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Abstract

The aim of the thesis is to calculate the entanglement entropy of an
interval in different two-dimensional warped conformal field theories. The
result by Castro et al [5] is generalized to a second WCFT with a different
symmetry algebra. This is done in two ways: First using the Rindler
method and second using the replica trick. The new WCFT is particularly
interesting because it appears as holographic dual of a boosted Rindler-
spacetime. On the gravitational side, entanglement entropy is much easier
to compute and I show that the results agree if one locates the field theory
on the horizon at r = 0 rather then at r → ∞. This statement is shown to
be also true for the slightly more involved case of boosted Rindler-AdS.
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1 Introduction

The holographic principle has been one the most exciting developments in theo-
retical physics in the last few decades. The statement is that a theory of gravity
in a d-dimensional spacetime is equivalent to a d−1-dimensional conformal field
theory which lives on the boundary of this spacetime. This connection between
gravitational theories and quantum field theories could provide a better un-
derstanding of quantum gravity, which is maybe the most important unsolved
problem in theoretical physics. One of the most famous realizations of the
holographic principle is the AdS(3)/CFT(2) correspondence, which states that
gravity in a 3-dimensional Anti-de-Sitter-space is equivalent to a relativistic con-
formal field theory in two dimensions. This choice of dimension is particularly
interesting for two reasons: First of all, gravity in three dimensions has no local
degrees of freedom and all information about the state of the system is contained
in topological properties. Furthermore, it can be formulated as a Chern-Simons-
gauge theory, so all the well-known formalisms of gauge theories can be used.
This means that gravity in three dimensions is simple enough that many prob-
lems can be treated analytically. On the other hand it is complicated enough to
admit interesting features like black holes and boundary gravitons. Secondly,
conformal field theory is also special in two dimensions since the symmetry alge-
bra then becomes infinite-dimensional. This large amount of symmetries makes
the theory more accessible and enables us to do a lot of analytical computations.

There have been many attempts to generalize the holographic principle to
different spacetimes with dual field theories which are not relativistic CFTs. In
this thesis I will investigate so-called warped conformal field theories which do
not have a symmetry group of SL(2,R)×SL(2,R) but rather SL(2,R)×U(1).
The associated algebra admits two qualitatively different central extensions
which I will introduce in detail in section 3.6. The quantity that I will cal-
culate is the entanglement entropy of an interval, a measure for how “strongly
entangled” the interval is with its complement. Entanglement entropy is not
only interesting to its own right but also provides a popular check of the holo-
graphic theorem since it can be calculated on both sides. In my thesis, the main
focus lies on the field theory side where I will derive a Cardy-type formula for
the entanglement entropy following the paper by A. Castro, D. Hofman and N.
Iqbal [5]:

SA = −4 ln

[

L

πǫ
sin

πl

L

]

Lvac0 + il

(

L

L
−
l

l

)

P vac0 (1)

While in [5] this formula was only derived for one of the two possible symmetry
algebras, I will show that it holds for both.

Despite the fact that warped conformal field theories are interesting to study
from a purely mathematical point of view, they appear as holographic duals of
near-horizon approximations of non-extremal black holes. As argued in [10] such
a near-horizon limit is given by the boosted Rindler spacetime

ds2 = −2a(u)r du2 − 2dr du+ 2η(u)du dx+ dx2 (2)
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whose asymptotic symmetry algebra is exactly one of the warped CFT algebras.
On the gravity side, entanglement entropy is usually much easier to compute
since it only involves the length of a geodesic. However, in this case it is a
priori not clear where to locate the field theory because r → ∞ as well as
r = 0 are possible options. I will argue that after choosing r = 0 the result
for the entanglement entropy in the ground state indeed agrees with the result
on the field theory side. Furthermore, equality also holds for the slightly more
complicated case of boosted Rindler-AdS.

The work is organized as follows: In the second chapter I give some basic
information on entanglement entropy in general. In the third chapter I introduce
conformal field theories in two dimensions, first of all the ordinary relativistic
CFTs and then I specialize to warped CFTs. In the fourth chapter I calculate the
entanglement entropy of an interval using the Rindler method for both algebras
and in the fifth chapter I repeat this calculation using the twist field method.
The sixth chapter is devoted to the dual bulk theory where the basics of boosted
Rindler space are explained and the gravitational calculations are performed.

I will use natural units with c = ~ = kB = 1 and the Einstein sum convention
throughout the thesis.

2 Entanglement Entropy

Entanglement entropy is a very important quantity to measure “how strongly
entangled” a quantum mechanical system is. If we have a system described by
a density operator ρ, then the expectation value of the von-Neumann-entropy
can be calculated to

S = −Tr(ρ ln ρ). (3)

Now consider the case if the system consists of two subsystems A and B and
the Hilbert space can be written as a direct product H = HA ⊗ HB . Then
the reduced density operator ρA is defined by tracing out the subsystem B:
ρA =

∑

ψ∈HB

〈ψ| ρ |ψ〉 and the entanglement entropy is equal to the von-Neumann-

entropy of the reduced density operator,

SA = −Tr(ρA ln ρA). (4)

SA has a few important features which make it a good candidate for measuring
the entanglement between A and B: First of all, it is invariant under unitary
transformations ρA → UρAU

−1 which typically means independent of the ob-
server, as we will see later. Secondly, if ρA describes a pure state i. e. ρ2A = ρA,
we expect SA to vanish because a pure state cannot be entangled. This is indeed
the case:

SA = −Tr(ρA ln ρA) = −Tr(ρA ln ρ2A) = −2Tr(ρA ln ρA) = 0 (5)

Thirdly, at zero temperature also the equality SA = SB holds.
In field theories, entanglement entropy is usually quite difficult to calculate

and there exist only a few analytical results. Because of the infinitely many
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degrees of freedom, S diverges and one has to introduce an ultraviolet cutoff e.
g. in form of a lattice spacing a. It has been proven that in 2 + 1 or higher
dimensional systems the continuum limit is given by

SA ∼
Area(∂A)

ad+1
+ ... (6)

where ∂A denotes the boundary of the subsytem A. This looks very similar to
the familiar Bekenstein-Hawking law which gives the entropy of a black hole in
terms of its horizon area

SBH =
A

4GN
(7)

and therefore motivates a holographic description of entanglement entropy.
There is another notion of entanglement entropy which will become useful

in later calculations which is called the Renyi entropy

SRenn =
1

1− n
ln(Tr ρnA) (8)

with index n. Since this expression is defined for all natural numbers n, it can
be analytically continued to any real n. The limit n → 1+ can be obtained by
using de l´Hospital´s rule and yields

SRen1 = − lim
n→1

∂n ln(Tr ρ
n
A) = − lim

n→1
∂n ln(Tr e

n ln ρA)

= − lim
n→1

Tr(ln(ρA)ρ
n
A)

Tr ρnA
= −Tr(ln(ρA)ρA) = SA (9)

The relation also holds after a small modification:

− lim
n→1

∂n(Tr ρ
n
A) = − lim

n→1
∂n(Tr e

n ln ρA) = − lim
n→1

Tr(ln(ρA)ρ
n
A) = SA (10)

This way to compute SA is often advantageous because it does not involve a
logarithm anymore but just powers of ρA. It will be used as part of the replica
trick in the section about twist fields.

3 Warped Conformal Field Theories

3.1 Basics of Conformal Field Theories

This chapter serves as a short introduction into Conformal Field Theory (CFT)
in general to recapitulate the most important concepts and to specify the no-
tation (see [1]). The defining property of a CFT is that it is invariant under
conformal transformations. A conformal transformation is a diffeomorphism
which preserves the metric up to a scale factor, i. e. a coordinate transforma-
tion which fulfills

gµν(x
′)
∂x′µ

∂xρ
∂x′ν

∂xσ
= Λ(x)gρσ(x) (11)
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with Λ(x) > 0. If one considers infinitesimal transformations x′µ = xµ+ ǫµ this
reduces to the Conformal Killing Equation

∂µǫν + ∂νǫµ = (Λ− 1)gµν (12)

We will be mainly interested in the two-dimensional Euclidean (or, after Wick
rotation, Lorentzian) plane where gµν = δµν = const. After taking the trace
and plugging in again the conformal Killing equation then can be written as

∂0ǫ0 = ∂1ǫ1 ∂0ǫ1 = −∂1ǫ0. (13)

These are just the Cauchy-Riemann-Equations, which is important for two rea-
sons: Firstly, it means that we can use the powerful framework of complex anal-
ysis and secondly it implies that the algebra of conformal symmetries is infinite
dimensional in 2d. One can now introduce complex coordinates z = x0 + ix1,
z = x0 − ix1 and ∂z =

1
2 (∂0 − i∂1), ∂z =

1
2 (∂0 + i∂1) and treat ǫ(z) = ǫ0 + iǫ1 as

a complex function. Therefore, ǫ(z) induces an infinitesimal conformal transfor-
mation iff it is holomorphic. It is now also quite easy to determine the scaling
factor: If z goes to f(z) = z + ǫ(z) and z likewise, then

ds2 = dz dz →
∂f

∂z

∂f

∂z
dz dz (14)

and Λ =| ∂f
∂z

|2.

3.2 Virasoro algebra

To determine the conformal symmetry algebra we first of all have to define an
appropriate basis. Every holomorphic function can be expanded in a Taylor se-
ries, however, we shall also include functions which are only locally holomorphic
and have poles elsewhere. We therefore write ǫ(z) as a Laurent series

ǫ(z) =

∞
∑

n=−∞

ǫn(−z
n+1). (15)

The generators of conformal transformations can now be read off as Ln =
(−zn+1)∂z and have the following commutator algebra called the Witt algebra:

[Ln, Lm] = (n−m)Ln+m (16)

We shall also allow for a central extension of this algebra, which is necessary to
have non-trivial representations. This central extension is unique up to trivial
redefinitions of the generators and reads

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δm+n (17)

with central charge c. The form of the central extension can be calculated by
writing out the various Jacobi identities, see [1]. This central extended algebra
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is called the Virasoro algebra and will be of great importance throughout the
thesis. For the antiholomorphic sector the above considerations are the same
and one additionally obtains

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δm+n

[Ln, Lm] = 0 (18)

The fact that the two copies of the Virasoro algebra commute suggests that the
holomorphic and antiholomorphic coordinates z and z can be somehow treated
as independent variables. Of course, one should still have in mind that in truth
they are complex conjugated to each other.

Since we have included meromorphic functions, not all of the generators
are defined globally: In fact, only L−1, L0, L1(and L−1, L0, L1) are well defined
on the whole Riemann sphere C∪{∞} and therefore generate global conformal
transformations. As can be seen from the definition, L−1 generates translations,
L0 generates rotations and dilatations and L1 generates special conformal trans-
formations, which are a mix of inversions and translations. The whole global
conformal group is isomorphic to the Moebius group which consists of transfor-
mations

z →
az + b

cz + b
(19)

with a, b, c, d ∈ C and det

(

a b

c d

)

= 1, i. e. SL(2,C). One should note that

the central extension vanishes for those generators; this is related to global
conformal invariance of the vacuum state.

3.3 Conformal fields and conserved currents

Let us now investigate the behaviour of field operators under conformal trans-
formations: A conformal field Φ is called primary if it transforms as

Φ′(z, z) =

(

∂f

∂z

)h(
∂f

∂z

)h

Φ(f(z), f(z)) (20)

where h and h are called the conformal weights of Φ. If this only holds for global
conformal transformations it is called quasi-primary. When the transformation
is infinitesimal, one gets after Taylor-expanding Φ(z + ǫ, z + ǫ):

Φ′(z, z) = (1 + h∂zǫ(z) + ǫ(z)∂z + h∂zǫ(z) + ǫ(z)∂z)Φ(z, z) (21)

In many cases we will have to do with purely holomorphic fields Φ(z), so in
the upcoming sections I often will suppress the z-dependence since it usually
does not contain any new information. A conformal field with h = 1 is called
a current. Due to Noether´s theorem, there exist conserved currents jµ with
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∂µj
µ = 0 associated to conformal symmetry. Since we have written the confor-

mal symmetries as infinitesimal translations xµ → xµ+ǫµ they can be expressed
as

jµ = Tµνǫ
ν (22)

with Tµν the energy-momentum-tensor. Tµν is symmetric, conserved, and, in
addition, traceless, which can be seen as follows: For constant ǫµ we have

∂µ(T
µνǫν) = ∂µT

µνǫν = 0 ⇒ ∂µT
µν = 0 (23)

and for x-dependent ǫµ

∂µ(T
µνǫν) = Tµν∂µǫν =

1

2
Tµν(∂µǫν + ∂νǫµ)

=
1

2
Tµν(Λ− 1)gµν = 0 ⇒ Tµµ = 0 (24)

where the conformal Killing equation has been used. If one goes over to the
complex coordinates z and z there are two non-vanishing components Tzz and
Tzz which are because of ∂µT

µν = 0 purely (anti-)holomorphic and denoted by
T (z) and T (z).

For many applications it is necessary to put a CFT on a cylinder where
the spatial axis is compactified: x1 ∼ x1 + 2π. 1 This can be achieved by
the conformal mapping z → ez, which maps the spatial axis to concentrical
circles and time evolution now goes radially outwards. If we now want to define
conserved charges, the integral has to run over such a circle, i. e.

Q(ǫ) =
1

2πi

˛

dz T (z)ǫ(z) + anti− hol. (25)

However, this equation should be regarded with care because the fields involved
transform non-trivially under z → ez. As it will be shown later, T (z) transforms

in a way that the powers of
(

dz′

dz

)

cancel away and what remains is an anomaly

proportional to the central charge which can be absorbed in T (z).
Usually in quantum theories, the conserved charge is the generator of the

associated symmetry, so by taking ǫ(z) = zn+1 there should exist a correspon-
dence Ln = Q(ǫ = zn+1) ≡ Qn. This is interesting because the Qn are just the
Laurent modes of Tµν , hence we can establish the following useful relations:

Ln =
1

2πi

˛

dz T (z)zn+1 and T (z) =

∞
∑

n=−∞

Lnz
−n−2 (26)

1One should notice that this is not a compactification in the topological sense where a
manifold is a subset of its compactification; here we have the set of eqivalence classes x

1 ∼

x
1 + 2π
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3.4 Operator product expansion (OPE)

The operator product expansion is a kind of algebraic structure on the space of
conformal fields and can be motivated as follows: After the mapping discussed
above the origin represents the inifinite past, that means that incoming states
can be constructed by conformal primaries acting on the vacuum state, i. e.

|φ〉 = φ(0) |0〉 = lim
z,z→0

φ(z, z) |0〉 . (27)

This relation is called the operator-state-correspondence. If we now perform a
Laurent expansion of the field

φ(z) =
∑

n

z−n−hφn (28)

(for simplicity I assume φ to be chiral) one sees that in the limit z → 0 the modes
with n > −h create singularities. This is not what we expect of well-behaved
asymptotic states, so we require that those modes annihilate the vacuum. The
relation above can therefore be written as

|φ〉 = lim
z→0

φ(z) |0〉 = φ−h |0〉 (29)

If we now have a product of two conformal fields, it should automatically
be time-ordered which means radially ordered in our theory: ROi(z)Oj(w) =
Oi(z)Oj(w) if | z |>| w | and vice versa. Their action on the vacuum now
gives a state of the Hilbert space, which could also have been created at the
earlier time (| w | in the previous case) by a (in general highly non-trivial)
linear combination of operators. So it should be possible to write

ROi(z)Oj(w) =
∑

n

cnij(z − w)On(w) (30)

where the set On(w) has to be complete (more details can be found in [2]).
Of particular interest is the OPE of a conformal primary field Φ(z) with T (z):
From the above considerations we deduce that the variation of a field under an
infinitesimal conformal transformation is given by

δǫΦ(w) = [Q(ǫ),Φ(w)] =
1

2πi

˛

dz ǫ(z)[T (z),Φ(w)]. (31)

The commutator can be rewritten as a radial ordered product:

δǫΦ(w) =
1

2πi







˛

|z|>|w|

dz −

˛

|z|<|w|

dz






ǫ(z)RT (z)Φ(w) (32)

The difference of the two contour integrals is a contour integral around w [2, 1]
so we have

δǫΦ(w) =
1

2πi

˛

C(w)

dz ǫ(z)RT (z)Φ(w) (33)
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This result has to be equal to that from chapter 3.3, δǫΦ(w) = (h∂wǫ(w) +
ǫ(w)∂w)Φ(w), which is only possible if

RT (z)Φ(w) =
h

(z − w)2
Φ(w) +

1

z − w
∂wΦ(w) + regular terms (34)

To show this one has to expand ǫ(z) in a Taylor series and use Cauchy´s residue
theorem [2]. One should notice that in an OPE the singular terms are most
interesting because they determine the short-distance behaviour and the regular
terms vanish inside a contour integral. The last equation can also serve as an
equivalent definition of a conformal primary field. With a similar calculation
we can also establish the relation

[Lm,Φn] = ((h− 1)m− n) Φm+n (35)

for the corresponding Laurent modes.
To end this section we state that the OPE of T (z) with itself is given by

T (z)T (w) =
c

2(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w
, (36)

a proof can be found in [1]. Consequently, T (z) is conformal primary with
h = 2 only for c = 0, otherwise it transforms anomalously. The infinitesimal
transformation law can be computed to

δǫT (w) =
1

2πi

˛

C(w)

dz ǫ(z)RT (z)T (w)

=
c

12
∂3wǫ(w) + 2∂wǫ(w)T (w) + ǫ(w)∂wT (w) (37)

To integrate this one has to perform some non-trivial steps described in [3] to
obtain

T´(w) =

(

∂z

∂w

)2

T (z)+
c

12
{z, w} =

(

∂z

∂w

)2

T (z)+
c

12





∂3z
∂w3

∂z
∂w

−
3

2

(

∂2z
∂w2

∂z
∂w

)2


 .

(38)
for finite transformations. The anomalous term {z, w} is called the Schwarzian
derivative and will also appear later in some modifications.

3.5 Conformal Ward identity and n-point functions

The fundamental objects in every quantum field theory are n-point correlation
functions and, remarkably, in CFTs the 2- and 3-point function are fixed up to a
constant only by employing the symmetries. For example consider a general 2-
point function of two holomorphic quasi-primary fields 〈Φi(z)Φj(w)〉 = f(z, w).
Translational invariance implies that f(z, w) = f(z − w). Invariance under
dilatations gives the condition

f(z − w) = λhiλhjf(λ(z − w)) ⇒ f =
cij

(z − w)hi+hj
(39)
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with some constant cij . At last, invariance under special conformal transforma-
tions fixes hi = hj , see [1], so that the final result becomes

〈Φi(z)Φj(w)〉 =
cij δhi,hj

(z − w)2hi
(40)

The 3-point function can be fixed similarly to

〈Φi(z)Φj(w)Φk(u)〉 =
cijk

(z − w)hi+hj−hk(w − u)hj+hk−hi(z − u)hk+hi−hj
. (41)

For higher n-point function one can derive a Ward identity as follows: Consider
the expression

1

2πi

˛

dz ǫ(z) 〈T (z)Φ1(w1)Φ2(w2)...Φn(wn)〉 =

〈

1

2πi

˛

dz ǫ(z)T (z)Φ1(w1)Φ2(w2)...Φn(wn)

〉

=

n
∑

i=1

〈

Φ1(w1)...
1

2πi

˛

C(wi)

dz ǫ(z)T (z)Φi(wi)...Φn(wn)

〉

=

n
∑

i=1

〈

Φ1(w1)...
1

2πi

˛

C(wi)

dz ǫ(z)

(

hi

(z − wi)2
+

1

z − wi
∂wi

)

Φi(wi)...Φn(wn)

〉

=

1

2πi

˛

dz ǫ(z)
n
∑

i=1

(

hi

(z − wi)2
+

1

z − wi
∂wi

)

〈Φ1(w1)...Φn(wn)〉

(42)

for primary fields Φi(wi) where in the third line the contour integral has been
deformed, see [1] and then the OPE has been used. Since ǫ(z) is arbitrary, the
integrands have to be identical, so

〈T (z)Φ1(w1)Φ2(w2)...Φn(wn)〉 =
n
∑

i=1

(

hi

(z − wi)2
+

1

z − wi
∂wi

)

〈Φ1(w1)...Φn(wn)〉 .

(43)
This conformal Ward identity contains all the information about conformal sym-
metry and will be used later in the section about twist fields.

3.6 The Warped Conformal Field Theory algebra

A Warped Conformal Field Theory (WCFT) differs from a conventional CFT
in the point that the symmetry algebra is not two copies of the Virasoro alge-
bra but a Virasoro-Kac-Moody-algebra. That means that the group of global
transformations is not SL(2,C) but SL(2,R)×U(1). The theory is formulated
firstly on a plane described by two coordinates z and w which will be treated
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as complex coordinates to employ the advantages of complex analysis (analo-
gously to z and z before). A WCFT is now per definition invariant under global
coordinate transformations

z = f(z´) and w = w´ + g(z´). (44)

So, as before, z can be transformed by a holomorphic function but for w only z-
dependent translations are allowed. The symmetries are generated by an energy-
momentum-operator T (z) (of course only the holomorphic component) and a
current operator P (z) responsible for the translations. They can be decomposed
in Laurent modes according to

Ln =
1

2πi

˛

dz T (z)zn+1 (45)

Pn = −
1

2π

˛

dz P (z)zn (46)

and generate an algebra which reads in its simplest form

[Ln, Lm] = (n−m)Ln+m

[Ln, Pm] = −mPn+m

[Pn, Pm] = 0. (47)

This special symmetry algebra admits at most three central extensions which
are compatible with the Jacobi-identities:

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δm+n

[Ln, Pm] = −mPm+n + ik(n2 + n)δm+n

[Pn, Pm] = K
n

2
δm+n (48)

The first one is the already familiar Virasoro extension but the other two are
interesting and provide the main motivation for this thesis. An important point
is that for K 6= 0 one can eliminate the second extension by quite a simple
redefinition of the generators: First consider the shift

Pn = Pn + ikδn (49)

k is a central element so this change only contributes to the right-hand side of
the second equation and removes the linear term in n:

[Ln, Pm] = −mPm+n + ikn2δm+n (50)

Now define

Ln = Ln − i
2k

K
nPn (51)

so that the second commutator becomes

[Ln, Pm] = −mPm+n + ikn2δm+n − i
2k

K
n[Pn, Pm] = −mPm+n. (52)
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After a short algebraic calculation one can also show that the Lns also satisfy a
Virasoro algebra but with a different central charge, [Ln, Lm] = (n−m)Ln+m+
c
12 (n

3 − n)δm+n. That means, that it should suffice to work on the case k = 0
as it has been done in [4, 5]. However, if K = 0, the redefinition above is not
possible anymore and the algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δm+n

[Ln, Pm] = −mPm+n + ik(n2 + n)δm+n

[Pn, Pm] = 0 (53)

is non-trivial.2 It will be the main task of the thesis to determine entanglement
entropy in a theory with this special algebra generalizing the calculations of [5]
to this case.

3.7 Geometrical aspects of WCFTs

WCFTs exhibit quite a strange geometric structure, which shall be analyzed in
this chapter [5]. First of all, for most of the applications we want to put the
theory on a cylinder described by the two coordinates x and t. It can be mapped
to the plane by the warped conformal transformation

z = eix and w = t+ 2αx. (54)

with the constant tilt parameter α. The symmetry algebra remains the same
under this transformation up to a linear shift of the zero modes L0 and P0,
which can be absorbed in the definition and does not influence the results of this
chapter (see 4.5 for more information). The invariance under warped conformal
transformations has important consequences for the geometry, e. g. our theory
should be invariant under the linear transformation t → t + vx or in matrix
notation

(

x

t

)

→

(

1 0
v 1

)(

x

t

)

or xa → Λabx
b. (55)

There obviously exist a vector qa =

(

0
1

)

and a one-form qa =
(

1 0
)

which

are preserved under this transformation. The fixed points are exactly those
which fulfill x = 0 so we conclude that the t-axis is preferred because of the
symmetry structure. We can also find two invariant tensors namely a degenerate

metric gab = qaqb ≡

(

1 0
0 0

)

and a symplectic structure hab ≡

(

0 1
−1 0

)

. The

norm defined with respect to gab only measures the length in x-direction. To
investigate the whole symmetry algebra it is useful to introduce the one-form
Ja,n =

(

Ln Pn
)

. The non-extended algebra can then be written as

[Ja,n, Jb,m] =
n−m

2
(qaJb,n+m+qbJa,n+m)−

n+m

2
(qaJb,n+m−qbJa,n+m) (56)

2In the following, we shall always assume that if K 6= 0, then k = 0 and vice-versa.
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By using the tensors defined above it is possible to include the first two central
extensions:

[Ja,n, Jb,m] =
n−m

2
(qaJb,n+m + qbJa,n+m)−

n+m

2
(qaJb,n+m − qbJa,n+m)

+
c

12
gab(n

3 − n)δn+m + ikhab(n
2 + n)δn+m (57)

However, for the third one it is necessary to introduce a second one-form qa =
(

0 1
)

which gives rise to a second degenerate metric gab = qaqb ≡

(

0 0
0 1

)

to

write

[Ja,n, Jb,m] =
n−m

2
(qaJb,n+m + qbJa,n+m)−

n+m

2
(qaJb,n+m − qbJa,n+m)

+
c

12
gab(n

3 − n)δn+m + ikhab(n
2 + n)δn+m +

K

2
gabnδn+m. (58)

This observation is crucial because it means that for K 6= 0 there exists a second
preferred axis namely the x-axis, which consists of null-vectors with respect to
gab.

4 The Rindler method

4.1 Basic ideas

We turn now to the actual aim of the thesis: Calculating the entanglement
entropy of an interval A in a 1 + 1 dimensional WCFT. The basic idea of the
Rindler method seems quite natural since it consists of performing a warped
conformal transformation from the whole cylinder to the “interior” of the interval
A and then evaluate a thermal entropy via the partition function. Following [5],
the background should be a spacetime cylinder described by two coordinates T
and X which correspond to the two preferred axes of the last chapter. In the
most general case, the cylinder identification is oriented arbitrarily so we write

(T,X) ∼ (T + L,X − L). (59)

The interval A also does not necessarily have to be aligned with the coordinates
or the cylinder and can be denoted as

(T,X) ∈

[(

l

2
,−

l

2

)

,

(

−
l

2
,
l

2

)]

. (60)

So, what do we mean by the “interior” of the interval? In a relativistic theory
it would be given by the Rindler wedge (see [5]), bounded by the future and
past light-cone, which is of course independent of the observer. In a WCFT, we
shall also use the preferred axis of the theory, which is in this case the T -axis,
as the boundary of the interior region. So we look for a transformation which
maps the whole cylinder to the strip between the straight lines X = − l

2 and

14



X = l
2 . One candidate which has the necessary structure of a warped conformal

transformation is given by

tan πX
L

tan πl
2L

= tanh
πx

κ
and T +

L

L
X = t+

κ

κ
x (61)

with two arbitrary scaling factors κ and κ. It maps, as desired, the interval
[− l

2 ,
l
2 ] to the whole real axis and respects the cylinder identification which

is of course not visible anymore in the x, t-coordinates. However, a different
identification appears naturally in the new coordinates, namely

(t, x) ∼ (t− iκ, x+ iκ). (62)

It can be seen as a thermal identification with potentials κ and κ, which allows
us to calculate a thermal entropy Sth. Since the entanglement entropy is inde-
pendent of the observer as stated above, we expect that it equals this thermal
entropy,

SA = Sth. (63)

4.2 Handling of divergencies

There is one issue which has to be discussed concerning the last equation and is
related to the divergence structure of both sides: SA is ultraviolet divergent as
already stated while Sth is infrared divergent because of the infinite extension
in x. To relate these divergencies, we introduce a cutoff parameter ǫ and change
the interval A to

(T,X) ∈

[(

l

2
−
l

l
ǫ,−

l

2
+ ǫ

)

,

(

−
l

2
+
l

l
ǫ,
l

2
− ǫ

)]

. (64)

If we plug this in into the transformation above we see, using

tan
π
(

− l
2 + ǫ

)

L
≈ tan

(

−
πl

2L

)

+ ǫ
π

L cos2(− πl
2L )

, (65)

that the lower bound of X gets mapped to

x ≈
κ

π
artanh

(

tan(− πl
2L )

tan πl
2L

+ ǫ
π

L cos2(− πl
2L ) tan

πl
2L

)

=
κ

π
artanh

(

−1 + ǫ
π

L cos πl2L sin πl
2L

)

=
κ

π
artanh

(

−1 + ǫ
2π

L sin πl
L

)

=
κ

2π
ln

(

ǫ 2π
L sin πl

L

2− ǫ 2π
L sin πl

L

)

=
κ

2π
ln

(

−1 +
1

1− ǫ π

L sin πl
L

)

≈
κ

2π
ln

(

ǫ
π

L sin πl
L

)

= −
κ

2π
ln

(

L sin πl
L

πǫ

)

≡ −
κ

2π
ζ. (66)
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The quantity ζ diverges as ǫ goes to zero, as expected. For the lower bound of
T one gets

t = T +
L

L
X −

κ

κ
x =

l

2
−
l

l
ǫ−

lL

2L
+
L

L
ǫ+

κ

2π
ζ ≈

l

2
−
lL

2L
+

κ

2π
ζ (67)

if one ignores contributions of order ǫ. Doing the same calculations with the
upper bounds yields the regularized interval

(t, x) ∈

[(

κ

2π
ζ +

l

2
−
lL

2L
,−

κ

2π
ζ

)

,

(

−
κ

2π
ζ −

l

2
+
lL

2L
,
κ

2π
ζ

)]

. (68)

4.3 The partition function in WCFTs

In ordinary quantum statistics, the partition function in the canonical ensemble
is defined as

Z = Tr e−βH . (69)

The trace can be viewed as a result of an identification in imaginary time with
period β. We will be mainly interested to calculate Z on a torus with an
additional spatial identification. To keep the torus completely arbitrary we
define

(t, x) ∼ (t+ 2πa, x− 2πa) ∼ (t+ 2πτ, x− 2πτ) (70)

where τ plays the role of β (up to prefactors).
The next question we have to ask is what the Hamiltonian in our WCFT

is? It should be the operator which generates translations in the direction of
the thermal identification above. We know that L0 generates dilatations on
the plane which correspond to x-translations on the cylinder. P0 generates
translations in the plane which can be seen from the definition and, since the
transformation to the cylinder is linear in P , also generates time translations
on the cylinder. The whole expression for Z should therefore be given by

Za,a(τ , τ) = Tra,ae
−2πiτL0+2πiτP0 (71)

where I write the spatial identification parameters a and a as subscripts to
avoid confusion. For later purposes it is useful to transform this expression to
the canonical circle with a, a = 0, 1 which can be achieved by the transformation

u =
x

a
and v = t+

a

a
x. (72)

The identification now reads

(u, v) ∼ (u− 2π, v) ∼

(

u−
2πτ

a
, v −

2πτa

a
+ 2πτ

)

. (73)
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Let us first consider the case k = 0 and K 6= 0: The transformation law of T
and P has been calculated in [4, 5] and reads

P ′(z′) =
∂z

∂z′

(

P (z) +
K

2

∂w′

∂z

)

T ′(z′) =

(

∂z

∂z′

)2

(T (z)−
c

12
{z′, z}) +

∂z

∂z′
∂w

∂z′
P (z)−

K

4

(

∂w

∂z′

)2

(74)

The first equation could have been guessed: The z-dependent translations in w
can be seen as gauge transformations in a U(1)-bundle, so P (z) transforms as a
connection. The second equation is more surprising, because despite of the first
term which is familiar from ordinary CFTs there appear two anomalous terms,
which become necessary if one has two consecutive transformations. Applying
these results to the transformation above one finds

P ′(u) = aP (x) +
Ka

2

T ′(u) = a2T (x)− aaP (x)−
K

4
a2. (75)

The correct expression for the Fourier modes on the cylinder is given by

Pn = −
1

2π

ˆ

dxP (x)e
inx
a

Ln = −
1

2π

ˆ

dxT (x)e
inx
a , (76)

and respectively

P ′
n = −

1

2π

ˆ

duP ′(u)einu

L′
n = −

1

2π

ˆ

duT ′(u)einu (77)

in the new coordinates. It is now easy to relate the modes to get

P ′
n = Pn −

Ka

2
δn

L′
n = aLn − aPn +

K

4
a2δn. (78)

Plugging this into the expression for Z yields

Z0,1

(

τ −
τa

a
,
τ

a

)

= Tra,ae
−2πi τ

a
(aL0−aP0+

K
4 a

2)+2πi(τ− τa
a

)(P0−
Ka
2 )

= Tra,ae
−2πiτL0+2πiτP0eπiKa(−τ+

τa
2a )

= Za,a(τ , τ)e
πiKa( τa

2a−τ) (79)
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so Z transforms anomalously due to the central element K.
For the entropy calculation it will be necessary to introduce an operation

called S-transformation which exchanges the spatial and the thermal circle,
a, a; τ , τ → τ , τ ;−a,−a. Since S belongs to the modular group and does not
change the torus, we expect the partition function to be invariant:

Z0,1

(

τ −
τa

a
,
τ

a

)

= Zτ− τa
a
, τ
a
(0,−1) (80)

Using the above result gives the relation

Z0,1

(

τ −
τa

a
,
τ

a

)

= Z0,1

(

τa

τ
− a,−

a

τ

)

e
πiKa
2τ (τ− τa

a
)2 . (81)

One should note that this simple form of the S -transformation only holds in the
canonical circle, for other choices of a, a it would be more complicated. 3

Let us now investigate the other non-trivial algebra with K = 0 and k 6= 0:
The transformation laws of T and P are novel and are derived in detail in
Appendix A. The result is

P ′(z′) =
∂z

∂z′
P (z)− k

∂2z

∂z′2
∂z′

∂z

T ′(z′) =

(

∂z

∂z′

)2

(T (z)−
c

12
{z′, z}) +

∂z

∂z′
∂w

∂z′
P (z) + k

(

∂2w

∂z′2
−
∂w

∂z

∂2z

∂z′2

)

(82)

If one now performs the transformation to the canonical circle one finds

P ′(u) = aP (x)

T ′(u) = a2T (x)− aaP (x) (83)

This is quite remarkable because it is just the above result with K = 0, the
new anomaly k does nowhere appear! What looks surprising at first sight,
could yet have been expected from a geometrical point of view: Since there is
no preferred spatial axis for K = 0, there is also no preferred canonical circle
and the transformation should not contain any anomalies. This simplifies the
entropy calculation in the next chapter because we do not have to distinguish
between the two possible algebras.

4.4 Entropy calculation

What remains to do is to evaluate a thermal entropy on the cylinder after the
coordinate transformation to x and t. The interval covered by x is diverging
with ǫ → 0 so it should make no difference to consider the identification of the

3For more information about the torus partition function see [1].
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interval and calculate the entropy on a torus. The identification parameters can
be read off to

2πa =
κ

π
ζ 2πa =

κ

π
ζ −

L

L
l + l

2πτ = −iκ 2πτ = −iκ. (84)

Starting from the partition function one can obtain the entropy

Sa,a(τ , τ) = (1− τ∂τ − τ∂τ ) ln Za,a(τ , τ). (85)

This formula is the analog of

S =
E − F

T
= β(−∂β ln Zk +

1

β
ln Zk) = (1− β∂β) ln Zk (86)

in classical statistical physics with the only difference that in our case the ther-
mal circle also has a spatial contribution which is included by the τ -term. This
expression is now quite hard to evaluate directly because the trace is taken over
various states of the theory. However, if we perform an S -transformation and
exchange the two circles, the new inverse temperature gets very large and we
can assume that in the limit ǫ → 0 only the vacuum contributes. Moreover,
entropy is a classical observable which takes the same value for any observer,
so it can be as well calculated in the canonical circle. To prove this statement
use the anomalous transformation rule of Z to obtain (with the abbreviations
z = τ − τa

a
and y = τ

a
)

Sa,a(τ , τ) = (1− τ∂τ − τ∂τ )(ln Z0,1(z, y) + iKa

(

τ −
τa

2a

)

)

= ln Z0,1(z, y)− τ(∂z ln Z0,1(z, y)

(

−
a

a

)

− ∂y ln Z0,1(z, y)

(

1

a

)

)

− τ∂z ln Z0,1(z, y)

=

(

1−

(

τ −
τa

a

)

∂z −
τ

a
∂y

)

ln Z0,1(z, y)

= (1− z∂z − y∂y) ln Z0,1(z, y)

= S0,1(z, y) (87)

Now, the S -transformation gives

Z0,1(z, y) = eπiK
z2

2yZ0,1

(

z

y
,−

1

y

)

= eπiK
z2

2y e2πi
z
y
Pvac

0 e2πi
1
y
Lvac

0 (88)
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where I have already inserted the vacuum expectation values (VEVs) of P0 and
L0. For the entropy we get

S0,1(z, y) = (1− z∂z − y∂y) ln Z0,1(z, y)

= πiK
z2

2y
+ 2πi

z

y
P vac0 + 2πi

1

y
Lvac0 − πiK

z2

y

− 2πi
z

y
P vac0 + πiK

z2

2y
+ 2πi

z

y
P vac0 + 2πi

1

y
Lvac0

= 2πi
1

y
(2Lvac0 + zP vac0 ) (89)

One can finally insert

z = τ −
τa

a
= −

iκ

2π
−

−(κ
π
ζ − L

L
l + l)iκ

2κζ
=

il

2ζ

(

l

l
−
L

L

)

y =
τ

a
= −

iπ

ζ
(90)

to obtain

SA = −4ζLvac0 + il

(

L

L
−
l

l

)

P vac0 (91)

This Cardy-type formula gives the entanglement entropy in terms of the VEVs
and is the main result of this section. To recap, ζ = ln[ L

πǫ
sin πl

L
] measures

the length of the interval in the thermal coordinates, L and L are the cylinder
identification parameters and l and l give the spacelike and timelike size of the
arbitrarily oriented interval. There are a few things to notice: First of all it
does not depend on the scales κ, κ which is good because they were chosen
completely arbitrary. Secondly, one can see that despite of the diverging term

there is a finite term proportional to the misalignment L
L
− l
l

of the interval and
the cylinder identification. And, most importantly, this formula is universal in
the sense it holds for both non-trivial cases of symmetry algebras, K 6= 0 and
k 6= 0. The central elements only contribute over the VEVs.

4.5 Calculation of the vacuum expectation values

The vacuum state is defined, not only in field theories but also in the dual gravity
theories, as the state of maximal symmetry. Since L0 and P0 generate global
symmetries, there action on the vacuum state should give zero which would
imply Lvac0 = P vac0 = 0. However, this statement only holds on the plane, where
the symmetry algebra in its initial form was defined. After the transformation
to the cylinder, the zero modes get changed by a linear shift, which shall be
calculated now. First, for the algebra with k = 0 the transformation law 74
applied to the transformation z = eix and w = t+ 2αx yields

T ′(x) = −z2T (z) +
c

24
+ 2αizP (z)−Kα2

P ′(x) = izP (z)− kα. (92)
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This implies for the modes

L′
n = Ln + 2αPn + (Kα2 −

c

24
)δn+m

P ′
n = Pn +Kαδn (93)

and in particular for the zero modes

L′
0 = L0 + 2αP0 +Kα2 −

c

24
P ′
0 = P0 +Kα. (94)

Plugging this into the entropy formula 91 yields

SA = −4ζ(Kα2 −
c

24
) + il

(

L

L
−
l

l

)

Kα (95)

The algebra of the new modes looks almost the same, only the linear term of
the Virasoro extension has vanished:

[L′
n, L

′
m] = (n−m)Ln+m +

c

12
n3δm+n

[L′
n, P

′
m] = −mPm+n

[P ′
n, P

′
m] = K

n

2
δm+n (96)

For the algebra 53 we have to use the transformation law 82 to get

T ′(x) = −z2T (z) + 2αizP (z) +
c

24
− 2kαi

P ′(x) = izP (z)− ik (97)

and furthermore

L′
0 = L0 + 2αP0 + 2kαi−

c

24
P ′
0 = P0 + ik (98)

The entanglement entropy now becomes

SA = −4ζ(2kαi−
c

24
)− l

(

L

L
−
l

l

)

k (99)

and the algebra reads

[Ln, Lm] = (n−m)Ln+m +
c

12
n3δm+n (100)

[Ln, Pm] = −mPm+n + ikn2δm+n

[Pn, Pm] = 0, (101)

again without the linear terms in the central extensions.
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5 The twist field method

5.1 The replica trick

There is another different method for evaluating entanglement entropy in two-
dimensional field theories [6, 7] which is motivated by the Renyi entropy. In the
first chapter we already encountered the relation

SA = − lim
n→1

∂n ln(Tr ρ
n
A) = − lim

n→1
∂nTr ρ

n
A. (102)

Since it contains merely powers of ρA and no logarithm anymore, it can be
used to calculate SA via a path integral. At zero temperature we usually have
ρ = ψψ† where ψ is the ground state of the theory. If ψ and ψ† are represented
by fields φ′(x, 0) and φ′′(x, 0) respectively, this can be written as a path integral

ρ = Z−1

0
ˆ

t=−∞

Dφ e−SE [φ]δ(φ(x, 0)−φ′(x, 0))

∞̂

t=0

Dφ e−SE [φ]δ(φ(x, 0)−φ′′(x, 0)).

(103)
Here SE denotes the Euclidean action of the theory and Z =

´∞

t=−∞
Dφ e−SE [φ]

is a normalization factor which ensures that Tr ρ = 1. The reduced density
matrix ρA is now obtained by setting φ′(x, 0) = φ′′(x, 0) and integrating over it
for all x which are not in A, i. e. integrating over the whole plane and merely
letting an open cut at the interval A. To construct the powers of ρA we just
take n copies of that and glue them together cyclically such that the every lower
edge of the cut is glued to the upper edge of the next copy, see [6] for a picture.
If one additionally glues the nth lower edge to the first upper edge one obtains
an n-sheeted Riemann surface Rn with the property

Tr ρnA = Z−n

ˆ

Rn

Dφ e−SE ≡
Zn

Zn
(104)

One should notice that we now need the nth power of the normalization factor
because of the n sheets involved. This special Riemann surface consists of flat
planes, except for the two endpoints a and b of A which become branch points.
We therefore conclude that it should be possible to determine the above path
integral in the x, t-plane and implement the non-trivial topology with local fields
inserted at a and b. [8, 9] More precisely, those so-called twist fields are always
present if there exists an internal symmetry σ of the Lagrangian such that

ˆ

dx dtL[σφ](x, t) =

ˆ

dx dtL[φ](x, t) (105)

The above path integral can also be calculated on n copies of the x, t-plane

Zn =

ˆ

C(a,b)

Dφ1Dφ2...Dφne
−
´

dx dtL[φ1]+L[φ2]+...+L[φn] (106)
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where C(a, b) restricts the path integral according to φi(x, 0
+) = φi+1(x, 0

−)
for a < x < b. The total Lagrangian density is simply written as a sum over
all the sheets. Now, the symmetry σ corresponds to cyclic permutations of the
sheets, which is possible in two directions:

σ+ : φi → φi+1 and σ− : φi → φi−1 (i mod n) (107)

In fact, the twist fields Φ can now be defined through the path integral

〈Φ+(a, 0)...〉 ∝

ˆ

C′(a,0)

Dφ e−
´

dx dtL[φ]... (108)

where the condition C ′(a, 0) now implies φ(x, 0+) = σ+φ(x, 0
−) for x > a and

likewise for Φ−. If we combine two twist fields, we get something which is
proportional to Zn

Zn ∝ 〈Φ+(a, 0)Φ−(b, 0)〉 ∝

ˆ

C′′(a,b)

Dφ e−
´

dx dtL[φ] (109)

because in the interval (a, b) every sheet is connected to the next one though
for x > b the operations σ+ and σ− cancel and the sheets are connected to
themselves. The correlation function on the left hand side of course depends on
n, or more explicitly, the conformal dimension of Φ± depends linearly on n. For
an arbitrary operator O we can now write down the equation

Z−n

ˆ

Rn

DφO(x, t) e−SE =
〈O(x, t)Φ+(a, 0)Φ−(b, 0)〉

〈Φ+(a, 0)Φ−(b, 0)〉
(110)

where the constant of proportionality cancels away. The fields Φ± are local
fields in the sense that they do not depend on the energy density at space-like
distances. Moreover, σ± commutes with all the symmetries present in (W)CFTs.
We therefore conclude that also the twist fields respect those symmetries, so that
we can use them to determine the correlation functions. This statement is quite
powerful because correlation functions are highly constrained by the symmetries
in (W)CFTs.

5.2 Entanglement entropy in ordinary CFT

At first we want to use the above results to calculate the entanglement entropy
SA in a relativistic CFT on the complex plane with z = x + it. We already
know that Zn is proportional to a two-point function but we do not know yet
the conformal dimension of the twist fields. It is possible to determine by
computing the expectation value of T (z) on the n-sheeted Riemann surface in
two different ways: Firstly we can map Rn to the plane by the conformal map

z =

(

w − a

w − b

)

1
n (111)

23



where z = w−a
w−b maps the branch cut to (−∞, 0) and the nth root removes it. In

the plane we have 〈T (z)〉 = 0 because of translational and rotational invariance,
so 〈T (z)〉 on Rn is given solely by the Schwarzian derivative c

12{z, w}. The
evaluation has been done with Mathematica and yields

〈Ti(w)〉 =
c

24

(

1−
1

n2

)

(a− b)2

(w − a)2(w − b)2
(112)

for the ith sheet. To get the full 〈T (w)〉 we just have to multiply by n :

〈T (w)〉 =
c

24

(

n−
1

n

)

(a− b)2

(w − a)2(w − b)2
(113)

On the other hand from the formula above we have

〈T (w)〉 =
〈T (w)Φ+(a)Φ−(b)〉

〈Φ+(a)Φ−(b)〉
(114)

and, additionally, the conformal Ward identity

〈T (w)Φ+(a)Φ−(b)〉 =

(

h+

(w − a)2
+

h−

(w − b)2
+

1

w − a
∂a +

1

w − b
∂b

)

〈Φ+(a)Φ−(b)〉 .

(115)
It is reasonable to assume that the conformal dimensions h+ and h− of the
twist fields are the same, otherwise their correlation function would vanish.
Moreover, in this equation we can normalize the two-point function without
loss of generality to

〈Φ+(a)Φ−(b)〉 = (b− a)−2h (116)

Plugging in yields

〈T (w)Φ+(a)Φ−(b)〉

=

(

h

(w − a)2
+

h

(w − b)2

)

(b− a)−2h − 2h(b− a)−2h−1

(

1

w − b
−

1

w − a

)

= (b− a)−2h (h((w − b)2 + (w − a)2)− 2h(w − a)(w − b)

(w − a)2(w − b)2

= (b− a)−2h h(b− a)2

(w − a)2(w − b)2
(117)

Dividing by 〈Φ+(a)Φ−(b)〉 immediately gives

〈T (w)〉 =
h(b− a)2

(w − a)2(w − b)2
(118)

and after comparison with the result before

h =
c

24

(

n−
1

n

)

. (119)
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So far we only considered the holomorphic dependence in the two-point function
and the Ward identity, however, we expect the antiholomorphic sector to be the
same because the symmetry σ does not distinguish between holomorphic and
anti-holomorphic fields. Therefore after inserting an extra factor of two we get
the proportionality relation

Tr ρnA = Cn

(

b− a

ǫ

)

− c
6 (n−

1
n
) (120)

where the extra factor ǫ is introduced for dimensional reasons and the constant
Cn remains undetermined. This can be plugged into the formula for the en-
tanglement entropy to yield the famous result first derived by Holzhey, Wilzcek
and Larsen

SA =
c

3
ln

(

b− a

ǫ

)

+ C∗ (121)

C∗ is minus the derivative of Cn at n = 1 and can be calculated for special
systems, see the references in [7].

5.3 Renyi entropy in WCFT

We will generalize the discussion a bit and calculate the Renyi entropy

SRenn =
1

1− n
ln(Tr ρnA) (122)

instead of the entanglement entropy using first the Rindler and then the twist
field method. From chapter 4.1 we know that Tr ρnA = Zn

Zn where Zn denotes
the partition function of the replica manifold. Now, since Tr ρnA is not affected
by a unitary coordinate transformation, we may calculate SRenn equivalently
in the x, t-coordinates. This makes it quite easy because in those “thermal”
coordinates Rn is simply a torus without branch points so all we have to do is
multiply the thermodynamic potentials by n to get

SRenn =
1

1− n
ln

(

Za,a(nτ, nτ)

Za,a(τ , τ)n

)

(123)

One can now perform the same modular manipulations as above; the new po-
tentials z and y depend linearly on τ and τ so one obtains

Z0,1(nz, ny) = eπiK
nz2

2y e2πi
z
y
Pvac

0 e2πi
1
ny
Lvac

0

Z0,1(z, y)
n = eπiK

nz2

2y e2πi
nz
y
Pvac

0 e2πi
n
y
Lvac

0 (124)

and plugging in yields

SRenn =
1

1− n
(2πi

z

y
P vac0 (1− n) + 2πi

1

y
Lvac0

(

1

n
− n

)

)

= 2πi
z

y
P vac0 + 2πi

1

y
Lvac0

(

1

n
+ 1

)

= il

(

L

L
−
l

l

)

P vac0 − 2ζLvac0

(

1

n
+ 1

)

(125)
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In the limit n→ 1 we get back the result for the entanglement entropy.

5.4 Calculation of 〈T 〉 and 〈P 〉 in WCFT

To use the twist field method we have to calculate the expectation values of
T and P on the replica manifold. However, this is not as straightforward as
before in ordinary CFTs because we do not have a warped conformal mapping
which maps Rn to the plane. Instead we will again use the thermal coordinates
x and t where Rn is topologically trivial. To keep the calculations a bit easier
we will send L and L to infinity and only keep track of the angle of the cylinder

identification L
L

. The transformation to x and t then reduces to

2X

l
= tanh

πx

κ
and T +

L

L
X = t+

κ

κ
x. (126)

What we have to do now is to compute 〈T 〉 and 〈P 〉 on the n-fold copy of the
x, t-torus, i. e. with potentials nτ and nτ . If we assume translational invariance
then T (x) and P (x) are proportional to their zero modes, or more precisely, from
the definition it follows that

L0 = −aT (x) and P0 = −aP (x). (127)

〈L0〉 and 〈P0〉 can be calculated from the partition function:

〈L0〉 = −
1

2πi

∂
∂τ
Za,a(τ , τ)

Za,a(τ , τ)
= −

1

2πi

∂

∂τ
lnZa,a(τ , τ)

〈P0〉 =
1

2πi

∂

∂τ
lnZa,a(τ , τ) (128)

We now want to express Za,a(τ , τ) in terms of the vacuum expectation values
of L0 and P0, so we use our result in the canonical frame and transform it back
to an arbitrary frame:

Za,a(τ , τ) = eπiKa(τ−
τa
2a )Z0,1

(

τ −
aτ

a
,
τ

a

)

= eπiKa(τ−
τa
2a )eiπK

(τ−
aτ
a

)2a

2τ e2πi(
τa
τ

−a)Pvac
0 e2πi

a
τ
Lvac

0

= eπiK
τ2a
2τ e2πi(

τa
τ

−a)Pvac
0 e2πi

a
τ
Lvac

0 (129)

The anomaly k does not appear here, so in the algebra with k 6= 0 the K-term
simply vanishes. It follows immediately that

〈L0〉 =
K

4

τ2a

τ2
+
τa

τ2
P vac0 +

a

τ2
Lvac0

〈P0〉 =
K

2

τa

τ
+
a

τ
P vac0 (130)
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and if one plugs in the potentials τ = −niκ
2π and τ = − inκ

2π one can write

〈T (x)〉 = −
K

4

κ2

κ2
−

2πκi

nκ2
P vac0 +

4π2

κ2n2
Lvac0

〈P (x)〉 = −
K

2

κ

κ
−

2πi

nκ
P vac0 . (131)

These results can now be transformed to the original replica manifold using the
transformation laws of T (x) and P (x). For K 6= 0 they read

P ′(X) =
∂x

∂X
P (x) +

K

2

∂T

∂X

T ′(X) =

(

∂x

∂X

)2

T (x) +
c

12
{x,X}+

∂x

∂X

∂t

∂X
P (x)−

K

4

(

∂t

∂X

)2

(132)

The derivatives can be evaluated straightforwardly to

∂x

∂X
= −

κl

2π

1

(X − l
2 )(X + l

2 )

∂t

∂X
=
L

L
+
κl

2π

1

(X − l
2 )(X + l

2 )

{x,X} =
l2

2(X − l
2 )

2(X + l
2 )

2

∂T

∂X
= −

L

L
−
κl

2π

1

(X − l
2 )(X + l

2 )
. (133)

Plugging in everything is tedious but we arrive at

P ′(X) = −
κl

2π

1

(X − l
2 )(X + l

2 )

(

−
K

2

κ

κ
−

2πi

nκ
P vac0

)

+
K

2

(

−
L

L
−
κl

2π

1

(X − l
2 )(X + l

2 )

)

=
il

n

1

(X − l
2 )(X + l

2 )
P vac0 −

K

2

L

L
(134)

T ′(X) =
κ2l2

4π2

1

(X − l
2 )

2(X + l
2 )

2

(

−
K

4

κ2

κ2
−

2πκi

nκ2
P vac0 +

4π2

κ2n2
Lvac0

)

+
c

24

l2

(X − l
2 )

2(X + l
2 )

2

−
κl

2π

1

(X − l
2 )(X + l

2 )

(

L

L
+
κl

2π

1

(X − l
2 )(X + l

2 )

)

(

−
K

2

κ

κ
−

2πi

nκ
P vac0

)

−
K

4

(

L

L
+
κl

2π

1

(X − l
2 )(X + l

2 )

)2

=
l2

(X − l
2 )

2(X + l
2 )

2

(

c

24
+
Lvac0

n2

)

−
K

4

(

L

L

)

2 +
il

n

L

L

1

(X − l
2 )(X + l

2 )
P vac0

(135)

For the algebra with k 6= 0 the transformation law derived in Appendix A reads

P ′(X) =
∂x

∂X
P (x)− k

∂2x

∂X2

∂X

∂x

T ’(X) =

(

∂x

∂X

)

2T (x) +
c

12
{x,X}+

∂x

∂X

∂t

∂X
P (x) + k

(

∂2t

∂X2
−
∂t

∂x

∂2x

∂X2

)

(136)
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and plugging in the transformation 126 gives

P ′(X) = −
κl

2π

1

(X − l
2 )(X + l

2 )

(

−
2πi

nκ
P vac0

)

−

k
κl

2π

(

1

(X − l
2 )

2(X + l
2 )

+
1

(X − l
2 )(X + l

2 )
2

)

(

−
2π

κl

(

X −
l

2

)(

X +
l

2

))

=
1

(X − l
2 )(X + l

2 )

il

n
P vac0 + k

(

1

(X − l
2 )

+
1

(X + l
2 )

)

=
i
n
P vac0 + k

X − l
2

+
− i
n
P vac0 + k

X + l
2

(137)

T ′(X) =
κ2l2

4π2

1

(X − l
2 )

2(X + l
2 )

2

(

−
2πκi

nκ2
P vac0 +

4π2

κ2n2
Lvac0

)

+
c

24

l2

(X − l
2 )

2(X + l
2 )

2
−

κl

2π

1

(X − l
2 )(X + l

2 )

(

L

L
+
κl

2π

1

(X − l
2 )(X + l

2 )

)

(

−
2πi

nκ
P vac0

)

−

kκl

2π

(

1

(X − l
2 )

2(X + l
2 )

+
1

(X − l
2 )(X + l

2 )
2

)

−

k

(

−
κ

κ
+
L

L

(

−
2π

κl

(

X −
l

2

)(

X +
l

2

)))

(

κl

2π

(

1

(X − l
2 )

2(X + l
2 )

+
1

(X − l
2 )(X + l

2 )
2

))

=
l2

(X − l
2 )

2(X + l
2 )

2

(

c

24
+
Lvac0

n2

)

+
il

n

L

L

1

(X − l
2 )(X + l

2 )
P vac0 + k

L

L

(

1

(X − l
2 )

+
1

(X + l
2 )

)

=
l2

(X − l
2 )

2(X + l
2 )

2

(

c

24
+
Lvac0

n2

)

+
i

n

L

L

(

P vac0 − ink

(X − l
2 )

+
−P vac0 − ink

(X + l
2 )

)

(138)

5.5 Two-point function and Ward identity in WCFT

We now want to relate these results to those we can compute via the twist fields

〈T (X)〉 =
〈T (X)Φ+Φ−〉

〈Φ+Φ−〉
and 〈P (X)〉 =

〈P (X)Φ+Φ−〉

〈Φ+Φ−〉
(139)

so we have to know how the two-point function is constrained by the symmetries
in WCFT. Translational invariance in X implies that it should only depend on
∆X = l. With the help of the invariant degenerate metric we express this as

l =
√

∆Xa∆Xbgab (140)

where Xa stands for

(

X

T

)

. The next point we have to consider is boost in-

variance T → T + vX from which we immediately see that l is not a good
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measure because it is not boost invariant. However, we can construct a boost

invariant quantity which contains l as follows: Denote by V a =

(

L

L

)

the spatial

identification vector of the cylinder and by na its normalization

na =
V a

√

V bV cgbc
=

(

1
L
L

)

. (141)

Now s defined by

s = na∆Xbhab = l − l
L

L
(142)

has the desired property:

∆Xa →

(

l

l + vl

)

V a →

(

L

L+ vL

)

na →

(

1
L
L
+ v

)

⇒ s→ l + vl − l
L

L
− vl = s (143)

From the scaling symmetry on the X-axis we conclude that the two-point
function should contain a factor l−2hn where hn is the conformal dimension of
the twist fields. Since s measures the X-dependent translations in T , s should
act in form of a “translation operator” eiQns so that we can write

〈Φ+Φ−〉 ∝ l−2hneiQns. (144)

The next thing we need is the Ward identity in WCFT: While the one for T (X)
is similar to that for the holomorphic part in ordinary CFT

〈T (X)Φ+(a)Φ−(b)〉 =

(

hn

(X − a)2
+

hn

(X − b)2
+

1

X − a
∂a +

1

X − b
∂b

)

〈Φ+(a)Φ−(b)〉 .

(145)
the one for P (X) gets modified. A Kac-Moody primary field is defined through
the OPE

P (z)φ(w) =
iQ

z − w
+ reg. (146)

where the Q is the same as in the correlation function. If one uses this expression
in the derivation of the conformal Ward identity of chapter 2.5 one gets

〈P (X)Φ+(a)Φ−(b)〉 =

(

iQn+

X − a
+
iQn−

X − b

)

〈Φ+(a)Φ−(b)〉 . (147)

5.6 Entropy calculation

Now we can combine all the results and calculate the Renyi entropy for both
symmetry algebras K 6= 0 and k 6= 0. In both cases we have

〈P (X)〉 =
〈P (X)Φ+(a)Φ−(b)〉

〈Φ+(a)Φ−(b)〉
=

iQn+

X + l
2

+
iQn−

X − l
2

(148)
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If we additionally assume Qn− = −Qn+ we get the expression

〈P (X)〉 =
iQn

X + l
2

−
iQn

X − l
2

= −
ilQn

(X + l
2 )(X − l

2 )
(149)

which can be compared to n times the above result which was valid on a single
sheet. For K 6= 0 we find an equivalence by taking Qn = −P vac0 if we ignore

the constant, anomalous term K
2
L
L

. However, we cannot expect to reproduce
this term because we neglected all the regular terms in the OPE so all we can
compare are the singular terms. For k 6= 0 there is no regular term and the two
results match perfectly for Qn = −P vac0 − ikn. To evaluate h we have to do the
same calculation for T (X) which involves a bit more algebra:

〈T (X)〉 =

(

hn

(X−a)2 + hn

(X−b)2 + 1
X−a∂a +

1
X−b∂b

)

〈Φ+(a)Φ−(b)〉

〈Φ+(a)Φ−(b)〉

=
hn

(X − a)2
+

hn

(X − b)2
+ (b− a)2hne−iQn(l−(b−a)L

L
)

(

1

X − a
∂a +

1

X − b
∂b

)

(b− a)−2hneiQn(l−(b−a)L
L
)

=
hn

(X + l
2 )

2
+

hn

(X − l
2 )

2
+

2hn
(X − a)(b− a)

−
2hn

(X − b)(b− a)
+
iQn

L
L

X − a
−
iQn

L
L

X − b

=
hnl

2

(X − l
2 )

2(X + l
2 )

2
− iQn

L

L

l

(X − l
2 )(X + l

2 )
(150)

If we plug in for Qn and compare to the previous result we get for both algebras

hn = n

(

c

24
+
Lvac0

n2

)

. (151)

Again, in the K 6= 0 case, the results differ by the anomaly K
4

(

L
L

)

2 which was

neglected in the OPE. Now when we have the expression

〈Φn+(a)Φn−(b)〉 ∝ l−2n( c
24+

Lvac
0
n2 )e−i(l−l

L
L
)(Pvac

0 +ikn) (152)
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it is straightforward to compute the Renyi entropy:

SRenn =
1

1− n
ln

〈Φn+(a)Φn−(b)〉

〈Φ1+(a)Φ1−(b)〉
n + cn

=
1

1− n
ln(l)

(

−2n

(

c

24
+
Lvac0

n2

)

+ 2n
( c

24
+ Lvac0

)

)

+

1

1− n

[

−i

(

l − l
L

L

)

(P vac0 + ikn) + in

(

l − l
L

L

)

(P vac0 + ik)

]

+ cn

=
1

1− n

(

ln(l)Lvac0

(

2n−
2

n

)

+ i

(

l − l
L

L

)

P vac0 (n− 1)

)

+ cn

= −ilP vac0

(

l

l
−
L

L

)

− 2Lvac0 ln(l)

(

1 +
1

n

)

+ cn (153)

Since we took the limit L,L→ ∞, ζ got replaced by ln l, so this is the desired
result we also had before. Although the last calculation was made for the k 6= 0
case, we see immediately that the result also holds for K 6= 0 because the k-
anomaly simply dropped out. Therefore, this last formula is universal since it
holds for both non-trivial algebras. However, the VEVs depend crucially on the
central extensions.

6 Holographic entanglement entropy

6.1 Rindler spacetime

The main motivation behind the calculation of entanglement entropy was a
check of the holographic theorem, so this section is dedicated to the dual bulk
theory. As described in [10], we consider the near-horizon approximation of
non-extremal black holes. For extremal black holes there exists the generic
near-horizon metric [11]

ds2 = −F (xm)r2du2 − 2dr du+ 2rha(x
m)du dxa + γab(x

m)dxa dxb, (154)

where r is a light-like coordinate which measures the distance to the horizon,
v is a coordinate on the horizon which becomes light-like at r = 0 and the xa

are transverse coordinates. For non-extremal black holes there does not exist
a general form of the metric but one example is the three-dimensional boosted
Rindler-spacetime

ds2 = −2a(u)r du2 − 2dr du+ 2η(u)du dx+ dx2 (155)

which differs from 154 by the powers of r and the dependencies of the functions.
This metric is locally flat for arbitrary functions a and η, i. e. it solves the
vacuum Einstein equations for vanishing cosmological constant. At this point
we can also assume that all the coordinates run from −∞ to +∞. Another
example is the boosted Rindler-AdS-spacetime

ds2 = −2a(u)r du2 − 2dr du+ 2

(

η(u) +
2r

R

)

du dx+ dx2 (156)
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which also solves the Einstein equations but for Λ = − 1
R2 .

To study these spacetimes holographically, first of all one has to find suit-
able boundary conditions and then determine the asymptotic symmetry algebra.
However, in this case it is not clear where the boundary should be located: The
first choice would probably be at r → ∞, as it was done in [10]; the fall-off-
conditions for the metric then become

gµν =





−2a(u)r +O(1) −1 +O
(

1
r

)

η(u) +O
(

1
r

)

−1 +O
(

1
r

)

O
(

1
r2

)

O
(

1
r

)

η(u) +O
(

1
r

)

O
(

1
r

)

1 +O
(

1
r

)



 (157)

But since we deal with an approximation for a near-horizon region, also r = 0
would be a possible boundary. I shall give evidence that r = 0 is indeed the
right choice in the next chapters. The behaviour of the metric for r → 0 is then
determined by

gµν =





−2a(u)r +O(1) −1 +O (r) η(u) +O (r)
−1 +O (r) O

(

r2
)

O (r)
η(u) +O (r) O (r) 1 +O (r)



 (158)

Fortunately, the asymptotic symmetry group turns out to be independent of
r, so for the moment it does not matter which option we choose. Most of the
calculations in [10] are done in the Chern-Simons-formulation which I will not
introduce here, hence I just summarize the results. The conventional approach
would now be to calculate the canonical boundary charges as an integral over the
space-like coordinate x. However, this results in a trivial theory because all of
these boundary charges will be identically zero which means that all asymptotic
symmetries are gauge symmetries. The quite unusual procedure which was done
in [10] consists of making the retarded time coordinate u periodic with period
L and define the surface charges as integrals over u. Of course it is now difficult
to asign a physical meaning to this spacetime which has closed causal curves
and is not Poincare-invariant anymore. But it is still interesting to study it
from a more pragmatical point of view because now one can construct a non-
trivial dual field theory. The infinitesimal transformations which preserve the
boundary conditions are

u→ u+ ǫt(u) x→ x+ ǫp(u) (159)

with two arbitrary functions t(u) and p(u). The integrated canonical charge is
then given by

Q(t, p) =
1

8πGN

ˆ L

0

du t(u)T (u) + p(u)P (u) (160)

with T (u) = dη
du

+a(u)η(u) and P (u) = a(u). If one now defines modes according
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to 4

Ln =
L

16π2GN

ˆ L

0

du e
2πinu

L T (u)

Pn =
1

8πGN

ˆ L

0

du e
2πinu

L P (u) (161)

their Poisson brackets read

i {Ln, Lm} = (n−m)Ln+m

i {Ln, Pm} = −mPm+n + ikn2δm+n

i {Pn, Pm} = 0 (162)

with k = 1
4GN

which is after canonical quantization exactly the cylinder algebra
100 with vanishing central charge c. Since we have already extensively studied
the WCFT with that algebra and derived a formula for the entanglement entropy
on the field theory side, we now want to compare the results with a gravitational
calculation in the bulk.

6.2 Entanglement entropy of flat Rindler space

Due to the famous proposal of Ryu and Takanayagi [12] one can determine the
entanglement entropy on the gravity side in the following way: If one has a
d + 1-dimensional field theory then the boundary of the entangling region is
d− 1-dimensional. The entanglement entropy is now given in terms of the area
of a minimal surface γ in the bulk which shares the same boundary as the
entangling region as

SA =
Area(γ)

4GN
. (163)

This formula is of course motivated by the Bekenstein-Hawking-law 7 where
γ now plays the role of the horizon. In our case of a 1 + 1-dimensional field
theory γ becomes a geodesic attached to the endpoints of the interval A on
the boundary. So for calculating SA we just have to compute the length s of a
geodesic which is comparatively easy to do in general. The first thing to check
now is which state we have on the gravity side and determine the functions a(u)
and η(u) in the metric. The formula 91 was derived for the ground state of the
system, i. e. for T = 0, so we have to know what the ground state of the bulk
theory is. The common procedure is to define the ground state as the maximal
symmetric spacetime which posseses the highest number of linear independent
Killing vector fields. The metric 155 in general has six local Killing vector fields

4This definition of the modes is not the same as 76, hence the charges T (u) and P (u) differ
by constants from their analogues on the field theory side.
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given by

ξ1 = ∂u ξ4 = eau(∂u − η∂x − (ar +
1

2
η2)∂r

ξ2 = ∂x ξ5 = a(ηu+ x)ξ3 + e−au∂x

ξ3 = e−au∂r ξ6 = a(ηu+ x)ξ4 + eau(ar +
1

2
η2)∂x (164)

Due to the identification u ∼ u + L all six of them are only defined globally if
a = 2πin

L
and η = 0, hence our vacuum state is given by

ds2 = −
4πinr

L
du2 − 2du dr + dx2 (165)

where n 6= 0 is an arbitrary integer. By examining the Euclidean theory one can
see that n should be fixed to ±1, see [10]. For simplicity we choose n = 1. The
factor of i in the first term may seem disturbing because an imaginary distance
between two points is quite unphysical. On the other hand, the spacetime was
constructed in an abstract way without a clear physical interpretation from the
beginning, so we shall accept this factor i.

At this point we can already determine the final result on the field theory
side: Since u is the periodic SL(2)-axis and x the preferred U(1)-axis, we state
that (u, x) correspond to (X,T ) on the cylinder. The periodicity condition
which was given by (X,T ) ∼ (X − L, T + L) can be achieved by just setting L
to zero, i. e. the identification of u has no contribution in x-direction. Moreover,
the map from the cylinder to the plane is defined in the simplest way with tilt
parameter α = 0. Noticing also that c is equal to zero in the algebra one can
plug into the formula 99 and get

SA = lk =
l

4GN
. (166)

Remarkably, this result is finite, while, as it can be seen from 121, in an ordinary
CFT the entanglement entropy is divergent. The corresponding geodesic in AdS
also has infinite length because it is attached to the cutoff surface r = r0 with
r0 → ∞. Now in our case we need a finite geodesic, which suggests choosing
r0 = 0 instead of r0 → ∞. This is the first hint that the dual field theory of the
near horizon metric lives on the horizon rather than at infinity.

6.3 Calculation of the geodesic

It is now straight forward to solve the geodesic equation

d2xµ

dt2
+ Γµνρ

dxν

dt

dxρ

dt
= 0. (167)

with an arbitrary affine parameter t. The Christoffel symbols can be computed
from the metric according to

Γρµν =
gρσ

2
(∂µgνσ + ∂νgµσ − ∂σgµν); (168)

34



the result is

Γrru = Γrur =
2πi

L
, Γuuu = −

2πi

L
, Γruu = −

8π2r

L2
, (169)

all others vanish. The geodesic equation in components now reads

d2u

dt2
−

2πi

L

(

du

dt

)2

= 0

d2r

dt2
+

4πi

L

dr

dt

du

dt
−

8π2r

L2

(

du

dt

)2

= 0

d2x

dt2
= 0 (170)

This coupled system of diffential equations has to be solved with the right
boundary conditions. The interval A was given by

(u, x) ∈

[(

−
l

2
,
l

2

)

,

(

l

2
,−

l

2

)]

, (171)

so the equation for x(t) can be solved easily:

x(t) =
l

2
−

l

tf
t (172)

tf denotes the final value of the affine parameter; of course, the end result has
to be independent of tf which serves as a consistency check. The equation for
u(t) is separable and the general solution is

u(t) = −
ln
(

2πi
L
t+ c1

)

2πi
L

+ c2 (173)

Moreover, the equation for r(t) is a Sturm-Liouville equation and can be solved
to

r(t) = c3

(

2πi

L
t+ c1

)

+ c4

(

2πi

L
t+ c1

)2

. (174)

Now, determining the constants to obtain r(0) = r(tf ) = r0 for an arbitrary r0
is tedious and not very promising; instead we will try the other approach with
r0 = 0. The solution then becomes trivial:

r(t) ≡ 0 (175)

so the geodesic never leaves the horizon. If we now take a first glance at the
final result, we see that with 175 things simplify a lot:

s =

ˆ tf

0

√

gµν
dxµ

dt

dxν

dt
dt =

ˆ tf

0

√

√

√

√

l
2

t2f
dt = l (176)
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Plugging this into the Ryu-Takayanagi-formula gives indeed the right result

SA =
l

4GN
. (177)

In the next chapter we shall analyze the slightly more complicated case of
Rindler-AdS.

6.4 Entanglement entropy of Rindler-AdS

Instead of a locally flat near-horizon geometry one can consider spacetimes with
constant negative curvature in the near-horizon limit like

ds2 = −2a(u)r du2 − 2dr du+ 2

(

η(u) +
2r

R

)

du dx+ dx2, (178)

the state of maximal symmetry then becomes

ds2 = −
4πir

L
du2 − 2dr du+ 4

r

R
du dx+ dx2. (179)

The asymptotic symmetry algebra also changes a bit, namely it gains a second
central extension:

[Ln, Lm] = (n−m)Ln+m

[Ln, Pm] = −mPm+n + ikn2δm+n

[Pn, Pm] = K
n

2
δn+m (180)

with K = − 1
GNR

. It would be possible now to remove the twist term by a
redefinition of the generators, however, we shall proceed in another way and
compute the vacuum expectation values directly. The transformation rule for
this algebra is just the combination of 74 and 82 and reads

P ′(x) =
∂z

∂x

(

P (z) +
K

2

∂t

∂z

)

− k
∂2z

∂x2
∂x

∂z

T ′(x) =

(

∂z

∂x

)2

T (z) +
∂z

∂x

∂w

∂x
P (z) + k

(

∂2w

∂x2
−
∂w

∂z

∂2z

∂x2

)

−
K

4

(

∂w

∂x

)2

.

(181)

Applying this to the transformation z = eix, w = t gives the relation for the
zero modes

L′
0 = L0

P ′
0 = P0 + ik (182)

so the vacuum expectation values are exactly the same as before and therefore
the result for the entanglement entropy is again

SA =
l

4GN
. (183)
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The calculation of the geodesic is now a bit more tedious but still straight-
forward; the non-vanishing Christoffel-symbols are

Γxru = Γxur = Γuux = Γuxu =
1

R
, Γrru = Γrur =

2r

R2
+

2πi

L

Γuuu = −
2πi

L
, Γxuu =

4πir

RL
, Γruu =

8πir2

R2L
−

8π2r

L2

Γrrx = Γrxr = −
1

R
, Γxux = Γxxu = −

2r

R2
, Γrux = Γrxu = −

4r2

R3
−

4πir

RL
(184)

and the geodesic equation reads

d2u

dt2
−

2πi

L

(

du

dt

)2

+
2

R

du

dt

dx

dt
= 0

d2r

dt2
+ 2

(

2r

R2
+

2πi

L

)

du

dt

dr

dt
+

(

8πir2

R2L
−

8π2r

L2

)(

du

dt

)2

−
2

R

dr

dt

dx

dt
−

(

8r2

R3
+

8πir

RL

)

du

dt

dx

dt
= 0

d2x

dt2
+

2

R

du

dt

dr

dt
+

4πir

RL

(

du

dt

)2

−
4r

R2

du

dt

dx

dt
= 0. (185)

The general solution of this system is much more difficult to find, however, the
choice r0 = 0 simplifies it a lot again. Since every term in the equation for r(t)
contains a factor of r, r(t) ≡ 0 is again a solution. Afterwards, the equation for

x(t) has simplified to d2x
dt2

= 0 which has the same solution as before,

x(t) =
l

2
−

l

tf
t (186)

It is not even necessary to calculate u(t) because in the expression for the length
again only one term survives after setting r(t) equal to zero:

s =

ˆ tf

0

√

gµν
dxµ

dt

dxν

dt
dt =

ˆ tf

0

√

√

√

√

l
2

t2f
dt = l (187)

We see that the result is the same as in the flat case and also agrees with the
field theory result:

SA =
l

4GN
(188)

7 Conclusion

In this last section I want to summarize all the results and give an interpretation
as far as possible. At first, in section 3.6 we saw that there exist two qualitatively
different WCFT algebras namelyK 6= 0 and k 6= 0. ForK 6= 0 the entanglement
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entropy of an interval for zero temperature has already been calculated in [5],
the result was the Cardy-type formula

SEE = −4 ln

[

L

πǫ
sin

πl

L

]

Lvac0 + il

(

L

L
−
l

l

)

P vac0 . (189)

I have shown now that this formula is also valid for the algebra 53 and that
the central elements only contribute over the vacuum expectation values. This
second algebra is particularly interesting because it appears as the holographic
dual of the boosted Rindler spacetime 155. After calculating the entanglement
entropy on the gravity side I found that the results agree if one chooses r = 0
as the location of the boundary. Hence, it can be conjectured that for a near-
horizon metric the dual field theory should live on the horizon instead of at
r → ∞. This statement was also true for the slightly more complicated case of
boosted Rindler-AdS.

However, the check of this conjecture is not very strong because in both
cases most of the terms in 91 vanish. It we would be interesting now to examine
more complicated cases like excited states at T > 0 and compare the results to
get a more profound check of the r = 0 - conjecture.

A Appendix

A.1 Transformation properties of P (z) and T (z)

First of all one has to derive the infinitesimal transformation laws: The global
transformations z = f(z´) andw = w´ + g(z´) are generated by T (z) and P (z)
respectively so the infinitesimal version z = z′ − ǫ(z′) and w = w′ − γ(w′) can
be written as a commutator 5

δǫφ(z) = −i[Tǫ, φ(z)] =
i

2π

˛

C(z)

dw ǫ(w)T (w)φ(z)

δγφ(z) = −i[Pγ , φ(z)] =
i

2π

˛

C(z)

dw γ(w)P (w)φ(z) (190)

All in all there are four commutators to calculate (the four combinations of T
and P ); the first one is already known from ordinary CFTs and reads

δǫT (z) = −
c

12
∂3z ǫ(z)− 2∂zǫ(z)T (z)− ǫ(z)∂zT (z) (191)

The commutator of P with itself is zero since the Pn commute with K = 0:

δγP (z) = 0 (192)

5The sign convention is now different from the introduction.
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The other two are a bit harder to calculate; starting from the algebra one can
write

[Pn, Lm] = −

˛

dz

2π
zn
˛

dw

2πi
wm+1[P (z), T (w)]

= −

˛

C(0)

dw

2πi
wm+1

˛

C(w)

dz

2π
znP (z)T (w)

=!−

˛

dz

2π
nzm+nP (z)− ikm(m+ 1)δm+n (193)

Now one can apply Cauchy´s residue theorem from the reversed way and make
a guess for the OPE of P and T :

P (z)T (w) =
P (w)

(z − w)2
+

2k

(z − w)3
+ reg (194)

Plugging in yields

[Pn, Lm] = −

˛

C(0)

dw

2πi
wm+1

˛

C(w)

dz

2π
zn
(

P (w)

(z − w)2
+

2k

(z − w)3

)

= −

˛

C(0)

dw

2πi
wm+1

˛

C(w)

dz

2π
(w + (z − w))n

(

P (w)

(z − w)2
+

2k

(z − w)3

)

= −

˛

C(0)

dw

2πi
wm+1(nwn−1iP (w) + n(n− 1)wn−2ik)

= nPn+m − ikn(n− 1)δn+m = nPn+m − ikm(m+ 1)δn+m (195)

where the binomial theorem has been used to extract the right powers of z−w.
The reversed OPE is obtained by a Taylor expansion around z:

T (w)P (z) =
P (z)

(w − z)2
+
∂zP (z)

w − z
−

2k

(w − z)3
(196)

Now it is straightforward to compute the infinitesimal transformations

δγT (z) =
i

2π

˛

C(z)

dw γ(w)P (w)T (z)

=
i

2π

˛

C(z)

dw (γ(z) + ∂zγ(z)(w − z)+

1

2
∂2zγ(z)(w − z)2)

(

P (z)

(w − z)2
+

2k

(w − z)3

)

= −∂zγ(z)P (z)− k∂2zγ(z) (197)
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and

δǫP (z) =
i

2π

˛

C(z)

dw ǫ(w)T (w)P (z)

=
i

2π

˛

C(z)

dw (ǫ(z) + ∂zǫ(z)(w − z)+

1

2
∂2z ǫ(z)(w − z)2

(

P (z)

(w − z)2
+
∂zP (z)

w − z
−

2k

(w − z)3

)

= −∂zǫ(z)P (z)− ǫ(z)∂zP (z) + k∂2z ǫ(z) (198)

The next task is to find finite transformation laws which reduce to those in-
finitesimal ones and can be composed properly so that it makes no difference
if I go from (z, w) to (z′, w′) and from (z′, w′) to (z′′, w′′) or from (z, w) to
(z′′, w′′) in one step. Since δγP (z) is zero the total variation of P (z) is given by
the last equation. The first two terms can be generated by a simple tensorial
transformation

P ′(z′) =
∂z

∂z′
P (z). (199)

which also composes properly; one gets

P ′(z′) = P (z)− ∂z′ǫ(z
′)P (z) = P (z′)− ǫ(z′)∂z′P (z

′)− ∂z′ǫ(z
′)P (z). (200)

The last term looks similar to the anomalous term in the transformation law
of T (z) with the only difference that we have here only a second and no third
derivative. So we have to search for the right modification of the Schwarzian
derivative denoted by {z′, z} to write

P ′(z′) =
∂z

∂z′
(P (z) + k {z′, z}) (201)

It should fulfill
{z + ǫ, z} = ∂2z ǫ(z) +O(ǫ2) (202)

and

P ′′(z′′) =
∂z′

∂z′′

(

∂z

∂z′
(P (z) + k {z′, z}) + k {z′′, z′}

)

=
∂z

∂z′′
(P (z) + k {z′′, z})

→ {z′′, z} =
∂z′

∂z
{z′′, z′}+ {z′, z} . (203)

A simple second derivative {z′, z} = ∂2z′

∂z2
does not solve this equation, so the

next guess will be, guided by the form of the Schwarzian derivative,

{z′, z} =
∂2z′

∂z2
∂z

∂z′
(204)
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By expanding the second derivative one can write

∂2z′′

∂z2
∂z

∂z′′
=

∂

∂z

(

∂z′′

∂z′
∂z′

∂z

)

∂z

∂z′
∂z′

∂z′′
=

(

∂2z′′

∂z′2

(

∂z′

∂z

)2

+
∂z′′

∂z′
∂2z′

∂z2

)

∂z

∂z′
∂z′

∂z′′

=
∂z′

∂z

∂2z′′

∂z′2
∂z′

∂z′′
+
∂2z′

∂z2
∂z

∂z′
(205)

to see that the guess was right. So the whole transformation rule for P (z)
becomes

P ′(z′) =
∂z

∂z′

(

P (z) + k
∂2z′

∂z2
∂z

∂z′

)

=
∂z

∂z′
P (z)− k

∂2z

∂z′2
∂z′

∂z
. (206)

For T (z) the algebraic effort is a bit more but the steps to go through are nearly
the same: The total variation is given by

δT (z) = −
c

12
∂3z ǫ(z)−2∂zǫ(z)T (z)− ǫ(z)∂zT (z)−∂zγ(z)P (z)−k∂

2
zγ(z). (207)

For the first three terms the solution is already known: T´(z′) = ( ∂z
∂z′

)2T (z) +
c
12{z, z

′}; the fourth term also appears in the better known version of the algebra

with K 6= 0 and can be generated by an additional ∂z
∂z′

∂w
∂z′
P (z). To include the

last term one could try as a first naive guess a second derivative k ∂
2w
∂z′2

. However,
the resulting expression

T´(z′) =

(

∂z

∂z′

)2

T (z) +
c

12
{z, z′}+

∂z

∂z′
∂w

∂z′
P (z) + k

∂2w

∂z′2
(208)

does not compose properly. If one defines w = w′ + g(z′) = w′′ + h(z′′) + g(z′)
one can see this by writing (I supress the first two terms in the transformation)

T ′′(z′′) =

(

∂z′

∂z′′

)2(

...+
∂z

∂z′
∂w

∂z′
P (z) + k

∂2w

∂z′2

)

+

∂z′

∂z′′
∂w′

∂z′′

(

∂z

∂z′
P (z)− k

∂2z

∂z′2
∂z′

∂z

)

+ k
∂2w′

∂z′′2

=!...+
∂z

∂z′′
∂w

∂z′′
P (z) + k

∂2w

∂z′′2
(209)

→
∂z

∂z′′
∂z′

∂z′′
g′P (z) + k

(

∂z′

∂z′′

)2

g′′ +
∂z

∂z′′
h′P (z)−

∂z′

∂z′′
h′k

∂2z

∂z′2
∂z′

∂z
+ kh′′

=!
∂z

∂z′′

(

g′
∂z′

∂z′′
+ h′

)

P (z) + k

(

g′′
(

∂z′

∂z′′

)2

+ g′
∂2z′

∂z′′2
+ h′′

)

→ −
∂z′

∂z′′
h′k

∂2z

∂z′2
∂z′

∂z
= kg′

∂2z′

∂z′′2
(210)
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which is in general not fulfilled (the prime of a function means differentiation

with respect to its argument). So the k ∂
2w
∂z′2

-term has to be modified and an edu-
cated guess for this modification would be to include a contribution proportional

to the modified Schwarzian derivative k ∂
2z

∂z′2
∂z′

∂z
. If we replace

k
∂2w

∂z′2
→ k

∂2w

∂z′2
− k

∂w

∂z′
∂2z

∂z′2
∂z′

∂z
= k

∂2w

∂z′2
− k

∂w

∂z

∂2z

∂z′2
(211)

this correction vanishes to linear order in ǫ and γ and has the right composition
properties:

T ′′(z′′) =

(

∂z′

∂z′′

)2(

...+
∂z

∂z′
g′P (z) + k

(

g′′ − g′
∂2z

∂z′2
∂z′

∂z

))

+

∂z

∂z′′
h′P (z)− k

∂z′

∂z′′
h′
∂2z

∂z′2
∂z′

∂z
+ k

(

h′′ − h′
∂2z′

∂z′′2
∂z′′

∂z′

)

=!...+
∂z

∂z′′

(

g′
∂z′

∂z′′
+ h′

)

P (z)+

k

(

g′′
(

∂z′

∂z′′

)2

+ g′
∂2z′

∂z′′2
+ h′′ −

(

h′ + g′
∂z′

∂z′′

)

∂2z

∂z′′2
∂z′′

∂z

)

→ g′
(

∂z′

∂z′′

)2
∂2z

∂z′2
∂z′

∂z
+
∂z′

∂z′′
h′
∂2z

∂z′2
∂z′

∂z
+ h′

∂2z′

∂z′′2
∂z′′

∂z′

=!− g′
∂2z′

∂z′′2
+ h′

∂2z

∂z′′2
∂z′′

∂z
+ g′

∂z′

∂z

∂2z

∂z′′2
(212)

This equation is trivially fulfilled after applying the relation

∂2z

∂z′′2
=

∂

∂z′′

(

∂z

∂z′
∂z′

∂z′′

)

=
∂z

∂z′
∂2z′

∂z′′2
+

(

∂z′

∂z′′

)2
∂2z

∂z′2
. (213)

So, the full transformation law for T (z) reads

T ′(z′) =

(

∂z

∂z′

)2

T (z)+
c

12
{z, z′}+

∂z

∂z′
∂w

∂z′
P (z)+k

(

∂2w

∂z′2
−
∂w

∂z

∂2z

∂z′2

)

. (214)
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