
An Emergent System for
Multimedial Document

Management

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Medieninformatik

eingereicht von

Alexander Sinnl, BSc.
Matrikelnummer 0928723

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao. Univ.-Prof. Mag. Dr. Horst Eidenberger

Wien, 25. Jänner 2017
Alexander Sinnl Horst Eidenberger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

An Emergent System for
Multimedial Document

Management

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Media Informatics

by

Alexander Sinnl, BSc.
Registration Number 0928723

to the Faculty of Informatics

at the TU Wien

Advisor: Ao. Univ.-Prof. Mag. Dr. Horst Eidenberger

Vienna, 25th January, 2017
Alexander Sinnl Horst Eidenberger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Alexander Sinnl, BSc.
Wollmannsberg 43, 2003 Leitzersdorf

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 25. Jänner 2017
Alexander Sinnl

v

Kurzfassung

Die von der Digitalen Revolution ausgelösten Veränderungen unserer Welt bringen diverse
Herausforderungen mit sich. So handelt eine der großen Fragen dieser Zeit davon, wie
ein nachhaltiger Umgang mit (digitalen) Daten aussehen kann. Jeder Mensch produziert
und nutzt tagtäglich eine Vielzahl an Daten, die abhängig vom jeweiligen Kontext sinn-
stiftend zu Informationen zusammengefasst werden. Eine dauerhafte Speicherung dieser
Informationen lässt sich mithilfe multimedialer Dokumente realisieren. Gesamtheitlich
betrachtet, entsteht aus diesen Einzelhandlungen ein natürlicher Kreislauf, in dem Men-
schen maschinenunterstützt und in Beziehung zueinander Informationen erzeugen wie
abrufen.

Für den konkreten Anwendungsfall dieser Diplomarbeit, dem Schaffen eines Softwarepro-
totyps für die Erfassung und Verwaltung von Studienbewerbungen an der Technischen
Universität Wien, sind folgende Minimalanforderungen umzusetzen: Der entwickelte
Student Records Manager speichert Informationen (Dokumente und Metadaten) in Stu-
dierendenakten und präsentiert diese zur Bearbeitung via Benutzeroberfläche in drei
verschiedenen Sichten. Studierende haben die Möglichkeit, Dokumente für Studienbewer-
bungen hochzuladen und diese abzusenden. Mitarbeiter der Studien- und Prüfungsab-
teilung der TU Wien können diese Bewerbungen evaluieren. Studiendekane sind in der
Lage, Stellungnahmen zu verfassen.

Um diesen Anforderungen gerecht zu werden, basiert der Student Records Manager auf
dem frei zugänglichen elektronischen Dokumentenmanagementsystem Nuxeo Platform, das
sich im Zuge einer Marktsondierung als geeignete Grundlage erwiesen hat. Der Prototyp
setzt auf einen benutzerzentrierten Ansatz, bei dem der Anwender gezielt automations-
unterstützt wird. Das Hauptaugenmerk liegt auf der annähernd optimalen Integration
der Stärken und Schwächen von Mensch und Maschine, um einen möglichst effiziente
Behandlung von Studienbewerbungen für alle beteiligten Akteure zu gewährleisten.

Die abschließend durchgeführte Evaluierung des Prototyps bestätigt dessen grundsätz-
liche Tauglichkeit für die Erfassung und Verwaltung von Studienbewerbungen an der
Technischen Universität Wien. In einem möglichen nächsten Schritt könnte der Student
Records Manager testweise in der geplanten Einsatzumgebung implementiert werden, um
in der Folge weitere Maßnahmen abzuleiten.

vii

Abstract

The digital revolution changes our world in unprecedented manner and generates manifold
challenges for humankind thereby. One of the major questions in the present time is
concerned with the sustainable handling of (digital) data. Each individual produces and
uses a multitude of data on a daily basis, which are assembled to meaningful information
in reference to the particular context. A permanent storage of this information can be
realised by means of multimedial documents. Altogether, these single activities constitute
a natural cycle of collaboration, where humans capitalise on automation to create and
retrieve information in relation to each other.

The concrete use case to be realised within this diploma thesis includes the development
of a software prototype for the acquisition and management of students’ applications at
the Vienna University of Technology. Several measures have to be taken into account to
achieve this goal: the prototypical Student Records Manager allows to store information
(documents and metadata) in student records on the one hand, and provides a user
interface with three different views for the manipulation of information on the other hand.
Students are enabled to upload documents and send their application in consequence.
Employees of the Admission Office at the Vienna University of Technology are empowered
to review these applications. Deans are set in a position to compose statements on the
applications.

In order to be able to meet these requirements, the Student Records Manager is built
upon the open source electronic document management system Nuxeo Platform, which
qualified as an adequate foundation in the course of a market sounding. Overall, the
prototype is premised on a user-centred approach with selective automation support.
Therefore, the main focus is directed towards an optimised integration of the strengths
and weaknesses of humans and machines, that should ensure the most efficient processing
of university applications for all involved participants.

The concluding evaluation of the software prototype acknowledges its suitability for the
acquisition and management of applications at the Vienna University of Technology. As a
next step, the Student Records Manager could possibly be implemented in the designated
operation environment and tested accordingly.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem definition . 2
1.3 Thesis outline . 2

2 Theoretical background 5
2.1 Information-based working . 5
2.2 Document management systems . 20
2.3 Agile user-centered processes . 29

3 Project description 33
3.1 Initial situation . 33
3.2 Requirements . 36
3.3 Market sounding . 39
3.4 Concept of the prototype . 42

4 Implementation 51
4.1 Development process . 51
4.2 Development stages . 52
4.3 Overall setup and structure . 64
4.4 The Student Records Manager . 67

5 Evaluation 73
5.1 Approach . 73
5.2 Results . 75

6 Conclusion 79

xi

List of Figures 81

List of Tables 82

Bibliography 83

CHAPTER 1
Introduction

1.1 Motivation
Scientia potentia est: with the development of speech and writing, humanity was able to
submit the world to their rules. May this be fortunate or not, the ability to exchange
information has been one of the milestones in the evolution of men. Still, the decisive
step for progressing in art and skills up to the level we experience in these days is owed
to another fact: the power to capture and store information in media. We can rely on
the knowledge of thousands of years and do not have to reinvent the wheel once again.

With the Digital Revolution, the amount of available data was taken to another dimension.
Providing loads of opportunities for improvement, this advancement also exceeds the
natural capabilities of humans at the same time. One is not able to filter all the
surrounding data and suffers from information overload in many domains of life. This is
the point, were technology has to intervene.

Especially in working environments, where the paradigms typically state to be as time-
and cost-effective as possible, processes need a certain degree of automation. Hence,
it is necessary to understand, how the strengths and weaknesses of human beings and
machines have to be combined for approximating to an optimal solution for the given
tasks. In general, computers are able to provide processing power and storage space.
That can be exploited for scaling down the quantities of data, presenting people only
the information required for their actual activity. Whereas humans are talented in
accomplishing these single activities and reacting to small changes in their daily routines.

Based on the above explanations, this thesis is concerned with the development of a
software prototype for the management of student records at the Vienna University
of Technology. In particular, the implemented system has to incorporate the tasks of
sending, revising, evaluating, storing and searching university applications by humans in
their different roles.

1

1. Introduction

1.2 Problem definition
From an abstract point of view, the Vienna University of Technology can be described as
a system comprised of subsystems. These organisational units are more or less connected
to each other and engage human employees for fulfilling certain data-based tasks. Thus,
information storage and retrieval is a central mechanism as well as benchmarking factor
for the performance of these processes.

Currently, the procedure for gathering and handling student records by the Admission
Office can be seen as a workaround based on existing electronical systems. As these
systems have not been designed especially for the mentioned purpose, they share several
limitations in terms of features and usability: in general, the Vienna University of
Technology does not have an evolved Document Management System (DMS) for the
whole entity, and relies on individual solutions in the different organisational units.

Focusing on the student records, essential parts of the working-process are only done
paper-based and not stored for future utilisation. This leads to extra effort and expense
in many cases. For instance, it is difficult to integrate the student records in the existing
environment at the Vienna University of Technology overall, complicating the internal and
external access. Employees need additional operations to locate the required information
or spend time for double-checking already revised documents. Furthermore, redundant
communication patterns and grown dependencies burden the general workflow.

As the amount of data to store is rising from semester to semester with the application
of new students, there could be a natural and technical breaking point for the existing
system. Accordingly, it is sensible to solve the emerging problems by the installation of a
new system, adapted to the special requirements. Moreover, the novel software prototype
can be generically enough, to deliver a possible foundation for a holistic Document
Management System at the Vienna University of Technology in future.

1.3 Thesis outline
The overall ambition of this thesis is to develop a software prototype for the management
of student records at the Vienna University of Technology. To achieve this goal, Chapter 2
provides the Theoretical background by facilitating the fundamental knowledge about
Document Management Systems and the general setting. A literature review deepens
the understanding by highlighting prime issues of DMS like efficient information storage
and retrieval techniques or critical design factors for performant usability. Leading to
the discussion, what the term Document Management System signifies for, and which
areas of application do exist in consequence. In Chapter 3, all the previously acquired
findings are utilised for derivating the requirements and planning of the implementation,
establishing the Project description. The current environment at the Vienna University
of Technology, in which the prototypical DMS for the student records will be embedded,
is investigated. Considering this information, a market sounding of open-source DMS
platforms leads to the selection of one particular framework, that the prototype will be

2

1.3. Thesis outline

built upon. Eventually, a draft for the to-be implemented DMS is prepared. Chapter 4
then yields the resulting realisation of the prototype and takes a look on its components,
accompanied by an evaluation of the newly created system in Chapter 5. Ultimately, the
thesis concludes with a final reflection of the whole work and its process in Chapter 6.

3

CHAPTER 2
Theoretical background

This chapter is intended to give an introduction on basic concepts in the field of Document
Management Systems. For this purpose, some surrounding topics are expounded to
build the general context at first. Then, it is possible to narrow down the scope of DMS,
identifying their essential features as well as critical factors for the development of such
frameworks.

2.1 Information-based working

The general goal of information-based working can be summarised in one sentence:
delivering the right information at the right time in the right format to the right
person(s). As each part of this process implies its own requirements and challenges,
multidisciplinary approaches have to be taken into account. It is important to unterstand,
how human interaction with computers and amongst themselves operates at the core.
For this reason, the topics of Computer Supported Cooperative Work, Interaction Desgin
and Information Storage and Retrieval are examined in the following subchapters.

2.1.1 Computer Supported Cooperative Work

Recapitulating the words of Schmidt and Bannon [1], the domain of Computer Supported
Cooperative Work (CSCW) unfolds in a wide range of applications. From a technical
standpoint, all available computing technologies for the support of cooperative work
(of humans) have to be considered as relevant building blocks. Since the development
of these technologies is an ongoing, hardly predictable process, the shape of CSCW is
constantly altering. As a result, CSCW is an interdisciplinary subject, that touches and
connects to different fields of problems with their own disciplinary demands. On a general
level, Greif [2, p. 6] summarises the term as a computer-assisted coordinated activity such
as communication and problem solving carried out by a group of collaborating individuals.

5

2. Theoretical background

Related to the practice, one key-insight is found in the following observation [2, p. 7]:
transaction-oriented database systems depend on "coordination technologies" for concur-
rency and access control and coordination. Certainly, the relevant tools are managed by
database administrators, instead being directly available to end-users. As a result, users
are protected from accidentally corrupting data in the first place, rather than having the
opportunity to build something together in a workgroup.

Thus, coordination capabilities have to be an integral part of working tools within. Because
these tools are utilised in a situational context then again, ethnographical aspects should
be mind as well. Consequently, Schmidt and Bannon describe the challenge of designing
computing systems that support the coordination of cooperative work activities as follows
[1, p. 5]: the system not only has to support the execution of ’the theory’ built into the
model, but also ’the practice’. That is, whatever needs to be done, under current conditions,
to transform some normative construct (’plan’, ’procedure’, etc.) into contingent action.

According to these findings, the perspective of CSCW suggests in-depth workplace
studies as an essential and proactive part in the development of technology. When
the organisational and social environment of cooperative work is analysed at first, it is
much more likely to carve out an adequate solution, because everything is set in its real,
practical context. Based on this introductory thoughts, the subsequent sections are going
to shine a light on elementary topics of CSCW in a more detailed fashion now. By this
means, awareness, work practices and nomadicity, knowledge sharing and groupware are
discussed.

Awareness

Computer supported cooperative work in general is a very lively process with a simmering
risk for unpredictable outcomes. One key factor to decrease uncertainty is found in the
concept of awareness. Kolfschoten et al. [3] start with the notion that the coordination
of activites is a significant problem for people working together. This is especially true
in a coalescing, globalised world, where groups for cooperative work are formed and
changed rapidly. Without any kind of support from software, maintaining an overview of
activities is hardly possible, as well as the task of selecting the right contact person is.
For this reason, the idea of group awareness was born.

Dourish and Bellotti define awareness [4, p. 1] as an understanding of the activities of
others, which provides a context for your own activity. Splitting it up, Gutwin et al. [5]
present four types of awareness: group-structural awareness, social awareness, informal
awareness, and workspace awareness. Here, group-structural awareness is concerned
with the different roles and and responsibilities in a team. Likewise, social awareness
affects the social context of a group, while informal awareness summarises the general
knowledge about a team. Finally, workspace awareness conveys information about the
current status of a workspace, and which steps had to taken for achieving this state.
Tam and Greenberg [6] enhanced this conception towards asynchronous awareness, which
refers to questions about the past too. Thereby, involved persons should gain a more

6

2.1. Information-based working

exact understanding of the history of individual and group activities. This is particularly
important if participants are not active in a team continuously.

Thinking practically, tools for workspace awareness can be as simple as user lists, dis-
playing who is active at the present time. Another instrument are multi-user scrollbars,
which illustrate the current focus of work of other users. Benefiting from the advantages
of these techniques on the one hand, possible drawbacks do occur on the other hand.
One major issue is found in the interpretation of privacy: how much information about
the activities of users should be disclosed by the system? Is it reasonable that users
can control what information is shared, perhaps at the cost the system’s functionality?
Commonly, these decisions are taken based on the idea of reciprocity. Single users get
only the information from other users, which they reveal to them also.

Kolfschoten et al. highlight the potential of emerging technologies like augmented reality
as well [3, p. 108]. Raising the question, to which extent these innovative approaches
can be covered by the proven concepts of awareness support, and what limitations may
occur. For example, the study of a crime scene investigation scenario [7] indicates some
upcoming challenges: investigators transfering a virtual image of the crime scene to
remote experts feel controlled by them, while the experts sense, that they are missing
something in not being physically present at the crime scene. This observation connects
to another popular problem with awareness mechanisms. People are often confronted
with an inappropriate amount of information in a specific situation. Therefore, it is vital
to contextualise awareness support with respect to the concrete task domain. How this
can be achieved, is visualised by a practical example now.

Bardram and Hansen propose the AWARE architecture for supporting context-mediated
social awareness amongst mobile, distributed and collaborated users, such as hospital
clinicans [8, p. 117]. Figure 2.1 provides an illustration of all components, which will be
explained in a more detailed way subsequently.

 Monitor &
Actuator Layer

Context Layer Awareness Layer Client Layer

WLAN

RFID

Bluetooth

Status

IR Beacon

Calendar

Context Service

Entity Environment

 Entity
Container

Transformer
 Repository

Awareness Service

Contact
Manager

Desktop
Collaboration

Message
Listener

A
w

arene
ss

G
atew

a
y

Message Service

Message
Container

Entity
Listener

Aware
Phone

Internet
Browser

Java RMI

Java RMI

HTTP

PHO

Java R
M

I

Figure 2.1: the AWARE system architecture [8, p. 117]

At the heart of it all, the concept states to combine CSCW system components for

7

2. Theoretical background

establishing social awareness and ubiquitous computing components for acquiring context-
awareness. In concrete terms, the architecture rests on a principle of four layers: the
client layer uses the framework as a back-end system and comprises applications for the
end-user. Whereas the awareness layer contributes the awareness service for literally
keeping up an awareness of people, their social connections and how to get in contact
with them. On the lower levels, the context layer and the monitor and actuator layer
constitute the context-awareness infrastructure on which the entire AWARE framework
is built [8, p. 117].

In an exemplarily sequence, the awareness service is utilised for managing information of
subscribed users to the AWARE system first of all. It stores the associations between
users for preserving social awareness, processing event-based notifications of changes
within the contexts of users. For this reason, the contact manager offers a list of the
contacts for each user. A message service allows contacts to exchange messages then.
Whereas the context infrastructure monitors context cues in the environment of users.
These cues can be displayed and prepared for further actions in the awareness service.

Summing it up, Bardram and Hansen set the following examples: person 1 relies on a list
of contacts to be aware of the stored people’ activities. If any context information with
regard to person 2 is altered (e.g. changing the physical location), person 1 gets notified
immediately. Likewise, person 3 receives a confirmation on its device, when person 4
reads a message sent earlier: all events are processed by the devices’ applications properly
and generate specific output like an updated user interface or notification pop-ups. [8,
p. 119].

Work practices and nomadicity

Working is one central aspect in the life of humans. Throughout the evolution of mankind,
performing tasks and activities for reaching certain goals has become a natural habit.
While the main principles of work stay the same altogether, the methods do change
regularly according to the developments of technology. Being closely related to the
progress of the digital era, this is particularly true for information work, exemplarily
in the service and education sector. Taking this domain as a starting point, Ciolfi and
Pinatti de Carvalho [9] give weight to the potential of nomadic practices as a key property
for such types of work.

Referencing the words of Davis [10], work activities in certain professional contexts can
and often must be detached from stable premises, and performed when and where it suits
the workers’ needs [9, p. 119]. From the perspective of CSCW, this modern nomadicity
leads to questions about the meaningful use of computing technologies to harmonise social
and collaborative activities in and across different locations. Generally, De Carvalho
identifies three different incentives for nomadic work practices [9, p. 121]:

– choice: e.g. if a person is willing to work at a certain location because of the
comfort.

8

2.1. Information-based working

– opportunity: e.g. if a person decides to work at certain location because resources
such as time or collaborators become available.

– obligation: e.g. when a person has to relocate to a specific site to carry out work,
because certain resources are only available there.

Relating these factors of influence to information work, different conclusions can be drawn.
First of all, it is the technology embedded in its environmental context, that determinates
the degree of the personal freedom of work. Therefore, it is important to understand the
possible advantages and disadvantages of CSCW for the respective domain. Setting a
practical example, the permission to work at home raises the satisfaction of an employee
by allowing flexible time management on the one side. But, on the other side, the results
of the person’s labour are not as scheduled as before, making it difficult for cooperative
information workers to integrate it in the overall process.

Hence, one learning is that the application of CSCW always comes as a double-edged
sword: CSCW per se is neither good nor bad, its actual value unfolds in the particular
context. The crucial step manifests in finding the right balance for the interplay of
the components (= humans and technology) of an organised system of work. Here, the
concept of nomadicity is a key instrument to arrange elements at a level, which has never
been achievable in the history of work practices before.

Knowledge and expertise sharing

Computer supported cooperative work as a whole unlocks great prospects for the exploita-
tion of collective intelligence. When collaborating in a group, knowledge and expertise
emerges from the synergies amongst people and their skill sets in theoretical as well as
practical fashion. Based on this universal principle, Ackerman et al. are concerned with
the implementation of concrete mechanisms for the sustainable sharing of knowledge in
organisations [11].

To begin with, the idea of knowledge sharing points to the externalisation of knowledge
by computational or information technology artifacts or repositories. On the contrary,
the term expertise sharing is used for describing the ability of knowledgeable actors to
get work done or to solve a problem themselves, without being supported by externali-
sations substantially. Following this differentiation, it is important to outline the core
characteristics of the two concepts in the fields of CSCW.

For the matter of knowledge sharing, a repository model is the central aspect to build
upon. Organisations create comprehensive repositories of what they know, including
formal and informal information. People then can retrieve information by searching these
sources of knowledge, or add information by asking and answering relevant questions.
While this conception seems quite reasonable from a technical standpoint, it lacks several
major cornerstones for the applicability in CSCW, as Ackerman et al. explain [11, p. 538].

9

2. Theoretical background

In the first place, obtaining information for repository systems is recognised as a difficult
challenge: the task of motivating people to add knowledge to a repository often fails
on organisational issues. Balancing rewards and incentive structures with desired con-
tributions is complicated by the competitive environment of organisations. Moreover,
the social context of information reuse transcends the capabilities of repository models
inherently: information has to be decontextualised by an author and recontextualised by
the spectator for conceiving the information object in consequence. As an example, the
specific location of a printer in an office may not be relevant, but the current network
configuration certainly is. The more complex such informations are, the more difficult
it is to find an appropriate description. Likewise, the recontextualisation itself could
require a certain degree of expertise, since it is achieved as a situated, social action.

Another major challenge is discovered in the sustainability of repository systems: infor-
mation objects and classification schemes have to be maintained in the long run, keeping
everything up-to-date and consistent. On that score, people assess the process of adding
meta-data costly in terms of time and labour. Therefore, categories with the lowest
cognitive effort are chosen regularly, complicating information retrieval. Altogether,
Ackerman et al. summarise with the statement, that the repository model encourages an
objectified view of knowledge [11, p. 540]. Whereas considering information as a duality
of process and object is concluded to be a more favourable approach.

This notion leads to the idea of expertise sharing: here, the priority is given to interpersonal
communication of knowledgeable actors. Thus, the role of individuals as sources for the
distribution of tacit knowledge increases in importance. Nonaka and Takeuchi qualify
the term tacit in types of knowing, which are difficult or impossible to verbalise [12].
Hence, these competences are learned best via common experiences, where contact to
other individuals is necessary for the full use of information.

Ackerman et al. take these thoughts to the next level by introducing two additional
concepts, starting with the community of practice (CoP) [11, p. 547]. Generally, a CoP is
specified as a group of people sharing a common practice by working together in a certain
domain. For the viewpoint of CSCW, it is valuable to understand, how a characterising
set of practices can be internalised within these teams: Lave and Wenger describe the
process as a legitimate peripheral participation [13], where participants in the group move
from the periphery to the center, i.e. become increasingly knowledgeable [11, p. 547]. More
precisely, occasions for learning appear in working on similar issues in a similar way,
when a common ground for cultivating expertise sharing is given. Once again, the overall
meaning of context and situatedness can be identified in this patterns of thinking.

While the CoP refers learning opportunities to shared practices, the concept of social
capital focuses on deriving collective abilities from social networks [11, p. 548]. In this
case, the general attitude of people to help each others as well as the relational dimension
of such interconnected systems are seen as basic resources for expertise sharing. Nahapiet
and Ghoshal emphasise three core properties of social capital in consequence [14]:

– structural opportunity: who shares knowledge and how is it shared (infrastructure)?

10

2.1. Information-based working

– cognitive ability: what is shared?

– relational motivation: why and when do people take part in knowledge sharing?

Dealing with this questions, Ackerman et al. infer that contextual knowledge is required
to select the right source, strip off the information from its original context and then
re-contextualize it according to the situation at hand [11, p. 548]. At the heart of it, this
knowledge is often tied to being aware or asking other people. For this reason, the main
task of computerised systems in expertise sharing can be summarised in the seeking
of appropriate people: using computational power and algorithms to connect the right
persons at the right time, providing the most efficient way for the exchange of knowledge
in a particular situation.

Groupware

Starting with a universal definition, groupware denotes application software for the
practical realisation of the theoretical findings in the research domain of CSCW. General
examples include systems for the management of knowledge, projects, workflows, contents
and documents. As a common characterisation, these systems are used by groups of
people for collaboratively working together towards specific goals. In this respect, the
success of such technologies depends largely on the appropriate utilisation over time,
adapting the groupware to the local contexts in the resepective organisations. Bansler
and Havn discuss this observation as a key issue of CSCW [15].

In most cases, the implementation of groupware systems fails on a misinterpretation of
installation and use by the responsible stakeholders. On one side, the required attention,
support and resources for the introduction of groupware systems get underestimated [15,
p. 55]. At the same time, users tend to re-invent the artifacts by developing novel uses
[16, p. 367]. Accordingly, groupware is delineated as an extreme fragile class of technology
for two reasons [17, p. 6].

First, these comprehensive solutions are always in competition with existent media [17,
p. 6]. Bansler and Havn state, that users are not passive consumers of media. It is their
choice to select the medium that they are most comfortable with for accomplishing a
task at a certain point of time. Thus, new technologies for cooperative work are often
introduced with the handicap of the unknown: when users experience problems with a
novel system, they just switch back to approved mediums for continuing their work in
an established fashion. Picking up this thought, humans are more concerned with the
question of how they can deal with a programme personally, than what they possibly
could achieve with it. In some way, this can be classified as a protective mechanism,
which is quite common in decision making generally.

Second, agreeing on corporate conventions is vital for governing communication and
collaboration [18]. Therefore, groupware needs consensus on the means of operation to
be effectively deployed in the long term. Related to practice, an explicit and progressive

11

2. Theoretical background

adjustment amongst technology and organizational context is required [19]. For example,
this involves the training of users, the adaption of existing procedures, and refinement of
the applied system itself.

All in all, Barner and Havn suggest to answer these challenges with the concept of
sensemaking [15, p. 56]: mediating persons have to make sense of the technology by
understanding it in conncetion to the specific, local context. Thus, from the designers
point of view, groupware has to flexible and customisable, as well as constraining and
enabling at the same time. Consequently, it should be developed in direct accordance
with the future users, avoiding possible sources of error in advance and delivering an
individually aligned product.

2.1.2 Interaction Design

Interaction Design can be defined as the practice of designing interactive digital products,
environments, systems, and services [20, p. 31]. First and foremost, it is concerned with
analysing the behaviour in human-computer interaction: which ways of interaction are
possible and reasonable, how do humans react to different characteristics of design, what
lessons can be learned for developing applications in a certain context as a result? In
order to convey a compact impression of this wide-ranging subject, some selected topics
in the fields of information-based working are considered in the following discourse.

Computer- versus paper-based tasks

Even though a world without computers is hardly imaginable anymore, the utilisation
and exploitation of digital systems actually is a relatively recent achievement in the era
of humans. Regarding the storage of information, people were used to work with physical
materials for the longest time of their existence. Therefore, it is vital to understand, how
computer-based tasks are equivalent to paper-based ones and which determinants have
an impact on the usage of these two media, as Noyes and Garland discuss [21, p. 1352].

First of all, the superior relevance of cognitive indicators for the evaluation of task-specific
performance is emphasised [21, p. 1361]: using partial indicators like reading speed and
accuracy alone does not seem to be sufficient due to the complexity of the examined
processes. For example, the nature of the computer screen imposes unique requirements
to the human perception inherently. This concludes a different way of memory processing
in comparison to other visual inputs. Subsequently, Wästlund et al. figure out, that paper-
based working in general leads to a better consumption and production of information
[22]. Reasons are found in a greater level of experienced tiredness and increased feelings
of stress when working with virtual desktops [22, p. 389].

Noyes et al. address to this argumentation by presenting a comprehension task on either
computer or paper and measuring cognitive workload as well as performance thereby [23].
As a result, significantly more workload on the effort dimension is encountered for the
computer-based task again. Moreover, another discovery reveals in the applicability of
cognitive workload measurement for distinguishing small differences in processing. This

12

2.1. Information-based working

in turn can be especially valuable in the context of more elaborated tasks, where problem
solving or decision making is elementary.

Resuming their findings, Noyes and Garland stress the idea of equivalence: computer and
paper-based working will hardly ever be conceived the same by people, as two different
presentation and response modes are being used [21, p. 1371]. But it is plausible, that
humans will increasingly be able to take advantage of this diversity by integrating the
benefits and omitting the drawbacks of both domains in future. Whereas this progress
goes hand in hand with the exploration and comprehension of the humans’ cognition, as
the improvements of the last decade have shown.

Problems and practices with desktop systems

In a more practical approach, Ravasio et al. focus on the problems human users experience
in their daily work with computers [24]. To begin with, the opening statement raises
the issue, that the desktop metaphor as the de facto standard UI requires memorizing
conventions and procedures instead of interacting intuitively and in a straightforward
manner [24, p. 157]. For the detection of concrete evidence, the study is based upon the
aspects of document classification and document retrieval in consequence [24, p. 157].

As a first step, observed classification practices are discussed with regard to four elementary
facets in the organisation of hierarchical filing systems [24, p. 163]:

– archiving: users have a strong need for archiving files. They rely on their archives as
an information source, and do invest real effort in creating meaningful file systems
structures accordingly. In addition, naming files in a reasonable way helps users to
recognise their contents at first sight.

– maintenance: users integrate maintenance in their practices regularly. For example,
they sort documents when a project ends and retain only the valuable ones.

– use of hierarchical structures: users create new (sub-)folders for keeping an overview.
Document storage is seen as a continuous process with flexible, non permanent
structures.

– classifying information: users spend substantial cognitive effort for the classification
of documents, as well as the labelling of folders and documents.

Analysing these behaviours, Ravasio et al. are able to spot three main requirements of
users for an improved operationality of personal computer systems [24, p. 170]:

– Divide information belonging to users and to the system in a suitable manner : users
could profit from a clearer separation of their own data and system-owned data by
reducing the cognitive workload for selecting appropriate folders or structures.

13

2. Theoretical background

– Provide small but potentially extremely helpful tools to manage information: each
automated function, that serves a certain (otherwise manual) task reliably, saves
time and energy to the benefit of the user.

– Integrate rather than separate information: the natural trait of networked informa-
tion access by human users is not supported sufficiently in the basic conception of
(hierarchical) file systems.

Subsequently, the outcomes of the study confirm the presence of the three generic types
of information, i.e. temporal, working and archived information [24, p. 170]. Furthermore,
it is assumed, that all the efforts invested in organizing, naming and maintaining the
hierarchical file system structure are aimed at (1) engraving the information’s content
and context into the system, and (2) providing an overview in a single glance [24, p. 170].

In their second subject, Ravasio et al. attend to the practices of document retrieval in
virtual desktop environments. Most commonly, search activities start, when a user is
not able to locate a specific piece of information immediately. Therefore, two modes of
searching come into question [24, p. 170]:

– Logical search: the motivation for utilising a system-offered search tool is closely
bound to the complexity of its usage. This seems quite natural, as humans tend to
prefer the most comfortable solution for a given problem, minimising the cognitive
effort.

– Manual search: looking for documents manually is the conventional strategy of
users. They trust in their own intelligence, memory capacity, and contextual
knowledge more than anything else. Thus, patterns for searching include direct
access, semantic proximity and exhaustive search.

Drawing their conclusions, Ravasio et al. try to elucidate the reasons for this behaviour:
overall, humans do realise on their part, that the application of search tools is as
demanding as performing a manual search, cognitively and mechanically [24, p. 173].
More importantly, the direct access strategy turns out to be effective in most cases,
approving its value on a regular basis. In addition, searching manually allows users to
remediate their own knowledge of the viewed information domain. Contrary to these
positive perceptions, the application of search tools is often associated with negative
previous experiences, when something did not work in the desired fashion. Finally, these
streams result in the need for a thoughtful design of document-retrieval solutions in
general: it is more sensible, to adapt technology to the requirements of human users,
than the other way around.

Task management of information workers

Pursuing the words of Bondarenko et al. [25], information workers are embedded loosely
in a highly flexible and rapidly changing field of data processing, where the acquisition

14

2.1. Information-based working

of new skills is a constant demand. Digital workplaces have extended the space of
possibilities dramatically, overcoming physical restrictions in many respects. Information
is stored in a large number of formats and locations, allowing to be accessed from
a variety of devices, at any point of time. Ultimately, this leads to the increase of
communication load and data fragmentation, as well as incompatibilities between applied
tools are a consequence. Therefore, conceptual knowledge of supporting document and
task management of information workers is an elementary factor to solve emerging issues.

Establishing the context, Bondarenko et al. refer the definition of a task to be an
action or a series of actions towards some well-defined end, i.e., a change of state [25,
p. 469]. Whereas the tasks of information workers are often initiated by and do result in
documents. Hence, it is reasonable to consider document and task management as two
integral parts of one process [25, p. 470]: the task is at the center of the process, while
various types of documents are utilised as resources for completing the task. This in turn
suggests a personal perspective to the overall procedure, leading to the determination
of requirements for such a digital management system. Based on the findings of three
studies, four layers and their respective demands are identfied, as displayed in Table 2.1:

Task decomposition level Supported process
Knowledge work Document and task management
Unstructured workflow Nondeterministic task flow
Multitasking Frequent switching
Task suspension and resumption Stable state creation

Table 2.1: four layers of task decomposition [25, p. 471]

In accordance to the wording of Bondarenko et al., the requirements are outlined as
follows [25, p. 473]:

Supporting task management in knowledge work

– In order to preserve time or mental effort that should be devoted to primary tasks,
a document-management system should require as little effort as possible to set up
and maintain (least-effort principle).

– It is advisable to base the system on system(s) in use.

– A variety of existing ways of organising documents and tasks should be supported
by the system, as opposed to imposing its own.

Supporting a nondeterministic task flow

– Task management in an unstructured workflow should be supported by a document
management system by providing ad hoc collections of task-related documents as a
representation of tasks.

15

2. Theoretical background

– The system should allow to arrange documents/collections of documents along with
the task flow and supply an overview of task-related collections.

– The system should make task-relevant representations across collections of docu-
ments possible.

– The system should provide an overview of task-related document collections and
their state without additional interaction by the user.

– Implicit planning and prioritising among tasks or task-related document collections
should be enabled by the system.

Supporting frequent task switching as a result of multitasking

– The system should support task suspension and resumption in the environment.

– The system should support the preservation of the current state of environment,
reflecting the task state.

– The system should allow user-defined changes in the representation of the current
state of the task.

Supporting task suspension and resumption by encoding the task state

– The system should support encoding of semantic judgments with respect to the
task state in cues available in the digital domain.

– Extract and visualise relevant semantic data about a document’s usage: interaction
possibilities, information presentation, ownership of a document, intended audience,
period of use, frequency of use.

– The system should provide extracted information on a granularity level required by
the user and in user-specified terms, and allow to customise the level of granularity.

– The system should allow the user to show and change higher-level concepts and
information about future use for task-related documents or document collections,
such as importance, confidentiality and action demand.

– Concerning the required user effort for offloading and uploading information about
the task state to and from the environment, the system should be adaptable and
request as well as present only the necessary information.

Eventually, it can be summarised, that the promotion of the least-effort principle is
essential to any (document) management system. Because the effort of these systems
increases with the number of tasks an information worker carries out at the same time,
supporting task switching and keeping everything up-to-date [25, p. 480]. Hence, it is

16

2.1. Information-based working

reasonable, to take these possible problems already in the planning and development of
such a system into consideration, rather than reacting to them costly when it is deployed.
Accordingly, the system should be designed from a perspective, where the perceived
user effort for operating it is in the focus of interest [25, p. 480]. By this means, time
and mental capacity of information workers can be saved and utilised for other tasks,
increasing the overall productivity while retaining personal contentment.

2.1.3 Information storage and retrieval

Within the course of evolution, the production of information has become a natural
characteristic of mankind. As a result, humans are engaged with collecting and storing
information since the beginning of their existence. Consequently, the idea of organising
contents for profiting from their retrieval on a later occasion is a long-serving concept,
and only the ways and means of accomplishing it have changed. By the development
and use of innovative media, people are able to increment the amount of accessible
information significantly. Up to the point, where the artless capabilities of individuals
are not sufficient for rationally processing the loads of data anymore. This again can
be described as the central question accompanying the enforcement of digital systems:
how is it possible to exploit the manifold opportunities of digitalising information, while
avoiding the closely-related risks?

Manning et al. approach to this assignment in supplying the following definition: infor-
mation retrieval (IR) is finding material (usually documents) of an unstructured nature
(usually text) that satisfies an information need from within large collections (usually
stored on computers) [26, p. 1]. For a further distinction, information retrieval systems
can be divided in three categories by the scale of their operations [26, p. 2]:

– Web search covers searching mechanisms over a myriad of documents stored on
millions of interconnected computers.

– Personal information retrieval is concerned with finding and classifying information
on personal computers.

– Enterprise, institutional, and domain-specific search focuses on retrieval within
collections like corporation’s internal documents. Here, documents are stored on
centralised file systems commonly, as well as a couple of responsible computers
establishing the search over the collection.

Seventeen theoretical constructs of information retrieval

Jansen and Rieh try to identify the underlying theoretical constructs in the fields of
information searching and information retrieval for building a general foundation [27].
As a starting point, two nested frameworks distinguish between behaviors when people
are using information systems, and systems that support, afford, and enable the behaviors
[27, p. 1518].

17

2. Theoretical background

Nested Framework of Information Behavior

Information searching behavior research
conducted primarily in information science
and related schools

Human Information
Behavior, interacting with
various forms of information
through all channels for both
active and passive information
seeking and use

Information Seeking
Behavior, seeking for
information in response to
goals and intentions by
interacting with systems and
humans

Information
Searching
Behavior, actions
involved in interacting
with information search
systems

Nested Framework of Information System

Information retrieval systems research
conducted primarily in computer science
and related schools

Information Systems at all
levels, including document-based,
work-based, organisational,
market, and social system

Information Seeking
Systems, including other
humans and information and
communication technology

Information Retrieval
Systems, typically
computer systems for
documents and
multimedia

Access

Support

Use

Afford

Search/Browse

Enable

Figure 2.2: framework of human information behavior and information systems [27,
p. 1518]

Based on the formulation of Figure 2.2, Jansen and Rieh are in a position to derive
possible constructs from a broadly conceived literature review which also touches the
domains of communication, learning and economics. Then, it is feasible to extract
all constructs describing substantial concepts in the domains of information searching
and information retrieval [27, p. 1522]. Ultimately, Jansen and Rieh characterise their
designated seventeen constructs in the following manner [27, p. 1522]:

– Multiple definitions of information: information is a fundamental concept with a
spectrum of definitions.

– Hierarchical relationship of information: viewed from the perspective of an infor-
mation searcher, a hierarchical relationship among data, information, knowledge,
and wisdom can be identified.

– Perceived benefit of information: it is unlikely, that an information system will be
utilised, if it is more troublesome for a user to have information rather than not to
have it.

18

2.1. Information-based working

– Relevance: relevance is an elementary criterion in the process of evaluating the
performance of searching or retrieval.

– Information representation: it is possible to represent information algorithmically
by the sum of its attributes.

– Information ranking: information, that addresses a demand for information (as
expressed by a query) can be ranked in order of some predicted measures (e.g. rele-
vance, usefulness, freshness, authority, etc.).

– Document similarity: if a document responds to a given query, similar documents
will be relevant too.

– Uncertainty principle: users try to resolve uncertainty in knowledge by the process
of information searching.

– Principle of least effort: users of information systems will conduct a series of actions
and operations that requires the least perceived effort to locate the desired content.

– Searching as an iterative process: a searching process consists of several steps of
interaction with information systems and is completed when the particular need of
information is satisfied.

– Interaction: interactions amongst users and systems are elementary in the context
of information searching and retrieval.

– Information provision: in the course of a certain task, users take advantage from
provided information to accomplish it.

– Preference of channel: when attempting to obtain information, people have prefer-
ences of media and technologies.

– Information obtainability: the use of information is directly proportional to how
easy it is to obtain.

– Query: the information need of a user is formulated as a question and converted
into a query that is accepted by an information retrieval system subsequently.

– Neutrality of technology: the presented content of information retrieval systems is
unbiased.

– Memex vision: technology is the solution to make information available to people.

19

2. Theoretical background

2.2 Document management systems

Recapitulating the findings of Chapter 2.1, human society created an overwhelming
world of (digital) information, which in turn can only be mastered with the development
and utilisation of supportive artificial tools. Thus, the key to success reveals in the
applicability of such technological frameworks: people need electronical systems, that
incorporate their natural behaviour and cognition. Based on this universal notion, it
is possible to carve out individual solutions for specific domains in order to accomplish
certain tasks.

Document management systems (DMS) on their account are designed for the assistance in
information-based working environments. Accordingly, the capture, organisation, storage
and retrieval of documents is addressed to begin with [28, p. 13]. In the course of the
following subchapters, a more detailed explanation of the term and its concept is given.
For this purpose, a brief overview of the history of DMS introduces the topic. Then,
the actual scope and essential features of DMS are discussed. Finally, their areas of
application get examined, complementing the overall picture with the presentation of
some practical examples.

2.2.1 History

Although humans probably were not able to fully unterstand it from a scientific point of
view, they already realised the potential of information storage millennia ago. Therefore,
first, yet primitive document management systems are already found in the writings on
the walls of caves. Progressing in skills and technologies, the methods advanced to more
elaborated scroll systems and books over a large period of time. Whereas these changes
did have significant impact back then, the real breakthrough of document management
systems proceeded in the course of the last centuries, as Mancini outlines in eight theses
[29, p. 30]:

The filing cabinet

Invented in the late 1800s, the filing cabinet allows to store paper documents in file folders.
As simple as this concept may be, it eases the wole process of managing documents
considerably by establishing a replicable local order.

The server

While proving to work well, the overall idea of the filing cabinet is delimited in terms
of storage space: the more documents are filed, the harder it is to retrieve particular
documents and sort new ones. This constraint is surmounted by the emergence of
computing: distributed client/server architectures make it possible to store documents
electronically, transferring it to a digital world of theoretical infinity.

20

2.2. Document management systems

The personal computer

With the prevalence of personal computers, individual users are empowered to take
part in the whole process of document management. Still, this innovative step leads to
deficiencies in the way documents are organised and secured at the very beginning.

Electronic document management systems

Evolving from the unstructured nature of distributed personal computers, electronic
document managements systems (EDMS) gain popularity in the 1980s. Again, it takes
time to shape these complicated systems in the sense of user-friendliness and general
appropriability. This process reaches to the present, pursuing the goal of complete
collaboration amongst variously skilled people in different roles.

The search engine

Facing the problem of digitally scattered documents, search engines are integrated into
DMS as a basic cornerstone. By this means, the sophisticated task of information retrieval
is simplified eminently, enabling users to find any document in the system within seconds.

The scanner

Settling in a world of paper documents, EDMS do profit tremendously from the improve-
ments of computer scanners in the mid-1980s. As a result, informations from previously
separated channels can be integrated into one holistic system: ensuring flexibility in
workflows and supporting the different types of humans’ awareness.

The cloud

By the composition of a global internet-structure, organisations and their members do not
have to host and access data locally any longer. Instead, the whole DMS infrastructure
can be decentralised in the cloud, leading to concepts as the software-as-a-service (SaaS)
model: here, software is ready to go on demand, permitting users to create, share and
edit documents uncommited to time or place. Additionally, this innovation reduces the
expenses for DMS overall.

The smart phone

From the users’ perspective, smart phones and mobile devices in general come in handy
to take advantage of electronical document management: assembling a comprehensive
scheme, the computer extends the natural capabilities of the human by processing loads
of information, and provides the essential documents at the fingertips in return.

This notion probably summarises the potential future of document management best, as
the term is in a constant state of flux. Ultimately, it is all about information, and how

21

2. Theoretical background

people are able to perceive it in a specific context. Therefore, technology is only a means
to an end and a manifestation of its time.

2.2.2 Scope

Despite their volatile nature, document management systems share some elementary
characteristics and are classifiable to the greatest extent. At the heart of it, Kampffmeyer
defines document management as the database-supported management of electronical
documents [30, p. 3]. For a better differentation to the techniques of the past, this process
is delineated as electronical document management (EDM) in consequence.

Principal features of EDMS are visualised folder structures, checkin/checkout, versioning,
manipulation of metadata and the use of search engines [30, p. 3]. This scope of classical
EDMS is determined by the ISO-norm DFR 10166 roughly and illustrated in the following
example of Kampffmeyer:

One major application of EDMS is found in the electronic file, where related informations
from various sources are brought together to a single instance [30, p. 3]. Hence, document
management in its closest sense is concerned with nothing more than the aggregation
and subsequent presentation of information in documents. Whereas this functionality is
embedded in a more complex, dynamic environment of enterprise content management
then again:

STORE

PRESERVE

MANAGE

DELIVERCAPTURE

DM

Collab

WCM

RM

WF/
BPM

Archiving

Input
Management

Output
Management

Document Management Collaboration

Web Content
Management

Records
ManagementWorkflow

Business
Process

Management

Information
Lifecycle

Management

Figure 2.3: the ECM components model, Project Consult [31, p. 24]

Commonly, the term document management as such is mixed with the displayed concept
of enterprise content management in Figure 2.3 on a number of occasions: in this
broader meaning, EDMS are also concerned with the further processing of documents.
Here, documents are understood as enabling mechanism or currency in a lifecycle of
collaboratively achieved tasks. Either way, it boils down to the document being the basic
component to focus on.

22

2.2. Document management systems

Electronical documents

Kampffmeyer determines the electronical document as any types of unstructured in-
formations, which are encapsulated in a file as an enclosed entity, existing in a data
management system [30, p. 5]. Thus, there are two different options of contributing
documents to an EDMS:

– Incorporating documents, that are created with the help of computer systems (e.g. a
textfile or a table from a database).

– Incorporating documents, that are converted from an analogue to a digital form
(e.g. a scanned image or a video transferred from a camera).

Accordingly, documents can be assembled from one or more single objects (pieces of
information): this diploma thesis for example is composed of text, graphical images,
references and much else. On that score, it is possible to carry out a further categorisation
of documents [30, p. 6]:

– Elementary components consist only of one type of object (e.g. a textfile, an image).

– Compound documents include several types of objects (e.g. text, tables, hyperlinks).

– Container documents as superior items can be used to store elementary and/or
compound documents as well as additional information like metadata.

Summing it up, the main characteristic of any document is its contextual value: human
users do process (electronical) documents in specific situations, attended by different
expectations and intentions. Likewise, EDMS as related tools of choice are only a part
of an overall setting, and connected to other influential systems thereby. Thus, it is
important to assess EDMS also by their modular capabilities, integrating with emerging
environments: estimating the real potential that an EDMS can add to a given set of
conditions.

Integration needs of electronical document systems

To start with, Leikums stresses the particular meaning of documents [32]: all informations
contained by a document were created for a purpose and do belong to a certain area of
activities (in an organisation) accordingly. Hence, it is reasonable to allocate documents
to these instances, facilitating the interoperability between different types of information
systems. By this means, the circulation and life cycle of documents is adapted to the
particular processes of work [32, p. 194].

Illustrating this idea by a concrete example, an organisation could occupy a department
for financial affairs, where human employees have to create reports on a regular basis.

23

2. Theoretical background

In this context, only a small amount of the organisations’ overall documents are required,
as well as a combination of typical operations for processing them. Consequently, human
users do profit from an individually attuned solution, providing the information and
methods they need in the given situation. This suggests to build information systems
from bottom-up rather than top-down: combining modular systems, which have proven
to be efficient in their domain, to an overall information system.

Altogether, Leikums concludes in the finding, that three groups of systems, whose
integration with the EDMS is possible, do exist [32, p. 203]:

– systems, whose integration is mandatory or very necessary

– systems, whose integration is advisable and would improve their administration
and usage, and enhance processes within the institution

– systems, whose integration is necessary only in particular cases or for particular
institutions

As a result, it is notable, that EDMS integration options with other information systems
should already be considered and applied in the development phase of the document
management system [32, p. 196].

2.2.3 Essential features

In accordance to the principle of modularity, EDMS do share some key properties, which
qualify them as a distinct module to fulfil a particular scope of functions. Raynes identifies
these real benefits of an EDMS in the provision of the following features [33, p. 304]:

– a process for check-in, check-out: a mechanism, that permits only on user at a time
to modify a document, figuratively a lock.

– version control and audit trail: techniques, that constitute the recording and
monitoring of all changes made to a document in the course of time.

– document review: allow users to add comments to a document without changing
the document itself indeed.

– security processes: controlling the groups of users that can access documents, based
on the particular context.

– organisational processes: methods of collecting documents in related groups, typi-
cally folders.

– free-text searching: means for identifying and retrieving documents as a function of
the text they contain.

24

2.2. Document management systems

– metadata: enabling the acquisition of information associated with the document,
such as the author, the title or the date it was created.

– workflow: establishing a controlled way of guiding documents from one user to
another.

– imaging: methods for converting paper documents to an electronic format, e.g. scan-
ning.

– publishing: make the compilation of documents in consistent collections possible
and distribute them to their target clients.

2.2.4 Areas of application

While the implementation of any EDMS rests on theoretical foundations overall, some
crucial insights still can be acquired in the course of its practical realisation only. Paying
attention to this thought, the following subsection discusses possible areas of application,
and moves the focus to the main purpose of this diploma thesis thereby: developing a
software prototype for the management of student records at the Vienna University of
Technology.

Kampffmeyer points out the high effort of establishing EDMS in organisations above all
[30, p. 11]: on the one hand, financial expenses for the implementation and maintenance
are indispensable, while on the other hand the cognitive resources for administration
should not be neglected too. Thus, the installation of an EDMS is a decision in principle
and changes the whole environment of its application, initiating a process, that can not
be revoked easily.

Giving credit to this concerns, the relevant question in turn is, how enterprises or
academical institutions are able to profit from EDMS in concrete terms. Sprague
therefore identifies three generic functions in organisations, that are especially receptive
to EDM [34, p. 40]:

– Application areas, that depend on the document as the primary mechanism for
getting the work done.

– Application areas, that are susceptible to emerging document technologies inher-
ently.

– Application areas, that can generate business value from the utilisation of EDM
technologies and approaches in general.

Based on this definition, Sprague attempts to carve out a more process-orientated
perspective by relating the functions to the common tasks of organisations. As a
result, seven generic categories of EDMS applications producing value in supporting the
organisation can be derived [34, p. 40]:

25

2. Theoretical background

– Improving the publishing process

– Supporting organisational processes

– Supporting communication among people and groups

– Improving access to external information

– Creating and maintaining documentation

– Maintaining corporate records

– Promoting training and education

Students management at Austrian universities

Addressing Austrian universities as the primary domain of interest, the federal act on the
organisation of universities and their studies suggests the use of EDMS by the following
statutes at least [35]:

§ 2. The guiding principles to be observed by the universities in pursuance of their
objects are:

VII: national and international mobility of students, graduates, and university
scientific and artistic staff

VIII: collaborative relationships between members of the university

XII: economics, economical and expedient management of finances

§ 3. Within their sphere of action, the universities fulfil the following tasks:

VI: internal co-ordination of scientific research (and the advancement and
appreciation of the arts) and teaching at universities

VII: promotion of domestic and international co-operation in research and
teaching, and the arts

VIII: promotion of the use and practical application of their research findings,
and of community involvement in efforts to promote the advancement and
appreciation of the arts

X: maintenance of contacts with graduates

XI: information of the public on the performance of the tasks of the universities

26

2.2. Document management systems

Examples and challenges of document management in practice

This subchapter presents a couple of implemented EDMS solutions in order to convey a
more practical impression of the previous findings altogether. It is debated, how EDMS
are realised with regard to their respective context, and which possible challenges have
to be taken into account overall.

Ranabahu et al. introduce Kino, a set of tools that streamline the document management
process in life science domains [36, p. 1]. To begin with, the scope of the system is
outlined by two use cases in the context of biologists: scientific workflows and document
annotations.

While the process of genome sequencing determines the complete DNA sequence of an
organism’s genome, it is not sufficient for providing any information on genes, their
location, or their functions [36, p. 3]. To achieve this goal, biomedical researchers have
to analyse the genomic sequence individually with the help of data repositories. Thus,
the tasks of such an analysis are based on web services commonly and can be part of a
service oriented workflow. One major handicap in this regard appears while searching
for services in catalogs, where imprecise terms and tags make it difficult to find the
appropriate service in a reasonable amount of time [36, p. 4].

Changing the focus to the case of document annotation, a genome database is at the
centre of attention. Concerning this matter, a collection of genomes needs to be updated
and annotated constantly by the collaborative effort of several groups of scientists and
bioinformaticians [36, p. 4]. Here, the main challenge arises from the lack of integration
across tools, burdening the maintenance of documental descriptions.

Trying to resolve the mentioned problems, Ranabahu et al. propose a modular system
called Kino, illustrated in Figure 2.4:

Search UI
Annotation
component

IDE / Tool
Integrations

Kino Search API

Kino Index API
SOLRJ

Apache SOLR Interface

Lucene IndexOntology
repository

Ontology access API (NCBO)

HTML/XHTML
documents

Annotation Browser Plugin

Index and Search
component

Semantically annotated document

Figure 2.4: system architecture of Kino, major components [36, p. 4]

27

2. Theoretical background

Generally, the depicted system is based upon a workflow of three steps [36, p. 5]:

– Annotation: users are able to provide annotations via various tools (e.g. browser
plugin, website or an integrated development environment). When the annotations
are added, the augmented document is submitted to the indexing engine.

– Indexing: Apache SOLR is used for indexing the documents. It can be installed
independently and offers multiple interfaces for client programs.

– Search: a Javascript driven Web UI offers a typical search engine interface and
allows to filter the results.

Jadid and Idrees report on the application of EDM at a construction site [37]. Starting
with the observation, that civil engineering traditionally requires a quantity of documents
like drawings or technical specifications. Commonly, the content of these documents
slightly changes over time and needs to be distributed to all relevant staff members
subsequently. Enhancing the long-established hardcopy based change management,
EDMS can contribute particular advantages in this context [37, p. 2]:

– Changing the way of propagation: project engineers are able to build customised
networks for exchanging documents electronically, controlling the flow of informa-
tion.

– Faster document-centered processes: parallel document reviewing and approval
saves resources (e.g. reducing the time of documents’ cycles; no need for physical
presence in a meeting at a certain location).

– Flexible alteration of documents: documents can be updated, archived and restored
in a central repository, maintaining a general knowledge base.

– Availability of documents: project participants are able to retrieve documents
individually and independent of time and place.

– Security of documents: unauthorised document access is prevented by the use of a
role-based security mechanism.

By this means, Jadid and Idrees identify the situational availability of relevant information
as the critical factor of success in the dynamic environment of construction areas: several
entities are involved throughout the entire process and do depend on diverging versions
of documents for their respective tasks.

On the scale of things, the specified examples of EDMS applications impart some
additional conclusions: first of all, EDM as a concept has a high scalability and can be
utilised in nearly any domain due to its ability of information representation. Nevertheless,
this does not imply that EDM should be utilised in each possible case. Hence, the real

28

2.3. Agile user-centered processes

challenge is found in the anticipation, if and how an EDMS is able to add value in a
concrete area of application. Individual approaches help to minimise risks, but require
further effort on the other hand. Thus, the whole subject of EDMS in fact is still evolving
and many facets have yet to be explored.

2.3 Agile user-centered processes

The development of a software (prototype) for the management of student records at
the Vienna University of Technology suggests a more classical interpretation of EDMS
in the first place. Information is stored, retrieved and manipulated by users in different
roles, performing their individual tasks as parts of an collaborating environment. While
many EDMS would claim to cover this basic functionality out of the box, several essential
details can only be identified and adapted by the initial inclusion of the client users
indeed. For this reason, it is important to discuss what an appropriate development
approach could look like.

Salah et al. highlight the potential of integrating agile development processes and
User Centered Design (UCD) [38, p. 1]. On the one hand, agile software development
methods are designated to overcome the perceived limitations of plan-driven methods by
equilibrating the need for a process [38, p. 1]. User Centered Design then again is a set of
techniques, methods, procedures and processes as well as a philosophy that places the user
at the centre of the development process [38, p. 1]. Thus, combining these two strategies
helps developers in conceiving the needs of the potential users of their software and
equips them with a flexible tool to incorporate the volatile requirements in an iterative
development process [38, p. 1].

Consequently, Salah et al. conduct a systematic literature review (SLR) of challenges,
practices and success factors in the domain of agile user centered design integration
(AUCDI). The research is based on the alphabetically listed keywords in Table 2.2 [38,
p. 1]:

Agile UCD
Agile Development Human-Centred
Agile Method Usability
Agile Practice Usability Engineering
Agile Project User Centred Design
Extreme Programming User Experience
Scrum User Interaction

User Interface

Table 2.2: keywords for SLR process on AUCDI [38, p. 2]

As a next step, the resulting findings can be summarised in categories and analysed
accordingly [38, p. 5].

29

2. Theoretical background

Lack of allocated time for upfront activities

First of all, Salah et al. notice that the usage of agile methods limits upfront planning
activities, because one key characteristic is found in the ability to react on changing
requirements. Furthermore, incremental agile development can lead to a dissected feature
by feature development, which may result in a fragmented user interface that misses an
overall structure and vision.

In order to cope with these possible issues, a seperate pre-development stage of upfront
design is recommended. This stage can be utilised for facilitating a holistic system view
by deriving requirements, understanding users, their goals and the context of application.

Difficulty of modularisation/chunking

Design chunking is understood as dividing design into smaller pieces, i.e. design chunks.
These modular components are used for adding further elements to the overall design in
a stepwise fashion. Concerning this matter, difficulties are identified in the determination
of the appropriate amount of interaction design work per iteration, as well as ascertaining
the chronological order of design chunks per se can be a problem.

Feasible solutions are described in the definition of well attuned design goals, where large
or complex features can be published in single releases, chunking design into concrete
features. Besides, it may be advisable to move activities related to the user experience to
a later point in the development life cycle.

Performing usability testing

Usability testing in general is concerned with the measurement of the performance of
average users processing prepared system tasks. Challenges can arise in the methods of
usability testing, scheduling usability testing, accessing users for usability testing and
the costs of running usability sessions.

To tackle these problems, Salah et al. suggest prearrangement for user research, applying
low fidelity prototypes and remote ways of usability testing. Apart from that, valuable
opportunities for testing the software’s usability do occur when iterations and releases
are finished. Supplementary, it can be sensible to utilise an existing user pool, that
contributes usability testing in the role of a development partner.

Lack of documentation

Salah et al. mention, that agile approaches strive to produce a minimum of documentation
overall, though documentation is vital for the estimation and implementation efforts in
turn, i.e. properly integrating agile development and user-centered design. Moreover, the
lack of a suitable requirements documentation can lead to confusion regarding deliverables.

Resolving this shortage of documentation, the application of wikis, use cases, scenarios,
personas, sketches, wire frames and design patterns is advisable.

30

2.3. Agile user-centered processes

Bringing Chapter 2 to a conclusion, it can be summarised that the process of document
management is more tailored than ever before. While the capabilities of EDMS advance
steadily, complexity increases as well. Thus, the growing number of adjustable variables
for an operable system raises the probability of failure in many contexts. Therefore, it
is important to rely on a solid foundation of knowledge, which allows to continuously
assess and reflect the actions to be taken.

As well as the presented theoretical background is not exhaustive at all, it should
comprise some valuable insights into the addressed topic of document management and
its surrounding environment. Based on these findings, a project description concerning
the development of a software prototype for the management of student records at the
Vienna University of Technology can be established in Chapter 3 now.

31

CHAPTER 3
Project description

This chapter describes the planning and design of the software prototype in advance of
discussing its practical implementation in Chapter 4 then. For the sake of elaborating a
final draft, several consecutive steps have to be taken into account altogether: starting
with the initial situation at the Vienna University of Technology, general parameters can
be determined and refined in the concrete requirements of the new DMS accordingly. An
adequate market sounding is carried out in consequence, leading to the selection of an
appropriate basic system as groundwork for the prototype. Ultimately, the comprehensive
concept of the novel software will be presented.

3.1 Initial situation

First of all, the relevant information for constituting the project’s context is gathered by
meeting persons in charge at the Vienna University of Technology and reviewing internal
documents, which are provided additionally. By this means, the actual scope of the work
is carved out in a coordinated activity with the responsible stakeholders. Clarifying, what
is the particular problem in the current situation, and which measures are desired for
solving it in reference to the given general conditions.

3.1.1 Scope and context

On a greater prospect, the underlying idea states to develop a holistic document manage-
ment system for the Vienna University of Technology overall: allowing each entity, to take
advantage of the new system within the range of its own tasks, as well as benefiting from
the possible collaboration that emerges as a whole. In terms of this thesis, the originating
step of developing a functional prototype for the subarea of one entity is covered, i.e. a
proof of concept to build upon.

33

3. Project description

Introducing the concrete field of deployment, the Admission Office of the Vienna Univer-
sity of Technology moves to the focus of interest: this organisational entity is responsible
for all matters concerning the admission of students, notably the administration of
applications to various degree programmes. As time goes by, the corresponding procedure
has been revised periodically, adapting the infrastructure and workflows to upcoming
requirements. But, to approach the major problem in this context, the transition from
paper-based document management to state ot the art EDM never took place thoroughly.
Thus, the systems and methods in use are in many aspects not as efficient as they could
be, burdening the process for all persons involved.

In a more detailed analysis, the discussed subject should be addressed from three different
views:

– student’s view

– employee’s view

– dean’s view

Each perspective represents a group of humans with specific demands to be satisfied.
Hence, the main goal of the prototype manifests in enabling individuals to perform their
tasks in the most comfortable and efficient way while preserving the quality of the initial
request. Put into practice, it is key to optimise the particular workflows of the participants
above all by providing a suitable set of methods and tools to them: allowing people to
experience a direct improvement in the course of their activities and raising the acceptance
for the novel system consequently.

As a result, any action taken by a user should contribute to the user’s contentment on
the one hand, and lead to the emergence of additional value in the entire system on the
other hand. Related to practice again, the following example illustrates this facilitating
principle in the given context of the Admission Office: every time an employee reviews
the application of a student with the help of the EDMS, a standardised, yet flexible
workflow comprises a series of actions, that are familiar to the employee. Furthermore,
this process fosters the respective student record (= a set of documents and metadata) by
updating the relevant parts of information in the background of the system automatically.
Therefore, an EDMS at large is able to divide complex operations into smaller steps,
which in turn can be handled by humans and their cognitive skills best. By this means,
the rendered effort of users is reinforced by the system and generates a significantly
higher revenue, than it would ever be possible in combining manual activities.

Based on this considerations and the environmental conditions, it is reasonable to
structure the implementation into two general components overall:

– a rather simple, but effective user interface at the frontend

– a fully equipped electronic document management system at the backend

34

3.1. Initial situation

One cornerstone of this setup is the resulting modularity, as illustrated in figure 3.1:
besides its elementary purpose of storing and retrieving data, the EDMS serves as a
construction kit for the functionality provided by the user interface. Thus, the frontend
needs to incorporate just the methods and representations, that are truly required at a
certain point of time for a specific task. Accordingly, numerous lightweight user interfaces
can be developed and customised for different areas of application, while only a single
EDMS has to be administrated behind the scenes.

EDMS

Admission
Office

task n

University
Archive

University
Office

entity 4

entity 5

entity ...

entity n

task ..
students'

applications

task ..

task ..

student's

view

employee's

view
dean's
view

Figure 3.1: EDMS-centred modular design

35

3. Project description

3.1.2 Established DMS at the Vienna University of Technology

Comprising a multitude of smaller organisational entities, information management has
been an integral part within the Vienna University of Technology since decades. Each
entity is concerned with an area of responsibility and employs several people in different
roles. These persons are qualified to process the assigned tasks and get in contact with the
staff of other departments occasionally. Even though this sounds like the ideal breeding
ground for computer supported cooperative work, the enforcement of a uniform, superior
strategy could only be accomplished in parts up to now. Reasons may be found in the
overwhelming complexity of such a project, missing resources or the incompatibility of
individual requirements.

As a natural consequence, a wide range of isolated solutions for document management has
grown in the course of time: this includes classical filing cabinets, storage on File Transfer
Protocol (FTP) servers, as well as more elaborated software systems and workflows. In
the overall context, each entity has established a DMS that meets its demands sufficiently
and could be afforded by the available capabilities. On the long term, however, it is very
likely that this imbalance sacrifices quality for sheer applicability.

Thus, a conclusion would advise to focus on a much more information-based approach
on the whole: assuming, that information is the source and means to an end of any
task, a collectively utilised EDMS should be the answer to all questions. Because the
relevant information is already there, and only needs to be restructured and allocated
thoughtfully, to unite the fragmented entities into a self-organising system. This holistic
system then again could be utilised to provide a consistent interface for handling the
communication with externals in an efficient way.

3.2 Requirements
Considering the previous findings as general scope of action, the practical implementation
of the software prototype calls for a precise definition of feasible requirements subsequently:
determining the essential aspects that have to be realised for embedding the prototype
in the existing environment at the Vienna University of Technology. From a developers
point of view, it is important to start with a set of minimum requirements as well: leaving
enough flexibility and space for incremental improvements, that may result from the
further collaboration with the customer.

3.2.1 Requirements for the EDMS

The EDMS shall build the fundament for the design of the Admission Office’s user
interface. Furthermore, it should constitute the possible implementation of additional
user interfaces for other entities in future. Thus, the main requirements are:

– quantity structure: only a high-performance system comes into question; it has to
cope with approximately 2.1 terabyte data in 530.000 documents from more than

36

3.2. Requirements

32.000 users when launched.

– On-premises deployment: all documents have to be stored on internal servers of
the Vienna University of Technology.

– application programming interface (API): the EDMS has to provide a comprehensive
API, that supports the programming languages of Java and Ruby.

– database system: the EDMS must be connectable to a preexisting Oracle Relational
Database Management System (RDBMS).

– financing: ideally, the EDMS should be open source; in terms of licensing, payment
per user is more favourable than payment per document.

– workflow management: the EDMS should allow the customisation of workflow
management.

– metadata: the EDMS should aid the flexible configuration of metadata.

– semantic search: the EDMS has to facilitate the application of semantic search
techniques.

3.2.2 Requirements for the Admission Office’s interface

The user interface of the Admission Office is the visible end product presented to the
respective users, i.e. the tool that enables the completion of their tasks. Hence, the
requirements are prepared in close cooperation with persons in charge at the Admission
Office: elaborating, which functionality really is needed for the different groups of users
in the concrete context, based on many years’ experience of direct involvement.

Student’s view

– initial login: enable the login with username and password; schedule a deadline for
the sending of the study application and display a confirmation request as well

– study application: show a list of required documents for the study application
and provide a mechanism for the uploading of documents (university qualification
evidence, matriculation certificate, other documents); uploaded documents should
be taggable (= associating with catchwords, creating metadata); when the relevant
documents are successfully uploaded, students must be able to send their study
application

– reaction to call for improvements: permit re-login and the same procedure described
in study application

37

3. Project description

Employee’s view

– list view of open study applications for bachelor programmes: show a list of cur-
rently open bachelor programme’s applications; show a list of (expired) calls for
improvements (= change requests)

– review open study applications for bachelor programmes: enable the selection of
the current state of the review; display all available states in a lookup table;
automatically convert uploaded documents into Portable Document Format (PDF);
maintain an embedded logfile for capturing each manipulation and the name of the
responsible employee, recording the full reviewing process

– call for improvements: generate documents in Rich Text Format (RTF) based on
templates and master data of students and studies, relevant templates are call
for improvements and notifications; store the generated documents as part of the
respective student record in the EDMS

– review of equivalence: make the review of authenticity (authentic or forged) and
equivalence (university qualification evidence or matriculation certificate) of up-
loaded documents possible; assign an appropriate tag, if the document is equivalent

– admission: generate a notification for the admission of the student to the desired
bachelor programme; conclude the pre-enrolment record and transform it into a
student record; lock the student record for further changes by the student

Dean’s view

– list view of open study applications for master or doctoral programmes: show a list
of currently open applications to master or doctoral programmes

– review open study applications for master or doctoral programmes: display the
comprehensive students record of the currently reviewed study application

– compile statement: enable the creation and sending of a statement for the reviewed
application to a master or doctoral programme; facilitate the review of equivalence
and selection of exams to achieve equivalence for the given study application

– search mechanism: provide a search mechanism for student records; search criteria
are student’s name and reference number ; display the content of the retrieved
student record

Postconditions

– successful notification: students have successfully received the notification for the
admission to their desired study

38

3.3. Market sounding

– active student record: depending on the result (notification) of the review of the
student’s application, either a pre-enrolment record (if declined) or a student record
(if successful) does exist in the EDMS

Altogether, the listed requirements represent a constitutive agreement on the performance
of the software prototype. Nevertheless, it is quite likely that ideas for additional or
slightly modified features emerge within the development process, and may be realised to
improve the overall functionality.

3.3 Market sounding

Based on an objective assessment, two reasons suggest the application of an already
established electronic document management system, rather than designing an own: First,
the provided functions of an EDMS are generically enough to be adapted in a customised
software. Second, and of greater importance, an individual composition obviously would
lack the quality of a professional, market-proven solution. Thus, it is necessary to perform
a market sounding to reach the next goal on the way to the final concept: selecting an
appropriate EDMS as fundament for the self-developed prototype.

3.3.1 Evaluation

Technically, the market sounding and resulting evaluation can be classified as a subjective,
non-exhaustive web search by the author of this thesis. Hence, the assessment of each
EDMS mainly rests on information, and directly testing the software, if possible. Overall,
the findings are summarised in several categories:

– product name

– open source: whether all functionality and the source code of the EDMS is freely
available, which software license is granted.

– quantity structure: is the product able to cope with considerable amounts of data,
or is it designed for smaller organisations?

– applicability: if the product meets the particular requirements for the given project,
or essential functions are missing.

– sustainability: estimation of the product’s future applicability, i.e. if it is still
actively developed and maintained, or discontinued to some extent (e.g. support is
no longer provided).

– overall impression

39

3. Project description

Each category is evaluated from a minimum of one star up to a maximum of three stars.
The overall impression does not automatically result from the partial ratings, because
some details may have a greater significance in the whole context. Figure 3.2 presents
the outcomes of the evaluation, sorted alphabetically by the name of the products.

Product Name Open Source Applicability Sustainability Overall ImpressionQuantity Structure

Alfresco
Community Edition

bitfarm-Archiv DMS
GPL-Edition

Casebox

Kimios

KRYSTAL DMS
Community Edition

LogicalDOC
Community Edition

Mayan EDMS

Nuxeo Platform

ONLYOFFICE
Community Server

OpenDocMan
Community Version

OpenKM
Community Version

OpenProDoc

SeedDMS

Figure 3.2: market sounding, evaluation

Already the first stage of the market sounding reveals enough evidence, that the product
range and quality of open source solutions should be sufficient for the intended purpose.
Thus, fee-based software is only researched as reference. Overall, open source EDMS
may be distinguished in two groups for the most part:

On the one hand, market leaders offer community editions of their enterprise products.
Commonly, these scaled-down versions are restricted in terms of functionality (e.g. less
features, one database management system compatible at all) and the quantity of possible
users or documents. On the other hand, groups of independent developers deploy more
lightweight EDMS, which are targeted at smaller businesses in general. Here, the main
problem relates to the sustainability of such products, because the responsible persons
may end their project at any time. Altogether, it has to be concluded, that each reviewed
EDMS can be applicable in a certain environment, but one system definitely stands out
in the particular context: Nuxeo Platform.

40

3.3. Market sounding

3.3.2 Selected software: Nuxeo Platform

Above all, the unique characteristic of Nuxeo Platform is found in its business model: an
established company provides a sophisticated EDMS free to use and refine. Revenues
are generated from Nuxeo Studio, an easy-to-use graphical interface for the configuration
and customisation of Nuxeo Platform, as well as the professional support of the product.
Hence, there is no limitation in any regard: all features and functionality is at the hands
of the developer that is willing to become acquainted with the underlying framework.

Considering the technical perspective, Nuxeo Platform comprehends the advantages
of a modular architecture: functionality is understood as a result of interchangeable
components (bundles), rather than being built rigidly into the structure of the system.
This modular design allows to incorporate changing or growing requirements in a flexible
way and supplies a variety of extension points to connect to.

Conveying a more pratical overview, Nuxeo includes, but is not reduced to the following
set of features and principles [39]:

– Content is a magnitude larger in size and throughput than ever before, consists of
complex, structured objects and manifests in an exponentially increasing amount
of types and delivery channels.

– Nuxeo Platform is designed for a data-driven world, built to be extended and tested
for a critical workload.

– The Content Repository features a rich content model, relationships, querying
and search, a versioning policy, access control as well as pluggable data and file
persistence.

– A flexible Representational State Transfer Application Programming Interface vulgo
REST API presents full repository create, read, update and delete (CRUD) support
with more than 130 operations and several native client libraries (e.g. Java).

– Massive scalability can be achieved by using either NoSQL (MongoDB) or relational
(PostgreSQL, Oracle, MySQL, etc.) database systems.

– A benchmark on performance confirms one billion documents and 6.000 queries per
second on a single cluster, with up to 14.000 documents processed per second.

According to this basic capacities, Nuxeo Platform can be utilised for any use case
from pure document management to outright groupware activities. Thus, Nuxeo may
be summarised best as an enabling software system, that works out of the box at the
frontend, but is also capable to be placed as bedrock at the backend.

41

3. Project description

3.4 Concept of the prototype

The concept of the software prototype, i.e. the implementation referred to as Student
Records Manager (SRM) henceforth, considers all previously discussed components and
assembles them into a functional system now: describing, how the Student Records
Manager is set up in order to be able to fulfil the agreed requirements.

Starting with the big picture, the SRM is designed as a three-tier architecture. This
structure allows to separate systems into modular layers and raises the flexibility of the
overall application thereby. Each layer serves a certain function of the system, and can
be modified in terms of the function itself, or the individual components that produce the
function. Thus, a loose coupling between the layers reduces dependencies while preserving
interchangeability. Transposing this generic concept, Figure 3.3 provides the concrete
composition of the SRM in an universal illustration:

Presentation layer

The visible representation
that enables the user to
perform the intended tasks.

INFORMATION

TO

DATA

Logic layer

The coordinating logic that
provides the processing
mechanisms.

Data layer

The data stored in
and to be retrieved from
one or more database(s).

Figure 3.3: the software prototype as a three-tier application

On an abstract level, the purpose of the SRM is nothing else than transforming information
to data and data to information vice versa: that is, making sense of the retrieved data in
the presentation layer to display the information users require for accomplishing their
tasks, as well as dismantling the manipulated and newly user-generated information to
store it in one or more database(s) then again. Consequently, the following subchapters
outline a more detailed view on the three layers.

42

3.4. Concept of the prototype

3.4.1 Presentation layer

The presentation layer builds the interface to the human user and is called user interface
accordingly. More specifically, the deployment as a web application allows users to
access the presented information and functionality via a web browser on different devices,
ensuring platform independence.

Moreover, it is advisable to design and style the respective web pages in a fashion, which
is familiar to the target audience. For this reason, the cascading style sheets (CSS) of
the established TU Wien Information-Systems and Services (TISS) are utilised. Thus,
the novel user interface integrates seamlessly into the known environment of users and
minimises their need for further training.

Corresponding to the different roles and tasks of users, three distinct user interfaces
(views) are considered in addition. This subdivision paves the way for an even more
tailored presentation for each group of people, increasing the practical usability of the
SRM. Finally, the exhaustive list of use cases comprises:

The student’s view

Student Records Manager

Student

log in with reference number and password

apply for study

react to call for improvements

<< include >>

upload document(s)

Figure 3.4: SRM, possible use cases of students

log in with reference number and password: students (for simplicity, this group includes
persons, that apply for a study, and may not be qualified students up to this point) log
in to the system with their reference number as username and birthday as password; in
case of the initial login, a deadline for the sending of the study application is created,

43

3. Project description

displayed and must be confirmed by the student to progess to the use case apply for
study; the system has to verify the authenticity of the login data

apply for study: students see their master data, educational background and proposed
field of study; in order to be able to send their study application, students must up-
load a matriculation certificate (if citizen of EU-/EWR-member state) or an university
qualification evidence (if not citizen of EU-/EWR-member state) first; students may
re-upload their matriculation certificate or university qualification evidence; students
may upload (several) other documents; students may add tags to one or more of the
uploaded documents and may remove their added tags; students may send their study
application within the displayed deadline; the system has to convert uploaded documents
into Portable Document Format (PDF)

react to call for improvements: in addition to the functionality of the use case apply for
study, students are informed with a notification document, which states the reason of the
call for improvements, and see their previously uploaded insufficient document(s)

The employee’s view

Student Records Manager

Employee

log in with username and password

search student records

view student record

list open applications for bachelor programmes

list insufficient applications for bachelor programmes

list completed applications for bachelor programmes

<< include >>list my open reviews

open my workspace

review open application for bachelor programme

Figure 3.5: SRM, possible use cases of employees

44

3.4. Concept of the prototype

log in with username and password: employees log in to the system with their username
and password

search student records: employees may search for student records by one or more criteria,
i.e. the name of the student (exact name or part of a name), reference number of the
student and state of the student record; employees may open a retrieved record according
to the use case view student record

view student record: employees see the most recently opened student record in this
session, displaying the master data, educational background and information of the
student’s proposed/completed studies, as well as the current state of the student record;
additionally, the uploaded documents of the student and the related issued documents of
the Admission Office are disclosed

list open applications for bachelor programmes: employees see a list of open applications
for bachelor programmes, displaying the student’s reference number, first name, last
name, state of the student record as well as the date of the application’s expiration
(deadline) for each entry; employees may open a listed application as a function of the
use case open my workspace

review open application for bachelor programme: employees review an opened bachelor
programme’s application in their workspace; the system has to disable the application
for the review by other employees, as long as it is opened; employees see the applicant’s
master data, educational background, proposed field of study and uploaded documents;
employees may add or remove documents’ tags; for each document, employees select one
result concerning its authenticity and equivalence; the system adds an adequate tag to
the particular document; employees may add an optional comment for the changes made;
employees see a log of all changes ever made by employees to the application; employees
may save or abort the review and are able to complete the review, when all required
documents (= matriculation certificate or university qualification evidence) are evaluated;
employees choose a result for the completed review, either granting the admission,
declining the admission or calling for improvements by the student; if completed, the
system has to create and attach a complying notification document to the student record
and/or update the application’s deadline; the system has to change the student record’s
state according to the employee’s actions; the system has to save the currently selected
values; the system provides a table to look up all possible states of a student record

list my open reviews: employees see a list of opened applications to bachelor programmes,
whose review they have started, but not yet aborted, saved or completed; the list displays
the student’s reference number, first name, last name, state of the student record as well
as the date of the application’s expiration (deadline) for each entry; employees may open
a listed application under the terms of the use case open my workspace

open my workspace: employees see the content of the most recently opened student
application in this session, displaying the applicant’s master data, educational background,
proposed field of study and uploaded documents; employees may start or continue the
review as per use case review open application for bachelor programme

45

3. Project description

list insufficient applications for bachelor programmes: employees see a list of insufficient
applications for bachelor programmes, displaying the student’s reference number, first
name, last name, state of the student record as well as the date of the application’s
expiration (deadline) for each entry

list completed applications for bachelor programmes: employees see a list of completed
applications for bachelor programmes (either admission granted or admission declined),
displaying the student’s reference number, first name, last name, state of the student
record as well as the date of the completion of the review for each entry; employees may
open a listed application according to the use case view student record; employees may
narrow or widen the listed applications by setting a timescale (7, 14, 30, 60 or 365 days)

The dean’s view

Student Records Manager

Dean

log in with username and password

search student records

view student record

list open applications for master or doctoral programmes

list my open reviews

open my workspace

review open applications for master or doctoral programme

<< include >>

Figure 3.6: SRM, possible use cases of deans

log in with username and password: deans log in to the system with their username and
password

search student records: deans may search for student records by one or more criteria,
i.e. the name of the student (exact name or part of a name), reference number of the
student and state of the student record; deans may open a retrieved record according to
the use case view student record

46

3.4. Concept of the prototype

view student record: deans see the most recently opened student record in this session,
displaying the master data, educational background and information of the student’s
proposed/completed studies, as well as the current state of the student record; additionally,
the uploaded documents of the student and the related issued documents of the Admission
Office are disclosed

list open applications for master or doctoral programmes: deans see a list of open appli-
cations for master or doctoral programmes, displaying the student’s reference number,
first name, last name, state of the student record as well as the date of the application’s
expiration (deadline) for each entry; deans may open a listed application as a function of
the use case open my workspace

review open application for master or doctoral programme: deans review an opened ap-
plication for a master or doctoral programme in their workspace; the system has to
disable the application for the review by other deans, as long it is opened; deans see the
applicant’s master data, educational background, proposed/completed field of studies
and documents (= the student record so far); deans select values for a predefined set of
fields to assemble their overall statement on the application; deans may save or abort the
review; deans may complete the review, when the values for all required fields are selected;
if completed, the system has to create and attach a complying statement document to
the student record; the system has to change the student record’s state according to the
dean’s actions; the system has to save the currently selected values

list my open reviews: deans see a list of opened applications to bachelor programmes,
whose review they have started, but not yet aborted, saved or completed; the list displays
the student’s reference number, first name, last name, state of the student record as well
as the date of the application’s expiration (deadline) for each entry; deans may open a
listed application under the terms of the use case open my workspace

open my workspace: deans see the content of the most recently opened student appli-
cation in this session, displaying the applicant’s master data, educational background,
proposed/completed field of studies and documents; deans may start or continue the
review as per use case review open application for master or doctoral programme

3.4.2 Logic layer

Nuxeo Platform is applied as middleware in the logic layer. Here, it provides the necessary
business logic and structures to manage the allocation of data between its surrounding
layers. In order to fulfil this mediating function, a content repository consitutes the
elementary part of the system:

Basically, the repository is utilised for storing documents and offers advanced functionality
to create, manipulate or delete these documents. Describing the special characteristic of
the Nuxeo repository, a document is defined as a set of fields, and not just a simple file
[40]. Figur 3.7 illustrates this concept.

47

3. Project description

Simple file Nuxeo document

File

creativeExample.pdf
File

creativeExample.pdf

Creation date

Modification date
Expiration date

Author

Contributors

Life cycle state

Files

Version
Security descriptor

12. 12. 2016

22. 12. 2016

31. 12. 2016

Minsc

Boo

2.0
confidential

valid

Figure 3.7: Nuxeo document concept

Fields may be simple fields (string, integer, boolean etc.), simple lists or complex types.
Whereas a file per se represents a special form of a complex field, containing a binary
stream, filename, mime-type and size. Thus, a document can hold zero, one or several
files, and even a folder is viewed as a document due to its captured metadata (title,
creation date etc.).

Inside the Nuxeo repository, each document is classified by a document type. The
document type specifies a name, a base document type, a set of facets, as well as a set
of schemas. These schemas can be used to define the structure of the document and
metadata blocks.

Overall, the repository and its documents can be accessed directly via a REST API, or
additionally supplied client libraries (for Java, PHP, Python, iOS, Android etc.) of Nuxeo
Platform. By this means, the presentation layer’s web application is able to connect
to the repository, providing the required documents (= structured information) and
operations for the users’ tasks (= their use cases).

On the other hand, the Nuxeo repository applies a service for managing the persistence
of documents. This Nuxeo Visible Content Store (VCS) capitalises on an RDBMS that
keeps the data at the backend, i.e. the data layer. It is pluggable and allows to store
data in standard SQL databases, using a natural object mapping to tables, supporting
full-text search if possible.

48

3.4. Concept of the prototype

3.4.3 Data layer

Linking to the logic layer, Nuxeo Platform supports several relational database manage-
ment systems. The Student Records Manager shall incorporate PostgreSQL, as it is one
of the most established open source systems in this domain. Likewise, it would be feasible
to use the Oracle or MySQL RDBMS in a refined version of the software prototype: the
functionality of Nuxeo Platform stays the same one way or another, and just a part of
the configuration has to be changed.

Eventually, the data layer completes the concept for the Student Records Manager.
As a result, all general conditions of the project are determined successfully and the
implementation of the prototype may start.

49

CHAPTER 4
Implementation

This chapter outlines the genesis of the Student Records Manager. Thus, it comprises
everything, that needs to be done for transforming the theoretical project description into
a practical realisation embodied by the software prototype. Starting with a general overview
of the development process, each development stage is examined in detail subsequently.
The resulting overall setup and structure gets summarised accordingly, illustrating the
entire composition. Finally, the user interface as the visible end product of the Student
Records Manager is discussed in relation to the initial requirements of the project.

4.1 Development process
Software development on the whole can be considered as a sequence of consecutive steps,
that supplement each other in order to produce a certain piece of software. Hence, it is
a list of tasks to be accomplished by the combination of tools and techniques from the
state of the art. In this respect, the presented process in Figure 4.1 displays only one of
many possible solutions which may be feasible in the given context:

Set up
Nuxeo Platform

Set up
the

development
environment

Connect
Nuxeo Platform

Implement
the

Student Records
Manager

Complete
the

implementation

testing by supervisor
testing manually

background research and communication with supervisor

overall progress

Figure 4.1: development process of the Student Records Manager

51

4. Implementation

Each task has a certain goal, which forms the transition to the next stage at the same
time: by this means, it can be guaranteed, that particular milestones are reached and
therefore provide the essential groundwork for the further development. In addition,
several background activities are performed to assure the quality of the overall process,
reflecting and adapting the work practices if necessary.

4.2 Development stages

In the course of the following subchapters, the series of actions as well as all required
information for succesfully building the Student Records Manager is disclosed. Thus,
the revealed process can be regarded as a reproducible approach that may support the
development of similiar applications in future to some extent.

4.2.1 Set up Nuxeo Platform

First and foremost, it is advisable to try out Nuxeo Platform and verify its functionality:
because this prefabricated software is at the heart of the SRM and constitutes all
subsequent measures to be taken. Hence, any problem that is detected and solved at this
early stage saves a lot of effort at a later point of time.

Related to practice, this concrete steps are realised:

– a local server is built: reusing an older personal computer, that is enhanced by a
new hard disk for being able to simulate the storage of a large amount of data.

– Debian 7 (Wheezy) is installed as operating system: being popular for network
servers, available for free and compatible with Nuxeo Platform in general.

– Nuxeo Platform 7.10 is installed on the operating system: using the appropriate
Debian installer distributed by Nuxeo, which is based on Apache Tomcat and
supplies all required third-party dependencies.

– PostgreSQL 9.4 is installed on the operating system: a sophisticated open source
RDBMS, which is compatible with Nuxeo Platform 7.10.

– PostgreSQL 9.4 is configured to work with Nuxeo Platform 7.10: creating the role
and database for Nuxeo and some further minor actions

Having established the basic setup of Nuxeo Platform, the most important parts of its
comprehensive documentation are studied. In this way some theoretical knowledge about
the elementary concepts and structures of Nuxeo is acquired, as well as directly applied by
analysing the previously installed system (understand, how Nuxeo Platform is assembled;
manually starting and stopping the service on the server etc.).

52

4.2. Development stages

4.2.2 Set up the development environment

At the beginning of stage two, TISS, the applied information system of the Vienna
University of Technology moves into the focus: it represents the normative system, where
the SRM is embedded. Thus, there are several rules and technical conditions, that have to
be met, when developing a new component in this context. Consequently, the supervisor
as link to the department of Campus Software Development (CSD), which is responsible
for maintaining TISS, provides the following source material:

– static resources: a package, which contains the static resources (CSS, icons, images
etc.) for building a TISS project, as well as an implemented showcase that should
be used as guideline for the development of such a project.

– data encapsulation: a project, that includes a bundle of classes, which can be
utilised for generating simulated master data of students, because it is legally not
possible to incorporate original data.

Based on the specifications of this materials, the definite development environment for
the SRM is set up as a whole:

– a local personal computer with Windows 7 as operating system serves as general
development platform.

– NetBeans IDE 8.1 is installed on the operating system, acting as a software
development platform that supports the development of different Java application
types.

– Java EE (Java Platform, Enterprise Edition) is applied in consequence to facilitate
the practical implementation of SRM: a platform consisting of several services, pro-
tocols and APIs which provide the functionality for the development of multitiered,
web-based applications.

– Apache Maven is used for literally building the web application archive (WAR file),
i.e. a java archive (JAR file) subjected to distribute a collection of resources (Java
Servlets, Java classes, XML files, static web pages etc.), which constitute the web
application.

– Apache Tomcat is utilised to deploy the resulting web application on the local
machine.

– Mozilla Firefox is the favoured web browser to access the web application.

In order to get a more sophisticated impression of the different concepts, further documen-
tation on the addressed topics is consulted as a next step. Eventually, an introductory
Jave EE project is implemented successfully, preparing the ground for a thorough analysis
of the supplied TISS showcase subsequently. Finally, everything is sufficiently understood
and in the right place to advance to the next stage of development.

53

4. Implementation

4.2.3 Connect Nuxeo Platform

Being equipped with a working local server on the one hand, and a reliable development
environment on the other hand, the purpose of stage three is to relate this previously
independent systems to each other, i.e. establishing a temporary connection between
them over a local area network (LAN).

As a result, it is possible to access and test Nuxeo Platform from the development
platform. This is accomplished via the standard web interface of Nuxeo Platform 7.10,
as illustrated in Figure 4.2:

Figure 4.2: standard web interface of Nuxeo Platform 7.10

Several basic operations are tested, e.g. creating documents, uploading files to documents,
adding tags to documents, changing metadata of documents. By this means, the complex-
ity and scope of Nuxeo Platform is assessed from a user’s perspective, i.e. experiencing
the application in a practical context.

Furthermore, the Nuxeo Bulk Document Importer service is utilised to fill the Nuxeo
repository initially with approximately 30 000 documents. According to that, the search
engine is explored and pursuing actions are taken, e.g. altering the version of documents,
deleting documents, trying to retrieve (deleted) documents in a certain version et cetera.

Nuxeo Java Client

While the web interface is designed for presenting the contents and functions of the Nuxeo
repository directly to the end user, an additional application programming interface (API)
allows to integrate the Nuxeo repository remotely in other applications, i.e. the Student
Records Manager.

Paying attention to the development environment, the Nuxeo Java Client provides a
Java client library for the Nuxeo Platform Representational State Transfer (REST) APIs.

54

4.2. Development stages

Version 1.0 of this library is compatible with Nuxeo Platform 7.10 and therefore imported
into the Maven-based project in NetBeans:
import org . nuxeo . c l i e n t . api . NuxeoClient ;

S t r ing u r l = " http : / / 1 0 . 0 . 0 . 2 : 8 0 8 0 / nuxeo " ;
NuxeoClient nuxeoCl ient = new NuxeoClient (ur l , " Administrator " , " Administrator ") ;

As a consequence, the Repository API and Automation API of Nuxeo Platform can be
used within the Student Records Manager to instruct Nuxeo Platform to perform certain
operations. For example, a student record (= document with metadata that may contains
other documents with metadata and files) is created and stored in the Nuxeo repository:
// Create f o l d e r to hold documents f o r studentsRecord with ID " studentsRecordID "
Document f o l d e r = new Document (studentsRecordID , " Folder ") ;

f o l d e r . s e t (" dc : t i t l e " , studentsRecordID) ;
f o l d e r . s e t (" dc : source " , " Vorer fas sungsakt ␣ e r s t e l l t ") ;
f o l d e r . s e t (" dc : exp i red " , date) ;
f o l d e r . s e t (" dc : format " , " n i cht ␣ in ␣Bearbeitung ") ;

nuxeoCl ient . r e po s i t o r y () . createDocumentByPath (admOffice+" /Vorer fas sungsakt " , f o l d e r) ;

Another method could be called to retrieve all student records with a particular state in
return:
@Override
public List<Document> getStudentsRecordsWithState (S t r ing s t a t e) {

List<Document> studentsRecords = new ArrayList<Document>();

Documents docs = nuxeoCl ient . header ("X−NXProperties " , "∗ ") . r e po s i t o r y () . query (
"SELECT␣∗␣FROM␣Folder ␣WHERE␣dc : source=’ " + s t a t e + " ’ ") ;

for (Document ch i l d : docs . getDocuments ()) {

studentsRecords . add (ch i l d) ;
}

return studentsRecords ;
}

Depending on the state of the student record, it may be useful to be able to change its
storage location:
@Override
public void moveDocument (St r ing studentsRecordID) {

Document directoryToMove = nuxeoCl ient . header ("X−NXProperties " ,
"∗ ") . r e po s i t o r y () . fetchDocumentByPath (admOffice+" /Vorer fas sungsakt / "
+ studentsRecordID) ;

Document directoryToMoveTo = nuxeoCl ient . header ("X−NXProperties " ,
"∗ ") . r e po s i t o r y () . fetchDocumentByPath (admOffice+" / Studierendenakt ") ;

directoryToMove . setPropertyValue (" dc : exp i red " , " 2050−01−01 ") ;
directoryToMove . updateDocument () ;

nuxeoCl ient . automation ("Document .Move") . param(" t a r g e t " , t a r g e tD i r e c t o ry) . param(
"name" , studentsRecordID) . input (directoryToMove) . execute () ;

}

By testing this basic functionality in the first place, some valuable lessons are learned in
advance. All things considered, the preparation for the implementation is completed at
the end of stage three.

55

4. Implementation

4.2.4 Implement the Student Records Manager

The important preliminary activities are to enable the implementation; the major part
of development is found in stage four nevertheless: implementing the Student Records
Manager is a manual process that involves the selection of an appropriate software
architecture, as well as the thoughtful elaboration of its contents. In this respect,
the following subchapters start with the presentation of the Model View Controller
architecture, and work the way through all relevant components of the original software
prototype.

Model View Controller architecture

Referring to a more common definition, the Model View Controller architecture can be
described as a three-tier architecture on application level: this means in effect, that the
software application’s maintainability is improved by a separation of concerns, i.e. organ-
ising its elements logically into the model, view and controller layer. As illustrated in
Figure 4.3 and explained subsequently, each layer serves a specific purpose, while the
orientation of the connections facilitates the control of the application’s complexity:

Model

View

Controller

User

Figure 4.3: MVC components and their interplay

The persistent data of the application is managed in models. On the other hand, views
are (visual) representations of the models’ data, that can be understood by the user then
again. In between, controllers are used to manipulate the models and update the views
based on the user’s interaction. Thus, the number of direct connections is minimised in
order to provide a clear and modular application structure overall.

Related to practice, the adaption of the MVC architecture may be considered best as an
enabling starting point, where the structural rules for the implementation are determined.

56

4.2. Development stages

Figure 4.4 outlines the concrete segmentation of the Student Records Manager:

View

Controller

Model

Student Records Manager

studentsView employeesView deansView

generalView

Provider

StudentsViewBean EmployeesViewBean DeansViewBean GeneralBeans

DataAccessObjects

Figure 4.4: diagram of the overall structure of SRM

Retaining a certain degree of abstraction, Facelets is the default view handler technology
for JavaServer Faces. This web template system makes use of valid XML documents
to form views, i.e. the XHTML format is applied to create a document, which can be
processed by the user with the help of a web browser. Hence, the generalView comprises
documents, that frame the general structure of the representation, while the documents of
the studentsView, employeesView and deansView are designed for the specific requirements
of the users’ tasks. Each view is administrated by a controller bean, i.e. a class that
contains the logic to update the dynamic parts of the XHTML documents and transform
the user interactions into concrete operations on the models. In this respect, a provider
class offers methods to manipulate the stored data at the backend of the application, and

57

4. Implementation

retrieve it vice versa.

Eventually, the big picture of the Student Records Manager’s technical implementation
is one possible interpretation of the MVC architecture. Thus, an architecture or pattern
depicts a way to a solution, and is not the solution itself. According to that, a more
detailed characterisation of the application’s contents is supplied in the following passages.

Model

Figure 4.5: class diagram of the Model layer

Figure 4.5 displays all classes of the model layer, as well as some attributes and operations
are mentioned to clarify the underlying concept. To begin with, the Provider (class)
constitutes the connection to the controller layer. Therefore, it creates a Storage, which
is handed over to the DAOFactory. Consequently, a PersonDAODummy and a Stu-
dentsRecordDAONuxeo are fabricated with the aid of the DAOFactory. This allows the

58

4.2. Development stages

Provider to provide methods for the modification of Person objects on the one hand,
and to give instructions to the Nuxeo Platform on the other hand. For this purpose, the
previously introduced Nuxeo Java Client is integrated in the StudentsRecordDAONuxeo
class. In addition, the Generator is called in the Provider to populate the Storage. This
is necessary to create instances of the Students, Employees, Dean classes, what in turn
enables the login of users in their roles and simulates the master data of students. A
StudentsRecordEntry is an object, that holds combined data from the Storage and Nuxeo
Platform (mainly used for the list representations within the views).

In this context, Data access object (DAO) is applied: a software design pattern, that
separates the application from the persistence mechanism. The main idea of this pattern
states to distinguish, what data access is required by the application (= public interface
of the DAO), and how these needs may be served with a particular database scheme (=
implementation of the DAO). By this means, only the DAO implementation has to be
modified in case of a change to the persistence mechanism, preserving the maintainability
and flexibility of the overall application.

View

generalView
internalTemplate.xhtml

studentsView

studentsInitialLogin.xhtml

employeesView

employeesAmendableApplications.xhtml

deansView

index.xhtml
login.xhtml
search.xhtml
searchResultsView.xhtml

studentsOverview.xhtml

studentsRegistration.xhtml

studentsUniversityApplication.xhtml employeesCompletedApplications.xhtml

employeesCurrentlyEditedApplications.xhtml

employeesOpenApplications.xhtml

employeesOverview.xhtml

employeesWorkspace.xhtml

deansCurrentlyEditedApplications.xhtml
deansOpenApplications.xhtml
deansOverview.xhtml

deansWorkspace.xhtml

Figure 4.6: views of the Student Records Manager

Figure 4.6 summarises all documents (= web pages), that make up the view (= visual
representation) of the Student Records Manager together. Basically, all these newly
created Extensible Hypertext Markup Language (XHTML) documents build upon the
prefabricated TISS showcase by incorporating internalTemplate.xhtml: this document
can be described as a template web page, which capitalises on further resources (page
fragments, Cascading Style Sheets, icons, images, JavaScripts) and thereby specifies the
general design and style to be applied for all web pages.

A document (= a single view) consists of a structured sequence of JavaServer Faces
(JSF) and XHTML tags, which enclose static contents (text, images, icons etc.) as well
as dynamically allocated data from the model layer. Concerning this matter, the Java
Expression Language enables the communication between the view and its controller,

59

4. Implementation

i.e. integrating the return values of the controller bean’s methods and objects into the
document. Finally, XHTML output is rendered as a function of the tags and contents
and may be viewed in a web browser by the user then again. Additional libraries like
PrimeFaces extend the design options by providing extra tags and components.

Because a view is perceived visually, it should be tested by a human user above all.
Comprehending the presentation is a cognitive process, i.e. small changes in a view can
have major consequences on the interpretation and execution of a task. Thus, this part
of development mainly is an artistic activity with reference to best practices and not
directed towards a well-defined goal.

Controller

Figure 4.7: class diagram of the Controller layer

Figure 4.7 shows all classes of the controller layer, as well as some exemplary attributes
and operations to be discussed subsequently. In a nutshell, these classes are referred to
as managed beans (by the JSF framework) and take advantage of the Java EE platform’s
Contexts and Dependency Injection (CDI) services: a bean therefore is a source of
contextual objects that define the application’s state and logic, i.e. it temporarily stores

60

4.2. Development stages

(changing) attributes at deployment time and controls the processing of data based on
the user’s input.

Thus, each bean has a certain scope and can be injected into other beans, providing access
to its attributes and operations (= variables and methods) in their current state. Related
to practice, a user may fills in the login credentials on the corresponding web page (view)
and clicks the button login. This action triggers the method login() of the UserBean,
where the user’s login data is retrieved from the Storage. If the stored password matches
the entered password of the user (which is saved in a variable of the UserBean), the
variable authenticated is set to true in the the UserBean, the user successfully logs in to
the application and gets redirected to the appropriate starting page.

Because the UserBean is SessionScoped, the current data of the bean is present until the
user logs out again. Consequently, the UserBean can be injected into further beans: for
example, the DeansViewBean includes the name of the dean (= logged in user) in the
statement file, which is automatically generated when the revision is completed (= the
user clicks the button completeRevision on the web page deansWorkspace.xhtml).

In this way, all beans are created to serve a specific purpose within the application,
i.e. offering a set of methods and variables to process and hold data for a certain period of
time. One bean is responsible for one particular view, and may aid other beans and views.

List of third party software packages

As the Student Records Manager is not built from scratch and utilises existing software
packages (e.g. the Nuxeo Java Client), which depend on additional software packages for
their part, a lot of third party software packages have to be incorporated by the application
in order to work properly. From a developer’s perspective, unnecessarily extensive
dependencies should be avoided in general, but may not be avoidable in practice. This
dilemma is labeled dependency hell commonly. Nevertheless, Table 4.1 lists all third party
software packages, that are required to compile and run the Student Records Manager:

Name Scope
JDK 1.8 Java platform
activation-1.1.jar compile
bval-jsr303-0.3-incubating.jar compile
commons-beanutils-1.8.3.jar compile
commons-collections-3.2.1.jar compile
commons-digester-1.8.jar compile
commons-fileupload-1.3.jar compile
commons-io-2.4.jar compile
commons-lang-2.4.jar compile
commons-lang3-3.3.2.jar compile
commons-logging-1.1.jar compile
freemarker-2.3.25-incubating.jar compile

61

4. Implementation

geronimo-annotation_1.1_spec-1.0.jar compile
geronimo-atinject_1.0_spec-1.0.jar compile
geronimo-interceptor_1.1_spec-1.0.jar compile
geronimo-jcdi_1.0_spec-1.0.jar compile
geronimo-validation_1.0_spec-1.1.jar compile
guava-18.0.jar compile
jackson-annotations-2.6.3.jar compile
jackson-core-2.6.3.jar compile
jackson-databind-2.6.3.jar compile
javassist-3.12.0.GA.jar compile
jsoup-1.6.1.jar compile
jstl-1.2.jar compile
log4j-api-2.4.1.jar compile
log4j-core-2.4.1.jar compile
mail-1.4.7.jar compile
myfaces-api-2.1.7.jar compile
myfaces-extcdi-core-api-1.0.5.jar compile
myfaces-extcdi-core-impl-1.0.5.jar compile
myfaces-extcdi-jsf20-module-api-1.0.5.jar compile
myfaces-extcdi-jsf20-module-impl-1.0.5.jar compile
myfaces-extcdi-message-module-api-1.0.5.jar compile
myfaces-extcdi-message-module-impl-1.0.5.jar compile
nuxeo-java-client-1.0.jar compile
okhttp-3.0.0-RC1.jar compile
okio-1.6.0.jar compile
openwebbeans-impl-1.1.4.jar compile
openwebbeans-jsf-1.1.4.jar compile
openwebbeans-resource-1.1.4.jar compile
openwebbeans-spi-1.1.4.jar compile
openwebbeans-web-1.1.4.jar compile
primefaces-3.5-manubu3.jar compile
relative-resource-handler-1.0.0-TISS_RC2.jar compile
retrofit-2.0.0-beta4.jar compile
scannotation-1.0.2.jar compile
slf4j-api-1.6.1.jar compile
tomahawk20-1.1.10-tiss-1.jar compile
geronimo-servlet_3.0_spec-1.0.jar provided
bval-core-0.3-incubating.jar runtime
myfaces-impl-2.1.7.jar runtime
commons-beanutils-core-1.8.3.jar runtime
commons-codec-1.3.jar runtime

Table 4.1: list of required third party software packages

62

4.2. Development stages

Internationalisation

Moving the focus away from the factual technical implementation of the Student Records
Manager gradually, it is important to understand, how the resulting application is
perceived by the end users in reality. Ultimately, the whole software and its development
process would be rather pointless, if the target audience could not profit from the final
product. One key characteristic of the application’s presentation is the language of
the displayed contents: the more translations are provided (by the machine), the less
languages have to be learnt (by humans), and the better the usability is (overall).

A common solution in this context is the creation of static resource files: text is stored in
modular strings and loaded into the specified places of the web pages at runtime. Thus,
the relevant resource file gets selected during program execution based on the user’s
locale settings. Figure 4.8 shows a snippet of the Student Record Manager’s resource file
for English translation and one corresponding integration:

Messages_en.properties

studentsUniversityApplication.xhtml

Figure 4.8: example of language allocation

Altogether, German and English are supported by the use of ErrMessages_de.properties,
ErrMessages_en.properties, Messages_de.properties and Messages_en.properties.

63

4. Implementation

4.2.5 Complete the implementation

The last stage of development is concerned with the initial release of the Student Records
Manager, i.e. enabling other persons the convenient testing of the software prototype. In
order to be accessible over the Internet, Nuxeo Platform 7.10 (installed as a comprehensive
virtual machinge image) and the Student Records Manager application (deployed via
Tomcat) are hosted on an already existing private server, which is configured appropriately.

As a next step, various types of test data are created within the system, allowing each
user to explore the application in different roles (= student, employee or dean) and states.
Consequently, the supervisor of this diploma thesis puts the Student Records Manager
through its paces and proposes several modifications for the fine tuning of the prototype.

This procedure of adjusting and testing the implementation again is repeated multiple
times, until the Student Records Manager gets approved by the supervisor finally. The
current development process ends at this point, and the prototype is ready for the first
evaluation, as discussed in Chapter 5 in greater detail.

4.3 Overall setup and structure

Recapitulating the genesis of the Student Records Manager, two illustrations shall convey
the essence of the overall process. At first, Figure 4.9 provides an abstract visualisation
of the setup, which is chosen to develop and run the Student Records Manager:

Server

Nuxeo Platform 7.10

Server
Nuxeo Platform 7.10

Student Records Manager

Clients

Web browser

Development platform

Netbeans IDE 8.1
Student Records Manager

Web browser

Local Global

Figure 4.9: recap of the Student Record Manager’s basic setup

Narrowed down to the substantial parts, the Student Records Manager is developed on
a local computer, and may be deployed locally, or globally across the internet, using
Apache Tomcat in each case. Nuxeo Platform 7.10 establishes the backend of the whole
application, and a web browser is subjected to display the presentation at the frontend.
Of course, this setup is not set in tablets of stone: it is just one possible combination of
hardware and software, that enables the development and deployment of the Student
Records Manager.

64

4.3. Overall setup and structure

The technical implementation of the Student Records Manager is summarised by means
of an example: starting at the user interface, a snippet of the employee’s workspace
is shown in Figure 4.10. All documents of the currently opened student’s university
application are listed and have to be evaluated to complete the review. In this case, only
the required university qualification evidence is uploaded and tagged with the string test,
which could be removed by the employee:

Figure 4.10: recap of the Student Record Manager’s structure, user interface

Tracing back the source of the tag, the appropriate view of the presentation has to be
examined, i.e. a part of employeesWorkspace.xhtml as seen in Figure 4.11:

Figure 4.11: recap of the Student Record Manager’s structure, view

With the help of <ui:repeat>, all returned elements of the method specified in value="..."
are written out at runtime. The #{...} indicates the usage of Java Expression Language,
i.e. the relevant method in the controller is invoked accordingly. Figure 4.12 reveals the
accountable code in ProviderBean.java:

65

4. Implementation

Figure 4.12: recap of the Student Record Manager’s structure, controller

As the fetching of tags is a quite simple scenario within the application, only the
corresponding method in Provider.java has to be called. In terms of the big picture, the
model layer is reached by now, as illustrated in Figure 4.13:

Figure 4.13: recap of the Student Record Manager’s structure, model

It is evident, that the method getTagsFromDocument(...) passes on a list of strings:
therefore, it instructs the implementation of the data access object (via its implemented
interface) to return a certain data type, which can be processed by the application. Figure
4.14 illustrates this principle:

....

Figure 4.14: recap of the Student Record Manager’s structure, data access object

66

4.4. The Student Records Manager

Thus, the implementation of the DAO could be replaced without affecting the other
components of the Student Records Manager. Nuxeo Platform has its own persistence
mechanisms to store and relate tags then again, and guides the process down to its
utilised database system in final consequence.

Although the presented example covers a less complex element of the Student Records
Manager, the general procedure is similiar for the majority of features. Ultimately, it is
all about transforming information to data and recombining data to information in turn.

4.4 The Student Records Manager
Eventually, the apparently most important part of the Student Records Manager is the
user interface: it depicts the enabling component, which should allow people to perform
their individual tasks in a more efficient way than (ever) before. This means in practice,
that the application fails regardless of its theoretical potential, if the interface does not
meet the users’ expectations. Hence, it is reasonable to empathise with the role of a user
in each stage of development, i.e. incorporating the viewpoint of a developer and the
perspectives of possible end users in their environmental contexts. Consequently, some
aspects of this connected thinking are discussed in the following subchapters.

4.4.1 Elementary concepts

Overall, the material understanding of the term design is inspired by the work of
Norman [41]: essentially, each perceived object of the world has an affordance for humans,
i.e. it suggests one or more particular actions to be taken with it. Thus, the elements
of the Student Records Manager’s user interface shall be clear and straightforward to
the user, ruling out misinterpretations by the design itself. In this regard, all elements
have to serve a certain purpose, and the presentation is as minimalistic as necessary to
provide the required functionality.

If some operations may not be obvious in the first place, information about their intended
usage is embedded in each web page additionally. One core idea of this transparent
design is to introduce users into the application’s ways of working, i.e. motivate them to
comprehend the underlying processes and technologies at least partially. Because it is
much more favourable for users to get an abstract impression of their (daily) tasks, rather
than memorising and repeating only the specific series of actions, which are needed to
perform the tasks. On the whole, the user interface just has to comply with the natural
behaviours of humans.

Related to practice, finding the right balance between automation and manual human
actions is key to any software. In case of the Student Records Manager, a simple lifecycle
principle is applied to preserve this conformity: each student record has one state at
a time, which defines its logical position within the system. These states in turn are
assigned automatically by the system in consequence of the interactions done by the
users.

67

4. Implementation

Stating a real example, an employee may choose to grant the admission for a bachelor
programme application (= click the appropriate button in the user interface) according
to the preceding review of the documents’ equivalence and authenticity: therefore, the
state of the student record (= state of the corresponding folder in the Nuxeo repository)
changes from bachelor programme application to student record automatically.

Based on this concept, student records appear in one or more lists presented in the user
interface: thus, the background idea proposes that a single student record is always
stored at a certain location and ready to be processed further on from this point. In
this way, individual operations can be joined together and grouped to larger tasks. The
following description illustrates the operations of the (conceivable) task "handle bachelor
programme application":

If the student (applicant) confirms the first registration, a student record with the
student’s reference number (= UserID) is set up in the system and gets the state pre-
enrolment record created consequently. When the applicant has uploaded the required
documents and sends the completed application, the state of the student record switches
to bachelor programme application. The list of the employees’ web page open applications
shows all student records with the state bachelor programme application in turn. Next,
an employee opens the application within the workspace, does the review, and chooses
call for improvements as result of the evaluation. The student record’s state changes
to bachelor programme call for improvements. Now, the applicant is able to upload
the required (improved) documents and send the application again. The state of the
student record changes to bachelor programme application anew, and the application
can be reviewed by the employee once more. Finally, the admission to the bachelor
programme is granted and the student record remains as a fully qualified student record
in the system henceforth. As a conclusion to the discussed conception, Table 4.2 lists
all (prototypical) states, that are possible for a student record within the scope of the
Student Records Manager:

Initial state Trigger In role Subsequent state
confirm registration student pre-enrolment record created

pre-enrolment record created send application student bachelor programme application
bachelor programme application grant admission employee student record
bachelor programme application decline admission employee declined
bachelor programme application call for improvements employee bachelor programme call for improvements
bachelor programme call for improvements send application student bachelor programme application
master or doctoral programme application complete review dean statement compiled

Table 4.2: student record lifecycle and states

By this means, a student record acts as a living object, whose existence constitutes the
execution of tasks by transporting a meaningful set of information to humans. In order
to complement the overall appearance of the user interface, a short analysis on the most
important features of each view is carried out in the next sections.

68

4.4. The Student Records Manager

4.4.2 Student’s view

Figure 4.15: user interface for conducting a bachelor programme application

As shown in Figure 4.15, the main intent to be accomplished with the help of the student’s
view is the provision of relevant information: a student uses the system to apply to a
bachelor progamme, i.e. it serves a certain, well-defined purpose. In this regard, it is
substantial to know, which documents must be uploaded, and whether the application is
successful, or not. Thus, the view is only of temporarily interest for the student, and
should include the minimal information, that is required for the completion of the task.
One mechanism in this context is the presentation of state-dependent information, as
illustrated in 4.16:

student record's state: student record

student record's state: declined

Figure 4.16: displaying state-dependent information within the user interface

Hence, the student always has the full information on the current state of the application
and may react accordingly.

69

4. Implementation

4.4.3 Employee’s view

Figure 4.17: user interface, open applications for bachelor programmes

Referring to 4.17, the employee’s view rests upon lists in principle. Each list aggregates
student records in a specific state and satisfies a particular function for the employee
(for reasons of uniformity, states have a German naming within the prototype, as some
other elements do). Based on the type of the list, employees may be able to open and
review a student record in their workspace, or explore its contents (= master data and
documents) by the use of a separate web page (view active record).

In addition, a search engine allows to retrieve student records from the Nuxeo repository,
i.e. generating individual lists of student records as a starting point for further operations.
Figure 4.18 outlines this functionality:

Figure 4.18: user interface, search engine

Thus, employees do have a certain leeway to customise the workflows according to their
preferences. On the other hand, the workspace guarantees, that only one student record
is actively reviewed by an employee at a time.

70

4.4. The Student Records Manager

4.4.4 Dean’s view

Figure 4.19: user interface, reviewing a master programme application

As shown in 4.19, the dean’s view can be described as a mixture of the employee’s and
student’s views’ concepts: deans use the system on a regular basis, and do focus on the
same task for the most part, i.e. composing a statement about a student’s application to
a master or doctoral programme.

Therefore, several lists can be utilised, as well as a central workspace does exist. Overall,
deans spend significantly less time within the system than employees, but should obtain
the same degree of information. In order to ensure an efficient process, the required
information for writing a justified statement is available at a glance, as well as the
statement document is generated and appended to the student record automatically.

71

4. Implementation

4.4.5 Limitations and further development

Although the Student Records Manager runs stable in its testing environment, and gives a
promising impression altogether, it represents a software prototype with several limitations:
first and foremost, it is hardly possible to anticipate all (technical) requirements of the real
application environment, where the SRM could be integrated into in future. Hence, it can
not be assumed, that the prototype is operable out of the box. Reasonable efforts would be
necessary to connect the SRM with existing persistence mechanisms (e.g. incorporating
the original master data of students), as well as a consistent security policy has to
be established. Furthermore, some methods of the prototype may create bottlenecks,
which must be resolved to optimise the response time of the application. In terms of
accessibility, additional adaptions could improve the inclusion of people with special
needs, i.e. providing interfaces for speech output and other useful tools, that facilitate
the perception of the application.

Considering the pure content and functionality of the Student Records Manager, manifold
enhancements are imaginable: advanced automation chains could increase the overall
productivity of the SRM by attaching supplementary processes to manual actions of
users. For example, the statements of deans would be printed out automatically at the
Admission Office in consequence of a completed review. Employees may scan paper
documents, that are allocated to the corresponding student records directly. Moreover,
the generic list concept allows the flexible gathering and presentation of (the contents
of) student records for nearly any purpose. Thus, the Student Records Manager offers
a number of modular approaches, which could be refined in succeeding versions of the
software.

72

CHAPTER 5
Evaluation

This chapter reports on the evaluation of the software prototype. Eventually, the Student
Records Manager is a product designed for a specific goal, i.e. the requirements determined
in cooperation with the customer in the project planning. Therefore, the development
process describes the way to the final product, but not the quality of the product itself.
This is the point, where the evaluation comes into effect: a procedure, which permits an
objective assessment on the performance of the product. By this means, it is possible to
draw realistic conclusions in respect of an appropriate future strategy for the product.
Thus, the evaluation is a tool that aids decision-making and suggests immediate measures
to be taken. Put into practice, some valuable hints on the humans’ perception of the
Student Records Manager can be obtained and harnessed to improve its general usability.

5.1 Approach
As the Student Records Manager is launched for the first time, it seems legit to conduct
a summative evaluation above all. This result-orientated evaluation approach is aimed
at providing information on the suitability of the prototype’s core operating principles,
i.e. it states, if the basic mechanisms of the SRM are understandable for users. Hence, it
is advisable to decouple the SRM from the application context, enabling testers to focus
on the pure functionality, instead of getting lost in or influenced by details of the content
maybe. Thus, a subset of five people, which are not associated with the Admission Office
at the Vienna University of Technology, is randomly selected in the beginning. As a
next step, the link (= Uniform Resource Locator, URL) to a online questionnaire is sent
to the testers. The corresponding web page contains only minimal information about
the purpose of the Student Records Manager and the valid address (URL) to access the
application via a web browser.

Consequently, all testers are in a position, where they instantly have to make sense of the
Student Records Manager in their current situation: as a result, it can be estimated, how

73

5. Evaluation

the elementary functions of the application are perceivable by means of the different views.
In the course of this explorative process, testers are invited to answer the questionnaire
and evaluate the prototype thereby.

5.1.1 Questionnaire

As shown in Figure 5.1, the questionnaire is tailored to the specific characteristics of
the Student Records Manager and consists of ten questions in total. Besides the first
question, which is ought to supply information about the testers, and the optional last
question on how to improve the prototype, each question shall be answered according to
a grading scheme from one (best) to five (worst):

Figure 5.1: evaluation questionnaire

74

5.2. Results

5.2 Results

Once the testers have provided their answers, it is possible to present and discuss the
overall results of the evaluation. To begin with, Figure 5.2 summarises the testers’
experience using software and Document Management Systems in particular :

much some little no
0

1

2

3

4

5

Experience

T
es
te
rs

What is your level of experience using software and DMS in particular?

Figure 5.2: evaluation, results, question 1

Obviously, the group of testers is comprised of average computer users, which are no
experts in the fields of document management on the one hand, but should have a general
idea of some concepts and certain practical skills on the other hand. Thus, the final
results may be quite representative and could be referenced for further evaluations of the
Student Records Manager in future.

Considering the information about the testers as a starting point, all findings of this
initial evaluation are categorised and analysed in the following subchapters.

5.2.1 Functionality of the prototype

absolutely very somewhat not so not at all
0

1

2

3

4

5

satisfied

T
es

te
rs

absolutely very somewhat not so not at all
0

1

2

3

4

5

satisfied

T
es

te
rs

absolutely very somewhat not so not at all
0

1

2

3

4

5

satisfied

T
es

te
rs

absolutely very somewhat not so not at all
0

1

2

3

4

5

successful

T
es

te
rs

How comfortable and satisfied are you with the functionality in the students' view? How comfortable and satisfied are you with the functionality in the employees' view?

How comfortable and satisfied are you with the functionality in the deans' view? How successful is the software in performing its intended tasks in general?

Figure 5.3: evaluation, results, question 3, 4, 5 and 6

75

5. Evaluation

Based on the bar charts of Figure 5.3, it is concluded, that the core functionality offered
by the Student Records Manager should be sufficient to meet the demands agreed with
the customer. Especially the student’s view seems to approximate to an optimal solution
already, while the dean’s view performs worse in comparison. This observation may be
put down to the peculiarity of the dean’s workspace, where rather specific knowledge
is required to compose the statement on a student’s appliction to a master or doctoral
programme.

The functions of the employee’s view then again appear to be reasonably comprehensible
for the testing persons, i.e. the list concept is supposed to be a reliable mechanism.
Interestingly, all testers are in complete agreement, that the software does have additional
potential to be exploited in terms of the presented functionality: one interpretation of
this assessment may be, that the prototype operates well in the aggregate, but could
profit from improvements in detail.

5.2.2 Usability of the prototype

absolutely very somewhat not so not at all
0

1

2

3

4

5

satisfied

T
es

te
rs

absolutely very somewhat not so not at all
0

1

2

3

4

5

satisfied

T
es

te
rs

absolutely very somewhat not so not at all
0

1

2

3

4

5

self-explanatory

T
es

te
rs

absolutely very somewhat not so not at all
0

1

2

3

4

5

satisfied

T
es

te
rs

How self-explanatory is the software concerning its purpose and functionality? How satisfied are you with the software's inline documentation (help) in general?

How satisfied are you with the software's ease of use in general? How satisfied are you with the software's look and feel in general?

Figure 5.4: evaluation, results, question 2, 7, 8 and 9

Figure 5.4 reveals the evaluation results with regard to the usability of the Student
Records Manager, i.e. the testers’ subjective experience while examing the functionality
of the prototype. In general, the testing persons seem to be able to use the software
quite intuitively: therefore, the layout and design of the views (= web pages, XHTML
documents) appears to be acceptable, as well as the text elements are understandable.

Thus, it could be argued, that the inline documentation is not explicitly necessary in the
first place, but does contribute to a positive impression overall: if the occasion arises,
users would rely on the provided help. Likewise, the testers confirm the ease of use of
the Student Records Manager, i.e. there is no need for humans to adapt to the user

76

5.2. Results

interface in an unfamiliar way, because it can be perceived naturally by them. Finally,
one lesson should be learned from the evaluation of the software’s look and feel, which
may be considered as too old-fashioned for some testers.

5.2.3 Improvement of the prototype

Altogether, the current version of the Student Records Manager is rated fairly well, and
should have no particular shortcoming, that has to be remedied in principle. Nevertheless,
the testing persons submit several valuable suggestions for the enhancement of the
prototype, which are taken up and elaborated in the following notions consequently.

Generally, it could make sense to include an additional type of help in the views: this
concept may be summarised best as direct feedback to user actions. The basic idea states,
that any action (= usage of functionality, e.g. click on a button, entering text into an
input field) of a user can cause a certain effect on the system. This concrete outcome
in turn could be displayed directly in the view, i.e. in spatial or logical proximity to
the respective trigger. Related to practice, green check marks may be rendered besides
the corresponding selection box, if an employee has chosen a result for the review of
a document’s authenticity. Or a text field with useful information will be presented
to the employee, when the review of a student’s university application is completed
(currently, employees see only the blank page of their workspace then). All these little
assistances can be comprised as visual cues, that facilitate the interaction process in
a more dynamic way, than static contens may do. Of course, this does not mean to
overload the presentation with irrelevant information.

On the contrary, one interesting thought proposes a pure graphical user interface, with
no text at all: obviously, the representation of document names and master data of
students certainly requires a textual description in any case, but some aspects could be
more perceptible by the use of (universal) symbols. This approach has the potential to
be analysed from the perspective of cognition and workload at least.

Further comments of the testers refer to an extended functionality of the Student Records
Manager, e.g. an internal messaging system, where employees are able to communicate
(synchronously and asynchronously) with other participants. Students perhaps ask
questions concerning their university application, while deans could request employees to
feed specific data (e.g. a certificate of a student) into the repository: overall, this could
be a reasonable mechanism to foster collaboration.

Ultimately, the next step in the evolution of the Student Records Manager should be
the implementation at the Admission Office, which constitutes the intended area of
application for the software product. As a consequence, a supplementary evaluation
by the employees of the Admission Office would be meaningful in order to attune the
prototype to the prevalent context. As soon as the application is in full use, a formative
evaluation could be scheduled to preserve its factual quality, i.e. adapting the software
on a regular basis to the changing requirements if necessary.

77

CHAPTER 6
Conclusion

This chapter is designated to conclude the origination of the Student Records Manager
by reflecting on the previous work and its results. Recapitulating the course of events,
everything starts with the human notion, that the Vienna University of Technology as a
sum of its parts could profit from a consistent electronic document management system.
Consequently, a constitutive document is elaborated in cooperation with responsible
stakeholders to translate the rather indefinite objective to a set of feasible goals: the
draft for the Student Records Manager is born. This prototypical piece of software shall
be formed to prove the viability of the overall conception.

In the beginning, it is quite difficult to estimate the effort and the required measures
for the task, because there obviously is no preexisting manual on how to accomplish
the assignment. Hence, the most important part of work is concerned with researching
and planning an appropriate process, that should allow to produce the desired result
eventually. Thus, from a personal point of view, the process itself is more valuable than
the practical product in the final analysis, as it conveys skills on a meta level: once the
big picture is understood, only the components have to be selected and arranged to create
a functional system for a specific purpose.

In this way, it is possible to define certain milestones, which help to maintain the
motivation over time, and build the Student Records Manager step-by-step. Of course,
work remains work, and there are phases of procrastination, where many things should be
done, but nothing could be done by the individual human being: in this regard, taking
a break deliberately often seems to be more difficult than keeping up a steady, but
ineffective workflow. Altogether, it turns out to be vital to identify the goal of the work,
and devote the same attention to each task, as an apparently insignificant detail may be
of greater importance in the further proceeding.

The power of researching should not be neglected too, because nearly anything imaginable
does already exist or has been done before de facto. Thus, only the necessary information

79

6. Conclusion

has to be retrieved in order to combine it to a new manifestation: by this means, Nuxeo
Platform is discovered at a later stage of the market sounding, and easily could have been
missed in a less thoroughly enquiry. Investing effort in advance to study and comprehend
the tools used for the implementation of the Student Records Manager helps to save time
subsequently as well: plain and simple, thinking ahead is better than thinking, when it is
too late.

One particular interesting experience is related to the rapid progress of the applied
technologies: several new versions of different tools and software packages are published
during the development of the prototype. This can mislead to the fallacy, that the own
working process in comparison takes way too long and never reaches a decent quality,
although it already has a sufficient quality by objective aspects. To counteract this natural
strive for optimisation, it is crucial to vary the focus interest constantly, i.e. avoiding to
get stuck in details.

Thus, as long as humans are involved in a process, it is hardly possible to predict the
true outcome. Therefore, it can only be guessed, how much potential of the Student
Records Manager (and Nuxeo Platform) could be exploited in a real-life scenario: first
and foremost, the performance of an EDMS-based system depends on the seriousness and
consequence of its implementation. It is a tool, that needs to be utilised and cultivated
on a long term, or does fail within a short period of time, if the required conditions are
not met initially.

A major advantage in this respect could be the fact, that the Student Records Manager
would be customised in-house by the department of Campus Software Development:
in theory, this should enable the implementation of a very tailored solution in close
cooperation with the Admission Office. Again, the actual quality of the result would be
a product of the effort both parties are willing to invest in the relationship.

Overall, the Student Records Manager shall be created to provide additional value to
people and incorporate their natural behaviours. Hence, the application should simplify
the execution of human tasks while preserving the quality of each task. Consequently,
users are supported by the automation of particular processes, but do have the obligation
to employ their human reason equally. This is especially true for the the handling of
information-based tasks, e.g. the review of a student’s university application.

In this sense, it will be very interesting to see, which strategies are chosen to cope
with Big Data in future: ultimately, data depict a capture of time, and time will ever be
superior to data. Thus, the universal challenge arises in transforming data into meaningful
information and allocating the information to the appropriate entity at a certain point
of time.

80

List of Figures

2.1 the AWARE system architecture [8, p. 117] 7
2.2 framework of human information behavior and information systems [27, p. 1518] 18
2.3 the ECM components model, Project Consult [31, p. 24] 22
2.4 system architecture of Kino, major components [36, p. 4] 27

3.1 EDMS-centred modular design . 35
3.2 market sounding, evaluation . 40
3.3 the software prototype as a three-tier application 42
3.4 SRM, possible use cases of students . 43
3.5 SRM, possible use cases of employees . 44
3.6 SRM, possible use cases of deans . 46
3.7 Nuxeo document concept . 48

4.1 development process of the Student Records Manager 51
4.2 standard web interface of Nuxeo Platform 7.10 54
4.3 MVC components and their interplay . 56
4.4 diagram of the overall structure of SRM . 57
4.5 class diagram of the Model layer . 58
4.6 views of the Student Records Manager . 59
4.7 class diagram of the Controller layer . 60
4.8 example of language allocation . 63
4.9 recap of the Student Record Manager’s basic setup 64
4.10 recap of the Student Record Manager’s structure, user interface 65
4.11 recap of the Student Record Manager’s structure, view 65
4.12 recap of the Student Record Manager’s structure, controller 66
4.13 recap of the Student Record Manager’s structure, model 66
4.14 recap of the Student Record Manager’s structure, data access object 66
4.15 user interface for conducting a bachelor programme application 69
4.16 displaying state-dependent information within the user interface 69
4.17 user interface, open applications for bachelor programmes 70
4.18 user interface, search engine . 70
4.19 user interface, reviewing a master programme application 71

5.1 evaluation questionnaire . 74

81

5.2 evaluation, results, question 1 . 75
5.3 evaluation, results, question 3, 4, 5 and 6 . 75
5.4 evaluation, results, question 2, 7, 8 and 9 . 76

List of Tables

2.1 four layers of task decomposition [25, p. 471] 15
2.2 keywords for SLR process on AUCDI [38, p. 2] 29

4.1 list of required third party software packages 62
4.2 student record lifecycle and states . 68

82

Bibliography

[1] Kjeld Schmidt and Liam Bannon: "Constructing CSCW: The first quarter century",
Computer supported cooperative work (CSCW) 22.4-6: 345-372, Springer, 2013.

[2] Irene Greif: "Computer-Supported Cooperative Work: A Book of Readings", Morgan
Kaufmann Publishers Inc. San Francisco, CA, USA, 1988.

[3] Gwendolyn L. Kolfschoten, Thomas Herrmann and Stephan Lukosch: "Differentiated
awareness-support in computer supported collaborative work", Computer Supported
Cooperative Work (CSCW) 22.2-3: 107-112, Springer, 2013.

[4] Paul Dourish and Victoria Bellotti: "Awareness and coordination in shared
workspaces", Proceedings of the ACM 1992 conference on computer-supported coop-
erative work: 107-114, ACM, 1992.

[5] Carl Gutwin, Saul Greenberg, and Mark Roseman: "Workspace awareness in real-
time distributed groupware: Framework, widgets, and evaluation", Proceedings of
HCI on People and Computers XI.: 281-298, Springer, 1996.

[6] James Tam and Saul Greenberg: "A framework for asynchronous change awareness in
collaborative documents and workspaces", International Journal of Human-Computer
Studies 64.7: 583-598, Elsevier, 2006.

[7] Ronald Poelman, Oytun Akman, Stephan Lukosch and Pieter Jonker: "As if being
there: mediated reality for crime scene investigation", Proceedings of the ACM 2012
conference on computer-supported cooperative work, ACM, 2012.

[8] Jakob E. Bardram and Thomas R. Hansen: "Context-based workplace awareness",
Computer Supported Cooperative Work (CSCW) 19.2: 105-138, Springer, 2010.

[9] Luigina Ciolfi and Aparecido Fabiano Pinatti De Carvalho: "Work practices, no-
madicity and the mediational role of technology", Computer Supported Cooperative
Work (CSCW) 23.2: 119-136, Springer, 2014.

[10] Gordon B. Davis: "Anytime/anyplace computing and the future of knowledge work",
Communications of the ACM 45.12: 67-73, ACM, 2002.

83

[11] Mark S. Ackerman, Juri Dachtera, Volkmar Pipek and Volker Wulf: "Sharing
knowledge and expertise: The CSCW view of knowledge management", Computer
Supported Cooperative Work (CSCW) 22.4-6: 531-573, Springer, 2013.

[12] Ikujiro Nonaka and Hirotaka Takeuchi: "The knowledge creation company: how
Japanese companies create the dynamics of innovation", Oxford University Press,
New York, USA, 1995.

[13] Jean Lave and Etienne Wenger: "Situated learning: Legitimate peripheral partic-
ipation", Learning in Doing: Social, Cognitive and Computational Perspectives,
Cambridge University Press, UK, 1991.

[14] Janine Nahapiet and Sumantra Ghoshal: "Social capital, intellectual capital, and the
organizational advantage", Academy of management review 23.2: 242-266, AOM,
1998.

[15] Jørgen P. Bansler and Erling Havn: "Sensemaking in technology-use mediation:
Adapting groupware technology in organizations", Computer Supported Cooperative
Work (CSCW) 15.1: 55-91, Springer, 2006.

[16] J.H. Erik Andriessen, Marike Hettinga and Volker Wulf: "Introduction to special
issue on evolving use of groupware", Computer Supported Cooperative Work (CSCW)
12.4: 367-380, Springer, 2003.

[17] Claudio Ciborra: "Chapter 1: Introduction: What Does Groupware Mean to the
Organizations Hosting it.", Groupware and teamwork: invisible aid or technical
hindrance?, John Wiley & Sons, New York, USA, 1996.

[18] Gloria Mark: "Conventions and commitments in distributed CSCW groups", Com-
puter Supported Cooperative Work (CSCW) 11.3-4: 349-387, Springer, 2002.

[19] Wanda J. Orlikowski, JoAnne Yates, Kazuo Okamura and Masayo Fujimoto: "Shap-
ing electronic communication: the metastructuring of technology in the context of
use", Organization science 6.4: 423-444, INFORMS, 1995.

[20] Alan Cooper, Robert Reimann and Dave Cronin: "About face 3: the essentials of
interaction design", John Wiley & Sons, New York, USA, 2007.

[21] Jan M. Noyes and Kate J. Garland: "Computer-vs. paper-based tasks: Are they
equivalent?" Ergonomics 51.9: 1352-1375, Taylor & Francis, 2008.

[22] Erik Wästlund, Henrik Reinikka, Torsten Norlander and Trevor Archer: "Effects
of VDT and paper presentation on consumption and production of information:
Psychological and physiological factors", Computers in Human Behavior 21.2: 377-
394, Elsevier, 2005.

84

[23] Jan M. Noyes, Kate J. Garland and Liz Robbins: "Paper-based versus computer-based
assessment: is workload another test mode effect?", British Journal of Educational
Technology 35.1: 111-113, John Wiley & Sons, 2004.

[24] Pamela Ravasio, Sissel Guttormsen Schär and Helmut Krueger: "In pursuit of
desktop evolution: User problems and practices with modern desktop systems",
ACM Transactions on Computer-Human Interaction (TOCHI) 11.2: 156-180, ACM,
2004.

[25] Olha Bondarenko, Ruud Janssen and Samuël Driessen: "Requirements for the design
of a personal document-management system", Journal of the American Society for
Information Science and Technology 61.3: 468-482, John Wiley & Sons, 2010.

[26] Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze: "Introduction
to information retrieval", Cambridge University Press, UK, 2008.

[27] Bernard J. Jansen and Soo Young Rieh: "The seventeen theoretical constructs of
information searching and information retrieval", Journal of the American Society
for Information Science and Technology 61.8: 1517-1534, John Wiley & Sons, 2010.

[28] Jörg Dandl: "Dokumenten-Management-Systeme – Eine Einführung", Arbeitspapiere
WI, Nr. 9/1999, Johannes Gutenberg-Universität, Mainz, 1999.

[29] John Mancini: "8 reasons you need a strategy for managing information", AIIM,
2009.

[30] Ulrich Kampffmeyer: "Dokumentenmanagement", PROJECT CONSULT, Hamburg,
Germany, 2005.

[31] Ulrich Kampffmeyer: "EIM Enterprise Information Management”", PROJECT
CONSULT, Hamburg, Germany, 2013.

[32] Toms Leikums: "A study on electronic document management system integration
needs in the public sector", International Journal of Advances in Engineering &
Technology 5.1: 194-205, IJAET, 2012.

[33] Michael Raynes: "Document management: is the time now right?", Work study 51.6:
303-308, Emerald, 2002.

[34] Ralph H. Sprague, Jr.: "Electronic document management: Challenges and opportu-
nities for information systems managers", MIS Quarterly 19.1: 29-49, University of
Minnesota, 1995.

[35] Bettina Perthold-Stoitzner: "Universitätsgesetz 2002 - UG", Manzsche Sonder-
Gesetzausgaben, MANZ’sche Wien, 2016.

85

[36] Ajith Ranabahu, Priti Parikh, Maryam Panahiazar, Amit Sheth and Flora Logan-
Klumpler: "Kino: a generic document management system for biologists using SA-
REST and faceted search", Proceedings of the Fifth IEEE International Conference
on Semantic Computing, IEEE, 2011.

[37] Mansour N. Jadid and Mobin Idrees: "Electronic document management system
(EDMS) in civil engineering projects", 6th Construction Specialty Conference, Uni-
versity of British Columbia, 2005.

[38] Dina Salah, Richard F. Paige and Paul Cairns: "A systematic literature review
for agile development processes and user centred design integration", Proceedings
of the 18th International Conference on Evaluation and Assessment in Software
Engineering, ACM, 2014.

[39] "Nuxeo Fact Sheet", Nuxeo, 2016.

[40] "Developer Documentation Center: Nuxeo Server", Nuxeo, 2016.

[41] Don Norman: "The Design of Everyday Things: Revised and Expanded Edition",
Basic Books, Perseus Books Group, USA, 2013.

86

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem definition
	Thesis outline

	Theoretical background
	Information-based working
	Document management systems
	Agile user-centered processes

	Project description
	Initial situation
	Requirements
	Market sounding
	Concept of the prototype

	Implementation
	Development process
	Development stages
	Overall setup and structure
	The Student Records Manager

	Evaluation
	Approach
	Results

	Conclusion
	List of Figures
	List of Tables
	Bibliography

