
Open Data REST-Services

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Business Informatics

eingereicht von

Aleksandar Kamenica, BSc
Matrikelnummer 1126294

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Mag. Dr. Horst Eidenberger

Wien, 14. Dezember 2016
Aleksandar Kamenica Horst Eidenberger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Open Data REST-Services

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Aleksandar Kamenica, BSc
Registration Number 1126294

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Mag. Dr. Horst Eidenberger

Vienna, 14th December, 2016
Aleksandar Kamenica Horst Eidenberger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Aleksandar Kamenica, BSc
Korneuburgerstraße 23/3/13, 2100 Leobendorf

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 14. Dezember 2016
Aleksandar Kamenica

v

Acknowledgements

There are some people, which I would like to thank for their support during the writing
of this thesis.

In the first place, I would like to express my gratitude to Prof. Horst Eidenberger. His
clear guidelines on how to write the thesis and his extraordinary responsiveness enabled
me to proceed smoothly in writing this thesis.

Furthermore, I would like to thank my parents Živorad and Cvijeta as well as my brother
Stefan Kamenica for their continuous support and for doing everything that is possible
so I can work undisturbed on the thesis at home.

Another person that I would like to thank, is my girlfriend Tatjana for understanding
the days and weeks I had to spend on writing the thesis instead of hanging with her and
also, in her role as English Language and Linguistics student, for proof-reading the whole
thesis.

vii

Kurzfassung

Diese Arbeit befasst sich mit einer möglichen Lösung für jene Nachteile, welche sich
durch die übliche Vorgehensweise beim Angebot von Open Data Datensätzen ergeben,
bei welcher die Datensätze auf einer Webseite als Dateien zum Herunterladen angeboten
werden. Stattdessen könnten die Erzeuger von solche Datensätzen diese über REST
Services anbieten, welche OData Version 4, einem aufkommenden Standard für REST
Services, entsprechen. Auf diese Art und Weise könnte man eine generische Client-
Applikation bauen, welche dazu in der Lage wäre, solche Daten zu durchsuchen und
deren zugrunde liegendes Datenmodell anzuzeigen, ohne eine Datei herunterladen zu
müssen oder das Datemodell selbst ableiten zu müssen. Auch andere Nachteile könnten
durch die Verwendung von REST Services eliminiert werden.

In dieser Arbeit wird sowohl ein Prototyp eines OData Version 4 konformen REST
Services als auch ein Prototyp einer generischen Client-Applikation implementiert um zu
zeigen, dass solch eine Konstellation realisierbar ist. Die generische Client-Applikation
wurde zudem auch mit anderen OData Version 4 konformen REST Services erfolgreich
getestet.

Zusätzlich wurde ein Fragebogen über OData von Fachexperten ausgefüllt. Diese Fachex-
perten haben bestätigt, dass OData das Bauen von generischen Client-Applikationen
zum Abrufen und Durchsuchen von Daten, die über entsprechende Services veröffentlicht
wurden, ermöglicht.

ix

Abstract

This thesis deals with a possible solution for the shortcomings that result from the
common approach of offering Open Data, where the corresponding data sets are offered
as downloadable files on a website. Instead, Open Data producers could offer its data via
RESTful web services which conform with OData Version 4, an emerging international
standard for REST services. This way, one generic client application could be built,
which could enable querying and viewing the exposed data and its data model, without
needing to download a file or discovering the data model on your own. By using REST
services, also other shortcomings of the mentioned approach could be eliminated.

In this thesis, prototypes of both an OData Version 4 compliant RESTful web service and
a generic client application were implemented in order to show, that such a constellation
is feasible. The generic client application has also been tested successfully against other
OData Version 4 compliant REST services.

Additionally, a questionnaire on OData has been conducted with domain experts. The
domain experts confirmed, that OData supports/enables the building of generic client
applications for accessing and querying data published via such interfaces.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation and problem statement . 1
1.2 Expected Results . 3
1.3 Methodological approach . 4
1.4 Structure of the work . 5

2 Background 7
2.1 Open Data . 7
2.2 REST . 17
2.3 OData - Open Data Protocol . 26

3 Project design 39
3.1 Idea . 39
3.2 Use cases . 39
3.3 Additional proof-of-concept application . 41

4 Implementation 45
4.1 Implementation of OData REST service 45
4.2 Implementation of a generic OData client (web application) 51
4.3 Implementation of the proof-of-concept application 60

5 Evaluation 63
5.1 Testing against OData services . 63
5.2 Questionnaire with experts . 66
5.3 Implementation experience . 71

6 Conclusions and future work 73
6.1 Conclusions . 73

xiii

6.2 Future work . 75
6.3 Outlook . 76

List of Figures 79

List of Tables 80

Bibliography 81

CHAPTER 1
Introduction

1.1 Motivation and problem statement

At the beginning of his first term of US-presidency in 2009, Barack Obama announced
his plans for a transparency strategy of his government. The aim of this strategy was the
openness of the data, which would ultimately result in the strengthening of democracy
and better perspective for the US citizens over the actions of their government [HVdB11].
This was the time when “Open Data” has become a topic in the United States. In the
following years (starting at the end of 2009), several other governments in Europe as well
as the government in Australia started Open Data initiatives with the same goals that
were stated by Barack Obama previously.

The results of the proclaimed Open Data initiatives were shaped similarly in each of these
countries: There was a website created, which served for the presentation of the data sets.
These data sets were published at a certain point in time in at least one format. Visitors
of the website were now able to search for the data sets by defining search criteria, to
view certain metadata of the same and finally to download the data sets in the format(s)
which were offered.

Although this approach has been widely adopted, there are several shortcomings of the
same:

1. First, the data model of the published data is not described or at least not in a
standardized way. On the contrary, the data is just published in a certain format,
which as a consequence made each person who wanted to use the data set discover
the underlying datamodel himself/herself.

2. Second, querying the data set is only possible in a limited way. The first requirement
is to download the data set in a certain format and then, further, to have an

1

1. Introduction

appropriate software installed on the client desktop which would make querying of
the data possible.

3. Next, the applications which shall be based on Open Data sets, would first need to
download the data set and to deserialize it. The deserialization itself might be a
problem if the underlying data model is not well defined.

4. Eventually, as the data sets are published at a certain point in time, they may
not contain up-to-date data. This fact requires the publisher to publish the data
set periodically in order to keep it up-to-date. This could lead to a delay in time
between the point in time when the data set was created and the point in time
when the data set was published.

On the other hand, there are web services (APIs), which are a common approach to offer
access to certain functionality via machine-to-machine communication. The World Wide
Web Consortium defines web services as follows [HB04]:

“A Web service is a software system designed to support interoperable machine-
to-machine interaction over a network.”

In the category of web services, REST services (REST-APIs) are gaining popularity. One
of the problems of REST services is that, until now, there is no common approach to
how such a service should be constructed and offered.

However, there is an emerging standard for REST services: It is called OData, which
is the short of Open Data Protocol. Version 4 of OData may become the international
standard for REST APIs [Ben15]. By implementing REST services conforming with
OData, it may be possible to implement generic client applications, which could consume
any OData Version 4 conformant API and perform queries on the exposed data. The
details on OData and how the previously mentioned shortcomings could be outweighed
will be discussed in the following chapters. Standardisation in general would be beneficial
both for Open Data producers (knowing in which way they should offer their data) and
Open Data consumers (knowing they can rely on a standardised API).

All of these mentioned characteristics lead to the research questions which should be
answered in this diploma thesis:

• To which extent and in which way(s) can OData REST interfaces which offer Open
Data enable building generic clients for accessing and querying the same?

• How does an OData REST service differ in complexity of accessing/modifying the
data compared to REST-APIs which do not implement it?

• How could the offer of Open Data in Austria benefit from a shift of data producers
to offering Open Data via OData REST interfaces?

2

1.2. Expected Results

Figure 1.1: A simple example showing the target architecture with one generic Open
Data client and two Open Data producers.

1.2 Expected Results

After defining the main problems with which this thesis is dealing, the expected results
will be described. In order to be able to show prototypically whether the previously
mentioned constellation is feasible, two prototypes will be implemented. Figure 1.1
shows the target architecture with one generic client application (playing the role of an
Open Data portal) and two OData REST services which are the Open Data producers
interested in offering their data.

The first prototype will be an OData REST service conforming with OData JSON Format
Version 4.0 [HPB16]. JSON Format is mentioned explicitly because OData also offers
the possibility to use Atom format for request and response representations. But as the
JSON Format Version 4 has been submitted to become an international standard, it will
also be used for this prototype. The requirements for the REST API will be defined in
the context of a real world example. Based on these requirements, a data model will be

3

1. Introduction

designed and the corresponding REST API prototype will be implemented.

The second prototype will be a generic client application (a website). It will be imple-
mented in order to be able to make a point on whether and to which extent building a
generic client based on various OData REST services as backends is possible and what
the complexity of connecting to a new OData REST API is from the client’s point of
view.

The implementation is followed by an evaluation, in which domain experts should answer
certain questions enlisted in a form of a questionnaire. In the context of this thesis, a
person is considered to be a domain expert if he/she has at least three years of experience
in developing REST services. The questions asked in the questionnaire will be highly
related to OData itself, but based on the prototypes that have been developed.

1.3 Methodological approach

The methodological approach in this thesis consists of four stages:

1. Literature research: First, a literature research needs to be conducted. Since
the main problem of this thesis originates in the Open Data sphere, the first focus
of the literature research is Open Data. Requirements/characteristics of Open Data,
as well as the state-of-the-art of offering Open Data in Austria compared to other
countries will be discussed. Furthermore, used technologies and further development
strategies will be depicted. The next topic of the literature research will be REST
services, as REST services might be the solution for the shortcomings of the Open
Data offering approach. Thus, the foundations of REST need to be discussed in
detail and the shortcomings of REST need to be elaborated explicitly. At the end
of the literature research OData JSON Format Version 4.0 will be elaborated. All
aspects of the OData specification will be discussed and compared to “pure” REST.
Apart from these topics, Software Engineering methods/technologies/patterns
will be researched, as they are especially required for the implementation of the
prototypes.

2. Requirements specification / analysis: The requirements for both prototypes
need to be specified. On the one hand, there is the OData REST service. Its
requirements will be defined in cooperation with the stakeholders that have been
identified. On the other hand, there are the generic client application requirements,
which will be elaborated based on the knowledge gained from the literature research
on Open Data.

3. Implementation of the prototypes: First, the OData REST service will be
implemented as specified. Afterwards, the generic client application will be imple-
mented, which can then be tested against the previously developed OData REST
service.

4

1.4. Structure of the work

4. Evaluation: The evaluation of OData (and the implemented REST service) will
be performed based on the experiences made during the implementation and the
questionnaire that is conducted with the domain experts at this stage. The focus
of the questionnaire, as already mentioned, will be the technology itself as well
as its applicability and the complexity of usage (also in comparison to current
state-of-the-art REST-services).

1.4 Structure of the work
Based on the methodological approach, the rest of the thesis will be structured as follows:

In Chapter 2, the outcomes of the literature research will be described. There are three
main sections, as mentioned in the methodological approach, which will be Open Data
(Section 2.1), REST (Section 2.2) and OData (Section 2.3). In the Open Data section,
an introduction to Open Data will be given first. It will be followed by the approach of
offering Open Data in Austria and in other countries. There will also be a comparison
between Austria and other countries. The REST section will start with an introduction
to REST, followed by the explicit architectural constraints of REST and the Resource
Oriented Architecture. Eventually, the problems/shortcomings of REST will be discussed.
In the Open Data Protocol section, followed by the obligatory introduction, the details
of the specification will be elaborated. They need to be understood in order to give
us a better perspective of OData and its scope. Also, as mentioned already in the
methodological approach, a comparison to REST will be done.

Chapter 3 will focus on the description of the ideas behind both prototypes. Based on
the concept, the requirements for both prototypes will be defined and so the scope of the
projects will be set. Afterwards, in Chapter 4, the implementation will be illustrated.The
functions/backlog, the explicit design as well as the results of both implementations will
be depicted.

In the evaluation Chapter, on the one hand the testing of the generic OData client against
different OData services is shown. On the other hand, the questionnaire that was filled
out by the domain experts and their answers will be analyzed. In Chapter 6 the main
conclusions will be drawn. They are based on the insights that were gained during the
evaluation phase combined with the theoretical background from the literature research.
Additionally, possible future work will be presented and an outlook to the future of
OData will be suggested.

5

CHAPTER 2
Background

2.1 Open Data

2.1.1 Introduction

Before moving to the definition of Open Data itself and the discussion of its relevance, a
short historical overview will be given first.

Historical overview

From a conceptual point of view, the idea of freely accessible research results originates
in 1942, where Robert King Merton stated that researchers shall give up intellectual
property rights on their research results in order to bring knowledge forward [Chi13].
According to Yu and Robinson, the term “Open Data” itself occurs for the first time in
the 1970s, in a policy context [YR12]: Back then, operative international agreements
between NASA and its international partners required NASA’s partners to adopt an
“open-data policy comparable to that of NASA and other U.S. agencies participating in
the program, particularly with respect to the public availability of data.” According to
the same source, the National Academy of Sciences discussed and elaborated the idea
of sharing environmental and geophysical data in 1995. The Human Genome Project,
a publicly funded project on genetics data, is an early contributor to open data, as its
results and related data have been made available to the public.

In 2005, Open Defintion was created as a project of Open Knowledge [Knob]. It provided
the first definition of Open Data and today, it is the main international standard for Open
Data and Open Data Licenses. The exact definition of Open Data by Open Definition
will be discussed in detail after the historical overview.

In the last quarter of 2007 a meeting was held in Sebastopol (California). The participants
discussed the government’s possibilities of opening up electronically-stored government

7

2. Background

data to the public [Won10]. They also developed a set of principles [BK11] reasoning why
publishing Open Governmental Data (Open Data from the public sector) is essential for
democracy. Barack Obama’s transparency strategy, as mentioned in Section 1.1, followed
in the beginning of 2009. This event worked as a trigger for several other countries, which
started similar initiatives in the following years. These initiatives made the term Open
Data become a common term in the public of the participating countries.

This short historical overview leads us to the definition of Open Data.

Definition

The different sources and drivers of Open Data could, to a certain extent, already be
identified in the historical overview: Different scientific branches as well as the public
sector are the main actors. There is a definition of Open Data, which is not prone to
changes when it appears in different contexts. This is a short summary of the definition
by Open Definition, which was mentioned in the historical overview and is the main
international standard for Open Data [Defb]:

“Open data and content can be freely used, modified, and shared by
anyone for any purpose”.

More precisely, there are, according to Open Definition, the following requirements for
an open work (“work” denotes the item or piece of knowledge being trasferred) to be
satisfied [Defa]:

1. “The work must be in the public domain or provided under an open license.
[. . .] The term public domain denotes the abscence of copyright and similar
restrictions, whether by default or waiver of all such conditions.” An open license
is also defined by Open Definition, but this definition will not be discussed in
particular, because it is not relevant for the research done for this thesis.

2. “The work must be provided as a whole and at no more than a reasonable one-time
reproduction cost, and should be downloadable via the Internet without charge.”

3. “The work must be provided in a form readily processable by a computer and where
the individual elements of the work can be easily accessed and modified.”

4. “The work must be provided in an open format. An open format is one which places
no restrictions, monetary or otherwise, upon its use and can be fully processed with
at least one free/libre/open-source software tool.”

The possibility of providing a work under an open license makes this definition of
Open Data applicable without any context to the public domain. This means that, for
example, private organizations, companies and other entities might publish Open Data

8

2.1. Open Data

by providing their work under an open license (given that they satisfy also the other
defined requirements).

Of course, there are other definitions of Open Data as well, which are mainly used in the
context of the certain publication in which they have been published. The following defi-
nition, for example, has been used by Janssen and Charalabidis and Zuiderwijk [JCZ12]:

“In this research we define open data as non-privacy-restricted and nonconfi-
dential data which is produced with public money and is made available without
any restrictions on its usage or distribution. [. . .] Data can be provided by
public and private organizations, as the essence is that the data is funded by
public money.”

The requirement that the data needs to be funded by public money has not been
mentioned in the definition by Open Definition. The other requirements that need to be
satisfied by Open Data overlap the requirements defined by Open Definition.

As there is a common understanding of what Open Data is, the next question arises:
What is the relevance of Open Data?

Relevance of Open Data

The relevance of Open Data is a crucial topic that needs to be discussed. If there was
no relevance of Open Data, then the effort that has been put into the publication of
the same would be questionable. The expected results of Barack Obama’s transparency
strategy were already mentioned in Section 1.1. The relevance and the benenfits of Open
Data also depend on the source and category of the data sets as well as on the subject
that wanted to make use of the data. For scientists, the benefits and relevance of Open
Data in the scientific domain are different than those for citizens. On the other hand,
citizens might be more interested in those data sets that are published by the government
in order to gain more insight into the actions set by the government in different areas.

The authors of “The Data Harvest: How sharing research data can yield knowledge, jobs
and growth” present the vision of making “the whole world a single, living lab” [GHL+14].
Furthermore, they identified benefits of Open Data for following exemplary personas:

• The Citizen: Products and services that are developed upon Open Data will
be beneficial for all people, either directly or indirectly. They will furthermore
be empowered by having all informations that are necessary for making decisions
in different spheres of life. Businesses and the government will become “more
accountable, efficient and effective”.

• The Entrepreneur: As no organization has the necessary resources (human
resources, capital resources) to extract the full value from its data, innovation might
be fostered by opening up the data. Entrepreneurs can develop new services and
products, which would create new jobs and thus also be a benefit for the citizens.

9

2. Background

• The Scientist: Reusing and sharing data would boost the research productivity
and the creativity of the researchers. Scientists might collaborate more often
internationally, their mindset would be changed by becoming more open and by
sharing early findings.

In a paper published by Capgemini Consulting, the author suggests that there are several
economic benefits of Open Data for both the government and the private sector [Tin13]:

• Both sectors could increase revenue through multiple areas. The government would
benefit from an expanded economic activity by earning increased tax revenues. The
private sector benefits from new business opportunities that arise upon the data.

• Costs could be reduced on governmental side by reducing the transactional costs.
On the private sector side the costs of “not having to invest in conversion of raw
government data” (aggregation is done on the side that publishes data) could be
saved.

• Efficiency could be increased. The private sector could improve its decision making
by basing it on more accurate information. The government’s service efficiency
could be increased through linked data.

• The government could create new jobs and stimulate entrepreneurship, while the
private sector could “gain skilled workforce”.

The authors of “Benefits, adoption barriers and myths of open data and open government”
also derived a list of political, social, economic, operational and technical benefits of
Open Data [JCZ12]. But, they also conclude that open data should not be treated as a
homogenous topic:

“The diverse nature of open data means that different types of results from
open data have different benefits and are confronted with different barriers.”

Summing up, there is significant research on the potential and benefits of Open Data.
The relevance of Open Data is implicitly confirmed by its numerous advantages for many
different sides (groups). Next, the overall approach to Open Data in Austria will be
discussed.

2.1.2 Approach in Austria

Open Governmental Data

In April 2012, Austria’s national Open Governmental Data portal1 for data sets originating
from the public sector has been launched [Fut13]. The aim of this portal is to be the

1https://www.data.gv.at. Visited: October 16, 2016

10

https://www.data.gv.at

2.1. Open Data

central data catalogue of the metadata of the decentral data sets, which are published by
the different public administration entities [Bunc]. Additionally, the national portal is
the “single point of contact” to the European data portal.2

There are also decentral portals of the single public administration entities, which
itself preprocess and present their published data sets. The authors of [EHL+13] have
defined an URL-convention for all data portals which offer Open Governmental Data.
The URL should be constructed in the following way: data.organisation.gv.at,
where “organisation” needs to be replaced with an identifier of the organisation. E.g.:
The data portal for the Open Government Data of Vienna (in german: “Wien”) can
be accessed via the URL https://data.wien.gv.at, for Graz the URL is http:
//data.graz.gv.at/. Additionally, Austria has made the regions co-owners of the
national portal, which made the regions responsible for including their data on the
national data portal [CNV16].

In order to publish a data set on the national Open Data portal, a form on the portal
needs to be filled out and submitted including at least the representative’s name, email
address and name of the organisation the representative belongs to [Buna]. On the same
page, it is stated that a responsible person would contact the submitting person to advise
him/her how to publish the specific data set. In the report Open Data Maturity in
Europe 2016, it is stated that the regional portals upload their data to the national portal
through the portal’s API (the API will be discussed next) [CNV16]. This makes Austria
the country with the most machine-to-machine traffic that is generated via the portal
API in the European Union [CNV16].

Open Governmental Data - Technology (CKAN)

In this section, the technology that is being used by the national Open Governmental
Data portal will be described. The national portal is built using CKAN, which is an
open source data portal software for creating open data websites [Ckac]. Data that are
being published there is published as a “dataset”. The dataset consists of the metadata
(e.g. the title, the publisher, . . .) and the resources, which hold the data itself. Several
data formats are supported as resources and one dataset might have many resources
of the data (there might be, for example, a XML file and a PDF document for one
dataset, containing the same data). The following main use cases for Users are covered
by CKAN [Ckac]:

• Registration and logging in: This is mainly needed for the publishing and personal-
ization features of CKAN.

• Adding a dataset: When adding a dataset, a form needs to be filled out. Metadata
to the data needs to be entered as well as the resource(s) where the actual data
can be retrieved from. A resource might either be a link to a file, a link to an API
or a file that is uploaded directly in the form.

2https://www.europeandataportal.eu/. Visited: October 16, 2016

11

data.organisation.gv.at
https://data.wien.gv.at
http://data.graz.gv.at/
http://data.graz.gv.at/
https://www.europeandataportal.eu/

2. Background

• Editing/deleting a dataset or resources of the dataset.

• Creating and managing an organization: Each dataset is owned by an organization
and each organization can have multiple users, who are able to manage the datasets
of the organization they belong to. Managing permissions of the users of the
organization is also included.

• Finding data: Data can be found by defining search words and search filters. It
is also possible to restrict the results to the data of a certain organization. The
search is solely based on the metadata of the dataset.

• Exploring datasets: After the selection of the dataset, all public metadata of the
dataset is shown on one page. Additionally all resources of the dataset are shown
including brief descriptions of and links to each of the resources. On the dedicated
page of a resource the download of the resource is possible. There is also a preview
offered for the structured types of resources (such as .CSV and .XLS).

• Personalization: For authenticated users a personal news feed as well as the user
profile can be managed.

There is also a RPC-style API which enables API clients to access CKAN’s features [Ckaa].
In case the “DataStore extension” is active, which provides the previously mentioned
preview functionality, then it is also possible to search, filter and update qualified data
sets by using the DataStore API provided by CKAN [Ckab].

Open Governmental Data - Linked Data

There is also an approach to Linked Data. For this purpose there is “LOD Pilot”3, which
is a pilot project for building up a Linked Data infrastructure in the public sector (Open
Governmental Data). There is a SPARQL interface where visitors of the website can
query available data using SPARQL. There are currently 18 data sets (as of October 16,
2016), which have been taken from the national or the Vienna Open Governmental Data
portal, converted to RDF, linked to each other and to other sources and, finally, have
been published as Linked Open Data [Bunb].

Non-governmental Open Data

For non-governmental Open Data there is a separate portal called “Open Data Portal
Österreich”4. Data sets, which do not originate from the public sector, might be published
and explored there. This portal is operated by the Austrian branch of Wikimedia [Ösb].
In July 2014, the portal has been launched in the Beta-phase [Ösa].

According to the web page, the process of publishing a data set includes the following
steps [Ösc]:

3https://www.lodpilot.at. Visited: October 16, 2016
4https://www.opendataportal.at/. Visited: October 16, 2016

12

https://www.lodpilot.at
https://www.opendataportal.at/

2.1. Open Data

1. Identify a data set that is suitable to be published.

2. Put the data into a suitable format.

3. Describe the data by entering its metadata.

4. Upload the data or provide a link to it.

5. Keep your data up to date.

In order to be able to publish a data set, a user must be registered. Compared to the
publishing process for governmental data, this process is simpler. One can register on
the portal at any time and publish his/her data in just a few steps.

The underlying technology of this portal is the same software that has been used to
create the governmental data portal (CKAN). Thus, these two portals have the same
functional capabilities. In the next section, the Austrian approach to offering Open Data
will be compared to the approaches in other countries.

2.1.3 Approaches in other countries and comparison to Austria

In this section, the comparison will be limited to Open Governmental Data portals. First,
the portal(s) and the used technologies of a selected number of countries will be described;
afterwards, some comparative parameters and facts will be presented. The countries,
which will be used for comparison are:

• The USA as the driving force behind the Open Governmental Data movement.

• The UK as one of the leading countries in Europe concering Open Governmental
Data. Facts that confirm this statement will be presented in the comparison section.

USA

The USA have been the driving force behind the Open Governmental Data movement.
Drawing an analogy to the diffusion of innovations, the USA have clearly the role of the
innovator in this field.

In the USA there is, like in Austria, a federal data portal. The federal Open Governmental
Data portal5 of the USA was launched in May 2009 [KA16]. Its goal is, as in Austria,
to be the central catalogue of the decentrally published data sets. Another similarity
to Austria is the fact that the open source application CKAN (besides WordPress) has
been used to build the portal [UGSATa]. Consequently, there is the same functionality
available on the portal (depending on the implementation of course) and there is also
the same API that can be used by developers to access the functionality of the portal
programatically.

5https://www.data.gov. Visited: October 17, 2016

13

https://www.data.gov

2. Background

The process of publishing data sets on the portal is similar to the Austrian approach:
A form, which requires information about the data set as well as about the submitting
person, needs to be submitted [UGSATb]. A responsible person on Data.gov side contacts
the submitting person for further clarification about the data publishing process.

United Kingdom

In the UK, there is also a national Open Governmental Data portal6 [Eur16]. In January
2010, the website was launched publicly labeled as “beta version” [Govb]. Again, the
portal plays the same role as in Austria and the USA — it is a central catalogue of the
decentrally published data sets. And again, CKAN has been used (besides Drupal) to
build the portal [Gova], which leads to the same consequences as mentioned already for
the USA in comparison to Austria.

One difference in comparison to Austria and the USA is the publishing process. There is
a web page which describes in detail how to publish data on the portal.7 To summarize
shortly, a person needs to register in order to become an ‘editor’ or ‘administrator’ for
the organisation he/she is working for. Once the account has been confirmed, the person
who owns the account can publish data on the portal.

Quantitative comparison

In order to be able to quantitatively compare these countries in the context of their
progress in their Open Data program (“Open Data Maturity”), suitable benchmarks need
to be found or defined first. In the paper Benchmarks for Evaluating the Progress of Open
Data Adoption Usage, Limitations, and Lessons Learned, the authors have compared
five Open Data Benchmarks [SZJG14]. One part was dedicated to the comaprison of
methodologies of these benchmarks. Two of these benchmarks (“World Bank ODRA”
and “Capgemini OD Economy”) are not created periodically, and the “ePSI Scoreboard”
covers only the EU member states. The following two benchmarks have been selected for
this thesis to make it possible to compare Austria, the USA and the United Kingdom:

• Open Data Barometer by the Open Data Institute and the World Wide Web
Foundation: The components of this benchmark are “readiness for Open Data
initiatives, implementation of Open Data programmes and impact that Open Data
has on business, politics and civil society” [Fouc]. On each of these components
0-100 points are awarded to each of the examined countries and the arithmetic mean
of these three scores is taken as the final score. The purpose of this benchmark is
to identify challenges to Open Data in the countries [SZJG14]. The third edition of
the Open Data Barometer (most recent one at the time of writing) is based upon
the following types of data [Foud]:

– A peer reviewed expert survey
6https://data.gov.uk. Visited: October 17, 2016
7http://guidance.data.gov.uk. Visited: October 17, 2016

14

https://data.gov.uk
http://guidance.data.gov.uk

2.1. Open Data

– government self assessment (survey)
– secondary data selected from the World Economic Forum, World Bank, United

Nations e-Government Survey and Freedom House.

• Open Data Index by the Open Knowledge Foundation: This index compares the
countries upon “key data sets” from 13 different areas. One of the assumptions of
the research is that “the national government has a responsibility to ensure the open
publication of such data even if it is held and managed by a third-party” [Knoa].
For each of these key data sets, nine questions about the openness of the data
sets (based upon the definition of Open Data by Open Definition, which has been
described in Section 2.1.1) are being asked. 0 - 100 points are allotted for each
key data set. Based on these scores an index percentage is calculated and the
resulting ranking of the countries is based upon this index percentage. According
to Susha et al., the index “seeks to encourage advocacy and push governments to
improve” [SZJG14].

Table 2.1 presents the Open Data Barometer ranking of the countries for the year 2015.
The United Kingdom is the “winner” of this ranking with the maximum overall score of
100, followed by the USA with a significantly lower score of 81.89. The USA is, according
to this ranking, ready for Open Data initiatives. But there seems to be a lack in the
implementation and impact of Open Data. Austria is placed 13th in the Open Data
Barometer ranking. The implementation seems to be the biggest drawback of Open Data
in Austria, while the readiness is rated better than the readiness of Denmark, which is
on the fifth place of the ranking.

Country Rank Score Readiness Implementation Impact
United Kingdom 1 100 100 100 100
United States of America 2 81.89 97 76 76
France 2 81.65 97 76 74
Canada 4 80.35 89 84 67
Denmark 5 76.62 77 77 78
.
Austria 13 64.18 81 49 70

Table 2.1: Ranking according to the Open Data Barometer for the year 2015 [Foub]

The Open Data Index ranking is depicted in Table 2.2. In this ranking Taiwan, which
was not ranked by the Open Data Barometer, came out as the winner with a score of 78
% before the United Kingdom, which was placed as the runner up (76 %). The United
States of America are ranked eighth, rather lower in comparison to the second place in
the previous ranking, while Austria is even on the 23rd place with a score of 50 %.

In order to explain the ranking, the countries need to be compared on the level of the 13
key data sets:

15

2. Background

Country Rank Score
Taiwan 1 78 %
United Kingdom 2 76 %
Denmark 3 70 %
Colombia 4 68 %
Finland 5 67 %
.
United States of America 8 64 %
.
Austria 23 50 %

Table 2.2: Ranking according to the Global Open Data Index for the year 2015 [Knoc]

• United Kingdom: The data set Election Results scored 0 points, which is the worst
score among all data sets of the UK. Also the data sets Water Quality and Land
Ownership were awarded less than 50 % of the possible points. In contrast to these
three data sets, there are seven data sets with a maximum score.

• United States of America: Data set Land Ownership scored 0 points, while there
are three other data sets with a score of less than 50 % of the possible points
(Election Results, Water Quality and Government Spending. The status of the data
set Company Register was rated as “unclear” for most of the relevant criteria. It is
only clear that the data exists in a digital form. In comparison to the UK, there
are six data sets with a maximum score.

• Austria: No data set has been rated with 0 points, but there are points of criticism
for 10 of the 13 data sets. Government Spending scored the least points among
all data sets in Austria, followed by Land Ownership, Location datasets, Company
Register and Weather forecast (all of them scored less than 50 % of the possible
points).

None of these rankings explicitly included the API of the Open Data portals of the
ranked countries as criterion. On the other hand, in “Open Data Maturity in Europe
2016,” the presence of an API was one of the indicators used to determine the Open
Data readiness of the European countries [CNV16]. However, as the technology behind
all three portals is CKAN, the countries provide the same API for interaction with the
corresponding portal. The CKAN API is an RPC-style API. However, for purpose of
this thesis a REST API will be created using OData. Thus the next section will deal
with REST and Web Services (APIs) that are based on REST.

16

2.2. REST

2.2 REST

2.2.1 Introduction

REST is an acronym that stands for Representational State Transfer. REST is an archi-
tectural style, which has been defined by Roy Thomas Fielding in his dissertation [Fie00].8
It has been derived from the architecture of the Web as part of the efforts to standardize
the Web architecture and protocols in the midst of the expansion of the Web that has
started in the 1990s [HFdTC]. The main goal was to establish an “architectural style for
distributed hypermedia systems.” Six architectural constraints, which will be explained in
Section 2.2.2, have been selected and applied sequentially by Fielding in order to “form”
REST:

1. Client-Server

2. Stateless

3. Cache

4. Uniform interface

5. Layered system

6. Code-on-demand

Beside the architectural constraints, there are three different classes of archtitectural
elements: Data elements, connectors and components.

• Data Elements: The state of the data elements is a central point of REST. At the
communication of components, representations of resources are being transferred.

– Resource: A resource is the key abstraction in REST, denoting any information
that can be named. It is a “conceptual mapping to a set of entities,” where
the semantics of this mapping is constant over time while the single entities of
the resource are alterable as time passes.
One example from software engineering: A source code file X in a version
control system might be released in a version 2.0. The resource “version 2.0 of
file X” will always point to the same entity. In contrast to that the resource
“latest revision of X” points at some point in time to the same entity as in
version 2.0, but as development goes on and the file X is being changed, the
resource will point to a different entity.
A particular resource is identified in REST by a resource identifier.

8Fielding’s dissertation is the main source that is used for this introductory section, unless there is a
different citation.

17

2. Background

– Representation: Actions on resources are performed in REST by using a
representation. Components in REST transfer representations of the current
or intended state of resources between each other. A representation is composed
of a sequence of bytes (the data), representation metadata which describes the
data and occasionally, metadata which describes the metadata (e.g. hash sums
for verifying message integrity). A response might include additionally to the
representation metadata also resource metadata, which is information about
the resource that is not tied to the representation.
Control data might also be supplied in the communication between the com-
ponents. Control data can define the purpose of a message. Alternatively, it
might be used to parametrize requests (e.g. influence the cache behavior by
supplying control data in the request/response).
Each representation is supplied in a certain data format. A representation’s
data format is called media type. The media type might be intended for a
user to be viewed or for machine processing (some media types are capable of
both). There is no restriction upon the data format as long as it is processable
by all components involved.

• Connectors: Connectors are architectural elements which are in charge of man-
aging the communication for a component. There are five different connector
types:

– Client: A client initiates the communication between components by sending
a request.

– Server: A server listens for connections, processes incoming requests and
responds to the same.

– Cache: A cache “can be located on the interface to a client or server connector.”
It stores recent cacheable responses of interaction, in order to reuse them for
future requests.

– Resolver: A resolver translates a resource identifier into a network address,
which is required to establish the communication between components.

– Tunnel: A tunnel relays communication. REST components are capable of
switching dynamically from active to tunnel behavior.

• Components: There are four different components in REST. The classification is
based on the roles of the single components inside an application:

– User agent: The user agent initiates a request (by using a client connector)
and is the final recipient of the server’s response.

– Origin server: The origin server is the final recipient of each request that is
sent with the intention to modify values of resources. The request is received
by using a server connector. It is also “the definitive source for representations
of its resources.”

18

2.2. REST

Figure 2.1: Client-Server constraint [Fie00].

– Intermediary components: Proxy and Gateway are the two different intermedi-
ary components. Such components act as a client as well as a server in order
to translate and forward requests and responses. The difference between a
proxy and a gateway is that a client can explicitly choose to communicate
with a proxy, but not with a gateway.

It is important to emphasize that REST does not place any restrictions on the used
communication protocols and implementations of the single components. Only the
interface of the single components is a part of the definition of REST. In the next section,
the architectural constraints, which have already been mentioned in this section, will be
discussed in detail in order to get a comprehensive overview of REST.

2.2.2 Architectural Constraints

The order of the architectural constraints is the order that has already been used by
Fielding [Fie00] when he was defining the architectural boundaries of REST.

Client-Server

The first constraint that has been added to the set of constraints is the client-server
constraint, which is pictured in Figure 2.1. It depicts the separation of concerns, of
which the main advantage in the context of the Web and REST is that both can grow
independently of each other.

Stateless

After the client-server constraint, the constraint that the communication must be stateless
was added. This means that each client request must contain all information that is
necessary for the server to understand and process it. The server remains stateless causing
the session-handling to be located on the client’s side. The advantages and drawbacks
associated to this constraint are presented in Table 2.3.

Cache

The main reason for adding cache as an architectural constraint was to improve the
network performance. The cache allows the client (and the server) to store and reuse a

19

2. Background

Advantages Drawbacks

• Visibility: The request contains
all information needed to under-
stand the same, which allows for
example a monitoring system to
analyze it without the need to in-
spect other requests.

• Reliability: Recovering from par-
tial failures becomes easier.

• Scalability: As the state between
two requests does not need to be
stored, the resources can be freed
on the server side after processing
the request. Furthermore no re-
source management between two
requests is necessary, which re-
duces the complexity.

• The network performance may
be impacted by this constraint.
The reason is that this con-
straint might make it neces-
sary to repeatedly include the
same information in several re-
quests to the server, because
the server needs the informa-
tion to understand and process
each of the requests.

• Server looses the control over
consistent application behavior
to some extent, since there can
be multiple clients and client
versions which implement the
semantics.

Table 2.3: Advantages and disadvantages of the stateless-communication constraint

certain response for potentially occurring later requests, under the assumption that the
response is cacheable. By using a cache, it is possible to partially or completely eliminate
some interactions, which leads to an improvement of efficiency at the cost of reliability.
The reliability is reduced by the possibility of having stale data inside the cache, which
differs from the server-state of the data [Fie00].

Uniform Interface

A unique characteristic of REST among network-based architectural styles is the focus on
the presence of a uniform interface between components. Additionally to the advantage
that the decoupling of the implementation from the interface allows the server as well as
the client to grow independently, there are two other advantages:

• The overall architecture is simplified.

• The visibility of interactions is improved.

In Figure 2.2, the uniform interface constraint is shown together with the previously
described architectural constraints and some of the introduced architectural elements.

20

2.2. REST

Figure 2.2: Uniform interface with a stateless server and caches on both server and client
side [Fie00].

The drawback of applying this constraint is that efficiency is degraded, as there is no
tailoring to an application’s specific needs. The data is offered and transferred in a
standardized way, which might not be optimal in every case [Fie00].

The uniform interface is additionally enforced by the presence of other constraints and
architectural elements that have mostly been already introduced:

• Resources as the key abstraction, which map to a set of entities.

• Representations of resources as another architectural element, which are used to
transfer data between components and to manipulate resources.

• Self-descriptive messages induced by the statelessness of the server.

• Hypermedia as the engine of application state.

21

2. Background

Layered System

The overall complexity of the system is further reduced by adding the layered system
constraint. This constraint allows multiple layers to be added to the overall architec-
ture (consisting of architectural elements that have been discussed in Section 2.2.1).
Each component only knows about the immediate layer with which it is interacting,
without gaining any insight into possibly existing deeper layers. A layered system’s
main disadvantage, which might especially stand out in a network-based system, is the
possible reduction of the performance. Still, caching on the client side or at intermediary
components might compensate such a performance loss.

Code-On-Demand

The final and at the same time only optional constraint in REST is code-on-demand.
Code-on-demand allows the extension of client functionality by downloading and executing
code as an applet or script. Although there are benefits of applying this constraint as, for
example, the improved system extensibility, it reduces the visibility and for this reason it
was marked as optional.

REST is, as already mentioned, an architectural style. But REST does not define any
concrete technologies and protocols which shall be used and is beyond that no concrete
architecture itself. Therefore, the next section will cover a concrete architecture which is
conformant with REST - the Resource Oriented Architecture.

2.2.3 Resource Oriented Architecture

The resource orientation as a concept has its roots in Fielding’s dissertation [Fie00].
It emerged upon the constraints that have been defined for the service orientation:
The server-client constriant, a globally unique reference (resource identification) and
a stateless message exchange [Ove07]. The most important additional constraint of a
resource oriented architecture is the stress on having a uniform interface, whose benefits
have already been discussed in Section 2.2.2. Overdick comments in his paper the
discussion on the topic “service orientation vs. resource orientation” as follows [Ove07]:

“[. . .] Thus, all discussion of services vs. resources are moot, as all resources
are services by definition.”

The Resource Oriented Architecture (ROA), which has been defined by Richardson and
Ruby in their book [RR08a], is one of the earliest appearances of the term and one of the
most referenced ones when it comes to RESTful Web Services and Resource Oriented
Architecture. Hence, the Resource Oriented Architecture, as defined by Richardson and
Ruby, will be presented in this section.

In the context of web services they tie their Resource Oriented Architecture to the
technologies of the Web. Therefore, they use HTTP and URIs to make up a concrete

22

2.2. REST

architecture. Their architecture makes use of “resources, their names, their representa-
tions and the links between them” [RR08b]. Resources as an architectural element have
already been discussed in Section 2.2.1. In this concrete architecture, by making use
of the technologies of the Web, resources are identified by an URI (Universal Resource
Identifier). The URI is name and identifier of a resource at the same time. Although
not part of the draft standard for URIs [BLFM], still the URI should be structured and
predictable according to Richardson and Ruby.

The data is returned by the server as a series of bytes, which might represent the resource
in a certain file format in a certain language. One resource can have one or multiple
representations. A client can make use of HTTP headers to let the server know, which
representation is preferred by the client. This process is called Content Negotiation. The
Accept header lets the client send a list of preferred file formats of representations to
the server. The client could, for example, prefer JSON to XML as format and thus set
the corresponding Accept header in his request. The preferred language is another
parameter that can be sent by the client. In order to notify the server about the preferred
language, the Accept-Language header might be used. Information, which is sent
in the Accept and the Accept-Language header, might also be sent as part of the
URI according to Richardson and Ruby, without violating any REST concept. On the
other hand, when the client intends to modify an existing resource, he needs to send a
representation of the intended state of the resource in the request body. In order to tell
the server the format of the representation of the resource, the Content-Type header
needs to be set by the client.

The following four central properties are propagated by the authors:

• Addressability: The resources of a service are exposed via URIs and addressable
via HTTP.

• Statelessness: The client includes all necessary information in his request (by using
the request headers and possibly the request body) and after each request has been
served, the application returns to its initial state. By using HTTP, which is a
stateless protocol, the statelessness is given by default.

• Connectedness: “Resources should link to each other in their representations” ac-
cording to Richardson and Ruby. The presence of this link meets the “Hypermedia
as the engine of application state”-constraint, that has been mentioned in Sec-
tion 2.2.2 at the description of the “uniform interface” constraint. For example:
When retrieving the web page https://www.google.com/search?q=cars,
the “next page” link is the information that is needed for the client to change its
state (by changing the page).

• Uniform interface: HTTP provides a set of methods that are used to represent
operations on resources. The following four most common operations (HTTP verbs)
are mentioned explicitly by Richardson and Ruby:

23

2. Background

– GET: GET is used to retrieve a resource in the requested representation.
– DELETE: A DELETE request is used to delete an existing resource.
– POST: A POST request is usually used to “create subordinate resources.”

Subordinate resources are resources that have been created in relation to
some parent resource. Such a request needs to include the resource within the
request body using a representation that is accepted by the server.

– PUT: A PUT request might be used to update or to create objects. Again,
the request needs to include the resource within the body. The main difference
between POST and PUT in the creation use case is that the PUT request’s
URI must point to the URI that the new resource should have, while the
POST request is usually applied to a “collection” URI and the server decides
about the URI of the resource which should be created. Here is an example
to illustrate the difference: Given the URI for fetching cars from a system
is /cars, then a PUT request, which wants to create a car, needs to point
already to the final URI of the new car (e.g. /cars/123), while the POST
request would point to /cars and the server would be in charge of deciding
upon the URI of the newly created car.

The Uniform interface is encouraged by two additional properties of HTTP methods:
safety and idempotence. Requests that are considered safe should not have any
side effects on the server side. Of the presented operations, only HTTP GET is
considered to be safe. Of course, there might be for example logging of each request
on the server side to a log-file, which would be a side-effect. But these side-effects
have not been asked by the client’s request, thus he is not responsible for them.
Idempotent requests are such requests that have the same effect, whether applied
once or more than once. PUT and DELETE are, besides GET, the idempotent
operations out of the set of the most common operations.

This was the overview over the Resource Oriented Architecture like it is defined by
Richardson and Ruby, which is tied to the technologies of the Web and can be used to
create RESTful web services. But REST is not the one and only architectural style,
as the Resource Oriented Architecture is not the one and only architecture. There are
also shortcomings and problems that raise together with this approach, which will be
discussed in the next section in detail.

2.2.4 Shortcomings / Problems of REST

The disadvantages of REST as architectural style and ROA as RESTful architecture
originate in the constraints that are proposed by REST. In Section 2.2.2, already some
disadvantages that come along when applying certain constraints to the architecture,
have been mentioned.

In [PZL08], the authors compare RESTful web services to WS-* web services. Thereby
they have identified the following weaknesses of RESTful web services:

24

2.2. REST

• HTTP-verbs: In the XHTML-form, the method attribute only supports POST
and GET as HTTP methods. Additionally, firewalls and proxies may not always
allow HTTP connections that use other verbs than GET and POST. These issues
lead to several non-standard workarounds, which might not be understood by all
web servers and thus require additional implementation and testing effort.

• The interoperability of a RESTful web service might be hindered by the flexibility
of the format a representation of a resource might be provided in. For example:
A client which expects data in JSON format might not be able to parse an XML
response.

• The flexibility that is induced with the capability of serving a resource in mulitple
representation formats also implicitly requires extra maintenance effort.

• The service description of RESTful web services is rather informal and textual,
if it exists at all. There is no official interface description language, which would
facilitate for example the generation of client-stub code automatically.

• Beyond HTTPS (point-to-point SSL security), there are no other security mecha-
nisms proposed in conjunction with REST.

• There is no common service discovery mechanism for RESTful web services.

• HTTP is a synchronous protocol, hence the communcation is limited to synchronous
communication.

All of these weaknesses are related to the architectural style and the used technologies.
This means that a software architect, choosing to implement a RESTful web service
with the given technology stack, should be aware of the weaknesses of the architecture
he has chosen. In [GINT14], the authors criticize a missing service registry and service
contract, which are essential “in order to enable the ad hoc usage of services during
service consumer runtime”. This is relevant in the context of SOA. Beyond the presented
weaknesses, which are mostly related to the used technologies and the architectural style,
there is another problem that has been addressed in [GINT14] and is the source of other
problems in the context of REST: There is a lack of standardisation in the REST domain.

In order to prove this lack of standardisation, the authors conducted an empirical study
with six distinct REST frameworks. They have developed the same application with each
of the selected frameworks. Furthermore a test case set was defined beforehand, which
was executed against each of the applications. The key insights of their study are:

• The missing standardisation lead to diverse implementations, which causes incom-
patibilities (especially between components deployed on heterogeneous platforms).

• The main divergences were identified in the usage of HTTP headers as well as the
HTTP status code of the response. For identical requests, different HTTP status
codes were returned to the client.

25

2. Background

• Sometimes, although the response was sent with the same HTTP status codes, the
responses varied in respect to other aspects. The authors mentioned the example
of the creation of a resource in ASP.NET. The response code 201 (= “created”)
is returned, but additionally to the “Location” header the generated resource is
returned in the body of the response.

The authors suggest that a compulsive specification and mapping of REST to HTTP is
needed in order to improve the out-of-the-box compatibility between REST implementa-
tions. Automatic code generation as well as a “loose-coupling of REST services” could be
enabled by such a specification. Also the security aspects needs to be covered by such a
specification according to the authors. This lack of standardisation as well as some other
identified issues are tackled by the Open Data Protocol (OData), which will consequently
be discussed in the next section in detail.

2.3 OData - Open Data Protocol

2.3.1 Introduction

The Open Data Protocol (OData) is an open protocol “that defines a set of best practices
for building and consuming RESTful APIs” [ODac]. It has been published by Microsoft
under the Open Specification Promise [Cor]. The first revision of the protocol has been
published on Feburary 27, 2009 [Cor]. OData Version 4.0 and OData Version 4.0 JSON
Format have been approved as an OASIS9 standard in February 2014 [OASc]. OData
JSON Format defines the resource representations for the OData requests and responses
using JSON [HPB16], while the protocol itself also gives the possiblity to use the Atom
format [PHZ16a]. However, the Atom Format specification has not yet become an OASIS
standard [OASc].

As already mentioned in Section 1.1, the most recent OData version (4.0) may become
an international standard for REST APIs. It has been submitted to the ISO/IEC Joint
Technical Committee (JTC) 1 to be approved as an International Standard [Ben15].
On the ISO web page, the two documents that have been submitted for becoming an
International Standard ([ISOb] and [ISOc]) appear to be in stage 40.99, which means
“Enquiry stage - Full report circulated: DIS10 approved for registration as FDIS11”. As
there is a stage 60.60, which means “Publication stage - International Standard published”,
the conclusion can be drawn that OData has still not become an International Standard.
Nevertheless, there is only one stage to go for OData (the “Approval stage”) to become
an International Standard.

9“OASIS is a non-profit consortium that drives the development, convergence and adoption of open
standards for the global information society” [OASa]

10Draft International Standard [ISOa]
11Final Draft International Standard [ISOa]

26

2.3. OData - Open Data Protocol

Since the genesis of OData has already been discussed, the content of OData will be
elaborated next. The OData protocol specification covers a variety of topics related to
RESTful web services [PHZ16a]:

• Data Model: The underlying data model of an OData service is described in a
so-called Entity Data Model (EDM) and exposed via a so-called metadata document.
In Section 2.3.2, this model will be discussed in detail.

• URL conventions: The URL construction inside an OData service should follow
the rules that are proposed by OData. The URL-conventions, as well as so-called
system query options and other aspects covered by the URL conventions proposed
by OData will be discussed in Section 2.3.3.

• Service Model: Besides the data model, there is also the service model. In the
service document, all entity sets, functions and singletons are listed, that can be
retrieved by a client from an OData service. The service document is available at
the root URL of the OData RESTful web service. Only those resources, which can
be retrieved based on the root URL of the service, are listed in the service document.
Following the URL conventions combined with the information gained from the
service and the metadata document, URLs can be built to address any resource
exposed by an OData service, given the RESTful web service conforms with OData.
Figure 2.3 shows a sample service document. The difference between the service
document and the metadata document is that a service document can be used to
navigate the model, while the metadata document can be used to understand how
to interact with entities in the service.

• Versioning: On the one hand, there is the protocol versioning, which states that
clients shall include the OData-MaxVersion header in their requests, in which
they articulate the maximum acceptable response version. On the other hand, the
model versioning defines that in case of breaking changes of the data model, a
new service version needs to be provided at a different service root URL. Also,
a definition of “safe changes” is given, which can be made on a model without
requiring a new service version.

• Headers and formats: Semantics for a set of general request and response headers
(for example Content-Type) are defined in detail, as well as the semantics for
OData-specific headers (for example OData-MaxVersion). It is defined whether
these headers should/must be included in a request/response. Also a server’s
response in certain error cases is defined in the OData specification. One example:
By providing the Accept header, a client may request a particular response format.
In case the server does not support the requested format, it must reply with HTTP
406 Not Acceptable. Concerning formats, it is defined that at least JSON or
Atom as representation formats must be supported by any OData service.

27

2. Background

• Response status codes: The common response status codes are summarized and
their meaning is conveyed in the specification. But, introducing the definition, it is
explicitly stated that [PHZ16a]:

“An OData service MAY respond to any request using any valid HTTP
status code appropriate for the request. A service SHOULD be as specific
as possible in its choice of HTTP status codes.”

• Data Requests: Several types of data requests, their connection to input/output
headers and response status codes, the expected behavior of server and client side
and other issues are specified. Beside basic read and write requests, the specification
also covers media entities, operations, asynchronous requests and batch requests.

• Security: The specification is rather permissive on the security aspect. It only
provides starting points for further investigation on security considerations. If
authentication is required, it is specified that basic authentication over HTTPS
should be supported to raise the interoperability with generic clients to the highest
level. Additionally, other authentication methods may be supported according to
the specification.

• Also, other topics like “Extensibility” (of query options, of the payload, etc.) and a
“Context-URL”, which should be present in each response payload as attribute, are
covered by the specification, but will not be elaborated in this thesis in detail.

As OData is a rather comprehensive specification, three levels of conformance for an
OData service were defined by the authors:

• OData Minimal Conformance Level

• OData Intermediate Conformance Level

• OData Advanced Conformance Level

Furthermore, it is defined that interoperable OData clients can expect to work with
OData services that comply at least with the Minimal Conformance Level and implement
the JSON format. The authors of the specification are aware of the fact that not all of
these conventions will be followed by all OData services. They state therefore [PHZ16a]:

“Not all services will support all of the conventions defined in the protocol;
services choose those conventions defined in OData as the representation to
expose that functionality appropriate for their scenarios. [. . .] Services are
encouraged to support as much additional functionality beyond their level of
conformance as is appropriate for their intended scenario.”

28

2.3. OData - Open Data Protocol

Figure 2.3: The service document of the TripPinRESTierService, retrieved by calling
GET http://services.odata.org/TripPinRESTierService.

This section gave an overview on the content of the OData specification. In the next two
sections, first the Entity Data Model and then the URL-conventions will be discussed
in detail. A deep understanding of these two topics is essential for understanding and
elaborating the design of the generic OData client application prototype.

2.3.2 Entity Data Model

OData services are described in terms of an Entity Data Model (EDM). According to
the specification of the protocol [PHZ16a], the provided way of describing the data and
the data model in a uniform way is the unique feature of the OData protocol. The
concepts listed below are central in the EDM (sources of the following list are [PHZ16a]
and [PHZ16c]):

• Entity: Any uniquely identifiable record is an entity. Entities are instances of Entity
Types.

• Entity Type: An entity type is a nominal (named) structured type with a key. An

29

http://services.odata.org/TripPinRESTierService

2. Background

entity type defines properties and relationships of an Entity. Single inheritance is
enabled in the EDM, thus an entity type may be derived from another one. The
key of an entity type is defined as a subset of the primitive properties that are
defined for the entity type (for example CustomerId given an entity type called
Customer).

• Complex Type: Complex types are nominal structured types without a key, which
means that complex types are always referenced in the context of an entity type.
A complex type consists of a set of properties.

• Property: There are two kinds of properties that can be defined:

1. Structural Property: A structural property is a property of either a Primitive
Type (for example Boolean, Byte etc.; OData defines a set of primitive types),
a Complex Type, an Enumeration Type (such types represent a series of related
values) or a collection of one of the mentioned types.

2. Navigation Property: A navigation property represents a relationship between
entity types. The multiplicity of the relationship, composition relationships
as well as referential constraints and on-delete behavior can be modelled as
attributes of the relationship.

• Entity Set: Entity sets are named collections of entities (Orders is for example an
entity set containing Order entities). There can be multiple entity sets that use
the same entity type.

• Operation: There are two types of operations defined by OData. Both types have
in common that they can either be bound to a type or unbound (in that case they
are called “static operations”):

– Function: Functions are Operations that do not allow side effects. Functions
may be further composed with filter operations, functions or an action.

– Action: In constrast, an action allows side effects. Also, actions may not be
further composed with filter operations, functions or another action.

• Vocabulary and Annotation: Vocabularies and annotations allow to annotate meta-
data as well as instance data. While metadata annotations can be used to define
characteristics of a metadata element (for example the characteristics of a prop-
erty or an entity type), instance annotations can provide additional information
associated with an element (for example, in case a property of a certain entity is
read-only). A vocabulary contains a set of terms, while an annotation applies such
a term to a model element.

There is exactly one entity model that is exposed by an OData service. The Common
Schema Definition Language (CSDL) defines an XML representation of the entity data
model exposed by an OData service. The entity model is exposed by a single CSDL

30

2.3. OData - Open Data Protocol

Figure 2.4: An excerpt of the metadata document of the TripPinRESTierService, retrieved
by calling GET http://services.odata.org/TripPinRESTierService/
$metadata.

document, which is also called the metadata document. It is machine-readable, due to its
format (XML), which is especially important when building a generic client application.
The reason is that such an application does not know the entity model of the service
it will invoke in advance and thus needs to resolve it. The metadata document is
available at the metadata URL, which is formed by appending $metadata to the
service root URL. Figure 2.4 shows a part of a sample metadata document. In the
metadata document, beside the entity model itself, there is exactly one entity container
that defines the resources exposed by this services (entity sets and their navigation
properties, singletons 12, function and action imports 13). The difference between the
service document and the metadata document, which might be raised here, has already
been explained in Section 2.3.1.

The OData specification, of course, goes into more detail at the description of each of the
presented concepts. However, the presented aspects should provide a sufficiently detailed
overview of the Entity Data Model. In later sections, terms that have been introduced
in this section will be used to explain the design and implementation of the prototypes.

12A singleton is a single entity that can be addressed directly without having to know its key.
13Function and action imports are used to expose a function or action, which is defined in an entity

model, as a top level resource in the service.

31

http://services.odata.org/TripPinRESTierService/$metadata
http://services.odata.org/TripPinRESTierService/$metadata

2. Background

Figure 2.5: OData URL and its components [PHZ16b]

From the perspective of a generic client application, the next section will cover another
important aspect of the OData specification: the URL conventions.

2.3.3 URL Conventions

The URL conventions are covered by a separate document of the OData specifica-
tion [PHZ16b], which is the source of information used for this section. In addition to
the specification, there is also an ABNF which defines the rules for the construction of
an URL.

In the context of OData, a URL consists of at most three parts: the service root URL,
the resource path and query options (as shown in Figure 2.5).

Service root URL

The service root URL identifies the root of the OData service. As already stated in
Section 2.3.1, the service document can be retrieving with a GET request to the service
root URL, which makes it an ideal entry point for exploring the resources of the OData
service.

Resource Path

In the specification, it is stated that the definitions for the resource path are optional.
However, OData services should follow the proposed path construction for consistency
and transparency reasons.

First, the URL for submitting batch requests to a service is defined by the resource path
$batch.

There are several possibilities to address entities. The ABNF, which has been mentioned
at the beginning of this section, defines the syntax rule for the resource path. Here are
some examples to illustrate the most relevant parts of the syntax rule for this thesis:

• A collection of entities can be addressed via an entity set:
http://host/service/Orders

• A single entity can be addressed by using the entity key. The entity key is provided
in brackets. Here is an example, given the entity key consists of one numeric
attribute: http://host/service/Orders(2)

32

2.3. OData - Open Data Protocol

If the entity key is a string attribute, the key needs to be provided inside sin-
gle quotation marks:
http://host/service/Orders(’id1’)

• If there is a relationship between two entites (e.g. one order relates to a collection
of products), the URL for retrieving the list of products of a certain order would
be:
http://host/service/Orders(2)/Products
If there is a one-to-one relationship between two entities, an example for a URL
would then be:
http://host/service/Products(2)/Supplier

• The reference between entities itself (i.e. the relationship) can be addressed by
appending /$ref to the constructed resource path:
http://host/service/Orders(2)/Products/$ref
A single entity reference between two entities is addressed by appending the query
parameter $id followed by the absolute or relative (to the request URL) entity-id:
http://host/service/Orders(2)/Products/$ref?$id=../../Products(0)
This is especially relevant when trying to unreference two entities by sending a
DELETE request to such a URL.

• The media stream of a media entity can be accessed by appending $value to the
resource path of the media entity:
http://host/service/Pictures(123)/$value

Specificly at the navigation from one entity to another, the content of the metadata
document needs to be taken into consideration. In the metadata document, the URL
paths of navigation properties are also returned (in the entity container) and shall be
used at the construction of the resource path of the URL.

Query options

Three types of query options are distinguished in OData: Besides custom query options,
whose only limitation is that they must not begin with a $ or @ character, and parameter
aliases, which must start with an @ character and may be used to reference primitive/-
complex/collection values inside the query options section of the URL, there are system
query options. System query options are query string parameters, which start with a $
character. They control the amount and order of data returned for the identified resource.
Not each system query option is applicable to each URL: Depending on whether a single
entity or a collection is addressed by the URL, certain system query options might not
be qualified for application. The ABNF also covers the grammar and syntax for system
query options. There are the following system query options (in Table 2.4 an overview
on the available system query options is given):

33

2. Background

• $filter: Allows filtering of collection resources. The client needs to send a
filter-expression, which is evaluated for each collection item. Only those collection
items where the filter expression evaluates to true are included in the response.
There is a set of logical operators (for example equals, greater than, etc.) as well as
a set of arithmetic operators (for example addition, subtraction, etc.), diverse string
functions (for example contains, endswith, etc.) and other functions and operators
which might be used to create such a filter expression.

• $expand: The client can state related resources that he wants to be included in
the response inline together with the retrieved resources.

• $select: A client can request only a specific set of properties for each entity in
the result set.

• $orderby: By using this system query option, the client can define a particular
order in which he expects the items to be returned.

• $top and $skip: System query option $top allows the client to limit the number
of entities returned in the collection, while $skip defines the number of items
that should be skipped (starting with the first item of the collection) and thus, not
be included in the result. In combination, these two parameters can be used as
pagination mechanism.

• $count: The count option allows the client to tell the server to include the count
of items within the returned collection. The count of items is returned additionally
to the result set, not instead of it.

• $search: By using search, a client can request only those entities matching
the search expression. The OData specification for this query option is rather
permissive, as the semantics of what is considered a match solely depends upon the
service and its implementation.

• $format: This system query option is meant for clients which do not have access
to request headers. They can use $format for content-type negotiation.

It is, of course, possible to combine system query options. In such cases (as already
shown in the example of $top and $skip in Table 2.4) the system query options need
to be concatenated by a ’&’ character. The relevance of the system query options for this
thesis will become visible at the implementation design of the generic client application.
The next section will deal with the comparison of OData to REST. As the goal is to offer
Open Data via RESTful web services, it needs to be confirmed that OData conforms
with the architectural style REST.

34

2.3. OData - Open Data Protocol
Sy

st
em

qu
er
y
pa

ra
m
et
er

A
pp

lic
ab

ili
ty

Ex
am

pl
e(
s)

a

$
f
i
l
t
e
r

co
lle

ct
io
n

R
et
ur
n
al
lp

ro
du

ct
s
w
ho

se
na

m
e
is

“M
ilk

”
an

d
w
ho

se
pr
ic
e
is

lo
we

r
th
an

2.
55

:
h
t
t
p
:
/
/
h
o
s
t
/
s
e
r
v
i
c
e
/
P
r
o
d
u
c
t
s
?
$
f
i
l
t
e
r
=
N
a
m
e
e
q
’
M
i
l
k
’
a
n
d

P
r
i
c
e
l
t
2
.
5
5

R
et
ur
n
al
lp

ro
du

ct
s
w
he

re
th
e
na

m
e
do

es
no

t
en

d
w
ith

“i
lk
”:

h
t
t
p
:
/
/
h
o
s
t
/
s
e
r
v
i
c
e
/
P
r
o
d
u
c
t
s
?
$
f
i
l
t
e
r
=
n
o
t

e
n
d
s
w
i
t
h
(
N
a
m
e
,
’
i
l
k
’
)

$
e
x
p
a
n
d

co
lle

ct
io
n
/
sin

-
gl
e
en
tit

y

R
et
rie

ve
al
lp

ro
du

ct
s
an

d
th
e
ca
te
go

ry
of

ea
ch

pr
od

uc
t
(p
ro
du

ct
an

d
ca
te
go

ry
ar
e
se
pa

ra
te

en
tit

y
ty
pe

s,
bu

t
th
er
e
is

a
na

vi
ga
tio

n
pr
op

er
ty

fr
om

pr
od

uc
ts

to
th
ei
r
ca
te
go

rie
s)
:

h
t
t
p
:
/
/
h
o
s
t
/
s
e
r
v
i
c
e
/
P
r
o
d
u
c
t
s
?
$
e
x
p
a
n
d
=
C
a
t
e
g
o
r
y

$
s
e
l
e
c
t

co
lle

ct
io
n
/
sin

-
gl
e
en
tit

y
Se

le
ct

on
ly

th
e
na

m
e
an

d
th
e
pr
ic
e
of

th
e
pr
od

uc
ts
:

h
t
t
p
:
/
/
h
o
s
t
/
s
e
r
v
i
c
e
/
P
r
o
d
u
c
t
s
?
$
s
e
l
e
c
t
=
N
a
m
e
,
P
r
i
c
e

$
o
r
d
e
r
b
y

co
lle

ct
io
n

O
rd
er

th
e
pr
od

uc
ts

by
na

m
e
as
ce
nd

in
g
an

d
as

se
co
nd

cr
ite

rio
n

by
pr
ic
e

de
sc
en

di
ng

:
h
t
t
p
:
/
/
h
o
s
t
/
s
e
r
v
i
c
e
/
P
r
o
d
u
c
t
s
?
$
o
r
d
e
r
b
y
=
N
a
m
e
a
s
c
,
P
r
i
c
e

d
e
s
c

$
t
o
p
an

d
$
s
k
i
p

co
lle

ct
io
n

R
et
ur
n
12

pr
od

uc
ts

w
hi
le

sk
ip
pi
ng

th
e
fir
st

tw
o
en
tr
ie
s:

h
t
t
p
:
/
/
h
o
s
t
/
s
e
r
v
i
c
e
/
P
r
o
d
u
c
t
s
?
$
t
o
p
=
1
2
&
$
s
k
i
p
=
2

$
c
o
u
n
t

co
lle

ct
io
n

R
et
ur
n
al
lp

ro
du

ct
s
an

d
th
e
nu

m
be

r
of

pr
od

uc
ts

co
nt
ai
ne

d
in

th
e
se
t:

h
t
t
p
:
/
/
h
o
s
t
/
s
e
r
v
i
c
e
/
P
r
o
d
u
c
t
s
?
$
c
o
u
n
t
=
t
r
u
e

$
s
e
a
r
c
h

co
lle

ct
io
n

R
et
ur
n
al
lp

ro
du

ct
s
th
at

ar
e
re
d:

h
t
t
p
:
/
/
h
o
s
t
/
s
e
r
v
i
c
e
/
P
r
o
d
u
c
t
s
?
$
s
e
a
r
c
h
=
r
e
d

$
f
o
r
m
a
t

co
lle

ct
io
n
/
sin

-
gl
e
en
tit

y
R
et
ur
n
th
e
lis
t
of

pr
od

uc
ts

in
fo
rm

at
a
p
p
l
i
c
a
t
i
o
n
/
j
s
o
n
:

h
t
t
p
:
/
/
h
o
s
t
/
s
e
r
v
i
c
e
/
P
r
o
d
u
c
t
s
?
$
f
o
r
m
a
t
=
a
p
p
l
i
c
a
t
i
o
n
/
j
s
o
n

Ta
bl
e
2.
4:

Su
m
m
ar
y
of

th
e
av
ai
la
bl
e
sy
st
em

qu
er
y
op

tio
ns

a S
pa

ce
s
an

d
ot
he

r
ch
ar
ac
te
rs

ha
ve

no
t
be

en
U
R
L
en

co
de

d
in

or
de

r
to

im
pr
ov
e
th
e
re
ad

ab
ili
ty

of
th
e
ex
am

pl
es
.

35

2. Background

2.3.4 Comparison OData vs REST

REST is an architectural style in constrast to OData, which defines a set of best practices
for building and consuming RESTful web services. OData can more appropriately be
compared to the Resource Oriented Architecture, because both ROA (as a RESTful
architecture) and OData tie REST services to designated technologies.

First, the commonalities shared by ROA and OData will be discussed. Both ROA and
OData use HTTP and URIs as foundation of their specifications. OData fully uses
resources and representations as concepts in its specification, as it is used by the ROA.
OData contains all central properties propagated by the Resource Oriented Architecture.
Addressability is implied by the use of URIs and HTTP; statelessness is also given by
using HTTP. Connectedness, although not required by ROA but rather formulated as
a suggestion, is reached in several ways: Most obviously, connectedness is achieved by
the context-URL, which has been mentioned shortly in Section 2.3.1. The context-URL
always links to the relevant portion of the metadata document, where the content of the
currently received response is explained. The uniform interface is also a property induced
by the correct usage of HTTP and its methods. OData also makes use of the process of
content negotiation, which is described by the ROA.

But OData goes beyond the loose specifications of ROA and REST and also tackles a lot
of the shortcomings that have been identified in Section 2.2.4:

• The usage of HTTP verbs is strictly & in detail defined by the OData protocol
specification [PHZ16a] for several cases (for example creating, reading, updating
and deleting resources).

• On the one hand, the flexibility of the format of a representation is still given by
OData. But, on the other hand, the specification states that interoperable clients
expect an OData service to implement the JSON format, which tackles the issue of
lacking interoperability due to the flexibility of the format of a representation.

• There is a machine-readable service description together with a machine-readable
data model description, exposed using a formally defined representation (CSDL).
This could enable the automated generation of client-stub code.

• The service-description is also a common service discovery mechanism for all OData
services.

• Requests and responses as well as the usage of HTTP headers and HTTP status
codes are prescribed by OData, both on a general level as well as in relation to
cases that are covered by the specification.

• The lack of standardisation in the REST domain and the missing mapping of REST
to HTTP (discussed in Section 2.2.4), which have been identified as the root of
other problems in the context of RESTful web services, is compensated by the
OData specification to a certain extent. Security aspects are only slightly covered

36

2.3. OData - Open Data Protocol

by the OData specification, but beside this issue, many other aspects are covered
by OData. The compatibility among OData RESTful web services rises with the
conformance level the services comply with.

OData covers additional issues that have not been identified as problems previously. It
defines for example the way how an OData service can offer a resource for receiving
batch requests. Asynchronous requests are also part of the specification. There is a clear
statement on the versioning of an OData REST service with respect to the changes that
should be applied.

To summarize, OData is fully compliant with the Resource Oriented Architecture, its
properties and the applied technologies. OData solves some of the shortcomings of REST,
which mostly originate in missing standarisation in the REST domain. Also, topics
which have not been addressed by neither the shortcomings nor the ROA, are part of the
specification. In the last section connected to OData, applications which make use of
OData and libraries which support the development of OData services & clients will be
presented.

2.3.5 Applications and Libraries

On the web page of OData [ODab], there is a list of references to libraries that can be used
by developers to implement either an OData client or an OData server. Some libraries
are explicitly designated as client / server libraries, while others contain both client and
server modules. Libraries exist, according to [ODab], for: .NET, Java, JavaScript, C++,
Python, Tcl/Tk and Objective-C. The most libraries are available for .NET, which might
be related to the fact that both OData and .NET were created by Microsoft and thus
most probably also used in applications developed by Microsoft in the first place.

The web page of OData also lists OData producers and OData consumers [ODaa]. OData
producers are services that expose their data conforming with the OData protocol, while
OData consumers denote applications that consume data exposed by services that use
the OData protocol. There is a variety of available applications on both producer and
consumer side. Based on the list, one of the conclusions that can be drawn is that several
companies have been founded based on a self-developed application that uses the OData
protocol in some way. But, there are also three “big players”, which utilize the OData
protocol in some of their products: IBM, Microsoft and SAP. 14 The majority of the
presented applications were created by Microsoft.

An interesting product in the context of Open Data, that is based on OData, is the OGDI
DataLab. According to its GitHub page [Ope], it is written using C# and the .NET
Framework and uses the Windows Azure Platform. It consists of three components:

14IBM and Microsoft are foundational sponsors of OASIS, while SAP is also a sponsor of OASIS [OASb].
There could be a connection between the fact that these three companies use OData and the fact that
they are sponsors of OASIS, which has declared OData as one of its open standards.

37

2. Background

• The Data Service, which is an OData conformant RESTful web service and exposes
the data.

• The Data Browser, which is a web application that offers the possiblity to browse
the data exposed by the data service and visualize the same in different ways.

• The Data Loader, which is a tool that takes CSV formatted data and publishes it
into OGDI.

The Italian Ministry of Health Open Data Portal and the Portuguese Government
Open Data Portal are examples for Open Data portals that are built using OGDI
DataLab [ODaa].

After defining Open Data, REST and the OData protocol as the main theoretical concepts
relevant for my empirical research, I will, in the next chapter, move to the project design.

38

CHAPTER 3
Project design

3.1 Idea
The idea behind this project has already been roughly discussed in Section 1.2. One of its
main goals is to judge whether the target architecture (which is depicted in Figure 1.1)
is feasible and to which extent. For this purpose, the Open Data producer as well as the
generic Open Data consumer side need to be implemented prototypically. Once both
applications are implemented, their interaction can be tested and rated in a real world
environment.

The target architecture already induces certain requirements on both prototypes. The
Open Data producer must expose its data via an OData Version 4.0 and OData JSON
Format Version 4.0 conformant RESTful web service. The Open Data consumer should
be able to connect to any such Open Data producer with as little configuration effort
as possible. Once it is connected, the Open Data consumer can make use of the OData
specification and offer displaying and querying functions on the exposed data sets.

In order to be able to imagine the full functional stack of both prototypes, the use cases
will be presented in Section 3.2. In Chapter 4, the use cases will be broken down into
specific functions, which need to be realized in order to be able to cover the use cases.
Furthermore, the concrete technical design will be depicted in the same chapter.

3.2 Use cases
The UML use case diagram has been employed to depict the use cases that need to be
covered by both prototypes. In Figure 3.1, the use cases for the client application are
illustrated. Also a non-functional requirement is expressed in this diagram, which states
that the configured OData service must expose its data conforming with at least the
Minimal Conformance Level of OData Version 4.0 and OData JSON Format Version 4.0.

39

3. Project design

Figure 3.1: Use cases that need to be covered by the generic client application.

This is exactly what interoperable clients can expect from the OData services they are
interacting with (this has already been discussed in Section 2.3.1). As it is not directly
expressed in the diagram, it needs to be highlighted that the successful execution of use
case “configure the OData service that shall be used” is the precondition for all other
use cases.

On the other hand, in Figure 3.2 those use cases are shown, that need to be covered by the
OData REST service. This diagram contains the symmetric non-functional requirement,
that the service must expose its data conforming with at least the Minimal Conformance
Level of OData Version 4.0 and OData JSON Format Version 4.0 in order to meet the
expectations of interoperable clients. The underlying data model was defined based on
requirements of the stake holders. In the next section, more details on the stake holders
and on the concrete project will be given.

40

3.3. Additional proof-of-concept application

Figure 3.2: Use cases that need to be covered by the Open Data RESTful web service.

3.3 Additional proof-of-concept application

The data model that is exposed by the OData RESTful service, has been designed based
on requirements of a project of the Technical University of Vienna together with the
Vienna Chamber of Commerce. Its goal was to provide a platform, which exposes the
research infrastructure of the university, that might be used by third parties (e.g. small
businesses). But the platform should go beyond the displaying functionality of such data
– it should also allow single departments/entities to record their infrastructure and to
edit it. Supervisors can either approve the entered infrastructure, which makes the same
publicly available, or deny it. In case it has been denied, the department needs to supply
more information about the same. The use cases are illustrated in Figure 3.3.

41

3. Project design

Figure 3.3: Use cases that need to be covered by the proof-of-concept application.

42

3.3. Additional proof-of-concept application

As there is already a portal which displays such infrastructure on national level1, one
requirement was to make the data model compatible with the data model of the already
existing portal on national level. This has been achieved by collaborating with the
creators of the portal, which opened up the most relevant parts of the data model and
thus made it possible to design a data model, which is an extension of their data model.

Furthermore, the writing functionality of the portal made it necessary to implement
write functionality on the server side. Therefore, the OData RESTful web service has
been enhanced by adding write requests, media entity requests (for transferring images
of the infrastructures) and other functionality according to the OData specification. This
application is not directly relevant for the topic of this thesis, as the focus lies on the
generic usage of read functionality of OData RESTful web services by a client application.
Nevertheless, the implementation of this particular application enabled me to gain more
insight into the implementation of writing and other functionality according to OData.
This experience allows me to add input in the conclusion of my thesis with respect to
the second research question of my thesis, which goes beyond the theoretical knowledge
gained about the OData protocol.

1https://forschungsinfrastruktur.bmwfw.gv.at/. Visited: November 13, 2016

43

https://forschungsinfrastruktur.bmwfw.gv.at/

CHAPTER 4
Implementation

4.1 Implementation of OData REST service

4.1.1 Functions / Backlog

In the previous section, the use cases of the client application, as well as the use cases of
the OData RESTful web service application were identified. Now, the implementation
starts with the OData REST service. The reason for starting with the implementation
of the OData REST service is the fact that the client application will need an available
OData REST service to which it shall connect.

The use cases identified in Section 3.2 will be divided into single functions, which are
required to enable the use cases. These functions need to be implemented:

• Retrieve underlying data model of the exposed data set: This use case can be
enabled by implementing the metadata document of OData. By exposing the
metadata document, the data model is exposed in a machine-readable way. It must
be machine-readable, because the actor, which is triggering the use case, is itself a
machine (the client application).

• Retrieve specific data structures of the data model: Data structures, that are used in
the data model (e.g. complex types), are also described in the metadata document.
Thus, the requirements for this use case are met once the metadata document is
implemented.

• Retrieve exposed data: The concrete data needs to be exposed by the REST service.
Thus, the resources and the corresponding representations need to be defined, which
can be retrieved by the client application first. It must be possible to address
collections as well as single entities. The URLs of the resources as well as the

45

4. Implementation

payload and the need to conform with OData Version 4.0 and OData JSON Format
Version 4.0.

• Define filters based on attributes of the data set: Filters may be applied only to
collections of entities. The OData-conformant way of defining filters is by using
the system query option $filter. Thus, this system query option needs to be
implemented in order to cover this use case.

• Define sorting based on attributes of the data set: An order of the entities returned
in a collection can be defined by making use of the system query option $orderby.

• Limit number of returned entities: Limiting the number of returned entities in a
collection is done, when conforming with OData, through system query option
$top.

• View related entities to each entity: In case there is a relation between entities, this
relation needs to be described properly in the metadata document. The service
must be capable of resolving URLs that navigate from one entity to another or to
a set of entities (depending on the type of relation). These URLs are expected to
be constructed according to the URL conventions of OData.

There is also a general premise, which is valid for all mentioned functions: The RESTful
web service must conform at least with the Minimal Conformance Level of OData Version
4.0. This means that all requirements, that are imposed by the Minimal Conformance
Level of OData Version 4.0, need to be met by the OData REST service, even if they are
not covered by the already mentioned ones.

4.1.2 Design

First the database schema will be discussed, at it constitutes the foundation of the service.
The database schema, which is used by this application, is shown in Figure 4.1. In
general, there are two types of tables in this database schema: tables that contain static
data and tables that contain dynamic data.

By the term static data I mean that the values in the database are inserted once and
rarely changed. The following tables belong to this class of tables:

• Finanzierungsart (stores different types of financing)

• Nutzungsart (stores different types of use)

• Oefos (stores the Austrian fields of science)

• InfrastrukturKategorie (stores different types of infrastructure categories)

• Institutionstyp (stores different types of institutions)

46

4.1. Implementation of OData REST service

• Finanzierungsart_Institutionstyp (stores the types of financing for each
type of institution)

• Infrastrukturart (stores different infrastructure types)

The values from these tables are used to describe or classify other entities. A research
infrastructure, for example, can belong to multiple infrastructure categories. The initial
values for these static data tables have been provided by the creators of the Austrian
research infrastructure portal.

Institutions (stored in table Institution), users (stored in table User), research in-
frastructure (stored in tables Fi and FiVersion), contact persons for the infrastructure
(stored in table Kontakt), images of the infrastructure (stored in table Bild), ser-
vices that are related to the research infrastructure (stored in table Dienstleistung),
costs of acquisition (stored in table FiInternAnschaffungskosten), reinvestments
(stored in table FiInternReinvestition) and various key data (stored in table
FiInternJahr) belong to the class of tables that contain dynamic data. The remaining
tables are junction tables, which store the data belonging to many-to-many relationships
between the already mentioned tables.

As already discussed in Section 3.3, the creators of the Austrian research infrastructure
portal have opened up the most relevant parts of their data model for this implementation.
They have provided parts of their database schema as .mwb1 file, which has been used
as the initial schema and extended according to additional requirements.

The whole prototype has been implemented using Java 7. At the time of implementation,
there was only one “featured” OData 4.0 library available for Java 7: Apache Olingo.
Thus, it has been used as OData library for the service. Beside Apache Olingo, various
Spring libraries (e.g. Spring JPA, Spring Boot) have been used to realize the prototype.
A MySQL database stored the data in the previously described database schema. Build
and dependency management is covered by Apache Maven. Apache Tomcat 7 is the
Servlet container, which is used to run the service.

In the next section, the results of the implementation will be presented.

4.1.3 Result

The result of the implementation is a RESTful web service, which fulfills all require-
ments that have been defined in Section 4.1.1. First, the service had to be capable
of receiving requests and responding to the same. When using solely Apache Olingo,
one would implement the method void service(ServletRequest req, final
ServletResponse resp) of Java’s HttpServlet class. In this method, the request
and response would be delegated to method void process(HttpServletRequest
request, HttpServletResponse response) of Apache Olingo’s class

1MySQL workbench

47

4. Implementation

B
ild

bildId IN
T(11)

dateinam
e V

A
R

C
H

A
R

(100)

dateinam
eO

rig V
A

R
C

H
A

R
(250)

beschreibungD
E

 M
E

D
IU

M
TE

X
T

beschreibungE
N

 M
E

D
IU

M
TE

X
T

copyrightD
E

 V
A

R
C

H
A

R
(100)

copyrightE
N

 V
A

R
C

H
A

R
(100)

fokusH
 TIN

Y
IN

T(4)

fokusV
 TIN

Y
IN

T(4)

geloescht TIN
Y

IN
T(1)

created TIM
E

S
TA

M
P

updated TIM
E

S
TA

M
P

Indexes

B
ildFiV

ersion

bildId IN
T(11)

fiV
ersionId IN

T(11)

sortierung TIN
Y

IN
T(4)

Indexes

D
ienstleistung

dienstleistungId IN
T(11)

bezeichnungD
E

 V
A

R
C

H
A

R
(250)

bezeichnungE
N

 V
A

R
C

H
A

R
(250)

beschreibungD
E

 M
E

D
IU

M
TE

X
T

beschreibungE
N

 M
E

D
IU

M
TE

X
T

created TIM
E

S
TA

M
P

updated TIM
E

S
TA

M
P

Indexes

Fi

fiId IN
T(11)

userId IN
T(11)

bezeichnungIntern V
A

R
C

H
A

R
(150)

bearbeiterN
am

e V
A

R
C

H
A

R
(150)

bearbeiterA
bteilung V

A
R

C
H

A
R

(150)

bearbeiterE
m

ail V
A

R
C

H
A

R
(150)

internB
ezug M

E
D

IU
M

TE
X

T

internFreigegeben D
A

TE
TIM

E

internK
om

m
entar M

E
D

IU
M

TE
X

T

geloescht TIN
Y

IN
T(1)

created TIM
E

S
TA

M
P

updated TIM
E

S
TA

M
P

bm
w

fw
Id IN

T(11)

anlagenum
m

ern V
A

R
C

H
A

R
(150)

Indexes

FiInternA
nschaffungskosten

fiInternA
nschaffungskostenId IN

T(11)

fiId IN
T(11)

jahr S
M

A
LLIN

T(6)

betrag IN
T(11)

kom
m

entar V
A

R
C

H
A

R
(250)

created TIM
E

S
TA

M
P

updated TIM
E

S
TA

M
P

Indexes

FiInternA
nschaffungskostenA

ufteilung

fiInternA
nschaffungskostenId IN

T(11)

finanzierungsartId IN
T(11)

prozent TIN
Y

IN
T(4)

created TIM
E

S
TA

M
P

updated TIM
E

S
TA

M
P

Indexes

FiInternB
etriebskostenaufteilung

fiInternJahrId IN
T(11)

finanzierungsartId IN
T(11)

prozent TIN
Y

IN
T(4)

created TIM
E

S
TA

M
P

updated TIM
E

S
TA

M
P

Indexes

FiInternJahr

fiInternJahrId IN
T(11)

fiId IN
T(11)

jahr S
M

A
LLIN

T(6)

afa IN
T(11)

betriebskosten IN
T(11)

betriebskostenText V
A

R
C

H
A

R
(250)

personalkosten IN
T(11)

auslastungsgrad TIN
Y

IN
T(4)

auslastungsgradText V
A

R
C

H
A

R
(250)

auslastungsgradS
tunden TIN

Y
IN

T(4)

created TIM
E

S
TA

M
P

updated TIM
E

S
TA

M
P

Indexes

FiInternN
utzungsart

fiInternJahrId IN
T(11)

nutzungsartId IN
T(11)

prozent TIN
Y

IN
T(4)

created TIM
E

S
TA

M
P

updated TIM
E

S
TA

M
P

Indexes

FiInternR
einvestition

fiId IN
T(11)

jahr S
M

A
LLIN

T(6)

betrag IN
T(11)

kom
m

entar V
A

R
C

H
A

R
(250)

created TIM
E

S
TA

M
P

updated TIM
E

S
TA

M
P

Indexes

FiV
ersion

fiV
ersionId IN

T(11)

fiId IN
T(11)

bereich E
N

U
M

(...)

sprache E
N

U
M

(...)

status E
N

U
M

(...)

bezeichnungD
E

 V
A

R
C

H
A

R
(250)

bezeichnungE
N

 V
A

R
C

H
A

R
(250)

infrastrukturA
rtId C

H
A

R
(1)

corefacilityId IN
T(11)

w
ebsite V

A
R

C
H

A
R

(250)

standortS
trasse V

A
R

C
H

A
R

(150)

standortP
lz V

A
R

C
H

A
R

(10)

standortO
rt V

A
R

C
H

A
R

(150)

standortG
em

einde V
A

R
C

H
A

R
(150)

standortB
undesland V

A
R

C
H

A
R

(50)

standortLand V
A

R
C

H
A

R
(50)

standortLongitude D
E

C
IM

A
L(10,7)

standortLatitude D
E

C
IM

A
L(10,7)

beschreibungD
E

 M
E

D
IU

M
TE

X
T

beschreibungE
N

 M
E

D
IU

M
TE

X
T

schlagw
orteD

E
 V

A
R

C
H

A
R

(250)

schlagw
orteE

N
 V

A
R

C
H

A
R

(250)

m
ethodenD

E
 M

E
D

IU
M

TE
X

T

m
ethodenE

N
 M

E
D

IU
M

TE
X

T

researchservicesD
E

 M
E

D
IU

M
TE

X
T

researchservicesE
N

 M
E

D
IU

M
TE

X
T

nutzungsbedingungenD
E

 M
E

D
IU

M
TE

X
T

nutzungsbedingungenE
N

 M
E

D
IU

M
TE

X
T

projekteD
E

 M
E

D
IU

M
TE

X
T

projekteE
N

 M
E

D
IU

M
TE

X
T

publikationenD
E

 M
E

D
IU

M
TE

X
T

publikationenE
N

 M
E

D
IU

M
TE

X
T

kooperationspartnerA
usblenden TIN

Y
IN

T(1)

kooperationspartnerD
E

 M
E

D
IU

M
TE

X
T

kooperationspartnerE
N

 M
E

D
IU

M
TE

X
T

freigabeanforderungsdatum
 D

A
TE

TIM
E

veroeffentlichungsdatum
 D

A
TE

TIM
E

rueckzugsdatum
 D

A
TE

TIM
E

ablehnungstext M
E

D
IU

M
TE

X
T

geloescht TIN
Y

IN
T(1)

created TIM
E

S
TA

M
P

updated TIM
E

S
TA

M
P

orgE
inheit V

A
R

C
H

A
R

(4)

standortR
aum

 V
A

R
C

H
A

R
(6)

Indexes

FiV
ersion_D

ienstleistung

fiV
ersionId IN

T(11)

dienstleistungId IN
T(11)

created D
A

TE
TIM

E

Indexes

FiV
ersion_InfrastrukturK

ategorie

fiV
ersionId IN

T(11)

infrastrukturK
ategorieId IN

T(11)

created TIM
E

S
TA

M
P

Indexes

FiV
ersion_O

efos

fiV
ersionId IN

T(11)

oefosId IN
T(11)

prozent TIN
Y

IN
T(4)

created TIM
E

S
TA

M
P

updated TIM
E

S
TA

M
P

Indexes

Finanzierungsart

finanzierungsartId IN
T(11)

bezeichnung V
A

R
C

H
A

R
(250)

beschreibung M
E

D
IU

M
TE

X
T

gruppe E
N

U
M

(...)

sortierung IN
T(11)

geloescht TIN
Y

IN
T(1)

created TIM
E

S
TA

M
P

updated TIM
E

S
TA

M
P

Indexes

Finanzierungsart_Institutionstyp

finanzierungsartId IN
T(11)

institutionstypId IN
T(11)

created TIM
E

S
TA

M
P

Indexes

InfrastrukturA
rt

infrastrukturA
rtId C

H
A

R
(1)

bezeichnungD
E

 V
A

R
C

H
A

R
(100)

bezeichnungE
N

 V
A

R
C

H
A

R
(100)

created TIM
E

S
TA

M
P

updated TIM
E

S
TA

M
P

Indexes

InfrastrukturK
ategorie

infrastrukturK
ategorieId IN

T(11)

bezeichnungD
E

 V
A

R
C

H
A

R
(100)

bezeichnungE
N

 V
A

R
C

H
A

R
(100)

beschreibungD
E

 M
E

D
IU

M
TE

X
T

beschreibungE
N

 M
E

D
IU

M
TE

X
T

created TIM
E

S
TA

M
P

updated TIM
E

S
TA

M
P

Indexes

Institution

institutionId IN
T(11)

institutionstypId IN
T(11)

bezeichnungD
E

 V
A

R
C

H
A

R
(200)

bezeichnungE
N

 V
A

R
C

H
A

R
(200)

strasse V
A

R
C

H
A

R
(150)

plz V
A

R
C

H
A

R
(10)

ort V
A

R
C

H
A

R
(150)

longitude D
E

C
IM

A
L(10,7)

latitude D
E

C
IM

A
L(10,7)

w
ebsite V

A
R

C
H

A
R

(150)

logo V
A

R
C

H
A

R
(50)

internFreigegeben D
A

TE
TIM

E

geloescht TIN
Y

IN
T(1)

created TIM
E

S
TA

M
P

updated TIM
E

S
TA

M
P

IndexesInstitutionstyp

institutionstypId IN
T(11)

bezeichnung V
A

R
C

H
A

R
(50)

istIntern TIN
Y

IN
T(1)

istW
irtschaft TIN

Y
IN

T(1)

geloescht TIN
Y

IN
T(1)

created TIM
E

S
TA

M
P

updated TIM
E

S
TA

M
P

Indexes

K
ontakt

kontaktId IN
T(11)

fiV
ersionId IN

T(11)

intro M
E

D
IU

M
TE

X
T

nam
e V

A
R

C
H

A
R

(100)

abteilung V
A

R
C

H
A

R
(100)

telefon V
A

R
C

H
A

R
(50)

em
ail V

A
R

C
H

A
R

(200)

w
ebsite V

A
R

C
H

A
R

(250)

links M
E

D
IU

M
TE

X
T

created TIM
E

S
TA

M
P

updated TIM
E

S
TA

M
P

Indexes

N
utzungsart

nutzungsartId IN
T(11)

bezeichnung V
A

R
C

H
A

R
(250)

beschreibung M
E

D
IU

M
TE

X
T

sortierung IN
T(11)

geloescht TIN
Y

IN
T(1)

created TIM
E

S
TA

M
P

updated TIM
E

S
TA

M
P

Indexes

O
efos

oefosId IN
T(11)

bezeichnungD
E

 V
A

R
C

H
A

R
(100)

bezeichnungE
N

 V
A

R
C

H
A

R
(100)

parentId IN
T(11)

created TIM
E

S
TA

M
P

updated TIM
E

S
TA

M
P

Indexes

U
ser

userId IN
T(11)

institutionId IN
T(11)

userG
roup E

N
U

M
(...)

geloescht TIN
Y

IN
T(1)

created TIM
E

S
TA

M
P

updated TIM
E

S
TA

M
P

Indexes

∞∞∞ ∞∞

111 11

∞∞∞ ∞∞

111 11

∞∞∞ ∞∞

111 11

∞∞∞ ∞∞

111 11

∞∞∞ ∞∞

111 11
∞∞∞ ∞∞

111 11

∞∞∞ ∞∞

111 11

∞∞∞ ∞∞

111 11

∞∞∞ ∞∞

111 11

∞∞∞ ∞∞

111 11

∞∞∞ ∞∞ 111 11

∞∞∞ ∞∞ 111 11

∞∞∞ ∞∞

111 11

∞∞∞ ∞∞

111 11

∞∞∞ ∞∞

111 11

∞∞∞ ∞∞

111 11

∞∞∞ ∞∞ 111 11

∞∞∞ ∞∞

111 11

∞∞∞ ∞∞

111 11

∞∞∞ ∞∞

111 11 ∞∞∞ ∞∞111 11

∞∞∞ ∞∞

111 11

∞∞∞ ∞∞

111 11

∞∞∞ ∞∞ 111 11

∞∞∞ ∞∞

111 11

∞∞∞ ∞∞

111 11

∞∞∞ ∞∞

111 11

Figure
4.1:

T
he

database
schem

a
ofthe

service.

48

4.1. Implementation of OData REST service

ODataHttpHandler. The process(...) method of this class processes such a
request as an OData request and performs following actions [Foua]:

• parsing the URI

• doing the content negotiation

• dispatching the request to a specific Processor implementation for handling the
request (the Processor interface will be discussed later in this section)

• creating the serialized content for the response object

Because I wanted to make use of various Spring libraries (starting with Spring Boot)
together with Apache Olingo, I manually needed to make Spring compatible with Apache
Olingo. I had to create a Controller class, which is annotated as RestController
(this is a Spring annotation). All incoming requests would be processed by the method
ResponseEntity<String> process(HttpServletRequest req) of the same
class. Due to the missing HttpServletResponse at this point, I could not simply call
the above mentioned processmethod of the ODataHttpHandler. Instead, I had to use
the method ODataResponse process(final ODataRequest request), offered
by the interface ODataHandler, which itself is a superclass of ODataHttpHandler.
So I was required to manually convert a HttpServletRequest to an ODataRequest
in order to be able to forward the request to Apache Olingo. Then, the received
ODataResponse had to be converted to a ResponseEntity<String> to finish the
request-response cycle.

Due to the fact that Apache Olingo’s ODataHttpHandler performs the above-mentioned
tasks, it needs to know the EDM of the service. For this purpose, Apache Olingo’s
server library requires the application to implement the CsdlAbstractEdmProvider
interface. By implementing this interface, the whole Entity Data Model is exposed to
Apache Olingo. Beside the quoted tasks of the HTTP handler class, also the metadata
document and the service document are exposed by Olingo out-of-the-box once the
CsdlAbstractEdmProvider interface has been implemented. Thus, based on the
database schema, the Entity Data Model of the service has been defined. Entity types,
their properties and entity sets have been defined first. The relationships between entities
have been realized as navigation properties, which point from one entity type to another.
Enumeration types have been used for database fields of type ENUM. Additionally, I
made use of annotations (explained in Section 2.3.2). I have added a short description to
each structural property of an entity type by using an annotation called description. In
Figure 4.2, an excerpt of the resulting metadata document is depicted.

In the next step, I wanted to expose data from the database. For this purpose,
Apache Olingo offers several Processor interfaces. The HTTP handler class of
Olingo dispatches the request to the corresponding processor. For the purpose of
this thesis, the EntityCollectionProcessor (which exposes collections of enti-
ties) and the readEntity method of EntityProcessor have been implemented.

49

4. Implementation

Figure 4.2: An excerpt of the metadata document of the implemented OData RESTful
web service.

Both methods receive as argument all information that is necessary to process the
request properly and completely. These classes are also the entry point to the major
part of the implementation. In these processor classes, a corresponding method of
a custom IDataProviderService is called. It forwards the request to a class im-
plementing the abstract class AbstractDataService<A extends AbstractDao>.
AbstractDao is the abstract class for all Dao-classes, which are used together with
Spring JPA repository classes to access the database. The concrete data services are
responsible for fetching the corresponding data from the database.

In order to enable the $filter system query option, I have implemented Apache
Olingo’s interface ExpressionVisitor<Object>. Depending on the operator type(s)
and the affected model elements of the filter expression), certain methods of the class
are invoked. It is a rather generic interface, allowing arbitrary return types at each
method. I have decided to implement the ExpressionVisitor in a way that ultimately

50

4.2. Implementation of a generic OData client (web application)

returns a Spring JPA Specification<? extends AbstractDao>. In this way I
am able to pass the resulting Specification class to the JPA Repository classes,
which makes the database return the appropriate entities. Especially for larger data
sets, this might result in a performance gain compared to a filtering that would be
done programmatically. Sorting and limiting the number of entities in the result set
(i.e. pagination) are also completely handled by the database by passing a class that
implements interface Pageable, which is also an interface originating in Spring JPA.

The system query option $expand has been implemented beside all system query options
that have been stated in Section 4.1.1. Furthermore, navigation from one entity to another
entity or another entity set has been implemented. But there is a limitation: Navigation
has only been implemented up to one level. Here is an example, which should illustrate this
limitation: Assuming that an entity account is related to one or multiple customer entities,
then we could theoretically return the list of customers for one account by calling GET
http://<root of the service>/accounts(<account id>)/customers. If
we further assume, that one customer entity is related to one or more car entities, then
it would be possible to get the list of cars by calling GET http://<root of the
service>/customers(<customer id>)/cars, but it would not be possible to get
the same list via GET http://<root of the service>/accounts(<account
id>)/customers(<customer id>)/cars. In such a case, the service would respond
with HTTP 501. It must be highlighted, that such a behavior is compliant with the
OData specification.

Moreover, not all operators, which are defined by the OData specification and thus
might be used in the $filter expression, have been implemented. The arithmetic
operators, for example, have not been implemented, as they have not been considered
relevant for defining filters. However, the service again responds with HTTP 501, which
is the OData conformant answer, in case certain requested functionality has not been
implemented on server side [PHZ16a]. In general, all criteria that are stated in the OData
Minimal Conformance Level definition (except those, that are defined for Updateable
OData Services, because the implemented service is not an updateable service), are
fulfilled by the service. On top of this some criteria of the intermediate and even the
advanced level are fulfilled (e.g. supporting system query option $filter is a criterion
of the intermediate level). After discussing the results of the OData RESTful web service,
I will move on to the implementation of the generic OData client application.

4.2 Implementation of a generic OData client (web
application)

4.2.1 Functions / Backlog

Analogous to the OData RESTful web service, the identified use cases, that shall be
covered by the client application (Open Data consumer application), were divided into
single functions, which shall be implemented:

51

4. Implementation

• The use case configure the OData service that shall be used requires a page, where
the user can provide the information that needs to be known to the application in
order to be able to communicate with the OData service.

• Once the OData service is configured, the use cases view underlying data model
of the exposed data set and view specific data structures of the data model can be
covered by reading the metadata document of the underlying OData service.

• The precondition for realizing the base usecase view exposed data is, that the OData
service has been resolved successfully. The client application needs to know those
entity sets that are available from the root of the service. After resolving the OData
service, the user must be able to choose the data he wants to see.

• Define filters based on attributes of the data set can be realized by providing a user
interface, which lets the user define filters based on the attributes of the entities,
which shall be retrived. The filter that is defined by the user on the user interface,
needs to be translated into a filter expression that can be passed to the REST
service via the system query option $filter.

• Define sorting based on attributes of the data set also requires a user interface,
where the user can optionally define a sorting based on attributes of the entities.
The entered values should be passed to the OData service by using the system
query option $orderby.

• The user must have the possibility to enter a maximum number of entities, that
shall be displayed on the frontend. This value needs to be passed to the OData
service as the value of the system query option $top in order to realize the use
case limit number of returned entities.

• The precondition for executing the use case view related entities to each entity is,
that the user must previously search for entities. For each entity in the result set
of his search, the user must be able to navigate to possibly existing related entities.
By following the URL conventions of OData, a corresponding URL can be built for
fetching the related entities.

4.2.2 Design

The crucial part of the design is the way the OData service can be resolved by the client
application. Once the OData service has been resolved, the client application is able to
interact with it and to request information based on the user’s input. In Figure 4.3, the
process of resolving the OData RESTful web service is visualized.

In general, the client application fetches the service document and the metadata document.
The entity sets, which are listed in the service document, are stored first. These entity
sets are the entry point to the service, because they are available from the root of the
REST service. The entity sets, which are listed in the metadata document, are stored

52

4.2. Implementation of a generic OData client (web application)

Figure 4.3: A UML activity diagram showing how the client application resolves an
OData service.

Figure 4.4: An entity set element that is returned in the metadata document of the
implemented OData RESTful web service.

separately. The reason is that there might be entity sets, which are not available directly
from the root, but only as navigation target. The client application needs to distinguish
between the entity sets that can be fetched from the root and the ones that cannot be
fetched from the root. The entity sets listed in the service document are a subset of
the entity sets listed in the metadata document. Furthermore, the metadata document
carries the following information about each entity set (in Figure 4.4, a sample entity set
element is shown):

• The underlying entity type of the entity set.

• A NavigationPropertyBinding element, which itself has two attributes: The
Path (it denotes the path from the entity type to the navigation property) and
the Target (the entity set, to which the client can navigate).

53

4. Implementation

Moreover, the entity types, the complex types and the enumeration types, that are
returned in the metadata document, are stored in the application. This information is
relevant for displaying the data model of the exposed data set. The data model shall be
displayed in one or more tabs.

In order to view the exposed data, a separate tab needs to be added. It should contain
a form, which enables the definition of filter parameters, sorting parameters and the
maximum number of returned entities by the service. For each entity of the result set, it
shall be possible to view possibly related entities by clicking on a button / icon. With
this design, it is possible to handle all use cases, that are related to viewing the exposed
data in a single tab.

The technology stack has mostly been prescribed by the supervisor of the thesis. Java
Server Faces as framework for developing web-applications with Apache MyFaces 2.1.7
as its implementation have been used primarily. Version 4.2.0 of Apache Olingo’s client
library has been employed for accessing the OData services. For build and dependency
management, Apache Maven has been used. In order to run the service, the .war file
has been deployed to an Apache Tomcat 7. Furthermore, the style sheet and other
static resources that influence the general appearance of the web application, have been
provided by the Campus Software Development team from the Vienna University of
Technology.

4.2.3 Result

The result of this implementation is a web application which is capable of resolving and
exploring OData services compliant with version 4.0. The web application itself will be
presented first, followed by the limitations of its implementation.

The web application consists of two pages. The first page that is presented to a user
of the application is servicediscovery.xhtml (see Figure 4.5). On this page, the
user is expected to provide the root URL of the OData RESTful web service that he/she
wants to browse. The user is not able to perform any other action until he/she enters
a valid URL of an OData service and submits the same by clicking on button Service
suchen.

When clicking on the button, the OData service is being resolved as described in Sec-
tion 4.2.2. For this purpose, the client library of Apache Olingo is used. The library pro-
vides a client factory class (ODataClientFactory), which allows the developer to get in-
stances of certain client classes (e.g. ODataClient). These client classes themselves can
be used to create various OData request classes (e.g. ODataServiceDocumentRequest
for requesting the service document). There are also classes which encapsulate the re-
trieved information (e.g. ClientServiceDocument for the service document) of a
request. There are, of course, several other classes of Apache Olingo, which have been
used in the source code, but will not be mentioned now explicitly. It is important to
highlight that Apache Olingo provides all necessary infrastructure for interacting with
OData services.

54

4.2. Implementation of a generic OData client (web application)

Figure 4.5: The page servicediscovery.xhtml of the web application.

If a valid root URL of an OData service has been provided, the service is being resolved
and the user is forwarded to the second page of the application serviceLoaded.xhtml.
This page consists of four tabs, as defined in Section 4.2.2. In the first tab (Figure 4.6),
the entity types are described comprehensively. If the entity type is a sub-type of another
entity type, then the parent entity type is displayed below the name of the entity type.
For each entity type, all attributes are displayed in a paginated table together with the
following information about each attribute:

• Attribut Name: The name of the attribute.

• Verpflichtendes Attribut: An indicator, whether the attribute has been declared as
mandatory or not.

• Attribut Typ: The type of the attribute.

• einzelnes Attribut / Collection: Describes, whether the attribute consists of one
single value or whether a collection of values might be returned.

• Standard-Wert: The standard value of the attribute, if such a value has been
defined.

• Maximale Länge: The maximum length of the attribute, if it has been defined.

• Zusätzliche Informationen: If there are any instance annotations, an icon is dis-
played, where the annotation name as well as the annotation value are shown as
mouseover text.

55

4. Implementation

Figure 4.6: The first tab of page serviceLoaded.xhtml of the web application. Here
the entity types and their relations to other entity types are described.

Below the attribute table, there is another table, where relations of an entity type are
described:

• Name der Beziehung: The name of the relation.

• Typ der Ziel-Entität: The target entity type of the relation.

• einzelne Entität / Collection von Entitäten: Indicates, whether the target of the
relation is a single entity or a collection of entitites.

• verpflichtend / optional: Indicates, whether this relation is mandatory or optional.

In the second tab (Figure 4.8), it is possible to explore the data that is exposed by the
defined OData service. In the dropdown field Entitäten, those entity sets are offered,
which can be accessed from the root URL of the service. After the user has made a
selection in this field, the attributes of the underlying entity type are listed below twice.
On the left side, the user can define filters per attribute of the entity type. In order to
define a valid filter, a user needs to accomplish two tasks:

1. He/she must select a function from the dropdown field, which is located beneath
the attribute name. Depending on the type of attribute, different functions are
offered. In Table 4.1, the available functions are defined per attribute type. It needs

56

4.2. Implementation of a generic OData client (web application)

Figure 4.7: The second tab of page serviceLoaded.xhtml of the web application. In
this tab it is possible to search for data that is exposed by the underlying OData service.

to be emphasized that the attribute types, as defined in the referenced table, are
generalized. In the CSDL, several primitive types are defined (as already discussed
in Section 2.3.2). There are, for example, five different primitive types, which
denote an integer. Nevertheless, all of these integer types have been grouped in the
mentioned table into one integer type.

2. He/she must enter a value, which shall be used to evaluate the function on the
attribute. In case of enumeration values, instead of a textfield, a dropdown field is
offered, where the user can select one of the available enumeration values.

If the user defines filters for multiple attributes, the logical and operator is used to
connect the conditions. This means that all defined filters need to match for one entity in
order to be included in the result set of the query. Technically, these filters are translated
into an expression that is passed to the OData service via the $filter system query
option. Apache Olingo provides appropriate classes, which allow to define the filters
programmatically without needing to take care about the way the filter expression
is serialized. The class FilterArgFactory allows to create arguments of the filter
expression, while the class FilterFactory allows to create the filter expression itself
(class URIFilter) by passing filter arguments to the available operations. The class
URIFilter can be passed to the URIBuilder as argument.

The sorting of the result set can be defined by using the list of attributes next to the
list of attributes that is used for defining the filters. In order to define a sorting, the

57

4. Implementation

Attribute type Available functions
Enumeration equal to, not equal to
Integer equal to, not equal to, less or equal,

less than, greater than or equal to,
greater than

DateTime equal to, not equal to, less or equal,
less than, greater than or equal to,
greater than

Default (applied in case
none of the above listed
attribute types match)

equal to, not equal to, ends with,
starts with, contains

Table 4.1: Available functions for defining a filter, depending on the attribute type.

user must select in the first dropdown field the order (ascending, descending) and in the
second dropdown field the priority of the order of this attribute. This is analogous to an
ORDER BY statement in SQL, where one can order the results by the values of multiple
columns. In the raw OData request, the system query option $orderby is used to pass
the desired ordering to the OData service. Apache Olingo allows the developer to pass
the $orderby string to the URIBuilder, but it needs to be provided as a string. This
means that I had to serialize the selected sorting options by writing custom code.

If the user wants to set a maximum number of entities that should be returned in the
result set, he/she may enter a value in the text field maximale Ergebnisse. It is then
passed as integer to the URIBuilder.

Once the request has been submitted, the returned entities are shown in a table below
the section, where the search parameters are defined. Each attribute is shown in an own
column in the table. In the last table of the column, the text Lade Beziehung <name
of relation> (meaning Load relation <name of relation>) and a magnifier icon next
to the text is shown. For each distinct relation of the underlying entity type, one such
row is rendered. If a user clicks on such a magnifier button, a panel component, which
overlays all other elements, is displayed. A table appears, which contains all attributes of
all related entities (see Figure 4.8). In the source code, the URL of the selected entity
is passed to the URIBuilder first. Afterwards, the name of the navigation property
is passed, also as a string, to the URIBuilder, which then constructs a valid URL for
requesting the related entities.

In the third tab, the complex types, that have been returned in the metadata document,
are displayed. For each complex type, one table is shown, where all attributes of the
complex type are listed. The table is equal to the table that is used for displaying the
attributes of the entity types in the first tab.

In the fourth tab, the user can view all enumerations that the metadata document
comprises (see Figure 4.9). For each enumeration, a table with all possible values (the

58

4.2. Implementation of a generic OData client (web application)

Figure 4.8: An example of the way related entities are displayed. In this particular case,
all related Friends of the person with UserName “russellwhyte” are displayed.

Figure 4.9: All enumerations are listed in the fourth tab of page
serviceLoaded.xhtml.

name of the value and the real value as integer) and possibly existing annotations of the
enumeration values are shown.

There are also some limitations of the web application, which need to be mentioned:

• Only entity sets, that are present in the service document, are taken into considera-

59

4. Implementation

tion and thus can be explored. Singletons and functions, that might be offered by
the service, are ignored when resolving the OData service.

• By definition, the metadata document might contain multiple schemas. The
prototype always takes the first schema, that is returned in the metadata document
and does not take into consideration any additionally provided schemas.

• The web application expects the OData service to expose a metadata document
despite the fact that the metadata document is not mandatory at the Minimal
Conformance Level of OData version 4. It becomes mandatory at the Advanced
Conformance Level.

• The prototype does not allow to define filters or sortings for attributes of complex
types. Complex types are displayed the same way as all primitive type attributes
in the section, where the search parameters can be defined.

After discussing the implementation of both prototypes extensively, I will shortly also
describe the implementation of the proof-of-concept application before moving to the
evaluation chapter.

4.3 Implementation of the proof-of-concept application
As already mentioned in Section 3.3, the development of this application is not directly
relevant for the topic of this thesis. Thus, the implementation will not be described in
detail as it is done for the other applications. Instead, the results will be summarized in
the next paragraphs.

The search for research infrastructure has been realized in a similar way as it has been
done for the generic OData client application. By using $filter, it is possible to search
for research infrastrcuture. A visitor can enter a term he wants to search for in a textfield.
The application constructs a filter expression by employing the function contains on a
set of attributes of the research infrastructure. All contains statements are connected
with the logical or operator.

In order to view details of an infrastructure, also images of it shall be retrieved from the
backend. This made it necessary to extend the read functionality of the OData REST
service by adding so-called media entity requests, which allows the application to load
the images by using the OData RESTful web service. Due to the fact that the record
and edit infrastructure use cases will need to be capable of storing images for a certain
research infrastructure, also the writing media entity requests needed to be implemented.

The proof-of-concept application takes advantage of the implemented system query option
$expand at the retrieval of infrastructures to improve the efficiency. In order to fetch
all information about a research infrastructure that should be displayed, it would be
necessary to fetch the infrastructure itself and all related entities separately. This would
result in one backend call for the infrastructure itself plus one call per related entity type.

60

4.3. Implementation of the proof-of-concept application

Instead, the application just submits one request and uses the mentioned parameter to
request the related entities together with the infrastructure itself. The images themselves
needed to be fetched separately, because images have a binary representation which
cannot be represented inline.

The record and edit infrastructure use cases required to enable writing functionality for
the entities in the REST service, which are stored in the dynamic data tables (they have
been discussed in Section 4.1.2). As there is a lot of data to be entered at the record and
edit research infrastructure use cases, they are realized on the frontend by using wizards,
which lead the user step-by-step through the creation process. On the backend side, the
implementation of the create research infrastructure use case has been done in a way that
it is not possible to create an infrastructure that is automatically approved. Furthermore,
another OData specific feature called deep insert has been employed at the creation of
research infrastructure. It uses the concept of representing related entities inline together
with the entity that is addressed by the URL. The proof-of-concept application sends the
infrastructure entity together with all other related entities in one request. The OData
service creates the infrastructure and all related entities at once (plus one request per
image that should be uploaded).

Listing the infrastructure that is ready for approval is realized by using system query option
$filter to create the appropriate filter. Approving / rejecting research infrastructures
was realized by editing the attribute status of it. The application itself needed to
display all of the information, that has been entered for an infrastructure, on one page.
Thus, all the information has been summarized on one page consisting of multiple tabs.
The supervisor can either approve or reject the displayed infrastructure by clicking on
the corresponding button, which triggers the submission of the request to the backend.

Lastly, a rudimentary login function has been implemented. This function has been
implemented in order to show what the application looks like from the perspective of
each of the three actor types. For the actors Researcher and Supervisor, the credentials
of two users have been hard-coded into the proof-of-concept application. A Visitor can
log in and, depending on his new role (Researcher or Supervisor), see additional menu
items and conduct additional use cases.

61

CHAPTER 5
Evaluation

The evaluation of this thesis consists of two steps:

1. The implementation of the generic OData client application is evaluated by testing
it against OData services.

2. A questionnaire about OData is given to domain experts to be filled out.

These settings of the evaluation steps and their results will be presented in the next two
sections.

5.1 Testing against OData services

5.1.1 Setting

In order to test the prototype, it was necessary to define first the OData services, which it
should be tested against. Beside the implemented OData RESTful web service prototype,
there are other freely available OData services which have been used for testing the
prototype:

• http://services.odata.org/v4/TripPinServiceRW/

• http://services.odata.org/V4/OData/OData.svc/

In order to be able to execute the test cases, first the developed OData RESTful web
service and the generic client application have been deployed to a Tomcat 7 on a cloud
server. For each of the three OData services, which have been selected for testing the
prototype, the same tests have been conducted. The test cases are described in the
Tables 5.1 and 5.2. These test cases have been performed manually and sequentially.

63

http://services.odata.org/v4/TripPinServiceRW/
http://services.odata.org/V4/OData/OData.svc/

5. Evaluation
ID

Preconditions
Instructions

Expected
results

T
C
1

–
O
pen

the
page

s
e
r
v
i
c
e
d
i
s
c
o
v
e
r
y
.
x
h
t
m
l.

Enter
the

root
U
R
L
ofthe

O
D
ata

service
that

should
be

used
into

the
corresponding

text
field

on
this

page.
C
lick

button
Service

suchen.

T
he

application
show

s
the

first
tab

Entitäten
ofthe

page
s
e
r
v
i
c
e
L
o
a
d
e
d
.
x
h
t
m
l.

A
t

least
one

entity
type

is
show

n
in

the
content

ofthis
tab.

T
C
2

T
C
1
has

been
executed
successfully.

Load
the

m
etadata

docum
ent

ofthe
O
D
ata

service
(e.g.

in
the

brow
ser).

C
om

pare
the

entity
types

listed
in

the
m
etadata

docum
ent

and
those

that
are

show
n

in
the

corresponding
tab

ofthe
application.

T
he

inform
ation

that
is

show
n
in

the
tab

about
the

entity
types,the

attributes
ofthe

entity
types

and
the

relationships
ofthe

entity
types

is
the

sam
e
in

the
m
etadata

docum
ent

and
in

the
application.

T
here

is
no

entity
type

that
is

listed
in

the
m
etadata

docum
ent,but

not
show

n
in

the
application

and
vice-versa.

T
C
3

T
C
1
has

been
executed
successfully.

Load
the

m
etadata

docum
ent

ofthe
O
D
ata

service
(e.g.

in
the

brow
ser).

O
pen

the
tab

K
om

plexe
Typen

ofthe
page

s
e
r
v
i
c
e
L
o
a
d
e
d
.
x
h
t
m
l.

C
om

pare
the

com
plex

types
listed

in
the

m
etadata

docum
ent

and
those

that
are

show
n
in

the
corresponding

tab
ofthe

application.

T
he

inform
ation

that
is

show
n
in

the
tab

about
the

com
plex

types
and

the
attributes

ofthe
com

plex
types

is
the

sam
e
in

the
m
etadata

docum
ent

and
in

the
application.

T
here

is
no

com
plex

type
that

is
listed

in
the

m
etadata

docum
ent,but

not
show

n
in

the
application

and
vice-versa.

T
C
4

T
C
1
has

been
executed
successfully.

Load
the

m
etadata

docum
ent

ofthe
O
D
ata

service
(e.g.

in
the

brow
ser).

O
pen

the
tab

Enum
erationen

of
the

page
s
e
r
v
i
c
e
L
o
a
d
e
d
.
x
h
t
m
l.

C
om

pare
the

enum
eration

types
listed

in
the

m
etadata

docum
ent

and
those

that
are

show
n
in

the
corresponding

tab
of

the
application.

T
he

inform
ation

that
is

show
n
in

the
tab

about
the

enum
eration

types
is

the
sam

e
in

the
m
etadata

docum
ent

and
in

the
application.

T
here

is
no

enum
eration

type
that

is
listed

in
the

m
etadata

docum
ent,but

not
show

n
in

the
application

and
vice-versa.

T
C
5

T
C
1
has

been
executed
successfully.

Load
the

service
docum

ent
ofthe

O
D
ata

service
(e.g.

in
the

brow
ser).

O
pen

the
tab

D
aten

anzeigen
ofthe

page
s
e
r
v
i
c
e
L
o
a
d
e
d
.
x
h
t
m
l.

C
om

pare
the

entity
sets

offered
in

the
dropdow

n
field

Entitäten
w
ith

the
entity

sets
listed

in
the

service
docum

ent.

T
he

entity
sets

offered
in

the
dropdow

n
field

are
equalto

the
entity

sets
listed

in
the

service
docum

ent.

Table
5.1:

T
he

description
ofthe

test
cases

that
have

been
conducted

(part
1).

64

5.1. Testing against OData services
ID

Pr
ec
on

di
tio

ns
In
st
ru
ct
io
ns

Ex
pe

ct
ed

re
su
lts

T
C
6

T
C
1
ha

s
be

en
ex
ec
ut
ed

su
cc
es
sf
ul
ly
.

O
pe

n
th
e
ta
b
D
at
en

an
ze
ig
en

of
th
e
pa

ge
s
e
r
v
i
c
e
L
o
a
d
e
d
.
x
h
t
m
l
.
Se

le
ct

an
y
of

th
e

off
er
ed

en
tit

y
se
ts
.

T
he

at
tr
ib
ut
es

of
th
e
un

de
rly

in
g
en
tit

y
ty
pe

ar
e
sh
ow

n
be

lo
w

tw
ic
e
(fo

r
de
fin

in
g
a
fil
te
r
as

w
el
la

s
a
so
rt
in
g)
.

T
C
7

T
C
6
ha

s
be

en
ex
ec
ut
ed

su
cc
es
sf
ul
ly
.

C
lic
k
bu

tt
on

Su
ch
en

.
In

th
e
ta
bl
e
be

lo
w
,a

ll
re
tr
ie
ve
d
en
tit

ie
s
ar
e

sh
ow

n.

T
C
8

T
C
6
ha

s
be

en
ex
ec
ut
ed

su
cc
es
sf
ul
ly
.

D
efi

ne
a
so
rt
in
g.

C
lic
k
bu

tt
on

Su
ch
en

.
In

th
e
ta
bl
e
be

lo
w
,t
he

sa
m
e
en
tit

ie
s
as

in
T
C
7
ar
e
sh
ow

n,
bu

t
in

th
e
de

fin
ed

or
de

r.

T
C
9

T
C
6
ha

s
be

en
ex
ec
ut
ed

su
cc
es
sf
ul
ly
.

D
efi

ne
a
fil
te
r.

C
lic
k
bu

tt
on

Su
ch
en

.
R
ep

ea
t

th
is

te
st

ca
se

fo
r
at
tr
ib
ut
es

of
th
e
m
en
tio

ne
d

at
tr
ib
ut
e
ty
pe

s
in

Ta
bl
e
4.
1.

In
th
e
ta
bl
e
be

lo
w
,t
ho

se
en
tit

ie
s
th
at

pa
ss

th
e
de

fin
ed

fil
te
r
ar
e
sh
ow

n.

T
C
10

T
C
6
ha

s
be

en
ex
ec
ut
ed

su
cc
es
sf
ul
ly
.

D
efi

ne
a
fil
te
r
an

d
a
so
rt
in
g.

C
lic
k
bu

tt
on

Su
ch
en

.
In

th
e
ta
bl
e
be

lo
w
,t
ho

se
en
tit

ie
s
th
at

pa
ss

th
e
de

fin
ed

fil
te
r
ar
e
sh
ow

n
in

th
e
de

fin
ed

or
de

r.
T
C
11

T
C
6
ha

s
be

en
ex
ec
ut
ed

su
cc
es
sf
ul
ly
.

D
efi

ne
a
m
ax

im
um

nu
m
be

r
of

en
tit

ie
s
to

be
re
tu
rn
ed

in
th
e
fie

ld
m
ax
im

al
e
Er

ge
bn

is
se
,

th
at

is
lo
w
er

th
an

th
e
nu

m
be

r
of

re
tu
rn
ed

en
tit

ie
s
w
he

n
ex
ec
ut
in
g
T
C
6.

C
lic
k
bu

tt
on

Su
ch
en

.

In
th
e
ta
bl
e
be

lo
w
,t
he

nu
m
be

r
of

en
tit

ie
s

do
es

no
t
ex
ce
ed

th
e
m
ax

im
um

nu
m
be

r
of

en
tit

ie
s
th
at

ha
s
be

en
de

fin
ed

.

T
C
12

T
C
6
ha

s
be

en
ex
ec
ut
ed

su
cc
es
sf
ul
ly
.

A
n
en
tit

y
se
t,
w
he

re
th
e
un

de
rly

in
g
en
tit

y
ty
pe

ha
s
at

le
as
t
on

e
re
la
tio

ns
hi
p,

is
se
le
ct
ed

.

C
lic
k
bu

tt
on

Su
ch
en

.
In

th
e
ta
bl
e
be

lo
w
,a

ll
re
tr
ie
ve
d
en
tit

ie
s
ar
e

sh
ow

n.
Fo

r
ea
ch

en
tit

y,
in

th
e
co
lu
m
n
In

B
ez
ie
hu

ng
st
eh
en

de
En

tit
ät
en

it
is

off
er
ed

to
lo
ad

al
lr

el
at
ed

en
tit

es
.
It

is
off

er
ed

to
lo
ad

ea
ch

di
st
in
ct

re
la
tio

n
of

th
e
un

de
rly

in
g
en
tit

y
ty
pe

.

T
C
13

T
C
12

ha
s
be

en
ex
ec
ut
ed

su
cc
es
sf
ul
ly
.

C
lic
k
th
e
m
ag

ni
fie

r
bu

tt
on

in
co
lu
m
n
In

B
ez
ie
hu

ng
st
eh
en

de
En

tit
ät
en

fo
r
an

off
er
ed

re
la
tio

n
of

an
en
tit

y.

A
ll
re
la
te
d
en
tit

ie
s
of

th
e
en
tit

y
ar
e
sh
ow

n
in

a
ta
bl
e.

Ta
bl
e
5.
2:

T
he

de
sc
rip

tio
n
of

th
e
te
st

ca
se
s
th
at

ha
ve

be
en

co
nd

uc
te
d
(p
ar
t
2)
.

65

5. Evaluation

5.1.2 Results

It was possible to execute all test cases successfully by using each of the mentioned
OData services. It must be highlighted, that the results of those test cases, which include
retrieving concrete entities from the configured OData service (TC7 - TC13), have been
additionally verified by executing the same raw request via a REST client (Postman).
This way it is ensured that all displayed data are completely equal to the data that are
returned by the service itself.

5.2 Questionnaire with experts

5.2.1 Setting

In the first step, the questionnaire itself has been designed. The questionnaire starts with
demographic questions, which also include the question about the experience in developing
REST services in years. This is rather important in order to ensure that the participants
meet the requirements of a domain expert, which have been mentioned in Section 1.2.
Then, the experience of the participants with OData is enquired, followed by questions
about the advantages and shortcoming of OData that they can identify. Furthermore,
it is asked, whether the OData standard supports/enables building generic clients for
accessing and querying data published via such interfaces. Next, the participants are
asked to name differences between the way they have developed services up to now and
the way OData proposes to implement them. Lastly, their opinion on whether the OData
protocol will be widely adapted and whether they would consider building a REST-API
conforming with OData is asked. The questions are a mixture of closed questions and
open questions. For example, when asking for advantages of the OData protocol, first a
closed question with multiple possible answers is given. This closed question is followed
by an open question, which asks for additional advantages, that have not been mentioned
previously.

As the focus of the questionnaire lies on OData, it was necessary to provide an introduction
to OData in order to make the participants familiar with OData. For this purpose an
OData fact sheet has been written, where the relevant data have been summarized.

The potential participants have been selected beforehand and contacted via email. The
email contained information on the topic the thesis is dealing with and instructions on
how the participants should proceed (read the OData fact sheet, test the generic client
application, answer the questionnaire). The links to the developed prototypes have been
included as well as the link to the questionnaire and the link to the OData fact sheet,
which was stored in my Dropbox. The first page of the questionnaire also contained
introductory information and the instructions, that the participants should follow before
answering the questionnaire. Moreover, the recipients of the email are asked to forward
the email to other software developers, which might be interested in the topic and in
participating in the evaluation.

66

5.2. Questionnaire with experts

After presenting the setting of the questionnaire, the results will be presented in the
following subsection.

5.2.2 Results

First, the demographic information, that has been collected, will be presented. This
information will be followed by concrete questions related to OData that were asked and
the corresponding answers of the participants. The interpretation of the results will be
done in the conclusion section.

In sum, there were eight participants, that have started to answer the questionnaire.
Only five of them have completed the questionnaire, which is the reason why only their
answers will be taken into consideration in the results of this survey. The participants
are all male and between 26 and 43 years old with an average age of 31 years. Their
experience in software development lies between one and 20 years, while the range of
their experience in the development of REST services is from one to five years. One
of the participants has only one year of experience in developing REST services, while
another has two years. This means, that they are no domain experts according to the
definition of a domain expert in Section 1.2. Nevertheless, their answers will still be
considered as a compromise between scientific demand and the availability of suitable
participants which are willing to participate.

Only one of the five participants answered on the question “Did you hear about OData
before you were contacted to take part in this master thesis evaluation?” with yes. The
answers on the question, what advantages of OData the participants can identify, are
depicted in Figure 5.1. Obviously, the service document and the metadata document
are the features of OData that are perceived as the biggest advantages. This question
was followed by an open question, where the participants were asked to name any
additional advantages, that were not offered as answers in the closed question. One of the
participants wrote machine readable as answer on this question. Probably, he referred to
the service document and/or to the metadata document.

There were symmetric questions about the shortcomings of OData. The results of the
closed question on the disadvantages of OData are illustrated in Figure 5.2. There were
no answers on the corresponding open question on this topic as well as on the subsequent
open question “What are in your opinion possible improvements of OData?”

40 percent of the participants answered with yes on the question, whether the OData
standard supports/enables building generic clients for accessing and querying data
published via such interfaces in their opinion. 60 percent of them ticked the answer Only
to some extent. The participants were also asked to explain their answer on this question.
One participant, who answered previously with yes, wrote the following explanation:

“For something like Python, JavaScript or even Java (with the use of Re-
flectionAPI) you can build up the necessary data holder (eg. classes or

67

5. Evaluation

Figure 5.1: These are the results of the closed question which is related to the advantages
of OData.

Figure 5.2: These are the results of the closed question which is related to the shortcomings
of OData.

68

5.2. Questionnaire with experts

Figure 5.3: These are the results of the closed question which is related to the differences
between the way the participants have developed REST services up to now and the way
OData proposes to implement them.

dictionaries) from the queried metadata and use them. For something like
C++ you one could still rely on HashMaps or similar.”

The results of the closed question dealing with the differences of the way the participants
have developed REST services up to now and the way OData proposes to implement
them are presented in Figure 5.3. The corresponding open question has been answered
one time: “The implementations were by far shorter and much less boilerplated then the
examples of the various frameworks I found in a brief search on the internet.”

Four out of five participants stated that the OData protocol will not be widely adapted
in their opinion. Three of them explained the reason why they answered with no:

“Once you have it up and running I think it is great to have such an OData
service. Yet I think it is to much effort, especially for bigger REST interfaces
delivering more then just a handful entities. In my projects providing REST
interfaces the ability to fetch entities in such detail (e.g. with SQL-like queries)
has not been an issue - there just wasn’t any need for it. I didn’t need the
flexibility offered by OData - a much simpler, well defined REST interface did
the trick for me. The underlying languages (i.e. Python and Java) provide
nice frameworks for defining a REST interface with a bunch of annotations on

69

5. Evaluation

the DataAccessObjects or the BusinessLogic-Services respectively - no further
boilerplate needed. The approach relying on already present model information
(like JPA) seems nice (less boilerplate = less code = less effort to create
and maintain = great), yet allowing full CRUD on a JPA model is definitely
something you don’t want. So - in the - you end up defining the interface
by hand, so no gain. So, IMHO the OData protocol is great for DataStores
providing just Data for someone else to use it (e.g. OpenGovernment). But
if you want to provide a specific service or you plan on writing some WebApp
with a REST API I think the extra effort is just not worth the while. The
Metadata stuff is nice, but some simpler approaches like WADL do that trick
as well with close to no extra effort, since they can be autogenerated.”

“I think it will stay niche tech - good only for some cases.”

“It looks as if the protocol was too slightly too restricted. Developers got really
fond with REST due to the fact that you could do virtually anything with
it, there are some practices that are commonly adopted and are considered
good, but technically there aren’t many (if any) restrictions. At a first glance
it seems that it’s not really the case for OData. It might be successful in
companies that do not have much experience with building REST services, but
I personally do not see any particular reason to drop my current technology
stack in favor of OData.”

In contrast to the previous answers, 80 percent of the participants said that they would
consider building a RESTful-API that conforms with OData depending on the use
case/requirements, while the remaining 20 percent would definitely use it. Four of the
participants also explained their answers:

“Im curious to see it in action in order to decide if it could be a smart solution
to ease development of REST services. It seems to be worth a try.”

“If and only if I am just a data provider (i.e. I do NOT consume the data I
provide myself) it might be an option, since it gives my DataConsumers more
flexibility. If I am provider and consumer at the same time - regardless of
whether I am the only consumer - OData just seems overcomplex.”

“I don’t see a reason to use this in general case where REST is enough.”

“Wouldn’t bother if there were no restrictions and logic was quite simple, could
consider to use it with more tricky services.”

These were the results of the questionnaire that has been filled out. In the next section,
my implementation experience will be illustrated before coming to the conclusions and
the outlook on future work.

70

5.3. Implementation experience

5.3 Implementation experience
First, I will share my implementation experience of the server side. After getting to
know the OData library that I have decided to use, I started to implement the first read
requests. As already described in Section 4.1.3, I have experienced some difficulties at the
integration of certain libraries. On the other hand, Apache Olingo handles many tasks on
its own once it has been integrated correctly. Nevertheless, extra effort had to be put into
the implementation of the various system query options as well as into the navigation
between entities. The $filter operation was the toughest feature to implement. In
contrast, the writing functionality, which has been required by the proof-of-concept
application, was rather straightforward to implement.

The client library of Apache Olingo was also easy to use. It provides the facilities for
building OData requests without needing to take care about how the URL will look
like in the end. This was especially helpful at the definition of filter expressions on the
client side. The deep insert functionality of OData simplified the creation process of an
infrastructure from the client’s perspective, as all related entities could be sent in one
request.

The main difference that I have encountered at the retrieval of entities via a REST client,
was the fact that the identifier of an entity is provided in brackets instead of being a
sub-resource of the entity (e.g. GET /accounts(1)/ instead of GET /accounts/1/).
Another difference was related to the writing functionality of OData. Another OData
feature, that was different to the approaches that I have seen before, was the feature of
relating two entities to each other. In order to relate an existing entity to another, you
need to send a creation or modification request for one entity and provide the identifier(s)
of the already existing entity(ies) in the body of the request. They must be provided
in an attribute, whose name is built by concatenating the name of the relation (as
specified in the metadata document) and odata.bind. This fact is, of course, hidden
from a developer who just uses the libraries without trying to submit the raw request
himself/herself.

In general, there are some differences between the OData services and those REST
services, that I have seen before and that were not OData conformant. I personally do
not think that it is more difficult to work with OData services, especially once you get to
know them. One just needs to define the scope of his application and thus the OData
features that are required in the context.

71

CHAPTER 6
Conclusions and future work

6.1 Conclusions
The implementation of the OData generic client application prototype was one step
to show the way OData REST interfaces enable building generic clients for accessing
and querying them. The successful implementation of the protoype and its successful
evaluation by testing it against OData services (also against services that have not been
developed as part of this thesis) showed that it is possible to build such a generic client,
which is capable of:

• presenting the data model of the OData service

• retrieving concrete data from the OData service

• submitting requests to the OData service, which include filtering and sorting criteria
the result set has to meet.

Furthermore, there was no domain expert who has answered with no on the corresponding
question in the questionnaire, which confirms the result of the tests of the generic client
against other OData services.

Judging the complexity of accessing and modifying data that is offered by an OData-
conformant REST service, the conclusion can be drawn that the complexity is not higher
compared to RESTful web services which are not conforming with OData. The uniform
interface is, as already discussed, mostly induced by the correct usage of HTTP and
its methods. The OData specification explicitly defines the usage of HTTP methods,
headers and other components of HTTP. Possibly, accessing OData-conformant REST
services is even easier than accessing other REST APIs, as other APIs might not use
the HTTP capabilities correctly. Moreover, each API might interpret and therefore use

73

6. Conclusions and future work

them differently, resulting in many REST services which are not compatible with each
other. The lack of standardisation in the REST domain, which has been discussed in the
theoretical part of this thesis and identified as one of the shortcomings of REST, does
not contribute to a uniform interface when looking across different REST services.

The complexity of implementing an OData-conformant REST service, though, might be
higher compared to non-OData-conformant REST services. The most frequently selected
answer to the question which asks for the shortcomings of OData, is the high complexity
of building a REST service conforming with OData. One of the experts wrote that
it would be too much effort to implement such a service, especially for bigger REST
interfaces. Still, none of the participants of the questionnaire stated, that he/she would
not consider/suggest building a REST API conforming with OData. Most of them would
tie the decision, whether to use OData, to the use cases/requirements the service must
cover/meet. Hence the question arises, whether certain requirements might be easier
met by implementing an OData-conformant REST service than by implementing it in
another (custom) way. Especially the use cases that have been covered by the generic
client application (treating the OData services as data stores and discovering its data),
might be such a case. One expert also suggested, that it might be beneficial to use OData
in such a case. It must be highlighted, that the overall implementation complexity can
be reduced by the fact that there are three conformance levels of OData and that it is
suggested to implement only those features of OData, which are needed in the certain
case.

The implementation experience of the OData service leads to the following conclusions,
which are related to the complexity of building an OData-conformant REST service:

• A lot of tasks are handled by using an OData library at implementation. On the
one hand, this lowers the complexity of implementing such a service significantly in
terms of making the service OData-compliant. On the other hand, the usage of an
OData library might cause other difficulties. The usage of Spring libraries together
with Apache Olingo lead to additional effort that needed to be spent on making
them compatible with each other. In sum, the benefits of using an OData library
outweigh the additional effort, that has been caused by using it.

• The complexity of implementation heavily depends on the features that need to be
supported by the OData service.

The offer of Open Data in Austria could benefit from a shift of data producers to offering
Open Data via OData REST interfaces, as the presence of an OData RESTful web
service would solve all of the mentioned problems at the beginning of the thesis:

• The data model would be published in a standardized way.

• Querying the data would be possible according to the capabilities of OData services.

74

6.2. Future work

• There would be no need for downloading the Open Data sets in order to use them
inside an application, as they would be available and accessible all the time via the
Internet in a machine-readable way.

• If the OData service exposes data from the direct data source, its exposed data
would always be up-to-date, eliminating the delay in time between the creation of
the data sets and its publication.

By integrating the OData generic client application with the national Open Data portal,
it would be possible to make the data exposed by OData REST interfaces discoverable
even for those visitors of the Open Data portal who are not familiar with REST and
OData and thus are not able to communicate directly with the OData service and to
interpret the returned data.

The usage of the implemented OData service by the proof-of-concept application is
additional evidence for the statement that data sets, which are exposed in such a way,
can be used by applications without the need to download the data set in advance.
Furthermore, the application will always receive the latest data this way.

Finally, the following conclusions can be drawn:

• OData enables the building of generic client applications.

• The Open Data offer could benefit from many Open Data producers offering their
data via OData-conformant REST services. In order to gain all the benefits, the
Open Data portal would need to be capable of the same features that the generic
OData client application is capable of.

• The complexity of implementing such a service, as judged by the domain experts,
is higher compared to non-OData-conformant REST services. Thus, they would
mostly consider to use it only under certain circumstances, although there are several
verified advantages of such services. It can be confirmed by the implementation
experience that, without using an OData framework/library in the implementation,
the complexity of implementing it would definitely be higher.

6.2 Future work
The future work that could be done based on this thesis, can be divided into two
categories. The first category comprises tasks, which are oriented towards eliminating the
limitations of the generic OData client application. These limitations have been listed
in Section 4.2.3. The second category deals with further enhancements of the generic
OData client application. These are some examples for such enhancements:

• Present the data model in different ways. The data model itself could, for example,
additionally be presented as a diagram.

75

6. Conclusions and future work

• Enable the communication with services, which require some sort of authentication.
For this purpose, it would be necessary to configure the authentication mode and
its credentials additionally to the root URL of the OData service. As the OData
specification does not propose any concrete authentication mode, it would be
necessary to select authentication modes, which shall be supported by the client
application (e.g. Basic Authentication).

Apart from these two categories, effort could be spent on trying to integrate the generic
client application into CKAN. As OData might become an international standard, there
might also be willingness on CKAN side to enable additional features for OData services
on their platform. Based on the gained knowledge about CKAN, I see two general steps
required for integrating the application into CKAN:

1. CKAN needs to allow adding an OData service as a separate resource type, where
the data can be retrieved from.

2. In case there is an OData resource defined for an Open Data set, show the generic
OData client application (or the integrated part of it) and let the visitor explore
the underlying data.

6.3 Outlook

This section will provide a short outlook on the perspectives of OData and the approach
of offering Open Data via OData version 4 conformant REST services.

The answer to the question, whether OData will be widely used, heavily depends on
the effects of the publication of OData as an ISO international standard. There might
be legal entities or public sector entities, whose IT systems need to comply with ISO
standards to a certain extent. This has not been researched in this thesis, thus no verified
statement can be given on this topic. But if this is the case, then these entities might
consider making use of OData in the future development of their systems. The results of
the evaluation with domain experts showed that OData seems not to be widely known
among developers in the RESTful web service domain. Also, the participants of the
evaluation mostly stated, that they would use OData only in case there are certain
requirements that can be met easier by using OData. The fact that building an OData
service is perceived as a highly complex undertaking, leads to the conclusion that it will
not be considered as a first choice by a RESTful web service developer. Thus, it seems
that OData will not be widely used by developers that are not required to comply with
ISO standards.

The perspective of the approach, where Open Data producers offer their data via OData
version 4 conformant REST services, depends also on the extent to which the public
sector entites will make use of OData. If these entities would make use of OData for
more reasons than just exposing their Open Data (as, for example, the proof-of-concept

76

6.3. Outlook

application, which makes use of both reading and writing capabilities of OData), then
there is a higher chance that they would register their OData service as a resource on
the national Open Data portal. On the other hand, the integration of the generic client
application into CKAN might cause such institutions to think about using OData. There
might be a mutual relationship between these two issues, where the realization of one
would push the realization of the other.

77

List of Figures

1.1 A simple example showing the target architecture with one generic Open Data
client and two Open Data producers. 3

2.1 Client-Server constraint [Fie00]. 19
2.2 Uniform interface with a stateless server and caches on both server and client

side [Fie00]. 21
2.3 The service document of the TripPinRESTierService, retrieved by calling

GET http://services.odata.org/TripPinRESTierService. 29
2.4 An excerpt of the metadata document of the TripPinRESTierService, retrieved

by calling GET http://services.odata.org/TripPinRESTierService/
$metadata. 31

2.5 OData URL and its components [PHZ16b] 32

3.1 Use cases that need to be covered by the generic client application. 40
3.2 Use cases that need to be covered by the Open Data RESTful web service. . 41
3.3 Use cases that need to be covered by the proof-of-concept application. 42

4.1 The database schema of the service. 48
4.2 An excerpt of the metadata document of the implemented OData RESTful

web service. 50
4.3 A UML activity diagram showing how the client application resolves an OData

service. 53
4.4 An entity set element that is returned in the metadata document of the

implemented OData RESTful web service. 53
4.5 The page servicediscovery.xhtml of the web application. 55
4.6 The first tab of page serviceLoaded.xhtml of the web application. Here

the entity types and their relations to other entity types are described. 56
4.7 The second tab of page serviceLoaded.xhtml of the web application. In

this tab it is possible to search for data that is exposed by the underlying
OData service. 57

4.8 An example of the way related entities are displayed. In this particular case,
all related Friends of the person with UserName “russellwhyte” are displayed. 59

4.9 All enumerations are listed in the fourth tab of page serviceLoaded.xhtml. 59

79

http://services.odata.org/TripPinRESTierService
http://services.odata.org/TripPinRESTierService/$metadata
http://services.odata.org/TripPinRESTierService/$metadata

5.1 These are the results of the closed question which is related to the advantages
of OData. 68

5.2 These are the results of the closed question which is related to the shortcomings
of OData. 68

5.3 These are the results of the closed question which is related to the differences
between the way the participants have developed REST services up to now
and the way OData proposes to implement them. 69

List of Tables

2.1 Ranking according to the Open Data Barometer for the year 2015 [Foub] . . 15
2.2 Ranking according to the Global Open Data Index for the year 2015 [Knoc] . 16
2.3 Advantages and disadvantages of the stateless-communication constraint . . . 20
2.4 Summary of the available system query options 35

4.1 Available functions for defining a filter, depending on the attribute type. . . . 58

5.1 The description of the test cases that have been conducted (part 1). 64
5.2 The description of the test cases that have been conducted (part 2). 65

80

Bibliography

[Ben15] Brian Benz. Oasis has submitted OData v4 and OData JSON For-
mat v4 to ISO/IEC JTC 1 for approval as an International Stan-
dard. https://msopentech.com/blog/2015/04/21/oasis-has-
submitted-odata-v4-and-odata-json-format-v4-to-isoiec-
jtc-1-for-approval-as-an-international-standard/, April 21
2015. Visited: October 7, 2016.

[BK11] Florian Bauer and Martin Kaltenböck. Linked open data: The essentials.
Edition mono/monochrom, Vienna, 2011.

[BLFM] Tim Berners-Lee, Roy Fielding, and Larry Masinter. Rfc 2396: Uniform
resource identifiers (uri): Generic syntax, august 1998. Status: Draft Standard.

[Buna] Magistrat der Stadt Wien Bundeskanzleramt. Daten/Dokumente hinzufü-
gen. https://www.data.gv.at/suche/daten-hinzufuegen/. Vis-
ited: October 16, 2016.

[Bunb] Magistrat der Stadt Wien Bundeskanzleramt. Linked data. https://www.
data.gv.at/linked-data/. Visited: October 16, 2016.

[Bunc] Magistrat der Stadt Wien Bundeskanzleramt. Zielsetzung data.gv.at. https:
//www.data.gv.at/infos/zielsetzung-data-gv-at/. Visited:
October 16, 2016.

[Chi13] Simon Chignard. A brief history of Open Data. Paris Tech Review, 29, 2013.

[Ckaa] Ckan. Api guide. http://docs.ckan.org/en/latest/api/index.
html. Visited: October 16, 2016.

[Ckab] Ckan. DataStore extension. http://docs.ckan.org/en/latest/
maintaining/datastore.html. Visited: October 16, 2016.

[Ckac] Ckan. User guide. http://docs.ckan.org/en/latest/user-guide.
html. Visited: October 16, 2016.

81

https://msopentech.com/blog/2015/04/21/oasis-has-submitted-odata-v4-and-odata-json-format-v4-to-isoiec-jtc-1-for-approval-as-an-international-standard/
https://msopentech.com/blog/2015/04/21/oasis-has-submitted-odata-v4-and-odata-json-format-v4-to-isoiec-jtc-1-for-approval-as-an-international-standard/
https://msopentech.com/blog/2015/04/21/oasis-has-submitted-odata-v4-and-odata-json-format-v4-to-isoiec-jtc-1-for-approval-as-an-international-standard/
https://www.data.gv.at/suche/daten-hinzufuegen/
https://www.data.gv.at/linked-data/
https://www.data.gv.at/linked-data/
https://www.data.gv.at/infos/zielsetzung-data-gv-at/
https://www.data.gv.at/infos/zielsetzung-data-gv-at/
http://docs.ckan.org/en/latest/api/index.html
http://docs.ckan.org/en/latest/api/index.html
http://docs.ckan.org/en/latest/maintaining/datastore.html
http://docs.ckan.org/en/latest/maintaining/datastore.html
http://docs.ckan.org/en/latest/user-guide.html
http://docs.ckan.org/en/latest/user-guide.html

[CNV16] Wendy Carrara, Margriet Nieuwenhuis, and Heleen Vollers. Open Data Ma-
turity in Europe 2016. Technical report, European Commission, Directorate-
General of Communications Networks, Content & Technology, 2016.

[Cor] Microsoft Corporation. [MS-ODATA]: Open Data Protocol (OData). https:
//msdn.microsoft.com/en-us/library/dd541188.aspx. Visited:
October 30, 2016.

[Defa] Open Definition. Open Definition 2.1. http://opendefinition.org/
od/2.1/en/. Visited: October 14, 2016.

[Defb] Open Definition. The Open Definition. http://opendefinition.org/.
Visited: October 14, 2016.

[EHL+13] Gregor Eibl, Johann Höchtl, Brigitte Lutz, Peter Parycek, Stefan Pawel, and
Harald Pirker. Rahmenbedingungen für Open Government Data Plattformen.
Technical report, 2013.

[Eur16] European Data Portal. Factsheet United Kingdom, September 13 2016.

[Fie00] Roy Thomas Fielding. Architectural styles and the design of network-based
software architectures. PhD thesis, University of California, Irvine, 2000.

[Foua] The Apache Software Foundation. Interface ODataHttpHander.
https://olingo.apache.org/javadoc/odata4/org/apache/
olingo/server/api/ODataHttpHandler.html. Visited: November
19, 2016.

[Foub] World Wide Web Foundation. The Open Data Barometer. http://
opendatabarometer.org/barometer/. Visited: October 23, 2016.

[Fouc] World Wide Web Foundation. Ranking. http://opendatabarometer.
org/data-explorer/?_year=2015&indicator=ODB&lang=en. Vis-
ited: October 23, 2016.

[Foud] World Wide Web Foundation. Research Method. http://
opendatabarometer.org/3rdEdition/methodology/. Visited: Oc-
tober 23, 2016.

[Fut13] Futurezone. Data.gv.at mit neuen Funktionen. https://futurezone.at/
netzpolitik/data-gv-at-mit-neuen-funktionen/24.591.074,
January 16 2013. Visited: October 16, 2016.

[GHL+14] Francoise Genova, Hilary Hanahoe, Leif Laaksonen, Carlos Morais-Pires,
Peter Wittenburg, and John Wood. The data harvest: How sharing research
data can yield knowledge, jobs and growth. RDA Europe, 2014.

82

https://msdn.microsoft.com/en-us/library/dd541188.aspx
https://msdn.microsoft.com/en-us/library/dd541188.aspx
http://opendefinition.org/od/2.1/en/
http://opendefinition.org/od/2.1/en/
http://opendefinition.org/
https://olingo.apache.org/javadoc/odata4/org/apache/olingo/server/api/ODataHttpHandler.html
https://olingo.apache.org/javadoc/odata4/org/apache/olingo/server/api/ODataHttpHandler.html
http://opendatabarometer.org/barometer/
http://opendatabarometer.org/barometer/
http://opendatabarometer.org/data-explorer/?_year=2015&indicator=ODB&lang=en
http://opendatabarometer.org/data-explorer/?_year=2015&indicator=ODB&lang=en
http://opendatabarometer.org/3rdEdition/methodology/
http://opendatabarometer.org/3rdEdition/methodology/
https://futurezone.at/netzpolitik/data-gv-at-mit-neuen-funktionen/24.591.074
https://futurezone.at/netzpolitik/data-gv-at-mit-neuen-funktionen/24.591.074

[GINT14] Peter Leo Gorski, Luigi Lo Iacono, Hoai Viet Nguyen, and Daniel Behnam
Torkian. SOA-Readiness of REST. In European Conference on Service-
Oriented and Cloud Computing, pages 81–92. Springer, 2014.

[Gova] UK Government. About. https://data.gov.uk/about. Visited: Octo-
ber 17, 2016.

[Govb] UK Government. FAQ. https://data.gov.uk/faq. Visited: October
17, 2016.

[HB04] Hugo Haas and Allen Brown. Web Services Glossary - W3C Working Group
Note. Technical report, World Wide Web Consortium - W3C, February 11
2004.

[HFdTC] Wilson A. Higashino, M. Beatriz Felgar de Toledo, and Miriam A. M. Capretz.
REST and Resource-Oriented Architecture. In Proc. of International Sympo-
sium on Services Science (ISSS 2009).

[HPB16] Ralf Handl, Michael Pizzo, and Mark Biamonte. Odata json format version
4.0 plus errata 03. http://docs.oasis-open.org/odata/odata-
json-format/v4.0/errata03/os/odata-json-format-v4.0-
errata03-os-complete.html, June 02 2016. Visited: October 30, 2016.

[HVdB11] Noor Huijboom and Tijs Van den Broek. Open data: an international
comparison of strategies. European journal of ePractice, 12(1):4–16, 2011.

[ISOa] ISO. ISO glossary of terms. http://www.iso.org/iso/home/faqs/
faqs_abbreviations.htm. Visited: November 05, 2016.

[ISOb] ISO. ISO/IEC DIS 20802-1. http://www.iso.org/iso/home/store/
catalogue_tc/catalogue_detail.htm?csnumber=69208. Visited:
November 05, 2016.

[ISOc] ISO. ISO/IEC DIS 20802-2. http://www.iso.org/iso/home/store/
catalogue_tc/catalogue_detail.htm?csnumber=69209. Visited:
November 05, 2016.

[JCZ12] Marijn Janssen, Yannis Charalabidis, and Anneke Zuiderwijk. Benefits, Adop-
tion Barriers and Myths of Open Data and Open Government. Information
Systems Management, 29(4):258–268, 2012.

[KA16] Rashmi Krishnamurthy and Yukika Awazu. Liberating data for public value:
The case of data.gov. International Journal of Information Management,
36(4):668 – 672, 2016.

[Knoa] Open Knowledge. Global Open Data Index - Methodology. http://index.
okfn.org/methodology/. Visited: October 23, 2016.

83

https://data.gov.uk/about
https://data.gov.uk/faq
http://docs.oasis-open.org/odata/odata-json-format/v4.0/errata03/os/odata-json-format-v4.0-errata03-os-complete.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/errata03/os/odata-json-format-v4.0-errata03-os-complete.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/errata03/os/odata-json-format-v4.0-errata03-os-complete.html
http://www.iso.org/iso/home/faqs/faqs_abbreviations.htm
http://www.iso.org/iso/home/faqs/faqs_abbreviations.htm
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=69208
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=69208
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=69209
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=69209
http://index.okfn.org/methodology/
http://index.okfn.org/methodology/

[Knob] Open Knowledge. Open Knowledge: The Open Definition. https://
okfn.org/about/our-impact/opendefinition/. Visited: October
14, 2016.

[Knoc] Open Knowledge. Place overview. http://index.okfn.org/place/.
Visited: October 23, 2016.

[OASa] OASIS. About us. https://www.oasis-open.org/org. Visited: Octo-
ber 30, 2016.

[OASb] OASIS. Members. https://www.oasis-open.org/member-roster.
Visited: November 1, 2016.

[OASc] OASIS. Standards. https://www.oasis-open.org/standards. Vis-
ited: October 30, 2016.

[ODaa] OData. Ecosystem. http://www.odata.org/ecosystem/. Visited:
November 1, 2016.

[ODab] OData. Libraries. http://www.odata.org/libraries/. Visited:
November 1, 2016.

[ODac] OData. OData - the best way to REST. http://www.odata.org/. Visited:
October 30, 2016.

[Ope] OpenLab. Open Government Data Initiative v6. https://github.com/
openlab/OGDI-DataLab. Visited: November 1, 2016.

[Ove07] Hagen Overdick. The Resource-Oriented Architecture. In Services, 2007
IEEE Congress on, pages 340–347. IEEE, 2007.

[PHZ16a] Michael Pizzo, Ralf Handl, and Martin Zurmuehl. OData Version 4.0. Part
1: Protocol Plus Errata 03. http://docs.oasis-open.org/odata/
odata/v4.0/errata03/os/complete/part1-protocol/odata-
v4.0-errata03-os-part1-protocol-complete.html, June 02
2016. Visited: October 30, 2016.

[PHZ16b] Michael Pizzo, Ralf Handl, and Martin Zurmuehl. OData Version 4.0.
Part 2: URL Conventions Plus Errata 03. http://docs.oasis-
open.org/odata/odata/v4.0/errata03/os/complete/part2-
url-conventions/odata-v4.0-errata03-os-part2-url-
conventions-complete.html, June 02 2016. Visited: October
31, 2016.

[PHZ16c] Michael Pizzo, Ralf Handl, and Martin Zurmuehl. OData Version 4.0.
Part 3: Common Schema Definition Language (CSDL) Plus Errata 03.
http://docs.oasis-open.org/odata/odata/v4.0/errata03/
os/complete/part3-csdl/odata-v4.0-errata03-os-part3-
csdl-complete.html, June 02 2016. Visited: October 31, 2016.

84

https://okfn.org/about/our-impact/opendefinition/
https://okfn.org/about/our-impact/opendefinition/
http://index.okfn.org/place/
https://www.oasis-open.org/org
https://www.oasis-open.org/member-roster
https://www.oasis-open.org/standards
http://www.odata.org/ecosystem/
http://www.odata.org/libraries/
http://www.odata.org/
https://github.com/openlab/OGDI-DataLab
https://github.com/openlab/OGDI-DataLab
http://docs.oasis-open.org/odata/odata/v4.0/errata03/os/complete/part1-protocol/odata-v4.0-errata03-os-part1-protocol-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata03/os/complete/part1-protocol/odata-v4.0-errata03-os-part1-protocol-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata03/os/complete/part1-protocol/odata-v4.0-errata03-os-part1-protocol-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata03/os/complete/part2-url-conventions/odata-v4.0-errata03-os-part2-url-conventions-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata03/os/complete/part2-url-conventions/odata-v4.0-errata03-os-part2-url-conventions-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata03/os/complete/part2-url-conventions/odata-v4.0-errata03-os-part2-url-conventions-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata03/os/complete/part2-url-conventions/odata-v4.0-errata03-os-part2-url-conventions-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata03/os/complete/part3-csdl/odata-v4.0-errata03-os-part3-csdl-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata03/os/complete/part3-csdl/odata-v4.0-errata03-os-part3-csdl-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata03/os/complete/part3-csdl/odata-v4.0-errata03-os-part3-csdl-complete.html

[PZL08] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. RESTful Web
Services vs. “Big” Web Services: Making the Right Architectural Decision. In
Proceedings of the 17th international conference on World Wide Web, pages
805–814. ACM, 2008.

[RR08a] Leonard Richardson and Sam Ruby. RESTful Web Services. O’Reilly Media,
Inc., 2008.

[RR08b] Leonard Richardson and Sam Ruby. RESTful Web Services, chapter The
Resource-Oriented Architecture, page 79. O’Reilly Media, Inc., 2008.

[SZJG14] Iryna Susha, Anneke Zuiderwijk, Marijn Janssen, and Åke Grönlund. Bench-
marks for Evaluating the Progress of Open Data Adoption: Usage, Limitations,
and Lessons Learned. Social Science Computer Review, 2014.

[Tin13] Dinand Tinholt. The Open Data Economy: Unlocking Economic Value by
Opening Government and Public Data. Capgemini Consulting Analysis, 2013.

[UGSATa] Office of Citizen Services U.S. General Services Administration and Innovative
Technologies. About data.gov. https://www.data.gov/about. Visited:
October 17, 2016.

[UGSATb] Office of Citizen Services U.S. General Services Administration and Inno-
vative Technologies. About data.gov. https://www.data.gov/data-
request/. Visited: October 17, 2016.

[Won10] John Wonderlich. Ten Principles for Opening Up Government Information.
Washington, DC: Sunlight Foundation. August, 11:2010, 2010.

[YR12] Harlan Yu and David G. Robinson. The New Ambiguity of ’Open Government’.
Technical report, 59 UCLA L. Rev. Disc. 178 (2012), February 28 2012.

[Ösa] Wikimedia Österreich. FAQs – Häufig gestellte Fragen. https://www.
opendataportal.at/faqs/. Visited: October 16, 2016.

[Ösb] Wikimedia Österreich. Impressum. https://www.opendataportal.at/
impressum/. Visited: October 16, 2016.

[Ösc] Wikimedia Österreich. Open Data Portal Österreich. https://www.
opendataportal.at/. Visited: October 16, 2016.

85

https://www.data.gov/about
https://www.data.gov/data-request/
https://www.data.gov/data-request/
https://www.opendataportal.at/faqs/
https://www.opendataportal.at/faqs/
https://www.opendataportal.at/impressum/
https://www.opendataportal.at/impressum/
https://www.opendataportal.at/
https://www.opendataportal.at/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and problem statement
	Expected Results
	Methodological approach
	Structure of the work

	Background
	Open Data
	REST
	OData - Open Data Protocol

	Project design
	Idea
	Use cases
	Additional proof-of-concept application

	Implementation
	Implementation of OData REST service
	Implementation of a generic OData client (web application)
	Implementation of the proof-of-concept application

	Evaluation
	Testing against OData services
	Questionnaire with experts
	Implementation experience

	Conclusions and future work
	Conclusions
	Future work
	Outlook

	List of Figures
	List of Tables
	Bibliography

