) this has to be replaced
by its instantiation. This allows the implementation of a recursive algorithm which
replaces all reference objects and returns the desired result as shown in Listing 3.2.

Annotate

The annotation step allows to mark relevant resources with semantical meta-data that
eases the XSL transformation. This step can be omitted if the oBIX interface already

30

XSL
Transformation

oBIX
Server

oBIX
Document

oBIX
Document

oBIX
Response

Additional
Semantic

Information

Complete
oBIX

Document

Complete
Semantic

oBIX
Document

OWL
Ontology

Web Service
Requests

XSL
Stylesheet

Combine Annotate

Figure 3.2: Transformation concept overview

provides semantically enriched data, e.g., a human reader will probably assume that
the temp_sensor object from Listing 3.2 is actually a temperature sensor. Although,
this cannot be inferred unambiguously, as the naming is controlled by the oBIX server
and partly the BAS engineer. A naming convention can be defined that allows to mark
relevant resources with meaningful names in order to annotate resources without doubt.
This convention can be distributed to BAS engineers which could annotate various
systems accordingly during development thus supporting reusability of the provided
transformation. If the presented information at the oBIX interface does not provide any
semantical annotations that can be used to implement a transformation, the engineer
should be provided with the possibility to annotate oBIX resources. An example of a
semantic annotation is shown in Listing 3.3 where a class of the target ontology is used
as annotation.

Transform

In this final step, the complete semantic oBIX document is transformed to the target
ontology by utilizing XSLT. Different target ontologies require customized transformations.
If there is a one-to-one mapping between an oBIX resource and the resulting OWL
individual the URI of the oBIX resource should be used as unique identifier for the

31

1 <obj name="example" href="/installation/example/" is="/knx/Installation" displayName=
"Example">

2 <list name="views" href="views" of="obix:ref /knx/View">
3 <obj name="view_devices" href="view_devices" is="/knx/View"/>
4 <list name="devices" href="devices" of="/knx/Device">
5 <obj name="temp_sensor" href="temp_sensor" is="/knx/Device">
6
7 </obj>
8 </list>
9 </obj>

10 </list>
11 </obj>

Listing 3.2: Complete oBIX document example

1 <obj name="sensor" href="sensor" is="/knx/Device &EnergyResourceOntology;
TemperatureSensor">

2
3 </obj>

Listing 3.3: oBIX semantic annotation example

1 <owl:NamedIndividual rdf:about="http://www.obixserver.org/installation/example/views/
view_devices/devices/sensor">

2 <rdf:type rdf:resource="&EnergyResourceOntology;TemperatureSensor"/>
3 <isIn rdf:resource="&EnergyResourceOntology;LivingRoom1"/>
4 </owl:NamedIndividual>

Listing 3.4: Resulting OWL ontology example

individual thus reducing the complexity of the implementation. An exemplary output of
the XSLT is shown in Listing 3.4.

3.2 Data synchronisation

The SILo implementation has to assure that the data that is provided by its SPARQL
interface is up to date as to allow an adequate and reliable operation of the BAS. It
is assumed that the data available from the oBIX server represents an actual state of
the underlying BAS. Therefore, the task of the synchronization mechanism is to merge
differences between the data provided by the oBIX server and the data presented by the
SPARQL interface within a reasonable time frame.

If data values are changed at the SILo SPARQL interface, the internal representation,
i.e., the OWL ontology has to be updated. Additionally, the affected values at the oBIX

32

server have to be updated in a timely manner. A single SPARQL update might require
several HTTP requests to be transmitted.

One possibility to keep the OWL ontology actualized is to poll the data provided by the
oBIX server recurrently. However, this approach does not scale well as a possibly large
number of sensor and actuator values would produce a high network load even if the
values have not changed. Because of that, the utilization of the oBIX watch mechanism
is proposed. This approach still requires polling due to the fact that HTTP does not
allow the server to contact the client, but reduces the network load substantially as only
updated data values are transmitted. The oBIX Websocket binding [32] would obviate
the usage of the watch service as it allows the server to contact the client on demand.
The utilization of the watch service is depicted in Figure 3.3. As soon as an updated
value is provided by the oBIX watch service, the internal representation needs to be
updated accordingly. The polling interval between successive pollChanges calls should be
adjustable as to allow different control scenarios to be realized.

SILo oBIX

make

add

pollChanges

loop

[valuesOfInterest > 0]

loop

[timeToPoll == 0]

Figure 3.3: SILo synchronisation

33

3.3 Error handling
Two categories of errors are of relevance to SILo. For one, there is always the possibility
of an HTTP error like 403 Forbidden or 404 Not-Found. Potentially, oBIX errors like
BadUriErr, PermissionErr or UnsupportedErr which are proposed by standard or any
custom error message provided by the oBIX server implementation might arise as well.
As both are out of scope of the SILo implementation there are little remedy actions that
could be taken from this side. Generally, any unexpected behaviour between the SILo
implementation and the oBIX server should be signalized at the SPARQL interface in
order to inform the users that the service is currently not available.

34

CHAPTER 4
Implementation - Case Study for

IoTSys and ThinkHome

4.1 Model transformation

4.1.1 Engineering process

The proposed concept allows the implementation of algorithms performing the transforma-
tion. Nevertheless, a human interaction is required for different implementations of oBIX
servers and different target ontologies. As soon as an implementation is provided for a
given oBIX server and a target ontology, different BASs can be transformed automatically.
Still, different BASs might require own semantic annotations if they are not provided by
the oBIX server.

The engineering process for the transformation is outlined in the following:

1. Define target OWL ontology and model required extensions

2. Check oBIX server output for semantic information

3. Semantically annotate oBIX objects relevant to target ontology (optional)

4. Generate complete semantic oBIX documents

5. Implement an XSL transformation for each of the complete semantic oBIX docu-
ments to target ontology

A specification of the oBIX interface such as the KNX Web Service specification proposed
in [35] reduces the engineering effort as it provides a consistent interface to oBIX. Due to
the flexible and extendable nature of the oBIX object model, such specifications appear

35

desirable as they empower the M2M communication. Provided an existing transformation
implementation for a specific target ontology, the engineering process is reduced to the
semantic annotation of oBIX resources. By utilizing the ETS export functionality, it is
even possible to fully automatize this process.

For the proof of concept implementation the steps described above included the following:

1. The ThinkHome ontology was chosen as target ontology. Some minor extensions
were required in order to enable the transformation process.

2. Due to the fact that the used IoTSys oBIX server presents an export of the ETS
model at its oBIX interface, most of the devices required no annotations as a
naming convention was used for the KNX groups names.

3. Some devices not providing enough semantical information were annotated during
the transformation process.

4. Traversing the IoTSys oBIX object tree starting from the lobby resulted in a very
large complete oBIX document which added some complexity to the implementation
of the XSL transformation. The information required for the transformation is
provided by two distinctive oBIX nodes related to the building structure and
functions provided by the BAS. Therefore, two smaller complete semantic oBIX
documents for each of these nodes are created, resulting in less effort for the XSL
transformation implementation.

5. For each of the two complete semantic oBIX documents, an individual XSL trans-
formation is implemented.

4.1.2 Ontology

In order to implement Semantic Web features for automation systems, an ontology is
required. As the reuse of ontologies is desirable in context of ontology design [59], the
ThinkHome EnergyResourceOntology was chosen as a starting point. This ontology
provides the basic means for modelling a diversified set of devices used in the sphere of
home and building automation such as temperature controllers, light intensity sensors or
switches. Additionally, it allows to locate these devices within a building model. As an
example the OnOffLightSwitch class is shown in Listing 4.1.

Various minor extensions to the EnergyResourceOntology are required in order to enable
a semantic interoperablity layer for oBIX. A new datatype property webservicePayload
(cf. Listing 4.2) proved to be valuable as it allowed to model an oBIX content template
to be matched against a received message or to be sent to the oBIX server.

Due to the modelling approach used by the EnergyResourceOntology, where the current
state value of controllable devices is reflected by a unidirectional object property, it was
not possible to operate on the according state value instance alone. Every state value

36

1 <!−− https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/
EnergyResourceOntology.owl#OnOffLightSwitch −−>

2 <owl:Class rdf:about="&EnergyResourceOntology;OnOffLightSwitch">
3 <rdfs:label rdf:datatype="&xsd;string">OnOffLightSwitch</rdfs:label>
4 <owl:equivalentClass>
5 <owl:Class>
6 <owl:intersectionOf rdf:parseType="Collection">
7 <rdf:Description rdf:about="&EnergyResourceOntology;Switch"/>
8 <owl:Restriction>
9 <owl:onProperty rdf:resource="&EnergyResourceOntology;hasFunctionality"/>

10 <owl:someValuesFrom rdf:resource="&EnergyResourceOntology;
NetworkFunctionality"/>

11 </owl:Restriction>
12 <owl:Restriction>
13 <owl:onProperty rdf:resource="&EnergyResourceOntology;hasFunctionality"/>
14 <owl:someValuesFrom rdf:resource="&EnergyResourceOntology;

OnOffNotificationFunctionality"/>
15 </owl:Restriction>
16 <owl:Restriction>
17 <owl:onProperty rdf:resource="&EnergyResourceOntology;hasState"/>
18 <owl:someValuesFrom rdf:resource="&EnergyResourceOntology;OnOffState"/>
19 </owl:Restriction>
20 <owl:Restriction>
21 <owl:onProperty rdf:resource="&EnergyResourceOntology;controlledObject"/>
22 <owl:allValuesFrom rdf:resource="&EnergyResourceOntology;

LightingSystemResource"/>
23 </owl:Restriction>
24 </owl:intersectionOf>
25 </owl:Class>
26 </owl:equivalentClass>
27 <rdfs:comment xml:lang="en">OnOffSwitch for Lights only, derives from ZigBee HA

specifications</rdfs:comment>
28 </owl:Class>

Listing 4.1: EnergyResourceOntology;OnOffLightSwitch

1 <owl:DatatypeProperty rdf:about="&EnergyResourceOntology;webservicePayload">
2 <rdfs:label rdf:datatype="&xsd;string">webservicePayload</rdfs:label>
3 <rdfs:comment xml:lang="en">The payload of a web service call.</rdfs:comment>
4 <rdfs:domain rdf:resource="&EnergyResourceOntology;StateValue"/>
5 </owl:DatatypeProperty>

Listing 4.2: EnergyResourceOntology;webservicePayload

37

change implied a complete traversal of the device RDF graph to find the instance to be
updated. To overcome this limitation and improve performance, a new object property
isValueOf is introduced, which is attached to a state value instance and provides a
bidirectional connection to the device, i.e., a Controllable instance, which is the base
class of all devices. This is depicted in Figure 4.1.

Controllable StateValue

hasCurrentStateValue

isValueOf

rdfs:range

rdfs:range

rdfs:domain

rdfs:domain

Figure 4.1: isValueOf ObjectProperty

For those devices which report more than just one variable e.g. a CO2 sensor which
measures the temperature and the CO2 value, two new object properties were introduced
functionOf and its inverse providesFunction as shown in Figure 4.2. This was necessitated
by the approach chosen by the EnergyResourceOntology how devices are located within
a building. Only the device instance itself is located within a room or a building. These
properties allow to locate multiple functionalities within a building without having to
parse the complete device RDF graph.

A new device as shown in Listing 4.3 was introduced which allows to model a simplified
temperature controller, i.e,. the only variable it supports is the desired temperature.

Additional parameters of interest, which were not already present in the EnergyResour-
seOntology were added to the ontology. These parameters provide means to monitor
the working hours of a switch, the current load of a switch and the number of switching
cycles. The classes and properties required to monitor the current load are displayed in
Figure 4.3. The other two parameters are modelled accordingly.

In order to enable the signalization of error states a simple hierarchy of error classes as
depicted in Figure 4.4 was introduced. The base class SILoError provides a description
of the error as a string via the hasSILoErrorDescription property. The subclasses
SILoObixError and SILoHttpError are used to distinguish between HTTP and oBIX
errors.

38

Controllable
BuildingAutomation
SystemResource

functionOf

providesFunction

rdfs:domain

rdfs:domain

rdfs:range

rdfs:range

owl:inverseOf

Figure 4.2: providesFunction ObjectProperty

Figure 4.3: EnergyResourceOntology;LoadCurrentStateValue

Another change related to the building model was the necessity to make both object
properties contains and its inverse isIn transitive in order to reflect the fact that if a
room is on the second floor of a building, it is still in the building.

4.1.3 Location

In order to meet the requirements of this work, it is essential to localize all the devices we
want to control. The IoTSys oBIX server used as a reference implementation throughout
this work, parses the KNX ETS export project file and provides its contents via a
web interface. Therefore, the building model that is provided by the used oBIX server
implementation corresponds to the ETS building model. An exemplary representation of
an ETS building model is shown in Figure 4.5.

The building model presented by the used oBIX server is displayed in Listing 4.4. During
the transformation process each oBIX room type is mapped to an EnergyResourceOnto-
logy class. The simple mapping is shown in Table 4.1.

During the XSL transformation the according building model is transformed to an OWL

39

1 <owl:Class rdf:about="&EnergyResourceOntology;TemperatureController">
2 <rdfs:label rdf:datatype="&xsd;string">TemperatureController</rdfs:label>
3 <rdfs:subClassOf rdf:resource="&EnergyResourceOntology;

BuildingAutomationSystemResource"/>
4 <rdfs:subClassOf>
5 <owl:Restriction>
6 <owl:onProperty rdf:resource="&EnergyResourceOntology;hasState"/>
7 <owl:someValuesFrom rdf:resource="&EnergyResourceOntology;TemperatureState"/>
8 </owl:Restriction>
9 </rdfs:subClassOf>

10 <rdfs:subClassOf>
11 <owl:Restriction>
12 <owl:onProperty rdf:resource="&EnergyResourceOntology;hasFieldOfApplication"/>
13 <owl:someValuesFrom rdf:resource="&EnergyResourceOntology;

TemperatureFieldOfApplication"/>
14 </owl:Restriction>
15 </rdfs:subClassOf>
16 <rdfs:subClassOf>
17 <owl:Restriction>
18 <owl:onProperty rdf:resource="&EnergyResourceOntology;hasFunctionality"/>
19 <owl:someValuesFrom rdf:resource="&EnergyResourceOntology;

TemperatureRegulationFunctionality"/>
20 </owl:Restriction>
21 </rdfs:subClassOf>
22 <rdfs:comment xml:lang="en">A mechanism that allows controlling a temperature.</rdfs:

comment>
23 </owl:Class>

Listing 4.3: EnergyResourceOntology;TemperatureController

1 <list href="part/" is="obix:Range">
2 <obj name="building" href="part/building" displayName="Building"/>
3 <obj name="buildingpart" href="part/buildingpart" displayName="BuildingPart"/>
4 <obj name="floor" href="part/floor" displayName="Floor"/>
5 <obj name="room" href="part/room" displayName="Room"/>
6 <obj name="corridor" href="part/corridor" displayName="Corridor"/>
7 <obj name="stairway" href="part/stairway" displayName="Stairway"/>
8 <obj name="distributionboard" href="part/distributionboard" displayName="

DistributionBoard"/>
9 </list>

Listing 4.4: oBIX Building model

40

SILoError

SILoObixError SILoHttpError

rdfs:subclassOf rdfs:subclassOf

hasSILoErrorDescriptionrdfs:domain

rdfs:range

xsd:string

Figure 4.4: SILoError model

oBIX EnergyResourceOntology
building &EnergyResourceOntology;Building
buildingpart &EnergyResourceOntology;BuildingPart
floor &EnergyResourceOntology;BuildingStorey
room &EnergyResourceOntology;Room
corridor &EnergyResourceOntology;Corridor
stairway &EnergyResourceOntology;Stairway
distributionboard &EnergyResourceOntology;DistributionBoard

Table 4.1: Building Mapping

building model that is represented by EnergyResourceOntology individuals. The layout
of the building is preserved by the transformation. Additionally, all the devices found
in the building are localized within the OWL building model. An example outcome of
the transformation is shown in Figure 4.6. Every OWL class, property or individual is
uniquely identified by an rdf:about attribute. During the transformation the absolute
oBIX server URL is used as identifier for OWL instances.

It has to be noted that the XSL transformation implementation is dependent on the oBIX

41

Figure 4.5: ETS building model

1 <obj name="P−013F−0_BP−3" href="a_lab/" is="knx:Part" displayName="A−Lab">
2 <enum name="type" href="a_lab/type" val="room" range="/enums/part"/>
3 <list name="instances" href="a_lab/instances" of="knx:InstancePart">
4 <obj name="P−013F−0_DI−53" href="a_lab/instances/4" is="knx:InstancePart">
5 <ref name="reference" href="/networks/e183_1/entities/presence_detector_up_258_21

/1" is="knx:Entity" displayName="Presence detector UP 258/21"/>
6 </obj>
7 <obj name="P−013F−0_DI−61" href="a_lab/instances/7" is="knx:InstancePart">
8 <ref name="reference" href="/networks/e183_1/entities/

knx_co2__feuchte__und_temperatursensor/1" is="knx:Entity" displayName="
KNX CO2−, Feuchte− und Temperatursensor"/>

9 </obj>
10 <obj name="P−013F−0_DI−62" href="a_lab/instances/8" is="knx:InstancePart">
11 <ref name="reference" href="/networks/e183_1/entities/switching_actuator_n_562_11

/1" is="knx:Entity" displayName="Switching Actuator N 562/11"/>
12 </obj>
13 </list>
14 </obj>

Listing 4.5: oBIX building example

server used. Slight differences in regards of the building model representation would
require an adaptation to the implementation. Furthermore, using a different ontology
would also require an adaptation to the XSLT implementation.

4.1.4 Devices

In a first step, the building model is transformed and all devices i.e. all sensors, switches or
controllers are localized within the building model. In order to draw semantic conclusions
about an heterogeneous automation scenario, all these devices need to be transformed to
OWL individuals as well. The transformation process for entities is implemented as an

42

Figure 4.6: OWL building model example

CO2 sensor
Humidity Sensor
Light Sensor

On/Off Light Switch
Presence Sensor

Temperature Sensor
Temperature Controller

Table 4.2: Supported Device Types

XSL transformation similar to the building model transformation.

The transformation itself is dependent on the specific device type like light switch,
presence detector or humidity sensor. A set of device types supported in this work is
shown in Table 4.2.

A reference to each KNX device used in a KNX automation scenario is published via
the oBIX server as an entity. Such an entity can support multiple functions e.g. a KNX
switch actuator 4-fold is represented as a single entity which itself provides up to 4 logical
functions. The different logical functions are defined by the KNX groups to which the
device is programmed. It should be noted that in the used OWL building model only the
entity is localized but not the logical function. Therefore, we need a connection between
the logical groups and the device in order to localize each of the functions within a
building. The interconnections between entities, buildings and logical functions is shown
in Figure 4.7.

In order to determine all logical functions of a device, a manual engineering process is
required. In ETS it is possible to provide each of the KNX groups with a meaningful

43

Entities

Functional
View

Building
View

references references

Figure 4.7: IoTSys oBIX model

Keyword Device Type
co2 CO2 sensor

relfeuchte Humidity Sensor
licht On/Off Light Switch

hk_raumtemperatur_ist Temperature Sensor
hk_raumtemperatur_soll Temperature Controller

Table 4.3: Device type naming convention

name. With regard to automating the transformation, a naming convention was set up
which is used to determine the logical function of a KNX group and thus the device type
itself. The used group names and according device type are shown in Table 4.3. During
the transformation process each group name is evaluated to determine the according
device type. If a group name contains a specific keyword, it is mapped to the according
device type individual. Each logical function that is provided by an entity is modelled as
an own device type i.e. if a switch actuator 4-fold is programmed to 4 different KNX
groups after the transformation there will be 4 OWL switch individuals representing each
of them.

In order to allow the tracking of the current load, switching cycle count and the operating
hours count, StateValue instances are connected to matching Switch individuals. The
detection of these StateValue individuals is also based on a naming convention as shown
in Table 4.4.

A naming convention is useful if a new KNX project is started and this convention is
followed throughout the whole project. In such a case, an existing XSL transformation
could be reused multiple times. If the KNX project already exists and it requires

44

Keyword StateValue
laststrom Load Current State

betriebsstunden Operating Hours State
schaltspielzahl Switching Cycles State

Table 4.4: State value naming convention

1 http://localhost:8080/networks/e183_1/entities/presence_detector_up_258_21/1/datapoints/
output_brightness=EnergyResourceOntology;LightSensor

2 http://localhost:8080/networks/e183_1/views/functional/groups/e183_1/groups/iotsensoren/
groups/indoorbrigthnesssensor=EnergyResourceOntology;LightSensor

3
4 http://localhost:8080/networks/e183_1/entities/presence_detector_up_258_21/1/datapoints/

output_presence=EnergyResourceOntology;PresenceSensor
5 http://localhost:8080/networks/e183_1/views/functional/groups/e183_1/groups/iotsensoren/

groups/presencedetector=EnergyResourceOntology;PresenceSensor
Listing 4.6: Semantic annotation properties

additional semantic information it should be verified, whether it is easier to adapt an
existing XSL transformation than to rewrite the whole KNX project to comply with a
naming convention.

As we used an existing ETS project, which lacked any semantical information for
PresenceSensor and LightSensor instances, an annotation process was required in order
to enable the transformation for these device types. The according oBIX nodes identified
by their URL are enhanced with semantical information as shown in Listing 4.6. This
annotation process results in a complete semantic oBIX document, where the according
oBIX nodes are annotated via the oBIX contract mechanism. This information can be
used throughout the XSL transformation in order to define the according device type.

In the following, the supported device types and state values that are the result of XSL
transformation shall be presented.

45

CO2 Sensor

hasState

isFunctionOf

contains

isValueOf

hasCurrentStateValue

CO2Sensor
Device

Room

CO2Sensor

CO2State CO2StateValuehasState

Figure 4.8: CO2Sensor

The CO2Sensor is connected to CO2State instance via the hasState property and to
the CO2StateValue instance via the hasCurrentStateValue property as shown in Figure
4.8. In the EnergyResourceOntology used throughout this work the StateValue instances
always contain the measurements. Mostly they have a property realStateValue containing
a numerical value and a hasNativeUnit property holding the unit of the value. In this case,
the unit used is parts per million (PPM). The CO2Sensor is localized within the building
via the device to which it is attached via the isFunctionOf property. The CO2StateValue
instance contains a webservicePayload property which is used as a template to match
received messages from the oBIX server, i.e., to be able to retrieve the value from the
oBIX message.

46

Humidity Sensor

hasState

isFunctionOf

contains

isValueOf

hasCurrentStateValue

HumiditySensorDevice Room

HumiditySensor

HumidityState HumidityStateValuehasState

Figure 4.9: HumiditySensor

The HumiditySensor is connected to HumidityState instance via the hasState property and
to HumidityStateValue instance via the hasCurrentStateValue property as shown in Figure
4.9. An HumidityStateValue instance contains the measurements and has a property
realStateValue containing a numerical value and a hasNativeUnit property holding the
unit of the value. In this case, the unit used is percent (%). The HumiditySensor is
localized within the building via the device to which it is attached via the isFunctionOf
property. The HumidityStateValue instance contains a webservicePayload property which
is used as a template to match received messages from the oBIX server, i.e., to be able
to retrieve the value from the oBIX message.

47

Light Sensor

hasState hasCurrentStateValue

isValueOf

hasStateValue

isFunctionOf

contains
Light

Sensor Device

LightSensor

Room

LightIntensityState
LightIntensity

StateValue

Figure 4.10: LightSensor

The LightSensor is connected to LightIntensityState instance via the hasState property
and to LightIntensityStateValue instance via the hasCurrentStateValue property as shown
in Figure 4.10. A LightIntensityStateValue instance contains the measurements and has
a property realStateValue containing a numerical value and a hasNativeUnit property
holding the unit of the value. In this case, the unit used is lux. The LightSensor is
localized within the building via the device to which it is attached via the isFunctionOf
property. The LightIntensityStateValue instance contains a webservicePayload property
which is used as a template to match received messages from the oBIX server, i.e., to be
able to retrieve the value from the oBIX message.

48

Presence Sensor

hasState

hasStateValue

isFunctionOf

contains

hasStateValue

isValueOf

hasCurrentStateValue

PresenceSensorDevice Room

PresenceSensor

PresenceState

PresentState
Value

NotPresentState
Value

Figure 4.11: PresenceSensor

The PresenceSensor is connected to PresenceState instance via the hasState property
and either to a PresentState or NotPresentState instance via the hasCurrentStateValue
property as shown in Figure 4.11. This sensor provides just two states the PresentState
and NotPresentState which have no units. The PresenceSensor is localized within the
building via the device to which it is attached via the isFunctionOf property. Both, the
PresentState and NotPresentState instances contain a webservicePayload property which
is used as a template to match received messages from the oBIX server, i.e., to be able
to retrieve the value from the oBIX message and to decide if someone is present or not.

49

Temperature Sensor

hasState hasCurrentStateValue

isValueOf

hasStateValue

isFunctionOf

contains
TemperatureSensor

Device

TemperatureSensor

Room

TemperatureState TemperatureStateValue

Figure 4.12: TemperatureSensor

The TemperatureSensor is connected to TemperatureState instance via the hasState
property and to TemperatureStateValue instance via the hasCurrentStateValue property
as shown in Figure 4.12. A TemperatureStateValue instance contains the measurements
and has a property realStateValue containing a numerical value and a hasNativeUnit
property holding the unit of the value. In this case, the unit used is Celsius (◦C).
The TemperatureSensor is localized within the building via the device to which it is
attached via the isFunctionOf property. The TemperatureStateValue instance contains a
webservicePayload property which is used as a template to match received messages from
the oBIX server, i.e., to be able to retrieve the value from the oBIX message.

50

Temperature Controller

hasState

isFunctionOf

contains

isValueOf

hasCurrentStateValue

TemperatureController
Device

Room

TemperatureController

TemperatureState TemperatureStateValuehasState

Figure 4.13: TemperatureController

The TemperatureController is very similar to the TemperatureSensor in regards of its
structure, but its purpose is different as it is used to set a desired temperature. The
controller is connected to TemperatureState instance via the hasState property and to
TemperatureStateValue instance via the hasCurrentStateValue property as shown in Figure
4.13. A TemperatureStateValue instance contains the measurements and has a property
realStateValue containing a numerical value and a hasNativeUnit property holding the
unit of the value. In this case, the unit used is Celsius (◦C). The TemperatureSensor is
localized within the building via the device to which it is attached via the isFunctionOf
property. The TemperatureStateValue instance contains a webservicePayload property
which is used as a template to match received messages from the oBIX server, i.e., to be
able to retrieve the value from the oBIX message.

51

Light Switch

hasState

hasStateValue

isFunctionOf

contains

hasStateValue

isValueOf

hasCurrentStateValue

SwitchDevice Room

OnOffLightSwitch

OnOffState

OnStateValue

OffStateValue

SimpleLamp

controlledObject

Figure 4.14: LightSwitch

The OnOffLightSwitch is connected to OnOffState instance via the hasState property
and either to an OnStateValue or OffStateValue instance via the hasCurrentStateValue
property as shown in Figure 4.14. This switch provides just two state values the
OnStateValue and OffStateValue which have no units. The OnOffLightSwitch is localized
within the building via the device to which it is attached via the isFunctionOf property.
Both, the OnStateValue and OffStateValue instances contain a webservicePayload property
which is used as a template to send messages to the oBIX server, i.e., to be able to turn
the lights on or off. An important aspect of the OnOffLightSwitch is that it is connected
to a SimpleLamp individual via the controlledObject property. Both, the switch and
the lamp instances point to the same individual of type OnOffState and both show to
the same StateValue instance via the hasCurrentStateValue property. This has to be
considered during execution of SPARQL updates as both individuals need to be updated
accordingly.

52

Operating Hours StateValue

isOperatingHoursStateValueOf

contains
Switch
Device

OperatingHoursStateValue

Room

Figure 4.15: Operating hours count state value

This is a StateValue instance that should return the amount of operating hours of
a corresponding switch. As shown in Figure 4.15, the hours are stored within an
instance of OperatingHoursStateValue. This instance is attached to the actual switch
via an object property isOperatingHoursStateValueOf which has an inverse property
hasOperatingHoursStateValueOf. The corresponding switch is localized within a building
part. The OperatingHoursStateValue instance contains a webservicePayload property
which is used as a template to match received messages from the oBIX server.

53

Switching Cycles StateValue

isSwitchingCyclesStateValueOf

contains
Switch
Device

SwitchingCyclesStateValue

Room

Figure 4.16: Switching cycles count state value

This is a StateValue instance that should return the switching cycle count of a correspon-
ding switch. As shown in Figure 4.16, the amount of switching cycles is stored within
an instance of SwitchingCycleStateValue. This instance is attached to the actual switch
via an object property isSwitchingCycleStateValueOf which has an inverse property
hasSwitchingCycleStateValueOf. The corresponding switch is localized within a building
part. The SwitchingCycleStateValue instance contains a webservicePayload property
which is used as a template to match received messages from the oBIX server.

54

Load Current StateValue

isLoadCurrentStateValueOf

contains
Switch
Device

LoadCurrentStateValue

Room

Figure 4.17: Load current state value

This is a StateValue instance that should return the actual load current of a corresponding
switch. As shown in Figure 4.17, the current is stored within an instance of LoadCur-
rentStateValue. This instance is attached to the actual switch via an object property
isLoadCurrentStateValueOf which has an inverse property hasLoadCurrentStateValueOf.
The corresponding switch is localized within a room. The LoadCurrentStateValue instance
contains a webservicePayload property which is used as a template to match received
messages from the oBIX server.

4.2 SILoTool

The SILoTool is a software application implemented in Java. The intention of this
application is to support the engineer throughout the transformation process and to allow
a user to execute SPARQL queries and updates in order to control a BAS regardless
of the heterogeneous technologies used at the field level. As shown in Figure 4.18, it
consists of different modules which provide different features. The modules are shortly
described herein:

55

1 java SILoTool
2 --create --serverUrl= [--startUrl=] [--recursive=] [--target=]
3 --annotate --serverUrl= [--startUrl=] [--recursive=] [--annotationProperties

=] [--target=]
4 --transform --serverUrl= [--annotationProperties=] --transformationProperties

= [--target=]
5 --run --ontology= --serverUrl= --transformationProperties= [--

annotationProperties=] [--watchPeriod=] [--ontologyHandlerPackage=]

Listing 4.7: SILoTool usage

SILoTool

coreutils thinkhome tool

Figure 4.18: SILoTool modules

utils This module provides the means to perform an XSL transformation. Additionally,
it supports HTTP communication via GET, POST and PUT requests. If offers an
XML parsing functionality as well.

core This module contains the core components of the SILoTool. It implements an
oBIX client used to communicate with the oBIX server supporting the oBIX
watch mechanism. Additionally, it provides a SILo framework used to adapt oBIX
messages to RDF statements of the target ontology and store them in an Apache
Jena [60] RDF triple store. Finally, it supports the binding to different target
ontologies via the SILoOntologyHandler interface.

thinkhome This module is the SILoOntologyHandler interface implementation for the
ThinkHome ontology. It provides the means to update the RDF triple store as to
generate oBIX update requests.

tool The tool module allows to run the SILoTool in order to perform different tasks
such as to generate a complete oBIX document, a semantically annotated complete
semantic oBIX document, to perform an XSL transformation or to run the SILo
Web crawler.

The usage of the SILoTool is shown in Listing 4.7 and is described in the following:

56

create

The create command allows to create a complete oBIX document.

serverUrl The address of the oBIX server.

startUrl The optional address of the specific oBIX server object node for which the
document should be created.

recursive An optional parameter indicating whether oBIX references should be resolved
to the objects they reference.

target File name where the result should be stored to. If no target is provided the result
is printed to System.out.

annotate

The annotate command allows to create a complete semantic oBIX document.

serverUrl The address of the oBIX server.

startUrl The optional address of the specific oBIX server object node for which the
document should be created.

recursive An optional parameter indicating whether oBIX references should be resolved
to the objects they reference.

annotationProperties Java property file defining how specified nodes should be anno-
tated via the oBIX contracts mechanism (cf. Listing 4.6).

target File name where the result should be stored to. If no target is provided the result
is printed to System.out.

transform

The transform command allows to perform XSL transformations for specified oBIX object
nodes.

serverUrl The address of the oBIX server.

annotationProperties Optional Java property file defining how specified nodes should
be annotated via the oBIX contracts mechanism (cf. Listing 4.6).

transormationProperties Java property file defining how specified nodes should be
transformed to the target ontology. The format of the file is shown in Listing 4.8. It
specifies which XSL transformation file to use for which oBIX object node, whether
to recursively traverse the oBIX object node and to resolve references.

57

1
2 0_xsl_http=http://localhost:8080/networks/e183_1/views/building/
3 0_xsl_file=buildings.xsl
4 0_xsl_traverse=false
5
6 1_xsl_http=http://localhost:8080/networks/e183_1/views/functional/groups
7 1_xsl_file=groups.xsl
8 1_xsl_traverse=false

Listing 4.8: SILoTool transformation properties

target File name where the result should be stored to. If no target is provided the result
is printed to System.out.

run

The run command allows to perform a SILo transformation and to run the SILo Web
crawler in order to control a BAS via a SPARQL interface.

ontology File name of the target ontology.

serverUrl The address of the oBIX server.

annotationProperties Optional Java property file defining how specified nodes should
be annotated via the oBIX contracts mechanism (cf. Listing 4.6).

transormationProperties Java property file defining how specified nodes should be
transformed to the target ontology. The format of the file is shown in Listing 4.8. It
specifies which XSL transformation file to use for which oBIX object node, whether
to recursively traverse the oBIX object node and to resolve references.

watchPeriod An optional parameter specifying the delay between two consecutive oBIX
watch pollChanges requests.

ontologyHandlerPackage An optional parameter specifying where to search for the
SILoOntologyHandler interface implementation. By default the crawler searches in
silo.ontology.handler.*.

The SILo Web Crawler behaves as an oBIX client and connects to an oBIX server as shown
in Figure 4.19. The oBIX server is responsible for abstracting from a heterogeneous
automation scenario and providing a consolidated view on the situation via Web services.
The information gathered from the oBIX server is stored in a Knowledge Base (Apache
Jena OWL model) which is accessible to a user via SPARQL. This Knowledge Base can
be both queried via SPARQL and also updated via SPARQL. An update operation in
SPARQL is forwarded to the oBIX server and allows to actively change values of the
BAS, e.g., the desired temperature.

58

oBIX Server

KNX
Device

KNX
Device

KNX
Device

KNX
Device

KNX
Device

SILo Web crawler
SPARQL

Figure 4.19: SILo Web crawler

4.2.1 Apache Jena

Apache Jena [60] is a free and open source Java framework for the Semantic Web. It
provides several APIs that interact together in order to process RDF data. Figure
4.20 depicts its general architecture. At the core of Jena there is the RDF Application
Programming Interface (API) which allows manipulating RDF graphs. The contents
of an RDF triple store are presented in a container named Model which is a high-level
abstraction of a directed graph.

Jena also provides an Ontology API which allows to handle RDF Schema and OWL
ontologies. Jena supports all ontology languages from the most expressive OWL to the
weakest RDF Schema and provides a consistent interface across the different language
variants. Ontologies are stored in an ontology model which is an extension of the presented
Model. Nevertheless the ontology model is stored in an RDF store as the Ontology API
does not change the way how the data is persisted underneath. All Ontology API
interactions are mapped to RDF triple store functions.

Jena provides a set of internal reasoners and additionally enables external reasoners such
as Pellet [49] to attach to Jena through its Inference API. The internal reasoners usually
extend the basic ontology model with inferred RDF triples and thus provide a consistent

59

Figure 4.20: Apache Jena architecture [60]

view on the extended ontology model which allows to access inferred triples exactly the
same way as basic triples.

Jena also provides support for SPARQL and SPARQL Update. It even has implemented
a standalone SPARQL server named Fuseki which allows to execute SPARQL queries
over the Web.

The Jena Store API is responsible for the storage of RDF data. It is possible to keep the
data in memory, but also to utilize a mechanism named SDB which stores the data in a
relational database. TDB is a high performant storage solution for RDF stores which
directly stores the data to disk and fully supports SPARQL.

60

4.2.2 Architecture

The general architecture overview of the SILo Web crawler is shown in Figure 4.21.

oBIX
Server

oBIX
Server

OWL
Model

OWL
Model

DATAPOINT 1

DATAPOINT 2

DATAPOINT 3

OWL
Model

KNOWLEDGE
BASE

oBIX
Watcher

SILoHandler

OWL
ModelListener

oBIX
ModelConverter

fetchModelcreateIndividuals

oBIX
Updater

setValue

updateOwlModel

updateObix

User
SPARQL

oBIX
Server

Engineer
XSL

Semantic
Annotations

Figure 4.21: SILo Web crawler architecture

The central core component of the SILo Web crawler is the SILoHandler which acts as
an interface between the OWL model and the oBIX server. Every request is handled
by the singleton SILoHandler instance. Basically the SILoHandler is just a wrapper for
the target ontology specific SILoOntologyHandler implementation to which every call
is forwarded. The SILoHandler updateOwlModel method shown in Listing 4.9 is called
when an update was signalized by the oBIX watch mechanism and takes care of the
synchronization. The SILoHandler is the only component which is allowed to update the
RDF triple store.

The OwlModelListener is called whenever the OWL model changes. It is used to propagate
changes of the OWL model to the oBIX server. On every change the control is forwarded
to the SILoHandler via the updateObix method which delegates the handling to the
target ontology specific SILoOntologyHandler. The SILoHandler provides the means to
decide whether a change is relevant to the oBIX server.

The ObixWatcher is used to track changes on oBIX server side. It polls for changes
from the oBIX server. The delay between two consecutive pollChanges executions is

61

1 public void updateOwlModel(ObixWatchOut obixWatchOut) {
2 for (ObixWatchOutListItem item : obixWatchOut.getList()) {
3 SILoDeviceControl siLoDeviceControl = controlledDevices.get(item.getHref()

);
4 try {
5 siLoDeviceControl.getSemaphore().acquire();
6 siLoDeviceControl.setObixUpdateRequired(false);
7 List<OwlModelUpdateOperation> owlModelUpdateOperations = ontologyHandler.

getOwlModelUpdateOperations(item);
8 updateOntologyModel(owlModelUpdateOperations);
9 siLoDeviceControl.setObixUpdateRequired(true);

10 } catch (Exception e) {
11 SILoErrorHandler.handleError(e);
12 } finally {
13 siLoDeviceControl.getSemaphore().release();
14 }
15 }
16 }

Listing 4.9: SILoHandler.updateOwlModel

configurable. In case of a change, the SILoHandler instance is informed and performs all
further tasks required. The ObixUpdater is utilized in order to send oBIX requests to the
oBIX server.

The ObixModelConverter fetches the oBIX data and performs a SILo transformation.
The results are stored to the RDF triple store.

4.2.3 Functionality

After startup, the adapted EnergyResourceOntology which represents the TBox is loaded
and an OWL model is created. Therefore, the already mentioned Apache Jena framework
is used. In order to enable inferring of logical conclusions within the ontology, the Pellet
[49] reasoner is instantiated.

Afterwards, the ObixModelConverter fetches the oBIX server and performs the SILo
transformation according to the specified annotation and transformation properties. The
result of the SILo transformation is a representation of the oBIX model as a set of
target ontology individuals which are eventually stored into the RDF triple store. This
mechanism is depicted in Figure 4.22.

In a separate step, the units used by the oBIX server such as PPM or lux are retrieved
and published locally via the ObixUnitFactory. This factory instance is used to resolve
the units received from oBIX datapoints.

Eventually, the SILoHandler and the SILoOntologyHandler are instantiated and initialized.
The ObixWatcher class provides the means to create an oBIX watcher for a datapoint
and to query the oBIX server for any updates. As soon as a watcher has been created

62

Main ObixModelConverter ObixRetriever XSLTTranformer

fetchAndConvert

oBIX ServerOntModel

read

createCompleteObixDocument

for all transformations

GET transform_url

retrieveObix

traverse

convert

for all complete semantic oBIX documents

Figure 4.22: SILo Web crawler startup

for a single device, a timer task is started which polls the server for any changes with a
configured delay. This functionality is displayed in Figure 4.23.

The OwlModelListener class extends the Apache Jena ObjectListener class. Its implemen-
tation allows to react to changes of the OWL model. In case of a SPARQL update, the
listener is called and delegates to the SILoHandler in order to update the oBIX server
accordingly, as shown in Figure 4.24. If the change happened on the oBIX server, the
listener is informed as well, but in this case the oBIX server should not be updated as it
was the actual source of the change. The SILoHandler takes care that the propagation of
the update is stopped via the obixUpdateRequired member as displayed in Figure 4.25.

The SILoErrorHandler singleton class is responsible for the error propagation. In case of
an HTTP or oBIX error, a SILoError object is instantiated and the SILoErrorHandler
enters the error mode. While in error mode, the user is informed about the error state
in case of SPARQL query or update executions. This allows the user to take measures
suited to leave the error condition state.

4.2.4 SILoOntologyHandler

Generally, the SILoOntologyHandler depicted in Figure 4.26 performs the following task:

63

SILoOntologyHandler ObixWatcher oBIX ServerSILoHandler

initHandler

registerDevicesForWatch

addInstance

POST .../watch/add

updateOwlModel

getOwlUpdateOperations
pollTimerTask

POST .../watch/pollChanges

updateOwlModel

getOwlUpdateOperations

for all devices

Figure 4.23: ObixWatcher Functionality

• Specify all the devices that need to be watched by the oBIX watch mechanism.

• Create oBIX update requests that are to be sent to the oBIX server in case of
SPARQL updates.

• Create model update operations in order to update the OWL model after a change
on the oBIX server was observed.

SILoOntologyHandler

void initHandler(obixServerUrl : String, final ontModel : OntModel)
List<SILoDevice> getDevicesForObixWatch()
List<OwlModelUpdateOperation> getOwlModelUpdateOperations(watchItem : ObixWatchOutListItem)
ObixUpdateRequest getObixUpdateRequest(statement : Statement, added : boolean)

Figure 4.26: SILoOntologyHandler

64

SPARQL

oBIX

OWL Model

SILoHandler

OwlModelListener

Add Statement

addedStatement

updateObix

Figure 4.24: SPARQL Update

SPARQL

oBIX

OWL Model

SILoHandler

OwlModelListener

UPDATE

addedStatement

updateOwlModel

No oBIX update
required

Figure 4.25: oBIX Update

All these tasks are dependent on the target ontology. By implementing the SILoOnto-
logyHandler interface it is possible to bind various target ontologies to the SILoTool.
By default, the SILoTool searches the silo.ontology.handler.* package for implemen-

65

tations of the SILoOntologyHandler interface which are eventually instantiated and
injected to the SILo Web crawler. It is also possible to configure the SILoTool to look
in an arbitrary package by providing the ontologyHandlerPackage startup parameter.
The ThinkHome SILoOntologyHandler implementation provided with the SILoTool is
a reference implementation of the SILoOntologyHandler interface for the ThinkHome
ontology.

The ObixSewoaHandler class is the ThinkHome implementation of the SILoOntology-
Handler interface. It allows to register ObixDeviceHandler implementations which handle
requests for specific device types or state values. During initialization, every ObixDevice-
Handler searches the OWL model for individuals of its designated OWL class and returns
their URLs, which are used as an identifier for the specific device. The ObixSewoaHandler
maintains a mapping between these devices and the corresponding ObixDeviceHandler
implementation. In case of an updateOwlModel or updateObixRequest call, it consults the
map in order to find the responsible ObixDeviceHandler and delegates the execution to
it.

As the SILoHandler is the only component allowed to update the OWL model, the
ObixDeviceHandler returns a list of OwlModelUpdateOperation instances to be executed
in order to update the model in case of an oBIX update. Currently four different types
of operations for an OWL individual are supported:

• Add an object type property statement.

• Add a data type property statement.

• Remove a specific property statement.

• Remove all property statements.

In order to create OwlModelUpdateOperation instances, the OwlModelUpdateOperation
factory can be utilized. Eventually the SILoHandler executes these operations asserting
an atomic execution. This approach eases the implementation of the SILoOntologyHandler
interface as the SILoHandler is required to take care of the synchronization.

In case of a SPARQL update, the ObixSewoaHandler delegates the generation of ObixUp-
dateRequest instances to the responsible ObixDeviceHandler. It is up to the ObixDevice-
Handler instance to decide whether an update is necessary. If the oBIX server needs to
be informed about a change triggered by a SPARQL update execution, it must return an
ObixUpdateRequest instance, specifying the HTTP request type, the target URL and the
payload, which is forwarded to the ObixUpdater in order to send the request.

66

CHAPTER 5
Test Lab

The functionality of the SILo Web crawler was evaluated in the A-Lab of the Institute
of Computer Aided Automation at the Vienna University of Technology. It provides
a well-equipped laboratory which supports different automation field protocols such as
KNX and BACnet with various sensors and actuators, such as a presence detector, a
light sensor and a temperature controlling unit. The general setup for this evaluation is
depicted in Figure 5.1.

IoTSys
oBIX Server

T° D

A

D

M

KNXnet/IP Router

SILo Web
crawler

Figure 5.1: A-Lab Setup

67

Additionally, a KNX suitcase as shown in Figure 5.2, providing additional devices, such
as a CO2 sensor and a humidity sensor, was attached to the KNX installation.

Figure 5.2: A-Lab KNX Suitcase

In order to demonstrate the functionality of the SILo Web crawler, the following use
cases, already mentioned in the problem statement of this work, are considered:

• Is every switching actuator of a distinct floor in "off" state?

• How many rooms of a building are occupied?

• Which lamps in a building have exceeded a distinct operating time?

• Turn on the light in a specific room!

For evaluation purposes, a set of SPARQL queries and updates, adapted to the A-Lab
setting, was prepared and will be described herein.

In order to learn whether all lights of a specific floor are switched off, the query shown
in Listing 5.1 may be used. It searches for rooms where the light is still on, if there

68

1 PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
2 PREFIX EnergyResourceOntology: <https://www.auto.tuwien.ac.at/downloads/thinkhome/

ontology/EnergyResourceOntology.owl#>
3 SELECT ?switch ?location
4 WHERE {
5 ?switch rdf:type <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#OnOffLightSwitch> .
6 ?switch EnergyResourceOntology:hasCurrentStateValue ?type .
7 ?type rdf:type <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#OnStateValue> .
8 ?switch EnergyResourceOntology:functionOf ?device .
9 ?device EnergyResourceOntology:isIn+ <http://localhost:8080/networks/e183_1/views/

building/parts/treitlstrasse/parts/4stock> .
10 ?device EnergyResourceOntology:isIn ?location
11 }

Listing 5.1: SPARQL all lights on floor in "off" state query

1 PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
2 PREFIX EnergyResourceOntology: <https://www.auto.tuwien.ac.at/downloads/thinkhome/

ontology/EnergyResourceOntology.owl#>
3 SELECT (count(distinct ∗) as ?count)
4 WHERE {
5 ?switch EnergyResourceOntology:hasCurrentStateValue ?type .
6 ?type rdf:type <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#PresentState> .
7 ?switch EnergyResourceOntology:functionOf ?device .
8 ?device EnergyResourceOntology:isIn+ <http://localhost:8080/networks/e183_1/views/

building/parts/treitlstrasse> .
9 }

Listing 5.2: SPARQL count occupied rooms query

is no such room, it must be concluded that the lights are switched off on the whole
floor. Therefore, it searches for all individuals of type OnOffLightSwitch which have as
current state value an individual of type OnStateValue. Further, the search is restricted
to individuals which are bound via the functionOf property to devices, which are located
transitively via the isIn property on a given floor.

The query shown in Listing 5.2 counts the occupied rooms of a building by searching for
all rooms in a building, which contain a presence sensor that has as current state value a
PresentStateValue individual attached. As the presence sensor is a function of a device,
which is located within a building, the functionOf property is used to get the device
which is transitively found via the isIn property.

The query shown in Listing 5.3 looks for light switches which have exceeded a specified

69

1 PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
2 PREFIX EnergyResourceOntology: <https://www.auto.tuwien.ac.at/downloads/thinkhome/

ontology/EnergyResourceOntology.owl#>
3 SELECT ?switch ?value ?unit
4 WHERE {
5 ?switch rdf:type <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#OnOffLightSwitch> .
6 ?switch EnergyResourceOntology:hasOperatingHoursStateValue ?type .
7 ?type rdf:type <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#OperatingHoursStateValue> .
8 ?type EnergyResourceOntology:realStateValue ?value .
9 ?type EnergyResourceOntology:hasNativeUnit ?unit .

10 ?switch EnergyResourceOntology:functionOf ?device .
11 ?device EnergyResourceOntology:isIn+ <http://localhost:8080/networks/e183_1/views/

building/parts/treitlstrasse> .
12 FILTER(?value >= 1000)
13 }

Listing 5.3: SPARQL exceeded working hours query

amount of operating hours. In detail, the search is restricted to look for individuals
of type OnOffLightSwitch, which have as a current state value, bound by the hasCur-
rentStateValue property, an individual of type OperatingHoursStateValue. Again, the
OperatingHoursStateValue is a function of a device located within a building via the
transitive isIn property. The OperatingHoursStateValue individual is attached to the
count of operating hours by the hasRealStateValue property, which is used to limit the
search result only to those devices which have exceeded 1000 operating hours.

The SPARQL update query shown in Listing 5.4 is used to turn on the lights in a given
room. This is achieved by deleting the RDF triple connected by the hasCurrentStateValue
property with an OnStateValue instance and inserting a new triple with this property
where the object of the property is an individual of type OffStateValue. Both the
OnOffLightSwitch and the corresponding SimpleLamp individuals have to be updated.
The attached device is retrieved via the functionOf property and is eventually located
via the transitive isIn property. As soon as this update is executed, an oBIX request is
sent to set the corresponding values of the oBIX server.

The queries described worked as expected during the evaluation phase. It could be
demonstrated that it is feasible to control a complex building automation scenario with
the SILo Web crawler via SPARQL. This requires extensive knowledge of the ontology
in use, but allows to draw advanced logical conclusions about a building automation
scenario. By using the SILo Web crawler a heterogeneous automation scenario could
be semantically integrated regardless of the field technologies used on lower levels of
abstraction.

The SILoTool currently supports only SPARQL queries submitted via the command line.

70

1 PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
2 PREFIX EnergyResourceOntology: <https://www.auto.tuwien.ac.at/downloads/thinkhome/

ontology/EnergyResourceOntology.owl#>
3 DELETE
4 {
5 ?switch EnergyResourceOntology:hasCurrentStateValue ?v
6 ?lamp EnergyResourceOntology:hasCurrentStateValue ?v
7 }
8 INSERT
9 {

10 ?switch EnergyResourceOntology:hasCurrentStateValue ?statevalue
11 ?lamp EnergyResourceOntology:hasCurrentStateValue ?statevalue
12 }
13 WHERE {
14 ?switch EnergyResourceOntology:hasCurrentStateValue ?v .
15 ?v rdf:type <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#OffStateValue> .
16 ?switch EnergyResourceOntology:hasState ?state .
17 ?state EnergyResourceOntology:hasStateValue ?statevalue .
18 ?statevalue rdf:type <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#OnStateValue> .
19 ?switch EnergyResourceOntology:functionOf ?device .
20 ?device EnergyResourceOntology:isIn+ <http://localhost:8080/networks/e183_1/views/

building/parts/treitlstrasse/parts/4stock/parts/aufputzkasten_a_lab_rechts> .
21 ?switch EnergyResourceOntology:controlledObject ?lamp
22 }

Listing 5.4: SPARQL update to turn on lights

This has proven not to be an optimal user interface for SPARQL as the queries and
updates are rather complex. Referring to the usability of the SILoTool, there is room
for improvement, like a graphic user interface which supports the user during the query
crafting.

From the scalability point of view, the SILo Web crawler provides a solution which scales
well to an increasing number of field level devices with regards of monitoring. This
is achieved by the utilization of the oBIX watch mechanism which allows to monitor
multiple devices via a single HTTP request. Even if the count of field level devices is
further increased, there is no increase of the communication traffic. Still, this approach
requires a recurrent polling of the oBIX server. In order to control multiple devices,
multiple network requests are required, as oBIX complies to the REST paradigm, which
is resource oriented. In this case, an increasing number of devices results in a higher
network load as well. Relying on the oBIX REST binding, this is the optimum that can
be reached in terms of scalability.

One shortcoming of the current implementation is that an update of the oBIX server
configuration, i.e., adding or removing of devices, is not automatically detected by the

71

SILo Web crawler. Such a scenario imposes a high probability of oBIX errors. Such
errors are detected by the crawler and provided to the user upon execution of further
queries or updates.

72

CHAPTER 6
Conclusion

6.1 Summary
The proposed SILo provides the possibility to dynamically map an arbitrary oBIX
server representation to an OWL ontology, which can be used as a common vocabulary
for distributed autonomous agents. The presented transformation process can fully
be automated, once an XSL transformation for a specific oBIX server implementation
and a target ontology is developed, provided that the oBIX server yields consistent
semantic information for various BASs. If the oBIX server is not able to provide such
information, an annotation step, as presented in this work, might allow to reuse an
existing XSL transformation, thus allowing a less complex semi-automated process. Due
to the flexibility of the oBIX standard, distinct oBIX server implementations will require
a customized transformation, as long as the oBIX specification provides no means for
explicit semantic information. For different target ontologies, own transformations have to
be developed. It seems also feasible to reuse an existing transformation for a specific target
ontology and eventually perform the mapping to another OWL ontology by applying
Semantic Web technologies. This approach requires a verification, though.

The proof of concept implementation, presented in this work, that is based on the
IoTSys oBIX server and the ThinkHome ontology, supports the engineer throughout the
different phases of the SILo transformation process. It provides the means to generate a
complete oBIX document, which resolves oBIX references to object instances. Further,
it permits the annotation of oBIX object nodes with semantic information, resulting
in a complete semantic oBIX document. Eventually, an XSL transformation can be
performed on the gained data, yielding OWL individuals of the target ontology. The
proposed transformation process is extremely flexible, as it allows to perform the SILo
transformation in a single iteration on a complete oBIX document starting with the
oBIX lobby object. However, this might result in a more complex XSL transformation
implementation, as the generated oBIX document might include a lot of non-essential

73

information useless for the transformation. The SILo transformation can also be executed
in an iterative process on multiple smaller complete oBIX documents just including the
nodes that contain the information relevant for the transformation. This allows the
implementation of less complex XSL style-sheets tailored to single oBIX object nodes of
interest.

Furthermore, the prototype implementation provides a SILo Web crawler, which can be
used to control a heterogeneous BAS. Therefore, the individuals obtained by the SILo
transformation process are stored within the Apache Jena RDF triple store and made
accessible via the SPARQL protocol. The SILo Web crawler basically resolves SPARQL
queries and updates to according oBIX request and takes care of the synchronization
between the oBIX server the OWL model. Additionally, it provides a simplified error
handling, where potential HTTP and oBIX errors are communicated to the user upon
execution of SPARQL queries or updates. Besides, it provides the means to use different
target ontologies by implementing the SILoOntologyHandler interface.

During the evaluation, it was demonstrated that new insights about the current state
of a BAS can be gained by the utilization of SPARQL queries. Location based queries
allowed to determine whether all lights on a given floor are switched off, or to count
the occupied rooms in a building. Likewise, it was shown that it is possible to control
various devices of a BAS, on grounds of their location within a building, by executing
SPARQL updates. Summarizing, it can be stated that SILo provides the means for a
comprehensive control of BASs.

6.2 Further work
As shown in Figure 6.1, it can be concluded that the features currently provided by
the SILo Web crawler are not sufficient to guarantee the state of global interoperability.
One of the steps missing in order to reach this goal is a common description, i.e., a
widely adopted ontology that is reused by different software agents. However, the
SILo Web crawler can easily be adapted to such an ontology, as soon as it is available.
Furthermore, an interface is required that allows autonomous agents to interconnect via
SILo, such as a Java API or a network binding. This would enable the involved agents to
programmatically access the information stored in the RDF triple store, thus increasing
their context-awareness and eventually contributing to a more energy efficient control
and operation of buildings.

Referring to the vision of a SWoT [24] where autonomous distributed agents are collectively
controlling a BAS, questions related to transaction management consequently arise.
Multiple agents concurrently controlling a BAS via SILo might lead to an inconsistent
state of the BAS due to a lack of transaction management features. As a RESTful service
is characterized through stateless requests, the lack of transaction support is inherent in
the system. The oBIX specification itself does not provide any suggestions on transaction
management on a higher level. An oBIX server implementation might implement such
features, but this is currently out of scope of the oBIX standard. In order to ensure

74

 Semantic Web
 of Things

 Web of Things

Connect things to the
Internet

Connect things
to the Web

Share things and
compose services

Internet of
Things

IP (KNXnet/IP)

HTTP (oBIX)

OWL (SILo)

Common Description

Global Interoperability

Figure 6.1: Semantic Web of Things (adapted from [24])

data integrity, as one of the most critical properties of a system, transactions should
provide means for ACID (atomicity, consistency, isolation and durability) [61]. As a
single SPARQL update might result in several HTTP requests, ensuring atomicity is in
the scope of SILo. The SILo implementation might be improved to allow that either
all involved requests are successfully executed or none. The oBIX batch mechanism is
of no use here, as it relinquishes the handling of partial failures to the implementors.
Consistency, isolation and durability have to be enabled by the oBIX implementation,
as multiple SILo agents might concurrently access the oBIX interface as to control the
underlying BAS.

Security aspects of SILo require further examination. As user authorization and au-
thentication of oBIX servers are out of scope of the oBIX standard, security features
of oBIX servers will differ from implementation to implementation, hence hindering a
general approach. Generally, it seems desirable to encrypt the whole communication
between the oBIX server and the SILo Web crawler by utilizing HTTPs. Authorization
and authentication can be ensured by application of Semantic Web technologies, thus
allowing the users to execute specific SPARQL queries or updates only in case they are
authorized to do so.

75

Supporting the oBIX Websocket binding would provide better means for scalability, as
this binding allows a bidirectional connection between oBIX server and the SILo Web
crawler without the necessity to poll. Likewise, connecting SILo to an oBIX server,
supporting the CoAP protocol, as IoTSys, would be beneficial in terms of scalability.
However, the current oBIX standard does not provide such a binding, yet.

76

List of Figures

2.1 Semantic Web of Things (adopted from [24]) 9
2.2 oBIX object model (adapted from [7]) . 12
2.3 KNX function block [10] . 15
2.4 KNX gateway (adapted from [35]) . 15
2.5 KNX model of a datapoint . 16
2.6 Abstract model of KNX network [35] . 17
2.7 ETS user interface . 18
2.8 RDF graph visualization . 19
2.9 RDF Schema graph visualization . 20
2.10 RDF/RDF Schema relation to OWL [47] . 22
2.11 ThinkHome smart home system [15] . 24
2.12 ThinkHome ontology [53] . 25
2.13 IoTSys architecture [55] . 26

3.1 SILo stack . 28
3.2 Transformation concept overview . 31
3.3 SILo synchronisation . 33

4.1 isValueOf ObjectProperty . 38
4.2 providesFunction ObjectProperty . 39
4.3 EnergyResourceOntology;LoadCurrentStateValue 39
4.4 SILoError model . 41
4.5 ETS building model . 42
4.6 OWL building model example . 43
4.7 IoTSys oBIX model . 44
4.8 CO2Sensor . 46
4.9 HumiditySensor . 47
4.10 LightSensor . 48
4.11 PresenceSensor . 49
4.12 TemperatureSensor . 50
4.13 TemperatureController . 51
4.14 LightSwitch . 52
4.15 Operating hours count state value . 53

77

4.16 Switching cycles count state value . 54
4.17 Load current state value . 55
4.18 SILoTool modules . 56
4.19 SILo Web crawler . 59
4.20 Apache Jena architecture [60] . 60
4.21 SILo Web crawler architecture . 61
4.22 SILo Web crawler startup . 63
4.23 ObixWatcher Functionality . 64
4.26 SILoOntologyHandler . 64
4.24 SPARQL Update . 65
4.25 oBIX Update . 65

5.1 A-Lab Setup . 67
5.2 A-Lab KNX Suitcase . 68

6.1 Semantic Web of Things (adapted from [24]) 75

List of Tables

2.1 obix:obj properties . 11
2.2 oBIX Value Types [7] . 11
2.3 oBIX HTTP mapping [30] . 13

4.1 Building Mapping . 41
4.2 Supported Device Types . 43
4.3 Device type naming convention . 44
4.4 State value naming convention . 45

78

Acronyms

API Application Programming Interface. 59, 60, 74

BAS Building Automation System. 1–4, 14, 24, 25, 27–32, 35, 36, 55, 58, 73–75

CoAP Constrained Application Protocol. 25

EHS European Home System. 14

EIB European Installation Bus. 14

ETS Engineering Tool Software. 16–18, 26, 36, 39, 42, 43, 45, 77

EXI Efficient XML Interchange. 13, 25

H2M Human-to-Machine. 8, 18

HTTP Hypertext Transfer Protocol. 9, 10, 13, 14, 21, 25, 27, 32, 33, 38, 56, 63, 66, 71,
74, 75, 78

HTTPs HTTP Secure. 75

IoE Internet of Energy. 10

IoT Internet of Things. xv, 1, 2, 4, 7–10, 15, 25

IRI Internationalized Resource Identifier. 18, 29

IT Information Technology. 15

JSON Javascript Object Notation. 10, 13

KNX Konnex. 4, 14–17, 25, 26, 35, 36, 39, 43, 44, 67, 68, 77

M2M Machine-to-Machine. 8–10, 18, 36

OASIS Organization for the Advancement of Structured Information Standards. 10

79

oBIX open Building Information eXchange. xv, 1–4, 10–13, 15–18, 25–36, 38–58, 61–66,
70–75, 77, 78, 80

OSGi Open Service Gateway Initiative. 25

OWL Web Ontology Languagy. 2–5, 21–23, 26–33, 35, 39, 41–44, 58, 59, 61–64, 66, 73,
74, 77

RDF Resource Description Framework. 3, 4, 19–22, 38, 56, 59–62, 70, 74, 77

REST Representational State Transfer. 10, 13, 16, 27, 29, 30, 71, 74

SHS Smart Home System. 23, 24

SILo Semantic Interoperability Layer for oBIX. xv, 2–4, 27, 28, 32–34, 56, 58, 59, 61–63,
66–68, 70–75, 77, 78

SOAP Simple Object Access Protocol. 13, 21

SPARQL SPARQL Protocol and RDF Query Language. 2–4, 8, 21, 22, 27, 32, 34, 52,
55, 58, 60, 63–66, 68–71, 74, 75, 78

SQL Structured Query Language. 21

SWoT Semantic Web of Things. 8, 9, 74

URI Universal Resource Identifier. 10, 13, 18, 29–31

URL Universal Resource Locator. 41, 45, 66

W3C World Wide Web Consortium. 18, 21

WS Web Services. 1, 2, 7, 10, 16, 29, 30

XML Extensible Markup Language. 4, 10, 13, 18, 19, 21, 27, 29, 56

XSD XML Schema Definition Language. 29

XSL Extensible Stylesheet Language. 3, 4, 29, 30, 35, 36, 39, 41, 42, 44, 45, 56–58, 73,
74, 80

XSLT XSL Transformation. 3, 4, 29, 31, 32

80

Bibliography

[1] Wolfgang Granzer, Wolfgang Kastner, and Paul Furtak. KNX and OPC UA. In
Konnex Scientific Conference, November 2010.

[2] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things: A
survey. Computer Networks, 54(15):2787–2805, October 2010.

[3] Payam Barnaghi, Wei Wang, Cory Henson, and Kerry Taylor. Semantics for the
Internet of Things: Early progress and back to the future. Int. J. Semant. Web Inf.
Syst., 8(1):1–21, January 2012.

[4] IEA. Building - ES - International Energy Agency, 2013. [Last accessed 26-March-
2015].

[5] O. Hersent. KNX. In The Internet of Things: Key Applications and Protocols. Wiley
Publishing, 2011.

[6] Wolfgang Kastner, Lukas Krammer, and Andreas Fernbach. State of the Art in
Smart Homes and Buildings. In Richard Zurawski, editor, Industrial Communication
Technology Handbook, Second Edition, chapter 55. CRC Press, Inc., 2014.

[7] OBIX Version 1.1. OASIS Committee Specification 01. [Last accessed 26-September-
2016].

[8] Wolfgang Kastner, Andreas Fernbach, Wolfgang Granzer, and Markus Jung. KNX
and the Semantic Web of Automation. In Proceedings of the KNX Scientific Confe-
rence, November 2014.

[9] OWL 2 Web Ontology Language Primer (Second Edition). W3C Recommendation,
2012. [Last accessed 26-March-2015].

[10] KNX Specifications. Konnex Assoc. Diegem, Belgium, 2014. Ver. 2.1.

[11] Resource Description Framework (RDF). W3C Recommendation, 2014. [Last
accessed 26-March-2015].

[12] SPARQL. Query Language for RDF. W3C Recommendation, 2008. [Last accessed
26-March-2015].

81

[13] Markus Jung, Jomy Chelakal, Jürgen Schober, Wolfgang Kastner, Luyu Zhou, and
Giang Ky Nam. IoTSyS: an integration middleware for the Internet of Things. In
Proceedings of the 4th International Conference on the Internet of Things (IoT
2014), Cambridge, MA, USA, October 2014. Demo abstract.

[14] OPC Foundation. OPC Unified Architecture (UA), 2008. [Last accessed 26-March-
2015].

[15] Mario Kofler. An ontology as shared vocabulary for distributed intelligence in smart
homes. PhD thesis, Vienna University of Technology, 2013.

[16] Semantic Sensor Network XG Final Report. W3C Incubator Group Report, 2011.
[Last accessed 26-March-2015].

[17] Open Geospatial Consortium. Sensor Model Language (SensorML), 2014. [Last
accessed 26-March-2015].

[18] Dennis Pfisterer, Kay Romer, Daniel Bimschas, Henning Hasemann, Manfred Haus-
wirth, Marcel Karnstedt, Oliver Kleine, Alexander Kroeller, Myriam Leggieri, Ri-
chard Mietz, Max Pagel, Alexandre Passant, Ray Richardson, and Cuong Truong.
SPITFIRE: toward a semantic Web of Things. Communications Maagazine, IEEE,
58(11), October 2011.

[19] INFSO D.4 0. Networked Enterprise and RFID INFSO G.2 Micro and Nanosystems,
in: Co-operation with the Working Group RFID of the ETP EPOSS, Internet
of Things in 2020, Roadmap for the Future, Version 1.1, 2008. [Last accessed
26-September-2016].

[20] N. Bui, A. P. Castellani, P. Casari, and M. Zorzi. The internet of energy: a
web-enabled smart grid system. IEEE Network, 26(4):39–45, July 2012.

[21] Michael Compton, Payam Barnaghi, Luis Bermudez, Raúl García-Castro, Oscar
Corcho, Simon Cox, John Graybeal, Manfred Hauswirth, Cory Henson, Arthur
Herzog, Vincent Huang, Krzysztof Janowicz, W. David Kelsey, Danh Le Phuoc,
Laurent Lefort, Myriam Leggieri, Holger Neuhaus, Andriy Nikolov, Kevin Page,
Alexandre Passant, Amit Sheth, and Kerry Taylor. The {SSN} ontology of the
{W3C} semantic sensor network incubator group. Web Semantics: Science, Services
and Agents on the World Wide Web, 17:25 – 32, 2012.

[22] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle, and
Michael Grossniklaus. C-sparql: Sparql for continuous querying. In Proceedings of
the 18th International Conference on World Wide Web, WWW ’09, pages 1061–1062,
New York, NY, USA, 2009. ACM.

[23] Javier D. Fernández, Miguel A. Martínez-Prieto, Claudio Gutiérrez, Axel Polleres,
and Mario Arias. Binary RDF representation for publication and exchange (HDT).
Web Semantics: Science, Services and Agents on the World Wide Web, 19(0), 2013.

82

[24] Antonio J. Jara, Alex C. Olivieri, Yann Bocchi, Markus Jung, Wolfgang Kastner,
and Antonio F. Skarmeta. Semantic web of things: An analysis of the application
semantics for the iot moving towards the iot convergence. Int. J. Web Grid Serv.,
10(2/3):244–272, April 2014.

[25] N. Bui, A. P. Castellani, P. Casari, and M. Zorzi. The Internet of Energy: a
web-enabled smart grid system. IEEE Network, 26(4):39–45, July 2012.

[26] Stamatis Karnouskos. The cooperative Internet of Things enabled smart grid. In
Proceedings of the 14th IEEE international symposium on consumer electronics
(ISCE2010), June, pages 07–10, 2010.

[27] B Initiativ. Internet of energy-ict for energy markets of the future, 2008.

[28] ASHRAE. Proposed Addendum C to Standard 135-2004, BACnet, 2004. [Last
accessed 26-September-2016].

[29] Internet Engineering Task Force. RFC 3986 - Uniform Resource Identifier (URI):
Generic Syntax, January 2005. http://www.ietf.org/rfc/rfc3986.txt.
[Last accessed 26-September-2016].

[30] Bindings for OBIX: REST Bindings Version 1.0. Edited by Craig Gemmill and
Markus Jung. 14 September 2015. OASIS Committee Specification 01. [Last accessed
26-September-2016].

[31] Bindings for OBIX: SOAP Bindings Version 1.0. Edited by Markus Jung. 14 Septem-
ber 2015. OASIS Committee Specification 01. [Last accessed 26-September-2016].

[32] Bindings for OBIX: WebSocket Bindings Version 1.0. Edited by Matthias Hub. 14
September 2015. OASIS Committee Specification 01. [Last accessed 26-September-
2016].

[33] KNX Basics. http://www.knx.org/media/docs/Flyers/KNX-Basics/
KNX-Basics_en.pdf. [Last accessed 26-September-2016].

[34] M. Neugschwandtner, G. Neugschwandtner, and W. Kastner. Web services in
building automation: Mapping KNX to oBIX. In 2007 5th IEEE International
Conference on Industrial Informatics, volume 1, pages 87–92, June 2007.

[35] KNX System Specifications - Web Services. Konnex Assoc. Diegem, Belgium, 2016.
Draft.

[36] Bovet, Gerome and Hennebert, Jean. Introducing the Web-of-Things in Building
Automation: A Gateway for KNX installations. In 10th international Conference
on Informatics in Control, Automation and Robotics (ICINCO 2013), 2013.

[37] Daniel Schachinger and Wolfgang Kastner. Model-driven integration of building
automation systems into Web service gateways. In Factory Communication Systems
(WFCS), 2015 IEEE World Conference on, pages 1–8. IEEE, 2015.

83

http://www.ietf.org/rfc/rfc3986.txt
http://www.knx.org/media/docs/Flyers/KNX-Basics/KNX-Basics_en.pdf
http://www.knx.org/media/docs/Flyers/KNX-Basics/KNX-Basics_en.pdf

[38] Andreas Fernbach, Wolfgang Granzer, Wolfgang Kastner, and Paul Furtak. Mapping
ETS4 Project Structure to OPC UA using ETS4 XML Export. In KNX Scientific
Conference, November 2012.

[39] Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web. Scientific
american, 284(5):28–37, 2001.

[40] Nigel Shadbolt, Tim Berners-Lee, and Wendy Hall. The semantic web revisited.
IEEE intelligent systems, 21(3):96–101, 2006.

[41] Dean Allemang and James Hendler. Semantic web for the working ontologist:
effective modeling in RDFS and OWL. Elsevier, 2011.

[42] M. Dürst; M. Suignard. Internationalized Resource Identifiers (IRIs). January
2005. RFC. http://www.ietf.org/rfc/rfc3987.txt. [Last accessed 26-
September-2016].

[43] W3C. Extensible Markup Language (XML). http://www.w3.org/XML, 2015.
[Last accessed 1-October-2016].

[44] RDF 1.1 Turtle. W3C Recommendation. 25 February 2014. https://www.w3.
org/TR/turtle/. [Last accessed 26-September-2016].

[45] RDF 1.1 N-Triples. W3C Recommendation. 25 February 2014. http://www.w3.
org/TR/n-triples/. [Last accessed 26-September-2016].

[46] RDF Schema 1.1. W3C Recommendation. 25 February 2014. http://www.w3.
org/TR/rdf-schema/. [Last accessed 1-October-2016].

[47] Grigoris Antoniou and Frank Van Harmelen. A semantic web primer. MIT press,
2004.

[48] W3C. SPARQL 1.1 Update. W3C Recommendation. 21 March 2013. http:
//www.w3.org/TR/sparql11-update/, 2015. [Last accessed 1-October-2016].

[49] Pellet. Pellet, 2016. [Last accessed 26-March-2016].

[50] Mario Kofler, Christian Reinisch, and Wolfgang Kastner. A semantic representation
of energy-related information in future smart homes. Energy and Buildings, 47:169–
179, 2012.

[51] Green building xml (gbxml) schema. green building xml (gbxml) schema, inc. http:
//www.gbxml.org, 2016. [Last accessed 26-September-2016].

[52] M. J. Kofler and W. Kastner. A knowledge base for energy-efficient smart homes.
In Energy Conference and Exhibition (EnergyCon), 2010 IEEE International, pages
85–90, Dec 2010.

84

http://www.ietf.org/rfc/rfc3987.txt
http://www.w3.org/XML
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/turtle/
http://www.w3.org/TR/n-triples/
http://www.w3.org/TR/n-triples/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/sparql11-update/
http://www.w3.org/TR/sparql11-update/
http://www.gbxml.org
http://www.gbxml.org

[53] ThinkHome Website.Institute of Computer Aided Automation. Automation Systems
Group. https://www.auto.tuwien.ac.at/projectsites/thinkhome/
ontologies.html. [Last accessed 1-October-2016].

[54] M. Jung et al. Github iotsys code. https://github.com/mjung85/iotsys,
2015. [Last accessed 26-September-2016].

[55] Markus Jung, Jürgen Weidinger, Christian Reinisch, Wolfgang Kastner, Cedric
Crettaz, Alex Olivieri, and Yann Bocchi. A transparent ipv6 multi-protocol gateway
to integrate building automation systems in the Internet of Things. In Green
Computing and Communications (GreenCom), 2012 IEEE International Conference
on, pages 225–233. IEEE, 2012.

[56] Constrained application protocol (coap).draft-ietf-core-coap-18. https://tools.
ietf.org/html/draft-ietf-core-coap-18, 2013. [Last accessed 26-
September-2016].

[57] Hannes Bohring and Sören Auer. Mapping XML to OWL Ontologies. Leipziger
Informatik-Tage, 72:147–156, 2005.

[58] XML Schema Definition Language (XSD) 1.1. W3C Recommendation. 5. April 2012.
https://www.w3.org/TR/xmlschema11-1/. [Last accessed 04-October-2016].

[59] E Paslaru Bontas, Malgorzata Mochol, and Robert Tolksdorf. Case studies on onto-
logy reuse. In Proceedings of the IKNOW05 International Conference on Knowledge
Management, volume 74, 2005.

[60] Apache. Jena. https://jena.apache.org, 2016. [Last accessed 26-March-2016].

[61] Theo Haerder and Andreas Reuter. Principles of transaction-oriented database
recovery. ACM Computing Surveys (CSUR), 15(4):287–317, 1983.

85

https://www.auto.tuwien.ac.at/projectsites/thinkhome/ontologies.html
https://www.auto.tuwien.ac.at/projectsites/thinkhome/ontologies.html
https://github.com/mjung85/iotsys
https://tools.ietf.org/html/draft-ietf-core-coap-18
https://tools.ietf.org/html/draft-ietf-core-coap-18
https://www.w3.org/TR/xmlschema11-1/
https://jena.apache.org

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem statement
	Aim of the work
	Methodological approach
	Structure of the work

	State of the art
	Related work
	iot
	Open Building Information Exchange
	KNX
	Semantic Web
	IoTSys

	silo
	Model transformation
	Data synchronisation
	Error handling

	Implementation - Case Study for IoTSys and ThinkHome
	Model transformation
	SILoTool

	Test Lab
	Conclusion
	Summary
	Further work

	List of Figures
	List of Tables
	Acronyms
	Bibliography

