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1
Introduction

In this thesis we study boundaries in N = (2, 2) supersymmetric
theories in two dimensions. These models are of great importance to
string compactifications from 10 to 4 dimensions, because they can be
used to describe the dynamics of the 6 dimensional internal space of
the target spacetime. For the open string one has to impose boundary
conditions at the worldsheet boundary. There a two possibilities
for boundary conditions: Neumann or Dirichlet. The boundary
conditions for the string map to extended objects in the target space,
called D-branes. In this thesis we are discussing D-branes in the
internal dimensions. The presence of D-branes breaks supersymmetry.
At most half of the supersymmetry can be preserved. There are two
inequivalent ways to do so, called A-type and B-type. In this thesis we
study D-branes preserving B-type supersymmetry, called B-branes.
We focus on gauged linear sigma models [1] that describe Calabi-
Yau compactifications. Calabi-Yaus have moduli spaces describing
deformations of the Kähler class and the complex structure. In the
gauged linear sigma model the parameters for the Kähler deformation
are identified with certain coupling constants (the Fayet-Iliopoulos-θ
parameters). We consider a class of Calabi-Yaus with one Kähler
parameter. The Kähler moduli space has three distinctive points
called large radius, Landau-Ginzburg and conifold point. The effective
theory describing the Calabi-Yau compactification at the large radius
point is a non-linear sigma model, at the Landau-Ginzburg point
it is described by a Landau-Ginzburg theory. We are particularly
interested in the behaviour of D-branes under transport through
the moduli space. To study the behaviour we use the hemisphere
partition function of the gauged linear sigma model [2, 3, 4], to
compute D-brane charges and monodromy matrices in examples of
one-parameter Calabi-Yau compactifications. Thereby we were able
to reproduce the results in [5], obtained via mirror symmetry.

This thesis is divided into two parts. In part I we outline the nec-
essary prerequisites in order to do the calculations given in part II.
The fast-track reader familiar with the subject can directly start in
partII.

In chapter 2 we recall the mathematical tools required for this
thesis.
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In chapter 3 we state the basics of the gauged linear sigma model
[1].

In chapter 4 we study boundary conditions in N = (2, 2) su-
persymmetric theories. We discuss the non-linear sigma model, the
Landau-Ginzburg model and the gauged linear sigma model, focusing
on B-type boundary conditions. Also we introduce further mathe-
matical structures to describe D-branes in these models.

Chapter 5 deals with the low energy behaviour of D-branes and
transport of branes in the Kähler moduli space.

The hemisphere partition function is introduced in chapter 6.
The field content of the models we focus on and the corresponding

hemisphere partition function are given in chapter 7.
In chapter 8 we give a hands-on approach on how to use the

methods described in chapter 4 in order to describe D-branes in the
models under consideration.

Chapter 9 gives an overview of examples of branes in the gauged
linear sigma model, realized as matrix factorisations.

In chapter 10 we calculate the monodromy matrices.

1.1 Acknowledgement

The author is very grateful for the time and patience of Dr. Johanna
Knapp. Without her help, guidance and suggestions for improvements
this thesis would not have the present extent.



Part I

Theoretical Background





2
Mathematical Preliminaries

In this chapter we will give an overview of the required mathematical
background in this thesis. Thereby we will only scratch the surface
of these materials. The presented material is taken out of [6] and
[7], where further details can be found. Also we will mostly use the
notation of [7].

2.1 Manifolds

We will gradually develop the definition of a complex manifold, fol-
lowing the discussion of [7]. By doing so we will develop all necessary
tools to understand Calabi-Yau manifolds, which play an important
role in this thesis.

Topolocial Manifold

We begin with a topological space. Let X be a set of points endowed
with a topology T . T consists of open subsets Ui of points in X,
called open sets. For T to be a topology we have to require

• X and the empty set ∅ ∈ T .

•
⋃
i
Ui ∈ T for arbitrary Ui ∈ T .

•
⋂
i
Ui ∈ T for finitely many Ui ∈ T .

X together with T is called a topological space. Additionally we want
some notion of continuity. Therefore we consider functions φ from
one topological space to another φ : X → Y . A function is said to be
continuous if φ−1 (Vj) is an open set in X and Vj is open in Y . Of
course Y itself has to be a topological space for the definition to make
sense.

If we now can cover our topological space X with open subsets
Ui ∈ T and can find a continuous map φi : Ui → Rn for each Ui,
with a continuous inverse map φ−1, then X is a topological manifold.
(Ui,φi) are usually referred to as charts on X, because the φi allow us
to introduce a local coordinate system for points lying in Ui. Given
a point p in Ui we can deduce its coordinates by its image under φi.
The advantage of these local coordinates is, that we now can give
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a coordinate representation of an abstract function f : X → R, by
considering f ◦ φ−1

i : φi (Ui)→ R.

Compact Manifold A manifold X is said to be compact if every
collection Vj ∈ T , with X =

⋃
i
Vj , has a finite subcover. If the

collection
{
Vj
}
consists of finitely many elements, we already have a

finite subcover of X. If not we have to find {Wk} ⊂
{
Vj
}
such that

X =
⋃
k
Wk, with k running over finitely many values. We see that

compactness depends on the choice of topology T on X.

Differentiable Manifold

In order to establish a notion of differentiation we have to introduce
additional structure on our topological manifold X and thereby obtain
a differentiable manifold.

Again we start with a function f : X → R on X. Consider the
coordinate representation of f in the patch Ui, f ◦ φ−1

i : φi (Ui)→ R.
This map is now a map from Rn → R and we can apply ordinary
differentiation from multi-variable calculus. If we now consider an
overlap of two patches Ui ∩Uj , one would reasonably demand that the
result of differentiation on the overlap is independent of the chosen
coordinate representation. This is only fulfilled if the transition
functions φj ◦ φ−1

i are infinitely differentiable.
This restriction gives the additional structure necessary to define

a differentiable manifold.

Definiton 2.1.1. A differentiable manifold X is a topological mani-
fold, with infinitely differentiable transition functions.

Complex Manifold

Consider a manifold with n real dimensions with n even. Locally we
can always introduce local complex coordinates by zj = xj + ixn

2 +j ,
where the xj are local real coordinates. But this does not guarantee,
that the transition functions are holomorphic, if we express them in
local complex coordinates. If the transition functions fulfil the Cauchy-
Riemann equations the manifold is a complex manifold of dimension
d = n

2 . The local complex coordinates and transition functions endow
the manifold with a complex structure.

Definiton 2.1.2. A complex manifold is a differentiable manifold
where the transition functions fulfil the Cauchy-Riemann equations.

2.2 Tangent Spaces

In order to have a notion of vectors on a manifold one introduces
the tangent space. The tangent space can be viewed as a local flat
approximation of X at the point p [7]. One can view the tangent
space as an Rn if X has dimension n, or as an equivalence class of
curves through the point p, which have the same tangent vector at p
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[6]. The tangent space at a point p carries the structure of a vector
space. A local basis of the tangent space at the point p is given by the
n linearly independent partial derivative operators

TpX :

{
∂

∂x1

∣∣∣∣
p

, . . . , ∂

∂xn

∣∣∣∣
p

}
, (2.1)

which allows one to represent a vector v in this basis by v =

vα ∂
∂xα

∣∣∣
p
.

As every vector space, also the tangent space has a dual space of
linear maps. This dual space is denoted by T ∗pX and usually referred
to as cotangent space. A basis is given by

T ∗pX :
{

dx1∣∣
p

, . . . , dxn|p
}

. (2.2)

By definition, dxi : TpX → R is a linear map with dxip
(

∂
∂xj

∣∣∣
p

)
=

δij . A general element α of T ∗pX can be written as α = αidxi and is
called a one-form.

In the case of a complex manifold X of complex dimension d =

n/2, we can construct the complexified tangent space of X, TpXC =

TpX ⊗ C. The only difference to TpX is, that now the coefficients
can be complex-valued. To see the underlying complex structure one
rearranges the basis elements to obtain

TpX
C :

{(
∂

∂x1 + i
∂

∂xd+1

)∣∣∣∣
p

, . . . ,
(

∂

∂xd
+ i

∂

∂x2d

)∣∣∣∣
p

,
(

∂

∂x1 − i
∂

∂xd+1

)∣∣∣∣
p

, . . . ,
(

∂

∂xd
− i ∂

∂x2d

)∣∣∣∣
p

}
.

(2.3)

Re-expressing this basis in terms of complex coordinates gives

TpX
C :

{
∂

∂z1

∣∣∣∣
p

, . . . , ∂

∂zd

∣∣∣∣
p

, ∂

∂z1

∣∣∣∣
p

, . . . , ∂

∂zd

∣∣∣∣
p

}
. (2.4)

A similar construction can be done to get the complexified cotan-
gent space T ∗pXC = T ∗pX ⊗C, with basis

T ∗pX
C :
{

dz1∣∣
p

, . . . , dzd
∣∣∣
p

, dz1∣∣
p

, . . . , dzd
∣∣∣
p

}
. (2.5)

It is possible to separate the holomorphic and anti-holomorphic
directions in the tangent and cotangent space, such that

TpX
C = TpX

(1,0) ⊕ TpX(0,1) (2.6)

T ∗pX
C = T ∗pX

(1,0) ⊕ T ∗pX(0,1). (2.7)

TpX
(1,0) is called holomorphic tangent space and T ∗pX(1,0) holo-

morphic cotangent space. The other subspaces as refered as anti-
holomorphic tangent space and anti-holomorphic cotangent-space.
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2.3 Differential Forms

One can generalize one-forms to forms of higher degree. For example
a q−form αp is an antisymmetric multi-linear map

αp : TpX × TpX × · · · × TpX︸ ︷︷ ︸
q−times

→ R. (2.8)

We know that the dxi are a basis for one-forms, but we can also
use them to construct a basis for q−forms by introducing the wedge-
product, denoted by ∧ and defined by

dxi1 ∧ dxi2 ∧ · · · ∧ dxiq =
1
q!

∑
P

sgnPdxiP (1) ⊗ dxiP (2) ⊗ · · · ⊗ dxiP (q) .

(2.9)

P denotes a permutation of {1 . . . q} and sgnP = 1 for an even per-
mutation and −1 otherwise. Having a basis we can write a q−form ω

as

ω = ωi1...iqdxi1 ∧ dxi2 ∧ · · · ∧ dxiq . (2.10)

The space of q−forms is usually denoted by
∧q T ∗X. Now let

us consider a complex manifold X of complex dimension d = n/2.
Similar to the construction we did for the real case, we can use basis
elements of T ∗XC to construct a basis of

∧q T ∗XC. Using dti, where
dti is an arbitrary basis element of ∈ T ∗pXC (see eq. (2.5)), we can
write a q−form ω as

ω = ωi1...iqdti1 ∧ dti2 ∧ · · · ∧ dtiq . (2.11)

Also we can label each term in eq. (2.11) by the number r of
holomorphic one forms and s = q− r the number of anti-holomorphic
one forms. We can rearrange the indices and get

ω =
∑
r

ωi1...ir1...q−rdz
i1 ∧ dzi2 ∧ · · · ∧ dzir ∧ dz1 ∧ dz2 ∧ · · · ∧ dzq−r . (2.12)

The terms in the sum live in Ωr,s(X), which is the space of anti-
symmetric tensors with r holomorphic and s anti-holomorphic indices.
So we can write Ωr,s(X) as Ωr,s(X) =

∧r T ∗(1,0) ⊗
∧s T ∗(0,1).

2.4 Exterior Differentiation and Cohomology

Differential forms have a natural differentiation operation associated
to them, the exterior differentiation d. d is a map

d :
q∧
T ∗X →

q+1∧
T ∗X. (2.13)
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Expressing the map d in local coordinates gives

d : ω → dω =
∂ωi1...ip
∂xiq+1

dxiq+1 ∧ dxi2 ∧ · · · ∧ dxiq , (2.14)

where ω is a q−form and dω a q+ 1-form. On a complex manifold
X we can refine the exterior differentiation. We consider

ωr,s = ωi1...ir1...sdz
i1 ∧ · · · ∧ dzir ∧ dz1 ∧ · · · ∧ dzs . (2.15)

We can view ωr,s as a real r+ s-form on X and conversely dωr,s is
an (r+ s+ 1)-form. Again we can decompose this (r+ s+ 1)-form,
using the complex structure on X, into Ωr+1,s(X)⊕Ωr,s+1(X).

As before we can express this fact in local coordinates by

dωr,s =
∂ωi1...ir1...s

∂zir+1
dzir+1 ∧ dzi1 ∧ · · · ∧ dzir ∧ dz1 ∧ · · · ∧ dzs

+
∂ωi1...ir1...s

∂zs+1
dzi1 ∧ · · · ∧ dzir ∧ dzs+1 ∧ dz1 ∧ · · · ∧ dzs .

(2.16)

This can be summerized by the following shorthand notation

dωr,s = ∂ωr,s + ∂ωr,s. (2.17)

Thereby we decomposed the real exterior differential operator d into
exterior differentials along holomorphic (∂) and anti-holomorphic (∂)
directions.

Because of the anti-symmetry of the wedge-product, applying d
twice results in

d (dα) = 0, (2.18)

where α can be any form, so d2 = 0.

DeRham cohomology group

If a q−form ω fulfils dω = 0 we call it closed. Having found a q-from
ω with dω = 0, there are now the following possibilities. ω can be
written locally as ω = dα, where α is a q − 1-form and by d2 = 0,
dω = 0 is trivially fulfilled. If this is the case we call ω exact. In the
other case ω is a non-trivial solution of dω = 0. We use this property
to define the q−th DeRahm-cohomology group Hq

d (X), where X is a
real manifold, by

Hq
d (X, R) =

{ω|dω = 0}
{α|α = dβ} , (2.19)

both ω and α are q−forms.

Dolbeault cohomology

By considering a complex manifold X one can use the operator ∂ to
define the Dolbeault-cohomology by

Hr,s
∂

(X, C) =

{
ωr,s|∂ωr,s = 0

}{
αr,s|αr,s = ∂βr,s−1} . (2.20)

Equivalently one can make a similar construction using the ∂
operator.
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2.5 Hermitian and Kähler Manifolds

In order to define Hermitian and Kähler-manifolds, we have to
introduce an additional structure, namely a metric. A metric g is a
map which takes tangent vectors to a number

g : TpX × TpX → R. (2.21)

g is a symmetric and positive map. Establishing a local coordinate
system we can write g in these coordinates as g = gijdxi ⊗ dxj .
Because of the symmetry of g the coefficients fulfil gij = gji. The
metric gives a notion of measuring the length of a tangent vector
vp by g (vp, vp). This allows us to measure distances on X. On a
complex manifold X we extend the metric g to a map from the
complexified tangent space

g : TpXC × TpXC → C. (2.22)

In the following we describe the extension of g to complex spaces.
For this purpose we take four vectors r, s,u, v which lie in TpX. Now
we use these vectors to construct vectors in TpXC by

ω(1) = r+ is

ω(2) = u+ iv.

Both are elements of TpXC. Now we act with the metric g on ω(1)
and ω(2). By linearity of g we get

g
(
ω(1),ω(2)

)
= g (r+ is,u+ iv)

= g (r,u)− g (s, v) + i {g (r, v) + g (s,u)} . (2.23)

The components of the metric g, extended to the complexified
tangent space, can be obtained by its action on the basis vectors of
TpX

C

gij = g

(
∂

∂zi
, ∂

∂zj

)
(2.24)

gi = g

(
∂

∂zi
, ∂

∂z

)
. (2.25)

The symmetry and the reality of the original metric imply further
constraints on the components:

gij = gji (2.26)
gi = gi (2.27)
gij = gı (2.28)
gi = gıj . (2.29)

Hermitian metric and hermitian manifold

If we express a metric g in local coordinates and its components fulfil
gij = gı = 0, we call it hermitian and g can be written as

g = gidzi ⊗ dz + gıjdzı ⊗ dzj . (2.30)
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Definiton 2.5.1. A complex manifold equipped with a hermitian
metric is called hermitian manifold.

Kähler-form and Kähler manifold

If we have a hermitian metric g on X, we can construct a form in
Ω1,1(X) by

J = igidzi ⊗ dz − igidz ⊗ dzi. (2.31)

Using the symmetry of g the above formula can be rewritten into

J = igidzi ∧ dz. (2.32)

We call this form Kähler-form. Having a Kähler-from we can
define:

Definiton 2.5.2. A hermitian manifold with a closed Kähler-form,
dJ = 0, is called Kähler manifold.

2.6 Differential Geometry

Before we concentrate our discussion to Kähler-manifolds, we recall
that if we have a metric g on a manifold X we can calculate the
associated Levi-Civitá connection

Γijk =
1
2g

il

(
∂glk
∂xj

+
∂glj
∂xk

−
∂gjk
∂xl

)
. (2.33)

This equation gets simplified on a Kähler manifold. Remember
that on a Kähler manifold the Kähler-form J is closed. In local
coordinates this condition reads

dJ =
(
∂ + ∂

)
igidzi ∧ dz = 0. (2.34)

A bit of manipulation gives

dJ =
i

2

(
∂gi
∂zk
−
∂gk
∂zi

)
dzk ∧ dzi ∧ dz

+
i

2

(
∂gi

∂zk
−
∂g

ik

∂z

)
dzk ∧ dzi ∧ dz = 0. (2.35)

The above equations are locally solved by expressing the compo-
nents of the metric g by

gi =
∂2K

∂zi∂z
(2.36)

and therefore J = i∂∂K. K is the Kähler-potential, which is a
locally defined function in the chosen coordinate patch.

These conditions on the metric components result in the following
non-vanishing components of the Christoffel-symbols in complex
coordinates

Γljk = gls
∂gks
∂zj

(2.37)

Γl
k

= gls
∂g

ks

∂z
. (2.38)
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All other components of the connection are zero. With the Christoffel-
symbols at hand one can calculate the components of the curvature
tensor R

ikl
in complex coordinates

R
ikl

= gis
∂Γs

l

∂zk
. (2.39)

The other components are given by the usual symmetries of the
curvature tensor.

From the curvature tensor on calculates the Ricci tensor

Rıj = Rk
ıkj

= −
∂Γk

ık

∂zj
. (2.40)

Parallel Transport and Holonomy

If we parallel transport a vector in an flat euclidean space around
a closed loop we obtain the same vector. On an arbitrary curved
manifold this does not have to be the case. Let us first consider a real
manifold X of dimension n. X has to be equipped with a metric g,
from which we can obtain the associated Levi-Civita connection Γ.
Given a curve C in X, starting and ending at p, we can now parallel
transport a vector v ∈ TpM along the given curve and obtain v′. Now
we can compare v and v′, and if X is orientable, they are related by a
SO(n) transformation AC

v′ = ACv. (2.41)

Applying this procedure to all possible curves starting and ending
at p we get a set of SO(n) matrices AC1 ,AC2 ,AC3 , . . . . The subscript
labels the curve. On can now consider a parallel transport around Ci
followed by a transport around Cj . The associated matrix is given by
ACjACi . Traversing around Cj in the opposite direction is described
by A−1

Cj
. By considering all possible combinations the set of generated

matrices in this procedure carries a group structure. The obtained
group is a subgroup of SO(n). Similar to the above reasoning, we
obtain a group structure if we consider all points p in X. We call the
group, describing the effect of parallel transport on X, holonomy of
X.

Whether the holonomy group is the whole SO(n) or only a sub-
group depends on the properties of X. For example if X is flat the
holonomy group consist solely of the identity element of SO(n). An
important point is, that if we consider a complex Kähler manifold
X of complex dimension d = n/2 we see by looking at eqs. (2.37)
and (2.38) that parallel transport does not mix holomorphic and
anti-holomorphic components. This means that the decomposition
of TpXC = T

(1,0)
p X ⊕ T (0,1)

p X is untouched by parallel transport
away from p. Therefore the holonomy matrices consist of parts acting
only on the holomorphic and a part acting only on anti-holomorphic
basis elements. Consequently these matrices lie in a U(d) subgroup
of SO(n). If the holonomy group of a complex Kähler manifold is
further restricted to lie in SU(d), we call the manifold Calabi-Yau1. 1 Details are given in section 2.8.
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2.7 Harmonic Analysis

Let us first introduce the Hodge-star operator ?, which maps p-forms
to (n− p)−forms on a manifold X with dimension n. If X is equipped
with a metric g the Hodge-star operator ? is defined by

ω → ?ω =
1

(n− p)!p!
εi1...in

√
|det g|gi1j1 . . . gipjpωj1...jpdxip+1 ∧ · · · ∧ dxin . (2.42)

εi1...in are the components of the totally antisymmetric tensor ε,
defined by

εi1...in


+1 if (i1 . . . in) is an even permutation of (12 . . . n)
−1 if (i1 . . . in) is an odd permutation of (12 . . . n)
0 otherwise.

(2.43)

The ?-operator is bijective and coordinate independent. With the
? operator at hand we can construct a further map ?d?. This maps p-
forms to (p− 1) forms. Further we can construct the adjoint operator
d† of the exterior derivative d, which maps p-forms to (p− 1)-forms,
by

d† = (−1)np+n+1 ? d ? . (2.44)

In local coordinates this map reads

d† : ω → d†ω = − 1
(p− 1)!ω

µ
µ1...µp−1;µdxµ1 ∧ · · · ∧ dxµp−1 , (2.45)

ωµν1...νq ;ρ is defined by acting with the covariant derivative2 on 2 Details regarding the covariant
derivative can be found in [6, Chapter
7].

ωµν1...νq :

ωµν1...νq ;ρ ≡ ∂ρωµν1...νq + Γµρκω
κ
ν1...νq

− Γκρν1ω
µ
κ...νq − · · · − Γκρνqω

µ
κ...νq−1κ. (2.46)

Additionally, the Hodge star operator enables one to introduce an
inner product on p−forms by〈

ω
∣∣ω′〉 = ∫

X

ω ∧ ?ω′. (2.47)

An inner product gives the possibility to define the adjoint of d in
a more familiar way. Let β be a (p− 1)-form and ω a p−form. Then
the adjoint of d is defined by the condition

〈ω|dβ〉 =
〈

d†ω
∣∣∣β〉 . (2.48)

An important application of the d and d† operators is the Hodge
decomposition theorem. The theorem says that any p-form on X can
be decomposed uniquely into

ω = dβ + d†γ + ω′, (2.49)
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where β is a (p− 1)-form, γ a (p+ 1)-form and ω′ is a harmonic
p−form. A harmonic p−form fulfils

∆ω′ = d†dω′ + dd†ω′ = 0. (2.50)

∆ is the Laplacian, which is the generalization of the Laplacian on
Rn. A closed form can be written as

ω = dβ + ω′, (2.51)

because γ has to vanish. Also ω − dβ is an element of Hp (X, R)

and as consequence there is a unique harmonic p-form representative
in each cohomology class of Hp (X, R). On a complex manifold X the
Hodge decomposition of an (r, s)-form ωr,s is given by

ωr,s = ∂αr,s−1 + ∂
†
βr,s+1 + ω′r,s. (2.52)

ω′r,s gets annihilated by the Laplacian ∆
∂
= ∂

†
∂ + ∂∂

† and is
called harmonic. As in the real case, if one considers a closed form
ωr,s with respect to ∂, there is a unique ∆

∂
harmonic representative

in the class Hr,s
∂

(X, C). On a Kähler manifold all Laplacians ∆, ∆
∂

and ∆∂ are related by

∆ = 2∆
∂
= 2∆∂ . (2.53)

Now we define hr,sX to be the complex dimension of Hr,s
∂

(X, C),
which is equal to the dimension of the vector space of harmonic (r, s)-
forms on X. Extending the Hodge-star operator into the complex
numbers, gives the following relation, valid on a manifold X with
complex dimension d,

hr,sX = hd−r,d−sX (2.54)

and from complex conjugation and Kählerity we get

hr,sX = hs,rX . (2.55)

Kählerity relates d and ∂ cohomology by

Hp
d (X) =

⊕
r+s=p

Hr,s
∂

(X) . (2.56)

2.8 Calabi-Yau Manifolds

With the previous definitions at hand, we can now define a Calabi-
Yau-manifold. As we will see, there a some equivalent definitions. Let
us consider a complex manifold X, with complex dimension d,

Definiton 2.8.1. A Calabi-Yau manifold is a compact, complex,
Kähler manifold which has SU(d) holonomy.

Vanishing of the Ricci-tensor is equivalent to the above statement.
Additionally, the theorem of Yau states that a complex Kähler
manifold of vanishing first Chern-class admits a Ricci-flat metric. This
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theorem proved a conjecture by Calabi. The k-th Chern class ck(X)

is an element of Hk
d (X) given by the expansion

c (X) = 1 +
∑
j

cj (X)

= det (1 +R)

= 1 + trR+ tr
(
R∧R− 2 (trR)2

)
+ . . . . (2.57)

R is the curvature tensor of the tangent bundle TX of X:

R = Rklidzi ∧ dz. (2.58)

The matrix indices are in the fiber direction. The power of Yau’s
theorem is, that if we have a Kähler manifold with vanishing first
Chern class, we know that there has to be a Ricci-flat metric, but we
do not need to construct it explicitly. Constructing a Ricci flat metric
explicitly has not been possible on non trivial Calabi-Yau manifolds
up to now. On a Calabi-Yau manifold there are simplifications
regarding the Hodge numbers. The SU(d) holonomy ensures that
h0,s = hs,0 = 0 for 1 ≤ s ≤ d and h0,d = hd,0 = 1. The element
of hd,0 is a nowhere vanishing holomorphic from of type (d, 0) on
the Calabi-Yau manifold and usually denoted by Ω and referred
to as holomorphic d-form. The connectedness of the space X gives
h0,0 = 1. In table 2.1 the structure of the Hodge diamond for d = 3,
called Calabi-Yau threefold, is indicated. In table 2.1 all previously
stated simplifications and symmetries where used.

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1

Table 2.1: Hodge-diamond for a
Calabi-Yau-threefold.

2.9 Projective Spaces

We define the complex projective space Pn by introducing n + 1
homogeneous complex coordinates z1, . . . , zn+1. These coordi-
nates are related by (z1, . . . , zn+1) ∼ (λz1, . . . ,λzn+1), λ ∈ C.
One can show that Pn is Kähler [7]. We can generalize the con-
cept of Pn to the weighted projective space Pn [w1,w2, . . . wn+1],
where the wi are called weights. From now on we will write Pn for
Pn [w1,w2, . . . wn+1]. On Pn the coordinate identification is extended
to

(z1, . . . , zn+1) ∼ (λw1z1, . . . ,λwn+1zn+1) . (2.59)

Calabi-Yaus as Subspaces

A Calabi-Yau manifold can be constructed as vanishing locus of a
quasi-homogeneous polynomial P in Pn. Given weights wi a polyno-
mial P is quasi homogeneous if and only if

P (λw1x1, . . . ,λwnxn) = λwP (x1, . . . ,xn) , (2.60)

where w is called the degree of P .
The Kählerity of the subspace defined by P = 0 is inherited from

Pn. For the subspace to be Calabi-Yau the first Chern class has to
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vanish. This is guaranteed if we choose the degree w of P to be given
by

w =
∑
i

wi, (2.61)

where wi are the individual weights of the xi.

2.10 Moduli Space of Calabi-Yaus

An interesting question is, given a Calabi-Yau-manifold X with
metric g can we deform the metric in a continuous was such that,
the vanishing of the Ricci-tensor is still given? This problem was
discussed, for example in [8] and the result is that there are two sorts
of perturbations δg

δg = δgijdzidzj + δgidzidz + c.c. (2.62)

To preserve the vanishing of the Ricci-tensor δgidzidz must be
harmonic and consequently related to an element of H1,1

∂
(X). Also

with the help of the holomorphic three-form Ω, one can show that
Ωijkg

kk∂g
kl

dzi ∧ dzj ∧ dzl is an element of H2,1
∂

(X). We can now
identify these two cohomology groups with the space of deformations
of the initial Ricci-flat metric on X to a nearby Ricci-flat metric.
This space is called moduli-space. Elements of H2,1

∂
(X) are related

to deformations of the complex structure on X and elements of H1,1
∂

are deformations of the Kähler-class J of X. In [9] it was shown
that deformations of the complex structure can be encoded into
homogeneous re-parametrizations of the defining polynomials P .

2.11 Grassmann Numbers

Later on we will consider anti-commuting coordinates and therefore
we will outline some useful techniques for using anti-commuting, or
Grassmann numbers. Let θ1 and θ2 be two anti-commuting variables
so consequently

θ2
1 = θ2

2 = 0 (2.63)
θ1θ2 = −θ2θ1. (2.64)

Considering a function f of a single anti-commuting variable θ.
We can expand the function in a power series

f (θ) = a+ bθ, (2.65)

where a is a commuting number and b is Grassmann number. Because
of the nilpotency of the variables the power series terminates. It is
now natural to define differentiation with respect to anti-commuting
variables by

∂f

∂θ
= −b (2.66)
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and as consequence

∂θ

∂θ
= 1. (2.67)

Integration of anti-commuting variables can be defined if we demand
invariance of the integral under translations, θ → θ+ η,∫

dθ (a+ bθ) =

∫
dθ (a+ bη+ bθ) . (2.68)

This is only valid if ∫
dθ = 0 (2.69)

and ∫
dθθ = 1. (2.70)

Let us now consider two Grassmann-variables θ1,θ2 and a function
f of both variables. Again we can expand f in a power series

f (θ1, θ2) = a+ bθ1 + cθ2 + dθ1θ2. (2.71)

If we now integrate the above expansion, using rules above, we get 3 3 The minus in eq. (2.72) comes from
exchanging dθ2 and θ1.∫

dθ1

∫
dθ2f = −d. (2.72)

We see that we can use the integration to pick a specific term in
the expansion. This will be very useful in the later chapter where we
use the superspace formalism to obtain Lagrangians in supersymmet-
ric theories4. 4 See section 3.1.





3
Gauged Linear Sigma Model

In 1993 Witten [1] constructed a theory, which gives a relation
between nonlinear sigma models on Calabi-Yau-manifolds and Landau-
Ginzburg-models. This theory is called gauged linear sigma model.
The gauged linear sigma model is a 2-dimensional theory with N = 2
supersymmetry and gauge group G. In the following sections we will
closely follow the discussion of [1].

3.1 Notation and Conventions

The gauged linear sigma model can be obtained by dimensional
reduction of 4 dimensional gauge theories with N = 1 supersymmetry.
In our exposition we will follow [10] and [1].

Supersymmetric theories can be written down most conveniently
by using the superspace formalism. Therefore we extend the familiar
coordinates xm by fermionic coordinates θα and θα̇. These fermionic
coordinates are two component Weyl-spinors1 and α, α̇ distinguish 1 A Weyl-spinor is a spinor which is

an eigenstate of the chirality operator.
In 4 dimensions the chirality operator
is given by γ5.

between the two chiralities. Superspace furnishes a representation
of the supercharges2 Qα and Qα̇, given in terms of derivatives with

2 These are the generators of the
supersymmetry algebra.

respect to the coordinates

Qα =
∂

∂θα
− iσmαα̇θ

α̇ ∂

∂xm
(3.1)

Qα̇ = − ∂

∂θ
α̇ + iσmαα̇θ

α ∂

∂xm
. (3.2)

(3.3)

Also, one uses the Levi-Civita-symbol ε, with ε12 = −ε12 = 1 to
write

ψα = εαβψ
β (3.4)

ψα = εαβψβ . (3.5)

Relations for the other chirality can simply be obtained, by dotting α.
For an explicit representation of σmαα̇ the reader is refered to [10, 1]. In
order to write down a Lagrangian one further introduces operators
which commute with the supersymmetry generators

Dα =
∂

∂θα
+ iσmαα̇θ

α̇ ∂

∂xm
(3.6)

Dα̇ = − ∂

∂θ
α̇ − iσ

m
αα̇θ

α ∂

∂xm
. (3.7)
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We also introduce the notion of a superfield. The components of a
superfield are various fermionic and bosonic fields. Similar to ordinary
functions we can perform a power series expansions in terms of the
fermionic coordinates. These are finite series, as a consequence of the
nilpotency of the fermionic coordinates. In order to obtain a superfield
with field content representing an certain supermultiplet, one has to
impose further constraints on a superfield3. Therefore one introduces 3 A nice account of supersymmetric

extensions of the standard model and
superspace formalism can be found in
[11].

the chiral superfield Φ with the property Dα̇Φ = 0. The expansion
of a chiral superfield is given by

Φ (x, θ) = φ (y) +
√

2θαψα (y) + θαθαF (y) , (3.8)

with ym = xm + iθασmαα̇θ
α̇. Expanding the chiral superfield Φ in

the x coordinates results in

Φ(x) =φ(x) + iθασmαα̇θ
α̇
∂mA(x) +

1
4θ

αθαθα̇θ
α̇
�A(x)

+
√

2θαψα(x)−
i√
2
θαθα∂mψ

α(x)σmαα̇θ
α̇
+ θαθαF (x). (3.9)

An antichiral superfield is obtained by complex conjugation of Φ and
obeys DαΦ = 0.

In order the write down gauge invariant Lagrangians one introduces
a gauge field in superspace and gauge covariant derivatives defined by

Dα = e−VDαe
V (3.10)

Dα̇ = eVDα̇e
−V . (3.11)

V is a vector superfield and takes values in the Lie-algebra of the
gauge group. A vector superfield fulfils V † = V and reads in compo-
nents

V (x, θ, θ̄) =C (x) + iθαχα (x)− iθα̇χα̇(x)

+
i

2θ
αθα [M(x) + iN(x)]−

i

2θα̇θ
α̇
[M(x)− iN(x)]

− θασmαα̇θ
α̇
vm(x) + iθαθαθα̇

[
λ
α̇
(x) +

i

2σ
mα̇α∂mχα(x)

]
− iθα̇θ

α̇
θα
[
λα(x) +

i

2σ
m
αα̇∂mχ

α̇(x)

]
+

1
2θ

αθαθα̇θ
α̇
[
D(x) +

1
2�C(x)

]
. (3.12)

The components C,D,M , N and vm have to be real. The name
vector superfield is related to the vector field vm. One can now
generalize the notion of a gauge transformation to superfields, which
for an abelian gauge group, is given by

V → V + i
(
Λ−Λ

)
, (3.13)

where Λ is a chiral superfield. This transformation reads for the
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component fields

C → C + i
(
φ− φ

)
M + iN →M + iN + 2F

vm → vm + ∂m
(
φ+ φ

)
χ→ χ+

√
2ψ

λ→ λ

D → D,

(3.14)

where we did not explicitly denote the x dependence of the fields. φ,
F and ψ are the component fields of Λ. The transformation of the
vector field vm is similar to the known gauge transformations. Now
one can use this gauge transformation to choose the gauge in such a
way that C, χ, M and N vanish. This gauge is called Wess-Zumino
gauge. In this gauge V reads in components4 4 The Wess-Zumino gauge breaks

supersymmtry, but ordinary gauge
transformations vm → vm + ∂ma are
still possible.

V = −θασmαα̇θ
α̇
vm + iθαθαθα̇λ

α̇ − iθα̇θαλα +
1
2θ

αθαθα̇θ
α̇
D. (3.15)

The transformation of a chrial superfield, with charge Q , for a
U(1) gauge theory is given by

Φ→ e−iQΛΦ. (3.16)

The next task is to dimensionally reduce to 2 dimensions. Following
the convention of [1] we will chose our fields to be independent of
x1 and x2. So our fields are functions of x0 and x3. We introduce
σ = (v1−v2)√

2 , σ = (v1+v2)√
2 and write x0 = y0 and x3 = y1. In 2

dimensions we will label fermionic components by(
ψ1,ψ2) = (ψ−,ψ+

)
(3.17)

(ψ1,ψ2) = (ψ−,ψ+) . (3.18)

Dotted components are written in a similar way. Also the components
of the fermionic coordinates are denoted in that way:

θ =

(
θ−

θ+

)
, (3.19)

and likewise for θ. The corresponding supersymmetry transformations
of the fields can be found in [1]. They are obtained by dimensional
reduction of the ones given in [10]. In two dimensions there exists an
additional superfield, the twisted chiral superfield, with the property
D+Σ = D−Σ = 0. The gauge invariant field strength in 2 dimensions
is given by such a twisted chiral field

Σ =
1√
2
{
D+,D−

}
. (3.20)

In the case of an abelian gauge group the components of Σ read

Σ =
1√
2
D+D−V = σ− i

√
2θ+λ+ − i

√
2θλ− +

√
2θ+θ− (D− iv01)

− iθ−θ− (∂0 − ∂1) σ− iθ+θ
+
(∂0 + ∂1) σ+

√
2θ−θ+θ− (∂0 − ∂1) ∂+

+
√

2θ+θ−θ+ (∂0 + ∂+) λ− − θ+θ
−
θ−θ

+ (
∂2

0 − ∂2
1
)
σ (3.21)
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with v01 = ∂0v1 − ∂1v0.
With the above definitions at hand we can write down the La-

grangian of the gauged linear sigma model. We will always denote a
superfield with an upper case letter and the scalar component with
the corresponding lower case letter.

3.2 Lagrangian

Following [1] we will consider the case of an abelian gauge group
U(1)s, with vector superfields Va, a = 1 . . . s. The matter content of
the theory is given by k chiral superfields Φi of charge Qi,a. One can
view the bosonic components of Φi as coordinates on Ck and their
kinetic term determined by a Kähler metric on Ck. The Lagrangian
of the gauged linear sigma model has the form

L = Lkin + LW + Lgauge + LD,θ. (3.22)

Lkin is given by

Lkin =

∫
d2yd4θ

∑
i

Φie
2
∑

a
Qi,aVaΦi. (3.23)

We can also write out this Lagrangian into components and get

Lkin =
∑
i

∫
d2y

(
−DρφiD

ρφi + iψ̄−,i (D0 +D1)ψ−,i + iψ̄+,i (D0 −D1)ψ+,i + |Fi|2

− 2
∑
a

σ̄aσaQ
2
i,aφ̄iφi −

√
2
∑
a

Qi,a (σ̄aψ̄+,iψ−,i + σaψ̄−,iψ+,i) +
∑
a

DaQi,aψ̄ψ

−
∑
a

i
√

2Qi,aφ̄i (ψ−,iλ+,a −ψ+,iλ−,a)−
∑
a

i
√

2Qi,aφi (λ̄−,aψ̄+,i − λ̄+,aψ̄−,i)

)
. (3.24)

The next part contains a gauge invariant holomorphic function W
on Ck. For our cases we will always assume that W is a polynomial
function of the chiral superfields. W is usually referred to as the
superpotential. The Lagrangian is given by

LW = −
∫

d2ydθ+dθ−W (Φi)
∣∣
θ
+
=θ
−
=0 − h.c. (3.25)

where h.c. stands for hermitian conjugation. Writing LW in
components results in

LW = −
∫

d2y

(
Fi
∂W

∂φi
+

∂2W

∂φi∂φj
ψ−,iψ+,j

)
− h.c. (3.26)

By using the twisted chiral superfield Σa we can set up the gauge
kinetic term

Lgauge = −
∑
a

1
4e2
a

∫
d2yd4θΣaΣa, (3.27)
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with coupling constants ea, a = 1 . . . s. Decomposing Σ into
components results in

Lgauge =
∑
a

1
e2
a

∫
d2y

(
1
2v

2
01,a +

1
2D

2
a + iλ+,a (∂0 − ∂1) λ+,a

+iλ−,a (∂0 + ∂1) λ−,a − |∂ρσa|2
)

. (3.28)

Supersymmetry allows the addition of a further term. We focus on
theories with gauge group U(1), which will also be the case of interest
in the following chapters. We can add the so called Fayet-Iliopoulos-
term

−r
∫

d2yd4θV . (3.29)

This term is indeed supersymmetric, but not gauge invariant. To
cure that deficit we add the θ coupling term

θ

2π

∫
dv = θ

2π

∫
d2yv01. (3.30)

We can combine both eqs. (3.29) and (3.30) with the help of the
twisted chiral superfield Σ, as one can see by using∫

d2ydθ+dθ−Σ
∣∣
θ−=θ

+
=0 =

√
2
∫

d2y (D− iv01) , (3.31)∫
d2ydθ−dθ+Σ

∣∣
θ+=θ

−
=0 =

√
2
∫

d2y (D+ iv01) . (3.32)

(3.33)

Both equations can be used to write the last missing term in the
Lagrangian,with t = ir+ θ

2π ,

LD,θ =

∫
d2y

(
−rD+

θ

2πv01

)
=

it

2
√

2

∫
d2ydθ+dθ−Σ

∣∣
θ−=θ

+
=0 −

it

2
√

2

∫
d2ydθ−dθ+Σ

∣∣
θ+=θ

−
=0. (3.34)

Equation (3.34) can be generalized by introducing a holomorphic
"twisted superpotential" W̃ (Σ)

∆L =

∫
d2ydθ+dθ−W̃ (Σ)

∣∣
θ−=θ

+
=0 + h.c. (3.35)

Writing ∆L in components gives

∆L =

∫
d2y

(√
2W̃ ′(σ) (D− iv01) + 2W̃ ′′(σ)λ+λ−

)
+ h.c. (3.36)

Equation (3.34) is recovered by setting W̃ (σ) = itσ
2
√

2 . Combining
all the previous terms results in the Lagrangian of the gauged linear
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sigma model

L =

∫
d2yd4θ

∑
i

Φie
2QiV Φi

−
∫

d2ydθ+θ−W (Φi)
∣∣
θ
+
=θ
−
=0

− 1
4e2
a

∫
d2yd4θΣΣ

+

∫
d2ydθ+dθ−W̃ (Σ)

∣∣
θ−=θ

+
=0 + h.c. (3.37)

Symmetries

The gauged linear sigma model has N = (2, 2) supersymmetry. To be
more precise, it has 2 left moving and 2 right moving supersymmetries.
The left-moving supersymmetries act on θ− and θ−, whereas the
right-moving ones act on θ+ and θ+. An additional symmetry present
in all supersymmetric models with N > 1 is the so called R-symmetry.
A right-moving R symmetry acts in the following way

θ+ → eiαθ+,

θ
+ → e−iαθ

+, (3.38)

whereas θ− and θ− remain invariant. Left-moving R-symmetry
acts in a similar way, except for + and − exchanged.

The GLSM with superpotential W has a right- and left-moving
R−symmetries only if the following conditions are fulfilled

1. ∑
i

Qi,a = 0 (3.39)

for a = 1 . . . s,

2. W is a quasi-homogeneous.

Also eq. (3.39) ensures that the charges related to the R-symmetries
are anomaly free. More details regarding the symmetries can again
be found in [1].

3.3 Calabi-Yau/Landau-Ginzburg Correspondence

In the following we discuss the vacuum behaviour of the GLSM.
Depending on the value of the r parameter we will encounter different
vacuum configurations of the GLSM called phases. To simplify our
task we consider gauge group U(1). At first we take a look a the
equations of motion of D and Fi in eq. (3.37), which are purely
algebraic. By solving them one gets

D = −e2
(∑

i

Qi|φi|2 − r

)
, (3.40)

Fi =
∂W

∂φi
. (3.41)
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Next we consider the potential energy of the scalar fields φi, σ

U(φi,σ) =
1

2e2D
2 +

∑
i

|Fi|2 + 2σσ
∑
i

Q2
i |φi|

2. (3.42)

Of particular interest in this thesis are models with field content
given in table 3.1. The Xis are chiral superfields of gauge charge wi.
Here we changed the notation of the chiral superfields to make the
relation between the bosonic components and coordinates on the
target spacetime more apparent. P is also a chiral superfield of charge
−N = −

∑
i
wi. The choice of the gauge charges satisfies eq. (3.39).

P X1 X2 X3 X4 X5

U(1) −N = −
∑
i wi w1 w2 w3 w4 w5

R 2 0 0 0 0 0

Table 3.1: Field content with gauge
and R-charges.

For the superpotential we choose

W = PG (X1, . . . ,X5) , (3.43)

where G is a weighted homogenous polynomial of degree N =
∑
i
wi.

This satisfies both conditions for having a model with R-symmetry.
Also W is gauge invariant under

Xi → gwiXi

P → g−NP ,
(3.44)

and carries R-charge 2. Another restriction on G is, that the only
solution of

0 =
∂G

∂X1
= · · · = ∂G

∂X5
(3.45)

is Xi = 0 for ∀i. This condition is necessary for the smoothness of
the hypersurface X in P[w1,w2,w3,w4,w5][N ]5, described by G = 0, 5 P[w1,w2,w3,w4,w5][N ], wi denotes

the weight of the homogeneous
coordinates on the projective space
and N denotes the degree of G.

that we are going to find as solution to eqs. (3.40) and (3.41). By
choosing G as quasi-homogenous polynomial, this requirement is
automatically fulfilled.

Writing the potential eq. (3.42) for this model gives

U = |G(xi)|2 + |p|2
∑
i

∣∣∣∣ ∂G∂xi
∣∣∣∣2 + 1

2e2D
2 + 2|σ|2

(∑
i

w2
i |xi|

2 +N2|p|2
)

(3.46)

and

D = −e2
(∑

i

wixixi −Npp− r

)
, (3.47)

where xi and pi are the scalar components of Xi and Pi Of partic-
ular interest is now the vacuum configuration, i.e. the ground state.
Therefore we look at the zeros of the potential U . We will find that
there are different possibilities, characterised by the value of r.
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Calabi-Yau Phase, r � 0

By looking at eq. (3.47) we see that D = 0 implies that there
have to have at least one xi 6= 0 and consequently the vanishing of
|p|2

∑
i
|∂iG|2 in eq. (3.46) requires p = 0. With these restrictions we

obtain from eq. (3.47) ∑
i

wixixi = r, (3.48)

to ensure the vanishing of the D-term. Since the xi carry weights
wi, we see that the space of solutions is a copy of weighted complex
projective space P[w1,w2,w3,w4,w5], with Kähler class proportional
to r [1]. Further we have to require G = 0 and σ = 0 for the vanishing
of eq. (3.46).

As one can see, the space of classical vacua is the hypersurface
X ⊂ P[w1,w2,w3,w4,w5] defined by G = 0. We denote this by
P[w1,w2,w3,w4,w5][N ]. Having chosen N =

∑
i wi ensures the

vanishing of the first Chern-class and hence the obtained hypersurface
is Calabi-Yau. The effective low energy theory is a non-linear sigma
model with target space X 6. 6 Details are given in [12] and chapter

4.

Landau-Ginzburg Phase, r � 0

To set eq. (3.47) equal to zero we have to demand p 6= 0 and therefore
|p|2

∑
i
|∂iG|2 = 0 requires the vanishing of all xi. So we obtain from

eq. (3.47)

|p| =
√
−r
N

. (3.49)

Via a gauge transformation we can cancel the complex part
of p. Because p acquires a vacuum expectation value the gauge
group gets broken down to ZN . Expanding around the vacuum
leads to the observation, that the xi remain massless (as long as
n ≥ 3). The effective superpotenital W̃ for the xi can be obtained
by integrating out p, which is easily accomplished by setting p equal
to its expectation value. So that W̃ = G(xi). For n ≥ 3 the effective
superpotential has a degenerate critical point at the origin, where
it vanishes up to the nth- order. Such a theory is called a Landau-
Ginzburg-orbifold7. 7 Further details on the Landau-

Ginzburg theory can be found in
chapter 4.

Reinterpretation of the Parameters

One can identify the previously defined parameter t as the parameter
of the stringy Kähler-moduli-spaceMK . For later use we will slightly
redefine t

t = r− iθ. (3.50)

In subsequent chapters we will use D−branes to probe different
regions inMK . A subtlety arises when we move from one phase to
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the other. There is a singularity inMK . Classically the singularity is
located at r = 0, where σ becomes unconstrained. This is called the
Coulomb-branch. By calculating quantum corrections one can show8, 8 Details can be found in [13].

that the locus of the singularity is determined by

∂σW̃eff (σ) = 0. (3.51)

W̃eff (σ) is the effective twisted potential given by

W̃eff (σ) = −tσ−
n∑
i=0

Qiσ log (Qiσ) mod 2πi. (3.52)

This exact form of the effective twisted potential is obtained
through a 1-loop-calculation [13].

Next, we will calculate the position of the singularity for our
model, with 5 chiral superfields of charge wi and one with charge
−N = −

∑
i
wi.

∂σW̃eff (σ) = −t−
5∑
i=1

wi log (wi) +N log (−N)

= −t−
5∑
i=1

wi log (wi) +N log
(
e−iπN

)
= −t−

5∑
i=1

wi log (wi) +N log (N)− iNπ !
= 0. (3.53)

Now comparing real and imaginary parts gives for the position of
the singularity

(r, θ) =
(
−
∑
i

Qi log |Qi|,Nπ+ 2πZ

)
. (3.54)

In the next chapter we will formulate the GLSM on a worldsheet
with boundaries. For this purpose we will introduce boundary in-
teractions to keep as much supersymmetry as possible. This will
result in the identification of D-branes as matrix factorisation of the
superpotential.





4
Boundary Interactions and D-Branes

In this chapter we will gently develop various aspects of D-branes
in supersymmetric theories. We will follow the discussion given in
[14, 15, 16] and [17], where also further details can be found. The
models of interest in this work have N = (2, 2) supersymmetry.
Generically imposing a boundary breaks all of the supersymmetry,
but there are special types of boundaries which only break half of
the supersymmerty. This boundaries are called A-branes and B-
branes. The main interest of this thesis are B-branes and therefore
we will not discuss A−branes in detail. Starting with the non-linear
σ-model we will develop the interpretation of D-branes as objects in
derived categories of coherent sheaves. Then boundary conditions in
Landau-Ginzburg-models are discussed following [15]. The D-branes
are matrix factorizations of the Landau-Ginzburg superpotential. A
good overview can be found in [18]. Also matrix factorisations can
be described in terms of categories. As seen in chapter 3 the gauged
linear sigma model provides a connection between Landau-Ginzburg-
models and non-linear-sigma-models. The connection between the
category of matrix factorisations and the category of coherent sheaves
was given by Orlov [19], a review is given in [20]. At the end of this
chapter we will describe B-branes in the gauged linear sigma model.

4.1 Boundaries in Non-linear Sigma Models

In the following we will give an introduction to D-branes on Calabi-
Yau manifolds. The presented material is mostly taken from [14, 12].
We consider the non linear sigma model with Calabi-Yau target
manifold.

Action

The starting point for the non linear sigma model are maps φ from
a worldsheet Σ into a target spacetime X. In order to obtain an
N = (2, 2) supersymmetric theory X is restricted to be Kähler.
Introducing worldsheet fermions we get the following action
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S =
i

4πi

∫
Σ

d2z

{
gi

(
∂φi

∂z

∂φ

∂z
+
∂φi

∂z

∂φ

∂z

)
+ iBi

(
∂φi

∂z

∂φ

∂z
− ∂φi

∂z

∂φ

∂z

)
+ igiψ


−Dψ

i
− + igiψ


+Dψ

i
+ +Riıjψ

i
+ψ


+ψ

j
−ψ


−

}
,

(4.1)

where z, z are complex coordinates on Σ. The φi (z, z) and φı (z, z)
can be interpreted as local complex coordinates on the target space X.
gi is the Kähler metric on X and Riıj is the curvature tensor. The
B-field degrees of freedom are given by the real (1, 1)-form Bi. D is
the covariant derivative, Dψi− = ∂ψi− + ∂jΓijkψ

j
−. The fermions are

interpreted as sections of bundels over Σ

ψi+ ∈ Γ
(
K1/2 ⊗ φ∗T (1,0)

X

)
ψ+ ∈ Γ

(
K1/2 ⊗ φ∗T (0,1)

X

)
ψi− ∈ Γ

(
K

1/2 ⊗ φ∗T (1,0)
X

)
ψ− ∈ Γ

(
K

1/2 ⊗ φ∗T (0,1)
X

)
. (4.2)

K is the holomorphic cotangent bundle on Σ, T (1,0)
X the holomor-

phic tangent bundle and T (0,1)
X the anti-holomorphic tangent bundle

on X. The action is invariant under N = (2, 2) supersymmetry, with
following transformations of the fields

δφi = iα−ψ
i
+ + iα+ψ

i
−

δφı = iα−ψ
ı
+ + iα+ψ

ı
−

δψi+ = −α−∂φi − iα+ψj−Γijkψ
k
+

δψı+ = −α−∂φı − iα+ψ−Γı
k
ψk+

δψi− = −α+∂φi − iα−ψj+Γijkψ
k
−

δψı− = −α+∂φı − iα−ψ+Γı
k
ψk−,

(4.3)

where α is the fermionic parameter of the transformation. In the
following we will restrict to the case where X is Calabi-Yau. This
extends the supersymmetry to a superconformal symmetry. Closed
string states form a representation of the superconformal algebra.

Superconformal Algebra

We give only a small excerpt of the N = (2, 2) algebra, details are
given in [14, 7].

The generators of the left-moving algebra are given by:

T (z) = −gi
∂φi

∂z

∂φ

∂z
+

1
2giψ

i
+
∂ψ+
∂z

+
1
2giψ


+

∂ψi+
∂z

G (z) =
1
2giψ

i+
∂φ

∂z

G̃ (z) =
1
2giψ

+
∂φi

∂z

J (z) =
1
4giψ

i
+ψ


+.

(4.4)
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The generators of the right-moving part, denoted by T (z),G(z),G̃(z)
and J(z) are given by replacing un-bared quantities in eq. (4.4) by
bared ones and vice versa . The eigenvalue of the operator T (z) is
denoted by h and called conformal weight of a state. For the operator
J(z) we denote the eigenvalue of a given state by q, which is the
charge of the U(1) R-symmetry. The eigenvalues for the right moving
part are denoted by h and q. q takes values in Z or Z + 1

2 , depending
on the boundary conditions chosen for the fermions. The first case
corresponds to Neveu-Schwarz sector, NS for short and the second
case to the Ramond sector, abbreviated by R. Many aspects of the
superconformal algebra are given by states fulfilling

h = |q/2|, q = −3,−2, . . . , 3 (4.5)

in the NS sector. These states are a finite subset of the infinitely many
closed string states. Operators creating states fulfilling the stated
equality are called chiral primary operators for q > 0 and antichiral
primary operators for q < 0. These operators are closed under the
operator product and form the chiral algebra, referred to as chiral ring
[21]. The analysis of the chiral ring is best done by using methods
from topological field theory. There are two natural ways to obtain a
topological field theory from the described N = (2, 2) superconformal
theory. The procedure is called topological twist [12, 22]. There are
two independent ways of performing the twist that lead to the so
called A-model and B-model respectively.

A-Model

The A-model is obtained by a redefinition of the fermions such that

χi = ψi+ ∈ Γ
(
φ∗
(
T
(1,0)
X

))
χı = ψı− ∈ Γ

(
φ∗
(
T
(0,1)
X

))
ψız = ψı+ ∈ Γ

(
K ⊗ φ∗

(
T
(0,1)
X

))
ψiz = ψi− ∈ Γ

(
K ⊗ φ∗

(
T
(1,0)
X

))
. (4.6)

The resulting theory is still invariant under eq. (4.3), with a
redefinition of the α parameters. The parameters are given by α =

α− = α̃+ and α+ = α̃− = 0. Thus the transformation now depends
on a single scalar parameter. By Q we denote the operator generating
this symmetry, by

δO = −iα{Q,O}, (4.7)

where O is an arbitrary operator.
Q generates a BRST -symmetry, because

Q2 = 0, (4.8)

which is satisfied up to equations of motion. The action can now
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be rewritten as

S =

∫
Σ
i{Q,V } − 2πi

∫
Σ
φ∗ (B + iJ) , (4.9)

V = 2πgi
(
ψz∂φ

i + ∂φψiz

)
, (4.10)

where B + iJ ∈ H2 (X, C) is the complexified Kähler form. Now
one considers Q−closed operators O, which fulfil {Q,O} = 0. As a
consequence also the states are restricted to Q−closed states. These
are states with h = q/2, h = −q/2.

Correlation functions of Q-exact operators O, given by O =

{Q,O′}, where O′ is some operator, vanish and as a consequence Q-
exact operators can be viewed as zeros in the chiral algebra. Changes
of the complex structure only affect V and thus are trivial. Thus
correlation functions only depend on the comlpexified Kähler- form.
By the form of the action only the cohomology class of B + iJ is
important. One can also show that in the A−model Q−cohomology is
de Rham cohomolgy. Further details on the A−model can be found
in [14, 12] and in the references given therein.

B-Model

The second possibility of twisting the non linear σ-model is given by

ψ± ∈ Γ
(
φ∗
(
T
(0,1)
X

))
ψj+ ∈ Γ

(
K ⊗ π∗

(
T
(1,0)
X

))
ψj− ∈ Γ

(
K ⊗ π∗

(
T
(1,0)
X

)) (4.11)

we define

η = ψ+ + ψ−

θj = g
jk

(
ψk+ −ψk−

)
ρj = ψj+ + ψj−.

(4.12)

The parameters of the transformation given in eq. (4.3) fulfil
α± = 0 and α̃± = α. Similar to the case of the A-model we denote
the operator corresponding to the supersymmetry transformation
with Q. As in A-model Q is nilpotent Q2 = 0 and therefore again a
generator of a BRST variation.

The action of the B-model is given by

S = i

∫
{Q,V }+ U , (4.13)

with

V = g
jk

(
ρjz∂φ

k + ρjz∂φ
k
)

,

U =

∫
Σ

(
θjDρ

j − i

2Rjkkρ
j ∧ ρkηθlglk

)
.

(4.14)

On a general target space X the B-model has a chiral anomaly [12],
which is cured if we demand that the target space is Calabi-Yau. In
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contrast to the A- model the B-model only depends on the complex
structure on X. This dependence is of course also present in the
correlation functions. In the B-model the Q-cohomology is Dolbeault-
cohomology on forms valued in exterior powers of the holomorphic
tangent bundle. A further interesting aspect of the B−model is, that
is has no instanton corrections. Through the independence of the
B-model of the metric and the Kähler form on X, the model has only
"algebraic" knowledge of X [14]. This is to be understood as follows.
Suppose X is given as subspace of PN defined by intersection of
homogeneous polynomials f1 = f2 = · · · = 01. These polynomials 1 Such a subspace is called algebraic

varietydefine the B-model completely. There is a relation between the A-
model and B-model given by mirror symmetry, which we will sketch
in the next subsection.

Mirror Symmetry

Mirror symmetry can be defined in various ways2. For our purpose 2 See for instance [14] for a review.

we require only a weak definition, which says that two Calabi-Yau
threefolds X and Y are mirror if the operator algebra on the A-model
with target space X is isomorphic to the operator algebra of the
B-model with target space Y . Further analysis of the dimensions of
the vector spaces of the operator algebra gives the following relation
between the Hodge numbers

hp,q (X) = h3−p,q (Y ) . (4.15)

As stated in the previous sections the operator algebra of the A-
model depends on the choice of the complexifed Kähler -form and on
the B-model it depends on the complex structure on Y . Therefore
mirror symmetry relates the moduli space of B + iJ on X to the
moduli space of complex structures on Y . One can construct a
map between the two moduli spaces called mirror map. Since we
will need these concepts later, we will follow [14] and construct the
mirror map for the quintic. The quintic is the subspace in P4 given
by the vanishing of a homogeneous polynomial of degree 5. The
moduli space of the complexified Kähler class is one dimensional,
h1,1(X) = 1. The dimension of the complex structure moduli is given
by h2,1(X) = 101. In order to obtain the mirror Y of X, X is divided
by a (Z5)

3 orbifold action and take a crepant resolution thereof3. Y 3 The explanation why this orbifolding
yields the mirror is given in [7]
following [23].

is specified by giving the quintic polynomial

x5
0 + x5

1 + x5
2 + x5

3 + x5
4 − 5ψx0x1x2x3x4, (4.16)

where ψ is a complex parameter which parametrises the complex
structure. The mirror map will give a mapping between B + iJ on
the A-model side and ψ on the B-model side. The mirror map is
not globally well defined and therefore one constructs the map at a
specific basepoint in the moduli space. In the A-model we choose the
large radius point. The maps at the other points can be obtained
by analytic continuation. The moduli space has the structure of a
special Kähler manifold [24]. This special structure leads to preferred
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coordinates, which on the A-model side are given by the components
of B + iJ and on the B-model side are given by periods. These
periods are defined in the following way

$m =

∫
αm

Ω. (4.17)

Ω is the holomorphic 3-form and the αm, m = 0 . . . h2,1 (Y ), form
a symplectic basis of H3 (Y , Z). We will now sketch the procedure for
the quintic. The periods $m are solutions of a so called Picard-Fuchs
differential equation. To write down the Picard-Fuchs equation we
first introduce a new coordinate z on the B-model moduli space. z is
given by z = (5ψ)−5. Using this coordinate the equation reads

(
z

d
dz

)4
$m − 55z

(
z

d
dz +

1
5

)(
z

d
dz +

2
5

)(
z

d
dz +

3
5

)(
z

d
dz +

4
5

)
$m = 0. (4.18)

In the vicinity of z = 0 a basis of solutions is given by

$0 =
∞∑
n=0

(5n)!
(n!)5 z

n

$k =
1

(2πi)k
log (z)k$0 + . . . , k = 1, 2, 3

(4.19)

These solutions can by associated with the large radius limit
J = ∞ on the A-model side through monodromy considerations.
This results in the following mirror map

B + iJ =
$1
$0

=
1

2πi (log( z
)
+770z + 717825z2 + . . .

)
. (4.20)

There are three distinct points in the moduli space namely z = 0,
z =∞ (or ψ = 0) and z = 5−5(or ψ = exp (2πin/5)). At these points
the Picard-Fuchs equation is singular. These points are usually called
large complex structure point, Landau-Ginzburg orbifold point and
conifold point, respectively. In the next subsections we will study the
different possible boundary conditions in the non linear sigma model
following [14].

A-branes

One can view D-branes as subspaces La in the target space X. If we
now introduce a boundary on our worldsheet Σ denoted by ∂Σ we
demand that the maps φ fulfil

φ (∂Σ) ⊂
⋃
a

La. (4.21)

Variation of the action on a worldsheet with boundaries gives now
two terms, the bulk term and the boundary term. As familiar from
variation of the action without boundary, setting the bulk variation to
zero gives the equations of motion for the bulk fields. Requiring the
vanishing of the boundary variation gives further constraints on the
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fields. For the boundary at z = z, these conditions on the fields can
be summarized as

∂φI

∂z
= RIJ (φ)

∂φJ

∂z
+ fermions. (4.22)

R is a matrix with gIJRIKRJL = gKL
4. Directions normal to L are 4 In flat space this is equal to RRT =

1, so R is an orthogonal matrix.called Dirichlet directions and are eigenvectors of R with eigenvalue
−1. Tangent directions of L are referred to as Neumann directions
and have eigenvalue +1 with respect to R. The boundary conditions
on the fermions are also described by the matrix R

ψI+ = RIJ (φ)ψ
J
−. (4.23)

In order for the reflection of the fermionic modes at the boundary
to be compatible with the A-twist R must obey, in holomorphic
coordinates,

Rij = Rı = 0. (4.24)

An important fact is now that the almost complex structure on X
exchanges the tangent and normal directions of L. As consequence L
has to be of middle dimension. In the case of Calabi-Yau threefolds
L has real dimension 3. By looking at the definition of the Kähler-
form (see section 2.5) one sees, that the Kähler-form restricted to L
vanishes. Sub-manifolds of middle dimension with vanishing Kähler-
form are called Lagrangian-submanifolds. Before we noted that the
A−model correlation functions only depend on the cohomology class
of the B−field. In the case of a worldsheet with boundaries additional
degrees of freedom appear. The description of these additional
degrees of freedom is done by introducing a 1-form A on X and with
an additional boundary term in the action

S∂Σ = −2πi
∮
∂Σ

φ∗ (A) . (4.25)

To preserve supersymmetry or BRST invariance one has the
introduce additional fermions on the boundary ∂Σ, but details
are omitted here. The A field can be interpreted as a connection
on a U(1) bundle5 associated to the gauge theory on the on the 5 One can also consider larger gauge

groups related to the D-brane.worldvolume of the D-brane. These further degrees of freedom
obtained by introducing a boundary are encoded in a so-called Chan
Paton space. Also the preservation of BRST symmetry puts further
constraints on the connection A. At quantization a further constraint
on A-branes emerges from an anomaly. Skipping the details, which
are given in [14], the anomaly cancellation is given by the vanishing
of the Maslov-class.

B-branes

The difference to the case of A-branes is, that R has now the property
Rıj = Ri = 0. In that case the almost complex structure preserves the
direction tangent and normal to L. As consequence B-type D−branes
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are holomorphically embedded submanifolds of X. This restricts the
dimension of possible branes to be even: 0, 2, 4 or 6.

In the case of B−branes it is sufficient to take a look at the 6-
brane first, because from this brane we can deduce the properties of
the other branes. The 6-brane fills the entire target manifold and is
given by purely Neumann-boundary conditions on the open string.
Similar to A−branes, adding a boundary results in additional degrees
of freedom, such that one can consider a bundle E → X over the
B−brane. Restricting to the case B = 0 gives a restriction on the
curvature F of the bundle. Then F has to be a (1, 1)−form, which is
equivalent to the statement that E → X is a holomorphic bundle. A
holomorphic bundle can be described using methods from algebraic
geometry 6. Therefore one uses sheaves, which are the algebraic 6 An introduction to holomorphic

vector bundels can be found in [25,
chap.15]

geometry counterparts of holomorphic vector bundles.

Mathematical Description of Branes

In the following we describe mathematical aspects of D-branes
following [14]. The natural way to describe D-branes is in terms of
categories. The definition of a category reads

Definiton 4.1.1. A category C consists of a class of objects obj(C)
and a set HomC (A,B) of morphisms for every ordered pair (A,B)

of objects. Further for every A ∈ obj (C) there exists an identity
morphism idA ∈ HomC (A,A). A composition function is given by

HomC (A,B)×HomC (B,C)→ HomC (A,C) (4.26)

for every ordered triple (A,B,C). For f ∈ HomC (A,B) and g ∈
HomC (B,C) the composition is denoted by fg. In addition the
following axioms hold

1. Associativity axiom: (hg) f = h (gf) for f ∈ HomC (A,B),
g ∈ HomC (B,C) and h ∈ HomC (C,D)

2. Unit axiom: idB f = f = f idA for f ∈ HomC (A,B).

In terms of category-language D-branes are the objects of the
category and the morphisms between different objects are given by
open-string states. Depending on our model, either A− or B−type,
the possible D-branes are objects of specific categories. In the geo-
metric phases the A-branes are objects in a so called Fukaya-category
and B-branes are objects in the derived category of coherent sheaves.
Whereas in Landau-Ginzburg phases branes are described by matrix
factorisations (see section 4.2). Because A-branes are not further
considered in this thesis, we will not give additional details on their
description. Subsequently we will only consider B-branes.

Starting with the definition of a sheaf, we will give a rough
overview of the mathematical picture describing B-branes. In or-
der to define the notion of a sheaf, we first define a presheaf.

Definiton 4.1.2. Let X be a topological space. A presheaf F on X
is given by the following data
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(a) To every open set U ⊂ X we assign an abelian group F (U)

(b) If V ⊂ U we have a ’restriction’ homomorphism ρUV : F (U) →
F (V ).

Additionally this data has to fulfil

1) F (∅) = 0

2) ρUU is the identity map.

3) If W ⊂ V ⊂ U then ρUW = ρVW ρUV .

By σ|V we denote the restriction ρUV (σ) of σ ∈ F .
An example of a sheaf, which we will again encounter in the

calculations, is the sheaf of holomorphic functions on X or structure
sheaf OX . The set of holomorphic functions forms a group with
addition as group law. Therefore the sheaf OX is constructed by
choosing F (U) to be the group of holomorphic functions. Starting
from OX one can construct more complicated sheaves, but in order to
do so we have to introduce additional algebraic structures 7. First we 7 A good reference for the basic

algebraic structures is [26]. The given
definitions were taken from there.

introduce the notion of a ring.

Definiton 4.1.3. A ring8 is a set R with two operations (x, y)→ xy 8 Physicists are more familiar with
the notion of a field. A field is a
ring with an identity element for the
multiplication and an inverse element
for every element, except for 0, with
respect to the multiplication.

and (x, y) → x+ y. These operations are called multiplication and
addition respectively. The operations are subject to the following
axioms

1. R is an abelian group under addition.

2. Multiplication is associative and distributive with respect to addi-
tion.

(xy)z = x(yz)

x(y+ z) = xy+ xz

(y+ z)x = yx+ zx ∀x, y, z ∈ R

Further we need the concept of a module.

Definiton 4.1.4. A module9 M over the ring R is an abelian 9 A familiar module is the module
over a field usually called vector
space.

groupM together with an operation called scalar multiplication,
R×M→M by (α,x)→ αx such that

α(x+ y) = αx+ αy

(α+ β)x = αx+ βx

(αβ)x = α(βx)

∀α,β ∈ R and ∀x, y ∈M. If the ring has an identity element 1 then

1x = x ∀x ∈M

Since the set of holomorphic functions is an abelian group under
addition and multiplication, it gets the structure of a ring. We can
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construct a sheaf of OX -modules. Namely let E be a sheaf such that
E (U) is an OX (U)-module for any open U ∈ X. Further we can take

O⊕nX = OX ⊕OX ⊕ · · · ⊕OX︸ ︷︷ ︸
n

, (4.27)

and construct another sheaf of OX -modules called free sheaf of OX -
modules of rank n. If a sheaf E fulfils E (Uα) ∼= OX (Uα)⊕n for all α,
where {Uα} is an open covering of X. Then E is called locally free
of rank n. We want to note that holomorphic vector bundles of rank
n on X and locally free sheaves of rank n on X are in a one-to-one
correspondence. Locally free sheaves are not sufficient to describe all
possible B-branes and therefore one needs the concept of coherent
sheaves. The mathematical aspects of coherent sheaves can be found
in [14]. Coherent sheaves form a category. By introducing sheaves we
have replaced vector bundles with algebraic objects. The next step
is to find an algebraic notion of Dolbeault cohomology. This is done
by sheaf cohomology. By doing so we get a notion of open strings in
the category setup. Skipping mathematical details we give the result
from [14]

An open string from the B-brane associated to the locally-free sheaf
E to another B-brane given by the locally-free sheaf F is given by an
element of the group Extq(E , F ).

Here q is related to the fact that, local operators in the B-model
are written in terms of (0, q) forms valued in

∧q TX . Usually q is
referred to as ghost number. In order to find a relation between
Extq(E , F ) and the cohomology of sheaves Hq, we suppose to have
two vector bundles E and F . We can construct the vector bundle
Hom(E,F ) from the given bundles. Additionally we can associate
locally free sheaves E and F respectively to the given vector bun-
dles. The locally free sheaf associated to Hom(E,F ) is denoted by
H (E,F ). Details of this procedure are given in [14]. Now we can
relate Dolbeault cohomology and sheaf cohomology by

H0,q (X, Hom(E,F )) = Hq (X, H (E , F )) (4.28)

and the relation between sheaf cohomology and the group Extq(E , F )

is given by

Hq (X, H (E , F )) = Extq(E , F ). (4.29)

The problem of the previous discussion is, that not all possible
B-branes are covered by it. To get a solution of this deficit, we need
to notion of a complex.

In general a complex10 is a sequence of abeliean groups or modules 10 The given definition is a so-called
cochain complex. There are different
sorts of complexes, but in this thesis
it is sufficient to focus on cochain
complexes.

Bi, with homomorphisms between them dn−1 : Bn−1 → Bn. The
homomorphisms fulfil dn ◦ dn−1 = 0 ∀n, consequently Im (dn−1) ⊆
Ker (dn). Often a complex is represented by a diagram of the form

· · ·
dn−2
// Bn−1

dn−1
// Bn

dn // Bn+1
dn+1

// · · · (4.30)
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To apply the techniques of complexes to B-branes, we construct
a general collection of D-branes as a locally-free sheaf E , with a
decomposition

E =
⊕
n∈Z

E n. (4.31)

E n is a B-brane with ghost number n11. 11 In the B-model one can assign a
ghost number to a brane in order
to match the ambiguity of the open
string ghost number on the A-model
side [14].

Additionally we introduce morphisms dn between the E n

dn ∈ Ext0 (E n, E n+1) = Hom
(
E n, E n+1) . (4.32)

The collection of E n and dn gives a complex, subsequently denoted
by E •.

The open string spectrum between two complexes of B-branes,
denoted by E • and F •, is given by Extn (E •, F •) as shown in [14].
The structures given above form a category, namely the dervied
category of locally-free sheaves. Further analysis shows that B-branes
are related to coherent sheaves. Although we performed the previous
analysis in terms of locally-free sheaves, the obtained results are also
valid in the case of coherent sheaves, because on a smooth space every
complex of locally-free sheaves F • is quasi-isomorphic12 to a coherent 12 See the definition in section 5.1.

sheaf. Therefore we close this section with a final statement [14]

The category of B-branes is the derived category of coherent sheaves.

4.2 Boundaries in Landau-Ginzburg models

This section follows the discussion given in [15] and also the notation
is chosen in accordance with this reference. These considerations
were first done by [27].

We will consider a 2-dimensional Landau-Ginzburg theory with
N = (2, 2) supersymmetry and place this theory on a worldsheet
Σ with a boundary. By doing so we can at most preserve half of
the supersymmetries. Similar to the non-linear sigma model, there
are two choices of supersymmetry to preserve, namely A−type and
B−type supersymmetry [28]. Depending on our choice we also get
so called A− and B−type D-branes, respectively. In this thesis we
are mainly interested in B−type branes and so we will focus on the
B−type supersymmetry. Preserving B−type supersymmetry is done
by introducing boundary interactions. Then one does not need to
impose boundary conditions on the fields.

Bulk-Lagrangian

As in chapter 3 we are using the (2, 2)-superspace, spanned by two
bosonic coordinates x0,x1 and four fermionic ones θ±, θ±. The
supercharges, covariant derivatives and the supersymmetry algebra in
the conventions of [15] are
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Q± =
∂

∂θ±
+ iθ

± ∂

∂±
, Q± = − ∂

∂θ
± − iθ

± ∂

∂x±

D± =
∂

∂θ±
− iθ± ∂

∂±
, D± = − ∂

∂θ
± + iθ±

∂

∂x±{
Q±,Q±

}
= −2i∂±,

{
D±,D±

}
= 2i∂±.

(4.33)

The chiral Φ and anti-chiral Φ superfields fulfil the common
conditions D±Φ = 0 and D±Φ = 0. Writing down a chiral superfield
in components results in

Φ
(
y±, θ±

)
= φ

(
y±
)
+ θ+ψ+

(
y±
)

+ θ−ψ−
(
y±
)
+ θ+θ−F

(
y±
)

, (4.34)

with y± = x± − iθ±θ±. Writing the variation operator δ as
δ = ε+Q− − ε−Q+ − ε+Q− + ε−Q+ results in the following transfor-
mations of the components

δφ = ε+ψ− − ε−ψ+, δφ = −ε+ψ− + ε−ψ+,
δψ+ = +2iε−∂+φ+ ε+F , δψ+ = −2iε−∂+φ+ ε+F ,
δψ− = −2iε+∂−φ+ ε−F , δψ− = +2iε+∂−φ+ ε−F .

(4.35)

The Lagrangian of the Landau-Ginzburg model is given by

SΣ =

∫
Σ

d2x

(
−∂µφ∂µφ+

i

2ψ−
(↔
∂0 +

↔
∂1

)
ψ− +

i

2ψ+

(↔
∂0 −

↔
∂1

)
ψ+

−1
4
∣∣W ′∣∣2 − 1

2W
′′ψ+ψ− −

1
2W

′′
ψ−ψ+

)
, (4.36)

with φ
↔
∂iφ = φ∂iφ− ∂iφφ. To obtain eq. (4.36) we used the algebraic

equation of motion of F = −1
2W
′ (
φ
)
and W is the superpotential.

SΣ is invariant under eq. (4.35) up to total derivatives.

Adding a Boundary

The next step is to place the Landau-Ginzburg model on a world-
sheet with boundary. Following [15] we place the model on the strip(
x0,x1) ∈ (R, [0,π]). The conserved supercharge for B-type super-
symmetry is given by Q = Q+ +Q−. B-type supersymmetry can also
be obtained by setting the parameters of the previous supersymmetry
transformations to

ε = ε+ = −ε−. (4.37)

If we now consider the B-type supersymmetry transformations,
given by δ = εQ− εQ, we get

δφ = εη, δφ = −εη,
δη = −2iε∂0φ, δη = 2iε∂0φ,

δζ = 2iε∂1φ+ εW
′ (
φ
)

, δζ = −2iε∂1φ+ εW ′ (φ) ,

(4.38)
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where we introduced η = ψ− + ψ+ and ζ = ψ− − ψ+. The
fermionic coordinates on the boundary superspace are given by
θ0 = 1

2 (θ
− + θ+) and θ0

= 1
2

(
θ
−
+ θ

+
)
. Now we can write the

supercharges as

Q =
∂

∂θ0 + iθ
0 ∂

∂x0 , Q = − ∂

∂θ
0 − iθ

0 ∂

∂x0 . (4.39)

If we now vary the action eq. (4.36) with respect to transformations
eq. (4.38) we get surface terms. To cancel these terms we have to
introduce a boundary action. In the case of W = 0 we add the
following term to the Lagrangian

S∂Σ,ψ =
i

4

∫
dx0 (ζη− ηζ) ∣∣∣∣π

0
, (4.40)

to obtain an invariant action. If W 6= 0 the following surface terms
appear after variation

δ
(
SΣ + S∂Σ,ψ

)
=
i

2

∫
dx0

(
εηW

′
+ εηW ′

) ∣∣∣∣π
0
. (4.41)

In contrast to the previous case this leftover term can not be cancelled
by adding additional terms containing only bulk fields. Therefore we
have to introduce a boundary fermionic superfield Π13. Π satisfies 13 We will later call Π boundary

fermion.DΠ = E (Φ′), where Φ′
(
y0, θ0) = φ

(
y0)+ θ0η

(
y0). The component

expression of Π is given by

Π
(
y0, θ0, θ0)

= π
(
y0)+ θ0l

(
y0)− θ0 (

E (φ) + θ0η
(
y0)E′ (φ)) ,

(4.42)

with y0 = x0 − iθ0θ
0. The components of the field transform under

the B-type supersymmetry as

δπ = εl− εE (φ) , δπ = εl− εE
(
φ
)

,

δl = −2iε∂0π+ εηE′ (φ) , δl = −2iε∂0π+ εηE
′ (
φ
)

.
(4.43)

The action of the boundary fields is given by

S∂Σ = −1
2

∫
∂Σ

dx0d2ΠΠ
∣∣∣∣π
0
− i

2

∫
∂Σ

dx0dθΠJ (Φ)θ=0

∣∣∣∣π
0
+ c.c. (4.44)

Rewriting the action in components and using the equation of
motion l = −iJ

(
φ
)
results in

S∂Σ =

∫
dx0

(
iπ∂0π−

1
2JJ −

1
2EE +

i

2πηJ
′ +

i

2πηJ
′ − 1

2πηE
′ +

1
2πηE

′
) ∣∣∣∣π

0
. (4.45)

By employing the equation of motion of l, the variations of π simplify
to

δπ = −iεJ
(
φ
)
− εE (φ)

δπ = iεJ (φ)− εE
(
φ
)

.
(4.46)
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Under the B-type variation the action eq. (4.45) is invariant except
for the following term

δS∂Σ = − i2

∫
dx0

(
εη
(
EJ
)′
+ εη (EJ)′

)
. (4.47)

If we now compare eq. (4.41) with eq. (4.47) we see that we get a
supersymmetric action if we demand

W = EJ + const. (4.48)

J (φ) and E (φ) are usually referred to as boundary potentials.

Generalization

As explained for instance in [18] quantization leads to a Hilbert space
of the boundary fermions which is a two-dimensional vector space
C2, and is graded by fermion number. In string theory this space is
interpreted as the Chan-Paton-space V of a D-brane anti-D-brane
system and E, J describe the tachyon configuration stretched between
the D-branes. The supercharge also gets an additional boundary
contribution. Now let us generalize the above considerations. In
general, boundary interactions preserving B−type supersymmetry
are described by two N ×N matrices J (x1, . . . ,xn), E (x1, . . . ,xn).
These matrices have polynomial entries and fulfil

J ·E = E · J = W · 1N×N . (4.49)

Again one can think of the matrices J and E as describing the
tachyon configuration between a stack of N branes and N anti-branes.
Considering the contribution to the supercharge arising from the
boundary, denoted by Q, we get

Q =

(
0 J

E 0

)
. (4.50)

The condition for preserving the B−type supersymmetry can now
be written as

Q2 = W · 12N×2N . (4.51)

The action of Q on open string states is given by a supercommu-
tator. The open string ground states are given as cohomology classes
of Q. These states are given by matrices with polynomial entries and
found by action with Q on them [27, 29, 15, 18]

{Q, Υ} = 0 Υ ≡ Υ +
{
Q, Υ′

}
. (4.52)

Considering a quasi-homogeneous superpotential W the bulk theory
has an additional U(1) R−symmetry under which W has charge 2:

W (λrixi) = λ2W (ri) . (4.53)

This symmetry gives a further constraint on Q [30]:
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R(λ)Q (λrixi)R(λ)
−1 = λQ (xi) . (4.54)

R(λ) is a representation of the U(1) symmetry group on the
Chan-Paton-space V, with λ = eiα.

Mathematical Description of Branes in LG-models

Equation (4.51) states that all possible boundary conditions, pre-
serving B−type supersymmetry, can be obtained trough matrix
factorisations of the superpotential W . Similar to the case in the
non-linear sigma model, the possible matrix factorisations form a cat-
egory. The objects in this category are given by the possible matrix
factorisations. These factorisations14 can be represented in terms of 14 We only give here a fairly short

introduction to these concepts
and also the given discussion lacks
mathematical rigour. Details can be
found in [16], especially in chapter 2.

the Chan-Paton spaces V, corresponding to the D-branes. A matrix
factorisation Q, representing the brane B, acts as an odd operator
on the Chan-Paton space of B by: Let V = Veven ⊕ Vodd by the
Chan-Paton space corresponding to a matrix factorisation, with

Q =

(
0 J

E 0

)
. (4.55)

Then the objects M of the category of matrix factorisations MF (W )

are given by

B : M ∼=
(
Veven

E /
o
J
Vodd

)
. (4.56)

The morphisms Hom
(
V, Ṽ

)
in this category are given by the open

string states Υ, stretching between the D-branes with Chan-Paton
spaces V and Ṽ respectively.

4.3 Boundaries in Gauged Linear Sigma models

In this section we consider the main model of interest in this the-
sis. We follow [16]. The previous sections concerning the Landau-
Ginzburg and non-linear sigma model will help us to develop the nec-
essary tools to describe D−branes in the gauged linear sigma model.
We will solely concentrate on the implications arising by introducing
a boundary, because aspects regarding the phases have been already
discussed in chapter 3. We will also adopt the conventions of [16] for
the gauged linear sigma model. In these conventions the Lagrangian
density for an Abelian gauge group T ∼= U(1)1 ×U(1)2 × · · · ×U(1)k
and N matter chiral superfields Φi is given by

L =

∫
d4θ

−1
2

k∑
a,b=1

(
e−2)ab ΣaΣb +

N∑
i=1

Φie
Qi·V Φi


+Re

∫
d2θ̃

(
−

k∑
a=1

taΣa

)
+ Re

∫
d2θW (Φ) . (4.57)

Luckily the conventions of [16] mostly agree with the conventions used
in [1] and chapter 3.
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Boundary Counter Terms

Applying an N = 2 B-type supersymmetry variation15 on eq. (4.57) 15 In the following we will denote this
variation by N = 2B as in [16].results in a boundary term. Instead of imposing boundary conditions

on the bulk fields, we will add additional terms to the action, whose
variation cancels the boundary terms of the variation of the bulk
action. Let us denote by Q = Q+ + Q− and Q† = Q+ + Q− the
generators of the B-type supersymmetry variation. If we can now
write down the action eq. (4.57) as

∫
d2sQQ† (. . . ), then we have

found the desired N = 2B-type supersymmetry invariant action. This
procedure automatically gives the boundary counter terms. As stated
in [16] the N = 2B invariant parts in the action for the gauge kinetic,
matter kinetic and the FI-θ terms are given by16

16 Here we denote the worldsheet
by S and coordinates on S by s in
agreement with [16], but differently as
in chapter 3.

Sg + Sm + SFIθ =
1
4

∫
S

d2sQQ†
[
Q+,Q+

](
− 1

2e2

k∑
a=1
|σa|2 +

N∑
i=1
|φi|2

)

+
1

2π Re
∫
S

d2sQQ†
(
−

k∑
a=1

taσa

)
. (4.58)

By comparison of the above result with the Lagrangian density
given in eq. (4.57) the boundary counter terms can be read off. The
total counter term action reads

Sc.t.tot =
1

2π

∫
∂S

dt
{

1
2e2

k∑
a=1

(
1
2∂1|σa|2 + Im(σa)Da + Re(σa)(va)01

)

+
i

2

N∑
i=1

(
ψi−ψi+ −ψi+ψi−

)
+ Im

k∑
a=1

{(
N∑
i=1

Qai |φi|
2 − ta

)
σa

}}
. (4.59)

Next we take a look at boundary terms which are N = 2B su-
persymmetry invariant, but cannot be written with the help of the
supersymmetry generators.

Wilson Line Branes

The term17 17 v0 is the 0-component of the gauge
potential, see chapter 3.1

2

∫
dθdθV = − (v0 −Re(σ)) (4.60)

is invariant under the B−type supersymmetry variation, but lacks
U(1) gauge invariance under which iv0 → iv0 + g∂0g−1. This can be
cured, by exponentiation of the term [16]

Wq

(
tf , ti

)
= exp

−i tf∫
ti

q [v0 −Re(σ)] dt

 . (4.61)

This term is a Wilson line and transforms under the gauge group
as

Wq

(
tf , ti

)
→ g

(
tf
)q ·Wq

(
tf , ti

)
· g (ti)−q , (4.62)
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so the Wilson-line is gauge covariant whenever q is an integer. In
accordance with [16] we will denote the brane supporting this Wilson
line by

W(q). (4.63)

This allows the interpretation of a charged Chan-Paton space V
with charge q under the gauge group. The full boundary Lagrangian is

Sbdry = Sc.t.g +
1

2π

∫
∂S

dt
{
i

2

N∑
i=1

(
ψi−ψi+ −ψi+ψi−

)

+
k∑
a=1

(
N∑
i=1

Qai |φi|
2 − ra

)
Im σa −

k∑
a=1

(θa + 2πqa) [(va)0 −Re (σa)]
}

. (4.64)

Sc.t.g denotes the counter term for the gauge kinetic term, which
is the first line in eq. (4.59). In the above expression the bulk theta-
angle term was converted into a boundary term.

With the Wilson-line at hand one can build further supersymmetric
boundary interactions. A possible generalization is to consider direct
sums of Wilson-line branes

W =
n⊕
i=1
W (qi) . (4.65)

This results in a matrix valued boundary interaction

At =
k∑
a=1


qa1

. . .
qan

{(va)0 −Re (σa)
}

. (4.66)

At transforms under the gauge group U(1)k as

iAt → ρ(g)iAtρ(g)−1 + ρ(g)∂tρ(g)
−1, (4.67)

where ρ(g) is given by

ρ(g) =


gq1

. . .
gqn

 , (4.68)

with gq := gq
1

1 · · · g
qk

k . The Chan-Paton space V of the brane is then
V = ⊕ki=1W (qi). V carries the representation ρ of the gauge group
T ∼= U(1)k.

Also the introduction of a Z2 graded sum of Wilson-line branes
V =Wev ⊕Wod and a tachyon profile Q is possible. As in section 4.2,
Q describes an interaction between Wilson-line branes. This is done
by considering a Z2 graded Chan-Paton space

V =Wev ⊕Wodd. (4.69)
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V carries a representation ρ of the gauge group and Q is an odd
operator on V. Q is a holomorphic function of the fields φ1, . . . ,φN .
The corresponding boundary interaction is given by

At = ρ∗ (v0 −Re(σ)) + 1
2

{
Q,Q†

}
− 1

2

N∑
i=1

ψi
∂

∂φi
Q+

1
2

N∑
i=1

ψi
∂

∂φi
Q†, (4.70)

where ρ∗ is given by ρ∗ (X) = −i d
dtρ
(
eitX

) ∣∣
t=0, with iX an ele-

ment of the Lie algebra of the gauge group. Demanding that the
transformation law for At is given by eq. (4.67), restricts Q to fulfil

ρ (g)−1 Q (g · φ) ρ (g) = Q (φ) , (4.71)

where g · φ is the action of the gauge group on φ = (φ1, . . . ,φN ) given
by
(
gQ1 , . . . , gQNφN

)
. The N = 2B variation of eq. (4.70) results in

δAt = −Re
{

N∑
i=1

(
εψi

∂

∂φi
Q2
)
−
[
εQ†,Q2

]}
+ iDt

(
εQ+ εQ†

)
− i
(
ε̇Q+ ε̇Q†

)
. (4.72)

In the case of a gauged linear sigma model without a superpotential
the condition for At to be N = 2B supersymmetric is

Q2 = c · idV . (4.73)

We will not consider this case in detail, because in this thesis we
only discuss models with non-vanishing superpotential, which we focus
on next.

Matrix Factorisations

To obtain insight into the case of a non-vanishing superpotential
W , we first consider the N = 2B variation of the part in the action
containing the superpotential

δ

∫
S

d2sLW = −Re
∫
∂S

dt
N∑
i=1

εψi
∂W

∂φi
. (4.74)

The resulting term is called Warner term [28]. As in the Landau-
Ginzburg model, we consider a Z2 graded sum of Wilson-line branes,
given by a Z2 graded Chan-Paton space V = Vev ⊕Vod. The tachyon
profile Q acts again as an odd operator on V and is a polynomial
in φ = (φ1, . . . ,φN ). Obviously Q has to fulfil eq. (4.71) and the
boundary interaction At is given by eq. (4.70).

By comparison of the variation of At eq. (4.72) with eq. (4.74) one
sees, that Q has to fulfil

Q2 = W · idV (4.75)

in order to cancel the variation of the superpotential term.
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The gauged linear sigma model also has a bulk vector U(1) R-
symmetry. The action of the R−symmetry on φ is denoted by Rλφ.
In addition, the symmetry commutes with the gauge group

Rλ (g · φ) = g ·Rλ (φ) . (4.76)

In the presence of a superpotential, U(1) R-symmetry is only possible
if W is quasi-homogeneous and we set, by convention,

W (Rλφ) = λ2W (φ) . (4.77)

Consistency with eq. (4.75) requires Q to have R−charge 1 [16]. This
is equivalent to demand that there are linear operators R(λ) on the
Chan-Paton space V commuting with the gauge symmetry

R (λ) ρ(g)R (λ)−1 = ρ(g), (4.78)

such that

R (λ)Q (Rλ(φ))R (λ)−1 = λQ (φ) . (4.79)

The R−symmetry induces a additional grading on V. It is possible
to choose the R-grading in such a way that it respects the Z2 grading
on V. For example let Vj be the R(λ) = λj subspace of V such that

V =

jmax⊕
jmin

Vj , (4.80)

then

Vev =
⊕
j:even

Vj Vod =
⊕
j:odd

Vj . (4.81)

Each Vj corresponds to a direct sum of Wilson-line branes. A brane
with R-grading is called R-graded D-brane B, in the notation of [16],
and is determined by the quadruple (V,Q, ρ,R).

Mathematical Description

D-branes of the GLSM form a category. The objects in this category
are the various D-branes Bi and open string states are described by
morphisms between two branes Bi and Bj . The data (V,Q, ρ,R) of
a brane B is nicely represented as a complex of Chan-Paton spaces V:

· · · J // Veven E // Vodd J // Veven E // Vodd J // · · · ,
(4.82)

with

Q =

(
0 J

E 0

)
. (4.83)

Each V in the above complex corresponds to a direct sum of
Wilson-line branes W, where even and odd stands for the R-grading.





5
D-Brane Low Energy Behaviour and D-Brane Trans-
port

The first task of this chapter is to consider the low energy behaviour
of D-branes in the GLSM. Therefore we study so called D-term
deformations and the process of brane anti-brane annihilation. Both
are in the following collected in the term D-ismorphisms as in [16].

We will use this in the context of D-brane transport in the Kähler
moduli space of a Calabi Yau described in terms of a GLSM. The
following discussion consists of material taken from [16].

5.1 D-Brane Deformations and Tachyon condensation

In the following we will consider different possibilities of brane
deformations and a process of combing two branes, called cone con-
struction, whereby our main interest lies in the low energy behaviour
of the various constructions.

D-Brane Deformations

An N = 2B supersymmetric D-brane on a Kähler manifold X
is described by the data (E,A,Q). Where E is the vector bundle
corresponding to the brane, A a connection on the bundle and Q is
the holomorphic part of the tachyon. N = 2 invariant Lagrangians
consist of two possible terms of the form∫

V dθdθ D-terms (5.1)∫
Wdθ F-terms. (5.2)

V is any superfield and W is any chiral superfield. Given a D-brane
the choice of a fibre metric on E fixes the D-term. The F-term is
determined by the choice of a complex structure on E and of Q. The
important part is now, that under the renormalization group flow from
the ultra violet theory (GLSM) to the infra red theory (phase) the
F-term is unchanged and every D-term flows to a unique expression
in the infra-red. Therefore the low energy behaviour is determined by
the F-term. As consequence a D-term deformations do not influence
the low energy behaviour.
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The upshot is, that D-branes which differ by a D-term have the
same low energy behaviour.

Brane-Anti-Brane Annihilation

For the next aspect of infra-red behaviour we take a look at the
tachyon potential U

U(x) =
1
2T(x)2, (5.3)

which appears in the boundary interaction eq. (4.70) where

T2 =
{
Q,Q†

}
. (5.4)

T = iQ− iQ† can be interpreted as tachyon profile. As stated in
[16], if det(T(x)) is nowhere vanishing, U(x) is everywhere positive
on the target space and has therefore no influence at the low energy
behaviour. If now T is of block diagonal form, then a block, which is
invertible everywhere, can be ignored in the infra red. In other words,
in the infra-red the full potential is equivalent to a potential without
the everywhere positive block. In N = 2 theories the condition
of everywhere positive T2 is equivalent to the statement, that the
complex C (E ,Q) is exact1. Consider a complex of the form eq. (4.30). 1 This result can be readily applied

to the case of a gauged linear sigma
model, because the boundary con-
ditions are also given in terms of
complexes, as seen in eqs. (4.80)
to (4.82).

This complex is said to be exact if

Im (dn−1) = Ker (dn) . (5.5)

To summarize, we quote [16]

A D-brane corresponding to an exact complex can be ignored in the
infra-red limit.

The described process originates from brane-antibrane annihilation
first discussed in [31]. It was argued by Sen in [31], that in a system,
consisting of an equal number of coincident branes and antibranes,
the classical minimum of the tachyon potential has zero energy and
therefore can be identified with the supersymmetric vacuum state.

Brane-antibrane annihilation may introduce additional interactions
between infra-red non-trivial parts of T. As an example consider a
tachyon of the form

T =


T0 ∗

T′∗

 , (5.6)

with T0 everywhere invertible. T0 is interacting with the remaining
part by the off-diagonal terms denoted by ∗. If one can now remove
the off-diagonal parts by row/column addition and subtraction, T0
can be ignored in the low energy regime. As consequence of this
procedure further terms may appear in T′.

The next task is to combine two branes and study their infra-red
behaviour.
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Cone Construction

In order to discuss the binding of two branes, we need to clarify the
meaning of cochain maps and quasi-isomorphisms.

Definiton 5.1.1. Let C (E) and C (F) be two complexes. A cochain
map is a sequence of maps Ej → F j, with the property that the
diagram

· · · // Ej−1 //

��

Ej //

��

Ej+1 //

��

· · ·

· · · // F j−1 // F j // F j+1 // · · ·

(5.7)

commutes.

Definiton 5.1.2. A quasi-isomorphism is a cochain map, which
induces an isomorphism at the level of the cohomology groups of the
complexes.

The notion of a cochain complex allows us to discuss the binding
of two branes (E ,QE) and (F ,QF ). Let ϕ be a cochain map ϕ :
C (E) → C (F). At the level of the associated bundles a cochain
map ϕ is equivalent to a degree zero bundle map ϕ : E → F , which
obeys QFϕ− ϕQE = 0. By using the cochain map one can build a
new brane called cone of ϕ. Following the notation of [16] we denote
the cone by C (ϕ) = C (ϕ : C (E)→ C (F)). The new brane C (ϕ)

corresponds to the graded vector bundle EC(ϕ) = E [1] ⊕ F . The
holomorphic part of the tachyon can be written as

QC(ϕ) =

(
−QE 0
ϕ QF

)
. (5.8)

The corresponding diagram is called cone complex and reads

· · ·
−QE //
ϕ

&&

Ej
−QE //
ϕ

''

Ej+1 −QE //
ϕ

''

Ej+2 −QE //
ϕ

&&

· · ·
⊕ ⊕ ⊕

· · ·
QF // F j−1 QF // F j

QF // F j+1 QF // · · ·

. (5.9)

Additionally in [16] a proof was given that, if ϕ is a quasi-ismorphism,
then the corresponding cone complex is exact. Also the converse is
true. From our previous discussion it follows, that the cone of quasi-
isomorphic branes has no influence on the low energy behaviour.

Are D-Isomorphic Branes Quasi-Isomorphic?

The above question is equivalent to the following: If we have a quasi-
isomorphism ϕ between the complexes CA and CB corresponding to
the two branes A and B. Are A and B equivalent in the infra-red?

To show the infra-red equivalence the following line of arguments,
valid at the low energy regime, was used in [16]

A ∼= A+
(
B +B

)
idB
∼=
(
A+B

)
ϕ
+B ∼= B. (5.10)
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(
B +B

)
idB

is the brane-antibrane system with the tachyon idB
and

(
A+B

)
ϕ
is the previously described cone C between A and B.

In [16] the above line of arguments was proofed, by showing that
quasi-isomorphic D-branes are related by D-isomorphisms. As a
consequence quasi-isomorphic branes are infra-red equivalent. By
using the previously given results one sees the validity of the first and
last equivalence relations. The equivalence relations in the middle
requires more work. The steps necessary to prove the middle one can
be found in [16].

The relation between D-isomorphic branes and quasi-isomorphic
branes will be useful later on.

5.2 D-Brane Transport in the Kähler Moduli Space

As we have seen in chapter 3 the gauged linear sigma model allows to
interpolate between different low energy effective theories describing
a Calabi-Yau compactification, depending on the value of the com-
plexified Kähler parameter. We called the different parameter regions
phases of the gauged linear sigma model. An interesting question
is now, how boundary interactions are influenced under transport
between phases. The main problem is how to transport D-branes
across phase boundaries, which involves the so called grade restriction
rule. Also in the following we will focus on B−branes in the linear
sigma model, expressed in terms of matrix factorisations of the gauged
linear sigma model superpotential. We will not describe the map
between the GLSM branes and the corresponding branes in the low
energy theory. For details on that issue the reader is encouraged to
consult [16].

Grade Restriction Rule

Here we will consider the gauged linear sigma model with a single
U(1)−gauge group. The U(1) charges Qi of the matter fields fulfil the
Calabi-Yau condition ∑

i

Qi = 0. (5.11)

The existence of the Coulomb branch makes the transport of a D-
brane in the Kähler moduli space from one phase to another a non-
trivial process. By performing a general discussion of A-type boundary
conditions in Landau-Ginzburg theories2, as done in [16], one sees 2 This is done because, A-type

boundary conditions on chiral
superfields are equivalent to B-type
boundary conditions on twisted chiral
superfields.

the emergence of a boundary potential Vbdry on the Coulomb branch.
For a Lagrangian A-brane L, which encodes the boundary conditions
for the σ-fields, we require that Vbdry is bounded from below on a
brane L. Furthermore by using D−term boundary deformations,
positivity of Vbdry on L can be imposed. Now consider the gauged
linear sigma model on the Coulomb branch, where σ is unconstrained.
By integrating out the charged matter fields on finds the effective
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boundary potential, given a Wilson-line brane of charge q

V effbdry =
1

2π

(
r+

n∑
i=1

Qi log |Qi|
)

︸ ︷︷ ︸
reff

Im(σ)

−
(
θ

2π + q

)
Re(σ) + 1

4

n∑
i=1
|Qi Re(σ)|. (5.12)

The potential V effbdry must be positive on L. Deep in a phase
(reff � 0 or reff � 0) one can always find an L such that V effbdry

stays positive. The situation is more subtle when reff = 0. For
reff = 0 the potential takes the form

V effbdry

∣∣
reff=0 = −

[
sgn (σ)

(
θ

2π + q

)
− 1

4

n∑
i=1
|Qi|

]
|Re(σ)|. (5.13)

If now one wants to transport a brane from the phase reff � 0
to reff � 0 the first step is to choose a path inMK . This path is
chosen such that one avoids the singularity lying at3 reff = 0 and 3 This is in accordance with

eq. (3.54).θ ∈ Nπ + 2πZ. Thereby one gets possible windows for the D-brane
transport, which are situated between the singularities (see fig. 5.1 ).

θ

r

−3 π −1 π 1 π 3 π

Figure 5.1: Windows in the FI-θ
parameter space.

Now we fix a specific window, i.e. an interval of size 2π for the θ-
angle. We can further analyse eq. (5.13). Suppose now sgn (σ) = −1.
Consequently for eq. (5.13) to be positive we have to fulfil(

θ

2π + q

)
+

1
4

n∑
i=1
|Qi| > 0 (5.14)

and in the case sgn (σ) = 1(
θ

2π + q

)
− 1

4

n∑
i=1
|Qi| < 0. (5.15)

Combing both gives a restriction on the charges of a Wilson-line
brane

−1
4

n∑
i=1
|Qi| <

θ

2π + q <
1
4

n∑
i=1
|Qi|. (5.16)

Thus we can conclude that only a Wilson-line brane fulfilling
eq. (5.16) can safely cross a phase boundary. Writing a matrix
factorisation as a complex of Wilson-line branes, the rule also holds.
In this case, each charge qi of the complex must fulfil the given
inequality. Such a complex of Wilson-line branes is called grade
restricted. As argued in [16] and in section 6.2, choosing Im (σ) = 0
on the boundary for a grade restricted brane, keeps the V effbdry positive
for arbitrary values of reff .

D-Brane Transport

In the following the large gauge coupling limit e � 0 is considered
and therefore the gauge multiplet can be integrated out. Given a
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matrix factorization (V,Q, ρ,R) in the linear sigma model it becomes
a matrix factorization of W over a Calabi-Yau space Xr in this limit.
As in [16] we denote the category of all possible matrix factorization
in the linear sigma model by MFW

(
CN ,T

)
and the category of

matrix factorizations of W over X by MFW (Xr). The set MFW (Xr)

consists of matrix factorizations of the linear sigma model up to
D−isomorphisms, because two branes in MFW

(
CN ,T

)
which differ

by a D−isomorphism flow in the infra-red limit to the same brane in
MFW (Xr). This is represented by the following projection

πr : MFW

(
CN ,T

)
→MFW (Xr) . (5.17)

The different phases of the linear sigma model lead to a "pyramid
of maps" [16]:

MFW
(
CN ,T

)
πIss

πII

++
πIII

||

πIV

""

MFW (XI) MFW (XIV)

MFW (XII) MFW (XIII)

(5.18)

The crucial part is now, that the low energy behaviour of a brane
depends on the phase in the Kähler moduli space. A brane which is
infra-red empty4 in the phase r � 0 , does not necessarily descend 4 Empty means that in the low energy

regime the brane is absent in a phase.to an empty brane in the r � 0 phase. This is best understood by
looking at an example. Let us consider the gauged linear sigma model
with a single U(1) gauge group and focus on the case of the quintic5. 5 The notation is in accordance with

section 3.3.The considered model has the following superpotential

W = PG (X) , (5.19)

where G is a generic polynomial of degree 5. We are interested in the
vacuum configuration and look therefore at zero locus of the bosonic
potential eq. (3.46). Also eq. (3.47) has to be zero. The vanishing
of eq. (3.47) gives some additional requirements on the fields. For
example in the case r � 0 not all xi can be zero simultaneously and
therefore the point x1 = x2 = x3 = x4 = x5 = 0 is excluded. As
in [16] we call these points the deleted set and denote it by M±. The
subscript + or − stands for r � 0 or r � 0, respectively. Similar
considerations lead to the deleted set M− in the phase r � 0, which
is given by M−= {p = 0}. We are now interested at the low energy
behaviour of the brane B−, represented by the matrix factorization

Q =

(
0 G (x)

p 0

)
, ρ (g) =

(
g4 0
0 g−1

)
,R (λ) =

(
1 0
0 λ−1

)
. (5.20)

This data can also be encoded into the complex

B− :

(
W (−1)−1

G / W (4)0p
o

)
. (5.21)



boundaries in n=(2,2) supersymmetric field theories 59

If we denote the target space of the vacuum configuration in the
phase r � 0 by X−, we see, considering the positivity of the tachyon
potential, that

{
Q,Q†

}
= |p|2 + |G|2 is nowhere vanishing on X−,

because p 6= 0. According to the result in 5.1, π− (B−) corresponds
to the empty brane. A further example is the brane B+ given by the
complex

W(0)0
X / W(1)⊕5

1
X /

pX4
o W(2)⊕10

2
X /

pX4
o W(3)⊕10

3
X /

pX4
o W(4)⊕5

4
X /

pX4
o W(5)5

pX4
o . (5.22)

The related matrix factorization is

Q =
5∑
i=1

xiηi︸ ︷︷ ︸
X

+
5∑
i=1

px4
i ηi︸ ︷︷ ︸

pX4

. (5.23)

Here we have written down Q in terms of anti-commuting matri-
ces6 η, η. In the r � 0 phase, the tachoyn potential,

{
Q,Q†

}
= 6 Details are given in chapter 8.∑

i

(
|xi|2 + |p|2

∣∣x4∣∣2), is everywhere positive on the target space X+.
Therefore the brane B+ flows to the empty brane in the infra-red
π+ (B+) → 0. We want to remark, that none of the previously de-
scribed branes was grade restricted with respect to any window. With
the brane B+ and B− at hand, we can build the cone B consisting
of these two branes . Now depending on the considered phase the
cone B is infra-red equivalent to B− or B+. In the r � 0 phase B+ is
infra-red empty and therefore we have

π+ (B) ∼= π+ (B−) . (5.24)

Consequently in the r � 0 phase the equivalence reads

π− (B) ∼= π− (B+) . (5.25)

The process of binding empty branes will be useful in the descrip-
tion of monodromies around special points in the Kähler moduli
space.

Monodromies

As mentioned in chapter 3, in the Kähler moduli space MK there are
three distinct points. The large volume limit r → ∞, the Landau-
Ginzburg orbifold point r → ∞ and the singular or conifold point
located at eq. (3.54).

Monodromies around these points can be described by transporting
branes around them. In 5.2 we saw thatMK is parametrized by
the complexified Kähler parameter t = r − iθ. The monodromies
around the large volumen limit and the Landau-Ginzburg point are
simply achieved by shifting θ → θ± 2π. By looking at the boundary
interaction of the Wilson-line brane W(q) eq. (4.64), we see that
a shift of θ by ±2π is equivalent to a shift in the gauge charge q
by 1. The monodromy around the conifold point is more subtle.
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The subtlety arises from the fact that only Wilson-line branes in
certain charge windows can be transported in the Kähler moduli
space in a sensible way. Given a brane outside a window, one can
use empty branes to restrict the brane to the window by the cone
construction. This does not change the brane in the infra-red. In
chapter 10 examples of monodromies can be found, along with further
details on the process.



6
Hemisphere Partition Function

In this chapter we will give an introduction to the hemisphere par-
tition function. We will not go into details on the derivation and
only describe aspects of the hemisphere partition function, which
were crucial for this thesis. Thereby we will follow [2] and [32], where
further details can be found.

6.1 General Aspects of the Hemisphere Partition Function

The hemisphere partition function ZD2 is obtained by placing the
gauged linear sigma model on a hemisphere and calculating the
partition function. Because of the boundary at most half of the
supersymmetry can be preserved. These are the familiar N = 2A
and N = 2B symmetries. The hemisphere partition function is
calculated through supersymmetric localization. This was done for a
generic gauged linear sigma model in [2, 3, 4]. Here we focus on the
Calabi-Yau cause in which the hemisphere partition function is given
by:

ZD2 (B) = C
∫
γ

dlGσ
∏
α>0

α (σ) sinh (πα (σ))
∏
i

Γ
(
iQi (σ) +

Ri
2

)

exp (it (σ)) trM
(
eπir∗e2πρ(σ)

)
(6.1)

where α denotes the roots of the matter representation of the
gauge group G. Qi are the charges of the chiral fields and Ri are
the corresponding R−charges. lG is the rank of the gauge group.
trM is the trace on the boundary Chan-Paton space M and r∗ is
the representation of the R−symmetry on the boundary. ρ (σ) is a
representation of the gauge group on the boundary Chan-Paton space.
For this thesis we can focus on the case of a gauged linear sigma
model with U(1) gauge symmetry and N chiral fields Xi of gauge
charges Qi = wi and R−charges Ri = 0. Additionally we introduce a
chiral field P of gauge charge −N , with N =

∑
i
wi and R−charge 2.

In this specific model the hemisphere partition function simplifies to

ZD2 = C
∫
γ

dσ
∏
i

Γ
(
iQiσ+

Ri
2

)
eitσfB. (6.2)
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Where γ is the integration contour and C is a constant. Let us com-
ment on the so-called brane factor fB. For a boundary condition given
by a complex of Wilson line branes

· · · /
Lj⊕
i=1
W(q

(i)
j )
⊕n(i)j
r
(i)
j

/
o

Lj+1⊕
i=1
W(q

(i)
j+1)

⊕n(i)j+1

r
(i)
j+1

/
o · · ·o , (6.3)

the brane factor reads

fB =
∑
j

Lj∑
i=1

n
(i)
j e

iπr
(i)
j e2πq(i)i σ, (6.4)

where we chose the notation as in [32].
Comparing the above complex with eq. (6.4), we see that the sum j

runs over the different positions in the complex. The sum i goes over
the different Wilson line components in the direct sum at complex
position j. q(i)j and r(i)j are the gauge charge and R-charge of the
Wilson line brane at position i at complex position j. The factor n(i)j
is the multiplicity of the considered Wilson line brane.

Next we have to choose an integration contour γ. Thereby we will
reencounter the grade restriction rule described in section 5.2.

6.2 Convergence of Integrand and Grade Restriction Rule

In order to study possible integration contours γ, we consider the
asymptotic behaviour of the integrand in eq. (6.2), because conver-
gence considerations should constrain the possible contours. We
approximate the gamma functions by the Stirling formula

Γ (z) ≈
√

2πzz−
1
2 e−z. (6.5)

Because we are only interested in the asymptotic behaviour we will
drop oscillatory and sub-leading terms in the following calculations
whenever possible. At first we look at the asymptotic behaviour of the
Γ-functions

∏
i

Γ
(
iQiσ+

Ri
2

)
≈
∏
i

e−iQiσe−
Ri
2 (iQiσ)

iQiσ+
R
2 −

1
2

≈ e−iσ
∑

i
Qi︸ ︷︷ ︸

=0 in CY- case

eiσ
∑

i
Qi log(iQiσ) = eiσ

∑
i
Qi(log(|iQiσ|)+iArg(iQiσ))

≈ eiσ
∑

i
Qi log(|i|)︸ ︷︷ ︸

=0 in CY- case

eiσ
∑

i
Qi log(|Qi|) eiσ

∑
i
Qi log(|σ|)︸ ︷︷ ︸

=0 in CY- case

e−σArg(iQiσ)

≈ eiRe(σ)
∑

i
Qi log |Qi|e− Im(σ)

∑
i
Qi log |Qi|eRe(σ)

∑
i

Arg(iQiσ)ei Im(σ)Arg(iQiσ)

≈ e− Im(σ)
∑

i
Qi log |Qi|e

−
∑

i
Re(σ)Qi sgn(Re(Qiσ))

(
π
2 +arctan

(
Qi Im(σ)

|Qi Re(σ)|

))
≈ e− Im(σ)

∑
i
Qi log |Qi|e−

∑
i
|Qi Re(σ)|π2

e
−|Re(σ)|

∑5
i
wi arctan

(
Im(σ)
|Re(σ)|

)
e
−|Re(σ)|N arctan

(
− Im(σ)
|Re(σ)|

)
≈ e− Im(σ)

∑
i
Qi log |Qi|e−|Re(σ)|Nπ. (6.6)
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In the second line we inserted the expression of the logarithm of a
complex number. To calculate Arg (iz), where z is a complex number,
we used the following formula given in [2]:

Arg (iz) = sgn (Re (z))
(
π

2 + arctan Im (z)

|Re (z)|

)
. (6.7)

In the sixth line we used that all wi are positive, which results in
the same arguments in the arctan functions. The last line is a con-
sequence of the Calabi-Yau condition and that arctan is an odd
function. The second term we consider is

eitσ = e(ir+θ)(Re(σ)+i Im(σ))

= eirRe(σ)e−r Im(σ)eθRe(σ)ei Im(σ)θ

≈ e−r Im(σ)eθRe(σ). (6.8)

To study convergence it is sufficient to consider the case of a single
Wilson line brane with charge q. Therefore we get for fB:

fB ≈ e2πqσ

≈ e2πqRe(σ)e2πiq Im(σ)

≈ e2πqRe(σ). (6.9)

Let us write the remaining exponent as

e−Aq(σ), (6.10)

with

Aq (σ) =

(
r+

∑
i

Qi log (|Qi|)
)

Im (σ) + {Nπ− sgn (Re (σ)) (θ+ 2πq)} |Re (σ)|. (6.11)

Now we can conclude that the hemisphere partition function only
converges if Aq (σ) is positive for all values of σ. This positivity
condition restricts the possible integration contours γ. An integration
path which respects the convergence condition is called admissible
[2]. Furthermore we have to analyse the singularities of the integrand.
The possible singular contributions are the Γ-functions. These have
poles whenever their argument hits a negative integer. Therefore we
conclude that the γ-functions get singular whenever

iQiσ+
Ri
2 = n ∀n ∈ Z−. (6.12)

From the above equation we conclude that the singularities reside
along the imaginary axis. Now we consider different values of r
for fixed θ and q and ask if we could find a path γ such that Aq is
positive.

To simplify the notation we define

reff = r+
∑
i

Qi log (|Qi|) . (6.13)
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reff � 0

Im (σ)

Re (σ)

reff � 0

Im (σ)

Re (σ)

Figure 6.1: σ-plane.

For reff � 0 or reff � 0 we can always find a path in the σ-plane
such that Aq (σ) is everywhere positive for arbitrary q and θ values.
See fig. 6.1 where the region of positive Aq (σ) is shaded.

A subtlety arises when reff = 0. This happens when r hits the
singularity found in eq. (3.54) if θ = Nπ + 2πn with n ∈ Z. In the
case of reff = 0 and θ+ 2πq ≥ Nπ, σ has to avoid the complete right
half plane in order for Aq (σ) to stay positive. When θ+ 2πq ≤ −Nπ,
σ is not allowed to take values in the entire left half plane. It follows if
−N2 < θ

2π + q < N
2 , nearly the entire σ plane is admissible. Of course

we have to avoid the imaginary axis where the poles sit. Therefore
the real line R is a possible contour γ and all possible deformations
of it which avoid the imaginary axis. The above analysis restricts the
possible Chan-Paton charges for a brane B = (V ,Q, ρ,R) as follows:

If reff = 0 the Chan-Paton charges qi of B have to fulfil

−N2 <
θ

2π + qi <
N

2 . (6.14)

By fixing θ to a value inside (Nπ+ 2πZ,Nπ+ 2π (Z + 1))
eq. (6.14) gives allowed values of q. We call these allowed values
charge window W and a brane B with charges only lying inside W
grade restricted [16]. This is the same rule as the grade restriction
rule defined in section 5.2, which we discovered by considering the
transport of a brane trough the moduli space. In fig. 6.2 we shaded

reff � 0

Im (σ)

Re (σ)

reff > 0

Im (σ)

Re (σ)

reff = 0

Im (σ)

Re (σ)

reff < 0

Im (σ)

Re (σ)

reff � 0

Im (σ)

Re (σ)

Figure 6.2: Positive Aq (σ)-region
for a brane with charges outside a
window.the positive region of Aq (σ) for a non-grade-restricted brane as one

goes from reff � 0 to reff � 0. As one can see there is no possible
way to deform the integration contour γ in a continuous way, without
crossing the imaginary axis, such that Aq (σ) is always positive. The
situation is different if we consider a brane with charges inside a win-
dow W. In fig. 6.3 we see the behaviour of the positive region. We
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see that at any r-value there is a possible deformation of the contour
γ such that Aq (σ) stays positive.

reff � 0

Im (σ)

Re (σ)

reff > 0

Im (σ)

Re (σ)

reff = 0

Im (σ)

Re (σ)

reff < 0

Im (σ)

Re (σ)

reff � 0

Im (σ)

Re (σ)

Figure 6.3: Positive Aq (σ)-region for
a brane with charges inside a window.We can now conclude that only branes with charges inside a

window W can be transported through the Kähler moduli space.
This is exactly the grade restriction rule discussed in section 5.2.

Let as compare Aq with the the boundary potential (eq. (5.12)) in
the Calabi-Yau case

2πV effbdry =

(
r+

n∑
i=1

Qi log |Qi|
)

Im(σ)− (θ+ 2πq)Re(σ) + π

2

n∑
i=1
|Qi Re(σ)|

=

(
r+

n∑
i=1

Qi log |Qi|
)

Im(σ) + {Nπ− sgn (Re(σ)) (θ+ 2πq)} |Re(σ)| (6.15)

This is the same as Aq (x) (eq. (6.11)) and therefore we have shown
that both rules have the same origin. Having found a possible contour
γ we can now evaluate the hemisphere partition function.

6.3 The Hemisphere Partition Function And Picard-Fuchs
Equation

As analysed in [32] for a particular basis of branes on a degree N
Calabi-Yau hypersurface in PN−1 the hemisphere partition function
solves a linear homogeneous differential equation. This differential
equation is a generalized hypergeometric differential equation and the
same as the Picard-Fuchs equation solved by the periods of the mirror
hypersurface. Although [32] obtained their results for a hypersurface
in PN−1, the result can be extended to the case of a hypersurface in

P[w1,w2,w3,w4,w5], where we get a fourth order differential
equation. Evaluation of the hemisphere partition function in a phase
corresponds to calculation a contour integral for r � 0 or r � 0.
The choice of the contour depends on the phase and we will comment
on this issue in section 7.2. Evaluation of the hemisphere partition
function near the singular point is a more difficult issue and was
analysed in [32].

6.4 Interpretation Of The Hemisphere Partition Function

In [2] the authors showed that the hemisphere partition function
corresponds to the fully quantum corrected central charge of the
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branes in the geometric phases. An interpretation in the Landau-
Ginzburg orbifold phases is not known until now. By evaluating the
hemisphere partition function for an arbitrary gauged linear sigma
model brane for r � 0 we obtain the central charge of the brane in
the non-linear sigma models with Calabi-Yau target space. This allows
us to find a correspondence between branes in the high energy theory
and branes in the low energy effective theories, at least at the level of
charges. Having settled this last issue we now have all the necessary
ingredients to compute central charges and monodromies of D-branes
on one-parameter Calabi-Yau hypersurfaces.



Part II

Calculations





7
GLSMs of 1-parameter Calabi-Yau hypersurfaces

The main focus of this thesis are one parameter Calabi-Yau three-
folds, realized as a hypersurface in a weighted projective space. The
most prominent example is the quintic in P4. In the context of the
gauged linear sigma model the quintic was studied in [1, 16]. We will
focus on GLSMs whose large radius phases are Calabi-Yau hyper-
surfaces in P [1, 1, 1, 1, 2] [6],P [1, 1, 1, 1, 4] [8] and P [1, 1, 1, 2, 5] [10].
These hypersurfaces are described in terms of a gauged linear sigma
model with U(1) gauge group and a superpotential of the form
W = PG (X), where G(X) is a quasi-homogeneous polynomial of
degree 6, 8 or 10.1 Below we state G (X) and the field content of the 1 Details can be found in chapter 3.

corresponding gauged linear sigma models. Afterwards we will focus
on the evaluation of the hemisphere partition function in the large
radius phase.

7.1 Field Content

In order to perform calculations we have to set up the gauged linear
sigma model corresponding to the Calabi-Yaus of interest. In the
following we simply give the field content and G of the gauged linear
sigma models, with superpotential W = PG. In general G is a generic
quasi-homogeneous polynomial of degree 6, 8 or 10, but for this thesis
it is enough to just consider the Fermat-polynomials. This is sufficient
because ZD2 is insensitive to deformations of the complex structure.
We will denote the U(1) charges of the fields by Qi and the R-charges
by Ri. The R-charges of the fields have to be in the range2 2 See [2] for a recent discussion.

0 ≤ Ri ≤ 2. (7.1)

We will write down the R-charges with a parameter κ, which can be
chosen such that eq. (7.1) is fulfilled.

P [1, 1, 1, 1, 2] [6]

The Fermat-polynomial reads

G6 = X6
1 +X6

2 +X6
3 +X6

4 +X3
5 . (7.2)

This gives the following gauge and R charges
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P X1...4 X5
Qi −6 1 2
Ri 2− 6κ κ 2κ

. (7.3)

P [1, 1, 1, 1, 4] [8]

The Fermat-polynomial is

G8 = X8
1 +X8

2 +X8
3 +X8

4 +X2
5 . (7.4)

As before we can deduce the gauge and R charges

P X1...4 X5
Qi −8 1 4
Ri 2− 8κ κ 4κ

. (7.5)

P [1, 1, 1, 2, 5] [10]

The quasi-homogeneous degree and the weights restrict the possible
form of the Fermat-polynomial to

G10 = X10
1 +X10

2 +X10
3 +X5

4 +X2
5 . (7.6)

The required gauge invariance and R charge of W lead to the
charges

P X1...3 X4 X5
Qi −10 1 2 5
Ri 2− 10κ κ 2κ 5κ

. (7.7)

For further calculations we choose κ = 0 in the R−charge of
the considered models. Also we note that the Calabi-Yau condition,∑
i
Qi = 0, is fulfilled in all models3. With the bulk information at 3 In section 3.3 details on the Calabi-

Yau conditions are given.
hand we can further focus on evaluating the hemisphere partition
function.

7.2 Hemisphere Partition Function

As described in chapter 6 the hemisphere partition function for a
gauged linear sigma model with gauge group U(1) reads

ZD2 (B) = C
∫
γ

dσ
∏
i

Γ
(
iQiσ+

Ri
2

)
eitσfB (σ) . (7.8)

Because we are interested in the evaluation of ZD2 (B) in a phase,
|r| � 0, the real line R is always a admissible contour as argued in
chapter 6 and [2]. To simplify the calculation we will use the following
Γ-function identity

Γ (z) Γ (1− z) = π

sin πz , (7.9)
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which is known as the reflection formula. By looking at the above
section we see, that all of our models consist of 5 fields of gauge
charge Qi and R-charge 0 and 1 field of gauge charge −N = −

∑
i
Qi

and R-charge 2. Writing ZD2 (B) for these fields gives

ZD2 (B) = C
∞∫
−∞

dσ
5∏
i=1

Γ (iQiσ) Γ (iNσ+ 1) eitσfB (σ) . (7.10)

Now we perform the following transformation s = iσ and get

ZD2 (B) = −iC
i∞∫
−i∞

ds
5∏
i=1

Γ (Qis) Γ (1−Ns) etsfB (−is) . (7.11)

We want to evaluate the above integral with the help of the residue
theorem, and therefore we have to close the contour. The contour can
be closed in two possible ways. The possible contours and poles are
given in fig. 7.1.

Re(s)

Im(s)

Figure 7.1: Possible integration
contours.

Which contour one chooses depends on the convergence behaviour
of the integrand. This behaviour is determined by the ets factor.
Therefore we take a closer look at the asymptotic behaviour of this
factor and decompose s as s = Re(s) + i Im(s) and get

ets = e(r−iθ)(Re(s)+i Im(s))

≈ erRe(s). (7.12)

In the last line we kept only the leading order terms. We see that in
the case r � 0 we have to close the contour to the left and in the case
r � 0 the contour is closed to the right. Consequently for r � 0 we

encounter the singularities of
5∏
i

Γ (Qis) and for r � 0 only Γ (1−Ns)

gives poles. Subsequently we fill focus on the geometric phase.

Geometric Phase r � 0

For r � 0 we have to close the contour to the left and so only the

poles of
5∏
i

Γ (Qis) contribute. In the following we write4 4 Details of this choice are given in
section 7.3.

z = e−t. (7.13)

To further evaluate the integral we deform the contour and write the
integral as a sum over integrals around the various poles. For this
purpose we transform s→ sP + ε, where sP is the position of a pole,
and get

Zr�0
D2 (B) = lim

ε→0

∑
sP

−iC
∮ dε

2πi

5∏
i

Γ (Qi (sP + ε)) Γ (1−N (sP + ε)) z−(sP+ε)eiNπ(sP+ε)fB (−i (sP + ε)) .

(7.14)

The factor eiNπ(sP+ε) comes from the fact that the θ angle gets
shifted in the geometric phase [16].



72 david erkinger

To simplify the calculation of the residues we apply the reflection
formula (eq. (7.9))

Zr�0
D2 (B) = lim

ε→0

∑
sP

−iC
∮ dε

2πiπ
5

5∏
i

1
sin (πQi (sP + ε))

1
Γ (1−Qi (sP + ε))

Γ (1−N (sP + ε)) z−(sP+ε)eiNπ(sP+ε)fB (−i (sP + ε)) .
(7.15)

The singularities are at

Qi (sP + ε) = −n ∀n ∈N. (7.16)

Let us rewrite the sum in eq. (7.15) into a sum over the poles at
sP ∈ Z− and the poles at sP ∈ Q−, with sP /∈ Z−. To do so we
transform for the first contributions sP → −n and for the second
sP → − k

Ql
and get

Zr�0
D2 (B) = −iC lim

ε→0

[∑
n∈N

∮ dε
2πiπ

5
5∏
i

1
sin (πQi (−n+ ε))

1
Γ (1 +Qin−Qiε)

Γ (1 +Nn−Nε) z−(−n+ε) (−1)Nn eiNπεfB (−i (−n+ ε))

+
∑
Ql

∑
k
Ql

/∈N

∮ dε
2πiπ

5
5∏
i

1
sin
(
πQi

(
− k
Ql

+ ε
)) 1

Γ
(

1 +Qi
k
Ql
−Qiε

)
Γ
(

1 +N
k

Ql
−Nε

)
z
−
(
− k
Ql

+ε

)
(−1)N

k
Ql eiNπεfB

(
−i
(
− k

Ql
+ ε

))]
. (7.17)

Of course these last steps may not be necessary to compute Zr�0
D2 ,

but we found it useful in order to evaluate Zr�0
D2 (B) with the help

of a computer algebra system. In general the solution of Zr�0
D2 (B)

is an infinite sum, but as explained in the following section we can
express the result of Zr�0

D2 (B) in terms of the periods of the mirror
Calabi-Yau

7.3 Hemisphere Partition Function and Periods

As noted in section 6.3 the heimsphere partition function solves the
Picard-Fuchs equation associated to the Calabi-Yau spaces of our
models.

The Picard-Fuchs operators of one-parameter Calabi-Yaus have the
general structure

L = θ4 − α0z
4∏
i=1

(αiθ+ βi) , (7.18)

with θ = z d
dz . The coefficients for our models can be found in

table 7.1. These operators were obtained from [33].

WP [6] WP [8] WP [10]

α0 36 16 80
α1 β1 6 1 8 1 10 1
α2 β2 3 1 8 3 10 3
α3 β3 3 2 8 5 10 7
α3 β3 6 5 8 7 10 9

Table 7.1: Coefficients of the Picard-
Fuchs operator.

The periods $i on the complex structure moduli space of the
mirror Calabi-Yau solve the respective Picard-Fuchs equation5

5 Further background information is
stated in section 4.1.

L$i = 0. (7.19)
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Before writing down an ansatz for the periods, we note that z and the
coordinate t = r− iθ are related by

z = e−t. (7.20)

Since we are interested in expressing the solution of Zr�0
D2 in terms

of the periods, we have to find a solution to the Picard-Fuchs equation
near z = 0. For our models possible periods for z ≈ 0 are given by

$k (z) =
1

(2πi)k
∞∑
m=0

∂k

∂εk

[
Γ (N(m+ ε) + 1)

Γ (Nε+ 1)

5∏
i=1

Γ (Qiε+ 1)
Γ (Qi(m+ ε) + 1)z

m+ε

]
ε=0

(7.21)

Having obtained the periods we can now expand the solution of
Zr�0
D2 (B) in terms of the periods

Zr�0
D2 (B) = α$0 + β$1 + γ$2 + δ$3. (7.22)

With the above result we can now write down results for Zr�0
D2 (B)

for various branes. This will be done in chapter 9.





8
Matrix Factorisations

By placing the GLSM on a world sheet with boundaries we have to
add a boundary term to preserve some of the supersymmetry. We
specify the modified GLSM Lagrangian by defining a boundary datum
B 1. For the subsequent discussion a matrix factorisation Q is the 1 Further information can be found in

section 4.3.quantity of interest. One can view Q as an odd graded map on the
Chan-Paton space V which satisfies

Q2 = W idV . (8.1)

The Chan-Paton space V = Veven ⊕ Vodd decomposes into an even
and odd part. Additionally Q has to be invariant under the action
of the gauge group and must carry R−charge one. As discussed in
section 4.3 the conditions on Q read

ρ(g)−1Q (gφ) ρ(g) = Q (φ) (8.2)

λr∗Q
(
λRφ

)
λ−r∗ = λQ (φ) . (8.3)

Obtaining an appropriate matrix factorisation is a tedious task,
which can be simplified by working with complexes of Wilson line
branes2. Let Cxi = C [x1, . . . ,x5] be the polynomial ring in the 2 See [16] and section 4.3 for back-

ground information on Wilson line
branes.

variables xi. The Chan-Paton space V can be built from a vacuum
state |0〉 ∈ Cxi by acting with anti-commuting creation operators η̄α
and annihilation operators ηβ

V =

j⊕
k=0

cβ1...βk η̄β1 . . . η̄βk |0〉 (8.4)

with cβ1...βk ∈ Cxi and

ηβ |0〉 = 0 ∀β. (8.5)

The creation and annihilation operator satisfy the following algebra{
ηα, η̄β

}
= δαβ

{
ηα, ηβ

}
=
{
η̄α, η̄β

}
= 0. (8.6)

The superpotential can be written as

W =

j∑
α=1

aα · bα, (8.7)
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where aα, bα are homogeneous polynomials ∈ Cxi . A matrix factori-
sation has then the form

Q =

j∑
α=1

aαηα + bαη̄α. (8.8)

In the following we will give a short guide on how to use eqs. (8.2)
and (8.3) to obtain the gauge charges and R-charges of the creation
and annihilation operators and of an arbitrary element in V.

8.1 Charges of the Clifford basis

To use eq. (8.2) we write down Q(gφ) andQ(λRφ) using eq. (8.8)

Q(gφ) =

j∑
α=1

gqaαaαηα + gqbα bαη̄α (8.9)

Q(λRφ) =

j∑
α=1

λraαaαηα + λrbα bαη̄α, (8.10)

which allows us to recast eqs. (8.2) and (8.3) into conditions for the
creation and annihilation operators

ρ(g)−1gqaα ηαρ(g)
!
= ηα

ρ(g)−1gqbα η̄αρ(g)
!
= η̄α

, (8.11)

and

λr∗λraα ηαλ
−r∗ !

= ληα

λr∗λrbα η̄αλ
−r∗ !

= λη̄α.
(8.12)

From these conditions we can easily read off the respective charges
of ηα and η̄α and get,

(qηα , rηα) = (−qaα ,−raα + 1) (qη̄α , rη̄α) = (−qbα ,−rbα + 1) . (8.13)

This can also be seen directly from eq. (8.8) and eq. (8.2). We also
have to deduce how an operator aαηα alters the charges of a state |S〉
with charges

(
q|S〉, r|S〉

)
= (q, r):

ρ (aαηα |S〉) = ρ(g)aαηαρ(g)
−1︸ ︷︷ ︸

gqaα aαηα

ρ(g) |S〉︸ ︷︷ ︸
gq |S〉

= gq+qaα (aαηα |S〉) (8.14)

where eq. (8.2) was used. The calculation for bαη̄α is similar. The
change of the R-charge is obtained through

λr∗ (aαηα |S〉) = λr∗aαηαλ
−r∗︸ ︷︷ ︸

λ1−raα aαηα

λr∗ |S〉︸ ︷︷ ︸
λr |S〉

= λ1+r−raα (aαηα |S〉) . (8.15)
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We used the following statement3 3 See eq. (8.3).

λr∗λraαaαηαλ
−r∗ = λaαηα ⇒

λr∗aαηαλ
−r∗ = λ1−raαaαηα. (8.16)

Again the result for bαη̄α is given by an analogous calculation.
Now we are going to deduce the gauge and R charges of the state
η̄α1 η̄α2 . . . η̄αn |0〉, where |0〉 is the vacuum with charges

(
q|0〉, r|0〉

)
=

(q, r).

ρ (η̄α1 η̄α2 . . . η̄αn |0〉) = ρ(g)η̄α1ρ(g)
−1ρ(g)η̄α2ρ(g)

−1ρ(g) . . . η̄αnρ(g)
−1ρ(g) |0〉

= g−qη̄α1−qη̄α2 ···−qη̄αn+q (η̄α1 η̄α2 . . . η̄αn |0〉) , (8.17)

where eq. (8.11) and eq. (8.13) were used. The R− charge is calcu-
lated by using eq. (8.12):

λr∗ (η̄α1 η̄α2 . . . η̄αn |0〉) = λr∗ η̄α1λ
−r∗λr∗ η̄α2λ

−r∗λr∗ . . . η̄αnλ
−r∗λr∗ |0〉

= λ
(1−rbα1

)+(1−rbα2
)···+(1−rbαn )+r

(η̄α1 η̄α2 . . . η̄αn |0〉)
= λrη̄α1 +rη̄α2 ···+rη̄αn+r (η̄α1 η̄α2 . . . η̄αn |0〉) . (8.18)

In the last line eq. (8.13) was employed.

8.2 Concrete Examples

Let us consider a special matrix factorisation,

Q =
N∑
i

(
xiηi +

1
wi
p
∂W

∂xi
η̄i

)
. (8.19)

This factorisation will be later referred to as large-radius-empty-
brane 4. 4 This name is a consequence of

the fact, that eq. (8.19) has zero
central charge when we evaluate its
hemisphere-partition-function in the
large radius phase.

P [1, 1, 1, 1, 2] [6]

By using eq. (8.19) we obtain the following factorisation:

Q = x1η1 + x5
1pη̄1 + x2η2 + x5

2pη̄2 + x3η3 + x5
3pη̄3 + x4η4 + x5

4pη̄4 + x5η5 + px2
5η̄5 (8.20)

From eq. (8.11) and eq. (8.12) we can read off the respective
charges and obtain, by denoting the gauge charge by q and R−charge
by r

(qηα , rηα) = (−1,−κ+ 1) α = 1, . . . , 4
(qη5 , rη5) = (−2,−2κ+ 1)

(qη̄α , rη̄α) = (1,κ− 1) α = 1, . . . , 4
(qη̄5 , rη̄5) = (2, 2κ− 1)

(8.21)

With the charges at hand we can write down the complex of
Wilson line branes. We set κ zero and choose for the vacuum(

q|0〉, r|0〉
)
= (6, 5) . (8.22)
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We get

W(0)⊕1
0

/
o

W(2)⊕1
1⊕

W(1)⊕4
1

/
o

W(3)⊕4
2⊕

W(2)⊕6
2

/
o

W(4)⊕6
3⊕

W(3)⊕4
3

/
o

W(5)⊕4
4⊕

W(4)⊕1
4

/
o W(6)⊕1

5 (8.23)

From the complex of Wilson line branes we can read off the brane
factor fB

fB = 1− 4e2πσ + 5e4πσ − 5e8πσ + 4e10πσ − e12πσ. (8.24)

P [1, 1, 1, 1, 4] [8]

For this model we get the following charges for the Clifford basis

(qηα , rηα) = (−1,−κ+ 1) α = 1, . . . , 4
(qη5 , rη5) = (−4,−4κ+ 1)

(qη̄α , rη̄α) = (1,κ− 1) α = 1, . . . , 4
(qη̄5 , rη̄5) = (4, 4κ− 1)

(8.25)

To construct the complex of Wilson line branes of eq. (8.20) we set
κ = 0 and

(
q|0〉, r|0〉

)
= (8, 5)

W(0)⊕1
0

/
o

W(1)⊕4
1⊕

W(4)⊕1
1

/
o

W(2)⊕6
2⊕

W(5)⊕4
2

/
o

W(3)⊕4
3⊕

W(6)⊕6
3

/
o

W(4)⊕1
4⊕

W(7)⊕4
4

/
o W(8)⊕1

5 (8.26)

The brane factor is given by

fB = 1− 4e2πσ + 6e4πσ + 4e10πσ − 4e6πσ − 6e12πσ + 4e14πσ − e16πσ. (8.27)

P [1, 1, 1, 2, 5] [10]

The relevant charges are given by

(qηα , rηα) = (−1,−κ+ 1) α = 1, . . . , 3
(qη4 , rη4) = (−2,−2κ+ 1)
(qη5 , rη5) = (−5,−5κ+ 1)

(qη̄α , rη̄α) = (1,κ− 1) α = 1, . . . , 3
(qη̄4 , rη̄4) = (2, 2κ− 1)
(qη̄5 , rη̄5) = (5, 5κ− 1)

. (8.28)

The charges of the vacuum are set to
(
q|0〉, r|0〉

)
= (10, 5) and κ = 0.

We construct the following complex associated to eq. (8.20):

W(0)⊕1
0

/
o

W(1)⊕3
1⊕

W(2)⊕1
1⊕

W(5)⊕1
1

/
o

W(2)⊕3
2⊕

W(3)⊕3
2⊕

W(6)⊕3
2⊕

W(7)⊕1
2

/
o

W(3)⊕1
3⊕

W(4)⊕3
3⊕

W(7)⊕3
3⊕

W(8)⊕3
3

/
o

W(5)⊕1
4⊕

W(8)⊕1
4⊕

W(9)⊕3
4

/
o W(10)⊕1

5 (8.29)
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The brane factor is

fB = 1− 3e2πσ + 2e4πσ + 2e6πσ + 3e12πσ − 2e14πσ − 3e8πσ − 2e16πσ + 3e18πσ − e20πσ. (8.30)





9
Catalogue of large radius branes

This section is an overview of possible matrix factorisations in one-
parameter Calabi-Yau spaces. Our aim is to identify the GLSM
matrix factorisations corresponding to a basis of (D0,D2,D4,D6)
branes in the large radius phase. We will simply state the factori-
sation Q, the corresponding complex of Wilson line branes and the
central charge obtained by evaluation the hemisphere partition func-
tion in the large radius phase. We write the central charges in the
form

Zζ�0
D2 (B) = α$0 + β$1 + γ$2 + δ$3, (9.1)

where the $i are a basis of solutions of the Picard-Fuchs equation
of the mirror Calabi Yau 1. For later use we state the topological 1 For details the reader is referred to

section 4.1 and chapter 7.numbers of the consider spaces in table 9.1 [33].

H3 c2H c3

P[6] 3 42 −204
P[8] 2 44 −296

P[10] 1 34 −288
Table 9.1: Topological numbers of the
consider spaces

9.1 P[1, 1, 1, 1, 2][6]

In this case we choose the vacuum to have charges(
q|0〉,R|0〉

)
= (6, 5). (9.2)

In the following we used various constants in the stated matrix
factorisations. These constants are solutions of the equations

a6 = −1 b3 = −1
c3 = 1 d2 = −1
f6 = −1 l3 = 1
h3 = −1 o2 = −1.

(9.3)

D0-branes

We will simply denote different D0-branes by subscript numbers. To
describe D0-branes we consider matrix factorisations of the Fermat
polynomial that have the following structure:

Q = f1η1 + xαη2 + xβη3 + xγη4 + pg1η̄1 + pxqαα η̄2 + px
qβ
β η̄3 + px

qγ
γ η̄4 (9.4)
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with different f1 and g1. Also xα, xβ , xγ and qα, qβ , qγ have to be
appropriately chosen such that

Q2 = W · 1 (9.5)

is fulfilled.

D01 or D04

fD01
1 = x1 + ax2 (9.6)

gD01
1 = x5

1 − ax4
1x2 + a2x3

1x
2
2 − a3x2

1x
3
2 + a4x1x

4
2 − a5x5

2 (9.7)

fD04
1 = x2

1 − bx5 (9.8)

gD04
1 = x4

1 + bx2
1x5 + b2x2

5. (9.9)

In both cases the complex reads

W(1)1
/

o

W(2)⊕3
2⊕

W(3)2

/
o

W(3)⊕3
3⊕

W(4)⊕3
3

/
o

W(5)⊕3
4⊕

W(4)4

/
o W(6)5 . (9.10)

The correct brane factor is:

fD01,4 = −e2πσ + 3e4πσ − 2e6πσ − 2e8πσ + 3e10πσ − e12πσ (9.11)

The central charge was calculated to

Zζ�0
D2 (D01,4) = $0. (9.12)

D02

fD02
1 = x2

1 + cx2
2 (9.13)

gD02
1 = x4

1 − cx2
1x

2
2 + c2x4

2 (9.14)

With complex2: 2 Henceforth we will drop the direct
sum between to complexes at the
same R-charge till the end of this
thesis.

W(0)1
/

o
W(2)⊕2

2
W(1)⊕2

2

/
o

W(3)⊕4
3

W(4)3
W(2)3

/
o
W(4)⊕2

4
W(5)⊕2

4

/
o W(6)5 . (9.15)

and brane factor:

fD02 = 2e2πσ + e4πσ − 4e6πσ + e8πσ + 2e10πσ − e12πσ − 1. (9.16)

This brane carries central charge

Zr�0
D2 (D02) = 2$0 (9.17)

D03

fD03
1 = x3

1 − dx3
2 (9.18)

gD03
1 = x3

1 + dx3
2 (9.19)
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The complex is given by

W(−1)1
/

o

W(0)⊕2
2

W(2)2
W(1)2

/
o

W(3)⊕2
3

W(2)⊕2
3

W(1)3
W(4)3

/
o

W(5)⊕2
4

W(4)4
W(3)4

/
o W(6)5 . (9.20)

The corresponding brane factor reads:

fD03 = −e−2πσ − e4πσ − e6πσ + 2e10πσ − e12πσ + 2. (9.21)

The central charge is

Zr�0
D2 (D03) = 3$0. (9.22)

D2-branes

We state a general D2-brane matrix factorisation:

Q = f1η1 + f2η2 + xαη4 + pg1η̄1 + pg2η̄2 + pxqαα η̄4, (9.23)

where f1(f2), g1(g2) and xα, qα are chosen appropriately to accom-
plish eq. (9.5).

D21 or D24 are given by the assignment

fD21
1 = x1 + ax2 (9.24)

gD21
1 = x5

1 − ax4
1x2 + a2x3

1x
2
2 − a3x2

1x
3
2 + a4x1x

4
2 − a5x5

2 (9.25)

fD21
2 = x3 + fx4 (9.26)

gD21
2 = x5

3 − fx4
3x4 + f2x3

3x
2
4 − f3x2

3x
3
4 + f4x3x

4
4 − f5x5

4 (9.27)

or equivalently by

fD24
1 = x1 + ax2 (9.28)

gD24
1 = x5

1 − ax4
1x2 + a2x3

1x
2
2 − a3x2

1x
3
2 + a4x1x

4
2 − a5x5

2 (9.29)

fD24
1 = x2

3 − bx5 (9.30)

gD24
1 = x4

3 + bx2
3x5 + b2x2

5. (9.31)

These factorisations yield the following complex

W(2)2
/

o
W(3)⊕2

3
W(4)3

/
o

W(4)4
W(5)⊕2

4

/
o W(6)5 . (9.32)

We read off the brane factor:

fD21,4 = e4πσ − 2e6πσ + 2e10πσ − e12πσ. (9.33)

Inserting the brane factor into the hemisphere partition function
gives

Zr�0
D2 (D21,4) = $0 +$1. (9.34)
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D22 or D27 We get the following polynomials for the factorisation:

fD22
1 = x1 + ax2 (9.35)

gD22
1 = x5

1 − ax4
1x2 + a2x3

1x
2
2 − a3x2

1x
3
2 + a4x1x

4
2 − a5x5

2 (9.36)

fD22
2 = x2

3 + cx2
4 (9.37)

gD22
2 = x4

3 − cx2
3x

2
4 + c2x4

4 (9.38)

Also the following polynomials gives the same central charge:

fD27
1 = x2

1 + cx2
2 (9.39)

gD27
1 = x4

1 − cx2
1x

2
2 + c2x4

2 (9.40)

fD27
2 = x2

3 − bx5 (9.41)

gD27
2 = x4

3 + bx2
3x5 + b2x2

5, (9.42)

The complex and brane factor are given by:

W(1)2
/

o
W(3)⊕2

3
W(2)3

/
o

W(5)4
W(4)⊕2

4

/
o W(6)5 , (9.43)

fD22,7 = e2πσ − e4πσ − 2e6πσ + 2e8πσ + e10πσ − e12πσ. (9.44)

The result for the hemisphere partition function is :

Zr�0
D2 (D22,7) = $0 + 2$1. (9.45)

D23 or D29 The functions are given by

fD23
1 = x1 + ax2 (9.46)

gD23
1 = x5

1 − ax4
1x2 + a2x3

1x
2
2 − a3x2

1x
3
2 + a4x1x

4
2 − a5x5

2 (9.47)

fD23
2 = x3

3 − dx3
4 (9.48)

gD23
2 = x3

3 + dx3
4 (9.49)

and

fD29
1 = x3

1 − bx3
2 (9.50)

gD29
1 = x4

1 − bx2
1x

2
2 + b2x4

2 (9.51)

fD29
2 = x2

3 − hx5 (9.52)

gD29
2 = x4

3 + hx2
3x5 + h2x2

5. (9.53)

Writing down the complex gives

W(0)2
/

o

W(2)3
W(3)3
W(1)3

/
o

W(5)4
W(3)4
W(4)4

/
o W(6)5 . (9.54)

The corresponding brane factor is given by

fD23,9 = −e2πσ − e4πσ + e8πσ + e10πσ − e12πσ + 1. (9.55)

The hemisphere partition function gives:

Zr�0
D2 (D23,9) = 3$1. (9.56)
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D25 is obtained by

fD25
1 = x2

1 + cx2
2 (9.57)

gD25
1 = x4

1 − cx2
1x

2
2 + c2x4

2 (9.58)

fD25
2 = x3

3 − dx3
4 (9.59)

gD25
2 = x3

3 + dx3
4 (9.60)

The complex is given by

W(−1)2
/

o
W(1)⊕2

3
W(2)3

/
o
W(4)⊕2

4
W(3)4

/
o W(6)5 . (9.61)

Reading off the brane factor results in

fD25 = e−2πσ − 2e2πσ − e4πσ + e6πσ + 2e8πσ − e12πσ, (9.62)

and the hemisphere partition function is evaluated to give

Zr�0
D2 (D25) = −3$0 + 6$1. (9.63)

D26 is given by

fD26
1 = x2

1 + cx2
2 (9.64)

gD26
1 = x4

1 − cx2
1x

2
2 + c2x4

2 (9.65)

fD26
2 = x3

3 + lx2
4 (9.66)

gD26
2 = x4

3 − lx2
3x

2
4 + l2x4

4 (9.67)

Setting up the complex gives

W(0)2
/

o W(2)⊕3
3

/
o W(4)⊕3

4
/

o W(6)5 , (9.68)

and the corresponding brane factor is given by

fD26 = −3e4πσ + 3e8πσ − e12πσ + 1. (9.69)

Plugging the brane factor into the hemisphere partition function
results in

Zr�0
D2 (D26) = 4$1. (9.70)

D28 is defined by the following functions

fD28
1 = x3

1 − dx3
2 (9.71)

gD28
1 = x3

1 + dx3
2 (9.72)

fD28
2 = x3

3 − ox3
4 (9.73)

gD28
2 = x3

3 + ox3
4 (9.74)

(9.75)
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The corresponding complex is of the form

W(−2)2
/

o
W(1)⊕2

3
W(0)3

/
o
W(3)⊕2

4
W(4)4

/
o W(6)5 , (9.76)

with brane factor

fD28 = e−4πσ − 2e2πσ + 2e6πσ + e8πσ − e12πσ − 1. (9.77)

Evaluation of the hemisphere partition function results in

Zr�0
D2 (D28) = −9$0 + 9$1. (9.78)

D4-branes

D4-branes are slightly different to the matrix factorisations for D0-
and D2-branes. A D4-brane is obtained by intersecting a linear devisor
h = 0 with G resulting in

Q = hη1 +Gη2 + pη̄2, (9.79)

with complex

W(−1)3
/

o
W(0)4
W(5)4

/
o W(6)5 . (9.80)

The brane factor reads

fD4 = −e−2πσ + e10πσ − e12πσ + 1, (9.81)

and gives central charge

Zr�0
D2 (D4) =

(
c2H

24 +
H3

6

)
$0 −

H3

2 $1 +
H3

2 $2. (9.82)

D6-branes

The factorisation giving the D6-brane that describes the structure
sheaf OX in the large radius phase is given by:

Q = Gη1 + pη̄1. (9.83)

The corresponding complex reads:

W(0)4
/

o W(6)5 (9.84)

Evaluating the hemisphere partition function, with brane factor

fD6 = 1− e12πσ, (9.85)

gives

Zr�0
D2 (D6) = c3ζ(3)

(2πi)3$0 +
c2H

24 $1 +
H3

6 $3. (9.86)
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9.2 P[1, 1, 1, 1, 4][8]

Similar to the previous section we state our results for various D-
branes. Because the form of the matrix factorisation are similar to
those considered in section 9.1, we will only write down the different
terms. We set the vacuum charges to(

q|0〉,R|0〉
)
= (8, 5). (9.87)

The constant coefficients in the subsequent given matrix factorisations
fulfil

b8 = −1 a8 = −1
e2 = −1 f2 = −1
c4 = −1 h4 = −1.

(9.88)

D0-branes

D01 or D04 The corresponding terms in the factorisations for these
branes are

fD01
1 = x1 + bx2 (9.89)

gD01
1 = x7

1 − bx6
1x2 + b2x5

1x
2
2 − b3x4

1x
3
2 + b4x3

1x
4
2 − b5x2

1x
5
2 + b6x1x

6
2 − b7x7

2 (9.90)

and

fD04
1 = x4

1 − ex5 (9.91)

gD04
1 = x4

1 + ex5. (9.92)

The complex is given by

W(1)1
/

o
W(2)⊕3

2
W(5)2

/
o
W(6)⊕3

3
W(3)⊕3

3

/
o
W(7)⊕3

4
W(4)4

/
o W(8)5 , (9.93)

which leads to the brane factor

fD01,4 = −e2πσ + 3e4πσ − 3e6πσ + e8πσ + e10πσ − 3e12πσ + 3e14πσ − e16πσ. (9.94)

The hemisphere partition function gives

Zr�0
D2 (D01,4) = $0. (9.95)

D02 is obtained by setting

fD02
1 = x2

1 + cx2
2 (9.96)

gD02
1 = x6

1 − cx4
1x

2
2 + c2x2

1x
4
2 − c3x6

2. (9.97)

The complex of Wilson line branes reads
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W(0)1
/

o

W(1)⊕2
2

W(2)2
W(4)2

/
o

W(3)⊕2
3

W(6)3
W(5)⊕2

3
W(2)3

/
o

W(7)⊕2
4

W(4)4
W(6)4

/
o W(8)5 . (9.98)

From the above complex we can read off the corresponding brane
factor

fD02 = 2e2πσ − 2e6πσ + 2e8πσ − 2e10πσ + 2e14πσ − e16πσ − 1. (9.99)

Plugging the brane factor into the hemisphere partition function
results in

Zr�0
D2 (D02) = 2$0. (9.100)

D03 has the following factorisation

fD03
1 = x4

1 − ex4
2 (9.101)

gD03
1 = x4

1 + ex4
2, (9.102)

and corresponding complex

W(−2)1
/

o
W(2)⊕2

2
W(−1)⊕2

2

/
o

W(3)⊕4
3

W(6)3
W(0)3

/
o
W(7)⊕2

4
W(4)⊕2

4

/
o W(8)5 .

(9.103)

Reading off the brane factor gives

fD03 =− e−4πσ + 2e−2πσ + 2e4πσ − 4e6πσ + 2e8πσ

− e12πσ + 2e14πσ − e16πσ − 1. (9.104)

Evaluating the hemisphere partition function results in

Zr�0
D2 (D03) = 4$0. (9.105)

D2-branes

D21 and D24 The relevant terms read

fD21
1 = x1 + bx2 (9.106)

gD21
1 = x7

1 − bx6
1x2 + b2x5

1x
2
2 − b3x4

1x
3
2 + b4x3

1x
4
2 − b5x2

1x
5
2 + b6x1x

6
2 − b7x7

2 (9.107)

fD21
2 = x3 + ax4 (9.108)

gD21
2 = x7

3 − ax6
3x4 + a2x5

3x
2
4 − a3x4

3x
3
4 + a4x3

3x
4
4 − a5x2

3x
5
4 + a6x3x

6
4 − a7x7

4. (9.109)
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For D24 we have

fD24
1 = x1 + bx2 (9.110)

gD24
1 = x7

1 − bx6
1x2 + b2x5

1x
2
2 − b3x4

1x
3
2 + b4x3

1x
4
2 − b5x2

1x
5
2 + b6x1x

6
2 − b7x7

2 (9.111)

fD24
2 = x4

3 − ex5 (9.112)

gD24
2 = x4

3 + ex5. (9.113)

Setting up the complex results in

W(2)2
/

o
W(3)⊕2

3
W(6)3

/
o

W(4)4
W(7)⊕2

4

/
o W(8)5 . (9.114)

The brane factor can simply be read off and is given by

fD24 = e4πσ − 2e6πσ + e8πσ − e12πσ + 2e14πσ − e16πσ, (9.115)

resulting in

Zr�0
D2 (D21,4) = $0 +$1. (9.116)

D22 and D27 Corresponding to D22 we have

fD22
1 = x1 + bx2 (9.117)

gD22
1 = x7

1 − bx6
1x2 + b2x5

1x
2
2 − b3x4

1x
3
2 + b4x3

1x
4
2 − b5x2

1x
5
2 + b6x1x

6
2 − b7x7

2 (9.118)

fD22
2 = x2

3 + cx2
4 (9.119)

gD22
2 = x6

3 − cx4
3x

2
4 + c2x2

3x
4
4 − c3x6

4 (9.120)

and for D27 we set

fD27
1 = x2

1 + cx2
2 (9.121)

gD27
1 = x6

1 − cx4
1x

2
2 + c2x2

1x
4
2 − c3x6

2 (9.122)

fD27
2 = x4

3 − ex5 (9.123)

gD27
2 = x4

3 + ex5. (9.124)

The associated complex reads

W(1)2
/

o

W(2)3
W(3)3
W(5)3

/
o

W(6)4
W(4)4
W(7)4

/
o W(8)5 , (9.125)

with brane factor

fD22,7 = e2πσ − e4πσ − e6πσ + e8πσ − e10πσ + e12πσ + e14πσ − e16πσ.
(9.126)

The hemisphere partition function is given by

Zr�0
D2 (D22,7) = $0 + 2$1. (9.127)
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D23 and D29 The corresponding factorisation terms are

fD23
1 = x1 + bx2 (9.128)

gD23
1 = x7

1 − bx6
1x2 + b2x5

1x
2
2 − b3x4

1x
3
2 + b4x3

1x
4
2 − b5x2

1x
5
2 + b6x1x

6
2 − b7x7

2 (9.129)

fD23
2 = x4

3 − ex4
4 (9.130)

gD23
2 = x4

3 + ex4
4, (9.131)

and

fD29
1 = x4

1 − ex4
2 (9.132)

gD29
1 = x4

1 + ex4
2 (9.133)

fD29
2 = x4

3 − fx5 (9.134)

gD29
2 = x4

3 + fx5. (9.135)

These branes are represented by the following complex

W(−1)2
/

o
W(3)⊕2

3
W(0)3

/
o
W(4)⊕2

4
W(7)4

/
o W(8)5 . (9.136)

This complex results in the brane factor

fD23,9 = e−2πσ − 2e6πσ + 2e8πσ + e14πσ − e16πσ − 1. (9.137)

The charges are given by

Zr�0
D2 (D23,9) = −2$0 + 4$1. (9.138)

D25 is given by the following terms

fD25
1 = x2

1 + cx2
2 (9.139)

gD25
1 = x6

1 − cx4
1x

2
2 + c2x2

1x
4
2 − c3x6

2 (9.140)

fD25
2 = x2

3 + hx2
4 (9.141)

gD25
2 = x6

3 − hx4
3x

2
4 + h2x2

3x
4
4 − h3x6

4. (9.142)

The corresponding complex is given by

W(0)2
/

o
W(2)⊕2

3
W(4)3

/
o
W(6)⊕2

4
W(4)4

/
o W(8)5 . (9.143)

resulting in the brane factor

fD25 = −2e4πσ + 2e12πσ − e16πσ + 1. (9.144)

Evaluating the hemisphere partition function results in

Zr�0
D2 (D25) = 4$1. (9.145)
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D26 The corresponding functions read

fD26
1 = x2

1 + cx2
2 (9.146)

gD26
1 = x6

1 − cx4
1x

2
2 + c2x2

1x
4
2 − c3x6

2 (9.147)

fD26
2 = x4

3 − ex4
4 (9.148)

gD26
2 = x4

3 + ex4
4. (9.149)

Setting up the Wilson line complex gives

W(−2)2
/

o
W(2)⊕2

3
W(0)3

/
o
W(4)⊕2

4
W(6)4

/
o W(8)5 , (9.150)

with brane factor

fD26 = e−4πσ − 2e4πσ + 2e8πσ + e12πσ − e16πσ − 1. (9.151)

This brane has charges given by

Zr�0
D2 (D26) = −8$0 + 8$1. (9.152)

D28 is given by

fD28
1 = x4

1 − ex4
2 (9.153)

gD28
1 = x4

1 + ex4
2 (9.154)

fD28
2 = x4

3 − fx4
4 (9.155)

gD28
2 = x4

3 + fx4
4. (9.156)

The corresponding complex is

W(−4)2
/

o W(0)⊕3
3

/
o W(4)⊕3

4
/

o W(8)5 . (9.157)

From this complex we can read off the following brane factor

fD28 = e−8πσ + 3e8πσ − e16πσ − 3. (9.158)

Evaluating the hemisphere partition function gives

Zr�0
D2 (D28) = −32$0 + 16$1. (9.159)

D4-brane

Again we construct a D4-brane by intersecting the G with a linear
divisor h. The complex is given by

W(−1)3
/

o
W(7)4
W(0)4

/
o W(8)5 . (9.160)

Plugging the brane factor,

fD4 = −e−2πσ + e14πσ − e16πσ + 1, (9.161)

into the hemisphere partition function results in

Zr�0
D2 (D4) =

(
c2H

24 +
H3

6

)
$0 −

H3

2 $1 +
H3

2 $2. (9.162)
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D6-brane

A D6-brane is given by the same factorisation as stated in the previ-
ous section. Only the complex has to be adjusted and gives

W(0)4
/

o W(8)5 , (9.163)

with brane factor

fD6 = 1− e16πσ (9.164)

and central charge

Zr�0
D2 (D6) = c3ζ(3)

(2πi)3$0 +
c2H

24 $1 +
H3

6 $3. (9.165)

9.3 P[1, 1, 1, 2, 5][10]

The vacuum charges are set to(
q|0〉,R|0〉

)
= (10, 5). (9.166)

The coefficients in the matrix factorisations are solutions of
b10 = −1
c5 = 1
d2 = −1
a2 = 1
f2 = −1.

(9.167)

D0-branes

D01, D04 and D05 The factorisations of these branes are given by

fD01
1 = x1 + bx2 (9.168)

gD01
1 = x9

1 − bx8
1x2 + b2x7

1x
2
2 − b3x6

1x
3
2 + b4x5

1x
4
2 − b5x4

1x
5
2

+ b6x3
1x

6
2 − b7x2

1x
7
2 + b8x1x

8
2 − b9x9

2, (9.169)

fD04
1 = x2

1 + cx4 (9.170)

gD04
1 = x8

1 − cx6
1x4 + c2x4

1x
2
4 − c3x2

1x
3
4 + c4x4

4 (9.171)

and

fD05
1 = x5

1 − dx5 (9.172)

gD05
1 = x5

1 + dx5 (9.173)

The complex reads

W(1)1
/

o

W(2)⊕2
2

W(3)2
W(6)2

/
o

W(3)3
W(4)⊕2

3
W(7)⊕2

3
W(8)3

/
o

W(5)4
W(8)4
W(9)⊕2

4

/
o W(10)5 . (9.174)
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The brane factor is given by

fD01,4,5 = −e2πσ + 2e4πσ − 2e8πσ + e10πσ + e12πσ − 2e14πσ + 2e18πσ − e20πσ. (9.175)

The hemisphere partition function gives

Zr�0
D2 (D01,4,5) = $0. (9.176)

D02 is given by setting

fD02
1 = x2

1 + cx2
2 (9.177)

gD02
1 = x8

1 − cx6
1x

2
2 + c2x4

1x
4
2 − c3x2

1x
6
2 + c4x8

2, (9.178)

which leads to the complex

W(0)1
/

o

W(2)⊕2
2

W(1)2
W(5)2

/
o

W(4)3
W(3)⊕2

3
W(7)⊕2

3
W(6)3

/
o

W(5)4
W(9)4
W(8)⊕2

4

/
o W(10)5 . (9.179)

The corresponding brane factor is

fD02 = −e2πσ + 2e4πσ − 2e6πσ − e8πσ + 2e10πσ − e12πσ − 2e14πσ

+ 2e16πσ + e18πσ − e20πσ − 1. (9.180)

Calculating the hemisphere partition function results in

Zr�0
D2 (D02) = 2$0. (9.181)

D03 is given by

fD03
1 = x5

1 + dx5
2 (9.182)

gD03
1 = x5

1 − dx5
2, (9.183)

with corresponding complex:

W(−3)1
/

o

W(2)⊕2
2

W(−2)2
W(−1)2

/
o

W(7)3
W(4)⊕2

3
W(3)⊕2

3
W(0)3

/
o

W(9)4
W(8)4
W(5)⊕2

4

/
o W(10)5 .

(9.184)

The brane factor results in

fD03 = −e−6πσ + e−4πσ + e−2πσ + 2e4πσ − 2e6πσ − 2e8πσ

+ 2e10πσ − e14πσ + e16πσ + e18πσ − e20πσ − 1,
(9.185)

and leads to the following central charge

Zr�0
D2 (D03) = 5$0. (9.186)
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D2 branes

D21,D22 or D23 are a result of the following factorisations

fD21
1 = x1 + bx2 (9.187)

gD21
1 = x9

1 − bx8
1x2 + b2x7

1x
2
2 − b3x6

1x
3
2 + b4x5

1x
4
2

− b5x4
1x

5
2 + b6x3

1x
6
2 − b7x2

1x
7
2 + b8x1x

8
2 − b9x9

2 (9.188)

fD21
2 = x2

3 + cx4 (9.189)

gD21
2 = x8

3 − cx6
3x4 + c2x4

3x
2
4 − c3x2

3x
3
4 + c4x4

4, (9.190)

fD22
1 = x1 + bx2 (9.191)

gD21
1 = x9

1 − bx8
1x2 + b2x7

1x
2
2 − b3x6

1x
3
2 + b4x5

1x
4
2

− b5x4
1x

5
2 + b6x3

1x
6
2 − b7x2

1x
7
2 + b8x1x

8
2 − b9x9

2 (9.192)

fD22
2 = x5

3 + dx5 (9.193)

gD22
2 = x5

3 − dx5 (9.194)

and

fD23
1 = x2

1 + cx4 (9.195)

gD23
1 = x8

1 − cx6
1x4 + c2x4

1x
2
4 − c3x2

1x
3
4 + c4x4

4 (9.196)

fD23
2 = x5

2 + dx5 (9.197)

gD23
2 = x5

2 − dx5. (9.198)

The Wilson line brane complex is given by

W(2)2
/

o

W(3)3
W(4)3
W(7)3

/
o

W(5)4
W(8)4
W(9)4

/
o W(10)5 . (9.199)

The brane factor reads

fD21,2,3 = e4πσ − e6πσ − e8πσ + e10πσ − e14πσ + e16πσ + e18πσ − e20πσ. (9.200)

The evaluation of the hemisphere partition function gives

Zr�0
D2 (D03) = $0 +$1. (9.201)

D24 or D25 are given by

fD24
1 = x2

1 + cx2
2 (9.202)

gD24
1 = x8

1 − cx6
1x

2
2 + c2x4

1x
4
2 − c3x2

1x
6
2 + c4x8

2 (9.203)

fD24
2 = x2

3 + ax4 (9.204)

gD24
2 = x8

3 − ax6
3x4 + a2x4

3x
2
4 − a3x2

3x
3
4 + a4x4

4 (9.205)
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and

fD25
1 = x2

1 + cx2
2 (9.206)

gD25
1 = x8

1 − cx6
1x

2
2 + c2x4

1x
4
2 − c3x2

1x
6
2 + c4x8

2 (9.207)

fD25
2 = x5

3 + dx5 (9.208)

gD25
2 = x5

3 − dx5. (9.209)

The corresponding complex is

W(1)2
/

o
W(3)⊕2

3
W(6)3

/
o

W(5)4
W(8)⊕2

4

/
o W(10)5 , (9.210)

which leads to the brane factor

fD24,5 = e2πσ − 2e6πσ + e10πσ − e12πσ + 2e16πσ − e20πσ. (9.211)

The hemisphere partition function is given by

Zr�0
D2 (D24,5) = $0 + 2$1. (9.212)

D26 or D27 can be obtained by setting

fD26
1 = x5

1 + dx5
2 (9.213)

gD26
1 = x5

1 − dx5
2 (9.214)

fD26
2 = x2

3 + cx4 (9.215)

gD26
2 = x8

3 − cx6
3x4 + c2x4

3x
2
4 − c3x2

3x
3
4 + c4x4

4 (9.216)

and

fD27
1 = x5

1 + dx5
2 (9.217)

gD27
1 = x5

1 − dx5
2 (9.218)

fD27
2 = x5

3 + fx5 (9.219)

gD27
2 = x5

3 − fx5. (9.220)

We deduce the complex

W(−2)2
/

o
W(3)⊕2

3
W(0)3

/
o

W(8)4
W(5)⊕2

4

/
o W(10)5 . (9.221)

The brane factor,

fD26,7 = e−4πσ − 2e6πσ + 2e10πσ + e16πσ − e20πσ − 1, (9.222)

leads to the following result

Zr�0
D2 (D26,7) = −5$0 + 5$1. (9.223)
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D4-brane

A D4- brane is obtained as before and is given by the complex

W(−1)3
/

o
W(0)4
W(9)4

/
o W(10)5 . (9.224)

The brane factor corresponding to this complex is

fD4 = −e−2πσ + e18πσ − e20πσ + 1. (9.225)

This brane carries the expected central charge:

Zr�0
D2 (D4) =

(
c2H

24 +
H3

6

)
$0 −

H3

2 $1 +
H3

2 $2. (9.226)

D6-brane

Also the D6-brane given by

W(0)4
/

o W(10)5 , (9.227)

with brane factor

fD6 = 1− e20πσ, (9.228)

gives the expected central charge

Zr�0
D2 (D6) = c3ζ(3)

(2πi)3$0 +
c2H

24 $1 +
H3

6 $3. (9.229)



10
Monodromy

In this chapter we study the monodromy around various distinc-
tive points in the Kähler moduli space of the previously discussed
Calabi-Yau spaces1. Therefore we will set up a basis W consisting 1 In section 5.2 further theoretical

background on the process of D-brane
transport is given.

of (Wpt,Wl,WH ,WX ) 2. The central charge of the corresponding
2 By WX we denote the GLSM lift
of the structure sheaf OX . Conse-
quently we denote with the subscripts
H, l and pt the lifts of sheaves of
a hyperplane, a line and a point
respectively.

D-branes used as basis in this chapter are3

3 The numerical values of the used
topological constants can be found in
table 9.1 of chapter 9.

Zr�0
D2 (D0) = $0

Zr�0
D2 (D2) = $1

Zr�0
D2 (D4) =

(
c2H

24 +
H3

6

)
$0 +−

H3

2 $1 +
H3

2 $2

Zr�0
D2 (D6) = c3ζ(3)

(2πi)3$0 +−
c2 ·H

24 $1 +
H3

+
$3.

(10.1)

The monodromy acts as a transformation on our basis W → W ′ =(
W ′pt,W ′l ,W ′H ,W ′X

)
. Expressing W ′ in terms of W leads to the

relation

ZD2
(
W ′
)
=MZD2 (W) , (10.2)

where M is the monodromy matrix.
Also we want to emphasise that a direct evaluation of the hemi-

sphere partition function is not necessary. Because of the properties
of a integral we can read off the monodromy matrix directly by
comparing brane factors. This feature decouples our result from
a particular phase of the GLSM. In the following we will discuss
mondromies around the large-radius-, the Landau-Ginzburg- and the
conifold-point. For setting up a basis we will rely on the the results
stated in sections 9.1, 9.2 and 9.3. To perform a monodromy we have
to specify which charge windows we are looking at. This is necessary
for the grade restriction process, because only grade restricted branes
can be transported in a sensible manner4. 4 The process of grade restriction is

described in section 5.2 and to some
extent also in 6.2.

Subsequently we will use a condensed notation to write down the
process of grade restriction in order to discuss all considered cases at
once.

Therefore we will use the following parameter

αnmk = q− (N − nw1 −mw2 − kw3), (10.3)
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where N is the quasi-homogeneous degree of the embedding polyno-
mial, and the symbol

Cn =

(
#w1
n

)
.

The charges Qiwi of the fields/coordinates of our models are summa-
rized in tables 10.1 to 10.3.

weight #

w1 1 4
w2 2 1
w3 - -

Table 10.1: Different weights in P[6]

weight #

w1 1 3
w2 4 1
w3 - -

Table 10.2: Weights in P[8]

weight #

w1 1 3
w2 2 1
w3 5 1

Table 10.3: Example of weights in
P[10]

With these definitions we write a generic Wilson line brane of a
complex representing a GLSM brane as

W
(
αijklmn

)⊕Cn
r

, (10.4)

where we use the superscript indices to denote the appropriate values
for P[6] and P[8]. Subscript indices are used for the values in P[10].
In all cases q refers to the chosen vacuum charge and N to the total
degree of the polynomial. Writing down α with subscript indices
and superscript indices denotes that the corresponding term in the
complex is appearing in P[10] and P[8]/P[6]. In order to get used
to this notation we will write down the complexes corresponding to
empty branes in the large radius(LR)- and Landau-Ginzburg(LG)-
phase. The notation αijklmn means αijk for P[6] and P[8] and αlmn for
P[10]. The LR-empty brane is represented by

W(q−N)⊕1
r−5

/
o

W(α010)⊕C4
r−4

W(α100
100)

⊕C3
r−4

W(α001)
⊕C3
r−4

W(α010)
⊕C3
r−4

/
o

W(α110
011)

⊕C3
r−3

W(α200
101)

⊕C2
r−3

W(α200)
⊕C1
r−3

W(α110)
⊕C2
r−3

/
o

W(α210
111)

⊕C2
r−2

W(α300
201)

⊕C1
r−2

W(α210)
⊕C1
r−2

W(α300)
⊕1
r−2

/
o

W(α310
211)

⊕C1
r−1

W(α400
301)

⊕1
r−1

W(α310)
⊕1
r−1

/
o W(q)⊕1

r (10.5)

In the above complex we assumed, that the weights w2 and w3 only
appear once, which is fulfilled in the examined spaces. Writing down
the LG-empty brane results in

W(q−N)⊕1
r−1

/
o W(q)⊕1

r . (10.6)

Now let Q be the maximum charge in a chosen window. The
minimum charge in a window is given by Q− (N − 1). Using the
minimum charge we get a lower bound for the charges of the Wilson-
line branes in a complex, which is given by 5 5 In later calculations we also assumed

w1 ≥ 1 and w2 ≥ 2, which is true for
the considered spaces.αnmk ≥ Q− (N − 1)

nw1 +mw2 + kw3 ≥ 1 + (Q− q).

As a first step we will set up a basis of branes and then perform
the various monodromies.

10.1 Grade Restriction process

In order to transport the basis of branes, we have to grade restrict
them to the considered window. Therefore we will outline the general
grade restriction procedure. A window consists of N − 1 consecutive
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integers. To write down a procedure valid for all considered examples,
we will consider a window of the form

{q−N + 1, q−N + 2, . . . , q} . (10.7)

Also we assume that we are in the large radius phase and use LR-
empty branes to restrict the studied branes. The procedure in the
Landau-Ginzburg phase is equivalent, but now one uses LG-empty
branes for the restriction.

D6-brane

The complex representing a D6-brane is the same as the structure of
the LG-empty brane and is given by

W(q−N + 1)⊕1
r−1

/
o W(q+ 1)⊕1

r . (10.8)

In all considered cases we cannot choose q such that the D6 lies
entirely in a window. To describe the restriction process we define

α̂nmk = αnmk + 1 (10.9)

Now we bind a appropriate LR-empty brane to remove the spurious
W(q+ 1), in the following way

W(q−N + 1)⊕1
r−1

/
o W(q+ 1)⊕1

r

W(q−N + 1)⊕1
r−6

/
o

W(α̂010)⊕C4
r−5

W(α̂100
100)

⊕C3
r−5

W(α̂001)
⊕C3
r−5

W(α̂010)
⊕C3
r−5

/
o

W(α̂110
011)

⊕C3
r−4

W(α̂200
101)

⊕C2
r−4

W(α̂200)
⊕C1
r−4

W(α̂110)
⊕C2
r−4

/
o

W(α̂210
111)

⊕C2
r−3

W(α̂300
201)

⊕C1
r−3

W(α̂210)
⊕C1
r−3

W(α̂300)
⊕1
r−3

/
o

W(α̂310
211)

⊕C1
r−2

W(α̂400
301)

⊕1
r−2

W(α̂310)
⊕1
r−2

/
o

φ

;;

W(q+ 1)⊕1
r−1

id

==

(10.10)

The identity map can be removed and one obtains

W(q−N + 1)⊕1
r−6

/
o

W(α̂010)⊕C4
r−5

W(α̂100
100)

⊕C3
r−5

W(α̂001)
⊕C3
r−5

W(α̂010)
⊕C3
r−5

/
o

W(α̂110
011)

⊕C3
r−4

W(α̂200
101)

⊕C2
r−4

W(α̂200)
⊕C1
r−4

W(α̂110)
⊕C2
r−4

/
o

W(α̂210
111)

⊕C2
r−3

W(α̂300
201)

⊕C1
r−3

W(α̂210)
⊕C1
r−3

W(α̂300)
⊕1
r−3

/
o

W(α̂310
211)

⊕C1
r−2

W(α̂400
301)

⊕1
r−2

W(α̂310)
⊕1
r−2

/
o W(q−N + 1)⊕1

r−1

(10.11)

D4-brane

A D4-brane, with a geometric interpretation as sheaf of a hyperplane,
is of the form

W(q−N)⊕1
r−2

/
o

W(q)⊕1
r−1

W(q−N + 1)⊕1
r−1

/
o W(q+ 1)⊕1

r . (10.12)

As on can see,W(q −N) and W(q + 1) are not in the window.
Therefore we have to bind various LR-empty branes and use an
algorithm developed by [32].

In table 10.4 we used α̂nmk defined in eq. (10.9).
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#

W(q−N)⊕1
r−2

W(q)⊕1
r−1 W(q+ 1)⊕1

rW(q−N + 1)⊕1
r−1

W(q−N)⊕1
r−3

W(α010)⊕C4
r−2 W(α110

011)
⊕C3
r−1 W(α110

111)
⊕C2
r W(α310

211)
⊕C1
r+1

W(q̃)⊕1
r+2 1W(α100

100)
⊕C3
r−2 W(α200

101)
⊕C2
r−1 W(α300

201)
⊕C1
r W(α400

301)
⊕1
r+1

W(α001)
⊕C3
r−2 W(α200)

⊕C1
r−1 W(α210)

⊕C1
r W(α310)

⊕1
r+1

W(α010)
⊕C3
r−2 W(α110)

⊕C2
r−1 W(α300)⊕1

r

W(q−N + 1)⊕1
r−6

W(α̂010)⊕C4
r−5 W(α̂110

011)
⊕C3
r−4 W(α̂110

111)
⊕C2
r−3 W(α̂310

211)
⊕C1
r−2

W(q+ 1)⊕1
r−1 1W(α̂100

100)
⊕C3
r−5 W(α̂200

101)
⊕C2
r−4 W(α̂300

201)
⊕C1
r−3 W(α̂400

301)
⊕1
r−2

W(α̂001)
⊕C3
r−5 W(α̂200)

⊕C1
r−4 W(α̂210)

⊕C1
r−3 W(α̂310)

⊕1
r−2

W(α̂010)
⊕C3
r−5 W(α̂110)

⊕C2
r−4 W(α̂300)

⊕1
r−3

Table 10.4: General grade restriction
process with a D4-brane

D2-brane

To write down a D2-brane in the most general manner we define

C̃n =

(
#w1 − 2

n

)
βnmknmk = αnmknmk + 2w1.

W(q−N + 2w1)
⊕1
r−3

/
o

W(β010)⊕C̃2
r−2

W(β100
001)

⊕C̃1
r−2

W(β010)
⊕C̃1
r−2

W(β100)
⊕1
r−2

/
o

W(β110
011)

⊕C̃1
r−1

W(β200
101)

⊕1
r−1

W(β110)
⊕1
r−1

/
o W(q)⊕1

r . (10.13)

For these D2-brane grade restriction is not required because its
charges lie entirely in a given window.

D0-brane

Before writing down a D0-brane we define

˜̃Cn =

(
#w1 − 1

n

)
γnmknmk = αnmknmk +w1.

By using the above definitions we can express a D0-brane by the
following complex

W(q−N +w1)
⊕1
r−4

/
o

W(γ010)⊕
˜̃C3

r−3

W(γ100
001)

⊕ ˜̃C2
r−3

W(γ010)
⊕ ˜̃C2
r−2

W(γ100)
⊕ ˜̃C1
r−2

/
o

W(γ110
011)

⊕ ˜̃C2
r−2

W(γ200
101)

⊕ ˜̃C1
r−2

W(γ110)
⊕ ˜̃C1
r−2

W(γ200)
⊕1
r−2

/
o

W(γ210
111)

⊕ ˜̃C1
r−1

W(γ300
201)

⊕1
r−1

W(γ210)
⊕1
r−1

/
o W(q)⊕1

r . (10.14)

Also in the case of the D0-brane no grade restriction is needed
as long as we choose q to be equal to the maximum charge of the
considered window.

10.2 P [1, 1, 1, 1, 2] [6]

To perform a monodromy we have to fix a window. We choose
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w1 :θ ∈ (−6π,−4π) q ∈ (0, 1, 2, 3, 4, 5) (10.15)
w2 :θ ∈ (−8π,−6π) q ∈ (1, 2, 3, 4, 5, 6) . (10.16)

In the following we give the basis of branes for this model explic-
itly.

D0-brane

W(0)⊕1
1

/
o
W(2)⊕1

2
W(1)⊕3

2

/
o
W(3)⊕3

3
W(2)⊕3

3

/
o
W(4)⊕3

4
W(3)⊕1

4

/
o W(5)⊕1

5 . (10.17)

The corresponding brane-factor is given by

fD0
B = 3e2πσ − 2e4πσ − 2e6πσ + 3e8πσ − e10πσ − 1. (10.18)

D2-brane We get the following complex

W(1)⊕1
2

/
o
W(3)⊕1

3
W(2)⊕2

3

/
o
W(4)⊕2

4
W(3)⊕1

4

/
o W(5)⊕1

5 , (10.19)

with brane-factor

fD2
B = e2πσ − 2e4πσ + 2e8πσ − e10πσ. (10.20)

D4-brane We will not write down the grade restricted complex of
a D4-brane, which can be obtained by using table 10.4. The brane-
factor is

fD4
B = 9e2πσ − 5e4πσ − 5e6πσ + 9e8πσ − 4e10πσ − 4. (10.21)

D6-brane A complex presenting a D6-brane is given by

W(0)⊕1
−1

/
o
W(2)⊕1

0
W(1)⊕4

0

/
o
W(3)⊕4

1
W(2)⊕6

1

/
o
W(4)⊕6

2
W(3)⊕4

2

/
o
W(5)⊕4

3
W(4)⊕1

3

/
o W(0)⊕1

4 . (10.22)

Reading off the brane-factor gives

fD6
B = 4e2πσ − 5e4πσ + 5e8πσ − 4e10πσ. (10.23)

With the basis at hand we can begin calculating monodromies.

Large-Radius-Monodromy

A LR-monodromy can simply be done by shifting the charges of
a basis brane complex by 1 and grade restricting back to the old
window6. For the grade restriction one uses a LR-empty brane. After 6 An explanation why this is a LR-

monodromy is given in section 5.2.the grade restriction one can simply compare the brane factors and
write down the desired monodromy-matrix. We will simply state
the brane-factors of our transported basis, because the procedure for
grade restriction should be familiar from previous sections. We get
the following transported and restricted brane-factors:
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fD0
B′ = 3e2πσ − 2e4πσ − 2e6πσ + 3e8πσ − e10πσ − 1 (10.24)
fD2
B′ = 4e2πσ − 4e4πσ − 2e6πσ + 5e8πσ − 2e10πσ − 1 (10.25)
fD4
B′ = 12e2πσ − 11e4πσ − 5e6πσ + 15e8πσ − 7e10πσ − 4 (10.26)
fD6
B′ = 16e2πσ − 16e4πσ − 5e6πσ + 20e8πσ − 11e10πσ − 4. (10.27)

Comparison with the previously chosen basis gives the following
monodromy matrix

MLR =


1 0 0 0
1 1 0 0
0 3 1 0
0 3 1 1

 . (10.28)

Landau-Ginzburg-Monodromy

A LG-monodromy can be performed similar to a LR-monodromy,
except that we shift the gauge charge by -1 and use the LG-empty-
brane for grade restriction. Applying this procedure to our basis
results in

fD0
B′ = −2e2πσ − 2e4πσ + 3e6πσ − e8πσ − e10πσ + 3 (10.29)
fD2
B′ = −2e2πσ + 2e6πσ − e8πσ + 1 (10.30)
fD4
B′ = −5e2πσ − 5e4πσ + 9e6πσ − 4e8πσ − 4e10πσ + 9 (10.31)
fD6
B′ = −5e2πσ + 5e6πσ − 4e8πσ + 4. (10.32)

By matching with the basis-brane-factors we get the following
monodromy matrix

MLG =


1 0 −1 1
−1 1 0 0
3 −3 −3 4
0 0 −1 1

 . (10.33)

Conifold-Monodromy

Performing a conifold-monodromy is a more subtle task. At first
one has to choose a path in the moduli space to transport the brane
around the singularities. We choose the path sketched in fig. 10.1.

θ

r

−10 π −8 π −6 π −4 π

w2 w1

Figure 10.1: Path in the moduli
space.

Let us describe the process of transporting a brane in an algorith-
mic way:

1. Restrict the brane to window w2 by using large-radius-empty-
branes and transport the brane to the Landau-Ginzburg-phase

2. Use LG-empty-branes to restrict to window w1. The restricted
brane can now be transported in a sensible way to the large-radius-
phase

3. In the large-radius-phase use large-radius-empty-branes to restrict
the brane back to w2
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4. Compare brane-factors of the transported and untransported brane
and read off the monodromy.

As before, we simply state the brane-factors of the transported
branes

fD0
B′ = −5e2πσ + 8e4πσ − 2e6πσ − 7e8πσ + 7e10πσ − e12πσ (10.34)
fD2
B′ = e2πσ − 2e4πσ + 2e8πσ − e10πσ (10.35)
fD4
B′ = −23e2πσ + 35e4πσ − 5e6πσ − 31e8πσ + 28e10πσ − 4e12πσ (10.36)
fD6
B′ = 4e2πσ − 5e4πσ + 5e8πσ − 4e10πσ. (10.37)

The conifold-monodromy matrix is given by

MC =


1 0 0 −1
0 1 0 0
0 0 1 −4
0 0 0 1

 . (10.38)

Consistency Check

Monodromy matrices furnish a group. They should satisfy the follow-
ing relation

MLGMLRMC = 1. (10.39)

By inserting eqs. (10.28), (10.33) and (10.38) we see that they obey
this condition. Also MLG has to have the following property

M6
LG = 1, (10.40)

which is indeed fulfilled by eq. (10.33).

10.3 P[1, 1, 1, 1, 4][8]

As before we have to fix windows. We choose

w1 :θ ∈ (−8π,−6π) q ∈ (0, 1, 2, 3, 4, 5, 6, 7) (10.41)
w2 :θ ∈ (−10π,−8π) q ∈ (1, 2, 3, 4, 5, 6, 7, 8) . (10.42)

As important as choosing a window is to set up a basis of branes
consistent with the chosen window. As in section 10.2, we can set up
our basis by using the branes given in eqs. (10.11) to (10.14).

Because the complex representing the branes can be obtained as
in section 10.2 we will only state the brane-factors of the basis branes.

D0-brane

fD0
B = 3e2πσ − 3e4πσ + e6πσ + e8πσ − 3e10πσ + 3e12πσ − e14πσ − 1 (10.43)
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D2-brane

fD2
B = e2πσ − 2e4πσ + 2e8πσ − e10πσ (10.44)

D4-brane

fD4
B = 10e2πσ − 10e4πσ + 4e6πσ + 4e8πσ − 10e10πσ + 10e12πσ − 4e14πσ − 4 (10.45)

D6-brane

fD6
B = 4e2πσ − 6e4πσ + 4e6πσ − 4e10πσ + 6e12πσ − 4e14πσ (10.46)

Having set up a basis we can now transport it.

Large-Radius-Monodromy

We give only the results for the transported branes. Details can be
found in section 10.2.

fD0
B′ = 3e2πσ − 3e4πσ + e6πσ + e8πσ − 3e10πσ + 3e12πσ − e14πσ − 1 (10.47)
fD2
B′ = 4e2πσ − 5e4πσ + 2e6πσ + e8πσ − 4e10πσ + 5e12πσ − 2e14πσ − 1 (10.48)
fD4
B′ = 12e2πσ − 14e4πσ + 6e6πσ + 4e8πσ − 12e10πσ + 14e12πσ − 6e14πσ − 4 (10.49)
fD6
B′ = 16e2πσ − 20e4πσ + 10e6πσ + 4e8πσ − 16e10πσ + 20e12πσ − 10e14πσ − 4. (10.50)

Comparing with the basis brane-factors gives the following mon-
odromy matrix

MLR =


1 0 0 0
1 1 0 0
0 2 1 0
0 2 1 1

 . (10.51)

Landau-Ginzburg-Monodromy

Again, we will only state the results, given by

fD0
B′ = −3e2πσ + e4πσ + e6πσ − 3e8πσ + 3e10πσ − e12πσ − e14πσ + 3 (10.52)
fD2
B′ = −2e2πσ + e4πσ − e8πσ + 2e10πσ − e12πσ + 1 (10.53)
fD4
B′ = −10e2πσ + 4e4πσ + 4e6πσ − 10e8πσ + 10e10πσ − 4e12πσ − 4e14πσ + 10 (10.54)
fD6
B′ = −6e2πσ + 4e4πσ − 4e8πσ + 6e10πσ − 4e12πσ + 4. (10.55)

The monodromy matrix is given by

MLG =


1 0 −1 1
−1 1 0 0
2 −2 −3 4
0 0 −1 1

 . (10.56)
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Conifold-Monodromy

By performing the steps stated in section 10.2 we obtain the following
brane-factors

fD0
B′ = −5e2πσ + 9e4πσ − 7e6πσ + e8πσ + 5e10πσ − 9e12πσ + 7e14πσ − e16πσ (10.57)
fD2
B′ = e2πσ − 2e4πσ + e6πσ − e10πσ + 2e12πσ − e14πσ (10.58)
fD4
B′ = −22e2πσ + 38e4πσ − 28e6πσ + 4e8πσ + 22e10πσ − 38e12πσ + 28e14πσ − 4e16πσ (10.59)
fD6
B′ = 4e2πσ − 6e4πσ + 4e6πσ − 4e10πσ + 6e12πσ − 4e14πσ. (10.60)

The result for the monodromy-matrix reads

MC =


1 0 0 −1
0 1 0 0
0 0 1 −4
0 0 0 1

 . (10.61)

Consistency

Again our matrices (eqs. (10.51), (10.56) and (10.61) fulfil eq. (10.39).
Also eq. (10.56) has the property

M8
LG = 1. (10.62)

10.4 P[1, 1, 1, 2, 5][10]

We fix the windows to

w1 :θ ∈ (−10π,−8π) q ∈ (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) (10.63)
w2 :θ ∈ (−12π,−10π) q ∈ (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) . (10.64)

By employing eqs. (10.11) to (10.14) we get the following results
for our basis brane-factors.

D0-brane

fD0
B = 2e2πσ − 2e6πσ + e8πσ + e10πσ − 2e12πσ + 2e16πσ − e18πσ − 1 (10.65)

D2-brane

fD2
B = e2πσ − e4πσ − e6πσ + e8πσ − e12πσ + e14πσ + e16πσ − e18πσ (10.66)

D4-brane

fD4
B = 5e2πσ − 5e6πσ + 3e8πσ + 3e10πσ − 5e12πσ + 5e16πσ − 3e18πσ − 3 (10.67)
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D6-brane

fD6
B = 3e2πσ − 2e4πσ − 2e6πσ + 3e8πσ − 3e12πσ + 2e14πσ + 2e16πσ − 3e18πσ (10.68)

Subsequently we will only give the results of the calculations,
because they are analogous to section 10.2.

Large-Radius-Monodromy

Our transported brane-factors read

fD0
B′ = 2e2πσ − 2e6πσ + e8πσ + e10πσ − 2e12πσ + 2e16πσ − e18πσ − 1 (10.69)
fD2
B′ = 3e2πσ − e4πσ − 3e6πσ + 2e8πσ + e10πσ − 3e12πσ + e14πσ + 3e16πσ − 2e18πσ − 1 (10.70)
fD4
B′ = 6e2πσ − e4πσ − 6e6πσ + 4e8πσ + 3e10πσ − 6e12πσ + e14πσ + 6e16πσ − 4e18πσ − 3 (10.71)
fD6
B′ = 9e2πσ − 3e4πσ − 8e6πσ + 7e8πσ + 3e10πσ − 9e12πσ + 3e14πσ + 8e16πσ − 7e18πσ − 3. (10.72)

Comparison with the basis gives the following monodromy-matrix

MLR =


1 0 0 0
1 1 0 0
0 1 1 0
0 1 1 1

 . (10.73)

Landau-Ginzburg-Monodromy

Doing a LG-monodromy results in

fD0
B′ = −2e4πσ + e6πσ + e8πσ − 2e10πσ + 2e14πσ − e16πσ − e18πσ + 2 (10.74)
fD2
B′ = −e2πσ − e4πσ + e6πσ − e10πσ + e12πσ + e14πσ − e16πσ + 1 (10.75)
fD4
B′ = −5e4πσ + 3e6πσ + 3e8πσ − 5e10πσ + 5e14πσ − 3e16πσ − 3e18πσ + 5 (10.76)
fD6
B′ = −2e2πσ − 2e4πσ + 3e6πσ − 3e10πσ + 2e12πσ + 2e14πσ − 3e16πσ + 3, (10.77)

and a monodromy-matrix given by

MLG =


1 0 −1 1
−1 1 0 0
1 −1 −2 3
0 0 −1 1

 . (10.78)

Conifold-Monodromy

Under a conifold-monodromy the basis transforms to

fD0
B′ = −4e2πσ + 4e4πσ + 2e6πσ − 5e8πσ + e10πσ + 4e12πσ − 4e14πσ − 2e16πσ + 5e18πσ − e20πσ (10.79)
fD2
B′ = e2πσ − e4πσ − e6πσ + e8πσ − e12πσ + e14πσ + e16πσ − e18πσ (10.80)
fD4
B′ = −13e2πσ + 12e4πσ + 7e6πσ − 15e8πσ + 3e10πσ + 13e12πσ − 12e14πσ − 7e16πσ + 15e18πσ − 3e20πσ

(10.81)

fD6
B′ = 3e2πσ − 2e4πσ − 2e6πσ + 3e8πσ − 3e12πσ + 2e14πσ + 2e16πσ − 3e18πσ. (10.82)
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Comparing the old basis elements with the transported one gives

MC =


1 0 0 −1
0 1 0 0
0 0 1 −3
0 0 0 1

 . (10.83)

Consistency

As expected, the obtained matrices again fulfil eq. (10.39). Also MLG

(eq. (10.78)) fulfils

M10
LG = 1. (10.84)

10.5 Comparison of our Result with known Results

The monodromy matrices of the studied space have been calculated
before by [5]. We want to remark that the authors of [5] used a
rather different method, namely mirror symmetry, to obtain the
monodromy matrices. By comparison with their result we noticed that
the matrices calculated by us, are the inverse matrices of the results
given in [5]. For completeness we give the transformation matrices
from our basis to the basis used for calculating the matrices given in
[5, pp.10-11] explicitly. The relations between the matrices are of the
form

S = U
(
M−1
LR

)N
U−1

A = UM−1
LGU

−1

T = UM−1
C U−1,

(10.85)

where U is the transformation matrix. N is the homogeneous de-
gree of the polynomial, whose vanishing locus gives the Calabi-Yau
manifold.

P[1, 1, 1, 1, 2][6]

The transformation matrix reads

U =


0 1 0 0
−1 0 0 0
4 3 −1 0
0 0 0 −1

 . (10.86)

P[1, 1, 1, 1, 4][8]

For this configuration we obtained

U =


0 1 0 0
−1 0 0 0
4 2 −1 0
0 0 0 −1

 . (10.87)
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P[1, 1, 1, 2, 5][10]

To get the results of [5] one applies the following transformation
matrix

U =


3 0 −1 0
−1 0 0 0
0 −1 0 0
0 0 0 −1

 . (10.88)
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Conclusion

In this thesis we discussed boundaries in N = (2, 2) supersymmetric
theories. After developing the necessary theoretical prerequisites,
we used the hemisphere partition function to calculate central
charges and monodromy matrices for D-branes in the gauged lin-
ear sigma model. Thereby we were able to reproduce the results
for the monodromy matrices in [5], obtained by mirror symmetry.

A possible extension would be to consider monodromies in models
with more than one Kähler parameter. This can be achieved by
considering higher rank gauge groups. Higher rank abelian gauge
groups where studied in [16] and in the context of the hemisphere
partition function in [2]. In [2] also non abelian gauge groups where
discussed. Of particular interest would be to find a interpretation of
the hemisphere partition function in the Landau-Ginzburg phase.
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