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Kurzfassung

Am Forschungs- und Therapiezentrum MedAustron in Wiener Neustadt wird die

Krebstherapie mittels Protonen und Kohlenstoffionen durchgeführt. Im Unter-

schied zur Photonenbestrahlung zeigen Ionenstrahlen andere Eigenschaften. Es

gibt ein scharfes Maximum der abgegebenen Energie bei einer steuerbaren Tiefe –

der sogenannte Bragg-Peak. Dabei ist das einfallende Ionenprojektil vielen nuk-

learen Wechselwirkungen mit den Target-Kernen ausgesetzt. In diesen Prozessen

entstehen leichtere Sekundärteilchen, die sich ebenfalls durch das Gewebe be-

wegen und ebenso einen Beitrag zum Tiefen-Dosis-Profil liefern, der sich direkt

nach dem Bragg-Peak befindet. Dieses Auftreten muss als Teil der Behandlungs-

planung miteinbezogen werden. Für das Verständnis der komplexen Fragmen-

tierungsprozesse und damit der Beiträge der einzelnen Fragmente zur Dosis in

der Ionentherapie müssen differentielle und doppelt-differentielle Wirkungsquer-

schnitte für alle auftretenden Prozesse bestimmt werden. Diese spielen eine Schlüs-

selrolle in jedem Therapieplan für die Bestrahlung von Krebspatienten. Im Zusam-

menhang mit der vorliegenden Diplomarbeit wurde die Simulation auf dünne Tar-

gets gelenkter Ionenstrahlen mit dem Code FLUKA durchgeführt. Die Wechsel-

wirkungen von 12C-Projektilen mit Energien von 10 bis 500 MeV pro Nukleon

mit verschiedenen in menschlichen Geweben auftretenden Targets werden unter-

sucht. Der Großteil der medizinisch verwendeten Teilchenarten ist bereits in FLUKA

implementiert, andere werden mittels FORTRAN-Zusatzcodes ebenfalls einbezogen.
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FLUKA ist ein weitverbreitetes Simulationspaket und lässt passende Abschätzungen

für differentielle und doppelt differentielle Wirkungsquerschnitte zu, speziell dort,

wo es keine zugänglichen experimentellen Daten gibt. Das Ergebnis dieser Arbeit

ist ein Datensatz aus Wirkungsquerschnitten, der einen Beitrag zur Erstellung von

Bestrahlungsplänen in der Inonenstrahltherapie sowie zum Vergleich mit ähnlichen

Codes leisten kann.
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Abstract

At the MedAustron facility in Wiener Neustadt ion-beam therapy tumours will

be treated using protons and Carbon ions. In contrast to photon irradiation, ion-

beams show different characteristics: there is a sharp peak of deposited energy,

the Bragg peak, at an accurately controllable depth. The incoming projectile ions

undergo a series of nuclear interactions with the target nuclei. Lighter secondary

particles are produced and propagate through the target tissue and generate a frag-

mentation tail directly after the Bragg peak, which is an important contribution to

be considered for the treatment planning. In order to improve the understanding

of the complex fragmentation processes and, thus, the contribution of the various

fragments to the delivered dose during ion-beam therapy, differential and double

differential cross sections need to be determined for all relevant occurring processes.

These cross sections also play a key-role in any treatment planning system used to

plan the optimal irradiation of cancer patients when using ion beams. In the con-

text of this master thesis FLUKA simulations of a particle beam directed onto a thin

target were performed. Reactions of 12C projectiles with energies ranging from 10

to 500 MeV/n impinging on various targets found in human tissue was studied.

Most of the required particle types are already implemented in FLUKA, others are

included by dedicated FORTRAN user routines. FLUKA is a well established simula-

tion framework and allows for an estimation of differential and double differential

cross sections where no experimental data are available. The result of this work
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is a cross section dataset, which could be used for an improvement of treatment

planning systems used in ion-beam therapy, as well as for comparisons with other

particle and ion transport codes.
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1. Introduction

For many decades cancer research has been one of the most regarded areas in

medical resarch.

Cancer is well-known as a cruel, lenghty and much too often as a deadly disease.

In biological terms, cancer is described as a malignant formation of new tissue,

also including an unrestrained growth of cells.

In the last few decades, there has been enormous progress in cancer research.

The methods of treating cancer patients have become more flexible, variable and

not least more precise. From resection over chemotherapy to irradiation there are

lots of ways to remove malignant tumors from human tissue.

Nevertheless, given the fact, that millions of people die of cancer every year,

research in this field is still far from having found an ideal solution for the treatment

of this disease.

As mentioned above, one promising way to treat cancer is radiation therapy.

So far, the most common types of radiation used in this context are photons and

electrons. Furthermore there is a relatively new approach for the treatment of

cancerous tumors, which is called ion beam therapy. At the MedAustron therapy

and research center in Wiener Neustadt the main focus is set on this technique.

In the last few months, the clinical area opened its doors for the first patients.

In order to evaluate the ion beam therapy method, it is necessary to analyze

it repeatedly in a medical and physical way. In this connection, knowledge about
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the nuclear interactions included in ion beam therapy is essential.

As ion beam therapy is a relatively young approach of treating cancer diseases,

only few experimental data about the nuclear interactions and scattering processes

are accessible for that energy range. Therefore, numerical simulations can help

to get a better understanding and contribute to the preparation of irradiation

planning systems.

The present work gives a short overview of the physical background of radiation

therapy in general and explains the advantages of therapy using heavy ion beams.

The core of the following chapters will be the simulation of differential and double

differential cross sections in the context of ion beam therapy. As there have been

scientific studies about the simulation with various numerical codes, the package

FLUKA [1, 2] has a special role to play in the present work. Therefore also the

underlying models of the tool kit will be introduced in a compact way. The last

few sections will deal with the results and analysis of the underlying calculations.
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2. Ion beam therapy

In the broad field of medical physics there have been several approaches for highly

efficient methods to treat cancerous tumors.

More than 50 % of the cancer patients with malignant tumors are treated with

radiation. The hitherto conventional therapy methods using photons are common

and accepted as relatively effective ways, especially for cancers in deeper tissue

regions. In this type of therapy, high energetic x-rays and gamma rays are directed

onto human tissue. Besides, electrons are utilized for superficial cancers.

Although high energetic photon therapy has often lead to demonstrable results,

human tissue is usually also damaged. This is an effect of the dose profile of

photons, that deposit most of their intensity at a relatively low depth. So if cancer

in body regions, that are hard to reach, needs to be treated, the initial intensity of

the photon beam has to be accordingly high or even does not represent an effective

way for the treatment. This can lead to bad side effects and often causes a hard

convalescence processes or in the worst case other diseases.

In about seven decades the method of ion beam therapy has been developed.

One of the first ones to think about this type of method in a scientific way was

Robert R. Wilson in 1946 [3]. In the following few years, the first physical and

radiobiological experiments were started. In 1954 the patient treatments with

protons were started.

The principle of ion beam therapy is based on the fact that ions, especially the
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more massive ones than protons, are able to work a lot more effective on tumors

than photons or electrons. Their intensity profile shows the advantage that ions

deposit almost all of their energies at a certain position much deeper than other

particle types. This is explained in detail in Section 2.1.

For the understanding of scattering processes, the concept of differential, double

differential and total cross sections is explained in 2.2. Also the background of the

electron stopping in heavy ion collision processes, the Rutherford (or Coulomb)

scattering is described.

As mentioned above, heavy ions show in some points different characteristics

compared to protons. Although ions in general cause fragmentation processes, in

case of proton radiation, only the target gets fragmented, whereas using heavy ions

as primary particles also the projectiles do. They produce a so called Bragg tail in

their depth-dose profile, because of the production of lighter secondaries. These

processes of nuclear fragmentation will be discussed in detail in Section 2.3.
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2.1. Bethe-Bloch formula

Figure 2.1: Depth-dose profile of 12C ions compared to photons [4]

As mentioned above, heavy ions show completely different dose deposition charac-

teristics than photons or electrons. This is shown on Figure 2.1. Photons deposit

most of their energy in a low depth, while 12C ions show a sharp dose peak at

a certain depth. This is called the Bragg peak. In order to illustrate, why these

particle types show a different behavior, the next few paragraphs will introduce

the Bethe-Bloch formula, based on [5, 6]. The Bethe-Bloch formula describes the

energy loss of charged heavy particles while passing through matter. In order to

understand the meaning of the Bethe-Bloch formula, it is useful to derive it in
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detail. First of all, there are some hypotheses that have to be considered.

The incident particle with velocity v is charged with Ze, holds a mass m and

passes an electron in a certain distance b. The electron is assumed to be in a

free state and does not move during the interaction process. Also, it is assumed,

that the incident particle is not deflected because its mass is much higher than the

electron mass.

The quantification of the energy decrease begins with the calculation of the

momentum, which results from the time integral over the electric force F.

∆p =
∫
Fdt = q

∫
E⊥ ·

dt

dx
dx = q

v

∫
E⊥dx, (2.1)

where E⊥ is the perpendicular component, that contributes to the electric field

in x-direction.

In order to get a general expression for the electric field in this case, the Gaussian

law is used, which allows to transform a volume integral of the divergence of a

vector field into an integral of the field in the boundary of the surface. Using

Maxwell’s equation ∇E(x) = 4πρ(x) and the charge density ρ(x) = Zeδ(x) for a

point charge, the following relation can be obtained

∫
∂A
E⊥dA =

∫
E⊥ · 2πbdx = 4πZe→

∫
E⊥dx = 2Ze

b
. (2.2)

Using the classical energy-momentum relation, the kinetic energy of the incident

particle can be calculated.

∆p = 2Ze2

bv
→ ∆Ekin(b) = (∆p)2

2me

= 2Z2e4

meb2v2 (2.3)

In the next step, the energy has to be rewritten as a differential including the
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infinitesimal change of position dx:

dEkin(b) = ∆Ekin(b)NedV = 2 Z2e4

meb2v2Ne · 2πb · db dx = 4πZ2e4

mev2 Ne
db

b
dx, (2.4)

with the electron density Ne.

The integration limits are defined by the impact parameter b. The minimum of

b represents a central collision were the maximum kinetic energy is Ekin = me(2v)2

2

and the maximum of b is reached, when the energy of the electron corresponds to

the ionization potential:

2mev
2 = 2Z2e4

m2
eb

2v2 → bmin = Ze2

mev2 ,

I = 2Z2e4

meb2v2 → bmax =
√

2
meI

Ze2

v
.

(2.5)

After a simple integration, the formula of classical energy loss can be obtained:

− dE

dx
= 2πZe2

mev2 Ne · ln
2mev

2

I
(2.6)

Finally, relativistic and quantum mechanical corrections lead to the following

formula [4]:

− dE

dx
=

4πe4ZtZ
2
p

meβ2c2

[
ln

2mev
2

〈I〉
− ln(1− β2)− β2 − C

Zt
− δ

2

]
(2.7)

As it can be seen, the 1
β2 behavior of the energy loss is dominant (also see Figure

2.2). The particles are ionized more strongly and therefore, the charge number

changes to Zp. In the case of lower energies, Zp is replaced by an effecetive charge

number [4] Zeff = Zp
[
1− exp(−125βZ−2β

p )
]
. At a velocity of vp ≈ Z2/3

p v0 the

energy loss reaches its maximum. This velocity also corresponds to the Brag peak.

The energy loss rate dE
dx

can be useful to calculate the particle’s path length
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R(E):

R(E) =
∫ E

0

(
dE ′

dx

)−1

dE ′. (2.8)

While a 12C ion shows a linear like R(E) behavior, because it is likelier to stay

in the beam direction, the path length of lighter particles increase much faster in

with increasing energy. As explained in [4], the range of different particles with

the same energy scales with A
Z2 .

Moreover, the Bethe-Bloch formula allows the further derivation of the energy

dose D [4]:

D [Gy] = 1.6× 10−9 × dE

dx

[
keV
µm

]
× F

[
cm−2

]
× 1
ρ

[
cm3

g

]
(2.9)

Figure 2.2: Energy loss −dE
dx

of heavy ions in different target materials [6]
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where ρ in this simple calculation is the density and F is the particle fluence.

This physical quantity D is especially known as essential component of irradiation

planning systems and gives information about the specific exposure.
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2.2. Scattering theory

In ion beam therapy, scattering processes play an essential role. The next few

paragraphs introduce the fundamental concept of cross sections and give a math-

ematical derivation for the contribution of electrons in heavy ion collision and

stopping processes.

2.2.1. Cross sections

Cross sections give information about the probability of scattering processes [7].

In order to give a verbal explanation for the physical meaning of this entity, it can

be written as [8]

σ = Number of scattering processes
Number of target atoms× time intervall× incident current density . (2.10)

The cross section itself is an effective surface, its common unit is barn, which

is 10−24cm2. Moreover one has to differentiate between three other types of cross

sections.

The differential cross section [7] takes into account the cross section’s de-

pendency of the exit solid angle. It is given by dσ
dΩ , with the solid angle Ω (see

Figure 2.3). The so called total cross section [7] is defined by the integral of the

differential cross section over the 4π solid angle.

If the initial beam consists of adequately light particles (for examples electrons),

differential cross sections also give information about the elementary structure of

the target particles, such as nucleus parameters and distribution of charge and

spin, that both can be derived from the energy loss of the primary particle.

If one has to consider different energies of the scattered particles due to inelastic

nuclear processes it is useful also to calculate the double differential cross

24



section which is the derivation of differential cross section by the kinetic energy

of the corresponding particle differential cross section.

(a) Differential and total cross section

(b) Differential cross section

Figure 2.3: Setup of a typical scattering experiment: An incident beam is deflected
by a target into a hemisphere with the polar angle θ and azimuthal
angle φ. The differential cross section is an angle-dependent measure
for a certain angular area and the total cross section is the integral of
the whole hemisphere.
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As this work is written in the frame of research in heavy ion beam therapy, there

will be a focus on inelastic scattering processes and especially nuclear interactions

in the following sections and chapters. The different types of cross sections will

then help to understand these physical mechanisms.

2.2.2. Rutherford scattering

Another contribution to collision processes is represented by Rutherford scattering.

In general, energy loss of heavy ions is already described in Section 2.1, therefore

only a short introduction is given.

According to the Born approximation, the differential cross section of a particle

passing any local charge distribution is given by [9]:

dσ

dΩ ∝
∫
V (r)eiqrdr, (2.11)

which is the Fourier transform from position r to momentum transfer ~q of the

electric potential. A Coulomb potential is typically described as V (r) ∝ Z1Z2
r

, with

r = |r|. The Fourier transform results in [9]:

dσ

dΩ ∝
(
Z1Z2

E0

)2 1
sin4 θ

2
, (2.12)

including the initial energy E0 and the scattering polar angle θ. This is the

calculation for the electric potential of a charged point particle. If other charge

distributions are requested, the differential cross section can be derived analo-

gously. In this case, the electric potential depends on the integration of the charge

density ρ. Having considered that the incident particle interacts with the charge

distribution of extent r at position t of its trajectory in a distance s, the differential
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cross section is calculated by a mathematical convolution F ∗ G [10]:

dσ

dΩ ∝
∫
V (t)eiqtdt ∝

∫ Z1Z2

|t− s|︸ ︷︷ ︸
F(t−s)

ρ(t− r)︸ ︷︷ ︸
G(t−r)

eiqtdt

∝
∫
F(t− s) ∗ G(t− r)eiqtdt

(2.13)

Using the fact that the Fourier transform of a convolution equals the product of

the Fourier transforms of each factor, the differential cross section can be written

as [9]:

dσ

dΩ =
(
dσ

dΩ

)
Rutherford

·
∫
ρ(r)eiqrdr︸ ︷︷ ︸

Form factor F (q)

(2.14)

This is called the Mott cross section and shows that the differential cross section

of Rutherford scattering for charge distributions ρ can by corrected by a factor

F (q), which is known as form factor.

Regarding heavy ions one has to note that the contribution of Rutherford scat-

tering to the energy loss is relatively low. Nevertheless, the cumulative effect of

multiple scattering processes can be important for the estimation of doses.
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2.3. Nuclear interactions

In Section 2.1 it was discussed, that the collision of high energetic ions with target

compounds causes energy loss of the projectile. During this continuous process,

inelastic nucleus-nucleus interactions result in inner excitations of both, the pri-

mary and the target particles. These new nucleon states lead to a de-excitation

process consists of four main components [11]:

• Fission is an effect that becomes important for nuclei with high charge num-

ber at about Z & 65. In this case, the nucleus breaks into two fragments,

• Fermi-breakup mechanism appears in light nuclei with A . 16. The excita-

tion energy of the nucleus can be larger than the binding energy, therefore

smaller particles are produced.

• Evaporation causes the emission of lighter ions – such as 1H, 2H, 3H and 4He

(α particles) – and of particles of other types [4].

• Gamma emission can appear after other steps of de-excitation.

These effects were observed in many experiments (e.g. by Schardt, Sihver et

al. in [12]) and are summarized as fragmentation. In the context of this work,

especially the process of evaporation is important, because the components of

human tissue, which is treated in ion beam therapy, mostly have lower Z [11].

As it can be seen in Figure 2.4, the residual projectile-like particles are not de-

flected very strongly and basically keep their velocity, whereas the target fragments

can be found in other regions of the 4π solid angle.

It was also shown in Section 2.1, that the mean path of lighter ions increase with

energy due to the A
Z2 dependency of this quantity. Therefore, the production of

fragments in evaporation cause a characteristic behavior of the depth-dose curve,
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which is known as fragmentation tail. While in case of 1H ion beams, the depth-

dose curve sharply decreases after its Bragg peak, it does not in case of heavy ions,

where a much smaller but non-zero remaining dose is still left and continuously

tails off.

Figure 2.4: Nuclear fragmentation process: The projectile collides with an initial
velocity vp with the target, both are fragmented and produce secondary
particles in a de-excitation process [4]

The mathematical background of fragmentation processes can be described by

abrasion-ablation [4, 13]. It represents the macroscopic and geometrical basis for

most of the implementation of nuclear interactions in numerical simulations. In

the next few lines, in a short excursus, a summary about the assumptions made

in this model will be given. For a more detailed description, [14] and [15] can be

recommended. ∗

First, the expression abrasion-ablation has to be explained.

1. As mentioned above, a nucleus-nucleus collision produces excited states. In

this model, they are called prefragments and in the step of abrasion, they

can be assumed as deformed (abraded). This step of the interaction process

takes about 10−23 − 10−22 seconds.
∗At this point, it should be noted, that this is one of many representations of the abrasion-
ablation model. This one was implemented in other Monte Carlo codes [16, 17].
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2. The ablation process includes the decay of the excitation and deformation.

The prefragments de-excite by emitting (ablating) nuclear particles. In the

result, there are particles with lower atomic mass number, projectile-like

fragments and/or γ rays left. Here, the time frame is about 10−18 − 10−16

seconds.

Starting from the total interaction energy Etot [14]

Etot = 1
2µṙ

2 + l2

2µr2 + ZpZte
2

r
, (2.15)

with angular momentum l, reduced mass µ, distance between the nuclei r and

its change rate ṙ, electric charge e and charge numbers of projectile and target Zp
and Zt, respectively, one can derive the effects of heavy ion fragmentation. It is

useful to define an impact parameter b by approaching the total energy as [14]

Etot = l2

2µb2

l2 = 2µb2Etot,
(2.16)

where the distance between the nuclei is at a minimum (ṙ = 0). Therefore the

equation of energy can be rewritten as [14]

Etot = Etotb
2

r2 + ZpZte
2

r
. (2.17)

The impact parameter b is now defined by b = r(r − ZpZte2

Etot
) = r(r − rm). In

the collision process, prefragments (see above) are formed in abrasion. Depending

on the nuclei, a certain fraction of the collision partners is abraded. The following

formula allows to calculate the mass difference between the states before and after

the collision [14]:
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∆abr = FAp

[
1− e−

CT
λ

]
, (2.18)

with the fraction F of the projectile in the interaction zone, the mean free path λ,

the energy E of the projectile in MeV/n, the mass number of the projectile Ap and

the chord-length of the position in the target of maximum interaction probability

CT . The component FApe−
CT
λ takes into account the de-excitation and emitting

of particles in the interaction zone, while FAp describes the equilibrium before the

collision.

The probability of a nucleon to be abraded from the projectile is proportional

to the fraction of protons in the projectile [14]:

∆Zabr = ∆abr
Zp
Ap

(2.19)

The wave function of the abraded nucleon can be written as [14]:

ψ(p) ∝
3∑
i=1

Cie
−p2

2p2
i + d0

γp

sinh(γp) . (2.20)

This wave function describes the number of produced secondary protons with

momentum p per unit of momentum phase space. The Ci and d0 are parameters

resulting from the modelling and pi are momenta with different lengths related to

the Fermi surface.

Assuming that the energy that is needed to remove a nucleon from the projectile

is Eabl ≈ 10 MeV [14], the number of nucleons emitted by ablation can be obtained

by:

∆abl = ES + EX
10 + FApe

−CT
λ , (2.21)

with the excitation energy EX and specific excitation energy in the surface area
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ES.

As angular distributions are of high physical importance, especially in the con-

text of this present work, it should be noted that the emission of fragments after

abrasion is assumed to be isotropically in the center-of-mass system and distributed

as follows for the laboratory system [15]:

arctan(θ) = p⊥(b)
p‖(b)

, (2.22)

where p⊥ and p‖ represent the perpendicular and transverse momentum of the

prefragments and b is the impact parameter. In conclusion, the abrasion-ablasion

model can be seen as a simple way to compute the mechanisms of fragmentation

from a macroscopic perspective. These calculations support an intuitive approach

to comprehend the processes of nuclear interaction. In the next chapter, a compact

overview will be given, how these processes are implemented in the simulation

codes, used for the present work.
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3. Materials and methods

Now that the physical background of ion beam therapy has been described, the

present work comes to its more practical part. The first section of this chapter

3.1 is about the methods of Monte Carlo simulation. The execution of simulations

require at least basic knowledge about the functionality of their numerics. For

the following Section 3.2, the description as practical is more appropriate, but

also here one will inevitably find theoretical parts, as the models of the underlying

simulation code FLUKA have to be explained. However, the large part of this section

is about the history, applications and the use of FLUKA. In the end of the chapter

one will find a compact overview of high performance computing (see Section 3.3),

the FORTRAN code of additional user routines for FLUKA (see Section 3.4) and the

parameters used in the simulations for the present work (see Section 3.5).

3.1. Monte Carlo simulation

Monte Carlo methods are tools, originally developed in order to calculate multi-

dimensional integrals numerically. Their applications can be found in many parts

of natural sciences but also in the world of finance and economics. When experi-

mental data are not easily or even not accessible, Monte Carlo methods represent

an efficient way to get valuable results.

In principle developed in the 1930s – the well-known physicist Enrico Fermi had
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already done preliminary theoretical work [18] – it took a long time to make use

of Monte Carlo methods because their practicability is limited to applications on

modern computers. One major application of Monte Carlo simulation in physics is

found in the field of (classical and quantum) statistical mechanics, where it is es-

sential to compute partition functions by integrating over many multidimensional

integrals, such as position and momentum, e.g. The following sections and para-

graphs are in the main based on scientific papers about Monte Carlo simulation

and random numbers by Weinzierl [19] and Katzgraber [20], respectively.

Figure 3.1: Structure of a Monte Carlo integration code
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3.1.1. Principles and types of Monte Carlo simulation

After having defined the physical problem, a Monte Carlo simulation basically

starts with the generation of a random number, which can be done on a personal

computer.

As it will be explained in detail in Section 3.1.2, there are some criteria that

make random numbers compatible with calculations using Monte Carlo methods.

It can be seen in Figure 3.1, that there are two basic ways to make use of Monte

Carlo methods.

First to mention is the probably most simple one, which is the simple integration

without importance sampling (see Figure 3.1 right).

Here, the integral is approximated by a sum of the function values with evenly

distributed random numbers xi as arguments:

I =
∫ x1

x0
f(x)dx ≈ 1

N

N∑
i

f(xi), xi ∈ (x0, x1) (3.1)

with the integrand f(x) and the number of iteration steps N .

The calculation of the number π (see Figure 3.2) is one of the most descriptive

examples for Monte Carlo simulations without importance sampling [21]: The

computer generates a set of random numbers x and y, both less than or equal |1|.

The circular number π is then computed by

Number of sets, which fulfil x2 + y2 ≤ 1
Total number of sets ≈ A◦

A�
= π

4 . (3.2)
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Figure 3.2: Monte Carlo simulation of the number π [21]

In general Monte Carlo simulations without importance sampling are appropri-

ate for simple multidimensional functions.

Another possibility is a Monte Carlo simulation which considers the weight of

every integrand region [19] (see Figure 3.1 left). If this method is taken, one has

to separate the function, needed for the integration, in two multiplicative parts,

see Equation (3.3).

f(x) = p(x)o(x) (3.3)
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At this point, it is necessary to know the behavior of the function. The part

of the function, which is closer in shape to f(x), is now taken as a distribution

p(x) and has to be normalized. Subsequently, according random numbers are

generated. In order to solve the integral, the following sum with the other part of

the function, o(x), as argument has to be computed in N iteration steps:

I =
∫ x1

x0
f(x) dx =

∫ x1

x0
p(x)o(x) dx ≈ 1

N

N∑
i

o(xi),
(3.4)

with random numbers xi ∈ (x0, x1) according to the distribution p(x). In order

to illustrate the practical use of this method, one can have a look at the following

integration:

I =
∫ 5

0
sin(x)︸ ︷︷ ︸
o(x)

· e−x︸︷︷︸
p(x)

dx ≈ 1
N

N∑
i

sin(xi), (3.5)

with random numbers xi ∈ (0, 5) generated by e−x. In Figure 3.3, it can be

seen, that the exponential function in (a) is much closer in shape to the integrand

than the sine function in (b). Therefore, the Monte Carlo integration is executed

by generating random numbers xi according to e−x and summing up normalized

values of sin(xi).
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(a) Comparison between p(x) = e−x and f(x) = sin(x)e−x

(b) Comparison between o(x) = sin(x) and f(x) = sin(x)e−x

Figure 3.3: Comparison of the integrand function in Equation (2.10) to its factors
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3.1.2. Random numbers

In the previous sections, it was discussed that in the cycles of a Monte Carlo

simulation, a random number is generated. The next few paragraphs will explain

in a compact way the methods to generate random numbers.

Personal computers are able to generate random numbers but with certain lim-

itations. The generation of random numbers is done by simple algorithms. So,

after a finite number of calculation cycles based on them, one has to take into

account that their quality decrease by the time because of the deterministic way

to generate these numbers. Therefore the random numbers obtained by a normal

personal computer, are so called pseudo-random numbers.

There are ways to generate natural random numbers (such as measuring the

thermal noises of inner modules of electrical elements), but in the context of pro-

gramming, it is useful to confine oneself to pseudo random numbers with high

quality. There are some criteria, that define the goodness of random numbers [19].

• The numbers should be generated according to what one would expect from

a random distribution. Furthermore an ideal set of random numbers should

not show correlations.

• An algorithm, that generates random numbers, should be portable (e.g. be-

tween programming languages) and it should work on different hardware.

• Under real conditions random number generators show a periodicity. Hence,

it is useful to think about the length of the period in order to avoid unwanted

correlations.

• Although it is possible to produce random numbers of high quality, in appli-

cations, such as numerical simulations, the principle of proportionality must
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be kept in sight. From there, one should minimize the effort of generating

random numbers.

• As in every other experiment, calculations with random numbers have to be

repeatable. If a computation cycle is repeated with the same numbers, the

result has to be the same.

• Long disjoint subsequences

3.1.2.1. Pseudo random generators

Figure 3.4: Successive random numbers generated by linear congruence [20], there
should not be any visible planes, if the numbers are randomly dis-
tributed. In this case, the periodicity is too low to fully fill the cuboid
with points determined by random numbers.

In order to increase the quality of computer generated random numbers one can

use the linear congruential method [20], which is simple: First, a computer puts

40



out a random number in a defined area. Next, this value is put into the function

xi+1 = (axi + b) mod m.

ri = xi
m
, ri ∈ [0, 1]

(3.6)

This pseudo random number generator has a maximum periodicity of m. That

is why one can adjust the goodness by scaling this parameter. On Figure 3.4 one

can see, what happens, if m is taken too low.

3.1.2.2. Random numbers according to distributions

Inversion method In order to get random numbers according to any distribution

ỹ = p(x), as it necessary for Monte Carlo methods with importance sampling (see

Section 3.1.1), there are some ways to generate them. A seemingly very simple

method is the inversion of the distribution [20, 19], thus,

p−1(ỹ) = x. (3.7)

Although this can be an easy recipe to get random numbers for integrations,

functions used for difficult multidimensional integrals often do not have a defined

inverse. For example, the definition area of the tangent tan(x) is
[
−π

2 ,
π
2

)
, the

square function x2 is definite for the negative or positive branch of the x-axis.

Therefore, in most of the cases, this method is not seen as practicable.

Metropolis algorithm One very often applied method to obtain random numbers

according to a distribution function is the Metropolis algorithm [19]. It is an

algorithm, which is based on a Markov Chain, a stochastic process depending on
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the iteration step before. Thus, the conditional probability of a value xk+1 can be

written as:

w(xk+1|xk, xk−1, xk−2, ..., x0) = w(xk+1|xk). (3.8)

As mentioned above, Monte Carlo methods are often used in statistical physics.

The Metropolis algorithm is used in many applications in this context, because it

allows an efficient calculation of multidimensional integrations.
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3.2. FLUKA

FLUKA [1] (which stands for the German expression Fluktuierende Kaskade) is a

simulation tool, which is written in the programming language FORTRAN. It has

been developed in the frame of research projects at CERN (Conseil Européen pour

la Recherche Nucléaire or in English European Organization for Nuclear Research)

in Geneva (Switzerland) and INFN (Istituto Nazionale di Fisica Nucleare) in Italy.

Scientific contributions have also come from institutions in Leipzig (Germany) and

Helsinki (Finland) [22]. It has been written to serve for many special applications,

such as cosmic rays, neutronics, hadron therapy. Moreover a lot of interaction

processes are implemented, e.g. nucleus-nucleus, hadron-nucleus, hadron-hadron

and electromagnetic.

The FLUKA code makes use of Monte Carlo methods, which are introduced above

in Section 3.1 and based on the simple principle of generating random numbers

and thereby iterating multidimensional integrals.

3.2.1. History, structure and applications

FLUKA has been developed in the frame of a cooperation between many European

research institutes [2]. Its history goes back to the 1960s, when the first Monte

Carlo transport codes were developed at CERN. In this period the basis for FLUKA

was provided. The stages of the development of the code will be described in the

following passages, based on [1, 23]

In the decades after the start of FLUKA there were about three generations of

the program, which have led to innovations in the field of Monte Carlo codes.

In the first generation, the applications in context of the CERN SPS project

were essential for the development of FLUKA. The SPS (which means Super Proton
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Synchroton) is a particle accelerator, that can achieve energies of about 300 GeV

in a synchrotron system. In the construction phase the responsible research group

needed relatively precise estimations for the description of hadronic inelastic inter-

actions. Kaons, pions, nucleons and antiprotons were implemented in the program

and also first approaches for the energy loss in ionisation processes and Coulomb

scattering could be seen in this generation.

The second generation of the FLUKA code was characterized by many additional

possibilities in the field of geometry. Furthermore, the developers wanted to find

a way to create a more user-friendly interface for hadron cascades. For example,

the FLUKA82 version was the first to include spherical and cartesian geometries.

Many innovations in the field of particle accelerators led to the development of

the present FLUKA code generation. Because of the high energy ranges (e.g. 7 TeV

on the Large Hadron Collider, LHC ) and new designs another set of models and

geometries was needed. The applications of FLUKA were broadened for other areas

like neutrino physics, radiobiology, calorimetry, spallation sources and others.

3.2.2. Prerequisites

For a successful execution of a FLUKA simulation a Linux operating system is needed

[23]. In the present case Ubuntu 16.10. and Windows 7 are used. Moreover one

of the compilers gcc, gfortran (64 bit) and g77 (32 bit) respectively is required.

3.2.3. Physics in FLUKA

The FLUKA simulation package includes a variety of physical models [23] covering

different energy ranges (see Table 3.1). In the next few lines a short overview

including the main physical processes described in FLUKA will be given. The rele-

vant theory for the present work will be described in the following sections and is

explained as well above in 2.1 and 2.2.
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Hadron-nucleon interactions are implemented in terms of two models. At mo-

menta below 3–5 GeV/c, it is the Generalized Intra-Nuclear Cascade (GINC) and

at higher energies the Gribov-Glauber multiple collision mechanism comes into

play.

Also the transport of charged hadrons and muons is included in FLUKA. Besides,

Bethe-Bloch theory and Mott corrected Rutherford scattering effect contribute to

the simulation of charged particle transport. Moreover delta-ray production, spin

effects and ionization fluctuations are taken into account.

FLUKA moreover contains a library for low energy neutron cross section for e.g.

gamma ray generation or transport of proton recoils.

Secondary particles Primary particles
charged hadrons 1 keV – 20 TeV 100 keV – 20 TeV
neutrons thermal – 20 TeV thermal – 20 TeV
antineutrons 1 keV – 20 TeV 10 MeV – 20 TeV
muons 1 keV – 1000 TeV 100 keV – 1000 TeV
electrons 1 keV – 1000 TeV 70 keV – 1000 TeV (low Z)

150 keV – 1000 TeV (high Z)
photons 100 eV – 10000 TeV 1 keV – 10000 TeV
heavy ions < 10000 TeV/n < 10000 TeV/n

Table 3.1.: Transport limits of FLUKA [23]

Nucleus-nucleus interactions generated by ions are represented by Boltzmann

Master Equations (BME), Relativistic Quantum Molecular Dynamics (RQMD)

and Dual Parton Model (DPM), which will be described in detail in the following

sections.
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3.2.4. Boltzmann Master Equations (BME)

The theory of Boltzmann Master Equations (BME) is based on a set of coupled

equations. As it can be read in the two main papers about the implementation

of this model [24, 25], it describes the thermalization, the process of continuously

getting into thermal equilibrium after a collision of two ions.

In this model, the nucleus is considered as a two-fermion gas consisting of proton

and neutron. The set of master equations are a time evolution of the occupation

probability of definite neutron and proton states and thereby represent the relax-

ation process of the nucleus. The equations are numerically integrated up to a

pre-equilibrium emission time and give as a result the occupation probabilities of

states of the nucleus and the unbound particles, respectively [24].

In practice, a Monte Carlo code using Boltzmann Master Equations generates

random numbers for the comparison (as outlined in Section 3.1.2) of the multiplic-

ities and the energy of the fragment particles. At this point it is decided, whether

a and what type of particle is evaporated by the nucleus. Moreover the energy is

fixed.

3.2.5. Relativistic Quantum Molecular Dynamics (RQMD)

The model of Relativistic Quantum Molecular Dynamics (RQMD) is a Lorentz-

invariant extension of Quantum Molecular Dynamics (QMD). For energies higher

than 125 MeV/n FLUKA makes use of it. The following chapter will focus on a

mathematical – and in the final paragraphs more intuitive – description of the

underlying assumptions and is basically oriented on [26] and [27].

First, the model of QMD, which represents the non-relativistic basis of RQMD,

needs to be introduced. In this theory, the nucleon states are described as Gaussian

wave packets with width L:
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φi(r) = 1
(2πL)3/4 exp

[
−(r− ri)2

4L + i

~
r · pi

]
, (3.9)

where ri and pi are the centers of positions and momentum of i-th wave packet.

The total wave function is a product of all the nucleon states

Ψ(r1, r2, r3, ..., rn) =
n∏
i=1

φi(ri) (3.10)

As in the classical Hamiltonian theory, the time evolution of position and mo-

mentum are given by:

dH
dpi

= dri
dt

dH
dri

= −dpi
dt

(3.11)

In this theoretical framework, the colliding ions collide, if the centers of their

wave functions come closer than a distance
√

σtot
π
. A Monte Carlo code would then

be simulating a collision process with respect to the Pauli principle. Therefore

only final states are not accessible for nucleons, if they are already occupied.

The QMD Hamiltonian can be written in the so-called Skyrme representation,

where the overlap density of quantum mechanical states are summed up.

In order to transform QMD into a Lorentz invariant theory, the nucleons have to

be described by their four momentum pµi and four position qµi [27], which means,

that an N-particle system produces an 8N-dimensional phase space.

In the resulting Hamilton operator, phase-space and world line constraints are

taken into consideration in order not to violate relativistic laws. The wave function

for nucleus-nucleus interaction is then represented by the eigen function of this

Hamiltonian. Since the present work is not meant to go too deep into theoretical

details, one can find an explicit derivation in [27].
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In Monte Carlo codes, the RQMD model is implemented similarly to the classi-

cal QMD. Besides the already mentioned reasons (relativistic vs. non-relativistic

approach), the main difference between the application of both systems, is that

in RQMD the violation of the relativistic world line constraints (oultined in [27])

would be conserved for a calculation cycle, which is not the case for QMD. There-

fore only input that fulfils the constraints can lead to a valuable result [27].

3.2.6. Dual Parton Model (DPM)

Finally, the Dual Parton Model is introduced, which represents the basis of the

event-generator DPMJET. The name comes from the assumption, that at high colli-

sion energies, nucleons show the behavior of smaller, hypothetical particles, called

partons, which we today know as quarks and gluons. This theory is applied at high

energies of about 5 GeV/n and higher and is based on the knowledge of quantum

chromodynamics. Because in the present work, only particle energies up to 500

MeV/n, just a shord description will be given to describe the principles of this

theory. In the theory of DPM, a hadron, seen as an excitation state, consists of

an open string with quarks, antiquarks or diquarks at its end [28]. The collision

between hadrons are causing the production of particles with low-transverse mo-

menta. The fragmentation processes take into account that the produced particles

move on straight trajectories in space and time. In a collision process, the so-called

prefragments are stated to be in an equilibrium state, where the excitation energy

is dissipated by evaporation of fragments. For more information about the DPM,

see [29], the introductory work of Capella et al.

3.2.7. General input

Before FLUKA can be started, the user has to prepare the input for the simulations.

FLUKA requires ASCII formatted "card"-like input files (*.inp) [23]. Because of the
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fact that this simulation package has been developed for decades (and partially in

times when punch cards were used for programming), the structure of the input is

seemingly simple. This simplicity also involves problems. Every input option has

a defined number of characters for its arguments (see Figure 3.5).

Figure 3.5: Example of an ASCII input taking into account the card structure:
The second line describes the property of an incident proton beam
with an energy of 200 MeV, with an extent of ∆x = 1.2 cm, ∆y = 0.7
cm, a beam divergence of ∆φ = 1.5 mrad and a flat momentum of ∆p
= 0.2 GeV/c.

An input file basically consists of the following options:

• A description of the experimental geometry

• Definition of the materials that should be included in the simulation

• Assignment of the materials to regions of the geometry

• A particle source (e.g. beam)

• Initialization of the random number sequence

• Starting signal and number of requested histories (which is the number of

primary particles in principle)

These are the mandatory input parameters. There are many types of geometri-

cal bodies that are available in FLUKA, for example rectangular parallelepipeds or

ellipsoids. There are some predefined materials that can be used in this package,

others can be created specified by the user. In the option of particle source there

is a variety of types of beams that can be chosen. In this connection, one also

has to define the geometrical measurements of the beam, its spread in ∆x and ∆y
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directions. The initialization of a random number is required to start the Monte

Carlo simulation (see Section 3.1).

Next to the mandatory input parameters there are many other options that can

help to define the physical processes that should be included in the simulation.

One essential type option is the detector. FLUKA has widely spread possibilities to

measure physical quantities. In the present case, especially the usryield detector

is of high importance. It can be used to estimate (double) differential yields, such

as fluxes or cross sections. In the input file, one has to include this detector in the

style of Figure 3.6, where it is outlined, that two successive lines are needed for

the use of this option. Un this Figure, it is also shown, that with the exception of

the detector name, only numbers can be found in both lines. These are assigned

to certain parameters, which will be explained in the next paragraph. The first

entry in the first line determines the first and second physical variable, the (double)

differential yield is derived by. Subsequently, the particle type, the output unit, the

two regions defining the boundary and a normalization factor have to be defined

in the first line. In the second line, the upper and lower intervals for the scoring

regions of both quantities, the bins for the first quantity and the type of (double)

differential yield is determined. An example of such input lines is given in Figure

3.6: The first line starts with the number 1399, which stands for a derivation by

the total energy in GeV and the polar angle in radiant, 13 stands for the particle

type Pion, 21 is the suffix for the output file, 2.0 and 3.0 define the region of the

particle and 1.0 is multiplicative factor for the normalization. The second line

begins with 50.0 and 0.001 which are the limits for the energy in GeV, 100 defines

the number of bins, and 3.13159265 and 0 is the angular interval.

Figure 3.6: Example of a typical usryield input line [23].
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With regard to the input files, there is a variety of different other options,

such as detectors or physical and statistical biasing, but since the present work is

focussed on differential and double differential cross sections, the most substantial

information has already been mentioned.

3.2.8. Run

A FLUKA run is started by writing /pathto/flutil/rfluka -N0 -MX inputfile.inp in

the command line [23]. /pathto/ represents the path on the computer leading to

the directory of the FLUKA software environment. X is the number of cycles – in

order to obtain better statistics for the simulation, it is more useful to choose less

primary particles and more cycles of runs than the other way around. As to be

expected, inputfile is the name of the input file.

Figure 3.7: FLUKA run started via Ubuntu terminal [23]: Temporary files are
deleted, data of the results are output in fort.xx files.

The standard FLUKA executable is flukahp. In order to access physical models

of higher primary energies, the library for the Dual Parton Model (see Section

3.2.6) and the Relativistic Quantum Molecular Dynamics (see Section 3.2.5), can

be linked by writing ldpmqmd into the command line instead of rfluka. If the
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primary beam does not consist of heavy ions, the physics option additionally has

to be used in the input file to link the high energy library.

3.2.9. flair

flair (FLUKA Advanced Interface) [30] is a graphical user interface for the use

of FLUKA. Because of the less uncomfortable practicability, relating to the format

of the input files, it can be very helpful in the use of the simulation package and

save a lot of time and effort (see Figure 3.8). The public version of flair was first

released in 2007. flair is written in the programming language Python and uses

the package Tkinter for the graphical interface. One of thee advantages of Python

are according to Vlachoudis, one of the flair developers, is a very clear syntax

[30]. When the program is started, it gets compiled and optimized by a pseudo-

code assembly language and a virtual machine interprets the code. Regarding the

plots, that are included in flair, the software package of gnuplot is implemented.

The user interface flair is working with the concept of FLUKA projects and

contains many tools that are made to allow a more fluent work with the simulation

package. It also creates its own file types (*.flair) that log the cycles one has

executed using flair. In the year 2010 the graphical user interface was advanced

by the Geometry Viewer, which allows to illustrate the input geometry for the

simulation (see Figure 3.13).

3.2.10. Post processing

When a FLUKA simulation is performed, four types of output files are automatically

created [23].

• in the *.err files error messages can be seen in case of canceled cycles
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(a) FLUKA input file using gedit

(b) FLUKA input file using flair

Figure 3.8: The use of flair can help to create input files: While the user of a
conventional text editor in (a) has to take into account the well-defined
structure of the ASCII input, it is automatically done in (b) by the user
interface flair

53



• documents with extension *.log include messages of fatal errors (e.g. data

overflow)

• *.out files are the standard output, they include additional information,

such as properties of included detectors and echo the input file

• *fort.xx contains the results of estimator and detector computations as-

signed to the number xx in the input file.

The FLUKA usryield detector writes a fort.xx text file. It can be obtained in

two ways, either in ASCII or in binary format. Both file types are output in the

style of a matrix, where the binaries can be converted into a table (*_tab.lis file)

of measurement data, including error analysis. Executing the usysuw.f FORTRAN

tool, this conversion can be performed.

When usysuw.f was started in the command line, the exact name fort.xx files

for every simulation cycle needed to be entered. This certain part of process was

automatized using a simple Expect script, that runs through the numbered output

data.

In order to plot the data in Gnuplot there is no necessity for another conversion,

because the *_tab.lis is compatible with the software package. The units of the

output data must be determined in the input file. In the present case of particles

detected by usryield the results are given in units of b/(sr· GeV/n) for double

differential cross sections and b/sr for differential cross sections.

3.2.11. Other simulation packages

Besides FLUKA there are some other Monte Carlo simulation codes. One of the

most well-known is GEANT4 [16, 17] (GEANT stands for Geometry and Tracking),

which has also been developed in the CERN and is based on the programming
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language C++. Another widely used code is PHITS [31, 32] (acronym for Particle

and Heavy Ion Transport code System), which is FORTRAN based.

• GEANT4 was originally developed for the use in the context of the Large

Hadron Collider (LHC) CERN project in Geneva. It has a complex structure

that makes use of many different physical models. In a case relevant for the

present work using 12C projectiles, GEANT4 includes various codes. There is

the possibility to use the semiclassical G4BinaryLightIonReaction (BLI), the

QMD based (also see Section 3.2.5) G4QMDReaction and the Intra-Nuclear-

Cascade Liège models. All of these have to be linked with a de-excitation

model [11].

• PHITS can be used for many simulation applications, such as spallation neu-

tron source, space radiation or heavy ion therapy. The models of nucleus-

nucleus collisions are valid for delimited energy ranges. From 0 to 10 MeV/n,

the ionization process is taken into account, above and up to 100 GeV/n, the

JQMD (JAERI Quantum Molecular Dynamics) model is applied [32].

55



3.3. High performance computing

Figure 3.9: Logo of HTCondor [33]

Every FLUKA run needs a big amount of computer resources. Therefore, a simula-

tion can take a lot of time and workload. In order to avoid inefficient work there

are various tools for high performance computing. One is called HTCondor [34]

(formally known as Condor), where HTC stands for High Throughput Computing,

which is able to split a job into any number of subjobs and to partition it for

every single processor unit. This program was originally made for Unix but then

basically expanded to Windows, Linux and Mac.

For the use of simulation interfaces, there are many scripts that implement the

use of HTCondor. One was written in the programming language Python by Niels

Bassler, a professor from the Department of Physics and Astronomy at Aarhus

University in Denmark [35].

The Python code, mentioned above, was also used for the present work in order

to reduce time effort. The HTCondor high performance computing tool parallelized

the simulation jobs on up to 42 processor cores on a central server.

For the execution of the Python program (in the present case it was called

rcfluka.py), the following line was written into the command line of the Ubuntu

terminal:

/pathto/rcfluka.py -MXXX inputfile.inp -l ldpm3qmd -c,
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where XXX stands for the number of simulations cycles, inputfile is the name of

the input file, -l ldpm3qmd links FLUKA with the DPM and RQMD (see Figure

3.2.5 and 3.2.6) library and -c initiates the cleaning procedure for temporary files,

which are automatically created during the calculations.

Figure 3.10: Structure of the grid (Image, courtesy of A. Hirtl)

Another aspect, which facilitated the execution of computations was the use of

a server with 64 processor cores and two PC with 12 cores, such with internal

memory of 256 GB. The scheme in Figure 3.10 shows the according basic working

structure. The server, where also the required data files are stored, distributes

the jobs to the nodes, where the calculations are executed. After this process the

resulting data are sent back to the server.
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3.4. Self-written codes

FLUKA contains predefined functions, that allow the simulation of differential and

double differential cross sections. Although many particle types, such as elemen-

tary particles and light ions (1H, 2H, 3H, 3He, 4He and primary particles) are

accessible in FLUKA, some can only be examined by self written FORTRAN routines.

Figure 3.11: Self-made screen shot of the first few standard lines of a FLUKA user
routine, structured according to [23]

These self-written programs, used for this work, starts with a standard input

(see Figure 3.11), that included certain functions of the FLUKA simulation package

environment. The main part consists of FORTRAN if -operators, that ensure, that

only particles with certain mass and charge numbers (dependent on which particle

is studied) in the interaction region are taken into account for the computation.

In order to include these programs, there are FLUKA libraries that are linking the

codes with the simulation interface. The input file then has to be expanded with

the so called userdump option.
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For every single fragment, an output file, also called collision tape [23], was

created. It lists the recorded charge and mass numbers of the nuclei. Moreover,

the kinetic energies of these fragments and the θ exit angle were obtained.

For the use of post-processing the data, another self-written program was exe-

cuted. As the main part of the present work included codes in FORTRAN, it was also

chosen as language for this purpose. The program starts with the initialization of

every single variable.

The length of the output file name is dependent on the index of the cycle, that

is computed (see Figure 3.12). In the program it is a character array with length n

for cycles 0−9 and n+1 for the cycles 10−99. Since the number of recorded events

differ from fragment to fragment, the variables, which describe the quantities in the

collision tape (energy, angle, mass number, charge number), are dynamic arrays.

The program detects their length by counting the numbers of lines in the output

files.

Figure 3.12: In this part of the program, first, the file name is read. Then the do
while loop counts the numbers of lines in the output file.
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The program’s core consists of an if -loop, which counts the recorded events

of the collision tape in bins of angle (and energy) for (double) differential cross

sections.

Derived from the cross section formula in Equation (2.10), the differential and

double differential cross sections were calculated as follows:

dσ

dΩ = Nfn

Npp × ρt × th× 2π × (cos(θ + ∆θ)− cos(θ −∆θ)) (3.12)

where the product of thickness th and density ρ needed to be input in units

of barn (mostly abbreviated as b) and the 2π represents the φ angle component

(also see it visualized in Figure 2.3). In the Equation (3.12), Nfn stands for the

number of fragment nuclei and Npp for the number of primary particles. The

double differential cross section was computed by dividing the differential cross

section by ∆Ekin, the energy interval.
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3.5. Simulation parameters

The simulation of the differential and double differential cross sections were exe-

cuted for heavy ion energies 120, 600, 1200, 1800, 2400, 3000, 3600, 4200, 4800,

5400 and 6000 MeV, in the angular regions of (2.5 ± 2.5)◦, (7.5 ± 2.5)◦, (12.5

± 2.5)◦, (17.5 ± 2.5)◦, (22.5 ± 2.5)◦, (27.5 ± 2.5)◦, (32.5 ± 2.5)◦, (37.5 ± 2.5)◦,

(42.5 ± 2.5)◦, (52.5 ± 7.5)◦ and (75 ± 15)◦. Moreover 16 different targets and 17

fragments were studied.

As it was explained in Section 3.3, a Python script was used to parallelize the

simulation cycles. In [35], it is recommended, that a single computation job should

not take more than 1 to 4 hours. Therefore, the FLUKA input files were kept simple

and created for every single energy interval and target.

3.5.1. Geometry

Figure 3.13: Geometry of the FLUKA simulation; not to scale: Black hole sphere –
vacuum – target. The arrow represents the incident beam.

The geometry of the simulated setup in principle consists of (also see Table 3.2

and Figure 3.13):
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• A black hole sphere in order to avoid unwanted backscattering effects from

the boundary of the vacuum, containing

• a vacuum sphere centered at the zero point, which allows an unpolluted

experimental environment, with

• a cuboid in the center, which stands for the target.

Geometry ∆x [µm] ∆y [µm] ∆z [µm] r [cm]
Cuboid (target) 200 200 10 ∗
Sphere (vacuum) ∗ ∗ ∗ 100
Sphere (black hole) ∗ ∗ ∗ 1000

Table 3.2.: Extent of the geometrical bodies

3.5.2. Projectile

As mentioned in the beginning, 12C ion beams work highly efficiently in the con-

text of cancer therapy because of their depth-dose profile (see Section 2). Thus,

they are important for the research at the MedAustron facility. In the simulation,

every projectile beam contained 107 particles, multiplied by 100 cycles, thus, a sin-

gle computation of heavy ion collision resulted in 109 primary particles. In Table

3.3, the properties of the incident ion beam are listed.

Shape ∆x [µm] ∆y [µm] Energies
[

MeV
n

]
Rectangular 0.1 0.1 10 – 500

Table 3.3.: Properties of the incident beam

It is obvious that the beam spread is much smaller than the extent of the target

in x- and y-direction. In the setup of ion beam therapy the targets (i.e. cancerous
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tumors surrounded by human tissue) are much larger and therefore boundary

effects caused by too small targets need to be avoided in the simulation.

3.5.3. Targets

Particle State ρ
[

g
cm3

]
1H liquid 0.071
12C solid 1.644∗

14N liquid 0.807
16O liquid 1.141
23Na solid 0.971
24Mg solid 1.738
27Al solid 2.699
31P solid 1.830
32S solid 1.960
35Cl liquid 1.563
39K solid 0.856
40Ca solid 1.550
48Ti solid 4.540
63Cu solid 8.690
120Sn solid 7.310
200Hg liquid 13.534

Table 3.4.: Targets used in the simulation ordered by mass number, state and
density

∗This value for the density ρ was taken as a continuation of the comparison to the E600 (see
above), where this was one of the parameters.
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In order to get valuable data for the simulation set, a variety of different targets –

liquid and solid – were taken. Elements that often appear in human tissue were of

special interest. The basic component of organic material is carbon (C). Because

of the amount of water, human body carries, also oxygen (O) and hydrogen (H)

are included. The differential and double differential cross sections two elements

were studied for the liquid state. Mercury (Hg), which was also part of the simu-

lation, can be found in chemical bonds of dental amalgam fillings. Titan (Ti) is a

component of some types of prostheses.

An overview about the three mentioned and other elements included in the

simulation data set is given in Table 3.4.
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4. Results and discussion
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Figure 4.1: Simulation data of a preceding work compared to experimental data:
4He double differential cross section for θ = 4◦

In the frame of a preceding work, it was shown that FLUKA simulation results agree

to some extent with experimental data [36]. The differential and double differential

cross sections were simulated for secondary 12C particles and light fragments 1H,
2H, 3H, 3He and 4He. A compact data set was calculated for 12C primary particles

with 95 MeV/n directed on a carbon target. The data were compared to the

results of the E600 [37] experiment and mostly showed a behavior, one could have

65



expected (see Figure 4.1).

Based on this conclusion, the results of the new simulation set are expected

to be in a span that allows valuable estimations for the derivation of doses. In

the present simulation, the differential and double differential cross sections of

the fragments in table 4.1 were calculated. The resulting data set contains more

than 35,000 tabular files, taking into account every energy and angle bin for every

studied fragment and target.

Isotope Mass [u] Half life
12C 12.077 stable
1H 1.007 stable
2H 2.014 stable
3H 3.016 12.33 a
3He 3.016 stable
4He 4.001 stable
6He 6.018 806.7 ms
6Li 6.015 stable
7Li 7.016 stable
7Be 7.017 53.12 d
8B 8.005 770 ms
9Be 9.012 stable
10Be 10,014 1.51 ·106 a
10B 10.013 stable
10C 10.016 19.255 s
11B 11.009 stable
11C 11.011 20.39 min

Table 4.1.: Properties of the fragments included in the present FLUKA simulations
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4.1. Differential cross section

First, the focus is placed on differential cross sections. Cross sections are effec-

tive planes, that give information about the scattering probability of a particle

(also see Section 2.2). As mentioned above, a lot of targets have been used for

the simulation and therefore also a variety of fragmentation processes can be ob-

served. Next to the scattering probability, the differential cross section provides a

distributional information about in which angular region a particle is deflected. In

Section 2.3, where the background of fragmentation processes is summarized, it is

also explained, that light fragments – contrary to primary particles – have higher

probability to be found in regions of higher angles. This is one important criterion

which will be deciding for the evaluation of the simulation quality.
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Figure 4.2: 12C differential cross sections
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In general, most of the differential cross section profiles show an exponential-like

behavior. As it is obvious, a few words about the differential cross sections of the

deflected primaries are given. One can see that the 12C projectiles’ differential

cross section are high for low angles. For example in the case of a 35Cl target,

see Figure 4.2, there are two main characteristics. On the one hand, one can see

that the value at an angle of θ = 2.5◦ is much higher than the next one at θ =

7.5◦, in this special case the difference is about four decimal powers. Results for

other angles then only differ by a factor less than ten. Figure 4.3 shows the case of
1H secondary production for a 1H target. The small error bars may occur due to

the fact, that the target is knocked out by the heavy primary and the secondary

particle production by the projectile. As the target shows no characteristics of

fragmentation in this case (see Section 2), this is not observed for the cases of

other secondary particles. As one can see in Figure 4.4 FLUKA can give valuable

data for a data set of fragmentation process simulations, whereby the quality of the

results vary from fragment to fragment. 3He and 4He as lighter ions mostly show

a meaningful statistical behavior, whereas in the mapped example, the fragments
6Li and 7Li have larger error bars.
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Figure 4.3: 1H differential cross sections.
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Figure 4.4: Above, the data curves seem to show good agreement but contain
very large errors. Below, the same energy and target were taken but
different fragments – giving more precise results.
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4.2. Double differential cross section

The simulations of double differential cross sections show in general a behavior, as

follows: The center of the highest peaks in low angle areas is around the primary

beam energy. For higher angles, it moves to smaller energy scales.
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Figure 4.5: Double differential cross sections of 8B, 10B and 11C compared at θ =
2.5◦

This is because of the classical behavior of the secondary particles, some of them

lose energy and are deflected in the 4π angular regions. As one can see in Figure

4.5, the double differential cross sections can show a similar behavior for different

particles, but the values can differ clearly.
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Figure 4.6: 3H double differential cross sections at θ = 7.5◦
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Moreover the fragments show a behavior depending on the target. While tar-

gets of higher mass numbers give good statistics for a variety of fragments, e.g.
3H in Figure 4.6 for a 201Hg target, 1H as a lighter ion only gives valuable data

for 12C and 1H cross sections. As it can be seen in Figure 4.7, the simulation of
4He fragments, that usually shows good statistics, contains large error bars. A

reason for that can be found in the fact that in the case of a 1H target only the

projectile is fragmented and therefore the scattering probability of 4He is relatively

low. Another argument for this statistical behavior is the density of liquid hydro-

gen, which his small compared to the other targets (about 1–3 decimal powers)

and additionally lowers the probability of 4He production in the collision process

between target and projectile.
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Figure 4.7: 4He double differential cross sections at θ = 17.5◦.
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In general, the highest values of double differential cross sections are found in

the regions of low angles, as the behavior of the differential cross sections indi-

cates. The more one approaches to θ = 90◦, the smaller the double differential

cross sections get. In most of the cases, a double peak structure can be observed

in the shape of the curve (see Table 4.2 and Figure 4.8). While the main peak – in

low angle regions at the energy of the incident beam – gets smaller and moves to

lower energies, there is another one of constant height at energies not much larger

than 0 MeV
n .

Angle [◦] E1
[

MeV
n

]
E2

[
MeV

n

]
DDC1
DDC2

[%]

2.5 ± 2.5 10 350 3.99

7.5 ± 2.5 10 340 13.09

12.5 ± 2.5 10 310 55.86

17.5 ± 2.5 10 290 444.00

22.5 ± 2.5 10 280 2263.36

27.5 ± 2.5 10 ∗ ∗

32.5 ± 2.5 10 ∗ ∗

37.5 ± 2.5 10 ∗ ∗

42.5 ± 2.5 10 ∗ ∗

52.5 ± 7.5 10 ∗ ∗

75 ± 15 10 ∗ ∗

Table 4.2.: 12C directed on a 12C target: 2H double differential cross section be-
havior taken as example for the double peak structure; E1 and E2 are
the energies for the two cross section main peaks, with E1 < E2.

Not often, but unfortunally sometimes it can happen, that results become mean-

ingless due to statistics. In Figure 4.9 such a case is shown. The double differential
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Figure 4.8: Comparison of double differential cross sections: The main peak de-
creases relatively to the first peak and is shifted to lower energies.
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cross sections of three different particles (here 6He, 9Be and 10C) are centered at

the same point on average, but inserting error bars makes them lose their charac-

teristics. Problems like this can appear because of modeling weaknesses or input

of inappropriate parameters.
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Figure 4.9: Double differential cross sections of 6He, 9Be and 10C compared at θ =
2.5◦
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5. Summary and conclusion

The present work started with an introduction into the field of ion beam therapy

and other methods to treat cancerous tumors. While therapies using photons have

led to respectable results but have also caused negative side effects, ion beam

therapy has been developed in the last few decades and has shown much higher

effectiveness. A short overview of the history is also given in the first chapter.

In order to outline a mathematical approach, the Bethe-Bloch formula, that

describes the energy loss of heavy ions, was derived and explained in the next

section.

The concept of differential, double differential and total cross sections was then

introduced. The cross section is an effective surface that gives information about

the scattering probability of a particle. The differential and double differential

cross sections are physical quantities that also take into account that particles are

deflected into different angular regions in various energy spectra.

A short derivation of the Coulomb / Rutherford scattering differential cross

section was then presented. This – as a cumulated process – is another contribution

to the heavy ion scattering, but relatively small compared to the stopping power

in total.

Moreover the materials and methods of this work were introduced. In detail, the

principles of Monte Carlo simulation and thereby also the generation of random

numbers were explained, the FLUKA package was described and the actual input of
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the simulations for this work was illustrated.

In the following chapter, the results of this work were presented in a compact

style. One could see that there are certain characteristics and patterns in the

behavior of differential and double differential cross sections.

It is appropriate to say that FLUKA delivers valuable data for certain setups with

regards to ion beam therapy: Depending on input parameters, such as density,

target element or the size of data bins, one can get comparatively precise results

in terms of low statistical errors. For example, one could see, that certain targets

cause production of certain particles or in cases of low mass targets there were less

secondaries measurable.

However, for the further use of the data in therapy planning systems, it is con-

sidered advisable to compare with the results of simulations using other packages,

such as PHITS and GEANT4. In the future it obviously also will be required to gather

more experimental data – if then available – and re-estimate the precision of Monte

Carlo simulated data, in order to produce a more accurate outcome. Furthermore,

it will be necessary to develop the simulation models in order to reduce the gap

between numerical calculations and real experiments. The outcome of this work

can be taken as an improvement for the modelling of simulations, as it shows, that

the results are not sufficiently precise. In the future, there might be opportunities

to use numerical computations of differential and double differential cross sections

as input for treatment planning systems.
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A. Appendix

A.1. Differential cross sections
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Figure A.1: 10C and 11C differential cross sections on logarithmic scale
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Figure A.2: 3He differential cross sections
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Figure A.3: 1H differential cross sections
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A.2. Double differential cross sections
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Figure A.4: 1H double differential cross sections at θ = 27.5◦.
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Figure A.5: 8B double differential cross sections at θ = 2.5◦.
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Figure A.6: 3H double differential cross sections at θ = 17.5◦.

91


	Introduction
	Ion beam therapy
	Bethe-Bloch formula
	Scattering theory
	Nuclear interactions

	Materials and methods
	Monte Carlo simulation
	FLUKA
	High performance computing
	Self-written codes
	Simulation parameters

	Results and discussion
	Differential cross section
	Double differential cross section

	Summary and conclusion
	Bibliography
	Appendix
	Differential cross sections
	Double differential cross sections


