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Kurzfassung

Die vorliegende Dissertation stellt die eigenen wissenschaftlichen Beiträge eines Projek-
tes an der Technischen Universität Wien von November 2012 bis Dezember 2015 dar.
Die enthaltenen Veröffentlichungen sind im Laufe eines Kooperationsprojektes zwischen
dem Institut für Mechanik und Mechatronik (Abteilung für Regelungstechnik und Pro-
zessautomatisierung) und der Firma SIEMENS (ehemals MELECS) als Industriepart-
ner entstanden. Das Projekt wurde von der Österreichischen Forschungsförderungsge-
sellschaft (FFG Nr. 836449) gefördert.
Effizientes Testen von Bauteilen und Komponenten mit Hilfe von Hardware-in-Loop
(HiL) Prüfständen ist in vielen industriellen Gebieten, wie etwa in der Automobil-,
Elektronik- und Bahn-Industrie, weit verbreitet. Bei HiL-Prüfständen interagieren die
zu testenden eingebetteten Prüflinge (Unit-Under-Test, UUT) mit einem virtuellen Mo-
dell mechanisch oder elektrisch über definierte Ein- und Ausgänge. Das ermöglicht rea-
litätsnahe Tests unter Laborbedingungen, erfordert aber echtzeitfähige Modelle. In die-
ser Arbeit wird ein echtzeitfähiges Oberleitungsmodell vorgestellt, welches erfolgreich
an einem innovativen Stromabnehmer-HiL-Prüfstand implementiert wurde.
Das echtzeitfähige Oberleitungsmodell wird mittels mathematischer Modellierung her-
geleitet. Da es sich bei einer Oberleitung um ein räumlich ausgedehntes, verteilt-para-
metrisches System handelt, wird seine Dynamik mit partiellen Differentialgleichungen
beschrieben. Diese partiellen Differentialgleichungen, die sogenannten Euler-Bernoulli-
Gleichungen, beschreiben die Wellenausbreitung bei der Interaktion mit dem Stromab-
nehmer. Alle relevanten Komponenten einer Oberleitung, das Tragseil, der Fahrtdraht,
die Hänger, welche diese beiden verbinden, und die Masten werden dabei berücksichtigt.
Um die Interaktion der Oberleitung mit dem Stromabnehmer effizient zu simulieren,
wird der Stromabnehmer fixiert und die Oberleitung über diesen bewegt. Dadurch muss
nur die Oberleitung im Umfeld des Stromabnehmers berücksichtigt werden.
Bei einer realen Oberleitung breiten sich die Wellen, welche bei der Oberleitungs-Strom-
abnehmer-Interaktion entstehen, nahezu ungehindert in und gegen die Fahrtrichtung
aus. Um dieses Verhalten einer „unendlich“ ausgedehnten Oberleitung zu simulieren,
werden absorbierende Randbedingungen verwendet. Da für die Euler-Bernoulli-Glei-
chung in der Literatur keine absorbierenden Randbedingen zur Verfügung stehen, wird
eine Methode zur Bestimmung von absorbierenden Randbedingungen entwickelt. Die
Methode ist nicht ausschließlich auf die Euler-Bernoulli-Gleichung beschränkt, sondern
eignet sich auch für andere Gleichungen, welche Wellenausbreitung beschreiben.
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Um die Euler-Bernoulli-Gleichung korrekt zu parametrieren, wird eine optimierungs-
basierte Identifikationsmethode entwickelt und an einem Seilprüfstand validiert. Die
Methode liefert eine gute Übereinstimmung zwischen Modell- und Messdaten und ga-
rantiert die numerische Stabilität des Modells, welche für den Einsatz am HiL-Prüfstand
unverzichtbar ist.
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Abstract

The present PhD Thesis provides my scientific results of a research project at the Vienna
University of Technology since November 2012 until December 2015. The publications
originated in the course of a cooperation project between the Institute of Mechanics and
Mechatronics (Division of Control and Process Automation), and SIEMENS (former
MELECS) as industrial partner. The project has been funded by the Austrian Research
Promotion Agency (FFG No. 836449).
Hardware-in-the-Loop (HiL) test rigs allow for efficient testing of parts and components
and are widely used in automotive, electronics and train industries. The part or compo-
nent, denoted as unit-under-test is embedded into the HiL test rig and interacts with a
virtual model via defined electrical and/or mechanical inputs and outputs. HiL test rigs
enable realistic testing under laboratory conditions, however, the (virtual) model has
to be executed in real-time. This thesis presents a real-time capable railway catenary
model, which has been successfully tested on an innovative HiL pantograph test rig.
The real-time capable catenary model is obtained by mathematical modeling, consider-
ing all relevant catenary parts: the carrier and contact wire, the droppers and the masts.
The catenary is a spatially distributed system and as such its dynamics are described
by coupled partial differential equations (the Euler-Bernoulli beam equations). These
equations model the wave propagation arising from the catenary pantograph interac-
tion. To reduce the computational effort a fixed pantograph interacts with a moving
catenary. This approach has the advantage that only a limited area of the catenary has
to be modeled.
At an actual catenary the waves propagate in an unimpeded manner because of its spa-
tial extension. This "unbounded" domain is modeled for the catenary model by imposing
absorbing boundary conditions. This boundary conditions have not been investigated
for Euler-Bernoulli beam before. Because of that a optimization based methodology
is developed to determine well-performing and stable absorbing boundary conditions.
This methodology is generic and can be used for partial differential equations with wave
propagation effects.
To identify the physical parameters of a Euler-Bernoulli beam, a multi-objective opti-
mization methodology is developed and verified on an wire test rig. Stability is guar-
anteed for the resulting numerical model, which is crucial for HiL applications.
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Chapter 1

Introductory Chapter

1.1 Motivation & Problem Statement
Modern high-speed passenger trains are traveling at speeds of 250 km h−1 and beyond.
Their efficiency in connecting large cities led to massive investments especially in Europe
and East Asia. Compared to air transport high-speed trains achieve a share about 80 %
of passengers for travelling times below 2.5 hours. In total 1.6 billion passengers are
traveling by high-speed trains annually [1].
Higher cruising velocities are also leading to higher requirements for trains, train parts
and railway infrastructure as the catenary. To test railway parts such as the current
collector (pantograph) actual test rides are expensive and do not allow short develop-
ment cycles. A cost-effective solution are Hardware-in-the-Loop (HiL) test beds. These
test beds allow to investigate the unit-under-test (UUT), here the pantograph, under
close-to-reality conditions. To perform realistic test runs the catenary dynamics is emu-
lated by the HiL test bed and dynamically interacting with the pantograph. This setup
enables reproducible test runs in a laboratory environment. However, a crucial part for
this approach is the use of a realistic catenary model which is particular challenging
because:

• A catenary is a distributed parameter system and is modeled mathematically by
coupled partial differential equations (PDEs).

• For physical trustworthiness these PDEs have to parametrized correctly.

• Efficient numerical implementation and reduction methods are needed to enable
real-time computation.

The derivation and the implementation of such a real-time capable catenary model is
the topic of this thesis.
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1.2 Goals
The overall goal is the development and the implementation of a real-time capable
catenary model on an actual HiL test bed and was achieved by

1. modeling an actual catenary setup mathematically,

2. parameterizing the catenary model with physical meaningful parameters, and

3. applying reduction methods to enhance the execution time of the model.

Figure 1.1: Principle of catenary emulation on Hardware-in-the-Loop (HiL)
test rig. The robot arm and the linear drive mimic the catenary
dynamics. The pantograph as unit-under-test (UUT) "feels" the
emulated catenary.

The mechanical HiL test bed is displayed in the right part of Fig. 1.1. It consists
of a robot arm and a linear drive. The linear drive is used to excite the pantograph
with catenary’s dynamics (symbolically displayed in the left part of Fig. 1.1). The
derivation and emulation of the real-time catenary model, and its interaction with the
pantograph are published in Ref. [2] (Publication C). This goal is achieved step-wise by
first modeling the catenary physical setup mathematically (see top left part of Fig. 1.2).
Its implementation adopted from Ref. [3] and is performed in efficient and flexible way
[4]. The resulting model is not real-time capable, but allows comparison with literature
and standards as the EN50318 [5]. As a second step a suitable identification method
was developed to parametrize the model with realistic parameters (see top right part of
Fig. 1.2). Therefore, a multi-objective optimization based identification methodology
was developed and validated with simulation and measurement data (see [6] or Publica-
tion A). Finally, the real-time capability is obtained using a different reference system
(pantograph-fixed coordinates) formulation and by applying absorbing layers/boundary
conditions. This special boundary treatment is needed to avoid spurious reflections. A
optimization based determination of absorbing boundary condition is published in Ref.
[7] (Publication B)
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Figure 1.2: Major steps for achieving a real-time capable catenary model: mod-
eling, identification and reduction
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1.3 Methodology
The major steps of the methodology: 1) modelling, 2) identification and 3) reduction
as visualized in Fig. 1.2 will be explained in the following subsections.

1.3.1 Modelling
Modelling a catenary mathematically leads to a distributed parameter system which is
described by PDEs.
An actual catenary set-up is displayed in the upper left part of Fig. 1.2. This figure
shows that the catenary consists of wires, droppers and masts. The upper wire, called
carrier wire, is directly attached to the masts. Whereas the lower wire, called contact
wire, is connected to the carrier wire via droppers. Both wires are modelled as Euler-
Bernoulli beams (EBBs) under axial load, which are considered to be linear, with
constant parameters.
As the droppers support the contact wire only if they are under tension, the structure
of the catenary dynamics varies if a dropper is lifted up by the pantograph. This effect
caused by dropper slackening leads to a variable structure system and its behaviour
is described by additional algebraic constraints. Together with the EBB equations
the resulting system is also denoted as partial differential algebraic equation (PDAE)
[3]. This class of equations needs special treatment when solving. Several numerical
approaches have been published based on spectral [8], finite element [3, 8], finite volume
and finite differences (FD) approximations [3, 4, 9]. A comparison of a spectral Fourier
series and an FD approximation can be found in [4].

Coordinate formulation

In this thesis two different modelling approaches by means of coordinate formulations
will be pursued: a pantograph/train fixed and a catenary-fixed coordinate formulation.
In the catenary-fixed formulation the catenary is fixed in space while the pantograph
is moving along the catenary with the velocity vtrain (see Fig. 1.3). This formation
has the advantage that is a standard/state-of-the-art formulation and several solutions
are available in literature [3, 4, 8, 9]. To simulate long runs a sufficient large number
of catenary spans has to be modeled. Reflections at the boundaries are avoided by
extending the computational domain. Simple clamping boundary conditions can be
used. The elongation of the computational domain can be performed automatically
[4, 9, 10] however, the computational effort rises. Consequently, this formulation is
only partly suitable for real-time applications but allows insights into the catenary’s
dynamic behavior and can be used as a reference.
In the pantograph/train-fixed formulation the pantograph is fixed in space while the
catenary is moving with the velocity vcat (see Fig. 1.3; inner/green box). This formula-
tion allows to take advantage of the periodical structure of the catenary. The dropper(s)
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vtrain

vcat

contact
wire

pantograph

carrier wire
dropper

mast

... ...

Figure 1.3: Catenary modelling: catenary-fixed (vcat = 0, vtrain 6= 0)
vs. pantograph/train-fixed coordinate (vcat 6= 0, vtrain = 0) for-
mulation.

and mast(s) are entering and leaving the computational domain periodically. In addi-
tion, only a limited domain around the pantograph must be modeled and simulated.
This ensures fast computation. Additionally, the domain size and simulation duration
can be chosen independently. However, the limited domain size leads to spurious re-
flections if standard (e.g. clamping) boundary conditions are used. To avoid numeric
artifacts (i.e. reflections) special absorbing boundary conditions (ABCs) or absorbing
layers are used. For that reason ABCs for the EBB equation under axial load have been
developed (see [7] or Publication B).
A derivation of the coordinate transformation of the pantograph in a catenary-fixed
formulation can be found in [11]. In the following section, the discretization in space
and time of the EBB equations by means of FD approximation will be explained. This
methodology transforms the PDE into a set of algebraic equations.

Discretization by Finite Differences

The EBB equation used for the catenary modeling is a one-dimensional PDE

ρA
∂2u

∂t2
+ dv

∂u

∂t
= −EI ∂

4u

∂x4 + T
∂2u

∂x2 + f(x, t) (1.1)

and its solution u(x, t) describes the vertical displacement as a function of time t and
space x (see Fig. 1.4). The constant parameters are the bending stiffness EI, the axial
load T , the mass per unit length ρA, the viscous damping dv and the distributed force
f(x, t). An analytic solution of (1.1) may only be obtained for special cases if possible at
all. For that reason in this thesis FD approximations are used to compute the solution
u(x, t) numerically.
The numerical solution is obtained by:

1. discretizing the spatial and temporal derivatives by (central second order) FDs [12]
on uniform grid meshes t = [0,∆t, . . . , N∆t], x = [0,∆x, . . . ,K∆x], N,K ∈ N
and
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different performance objectives. In both cases it is possible to fit all relevant physical parameters with one prescribed
displacement or forcing input excitation and one displacement measurement to produce high model fit in validation. The
paper closes with a conclusion in Section 4.

2. Methodology

In this section a methodology for parameter identification of an EBB model will be presented by means of multi-objective
optimization.

First, assumptions for the validity of EBB theory are summarized and the EBB equation is displayed. The EBB equation is
discretized by finite differences (FD) leading to a system of (generally implicit) difference equations. Here, FD are chosen to
discretize EBB because their implementation is simple, flexible, and their accuracy is sufficient. To evaluate if the discretized
system is identifiable with respect to physical parameters, the Fisher information matrix is formulated and checked for
regularity.

Multi-objective optimization is then applied to ensure stability of the discretized system for the identified parameter set
as well as to maximize model output fit.

2.1. The Euler–Bernoulli beam equation under axial load

The EBB equation describes transverse vibrations of beams under a distributed force load, which uses linear isotropic
theory of elasticity and neglects the effects of rotary inertia and shear deformation [26,27]. EBB theory can be used if the
following assumptions are satisfied [28]:

� the cross sections of a beam are rigid in their plane,
� they remain plane after deformation, and
� they remain perpendicular to the deformed axis.

A general form of the linear non-homogeneous Euler–Bernoulli beam equation under axial load with constant coefficients is
given by

ρA
∂2u
∂t2

þdv
∂u
∂t

þdmat
∂5u
∂x4∂t

¼ �EI
∂4u
∂x4

þT
∂2u
∂x2

þ f x; tð Þ (1)

with the spatial variable xA ½0; L�, where LAR, the time variable tAR and the traversal displacement u¼ uðx; tÞ. The constant
coefficients in Eq. (1) are the mass per length unit ρA, viscous damping coefficient dv, material damping coefficient dmat,
bending stiffness EI, tensile force T and external traversal force density f ðx; tÞ. Eq. (1) will be solved for the clamped–clamped
testbed setup displayed in Fig. 1 which leads to the boundary conditions:

u x; tð Þ
��
x ¼ 0 ¼ u x; tð Þ

��
x ¼ L ¼ 0 (2)

∂u
∂x

x; tð Þ
��
x ¼ 0 ¼

∂u
∂x

x; tð Þ
��
x ¼ L ¼ 0: (3)

A numeric solution for EBB with suitable initial conditions uðx;0Þ ¼ u0 and ð∂u=∂tÞ x;0ð Þ ¼ v0 is required. This can be achieved
in various ways. Here, a numeric approximation by the finite difference method is chosen to allow flexibility with respect to
boundary conditions, system coupling and spatial parameter dependence. Note that other discretization methods (e.g. Finite
Element and Finite Volume methods) can be directly used. The identification problem is structurally equivalent.

2.2. Approximation by finite differences

Finite differences are a simple and effective method to approximate (partial) derivatives. The FD approximations can
be derived for any derivative and any error truncation order [29,30]. For real-world applications it is important to find

Fig. 1. Euler–Bernoulli beam with clamped–clamped boundary conditions.

E. Talic et al. / Journal of Sound and Vibration 341 (2015) 86–9988

Figure 1.4: Euler-Bernoulli beam with clamped boundary conditions: The so-
lution u(x, t) of this distributed parameter system is a function of
space x and time t.

2. rewriting the equation to be explicit in un+1
k := u(k∆x, (n+ 1)∆t), k = 0, . . . , K.

The quantities ∆t and ∆x denote the temporal and spatial mesh size, respectively and
N and K are the number of grid points. Unknown future displacement values are
calculated as

un+1
k = f(un

k ,un−1
k , . . . ,un−Nt−2) (1.2)

with

un
k =

[
un

k−Nx
, . . . , un

k+Nx

]T
and Nt, Nx ∈ N. The pattern of these relations of points in the space-time grid (1.2) is
called stencil and the corresponding coefficients are denoted as stencil coefficients [7].
An illustration of the geometrical time-space-relation is given in Fig. 1.5.

a trade-off between accuracy and insensitivity to numerical errors. Here, the FD approximation for all partial derivatives are
chosen with a truncation error of order two.

A general stencil is displayed in Fig. 2 with the temporal extension Nt and the spatial extension 2Nxþ1. Denoting
uðxk; tnÞ ¼ un

k and assuming an equidistant temporal and spatial grid with t ¼ ½0;Δt;2Δt;…;NTΔt�, x¼ ½0;Δx;2Δx;…;

NLΔx¼ L� with fixed Δt;ΔxARþ and Nt ;NT ;Nx;NLAN, the partial derivatives in Eq. (1) for the interior of the problem
domain are efficiently approximated by standard central difference coefficients:

∂2u
∂x2

xk; tnð Þ � un
k�1�2un

kþun
kþ1

Δx
� �2 ;

∂2u
∂t2

xk; tnð Þ � un�1
k �2un

kþunþ1
k

Δt
� �2 ;

∂4u
∂x4

xk; tnð Þ � un
k�2þ4un

k�1þ6un
k�4un

kþ1þun
kþ2

Δx
� �4 ;

∂5u
∂x4∂t

xk; tnð Þ �
∂4u
∂x4

xk; tnþ1ð Þ�∂4u
∂x4

xk; tn�1ð Þ
2Δt

: (4)

Inserting these approximations from Eq. (4) into Eq. (1), a system of difference equations is obtained for the interior of the
problem domain ðk¼Nx;…; ðNL�NxÞÞ:

μT
1u

nþ1
k ¼ μT

0u
n
kþμT

�1u
n�1
k þηf nk : (5)

Thereby the force density is denoted by f nk ¼ f ðxk; tnÞ and the coefficients μj ¼ μjðp;Δx;ΔtÞ, η¼ ηðp;Δx;ΔtÞ for the relative
time level j depend on the parameters p. Note that hereΔx,Δt are chosen a priori so that a stable scheme is obtained for the
expected and initial physical parameter values. Instead, they could also be considered as free decision variables, increasing
the number of identification parameters. The coefficients μj are defined for j¼ �1;0;1 as

μ1 ¼
μ1;Nx

⋮
μ1;Nx

2
64

3
75; μ0 ¼

μ0;Nx

⋮
μ0;Nx

2
64

3
75; μ�1 ¼

μ�1;Nx

⋮
μ�1;Nx

2
64

3
75: (6)

Finally, the vectors of the approximated solution values are

unþ1
k ¼

unþ1
k�Nx

⋮
unþ1
kþNx

2
664

3
775; un

k ¼
un
k�Nx

⋮
un
kþNx

2
64

3
75; un�1

k ¼
un�1
k�Nx

⋮
un�1
kþNx

2
664

3
775; (7)

and the vector of physical parameters is given by

p¼ ½ρA; dv; dmat; EI; T�: (8)

The values at the remaining grid points k¼ 0;…;Nx�1;NL�Nxþ1;…;NL are determined using the boundary conditions.
Here, the boundary conditions given in Eqs. (2) and (3) are approximated by FD with a truncation error of order one

u x; tð Þ
��
x ¼ 0 ¼ u x; tð Þ

��
x ¼ L ¼ un

0 ¼ un
NL

¼ 0 (9)

0¼ ∂u
∂x

x; tð Þ
��
x ¼ 0 �

�un
0þun

1
Δx

-un
1 ¼ 0 (10)

0¼ ∂u
∂x

x; tð Þ
��
x ¼ L �

un
NL
�un

NL �1

Δx
-un

NL �1 ¼ 0: (11)

Fig. 2. Spatially symmetric stencil.

E. Talic et al. / Journal of Sound and Vibration 341 (2015) 86–99 89

Figure 1.5: General symmetric interior stencil structure
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In the actual case of the EBB equation with constant physical parameters the relation
(1.2) is linear with constant stencil coefficients. A detailed derivation of (1.2) can be
found in Publication A.
To obtain realistic results the discretized PDE has to be parametrized with meaningful
physical parameters.

1.3.2 Identification
An MOO based identification is used to identify all parameters (the bending stiffness
EI, the axial load T , the material damping dmat and viscous damping dv) simultaneously
by solving the optimization problem

min
p

J(p) = min
p

[Jperf(p), Jstab(p)] , p ∈ D, J ∈ C, (1.3)

where Jperf and Jstab are the performance and stability objectives, respectively, D is
the decision space, C is the criterion space and p = [EI, T, dmat, dv] is the parameter
vector. A more detailed discussion on MOO is given in following section.

Multi-objective optimization

Typically, MOO problems are formulated when at least two conflicting objective such
as performance and stability are traded against each other. An MOO problem can
also be transformed into a single objective optimization (SOO) by choosing a relative
weighting of the objectives before the optimization run (a-priori formulation of pref-
erences/importance). Varying these relative weights, an approximation of the Pareto
front is obtained. In this thesis the MOO problem solved is directly using an MOO
genetic algorithm [13]. This method is categorized as a-posteriori formulation of pref-
erences and allows to generate approximations of the Pareto front without choosing a
specific weighting. A detailed review on MOO is given e.g. in [14].
Here, the MOO problem is defined for a single performance objective. For an arbitrary
number of performance objectives the interested reader is referred to Publication A.
During the optimization run the MOO objective function J(p) : D → C from (1.3)
projects the vectors of p from the decision space D to the criterion space C as displayed
in Fig. 1.6. The stability and performance objective value of every parameter set are
then compared. If a parameter vector p∗ 6= p exits that fulfills

1. J(p) ≤ J(p∗)

2. Ji(p) < Ji(p∗) for at least one objective function

then this vector is called Pareto optimal. All Pareto optimal vectors form the Pareto
front which represents the best possible trade-off solutions.
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The coefficients bi of Eqs. (25) and (32) are complex-valued for asymmetric stencils and real-valued for symmetric
stencils. Conditions for bi to satisfy Eq. (26) can be obtained by applying the Bistritz criterion. This criterion indicates that if
the zeros of a complex polynomial with complex coefficients are inside or outside the unit circle [25].

Theorem 2 (Bistritz [25] criterion). Given a polynomial with complex coefficients of order n

BnðzÞ ¼ b0þb1zþ⋯þbnzn; Bnð1ÞAR\f0g (33)

and the polynomials

TnðzÞ ¼ BnðzÞþBnðzÞ (34)

Tn�1 zð Þ ¼ BnðzÞ�BnðzÞ
z�1

(35)

Tj�2 zð Þ ¼ 1
z

δjþδ j

	 

Tj�1ðzÞ�TjðzÞ

h i
; j¼ n;…;2 (36)

with

δj ¼
Tjð0Þ

Tj�1ð0Þ
; j¼ n;…;2 (37)

where ð�Þ denotes complex conjugation. The number of zeros inside and outside the unit circle of Bn(z) is n�v and v, respectively
with

v¼ Var Tnð0Þ; Tn�1ð0Þ;…; T0ð0Þ
 �

: (38)

Var denotes the number of sign changes in the displayed sequence of real numbers in Eq. (38). A proof is omitted here but given in
[25].

Theorem 2 is feasible if Bnð1ÞAR\f0g and Tj�1ð0Þa0 are fulfilled. Bnð1Þ ¼ 0 implies that the polynomial has a zero on the
unit circle and because of this violates the stability condition equation (26). Bnð1ÞARmay be obtained by rescaling of Bn(z) e.
g. its multiplication by Bnð1Þ. The second condition Tj�1ð0Þa0 is necessary to perform the division in
Eq. (37) and excludes singular cases. There are two types of singularities: the first type of singular cases leads either to
roots on the unit circle or to reciprocal pair zeros and the second type implies zeros outside the unit circle. However, both
singular cases violate Eq. (26) and will not be investigated further. The interested reader is referred to [25].

In the scope of this work the roots are computed for a finite number of ωxΔxA ½ωx;min;π�, ωx;min40, for the system
equation (13) with Nt¼1, and symmetric stencils. It can be solved directly and the stability target is fulfilled if
τmax ¼maxð τj

�� ��Þo1 with j¼ 1;2 and leads to the stability objective

Jstab ¼ τmax: (39)

Remark 3. The stability criterion presented in this section only provides information on absolute stability. It is possible to
implement relative stability criteria which effectively shape a desired frequency response, however, this approach adds
artificial damping to the system dynamics.

Remark 4. The roots were computed at spatial frequencies ωxZωx;min40 to avoid the rigid body mode (integrator with
τmaxðωx ¼ 0Þ ¼ 1).

2.4.3. Multi-objective optimization problem
Using the performance and stability objectives defined by Eqs. (20) and (39), respectively, the multi-objective

optimization problem

min
p

JðpÞ; pAD; JAC (40)

Fig. 4. Approximation of a Pareto front for Nperf ¼ 1.

E. Talic et al. / Journal of Sound and Vibration 341 (2015) 86–99 93

Figure 1.6: Multi-objective optimization: Two objective values are evaluated
and compared for each parameter set. Pareto optimal solution p∗

dominates a solution p for at least one objective value, while it
is at least equal for the other objective value. All Pareto optimal
solutions form the Pareto front.

Identifiability

The necessary condition for unique identifiability of a distributed parameter system
such as the EBB equation is outlined in this section. For constant parameters p the
equation (1.2) becomes linear. Collecting the displacement values un

k as state vector

xn =


un

0
...
un

K


a linear time-invariant state-space system is obtained

xn+1 = Axn + Bfn

yn = Cxn .
(1.4)

with parameter-dependent system matrices A = A(p), B = B(p) and C = C(p), the
state vector x, the system output y. By computing the output error of the model (1.4)

en(p) = yn(p)− ŷn , (1.5)
with the actual measurement sequence ŷn of length N seq

t , the Fisher information matrix
can be defined as

I =
Nseq

t∑
n=0

den(p)
dp

(
den(p)
dp

)T

. (1.6)

In order to obtain a unique solution the Fisher Information Matrix I has to be non-
singular. Furthermore, by decomposing to I = ψTψ andψ = USV∗, more information,
such as parameter sensitivity and non-identifiability of a particular parameter can be
calculated and determined, respectively.
Remark 1 The performance objective can be directly defined using the output error
(1.5) and Definition 2 given in Publication B. Therefore, it is omitted in this introduc-
tory chapter.
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Stability objective

The stability objective proposed in Publication A is defined as the largest magnitude
of the temporal growth factor τmax. Before the objective is explained two definitions
are needed.

Definition 1 The traveling wave solution is defined as

un
k = exp(Inωt∆t) exp(Ikωx∆x) = τnκk (1.7)

where τ is the temporal growth factor, ωt ∈ C is the temporal frequency, ωx ∈ C is the
spatial frequency and I is imaginary unit.

Definition 2 The discrete dispersion relation (DDR)[15] is defined as

f(τ(ωt∆t), κ(ω∆x)) = 0 . (1.8)

and is derived by inserting the traveling wave solution (1.7) into (1.2).

The DDR (1.8) describes the relation of the temporal and spatial frequencies of a
discretized PDE and allows only specific combinations of (ωt, ωx).
The computation of the stability objective value is be performed in three steps:

1. Compute the DDR for a parameter set p following Definition 2 and manipulate
(1.8) such that it becomes a polynomial of τ :∑

i

ai(p, ωx∆x)τ i = 0 . (1.9)

2. Compute the solution of the polynomial τ(ωx∆x) for ωx∆x ∈ [0, π] and

3. evaluate the stability objective as

Jstab(p) = τmax = max
ωx∆x
|τ | ,∀ωx∆x ∈ [0, π] . (1.10)

For stable system (1.4) the condition τmax < 1 is fulfilled.

Remark 2 It is noted that τmax < 1 can be checked for real or complex valued polynomi-
als efficiently using Jury [16] or Bistritz criterion [17], respectively, without computing
the roots of (1.9) explicitly.
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Figure 1.7: MOO identification methodology

MOO identification methodology

The major steps in MOO identification methodology are explained as follows (see Figure
1.7): First, suitable identification data (input excitation f and output measurement y)
have to be recorded or obtained by simulation. Then the numeric model is parametrized
by a (initial) parameter vector p. A simulation with the input excitation is used to gen-
erate the model output ŷ(p). The stability objective is evaluated using the parameter
vector directly and the performance objective comparing y and ŷ(p) in an OE-sense
(see (1.5)). Based on these objective values the genetic optimization generates a new
parameter vector and repeats the procedure. The Parto optimal parameter vectors are
visualized in the stability-performance-diagram. The optimization is either stopped by
the user or by a pre-defined termination condition.

1.3.3 Reduction
A significant reduction of the system size can be achieved by changing the coordinate
formulation from catenary- to pantograph-fixed coordinates as displayed in Figure 1.3.
As described in Section 1.3.1 this formulation provides the advantage that only small
parts of the catenary have to be simulated. However, so-called absorbing boundary
conditions are needed. These are used to avoid spurious reflections at the boundaries
and have not been developed for the EBB under axial load before. The methodology
is presented in the following section.

Absorbing boundary conditions for the EBB under axial load

The major idea is that a boundary stencil (see Figure 1.8) with the ABC stencil coef-
ficients iµ

T
j propagates a traveling wave solution (1.7) in the same way as an interior

stencil (see Figure 1.5). If the wave propagation is exactly reproduced by the boundary
stencil, no reflection will occur which leads to an unbounded domain solution. How-
ever, perfectly absorbing ABCs can only be derived in special cases, see e.g. [15, 18].
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Here, an optimization based determination of the ABC stencil coefficients is used. The
methodology is displayed in Figure 1.8 .
In step (i) the EBB (1.1) (for dv = 0) is discretized leading to the equation (1.2)
(denoted as "FD scheme for interior domain" in Figure 1.8). By inserting the travelling
wave solution (1.7) into (1.2) the DDR (1.8) is obtained and stored for the evaluation
of the performance objectives. In step (ii) the ABC stencil form is chosen by defining
NABC

t and NABC
x . Then the optimization is set up by choosing one of the performance

objectives and the stability objective (proposed in the next paragraph). In step (iii)
the MOO is performed and the results are the ABC stencil coefficients iµ

T
j .

−π −ωx,in∆x 0 ωx,out∆x π

π

ωx∆x

ωt∆t

Figure 1.10: DDR for the parameters: EI = 150, T = 15000 and ρA = 1.

In Figure 1.10 the DDR of an EBB equation with typical parameters of a catenary
contact wire is illustrated. As one can clearly see, the DDR of an EBB is a non-linear
relation of the spatial and temporal frequencies. Because of that, higher frequency
waves are traveling faster than lower frequency ones which is a typical property of the
EBB. This makes the development of ABCs particular challenging compared to the
wave equation (obtained from (1.1) for EI = 0) which has a linear DDR.
For the left-sided ABC stencil (see Figure 1.8) the DDR has two branches. The branch
ωt∆t(ωx∆x) with the same sign for ωx∆x and ωt∆t represents the outgoing and that
with a different sign the incoming wave parts1.

1This corresponds to negative and positive group velocity vgroup, respectively
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Figure 1.11: OE-based performance objective

Stability and Performance objectives

The stability objective is obtained by directly evaluating the eigenvalues of the state
space representation of the FD-discretized EBB equation (1.4) with ABCs in place. To
render the system stable all eigenvalues must lie be inside the unit circle. Thus, the
eigenvalue with the largest magnitude is crucial for stability and is used as stability
objective value.
The first performance objective is based on the reflection coefficient [19]. Starting
with a pre-computed and stored DDR the reflection coefficient is computed as follows:

1. Transform the discrete dispersion relation (1.8) into the form

Bk(τ, κ)un+1
k = 0 , k = 0, . . . , NABC

where NABC is the number of boundary points.

2. Evaluate Bk(τ, κ) for κin and κout and compute the reflection coefficient

Rk = −Bk(τ, κout)/Bk(τ, κin)

Perfect absorption is given for Rk = 0 and any Bk(τ, κin) 6= 0.
The second performance objective evaluates the traveling wave solution in an out-
put error (OE) sense. The cumulated deviation is used as performance objective value.
Therefor, the traveling wave solution is simulated on a small test domain with ABCs in
place and compared to that of the unbounded domain (directly available from (1.8)).
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Figure 1.11 sketches the concept for an EBB explicit interior stencil (green). Each grid
point uk

n is first initialized with (1.8) (marked by ◦). For n > 0 the ABC stencil is used
to compute the boundary point solutions (marked by ×). For the remaining grid points
(k > 2) the interior stencil is evaluated. Simulating forward in time, some interior grid
points are influenced by the ABC (blue area; marked by 4). The deviation of the
solution using ABC from the traveling wave solution (1.7) in the red area is evaluated
for pre-stored values of the DDR.

Results

The absorbing properties of the ABCs have been tested using the set-up depicted in
Figure 1.12a for several time instants t = 0 < T1 < . . . < T8. On the left side of
the computational domain ABCs are applied, whereas on the right clamping boundary
conditions are used. Clamping boundary conditions are worst possible ABCs and lead
to total reflection. The computational results are shown in Figure 1.12b. As displayed,
the initial wavelet (t = 0) first splits up into left- and right-traveling packets (t = T1, T2).
The higher frequency waves travel faster than the lower frequency waves. This is due
to the non-linear DDR (see Figure 1.10). At x = 0 the ABC absorbs the incoming wave
packages nearly perfectly (t = T3, T4). At the clamped end of the EBB (x = 100 m) the
wave package is completely reflected and travels back towards the ABC (t = T5, T6, T7).
At time instant t = T8 the reflected part is absorbed by the ABC and the remaining
reflections from ABC imperfections are very small.
The presented ABC showed very good results for the non-moving EBB equation (’catenary-
fixed formulation’). For the pantograph-fixed formulation the absorbing layer presented
in [20] led to better results. Additionally, they are very robust against droppers entering
and leaving the computational domain. For that reason the best available solution [20]
is used in adopted form for the real-time catenary.
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Figure 1.12: Validation of the absorption properties: (a) ABC test set-up. (b)
Initial excitement leads to two wave packets (right- and left-wards
traveling), which are reflected or absorbed by the clamped BC or
ABC, respectively.
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Real-time catenary model

The real-time catenary model displayed in Figure 1.13 is obtained by
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r

vcat

Fpanto

Figure 1.13: Real-time catenary model: utilizes pantograph-fixed coordinate
formulation, droppers as linear springs and absorbing layers.

1. using the pantograph-fixed coordinate formulation (see Section 1.3.1 and [2, 11]),

2. modeling the droppers as linear springs,

3. employing a Crank-Nicolson-type [21] implicit integration formulation of the drop-
per stiffness terms

4. and applying absorbing layers [20].

By modeling droppers as linear springs, the catenary model becomes linear. This
permits to pre-compute the system matrices A, B and C (see (1.4)) and, thus, decreases
computational demand significantly. To retain the system stability especially for high
dropper stiffness coefficients an implicit Crank-Nicolson-type integration is used. This
leads to a linear periodically time-varying system

An = An+Nper , Bn = Bn+Nper ,

where Nper is the periodicity of the model. The absorbing layers are adopted from [20]
and used instead of the proposed ABCs to avoid shocks imposed by droppers when they
are entering or leaving the computational domain. Furthermore, these layers are easier
to parametrize and better suited for the pantograph-fixed coordinate formulation.
The real-time catenary model is validated by comparing it with a catenary-fixed model.
The results of this comparison is displayed in Figure 1.14 for the velocity vcat = 60 m/s
and a catenary span length of 60 m. The remaining physical and simulation parame-
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ters are summarized in Table 1.1. This Figure shows that the pantograph-fixed model
has an overall very good agreement with the catenary-fixed model. The observed de-
viation from the catenary-fixed formulation arises from a substantially coarser spatial
discretization (see Table 1.1). The pantograph-fixed formulation shows the following
advantages:

• 6.25 times less states per span for similar fidelity,

• smaller simulation domain: For this setup a 5 s-run of the catenary-fixed formu-
lation requires a simulation area of 15 spans (900 m) to avoid reflections versus 1
span (60 m) of the pantograph-fixed formulation.

• a speed-up factor of > 5500: each second simulated of the pantograph-fixed formu-
lation takes about ≈83 ms compared to 460 s of the catenary-fixed formulation2.

Taking these facts into account, the proposed coordinate transform and the use of
absorbing layers lead to a very good trade-off between computational effort and accuracy
and is, therefore, well-suited for real-time applications.

wire ρA β EI T
kg/m kg/s/m N m2 N

contact 1.35 0 150 20× 103

carrier 1.35 0 0 20× 103

j 1 2 3 4
j-th dropper posi-
tion

5 m 21.67 m 38.33 m 55 m

j-th dropper stiff-
ness

10 000 N/m 10 000 N/m 10 000 N/m 10 000 N/m

Fpanto ∆t ∆x
pantograph-fixed 100 N 1/170 s 1.5 m
catenary-fixed 100 N 1/68 000 s 0.24 m

Table 1.1: Physical and simulation parameters of the proposed 60 m catenary
span

2 on a standard PC (Intel i7 3.2 GHz)
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1.4 Summary of the Scientific approaches
In Publication A an MOO identification methodology is presented, which allows to
identify the material parameters including damping of an EBB under axial load using
single measurement and a known excitation signal. The MOO approach allows to
trade conflictive objectives such as performance and stability which are specified and
optimized simultaneously. Performance is rated by means of the output-error of an
FD discretized EBB equation. Stability is quantified in terms of the solution’s time
growth factor. The optimization result is a Pareto front approximation where each
solution represents a parameter set. To verify identifiability the regularity of the Fisher
information matrix is checked. The methodology is validated on an actual laboratory
test bed.

Publication B presents an optimization methodology for the determination of highly
absorbing and stable ABCs. ABCs are used to obtain the unbounded domain solution
of wave propagation problems described by linear PDEs. These PDEs are discretized
by FDs. The ABCs are designed for the spatial and temporal discretized PDEs. The
accuracy of the ABCs is quantified in an output-error-sense and by computing the
reflection coefficient of the ABCs. Those measures are used as a performance objective
in the optimization problem. Stability was explicitly considered as constraint. This
constraint ensures that all eigenvalues of the fully discrete PDE with ABCs in place are
inside the unit circle. The method’s flexibility is shown for the EBB under axial load
and for the two-dimensional wave equation.

In Publication C a real-time catenary model is presented, designed for pantograph HiL
testing. This catenary model is obtained by physical modeling, which enables simple
parametrization. A pantograph-fixed coordinate formulation is used. In this coordinate
formulation the pantograph is fixed and interacts with a moving catenary. This reduces
the numerical effort drastically because only a section fore and aft of the pantograph
has to be considered. To avoid unrealistic reflections at the boundaries, absorbing layers
are attached. The catenary model is implemented on a real-time target to emulate the
catenary dynamics on a Hil test rig interacting with an actual pantograph.

1.5 Scientific Contributions of this Thesis
The scientific contributions of this work can be summarized as:

• Development of a flexible MOO based identification methodology which includes
– Suitable performance and stabilizing cost functions and a stability criterion

for the physical parameters
– A necessary identifiability condition
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– Validation by means of simulation and measurement data

• A generic optimization approach for determination of ABCs
– Two performance objectives combined with a stability objective allow the

ABC optimization for a generic wave propagation problem
– The method was validated on an EBB under axial load and on the two-

dimensional wave equation

• A real-time catenary model for pantograph HiL testing
– Is obtained by physical modeling and using pantograph-fixed coordinates
– Allows simple parametrization
– Spurious reflection are eliminated using absorbing layers
– Yields good accuracy-efficiency-trade-off
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a b s t r a c t

Identification of physical parameters of the partial differential equation describing
transverse vibrations of an axially loaded Euler–Bernoulli beam (EBB) is proposed via a
multi-objective optimization formulation and solved by a genetic algorithm. Conflicting
objectives such as performance and stability are specifically formulated and optimized
simultaneously. Stability is quantified in terms of the solution's time growth factor.
Physical parameter sets in the resulting Pareto front approximation represent best trade-
offs with respect to the multiple objectives. To compute output error performance
objectives, the EBB equation is discretized via finite differences in space and time and
reformulated to a state space system. Identifiability is verified by checking regularity of
the so-called Fisher information matrix. The identification methodology is capable of
determining material parameters, including damping, as well as the axial load from few,
spatially concentrated measurements. Its features are demonstrated and successfully
validated on specific simulation data and measurement data obtained from a laboratory
testbed.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Many engineering disciplines rely on model-based strategies for system design, simulation, or control. Therefore, models
of optimal quality need to be obtained with limited modeling effort. Generic conflicting objectives for the modeling process
are high model quality for the system quantities in the relevant domain, consistency of properties such as system stability,
low modeling effort, low model complexity, easy parametrization, parameter interpretability, and flexibility with respect to
system parameter changes. The modeling process is particularly challenging for distributed-parameter systems, that is,
systems whose dynamics are governed by partial differential equations (PDEs).

The main contributions of this paper are (i) the development of a multi-objective optimization methodology to identify
physical parameters of an Euler–Bernoulli beam (EBB) model of transverse beam vibrations under constant (but unknown)
axial load and known traversal excitation, (ii) the development of suitable performance and stabilizing cost functions
including a stability criterion for the physical parameters, and (iii) the formulation of a necessary identifiability condition
with respect to the performance objectives. To solve the multi-objective parameter optimization problem, a multi-objective

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jsvi

Journal of Sound and Vibration

http://dx.doi.org/10.1016/j.jsv.2014.12.012
0022-460X/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: emir.talic@tuwien.ac.at (E. Talic), alexander.schirrer@tuwien.ac.at (A. Schirrer), martin.kozek@tuwien.ac.at (M. Kozek),

stefan.jakubek@tuwien.ac.at (S. Jakubek).

Journal of Sound and Vibration 341 (2015) 86–99

2 Publications 27



genetic algorithm is employed. After the optimization the best possible trade-offs of the represent physical parameter sets
are available. The approach aims to keep the necessary measurement effort as small as possible while obtaining high model
quality. It is successfully validated at both specific simulation data and measurement data from a laboratory testbed.

Identification of parameters of beam equations has been investigated in various ways. Given the displacement field of a
vibrating beam, the authors of Ref. [1] study the identification of the forcing location (forcing function) by the experimental,
localized force analysis technique (FAT). Rigid-body parameters (mass, center-of-gravity, inertia tensor) of a softly
suspended flexible structure have been identified based on measured vibration data by a modal analysis approach in Ref.
[2]. Various techniques to identify viscous damping parameters in linear dynamic models and to assess these methods in an
experimental setting in terms of frequency-domain and spatial fit are investigated in Ref. [3]. In Ref. [4], solutions for flexural
vibrations in cylindrical rods, both for slender and thick geometries and also considering axial forces are given numerically
and are verified by experiments. Refs. [5–7] propose identification approaches to determine the axial loads and boundary
condition parameters of Euler–Bernoulli beams from sufficiently many vibration measurements. The required number of
spatially distinct measurement positions depends on the number of unknowns in the boundary conditions. In Ref. [8] the
authors identify the axial force and stiffness of an Euler–Bernoulli beam under compressive axial load from measured
displacement data based on a modal decomposition via a regularized least-squares approach. In Ref. [9] the mechanical
properties of a laminated beam are identified using a Ritz–Galerkin approach and the inverse problem is solved by a multi-
start global search algorithm. In Ref. [10], a modal inverse method is proposed to identify material parameters of sandwich
composite beams considered as Timoshenko beams. The work [11] surveys vibration-based damage identification methods
which comprise a special case of the parameter identification problem in elastic structures. More recently, beam structure
damage identification has been treated for example in Ref. [12] which focuses on the change of wave propagation properties
when damage is present.

In the field of structural model identification and damage detection, multi-objective optimization formulations are used
and solved by evolutionary algorithms like genetic algorithms [13–16]. All of these references use Finite Element models. In
[13] a multi-objective framework is proposed to identify multiple modal properties (modal frequencies and shapes)
simultaneously using the Strength Pareto Evolutionary Algorithm [17]. To quantify and localize the structural damage of
beams, the authors of [14] use the modal flexibility [18] as first objective and the quotient between a mode shape change
and a frequency change (which only depends on the location of the damage [19]) as a second objective, respectively. The
resulting multi-objective optimization problem is solved by the Niched Pareto Genetic Algorithm [20]. A special parameter
selection method based on the parameter sensitivity was introduced in [21] in addition to a Finite Element model updating
both integrated in a multi-objective optimization framework.

In contrast to the aforementioned works, this contribution aims at obtaining all physical problem parameters (stiffness,
damping, axial force, density) of an EBB simultaneously from one or more measurement signals plus the known excitation
signal, the problem geometry, and the boundary conditions. Performance and stability of the resulting system discretization
are explicitly considered in the multi-objective optimization problem formulation.

The multi-objective identification methodology in this paper is developed in Section 2. First, the EBB equation under
axial load with initial and boundary conditions is defined. To perform the multi-objective optimization a simulation model
of the EBB equation is needed. The simulation model should be flexible with respect to sensor and actor configurations and
effective with respect to simple implementation and numerical accuracy in the context of noisy measurement data. An
effective choice for the numerical approximation of the EBB equation is the finite difference (FD) method because its
implementation is simple yet flexible, and the accuracy of the second-order approximations is sufficient when applying FD
to approximate the temporal and spatial partial derivatives, a system of (implicit) algebraic equations is obtained. To
increase flexibility with respect to variations of sensor and actor placement these equations are reformulated into a discrete
state space representation.

High model quality can be obtained by minimizing the model output error (the difference between the time signal of the
model output and the measured output) for an output error configuration. Identifiability of the parameters is verified by
checking regularity of the so-called Fisher information matrix [22,23]. A necessary condition of identifiability is stated. In
the next step, the multi-objective parameter identification problem is defined and performance objectives are formulated to
minimize the model output error. If only performance objectives are utilized, the identified parameter set may lead to
unstable system dynamics even if the model output error is low and the original process is stable. This justifies the
formulation of a stabilizing objective (instead of a stability constraint), illustrating the trade-off between performance and
stability margin. A stability criterion is defined by utilizing a discrete fundamental solution to the unbounded discretized
PDE and by obtaining the so-called dispersion relation [24]. This dispersion relation is a complex polynomial in the temporal
growth factor, and its coefficients are functions of the physical parameters. The roots of this polynomial all have to reside
inside the unit circle to ensure stability. To formulate bounds for the physical parameters that ensure stability, the Bistritz
criterion [25] is used. The stabilizing objective proposed in this paper ensures stability and is also a quantitative measure of
stability of the identified parameter set. The multi-objective optimization problem is solved by means of a multi-objective
genetic algorithmwhich produces an approximation of the Pareto front. This enables the engineer to select efficient physical
parameter sets without re-optimization and eases understanding of the multi-objective problem.

In Section 3 the developed identification methodology is demonstrated by means of simulation data generated with an
undamped beam model as well as actual measurement data from a laboratory testbed. The simulation data example
demonstrates the pairing of a performance and a stability objective, whereas the measurement data test case considers two
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different performance objectives. In both cases it is possible to fit all relevant physical parameters with one prescribed
displacement or forcing input excitation and one displacement measurement to produce high model fit in validation. The
paper closes with a conclusion in Section 4.

2. Methodology

In this section a methodology for parameter identification of an EBB model will be presented by means of multi-objective
optimization.

First, assumptions for the validity of EBB theory are summarized and the EBB equation is displayed. The EBB equation is
discretized by finite differences (FD) leading to a system of (generally implicit) difference equations. Here, FD are chosen to
discretize EBB because their implementation is simple, flexible, and their accuracy is sufficient. To evaluate if the discretized
system is identifiable with respect to physical parameters, the Fisher information matrix is formulated and checked for
regularity.

Multi-objective optimization is then applied to ensure stability of the discretized system for the identified parameter set
as well as to maximize model output fit.

2.1. The Euler–Bernoulli beam equation under axial load

The EBB equation describes transverse vibrations of beams under a distributed force load, which uses linear isotropic
theory of elasticity and neglects the effects of rotary inertia and shear deformation [26,27]. EBB theory can be used if the
following assumptions are satisfied [28]:

� the cross sections of a beam are rigid in their plane,
� they remain plane after deformation, and
� they remain perpendicular to the deformed axis.

A general form of the linear non-homogeneous Euler–Bernoulli beam equation under axial load with constant coefficients is
given by

ρA
∂2u
∂t2

þdv
∂u
∂t

þdmat
∂5u
∂x4∂t

¼ �EI
∂4u
∂x4

þT
∂2u
∂x2

þ f x; tð Þ (1)

with the spatial variable xA ½0; L�, where LAR, the time variable tAR and the traversal displacement u¼ uðx; tÞ. The constant
coefficients in Eq. (1) are the mass per length unit ρA, viscous damping coefficient dv, material damping coefficient dmat,
bending stiffness EI, tensile force T and external traversal force density f ðx; tÞ. Eq. (1) will be solved for the clamped–clamped
testbed setup displayed in Fig. 1 which leads to the boundary conditions:

u x; tð Þ
��
x ¼ 0 ¼ u x; tð Þ

��
x ¼ L ¼ 0 (2)

∂u
∂x

x; tð Þ
��
x ¼ 0 ¼

∂u
∂x

x; tð Þ
��
x ¼ L ¼ 0: (3)

A numeric solution for EBB with suitable initial conditions uðx;0Þ ¼ u0 and ð∂u=∂tÞ x;0ð Þ ¼ v0 is required. This can be achieved
in various ways. Here, a numeric approximation by the finite difference method is chosen to allow flexibility with respect to
boundary conditions, system coupling and spatial parameter dependence. Note that other discretization methods (e.g. Finite
Element and Finite Volume methods) can be directly used. The identification problem is structurally equivalent.

2.2. Approximation by finite differences

Finite differences are a simple and effective method to approximate (partial) derivatives. The FD approximations can
be derived for any derivative and any error truncation order [29,30]. For real-world applications it is important to find

Fig. 1. Euler–Bernoulli beam with clamped–clamped boundary conditions.
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a trade-off between accuracy and insensitivity to numerical errors. Here, the FD approximation for all partial derivatives are
chosen with a truncation error of order two.

A general stencil is displayed in Fig. 2 with the temporal extension Nt and the spatial extension 2Nxþ1. Denoting
uðxk; tnÞ ¼ un

k and assuming an equidistant temporal and spatial grid with t ¼ ½0;Δt;2Δt;…;NTΔt�, x¼ ½0;Δx;2Δx;…;

NLΔx¼ L� with fixed Δt;ΔxARþ and Nt ;NT ;Nx;NLAN, the partial derivatives in Eq. (1) for the interior of the problem
domain are efficiently approximated by standard central difference coefficients:

∂2u
∂x2

xk; tnð Þ � un
k�1�2un

kþun
kþ1

Δx
� �2 ;

∂2u
∂t2

xk; tnð Þ � un�1
k �2un

kþunþ1
k

Δt
� �2 ;

∂4u
∂x4

xk; tnð Þ � un
k�2þ4un

k�1þ6un
k�4un

kþ1þun
kþ2

Δx
� �4 ;

∂5u
∂x4∂t

xk; tnð Þ �
∂4u
∂x4

xk; tnþ1ð Þ�∂4u
∂x4

xk; tn�1ð Þ
2Δt

: (4)

Inserting these approximations from Eq. (4) into Eq. (1), a system of difference equations is obtained for the interior of the
problem domain ðk¼Nx;…; ðNL�NxÞÞ:

μT
1u

nþ1
k ¼ μT

0u
n
kþμT

�1u
n�1
k þηf nk : (5)

Thereby the force density is denoted by f nk ¼ f ðxk; tnÞ and the coefficients μj ¼ μjðp;Δx;ΔtÞ, η¼ ηðp;Δx;ΔtÞ for the relative
time level j depend on the parameters p. Note that hereΔx,Δt are chosen a priori so that a stable scheme is obtained for the
expected and initial physical parameter values. Instead, they could also be considered as free decision variables, increasing
the number of identification parameters. The coefficients μj are defined for j¼ �1;0;1 as

μ1 ¼
μ1;Nx

⋮
μ1;Nx

2
64

3
75; μ0 ¼

μ0;Nx

⋮
μ0;Nx

2
64

3
75; μ�1 ¼

μ�1;Nx

⋮
μ�1;Nx

2
64

3
75: (6)

Finally, the vectors of the approximated solution values are

unþ1
k ¼

unþ1
k�Nx

⋮
unþ1
kþNx

2
664

3
775; un

k ¼
un
k�Nx

⋮
un
kþNx

2
64

3
75; un�1

k ¼
un�1
k�Nx

⋮
un�1
kþNx

2
664

3
775; (7)

and the vector of physical parameters is given by

p¼ ½ρA; dv; dmat; EI; T�: (8)

The values at the remaining grid points k¼ 0;…;Nx�1;NL�Nxþ1;…;NL are determined using the boundary conditions.
Here, the boundary conditions given in Eqs. (2) and (3) are approximated by FD with a truncation error of order one

u x; tð Þ
��
x ¼ 0 ¼ u x; tð Þ

��
x ¼ L ¼ un

0 ¼ un
NL

¼ 0 (9)

0¼ ∂u
∂x

x; tð Þ
��
x ¼ 0 �

�un
0þun

1
Δx

-un
1 ¼ 0 (10)

0¼ ∂u
∂x

x; tð Þ
��
x ¼ L �

un
NL
�un

NL �1

Δx
-un

NL �1 ¼ 0: (11)

Fig. 2. Spatially symmetric stencil.
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Summarizing Eqs. (5) and (9)–(11) and denoting un as in Fig. 3 an implicit system of difference equations in state space is
obtained as

I 0
0 ~M1

" #
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

MðpÞ

un

unþ1

� �
|fflfflfflfflffl{zfflfflfflfflffl}

xnþ 1

¼
0 I
~M�1

~M0

" #
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

AðpÞ

un�1

un

" #
|fflfflfflfflffl{zfflfflfflfflffl}

xn

þBðpÞfn; (12)

ŷn ¼ Cxn (13)

with the state vector xn, the input (force) vector fn ¼ ½f n0; f n0;…; f nNL
�T, the system matrix AðpÞ, the input matrix BðpÞ, the

output matrix C and the model output vector ŷn. The model output vector ŷn ¼ ½ŷn
0; ŷ

n
1;…; ŷn

Ny
�T defines all measurable values

as linear combinations of the state vector xn, where Ny denotes the number of outputs. Eq. (12) includes the implicit FD case
with coefficients of the form

~Mq ¼
Bl

q

Mq

Br
q

2
664

3
775; (14)

MqðpÞ ¼

⋱ ⋱ ⋱
0 ⋯ 0 μq;Nx

… μq;Nx
0 ⋯ ⋯ 0

0 ⋯ ⋯ 0 μq;Nx
… μq;Nx

0 ⋯ 0
⋱ ⋱ ⋱

2
6664

3
7775; (15)

with q¼ f1;0; �1g as well as the explicit FD-case for M1 ¼ I, where I is the identity matrix. The matrices Br
q and Bl

q

summarize those rows of ~Mq which result from the left and right boundary conditions, respectively.

Remark 1. For clarity of exposition Eqs. (12)–(15) are displayed for time-invariant parameters. In a time-varying setting, the
parameter dependence on absolute time needs to be considered by formulating Eq. (5) separately for each absolute time
index n with absolute-time-dependent coefficients μn

q . Analogously, smoothly spatially varying parameters can be
considered by FD.

Remark 2. The proposed methodology directly supports other discretization methods like Finite Element or Finite Volume
methods. By substituting μT

1, μ
T
0, μ

T
�1 and η in Eq. (5) with the corresponding Finite Element and Finite Volume stencil

coefficients, the developments in the following sections can be applied directly.

2.3. Identifiability

A necessary condition for the unique identifiability of parameters of partial differential equations (PDEs) from measured
output signals is that the considered (measured) model outputs are in fact affected by the parameters to be identified. This is
formalized by the Fisher information matrix [31,22]. For the output error configuration [32], consider the following linear
time-invariant parameter-dependent model (corresponding in its form to the explicit FD scheme of the EBB)

xnþ1 ¼ AðpÞxnþBðpÞfn

ŷn ¼ Cxn: (16)

The output error signal is defined as the deviation of the model output signal ŷnðpÞ from a measured output signal yn,

en ¼ ŷnðpÞ�yn; (17)

where the model output sequence is generated by a known input signal fn for time indices n¼ 0;…;NT .

Fig. 3. Vector notation for Nx¼2.
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Definition 1. A necessary condition for a unique solution of the parameter identification problem based on the output error
equation (17) is that the Fisher information matrix of the output error [23],

I ¼ 1
σ2

XNT

n ¼ 0

dênðpÞ
dp

dênðpÞ
dp

 !T

¼ 1
σ2

XNT

n ¼ 0

dŷnðpÞ
dp

dŷnðpÞ
dp

 !T

; (18)

is non-singular [22]. Note that the total differential requires a recursive computation which can be realized in a time-
marching manner similar to the actual solution of the state-space system equation (16).

The eigenvalues of I ¼ I ðpÞ are affected especially by (i) the selection and placement of the sensors and actuators, (ii) the
initial data and input sequence, and (iii) the parameter values p. Quantitative measures of identifiability have been
established in the field of the optimal design of experiments. They are scalar functions of I , notably

� the trace of the inverse of I (minimization objective for A-optimality),
� the determinant of I (maximization objective for D-optimality), and
� the smallest eigenvalue of I (maximization objective for E-optimality).

Optimal design-of-experiment methodologies address the optimal placement of sensors and actors and the optimal shaping
of input/excitation sequences to maximize identifiability. They are not detailed in this work; instead, the interested reader is
referred to [22,31–33].

For a scalar time signal fn, the Fisher information matrix in Eq. (18) can be written as I ¼ ð1=σ2ÞΨTΨ with

Ψ¼ dŷ0ðpÞ
dp

;
dŷ1ðpÞ
dp

;…;
dŷNT ðpÞ

dp

" #
¼USVn: (19)

Thereby, the non-negative diagonal matrix S contains the singular values σi (i¼ 1;…;Nparam) of Ψ and Vn is the conjugate
transpose of V. The left and right singular vectors are the columns of U and V associated to the corresponding singular value,
respectively. The singular values ofΨ are closely related to the eigenvalues of I and therefore are directly interpretable as a
quantitative measure for identifiability of the corresponding parameter. The right singular vectors connect the parameters of
p to the measure of σi. A singular value σi ¼ 0 indicates a non-influential right-singular vector, which in turn corresponds to
non-identifiable parameter(s) of p.

2.4. Multi-objective data-based parameter identification

Multi-objective optimization (MOO) is used to optimize a problem with conflicting objectives such as performance and
stability. In this chapter a performance objective in terms of an output error minimization objective and a stabilizing objective
in terms of quantifying the exponential decay rate are defined. Then these types of objectives are combined to form a multi-
objective data-based parameter identification problem.

2.4.1. Performance objectives
Output error performance objective functions are defined in the following for a single-input–single-output system

configuration which covers the practically important case of one (known) excitation point force and one displacement
measurement signal. Curly symbols denote spatially concentrated signals in time (forcing input, model outputs and
measurement output signals).

Definition 2. The i-th performance objective Jperf ;i is the output error minimization objective

Jperf ;i ¼
Yi�Ŷ iðpÞ
�� ��2

2

Yik k22
; (20)

where the considered measurement sequence of the spatially concentrated signal is denoted Yi and the model output
sequence is denoted Ŷ i,

Yi ¼ y0k ; y
1
k ;…; yNT ;i

k

h i���
xk ¼ xy

(21)

Ŷ i ¼ ŷ0
k ðpÞ; ŷ1

k ðpÞ;…; ŷNT ;i

k ðpÞ
h i���

xk ¼ xy
: (22)

The system excitation is considered as

F i ¼ f 0k ; f
1
k ;…; f NT ;i

k

h i���
xk ¼ xu

(23)

at spatial position xu. Both Yi and Ŷ i are measured/modeled at xk¼xy and a simple, spatially concentrated time-varying
input signal acting at x¼ xu is considered. The number of time steps of the i-th sequence is denoted by NT ;i.
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Note that the calculation of Eq. (20) requires the solution of Eq. (12) to obtain the model outputs equation (13).
A sufficient condition for the existence of such solution is that M in Eq. (12) be non-singular. Furthermore, the measurement
and input positions xy and xu in Definition 2 have to be interpolated adequately and with sufficient accuracy if they are not
part of the spatial grid.

2.4.2. Stabilizing objective
In discretized PDEs instability can arise either because of inherent instability of the original PDE, or, if the PDE is stable

per se as in the considered case, instability can appear through discretization. Furthermore, the parameter identification
with short and noisy measurement sequences as well as for low-damped systems may lead to parameters which cause
instability. In these cases a stable parameter set can be enforced by adding a stabilizing objective or a stabilizing constraint.
On the one side using a stabilizing constraint a single objective optimization problem occurs and its solution is a stable
candidate (parameter set). Depending on the single-objective optimization method and the starting point of the
optimization a global minimum of the performance objective can be obtained. On the other side choosing a stabilizing
objective results in a multi-objective optimization problem. Its solution is a set of candidates, where performance and
stability can be traded against each other. Furthermore, the stability objective proposed here allows one to interpret the
value of the stability objective as the reciprocal of the stability margin. The stabilizing objective allows one to decide if an
identified parameter set is stable or not, which is of high value in practice. A necessary stability condition is summarized in
the next theorem.

Theorem 1. Let the discrete fundamental solution

un
k ¼ eiωxΔx

	 
k
τn (24)

be a solution of an unbounded discretized PDE with constant coefficients, with exponential decay rate τAC, the spatial frequency
ωxARþ

0 and the imaginary unit i. This discretization is stable if the corresponding dispersion relation

τNt �1�
XNt �2

i ¼ 0

biðωxΔxÞτ� i ¼ 0 (25)

with coefficients biAC satisfies

8ωxΔxA ½0;π�: jτðωxΔxÞjo1: (26)

Proof. The dispersion relation [24] is a polynomial of order Nt�1 with complex coefficients. It is derived by extending
Eq. (5) for a general temporal extension Nt (see Fig. 2)

μT
1u

nþ1|fflfflfflffl{zfflfflfflffl}
unþ 1
k

¼
XNt �2

i ¼ 0

μT
� iu

n� i (27)

and inserting Eq. (24) into Eq. (27). This yields

μT
1κτ

1�
XNt �2

i ¼ 0

μT
� iκτ

� i

 !
un
k ¼ 0 (28)

with

κT ¼ κ�Nx ; κ�Nx þ1;…; κNx �1; κNx
� �

(29)

and

κ ¼ eiωxΔx: (30)

Eq. (28) holds for non-trivial unk only if the discrete dispersion relation

μT
1κ|{z}

a1ðωxΔxÞ

τ1�
XNt �2

i ¼ 0

μT
� iκ|fflffl{zfflffl}

a� iðωxΔxÞ

τ� i ¼ 0 (31)

is fulfilled. By multiplying Eq. (31) by τNt �2 and dividing it by anþ1 one can obtain a characteristic equation for τ,
parametrized in ωxΔx:

τNt �1�
XNt �2

i ¼ 0

a� i

a1|{z}
biðωxΔxÞ

τ� i ¼ 0: (32)

It is clear that for stability the solutions τ of Eq. (32) must satisfy τj jo1, otherwise exponential growth of the solution in
Eq. (24) in time would occur. □
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The coefficients bi of Eqs. (25) and (32) are complex-valued for asymmetric stencils and real-valued for symmetric
stencils. Conditions for bi to satisfy Eq. (26) can be obtained by applying the Bistritz criterion. This criterion indicates that if
the zeros of a complex polynomial with complex coefficients are inside or outside the unit circle [25].

Theorem 2 (Bistritz [25] criterion). Given a polynomial with complex coefficients of order n

BnðzÞ ¼ b0þb1zþ⋯þbnzn; Bnð1ÞAR\f0g (33)

and the polynomials

TnðzÞ ¼ BnðzÞþBnðzÞ (34)

Tn�1 zð Þ ¼ BnðzÞ�BnðzÞ
z�1

(35)

Tj�2 zð Þ ¼ 1
z

δjþδ j

	 

Tj�1ðzÞ�TjðzÞ

h i
; j¼ n;…;2 (36)

with

δj ¼
Tjð0Þ

Tj�1ð0Þ
; j¼ n;…;2 (37)

where ð�Þ denotes complex conjugation. The number of zeros inside and outside the unit circle of Bn(z) is n�v and v, respectively
with

v¼ Var Tnð0Þ; Tn�1ð0Þ;…; T0ð0Þ
 �

: (38)

Var denotes the number of sign changes in the displayed sequence of real numbers in Eq. (38). A proof is omitted here but given in
[25].

Theorem 2 is feasible if Bnð1ÞAR\f0g and Tj�1ð0Þa0 are fulfilled. Bnð1Þ ¼ 0 implies that the polynomial has a zero on the
unit circle and because of this violates the stability condition equation (26). Bnð1ÞARmay be obtained by rescaling of Bn(z) e.
g. its multiplication by Bnð1Þ. The second condition Tj�1ð0Þa0 is necessary to perform the division in
Eq. (37) and excludes singular cases. There are two types of singularities: the first type of singular cases leads either to
roots on the unit circle or to reciprocal pair zeros and the second type implies zeros outside the unit circle. However, both
singular cases violate Eq. (26) and will not be investigated further. The interested reader is referred to [25].

In the scope of this work the roots are computed for a finite number of ωxΔxA ½ωx;min;π�, ωx;min40, for the system
equation (13) with Nt¼1, and symmetric stencils. It can be solved directly and the stability target is fulfilled if
τmax ¼maxð τj

�� ��Þo1 with j¼ 1;2 and leads to the stability objective

Jstab ¼ τmax: (39)

Remark 3. The stability criterion presented in this section only provides information on absolute stability. It is possible to
implement relative stability criteria which effectively shape a desired frequency response, however, this approach adds
artificial damping to the system dynamics.

Remark 4. The roots were computed at spatial frequencies ωxZωx;min40 to avoid the rigid body mode (integrator with
τmaxðωx ¼ 0Þ ¼ 1).

2.4.3. Multi-objective optimization problem
Using the performance and stability objectives defined by Eqs. (20) and (39), respectively, the multi-objective

optimization problem

min
p

JðpÞ; pAD; JAC (40)

Fig. 4. Approximation of a Pareto front for Nperf ¼ 1.
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with

J¼ J1ðpÞ;…; JNperf þ1ðpÞ
h i

¼ Jperf ;1ðpÞ;…; Jperf ;Nperf
ðpÞ; JstabðpÞ

h i
(41)

is obtained, where Nperf represents the number of performance objectives, D is the decision space, C is the
Nperf þ1�dimensional criterion space and the objective function value vector J:D-C. A solution p of the MOO problem
equation (40) generally cannot minimize all objective functions simultaneously if the objective functions are conflicting
[34]. Interpreting the objective function value vector JðpÞ of any solution p in the criterion space, relative solution quality can
be discriminated (see Fig. 4). Those solutions which cannot be improved in any objective without degrading at least one of
the other objectives are called Pareto optimal solutions (see Definition 3).

Definition 3 (Pareto optimal solution, Marler and Arora [35]). A solution pnAD is Pareto optimal iff there does not exist
another point papnAD such that JðpÞr JðpnÞ, and JiðpÞo JiðpnÞ for at least one objective function.

The set of all Pareto optimal solutions is called the Pareto front which describes the best possible, efficient trade-offs in
the MOO problem. Pareto optimality is understood in a global sense, however, local notions of Pareto optimality can arise if
the MOO problem is constrained [35]. Additionally, depending on the chosen MOO solution method, convergence to local
optima may be an issue.

The existing MOO solution methods can mainly be categorized into methods of a priori and/or a posteriori articulation of
preferences [35]. With a priori articulation, the relative weights (importance) of the objective functions is defined before
running the optimization and the MOO problem is transformed into a single-objective optimization problem. Each iteration
aims to improve the solution such that the weighted, scalar objective value is minimized. By varying the weights, different
Pareto optimal solutions can be obtained. However, the main disadvantages of a priori articulation of preferences is that
each new weighting requires re-optimization, one has to specify the weightings in advance without knowing the implied
objective trade-off, and local convergence could prevent the algorithm from obtaining a Pareto optimal solution [35]. On the
other hand, a posteriori articulation of preferences aims to produce a representation of the Pareto front itself, so that
the final choice of a solution can be made when the efficient tradeoff topology is known. One of the a posteriori methods is the
so-called multi-objective genetic algorithm [36]. The genetic algorithm is an evolutionary algorithm that mimics nature's
evolutionary principles and uses a population of many solutions. These are improved over the iterations (generations).

In this paper the state-of-the-art multi-objective genetic algorithm “NSGA-II” [37] is chosen to solve the MOO problem
equation (40) because it is capable of handling non-smooth objectives and constraints, and it is able to obtain an evenly
spread, sampled approximation of the Pareto front. Furthermore it allows a posteriori articulation of preferences thus
showing the objective trade-offs, and it is (or, can be tuned to be) insensitive to converging to local optima too quickly.

3. Validation

The identification methodology proposed in this paper is validated by an example based on simulation data and an
example based on real-world measurement data. For both validation examples identifiability is fulfilled. This is verified by
formulating the Fisher information matrix equation (18); their eigenvalues are strictly positive.

First the EBB parameter identification from simulated, noisy data of an undamped EBB equation is explained. This
example will show a typical optimization run for railway contact wire parameters. The stability in terms of decay rate and
performance in terms of model output fit will be traded against each other. The result is a evenly spread Pareto front, where
each candidate represents a stable solution.

The second example is parameter identification based on measurement data. An actual, heavy beam is clamped under
pretension. It is dynamically excited and displacement is measured. In consequence of the large damping of the tested beam,
stability of the identification results is not an issue. Instead, two performance objectives are optimized simultaneously.

In both examples the parameter sensitivity will be analyzed.

3.1. Undamped beam

3.1.1. Problem setup
In this validation example, simulation results of an undamped beam model (1) with dv ¼ dmat ¼ 0) will be fed into the

proposed multi-objective methodology to obtain a well-fitting, stable model. The boundary conditions of the initial
simulation are

u x; tð Þ
��
x ¼ 0 ¼ u x; tð Þ

��
x ¼ L ¼ 0 (42)

∂u
∂x

x; tð Þ
��
x ¼ 0 ¼

∂u
∂x

x; tð Þ
��
x ¼ L ¼ 0 (43)

with L¼ 7:5 m as the beam length and the initial conditions are chosen as

u x; tð Þ
��
t ¼ 0 ¼ 0;

∂u
∂t

x; tð Þ
��
t ¼ 0 ¼ 0: (44)
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The chosen initial parameter values pinit ¼ ½EI; T ;ρA; dmat� ¼ ½150;15 000;1;0� are typical railway contact wire parameters.
As input and output indices idxin ¼ 18 and idxout ¼ 10 were defined, where the number of grid points is NL¼23 and
temporal step size is Δt ¼ 8� 10�6 s. Using a band-limited white noise signal (std. deviation σ � 460 N) force input signal f,
a noise-less displacement output signal ynl was generated. To obtain a more realistic output sequence y, a band-limited
white noise signal (std. deviation σ � 0:01 m) was added to ynl.

3.1.2. Identifiability and parameter sensitivity
The identifiability of this example has been tested by means of regularity of the Fisher information matrix. This condition

is fulfilled. Additionally one can obtain the parameter sensitivity by analyzing the singular values and right singular vectors
(see Eq. (19)) for the parameter vector p¼ ½EI; T ;ρA;dmat� using the parameter values pinit:

S¼

4:164� 102 0 0 0
0 4:167� 101 0 0
0 0 6:254� 10�2 0
0 0 0 9:196� 10�3

2
66664

3
77775; (45)

V¼

�1:000 �2:164� 10�3 � 0 � 0
� 0 � 0 9:949� 10�1 �1:011� 10�1

� 0 � 0 1:011� 10�1 9:949� 10�1

�2:164� 10�3 1:000 � 0 � 0

2
66664

3
77775: (46)

Fig. 5. Identification results with noisy model output data for an undamped pretensioned Euler–Bernoulli beam.
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As one can see all parameters can be identified (singular values σi40 for i¼ 1;…;4) for this sensor and actuator placement
and the chosen input sequence. The parameter ρA has the largest singular value, thus it is the most sensitive parameter and
is coupled with the material damping dmat (the second most sensitive parameter). The third and fourth columns of V
indicate that the parameters bending stiffness EI and tensile force density T are coupled, whereby EI is more sensitive than T.

3.1.3. Identification results and optimization setup
The identification results are displayed in Fig. 5. The input signal f and the output signals y and ynl are displayed in Fig. 5

(a) and (b). Fig. 5c displays the approximated Pareto front with the modified stability objective

Jstab ¼ λ¼ lnðτmaxÞ=ðΔtÞ (47)

on the ordinate, where the continuous-time decay rate λ is obtained from the relation

τmax ¼ eλΔt : (48)

The objective value λ can be directly interpreted as decay rate or eigenvalue of the corresponding continuous time model
and λo0 denotes a stable system. On the abscissa of Fig. 5c one can see the performance objective values. The remaining
parameter sets in Fig. 5c are denoted by pr . Additionally, the model output ŷ for three different parameter sets p1, p2 and p3
is compared with ynl in Fig. 5d-f, respectively.

Fig. 5d shows the model with the best fit. The model output ŷ in Fig. 5e has a lower performance value but a higher decay
rate and Fig. 5f shows the parameter set with the highest decay rate. As displayed in Fig. 5f this model has a poor
performance compared to Fig. 5d and e.

The parameter values of pinit, p1, p2 and p3 are summarized in Table 1. The lower part of Table 1 shows the parameter
bounds of the NSGA-II genetic algorithm [37]. The lower parameter bounds have been chosen as displayed in Table 1 to
avoid numerical problems (e.g. division by zero). The upper bounds were set because the tensile force T and the mass per
unit length ρA are usually well known, whereas the bending stiffness EI and especially the material damping dmat have to be
identified experimentally. Furthermore ρA is constrained in a narrow band because it is the most sensitive parameter (see
Section 3.1.2).

For this optimization a population size of 50 has been used and the average time per generation is t � 0:2 s on a standard
PC (Intel i7). The displayed parameter sets were obtained after 100 generations.

Multiple runs using randomized initial values have been performed leading to overall good and consistent results even
with noisy output data. The results of the optimization run displayed in Fig. 5 have been chosen to show a typical result with
a evenly spread Pareto front, where all found parameter sets are stable.

This example shows that this multi-objective optimization based parameter identification is able to find stable solutions
with optimal fit under difficult conditions (noisy and short data sequences). Furthermore, it is possible to directly decide if a
solution is stable without requiring expert knowledge on the PDE or the parameter set itself. The performance-stability
trade-off is clearly illustrated.

Table 1
Upper part: Parameter values of the initial and the identified parameters. Lower part: Parameter bounds used in this optimization run.

Parameter set EI (N m2) T (N) ρA (kg/m) dmat (N m2 s)

pinit 1.50�102 1.50�104 1.00 0.00
p1 2.88�102 1.24�104 1.32 8.47�10�1

p2 2.85�102 1.38�104 7.38 9.19�10�1

p3 2.82�102 1.49�104 1.25�101 8.40�10�1

Parameter bounds
Lower bound 10 1.00�104 0.5 0.00
Upper bound 1 2.00�104 1.50 1

Fig. 6. Experimental setup for beam parameter identification.
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3.2. Parameter identification using real measurement data

3.2.1. Problem setup and the testbed
In this validation example the multi-objective optimization will be performed for two performance objectives with two

different sequences of excitation and measurement data. Each performance objective represents the fit for a different
measurement sequence. A stability objective is not considered in this test case because the actual system is significantly
damped and the model equation (13) is always stable for these measurement data.

The data have been measured on a laboratory testbed which was set up as shown in Fig. 6. The beam in this experimental
setup fulfills the assumptions for the EBB theory from Section 2.1, so the model equation (1) can be used [38, Figs. 5.8, 5.9].
The beam has been mounted on a supporting frame. Static sag is not considered and removed in a data preprocessing step.
To dynamically excite the beam, a shaker was positioned in the middle of the beam at x¼ L=2, where L is the beam length.
Additionally, a sensor was placed at x¼ xy. Due to the placement of the shaker at the middle, symmetry can be used and
only one-half of the beam needs to be considered (the highlighted part in Fig. 6). Then, the shaker excitation can be modeled
using a dynamic boundary condition (shaker displacement f(t)):

u x; tð Þ
��
x ¼ 0 ¼ 0;

∂u
∂x

x; tð Þ
��
x ¼ 0 ¼ 0 (49)

u x; tð Þ
��
x ¼ L=2 ¼ f tð Þ; ∂u

∂x
x; tð Þ

��
x ¼ L=2 ¼ 0: (50)

The initial conditions are chosen as

u x; tð Þ
��
t ¼ 0 ¼ 0 (51)

∂u
∂t

x; tð Þ
��
t ¼ 0 ¼ 0: (52)

Note that Eq. (51) is zero because the static sag (and gravity force terms) have been removed, thus u models the dynamic
deviation from the static solution. With the boundary and initial condition equations (49)–(52), the EBB equation in Eq. (1)
is well-defined and a state-space system equation (13) can be obtained.

3.2.2. Identifiability and parameter sensitivity
Due to the fact that only the displacement trajectory is available for excitation, it turns out that one parameter needs to

be fixed to maintain identifiability. Then, the eigenvalues of the Fisher information matrix equation (18) for the resulting
parameters have been verified to be strictly positive values, so the necessary identifiability condition in Definition 1 is
fulfilled. Thus the Fisher information matrix is non-singular. The singular value decomposition equation (19) for the

Fig. 7. Identification results for a pretensioned Euler–Bernoulli beamwith measurement data. The best fit for Jperf ;1 (top) and the best fit for Jperf ;2 (bottom).
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parameter vector p¼ ½EI=ρA; T=ρA; dmat=ρA� (dv is assumed to be zero) yields

S¼

0 0

0 0

0 0

2
66666664

3
77777775
; (53)

V¼

� 0 2:8439� 10�1

� 0 2:8439� 10�1

� 0 � 0

2
66666664

3
77777775
: (54)

These matrices show that the parameter dmat=ρA is most sensitive and the other two are coupled. Note that if parameter
vector p¼ ½ρA; EI; T ; dmat� would have been chosen, the material damping dmat would not have been be identifiable. Thus the
number of parameters is reduced by dividing by ρA on both sides of Eq. (1).

3.2.3. Identification results
Fig. 7a and b shows the comparison between the measured y and simulated model ŷ outputs. Note that the identified

data can be divided into two sequences. The chosen parameter sets are the best fit for the first sequence and the best for the
second sequence, respectively. All other found parameter sets are a trade-off between these solutions. In the lower upper
part of Fig. 7 the first sequence with a frequency at f 1 � 1:5 Hz is fitted better than the second sequence at f 2 � 7:8 Hz. The
lower part of Fig. 7 shows a good fit for f2.

The displayed parameter sets were obtained after 200 generations, with a average time per generation t � 1:1 s and a
population size of 50.

The main advantage in using multiple performance objectives is that the model can be tuned for certain frequency
ranges or signal forms a posteriori (i.e., without re-optimization).

4. Conclusions

A multi-objective parameter identification methodology of the bending dynamics for axially loaded Euler–Bernoulli
beams is proposed. The identification problem is viewed from a multi-objective perspective which helps to understand the
involved trade-off relations of the objectives.

Output error performance objectives as well as a stabilizing objective are proposed and developed, and criteria for
unique identifiability (based on the Fisher information matrix) and for stability of the discretized solution are developed.
Typically, few, simple measurements are sufficient to successfully identify the physical parameters.

A multi-objective genetic algorithm is utilized to solve the identification problem. It yields an approximation of the
Pareto front of solutions.

Two specific test cases demonstrate the utility of the proposed multi-objective approach and the types of proposed
objective functions: first, the stabilizing objective is seen to effectively produce stable solutions if only short, noisy data
sequences produced by an undamped system are available. Also, a clear trade-off between performance and stability
(margin) becomes evident. Second, measurement data of a real beam testbed are utilized to identify the beam model's
parameters with low- and high-frequency performance objectives, clearly illustrating the performance trade-off.
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a b s t r a c t

Many wave propagation problems (in acoustics or in railway catenary or cable car
dynamics, for example) can be solved with high efficiency if the computational domain
can be truncated to a small region of interest with appropriate absorbing boundary
conditions. In this paper, highly absorbing and stable boundary conditions for linear
partial differential equations discretized by finite difference schemes are directly designed
using a flexible, optimization-based formulation. The proposed optimization approach to
the computation of the absorbing boundary conditions is capable of optimizing the
accuracy (the absorbing quality of the boundary condition) while guaranteeing stability of
the discretized partial differential equations with the absorbing boundary conditions in
place. Penalty functions are proposed that explicitly quantify errors introduced by the
boundary condition on the solution of the bounded domain compared to the solution of
the unbounded domain problem. Together with the stability condition the described
approach can be applied on various types of linear partial differential equations and is
thus applicable for generic wave propagation problems. Its flexibility and efficiency is
demonstrated for two engineering problems: The Euler–Bernoulli beam under axial load,
which can be used to model cables as well as catenary flexural dynamics, and a two-
dimensional wave as commonly encountered in acoustics. The accuracy of the absorbing
boundary conditions obtained by the proposed concept is compared to analytical
absorbing boundary conditions.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Many physical applications that show wave propagation phenomena, such as pressure waves in fluids, acoustic problems,
or vibrations in strings and beams, are modeled by partial differential equations (PDEs) on bounded domains (clamped
beam, sound waves in a chamber) or unbounded domains (long cables or catenaries, free sound wave propagation). To
approximate the analytical solution the PDE is often discretized over a limited computational domain although the original
problem may be defined on a much larger space. In order to obtain a well-posed problem suitable boundary conditions
(BCs) and initial conditions (ICs) are needed. Choosing simple homogeneous BCs (Dirichlet/Neumann BCs respectively
clamped BCs) is unsuitable in this setting because they fully reflect outgoing waves back into the domain. To avoid such
spurious reflections into the domain of interest, the computational domain would have to be vastly expanded which
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drastically increases computational effort. Special so-called absorbing boundary conditions (ABCs) [1] have been proposed
which ideally absorb outwards-traveling waves without reflections or the need to expand the computational domain.
However, the analytic formulation of ABCs is not straightforward at all and heavily depends on the underlying PDE.

The finite difference (FD) method is one widely used technique to approximate the solution of the continuous PDE
problem [2]. Its simple and flexible formulation relies on approximating the occurring partial derivatives by, for example,
central differences, yielding an algebraic set of equations whose solution approximates the PDE's solution.

In this paper, an optimization-based method to obtain the unknown coefficients of a general explicit linear stencil for an
ABC in the fully time/space-discretized FD problem is proposed. The method is illustrated by two examples — the Euler–
Bernoulli beam (EBB) equation under axial load as well as the two-dimensional scalar wave equation.

ABCs for the wave equation have been investigated over the last decades. Well-known ABC formulations were developed
by Engquist and Majda [3] and by Bayliss and Turkel [4]. The first approach is based on a factorization of the wave equation
and leads to a non-local ABC, which must be transformed to a local ABC using pseudo-differential calculus in combination
with truncated Taylor series, and the latter is based on a far-field asymptotic solution of the wave equation [5]. In Ref. [6]
ABCs are developed for the FD approximation of a two-dimensional wave equation using the discrete dispersion relation.
The same author developed radiation BCs for elastic and dispersive waves in the Refs. [7] and [8], respectively. Improve-
ments led to local high-order ABCs [9], which have been applied on different types of wave equations, such as the time-
dependent [10] and dispersive [11] cases. A review on high-order ABCs can be found in Givoli [12]. A different approach is
the formulation of absorbing layers that expand the computational domain by an area with dissipating properties. These so-
called sponge layers increase the damping in the absorbing layer to attenuate incident waves and can also be combined with
ABCs [13]. In Ref. [14] sponge layers were used for the aeroacoustic time-reversal method to localize sound sources. A more
advanced approach is the Perfectly Matched Layer (PML) [15] which uses a complex change of coordinates [16] to achieve
high absorption performance, however at the cost of a considerable number of additional equations and variables to be
solved in a time-marching scheme. The authors of Ref. [17] adopted the PML from Ref. [15] for the transition line method.
The close relation of ABCs and PMLs is discussed in Ref. [9], and a combination of ABCs and PMLs has recently been pre-
sented in Hagstrom [18]. A historical overview on ABCs and PMLs is given in Berenger [19].

Developments related to ABCs for the EBB have been made in the field of boundary control of PDEs [20,21]. However, in
Ref. [20] no axial load was considered when ABCs for the EBB were derived. The authors of Ref. [22] have successfully
applied boundary control on an axially moving EBB under axial load, but their goal was to suppress vibrations by max-
imizing damping and energy absorption. In the present paper, ABCs for the FD-discretized EBB equation will be generated
(in contrast to Ref. [20] an axial load is considered here). The goal of the optimized ABCs is to approximate the unbounded
domain solution (not absorb energy as fast as possible as done in Lee [22]).

Fig. 1. Block diagram of the proposed method to obtain optimized ABC stencil coefficients.
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The main contributions of this work are (a) a generic optimization approach to the determination of the ABC; (b) two
accuracy objectives as well as one stability condition to allow the optimization to be carried out for generic wave propa-
gation problems; and (c) the demonstration of the proposed method for two common engineering problems: the EBB
equation under axial load, which to the best authors' knowledge has not yet been investigated in terms of ABCs in this
configuration, and the two-dimensional scalar wave equation.

In contrast to the approaches available in literature, where the ABCs are typically developed for a specific PDE (and often
in the continuous domain), here a generic method is proposed to directly obtain discrete ABC realizations for given dis-
cretization schemes of PDEs. This is done intentionally to avoid additional errors produced by discretizing a continuous ABC.
Also, the method is generic in the sense that any large-scale reference system's solution could be utilized to fit the truncated
system's response to. However, we make some basic assumptions in order to exploit problem structure and improve the
method's efficiency. These assumptions are the PDE is linear with constant coefficients, has no (or, sufficiently low)
damping, has a harmonic traveling wave solution [23,24], and its so-called discrete dispersion relation [6] can be derived (see
Section 2.4).

The proposed optimization approach (main contribution (a)) consists of three major steps ((i), (ii) and (iii)) as illustrated
in Fig. 1.

In step (i) the investigated PDE is approximated by standard central differences [25] using evenly spaced grids in space
and time directions to obtain a set of algebraic equations. We denote the range of grid points that can be approximated by
central differences as interior domain and the remaining grid points as boundary points. Each algebraic equation describes a
relation between the unknown future (one-step-ahead) values and the known values of the solution. The pattern of these
relations of points in the space–time grid is called stencil and the corresponding coefficients are called stencil coefficients. To
perform numerically stable simulations the constant distances between two grid points in time and space directions — the
so-called step sizes — have to be chosen appropriately. This choice of the space and the time step size is common to all FD
problems and is, for example, guided by the von Neumann stability analysis or the Courant–Friedrich–Lewy's condition [2].
At this point, the dispersion relation can be precomputed and stored.

In step (ii) first the form of the ABC stencil for the boundary points has to be chosen. This choice is problem-dependent
and may require a priori knowledge of the physical conditions under which the problem needs to be solved. Various stencil
forms can be tested and optimized to obtain the best performing out of a limited number of candidates. For each time and
space step size couple fΔt;Δxg the ABC stencil has to be recomputed (or stored in advance) before running a simulation.
Then an accuracy objective and a stability condition are selected and configured.

In step (iii) the optimization problemwith the stencil coefficients as decision variables is formulated. One way is to set-up
a single-objective optimization where just the accuracy of the ABCs is improved and stability is enforced through imposing a
constraint. Standard single-objective optimization methods [26] such as pattern search [27] can then be utilized. The other
possibility is to consider a multi-objective optimization (MOO) problem and to treat accuracy and stability as conflicting
objectives. The MOO problem can, for example, be solved by population-based algorithms such as multi-objective genetic
algorithms [28,29]. It is noted that population-based methods offer a set of solutions after the optimization which shows
efficient trade-offs (of accuracy vs. stability). Either way, each solution defines a set of ABC stencil coefficients which directly
constitute an ABC realization.

Two accuracy objectives and a stability condition are proposed (main contribution (b)). The first accuracy objective, here
denoted as reflection error, expresses the magnitude of the reflection coefficient (RC) [30], which is ideally zero for all
frequencies fulfilling the discrete dispersion relation of the interior domain stencil. The second proposed accuracy objective
quantifies the amount of reflections of the harmonic wave solution of the FD scheme by the ABCs in an output-error sense
[31].

In Refs. [32–34] FD-ABCs were used to stabilize simulations of wave propagation phenomena on unbounded domains
over long time durations. To verify stability, eigenvalue analyses have been carried out in these references. However, the
authors observed that optimizing ABCs using direct optimization (with accuracy objectives only) may lead to ABCs stencils
that destabilize the system. Similar observations – concerning long-duration instabilities – have been made by Rabinovich in
Ref. [35] in the field of elastodynamics for analytically derived ABCs. These instabilities have been delayed by introducing
numerical damping in the same paper and eliminated by using special operators in Ref. [36]. In this paper, we adopt the
eigenvalue analysis of the Refs. [32–34] for a fully discretized PDE. On that basis a stability objective evaluates the locations
of the eigenvalues of a sufficiently large test system in state-space representation with the ABCs in place. In order to obtain
an asymptotically stable FD scheme, all eigenvalues of the corresponding system matrix must lie inside the unit circle (see
e.g. Ref. [37]).

The outline of this paper is: First, the basic effect of ABCs compared to standard Dirichlet and Neumann BCs is shown for
the EBB under axial load by simulation. The influence of the two proposed accuracy objectives on the actual absorption
properties is discussed, the choice of a stability objective vs. constraint is discussed, and the influence of frequency-
weighting of the accuracy objective on the obtained ABC behavior is illustrated. Furthermore eigenvalue and sensitivity
analyses will be performed for the one-dimensional case. The second example highlights the proposed method on the two-
dimensional wave equation where the ABC stencil coefficients are optimized for certain angles of incidence and frequencies.
The method is compared with the well-known Engquist–Majda-ABCs from Ref. [3].
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2. Finite difference approximation of PDEs

The proposed method for obtaining the ABCs as an output of an optimization problem is directly applicable to PDEs being
linear with constant coefficients, having no damping terms and for which harmonic traveling wave solutions exist (see
Section 2.4). Additionally, some basic analytical treatment of the underlying PDE is performed. The necessary steps will be
illustrated for the case of the EBB in this section, but are easily applicable to other PDEs modeling wave propagation
phenomena. Furthermore, it is assumed that the update equation for the future time step can be written in an explicit form.

2.1. EBB under axial load

The PDE describing the dynamic behavior of a homogeneous EBB under axial load without damping is given by [38]

ρA
∂2u
∂t2

¼ �EI
∂4u
∂x4

þT
∂2u
∂x2

;

u¼ uðx; tÞ; xA ½0; L�DR; tARþ [ f0g; (1)

where the constant coefficients are the axial load T, the mass per unit length ρA, and the bending stiffness EI. The spatial
variable is x, time is denoted by t, and the beam length is L. uðx; tÞ denotes the vertical displacement of the beam.

2.2. Approximation of the interior domain

To numerically solve a PDE with the FD method the partial derivatives have to be approximated. To do so, the solution
domain is divided into a uniform grid in space and time: x� t ¼ ½0;Δx;…;NxΔx� � ½0;Δt;…;NtΔt�. Consequently, the variable
uðx; tÞ is only defined at each grid point (uðxk; tnÞ ¼ un

k). The partial derivatives in (1) can then, for example, be approximated
by finite differences [25]:

∂2u
∂x2

xk; tnð Þ � un
k�1�2un

kþun
kþ1

Δx2
; (2a)

∂2u
∂t2

xk; tnð Þ � un�1
k �2un

kþunþ1
k

Δt2
; (2b)

∂4u
∂x4

xk; tnð Þ � un
k�2�4un

k�1þ6un
k�4un

kþ1þun
kþ2

Δx4
: (2c)

Using central differences leads to symmetric stencil coefficients and it is assumed that the update equation producing the
solution at each grid point for the next time step can explicitly be written as

unþ1
k ¼

XNINT
t �1

i ¼ 0

XðNINT
x �1Þ=2

j ¼ �ðNINT
x �1Þ=2

aiju
n� i
kþ j ; (3)

which is the case for central differences if no mixed derivatives appear in the PDE. Thereby, aj
i
are the stencil coefficients (see

Fig. 2) and NINT
t , NINT

x are the numbers of time steps and spatial values needed to obtain the next solution value, respectively.
In case of the EBB PDE (1), discretized with central differences (2), NINT

t ¼ 2 and NINT
x ¼ 5 hold. The coefficients aj

i
of (3) for the

Fig. 2. Generic form of an explicit boundary condition stencil for k¼ 0 (left) and an explicit interior stencil (right).

A. Schirrer et al. / Journal of Sound and Vibration 365 (2016) 45–6948

2 Publications 45



EBB PDE (1) are:

a072 ¼ � EI Δt2

ρA Δx4
; a071 ¼

Δt2 4 EIþTΔx2
� �
ρA Δx4

;

a00 ¼
�6 EI Δt2�2 TΔx2Δt2þ2 ρA Δx4

ρA Δx4
;

a10 ¼ �1; a171 ¼ a172 ¼ 0: (4)

An example of such interior stencil structure is shown on the right side in Fig. 2.

2.3. Bounds for the time step size Δt

The FD scheme obtained above is conditionally stable [25]. For given physical parameters and spatial step size Δx, the
time step size needs to fulfill ΔtrΔtmax to result in a stable scheme where numeric errors are not amplified over time. In
case of a linear PDE with constant coefficients defined on an unbounded domain, the von Neumann stability analysis [25]
can be applied to obtain this maximal time step size Δtmax. For the EBB PDE (1) discretized by central differences (2), the
following bound is obtained:

Δtmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δx4
T
ρA

Δx2þ4
EI
ρA

vuuut : (5)

Remark 1. It is noted that Δtmax denotes a stability bound for the explicit FD time-marching scheme for the unbounded
domain. Thus, the spatial and temporal step sizes are chosen a priori and are kept fixed during the optimization. To verify
stability of the system with ABCs in place an eigenvalue analysis is performed (see Section 3.3). Moreover, Eq. (5) matches
exactly the Courant–Friedrich–Lewy's condition (see Ref. [39]) for EI¼0.

2.4. Dispersion relation

For a PDE with traveling-wave-solutions the so-called dispersion relation on an unbounded domain can be derived if a
harmonic wave of the form [23]

uðx; tÞ ¼ eIðωxxþωt tÞ (6)

is a solution of the homogeneous PDE, where I is the imaginary unit and ωx;ωtAR. It is noted that this corresponds to an
oscillatory traveling wave solution of an undamped problem. The dispersion relation describes the connection between the
spatial frequency or wave number ωxAR (or the wave vector k¼ ½ωx;ωy;…�T in the higher-dimensional case) and the
temporal frequency ωtAR. The general form of this relation is

f ðωt ;ωxÞ ¼ 0: (7)

Likewise, using the discrete counterpart of (6),

un
k ¼ eIωxΔx

� �k
eIωtΔt
� �n ¼ κkτn; (8)

the so-called discrete dispersion relation [6] can be derived by substituting (8) into an FD-discretized PDE.
To shorten notation, the dependency of κ and τ on ωx and ωt , respectively, will not be explicitly written in the remainder

of the paper. Also it is noted that because of the linearity of the PDEs under investigation, the sum of harmonic waves is
again a solution, hence the full solution can be written as a superposition of (infinitely) many harmonic wave solutions.
Here, evanescent modes are not considered relevant in the formulation of ABC accuracy (as also argued in[11]).

For the EBB the discrete dispersion relation is obtained by combining (3), (4) and (8) and leads after simplifications to:

sin 2 ωtΔt
2

� �
¼ T
ρA

Δt2

Δx2
sin 2 ωxΔx

2

� �
þ EI
ρA

Δt2

Δx4
sin 4 ωxΔx

2

� �
: (9)

2.5. Boundary conditions

In order to obtain a well-posed PDE problem, suitable initial conditions (ICs) and BCs are needed. These ICs and BCs have
to be discretized as well if the solution is approximated using discrete numerical methods such as FD.

Fig. 2 shows a possible computation grid where an interior stencil is shown on the right side. This stencil cannot be used
to compute the solution values at the boundary because it would rely on undefined grid points outside the computational
domain. The number of boundary grid points NABC to compute depends on the spatial width of the interior stencil. For the
explicit computation of the boundary grid points a generic explicit ABC stencil (on the left of Fig. 2) is introduced (here,
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shown for the left boundary formulation throughout):

unþ1
k ¼

XNABC
t �1

i ¼ 0
kμ

T
i

un�i
0

⋮
un�i
NABC

x �1

2
664

3
775; k¼ 0;…;NABC�1; (10)

where kμ
T
i ARNABC

x denotes the vector of stencil coefficients for the ðn� iÞth time instant needed for the computation of the
kth spatial grid point's value. NABC

t is the number of time instants that are needed for the ABC stencil computation and NABC

is the number of boundary grid points. ABC stencils on the right boundary are defined analogously by spatially mirroring the
entries of kμ

T
i .

3. Methodology

3.1. Basic considerations

Unlike the common approaches in the literature, where the ABCs are derived by physical considerations, in this work the
determination of the stencil coefficients of the ABCs is formulated as an optimization problem. Therefore, two different
accuracy objectives and one stability condition are introduced. Only taking accuracy objectives into account may lead to
well-performing ABCs that, however, possibly introduce unstable dynamics. In these cases a stable parameter set can be
enforced by adding a stabilizing objective or a stabilizing constraint. On the one side, using a stabilizing constraint a single
objective optimization problem occurs and its solution is a stable candidate (ABC stencil). Depending on the single-objective
optimization method and the starting point of the optimization a global minimum of the accuracy objective can be obtained.
On the other side, formulating a stabilizing objective instead results in a MOO problem. Its solution is a set of candidates,
where accuracy and stability can be traded against each other.Additionally, a number of different stencil forms can be tested
and the trade-off between complexity, accuracy, and stability margin becomes clearly visible.

Moreover, the accuracy objectives can include weighting functions, introducing additional design degrees of freedom and
thus the possibility to optimize the ABCs for specific application needs. Examples are the frequency of waves or the angle of
incidence of waves reaching the boundary for the two-dimensional wave equation.

The proposed objective functions will be shown and derived for the one-dimensional case to simplify notation. However,
their generalization to the higher-dimensional case is straightforward and will be sketched in Section 4.2.1.

3.2. Accuracy objectives

Two accuracy objectives are proposed that are based on the error made at the boundary with respect to the outgoing
harmonic wave solutions, and thus they quantify the difference between the bounded and unbounded domain solutions.

3.2.1. Accuracy objective — reflection coefficient (RC)
The reflection coefficient (RC) was introduced in Ref. [6] to describe the reflection properties of ABCs. The derivation of

the RC will be outlined here and extended for arbitrary boundary points unþ1
k , with k¼ 0;…;NABC�1. The basic idea is to

Fig. 3. The discrete dispersion relation for EBB equation for positive ωtΔt with EI¼ 150 N m2, T ¼ 15;000 N=m, ρA¼ 1 kg=m, Δt ¼ 9:9� 10�5 s and
Δx¼ 0:05 m.
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consider boundary conditions of the following form:

Bkðτ; κÞunþ1
k ¼ 0; k¼ 0;…;NABC�1 (11)

Bkðτ; κÞ is obtained by inserting (8) into (10) and expressing the boundary point of interest. This leads to

Bkðτ; κÞ ¼ 1�
XNABC
t �1

n ¼ 0
kμ

T
n

τ�ðnþ1Þκ�k

τ�ðnþ1Þκ�kþ1

⋮
τ�ðnþ1Þκ�kþNABC

x �1

2
66664

3
77775: (12)

To study the reflection properties, one considers the linear combination

un
k ¼ cinκ

k
inτ

nþcoutκkoutτ
n (13)

where κkin ¼ expðIωx;inΔxÞ and κkout ¼ expðIωx;outΔxÞ are chosen to correspond with the incoming and outgoing wave com-
ponents (understood as having positive and negative group velocities, respectively [6]) with amplitudes cin and cout. The
spatial frequencies ωx;in and ωx;out are obtained from the discrete dispersion relation (7). The discrete dispersion relation for
the EBB (9) is displayed in Fig. 3. The ωtΔtðωxΔxÞ�branch with different signs of ωtΔt and ωxΔx represents the incoming and
the branch with the same sign the outgoing wave components, with positive and negative group velocities, respectively. The
group velocity is defined as

vgroup ¼ �∂ωt

∂ωx
: (14)

Finally, one obtains the RC by inserting (12) into (13) which leads to

cinBkðτ; κinÞþcoutBkðτ; κoutÞ ¼ 0 (15)

or

cin ¼ �Bkðτ; κoutÞ
Bkðτ; κinÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

RkðωtΔt;ωxΔxÞ

cout: (16)

with the RC Rk. It is evident that the RC is a function of κ and τ and is evaluated for certain pairs of ðωtΔt;ωxΔxÞ, which are
related by the discrete dispersion relation. The goal for the optimization is to minimize Rk

�� ��. Consequently, the first proposed
accuracy criterion aggregates (16) over all relevant frequencies ωxA 0; π=Δx

	 

(up to the Nyquist frequency) with a user-

defined frequency weighting wðωxÞZ0:

Jperf ;RC ¼
XNABC �1

k ¼ 0

Z π=Δx

0
wðωxÞ RkðωxÞ

�� �� dωx: (17)

In the particular cases of the EBB and the two-dimensional wave equation the dispersion relation is symmetric with respect
to the ωt�axis (see Fig. 3) and ωx ¼ �ωx;in ¼ωx;out. Thus, the integral in (17) needs only be evaluated in the given interval.

Fig. 4. Influence of an ABC stencil for the EBB into the interior domain.
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3.2.2. Accuracy objective — output-error (OE)
The second proposed accuracy objective is based on simulating a harmonic wave solution on a (small) test domain with

ABCs in place for several time steps and comparing a selected region of the solution to that of the unbounded domain which
is directly available from (8). While the RC accuracy objective (16) minimizes the reflection of the boundary points for the
frequency pairs ðωt ;ωxÞ of the discrete dispersion relation (7), the OE accuracy objective minimizes the harmonic wave
solution error in an output-error sense [31]. The concept behind the OE accuracy objective is sketched in Fig. 4 for the
example of an EBB explicit interior stencil. Each grid point un

k at the time instants n¼ 0; �1;…; �NABC
t þ1 is initialized with

the harmonic wave solution (8). These grid points are marked by circles (○). The boundary grid points (see Fig. 4, k¼ 0;1)
where the solution is computed using the ABC stencils are indicated by crosses (� ). Grid points that are influenced by
boundary point values are marked by triangles (▵) in Fig. 4. The idea is to minimize the difference of the solution marked
with ▵ or a restricted area (e.g. α with k¼ 2 in Fig. 4) and the harmonic wave solution (8) on the unbounded domain. The
output error of one harmonic wave solution is thus expressed as

eOE ¼
XNOE

t

n ¼ 2

XNOE
x

k ¼ 2

un
k�κkτn

��� ���2; (18)

and the solutions un
k are obtained from numeric solution of the test system. It is noted that the solution is let to evolve over

NOE
t time steps (in contrast to the 1-step evaluation of the RC accuracy objective (17)). The proposed OE objective again is

obtained by aggregating the error function (18) over frequency:

Jperf ;OE ¼
Z π=Δx

0
wðωxÞeOEðωxÞ dωx: (19)

3.3. Stability condition

Eq. (5) stated the von Neumann (Fourier) stability criterion for the EBB as an upper bound on the step size Δt to
guarantee a stable FD scheme on an unbounded domain. Specific BCs can, however, still introduce instability. Therefore, a
dedicated stability condition is introduced.

Thisstability condition evaluates the eigenvalues of the state-space system associated to an FD-approximated test system
with applied ABCs. Every solution value at the time instant n is collected into

un ¼ un
0; un

1; …; un
Nx �1

h iT
: (20)

Since there are two time steps involved in (4) for the EBB and possibly more for the ABC stencil (10), the state vector has to
contain earlier values as well, depending on the highest number Nup

t of time steps appearing in the update equations:

vn ¼ un� �T
; un�1� �T

; …; un�Nup
t þ2

� �T
 �T

: (21)

This augmented state vector then consists of ðNup
t �1ÞNx elements and the update equation can be written in the following

form:

vnþ1 ¼ Avn; (22)

with the discrete-time system matrix AARððNup
t �1ÞNxÞ�ððNup

t �1ÞNxÞ, incorporating the discretized PDE (3), as well as the update
equation (10) for the boundary grid points and the past time steps un�1;…;un�Nup

t þ2.
The solution eigendynamics on each grid point is entirely described by A and linear system theory can readily be applied

to study stability. In fact, a discrete-time system of the form (22) is asymptotically stable if and only if all eigenvalues of the
state matrix A lie within the unit circle, i.e. have magnitude smaller than one [37], leading to the stability constraint

ρðAÞ ¼max
i

jλiðAÞjo1; (23)

which can also be addressed in the optimization in the form of a stability objective:

Jstab ¼ ρðAÞ: (24)

It is noted that the value Jstabo1 corresponds to a positive stability margin and quantifies the global exponential decay rate.
The accuracy/stability margin trade-off is made visible by taking on the MOO formulation. Furthermore, this condition
evaluates asymptotic stability for a concrete implementation. However, it is assumed that the stability properties of the
boundary region affect small and large systems in the same way which has been empirically observed by the authors.

For the undamped wave and EBB PDEs, central differences with applied Dirichlet/Neumann BCs lead to a unimodal
system (all eigenvalues have magnitude one), independent of the number of interior grid points.

Remark 2. The ABC stencils may also be formulated implicitly, leading additionally to stencil coefficients kμ
T
1 on the left

hand side of Eq. (10). Consequently this leads to an implicit state space representation Mvnþ1 ¼Avn (compare Eq. (22)).
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3.4. Single-objective optimization

By choosing one of the accuracy objectives (17) or (19) together with the stability constraint (24), a suitable optimization
problem for the determination of well-performing and stable ABCs can be stated. Mathematically, a parameter vector
p¼ kμi

� �
, k¼ 0;…;NABC�1, i¼ 0;…;NABC

t �1, consisting of the Np ¼NABC � NABC
t � NABC

x stencil coefficients in the kμ
T
i vectors

of (10) is sought that minimizes a cost function J ¼ Jperf ðpÞ:
min
p

JðpÞ
subject to ρðAÞo1 (25)

where pARNp and JAR. In this work a pattern-search algorithm [27] was utilized for solving the optimization problem.
Pattern-search belongs to the class of gradient-free optimization methods but only one solution candidate is considered.
This solution is iteratively improved by evaluating the objective function in its neighborhood at points having a fixed
distance to the current solution, called mesh size. If a better point is found, it is denoted as the new solution and the mesh
size is doubled (exploration). If, after evaluating the neighborhood, the current point is still optimal, the mesh size is
reduced (intensification). This process is repeated until the mesh size reaches a lower tolerance value.

3.5. Multi-objective optimization (MOO)

By incorporating the stability objective (24) into the optimization problem and treating it equally to the accuracy
objective MOO results. Stencil coefficients are sought that minimize a vector-valued cost function J¼ ½Jperf ðpÞ; JstabðpÞ�T in the
Pareto sense [40]:

min
p

JðpÞ; pARNp ; JAR2: (26)

Typically, the two objectives are conflicting. Each solution candidate that cannot be further improved in one objective
without deteriorating the other objective is called Pareto optimal [28]. The result of the MOO problem solved by population-
based approaches is an approximation of the Pareto-optimal solution set (called Pareto front). In this work the MOO pro-
blem (26) is solved by a multi-objective genetic algorithm (NSGA-II [29]). Genetic algorithms belong to the class of evo-
lutionary algorithms and are inspired by nature's evolution process. They use a set of solution candidates, called population,
and improve it iteratively. Each iteration, called generation, is evolved by the operations selection, recombination, and
mutation. Initial solutions can be obtained by single-objective optimization, via randomization, or by using already
known ABCs.

4. Numerical results

Using an EBB test system, a simulation run illustrates the wave absorption with an ABC in place. The two accuracy
objectives will be compared and their properties discussed. Furthermore, the frequency-weighting of the accuracy objec-
tives and its influence on the time-domain results will be illustrated. For the two-dimensional wave equation first the ABC
optimization method is adopted to the two-dimensional case and the optimized ABCs are compared with the second-order
Engquist–Majda ABCs.

4.1. ABCs for the Euler–Bernoulli Beam (EBB) equation under axial load

The EBB model plays an important role in modeling bending beam dynamics. Its applications are found, for example, in
cable car and railway catenary dynamics. Furthermore, the EBB equation is particularly challenging because physical dis-
persion is significant.

4.1.1. EBB parameters and system setup
For the following studies the coefficients of the EBB equation (1) were chosen corresponding to typical high-speed

railway catenary contact wire parameters [41]:

T ¼ 1:5� 104 N; ρA¼ 1 kg=m; EI¼ 150 N m2;

and the beam length is chosen with L¼ 100 m. The simulation setup is structured as follows: ABC stencils are placed at the
left boundary (x¼0 m) and a clamping BC was chosen for the right boundary (x¼L). The homogeneous clamping BC is here
defined as

u L; tð Þ ¼ 0;
∂u
∂x

L; tð Þ ¼ 0; (27)

and can be realized by using FDs as

Nxμ
T
0 ¼ 0 0 0 0½ �; Nx�1μ

T
0 ¼ 0 0 0 0½ �: (28)
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Because of the fourth derivative in the EBB PDE (1) which is discretized by (2), two boundary grid points on each side arise,
and so two ABC stencils need to be optimized. The stencil size parameters of the ABCs are chosen as NABC

x ¼ 4 and NABC
t ¼ 1

(see Fig. 2). Furthermore, the spatial step size of the computational grid was chosen with Δx¼ 0:05 m, and
Δt ¼Δtmax ¼ 9:9� 10�5 s was determined from (5). The simulation runs are started with the ICs

u x;0ð Þ ¼ sin 2 π
x�xc
d

�1
2

� �� �
�d
2
rx�xcr

d
2

0 elsewhere;

8><
>: (29a)

∂u
∂t

x;0ð Þ ¼ 0; (29b)

with xc ¼ 25 m and d¼ 0:5 m. The IC is displayed in Fig. 5 as the topmost curve.

Remark 3. Setting Δt ¼Δtmax may cause numerical problems as floating point computations made by computers during the
simulations can introduce small errors possibly leading to Δt4Δtmax.

4.1.2. MOO parameters and objectives
Throughout this example the MOO problem (26) is utilized for obtaining the ABC stencil coefficients. If not stated

otherwise, the MOO parameters and objectives are configured as follows:

Fig. 5. Displacements uðx; tÞ of the pretensioned EBB for selected simulation times. x¼ 0 m: ABC applied, x¼ 100 m: clamping BC applied

Fig. 6. Elongated reference domains (light gray) and ABC-bounded computational domains (dark gray) for the two examples: (a) EBB under axial load,
(b) two-dimensional wave equation.
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� The MOO problem is solved by a multi-objective genetic algorithm with a population size of 100 individuals. Thus, the
solution represents that of a single objective (best accuracy) optimization problem with a stability constraint (24),
however, the MOO treatment allows direct insight into the accuracy/stability-margin trade-off.

� Only the best performing stable solution of the optimized, final solution set is considered.
� The RC (17) and OE (19) accuracy objectives are evaluated at a frequency grid ωxA 0; π=10Δx;2π=10Δx;…; π=Δx

	 

.

� The stability objective (24) is calculated using a small test system (AAR10�10 of the system (22)).
� The OE accuracy objective (19) is evaluated using NOE

t ¼ 5 and NOE
x ¼ 15 (see Fig. 4).

� Frequency weighting is only considered in Section 4.1.6, in all other sections it is set to wðωxÞ ¼ 1.

4.1.3. Quantification of the absorption properties and long-term stability
The absorption properties of the ABCs are quantified by means of the time-dependent approximated error [35]

e tð Þ ¼ ‖uðtÞ�uref ðtÞ‖½0;L�
L

(30)

and the approximated global relative space–time error

E¼ ‖u�uref‖½0;L�;½0;TSIM �
‖uref‖½0;L�;½0;TSIM �

: (31)

Therefore a reference solution uref – based on the same interior discretization – is computed using a one-sided elongated
simulation setup (see Fig. 6a). The elongated setup �mLrxrL has clamped boundary condition on both sides. Its elon-
gation factor mAN⧹f0g is chosen such that no reflection of the left boundary enter the truncated simulation domain
(0oxoL) during the simulation time Tsim. The errors (30) and (31) are calculated using the L2-norm ‖ � ‖M evaluated on the
manifold M.

Fig. 7. Comparison of the reference solution uref ðx; tÞ (top) and solution with applied ABCs uðx; tÞ (bottom) at: (a) t ¼ 0:05 s, (b) t ¼ 0:25 s, (c) t ¼ 0:75 s and
(d) t ¼ 1:25 s.
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In comparison to the one-dimensional time-dependent error in Ref. [35], here the error (30) is normalized by L instead offfiffiffi
L

p
. This choice renders e(t) dimensionless.
To verify that the proposed ABCs are stable, long-term simulations will be performed and quantified by the total energy

remaining in the system. The total energy remaining in the system is defined as the sum of kinetic energy Ekin and potential
energy Epot (see in Ref. [23])

EtotðtÞ ¼ EkinðtÞþEpotðtÞ ¼
Z L

0
ϵkinðx; tÞþϵpotðx; tÞ
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ϵtotðx;tÞ

dx; (32a)

with the total energy per unit length ϵtotðx; tÞ and its kinetic and potential contributions

ϵkin x; tð Þ ¼ 1
2
ρA

∂uðx; tÞ
∂t

� �2

;

ϵpot x; tð Þ ¼ 1
2

T
∂uðx; tÞ

∂x

� �2

þEI
∂2uðx; tÞ

∂x2

� �2" #
: (32b)

EtotðtÞ is computed by approximating the derivatives by central differences and the integration by the trapezoidal rule.

4.1.4. Demonstration of wave absorption
The wave absorption properties of an optimized ABC are demonstrated. The ABC stencil coefficients

0μ
T
0 ¼ 2:3401� 10�1 9:9202� 10�1 �2:3323� 10�1 �1:6615� 10�3

h i
; (33a)

1μ
T
0 ¼ 6:3487� 10�2 2:5289� 10�1 9:3493� 10�1 �2:5498� 10�1

h i
; (33b)

are applied on the left boundary (x¼ 0 m) and were obtained by solving the MOO (26) using the RC accuracy objective (17)
and the stability objective (24). The stability margin for the ABC stencil (33) is 1� Jstab � 9:6769� 10�5 and the accuracy
objective value is Jperf ;RC � 8:6661� 10�2. The clamped BC (28) is applied on the right boundary (x¼ 100 m).

Fig. 5 visualizes the displacement of the EBB at selected time instances T1oT2o⋯oT8, where the topmost curve
depicts the IC (29a).

Time T1 shows that the initial wavelet has split into two wave packets, traveling leftward and rightward. Additionally, the
physical dispersion of the EBB which separates low- and high-frequency content due to differing propagation speeds is
clearly visible. Here, high frequency components travel faster than low frequency components. At times T2, T3 and T4 the
wave packet running leftward towards the ABC at x¼ 0 m is absorbed while the right wave packet (running towards
x¼ 100 m) disperses further (seen at times T2, T3) and at time T4 it starts to be totally reflected by the clamping BC (28). At
times T5;…; T8 the total reflection at the right boundary and the subsequent absorption on the left is shown.

A more detailed view is given in Fig. 7, where the solution uðx; tÞ with ABCs applied and the reference solution uref ðx; tÞ
are shown for selected time instances. Each plot therein consists of the reference solution (top) and the truncated ABC-
bounded solution (bottom). It is noted that uref ðx; tÞ has been calculated on a significantly elongated domain
�1000 mrxr100 m, but only �50 mrxr100 m are shown for clarity. As one can see in Fig. 7, the IC (29a) has a rich

Fig. 8. Time-dependent error e(t) of the EBB ABC. The dashed line marks the time when the IC has entirely left the truncated domain (t ¼ 1:5 s).
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frequency content. However, the agreement of the reference solution and the truncated solution is very good. The time-
dependent error e(t) is given in Fig. 8 and quantifies the degree of absorption. It is initially zero until the leftwards traveling
wave packet reaches the boundary at x¼ 0 m (t � 0:05 s). Then, the value of e(t) stays approximately constant as long as
significant signal content remains in the truncated domain (0 mrxr50 m). For tZ1:5 s the displacement of the reference
solution is equal to zero inside the truncated domain (dashed line in Fig. 8) and the error e(t) decreases again over time.

One important aspect of ABC quality is long-term stability. Ref. [35] reports on the asset of long-term stability. To verify
that no such behavior occurs a simulation run of 200 s (two orders of magnitude longer than the time the IC needs to leave
the truncated domain in this example) was performed and the total energy EtotðtÞ (32a) was calculated. The result is dis-
played in Fig. 9, demonstrating that the total energy Etot decays and the ABC-bounded system remains stable. Additionally,
an eigenvalue analysis for a particular test system is given by the stability condition (Section 3.3) and in the included ABC
sensitivity analysis in Section 4.1.7. As all considered, nominal stencils fulfill the stability condition, they yield stable system
behavior and are long-term stable.

This simulation example demonstrates that the proposed methodology is capable of producing well-performing and
stable ABCs for the EBB. A comparison of the absorption quality RC (17) and the OE (19) performance objective for the
optimization of ABCs will be given in the following section.

4.1.5. Comparison of the accuracy objectives
In this section the absorption properties of ABCs resulting from the optimization with respect to the RC accuracy

objective (17) and the OE accuracy objective (19) will be compared by means of global relative space–time error (31).
Because of the random nature of the genetic algorithm, each run of the MOO leads to a different solution set. To obtain a

Fig. 9. Long-term energy decay of the optimized ABC for the EBB.

Fig. 10. Box plot comparison for ABCs optimized by the RC (17) (left) and OE (19) (right) accuracy objectives.
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statistically relevant statement, 200 optimization runs are carried out. The best stable ABC of each run is applied to the EBB
system.

The result is illustrated in Fig. 10 by means of box plots. The horizontal bold line at the top of the plot shows the global
relative space–time error for the IC (29a) with clamping BCs at both boundaries ((27) at x¼0 and x¼L). These box plots
show that utilizing the RC accuracy objective (17) during optimization yields on average better accuracy than using the OE
accuracy objective (19) for TSIM ¼ 1:5 s. The global relative space–time error E of the best optimized ABC is 1.72 percent for
the RC-optimized and 2.87 percent for the OE-optimized ABCs (relative to the clamped-clamped setup). The average time of
solving the MOO problem was slightly larger in the OE case (180.56 s vs. 153.31 s) on a modern office PC (Intel i7).

4.1.6. Frequency weighting
Frequency weighting of the OE accuracy objective (19) and its effect on the optimized ABCs are illustrated. For that

purpose, the MOO problem (26) is solved twice using the stability objective (24) and the frequency-weighted OE accuracy
objective (19) with the weightings

whigh ωxð Þ ¼
1 ωx ¼ 0;…;

7π
10Δx

5000 ωx ¼ 8π
10Δx

;…;
π

Δx

8>><
>>: (34a)

and

wlow ωxð Þ ¼
5000; ωx ¼ 0;…;

2π
10Δx

1 ωx ¼ 8π
10Δx

;…;
π

Δx

8>><
>>: (34b)

for high and low frequency weighting, respectively.

Fig. 11. Power spectral density of ϵtot (32a) for the IC and residual signal after absorption through the high- and low-frequency-weighted ABCs,
respectively.

Fig. 12. Evaluation of ABC stencils with (a) Jperf ¼ 8:6661� 10�2 and Jstab ¼ 9:9990� 10�1 (black), b) Jperf ¼ 1:1528� 10�1 and 1� Jstab ¼ 5:3909� 10�2

(blue). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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The results are displayed in Fig. 11 in terms of the power spectral density (PSD) of the total energy per unit length ϵtotðx; tÞ
(32a) of the EBB (obtained by Welch's method [42]). The PSD of the IC ϵtotðx;0Þ and ϵtotðx; TÞ for the solution of the high- and
low-frequency-weighted ABC cases (‘high’ and ‘low’) are shown.

As expected, the frequency weighting (34) used in the optimization influences the absorption properties of the ABCs such that
the residual frequency content has smaller magnitudes at the low and high frequencies for the weightings wlow and whigh,
respectively.

4.1.7. Sensitivity analysis of the ABC stencil
The sensitivity analysis of the ABC stencil (33) will be performed by considering stability (eigenvalue analysis) and

accuracy (approximated global relative space–time error (31) and the setup from Section 4.1.1). For that each stencil value is
relatively and randomly varied by α¼ 70:1 percent, α¼ 71 percent, α¼ 75 percent and α¼ 710 percent, where α is the
perturbation level. Additionally, a second ABC stencil

0μ
T
0 ¼ 2:3417� 10�1 9:6807� 10�1 �1:8969� 10�1 �5:1449� 10�3

h i
; (35a)

1μ
T
0 ¼ 6:3472� 10�2 2:6482� 10�1 9:0721� 10�1 �2:5508� 10�1

h i
; (35b)

Fig. 13. Eigenvalue distribution of a small (Nx¼20) test setup. The eigenvalues of the nominal stencil (○) and the perturbed stencils (� ).

Table 1
Number of unstable ABCs for different perturbation levels α.

α 70.1% 71% 75% 710%

ABC (33) 24 35 28 29
ABC (35) 0 0 12 19
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with the stability margin 1� Jstab � 5:3909� 10�2 and accuracy objective value is Jperf ;RC � 1:1528� 10�1 is considered. This
stencil has a larger stability margin and reflection coefficient and is thus excepted to be more robust concerning stability, but
less accurate.

Starting with the accuracy for each perturbation level Nperturb ¼ 50 perturbations were applied to the nominal stencils
(33) and (35). Taking only stable perturbed stencils into account, the errors are displayed by means of box plots in Fig. 12.
The results are displayed the in (a) and (b) for the ABCs stencils (33) and (35), respectively. The bold dashed horizontal lines
in both figures mark the errors of the nominal ABC stencils. As expected, the stencil (33) is more accurate and perturbations
lead to an increase of the error. The perturbation of stencil (35) leads for small perturbations (70:1 percent) to no sig-
nificant change in accuracy. Increasing the perturbation level the median of the error increases, but some stable stencils
outperform the nominal stencil (35).

For the sensitivity analysis of the stability the eigenvalue distribution for the same Nperturb ¼ 50 stencils of the ABC stencil
(33) is considered (see Fig. 13). In this figure the nominal eigenvalues are marked by circles (○) and those of the perturbed
ABC stencil eigenvalue are marked by crosses (� ). The number of perturbed unstable ABCs is quantified in Table 1 for both
ABC stencils. Summarizing the result, one can see that the increase of the perturbation level α leads to a stronger deviation
of the eigenvalues and also to more eigenvalues outside the unit circle (see Fig. 13). However, because of the larger stability
margin the ABC stencil (35) is more robust and all ABCs are stable for α¼ 70:1 percent and α¼ 71 percent. Then the
number of unstable ABCs increases. In contrast, the number of unstable ABCs for (33) is typically above 50 percent.

The eigenvalue distribution of the ABC stencil (35) is omitted here, because it yields qualitatively similar results. The
major differences have been summarized in Table 1.

4.1.8. Comparison of the continuous and discrete dispersion relation
In comparison to literature (e.g. Refs. [34,33,43]), where the dispersion relation (DR) is considered for a specific stencil

(space and time discretization separately), here the DR of the entire PDE is considered as used in Ref. [6]. The dispersion
relation of the continuous EBB (1) is calculated as

ρAω2
t ¼ ω4

xEIþω2
xT : (36)

The considered DRs are displayed in Fig. 14(a). One can clearly see that for the interior and ABCs at x¼0 stencils are in good
agreement with the continuous DR up to ωxΔx� π=2. For high frequencies all discrete DRs diverge similarly from the
continuous DR. To compare the ABC and interior stencils quantitatively for a chosen error level EDISP typically the quantity
Points-per-Wavelength (PPW) is used (see Refs. [43,44]). Here, a reasonable choice is EDISP ¼ 5 percent (the bold horizontal
line in Fig. 14(b)) leading to 4.13, 3.74 and 4.61 PPWs for the interior, the ABC at x¼0 and the ABC at x¼Δx, respectively. In
Refs. [43] and [44], 7 and between 3:36 and 4:22 PPWs were achieved for high-order stencils approximating the first
derivative ∂=∂x using EDISP ¼ 0:3 percent with NINT

x ¼ 7 and EDISP ¼ 0:5 percent with NINT
x ¼ 9…13, respectively.

Fig. 14. (a) Dispersion relation of the continuous PDE, using interior stencil (blue solid) and using the ABC stencils (red dashed dotted at x¼0 and green
dashed at x¼Δx). (b) Dispersion error in logarithmic scale. (For interpretation of the references to color in this figure caption, the reader is referred to the
web version of this paper.)
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4.2. ABCs for the two-dimensional wave equation

The scalar two-dimensional wave equation is given by [38]

∂2u
∂t2

¼ c2
∂2u
∂x2

þ∂2u
∂y2

� �
; (37)

with the vertical displacement uðx; y; tÞ, the wave propagation speed c and two spatial variables x and y. Here it is assumed
that the PDE models small-amplitude waves in a membrane, and for the following numerical results the physical parameters
were arbitrarily chosen as

ρ¼ 1 kg=m2; f ¼ 100 N=m; c¼
ffiffiffiffiffiffiffi
f =ρ

q
¼ 10 m=s; (38)

where c is the wave propagation speed, f is the tensile line load (force per unit length) applied at the boundary of the
membrane and ρ is the area density of the membrane material.

4.2.1. Implementation for the two-dimensional wave equation
Some modifications to the methods described in Sections 2 and 3 have to be made to investigate higher-dimensional

problems. They will be sketched for the case of the two-dimensional wave equation (37).
The FD approximation of partial derivatives with respect to y is obtained analogously to (2) for an evenly spaced grid

y¼ ½0;Δy;…;NyΔy� with ΔyARþ and NyAN. The generic stencil (3) now contains an additional sum in the y-direction

unþ1
k;m ¼

XNINT
t �1

i ¼ 0

XðNINT
x �1Þ=2

j ¼ �ðNINT
x �1Þ=2

XðNINT
y �1Þ=2

p ¼ �ðNINT
y �1Þ=2

aij;pu
n� i
kþ j;mþp; (39)

and the boundary stencils are modified analogously. Using central differences on the two-dimensional wave equation (37)
leads to NINT

x ¼NINT
y ¼ 3 and NINT

t ¼ 2. The harmonic wave solution is extended in the y-direction:

un
k;m ¼ eIωxΔx

� �k
eIωyΔy
� �m

eIωtΔt
� �n ¼ κkζmτn: (40)

Consequently, a second spatial wave number, ωy, arises and the dispersion relation now connects ωx;ωy; and ωt . Additionally,
the angle φ¼ f ðωx;ωyÞ describes the traveling direction of the wave and the dispersion relation can be parametrized in φ and
ωt .

The necessary adoptions to the objective functions will be demonstrated on the OE accuracy objective (19) and thest-
ability objective (24). The output-error (18) for the two-dimensional wave equation is

eOE φ;ωtð Þ ¼
XNOE

t

n ¼ 2

XNOE
x

k ¼ 1

XNOE
y

m ¼ 1

un
k;m�κkζmτn

��� ���2; (41)

and the objective function is obtained by aggregating this error function over the parameters φ and ωt:

Jperf ;OE ¼
Z π=2

0

Z π=Δx

0
wðωt ;φÞeOEðωt ;φÞ dωt dφ: (42)

To evaluate thestability objective (24) the state-space representation of a test system needs to be constructed. The Nx � Ny

Fig. 15. (a) Problem setup for the two-dimensional wave example. ABCs are applied at x¼ 0 m and x¼ 15 m. At y¼ 0 m and y¼ 35 m Dirichlet BCs are
applied. (b) Problem setup as contour plot.
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solution values at each relevant time instant have to be organized as a stacked augmented state vector vARN , with
N¼ ðNup

t �1ÞNxNy, leading to a system matrix AARN�N .

4.2.2. Available absorbing boundary conditions
The optimized ABC stencils will be compared to already available ABCs from the literature. In 1977, Engquist and Majda [3]

developed a method for obtaining absorbing boundary conditions of arbitrary order for the wave equation. However, the original
Engquist–Majda boundary conditions are of practical use only in low-order because of their rapid increase in algebraic complexity
for high-order formulations [11]. Here, the second-order Engquist–Majda (EM2) boundary conditions are applied:

∂2u
∂x∂t

�∂2u
∂t2

þ1
2
∂2u
∂y2

¼ 0; (43)

Fig. 16. Sketch of the (5,3,2) ABC stencil structure.

Fig. 17. Log-scaled output error eOEðφ;ωt Þ (41) as a function of the angle of incidence φ and the frequency ωtΔt for the second-order Engquist–Majda ABC
(left) and an optimized (3,3,2) ABC stencil (right). The optimization grid used for obtaining the latter is marked by ○.

Fig. 18. Long-term energy decay of the optimized ABCs with high-frequency waves (ωtΔt ¼ 0:325) for the two-dimensional wave equation.
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where x and y denote the directions in normal and tangential direction on the boundary, respectively. In this work, all derivatives in
(43) were discretized using second-order-accurate finite difference schemes.

Another important ABC for wave problems is the Higdon ABC [30]:

∏
J

j ¼ 1

∂uðx; y; tÞ
∂t

þCj
∂uðx; y; tÞ

∂x

� �
¼ 0; (44)

with constants Cj and J denoting the order of the ABC. Higdon proved that every ABC that is based on a symmetric rational
approximation of the dispersion relation (for outgoing waves) is either equivalent to (44) or not optimal [30]. Moreover, for
J¼2 and certain values of Cj, the Higdon ABC corresponds to the EM2 ABC (43). Theoretically, the same problems with higher
derivatives as for the Engquist–Majda ABCs arises when implementing (44). However, several different methods exist for
efficiently applying the Higdon ABCs; see [12] for a corresponding review.

4.2.3. Problem setup
Fig. 15(a) exemplarily shows the simulation setup with a very-low-frequency wave packet that is started with an initial

velocity of c in the direction associated with angle φ. In Fig. 15(b) the simulation setup is displayed as a contour plot
(compare Appendix B). The initial condition for all simulation runs was chosen as

u0
k;m ¼ Re eIωxΔxkeIωyΔym

� �
e�0:4ðkΔx� xcÞ2e�0:015ðmΔy�ycÞ2 ; (45)

with appropriately selected centers xc and yc. The domain size was chosen as lx ¼ 15 m, ly ¼ 35 m, and the ABCs are applied
at x¼ 0 m and x¼ 15 m while the remaining two boundaries are fixed (Dirichlet BCs). The step sizes were chosen as
Δx¼Δy¼ 0:05 m and Δt ¼ 0:001 s.

Fig. 19. Total error e(t) for different ABCs with low-frequency waves (ωtΔt ¼ 0:035), arriving with an angle of incidence of φ¼45°.

Fig. 20. Total error e(t) for different ABCs with mid-frequency waves (ωtΔt ¼ 0:15), arriving with an angle of incidence of φ¼5°.

Fig. 21. Total error e(t) for different ABCs with high-frequency waves (ωtΔt ¼ 0:325), arriving with an angle of incidence of φ¼10°.
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4.2.4. Optimization setup
Throughout the following examples the OE accuracy objective (42) is utilized to quantify the absorption properties. The

stability condition (24) has been evaluated for a test system of size Nx ¼Ny ¼ 7, which leads to a system matrix AAR98�98,
see (22). However, by eliminating zero-states that result from Dirichlet BCs the system matrix is reduced to AAR60�60.

Especially for larger ABC stencil sizes (due to the large number of decision variables), it was observed that convergence of
the MOO genetic algorithm to the actual Pareto front may be difficult to achieve. Throughout this example, only single-
objective optimization problems were formulated and solved by a pattern-search method [27], where the accuracy objective
was multiplied with a large penalty term when the stability objective (24) indicated instability, which corresponds to using
a stability constraint (24).

4.2.5. Investigated stencil configurations
The structure of the studied ABC realizations is denoted here by the triplet (NABC

x , NABC
y , NABC

t ), where NABC
x and NABC

y are
the spatial widths in normal and tangential direction, respectively (for the ABC along the x¼ 0 m edge), and NABC

t is the
number of time instants that are needed for the computation of the next boundary grid point. Fig. 16 shows the structure of
a (5,3,2) stencil where the grid points marked by dots (�) are needed for the computation of the future boundary grid point
marked by a cross (� ).

The following ABCs are further investigated: an EM2 ABC [3] and proposed ABCs of structures (3,3,2), (5,3,2), and (5,3,2)L,
where the latter is only optimized for low frequencies. Their numerical values are summarized in Appendix A.

For discretizing the EM2 ABC second-order accuracy approximations were used, yielding a (4,3,2) stencil. The (3,3,2) ABC is
optimized over a grid φ� ωtΔt ¼ ½01;101;67:51� � ½0 rad;0:125 rad;0:35 rad�with a focus on higher frequencies. The (5,3,2) ABC is
optimized to obtain an overall well-performing ABC, independent of the angle φ and frequency ωt of the incoming wave.

4.2.6. ABC comparison by output-error accuracy
The ABC with the structure (3,3,2) is compared to the second-order Engquist–Majda (EM2) ABC [3]. In Fig. 17, the values

of the output error function (41) are plotted for a fine grid over φ and ωtΔt. Dark regions indicate a large error, whereas the
bright regions correspond to small errors. As can be seen in Fig. 17, the EM2 ABC performs very well in the low-frequency
range, while the error made at high-frequency waves arriving in normal direction is very large. However, the EM2 needs a
larger stencil (4,3,2) than the optimized (3,3,2) ABC. The optimized (3,3,2) ABC already leads to good overall performance in
this configuration. It is noted that for plotting the minimum of the output error function was clipped to 5� 10�4 to obtain a
better scaling in the very-low-frequency range.

4.2.7. True error comparison and long-term stability
In the following, all ABC stencils introduced in Section 4.2.5 are compared. For the quantification of the absorption

properties the time-dependent error in analogy to (30) is defined for the two-dimensional case

e tð Þ ¼ ‖uðtÞ�uref ðtÞ‖½0;ly �½0;lx�ffiffiffi
A

p (46)

where A¼ lxly is the computational area and uref is the reference solution computed on a much larger domain
(�40 mrxrþ40 m), see Fig. 6(b). The verification of the long-term stability is carried out by evaluating the total energy
remaining inside the computational domain xA ½0; lx�, yA ½0; ly� [23]:

EtotðtÞ ¼ EkinðtÞþEpotðtÞ; (47a)

Ekin tð Þ ¼ ρ

2

Z lx

0

Z ly

0

∂u
∂t

� �2

dy dx; (47b)

Epot tð Þ ¼
f
2

Z lx

0

Z ly

0

∂u
∂x

� �2

þ ∂u
∂y

� �2
" #

dy dx: (47c)

Long-term simulations of the test systemwith the obtained ABCs in place showed that they indeed did not render the finite-
difference scheme unstable (see Fig. 18).

The results by means of time-dependent error e(t) are plotted in the Figs. 19–21 for different angles and frequencies of
the initial waves. Similar to the EBB example the time-dependent error e(t) stays zero until the wave packets reach the
boundary and stays then approximately constant. The time-domain plots are displayed in Figs. B1–B3.

These results confirm that the accuracy of the optimized ABCs compares favorably over a wide frequency range with the
EM2 ABC, whose stencil is essentially of the same size as those used for the optimized ABCs. Additionally, the flexibility and
tunability of the optimization-based approach provides significant design advantages in practice.
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5. Conclusion and discussion

A generic method to produce well-performing and stable absorbing boundary conditions (ABCs) for finite-difference
approximations of partial differential equations with wave propagation effects has been proposed. The ABC stencil coeffi-
cients are utilized as decision variables in an optimization problem in which both absorption accuracy and stability are
considered. This approach requires only modest analytical treatment of the underlying partial differential equations and
provides great flexibility to tune specific properties of the resulting ABCs.

The versatility of the proposed method is demonstrated at two applications — the Euler–Bernoulli bending beam under
axial load (for which no ABCs are yet known) and the two-dimensional wave equation. The proposed accuracy objectives are
compared and discussed for the Euler–Bernoulli beam example, well-performing ABCs are obtained, and the effect of a
frequency-weighted accuracy formulation is investigated. The ABC optimization method is also applied for the well-known
two-dimensional scalar wave problem, and it produces highly absorbing BCs, equivalent in accuracy to those derived by
Engquist and Majda [3] analytically. Moreover, the behavior of the optimized ABCs can be directly tuned with respect to
frequency and angle-of-incidence which provides a large degree of flexibility.

The numeric approach to obtain high-accuracy ABCs is a powerful complementary approach to the analytic derivation of
ABCs. The optimization method can simply be transferred to different types of problems and it is straightforward to tune the
ABC's frequency or directional behavior. As a result, well-performing ABCs could become available for a wide class of
distributed-parameter problems addressed by the finite-difference method.

In future research work, the presented method to obtain ABCs will be tested on complex boundary geometries (e.g.
corners) and on other types of equations (such as the wave equation in moving coordinates). The method could also be
extended to linearized Euler equation which is governed by a set of three coupled PDEs leading to three coupled dispersion
relations. This requires a careful investigation of this PDE and its dispersion relation, to verify if all necessary assumptions
for the proposed method are fulfilled.
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Appendix A. ABC stencil values two-dimensional wave equation

The ABC stencil coefficient values ðx;yÞμ
T
t are defined in analogy to the one-dimensional stencil (see Section 2). Numbers

are given with power-10 exponential notation e.g. 1:2� 10�1 ¼ 1:2e�1.
For the (3,3,2) stencil one obtains

ðx;0Þμ
T
0 ¼ 1:80717� 10�1 1:09193eþ00 1:82365� 10�1

h i
ðx;1Þμ

T
0 ¼ ðx;�1Þμ

T
0 ¼ �1:81047� 10�1 �6:89779� 10�2 3:37948� 10�1

h i
ðx;0Þμ

T
1 ¼ �6:99544� 10�2 �4:32682� 10�1 �1:72127� 10�1

h i
ðx;1Þμ

T
1 ¼ ðx;�1Þμ

T
1 ¼ 3:60531� 10�1 �6:56820� 10�2 �1:49357� 10�1

h i

with x¼ 0;…;2. The (5,3,2) and (5,3,2)L are defined as

ðx;0Þμ
T
0 ¼ 1:70526� 10�2 1:71110eþ00 7:25865� 10�3 3:20594� 10�1 2:62183� 10�3

h i
ðx;1Þμ

T
0 ¼ ðx;�1Þμ

T
0 ¼ �8:52673� 10�2 �3:38745� 10�4 �1:69488� 10�3 �3:23486� 10�4 1:64642� 10�3

h i
ðx;0Þμ

T
1 ¼ �3:38745� 10�4 �7:39300� 10�1 �3:38745� 10�4 �3:47995� 10�1 1:79749� 10�3

h i
ðx;1Þμ

T
1 ¼ ðx;�1Þμ

T
1 ¼ 8:78247� 10�2 �3:38745� 10�4 �1:69373� 10�4 �3:38745� 10�4 �1:69373� 10�4

h i

and

ðx;0Þμ
T
0 ¼ 1:74426� 10�2 1:71133eþ00 7:00779� 10�3 3:18287� 10�1 �1:68786� 10�3

h i
ðx;1Þμ

T
0 ¼ ðx;�1Þμ

T
0 ¼ �7:35061� 10�2 5:12695� 10�5 �1:71350� 10�3 5:12695� 10�5 2:56348� 10�5

h i
ðx;0Þμ

T
1 ¼ 5:12695� 10�5 �7:39105� 10�1 5:12695� 10�5 �3:47800� 10�1 1:07361� 10�3

h i
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ðx;1Þμ
T
1 ¼ ðx;�1Þμ

T
1 ¼ 8:41440� 10�2 5:12695� 10�5 2:56348� 10�5 5:12695� 10�5 2:56348� 10�5

h i

with x¼ 0;…;4, respectively.

Appendix B. Time domain solutions of the two-dimensional wave equation

The following Figs. B1–B3 show the time domain results for the (5,3,2)L, (5,3,2), (3,3,2) stencils for low, mid and high
frequency ICs, respectively. The ABC results (middle columns) are compared with the reference solution (left columns) and
EM2 result (right columns) at different time instances.

Fig. B1 shows that both ABCs perform well for low frequencies. The third row of this figure shows that there are small
differences in the middle (5oxo10;10oyo20) and the upper-right (10oxo15;20oyo30) part of the computational
domain. The mid frequency solution in Fig. B2 shows again nearly perfect results at t ¼ 0:75 s for the ABCs. At t ¼ 1 s the

Fig. B1. Time domain solution for the low frequency IC and the (5,3,2)L stencil: reference solution (left), ABC solution (mid) and EM2 (right).
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(5,3,2)-stencil reflects more than in the low frequency case, because the ABC is not optimized for mid frequencies. In this
case the (5,3,2) and EM2 solution perform equally well. In Fig. B3 one can clearly see that the (3,3,2)-stencil absorbs the
greater part of incoming waves and achieves a better result than EM2.

Fig. B2. Time domain solution for the mid frequency IC and the (5,3,2) stencil: reference solution (left), ABC solution (mid) and EM2 (right).
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Appendix C. Supplementary data

Supplementary data associated with this paper can be found in the online version at http://dx.doi.org/10.1016/j.jsv.2015.
12.006.
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Catenary Emulation for Hardware-in-the-Loop Pantograph Testing with a Model
Predictive Energy-Conserving Control Algorithm
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Abstract

Pantograph current collectors, especially for high-speed trains, need to ensure safe contact with the catenary under
stringent requirements on the dynamic contact force. A novel, high-dynamic pantograph test rig with accurate virtual
catenary emulation is presented that allows for efficient, realistic, and reproducible testing. The complex dynamics
of the pantograph/catenary interaction is modeled by a real-time-capable distributed-parameter description in moving
coordinates. The proposed test rig controller incorporates model-predictive impedance control to match the desired
catenary dynamics. Additionally, it keeps the exchange of the conserved quantities energy and momentum between
the real pantograph and the virtual catenary consistent to increase physical trustworthiness of the results, even in
high-dynamic test scenarios. The proposed methods are experimentally validated on the full-scale pantograph test rig.

Keywords: hardware-in-the-loop, impedance control, conserved-quantities, catenary modeling, pantograph testing

1. Introduction

In recent years, railway current collectors (panto-
graphs) have become a limiting factor when pushing the
velocity limits of high-speed trains. They need to en-
sure a steady contact with the catenary’s contact wire to
maintain the train’s energy supply. Loss of contact must
be avoided to prevent arcing (and thus heavy wear). As
a result, modern pantographs have to fulfill high require-
ments: small contact force variations, highly reliable
operation, and long life cycles. The main problem in the
development process of high-performance, high-speed
pantographs is the complexity of the interaction dynam-
ics with the catenary. Therefore, physical trustworthi-
ness of simulations is limited, requiring laborious actual
track tests. One way to reduce the need for measure-
ment runs that also allows for reproducible testing is to
deploy the pantograph on a test bed and examine its be-
havior in advance. This concept is called hardware-in-
the-loop (HiL) testing whereby the real, full-size pan-
tograph is the unit under test (UUT) that is being put
into interaction with a virtual catenary model.The goal
thereby is to emulate a real-world train ride already in

∗Corresponding author. Tel.: +43 158801 325521
Email address: alexander.schirrer@tuwien.ac.at

(A. Schirrer)

the laboratory by applying realistic, dynamically gener-
ated load patterns that emerge from the coupled interac-
tion of the virtual catenary and the UUT.

Simplified pantograph HiL testing can be realized by
exciting the pantograph with a predefined motion trajec-
tory, such as the static pre-sag of the catenary’s contact
wire [1]. However, the pantograph/catenary interaction
is crucial to obtain realistic test results. To consider the
catenary’s dynamic response, it has to be either modeled
in a simplified way by oscillators (ordinary differential
equations, ODEs) or by high-fidelity models (based on
partial differential equations, PDEs) [2, 3].

Controlling the test rig so that it dynamically re-
sponds to the UUT in the same way as the catenary
model is accomplished by impedance control [4, 5],
where a dynamic behavior rather than a predefined ref-
erence trajectory is tracked. Nowadays, impedance con-
trol is not only applied in robotics for handling tasks but
also used, for example, in engine testbed control [6] or
battery emulation [7]. The closely related field of bilat-
eral teleoperation is reviewed in Refs. [8, 9].

Accurate, realistic emulation of the panto-
graph/catenary interaction needs a real-time-capable
model in sufficient details, and so high-fidelity PDE
modeling is imperative for accurate dynamics, espe-
cially at high speeds. A typical catenary configuration
consists of a carrier and a contact wire which are
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coupled via so-called droppers. The carrier wire is
additionally attached to inertia-fixed masts. Each wire
can be modeled as an Euler-Bernoulli beam under
axial tension, and due to the droppers the resulting
equations that need to be solved are two coupled PDEs
with constraints [10]. Both wires are weakly damped,
and typically a large computational domain is needed
in order to capture wave propagation phenomena
correctly without distortion by spurious reflections at
the boundaries.

Since the early 2000s HiL pantograph testing has
been described, e.g. in Ref. [3]. There, the pantograph
has been excited with two hydraulic actuators from the
top and the bottom to additionally take the train’s ver-
tical displacement into account. The tests have been
performed using a passive pantograph at simulated ve-
locities of up to 180 km/h. Facchinetti and various co-
authors have published a series of papers showing the
progress and newest results of their pantograph test rig
from 2004 to 2013 ([2, 11–14]). The improvements
were made in terms of the catenary model’s complexity
(separate carrier and contact wires, as well as dropper
slackening [12]), a novel shifting procedure in Ref. [14],
a lateral actuator to incorporate stagger [14], and finally
an actively controlled pantograph pan head [13]. In each
of the aforementioned contributions a modal approach
was used to model the catenary’s dynamics. In Ref. [15]
an HiL test rig is proposed using two actuators for the
vertical and one actuator for the horizontal contact wire
displacement. The catenary dynamics is modeled in a
simplified way (physical mass-spring-damper system at
the contact point and pre-recorded displacement trajec-
tories). A commercial pantograph HiL test rig can be
found in Ref. [16], where the pantograph is contacted
with a spinning disc actuator enabling wear, arcing and
temperature tests of the contact strips. Therein the cate-
nary is modeled as a time-varying stiffness, similar as in
Ref. [15].

However, the described test rigs face actuation limits
in large-displacement tests, e.g. when emulating tunnel
entries, and the measured contact force is directly fed
into the virtual simulation environment (VSE; here the
virtual catenary dynamics) and the reaction (the contact
wire’s displacement at the pantograph position) is uti-
lized as a tracking reference. Classical tracking con-
trol with its intrinsic phase lag fails to provide state-of-
the-art control performance as achieved by, for example,
predictive control approaches.

Furthermore, ubiquitous test rig imperfections and
limitations are not adequately addressed by classical
control designs in terms of physical trustworthiness. It
was shown in Ref. [17] that the consideration of energy

and momentum balances on an HiL test rig can elimi-
nate systematic errors in test results.

The quality of impedance control is always deter-
mined by the quality of the underlying model, and the
catenary models used so far are either highly simpli-
fied, or require large computational domains or artificial
damping to avoid spurious unphysical boundary effects.

The main contributions of this paper solve these is-
sues as follows:

a) an HiL actuation concept consisting of a high-
dynamic linear drive and a six-degree-of-freedom
industry robot that allows for high-dynamic ma-
neuvers in a large operating area;

b) a novel impedance control strategy incorporating
energy and momentum conservation, solved by a
model predictive control approach to consider con-
straints and predict the complex catenary dynam-
ics;

c) an efficient real-time-capable Eulerian approach
[18] (a fixed pantograph interacts with a moving
catenary) to solve the distributed-parameter cate-
nary dynamics combined with special absorbing
boundary layers.

In contrast to the control approaches of existing pan-
tograph HiL test rig designs, impedance control in this
work is realized via model predictive control (MPC).
The basis of the controller is a model of the underlying
plant (the test rig actuator) and the VSE (the catenary
dynamics), and the future behavior of both is predicted
in each time step, where the upcoming control moves
are the decision variables in an optimization problem.
This allows to incorporate constraints into the control
problem and leads to superior control performance by
eliminating the phase lag that emerges in classical state
feedback laws. For efficiently solving this optimization
problem in real time, the size of the underlying models
of the MPC is limited. Hence, the proposed catenary
model is formulated in a novel efficient form where a
special case of controlled boundaries is used. The com-
putational domains of the contact and carrier wires are
extended by small controlled boundary layers that ab-
sorb all outgoing waves [19]. The periodic excitation
emerging from the train ride in combination with the
catenary is modeled as a time-varying periodic system.

The importance of obeying physical conservation
laws in an impedance-controlled test rig was already
shown in Ref. [17] at a combustion engine test rig.
There, the fuel consumption on the real track and in the
virtual representation were not consistent because small
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energy errors emerging from limited control bandwidth
accumulated. It was shown that these errors could be
eliminated by considering conserved quantities by con-
trol.

One major challenge in HiL applications is to estab-
lish a robustly stable, yet highly transparent coupling of
VSE and UUT. These objectives are conflicting [9], and
in Ref. [20] it is shown that causality conflicts result in
instability. For haptic interfaces, passivity-based tech-
niques [21, 22] have been proposed to ensure stability
of VSE/ UUT coupling. Ref. [23] proposes to combine
active and passive actuators with a hybrid control algo-
rithm to improve the stable attainable impedance range.

In power-electronic HiL testing the coupling between
the VSE and the UUT was already under investigation in
recent papers, but not in terms of conserved quantities’
consistency. In Ref. [24] different possible interfacing
concepts are discussed and it is also stated that the con-
servation of energy has to be enforced, although this
topic is not pursued further there. In Ref. [25] a circuit
for electronic power-HiL simulations is described that
relies on perfectly controlled voltage or current sources.

In contrast, the method proposed here guarantees the
conservation of energy by introducing a correction term
(interpreted as a virtual force) acting on the VSE. This
allows the formulation of both energy and momentum
conservation laws directly as control goals.

The outline of this paper is as follows: In Section 2
the test rig system setup, the VSE and their intercon-
nection are outlined. All relevant signals, the con-
served quantities, as well as the general control goals
are specified. Section 3 lays the theoretical foundation
for impedance control and presents the control in form
of a model predictive controller. As VSE model an ef-
ficient railway catenary model structure is described in
Section 4. Finally, Section 5 demonstrates the function-
ality of the proposed control concept with experimental
results, followed by conclusions.

2. Problem Description

2.1. High-Dynamic Pantograph Test Rig
The novel high-speed pantograph test rig considered

in this work is displayed in Fig. 1. It consists of a linear
drive that is attached to a robot arm. A full-size pan-
tograph current collector represents the UUT. This test
rig setup allows for large-scale maneuvers such as to
emulate tunnel entries and exits (via the robot’s motion)
as well as vertical displacements in a broad frequency
range (achieved via the linear drive) as needed for high-
fidelity catenary emulation. In this work, only the linear
drive is considered as actuator.

xtr

robot arm

linear drive

contact force
measurement

pantograph

Figure 1: Testbed setup and the UUT (property of Siemens AG Aus-
tria, MO MLT BG PN)

The available measurements are the position of the
linear drive as well as the contact force at the slider’s
end position where contact with the pantograph is made.

A mathematical description of the test rig dynamics
can be obtained by physical modeling approaches where
the relevant dynamics are described by the equations
of motion. The parameters are either taken from data
sheets or obtained by parameter identification based on
measurement data. Another possibility is to describe
the input/output behavior of the system solely based on
measurement data without any structural assumptions
(black-box model). In the following, the test rig dy-
namics are assumed to be described by a linear time-
invariant (LTI) discrete-time state-space system:

xtr(k + 1) = Atrxtr(k) + Btrutr(k)

ytr(k) =

[
xtr(k)
ẋtr(k)

]
= Ctrxtr(k) ,

(1)

with xtr and ẋtr being the position and velocity of the
test rig at the pantograph’s contact point, respectively,
and utr(k) as input signal to the system. The sampling
time is denoted by Ts. Furthermore, Atr, Btr and Ctr
are the appropriate dynamic, input, and output matrices,
respectively.

Remark 1. Here, the assumption of LTI system dynam-
ics is justified because all nonlinear effects (fricion, cog-
ging force) are already compensated in the underlying
test rig control system.

2.2. Virtual Simulation Environment

The virtual simulation environment (VSE), in this
case a dynamic catenary model, is assumed to be avail-
able as a linear-time-varying (LTV) discrete-time state-
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[
utr, Fcor

]T
=

h(xvse, xtr, Ftr)
Goals

xtr−xvse → 0
ẋtr−ẋvse → 0
∆p→ 0
∆E → 0

xvse, ẋvse

xvse

Fvse =

Ftr + Fcor

utr

Ftr, xtr, ẋtr

xtr

virtual simulation
environment controller

test rig

Ftr

Fcor

xvse

xtr

Ftr Ftr

unit under test

xvse . . . position of VSE
at UUT contact
point

xtr . . . position of test rig
at UUT contact
point

Ftr . . . measured contact
force

Fcor . . . correction force
Fvse . . . VSE input force

xtr − xvse. . . position error
ẋtr − ẋvse. . . velocity error

∆p . . . momentum error
∆E . . . energy error

Figure 2: HiL testing control concept: The proposed controller realizes an accurate coupling of the pantograph (unit under test, right) and the
virtual catenary (VSE, left) via the test rig. The controller minimizes the position, velocity, momentum, and energy errors by using both the test rig
control input utr and the virtual correction force Fcor, based on model predictions of the test rig and the VSE models.

space model with sampling time Ts realizing the cate-
nary equations of motion as outlined in Section 4:

xvse(k + 1) = Avse(k)xvse(k) + Bvse(k)Fvse(k) ,

yvse(k) =

[
xvse(k)
ẋvse(k)

]
= Cvse(k)xvse(k) .

(2)

The signals xvse(k) and ẋvse(k) denote the position and
velocity of the catenary at the pantograph’s contact
point at time t = kTs, and Fvse is the force input signal
into the VSE at the pantograph contact position. The
time-varying system matrices are the dynamic matrix
Avse(k), the input matrix Bvse(k) and the output matrix
Cvse(k).

2.3. Realization of Accurate Coupling between UUT
and VSE

To perform accurate HiL testing, a physically correct
coupling between the UUT and the VSE has to be ac-
complished by control as seen in Fig. 2.

In each sampling interval, the contact force between
test rig and pantograph is measured, modified if neces-
sary, and fed into the VSE model as force input. The
VSE is set in motion by the forcing, and its response (in
terms of catenary vertical displacement xvse and velocity
ẋvse at the contact point) serve as reference trajectories
to be tracked by the test rig’s physical contact point (xtr,
ẋtr).

This way, the VSE dynamics can be realistically em-
ulated for the UUT.

2.4. Control Tasks
The first task of the controller is to track the position

xvse and velocity ẋvse signals of the VSE on the test rig

in the UUT/test rig contact point, so that the position
and velocity errors are ideally zero:

epos(k) = xtr(k) − xvse(k) ,
evel(k) = ẋtr(k) − ẋvse(k) .

(3)

However, both quantities are different from zero be-
cause of test rig limitations, measurement noise and un-
modeled system dynamics. This leads to discrepancies
in the energy extracted from the UUT and injected into
the VSE (also observed in [17]).

To counteract this effect the controller is allowed to
modify the measured contact force Ftr by adding a cor-
rection force Fcor:

Fvse(k) = Ftr(k) + Fcor(k) . (4)

Using Fcor the controller has the authority to achieve its
second task: energy and momentum conservation. En-
ergy conservation is achieved by keeping the difference
in energy extracted from the UUT and the energy in-
jected into the VSE small,

∆E(k) = Etr(k) − Evse(k) , (5)

where Etr(k) denotes the discretized, cumulated energy
exchanged at the contact point between UUT and test
rig, and Evse(k) is the energy introduced into the VSE:

Etr(k) =

k∑

j=0

TsFtr( j)ẋtr( j) ,

Evse(k) =

k∑

j=0

Ts (Ftr( j) + Fcor( j)) ẋvse( j) .

(6)
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test rig model

catenary model

IIC-MPC

catenary model

VSE

planttest rig
control

real test rig

xvse

xtr

Ftr

Fcor

utr

Figure 3: Block diagram of the integrated impedance control (IIC)
MPC concept. The MPC controls both the test rig as well as the VSE,
thereby optimizing for tracking, momentum, and energy control goals
simultaneously.

Thereby, the discrete-time approximations of the
energy and momentum integral quantities are used
throughout. As can be seen from Eqs. (5) and (6), the
energy balance is affected by the choice of Fcor. More-
over, a momentum error now emerges due to the differ-
ent values of Ftr and Fvse:

∆p(k) =

k∑

j=0

TsFtr(k) −
k∑

j=0

Ts

Ftr(k) + Fcor(k)︸             ︷︷             ︸
Fvse(k)



=

k∑

j=0

TsFcor(k) . (7)

As a consequence, both momentum and energy conser-
vation have to be considered by control.

Summarizing the controls tasks described in this sec-
tion, the controller has to minimize the position/velocity
errors Eq. (3) while keeping the errors in energy ∆E
Eq. (5) and momentum ∆p Eq. (7) sufficiently small,
as indicated in Fig. 2. This is achieved using both Fcor
and utr as control variables and results in a multivariable
control law.

3. Control Methodology

3.1. Proposed Integrated Impedance Control Structure

The proposed controller structure is illustrated in
Fig. 3. In this variant of an integrated impedance control
(IIC) architecture [26], the MPC is based on models of
both, the test rig dynamics Eq. (1) and the VSE dynam-
ics Eq. (2). Additionally, the controller is given access
to two control signals: the test rig control input utr(k)
and the virtual correction force Fcor(k).

In contrast to a classical cascaded impedance control
scheme (in which the controller only tracks the response
of the VSE by controlling the test rig), the IIC concept
allows predictive lag-free tracking, and the controller’s
access to the VSE excitation via Fcor(k) adds the possi-
bility to control tracking, momentum error, and energy
error simultaneously.

A linear time-varying MPC problem is formulated
to achieve tracking and momentum error control. This
control problem is then augmented by a constraint for-
mulation that results in a reduction of the energy error.

3.2. Linear time-varying MPC formulation for tracking
and momentum conservation

The combined prediction model composed of the
LTI test rig dynamics Eq. (1), the LTV VSE dynam-
ics Eq. (2), and including the momentum error Eq. (7)
reads:

x(k + 1) = A(k)x(k) + B(k)u(k) + E(k)z(k) ,

y(k) = C(k)x(k) =


epos(k)
evel(k)
∆p(k)

 ,

x(k) =


xtr(k)

xvse(k)
∆p(k)

 ,u(k) =

[
utr(k)

Fcor(k)

]
, z(k) = Ftr(k)

(8)

with

A(k) =


Atr 0 0
0 Avse(k) 0
0 0 1

 , B(k) =


Btr 0
0 Bvse(k)
0 Ts

 ,

E(k) =


0

Bvse(k)
0

 , C =

[
Ctr −Cvse 0
0T 0T 1

]
.

(9)

The disturbance z(k) acting via E is the contact force
Ftr(k).

The vector of future control moves is defined as:

U =
[
uT(k) uT(k + 1) . . . uT(k + Nc − 1)

]T
(10)

with the control horizon Nc. This vector is then used
in a quadratic cost function to penalize the upcoming
control moves and control errors,

J(U, x, k) = (11)

=

Np∑

i=1

xT(k + i)Qx(k + i) +

Nc−1∑

i=0

uT(k + i)Ru(k + i)
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where Np and Nc are the prediction and control hori-
zons, respectively. The weighting matrices Q and R
(both symmetric and positive-definite) are used to pe-
nalize the control errors and the input amplitudes, re-
spectively.

To obtain the sequence of optimal future control
moves Eq. (10), the optimization problem

U∗ = arg min
U

J(U, x(k), k) (12)

is solved in each sampling interval. For the un-
constrained optimization problem Eq. (12) a closed-
form analytic solution can be obtained by solving
∂
∂U J(U, x(k), k)

∣∣∣
U∗ = 0 for U∗. However, the resulting

control moves may not be applicable because of test
rig limitations. Linear inequality constraints are incor-
porated, yielding the constrained convex quadratic pro-
gramming problem

U∗ = arg min
U

J(U, x(k), k)

subject to MUU ≤ γu, and
MxX ≤ γx ,

(13)

where MU(k) and Mx(k) are constraint coefficient ma-
trices that together with the right-hand-side vectors γu
and γx allow to formulate linear input, state, and output
inequality constraints with

X =
[
xT(k) xT(k + 1) . . . xT(k + Np − 1)

]T
(14)

denoting the stacked vector of predicted states. These
states can be calculated by knowledge of the current
state vector x(k), the prediction model Eqs. (8)–(9), and
U from Eq. (10). Since it is in general not possible to
obtain a closed-form solution to problems of the form
Eq. (13), iterative solvers have to be used, see Ref. [27]
for a comprehensive review.

3.3. Energy conservation via constraints
Unlike the momentum error (that can be directly con-

sidered in a linear MPC problem), the energy error
Eq. (5) depends nonlinearly on the correction force Fcor.
The incorporation of energy conservation Eq. (5) di-
rectly in the MPC optimization problem (13) would lead
to a quadratic optimization problem with nonlinear con-
straints. This would increase the computational demand
significantly and thus render this option unsuitable for
real-time MPC with high sampling rates. Instead, suit-
able constraints on the correction force are formulated
that lead to a reduction of the energy error Eq. (5):

|∆E(k)| < |∆E(k − 1)| . (15)

The main result allowing energy conservation in the
closed loop is formulated in the following.

Assumption 1. The closed-loop system realized by
Eqs. (12) and (9) is internally asymptotically stable.

Theorem 1. Consider the MPC problem defined in
Eqs. (12) and (9) for which Assumption 1 holds. Then
there exist bounds F−cor(k), F+

cor(k) for the virtual cor-
rection force, F−cor(k) ≤ Fcor(k) ≤ F+

cor(k), so that the
discrete-time energy error ∆E(k) = Etr(k)−Evse(k)→ 0
as k → ∞.

Proof of Theorem 1. By considering Eq. (6) the only
unknown is Fcor(k). All other values can either be mea-
sured or constructed. For example, the VSE contact
point velocity ẋvse(k) is expressed as:

ẋvse(k) =Cvel
vsexvse(k) =

Cvel
vseAvse(k − 1)xvse(k − 1)+

Cvel
vseBvse(k − 1)

(
Ftr(k − 1) + Fcor(k − 1)

)
.

(16)

Now a constant 0 < α < 1 is introduced denoting the
decay rate of the energy error. For the case ∆E(k−1) > 0
the following inequality should be met:

0 ≤ ∆E(k) ≤ α∆E(k − 1) . (17)

Starting from Eq. (17) and using Eq. (6) the bounds

F−cor(k) ≤ Fcor(k) ≤ F+
cor(k) , (18)

can be derived such that Eq. (17) holds. For ẋvse(k) > 0
this leads to the following expressions for the lower and
upper bounds on the correction force Fcor(k):

F−cor(k) =
(1 − α)∆E(k − 1)

ẋvse(k)Ts
+ Ftr(k)

(
ẋtr(k)

ẋvse(k)
− 1

)
,

F+
cor(k) =

∆E(k − 1)
ẋvse(k)Ts

+ Ftr(k)
(

ẋtr(k)
ẋvse(k)

− 1
)
.

(19)

The bounds resulting from the cases ẋvse(k) < 0 or
∆E(k − 1) < 0 are derived analogously, and utilizing
a correction force in the corresponding range leads to a
reduction in energy error.

Corollary 1. The virtual force Fcor(k) can be used by
the proposed MPC via suitable constraints to guarantee
long-term energy conservation ∆E → 0 at the UUT/VSE
interface.
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The magnitude of the correction force necessary to
decrease the energy ∆E(k) may grow to arbitrarily large
values as |ẋvse(k)| → 0, as can readily be seen by in-
specting Eq. (19). A natural extension of Theorem 1
is to introduce a threshold velocity ẋthr

vse > 0 and im-
pose the bounds Eq. (18) on the correction force only if
|ẋvse(k)| > ẋthr

vse. The threshold has to be chosen small
enough so that it is sufficiently often exceeded in order
to guarantee energy error reduction.

Theorem 2. Given an MPC problem Eqs. (12) and (9)
with closed-loop stable test rig and VSE dynamics by
Assumption 1, that is excited by an arbitrary force input
Ftr(k) with limk→∞ Ftr(k) = c, c ∈ R that leads to a
system response such that |ẋvse(k)| < ẋthr

vse ∀k (i.e. the
energy conserving bounds are never activated), then the
resulting energy error Eq. (6) stays bounded.

Proof of Theorem 2. With the system at rest at k = 0:
x(0) = 0 and assuming a step force input Ftr(k) = ϕσ(k)
such that |ẋvse(k)| < ẋthr

vse ∀k holds from the optimization
problem Eq. (12) together with the state-space system
Eq. (9) and the step input size ϕ, the system response
can be computed by usage of a linear state-feedback law
with a gain matrix Kmpc(k) (unconstrained MPC prob-
lem equivalent to a state-feedback law, see [28])

x(k + 1) =
(
A(k) − B(k)Kmpc(k)

)
x(k) + E(k)ϕ . (20)

The state trajectory defined by Eq. (20) is linearly scaled
by the step height ϕ and therefore the system can be ex-
pressed as a discrete-time transfer function G(z), respec-
tively a convolution summation including its weighting
sequence g(k) = Z−1{G(z)}:

x(k) =

k∑

j=0

Ftr( j)g(k − j) =

k∑

j=0

ϕg(k − j) . (21)

From asymptotic stability of the system (including the
summation of Fcor in the last state) the vector-norm of
the weighting sequence approaches zero:

lim
k→∞
‖g(k)‖ = 0 . (22)

The correction force Fcor is then just dependent on ϕ
and can be expressed utilizing the derived weighting se-
quence g(k):

Fcor(k + 1) =
[
0T 1

]
Kmpc(k)x(k) (23)

=
[
0T 1

]
Kmpc(k)

k∑

j=0

g(k − j)ϕ (24)

= K̃mpc(k)ϕ . (25)

K̃mpc(k) is used to obtain the value of the correction
force at time instant k + 1 and because of the asymptotic
closed-loop stability following limits with exponential
decay hold:

lim
k→∞

∥∥∥K̃mpc(k)
∥∥∥ = 0 , (26)

lim
k→∞

ẋvse(k) = 0 , (27)

lim
k→∞

ėvel(k) = 0 , (28)

lim
k→∞

Fcor(k) = 0 . (29)

The energy error Eq. (5) then is:

∆E(k) =

k∑

j=0

[
Ftr( j)ėvel( j) − Fcor( j)ẋvse

]
Ts (30)

< C(ϕ) < ∞ , (31)

where C(ϕ) is a constant only depending on ϕ and not
on k. The inequalities are valid because all summation
terms in Eq. (30) are dependent on ϕ and are exponen-
tially decaying and thus their sum is bounded.

Corollary 2. For any sufficiently small and norm-
bounded persistent excitation Ftr(k), the velocity of the
VSE never exceeds the threshold (|ẋvse(k)| < ẋthr

vse ∀k). In
this case the proposed energy error reduction constraint
is never imposed. However, from a convolution summa-
tion based on the elementary test case in Theorem 2 it
follows that the energy error is Lipschitz-bounded.

3.4. Robustification Heuristics

In HiL experiments on the pantograph test rig it
was observed that ensuring energy conservation through
bounds obtained by Eqs. (18) and (19) occasionally led
to high-frequency oscillations. It was found that the
Fcor values needed for energy error reduction can show
strong oscillations which induce such high-frequency
oscillations in the VSE and subsequently in the test rig.

One way to address these issues is to impose rate con-
straints on Fcor. However, simply imposing constraints
on rate and absolute values on Fcor together with bounds
obtained from energy conservation Eq. (18) may render
the optimization problem Eq. (13) infeasible. There-
fore, a heuristic relaxation technique is devised to en-
sure feasibility and consequently to robustify HiL test-
ing by suppressing unwanted high-frequency oscilla-
tions. The necessary concept is defined as constraint
hierarchy:
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Definition 1. A constraint hierarchy C(A,B) is defined
as

C(A,B) =


A∩ B ifA∩B , {∅}
x ∈ A : d({x},B) = d(A,B) otherwise

(32)
where A,B ⊂ R are nonempty sets, {∅} denotes the
empty set, and the minimum set distance d is defined
as

d(A,B) = min
x,y
|x − y| , x ∈ A , y ∈ B. (33)

It is noted that for interval constraints represented by
A,B, the set C corresponds to that region satisfying
both constraints if possible; otherwise preference is
given to fulfill constraint A, and C(A,B) is that sub-
set ofA having minimal distance to B.

Proposition 1. A specific implementation of the con-
straint hierarchy in Definition 1 is proposed, so that
high-frequency oscillations are significantly reduced
and energy error reduction is still achieved. The user-
defined intervals of the correction force Fcor(k) and its
rate are denoted by Fcor,usr =

[
Fmin

cor,usr, Fmax
cor,usr

]
and

∆Fcor,usr =
[
∆Fmin

cor,usr, ∆Fmax
cor,usr

]
, respectively. The

bounds obtained by Eqs. (18) and (19) in order to de-
crease the energy error are denoted by the set F THM1

cor =[
F−cor(k), F+

cor(k)
]
. To guarantee feasibility of the con-

straints, the following constraint hierarchy on Fcor(k) is
proposed:

A. C1 = C(Fcor,usr,F THM1
cor )

B. C2 = C(Fcor(k − 1) + ∆Fcor,usr,C1)

where the set C2 defines the admissible interval of
Fcor(k).

By implementing the constraint hierarchy concept in
Proposition 1, the MPC optimization problem is guaran-
teed to be feasible and it is assured that no strong, high-
frequency excitation input into the VSE is being gener-
ated. The rate constraints on Fcor are always obeyed.
If feasible, also the absolute value constraints on Fcor
are obeyed. Finally, if also the energy error reduction
constraints retain feasibility, then those are also obeyed.
This technique may deteriorate energy error minimiza-
tion performance, but it retains stability and robustness
in the application.

4. VSE Model: A Railway Catenary System

For the proposed HiL pantograph test rig a dynamic
catenary model of the catenary vertical dynamics is used

pantographcontact wire

mast
carrier wire

dropper

Figure 4: Typical catenary setup

as VSE model. A typical catenary-pantograph setup is
displayed in Fig. 4. Each catenary span is comprised
of a carrier wire attached to two masts. Additionally, a
contact wire is connected to the carrier wire via several
droppers to minimize the static pre-sag. Typically, the
wires are modeled as Euler-Bernoulli beams (EBBs) un-
der axial tension in resting coordinates. The pantograph
contact is then modeled as a force input signal mov-
ing along the catenary and acting on the contact wire
[10]. This approach has the disadvantage that model
size and thus simulation duration have to be chosen a-
priori, which is not suitable for HiL applications. In
Ref. [14] a shifting-scheme of the virtual catenary rep-
resentation to realize a pantograph HiL test rig has been
developed. Thereby the catenary model is periodically
re-initialized. However, this approach suffers from sev-
eral disadvantages:

• model size, since for correct computation at least
three spans were needed,

• increased implementation effort to avoid periodic
shocks due to the shifting procedure.

In this paper the catenary is described in pantograph-
fixed coordinates (“Eulerian description”) and the un-
derlying PDEs are discretized by finite differences as
proposed in Ref. [18]. Additionally, controlled absorb-
ing boundary layers as developed in Ref. [19] were
added to both ends of the computational domain to
absorb outgoing waves (see Fig. 5). The catenary is
assumed periodic in the mast distance (span length),
hence a periodic time-varying model structure is ob-
tained where the masts and droppers travel through the
domain described in pantograph-fixed coordinates.

In this work, dropper slackening is disregarded, so
the catenary model becomes linear. This reduces the
computational demands and allows to pre-compute the
prediction matrices of the MPC. Additionally, in con-
trast to Refs. [10, 18] static effects (static solution, pre-
sag) are omitted within the catenary model, but instead
treated separately as time-varying signal offsets. The
resulting system structure is a linear periodically time-
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ζ̂

Labs L Labs

ζ̂dr,2 ζ̂dr,3 ζ̂dr,Ndr ζ̂dr,1

kdr,2 kdr,3 kdr,Ndr kdr,1

v

absorbing layers

Ftr

Fcor

yvse(t)

Figure 5: Railway catenary system description where one span is
modeled and extended by absorbing layers. In the pantograph-fixed
coordinates, the masts and droppers move through the computational
domain.

varying (LPTV) system which will be derived in the fol-
lowing sections.

4.1. Equations of Motion
The catenary’s dynamics is described by a sys-

tem of coupled axially loaded EBBs in moving (i.e.,
pantograph-fixed) coordinates:

ρAcoẅco + βcoẇco = −EIcow′′′′co + (Tco − ρAcov2)w′′co

. . . + βcovw′co − 2ρAcovẇ′co + fdr(ζ̂, t) + fcontact(ζ̂F, t) ,
(34)

ρAcaẅca + βcaẇca = −EIcaw′′′′ca + (Tca − ρAcav2)w′′ca

. . . + βcavw′ca − 2ρAcavẇ′ca − fdr(ζ̂, t) ,
(35)

ζ̂ ∈ [0, L + 2Labs] , t ∈ R+.

Thereby, the fields w(ζ̂, t) denote the vertical displace-
ments as deviations from the stationary deformation of
the catenary obtained without pantograph contact. They
are functions of time t and the moving spatial coordi-
nate ζ̂ = ζ + vt, with the resting spatial coordinate ζ
and the velocity of the pantograph v. The constant pa-
rameters are the mass per unit length ρA, viscous damp-
ing coefficient β, bending stiffness EI, axial load T , and
span length Lspan. The length of the domain interior is
L, the length of the computational domain is L+2Labs
(see Fig. 5). Additionally, the abbreviations ẇ = ∂w

∂t
and w′ = ∂w

∂ζ̂
have been used. The subscripts co and ca

denote the parameters and displacements of the contact
and carrier wires, respectively. The distributed contact
force between the catenary and pantograph is defined in
moving coordinates as

fcontact(ζ̂, t) = Fvse(t)δε(ζ̂F) , (36)

where δε(ζ̂F) is a finite support membership function
(see Ref. [10]) at the pantograph position ζ̂F (fixed in

the moving spatial coordinate). The coupling by means
of droppers — here modelled as springs with stiffness
kdr, j, j = 1, . . . ,Ndr (see Fig. 5) — is described by the
force distribution

fdr(ζ̂, t) = (37)
Ndr∑

j=1

kdr, j

(
wca(ζ̂dr, j(t), t) − wco(ζ̂dr, j(t), t)

)
δε(ζ̂dr, j(t))

where ζ̂dr, j = ζ̂0
dr, j−vt is the current position and ζ̂0

dr, j the
starting position of the j-th dropper. Thus the droppers
periodically leave and enter the computational domain
(ζ̂dr, j ∈ [0, L+2Labs]). The equations Eqs. (34)–(37) re-
sult in a linear periodically time-varying (LPTV) system
with Fvse(t) being the only exogenous input.

The dynamics of a catenary in a fixed coordinate sys-
tem can be described by Eqs. (34) and (35) when v is set
to 0 m/s and considering that the dropper and mast posi-
tions are now time-invariant, whereas the contact force
position ζF(t) = ζF0+vt now varies as the train is moving
under a fixed catenary system:

ρAcoẅco + βcoẇco = −EIcow′′′′co + Tcow′′co

. . . + fdr(ζ, t) + fcontact(ζF(t), t) , (38)
ρAcaẅca + βcaẇca = −EIcaw′′′′ca + Tcaw′′ca

. . . − fdr(ζ, t) . (39)

4.2. Discretization by Finite Differences

To obtain a real-time catenary model as VSE model,
the system Eqs. (34)–(37) is first discretized using
second-order central differences (see e.g. Ref. [29])
on an equidistant mesh in time and space with suitable
mesh sizes ∆t and ∆ζ̂, respectively. These step sizes
are typically chosen according to requirements on accu-
racy, stability, real-time-capability, and memory limits.
Thereby, the clamped boundary conditions

wca(x = 0, t) = wca(x = L + 2Labs, t) = 0
wco(x = 0, t) = wco(x = L + 2Labs, t) = 0
w′ca(x = 0, t) = w′ca(x = L + 2Labs, t) = 0
w′co(x = 0, t) = w′co(x = L + 2Labs, t) = 0

are assumed (for the deviations from the static solution).
Then, the absorbing layers are implemented accord-

ing to the method described in [19], where a state feed-
back control law is used to calculate forces acting on
each node in the boundary layers so that they mimic the
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behavior of perfectly matched layers and avoid reflec-
tions of outgoing wave packets back into the domain
interior.

Denoting the time index of the ∆t-sampled system by
n (t = n∆t), the implicit LPTV system is obtained as:

A+1 (n) w (n + 1) = A0 (n) w (n) + A−1w (n − 1)

+B(n)Fvse(n) . (40)

Thereby, the collocated localized displacements are de-
fined as

w(n) =
[
wT

ca(n) wT
co(n)

]T
and

wl(n) =
[
wl(0, n∆t),wl(∆ζ, n∆t), . . . ,wl(L, n∆t)

]T
,

with l = {co, ca}. The matrices A+1(n) and A0(n) are
time-varying due the dropper movement and a Crank-
Nicolson-type [30] implicit formulation of the dropper
stiffness terms was utilized to improve stability if high-
stiffness droppers were modeled. Aggregating the states
as

xvse(n) =
[
wT(n) wT(n − 1)

]T

and solving Eq. (40) explicitly for xvse(n + 1), one ob-
tains the discrete-time LPTV system

xvse(n + 1) = Avse(n)xvse(n) + Bvse(n)Fvse(n) , (41)
yvse(n) = Cvsexvse(n) .

The system dynamics in Eq. (41) is sampled with sam-
pling time ∆t. However, to allow for faster computation
several time steps can be aggregated with the input held
constant. If so, an integer down-sampling factor m↓ is
defined with Ts = m↓∆t, m↓ ∈ N and the time steps are
chosen so that, additionally, the system is periodic in an
integer number of samples Nper in either time base:

Nper,∆t =
Lspan

v∆t
∈ N and

Nper,Ts =
Nper,∆t

m↓
=

Lspan

vTs
∈ N .

(42)

To express Eq. (2) in the down-sampled time base Ts,
Eq. (41) is applied m↓ times to express xvse(n + m↓) =

xvse(k + 1) with k = m↓n (see Ref. [31] for the time-
invariant down-sampling; the time-varying case is no-
tably more tedious notationally and omitted here). The
input force is kept constant over the down-sampling du-
ration Fvse(n) = Fvse(n + i) , i = 1 . . .m↓ − 1.

Remark 2. It is noted that the matrices A+1(n), A0(n)
and A−1(n) are sparse matrices, whereas the resulting
matrix Avse(n) is densely populated.

wire ρA β EI T
kg/m kg/s/m N m2 N

contact 1.35 0 150 20 × 103

carrier 1.35 0 150 20 × 103

dropper j 1 2 3 4
ζ̂dr, j in m 5 21.67 38.33 55
kdr, j in N/m 1000 1000 1000 1000

Fstatic Ts ∆ζ ∆t = Ts
m↓

pantograph-
fixed

120 N 1/170 s 1.54 m 1/850 s

catenary-
fixed

120 N 1/68 000 s 0.24 m -

Table 1: Parameters of both catenary models.

In the following section, the down-sampled version
of model Eq. (41) will be compared to a catenary-fixed
reference formulation to show that the described reduc-
tions (absorbing layers and down-sampling) are indeed
suitable to model the main catenary dynamics in a fre-
quency range up to 20 Hz.

4.3. Real-Time Catenary Model Parameters and Basic
Validation

To demonstrate the test rig control concept, in this
work a simplified real-time pantograph-fixed catenary
model is utilized that is briefly validated against a
catenary-fixed reference simulation from Ref. [32]. The
reference model framework fulfills the requirements of
the simulation validation part of EN50318 [33]1. It uti-
lizes a much smaller sampling time and element dis-
cretization and the parameter values and catenary setup
are summarized in Table 1. As a simplified choice,
based on EN50318 [33] both wires’ parameters were
chosen identical. However, the catenary setup can eas-
ily be generalized to arbitrary catenary parameters but
then requires additional tuning of the absorbing layers’
parameters specifically for each wire.
The sampling time of the LPTV catenary model is cho-
sen according to the available computational power and
memory resources of the deployed real-time computer,
see Section 5. The total length of the computational
domain was set to the length of one span L + 2Labs =

Lspan = 60 m. The length of each absorbing layer was
chosen to Labs = 4.62 m.

1The validation in this standard consists of two parts: first by
means of a reference simulation and second by means of measure-
ment data. The first part of the EN50318 could be met, the second part
could not be performed due the lack of suitable measurement data.
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For validation of the reduced LPTV model against the
high-fidelity reference simulation a pantograph based
on the model used in [33] with a reduced contact stiff-
ness and a static uplift force of 120 N is moving with
a speed of 60 m/s. Fig. 6 shows the displacement of
the contact wire at the pantograph’s position of both
models in the time domain and the resulting contact
force in the frequency domain. It can be seen that the
pantograph-fixed model shows less compliance at the
span frequency of 1 Hz, but the relative shape is pre-
served well. Also, the low-frequency content of the
contact force is reproduced well, and higher frequency
contents are attenuated compared to the reference solu-
tion. Especially when compensating the gain error by
correcting the static displacement by a constant factor
the position trajectories are in overall good agreement
(fit of 88.7 %, respectively 75.5 % in the uncompensated
case, both calculated in a normalized mean square error
computation).

4.4. Discussion of the LPTV catenary model
In principle, the reduced real-time catenary model’s

parameter can be arbitrarily chosen as long as the de-
sired model quality is attained. This is valid over a
wide range of possible wire parameters and pantograph
speeds. In this work the choices on the sampling time ∆t
(and especially its down-sampled version Ts) and the to-
tal length L+2Labs were made in close coordination with
system limitations of the real-time computer, see Sec. 5.
The length Labs of the absorbing layer should generally
be chosen only as large as necessary to sufficiently at-
tenuate the reflections of outgoing wave packets back
into the domain.

The observed deviation from the catenary-fixed for-
mulation (visualized in Fig. 6) arises mainly from a
substantially coarser spatial discretization (see bottom
of Table 1) as well as the small computational area
where the absorbing layers even attenuate physical rel-
evant contributions of the pantograph-catenary interac-
tion. Further comparative simulation studies revealed
that increasing the length L enhances model quality sig-
nificantly. Here, the small lengths of L and Labs were
necessary to meet memory requirements of the real-time
hardware. For the same reason the down-sampling to
the slower Ts-time-base was introduced, drastically re-
ducing the amount of matrices needed to describe the
catenary dynamics in Eq. (2).

A significant simplification decision is to disregard
dropper slackening, yielding a linear model and, in
turn, allowing to employ the subsampling procedure
as outlined in Sec. 4.2. Under such aggregation over
time (producing densely populated system matrices in

Eq. (41)), an online re-computation is currently not fea-
sible in real time (which would allow to consider drop-
per slackening). Disregarding dropper slackening is
also assumed to be the main reason of the relatively
small asymmetry of the trajectory of the contact wire’s
displacement at the pantograph position, even for higher
tested speeds.

One alternative approach to consider dropper slack-
ening during computation is utilized in a finite-element
catenary code reviewed in Ref. [34]: there the slack-
ening is considered by right-hand-side correction forces
determined iteratively in each time step. Yet another ap-
proach is to directly perform online adaptations of the
sparse stiffness matrices in each time step, which is cur-
rently under investigation by this work’s authors.

Having mentioned the considered model’s limita-
tions, in turn, the moving-coordinate (pantograph-fixed)
formulation shows the following significant advantages
over a classical formulation:

• 6.25 times fewer states per span for similar fidelity,

• strongly shortened computational domain: For this
setup a 5 s-run of the catenary-fixed formulation
requires a simulation area of 15 spans (900 m)
to avoid reflections versus 1 span (60 m) of the
pantograph-fixed formulation.

• each second simulated takes about 460 s (catenary-
fixed) compared to ≈83 ms of the pantograph-fixed
formulation2.

Taking these facts into account, the proposed coordinate
transform and the use of absorbing layers (see Fig. 5)
lead to a good trade-off between computational effort
and accuracy and is thus well-suited for real-time appli-
cations. Especially the linear time-varying structure of
the real-time model allows to directly employ a high-
fidelity catenary model in an MPC algorithm. This al-
lows to use, for example, a nonlinear finite-elements-
based high-fidelity catenary model as an on-line ref-
erence from whose states the MPC’s linear catenary
model (as shown here) is initialized in each time in-
stance.

5. Experimental Results

In this Section the methods presented so far will be
demonstrated on a real-world pantograph test rig. An

2on a standard PC (Intel i7 3.2 GHz)
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Figure 6: Validation of the catenary model: a) displacement over time (left) and b) the frequency domain representation of the contact force (right)
obtained by a Fast Fourier Transform (FFT).

extended IIC-MPC as described in Section 3 is imple-
mented with energy and momentum conservation capa-
bilities. The VSE is a high-order, linear, periodically
time-varying state-space model of a catenary that repre-
sents a train ride at v = 60 m/s.

5.1. Implementation Details

The test rig depicted in Fig. 1 consists of an indus-
trial robot with an attached linear drive. In this work,
only the latter was actuated because the regular operat-
ing conditions (no tunnel entries) can already be cap-
tured in its operating range. A classic LQR control law
with a sampling rate of 5000 Hz is used as the inner
test rig control loop, where the motor current was the
control variable. The LTI state-space system of the test
rig Eq. (1) as used for the model predictive impedance
control is thus already a controlled subsystem. The sam-
pling rate of the LQR controlled system was chosen as
fast as possible to allow for best possible tracking con-
trol and disturbance rejection. The linear drive positions
as well as the contact force are available as measure-
ments. The MPC as well as the test rig control are
implemented on a dSPACE DS1006 real-time platform
with a 2.8 GHz quad-core processor. Table 2 summa-
rizes MPC implementation details, whereby the weight-
ing matrix Q is calculated as

Q = CTQ̃C . (43)

Low control weights are put on the velocity error when
designing the MPC, so controlling the position and mo-
mentum errors are the main control goals. Furthermore,

1 − α ẋthr
vse Np, Nc

6 × 10−6 0.01 m/s 25

Q̃ R Ts
1 0 0
0 10−4 0
0 0 103



[
1 0
0 50

]
1/170 s

Table 2: MPC parameters

1 − α (the energy error decay factor, see Eq. (17)) is ar-
bitrarily chosen as (1 − α)/Ts = 0.001 corresponding to
a time constant of τ = 1000 s. Its value is chosen so as
not to significantly affect the VSE dynamics at relevant
frequencies. Additionally, a velocity threshold is cho-
sen which deactivates constraints F−cor(k), F+

cor(k) on the
correction force Fcor(k) for |ẋvse(k)| < ẋthr

vse as described
by Theorem 2.

5.2. HiL Results

To demonstrate energy and momentum correcting
properties of the MPC an HiL test run is started with
deactivated energy conservation in the controller (no
bounds on Fcor(k) are imposed, but high input weighting
on Fcor(k), so that almost exclusively the test rig input
utr(k) is utilized for classical impedance tracking).

Due to the neglected dynamics of the pantograph as
the UUT, the limited test rig bandwidth as well as im-
perfections such as noise or uncertainties, a small ve-
locity error emerges and thus an energy error ∆E(k)
accumulates. Then, the MPC correction force con-
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Figure 7: Results of a typical HiL test run demonstrating functional catenary impedance tracking, as well as energy and momentum conservation
between the UUT and the VSE. Subplot a) shows the position trajectories over a large time span with varying pantograph uplift force, demonstrating
the method’s robustness. Subplot b) shows a zoomed view of the trajectories and c) the corresponding position error in percent. Subplot d) shows
the contact, respectively the correction force and e) shows that the momentum error stays bounded while the energy error between the UUT and
the VSE is decreasing.

straints are globally activated, except for small veloci-
ties: |ẋvse(k)| < ẋthr

vse (see Theorem 2). The results from
this time instant on are displayed in Fig. 7. The first row
of Fig. 7 shows the impedance tracking behavior. The
main task of impedance control, namely tracking the
VSE’s dynamic behavior by the test rig is excellently
achieved: high position tracking performance with no
phase-lag even under high dynamic movements can be
observed in Fig. 7b, which shows a detailed view of the
position trajectories of the test rig respectively the VSE
from Fig. 7a. Fig. 7c depicts the corresponding normal-
ized tracking error.

To demonstrate the method’s robustness in terms of
altered UUT dynamics, the pantograph’s contact force
is varied in the range of 130 N to 220 N by changing the
pantograph’s bellow pressure, as visualized in Fig. 7d.
There it is also demonstrated that only modest control
action on Fcor is applied at the catenary. Additionally,
the momentum error shown in Fig. 7e introduced by the
artificial correction force stays bounded (its integral was
not part of the control goal and thus a nonzero steady-
state error remains). The energy error Eq. (5) is visual-
ized in Fig. 7f, and for the first 600 s it is continuously
decreasing. In contrast to Theorem 1, however, the en-
ergy error is not strictly monotonically decreasing be-
cause of the threshold on the VSE’s velocity, as well as
the constraint hierarchy described in Section 3.4. The
energy error decays faster than the chosen time constant
of τ =1000 s, which has been defined as an upper bound

in Eq. (17). For times t > 600 s, a residual energy error
remains and no further reduction is possible by the pro-
posed test rig controller with the current settings. Not-
ing that in Eq. (19) the magnitude of the correction force
is scaled by the magnitude of the energy error, the au-
thors attribute the nonzero energy error to the fact that
the energy error reduction (via Fcor) is outweighed by
the energy errors generated by model errors and imper-
fections. To investigate this phenomenon further, the
MPC constraint hierarchy is considered. To do so, the
energy error is split into two parts:

∆E(k) = ∆EON(k) + ∆EOFF(k) , (44)

where at each sampling interval only one of these el-
ements contributes (is non-zero). The term ∆EON(k)
sums up all changes in the energy error when bounds
obtained via Eq. (19) were active on Fcor(k), i.e. energy
error minimization was active. In contrary, if the thresh-
old velocity was not exceeded (|ẋvse(k)| < ẋthr

vse) or the
constraint hierarchy prevented the use of energy con-
serving constraints on Fcor(k), the change in the energy
error was summed up in ∆EOFF(k). These accumulated
energy error contributions ∆EON(k) and ∆EOFF(k) are
defined as

∆EON(k) =
∑

k

εON(k) and ∆EOFF(k) =
∑

k

εOFF(k) ,

(45)
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with

εON(k) =


∆E(k) − ∆E(k − 1) Eq. (19) acti-

vated
0 else

(46)

and

εOFF(k) =


∆E(k) − ∆E(k − 1) Eq. (19) deacti-

vated
0 else .

(47)

Fig. 8 shows the computed accumulated errors
∆EOFF(k) and ∆EON(k) with dashed lines. Furthermore
∆E(k) and a zoomed segment of ∆E(k) where sequences
with activated (black) and deactivated (gray) constraints
are shown.

These results show, based on the accumulated error,
that the energy error is increasing when the constraints
are deactivated and is decreasing when the constraints
are activated.

The proposed heuristics enables a robust implementa-
tion of high-dynamic test rig control that keeps momen-
tum and energy errors small despite model imperfec-
tions and disturbances, while at the same time achieving
excellent impedance tracking performance.

Remark 3. As a final remark, considering the energy
error in the control concept is seen to strongly improve
the stability of the coupled system. Coupling the system
to a moderately stiff environment (here, by simulating a
contacted linear pantograph dynamics) and with typi-
cal model errors present, simulation studies show that
considering the energy conservation allows safe opera-
tion at significantly higher model errors. In turn, if en-
ergy errors were ignored by the controller, destabiliza-
tion at high frequencies quickly emerged. This typical
result demonstrates the robustifying effect of consider-
ing and controlling energy errors in the impedance con-
troller. It is finally noted that the stabilizing passivity-
based schemes in haptic interaction control (such as the
energy-bounding algorithm [21]) are closely related to
the concept of energy conservation via control.

6. Conclusions

To obtain physically trustworthy results from an HiL
test run, the UUT/VSE coupling has to be tracked ac-
curately, and moreover the physical conservation laws
(energy and momentum) have to be made consistent at
the UUT/VSE interface. A model-predictive impedance
control concept has been proposed that realizes these

control tasks for high-dynamic railway catenary emu-
lation in a pantograph current collector test rig. The
distributed-parameter virtual catenary dynamics is real-
ized by a high-order time-varying state space descrip-
tion based on a finite difference approximation of the
model equations and integrated into the MPC. Specif-
ically, a novel moving-coordinate (pantograph-fixed)
Eulerian catenary description combined with absorbing
boundaries of the computational domain yield a real-
time-capable model with high fidelity.

In order to balance and control momentum and en-
ergy errors at the interface simultaneously, the MPC
controls both the test rig input as well as the VSE ex-
citation force. Its predictive structure allows to attain
lag-free tracking and thus to realize a high-quality inter-
face, which additionally is consistent in the long run in
terms of conserved quantities.

Experimental results on the full-scale test rig in
contact with a real pantograph validate the proposed
method and show the high tracking performance and the
conservation properties of the control concept. This al-
lows highly realistic HiL testing of pantographs in vir-
tual test rides on high-speed tracks. Ongoing research
work aims at realizing alternative, finite-element-based
realtime catenary models to significantly alleviate cur-
rent computational and memory requirements and fur-
ther improve HiL testing fidelity.
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