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Abstract

The importance of methods using renewable resources for the energy produc-
tion has increased drastically in the recent years. In the electricity market the
method that has grown most rapidly is the generation of power through wind.
Forecasts of this power production are crucial. However, difficulties arise in
these forecasts due to the high volatility of the wind and the complexity of
the terrain where the wind facilities are installed. This thesis examines five
different models for the forecast of wind energy and analyses the behaviour
of its errors. The scope is to build a confidence interval for the errors of these
forecasts. In this framework two major setups are considered for constructing
a confidence interval. The first one is based on applying a GARCH model
in order to forecast the conditional variance of the errors. The second uses
a regression model to describe the absolute or square errors as a function
of explanatory variables like the predicted wind speed and predicted wind
power. These models were then used to build the confidence intervals. Both
approaches were implemented sucessfully.
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CHAPTER 1

Introduction

During the last years the subject of exploitation and development of renew-
able energy resources has received much focus due to concerns about in-
creased CO2 emission, global warming and changing climatic patterns. The
price of gas and fossil fuels has become very volatile and insecure lately, which
also has economical implications. Another issue concerning oil and gas re-
sources is that they are concentrated in specific regions, so they often have
to be imported, whereas energy production through renewable resources is
usually based on domestic ground. Additionally to that, non-renewable en-
ergy resources are a finite quantity considering the human time-frame, so
alternative solutions using renewable resourced need to be adapted in order
to satisfy society’s increasing energy demand.

In Europe, wind power generation has shown the most rapid growth in
the electricity market of renewable sources for the past decade. By the end of
2014 about 10.2% of all European power demand was covered through wind
generated power. Austria is also one of the countries that rely on this type of
energy. The installed facilities here have the potential to produce 4.5 billion
kWh of energy yearly, which could cover the demand of 35% of the Austrian
households [15]. The challenge of integrating wind power efficiently in the
electric power system though arises in its forecast due to the high variability
of wind as well as the complexity of the terrain where the wind facilities
are installed. An accurate estimation is very important for grid operators
in order to allow an efficient scheduling of power generation according to
costumer demand. Both under- and overestimation of generated power may
have negative financial consequences for the grid operator:

(a) An overestimation would lead to a lack in actual supply to fulfill the
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demand and therefore there would be a need to buy the rest of the
demanded power capacity.

(b) An underestimation means there is more actual power than predicted,
therefore the excess power has to be sold. However, depending on market
stocks, it might also occur that the grid operator has to pay to discharge
the surplus power, resulting in an economical loss on their behalf.

Generally the prediction frameworks for wind power estimation are cate-
gorised into two methods:

(a) Physical - this method includes the consideration of physical factors such
as topography, terrain complexity, local temperature and pressure to
estimate the wind field and then converting the wind speed to power i.e.
by using the power curves provided by the turbine’s manufacturer

(b) Statistical - this implies the use of statistical models to forecast power
through using historical data and establishing a relationship between
power and other (meteorological) variables.[12]

Often also hybrid methods are used for the forecast, which provide a com-
bination of physical and statistical methods.

In regard to the importance of forecasting accuracy, this thesis will pro-
vide an analysis of five predefined wind power forecasting models (ECMWF
- two model variations and ALA - three model variations) used from the
Austrian Power Grid. The region observed in this framework is that of
Burgenland, Austria and it accounts for data from January 1, 2013 up to
December 31, 2014. The models that will be analysed in this thesis are used
to forecast the power for the upcoming day. The weather prediction data is
generated each day at midnight and at 8-9 o’clock the power prediction is
made for the day ahead starting from midnight and continuing 24 hours after
that in 15 minute-intervals. All the data used in this thesis was provided by
the Austrian Power Grid (APG). The predictions of the weather data used
for the wind energy forecasts in APG are provided by the central institution
of meteorology and geodynamics (Zentralanstalt für Meteorologie und Geo-
dynamic - ZAMG).

The scope of this thesis is to analyse the errors of the five wind energy
prediction models used by the Austrian Power Grid and based on the ob-
served patterns to define a confidence interval for these errors. This should
help to provide a better view on the interval where the actual power produc-
tion values are to be found based of the provided estimations. To underline
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the importance of this subject, figure 1.1 shows the ratio of how much power
is misestimated to how much power is produced on a monthly basis. On sev-
eral months this ratio reaches about 0.5 or above meaning that the amount
of power misestimated from the model is about half as much as the overall
power production in that specific month.
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Figure 1.1: Ratio of the absolute misestimated power and actual power pro-
duction on a monthly basis

This thesis is divided into four main sections:

1. In the first part a basic statistical analysis of the errors of the five
models will be made, while trying to find monthly, daily or hourly
patterns as well as distribution patterns of the errors.

2. The second part will consider applying a GARCH modeling approach
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on the errors in order to predict their volatility.

3. The third part consists in analysing patterns of the daily mean square
and absolute errors as well as establishing how they correlate with other
variables.

4. The last section involves modeling different confidence intervals for the
errors and evaluating their performance.



CHAPTER 2

Analysis of the forecast errors

2.1 Statistical analysis of the day ahead fore-

casting errors

This section shows a basic analysis of the errors of the five different models
for the day ahead power forecast based on the data obtained by the Austrian
Power Grid. The actual forecasting models are not provided for this thesis
and will not be discussed, however it is provided which variables are used
for each of the five models. The scope in this section is to analyse how
these errors behave and what correlations exist. The data collected for the
purpose of this thesis is given in 15 minute - intervals and the power unit
used is megawatt (MW). For a more comparable analysis throughout this
thesis the resulting prediction errors are normalised through the installed
power (the maximal capacity of the power generator):

eit =
ε̂it
It

=
pt − p̂it
It

where eit represents the normalised errors of model i ∈ {ECM1, ECM2, ALA1,
ALA2, ALA3} at time t, ε̂it is the error of the forecast model i, It the installed
power capacity, pt the measured power and p̂it is the predicted power at time
t from model i.

As it can be seen in figure 2.1, the installed capacity has changed drasti-
cally from the beginning of 2013 to the end of 2014 and therefore normalising
the errors through the installed capacity is important. From now on when
talking about errors throughout this thesis, the normalised errors are meant
unless stated otherwise.
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Figure 2.1: Installed power throughout the time

As the actual power forecast models are not provided, a visual repre-
sentation of the forecasted values is shown in figure 2.2 for a random time
interval. The black line indicates the measured power, while the other lines
show the forecasted values from the two ECMWF models (labeled as ECM
1 and ECM 2) and the three ALA models (indicated as ALA 1, ALA 2 and
ALA 3).
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Figure 2.2: The five forecasts for a random time interval of 3 days
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At first we look at some basic statistical properties of the calculated
normalised errors with sample size T in order to evaluate the five forecasting
models:

1. The mean value of the errors:

µ =
1

T

T∑
t=1

et

2. The variance and the mean square error, which indicate how much the
data errors are spread:

σ2 =
1

T − 1

T∑
t=1

(et − ē)2

MSE =
1

T

T∑
t=1

e2t

3. The mean absolute error, which gives an indication of how close the
predicted values are in regard to the actual measurements:

MAE =
1

T

T∑
t=1

|et|

4. The coefficient of determination, which is a measure of the explained
variance by the prediction model in relation to the total variation:

R2 = 1−
∑T

t=1(pt − p̂t)2∑T
t=1(pt − p)2

where p is the average power measured and p̂t is the estimated power.

5. The index of agreement, which evaluates the skill in predicting variations
about the observed mean. IOA1 represents the original definition of the
index of agreement as presented by Willmott and Wicks in 1980, while IOA2

refers to an improvement of the first index as presented in [14]:

IOA1 = 1−
∑T

t=1(pt − p̂t)2∑T
t=1(|pt − p|+ |p̂t − p|)2

IOA2 = 1−
∑T

t=1 |pt − p̂t|∑T
t=1(|pt − p|+ |p̂t − p|)
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Both indexes take values in the interval [0, 1], where the higher the index,
the better the model performance. The advantage of IOA2 in comparison to
IOA1 is that it approaches the value 1 more slowly as the predicted values p̂t
approach the observed values pt. This means that when comparing models
that perform relatively well, there is a greater separation in index values,
so it makes the better performing model more evident. Also IOA2 is less
sensitive to errors that are considered as outliers [14].

6. Excess kurtosis, which offers a description over the tail weight of a distri-
bution in comparison to the kurtosis of the normal distribution (=3):

kurtosisexcess =
1

T

T∑
t=1

(
et − ē
σ

)4

− 3

7. Skewness, which measures the asymmetry of the distribution function:

skewness =
1

T

T∑
t=1

(
et − ē
σ

)3

Table 2.1 shows the statistical results mentioned above applied on the
normalised errors obtained from the five forecasting models for the time
period January 1, 2013 - December 31, 2014.

ECM 1 ECM 2 ALA 1 ALA 2 ALA 3

µ 0.0007 0.0105 0.0113 0.0093 0.0238
σ2 0.0209 0.0214 0.0178 0.0173 0.0185

MSE 0.0209 0.0215 0.0179 0.0174 0.0191
MAE 0.1034 0.1063 0.0950 0.0937 0.0968
R2 0.6853 0.6733 0.7271 0.7332 0.7092
IOA1 0.9037 0.8855 0.9131 0.9163 0.9071
IOA2 0.7302 0.7076 0.7439 0.7486 0.7421

Kurtosisexcess 2.2452 1.4195 1.9933 2.0172 1.9773
Skewness 0.3029 0.54595 0.7728 0.7076 0.8085

Table 2.1: Statistical results on the normalised errors of each prediction
model

In comparing the mean values, it can be seen that the models ECM 1
and ALA 2 have a rather small mean error. However this could be the case
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of more balanced over- and underestimation. The volatilities in between the
two ECM models and the three ALA models are respectively quite similar,
but it can be noted that the ECM models are more volatile than the ALA
models. The coefficients of determination also don’t show many discrepan-
cies, varying within a 6% range between each other. The average R2 for these
models is about 70%, which is not very high.
When comparing the two indices of agreement, it can be seen that the IOA1

values are closer to 1 than the IOA2 values. Even though the index ranges in
between IOA1 and IOA2 respectively are not that high, both criteria suggest
ALA 2 as the better performing model and ECM 2 as the worst.
The excess kurtosis is positive in all five models, which indicates a leptokur-
tic distribution function of the errors, meaning that in comparison to the
standard normal distribution there is a higher peak and fatter tails, so the
distribution is more clustered towards the mean (resulting in a smaller stan-
dard deviation). On the other hand, the calculated (positive) skewness in all
models points towards a positively skewed error distribution with a longer
right tail.

Next we observe the autocorrelation as well as the partial autocorrelation
between the normalised errors to see the lagged dependency of the errors.
For errors et, et−k with lag k the autocorrelation function is defined as

ACFe(k) =
cov(et−k, et)

σ2
e

=
E[(et−k − µe)(et − µe)]

σ2
e

where µe is the mean and σ2
e is the variance of the normalised errors et. To

estimate the sample autocorrelation function, we use the sample mean ē, the
sample size T and sample autocorrelation, so that

ÂCF e(k) =
1
T

∑T
t=k+1(et − ē)(et−k − ē)
1
T

∑T
t=1(et − ē)2

.

The partial autocorrelation function on the other hand measures the linear
dependence between et and et−k after removing the effect of the variables in
between (et−k+1 . . . et−1).

Figure 2.3 shows the autocorrelation functions of the normalised errors
of the five forecast models up to a lag of 100, which refers to data of approx-
imately a day in 15 minute intervals. The ACF (autocorrelation function)
for all models indicates a slow decay. This correlation pattern is however to
be expected, as the errors are a result of a multi-step forecast. When inves-
tigating autocorrelation for further lags, we can see that significant (positive
and negative) correlation values reoccur.
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Figure 2.3: Autocorrelation function of the normalised errors for the five
models
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Figure 2.4: Partial autocorrelation function of the normalised errors for the
five models
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Figure 2.4 on the other hand shows that the partial autocorrelation func-
tion decays very quickly. The blue lines in the plots indicate a confidence
interval of 95% for the significant levels of the lags, meaning that the (par-
tial) autocorrelation at lag k is significantly different from zero (zero being
the case of no autocorrelation) if the value lies outside this confidence in-
terval. The partial autocorrelation function plots for the errors of all five
models show a significance up to a lag of 4, which suggests autoregressive
behaviour of a fourth order.

2.2 Error analysis on monthly basis

In this section the errors are split into months in order to be able to accen-
tuate patterns and the same analysis as in the previous section is conducted.

When looking at the monthly means, it can be noted that for all ECM
and ALA models the highest errors occur during the months of March, April
and May. What is also noticeable is that the monthly means of the ALA
models are mainly positive, which means that the ALA models tend to un-
derestimate. On the other hand, it seems that ECM 1 tends to overestimate
during December in comparison to all the other models.
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Figure 2.5: Monthly means

The monthly variance of the errors and the mean square errors have a
very similar course (though different magnitudes). It can be noted that the
ECM models have a relatively high volatility, MSE and MAE (see Figure B.1
and Figure B.2 in appendix) during December in comparison to the other
months and also in comparison to the ALA models. On the other hand for
the ALA models the volatility and MSE peak is reached during the months
of March - May. Generally the ECM models show a slightly higher volatility
in comparison to the ALA models (the same applies for the MSE and MAE
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with exception of April, where the MSE and MAE provided by the ALA
models respectively is a bit higher than those provided by the ECM models).
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Figure 2.6: Monthly mean square error

Next we look at the coefficients of determination for each month. Gener-
ally the monthly coefficients are quite similar amongst the five models, how-
ever the ALA models obtain a slightly higher percentage. The months that
stand out however are April and December. For April the ECM models of-
fer a noticeably higher coefficient of determination ranging between 70-73%,
while the ALA model’s coefficients range from 62-67%. During December
however, the ECM models indicate an approximately 60% explanation of
variance, while the ALA models lie above 75%.

0.55

0.60

0.65

0.70

0.75

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
 

C
oe

ffi
ci

en
t o

f d
et

er
m

in
at

io
n

Models

ECM1

ECM2

Coefficient of determination in ECM models

0.60

0.65

0.70

0.75

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
 

C
oe

ffi
ci

en
t o

f d
et

er
m

in
at

io
n

Models

ALA1

ALA2

ALA3

Coefficient of determination in ALA models

Figure 2.7: Monthly coefficient of determination

The indices of agreement follows the same pattern as the coefficient of de-
termination, where the index values of the ALA models are generally slightly
higher than those of the ECM models. The largest differences are again no-
ticed in December, where the ALA models perform significantly better, and
in April, where the ECM models show a better performance, especially the
ECM 1 model. In August and October ECM 1 also performs slightly better
than the ALA models, but not significantly. IOA2 indicates that ECM 1
also performs better than the rest of the models in May.
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Figure 2.8: Monthly index of agreement 1
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Figure 2.9: Monthly index of agreement 2

General remarks: the ECM 1 model seems to be performing better
than the ECM 2 models for most months. An exception show the months
of January and December, where the variance, coefficient of determination
and the second index of agreement (only in January) are higher for ECM
2. When comparing the ALA models, mainly ALA 2 performs better and
ALA 3 worse. For January however, ALA 3 scores higher on both indices
of agreement, while the coefficients of determination are almost the same in
all three models. For October ALA 1 scores better in regard to variance, R2

and IOA1. Another remark is that, with exception of April, the ALA models
indicate a better performance than the ECM models.

2.3 Error analysis based on sectors

In this section we will look at the influence the wind front direction has on the
five forecasting models. Figure B.3 in the appendix shows the classification
in 8 different sections from where the wind is directed (class 0 represents the
cases where the classification in any of the 8 sectors was not possible or not
made). The scope of this section is to investigate if any of the models shows
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a different/better performance when wind comes from a specific direction.
Similar to the above section we also conduct a statistical analysis with these
classes.
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Figure 2.10: Mean error among sectors

The division into sectors again shows that the ALA models tend to un-
derestimate, where ALA 3 shows the highest discrepancies for all sectors with
exception of the fifth sector. The ECM 1 obtains the highest errors in sector
one and three (overestimation), while the ECM 2 model errors reaches their
peak in sectors two, five (underestimation) and thee (overestimation). In
comparing the ECM and ALA models between each other, the ECM models
generally show higher errors in magnitude.
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Figure 2.11: Error MSE among sectors

The variance of the errors, MSE and MAE have again a very similiar
pattern (Figure B.4 and Figure B.5 showing the variance and MAE can be
found in the appendix). The ECM models as well as the ALA models have
variances, MSE and MAE values relatively closely to each other within each
model group. The ECM 2 model shows a higher variance, MSE and MAE
amongst the ECM models in sectors two, five and eight, while the third sector
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has a higher MSE and MAE value for ECM 1. Amongst the ALA models,
ALA 3 ranks higher in values, expecially in sector one and three. ALA 2 on
the other hand scores lower than the rest, especially in sectors one and three.
In general the ECM models have higher variance, MSE and MAE than the
ALA models. An exception in this case is the fifth sector where the ECM 1
model takes the lowest value.
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Figure 2.12: Coefficient of determination among sectors

The coefficient of determination amongst the ECM and ALA models re-
spectively is very similiar (ECM 1 has a slightly higher R2 in sectors two, five
and eight than ECM 2). The coefficients of the ALA models are generally
higher than those of the ECM model with the exception of sector 5, where
ECM 1 obtains the highest value. Sector four shows a very low coefficient
of determination, while sector one (only for the ALA models) and two show
the highest coefficients (above 80%). The other coefficients lie below 70%.
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Figure 2.13: Index of agreement 1 among sectors
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Figure 2.14: Index of agreement 2 among sectors

The indices of agreement (1 and 2) follow a very similiar pattern to that of
the coefficient of determination, however the first index of agreement shows
higher values on scale. The ALA models (especially ALA 2) have higher
indices than the ECM models, with the exception of sectors four (only for
IOA1) and five, where the ECM 1 model shows the leading values. The index
of agreement 1 generally takes values above 80%, while the second index of
agreement mainly takes values below 75%.

General remarks: also in splitting data according to the wind front
directions it seems that the ALA models (especially ALA 2) are generally
performing better than the ECM models. However, in sector five the ECM
1 model obtains the highest indices of agreement as well as the highest co-
efficient of determination. The variance of ECM 1 in the fifth sector is also
the lowest of all models. On the other hand, it should be noted that for
the considered time frame (01.01.2013 - 31.12.2014) the distribution of data
between the sectors is not uniform. The majority of the data is not even
specified into a sector (represented by sector 0).

2.4 Error analysis according to day time

Another way we can inspect our data is through investigating if there exist
an influence of the time of the day on our forecasting models. Therefore we
conduct the same analysis as before on hourly basis.

From what the hourly mean values reveal, the ECM models tend to un-
derestimate power during the hour intervals 0 - 6 and 17 - 23 o’clock and
overestimate the rest of the time. The ECM 1 model underestimates less,
while ECM 2 overestimates less. The ALA models tend to underestimate for
most daytimes, whereas ALA 3 underestimates most and overestimates less.
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Figure 2.15: Mean of errors according to daytime

As it can be seen from the graphical comparison in figure 2.16, the mean
square error of the forecast errors varies according to the daytime. For all
time slots the ECM models indicate a higher MSE than the ALA models,
where generally ECM 2 obtains the highest MSE and ALA 2 the lowest.
Similar patterns and the same results can also be concluded for variance and
the mean absolute error (see Figure B.6 and B.7 in the appendix).
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Figure 2.16: MSE according to daytime

Figure 2.17 shows box plots of the errors classified in hours of the day
(each hour category includes all four 14-minute intervals contained in that
hour, so for example category hour 5 includes all the errors occurring at time
500, 515, 530 and 545). Each category contains many outliers, as it is also
observed from the high kurtosis, however in order to have a better view of
the box plots many of the outliers are not shown in figure 2.17. The box
plots indicate that the normalised errors of all models have a relatively low
median compared to the variance. Also it was expected that the estimations
are better in the early hours of the day, as those are the nearest estimations
as a point in time. However the distribution of the errors doesn’t seem to
follow this hypothesis, as the errors seem more stable during the morning to
midday hours.
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Figure 2.17: Box plots of the normalised errors classified into hour of day
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Figure 2.18: Coefficient of determination according to daytime

The coefficient of determination and the first index of agreement show
also in this case alike traits. The ECM 1 model take higher values amongst
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the ECM models for both cases. For the ALA models on the other hand,
ALA 2 scores higher. Both the ECM and ALA models have not very high
coefficients of determination ranging from approximately between 60-75%.
The ALA models though indicate a higher coefficient at each time. The first
index of agreement shows relatively high values ranging between 85-95%.
Here again the highest indices are obtained from ALA 2, with exception of
the 23rd hour, where ECM 1 scores slightly higher.
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Figure 2.19: Index of agreement 1 according to daytime

The second index of agreement ranges between 66-77%, which is not that
high. The indices for the time slots between 200 - 1945 are higher for all five
models in comparison to the remaining time slots. The ECM models show a
similar structure as IOA1, where ECM 1 scores higher than ECM 2. For the
ALA models between 900 - 2145 the highest index is that of the ALA 2 model,
while for all other times ALA 3 offers the highest index (however with not
much discrepancy to the other two indices). Once again the highest indices
for all daytimes are scored from the ALA models.
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Figure 2.20: Index of agreement 2 according to daytime

General remarks: On an hourly basis we see once more that the ALA
models perform better than the ECM models.



20 Analysis of the forecast errors

2.5 Other statistical tests and error distribu-

tion

In this section further tests are applied to review other statistical properties
regarding the distribution of the normalised power prediction errors of the
five models being investigated. Figure 2.21 shows the structure of the density
function for the five model errors. It can be seen that density functions of
the two ECM model errors are very similar, whereas the ECM 2 model shows
a higher peak than the ECM 1 model. The ALA model errors also have very
similar density functions. The ALA 1 and ALA 2 models show an almost
identical course, whereas the ALA 3 model shows a higher peak. From the
density of the errors of all models it can be seen that they don’t follow a
normal distribution, as they indicate a skewness and excess kurtosis.
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Figure 2.21: Density functions of the normalised errors

However to test the hypothesis whether the errors follow a normal distri-
bution or not, a Kolmogorov Smirnov test was applied to the errors ussing
the function ks.test() in the stats package in R. This test quantifies the dis-
tance between the empirical distribution function of the sample (this case
the model errors) and the cumulative distribution function of the normal
distribution. The test statistic is defined as

Dn := sup
x
|F (x)− F̂n(x)|

where n is the number of observations, F is a specified distribution func-
tion (the normal distribution function in this case) and F̂n is the empirical
cumulative distribution function of the errors. The null hypothesis

H0 : F (x) = F̂n(x)
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is then rejected if
√
nDn is bigger than a critical value [11]. For the no-

malised errors of the five prediction models the null hypothesis of normally
distributed errors was rejected in all cases using a significance level of 95%
(the p-value was below 5%). A Q-Q (quantile - quantile) plot, which com-
pares the quantiles of the error distributions against those of a normal dis-
tribution also indicates that the errors are not normally distributed (refer to
Figure 2.22; ideally the points should follow the line if the data were normally
distributed).
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Figure 2.22: Q-Q plots of the normalised errors against the normal distribu-
tion

Of interest is also whether the errors of the five models have significantly
different means and variances. To test if the means of the errors of the five
different models are the same, a t-test from the stats package was used,
even though the errors are not independent and identically distributed. The
p-values were well below 5%, which means that the null hypothesis

H0 : µi = µj, i, j ∈ {ECM 1 . . .ALA 3}, i 6= j

was rejected, so the means of the errors in each model are significantly dif-
ferent. One sided t-tests show that

µALA 3 < µALA 1 < µALA 2 < µECM 2 < µECM 1
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significantly. In order to see if the variances of the five model errors are the
same, a Levene test was performed using the leveneTest() function from the
car package in R. The null hypothesis of homoscedasticity between the errors

H0 : σ2
ECM 1 = · · · = σ2

ALA 3

was rejected rejected from the Levene test, meaning that the variance of the
errors is significantly different between the models. When comparing the
variances of the ECM and ALA models in between them, the results were
the same. One sided tests showed that

σ2
ALA 2 < σ2

ALA 1 < σ2
ALA 3 < σ2

ECM 1 < σ2
ECM 2

significantly. The same results as for the variance (in the same order) were
also obtained when testing if the mean square error and mean absolute error
between the models are the same. Another attempt was made to test for
daily homoscedasticity

H0 : σ2
1 = · · · = σ2

j = · · · = σ2
730

where σ2
j represents the variance at day j ∈ {1, . . . , 730} (considering each

day of the available data, which covers 2 years), however this null hypoth-
esis was also rejected. A further hypothesis was made to test for daily ho-
moscedasticity within a month, meaning if the daily variance of the errors in
a specific month is the same. However also in this case the hypothesis was
rejected.
A Levene test was also performed to check if months under the same season
have the same variance. It showed that for a confidence level of 5% this
hypothesis could not be accepted in neither model. However there were for
every model some months with the same variance. The same results can also
be said about the daily mean square and mean absolute errors.



CHAPTER 3

(G)ARCH models

In the context of financial markets an important factor is the volatility of
the data and how to forecast this volatility. A widely used approach to
model and describe periods of changing variance are through (G)ARCH -
(General) Autoregressive Conditional Heteroskedasticity - modeling. These
are autoregressive models in squared returns, where the conditional variance
of the next period is described based on the information given up to this
period.

3.1 The ARCH(1) Model

The simplest model to describe conditional heteroscedasticity is the ARCH(1)
model. We assume that εt is a sequence of independent N(0, 1) random
variables. In this context an ARCH(1) process at is defined as

at = σtεt

where the conditional variance σ2
t is described as a function of past values of

the at:

σ2
t = α0 + α1a

2
t−1.

As a restriction we have α0 > 0 and α1 ≥ 0 to ensure positive variance and
α1 < 1 for a stationary process. Under the assumptions of an ARCH(1)
model we expect high conditional volatility (σt) if the residual returns in the
previous period (at−1) is high in magnitude, or low conditional volatility for
low returns.
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An extension of the ARCH(1) model would be the ARCH(q) model where:

at = σtεt,

σ2
t = α0 + α1a

2
t−1 + · · ·+ αqa

2
t−q = α0 +

q∑
i=1

αia
2
t−i

where α0 > 0 and αi ≥ 0 ∀i ∈ {1, . . . , q}. In this case the required restric-
tion for stationarity is

∑q
i=1 αi < 1. The variance is given as

σ2 =
α0

1−
∑q

i=1 αi

(see the following section).

3.2 The GARCH(p,q) model

A further extension (generalisation) of the ARCH model is the GARCH
model, which also takes into account the past conditional variances implying
the following setting:

at = σtεt,

σ2
t = α0 + α1a

2
t−1 + · · ·+ αqa

2
t−q + β1σ

2
t−1 + · · ·+ βpσ

2
t−p,

where α0 > 0, αi ≥ 0 ∀i = {1, . . . , q} and βj ≥ 0 ∀j = {1, . . . , p}. It
is clear that for β1 = · · · = βp = 0 the GARCH model would be equiva-
lent to an ARCH(q) model. GARCH models have a stationary solution if∑q

i=1 αi +
∑p

j=1 βj < 1. The most important results from this model include
the following:

1. Conditional mean and conditional variance of at:

E[at|at−1, at−2 . . . ] = E[σtεt|at−1, . . . ]
= σtE[εt|at−1, . . . ]
= 0

since E[εt|at−1, . . . ] = 0, as εt is independent of at−1, at−2, . . . .

V[at|at−1, at−2 . . . ] = E[a2t |at−1, . . . ]− (E[at|at−1, . . . ]︸ ︷︷ ︸
=0

)2

= E[σ2
t ε

2
t |at−1, . . . ]

= σ2
tE[ε2t |at−1, . . . ]

= σ2
t
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as E[ε2t |at−1, . . . ] = V[εt] = 1 since εt
iid∼ N(0, 1).

2. Unconditional mean and variance of at:

E(at)
iterated expectation

= E[E[at|at−1, at−2, . . . ]︸ ︷︷ ︸
=0

] = 0

V[at] = E[a2t ]− (E[at]︸︷︷︸
=0

)2 = E[σ2
t ε

2
t ]

= E[σ2
t ]E[ε2t ]︸︷︷︸

=1

(εt is independent of σt)

= α0 + α1E[a2t−1] + · · ·+ αqE[a2t−q] + β1E[σ2
t−1] + . . .

+ βpE[σ2
t−p]

Under the assumption that at is a stationary process we have that

E[a2t−1] = · · · = E[a2t−q] = E[a2t ].

Furthermore we have

E[σ2
t−1] = · · · = E[σ2

t−p] = E[σ2
t ] = E[V[at|at−1, . . . ]]

= E[E[a2t |at−1, . . . ]− E[at|at−1, . . .︸ ︷︷ ︸
=0

]2] = E[a2t ] = V[at].

Hence the equation above becomes

V[at] = α0 + (α1 + · · ·+ αq + β1 + · · ·+ βp)V[at]

=⇒ V[at] =
α0

1− (α1 + · · ·+ αq + β1 + · · ·+ βp)

where the imposed restriction for stationarity is
∑q

i=1 αi +
∑p

i=1 βi < 1.

3. The covariance function of at for a lag k > 0 is 0:

Cov[at, at−k] = E[atat−k]

= E[E[atat−k|at−1, . . . ]]
= E[at−k E[at|at−1, . . . ]︸ ︷︷ ︸

=0

]

= 0 ∀k > 0.
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3.3 ARCH(q) as AR(q)

Under the assumption that the squared residuals a2t are stationary, an ARCH(q)
model can also be explained in terms of an autoregressive (AR) model on a2t .
Xt is generated from an autoregressive model of order q (indicated as AR(q))
when

Xt = ω + ρ1Xt−1 + ρ2Xt−2 + · · ·+ ρqXt−q + εt

where ω is a constant, ρ1, . . . ρp are the parameters of the model and εt is a
white noise process. Without loss of generality we will show how an ARCH(1)
model can be explained as an AR(1) model of the squared residuals (provided
they are stationary). By defining the variable vt so that

vt := a2t − σ2
t ,

then a2t can be expressed as an autoregressive process of first order (AR(1))

a2t = σ2
t + vt = α0 + α1a

2
t−1 + vt

where vt fulfills the requirements of a white noise process:

1. E[vt] = 0 :

E[vt] = E[E[vt|at−1, . . . ]]
= E[E[a2t − σ2

t |at−1, . . . ]]
= E[E[a2t |at−1, . . . ]︸ ︷︷ ︸

=σ2
t

−σ2
t ]

= 0 (3.1)

2. V[vt] = σ2
v > 0:

V[vt] = E[v2t ]− (E[vt]︸︷︷︸
=0

)2

= E[(σ2
t ε

2
t − σ2

t )
2]

= E[σ4
t (ε

2
t − 1)2]

= E[σ4
t ]E[(ε2t − 1)2] (σt independent of εt)

As εt ∼ N(0, 1), we have that ε2t follows a chi squared distribution with one
degree of freedom (ε2t ∼ χ2

1). Therefore E[ε2t ] = 1 and E[(ε2t−1)2] = V[ε2t ] = 2.
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On the other hand

E[σ4
t ] = E[(α0 + α1a

2
t−1)

2]

= α2
0 + 2α0α1E[a2t−1] + α2

1 E[a4t−1]︸ ︷︷ ︸
=E[a4t ]

= α2
0 + 2α0α1

α0

1− α1

+ α2
1E[σ4

t ]E[ε4t ] (independence of σt and εt)

= α2
0

1 + α1

1− α1

+ α2
1E[σ4

t ] [V[ε2t ]︸ ︷︷ ︸
=2

+(E[ε2t ]︸︷︷︸
=1

)2]

= α2
0

1 + α1

1− α1

+ 3α2
1E[σ4

t ] (3.2)

=⇒ E[σ4
t ] = α2

0

1 + α1

1− α1

1

1− 3α2
1

.

Therefore:

V[vt] = 2α2
0

1 + α1

1− α1

1

1− 3α2
1

=: σ2
v > 0

under the sufficient restriction that α2
1 < 1/3.

3. Cov(vt, vt+k) = 0 ∀k > 0 :

Cov(vt, vt+k) = E[vtvt+k]

= E[E[vtvt+k|at+k−1, . . . ]]
= E[vt E[vt+k|at+k−1, . . . ]︸ ︷︷ ︸

=0

]

= 0 ∀k > 0. (3.3)

This means that all the results of an AR(1) model can be applied to a2t .
Using the AR(1) correlation function for a lag k we then have

ρa2t (k) = α
|k|
1 ∀k.

3.4 GARCH(p,q) as ARMA(p,q)

In a similiar way as in section 3.3, also GARCH(p,q) models can be repre-
sented in terms of an ARMA(p,q) model with respect to the squared residuals
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a2t , given that a2t is stationary and E(a4t ) <∞. Assuming w.l.o.g. that p = q
and together with

vt := a2t − σ2
t

we have:

a2t = σ2
t + vt

= α0 + α1a
2
t−1 + · · ·+ αt−pa

2
t−p + β1 σ2

t−1︸︷︷︸
=a2t−1−vt−1

+ · · ·+ βp σ2
t−p︸︷︷︸

=a2t−p−vt−p

+vt

= α0 + (α1 + β1)a
2
t−1 + · · ·+ (αp + βp)a

2
t−p − β1vt−1 − · · · − βpvt−p + vt,

where the term vt is a white noise given that E(a4t ) < ∞ [10]. The proof is
analogue to equations (3.1) and (3.3).

3.5 Forecasting

Assuming we know the at and σ2
t values up to time t − 1 we can calculate

the GARCH(p,q) conditional variance at time t using

σ2
t = α0 + α1a

2
t−1 + · · ·+ αqa

2
t−q + β1σ

2
t−1 + · · ·+ βpσ

2
t−p.

The next period’s conditional variance forecast for GARCH(p,q) models (2
step ahead forecast in terms of at) can be calculated recursively the following
way:

σ̂2
t+1 = E[σ2

t+1|at−1, . . . ]
= α0 + α1 E[a2t |at−1, . . . ]︸ ︷︷ ︸

=σ2
t

+ · · ·+ αqa
2
t−q+1 + β1σ

2
t + · · ·+ βpσ

2
t−p+1

= α0 + (α1 + β1)σ
2
t + α2a

2
t−1 · · ·+ αqa

2
t−q+1 + β2σ

2
t−1 + · · ·+ βpσ

2
t−p+1

σ̂2
t+2 = E[σ2

t+2|at−1, . . . ]
= α0 + α1 E[a2t+1|at−1, . . . ]︸ ︷︷ ︸

=σ̂2
t+1

+α2σ
2
t + · · ·+ αqa

2
t−q+2 + β1σ̂

2
t+1 + . . .

+ βpσ
2
t−p+2

= α0 + (α1 + β1)σ̂
2
t+1 + (α2 + β2)σ

2
t + α3a

2
t−1 + · · ·+ αqa

2
t−q+2+

β3σ
2
t−1 + · · ·+ βpσ

2
t−p+2

...

σ̂2
t+k = α0 + (α1 + β1)σ̂

2
t+k−1 + (α2 + β2)σ̂

2
t+k−2 + · · ·+

(αmax(q,p) + βmax(q,p))σ̂
2
t+k−max(q,p),
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where for p > q we have αi = 0 for i = q + 1, . . . , p and for q > p we have
βi = 0 for i = p+ 1, . . . , q.

The conditional variance forecast for the GARCH(1,1) model though can
be expressed in a nicer representation. Defining

σ2 : = E[σ2
t ] = E[E[a2t |at−1, . . . ]] = E[a2t ] = V[at] =

α0

1− (α1 + β1)

=⇒ α0
(∗)
= σ2(1− (α1 + β1))

we have:

σ̂2
t+1 = α0 + α1 E[a2t |at−1, . . . ]︸ ︷︷ ︸

=σ2
t

+β1σ
2
t = α0 + (α1 + β1)σ

2
t

(∗)
= σ2(1− (α1 + β1)) + (α1 + β1)σ

2
t

= σ2 + (α1 + β1)(σ
2
t − σ2)

σ̂2
t+2 = α0 + α1 E[a2t+1|at−1, . . . ]︸ ︷︷ ︸

=σ̂2
t+1

+β1σ̂
2
t+1 = α0 + (α1 + β1)σ̂

2
t+1

= σ2(1− (α1 + β1)) + (α1 + β1)σ̂
2
t+1 = σ2 + (α1 + β1)(σ̂

2
t+1 − σ2)

= σ2 + (α1 + β1)[σ
2 + (α1 + β1)(σ

2
t − σ2)− σ2]

= σ2 + (α1 + β1)
2(σ2

t − σ2)

...

σ̂2
t+k = σ2 + (α1 + β1)

k(σ2
t − σ2).

3.6 Parameter estimation

The estimation of the parameters of the GARCH model is obtained through
the maximization of the likelihood function with respect to the parameters.
The likelihood function L(·) is a joint probability density function of the pa-
rameters α and β1 given the data A1, . . . , An.

For an iid sample A1, . . . , An let f represent their joint density function
with parameters α, β. Given the initial data of a GARCH(p,q) model (a0,

1α and β are vectors containing the parameters (α1, . . . , αq) and (β1, . . . , βp) respec-
tively
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which includes the initial q values of at and σ0, which includes the initial p
values of the conditional variance) and with

εt =
at
σt
,

the likelihood function can be written as

L(α,β|An, . . . , A1) = fA1,...,An|a0,σ0(a1, . . . , an)

= fA2,...,An|A1=a1,a0,σ0(a2, . . . , an)fA1|a0,σ0(a1)

= · · · =
n∏
t=1

fAt|At−1=at−1,...,A1=a1,a0,σ0(at)

=
n∏
t=1

1

σt
fEt(εt) (εt are independent of each other)

where fEt indicates the density function of εt. The log-likelihood function
(logathithmic value of the likelihood function) then becomes

ln(L(α,β|An, . . . , A1)) =
n∑
t=1

ln(fEt(εt))− ln(σt).

For εt ∼ N(0, 1) we have fEt(εt) = 1√
2π

exp(− ε2t
2

), therefore the log likelihood
function can be expressed as

ln(L(α,β|An, . . . , A1)) =
n∑
t=1

[
−ε

2
t

2
− ln(

√
2π)− ln(σt)

]
=

n∑
t=1

[
−1

2
(ε2t + ln(σ2

t ))− ln(
√

2π)

]
.

A problem is that the initial conditional variances are unknown, so initial
values are assigned. However, in the long run, if the time series is long
enough, the estimation of the initial conditional variance will not have a
major impact [8]. The rest of the σt are calculated as specified from the
order of the GARCH model.

3.7 Application of GARCH models on data

3.7.1 Data settings

This section includes the validation of different (G)ARCH models applied
to the normalised errors of wind energy prediction for the five prediction
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models used by Austrian Power Grid. It has to be noted that these er-
rors are correlated with each other, although the GARCH model assumes
no correlation. However this issue will be neglected to avoid further com-
plexity. The normalised errors of every model are tested for stationarity.
A Kwiatkowski-Phillips-Schmidt-Shin test was done on the errors using the
kpss.test() function in the tseries package in R. This tests for the null hy-
pothesis that the series is stationary against the alternative hypothesis of
a unit root. The tests rejected the null hypothesis of stationarity for the
models with the exception of ECM 2.

The evaluation of the GARCH models throughout this thesis is done using
the ”Rugarch” package in R. The function ugarchgspec() is used to specify
the type of GARCH modeling. Eg. for a GARCH(1,1) model with normaly
distributed errors we have

> ugarchspec( variance.model = list( garchOrder = c(1,1)), distribution=
”norm”, mean.model = list( armaOrder=c(0,0), include.mean=F))

The fitting of model is then done through the function ugarchfit() using
the specification model and the data that is to be fitted (in this case the
normalised error increments at):

> ugarchfit( ugarchspec(), data)

For the estimation the condition of stationarity is imposed. The function
ugarchfit() does the estimation of the coefficients through maximizing the
likelihood function using the augmented Lagrange solver ’solnp’. As an initial
variance this algorithm calculates a feasible set of starting points and then
estimates the model parameters [3].

3.7.2 Model selection

In this section the normalised errors are evaluated through ARCH and GARCH
models of different orders. Specifically the models ARCH(1), ARCH(2),
ARCH(3), GARCH(1,1), GARCH(1,2), GARCH(2,1) and GARCH(2,2) will
be evaluated for each model and their Akaike information criteria (AIC) will
be compared in order to specify the order of the (G)ARCH model. The AIC
is defined as

AIC =
2k − 2 ln(L)

T
,
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where k is the number of parameters to be estimated in the model, L rep-
resents the value of the likelihood function and T is the length of the time
series. This criteria makes a trade off between the goodnes of fit of the model
against its complexity (the number of parameters used) in order to enable
a model selection. Table 3.1 shows the AIC values for the above mentioned
(G)ARCH models for all five prediction models. The model with the lowest
AIC is chosen.

ECM 1 ECM 2 ALA 1 ALA 2 ALA 3

ARCH(1) -2.35236 -2.31497 -2.51221 -2.53149 -2.52092
ARCH(2) -2.36693 -2.33497 -2.53492 -2.56018 -2.56125
ARCH(3) -2.37639 -2.34296 -2.55105 -2.57447 -2.57318

GARCH(1,1) -2.37182 -2.34247 -2.54398 -2.56834 -2.57001
GARCH(1,2) -2.37179 -2.34243 -2.54395 -2.56831 -2.56999
GARCH(2,1) -2.38073 -2.35041 -2.56206 -2.58433 -2.58184
GARCH(2,2) -2.38070 -2.35038 -2.56204 -2.58430 -2.58181

Table 3.1: Akaike information criterion on the different GARCH models

The numbers in bold in table 3.1 show which (G)ARCH model has the
least AIC value for each of the models, meaning which model should be
selected. In this case the GARCH(2,1) model was selected for the errors
of each model. Therefore the normalised errors et of each of the prediction
models will be described as

et = σtεt,

σ2
t = α0 + α1e

2
t−1 + β1σ

2
t−1 + β2σ

2
t−2.

Table 3.2 shows the estimated coefficients of the GARCH(2,1) model for
each of the normalised prediction errors. As it can be seen the sum of the
coefficients in every model is close to 1, which is the limit for stationarity.

ECM 1 ECM 2 ALA 1 ALA 2 ALA 3

α0 0.00016 0.00012 0.00008 0.00009 0.00009
α1 0.88652 0.82395 0.83816 0.84173 0.84130
β1 0.01654 0.06275 0.01442 0.01840 0.04157
β2 0.09594 0.11230 0.14641 0.13887 0.11613

Table 3.2: GARCH(2,1) model coefficient estimations for the normalised
errors of each prediction model
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To visualise the obtained results, we will build a confidence interval for
the power prediction using the estimated variance from the GARCH(2,1)
models. Assuming the mean value of the normalised errors is 0 and with
their estimated conditional standard deviation σ̂t we build the confidence
intervals

[ p̂t − It · σ̂t, p̂t + It · σ̂t ] (3.4)

where p̂t is the predicted power at time t for each of the models and It is the
installed power at time t 2. As a final confidence interval we will take the
union of the intervals (3.4) for all the models:

[ min
i
{p̂it − It · σ̂it, max

i
{p̂it + It · σ̂it} ] (3.5)

where p̂it is the power predicted from model i ∈ { EMC 1, EMC 2, ALA 1,
ALA 2, ALA 3 } at time t and σ̂it is the conditional standard deviation of
the normalised errors of model i at time t (σ̂it is obtained from a 1-step cal-
culation of the GARCH(2,1) models given the information up to period t−1).

Figure 3.1 shows the measured power for a random time interval marked
with a black line and the confidence interval (3.4) provided by the ALA 2
model marked with a light blue shade.
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GARCH(2,1) applied on the ALA 2 model

Figure 3.1: Confidence interval [ p̂ALA 2,t− It · σ̂ALA 2,t, p̂ALA 2,t + It · σ̂ALA 2,t ]
provided from the ALA 2 model marked in a blue shade and the measured
power produced marked with a black line.

2For the GARCH modeling the normalised errors have been used (normalised through
the installed power - refer to chapter 2), therefore to build the confidence interval the
errors need to be scaled back.
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On the other hand, figure 3.2 shows the measured power for a random
time interval and the confidence interval (3.5) around it, as provided by the
union of the confidence intervals of all five models. As it can already be seen
from this graphic, most of the produced power lies within the introduced
confidence interval, in fact it covers 82.8% of the power measured.
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Figure 3.2: Confidence interval [ mini{p̂it−It · σ̂it, maxi{p̂it+It · σ̂it} ] marked
in a blue shade and the measured power produced marked with a black line.

However, by adding a factor 1.17 to the confidence interval so that

[ min{p̂it − 1.17 · It · σ̂it, max{p̂it + 1.17 · It · σ̂it} ] (3.6)

the interval (3.6) covers 95% of the measured power data.

3.7.3 Testing the fit

The values fitted from the GARCH(2,1) modeling show quite good results as
a confidence interval. However to see how this model really performs a cross
validation will be done:

1. the data containing the normalised errors eit, t = 1, . . . , T is split into
a training data set with size T1 (eit, t = 1, . . . , T1) and a test data set
with size T − T1 (eit, t = T1 + 1, . . . , T )

2. using only the data from the training set, a GARCH(2,1) model is
estimated and the parameters of the model specified

3. using these estimated parameters a forecast of the conditional variance
is done on the test data set
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4. an evaluation of the performance of the GARCH model is done by
seeing what percentage of the power measured lies within the interval

[ min
i
{p̂it − 1.17 · It · σ̂it, max

i
{p̂it + 1.17 · It · σ̂it} ] (3.7)

where σ̂it is the forecast of the test data set.

Assuming that the forecast is done each day at 8 o’clock for the day
ahead, we need a forecasting horizon of 16 - 40 hours ahead. However as
the data is measured in 15 minute intervals, the needed forecast horizon is
64-159 steps ahead.

The results of this forecasts are shown in figure 3.3. The x-axis shows
the number of days used for the training set, while the y-axis shows the per-
centage of the measured power data in the test set that lies in the confidence
interval (3.7). The percentages range between 93%-95.5% for each test set,
which is quite a good result.

Figure 3.4 on the other hand shows the average range of the confidence
interval constructed with the forecasted values of each test test. As it can be
seen the high percentage coverage of the power data is due to the fact that
the intervals are quite wide.
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Figure 3.3: Cross validation with different training sets on the confidence
interval
[ mini{p̂it−1.17·It ·σ̂it, maxi{p̂it+1.17·It ·σ̂it} ] which shows what percentage
of the data is covered from the test set.
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Figure 3.4: The average range of the confidence interval
[ mini{p̂it − It · σ̂it, maxi{p̂it + It · σ̂it} ] for the different test sets.

Figure 3.5 shows a comparison between the sample variance of the ALA
2 model errors (black line) and the forecasted conditional variances for that
model (blue line) as calculated from the 64-159 step-ahead forecast using the
GARCH(2,1) model3. It can be seen that each of the day-ahead forecasts
tends to converge towards the sample variance as the forecasting horizon
increases (meaning with each additional step-ahead).
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Figure 3.5: Comparison between the conditional and unconditional variance
(marked in blue and black respectively) of the errors of the ALA 2 model as
calculated by the GARCH(2,1) model using a training set of 490 days.

3The training set used for this figure consisted of 490 days.
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3.7.4 GARCH model on hourly basis

Another attempt was made to forecast the conditional variance on an hourly
basis, so that the forecasts made are only 16-40 steps ahead. For this
purpose a GARCH model was applied to a subset of the data, which in-
cluded only the errors of every hour at the hour (so only the first of the
four 15-minute intervals of each hour). In comparing the AIC values of the
different (G)ARCH models (ARCH(1), ARCH(2), ARCH(3), GARCH(1,1),
GARCH(1,2), GARCH(2,1) and GARCH(2,2)), also in this case the lowest
AIC value was provided by the GARCH(2,1) model. The estimated coeffi-
cients of the GARCH(2,1) modeling for each of the five errors are shown in
table 3.3.

ECM 1 ECM 2 ALA 1 ALA 2 ALA 3

α0 0.00146 0.00130 0.00103 0.00099 0.00104
α1 0.79357 0.77151 0.74817 0.73345 0.75879
β1 0.12077 0.12244 0.13018 0.12056 0.10870
β2 0.08466 0.10505 0.12065 0.14499 0.13151

Table 3.3: GARCH(2,1) model coefficient estimations for the normalised
errors of each prediction model (applied on an hour basis)

Also in this case we will provide a confidence interval similar to (3.4). In
this case the conditional variance of each hour provided from the GARCH
model will be used for the three consecutive 15-minute intervals included in
that hour (e.g. the estimated σ̂t for 1000 is also used for 1015, 1030 and 1045).
The confidence interval is then

[ min
i
{p̂ithq − It · σ̂ith, max

i
{p̂ithq + It · σ̂ith} ] (3.8)

where p̂ithq is the predicted power of model i at day t at hour h and quarter
q, It the installed power and σ̂2

ith the conditional variance of model i at day
t at hour h, as provided by the GARCH model. The interval (3.8) is wide
enough to cover 87% of the measured power data. However by adding a
factor c = 1.38, the confidence interval

[ min
i
{p̂ithq − 1.38 · It · σ̂ith, max

i
{p̂ithq + 1.38 · It · σ̂ith} ] (3.9)

covers 95% of the measured power (what we opt for). Also for this model a
cross validation will be done, similarly to the one mentioned in the previous
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section. Figure 3.6 and figure 3.7 show the results of this cross validation. As
it can be seen the percentage of the power data covered from every test set
is well above 95%, however the average range of these confidence intervals
is mainly above 600 MW, which is a lot more than the average range of
the confidence interval (3.7). A possible reason for these intervals being a
lot wider compared to the confidence intervals validated in section 3.7.3 can
be due to the estimated GARCH model parameters being higher (compare
table 3.3 and table 3.2, especially the parameters α0 and β1).
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Figure 3.6: Cross validation on the confidence interval
[ mini{p̂ithq − 1.38 · It · σ̂ith, maxi{p̂ithq + 1.38 · It · σ̂ith} ] which shows what
percentage of the data is covered from the test set.
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Figure 3.7: The average range of the confidence interval
[ mini{p̂ithq − 1.38 · It · σ̂ith, maxi{p̂ithq + 1.38 · It · σ̂ith} ] for the different test
sets.



CHAPTER 4

Analysis of the daily mean square
and mean absolute errors

In this chapter we will analyse the daily mean square errors (MSE) and daily
mean absolute errors (MAE) of the five power prediction models. The scope
is to see how different factors, such as the meteorological data, affect the
daily MSE and MAE as well as to identify any occurring patterns.

4.1 Variables effecting the daily mean square

and absolute errors

For the scope of this thesis the five prediction models are not identified,
however it is known which meteorological predictions are used as variables
in the different power prediction models. The three meteorological variables
that are used in all power prediction models are the temperature in Andau
region as well as the wind speed and direction in Neusiedler See. The ALA
2 model also uses the wind speed and wind direction in Andau, while the
ECM 1 model additionally uses the wind speed and direction in Zwerndorf
and Unterlaa. The power prediction models use predicted weather data,
whereas the ECM and ALA models obtain different predictions for the wind
speed and direction. However the temperature predictions are identical. As
the power prediction models are fed with predicted weather data, it is to
be expected that the power prediction errors are bigger when the weather
prediction errors are bigger. To evaluate this statement we will look at the
relationship between the daily mean square/absolute error of the power esti-
mation against the daily mean square/absolute error of the weather estima-
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tions. The measured weather data is given in 10-minute intervals, while the
weather prediction data is given hourly. In this case to estimate the errors,
both data was interpolated quarter hourly in order to match with the in-
tervals of the power measurement and estimation and the daily MSE/MAE
was calculated from this data1. Figures 4.1 and 4.2 show the relationship
between the daily MSE and MAE of the power prediction from the ALA 2
model compared to the daily MSE/MAE of the wind speed in Neusiedler See
and the temperature in Andau (the results for the other models are similar).
While the power prediction errors seems to increase with higher the wind
speed prediction errors, while the relationship between the temperature and
power errors seems to be more random.
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Figure 4.1: Relationship between daily mean square errors of power the power
prediction from the ALA 2 model and wind speed at Neusidler See prediction
and temperature at Andau prediction respectively.
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Figure 4.2: Relationship between daily mean absolute errors of power the
power prediction from the ALA 2 model and wind speed at Neusidler See
prediction and temperature at Andau prediction respectively.

1The predicted wind speed and wind directions are given for two different altitudes (at
10m as well as at 100m). For the following results the estimations at 10m height were
used
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As next it will be investigated whether the daily MSE and MAE of the
power prediction models depends on the actual daily energy production. It
is expected that when the actual energy production is higher, there is more
room for errors and hence the daily MSE and MAE should be higher. Fig-
ure 4.3 and figure 4.4 shows this relationship for the daily MSE and MAE
respectivly, whereas the daily power production is categorised in 10 GW in-
tervals. The figures generally indicate a positive relationship between these
two variables, meaning that on the days where more power is produced,
the estimation errors are also higher. An exception to this trend makes the
category of 50-60 GW, where the daily MSE and MAE show lower values,
which could mean that the forecast is more stable for these levels of energy
produced.
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Figure 4.3: Relationship between daily MSE and daily power production
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Figure 4.4: Relationship between daily MAE and daily power production

However, it is to be taken into account that the higher the power produc-
tion, the less observations fall under the category - on most days the power
produced is below 20 GW. Also it can be observed that in general the higher
the power production, the more disperse the daily MSE/MAE is under this
category. The positive linear relationship seen on the above plots is also
backed up through statistical testing of linear modeling, which indicates a
positive and significant slope for all models. For the model

dt = α0 + α1pt + ut

where dt indicated the daily MSE (or MAE), pt the daily power production
at day t and ut an error term, the parameter α1 is positive and significantly
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different from zero.

Similar results are obtained when observing the relationship between the
daily MSE/MAE of the power prediction and the daily estimation of power.
This means that for days where more power production is estimated, it can
be expected that the MSE and MAE will also be higher. Here we also men-
tion that under the categories where a higher power production is estimated
there are less observations and they are more disperse. A linear modeling
for these two cases also shows a positive and significant relationship between
these variables for all prediction models.

4.2 Patterns of the daily MSE and MAE of

the power prediction models

In this section we want to see if the daily mean square/absolute error of the
power estimated thought the ECM and ALA models follows any seasonal
patterns. As only the data of two years is provided, applying a seasonal
filter to the data is not possible, hence we will look for a more basic seasonal
estimation. At first we look how the daily MSE and MAE is distributed
throughout the seasons2.

Note: one outlier has been ommited from the daily MSE ECM plots in order
to have a better view of the data distribution.

As it can be seen from figures 4.5 and 4.6 generally the higher daily
MSE/MAE values occur during the spring and winter season. For these two
seasons the values also seem to be more disperse and not very concentrated
around the median. The ALA models show that the daily MSE/MAE takes
for both years the highest values in spring, while summer seems to be a more
stable season. The ECM models show similar results, with the exception that
winter 2013 shows the highest daily MSE/MAE throughout both years. As
the available data to analyse includes only 2 years, we will try to fit a simple
seasonal pattern considering the seasonal peaks. To evaluate this seasonal
component, a composition of sine and cosine oscillation functions will be used.

2The season categorisation in this thesis follows the meteorological definition of seasons:
Spring includes the months March - May; Summer includes June-August; Autumn includes
September - November; Winter includes December - February
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Figure 4.5: Daily MSE in different seasons
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Figure 4.6: Daily MAE in different seasons
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The first modeling to be tried is

Mt =α + β1 cos(t · 360/365) + β2 sin(t · 360/365)+

γ1 cos(2t · 360/365) + γ2 sin(2t · 360/365) + ut

where Mt is the daily mean absolute or square error of the power estimation
at day t whereas t ∈ {1, . . . , 365} represents each day of the year and ut is
an error term. The arguments of the sine and cosine functions are given in
degrees and the factor 360/365 is used as a scaling factor to fit the 365 days
of the year in a full period of 360 degrees. The model fit was done using the
lm() function from the stats package in R, which estimates the coefficients
using the ordinary least square method. However, when testing whether the
coefficients from the linear model are significantly different from zero, this
hypothesis is rejected for γ1 and γ2. Therefore the reduced model

Mt = α + β cos(t · 360/365) + γ sin(t · 360/365) + ut (4.1)

will be used to fit a seasonal trend. The results of this fit are shown in fig-
ures 4.7 and 4.8: the dots represent the daily MSE/MAE of the power esti-
mation and the red line represents the fitted values from the model described
in (4.1). It should be noted though, that the coefficient of determination (R2)
in each model lies around 5%.
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Figure 4.7: Fitting seasonal trend for daily MSE
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Figure 4.8: Fitting seasonal trend for daily MAE



CHAPTER 5

Confidence intervals

5.1 Current confidence interval

The scope of this thesis is to deliver a confidence interval for the errors of
the power prediction models. Currently the confidence interval used for the
wind power estimation is the range delivered from the predictions of the five
power prediction models

[ min
i
{p̂it}, max

i
{p̂it} ] (5.1)

where p̂it is the estimated power from model i ∈ {ECM 1 . . .ALA 3} at the
time t.
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Figure 5.1: Measured power and confidence interval in current use for a
random time interval
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Figure 5.1 shows the measured power production from the wind energy
with a black line and the currently used confidence interval with a shaded
blue area for a random time interval. Already in this figure it can be seen
that on many occasions the range provided by the prediction models is too
narrow and/or far from the actual power produced. The data measured in
the time intervals between the years 2013 to 2014 shows that only about 37%
of the actual measured power values lie within this range.

The following sections will show alternative confidence intervals to use
instead based on the behaviour of the error terms. The goal is to build a
confidence interval based on the five existing power prediction models, so
that 95% of the measured power values lie within its range.

5.2 Confidence interval based on the daily

mean absolute error

The first idea to be tested is using the daily mean absolute error as a confi-
dence interval for the errors. In this case it would be opted that the produced
power ptq at day t and time q lies within the interval

[ min
i
{p̂itq −maeit}, max

i
{p̂itq +maeit} ]

where p̂itq is the estimated power from model i ∈ {ECM 1 . . .ALA 3} at
time q in day t and maeit is the mean absolute error of model i at day
t. This means that for every quarter-hourly interval in a day each model i
respectively delivers the same amount of distance around the predicted power
value p̂itq. As a final confidence interval for this modeling, the union of the
five intervals provided by each model will be used taking the minimum of
the boundaries between the models i ∈ {ECM 1 . . .ALA 3} as the lowest
boundary of the confidence interval and the maximum of the five boundaries
as the upper boundary. Depending on the magnitude of the errors it may
occur that the daily mean absolute error is bigger than the predicted error,
in which case the lower boundary of the confidence interval would result in
a negative value. This would however not make sense as there can not be a
negative power, therefore the confidence interval is

[ max{0, min
i
{p̂itq −maeit}}, max

i
{p̂itq +maeit} ]. (5.2)

By evaluating this confidence interval with the calculated daily mean absolute
error for the time period January 2013 - December 2014, it can be determined
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that 81.7% of the actual wind power measurements lies within this interval.
This is quite a good result in comparison to the original confidence interval
used, which only covers 37% of the data. Figure 5.2 shows the comparison
between the confidence interval used currently

[ min
i
{p̂it}, max

i
{p̂it} ]

which is marked with a dark blue colour and the confidence interval as de-
scribed in (5.2), which is marked with a light blue colour for a random time
interval. The black line on the other hand shows the actual measured power
for that time interval.
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Figure 5.2: Comparison of the confidence intervals [ mini{p̂it}, maxi{p̂it} ]
marked in dark blue and [ mini{p̂itq − maeit}, maxi{p̂itq + maeit} ] marked
in light blue for a random time interval.

As the daily mean absolute error is an unknown quantity, the two follow-
ing sections will show two different models to describe its behaviour. Using
the predicted values m̂aeit from these models, we will then build a confidence
interval

[ min
i
{p̂itq − c · m̂aeit}, max

i
{p̂itq + c · m̂aeit} ] (5.3)

where the parameter c will be determined as such that the interval (5.3)
covers 95% of the power data measured.

5.2.1 Daily mean absolute errors - Model I

As next we will try to model the daily mean absolute error using a seasonal
trend throughout th year. To be noted is that when modeling the daily
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mean absolute errors, the normalised errors (through the installed capacity)
are considered, therefore when building the confidence intervals, the errors
need to be scaled back by multiplying with the installed capacity at the point
in time, which means

m̂aeit = It · M̂AEit

where It is the installed capacity at day t and MAEit the daily mean of the
normalised absolute errors of model i at day t.

To ensure that the modeled values for the daily mean absolute error are
positive, the model estimation will be done on the logarithmic values of the
daily normalised mean absolute errors for each model i. The model to be
considered is the linear model

ln(MAEit) = αi + βi cos(t · 360/365) + γi sin(t · 360/365) + uit (5.4)

with correlated errors following an AR(1) process

uit = ρiui,t−1 + εit (5.5)

where εit is a white noise. The estimation of the parameters αi, βi, γi and ρi
is done through the gls() function in the nlme package, which makes a general
least square (GLS) estimation of the model. The estimated parameters for
all these models are presented in table 5.1.

ECM 1 ECM 2 ALA 1 ALA 2 ALA 3

α̂ -2.4346 -2.4241 -2.5280 -2.5345 -2.5207

β̂ 0.1651 0.1359 0.0178 0.0332 0.0317
γ̂ 0.1037 0.0928 0.1074 0.1008 0.1379
ρ̂ 0.2726 0.2780 0.3179 0.2850 0.3190

Table 5.1: Estimated coefficients of (5.4), (5.5) for each of the five models

Given the data information up to time t, the one-step forecast for the
model (5.4) is given as follows:

ln(MAEi,t+1)
∧

= α̂i + β̂i cos

(
(t+ 1) · 360

365

)
+ γ̂i sin

(
(t+ 1) · 360

365

)
+ ρ̂iûit

(5.6)

However, the residuals ûit are not known at time t, but they can be esti-
mated using their AR(1) structure as ρ̂iûi,t−1. Using the information up to
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time t− 1, we then have

ln(MAEi,t+1)
∧

=α̂i + β̂i cos

(
(t+ 1) · 360

365

)
+ γ̂i sin

(
(t+ 1) · 360

365

)
+

ρ̂2i ûi,t−1 (5.7)

The forecasted values in (5.7) are the logarithmic values of the daily mean
absolute (normalised) errors, so for the confidence interval they should be
transformed back. To obtain an unbiased estimation of the daily mean ab-
solute value at time t+ 1 given the information up to time t− 1 we use1

m̂aei,t+1 = It+1 · exp(ln(MAEi,t+1)
∧

) · exp(σ̂2
i /2), (5.8)

where σ̂2
i is the estimated variance of ρεit + εi,t+1.

To evaluate the goodness of the estimation presented in (5.7) and (5.8),
it will be calculated how much of the power measured is covered from the
interval

[ min
i
{p̂itq − m̂aeit}, max

i
{p̂itq + m̂aeit} ].

Calculations with this confidence interval show that it covers 82.8% of the
measured data. This value doesn’t account for the opted 95%, however
adding the factor c = 2.05 the new confidence interval

[ min
i
{p̂itq − 2.05 · m̂aeit}, max

i
{p̂itq + 2.05 · m̂aeit} ] (5.9)

1Given the AR(1) structure of the errors, ln(MAEt) can be written as

ln(MAEt+1) = α+ β cos

(
(t+ 1) · 360

365

)
+ γ sin

(
(t+ 1) · 360

365

)
︸ ︷︷ ︸

=:xt+1ξ

+ ut+1︸︷︷︸
=ρ2ut−1+ρεt+εt+1

.

Hence the expected value of MAEt+1 given the information up to point t − 1 (indicated
by Ft−1) can be written as

E[MAEt+1|Ft−1] = E[eln(MAE)t+1 |Ft−1]

= E[ext+1ξ+ρ
2ut−1+ρεt+εt+1 |Ft−1]

= ext+1ξ+ρ
2ut−1 + E[eρεt+εt+1 |Ft−1].

Given that εt ∼ N(0, σ2
ε), then eρεt+εt+1 ∼ LN(0, σ2), where σ2 = (1 + ρ2)σ2

ε . So then

E[eρεt+εt+1 |Ft−1] = eσ
2/2.
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covers 95% of the measured power data. Figure 5.3 shows a comparison of
the confidence interval with the fitted daily mean absolute values as in (5.9)
marked with a light blue shaded area against the currently used confidence
interval (dark blue area). The black line represents the measured power.
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Figure 5.3: Confidence interval
[ mini{p̂itq − 2.05 · m̂aeit}, maxi{p̂itq + 2.05 · m̂aeit} ] on a random time
interval marked in light blue against the currently used confidence interval
[ mini{p̂it}, maxi{p̂it} ] marked in dark blue

To see if this model really works well, a cross validation will be done.
The data will be split into a training set (data for the days 1, . . . , T1) and a
test data set (days T1, . . . , T ). The parameters of the model are estimated
using the training set. Day ahead forecasts (for day t+ 1) are then made for
the test data set using information available up to day t − 1 as mentioned
above. The evaluation of the performance of the model is done by seeing
what percentage of the power measured lies within the forecasted interval for
the days T1, . . . , T .

Figure 5.4 shows the results of the cross validation. The data available for
this thesis is two years, so the daily mean absolute error analysis was done
for 730 days and the results were applied on 15-minute intervals each day.
The x-axis shows how many days were used as a training set (T1), while the
y-axis shows the percentage of the measured power data covered from the
confidence interval predicted for the test set. The percentages in the cross
validation range from around 95% to 98%, which is quite a good result.
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Figure 5.4: Cross validation results on the confidence interval
[ mini{p̂itq − 2.05 · m̂aeit}, maxi{p̂itq + 2.05 · m̂aeit} ] where the daily mean
absolute errors are modeled according to (5.4) with AR(1) residuals.

5.2.2 Daily mean absolute error - Model II

In this section it will be attempted to model the (normalised) daily mean
absolute error by also taking into account the predicted value of the wind
speed for Neusiedler See as well as the mean value of the power predicted:

ln(MAE)it =αi + βi cos(t · 360/365) + γi sin(t · 360/365)+

ηi ln(m̂wit) + ζi ln(m̂pit) + uit (5.10)

where m̂wit is the mean of the wind speed (in Neusiedler See) predicted by
model i for day t and m̂pit is the mean power predicted by model i for day
t. Also in this case uit ∼ AR(1), so

uit = ρui,t−1 + εit. (5.11)

The parameter estimation is again done through a GLS estimation. The
forecasted values m̂aei,t+1 are done following the same analogy as in the
previous section, so based on information up to time t − 1. The confidence
interval

[ min
i
{p̂itq − m̂aeit}, max

i
{p̂itq + m̂aeit} ],

where the daily mean absolute error is modeled according to (5.10) and (5.11)
covers 84.2% of the measured power. However, using a factor c = 1.82, so
that

[ min
i
{p̂itq − 1.82 · m̂aeit}, max

i
{p̂itq + 1.82 · m̂aeit} ] (5.12)
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offers the 95% coverage of the power data. The estimated parameters for the
model (5.10) and (5.11) are presented in table 5.2.

ECM 1 ECM 2 ALA 1 ALA 2 ALA 3

α̂ -4.3946 -4.6143 -4.8527 -4.9195 -3.7667

β̂ 0.0350 0.0033 -0.0462 -0.0451 -0.0326
γ̂ 0.0773 0.0664 0.0922 0.0876 0.1000
η̂ 0.2153 0.3821 0.1308 0.0544 0.6026

ζ̂ 0.3507 0.3572 0.4602 0.4846 0.1682
ρ̂ 0.2108 0.2371 0.2341 0.2467 0.2331

Table 5.2: Estimated coefficients of (5.10),(5.11) for each of the five models

The cross validation results on this model are shown in figure 5.5. The
results are quite good, as the percentage of data covered is above 95% for all
the test data sets.
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Figure 5.5: Cross validation results on the confidence interval
[ mini{p̂itq − 1.82 · m̂aeit}, maxi{p̂itq + 1.82 · m̂aeit} ] where the daily mean
absolute errors are modeled according to (5.10) with AR(1) residuals.

5.3 Confidence interval based on the daily

mean square error

Similarly to the structure of section 5.2, this section will evaluate a confidence
interval based however on the daily mean square errors. This confidence
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interval will involve building an interval using the standard deviation of the
errors around the predicted value of power:

[ min
i
{p̂itq −

√
mseit}, max

i
{p̂itq +

√
mseit} ] (5.13)

where p̂itq is the estimated power from model i ∈ {ECM 1 . . .ALA 3} at time
q in day t and mseit is the mean square error of model i at day t. Here again
every model i uses the same deviance (mseit) for all quarter-hour predictions
within a day. Using the calculated daily mean square errors for the time inter-
val between the years 2013 to 2014 in (5.13) it can be measured that 86.2% of
the power measured lies within this interval. Figure 5.6 shows a comparison
of the confidence interval (5.13) with the calculated daily mean square er-
rors against the currently used confidence interval for a random time interval.
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Figure 5.6: Comparison of the confidence intervals
[ mini{p̂itq −

√
mseit}, maxi{p̂itq +

√
mseit} ] marked in light blue and

[ mini{p̂itq}, maxi{p̂itq} ] marked in dark blue. The black line represents
the power measured.

The two following sections offer two models for the estimation of the daily
mean absolute error similar to the ones presented in section 5.2.

5.3.1 Modeling the daily mean square error - Model I

At first we will try to model the daily mean square errors using only the
seasonal trend similar to section 5.2.1. Also in this case the daily mean
square normalised errors are modeled, so

m̂seit = I2t · M̂SEit



58 Confidence intervals

where It is the installed capacity and MAEit the mean of the normalised
square errors for model i at day t. To assure positive prediction values for
the daily mean square error, the model is again build using the logarithmic
values

ln(MSEit) = αi + βi cos(t · 360/365) + γi sin(t · 360/365) + uit (5.14)

where uit ∼ AR(1). To obtain an unbiased estimation from the transformed
values of the daily mean square errors at time t+ 1 given the information up
to time t− 1 we use

m̂sei,t+1 = It+1 · exp(ln(MSEi,t+1)
∧

) · exp(σ̂2
i /2), (5.15)

where σ̂2
i is the estimated variance of ρεit + εi,t+1 (similar to section 5.2.1).

Using (5.14) and (5.15) to build the confidence interval

[ min
i
{p̂itq −

√
m̂seit}, max

i
{p̂itq +

√
m̂seit} ] (5.16)

shows that 89.7% of the power measured is covered from this confidence
interval. In this case a 95% coverage of the measured data is given through
the interval

[ min
i
{p̂itq − 1.41 ·

√
m̂seit}, max

i
{p̂itq + 1.41 ·

√
m̂seit} ]. (5.17)

Table 5.3 shows the estimated parameters of the model (5.14), while figure
5.7 shows the cross validation results of using the confidence interval (5.17)
and modeling the daily mean square error according to (5.14). Also in this
case the results of the cross validation are quite good covering above 95% of
the measured power data for each test data set.

ECM 1 ECM 2 ALA 1 ALA 2 ALA 3

α̂ -4.4331 -4.4208 -4.5936 -4.6003 -4.5745

β̂ 0.2686 0.2384 0.0211 0.0424 0.0375
γ̂ 0.1965 0.1855 0.2094 0.1924 0.2701
ρ̂ 0.2883 0.3019 0.3212 0.3019 0.2955

Table 5.3: Estimated coefficients of (5.14) for each of the five models
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Figure 5.7: Cross validation results on the confidence interval
[ mini{p̂itq − 1.41 · m̂seit}, maxi{p̂itq + 1.41 · m̂seit} ] where the daily mean
square errors are modeled according to (5.14).

5.3.2 Modeling the daily mean square error - Model II

Similarly to section 5.2.2, it will also be attempted to model the (normalised)
daily mean square errors by also taking into account the predicted value of
the wind speed for Neusiedler See as well as the mean value of the power
predicted by each of the models:

ln(MSEit) =αi + βi cos(t · 360/365) + γi sin(t · 360/365)+

ηi ln(m̂wit) + ζi ln(m̂pit) + uit (5.18)

with uit ∼ AR(1) ∀i, where m̂wit is the mean of the wind speed (in
Neusiedler See) predicted by model i for day t and m̂pit is the mean power
predicted by model i for day t. This modeling of the daily mean square
errors shows slightly better results compared to the modeling based only on
the seasonal pattern, as the confidence interval

[ min
i
{p̂itq −

√
m̂seit}, max

i
{p̂itq +

√
m̂seit} ] (5.19)

where m̂seit is delivered through (5.18) covers 90.5% of the observed power
data. The 95% coverage for this model is obtained through the confidence
interval

[ min
i
{p̂itq − 1.35 ·

√
m̂seit}, max

i
{p̂itq + 1.35 ·

√
m̂seit} ]. (5.20)
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ECM 1 ECM 2 ALA 1 ALA 2 ALA 3

α̂ -7.7324 -8.5125 -8.7562 -8.9224 -7.3571

β̂ 0.0414 -0.0005 -0.0932 -0.0984 -0.0911
γ̂ 0.1424 0.1450 0.1826 0.1705 0.2137
η̂ 0.5650 0.5530 0.2276 0.0635 0.8528

ζ̂ 0.5417 0.7059 0.8251 0.8835 0.4527
ρ̂ 0.2217 0.2583 0.2445 0.2709 0.2414

Table 5.4: Estimated coefficients of (5.18) for each of the five models

Table 5.4 shows the estimated parameters of (5.18), while figure 5.8 shows
the cross validation results, which are over 96% for each of the test sets.
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Figure 5.8: Cross validation results on the confidence interval
[ mini{p̂itq − 1.35 · m̂seit}, maxi{p̂itq + 1.35 · m̂seit} ] where the daily mean
square errors are modeled according to (5.19).

5.4 Confidence intervals on 15-minute basis

The confidence intervals shown in the sections above use the same measure
of uncertainty (daily mean square error or daily mean absolute error) for the
whole day. In this section we will attempt to build a confidence interval of
the errors on quarter-hourly basis using the absolute and squared errors.
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5.4.1 Confidence interval using the absolute error

The first confidence interval to be investigated is an interval build on the
absolute error around the predicted power:

[ min
i
{p̂itq − aitq}, max

i
{p̂itq + aitq} ] (5.21)

where aitq is the absolute error of model i at day t at time q. Obviously
the measured power ptq at any point in time is included in this interval.
However we need an estimate on how the absolute error behaves. In this
case we will try to generate the (normalised) absolute error as a product of
the daily mean absolute error (maet) and a factor rtq, which depends on the
estimated power, the estimated wind speed in Neusiedler See, the time of
the day and the range given by the currently used confidence interval. The
variables involved in rtq were chosen based on their importance and how they
seem to affect the error terms. The modeling will be done on the normalised
absolute errors Aitq, which in the end will be scaled back by the installed
power It so that

aitq = It · Aitq.
The model that will need to be estimated is

Aitq = maeit · ritq (5.22)

whereas the daily mean absolute error maeit is modeled as in (5.4) with the
autoregressive residuals of first order. To assure a positive value for the term
ritq, its square root value will be modeled2

√
ritq = δqωiq + ŵitqθi + p̂itqξi +Ktqτi + uitq (5.23)

where δq represents a factor (dummy variable) indicating each quarter hour
in a day {00:00, 00:15, ... , 23:45}, ŵitq represent the estimated wind speed
in Neusiedler See by model i at day t time q, p̂itq is the estimated power and
Ktq is the range of the currently used confidence interval (see (5.1)) at the
point in time. The errors uitq in (5.23) are also correlated. In this case the
estimation of the parameters in (5.23) was done using the Cochrane-Orcutt
procedure: for a linear model

yt = xtβ + ut (5.24)

with autoregressive errors of first order

ut = ρut−1 + εt

2A transformation with the logarithmic function did not provide good results in this
case.
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the transformed model using the difference

ỹt := yt − ρyt−1 = (xt − xt−1)︸ ︷︷ ︸
=:x̃t

β + ut − ρut−1︸ ︷︷ ︸
=εt

= x̃tβ + εt (5.25)

can be used to estimate β with OLS (ordinary least squares), as the error
term εt in (5.25) is white noise. This estimated β̂ can then be used to esti-
mate (5.24). The AR coefficient ρ used for the Cochrane-Orcutt procedure
on (5.23) was estimated from the errors of an OLS regression on (5.23). The
forecast for

√
ritq at any time tq is given as

√̂
ritq = δqω̂iq + ŵitqθ̂i + p̂itq ξ̂i +Ktq τ̂i. (5.26)

To obtain an unbiased estimation for ritq we use

r̂itq =
√̂
ritq

2
+ σ̂2

2

where σ̂2
2 is the estimated variance of the model residuals ûitq.

3 So in the end
the predicted values for âi,t+1,q, q = 00 : 00, . . . , 23 : 45 given the information
up to day t− 1 will be given as

âi,t+1,q = It+1 · exp(ln(MAEi,t+1)
∧

) · exp(σ̂2
i /2) · (√ri,t+1,q

∧2
+ σ̂2

i2). (5.27)

Using the day ahead estimates given the information up to the day before
as provided by (5.22) to estimate a confidence interval according to (5.21),
we look for a constant c so that 95% of the measured power data lies in the
interval

[ min
i
{p̂itq − c · âitq}, max

i
{p̂itq + c · âitq} ].

c = 1.57 offers such a confidence interval. A cross validation similarly to the
one explained in the previous sections is then done on the confidence interval

[ min
i
{p̂itq − 1.57 · âitq}, max

i
{p̂itq + 1.57 · âitq} ] (5.28)

3For this type of model we have
√
rt+1 =

√̂
rt+1 + ût+1. The expected value of rt+1

given the information up to time t is

E[rt+1|Ft] = E[(
√̂
rt+1 + ût+1)2|Ft]

=
√̂
rt+1

2
+ 2
√̂
rt+1 E[ût+1|Ft]︸ ︷︷ ︸

=0

+E[û2t+1|Ft].

E[û2t+1|Ft] can be estimated as the variance of the residuals ût.
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using the above mentioned modeling of the absolute value and the results
are shown in figure 5.9. The most test data sets covered less than 95% of the
measurements, however above 94%, which is a very good result.
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Figure 5.9: Cross validation results on the confidence interval
[ mini{p̂itq − 1.57 · âitq}, maxi{p̂itq + 1.57 · âitq} ] where the absolute errors
are modeled according to (5.27).

The estimated parameters of the maeit part of this model are the same
as in table 5.1, while the estimated parameters of (5.23) are presented in
table 5.5 (θ̂i, ξ̂i and τ̂i) and figure 5.10 (ω̂iq for all quarter hours q).
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Figure 5.10: Coefficients ω̂iq of each quarter hour (q) for all models
i ∈ { ECM 1, ... , ALA 3}.
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ECM 1 ECM 2 ALA 1 ALA 2 ALA 3

θ̂i 0.027 0.051 0.008 -0.003 0.087

ξ̂i 0.00004 -0.0001 0.0003 0.0004 -0.0004
τ̂i 0.001 0.0005 0.0005 0.001 0.0005

Table 5.5: Estimated coefficients θ̂i, ξ̂i and τ̂i of the model√
ritq = δqωiq + ŵitqθi + p̂itqξi +Ktqτi + uitq

5.4.2 Confidence interval using the square errors

On the other hand we will provide a similar confidence interval using the
squared errors of each 15-minute time interval. In this case the used confi-
dence interval which covers 95% of the wind power measurements is

[ min
i
{p̂itq − 1.16 ·

√
ŝitq}, max

i
{p̂itq + 1.16 ·

√
ŝitq} ] (5.29)

where sitq is the squared error of model i at day t and time q. The estimation
of the squared errors sitq comes from the estimation of the normalised square
errors Sitq:

ŝitq = I2t · Ŝitq,

where similarly as in section 5.4.1

Ŝitq = m̂seit · r̂itq. (5.30)

The daily mean square error term mseit is modeled as in (5.14) with autore-
gressive errors of first order and the term ritq is modeled as

√
ritq = δqωiq + ŵitqθi + p̂itqξi +Ktqτi + uitq (5.31)

where δq is again a factor (dummy variable) indicating each quarter hour
in day (q ∈ {00:00, 00:15, ... , 23:45}), ŵitq represents the estimated wind
speed in Neusiedler See by model i at day t time q, p̂itq is the estimated power
and Ktq is the range of the currently used confidence interval (see (5.1)) at
the point in time. The estimation of the parameters in (5.31) was also done
through the Cochrane-Orcutt procedure (as in section 5.4.1) and the esti-

mation of r̂itq from
√̂
ritq was also done in an analogue way as described in

section 5.4.1.

Figure 5.11 shows the cross validation on this model. The 95% coverage
through these modeled intervals is only obtained with two of the test sets,
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however the others also show good results, covering over 94% of the measured
power data.
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Figure 5.11: Cross validation results on the confidence interval
[ mini{p̂itq−1.16·

√
ŝitq}, maxi{p̂itq+1.16·

√
ŝitq} ] where the squares errors

are modeled according to (5.30).

The estimated parameters of the mseit part of this model are the same as
in table 5.3, the estimated parameters θ̂i, ξ̂i and τ̂i of (5.31) are presented in
table 5.5 and the ω̂iq estimated parameters are shown in figure 5.12.
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Figure 5.12: Coefficients ω̂iq of each quarter hour (q) for all models
i ∈ { ECM 1, ... , ALA 3}.
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ECM 1 ECM 2 ALA 1 ALA 2 ALA 3

θ̂i 0.049 0.088 0.035 0.013 0.133

ξ̂i -0.00003 -0.0003 0.0003 0.0005 -0.001
τ̂i 0.001 0.001 0.001 0.001 0.001

Table 5.6: Estimated coefficients θ̂i, ξ̂i and τ̂i of the model√
ritq = δqωiq + ŵitqθi + p̂itqξi +Ktqτi + uitq

5.5 Comparison of the confidence intervals

Sections 5.2, 5.3 and 5.4 show different confidence intervals for the errors of
each prediction model. They all seem to perform quite well according to the
cross validations done, as the majority of the power produced is included
in these modeled confidence intervals. Furthermore, all the newly defined
intervals show a better performance in comparison to the confidence interval
currently used, which only covers 37% of the power measured.

On the other hand, confidence intervals covering more of the measured
data are also wider (the range is bigger), so a trade off between the data
covered and interval width needs to be made. In this aspect we will do a
comparison of the range of each of the confidence intervals presented in the
sections above.

Table 5.7 shows the average range (width) in MW of each of the con-
structed confidence intervals. The estimated variables in these intervals are
the predicted values of the variables for the day ahead (t + 1) given the in-
formation up to day t− 1, as explained in the sections above.

As it can be seen from the results in table 5.7, the confidence intervals
with the lowest average ranges are

[min
i
{p̂itq − 1.35 ·

√
m̂seit},max

i
{p̂itq + 1.35 ·

√
m̂seit}] (5.32)

and
[ min

i
{p̂itq − 1.82 · m̂aeit}, max

i
{p̂itq + 1.82 · m̂aeit} ] (5.33)

where the daily mean square error m̂seit and the daily mean absolute error
m̂aeit are modeled according to the seasonal trend, the daily average power



5.5 Comparison of the confidence intervals 67

Confidence interval % covered Mean range
in MW

[mini{p̂itq},maxi{p̂itq}] 37% 87.6
the currently used confidence interval

[mini{p̂itq − 2.05m̂aeit},maxi{p̂itq + 2.05m̂aeit}], 95% 412.4

where m̂aeit is modeled as in section 5.2.1

[mini{p̂itq − 1.82m̂aeit},maxi{p̂itq + 1.82m̂aeit}], 95% 378.4

where m̂aeit is modeled as in section 5.2.2

[mini{p̂itq − 1.41
√
m̂seit},maxi{p̂itq + 1.41

√
m̂seit}], 95% 413.6

where m̂seit is modeled as in section 5.3.1

[mini{p̂itq − 1.35
√
m̂seit},maxi{p̂itq + 1.35

√
m̂seit}], 95% 378.1

where m̂seit is modeled as in section 5.3.2

[mini{p̂itq − 1.57âitq},maxi{p̂itq + 1.57âitq}], 95% 390.5

where âitq is modeled as in section 5.4.1

[mini{p̂itq − 1.16
√
ŝitq},maxi{p̂itq + 1.16

√
ŝitq}], 95% 396.4

where ŝitq is modeled as in section 5.4.2

Table 5.7: Comparison of the different confidence intervals estimated for the
whole data set
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estimation and the daily average wind speed estimation. The confidence
intervals

[ min
i
{p̂itq − 1.16 ·

√
ŝitq}, max

i
{p̂itq + 1.16 ·

√
ŝitq} ] (5.34)

and
[ min

i
{p̂itq − 1.57 · âitq}, max

i
{p̂itq + 1.57 · âitq} ] (5.35)

where the square error ŝitq and the absolute error âitq are modeled on a
quarter hourly basis also show very similar results with one another, whereas
their average interval range is about 12-18 MW wider than that of (5.32)
and (5.33). The widest average interval range is obtained from the intervals

[ min
i
{p̂itq − 1.41 ·

√
m̂seit}, max

i
{p̂itq + 1.41 ·

√
m̂seit} ] (5.36)

and
[ min

i
{p̂itq − 2.05 · m̂aeit}, max

i
{p̂itq + 2.05 · m̂aeit} ], (5.37)

where the daily mean square error m̂seit and the daily mean absolute error
m̂aeit are modeled only according to the seasonal trend with autoregressive
residuals.

As next this we compare the results of the cross validations of each of the
confidence intervals. Figure 5.13 shows the comparison of the percentage of
power data covered by each test set in the cross validation. The confidence
interval (5.37) is represented by the line KI 1 in the plot, the interval (5.33)
by KI 2, (5.36) by KI 3, (5.32) by KI 4, (5.35) by KI 5 and (5.34) by KI
6. Figure 5.14 on the other hand shows the average range of each of the
intervals resulting from the cross validation of each of the test sets4.

The results of the confidence intervals (5.33) and (5.32) show that they
perform quite similarly and have the highest percentage of power data cov-
ered, which is even above 96%. However they are among the widest intervals.
The intervals (5.37) and (5.36) cover above 95% of the power data, however
the average range of these intervals is quite close to those of (5.33) and (5.32).
The confidence intervals (5.34) and (5.35) are the ones that cover less per-
centage of the power data in comparison to the others, even though each test
set covers more than 94% of the data. On the other hand, these two intervals
have the lowest average range.

4The test and data sets used for this comparison are the same as mentioned in the
sections above
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Figure 5.13: Cross validation results showing what percentage of the mea-
sured power is covered by each confidence interval.
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Figure 5.14: Cross validation results showing the average range of each con-
fidence interval.
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What is also of interest, is to see how the models perform according to
each hour of the day. For that reason we compare the results of the confidence
intervals (5.36), (5.34) with the according estimations of the (daily mean)
square error as well as the interval

[ min
i
{p̂itq − 1.17 · It · σ̂itq, max

i
{p̂it + 1.17 · It · σ̂itq} ] (5.38)

where σ̂2
itq is the estimated variance from the GARCH(2,1) model (refer to

section 3.7.2). For this comparison the parameters of each model were esti-
mated using a training data set of 370 days. The confidence intervals were
then build for the test data set for the day ahead (t+1) given the information
up to one day ago (t-1). The results of these intervals on an hourly basis are
shown below.

Figure 5.15 shows how much percentage of the measured power in the
test set is covered form the confidence intervals (5.38), (5.36) and (5.34).
Here the results for the interval (5.38) are marked with a blue colour, the
results from (5.36) in pink and the results form (5.34) in green. As it can be
seen from all three models, there are differences for each time of the day. At
all times the average coverage is above 90%,but the intervals seem to have a
higher average coverage for the morning till afternoon hours in each case.
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Figure 5.15: Average coverage of the confidence intervals (5.36) (in pink),
(5.34) (in green) and (5.38) (in blue) for each hour of the day by using a
training data set of 370 days.

On the other hand, figures 5.16, 5.17 and 5.18 show box-plots of the
range of each of these three intervals for every hour of the day (here some
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outliers have been cut off the graphics in order to provide a better view). The
interval that uses the estimation of the conditional variance from the GARCH
modeling (figure 5.16) shows that the median of the interval’s width increases
with time. This is to be expected, as this procedure uses a forecast of 159
steps ahead, so the intervals become wider with the passing time. On the
other hand, the two other intervals seem to be more stable in regard to time
of the day.

0

250

500

750

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
hour

Co
nf

id
en

ce
 in

te
rv

al
 ra

ng
e 

in
 M

W

Figure 5.16: Hourly box-plots of the range of the confidence interval
[ mini{p̂itq − 1.17 · It · σ̂itq, maxi{p̂it + 1.17 · It · σ̂itq} ], where σ̂itq is modeled
according to section 3.7.2.
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Figure 5.17: Hourly box-plots of the range of the confidence interval
[mini{p̂itq − 1.41

√
m̂seit},maxi{p̂itq + 1.41

√
m̂seit}], where m̂seit is modeled

as in section 5.3.1
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Figure 5.18: Hourly box-plots of the range of the confidence interval
[mini{p̂itq − 1.16

√
ŝitq},maxi{p̂itq + 1.16

√
ŝitq}], where ŝitq is modeled as in

section 5.4.2.



CHAPTER 6

Conclusion

The aim of this thesis was to analyse the errors of five different wind energy
prediction models and to build a confidence interval for these errors. At first
different statistical tests were done on the errors of each of the prediction
models to look for different patterns. In general it was seen that the ALA
models performed better (especially the second ALA model) and their errors
were less volatile than those of the ECM models.

An attempt was made to analyse how the errors behave in the differ-
ent wind sectors (the different directions the wind comes from). All models
showed higher volatility in sectors 3, 5, 7 and 8, while the ECM models
showed the highest volatility in sector 1. However the distribution of the
sectors is not uniform as most data falls into sector 6 or it is not specified
(sector 0), so these results are not quite significant.

The different times of the day also showed to have an effect on the errors.
During the morning to midday hours the error distribution seems to be more
stable and the forecasts more accurate. This information was also used to
build the confidence intervals.

Using GARCH models, I tried to model the conditional variance of the
errors. Fitting the errors in a GARCH(2,1) model and using this to build
a confidence interval provided quite a good result. However in order to use
this model in practice, a very high forecasting horizon needed to be used and
this resulted in quite wide confidence intervals.

Other confidence intervals were modeled based on the daily mean absolute
and square errors as well as the wind speed estimation and wind power
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estimation. While evaluating the performance of the different confidence
intervals it could be seen that there is a trade off between the amount of
data an interval covers and its average range. In this thesis we opted to
build a confidence interval which covers 95% of the data. From the results
presented in chapter 5, I would recommend to use the confidence interval

[ min
i
{p̂itq − 1.57 · âitq}, max

i
{p̂itq + 1.57 · âitq} ] (6.1)

where âitq is modeled as shown in section 5.4.1. In praxis (refer to the cross
validation results as shown in figure 5.13 and figure 5.14) this interval showed
to cover less data compared to the others, however it still covered over 94%
of the power data measured and it has the narrowest average range.



APPENDIX A

Abbreviations

Abbreviations used in this thesis :
ECM 1 ... refers to the first ECMWF model
ECM 2 ... refers to the second ECMWF model
ALA 1 ... refers to the first ALA model
ALA 2 ... refers to the second ALA model
ALA 3 ... refers to the third ALA model
APG ... Austrian Power Grid
MSE ... mean square error
MAE ... mean absolute error
AIC ... Akaike information criterion
OLS ... Ordinary least square
GLS ... General least square
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Graphics

Appendix from chapter 2, section 2.2. Plots :
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Figure B.1: Monthly mean square error
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Figure B.2: Monthly mean absolute error
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Figure B.3: The 8 wind front sectors 1
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Figure B.4: Error variance among sectors
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Figure B.5: Mean absolute error among sectors

1Graphic obtained from Austrian Power Grid
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Figure B.6: Error variance according to daytime
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Figure B.7: Mean absolute error according to daytime
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