
Parallelization of BVH and BSP on
the GPU

MASTERARBEIT

zur Erlangung des akademischen Grades

Master of Science

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Martin Imre, BSc.
Matrikelnummer 0853761

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.techn. Werner Purgathofer

Wien, 14. Juni 2016
Martin Imre Werner Purgathofer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Parallelization of BVH and BSP on
the GPU

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Software Engineering & Internet Computing

by

Martin Imre, BSc.
Registration Number 0853761

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Werner Purgathofer

Vienna, 14th June, 2016
Martin Imre Werner Purgathofer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Martin Imre, BSc.
Gaullachergasse 13/9-11, 1160 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 14. Juni 2016
Martin Imre

v

Acknowledgements

First and foremost I want to thank Robert F. Tobler for offering this topic to me and
being my advisor during the early stages. Unfortunately he can not see the result of my
work. Next I want to thank Werner Purgathofer for taking over the role of my thesis’
advisor. I want to thank the VRVis Zentrum für Virtual Reality und Visualisierung
Forschungs-GmbH for providing me with the opportunity to implement my approach
within one of their frameworks.

I also want to thank Stefan Maierhofer for supervising me and providing feedback
throughout all phases of my work. A special thank goes to Georg Haaser and Harald
Steinlechner for supporting me during the later phases. Amongst all the help received by
them, I am more than thankful for countless hours of debugging and re-evaluating of
ideas as well as helping with the evaluation.

Furthermore I want to thank Katharina Keuenhof for proofreading my thesis and keeping
me from going insane by providing moral support, not only in form of weekly cake
deliveries. Finally I want to thank all my flatmates for taking over chores and leaving
food for me during the time intensive phases.

vii

Kurzfassung

Rendering ist ein wichtiger Teil der Computergraphik und Visualisierung. Damit Bilder
realistisch dargestellt werden können, sind Reflektionen, Schatten und weitere Lichtstreu-
ungen nötig. Um diese zu berechnen, werden Techniken wie Ray-tracing, View-frustum-
culling und Transparenzsortierung eingesetzt. Mit Hilfe von Beschleunigungsdatenstruk-
turen ist es möglich, diese Algorithmen auf die Traversierung von Baumstrukturen zu
reduzieren welche auf der Graphikhardware realisiert werden können. Der Fokus dieser
Diplomarbeit liegt auf zwei Datenstrukturen, nämlich Bounding Volume Hierarchies
(BVH) und Binary Space Partitioning (BSP).

Üblicherweise ist es schwierig den Aufbau dieser Strukturen zu parallelisieren und die
Konstruktionszeiten sind sehr hoch. Steigende Leistung und die stark parallele Architektur
moderner Grafikarten (Graphic Processing Units, oder GPUs) motivieren jedoch dazu
auch die Konstruktion dieser Strukturen zu parallelisieren.

In der Implementierungsphase dieser Arbeit wurden mögliche Ausgangspunkte zum
Simplifizieren einer parallelisierten Konstruktion eines BSP-Baums identifiziert. Ein
hybrider Algorithmus wird vorgestellt um die langen Konstruktionszeiten von BSP-
Bäumen zu umgehen.

Dafür wird die Szene mit Hilfe eines uniformen Netzes in Zellen zerteilt, welche lediglich
über eine kleine Anzahl an Dreiecken verfügen. Danach wird parallel in jeder nicht-leeren
Zelle ein BSP-Baum gebaut. Auf diese Art kann man eine effiziente Transparenzsortierung
umsetzen, in dem man zuerst die Zellen und dann die darin enthaltenen BSP-Bäume
sortiert.

Die Evaluierung hat gezeigt, dass eine Erhöhung der Anzahl an Zellen im Netz nur
begrenzt die Aufbauzeit reduziert. Ebenso für das Sortieren, kristallisierte sich eine
Netzgröße von 25 für die beste Performanz heraus.

Der gezeigte hybride Algorithmus und die Datenstruktur versprechen die typischen
Probleme einer einzelnen BSP-Baumstruktur zu überwinden. Gleichzeitig verhindern
Hardwarelimitierungen aktueller GPUs derzeit noch die allgemeine Anwendung für
beliebige Szenen.

ix

Abstract

Rendering is a central point in computer graphics and visualization. In order to display
realistic images reflections, shadows and further realistic light diffusions is needed. To
obtain these, ray tracing, view frustum culling as well as transparency sorting among
others are commonly used techniques. Given the right acceleration structure, said
procedures can be reduced to tree traversals, which it is often parallelized on the graphics
hardware. In this thesis we focus on Bounding Volume Hierarchy (BVH) and Binary
Space Partition (BSP) which are used as such acceleration structures.

The problem with these structures is that their build time is often very high and the
generation hardly parallelizable. The rising computational power and the highly parallel
computation model of Graphics Processing Units (GPU) motivates to improve upon the
parallelization of BVH and BSP algorithms.

Among other algorithmic exploration during the implementation phase of this thesis,
possible foundation for simplifying the general problem of BSP-Tree generation in parallel
has been made. A hybrid algorithm is introduced to bypass the long construction time
of BSP-Trees by reducing the problem size to a small amount.

The scene is split via the usage of an uniform grid so that every cell contains only a small
amount of triangles. Then a BSP-Tree is built in each of the grid’s nonempty cells in
parallel. Thus transparency sorting can be done by first sorting the cells and then the
small BSP-Trees.

Evaluation showed that increasing the number of grid cells only leads to a decrease in
build times up to a certain point. Also for sorting, the performance peaks around a grid
size of 25 and decreases thereafter.

The explained hybrid algorithm and its data-structure seem to theoretically overcome
typical problems of the single BSP-Tree generation. However, limitations of the GPU
still have a high influence on this procedure.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Rendering . 1
1.2 Acceleration Structures . 3
1.3 Graphics Processing Unit . 3
1.4 Goal Of Thesis . 4

2 Related work 5
2.1 Bounding Volume Hierarchy . 5
2.2 Binary Space Partitioning . 7
2.3 Tree Traversal . 7

3 Background 9
3.1 Rendering . 9
3.2 Bounding Volume Hierarchy . 11
3.3 Binary Space Partitioning . 17
3.4 Parallel Random-Access Machine. 20

4 OpenCL 25
4.1 Introduction . 25
4.2 History . 25
4.3 Architecture . 26
4.4 Code Example . 28
4.5 Usage . 29

5 Implementation 33
5.1 Bounding Volume Hierarchy . 33
5.2 Binary Space Partitioning . 38
5.3 Limitation Of The GPU . 52

xiii

6 Evaluation 57
6.1 Setup . 57
6.2 Root Node Selection . 59
6.3 Grid Size . 60
6.4 Comparing Implementations . 62

7 Conclusion and Future Work 67
7.1 Future Work . 68

List of Figures 69

List of Tables 70

List of Algorithms 71

Bibliography 73

CHAPTER 1
Introduction

1.1 Rendering

Computer generated images are becoming more realistic every day. Yet they are not
perfect and take some time in advance to be computed. Although hardware is still
improving from one generation to the next, it still takes quick algorithms to compute
these images within a short time.

Realistic images typically consist of several fine details such as reflections, shadows and
other light diffusions. Since these are generally not easy to calculate for a whole image,
it is split in smaller parts. These splits are then organized in so-called acceleration data
structures which offer fast traversal. A typical use for traversing such a structure would
be ray tracing, frustum culling as well as transparency sorting.

1.1.1 Ray Tracing

Ray tracing is a central algorithm in the domain of rendering. Arisen in the 1970s,
it is still used when it comes to calculating reflections, shadows and transparencies in
generated scenes. When applying ray tracing — roughly speaking — an eye ray is
sent into the scene where it is reflected, absorbed, or goes through objects. In order to
calculate those intersections the ray has to be checked against every object in the scene.
Since the amount of objects in a scene has risen enormously since the introduction of ray
tracing, it is necessary to simplify this procedure. In Figure 1.1 a figurative example for
ray tracing is shown.

1.1.2 Culling

View frustum culling is used to determine which objects of a given scene have to be
displayed. When it comes to rendering, a scene is often bigger than what is displayed. It

1

1. Introduction

Figure 1.1: Ray tracing example [Hen08]

is therefore needed to evaluate what will be seen from a given point of view. Through
culling it can easily be obtained which objects needs to be rendered and which can be
completely ignored for the current view point.

1.1.3 Transparency Sorting

For realistic images it is typically needed that some objects have to be (half-)transparent.
In order to render these transparencies efficiently, a back to front rendering is applied.
This implies that the transparent objects need to be sorted in the order of their appearance.
For this process several transparency sorting algorithms are applied, depending on the
scene details. Figure 1.2 shows an example of one of these algorithms.

(a) Image with alpha blending (b) Image with transparency sorting

Figure 1.2: An example for transparency sorting from AMD’s Mecha demo [AMD], in
the left image (a) alpha blending leads to the wrong result, while in in the right image
(b) transparency sorting yields the correct one

2

1.2. Acceleration Structures

1.2 Acceleration Structures

As already mentioned in the introduction (Section 1.1), acceleration structures are used
to achieve the formerly described parts of rendering in a fast way. These structures are
characterized by fast and cheap traversals and good approximation of real objects in a
scene. In this thesis we focus on bounding volume hierarchy (BVH) and binary space
partitioning (BSP) which will be introduced in section 1.2.1 and section 1.2.2 respectively.
Further acceleration structures that are generally used are the k-d tree as well as the
quadtree and the octree which are special cases of the BSP.

1.2.1 Bounding Volume Hierarchy

The bounding volume hierarchy is a simple binary tree structure. Generally speaking it
is a hierarchy which uses the minimum bounding box of the objects in the scene. The
root node contains the whole scene and is split into two parts. The children contain
the bounding box surrounding all objects in either side of the split. The hierarchy goes
further down recursively until the nodes only hold the bounding box of a single object.
When traversed, it offers the possibility to exclude a large set of object quite fast. This
helps to reduce the number of checks for a given operation (e.g. ray tracing’s intersection
tests). Further details about the BVH are elaborated in section 3.2.

1.2.2 Binary Space Partitioning

Another acceleration structure is the binary space partitioning tree. With the BSP
algorithm the scene is separated into several disjoint regions. This is done via split planes
through the scene. Each of the planes separates the scene into two regions which are
further split recursively. This procedure is done until a certain end criteria is met. The
traversal of the resulting in a BSP-Tree is faster than the ones of the BVH-tree. This
speedup comes with the drawback of a longer buildup time. In section 3.3 we will go
further into detail about the BSP.

1.3 Graphics Processing Unit

Within the last decades the computation power of graphic hardware (graphics processing
unit (GPU)) has increased enormously. The GPU is designed to read and write memory
in a fast fashion. It further is built with a highly parallel structure. Originally conceived
for rendering with rasterisation methods, it was made accessible for general purpose
computing (GPGPU [gpg]) in the early 2000s. Through further improvements on the
support for accessing the vast parallel computational power of a GPU, it has become
common practice to do further rendering calculations — such as ray tracing — with it. Its
ample capability to parallelize tasks needs to be considered when designing algorithms in
order to leverage its full power. In section 3.4 further details of the parallel computational
model will be explained.

3

1. Introduction

1.4 Goal Of Thesis
With this thesis we aim to improve the aforementioned algorithms and implement them for
the GPU. The practical part of this thesis will be laid out within the OpenCL framework.
It further will contain a higher level of accessibility to use the implementation within an
F# or C# environment. As framework for the higher level handles the Aardvark rendering
framework of VRVis will be used. The general goal is to construct and implement efficient
and fast algorithms for BVH-and BSP-tree construction as well as traversal within the
OpenCL. The reason for this is that we want to bypass the data transfer between the
CPU and the GPU during rendering.

The desired use case for the BVH-tree was frustum culling and transparency sorting with
the BSP-Tree. Throughout the implementation stage we came across certain road blocks
and had insights showing that the starting idea would lead to unnecessary overhead.
After reevaluation on the already implemented details and the plan for this thesis we
came to a solution for each of the desired use cases. For frustum culling we will just
evaluate every triangle in parallel. For transparency sorting we are using BSP-Trees after
separating the input scene into small cells with the use of an grid. Further details about
BVH-tree and BSP-grid generation will be explained Chapter 5.

4

CHAPTER 2
Related work

2.1 Bounding Volume Hierarchy

Since automatic generation of bounding volume hierarchies was introduced by Goldsmith
et al. [GS87] in 1987 an ample amount of advances have been made in this field. In the
beginning there where several heuristic approaches used for the creation of BVH-trees.
Goldsmith et al. not only introduced the idea of automatically generated BVH but also
suggested different heuristics. Among their proposal one could find the general idea of
adding the node which leads to the least increased surface area. This — so-called —
surface area heuristic (SAH) is now commonly used in the generation of BVH-trees. Ize et
al. [AKL13] developed different measures to further analyze the quality of a BVH-tree.
Unfortunately the use of these metrics is not common and sometimes not possible during
construction.

2.1.1 Construction Methods

Throughout the last decades several approaches for generating a BVH-tree on the central
processing unit (CPU) as well as on the GPU have been introduced. The typical algorithm
in this case a top-down construction. These top-down methods [GS87, Wal07, KIS+12,
BHH15a] commonly start with the whole scene as root node and continue splitting it
until only the nodes of the BVH-tree consist of as single object. Further bottom up
methods have also been considered and used [WBKP08, GHFB13, BHH15b]. In the case
of agglomerative clustering approaches the leaves are first created containing a single
geometry. The next step combines two leaves together to and connects them with a
parent node. Further those nodes are then connected in a recursive fashion until they
result in a full BVH-tree.

5

2. Related work

2.1.2 Parallel Construction

Alongside the already mentioned methods, huge ameliorations and innovations have
been made in the area of parallel construction of BVH-trees. Ize et al. [IWP07] showed
an approach where the BVH-tree is created asynchronously. This way they tackle the
problem of the degrading quality of a BVH throughout the lifetime of a scene.

Lauterbach et al. [LGS+09] introduced two construction algorithms. Their first method
used a linear ordering from a Morton code1, while the other one uses a top-down approach
which employs the surface area heuristic. Further they combined both algorithms and
removed bottlenecks for them to work on the GPU.

Pantaleoni et al. [PL10] introduced a combined approach which leverages the a greedy
SAH approach as well as the LBVH approach of Lauterbach et al. [LGS+09].

Soping et al. [SBU11] altered the BVH generation algorithm and split it into single tasks.
These separate tasks are then completed in parallel when the method is run on a GPU.
They reported speedup up to five times in comparison to Lauterbach’s algorithm.

Karras [Kar12] introduced a new method for generating a BVH-trees as well as octrees
and k-d trees. Their main contribution was the creation of a radix tree which they used
for their final construction algorithm. The full procedure leans on Lauterbach et al.’s
method by also using the Morton codes and then sorting them with said radix tree.
Further contributions are the building of a BVH-tree and further assigning bounding
boxes to every internal node in parallel.

Later Karras et al. [KA13] introduced a new algorithm that leverages the capabilities of
parallel computation for tree optimization. They first generate at BVH-tree and perform
a set of optimizations on it. After these adaptations of the original tree are done, a
post-processing step to further enhance the quality of the final BVH-tree is executed.

2.1.3 Update Based Techniques

Since the quality of a BVH has a huge influence of the traversal performance, several
update methods have been proposed. These updates (e.g. refitting, tree rotations) were
originally used in off-line2 construction. Kopta et al. [KIS+12] adapted those techniques
to also work on animated scenes. They improve the quality of a BVH by rearranging
nodes in the tree instead of rebuilding the whole tree during the refitting phase. Further
they added different variations of their algorithm and showed that they can accomplish
major improvements to former algorithms.

Another interesting approach was introduced by Ernst et al. [EG07]. Clipping the
triangles in the scene before creating the BVH itself allows the creation of higher quality
BVH-trees. This approach is commonly used amongst the newer construction methods.

1The Morton code is a way to encode multidimensional data in one dimension
2on-line construction happens at run time, while off-line methods work in advance

6

2.2. Binary Space Partitioning

2.2 Binary Space Partitioning
Since binary space partitioning was introduced in 1969 by Schumacker et al. [SD69],
several advances have been made. A decade later Fuchs et al. [FKN80] used the approach
in the area of computer graphics. From there on different developments where made.
Chin et al. [CF89] showed how to use multiple BSP-Trees for shadow generation. Ize et
al. [IWP08] leveraged the possibilities BSP-Trees offer for ray tracing. Uysal et al. [USC13]
applied BSP for hidden surface removal. They have also showed how to implement it on
in a parallel way with CUDA. Another interesting approach is the RBSP by Budge et
al. [BCNJ08]. Their algorithm restricts the allowed split plane at each level and therefore
speeds up the construction significantly.
Further restriction of the BSP leads to k-d trees. Since their construction time is more
adequate for real time usage they have been studied more thoroughly within the domain
of rendering. In 2007 Shevtsov et al. [SSK07] introduced algorithms to construct and
traverse k-d trees in parallel. A year later Zhou et al. [ZHWG08] presented the first
parallel implementation of a k-d tree on the GPU. Doggett et al. [CKL+10] showed how
to incorporate the SAH into the k-d tree construction in a parallel fashion. With Wu et
al. [WZL11a] a year later the first implementation of a SAH generated k-d tree on the
GPU was published. This year Yang et al. [YYWX16] introduced a new method — the
multi-split k-d tree — that exploits ideas of the octree and allows faster high quality
generation of a k-d tree in parallel.
Arya [Ary02] analyzed BSP’s worst case height and size in the case of axis-parallel line
segments. Further Hershberger et al. [HS03] showed additional complexity bounds.
Since BSP being a general data structure used in many fields, several advances have been
made. Listing them all would be beyond the scope of this thesis; at this point we refer
an interested reader to Tóth [Tót05] report.

2.3 Tree Traversal
The main focus of this thesis lies on the two acceleration structures (BVH and BSP).
However it is also important to mention what has been changed throughout the last
decades in the area of traversal methods and applications. Due to the parallelism
in nowadays’ GPU architectures a common method — using a stack — has become
suboptimal when it comes to memory footprint. Foley et al. [FS05] introduced two
methods to traverse a tree without a stack: KD-Restart and KD-Backtrack. To overcome
the increase of visited nodes and the back pointer problem of these methods respectively,
KD-Jump [HL09] was introduced. This technique tricks by using a small stack-like
structures with only a few integers. Also a hybrid algorithm of the stack based method
and the KD-Restart has been proposed. The so-called short stack uses a small stack to
overcome memory usage and reverts to KD-Restart in certain cases.
Another interesting technique proposed already in the 90s is using ropes while traversing.
MacDonald et al. [MB90] introduced the rope trees and their usages in ray tracing

7

2. Related work

traversal. Later Havran et al. [HBZ98] implemented said technique and showed that
it leads to a speedup during the traversal phase. These so-called ropes link leaves of
a BSP-Tree to their neighbors. Here the fact that at a given node a splitting plane
prunes one dimension is abused. Therefore the rope tree created at that leaf is just
two-dimensional. They showed that the construction of ropes is bounded by O(n logn)
with n denoting the number of leaves in the original BSP-Tree. They further showed
that the construction of rope trees lies in O(n). Therefore the complexity during BSP
construction is not increased, while the traversal cost is reduced drastically. Unfortunately
there is no further research in parallelization of these rope trees.

A special mention here goes to Andrysco et al.’s matrix tree [AT11]. Based on Andrysco et
al. [AT10] they built a data structure which achieves O(1) insert and leaf finding. They
further showed how to extend their structure in order to use it as general representation
for BSP-Trees

8

CHAPTER 3
Background

3.1 Rendering

As already mentioned in Section 1.1 it takes an ample amount of calculations to obtain a
realistic scene. In this section we will describe how rendering takes place. The first — and
most naive — rendering algorithm was the painter’s algorithm. When used, the painter’s
algorithm first sorts the polygons in the scene by their distance to the viewpoint. In
the next step those objects are rendered back to front. Although it displays the correct
image, it often re-renders certain parts of the image and is not suitable for transparencies.
In case of overlapping structures it further runs into a hurdle while sorting back to front
as shown in Figure 3.1.

Figure 3.1: Overlapping objects or polygons can cause the painter’s algorithm to fail [Muł]

The next step in terms of rendering algorithm was ray casting. Introduced by Ap-
pel [App68] in 1968 it was the first ray tracing algorithm. The main flow of the algorithm

9

3. Background

is shooting a — so-called — eye ray from the position of the viewer in order to find the
closest intersecting object. This object’s properties — such as material or transparency —
are then inspected and the object is drawn. This process is repeated for every coordinate
along one axis. The ray casting algorithm therefore draws from left to right (using the
x-axis) and therefore does not need to overdraw certain areas. Although this saves time,
a major drawback is that finding intersections is needed. This may take a long time since
every object in the scene has to be tested. A schematic example of how the algorithm
works can be seen in Figure 3.2 whereas Figure 3.2a shows a 2-dimensional example and
Figure 3.2b displays the 3-dimensional case.

(a) Ray casting example 2D [Ado] (b) Ray casting example 3D [imga]

Figure 3.2: These images show ray casting in 2D (a) and 3D (b)

The next improvement in the rendering domain was using the ray casting algorithm in a
recursive manner. This procedure is called ray tracing algorithm. Like in ray casting,
a ray is shot from a given starting point (e.g. the eye position of the viewer). Upon
intersection with an object, it is evaluated whether the object emits further rays or not.
In Whitted’s [Whi79] algorithm it is possible that a ray generates up to three new rays
when intersecting an object. These rays could be reflection, refraction and shadow rays.
In case of reflection the ray tracing restarts at the intersection point and goes into the
mirrored direction. When it comes to refraction the ray continues traveling through the
material and may exit it. Shadow rays are shot into the direction of each light of the
scene. In case an opaque material blocks the direct way to the light, the object lies in the
shadow. Figure 3.3 shows the three possibilities that can happen upon ray intersection.

Although the ray tracing algorithm is capable of generating very realistic images (one
example shown in Figure 3.4), it has a major drawback when it comes to execution time.
Because it is necessary to shoot one ray for every pixel in the image and recursively emit
rays upon object intersection, it is computationally infeasible to apply a naive ray tracing
for complex scenes or real time image generation.

Since this problem can not be solved by omitting rays the need for a faster procedure is
given. This issue is tackled by using acceleration structures such as BVH, BSP which

10

3.2. Bounding Volume Hierarchy

Figure 3.3: A schematic example of how the ray tracing algorithm works [Vog13]

will be explained in Section 3.2 and Section 3.3.

There exist further algorithms for rendering such as the scanline algorithm and raster-
ization. The former one goes through a scene line by line and renders the frontmost
objects or polygons. The latter one subdivides the scene into a grid and subsequently
goes through the grid and checks each cell for primitives to render. Since these algorithms
lie outside the focus of this thesis we will not further discuss them here.

3.2 Bounding Volume Hierarchy
The bounding volume hierarchy is a simple acceleration structure. There are several
approaches on how to build a BVH-tree where the original one was top-down. In case of
the top-down generation a bounding box containing the whole scene is created to begin
with. In the next step this bounding box — which is also the root node of the resulting
BVH-tree — is split into half. Each of these halves represent a tighter bounding box
to their containing objects. These new nodes in the tree are then further subdivided
recursively. This happens in the same manner as with the root node until a certain end
criteria is met (e.g. a node contains only one object).

Figure 3.5 offers a 2-dimensional example of a bounding volume hierarchy. The scene in
Figure 3.5a contains five bounding boxes, whereas the bigger ones are named A, B and
C. B is further split into 2 unnamed bounding volumes. Figure 3.5b displays the tree

11

3. Background

Figure 3.4: Example image for ray tracing [Trab]

equivalent of the scene. The BVH-tree has A as root node. Its children are B and C.
The former one split itself another time while the latter one already only contains two
children which are objects. The child nodes of B also contain only objects which end up
being leaf nodes.

(a) Scene divided into bounding boxes (b) Resulting BVH-tree

Figure 3.5: A 2D example [Sch] for a bounding volume hierarchy (a) and the according
BVH-tree (b)

In case of bottom-up construction the algorithm takes single objects (or their bounding
volume) as starting point. Then the two closest objects are put together within a new
bounding box. With this step the leaves of the BVH-tree — again presented by the
objects — obtain their parent nodes. This is continued recursively until there is only one
bounding box left, which contains the whole scene.

12

3.2. Bounding Volume Hierarchy

In the example shown in Figure 3.5 first the single objects are taken and for each a leaf
of the BVH-tree is created. Then each leaf object searches the next closest object and a
bounding volume is spanned upon them. The newly generated bounding box is equivalent
to a parent node in the BVH-tree. This is continued recursively to obtain B and then
further create the root node A.

Both of the generation fashions have their advantages and drawbacks. On the one hand
the top-down algorithm deals with the problem of finding a good splitting point at every
level of recursion; while on the other hand the bottom-up method needs to find the
closest object in order to combine two nodes.

Before going into detail on how exactly a BVH-tree is generated we will first discuss the
requirements it has to fulfill.

It is very important that — after the construction — the obtained BVH-tree has a high
quality. The quality of a BVH is vaguely defined by the time it takes to traverse it (e.g.
in ray tracing, the traversal time of rays). Furthermore fast construction is required —
especially in real-time rendering. In case the BVH is used in a real-time scenario shorter
build times are often more valuable than perfect quality. Hence BVH-trees used in these
settings suffer from a quality vs. speed trade-off. Another requirement is a small memory
footprint. This is very crucial when it comes to parallel implementations since they often
suffer from unbalanced or badly organized memory.

3.2.1 Construction

The examples in the last section already showed roughly how a BVH-tree is built.
Nevertheless various algorithms have been proposed to speed up certain steps during the
construction phase. Most algorithms commonly use the surface area heuristic which was
introduced by Goldsmith et al. [GS87] and is defined as followed:

SAH := 1
Aroot

(Cinn
∑
n∈I

An + Ctri
∑
n∈L

TnAn) =
∑
n∈N

Cn
An
Aroot

(3.1)

In Equation (3.1) An describes the surface area of a certain node n, N the set of nodes
split into the inner set I and the leaf nodes L. Cinn describes the costs for traversing an
inner node (i.e. two ray-node tests), while Ctri are the costs for a ray-triangle test. Cn
describes the cost for processing a node n and Tn is the number of triangles in said node.
The fraction An

Aroot
therefore is the probability of a ray intersecting a node n.

This heuristic is commonly used to speed up the construction process since the building
of an optimal BVH-tree is assumed to be an NP-hard problem. In a recent report
Aila et al. [AKL13] analyzed the correlation between the SAH and the ray tracing
performance of the resulting tree with several building algorithms. They used multiple
scenes for every algorithm and studied the correlation between the estimation through
SAH and the quality of the BVH-tree thoroughly. Throughout their inspection they
observed that the said correlation is far from perfect and that SAH often mispredicts

13

3. Background

the outcome. Nevertheless they also noticed that top-down sweep-based algorithms
often underestimate the actual performance when using the SAH. Although Aila et al.
proposed two new measurements1 for the quality of a BVH-tree, neither of them is usable
during construction.

Parallel construction

The most recent publication in the area of parallel construction for BVH-trees dates back
to 2013. Karras et al. [KA13] achieved significant speedup compared to early algorithms
and made it possible to obtain a 90% ray tracing performance compared to off-line
algorithms. Their work seems to be a giant leap towards using BVH for ray tracing in
interactive applications.

Their algorithm is split into three phases: processing, optimization and post-processing.
Additionally they add an optional phase zero which is triangle splitting.

Optional Phase 0: Triangle splitting

Since triangle splitting does not always add a performance gain it is only optional. To do
so they make use of Ernst et al.’s [EG07] algorithm which constructs the AABB of each
triangle and recursively splits them. Karras et al. introduced a heuristic that tries to
overcome the problem of triangle splitting by only performing splits that improve the
resulting performance. They first limit the amount of splits via

smax = bβ ∗mc (3.2)

where m is the number of triangles in the scene and β is an adjustable parameter. The
advantage of limiting the amount of splits lies in the predictability of memory usage.
This limited amount of splits is then distributed throughout the triangles by calculating
a priority pt for every triangle t. Further they use a scale factor D and determine the
number of splits for a triangle via st = bD ∗ ptc. The scale factor is chosen as large as
possible so that it still satisfies ∑

st ≤ smax.

When selecting split planes it is important that internal nodes near the root of the
BVH-tree do not overlap. Therefore triangles that cross the split plane of the root node
need to be split to increase the performance. This leads to the authors’ conclusion
of splitting every AABB which intersects the spatial median plane. They define the
importance of split planes by how early it is considered during the construction of the
initial BVH. This is examined by using two Morton codes for the minimum and maximum
coordinates of the AABB and finding the highest differing bit.

Phase 1: Processing

The major part of this phase it to generate a BVH which is then further optimized in
Phase 2. This is done by applying Karras’ [Kar12] algorithm. The main part of this

1The two quality measures are End-point overlap (EPO) and Leaf count variability (LCV). These
metrics describe the additional work used by nodes with overlapping bounding boxes and the standard
deviation of the number of leaves intersected respectively.

14

3.2. Bounding Volume Hierarchy

algorithm is generating a binary radix tree which is then used for sorting the primitives
according to the Morton codes of their center. In order to achieve this in a parallel
fashion, they used a special layout which is described as follows: I and L are the sets
of Internal and Leaf nodes. I0 is the root node. The left child node is located at Iγ or
Lγ (in case of a leaf node) while the right child is at position Iγ+1 or Lγ+1 respectively.
This layout offers the property that every internal node either has the same index as its
first or last covered key. This holds for every inner node, since for its interval [i, j] the
children always cover [i, γ] and [γ + 1, j].

This means that the root node covers the range [0, n− 1] with the children containing
[0, γ] and [γ + 1, n− 1] respectively. The radix tree in Figure 3.6 illustrates this layout
by horizontally aligning each internal node with the leaf it corresponds to. The split in
the tree is always at the first differing bit. The horizontal bars show the range that is
covered by the internal node.

Figure 3.6: This radix tree (by Karass [Kar12]) has an index for every internal node,
which corresponds to either the first leaf it covers or the last one. To visualize this, the
internal nodes are aligned with they leaf the correspond to.

For the construction of a binary radix tree with this layout, it is necessary to find the
keys covered by the internal nodes. Due to this layout it is trivial to obtain one end of an
internal node’s range. For obtaining the other end the following simple algorithm is used.

Every internal node Ii is processed in parallel. The first step is to find the direction d
of the given node. This is done by evaluation the neighbors’ keys ki−1 and ki+1. The
direction is either +1 for i being the beginning of the covered interval or −1 for its end.
Moreover — through construction ki and ki+d belong to Ii and ki−d belongs to Ii’s sibling
node Ii−d. Thus all keys belonging to Ii have the same prefix, but a different one to Ii’s
sibling’s. Therefore the prefix can be bound by δmin = δ(i, i− d) with δ(i, j) > δmin for
all keys kj covered by Ii. This allows to choose d so that δ(i, i+ d) corresponds to the
larger one of δ(i, i− 1) and δ(i, i+ 1).

The other end of the interval is then found by maximizing l so that δ(i, i+ ld) > δmin.
This it done by iteratively trying powers of 2 until the condition lmax > l is violated.

15

3. Background

Via binary search in the range [0, lmax − 1] the other end is found. Finally it is given by
j = i+ ld.

Therefore the length of Ii’s prefix is obtained by δ(i, j) which is denoted as δnode. With
this information the split position γ can be obtained by applying binary search to
maximize s ∈ [0, l − 1] that satisfies δ(i, i+ sd) > δnode. Depending on the direction d
of the node γ is either i+ sd in case of d = +1 or i+ sd− 1 for d = −1. Now that i, j
and γ are known, the children of Ii cover the ranges [min(i, j), γ] and [γ + 1,max(i, j)].
Comparing the ends of the ranges respectively gives the information if the child is a leaf
or not which is then referenced at node γ or γ + 1.

Our implementation of this procedure is shown in Section 5.1.1.

With the constructed radix tree the last step of generating a BVH-tree is done by assigning
a bounding box for every internal node. Therefore a bottom-up traversal is used by
starting one thread per leaf. At every internal node only the second arriving thread is
allowed to process the node and pass through to its parent. The drawback of this is the
O(n) time complexity.

Phase 2: Optimization

In the topological optimization phase Karras et al. [KA13] minimize the SAH cost by
so-called treelet rotations. A treelet is defined as a subtree of the BVH-tree with internal
nodes of the BVH-tree being potential leaves of the treelet. First, a bottom-up traversal
is done to determine a processing order of the nodes so that overlapping subtrees can not
be processed simultaneously. For every node encountered during the traversal a treelet is
formed with the node itself as root and a fixed number of descendants as treelet nodes
and leaves. The treelet is then optimized by finding a corresponding binary tree that
minimizes the SAH costs of the given treelet.

When forming a treelet it is better to maximize its SAH cost so that the reduction step
has a higher potential. Therefore the treelet root and its children are taken in the first
step. Further the treelet formation continues iteratively by turning the treelet leaf with
the largest surface area into an internal node. Thus the leaf is removed from the set
of leaves and its children are added to said set. This process goes on until the chosen
amount of treelet leaves are in the set.

At this point a naive approach would consider every possible binary tree for a given treelet
and select the one leading to the minimum SAH costs. This — obviously — inefficient
solution is infeasible for a fast algorithm. Therefore several measures are taken to improve
the efficiency of this procedure. First of all a predefined order to compute the binary trees’
SAH costs is generated. Therefore a dynamic programming technique called memoization
can be applied. Memoization is used whenever small sub results need to be calculated in
order to obtain a bigger result. These sub results are stored — so-called memoized — in
order to avoid recomputing them. In the case of treelet optimization memoization is
applied to store the binary trees and their SAH costs. This way every possible binary
tree is processed more efficiently.

16

3.3. Binary Space Partitioning

Phase 3: Post-processing

In the post-processing phase the resulting BVH undergoes a simple transformation in
order to be usable by a given traversal algorithm. In their case, Karras et al. [KA13],
collapse certain subtrees to leaves with their triangles as linear list and transform the
data so that Woop’s [Woo04] intersection test can be used. Since this phase is dependent
on the used traversal algorithm, we omit further details here.

3.3 Binary Space Partitioning

Another great acceleration data structure is the binary space partitioning tree. In contrary
to the BVH described in Section 3.2 a BSP-Tree splits the scene arbitrarily in every level.
Therefore a node in the resulting BSP-Tree does not contain a certain bounding box but
the split plane which is used at it. The BSP-Tree therefore represents a fundamental
concept in computer graphics: binary space subdivision. Although BSP is generally good
for rendering purposes they are believed to be numerically unstable, infeasible to build
and expensive to traverse. One of its advantages during buildup — the sheer possibilities
for split planes at every level — is also the drawback that makes them costly to optimize.

The most common form of BSP used in practice is the k-d tree. k-d trees are a special
form of BSP-Trees that only allow axis-aligned splitting planes. This obviously reduces
the buildup time significantly as the number of possible splits diminishes drastically.
Although k-d trees seem to be a promising alternative, we strongly believe that BSP-Trees
can achieve better performance for real-time rendering. This belief stems from the fact
that theoretically BSP has to outperform k-d trees when it comes to traversal.

Current-state BSP are not used in real-time rendering due to having a bad trade-off
between build time and quality. Ize et al. [IWP08] showed that it is possible to use
BSP-traversal for ray tracing in a competitive manner to k-d tree-traversal. While
they have focused on the traversal algorithm itself and therefore constructed a BSP
of higher quality, they still managed to limit the buildup complexity of the BSP-Tree
to O(n log2 n)2. Although their ray tracing algorithm led to a reduction of triangle
intersections by a factor 4, the higher traversal cost at each node reduces the speedup to
1.1 compared to the k-d tree. Through this they stated that it is either necessary to even
further reduce triangle intersections or traversal costs to achieve a higher —and therefore
significant — performance increase. Ize et al. have also not spent time on optimizing the
buildup algorithm which therefore leads to an overall worse performance than a k-d tree
based approach.

3.3.1 Construction Method

The construction of a high-quality binary space partitioning is believed to be an intractable
problem. This comes from the fact that there is an ample amount of possible split planes

2k-d tree buildup is asymptotically bound by O(n log n)

17

3. Background

for every partition. Theoretically the quantity of these splits is infinite. This being
said, Havran [Hav00] showed that for a k-d tree only splitting planes tangent to the
clipped triangles are actually required. Therefore a k-d tree construction algorithm
only has to consider 6 axis-aligned planes for every triangle which bounds the partition
possibilities to O(6n). Ize et al. [IWP08] explained that extending this reasoning would
lead to O(n3) or even more split candidates for a general BSP, even this is an infeasible
amount of investigation steps for every split. Therefore most construction procedures
have used only a restricted pool of allowed split planes. Budge et al. [BCNJ08] introduced
the — so-called — restricted binary space partitioning. Their approach only allows a
small subset of possible plane normals on every split. This way they limit the complexity
for the construction of a RBSP-Tree to O(M3 +MN logN) where M is the number of
allowed directions for split plane normals and N denotes the triangles in the scene. As
already mentioned, a k-d tree — again — is a special case of the RBSP-Tree with the
split planes restricted to the previously mentioned 6 planes.

The general construction algorithm for a BSP-Tree is roughly the same as common k-d
tree building methods, with the only difference in the splitting phase. First the whole
scene is taken and a split plane P0 is chosen. This separates the scene into two partitions:
behind P0 and in front of P0. In the next step the same procedure is applied in the two
half-spaces. This is recursively done until no further splits are introduced. The stopping
criteria can vary depending on the implementation but may be a fixed number of total
splits, a certain heuristic that implies no improvement in further splits or just the simple
fact that there is nothing to partition any further.

In case of the k-d tree, splitting does not take any planes but axis-aligned ones. Further
during the construction of a k-d tree the process cycles through the axes so that —
w.o.l.g. — first the x-axis is taken, then the y-axis and the z-axis afterwards. The cycle
then restarts with the x-axis. We will display the BSP-Tree (and in fact the k-d tree)
construction on a simple example.

Figure 3.7 shows a schematic example of a two-dimensional scene and the binary space
partitioning applied to it. In Figure 3.7a we see a scene with several primitives and
some split planes while Figure 3.7b displays the according BSP-Tree3. In this case the
scene is first split along plane 0 and the root node is generated. The next recursive step
is to take the partition in front of plane 0 in consideration. There the split plane 1a
is used. This leaves us with the two regions A and B which both cannot further be
partitioned. The algorithm continues behind plane 0 where plane 1b is used to split the
scene. This also includes the problem of splitting a triangle. In this simple example the
triangle is referenced in both subtrees instead of being split into two smaller ones. The
subdivision in front of plane 1b now contains only region C. Since this part of the scene
solely contains the green circle and the reference to the early encountered triangle, a
further split is not necessary. On the side behind plane 1b there are still two primitives
that can be split alongside another plane (plane 2) leading to region D and E. Here the
algorithm cannot further split the partitions and therefore comes to an end.

3Since this is a 2d-example and all splits are aligned with x- and y-axis it is also a k-d tree

18

3.3. Binary Space Partitioning

(a) Scene partitioned along several planes. (b) Resulting BSP-Tree

Figure 3.7: A 2D example for a binary space partitioning (a) and the according BSP-Tree
(b) [imgb]

3.3.2 Parallel Construction

We have not yet encountered any approaches of building a general binary space partitioning
in parallel. This might be to due the fact, that a high quality BSP-Tree is believed to
be intractable to generate. Further ray tracing seems to be the central topic of research
in this area and it is dominated by k-d trees and BVH-trees. Although a BSP-Tree has
the capabilities to outperform a k-d tree and a BVH-tree, it is still believed to end up
with a building time that is too long. We believe that the restricted BSP [BCNJ08]
would be a good candidate for parallel generation. Moreover k-d trees have already been
constructed and traversed in parallel. The first implementation for parallel k-d trees
was made by Zhou et al. [ZHWG08] in 2008. Since then the algorithm was finetuned by
Wu et al. [WZL11b] including the SAH into the split plane selection. Recently Yang et
al. [YYWX16] evolved the algorithm with ideas borrowed from octrees.

The first two approaches have in common that they try to leverage the GPU’s resources
by applying a breadth-first node generation for the first levels in parallel up to a certain
point. This point is reached when there are enough child nodes to process each node
in parallel. Figure 3.8 displays this design pattern. The green half of the image shows
the upper levels where there are more processors than nodes per level. This allows to
process multiple layers of the tree at the same time. Later when the number of nodes in
every level surpasses the number of processors (purple part of the image) every node is
processed simultaneously.

In the multi-split k-d tree approach of Yang et al. [YYWX16], they take a different route
than showcased before. For their implementation they split every node on all three

19

3. Background

Figure 3.8: This image (taken from [CKL+10]) shows a pattern for generating the k-d
tree in parallel. While in the upper levels (in green) multiple levels are constructed
simultaneously, in the lower levels (purple) there are enough nodes per level to process
these in parallel.

possible axes (x,y,z) and construct eight children. Then they examine every child with
the surface area heuristic to find good split planes. They have also altered the traversal
in order to fit with their data structure. With their approach they overcome the problem
of slowly generating nodes in the upper levels through multiple splits and a width-first
search. This uses the parallel opportunities of a GPU more efficiently and allows them
to generate a higher quality k-d tree employing the SAH. As a result their tree ends up
being shallower than normal k-d trees and contains less empty nodes. Through their
traversal method they have also lowered the cost of traversal. Since the aim of this thesis
is to develop an algorithm for general BSP-Tree construction, we will not go further into
detail about k-d tree construction in this theoretical part.

3.4 Parallel Random-Access Machine.

True to this thesis’ subject, parallelization, we will cover the Parallel Random-Access
Machine (PRAM) model and its forms as well. The PRAM is an abstract machine
which contains shared memory and mimics a parallel analogy of the Random-Access
Machine(RAM)). As usual for theoretical abstract frameworks the PRAM omits problems
like memory access, communication and synchronization. In contrary to the RAM it
offers a number of processors which in turn can be used for modeling and analyzing the
algorithms. The measure for algorithm costs is extended to two measures which are time
T and work W4.

3.4.1 Algorithmic Models

Since parallelism adds a new level of complexity to algorithmic design there are a few
different models on how to describe those algorithms. We will just shortly cover two basic

4Work roughly describes T * number of processors

20

3.4. Parallel Random-Access Machine.

distinctions which are the Single Instruction Multiple Data (SIMD) and the Multiple
Instruction Multiple Data (MIMD) model.

SIMD Model

The SIMD model describes a computing machine which offers multiple processors that
all go through the same instruction set. This allow the exploitation of data parallelism
but leaves out the usage of concurrency. Algorithm 3.1 shows a pseudo-code for the tree
summation problem in the SIMD model5.

The tree summation problem is defined as followed: Given an input array A, build
the sum over all elements. The pseudocode in Algorithm 3.1 is run in parallel. Every
processor i, 0 ≤ i < n executes the statements at the same time. In line 1 the value of Ai
is stored in a local memory array of the same size in order to keep A unchanged. The
lines 2 to 6 present the main work loop in which every processor sums up the according
values. In the end — line 7 through 9 — processor 0 makes sure that the final output
value is stored in s. Figure 3.9 shows the overall procedure whereas the number in each
node shows which processor sums up its children.

Algorithm 3.1: SIMD tree summation [Träa]
Input: Array A of size n = 2h
Output: s = ∑

0≤i<n : A[i]
1 Bi = Ai
2 for h← 1 to h < n step h← h ∗ 2 do
3 if i < n

2h then
4 Bi ← B2i +B2i+1;
5 end
6 end
7 if i = 0 then
8 s← Bi;
9 end

MIMD Model

The MIMD model extends the possibilities of the SIMD architecture by allowing processors
to run different programs. This introduces another level of complexity into the PRAM
system and allows for more sophisticated algorithm design. Main differences between
MIMD and SIMD algorithms lie in the execution of forked programs with different
instructions.

5This is just a naive algorithm to illustrate the SIMD model, there are far more sophisticated ones
out there

21

3. Background

Figure 3.9: This image illustrates the tree summation process [Träa]

3.4.2 Read-Write Models

Through parallel execution and shared memory the problem of having read- and write-
conflicts arise. In the theoretic model of PRAM there exist different models for dealing
with these hindrances.

1. Exclusive read exclusive write (EREW)
The EREW model allows only one process to read or write a single memory cell at
the same time.

2. Concurrent read exclusive write (CREW)
In the CREW model it is possible that multiple processors read the same memory
in parallel, yet they are not allowed to write concurrently.

3. Exclusive read concurrent write (ERCW)
This model was never really considered as useful since it does not offer any advantage
over any of the other models, but adds more conflict potential.

4. Concurrent read concurrent write (CRCW)
The mightiest model of the four is the CRCW. It allows any processor to access
any memory cell at any time.

Since the CRCW model might lead to conflicts when writing, there are several strategies
to deal with those conflicts. Amongst those design models for write-conflicts the most
common ones are: Common, Arbitrary and Priority.

The Common model allows writes only when all processors write the same value and
faults if that is not the case. The Arbitrary model makes only one processor’s write go
through and discards the others — all chosen arbitrarily. With the Priority strategy the
processors are assigned a priority (e.g. by processor id) and the one with the highest
priority is being the one that writes to the memory in the end.

As we will see in Chapter 4 the OpenCL framework allows to leverage the CRCW
possibilities — i.e. concurrent writing and reading. Therefore we will not further go

22

3.4. Parallel Random-Access Machine.

into detail about the relationship about the read-write models since we will only need to
consider the CRCW.

23

CHAPTER 4
OpenCL

4.1 Introduction

The OpenCL framework is an open, royalty-free standard which serves multiple platforms
and offers the possibilities of parallel programming. It not only targets personal computers
and systems, but also mobile devices, servers and embedded platforms. In this chapter
we will explain how the OpenCL is structured and how we will make use of it, as well as
give a short insight into its history.

4.2 History

Initiated by Apple Inc. OpenCL had its first release in August 2009 accompanying Mac
OS X Snow Leopard as version 1.0. Originally the idea was a proposal in collaboration
with technical teams of AMD, IBM, Qualcomm, Intel and Nvidia. It was then submitted
to the Khronos Group which has been taking care of developing the OpenCL framework
since then. The Khronos Compute Working Group was formed in June 2008, it contains
representatives of CPU, GPU and embedded-processor manufacturers as well as software
companies. The first technical specification for the OpenCL was publicly released on
December 8th, 2008. Shortly after that, different vendors announced that they will add
full support for the OpenCL to their toolkits.

Two years later, in June 2010 OpenCL 1.1 was approved by the Khronos Group. It
included more functionality for parallel programming and performance. The following
year the specification for OpenCL 1.1 was released with another set of features offering
more possibilities to developers. Just two years later, in November 2013, OpenCL 2.0
was announced and technical specifications were released. Amongst its features, the most
notable one was the Android driver extension, allowing Android devices to run OpenCL
code. In November last year the specification for OpenCL 2.1 was released.

25

4. OpenCL

The latest version of the specification was released this year in March bearing the version
2.2.

4.3 Architecture
The OpenCL framework has a straight hierarchical architecture which we will describe
briefly. The top-level API is written in the C, yet there are many wrappers available,
making it accessible from other languages as well. With this API a host program is
defined which is run on a CPU. From there it connects to multiple computing devices
such as CPUs or GPUs. Each computing device consists of multiple processing elements
which execute — so-called — kernels. Figure 4.1 displays the explained architectural
model schematically.

Figure 4.1: The architectural platform model of the OpenCL [TS12]

The aforementioned API offers possibilities to query for said computing devices and
submit work to them. It further allows to control and manage the work queues and
contexts. These work queues are used to submit kernels to computing devices while the
context sums up a computation.

The earlier mentioned processing elements run kernels in parallel. This can be done in a
data parallel fashion where a computing device is split in so-called working groups. Each
of these groups then contains multiple work items. Figure 4.2 demonstrates this with a
2-dimensional grid structure.

Another important factor is the memory access. As global memory is expensive to access
the OpenCL proposes a hierarchical memory structure which is shown in Figure 4.3. The
hierarchy starts with the host device and its memory. It is connected to the compute
device which often owns a global memory and in some cases constant memory. In order
to make parallelism possible the compute device is split into work groups. Each of those
containing its local memory and is split into several work items. The latter ones have
their own private memory.

Another important part of the OpenCL architecture is its memory synchronization
barriers. Roughly speaking it is possible to do synchronization between threads on every
level. This means that within a work-group several work-items can use a memory fence in

26

4.3. Architecture

Figure 4.2: A 2-dimensional structure for execution [TS12]

Figure 4.3: The memory hierarchy model of the OpenCL [TS12]

order to accomplish synchronization. On the next level, it is possible to do coarse-grained
synchronization between work-groups.

The final level to consider is synchronous versus asynchronous execution models. In
order to achieve this there exist different events which can be attached to items in the
work queue. From the OpenCL API it is possible to either let every kernel start as soon
as possible or to make kernels wait for each other. Figure 4.5 shows how this is made
possible with event queues. The left side of the images displays concurrent execution
whereas the right half demonstrates a sequential ordering.

27

4. OpenCL

Figure 4.4: The memory synchronization withing the OpenCL framework [TS12]

Figure 4.5: Execution control with OpenCL’s event queue [TS12]

4.4 Code Example

Since we are not directly using the OpenCL C API in the implementation (see Section 4.5)
we will give a short example of it here. This example is — for reasons of simplicity —
just the basic matrix multiplication example. It is neither the best algorithm for this
procedure, nor a special optimization. The idea behind this algorithm is that every
thread takes row i of matrix A and the column j of matrix B. It then computes the
element Ci,j . Through this we obtain the result of C = A ∗ B. Algorithm 4.1 shows

Algorithm 4.1: Matrix multiplication
Input: Martix A, Matrix B
Output: C = A ∗B

1 for i ∈ rows of A, j ∈ columns of B in parallel do
2 Ci,j ← i · j
3 end

the pseudocode of the algorithm while Figure 4.6 shows the OpenCL kernel. At first we
define a kernel for the matrix multiplication with pointer to the matrices A, B and C as
input. Additionally we add the number of rows of the input matrices since we have to
deal with decay of pointer. In line 7 and 8 we retrieve the thread id on the 2-dimensional
grid. We use these ids as indices i and j for selecting the row and column vectors for the

28

4.5. Usage

1 __kernel void matrixMultiplication(
2 __global int* A,
3 __global int* B
4 __global int* C,
5 int rowsA, int rowsB)
6 {
7 int i = get_global_id(0); //2D-Thread-Id in first dimension
8 int j = get_global_id(1); //2D-Thread-Id in second dimension
9
10 //dot product
11 int sum = 0;
12 for (int k = 0; k < rowsA; k++)
13 {
14 sum += A[j*rowsA+k] * B[k*rowsB+i];
15 }
16
17 //right back the result
18 C[j*rowsA+i] = sum;
19 }

Figure 4.6: Matrix multiplication kernel with OpenCL

dot product. The loop in line 12 is used to calculate the dot product. Finally in row 18
the value for Ci,j is written into the right memory cell.

4.5 Usage
In this thesis we will use the OpenCL framework via a F# wrapper. This allows us to
use the functionality directly from the projects which are developed with C# and F#. It
also allows a more structured layout of the code and a direct API for usage.

The F# to OpenCL compiler is based on so-called Quoted Expressions which are a part
of the Code Quotations feature of F#. This language feature offers the possibility to
generate an abstract syntax tree as representation of F# code. With this tree it is
possible to alter or generate code in any given language, hence we are using it for our
purpose.

Our cross compiler is the work of Georg Haaser and is still a work in progress as of the
time of writing this thesis.

4.5.1 Matrix Multiplication Example

To present the way the code in chapter 5 will be laid out, we are making use of the
formerly shown matrix multiplication example.

As we can see in Figure 4.7 the program pretty much looks the same. The following
algorithm (shown in Figure 4.8) shows how we compile and call the kernel from a top

29

4. OpenCL

1 let matrixMultKernel
2 (A: buffer<int>)
3 (B: buffer<int>)
4 (C: buffer<int>)
5 (rowsA: int)
6 (rowsB: int) =
7 kernel {
8 let i = get_global_id(0) //2D-Thread-Id in first

dimension
9 let j = get_global_id(1) //2D-Thread-Id in second

dimension
10
11 //dot product
12 let mutable sum = 0
13 let mutable k = 0
14 while k < rowsA
15 sum <- sum + A.[j*rowsA+k] * B.[k*rowsB+i]
16 k <- k + 1
17
18 //right back the result
19 C.[j*rowsA+i] <- sum
20 }

Figure 4.7: Matrix multiplication kernel with F# and OpenCL

level function. First we store the size of matrix A in variable, then create the three
needed buffers. In line 14 the kernel is compiled by some magic. Three lines down — in
line 17 — the kernel is called. We first provide the number of global threads and the
group size. The other parameters are the buffers and the number of rows of the input
matrices. After the kernel is run we create the output array C in line 20. In line 23 we
finally download the values from the buffer into the array and return the latter in the
last line.

30

4.5. Usage

1 let matrixmultiplication
2 (ctx: OpenClContext)
3 (A: int[])
4 (B: int[])
5 (rowsA: int)
6 (rowsB: int) : int[] =
7
8 let sizeA = A.Count
9

10 //create the buffers
11 let bufferA = ctx.CreateBuffer A :> buffer<_>
12 let bufferB = ctx.CreateBuffer B :> buffer<_>
13 let bufferC = ctx.CreateBuffer (Array.CreateZero sizeA)
14
15 //compile the kernel
16 let compiled = compileKernel ctx matrixMultKernel
17
18 //call the kernel
19 compiled sizeA sizeA bufferA bufferB rowsA rowsB

bufferC
20
21 //create outputArray
22 let C : int[] = Array.CreateZero sizeA
23
24 //download the values from the buffer
25 bufferC.Download(C)
26
27 //return the result
28 C

Figure 4.8: Compilation and call of the kernel

31

CHAPTER 5
Implementation

This chapter will deal with the implementation detail of the thesis. Throughout the
implementation of the discussed data structures we came across certain road blocks and
came to a realization that changed the planned implementation. In this place we are
going to describe the thought process and development of the final data structure and
algorithms.

We will mostly focus on the algorithms themselves. First we will describe the implemen-
tation of the bounding volume hierarchy. Then we will show the problem that arose for
our usage scenario.

The second part of this chapter displays our take on parallelizing the binary space
partitioning and incorporating it into the BVH. This will be followed by demonstrating
another complication that occurred.

The third part gives insight into our solution for the aforementioned problems by com-
bining a grid with the BSP.

The use cases we had in mind for said data structures were culling queries1 for the BVH
and sorting queries2 for the BSP.

5.1 Bounding Volume Hierarchy

The first part of the implementation focuses on the bounding volume hierarchy. As
already mentioned in Section 3.2.1 we planned on implementing Karras et al. [LGS+09]
construction method. While they used the CUDA framework we used the OpenCL
framework within our F# ecosystem.

1Frustum culling, see Section 1.1.2
2Transparency sorting, see Section 1.1.3

33

5. Implementation

The first step in the implementation was to reproduce Karras’ [Kar12] algorithm for
parallel construction, his will be shown in Section 5.1.1. We further planned on im-
plementing the second step treelet optimization, followed by early triangle splitting as
explained in Section 3.3.2.

5.1.1 BVH Construction

The top-level function to build the BVH-tree is shown in Figure 5.1. First we create the
necessary arrays to store the leaves and the nodes during the parallel run on the GPU.
We then generate the morton code for each Leaf and sort them. Then we prepare the
data for the BVH-tree construction. With the call to constructInternalNodes, which
is the compiled version of constructInternalNodesKernel we build the BVH-tree. In
the last line we put together the resulting data in a simple struct.

Since it is not possible to link to different data structures within the structs for the
internal nodes we save the id of the child and parent nodes. To do so, our implementation
stores the ids within the nodes with a shift for leaves. While internal nodes have the
id range from 0 (root) to n− 1 (rightmost internal node), leaves take up the negatives
numbers. Leaf 0 therefore has the id −1, while the leaf n− 1 has the id −n. This way
we can distinguish between internal nodes and leaves during operations.

The tree layout is designed according to Karras [Kar12] as shown in Section 3.2.1.

Figure 5.2 shows the kernel of the core function for the creation of the BVH-tree.
First we obtain the id of the thread, leading to two interesting parts of the algorithm.
determineRange finds the range that is covered by the internal node given by the id.
After obtaining this range we determine the split position with the findSplit function.
Having found the range and the split position, we can link the nodes to each other(line
18 to 40)3.

To determine the range we are using binary search on the sorted Morton codes. In
Figure 5.3 we see the function used to find the covered range for every internal node.
First we check if we have the root node in which case we return the full range.

We first make use of the delta function to determine the direction of this node. Said
function returns the length of the common prefix for the Morton codes on positions given
by the first two arguments. In line 9 to 12 we calculate an upper bound for the size of the
range. With this upper bound we start a binary search to find the other end of the range.
The final range is given by the node’s (also thread’s) id and the result of the calculation
in line 21. The last line ensures that the range is always in the for (i, j) with i < j.

The findSplit function works roughly the same way as the determineRange function.
A binary search is used to find highest differing bit in the Morton codes within the two
ends of a node’s range.

3For this we defined the operator (<==) in order to be able to directly write to a memory location.

34

5.1. Bounding Volume Hierarchy

BVH-tree building method
1 member x.Build(data : Leaf[]) =
2 let numObj = data.Length
3 let (gloablSize, workGroupSize) = getWorkSizes numObj

groupSize
4
5 let mortoncodes = ctx.CreateBuffer (Array.zeroCreate numObj

: uint32[]) :> buffer<_>
6 let leaves = ctx.CreateBuffer (data |> Array.map (fun x ->

x.BoundingBox)) :> buffer<_>
7
8 //find morton codes
9 findMortonCode gloablSize workGroupSize leaves mortoncodes

numObj
10
11 //sort
12 let sortedObjIds = ctx.CreateBuffer (Array.zeroCreate

numObj : int[]) :> buffer<_>
13 let indices = tools.CreatePermutationSort (mortoncodes)
14 tools.CompactWithIndex(indices, mortoncodes, sortedObjIds)

|> ignore
15
16 //build the tree
17 assignObjectID gloablSize workGroupSize leaves sortedObjIds

objects numObj
18 let nodes = ctx.CreateBuffer<MyNode>(int64 numObjects - 1L)

:> buffer<_>
19 constructInternalNodes gloablSize workGroupSize objects

nodes mortoncodes numObj
20
21 createBVH nodes leaves

Figure 5.1: The top-level BVH building method of the BVHBuilder. The BVHBuilder
stores the OpenClContext ctx as well as tools of type OpenClTools, which offer
various algorithms

35

5. Implementation

Kernel constructInternalNodeKernel

1 let constructInternalNodeKernel
2 (leafNodes: buffer<Leaf>)
3 (internalNodes : buffer<MyNode>)
4 (sortedMortonCodes : buffer<uint32>)
5 (numObjects : int) =
6 kernel {
7 let id = get_global_id(0)
8 if id < (numObjects-1) then
9 // Find out which range of objects the node

corresponds to.
10 let (firstx, lastx) = determineRange

sortedMortonCodes numObjects id
11
12 let first = if firstx < 0 then 0 else firstx
13 let last = if lastx >= numObjects then numObjects-1

else lastx
14
15 // Determine where to split the range.
16 let split = findSplit sortedMortonCodes first last
17
18 let indexA = split
19 let indexB = split + 1
20
21 // leaves are negative / inners positive
22 let valueA = if split = first then getLeafId indexA

else getNodeId indexA
23 let valueB = if split + 1 = last then getLeafId

indexB else getNodeId indexB
24
25 // Record parent-child relationships.
26 if split <> first then
27 internalNodes.[indexA].Parent <== id
28 else
29 leafNodes.[indexA].Parent <== id
30
31 if split + 1 <> last then
32 internalNodes.[indexB].Parent <== id
33 else
34 leafNodes.[indexB].Parent <== id
35
36 let myId = getNodeId id
37 internalNodes.[myId].Left <== valueA
38 internalNodes.[myId].Right <== valueB
39 internalNodes.[myId].First <== first
40 internalNodes.[myId].Last <== last
41 internalNodes.[myId].Split <== split
42 internalNodes.[myId].ID <== id
43 }

Figure 5.2: Kernel of the core function for BVH construction

36

5.1. Bounding Volume Hierarchy

Function determineRange

1 let determineRange (mortonCodes : buffer<uint32>) (numObjects :
int) (id : int) =

2 if id = 0 then
3 (0, numObjects-1)
4 else
5 // Determine direction of the range (+1 or -1)
6 let direction = sign (delta id (id+1) numObjects

mortonCodes - delta id (id-1) numObjects mortonCodes
)

7
8 // Compute upper bound for the length of the range
9 let deltaMin = delta id (id - direction) numObjects

mortonCodes
10 let mutable lMax = 2
11 while delta id (id + lMax * direction) numObjects

mortonCodes > deltaMin do
12 lMax <- 2 * lMax
13
14 // Find the other end using binary search
15 let mutable l = 0
16 let mutable t = lMax / 2
17 while t >= 1 do
18 if delta id (id + (l + t) * direction) numObjects

mortonCodes > deltaMin then
19 l <- l + t
20 t <- t / 2
21 let j = id + l*direction
22
23 if direction < 0 then (j,id) else (id,j)

Figure 5.3: Function to determine the range of an internal node

37

5. Implementation

5.1.2 Treelet Optimization & Triangle Splitting

After the BVH-tree has been generated by the shown algorithm the optimization phase
would begin. In order to optimize the structure of the BVH-tree every node needs its
associated SAH. As Karras et al. [Kar12, LGS+09] have shown, the best way to do this
is a parallel bottom-up traversal. They started a thread for every leaf in the tree and
followed the parent pointer. Whenever a thread encounters an internal node it increments
an internal counter and — if the counter is 0 — terminates. The second thread arriving
at each internal node is the one that processes it. Karras [Kar12] used this method to
calculate the bounding boxes for every node while later Karras et al. [KA13] did the
same for SAH calculation as well as treelet generation and optimization.

During the implementation of said optimization and bottom-up traversal we realized
that we are, in fact, starting a thread for every leaf in order to calculated the needed
data — bounding boxes — for our culling queries. Therefore instead of using these
threads for traversing the BVH-tree we could already use them for evaluating every
leaf with the actual query. This results in work of O(n) and time of O(1). Although a
traversal of the final tree would lead to — theoretical — work of O(logn) we still would
have to write and compact an array with visibility flags for every leaf node. Therefore we
would again end up doing O(n) work and thus lose the advantage of using the BVH-tree.

After some consideration we also came to the result that even a parallel traversal can not
improve this situation. This stems from the fact that classical parallel traversal — mostly
used for ray tracing — is used for doing multiple traversals at the same time. Frustum
culling — on the other hand — is only one query per scene leading to one traversal. In
order to parallelize this, a synchronized data structure (e.g. a stack or queue) would be
needed.

After reconsideration of bounding volume hierarchy in our scenario we omitted the
optimization since it is unnecessary in our use case.

5.2 Binary Space Partitioning

As already explained in the theory part of this thesis (see Section 3.3) constructing
an optimal BSP is believed to be an NP-Hard problem. Our first idea to parallelize
the BSP-Tree construction was to gradually decrease split planes evaluated per tree
depth according to a-thread-to-nodes ratio. This approach would be similar to Budge et
al.’s[BCNJ08].

At this point of the implementation we already had implemented the BVH and thought
about combining it with the BSP. Through some discussion the idea arose that we could
use the BVH to split the scene into small sets and build a BSP-Tree for each of these
sets.

Due to the construction algorithm of the BVH-tree, fortunately it has the nice property
that every internal node contains information about the range of leaves it covers. We

38

5.2. Binary Space Partitioning

therefore though of an early exit during the construction to obtain small sets of leaves.
This would leave us with a fast way to separate the scene and tiny instance for the harder
problem of generating a BSP-Tree.

The necessary full BSP-Tree construction within a single kernel leads to limitations such
as no recursive functions and no dynamic memory allocation. This implies the need
for a stackless construction. In order to use all those small BSP-Trees for transparency
sorting, a kernel handling this scenario was necessary as well. In the following sections
(Section 5.2.1 construction and Section 5.2.2 traversal) we show how we implemented
those two kernels.

5.2.1 BSP-Tree Construction

Before going into detail about how we create the tree, we will give a short overview of
the algorithm. Our BSP-Tree construction algorithm takes a triangle and generates a
split plane from it. This is simply done by taking the cross product of two edges as plane
normal and the connecting point. After obtaining said plane, the triangles are evaluated
and separated into four groups: same, front, back and split. The first set consists of the
triangles that lie completely on the selected split plane. The following two consist of the
triangles that lie entirely on one side (front and back respectively4) of the split plane.
The last group of triangles are those that go through the plane and therefore need to be
split.

The split of triangles leads to three new triangles. Figure 5.4 shows this procedure. In
the first image Figure 5.4a we see the triangle that needs to be split. The result of is
shown in Figure 5.4a.

After splitting of the original triangle, each of the resulting triangles can be classified to
either belonging to the front or back group.

After having classified every triangle, and splitting when necessary, we are left with the
three sets: same, front and back. At this point a node is created with the information
about the split plane and a list of all the triangles in the same set.

The next step is to find out the root nodes for the next level in the BSP-Tree which are
then used as left (front) and right (back) children of the created node. For this we take a
simple heuristic that checks every node in the next level and counts the number of splits.
In the end we take the node with the least split for its respective subtree. This is the
point were the left and right subtree would be generated in a recursive fashion. This is
done until there are no triangles left.

Building in a kernel

In order to fit the showcased algorithm into a kernel, we had to get rid of recursions. We
further are not allowed to dynamically allocate memory, which leaves us with a buffer of

4Since we do not have a certain view point here, front and back are defined via positive and negative
distance to the plane respectively

39

5. Implementation

(a) Triangle to be split (b) Resulting triangles

Figure 5.4: These images show a triangle that is split (a) by a plane resulting in three
triangles (b)

"empty" nodes that need to be filled. To overcome the limitations our node is defined as
demonstrated in Figure 5.5. First we have the node information such as the split plane,
its children (Left and Right) as well as the parent id. The field Same stores the id of
the next node in the same "list" or −1 if there is none, to simulate simulate a linked
list. The Leaf stores the leaf information holding a triangle. The field ID is used for
identification and Original stores a back reference to the original triangle after splitting
it.

The last two fields are used for building and traversal. With Level we store information
about which level the node is located at. Instead of using recursion during the build and
traversal, it is increased; and decreased once we reach a leaf node (i.e. one that is alone
on its level). The field LoR is used to store information about the aforementioned groups
to which the triangle belongs. With this information and the level we fully can simulate
the recursion within a loop. For this we need the enumeration type LeftOrRight which
has the enumerals LEFT, RIGHT, SPLIT, NONE (as start value) and DONE (to indicate a
node that is finished).

Figure 5.6 shows how we build the BSP-Tree. Since we are doing this in parallel for
multiple sets of triangles, we first need to know in which set we operate. For this we
use the information stored in the cells5. Once we have obtained said information we
initialize the nodes as "empty" in the initialization loop. Next we define certain variables
that are needed for the construction.

After the initialization loop we set the needed variables before the main loop starts. Here
we first obtain the current rootNode. This node is used to classify the triangles on the

5See Section 5.2.4 for the Cell struct definition and why we it this here

40

5.2. Binary Space Partitioning

BSPNode struct definition
1 type BSPNode =
2 struct
3 val mutable public Splitplane : Plane
4 val mutable public Left : int
5 val mutable public Right : int
6 val mutable public Parent : int
7 val mutable public Same : int
8 val mutable public TriangleId : int
9

10 val mutable public ID : int
11 val mutable public Original : int
12 val mutable public Level : int
13 val mutable public LoR : LeftOrRight
14 end

Figure 5.5: Definition of BSPNode

current level (curLevel). If curLevel is greater than the level of the rootNode we still
have the same root node as in the last level. This can only happen if said node does not
have any other triangles on its level and its side. Note: this would be the base case of a
recursive algorithm. We therefore need to backtrack the level to find out where we have
to continue. This is done in backtrack loop. Here we reduce the curLevel and backtrack
to the node’s parent. If there is a parent (i.e. we are not the BSP-Tree’s topmost root) we
check if we have to traverse the right subtree. Note: this would be the second recursive
call. In case both subtrees are already done, we set the status of this node to DONE and
go to its parent.

After backtracking the curLevel and setting the correct rootId we continue by creating
the split plane. In evaluation loop we evaluate all the other triangles of the cell.

For every node in this cell we check if it is in the current level and on the same side
as the root triangle. Note: essentially, we check if the triangle is in the correct list for
the given node. The node’s corresponding triangles are then further classified. In order
to do so we obtain the signs from the function frontBackCheck (see Section 5.2.1).
Through this we can classify the triangle to one of the earlier mentioned four groups. If
the triangle lies on the current split plane, all of the vectors from its points to the plane’s
point are orthogonal to the plane’s normal and the dot products yield zero. In this case
we traverse the simulated Same-list and append the current node to the end of it and
set its status to DONE. If signs is either all positive or all negative we set the status of
the node to LEFT or RIGHT respectively.

41

5. Implementation

Kernel buildBSPKernel
1 let buildBSPkernel (cells : buffer<Cell>) (leaves : buffer<Leaf

>) (bspNodes : buffer<BSPNode>) (numLeaves: int) (epsilon :
float32) =

2 kernel {
3 let id = get_global_id(0)
4 let extra = 5 //multiplier for buffer calculations
5 if id < cells.Count then
6 ###run variables initialization###
7 let cell = cells.[id]
8
9 //create BSP Leaves

10 let mutable k = nodeBufferStart
11 let mutable vIndex = vertexStartOffset
12 for k = nodeBufferStart to nodeBufferStart +

numNodes - 1
13 ###initialization loop###
14
15 let mutable run = 1
16
17 while run = 1 do
18 //take leave
19 let mutable rootNode = bspNodes.[rootId]
20 //if we got a root from last level, we

finished this subtree in the last level and
we have to roll back

21 while run = 1 && rootNode.Level < curLevel do
22 ###backtrack loop###
23
24 rootNode <- bspNodes.[rootId]
25 let curId = rootId
26 let splitPlane = findSplitPlane
27 leaves.[bspNodes.[curId].TriangleId]
28 leaves.[bspNodes.[curId].TriangleId+1]
29 leaves.[bspNodes.[curId].TriangleId+2
30 rootNode.Splitplane <- splitPlane
31 let mutable i = nodeBufferStart
32 let loopMax = curFreeId
33
34 while run = 1 && i < loopMax do
35 ###evaluation loop###
36
37 if run = 1 then
38 ###next level preparation###
39
40 curLevel <- curLevel + 1
41 }

Figure 5.6: Kernel for building the BSP-Tree

42

5.2. Binary Space Partitioning

Evaluation loop of buildBSPKernel
1 while run = 1 && i < loopMax do
2 ###evaluation loop###
3 if i <> curId then
4 //check front or back
5 let mutable node = bspNodes.[i]
6 //check if the leaf with id i is at the current level

and current side, if so work with it
7 if node.LoR = curLoR && node.Level = curLevel then
8 let p0 = leaves.[node.TriangleId]
9 let p1 = leaves.[node.TriangleId+1]

10 let p2 = leaves.[node.TriangleId+2]
11 let signs = frontBackCheck splitPlane p0 p1 p2

epsilon
12
13 //set leaf's properties
14 node.Level <- curLevel + 1
15
16 if signs = Signs.ZERO then
17 node.LoR <- LeftOrRight.DONE
18 node.Level <- curLevel
19 ###add to same list###
20 elif (signs &&& Signs.NEG) = Signs.NONE then
21 node.LoR <- LeftOrRight.LEFT
22 elif (signs &&& Signs.POS) = Signs.NONE then
23 node.LoR <- LeftOrRight.RIGHT
24 else
25 //split
26 node.LoR <- LeftOrRight.SPLIT
27 let (n0, n1, n2) = splitTriangle node leaves

splitPlane vIndex
28 //left and right already set in the function
29
30 //add the three nodes at the end of the buffer
31 curN.ID <- curFreeId
32 bspNodes.[curFreeId+0] <- n0
33 bspNodes.[curFreeId+1] <- n1
34 bspNodes.[curFreeId+2] <- n2
35 curFreeId <- curFreeId + 3
36
37 bspNodes.[i] <- node
38 i <- i + 1

Figure 5.7: Evaluation loop of the kernel 43

5. Implementation

Next level preparation of buildBSPKernel’s main loop
1 if run = 1 then
2 ###next level preparation###
3 //findRootnodes
4 let bestIDLeft = findBestSplit bspNodes leaves

nodeBufferStart curFreeId (curLevel+1) LeftOrRight.LEFT
epsilon

5 let bestIDRight = findBestSplit bspNodes leaves
nodeBufferStart curFreeId (curLevel+1) LeftOrRight.RIGHT
epsilon

6
7 //set this nodes' properties
8 rootNode.Left <- bestIDLeft
9 rootNode.Right <- bestIDRight

10 rootNode.LoR <- LeftOrRight.DONE
11 bspNodes.[curId] <- rootNode
12 if bestIDLeft > 0 then
13 bspNodes.[bestIDLeft].Parent <== curId
14 curLoR <- LeftOrRight.LEFT
15 rootId <- bestIDLeft
16
17 if bestIDRight > 0 then
18 bspNodes.[bestIDRight].Parent <== curId
19 if bestIDLeft < 0 then
20 curLoR <- LeftOrRight.RIGHT
21 rootId <- bestIDRight
22
23 curLevel <- curLevel + 1

Figure 5.8: Next level preparation section of the kernel

44

5.2. Binary Space Partitioning

All the other cases mean that the triangle has points of either side of the split plane.
Therefore we need to split the triangle as explained in Section 5.2.1. To do so we call
the method splitTriangle (described in Section 5.2.1) which leaves us with 3 new nodes.
Through curFreeId we keep track of the next free index in the node buffer we are
working with and store the leaves there. Note: this simulates an add to the global
triangle list. Finally we write the changes to the current node.

After iterating through and classifying all the nodes we are left with deciding on how
to continue in the next level. In next level preparation we do exactly that. First we
find the root nodes of the left and right subtrees with the simple heuristic explained
in Section 5.2.1. This is done via the findBestSplit function (also shown later in this
section). The result of those selections are stored as left and right children of the current
root node. If there are no children on one side, findBestSplit returns -1 to identify an
empty subtree. In case there exist children on the left side we set curLoR — showing
the current side of the tree — to LEFT and updating the rootId. Note: This simulates
the recursive call for the left subtree. If the left subtree is empty, we set curLoR to
RIGHT to continue in the right subtree. In any case we store the parent pointer in both
child nodes.

Finally we increase curLevel.

Used functions

In this subsection we shortly explain the function used during the construction. The
frontBackCheck function evaluates where the points of the triangles lie compared to
the plane. To do so it evaluates the dot product of the normal and the line from each
point to the plane’s point. Then it calls aggregateSigns which does a simple check for
positive and negative values and combines them in a bit mask. In findBestsplit we
do a quadratic loop through all the leaves to see which are on the same side and level.
For each of those triangles we count how many of the others it would split6. In the end
we return the id of the one with the lowest amount of splits. With the splitTriangle
function we start a point of the triangle and follow the edge to the next one. We first
add the start point to a the positive or negative list7, depending on which side of the
plane it lies. Along the edge we either stay on the same side or cross the split plane. If
we do not cross the plane we add the next point to the same list and continue following
the next edge. The other case leaves us with a point where the plane cuts through the
triangle. This point is added to both of the lists and the end point of the edge is added
onto the negative or positive list respectively.

After following every edge we are left with two lists, one containing 3 points and one
with 4 (top and bottom half of Figure 5.9 respectively). Now we go through each of the
lists and take three points to construct a triangle. The list with 3 entries will trivially
result in a single triangle (A,D and E in Figure 5.9). The other list contains the 4 points

6We ditched this part of the implementation as explained in Section 6.2
7in our case a fixed size array, this is possible since there are no more than 4 points per side

45

5. Implementation

B, C, D, E of Figure 5.9. Due to construction this algorithm already "sorts" the points
accordingly. If we start with edge BA, we first add point B followed by D, E and lastly
C. This results in the two triangles shown in the figure. Other possibilities are BC
(B,C,E,D), AB (D,B,C,E) and CA (C,E,D,B). We always use the points 1 to 3 for the
first triangle and 2 to 4 for the second. This way the first two possibilities (BA, BC)
result in the shown triangles while the other two (AB, CA) would yield the triangles
BCD and CDE.

Figure 5.9: These images shows the points created during the split

During the split we also set the side (LoR) of the nodes and finally return them

5.2.2 BSP-Tree Traversal

In this section we will outline the simple traversal algorithm as well as how we — once
more — implemented it within the OpenCL restriction for kernels.

The traversal in our case is a sorting query with an eye point and either a front-to-back
or a back-to-front order. We start at the root node and evaluate whether the eye point is
in front or back of the split plane8. Then we recurse into the respective child tree and
continue in recursive fashion until we reach a leaf node. This leaf is then added to the
output list and we backtrack to its parent. The latter one is then added to the output
list and the recursion is continued in its other child-tree. This in-order traversal results
in a sorted list for the given eye point.

8The sort order is simply a change of sign here

46

5.2. Binary Space Partitioning

Kernel sortBSPTreeKernel
1 let sortKernel (eye: V4f) (cells: buffer<Cell>) (nodes : buffer

<BSPNode>) (outArray : buffer<int>) (cellStartEnd: buffer<
int>) =

2 kernel {
3 let id = get_global_id(0)
4 //let extra = 5
5
6 if id < cells.Count then
7 let cell = cells.[id]
8 let firstNodeOffset = cell.FirstIndex / 3
9 let lastNodeIndex = cell.LastIndex / 3 //end of

buffer
10 //prepareNodes
11 for k = firstNodeOffset to lastNodeIndex do
12 nodes.[k].LoR <== LeftOrRight.NONE
13
14 let mutable run = 1
15 while run = 1 do
16 //take node
17 curNode <- nodes.[curID]
18 let left = curNode.Left
19 let right = curNode.Right
20 if left < 0 && right < 0 then
21 //we reached a leaf of the tree -> add it

to the output array
22 ###follow same-pointer###
23 else
24 ###Internal node###
25 if curID < 0 then run <- 0
26
27 }

Figure 5.10: Kernel for traversing the BSP-Tree

47

5. Implementation

Internal node part of sortBSPTreeKernel
1 ###Internal node###
2 if curNode.LoR = NONE then
3 //we are at a new node
4 let height = V4f.Dot(splitplane.Normal,
5 (eye - splitplane.Point))
6 if height > 0.0f then
7 if left > 0 then
8 curNode.LoR <- LEFT
9 curID <- curNode.Left

10 else
11 //no left child, add node to resultlist and traverse right
12 ###follow same-pointer###
13 curNode.LoR <- DONE
14 if right > 0 then //traverse right
15 curID <- curNode.Right
16 else //we are done, backtrack
17 curID <- curNode.Parent
18
19 //traverse back
20 if not (height > 0.0f) then
21 //same as left but with LEFT and RIGHT switched
22 elif curNode.LoR = LEFT then
23 if nodes.[left].LoR = DONE then
24 ###follow same-pointer###
25 //left child is done, go into right child
26 curNode.LoR <- DONE
27 if right > 0 then
28 curID <- curNode.Right
29 else
30 //if there is no right child, we are done
31 curID <- curNode.Parent
32 elif curNode.LoR = RIGHT then //same as left, but switched
33 elif curNode.LoR = DONE then
34 //we are done with internal node update curID to parent
35 curID <- curNode.Parent
36
37 nodes.[curNode.ID] <- curNode
38 if curID = -1 && curNode.LoR = DONE then run <- 0

Figure 5.11: Kernel for traversing the BSP-Tree

48

5.2. Binary Space Partitioning

To fit this algorithm into a kernel, we — again — have to deal with the limitations
explained in the beginning of Section 5.2.1. In order to achieve this we use the same
workaround as already shown in Section 5.2.1. Figure 5.10 shows the traversal. After
identifying the correct range in the global buffer we first set every node’s LoR to NONE.
In the main loop we first check if we are currently dealing with a leaf. In this case we add
it to the output list and traverse the simulated Same-list. Via a counter we keep track
of where in the output buffer we are storing the current entries. We further backtrack to
the leaf’s parent. Note: this would be the base case of a recursive algorithm

If we are working on a node we identify the current stage via the node’s LoR. The first
case is a — so far — unseen node. Here we first check on which side of the split plane
the eye point is, and then set the LoR to the side we are going to traverse. In case there
is no child on this side, we again add the Same-List to the output and set the traversal
to DONE.

In case the working node has its LoR set, we know we have to traverse the respective
subtree. If this subtree is done, we add the current node and it’s Same-List to the output
and set the traversal to the other side. Here we set LoR to DONE to indicate that one
side is already done and we just update curID to match the other child. In the other
case we update curID to indicate we continue with the subtree. Note: this represents a
recursive call.

The last case is DONE. The first one corresponds to a node that has finished both subtrees
and therefore the status is set to DONE. The latter one indicates a finished subtree and
therefore we backtrack to its parent node. Note: this would be the return of a recursive
call.

The end of the loop writes back the changes to the node and checks if we have arrived at
the cell’s root node.

5.2.3 Conceptual Error

After having everything set up we re-evaluated the concept of this idea. The property of
the BVH-tree — as we constructed it — is also the doom to our idea of usage. Since
the triangles are sorted by the Morton codes of their centers’ a triangle could potentially
spread through multiple cells. Even in that case it would still only end up in one BVH-
node. This will essentially lead to errors when sorting since it is not possible to decide if
a cell is in front or at the back of another.

Figure 5.12 showcases this problem. On the left we see a scene, which simply contains
two overlapping triangles. The yellow and green line mark the bounding boxes of their
respective triangles. On the left hand-side of in the scene with have the larger triangle
whose result is symbolized as node A in the BVH-tree. On the right side we have the
triangle in the back and schematically shown as the node B. In this case we already
struggle to tell if node A is in front of node B without checking the triangles.

49

5. Implementation

(a) Scene with overlapping triangles
(b) BVH-tree for the
scene

Figure 5.12: These images show a scene with overlapping triangles and a possible
BVH-tree for the scene

If the nodes contain multiple triangles it is even possible that node A contains triangles
in front of some in B as well as behind those. We therefore would have to merge the
sorted list of every node and check those for the order. This results in a big overhead that
outweighs the advantages of constructing the small BSP-Trees inside the BVH-nodes.

This realization lead us to think about splitting the scene into smaller cells that can
be sorted. A simple solution for this is to lay a grid over the whole scene and split the
triangles on the edges.

5.2.4 Grid

We split a scene into small subscenes by lying a uniform grid over it. The size of a cell
is the total size of the scene’s bounding box divided by the desired number of resulting
cells. This procedure is showcased in Figure 5.13. On the left we see an example scene
which is to be split. The result of this split is seen in on the right side of the graphic,
displaying the cells as circles with their respective BSP-Trees.

During the splitting procedure we come across multiple possible scenarios. The simplest
cases are represented by the cells A and E which consist of only a few triangles. These
cells need no further processing. Another simple case is the cell F — it is empty and
therefore only needs to be removed. Triangles like the one going from cell B to D and
the one in cell D and H are split into multiple triangles. In the two dimensional case
this is similar to the split procedure that we have already used during BSP construction
(see Section 5.2.1). In 3D this split is more complicated, yet can be reduced to multiple
2D splits (explanation follows in Section 5.2.4). The last case is a cell like G. In general
it belongs to the same group as cells A and E, yet the amount of triangles could lead to
problems that will be discussed in Section 5.3.

Sorting

By reducing the scene into non-overlapping cells and doing necessary triangle splitting it
is possible to sort the cells. Thus we can sort the cells according to a query and then

50

5.2. Binary Space Partitioning

Figure 5.13: The scene on the left on the image is subdivided by a grid into eight cells.
The result of this is represented with cells as circles on the right. Each cell contains a
BSP-Tree with its triangles. In the compacting step, cell F will be removed from the set
of cells.

sort the triangles within a cell.

This allows us to make use of the small BSP-Trees. In order to do so we simply process
a sorting query by first simultaneously sorting the cells and then forwarding the query
to all the BSP-Trees. When the trees complete the procedure we simply have to put
their sort results into the order of the cells. Figure 5.14 shows a possible example for our
sorting method. In the first image we see the scene and the issued sorting query. Thus
we first sort the cells accordingly as show in Figure 5.14b9. After that step is completed,
we replicate the sorting query to all the cells’ BSP-Trees. After traversing them, the last
step is adding the triangles to an array in the resulting order.

Polygon splitting

The three-dimensional case of splitting a triangle on a box’s planes can lead to several
cases. Examples for these cases are shown in Figure 5.15. The simplest case is a triangle
contained by a box — here nothing needs to be done (Figure 5.15a). Triangles with
all points outside of the box can either contain the box (Figure 5.15d), go through it
(Figure 5.15c) or lie on the outside (Figure 5.15b). The first case results in a quad the
size of the box. The second scenario yields a quad with the 4 cutting points on the planes.
The latter case can be ignored since the triangle does not belong to the cell. Further it is
possible that a triangle has points both within and without the box. In this case the split
can end up with a polygon having between 3 and 6 edges (Figure 5.15e – Figure 5.15h).

To treat all these possibilities we iterate over the six planes defining the box. For each
plane we follow the relevant points of our structure and split its edges on intersections.
We add the intersection points to the list of relevant points and continue with the next
plane. Via a flag we keep track whether we are currently inside the box or not. This
way we cut the polygon on each of the box’s faces and obtain a set of points in the end.

9Cell F was removed from the set of cells because it does not contain any triangles

51

5. Implementation

(a) A sorting query is issued to the BSP-grid

(b) Sorting the cells for the given query

(c) Replicating the query to all BSP-Trees and sorting them

Figure 5.14: Sorting with the BSP-grid

These points form a polygon within the box. To obtain triangles from the polygon a
simple traversal, similar to the one shown in Section 5.2.1 is done.

5.3 Limitation Of The GPU

During the implementation we came across certain roadblocks that are specific to the
architecture of the GPU. In this section we will showcase the mentioned hindrances and
how we solved the resulting problems.

52

5.3. Limitation Of The GPU

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.15: Some triangle box intersection possibilities

5.3.1 No Dynamic Memory Allocation

With the OpenCL API it is not possible to dynamically allocate memory within a kernel.
That means that the host program needs to know how much memory a kernel needs
before executing it. Thus it is not possible to easily use dynamic data-structures such as
Lists, Stacks or Queues. This leads to problems whenever we need to generate data. In
our case this occurs every time we split a triangle.

As triangle splitting is used both in grid generation as well as during the BSP-Tree build
we have to somehow manage the memory accordingly. In the first case we could simply
go through the scene and count the amounts of triangles we will have after splitting at
cell borders, then allocate according memory before doing the splitting. Although this
would deal with the memory allocation problem, we have to run the same code twice
because there is no way to know the final number of triangles without going through the
split procedure. Thus we opted to preallocate extra memory for every cell and compacted
the result in the end. Since we needed to compact anyway to deal with empty cells, we
did not create any additional overhead.

53

5. Implementation

In the case of BSP-Tree generation the problem is a more difficult one. Without building
the tree, there is no way of knowing how many triangles it will hold in the end. Since we
are constructing multiple BSP-Trees at the same time, we also need to consider how we
represent the triangles in memory. For this we used the common way, having an array
filled with their respective points. Since our algorithm is designed to simply loop over a
consecutive set of triangles, we need to add newly generated ones at the end of this set.
This means that, for every cell we need to have extra space at the end of the memory
range it operates on, so that it can add triangles. We obtained this by spreading out the
triangles over the memory and adding a buffer space at the end of every set. Figure 5.16
shows a schematic example of this procedure. The set of blue triangles are put in the
first place with extra space next to them. After the end of said buffer space the next set
of triangles is placed.

Figure 5.16: Splice out operation on a given set of triangles

Unfortunately for the BSP-Tree there is no simple way to predetermine the additional
memory needed and we therefore have to estimate. During testing, 4 times extra buffer
space showed to be enough in most cases10.

5.3.2 Slow Discontinuous Reads And Writes

The memory layout we explained in the previous section leads us directly to the next
problem. GPU architectures are very slow when it comes to reading and writing to or
from memory locations that are not in order. This manifests itself during our sorting
procedure. Since the BSP-grid generation organizes the memory in cell order we have to
exactly deal with those discontinuous reads during sorting. During the last step of the
sort we have to read the triangle indices in a different order than they are stored. The
sparse memory layout further enhances this overhead.

10As already mentioned this value is dependent on the number of triangles generated during the build
of the BSP-Tree. The latter one — again — is dependent on the size of the grid. Further, the available
memory depends on the GPU used. Therefore there is no guarantee that any given number will fit.

54

5.3. Limitation Of The GPU

We have tried to reorder the final indices in a way to only need to read in consecutive
order. Although this should lead to a theoretical speedup, we could not achieve one. This
could be due to either the sparse memory layout or the resulting discontinuous writes.

To overcome this problem we added a compacting at the end of the BSP-Tree build.
Figure 5.17 shows this procedure, generating an array that does not have any empty cells.
Therefore the overall build time increased in favor of the sort time.

Figure 5.17: Compact operation for a sparse array of triangles

5.3.3 General Memory Limitations

Besides not being able to dynamically allocate memory, we have already hinted toward
some other problems in Section 5.3.1. The memory for an OpenCL kernel is very limited.
Therefore the sizes of the buffers that are passed to it need to fit those limitations.

In our case this can lead to problems when adapting the size of the grid as it changes the
number of triangles per cell. For our implementation it is important to find a good grid
size for a given scene. A higher number could lead to too many triangle splits during
grid generation that potentially could make us run out of space during said procedure. A
smaller number will lead to more triangles per cell and therefore increases the BSP-Tree
build time. Further it also leads to more splits during the creation of the tree. This
comes with the risk to run out of memory on that end.

During tests we established that a grid size of n ∗ n ∗ n with n between 25 and 35 seems
to work well.

55

CHAPTER 6
Evaluation

We have to evaluate certain properties of the BSP-grid, to see if we can replace the
currently used, highly optimized CPU implementation of the BSP-Tree in the Aardvark
rendering framework. Most interesting is the sorting performance since transparency
sorting the tree’s primary use case. Secondly we have to make sure that build times of
the BSP-grid are reasonable fast to avoid off-line generation.

Another interesting property is the total amount of triangles we obtain throughout the
buildup phase, because we want to keep them as small as possible.

Further we are interested in finding the optimal settings for the BSP-grid. Thus we have
examined grid sizes from 11 up to 50.

Finally we also searched for weaknesses in our design as well as hardware dependent
bottlenecks of our implementation for future improvements.

6.1 Setup
First we give a brief overview of our test setup.

All of our performance tests2 were run with 10 builds of the chosen implementation with
a total of 100 sort operations. Stable results made further iterations unnecessary.

Furthermore we have only used one hardware setup as the prototype was build to test
whether this approach can outperform the currently used BSP-Tree or not.

6.1.1 Hardware

For evaluation we used the following hardware
1Full single-threaded tree generation on the GPU
2Note that the analysis of node selection methods is not a performance test

57

6. Evaluation

(a) Stanford Bunny
(69,451 triangles)

(b) Dragon
(1,132,830 triangles)

(c) Happy Buddha
(1,087,716 triangles)

Figure 6.1: Models for our evaluation, taken from The Stanford 3D Scanning Reposi-
tory [sta16]

• Processor: Intel Core i5-4690K 3.50 GHz

• Memory: 16 GB DDR3 RAM

• GPU: GeForce GTX 680, 2048 MB Memory

• OpenCL: Version 1.2

6.1.2 Scenes

For our evaluation we took three scenes from The Stanford 3D Scanning Repos-
itory [sta16] shown in Figure 6.1. The images from the repository are the results of
3D-scans.

These models, being made of many triangles within small region, were selected as they
represent our most desired use case, rendering transparency of single objects within a
larger scene.

For simplicity we omitted colors and normals from the images, as adding those to the
BSP-grid build just add two additional indices to store for each triangle.

6.1.3 Implementations

For the evaluation we used five different implementations as shown in the list below.

GPUGrid This is the implementation as described in the Chapter 5.

CPUGrid-NP A simple CPU implementation of the BSP-grid, without parallelization.

CPUGrid-P As above, but with parallel sorting in the BSP-Trees.

CPU-SingleTree-NP A single BSP tree for the whole scene, omitting the grid.

CPU-SingleTree-P Single tree with parallelization for sorting.

58

6.2. Root Node Selection

The BSP-grid implementations have a single parameter specifying the grid size. A grid
size of n leads to splitting the scene into n3 cells, before removing the empty ones.

Both CPU implementations of the BSP-grid use the CPU-SingleTree in their grid cells.
This tree does not implement a heuristic for building, but simply adds the triangles in
input order. The tree construction is quadratically and sorting is linearly proportional to
the number of triangles.

The grid generation time in both the GPU and the CPU implementations is proportional
to the number of triangles, since we just take each and find cell for it. Building the
BSP-Tree in the cells differs between the CPU and the GPU implementation. The CPU
implementation uses the CPU-SingleTree and therefore obtains its runtime properties.
The GPU implementation, however, originally3 looped over all triangles quadratically
during the build in order to find an appropriate root node for every level4. The sort is a
simple tree traversal with a theoretical complexity of O(n).

Since we are using parallel algorithms we have to further look how the parallelization
plays a role for runtime properties. When parallelized over triangles, the grid generation
is dominated by sorting the triangles in cell order, leading to a theoretical complexity of
O(logn)5 for n triangles.

The BSP-Tree generation is parallelized over the grid cells with each of them working on
all of their triangles in cubic fashion. The reason for this is that we try to reduce splits
by finding the triangle with least splits for every node added in a quadratic loop. For
sorting the BSP-Trees we also parallelize over the cells, whereas every cell has to traverse
its tree. Hence the runtime is linearly proportional to the number of triangles in every
cell. Note that for the BSP-grid the number of triangles per tree is tremendously smaller
than for a single BSP-Tree.

6.2 Root Node Selection
During the evaluation we tracked down a bottleneck in the quadratic loop that selects
a proper root node at every level of the BSP-Trees. This method was chosen in order
to keep the amount of resulting number of triangles as small as possible to be able
to stay within the memory limitations of the GPU. As the high build times seemed
unreasonable we have inspected the differences in triangle generation between the least
splitting method 6 and a simple random select7. We evaluated the difference in triangles
added for our three test scenes with grid sizes of 25, 30 and 35.

To our surprise, the random select only shows an average increase of 0.15% overall added
triangles with respect to the least splitting variant. This value is highly skewed towards

3See Section 6.2 why we changed it
4See Section 5.2.1 for the implementation
5The interested reader is forwarded to Cole’s parallel merge sort [Col93]
6Explained in Section 5.2.1 as findBestSplit
7In fact we are always selecting the triangle which is added last

59

6. Evaluation

Figure 6.2: The graph shows the relative build and sort times of the random node
selection compared to the least-split heuristic. While the sort time almost stayed the
same, the build times were strongly reduced by the change.

the Stanford Bunny model which averages at an 0.38% increase. In both the Dragon
and the Happy Buddha scenes, the random node selection keeps the increase of triangles
below 0.1% for grid sizes of 25 to 35. Figure 6.2 displays the tremendous decrease in
build times that we have achieved by ditching the least split selection in favor of the
random add method. Further it shows that this does not affect the sort times negatively.
The only noticeable increase, was measured for the Stanford Bunny scene with a low grid
size. This directly translates from the earlier mentioned increase in generated triangles.

Hence, we changed the implementation to use the random add method for the rest of the
evaluation.

6.3 Grid Size
The following tests confirmed our initial hypothesis that with the grid we can achieve
faster builds as shown in Figure 6.3a. Interestingly this speedup peaks at a grid size of
258. Thereafter it rises and levels off from 30 onward. We further see that for the larger

8As we will see later in this section, the number of triangles per cell stay steady for higher grid sizes.

60

6.3. Grid Size

two test scenes the build time drastically falls off for grid sizes smaller than 20 as the
triangles per cell fall off the most here.

(a) Build times

(b) Sort times

Figure 6.3: These graphs show the build (a) and the sort times (b) in milliseconds for
different grid sizes. Here we see, that in our setup the grid size of 25 performs best over
all the scenes

Interestingly the sorting times behaved the same, as shown in Figure 6.3b. Our test
results showed that after a certain peak — typically around grid sizes of 25 — the sorting
times increase again. Figure 6.4 displays that a possible reason for this could be that
separating the scene into too many cells leads to a huge amount of triangle splits. As

61

6. Evaluation

Figure 6.4: Here we can see the relative amount of triangles generated through splits
for different grid sizes. The displayed linear growth suggests that increasing number of
cells translate into more triangle splits and thus not reducing the overall problem size
anymore.

we can see in the graph the amount of newly-added triangles is linearly related to the
number of cells. This linear trend leads to problems when we surpass a certain threshold.
The Stanford Bunny test scene reached the value of 250% newly-generated triangles with
a grid size of 50. From that point on we have to omit triangles as we run out of buffer
space in our test setup.

We have also found out that the BSP-Trees generated less than 1% of the overall new
triangles during our tests.

Thus from a certain cell count onward the number of triangles per BSP-Tree does not
decrease anymore, because smaller cells lead to more triangle splits during grid generation.
Since increasing the number of cells with a decreasing number of triangles per cell will
also inevitably lead to having the number of cells overtake the number of triangles, we
inspected the relation between the number of triangles and cells.

Figure 6.5 shows that averaged over our test scenes the number of cells overtake the
number of containing triangles already with a grid size of 15. We further noticed that at
our favored grid size of 25 we reach a triangle count lower than 300 per cell and stayed
around the same value thereafter.

6.4 Comparing Implementations
Our second test benchmarked the different implementations against each other. For this
we only took grid sizes between 25 and 35 as these seem to achieve the best results. We
further used the CPUGrid-NP as our baseline to test against.

62

6.4. Comparing Implementations

Figure 6.5: This graph shows the relation between the number of cells and the average
triangles per cell. We can see that the number of cells surpasses the number of triangles
within them at low grid sizes already. Further from 25 the number of triangles per cell
reaches a lower limit.

As we can see in the first graph in Figure 6.6 the build times are dominated by our
GPUGrid. Interestingly the GPU implementation of the BSP-grid achieves the highest
speedup in the smallest scene. It is also interesting to see that a single BSP-Tree
outperforms the CPU implementation of the BSP-grid. The reason for this is that the
CPU-SingleTree does not need to reorder data and combine it, as this is costly if not
done in parallel.

Table 6.1 shows the sort times compared to the CPUGrid-NP baseline9. To our surprise
the CPUGrid seems to perform worse when the BSP-Trees sort in parallel. A possible
explanation for this is, that organizing parallel execution for small instances outweighs
the actual sorting costs. The sort times for the CPU-SingleTree, that always works on the
whole scene, confirm this assumption by showing that the parallel version outperforms
its non-parallel counterpart.

Figure 6.6b shows the performance gain of our GPU implementation and the CPU-
SingleTree-NP compared to the CPUGrid-NP baseline. We can see, that the GPU
BSP-grid sorts faster for all our test cases. Interestingly the performance gain for the
Happy Buddha scene increases with the grid size. This abnormality seems to be scene
specific as the number of triangles per cell as well as both their total numbers do not
suggest any correlation10.

Unfortunately we could not manage to outperform the highly optimized BSP-Tree when
used as standalone variant.

9Note that CPU-SingleTree, by construction, is not influenced by the grid size
10Possibly the triangles are not evenly distributed throughout the cells

63

6. Evaluation

(a) Build times

(b) Sort times

Figure 6.6: These graphs show the relative speedup of build (a) and sort times (b) com-
pared to a baseline CPU implementation. Here we can see that our GPU implementation
of the BSP-grid not only outperforms the CPU baseline, but also builds consistently
faster than the CPU-SingleTree variant.

6.4.1 Limitations

A core limitation of our setup is the memory the GPU has to offer. This means that — as
already mentioned in Section 6.3 — certain instance sizes and configurations lead to the
problem of running out of buffer space. During our test this happened when we created
more than 250% of the original scene triangles. In those cases we have to omit triangles,

64

6.4. Comparing Implementations

GS CPUGrid-NP CPUGrid GPUGrid CPU-SingleTree-NP CPU-SingleTree-P
Bunny

25 37,54 44,57 84% 6,57 571% 1,11 3389% 0,47 8036%
30 10,54 24,37 43% 6,49 162% 1,11 952% 0,47 2257%
35 11,61 34,32 34% 7,37 158% 1,11 1049% 0,47 2486%

Dragon
25 97,14 70,40 138% 29,12 334% 10,22 951% 5,76 1688%
30 93,99 77,21 122% 25,34 371% 10,22 920% 5,76 1633%
35 56,23 108,53 52% 27,62 204% 10,22 550% 5,76 977%

Buddha
25 68,90 78,13 88% 27,61 250% 11,21 615% 5,84 1179%
30 124,19 86,824 143% 28,50 436% 11,218 1108% 5,84 2125%
35 217,68 245,68 89% 30,18 721% 11,21 1943% 5,84 3725%

Table 6.1: Sorting times in ms and relative performance gain compared to the baseline
CPUGrid-NP

making the result incorrect. This also can happen for very unbalanced scenes with many
triangles in a single cell as those will likely split more and therefore overrun the buffer
space.

Another problem is that scenes with more than 2.5 million triangles will not work with
the current setup. This could be fixed by further analyzing memory footprints and
adapting buffer sizes during the build of the BSP-grid.

6.4.2 Conclusion

Throughout these benchmarks we have learned that the GPU implementation performs
best with a grid size around 25.

After a grid size of 35 we could not see any drastic improvements in sorting for our
hybrid approach. However by applying the random split node selection strategy we can
outperform the CPU implementation as well as the CPU-SingleTree during build times
for grid sizes of 15 and above.

Unfortunately we could not outperform the CPU-SingleTree-NP as originally fancied.
Nonetheless, for sorting, our hybrid approach could almost perform on par with it.
Further our GPUGrid offers the additional advantage, that it omits the data transfer
between CPU and GPU.

65

CHAPTER 7
Conclusion and Future Work

We presented a hybrid approach for BSP-Tree generation on the GPU. Our algorithm
combines a simple uniform grid and a common BSP-Tree. The so-called BSP-grid is then
fully sortable and achieves reasonable sort times.

By splitting the scene into multiple subscenes we decreased the instance sizes for BSP-Tree
construction tremendously. With this reduction it is possible to build a BSP-grid in
feasible time for a given scene.

Throughout the implementation process of our algorithm we came across different
roadblocks. Originally we planned on making use of the well-researched BVH-trees for
frustum culling. As established during implementation we could not use them to lower
the complexity for said problem.

We then tried to obtain a scene splitting by making use of a BVH-tree in Karras’ [Kar12]
fashion. Since this tree is designed to roughly sort the primitives of a scene, it is not
possible to use it for transparency sorting. Further the limitations of GPU programming
take their toll during the BSP-grid building phase.

For our implementation we used an F# to OpenCL cross-compiler1 for simpler embedding
into the current framework. This way the code is not only cleaner, but also more easily
maintainable.

Evaluation showed that we could outperform a CPU implementation by a large margin.
We further found out that an increasing grid sizes benefit the BSP-grid only up to a
certain point. Thus we pinpointed this value at 25 for the current settings.

Our approach further offers the advantage that it is fully implemented on the GPU,
meaning there is no need for data transfer between GPU and CPU.

1See Section 4.5

67

7. Conclusion and Future Work

7.1 Future Work
Our implementation offers huge optimization potential. First of all it might be possible
to reduce memory usage by precalculating and estimating triangle splits for grid and
BSP-Tree generation respectively. Further the memory layout could be changed to reduce
splicing and compacting operations.

Another weak point of the algorithm is the BSP-Tree generation itself. Its complexity
was already reduced by omitting the root node selection. However, this might lead to
situations where we run out of buffer memory. With a different memory layout it might
also be possible to add the triangles in different ways than simply looping through them.

Further we believe that with certain adaptions the BVH-tree can be used instead of the
grid. This could possibly be done by altering its construction process to employ triangle
splitting.

Lastly it might be possible to create smaller subscenes by using an octree instead of
a grid. This way the scene could be recursively split until cells reach a certain limit
of triangles to process, thus creating the possibility to further optimize the BSP-Trees
themselves.

68

List of Figures

1.1 Ray tracing example . 2
1.2 Transparency sorting example . 2

3.1 Painter’s algorithm Problem . 9
3.2 Transparency sorting example . 10
3.3 Ray tracing schematic example . 11
3.4 Ray traced image example . 12
3.5 Transparency sorting example . 12
3.6 Karass’ radix tree design . 15
3.7 BSP example . 19
3.8 k-d tree construction pattern . 20
3.9 Tree summation illustration . 22

4.1 OpenCL architectural model . 26
4.2 OpenCL 2-dimensional work structure grid 27
4.3 OpenCL Memory hierarchy . 27
4.4 OpenCL Memory synchronization . 28
4.5 OpenCL event queue . 28
4.6 OpenCL Matrix multiplication . 29
4.7 F# Matrix multiplication . 30
4.8 F# host program . 31

5.1 Top level BVH builder . 35
5.2 Kernel of the core function for BVH construction 36
5.3 Function to determine the range of an internal node 37
5.4 Triangle split result . 40
5.5 Definition of BSPNode . 41
5.6 Kernel for building the BSP-Tree . 42
5.7 Evaluation loop of the kernel . 43
5.8 Next level preparation section of the kernel 44
5.9 Triangle splitting example . 46
5.10 Kernel sortBSPTreeKernel . 47
5.11 Internal node part of sortBSPTreeKernel 48
5.12 Conceptual Errors . 50

69

5.13 Grid Generation example . 51
5.14 BSP-grid sorting example . 52
5.15 Triangle Box intersections . 53
5.16 Array splice out . 54
5.17 Array compact . 55

6.1 Test scenes . 58
6.2 Node selection build and sort times . 60
6.3 Build and sort times for different grid sizes 61
6.4 Triangles generated for different grid sizes . 62
6.5 Triangles per cell chart . 63
6.6 Build and sort times for different implementations 64

List of Tables

6.1 Sort time comparison . 65

70

List of Algorithms

3.1 SIMD tree summation . 21

4.1 Matrix multiplication . 28

71

Bibliography

[Ado] Adok. 2d ray tracing example.

[AKL13] Timo Aila, Tero Karras, and Samuli Laine. On quality metrics of bounding
volume hierarchies. In High-Performance Graphics 2013, Anaheim, Califor-
nia, USA, July 19-21, 2013. Proceedings, pages 101–108, 2013.

[AMD] AMD. Ati mecha demo screenshot.

[App68] Arthur Appel. Some techniques for shading machine renderings of solids. In
American Federation of Information Processing Societies: AFIPS Conference
Proceedings: 1968 Spring Joint Computer Conference, Atlantic City, NJ,
USA, 30 April - 2 May 1968, pages 37–45, 1968.

[Ary02] Sunil Arya. Binary space partitions for axis-parallel line segments: Size-height
tradeoffs. Inf. Process. Lett., 84(4):201–206, 2002.

[AT10] Nathan Andrysco and Xavier Tricoche. Matrix trees. Comput. Graph. Forum,
29(3):963–972, 2010.

[AT11] Nathan Andrysco and Xavier Tricoche. Implicit and dynamic trees for
high performance rendering. In Proceedings of the Graphics Interface 2011
Conference, May 25-27, 2011, St. John’s, Newfoundland, Canada, pages
143–150, 2011.

[BCNJ08] B. C. Budge, D. Coming, D. Norpchen, and K. I. Joy. Accelerated building
and ray tracing of restricted bsp trees. In Interactive Ray Tracing, 2008. RT
2008. IEEE Symposium on, pages 167–174, Aug 2008.

[BHH15a] Jirí Bittner, Michal Hapala, and Vlastimil Havran. Incremental BVH con-
struction for ray tracing. Computers & Graphics, 47:135–144, 2015.

[BHH15b] Jirí Bittner, Michal Hapala, and Vlastimil Havran. Incremental BVH con-
struction for ray tracing. Computers & Graphics, 47:135–144, 2015.

[CF89] Norman Chin and Steven Feiner. Near real-time shadow generation using
BSP trees. In Proceedings of the 16th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH 1989, Boston, MA, USA,
July 31 - August 4, 1989, pages 99–106, 1989.

73

[CKL+10] Byn Choi, Rakesh Komuravelli, Victor Lu, Hyojin Sung, Robert L. Bocchino
Jr., Sarita V. Adve, and John C. Hart. Parallel SAH k-d tree construction.
In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on
High Performance Graphics 2010, Saarbrücken, Germany, June 25-27, 2010,
pages 77–86, 2010.

[Col93] Richard Cole. Correction: Parallel merge sort. SIAM J. Comput., 22(6):1349,
1993.

[EG07] M. Ernst and G. Greiner. Early split clipping for bounding volume hierarchies.
In 2007 IEEE Symposium on Interactive Ray Tracing, pages 73–78, Sept
2007.

[FKN80] Henry Fuchs, Zvi M. Kedem, and Bruce F. Naylor. On visible surface
generation by a priori tree structures. In Proceedings of the 7th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
1980, Seattle, Washington, USA, July 14-18, 1980, pages 124–133, 1980.

[FS05] Tim Foley and Jeremy Sugerman. Kd-tree acceleration structures for a
GPU raytracer. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Symposium on Graphics Hardware 2005, Los Angeles, California, USA, July
30-31, 2005, pages 15–22, 2005.

[GHFB13] Yan Gu, Yong He, Kayvon Fatahalian, and Guy E. Blelloch. Efficient BVH
construction via approximate agglomerative clustering. In High-Performance
Graphics 2013, Anaheim, California, USA, July 19-21, 2013. Proceedings,
pages 81–88, 2013.

[gpg] General-purpose computing on graphics processing units.

[GS87] Jeffrey Goldsmith and John Salmon. Automatic creation of object hierarchies
for ray tracing. IEEE Computer Graphics and Applications, 7(5):14–20, 1987.

[Hav00] Vlastimil Havran. Heuristic ray shooting algorithms. PhD thesis, Citeseer,
2000.

[HBZ98] Vlastimil Havran, Jirí Bittner, and Jirí Zára. Ray tracing with rope trees. In
in Proceedings of 13th Spring Conference On Computer Graphics, Budmerice
in Slovakia, pages 130–139, 1998.

[Hen08] Henrik. Ray traceing diagram, 2008.

[HL09] David M. Hughes and Ik Soo Lim. Kd-jump: a path-preserving stackless
traversal for faster isosurface raytracing on gpus. IEEE Trans. Vis. Comput.
Graph., 15(6):1555–1562, 2009.

74

[HS03] John Hershberger and Subhash Suri. Binary space partitions for 3d subdi-
visions. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, January 12-14, 2003, Baltimore, Maryland, USA.,
pages 100–108, 2003.

[imga] 3d ray tracing example.

[imgb] Binay space partitioning example.

[IWP07] Thiago Ize, Ingo Wald, and Steven G. Parker. Asynchronous BVH construc-
tion for ray tracing dynamic scenes on parallel multi-core architectures. In
Eurographics Symposium on Parallel Graphics and Visualization, EGPGV
2007, Lugano, Switzerland, May 20-21, 2007, pages 101–108, 2007.

[IWP08] T. Ize, I. Wald, and S. G. Parker. Ray tracing with the bsp tree. In Interactive
Ray Tracing, 2008. RT 2008. IEEE Symposium on, pages 159–166, Aug 2008.

[KA13] Tero Karras and Timo Aila. Fast parallel construction of high-quality
bounding volume hierarchies. In High-Performance Graphics 2013, Anaheim,
California, USA, July 19-21, 2013. Proceedings, pages 89–100, 2013.

[Kar12] Tero Karras. Maximizing parallelism in the construction of bvhs, octrees,
and k-d trees. In Proceedings of the EUROGRAPHICS Conference on High
Performance Graphics 2012, Paris, France, June 25-27, 2012, pages 33–37,
2012.

[KIS+12] Daniel Kopta, Thiago Ize, Josef B. Spjut, Erik Brunvand, Al Davis, and
Andrew E. Kensler. Fast, effective BVH updates for animated scenes. In
Symposium on Interactive 3D Graphics and Games, I3D ’12, Costa Mesa,
CA, USA, March 09 - 11, 2012, pages 197–204, 2012.

[LGS+09] Christian Lauterbach, Michael Garland, Shubhabrata Sengupta, David P.
Luebke, and Dinesh Manocha. Fast BVH construction on gpus. Comput.
Graph. Forum, 28(2):375–384, 2009.

[MB90] J. David MacDonald and Kellogg S. Booth. Heuristics for ray tracing using
space subdivision. The Visual Computer, 6(3):153–166, 1990.

[Muł] Wojciech Muła. Painters problem.

[PL10] Jacopo Pantaleoni and David Luebke. HLBVH: hierarchical LBVH con-
struction for real-time ray tracing of dynamic geometry. In Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS Conference on High Performance
Graphics 2010, Saarbrücken, Germany, June 25-27, 2010, pages 87–95, 2010.

[SBU11] D. Sopin, D. Bogolepov, and D. Ulyanov. Real-time sah bvh construction
for ray tracing dynamic scenes. 2011.

75

[Sch] Schreiberx. Bounding volume hierarchy example.

[SD69] R. Schumacher and Air Force Human Resources Laboratory. Training Re-
search Division. Study for Applying Computer-generated Images to Visual
Simulation. AFHRL-TR. Air Force Human Resources Laboratory, Air Force
Systems Command, 1969.

[SSK07] Maxim Shevtsov, Alexei Soupikov, and Alexander Kapustin. Highly paral-
lel fast kd-tree construction for interactive ray tracing of dynamic scenes.
Comput. Graph. Forum, 26(3):395–404, 2007.

[sta16] The stanford 3d scanning repository, 2016.

[Tót05] Csaba D Tóth. Binary space partitions: Recent developments. Combinatorial
and Computational Geometry. MSRI Publications, 52:529–556, 2005.

[Träa] Jesper Larsson Träff. Summation on the pram example.

[Trab] Gilles Tran. Glasses, persistence of vision raytracer (pov ray) - hall of fame.

[TS12] Jonathan Tompson and Kristofer Schlachter. An introduction to the opencl
programming model. Person Education, 2012.

[USC13] Murat Uysal, Baha Sen, and Canan Celik. Hidden surface removal using bsp
tree with cuda. Global Journal on Technology, 3(0), 2013.

[Vog13] Günther Voglsam. Real-time ray tracing on the gpu -ray tracing using cuda
and kd-trees, 2013.

[Wal07] Ingo Wald. On fast construction of sah-based bounding volume hierarchies.
In Proceedings of the 2007 IEEE Symposium on Interactive Ray Tracing, RT
’07, pages 33–40, Washington, DC, USA, 2007. IEEE Computer Society.

[WBKP08] B. Walter, K. Bala, M. Kulkarni, and K. Pingali. Fast agglomerative
clustering for rendering. In Interactive Ray Tracing, 2008. RT 2008. IEEE
Symposium on, pages 81–86, Aug 2008.

[Whi79] Turner Whitted. An improved illumination model for shaded display. In
Proceedings of the 6th Annual Conference on Computer Graphics and Inter-
active Techniques, SIGGRAPH 1979, Chicago, Illinois, USA, August 8-10,
1979, page 14, 1979.

[Woo04] Sven Woop. A ray tracing hardware architecture for dynamic scenes. PhD
thesis, Universität des Saarlandes, 2004.

[WZL11a] Zhefeng Wu, Fukai Zhao, and Xinguo Liu. SAH kd-tree construction on GPU.
In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on
High Performance Graphics 2011, Vancouver, Canada, August 5-7, 2011,
pages 71–78, 2011.

76

[WZL11b] Zhefeng Wu, Fukai Zhao, and Xinguo Liu. SAH kd-tree construction on GPU.
In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on
High Performance Graphics 2011, Vancouver, Canada, August 5-7, 2011,
pages 71–78, 2011.

[YYWX16] Xin Yang, Bing Yang, Pengjie Wang, and Duanqing Xu. MSKD: multi-split
kd-tree design on GPU. Multimedia Tools Appl., 75(2):1349–1364, 2016.

[ZHWG08] Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. Real-time kd-tree
construction on graphics hardware. ACM Trans. Graph., 27(5):126, 2008.

77

	Kurzfassung
	Abstract
	Contents
	Introduction
	Rendering
	Acceleration structures
	graphics processing unit
	Goal of thesis

	Related work
	bounding volume hierarchy
	binary space partitioning
	Tree traversal

	Background
	Rendering
	bounding volume hierarchy
	binary space partitioning
	Parallel Random-Access Machine

	OpenCL
	Introduction
	History
	Architecture
	Code Example
	Usage

	Implementation
	bounding volume hierarchy
	binary space partitioning
	Limitation of the GPU

	Evaluation
	Setup
	Root node selection
	Grid size
	Comparing implementations

	Conclusion and Future Work
	Future Work

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

