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Corrigendum to the dissertation 

“Systematic Evaluation of Data, System Structure and Information Content in Material Flow Analysis” 

submitted by Oliver Schwab at TU Wien, Vienna, 2016 

 

The author discovered five flaws, which are listed and corrected in the following. 

 

 

1. In Eq. 11 (page 39), the indexation of the sums is inconsistent. Eq. 11 should be, with  i={1,…, nF},    

𝑆 = − ∑ 𝐹𝑖
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1

𝑛𝐹

 

 

2. There is a typo in Eq. 12 (page 41), where it says that the denominator of the fractions is ∑ 𝐹𝑖𝑖 . This 

should be ∑ 𝐼𝐷𝐹𝑖
𝑛𝐹
𝑖=1 . (1) holds also for Eq. 12, which should be 
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3. There is a typo in Eq. 13 (page 42). Instead of the logarithm of  
𝐼𝐷𝐹𝑖,𝑏

∑ 𝑋𝐹𝑖,𝑏𝑖
, it should be the logarithm of 

𝐼𝐷𝐹𝑖

∑ 𝐼𝐷𝐹𝑖
𝑛𝐹
𝑖=1

. (1) also holds for Eq. 13, which should be 
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𝑋𝐹𝑖,𝑏𝑛𝐹
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4. Remark to Table 6 (page 44) and the associated text: There is one more complex group of topologies 

than the one illustrated in example D. In this group of topologies, every process connects also to 

itself. Such a topology with nP processes has nF,max=nP² flows and it is C=S and T=0. 

 

5. In Figure 20 (page 51), the data attribute “producer type” is plotted. Correctly, as it says in the 

caption, the data attribute “origination category” should be plotted, as illustrated below.  
 

 

Figure 20: Origination category of data elements. 
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I 

 

Abstract 

 

Material Flow Analysis (MFA) is a useful method for modeling, understanding and optimizing 

material flow systems. MFAs incorporate databases of increasing size and quality and reveal more 

and more details about material flows into, within and out of given systems. As a consequence, 

MFAs are of increasing size and system structures are of increasing complexity. Due to differences in 

data quality, it is not always clear how reliable MFA results are. 

 

In this thesis, uncertainty and complexity in MFA are approached from a system-theoretical 

perspective and formalized as measures for characterizing and distinguishing material flow systems 

by their information content and system structure. MFAs are, in a graph-theoretical sense, understood 

as networks. The information content and system structure of these networks are described by 

formally linked metrics derived from the field of theoretical ecology. The structure of a system is 

computed according to the configuration of each individual flow in relation to its neighboring flows. 

Integrating measures for data quality, the uncertainty of quantitative MFAs before and after 

balancing is determined and the information content of material flow systems is quantified. As the 

applicability of statistical measures for the evaluation of data quality is typically limited in MFA, it is 

proposed to approximate data quality by means of multi-dimensional functions of MFA data 

attributes. Data attributes are data-associated annotations concerning statistical properties, meaning, 

origination and application of the data. These data attributes are systematically documented and 

evaluated in a data characterization matrix, which forms the basis for automated estimation of data 

quality and subsequent quantification of information content. 

 

Exemplarily, four material flow systems (phosphorus, palladium, plastics and aluminum) are 

analyzed, compared and distinguished in terms of their information content and system structure. The 

proposed procedures are useful for gauging the information content of MFAs and for analyzing their 

system structure by means of quantitative measures. They contribute to a better understanding of the 

informational basis of material flow systems. They enable material flow systems to be compared to 

one another and changes in the information content of material flow systems over time to be tracked. 

The proposed measures support the design of MFA systems, optimized use of available information, 

communication of MFA results, and decision making in scientific and institutional contexts in light 

of limited information. 

 

 



  

 

II 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

III 

 

Preface and author’s contribution 

 

Soon after I became part of the team at TU Wien in 2013, Professor Helmut Rechberger raised a 

question that should not leave me alone for more than the following three years: “It would be 

interesting to know the information content of MFAs”. He annotated that this may be a rather abstract 

research object. While intuitively agreeing on this annotation, I started framing “information” as an 

object of research within the general context of MFA. Thankfully, the Austrian Federal Ministry of 

Science, Research and Economy provided funding for this attempt in the course of a project series 

called EDNA (Ermittlung des Datenbedarfs für Nationale Rohstoffbilanzen (Investigation of the data 

requirements of national resource budgets)).  

 

Before long, I noticed that some MFAs are based on extensive, credible databases and others lack 

reliable model input information. This initial difference seemed to get lost during preparation of the 

MFAs and did not always reflect in MFA results. A measure of information content in MFA could 

help crack this shortcoming. Nonetheless, the question remained abstract and it was not clear what a 

sound solution could look like. 

 

The task to develop a context-specific understanding of phenomena such as “information”, “data 

quality” and “uncertainty”, which typically are devoid of general and clear definitions, was 

accompanied by the incentive to formally approximate quantitative metrics for objects that lack 

statistical information. The multifacetedness of the research required including concepts from a wide 

range of research fields. Great colleagues at TU Wien provided important reflections and impulses at 

critical points of this study and helped to open my eyes for neighboring scientific disciplines. As we 

will see later, ideas from information sciences all the way to theoretical ecology find their place 

within the proposed concept and a useful metric for system structure is formally related to the 

information content measure. 

 

The result of this effort is put together in this thesis. It builds upon three journal articles: 

 

Schwab, O., O. Zoboli, and H. Rechberger. 2016. A Data Characterization 

Framework for Material Flow Analysis. Journal of Industrial Ecology. 

Schwab, O., D. Laner, and H. Rechberger. 2016. Quantitative evaluation of data 

quality in regional Material Flow Analysis. Journal of Industrial Ecology. 
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Schwab, O. and H. Rechberger. Information Content, Complexity and Uncertainty 

in Material Flow Analysis. Journal of Industrial Ecology. Under revision. 

I primarily contributed to the three articles. This includes conceptualization and formalization of the 

methodology, analysis of the case studies, contextualization and discussion of the research, and 

preparation of the articles. Helmut Rechberger provided impulses to all three articles, Ottavia Zoboli 

contributed to the case study of the first article, and David Laner contributed to the mathematical 

procedures and the case study presented in the second article.  

 

An MFA-specific approach to information is presented in Chapter 2. It is organized according to the 

three articles listed above and provided in appendix 8, including identical text blocks, tables, figures 

and appendences. Applications of the proposed methodology to regional MFAs are presented in 

chapter 3. Beforehand, general perspectives on MFA, uncertainty and information are provided in 

Chapter 1. 

 

Being aware that the topic addressed in this thesis yields the potential for virtually endless debate and 

refinement, I hope the reader finds the solution proposed here interesting to follow and also useful to 

apply.  
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1 Introduction 

1.1 Material Flow Analysis and regional metabolism 

Ecology has a long tradition in describing material flows in ecosystems, such as nutrient flows in 

food webs or carbon flows spanning biological and physical environments (“carbon cycle”), as 

consequences of natural processes. With increasing mobilization, transformation and use of materials 

by societies, the influence of anthropogenic activities as drivers of material flow systems increases 

(Klee and Graedel 2004; Baccini and Brunner 2012). Growing awareness of the limits to growth, of 

resource depletion and of environmental degradation are advancing a field of research concerned 

with understanding the flows of materials within systems that span natural and anthropogenic 

environments. This field of research is referred to, for example, as metabolism of cities (Wolman 

1965), industrial metabolism (Ayres 1994), metabolism of the anthroposphere (Baccini and Brunner 

1991) or society’s metabolism (Fischer-Kowalski 1998). Essentially, it refers to the idea of 

approaching industrial systems as if they were ecological systems (Frosch and Gallopoulos 1989), 

which is today a central concern of the field of Industrial Ecology (Graedel 1996).  

 

Within Industrial Ecology, Material Flow Analysis (MFA) is a widely applied analytical tool for 

modeling, understanding and optimizing material flow systems by comprehensive investigation of 

material flows into, within and out of a given system. MFAs include sets of processes, which are 

defined as transformations, relocations or storages of materials. These processes are, according to the 

specifications made by an MFA modeler, connected via flows. A process that stores a material 

includes a so-called material stock, which may increase or decrease over time, depending on the 

balance of all input and output flows of the respective process. MFAs provide useful information on 

metabolic systems that span natural, technological and economic environments. Procedures for 

preparation of MFAs and for representation of MFA results have been largely harmonized (Baccini 

and Bader 1996; Brunner and Rechberger 2004; ASI 2005) and material flow studies today are of 

increasing size and level of detail (see, among many others, Reck et al. (2010), Liu and Müller 

(2013), Nakajima et al. (2013), Habib et al. (2014)). MFAs of various scopes and materials have 

proven useful not only in scientific discourse but also in decision making in policy and industrial 

contexts (see, for example, Vadenbo et al. (2014), Trinkel et al. (2015), Zoboli et al. (2016), Hofko et 

al. (2016)).  
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A typical goal of an MFA is to understand the metabolism of a specific material within a region, such 

as a nation, by means of detailed analysis of the supply, consumption and disposal of this material 

within a defined time interval, usually one calendar year (see, for example, Egle et al. (2014), Bonnin 

et al. (2013), Figure 1). 

 

Figure 1: A generic national material flow system including import and export flows, and flows between 

primary production, manufacturing, use and waste management. Arrows represent flows, boxes represent 

processes and the broken line represents the system boundary. In the system illustrated, the process “use” 

includes a stock. More detailed MFAs may contain diversified sets of flows and processes. 

 

A national material flow system usually covers not only imports and exports of an economy, but 

includes also more specific information on material flows within the economy. National MFAs are 

investigated in more detail later in this thesis (for an example, see Figure 4 on page 15).  The 

structure and level of detail of national material flow systems depend mainly on the goal of the MFA, 

on author choices and on the available data basis (Klinglmair et al. (2016)). Frequently, however, the 

information available for description of material flow systems is considerably limited and, as a 

consequence, data uncertainty considerations become increasingly relevant. 

 

1.2 Uncertainty 

Uncertainty in science may relate to context definition, model structure, model inputs, parameter 

values, and others (Walker et al. 2003). As a general concept, it is proposed to distinguish epistemic 

uncertainty and aleatory (also stochastic, or natural) uncertainty (Morgan et al. 1992). Epistemic 

uncertainty is understood as uncertainty due to limited or imperfect knowledge, which could be 

reduced by further investigation. Aleatory uncertainty is understood as uncertainty due to natural 
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variations or randomness, and it cannot be reduced. While epistemic uncertainty relates to knowledge 

shortcomings, aleatory uncertainty refers to the impossibility of reducing certain entities (or objects, 

phenomena) to simple empirical quantities such as one precise value. In that sense, variability is an 

intrinsic property of any entity that has more than one realization. It is thus also an intrinsic part of a 

complete piece of information. Not knowing about the extent of variability, in return, is a knowledge 

shortcoming and thus epistemic uncertainty.  

 

An uncertainty type of central interest in this work is data uncertainty. Ideally, data uncertainty can 

be understood as a problem of variability and can, if sufficiently large datasets are given, be 

quantified by statistical methods. These possibilities may, however, be limited as given data may not 

always be sufficient for proper application of statistical methods. Moreover, data uncertainty is not 

always a unidimensional phenomenon but may also, in addition to variability, include elements of 

epistemic uncertainty such as disagreement, linguistic imprecision, systematic error or subjective 

judgement, and others (Morgan et al. 1992). Recognizing the subjective element in uncertainty, it can 

be regarded as relating to the degree of confidence an agent has in certain outcomes or probabilities 

(Refsgaard et al. 2007). In the course of this thesis, uncertainty in MFA is identified as a 

phenomenon depending on data quality, where data quality is understood as a multidimensional and 

partially subjective phenomenon, defined as the degree of belief an agent has in given data being true 

in a particular context. Understanding uncertainty as to refer to imperfect or missing information, 

uncertainty is formalized as the counterpart of information later in this thesis (paragraph 2.3).  

 

1.3 Information 

Scientific activity has always been undertaken with the aim of revealing or creating information, be it 

by observing and describing phenomena such as nature in its immediate surroundings, the relation of 

objects in space or the behavior of individuals, among many others. Plato probably presented the first 

comprehensive work on the phenomenon “information” in his “Theory of Forms”, where he 

correlated concepts such as observation, knowledge, memory and idea and established the 

terminological ground of information as knowing the form or structure of an object (Adriaans 2013). 

Since then, an ever increasing body of information has been formed by the sciences. Today’s 

possibilities to observe phenomena, to manipulate data and to multiply information are as manifold 

as never before. Concurrently, the number of concepts on information has increased: Popular 

concepts define information as a process (Capurro and Hjørland 2003), as a quantity (Fisher 1925; 
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Shannon 1948; von Neumann 1955; Kolmogorov 1968) or as a state (Hintikka 1973). A generic 

philosophical approach to information was formulated by Floridi (2013), who says that “information 

is data with meaning”. This approach is revisited later in this thesis (paragraph 2.1). 

 

One of the most widely applied formal concepts of information is information theory, as coined by 

Shannon (1948). Here, information can be understood as opposed to uncertainty, in that additional 

information reduces uncertainty, and vice versa. In mathematical resemblance to the thermodynamic 

concept of entropy (Clausius 1867; Boltzmann 1872), Shannon formalized information entropy as the 

expected value of the information contained in a message. Information entropy is a quantity referring 

to unpredictability or uncertainty in an event or a set of events. Information theory is the central basis 

of a concept from theoretical ecology on which the approach proposed in paragraph 2.3 expands. 

 

While information theory provides useful approaches to technical aspects of information (such as 

communication and transmission), it is limited regarding the semantic content of information, that is, 

its meaning.  Shannon and Weaver (1963) ask “How precisely do the transmitted symbols convey the 

desired meaning?” and referred to this “semantic problem of information” as being relatively more 

intricate than the sheer engineering aspects. Indeed, the meaning of any piece of information depends 

on the understanding of the agent processing this piece of information, and thus information always 

has a subjective element (Arndt 2004). Moreover, statistical analysis of data may contain subjective 

elements (Berger and Berry 1988). De Finetti (1974) argues in his “Theory of Probability” that there 

are only subjective probabilities, where probability is “the degree of belief in the occurrence of an 

event attributed by a given person at a given instant and with a given set of information”. In addition 

to subjectivity, problems of unclear semantics have been observed as a key limitation for making 

good use of data (Madnick and Zhu 2006). It appears that “information” depends, similar to 

probability in the conception of de Finetti, also on perspective, semantics and context. These 

perceptions of information are revisited later in this thesis (paragraph 2.2). 

 

1.4 Material Flow Analysis, information and uncertainty 

Although studies of material flow systems can provide information, they also depend on information 

in their production process, and a lack of useful information can be a limiting factor to the level of 

detail provided in an analysis. More than that, the results are typically inherently limited in terms of 

accuracy and, thus, in their reliability in subsequent decision-making processes (Graedel et al. 2004; 
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Chen and Graedel 2012). Despite the importance of data quality for the validity of results, it is not 

always clear how data shortcomings are reflected in MFA results (Chen and Graedel 2012). Clearly, 

if MFA is seen as a way of compiling data to create information about material stocks and flows and 

to aggregate this information to create knowledge about material flow systems, the quality of its 

fundamental components, data, is substantial. Recognizing the shortcomings of MFA data in 

combination with the variety of sources and the various ways collected data are applied in the 

analysis process furthers appreciation of the fact that the databases of studies are not always 

comprehensible for agents other than the producer. Essentially, there is no collective understanding 

about what data or, more generally, information in MFA is and how it can be characterized. 

 

MFAs are often based on cross-disciplinary, highly heterogenic data. These data may have different 

formats and qualities and come from heterogeneous sources, such as official trade statistics, scientific 

literature, consumer behavior studies and expert estimates. In many cases, MFA data are not based on 

empirically well-founded datasets, but on isolated values which are not always provided in consistent 

formats. In some cases, extensive statistical data, such as lab data on substance concentrations, might 

be available, but analysts usually have to cope with isolated values. Consequently, statistical methods 

of data uncertainty evaluation are often inadequate in MFA practice (Hedbrant and Sörme 2001). 

Additionally, relevant data may be confidential, lost, highly aggregated, or outdated, or real-world 

phenomena may be too complex to be directly measured and information must be derived in other, 

indirect ways. Furthermore, the background of data is not always transparent because of missing 

meta-information. Data may be inaccurate due to measurement and collection errors, be biased by the 

interests of data producers, or be unrepresentative and incomplete (see Table 1). Data quality 

shortcomings have, besides model uncertainty (uncertainties due to simplifications and assumptions 

in model design), been identified as major sources of uncertainties in environmental modeling 

(Björklund 2002), also in MFA (Danius 2001). Since established scientific methods are often limited 

when it comes to uncertainties, alternatives to traditional problem-solving strategies are required 

(Funtowicz and Ravetz 1993). This motivates also the application of non-traditional strategies for 

dealing with uncertainty in environmental analysis and assessment methods (Heijungs and Huijbregts 

2004). 

 

The evaluation of data quality and the treatment of data uncertainty have been addressed in different 

areas that model environmental systems (Refsgaard et al. 2007). In Industrial Ecology, established 

statistical procedures such as stochastic modeling and scenario modeling are often applied for the 
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treatment of uncertainties, for example in input-output models (Lenzen et al. 2010), in Life Cycle 

Assessment (Lloyd and Ries 2007) and in MFA (Gottschalk et al. 2010). Often, these approaches 

require more information than is actually available as data are typically given in the form of 

individual, isolated values and not in the form of statistically exploitable datasets. This holds 

especially for MFAs such as the case studies presented later in this thesis, where data uncertainty 

relates to knowledge shortcomings (“epistemic uncertainty”, Laner et al. (2014)). Consequently, even 

though there are methods for treatment of known data uncertainties in MFA (see, for example, Kopec 

et al. (2015) and Cencic (2016a)), means for actual characterization and representation of data 

uncertainty in the absence of statistical evidence are limited. 

Table 1: Perspectives on MFA data and requirements of MFA data quality (collected from MFA modelers at 

TU Wien in an internal workshop in December 2014) 

Requirement Description Complement 

The data exist. The data have been collected personally or by another 

agent. 

non-existence 

The data are available. Data collected by another agent are provided or 

communicated. 

non-

availability 

The meaning of data is clearly 

defined. 

The entity and the respective data about it are precisely 

defined, unambiguous in its meaning and linguistically 

precise (“semantic precision”). 

ambiguity 

Data is provided at a sufficient 

level of detail. 

Available data are detailed enough, i.e. the resolution of the 

data is high enough for the desired context. 

high 

aggregation 

Data for a model are complete. There are enough (consistent) data to exactly determine or 

over-determine and thus to balance the system. 

incompleteness 

Data on an (extensive) entity 

are complete. 

Extensive (system-size dependent) entities are the result of 

a summing process and are complete when all required 

components are considered in this process.  

fragmented 

data 

Data on an (intensive) entity are 

representative. 

The data at hand are representative for the entity studied, 

i.e. the number of samples is adequate to specify the entity 

studied. This also relates to “completeness”. 

unrepre-

sentativeness 

The data fit the system 

boundaries and the context. 

The applied data are within the temporal and spatial system 

boundary, and describe the entity of interest. 

inadequacy 

The data producer is known and 

reliable. 

The source of the data is known and considered reliable. unreliability of 

producer 

It is known how the data were 

created. 

The formation process of the data is transparent and can be 

reproduced. 

unknown 

origination 

Data can be cross-checked. Data can be compared to semantically similar data from an 

independent reference and thus be verified. 

non-

verifiability 

Meta-information is sufficient 

for data quality evaluation.  

The provided meta-information about the data is sufficient 

for data quality evaluation. 

non-

transparency 

Information on uncertainty is 

provided.  

Quantitative information on data uncertainty is available. no information 

on uncertainty 

 

As alternatives to author judgements or expert estimates of uncertainties (as, for example, performed 

in Graedel et al. (2004), Huang et al. (2007) and Ott and Rechberger (2012)), more systematic and 
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transparent approaches have been proposed. In a concept of Hedbrant and Sörme (2001), MFA data 

are assigned to five uncertainty levels according to their origin, and this classification is then 

translated to uncertainty ranges. Expanding on that idea and integrating elements of the LCA-specific 

data quality concept of Weidema and Wesnæs (1996), Laner et al. (2015b) propose a concept in 

which data uncertainty ranges are formalized as functions of five data quality indicators.   

 

Material flow modelers often choose to represent data uncertainty by means of uncertainty ranges, 

also because these can be treated in established frameworks. If no information on statistical 

variability is provided, however, the idea behind uncertainty ranges is to express the degree of belief 

an agent has in given data to be true, although it may be difficult to specify uncertainty ranges in the 

absence of empirical evidence. As a consequence, besides the choice of distribution geometries, the 

specification of uncertainty ranges will probably be arbitrary: Why is an uncertainty range of ± 20% 

for quantity X assumed and not a range of ± 30%? Is ± 100% a natural upper limit, or is that often 

rather chosen because of mathematical convenience and the physical constraint that the lower bound 

of a quantity is zero? The question remains whether it is useful to quantify the unquantifiable, that is, 

to provide quantitative uncertainty ranges when these are actually unknown, also because this 

conveys the unjustified impression of empirical evidence. With the incentive to avoid the use of 

uncertainty ranges but to still allow for both relative and absolute comparisons, in this thesis, 

uncertainty is regarded as a system property of MFAs which involve imperfect information. As 

formalized later in this thesis, the potential uncertainty of a system increases with its size (its number 

of flows) and it decreases when more and better data are incorporated.  Approaching uncertainty as 

the counterpart of information (see paragraph 1.2), the information content of an MFA increases 

when the system uncertainty decreases, and vice versa (see paragraph 2.3). 

 

1.5 Objectives 

As elaborated by Klinglmair et al. (2016), the reliability of MFA results and their system structure 

often depend on probably subjective choices, limited information, and the structure of available data. 

Comparisons of material flow systems regarding the reliability of their results and their system 

structures are, however, restricted to mainly qualitative considerations. To provide a quantitative 

basis for future evaluations and comparisons of MFA systems is the aim of this study. In this thesis, a 

data characterization framework for MFA is proposed. A formal procedure for the estimation of data 

quality based on data characteristics is presented, and a system-theoretical approach to quantitative 
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evaluation of system uncertainty, information content and system structure in MFA is proposed. 

Although this thesis focuses mainly on the role of quantitative information (data) in MFA, qualitative 

information necessary for composing qualitative MFA models is also an element of the system-

theoretical approach. The thesis culminates with a set of procedures and metrics useful for evaluating 

and comparing the databases of MFAs, their data qualities, and their information contents and system 

structures. The usefulness of these measures is illustrated in four case studies (phosphorus, 

palladium, plastics and aluminum). Parts of these case studies are used to exemplify the procedures 

and measures elaborated in the following methodological chapter. 

 

2 Methodology 

With the aim of providing a quantitative basis for evaluation and comparison of MFA systems, a 

methodology consisting of four steps is proposed in this chapter (Figure 2). 

 

Figure 2: Outline of the four linked methodological steps presented in this chapter. The first two steps (data 

characterization and data quality evaluation) are prerequisites of the third step (quantification of information 

content). The third and the forth step (quantification of information content and quantitative description of 

system structure) are computed in a network-analytical framework adapted from the field of theoretical 

ecology. Outcomes of the proposed methodology are a comprehensive documentation of MFA meta-data and a 

set of absolute measures for the information content and the system structure of material flow systems. 

 

A framework for characterization of MFA data is presented in paragraph 2.1, a formal procedure for 

evaluation of data quality is presented in paragraph 2.2 and a procedure for the quantitative 

evaluation of information content and system structure of material flow systems is presented in 

paragraph 2.3. A focus of the presented methodology is on flows, that is, on their contribution to the 

information content of and their role in the structure of MFA systems. 
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2.1 MFA data characterization  

In this paragraph, a framework for consistent description and characterization of a priori MFA data 

(before application in a model) is presented. This is the basis for analysis of an MFA study’s database 

structure, and for data quality evaluation. The proposed procedure is illustrated by application to a 

regional MFA of phosphorus. The benefits and shortcomings for MFA practice are discussed.  The 

core of this framework is a data characterization matrix (DCM) which facilitates the systematic 

documentation and characterization of MFA data. Before the DCM is introduced, central terms are 

defined. 

2.1.1 Terminology 

This terminology is to provide a conception of data and information in MFA as a basis for precise 

communication within and beyond the research community, and to contribute to a common 

understanding of quantitative information in MFA. The terminology is the foundation of the data 

characterization framework. 

2.1.1.1 MFA system elements 

MFA system elements are the components of material flow systems, i.e., “flows”, “processes”, 

“stocks”, and “materials” (Brunner and Rechberger 2004). “Flows” are specified as mass per time, 

processes as dimensionless transfer coefficients, and “stocks” as mass. “Material” is an umbrella 

term for goods and substances. Each system element is assigned a specific number as an identifier, 

i.e., a flow or process number. Cross-boundary flows (flows that leave or enter the system) are called 

imports and exports, and flows within the system (between processes) are called internal flows. One 

or more related processes and associated flows can be referred to as “sectors”, such as “industry and 

trade sector” or “consumption sector”. Designating sectors can improve the comprehensibility and 

ease of communication about material flow systems. It also enables comparing systems that differ in 

their overall composition of processes but consist of similar sectors. 

2.1.1.2 Entity, data element and attribute 

An entity is a real-world phenomenon or real-world object, and its realizations are represented as 

data. If data in MFA are considered quantitative information, data are representations of entities as 

numeric values (see Floridi (2013)). That is, an entity can be represented by a data element (isolated 

value, interval or dataset). The number of a study’s data elements can be larger than the number of 

entities as more than one reference could be available for quantification of an entity (for example 
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three independent references on a phosphorus concentration of an agricultural good, that is, three data 

elements on one entity). The total of all data elements per entity is referred to as information element. 

MFA data attributes are data-associated annotations concerning statistical properties, meaning, 

origination and application of the data. Attributes can be designated as the “characteristics of data” 

(Wang et al. 1995) and specify a data element, the relation to the entity it represents, its origination 

and formation process and its relation to the application context.  

2.1.1.3 Information level   

Four levels of information in MFA can be distinguished (Figure 3). The first information level is 

“data element”, as described above, and a data element plus meaning forms “information” (Floridi 

2013). “Information background” represents the origination and forming process of the piece of 

information. Placed in context, it forms “MFA information”.  

 

Figure 3: MFA information is information in MFA context: A data element plus meaning forms information, 

this information has a background and in the context of an MFA study it forms MFA information. 

 

For example, the entity “aluminum content of a beverage can” is to be specified for an MFA study. 

The datum is, say, “95”. This forms information, with its meaning “aluminum content of a standard 

beverage can in central Europe in 2010, in %”. The “information background” is, for example, that it 

has been measured by an academic research group by x-ray analysis, but the specific observation 

method and the number of samples are unknown. It forms “MFA information” when applied in an 

MFA study as a material specification for a designated flow or stock. MFA information can be 

described by sets of attributes that are arranged according to the four distinct information levels, as 

proposed in the below introduced data characterization matrix. 
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2.1.1.4 Data semantics 

Semantics refers to the “intrinsic meaning” of a piece of information, and data that is meaningful and 

truthful can become information (Floridi 2013). For example, the data at hand may describe the 

“phosphorus content of national annual crop production in 1990”. This specification of the datas’ 

meaning lacks semantic precision, as the notion of “crop” is ambiguous. It is not known whether it 

refers to food crops, to cereals, or also to energy crops and industrial crops. Data semantics can also 

change over time (Madnick and Zhu 2006), such as when the variety of cultivated crops changes. 

Unclear data semantics can lead to data misinterpretation and, consequently, to drawbacks in data 

quality. 

2.1.1.5 System relation and system adequacy 

System relation refers to the sphere that determines the data (such as market processes, technological 

state-of-the-art, biosphere) and the variability of a datum over time, space and other potential 

relations. Other relations can be, among others, technology (for example productivity rates can differ 

between production plants) or reference units (such as data that refer to fiscal years instead of 

calendar years). MFA data should be adequate for the studied system with respect to time, space and 

potential further relation. For example, data from a neighboring country might be temporally 

adequate but spatially inadequate, or might be inadequate as they describe a different technical 

process (further relation).  

2.1.1.6 Autonomy and application of data 

Data that can be directly introduced in a model for the description of system elements are referred to 

as to be autonomous in their application. Often, there are no ready-to-apply autonomous data 

available for the description of MFA system elements. These need to be instead quantified by the 

combination of several non-autonomous data elements. Data elements can be applied in an MFA 

study as one of the typical application types (flow, flux, stock, transfer coefficient and material). 

Other data elements such as areas and numbers are summarized as precursors. For example, readily 

applicable data of mineral phosphorus fertilizer use from consumption statistics, given in mass of 

phosphorus per year, is autonomous for the purpose of a national phosphorus MFA. In contrast, the 

flow of phosphorus in animal manure (flow, t/yr) is non-autonomous if it needs to be calculated from 

the number of animals (precursor, dimensionless), excretion per animal type (flux, kg/animal∙yr) and 

the phosphorus concentration of animal excrement (material, %). The more non-autonomous data 
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elements there are to be combined for the description of a system element, the higher is the number 

of potential data quality impairments. 

2.1.1.7 Origination of MFA data 

Data for MFA can be acquired either from direct observations, such as measurements, monitoring or 

counting (“empiricism”), or can be abstracted from given information. In contrast to empiricism, the 

latter is in this context referred to as “derived” and is divided into three categories: “mainly from 

data” (such as reporting data that is aggregated by statistical offices), “mainly from assumptions” 

(such as data from models with many assumptions because of a scarce database), and “from 

speculation” (such as guesses). 

2.1.1.8 Variety and disparity  

The attributes “variety” and “disparity” describe the complexity of a population. Variety refers to the 

number of potential real-world objects an entity refers to, disparity to the spread of these real-world 

objects’ realizations. For instance, “copper content of smartphones” can refer to a vast number of 

different smartphones (high variety) and the copper content of these smartphones can span a wide 

concentration range (high disparity). In contrast, both the variety and disparity of the “aluminum 

content of aluminum cans” are comparably small, as the number of different types of aluminum cans 

is limited and the range of the aluminum content is rather narrow (between 95 and 99%). A more 

precise specification of a data element’s meaning (for example, to a particular type of smartphone) 

can reduce variety and disparity. Data quality can decrease because of improperly understood data 

semantics and limited context knowledge (Madnick and Zhu 2006) and that information always has a 

subjective element (Arndt 2004). This is considered in the data characterization framework, which at 

the same time is designed for a high degree of transparency and replicability. Key to the framework 

is the characterization of MFA data by specification of data attributes in a data characterization 

matrix (DCM). 

 

2.1.2 MFA data characterization matrix (DCM) 

The database of a material flow system is documented, structured, and analyzed in the DCM. The 

DCM has been developed in an iterative process by the analysis of several regional MFAs (Schwab 

and Rechberger 2014). In the matrix, 49 data attributes are assigned to each data element of a study. 

The DCM is structured according to the four information levels (Figure 3) and related attributes are 

grouped in attribute groups (Table 2).   
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Table 2:  Structure of the data characterization matrix by information levels and attribute groups 

Info. 

level 
Attribute group Description (no. of attributes) Attributes 

D
at

a 
el

em
en

t 

Statistical 

characteristics 

Documentation of statistical information 

on a data element (10). 

Data element form, location parameter, 

value (numeric), n, min, max, 

distribution (form), distribution 

(paramet.), dispersion (measure), 

dispersion (numeric) 

In
fo

rm
at

io
n
 

Semantics 
Specification of the meaning of a data 

element (2). 

Description of meaning, 

semantic precision 

Scale 
Specification of the format of an entity 

(8). 

Entity category, entity class, unit, 

sphere, property type, mathematical 

form, min (potential), max (potential) 

Complexity 
Description of the complexity of an entity 

(2). 
Variety, disparity 

In
fo

rm
at

io
n
 b

ac
k
g
ro

u
n
d
 

Availability 
Distinction if wanted information does 

exist and is accessible or not (3). 

Existence, accessibility, access 

restriction 

Communication 
Documentation of how a piece of 

information is communicated (3). 

Communication type, access type, 

frequency 

Producer 

Documentation of the agent that produced 

the piece of information, for example an 

authority (3). 

Producer category, producer type, 

reference 

Origination 

Documentation of the data collection 

method, for example counting or 

industrial monitoring (3). 

Origination category, origination type, 

origination type quality 

M
F

A
 i

n
fo

rm
at

io
n
 

Application in 

MFA 

Description of how a piece of information 

is applied in the MFA study (4). 

Application type, autonomy, layer, type 

of good 

System relation 

Description of the relation between a 

piece of information and the studied 

system (6). 

Primary determination, temporal 

variability, trend, spatial variability, 

further relation, variability by further 

relation 

System 

adequacy 

Description of a piece of information’s 

adequacy to (resp. divergence from) the 

studied system (5). 

Temporal divergence, spatial 

divergence, further divergence, 

adaptation (type), adaptation (quality) 

 

A more detailed description of each data attribute is provided in appendix 2. For application of the 

DCM to a given MFA database, each of these data attributes is specified individually. For 

specification of the attributes, a code has been developed. By this code, attributes are assigned to 
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particular measurement scales (absolute, nominal, binary, ordinal) and ranges of possible data 

attribute specifications are provided. This facilitates the consistent completion of the matrix, also 

when applied by different researchers to different regional MFAs, and enables automated analysis of 

a DCM once completed. The DCM code and examples of completed matrices are provided in 

appendences 3 and 1. 

 

In the following, the data characterization framework is illustrated in a database analysis of a national 

MFA. This database analysis consists of three steps, which are (a) creation of data inventory, (b) 

evaluation of data elements, and (c) analysis of data attributes. In (a), all system elements and the 

respective data elements are listed in the DCM. In (b), the attributes are specified with the help of the 

DCM code, and in (c), the DCM is analyzed attribute wise. 

 

2.1.3 Application of the data characterization framework  

The data characterization framework is applied to the 2009 phosphorus system of Austria  (Zoboli et 

al. (2015), see Figure 4), which is based on the work of Egle et al. (2014). A comparatively sound 

database for quantification of material flows and stocks of this phosphorus MFA is available. Data 

uncertainties were assessed by an approach by Laner et al. (2015b) and range from 10% to 90%. 

Nine out of ten flows have less than 40% uncertainty, and two-thirds of the flows have less than 30%. 

These relatively low uncertainties (compared with other regional MFAs) underline the database’s 

robustness.  

 

Key information on the system and the applied database is provided in Table 3. The phosphorus 

MFA of Zoboli and colleagues is a flow-based model in which the number of applied transfer 

coefficients is kept to a minimum. Respectively, the scope of the here presented case study is limited 

to the evaluation of these phosphorus flows in the main system and does not include processes and 

subsystems. 
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Figure 4: Flowchart of the Austrian phosphorus MFA according to Zoboli et al. (2015). 



  

 

16 

 

2.1.3.1 Data inventory 

The total of 308 data elements and all assigned data attributes are inventoried in the DCM (see 

supporting information of Schwab et al. (2016a)). As listed in Table 3, these 308 data elements are 

used for the description of 172 entities and are aggregated for the description of 72 flows. Twenty 

percent of these flows are quantified directly by autonomous data and 80% by the combination of 

data on two or more entities.  

Table 3: Key information on the structure and the data basis of the 2009 Austrian phosphorus MFA 

database characteristic quantity 

number of flows in main system 72 

number of processes 9 

number of subsystems 8 

number of stocks 7 

total number of collected data elements 308 

total number of entities 172 

average entities per flow 2.4 

average data elements per entity 1.8 

share of flows that can be described directly 

by autonomous data (%) 
20 

isolated values (%) 75 

 

2.1.3.2 Evaluation of data elements and analysis of data attributes 

The elements of the data inventory are evaluated by specification of data attributes according to the 

code for data characterization (Schwab et al. 2016a). Exemplarily, selected attributes are analyzed in 

the following: data producer (Figure 5a), data origination (Figure 5b), utilization type (Figure 6a), 

entity class (Figure 6b), type of good (Figure 7) and primary determination (Figure 8). Please note that 

the quantities given here are not material quantities but “information quantities”. The number of 

samples n in figures 3-6 are relates to the number of collected data elements (n =308) or the number 

of entities (n=172). 

More than half of the data were collected from authorities, about 40% from scientific sources (Figure 

5a). Generally speaking, data on material flows stems from authorities and data on material qualities 

(composition) from science. Approximately 40% of the data elements are from empirical collections 

(such as measurement or counting) and 55% are derived (either from data, assumptions or 

speculations). Most prominent are the reported data from third parties that are aggregated by 
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authorities (Figure 5b) such as official trade statistics. These contribute to the generally more robust 

database for cross-boundary flows (for example for imports of goods) in contrast to the often weaker 

database within the system (for example in the consumption sector). 

 

Figure 5: Producer category and producer type (a) and origination type (b) of data in the phosphorus case 

study. 

The two most prominent references, namely, reporting data from statistical offices and empirical data 

from scientific measurements, are complemented by data from additional sources. Expert estimations 

are important especially in the consumption and waste management sectors, assumptions in the 

bioenergy sector, and scientific models in the waste management and crop farming sectors. For 

animal husbandry, simple calculations based on data from authorities and science complement 

directly applicable data. More than 40% of the data are communicated in reports, 35% in online 

databases, and 10% in scientific journals or books (cf. attribute no. a305 (access type) in the 

supporting information of Schwab et al. (2016a)). The number of data elements per entity (on 

average 1.8, see Table 3) is less than or equal to four in 95% of the cases, and 75% are isolated 

values.  

 

Most of the collected data describe material flows (Figure 6a) and come in the format “mass/time” 

(Figure 6b). Approximately one-sixth of the collected data are precursors mainly on numbers and 

areas and need to be combined with other data before introduction to a model.  
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Figure 6: Utilization (a) and entity class (b) of data elements. (a) describes the utilization type of data used in 

the study and (b) the format of the collected data. ”Concentration” is in mass-%; mass/mass refers to other 

entities such as productivity rates. 

Forty percent of the collected data describe waste, 25% consumer goods, and 20% industrial goods 

(Figure 7). The label “none” refers to other entities, such as conversion factors or areas. Although the 

waste management sector has less flows than other sectors, such as industry (see Figure 4), most of 

the collected data are on waste. This indicates that in this case, less directly applicable, autonomous 

data for the description of the waste management sector is available and in consequence the overall 

data search effort is greater.  

 

Figure 7: Collected data relating to different types of goods. “None”= no goods but other entities such as 

areas or conversion factors. 

The attribute “primary determination” (Figure 8) refers to the spheres that primarily determine the 

data values. For example, the phosphorus concentration of common wheat is primarily determined by 

the biosphere and phosphorus removal rate of a sewage plant by the applied technology. In the 

analyzed study, 40% of the data elements are primarily determined by market activities (such as 

domestic production of agricultural goods), 10% by technology (for example, phosphorus removal 

rate from wastewater), 8% within the sociosphere (for example, consumer behavior), 30% in the 
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biosphere (such as phosphorus content of crops), and 6% in the geosphere (such as discharge of 

rivers per time unit). Data that is primarily determined by political decisions is applied mainly in the 

waste management and bioenergy sectors (for example amount of phosphorus in fecal sludge applied 

on agricultural fields). Examples of applied scientific rationales are molecular masses of phosphorus 

and phosphorus compounds. 

 

Figure 8: Primary determination (mechanisms that primarily determine the value of data and their change 

over time) of data within the anthroposphere and the natural environment. “NA” = not available. 

Although the primary determination of data is not always unequivocal, it can indicate the main 

factors that shape the data of an MFA and thus the material system itself. Clearly, the quantity of 

applied data elements does not necessarily correlate with the physical quantity of the material flows 

of a study. However, this can contribute to the identification of a system’s main driving phenomena. 

The driving factors of material systems in terms of physical quantities have been investigated by 

Klee and Graedel (2004). Transferring this idea from physical quantities to information quantities, 

the DCM can be used to reveal the driving mechanisms of a material system from its database. The 

database structure of the case study indicates that, regarding its information quantities, the Austrian 

phosphorus MFA appears to be strongly perturbed by anthropogenic activities but to be not entirely 

dominated as there is still a prominent influence of the natural environment (i.e., biosphere and 

geosphere, see Figure 8) on the material system.  

 

In the phosphorus case study, statistical offices (aggregated reporting data on material quantities) and 

scientific literature (measurement data on material qualities) are the central data sources. Data from 

industry and also from civil society (for example from interest groups) are not applied in the 

phosphorus study. The database is found to be better for cross-boundary flows than for flows within 

the system. This is especially because of detailed official foreign trade statistics. In contrast, 

institutionalized statistics such as the latter are limited within the system, for example in the use 
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sector. The results indicate that there is a general tendency of the databases to become weaker from 

upstream to downstream sectors, i.e., from primary production and manufacturing to waste 

management. Especially in use and in waste management, data producers are required to be more 

active in providing disaggregated and transparent data in consistent formats. 

 

2.1.4 Discussion of the data characterization framework 

The data terminology can be the basis of coherent data communication across different studies and 

research groups. The DCM facilitates the systematic documentation of MFA data and designated 

attributes. Attribute-wise data evaluation draws a compact picture of this database as illustrated in 

Figure 5 - Figure 8. The figures promote a simple and condensed representation of MFA databases, 

for instance, in reports or publications, as an alternative to communicating extensive data tables. 

Systematic tagging of MFA data with data attributes can further the understanding of the information 

basis of a study, enables comparing different MFA studies to one another and can give indications 

regarding the quality of the data. Nevertheless, it has to be considered that the database is subject to 

the scope and level of detail of a study, which is determined by the focus of the research. In the 

analyzed material flow system, processes such as crop farming are rather treated as “black boxes”, 

while wastewater and waste management processes were ranked higher in the specific interest of the 

research group and were thus studied in more detail. From the experience of this study, it can be said 

that the quality of available information decreases when moving downstream the material flows (see 

also Mao et al. (2008), Graedel et al. (2004)). Previous database analyses indicated the tendency of 

decreasing data quality when moving from the main system into specific subsystems with higher 

level of detail (Schwab and Rechberger 2014b). Both tendencies are also due to a decreasing share of 

empirical data from authorities and science, an increasing share of speculations and expert 

estimations, and the decreasing autonomy of the data. The net working time for a database analysis of 

a study with the extent of the above described MFA is approximately 60-80 hours. In further 

research, it is recommended that the DCM is applied simultaneously to the data collection process 

rather than posterior to an MFA. 

 

In the case study, meta-information on the meaning and the formation process of data was sometimes 

found to be limited, although it is imperative for data producers and data publishers to provide this 

information. From the experience of this database analysis, it can be said that meta-information may 

be lost or become imprecise in the scientific publication and citing process. Over time, data can 
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appear “just to be there”, without precise knowledge about its initial meaning and collection method, 

which might lead to poor data quality estimations and poor application of the data. Moreover, data 

can be misinterpreted not only due to ambiguous data semantics but also because of diverging 

reference units. This was found to be the case in the phosphorus flow system, as most of the data 

refer to calendar years (1 January – 31 December), but some do refer to fiscal years (often from June 

to June).  

 

Attribute specifications are, in part, subject to authors’ judgments. Therefore, these specifications can 

be argued over by third persons with diverging perspectives. Author judgments on MFA data have 

also been an element of previous studies (Graedel et al. 2004; Hedbrant and Sörme 2001). The 

novelty of the approach presented here is that it is not the data as such that are judged by the authors, 

but individual data characteristics, (data attributes). Inevitably, subjectivity is intrinsic to these 

judgments. Nevertheless, subjectivity is also intrinsic to information per se. Ignoring the subjective 

part of information can restrain a comprehensive understanding of it (Arndt 2004; Berger and Berry 

1988). For these reasons, subjectivity is also an element of the here-presented framework, even if it is 

controlled by a standardized and transparent procedure, which, however, can facilitate a discourse 

about MFA databases and collective learning of material flow systems. 

 

2.2 Data quality evaluation 

In this chapter, a phenomenological model for quantitative evaluation of data quality is presented. 

“Phenomenological model” is understood in a sense similar to McMullin (1968), where a 

phenomenon which cannot be directly observed (data quality) is approximated based on observable 

phenomena (data attributes). Data quality is regarded as the degree of belief in data to be true in a 

given context, and this degree of belief is influenced by data characteristics that are believed to be 

relevant. Accordingly, data quality is expressed as a multi-dimensional function of data attributes 

selected from the set of data attributes proposed in paragraph 2.1. As a result, each flow of a material 

flow system can be described by a value indicating the degree of belief in data to describe a flow of 

interest truthfully. This value is calculated based on evaluation of all data elements applied for 

quantification of a particular flow (see Figure 9). It is thus specific to any material flow of interest 

within a temporally and spatially defined system.  
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Figure 9: A typical quantification of a material flow “F1”. F1 consists of two information elements, which 

itself consist of one (F1.1) or more (F1.2) data elements. 

 

A flow may be described based on two information elements. An information element itself can be 

specified by one or more data elements, where data elements are representations of real-world objects 

or real-world phenomena (“entities”) as numerical values (isolated values, intervals or datasets). With 

regard to Figure 9, F1.1 may be information on the number of cars imported into an economy, 

provided by official trade statistics. F1.2 may be information on their Pd concentration in %, 

provided as an expert estimation in personal communication (F1.2a) or as measurement results 

communicated in scientific literature (F1.2b and F1.2c). The data quality of flow F1 depends on the 

data quality of all data elements used for its quantification. The hierarchy from data elements to 

information elements to flows is a core premise of the data quality evaluation procedure proposed in 

this paragraph. For illustration, the procedure is explained in detail for one flow of the Austrian 

palladium (Pd) MFA (Laner et al. 2015a) in the following. Consequently, the procedure is applied to 

all flows of the Pd MFA and its information basis is evaluated. The benefits and shortcomings of the 

presented procedure are discussed.  

 

2.2.1 Approach and conceptualization 

Uncertainty in regional MFA is rather an epistemic than an aleatory phenomenon, i.e not a 

consequence of natural variability but of imperfect knowledge. Knowledge shortcomings are here 

expressed as “defects of information” (Dubois and Prade 2010). Information defects are belief 

indicators that reflect the deviation of given information from a desired state of perfect knowledge. 

They are expressed on an ordinal scale from 0 (no information defect) to 1 (maximum information 
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defect). The four information defects “semantic”, “representativeness”, “provenance” and “context” 

(IDS, IDR, IDP, IDC) appear to be relevant for regional MFAs (Figure 10). 

 

Figure 10: Concept of MFA information defects and their position in the data characterization framework 

presented in paragraph 2.1. "Data" are numerical values, "entity" is a real-world object or phenomenon 

described by an information element, "qualitative MFA system" is a system to be quantified by introduction of 

quantitative information. 

IDS refers to the semantic precision or resp. imprecision of the meaning of data (Does the 

specification “smart phones” also refer to mobile phones from before the technological leap, which 

are still “out there”?). IDR indicates how well a given data element represents the entity of interest (Is 

the complex entity “Pd concentration of mobile phones” quantified based on one or more 

measurements or independent references?). IDP considers the origination and collection method of a 

data element (How reliable are the information producer and the data collection method?). IDC 

designates how well a given data element fits the context of a study (Is the data element timely and 

does it refer to the geographical area studied?). These information defects are to some degree similar 

to data quality indicators found to be useful in previous studies (Laner et al. 2015b) in terms of, for 

example, the correlation in the dimensions “time”, “space” and “further”, which are here part of the 

context information defect IDC. Other defects, such as the semantic information defect IDS or the 

representativeness information defect IDR, are new concepts of the approach presented here. 

The approach is illustrated in detail for flow ten (F10) of the palladium case study (see paragraph 

“Case study on Pd flows in Austria 2011”  Laner et al. (2015a)). A fully characterized information 

inventory of the Pd flow study is provided in appendix 1. Flow F10 refers to the Pd flow in flat 

screens sold in Austria in 2011. Laner and colleagues quantified flow F10 based on two information 

elements. First, this is the per capita flow of flat screens (information element F10.1) and second, the 

Pd content in flat screens (information element F10.2). F10.1 was calculated from data on the 2010 



  

 

24 

 

German market and related assumptions. For F10.2, information from a scientific report providing 

German data of the year 2010 was used.  

The information defects illustrated in Figure 10 are exemplarily qualified for information element 

F10.2 (Pd content in flat screens). The information element F10.2 has a semantic information defect 

(IDS) because “flat screens” is not a clear specification as there are different types of flat screens. 

F10.2 refers to a complex entity as different types of flat screens (attribute “variety”) may also differ 

in their Pd content (attribute “disparity”). This complex entity is quantified based on one reference. A 

complex entity in combination with a small number of references or samples induces a 

representativeness information defect IDR. Because no information is provided on the data collection 

method, there may also be a provenance information defect (IDP). The data do not fit the actual 

system context (Austria 2011) as they are for Germany in 2010. Consequently, there is a context 

information defect IDC.  

This vague qualitative description of information defects enables first estimates on the overall quality 

of the data. A mathematical formalization of the qualitatively introduced concept of information 

defects is proposed in the following.  

 

2.2.2 Formalization 

The information defect per flow IDF is quantified in three steps. First, the quality of each data 

element is described by a set of four defects IDi (IDS, IDR, IDP and IDC, see Figure 10). Second, each 

information element is described by one total information defect (IDtot), which is an aggregation of 

the IDi of the respective data element. Third, the data quality of each flow is described as IDF, which 

is a combination of the IDtot of the respective information elements (according to the order illustrated 

in Figure 10).  Prior to data quality quantification, the database of an MFA study has to be 

inventoried and characterized according to the data characterization framework (Schwab et al. 2016). 

The procedure of data quality quantification is described in the following. Exemplarily, the 

information defect of the flow F10 of the Pd MFA introduced above is quantified. 

 

2.2.2.1 Data attributes 

Quality-relevant data attributes are listed in Table 4 and exemplarily specified for the information 

elements F10.1 and F10.2 in the rightmost columns. Data attributes in text format (for example the 

producer type, which may be, among others, “national statistics” or “industrial association”) have 

been translated to mathematically computable formats according to a translation scheme provided in 
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appendix 4. Consequently, all attributes in Table 4 are specified either on an ordinal scale from 0 to 1 

where 0 means “good” and 1 means “bad”, on an absolute scale (0, 1, 2…), or on a binary scale (0 

means yes, 1 means no).  

Table 4: Data attributes relevant for data quality evaluation selected from the data characterization matrix 

introduced in paragraph 2.1.2 and their attribute numbers as identifiers. The designators are used in the 

proposed formal procedure. Attributes are exemplarily specified for information elements F10.1 and F10.2 in 

the rightmost columns according to the code provided in appendix 3 

Data attribute Attribute no. Designator Scale F10.1 F10.2 

Number of samples a104 n Absolute 1 1 

Semantic precision a202 a Ordinal 0.3 0.2 

Variety a211 b Ordinal 0.8 0.5 

Disparity a212 c Ordinal 0.4 0.7 

Producer type a308 d Ordinal 1 0.3 

Origination type a311 e Ordinal 0.4 0.4 

Origination quality a312 f Ordinal 0.7 0.5 

Temporal variability a406 g Ordinal 0.2 0.2 

Spatial variability a408 h Ordinal 1 0.1 

Variability by further 

relation 
a410 i Ordinal 0 0 

Temporal divergence a411 j Ordinal 1 0.1 

Spatial divergence a412 k Ordinal 0.1 0.2 

Further divergence a413 l Ordinal 0.2 0.0 

Adaptation type a414 m Binary 0 1 

Adaptation quality a415 o Ordinal 0.3 0 

 

In the first step of the evaluation procedure, the four information defects IDi are quantified based on 

the 15 attributes listed in Table 4. 

 

2.2.2.2 Information defects of data elements (IDi) 

The four information defects IDi (IDS, IDR, IDP, IDC) are described as functions of data attributes 

(Table 4). The information defect functions have been developed in a two-step heuristic procedure. 

First, the basic function type was chosen. Second, the relationship between data attributes, as 

qualified in chapter “approach and conceptualization”, was formalized as combination of data 

attributes by use of the chosen function type. The designators a, b, …, o of the attributes (Table 4) are 

used in the functions presented in the following. 

IDS is regarded as a linear function of the attribute “semantic precision” (a, see Table 4, where a=0 

represents data with unambiguous and clear meaning and a=1 represents data with ambiguous or 

vague meaning), which means that the information defect is high when the meaning of data is vague 

(Eq. 1). 
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 𝐼𝐷𝑆 = 𝑎 Eq. 1 

 

IDS of information element F10.2 equals the data attribute “semantic precision”, so that IDS,F10.2 = 

0.2. 

The representativeness information defect IDR is formalized as an exponential function of the 

attributes “variety” (b) “disparity” (c) and “number of samples” (n). IDR increases with increasing 

variety and disparity (that is, with increasing complexity of the described entity). IDR and the 

information gain per additional sample decrease with increasing numbers of samples (Eq. 2). This 

relates to the equation of the standard error of the mean (SEM), where the error (expressed as 

standard deviation) decreases with increasing sample size (see Clark-Carter (2014)). 

 

 
𝐼𝐷𝑅 = (√𝑏√𝑐)𝑛/(𝑛+1) (

√𝑏√𝑐

√𝑛
) Eq. 2 

 

The information element F10.2 refers to a complex entity with high variety and disparity and a small 

number of samples (see Table 4), so that IDR,F10.2=0.46. 

The provenance information defect is formalized as a function of the information producer (attribute 

“producer type” (d), first term in Eq. 3) and the way the data were collected (attributes “origination 

type” (e) and “origination quality” (f), second term in Eq. 3). The exponents determine the slope and 

the curvature of the function, i.e. their non-linearity. An exponent >1 results in a convex curved 

function. This means that IDP is high only if both the information producer and the data generation 

method are specified with high attribute values. This way, data of a “bad” data producer is not per se 

evaluated as “bad” (as would be the case in a concave function, that is, with an exponent <1) as long 

as a “good” data generation method was applied. Here the exponents of the first and the second term 

are defined identically, that is, the information producer and the collection method have the same 

relative weight (Eq. 3). 

 
𝐼𝐷𝑃 = (𝑑1.5 + (

𝑒 + 𝑓

2
)

1.5

) /2 Eq. 3 

 

F10.2 was collected from a reputable scientific report which provides expert estimations on substance 

concentrations. The provenance information defect is, based on the attributes listed in Table 4, 

IDP,F10.2=0.23. 
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The contextual information defect is formalized as a product of two constitutive parts. First, this is 

the degree to which data fits the system studied. Second, this is the quality non-adequate data were 

adapted to the system, for example by scaling. In Eq. 4, y denotes the data adequateness (ordinal (0-

1), see Eq. 5), m designates if data was adapted (binary, yes/no, resp. 0/1) and o refers to the 

adaptation quality (ordinal, 0-1). 

 

 𝐼𝐷𝐶 = 𝑦 − (1 − 𝑚)(1 − 𝑜)𝑦 Eq. 4 

 

This means that non-adequate data (expressed as y, first term) causes a high information defect, 

which decreases if this non-adequate data was well adapted to the context (second term). 

The variable y in Eqs. 4a and 4b denotes the degree to which data does not fit the context in three 

dimensions: time, space and further (such as technology).  It is a function of the divergence of the 

data from the system context (“divergence in three dimensions”, j, k, l) and the variability of the data 

(“variability in three dimensions”, g, h, i). 

 

 𝑦 = (√𝑔√𝑗 + √ℎ√𝑘  + √𝑖√𝑙)/3 Eq. 5 

 

F10.2 does temporally and spatially diverge from the system boundary (“divergence”), but is little 

variable over time and space (“variability”) as the composition of flat screens in Austria and 

Germany can be regarded as quite similar in two subsequent years. The data has not been adapted to 

the system boundary. Considering the data attributes listed in Table 4, it is IDC,F10.2=0.09. The 

information defect functions are visualized as surface plots provided in appendix 5. 

2.2.2.3 Information defects of information elements (IDtot) 

The four information defects are aggregated to a total information defect per information element 

(IDtot) as Euclidian distance (the shortest connection of any point to the origin in an n-dimensional 

space) in a four-dimensional space. This is normalized to the measurement scale (0-1) by the number 

of information defects IDi=4 (Eq. 6).  

 

 

𝐼𝐷𝑡𝑜𝑡 =  √
(𝐼𝐷𝑆

2 + 𝐼𝐷𝑅
2 + 𝐼𝐷𝑃

2 + 𝐼𝐷𝐶
2)

4
 Eq. 6 
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In Eq. 6, IDi are weighted by themselves. That means that an information element with a high defect 

in one dimension cannot be of overall good quality, even if the other three defects are low. When 

applied to F10.2 (IDS,F10.2=0.20, IDR,F10.2=0.46, IDP,F10.2=0.23, IDC,F10.2=0.09), this results in 

IDtot,F10.2=0.28. The procedure until here can be repeated for information element F10.1 so that 

IDtot,F10.1=0.42. The defect of information element F10.1 (number of flat screens sold) is higher than 

the defect of information element F10.2 (Pd content in flat screens). The information defect of Flow 

F10 can be expressed as one flow-specific value by combination of the two total information defects 

IDtot,F10.1 and IDtot,F10.2. 

2.2.2.4 Information defects of flows (IDF)  

IDF is formalized as the square root of the sum of squares of all IDtot, analogous to the combination 

of uncertainties in the Gaussian rule of error propagation (see the exponent in the denominator in Eq. 

7, where z designates the number of information elements). This term can potentially increase 

indefinitely for increasing z and must consequentially be normalized to the measurement scale (0-1). 

Realistically, z is virtually never higher than four (a substance flow is typically quantified by 

multiplication of two information elements, quantity of goods times concentration, and in fewer cases 

by multiplication with additional information such as, for example, on volumes or areas). The term 

could be normalized by the square root of the numbers of information elements (√𝑧). This straight 

forward normalization is not sensitive to the number of information elements z and it averages the 

information defect of multiple information elements. However, it appears to be more suitable to 

consider that the more imprecise information there is to be combined, the less credible is the result. 

Having that in mind, IDF can be also normalized by applying a logistic function such as the one 

proposed in Eq. 7. This function accumulates the information defects of multiple IDtot per flow. A 

graphical comparison between normalization by √𝑧 and a logistic function is provided in appendix 6. 

 

 
𝐼𝐷𝐹 =  

1.5

1 + 2𝑒
−3√∑ 𝐼𝐷𝑡𝑜𝑡,𝑖²𝑧

𝑖=1

− 0.5 Eq. 7 

 

Applied to flow F10 with IDtot,F10.1 = 0.42 and IDtot,F10.2=0.28, this is IDF10 = 0.54.  

2.2.2.5 Information elements specified by more than one data element 

The evaluation procedure has been illustrated for the situation of one data element per information 

element. As illustrated in Figure 9, information elements may also be quantified based on more than 
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one data element. For example, the information element F1.2 of the Pd study (Pd content of cars 

imported to Austria) consists of three data elements (Table 5 and appendix 1). That is, reference A 

states that the Pd content is A%, reference B says B% and reference C says C%. Apparently, agents 

frequently introduce the mean of available data elements in their model when they cannot 

discriminate between the reliability of the three references. 

In case of more than one data element per entity, IDP and IDC are calculated on the level of data 

elements and IDS and IDR are calculated on the level of information elements (i.e. per entity). That is, 

because each data element may have a different provenance (different IDP) and may be of different 

adequateness to the context (different IDC), but is used to represent the same entity (same IDR) with 

the same meaning (same IDS). This becomes clear when reconsidering the concept presented in 

Figure 10. 

Table 5: Information element F1.2 of the Pd study consists of three data elements. The lowest IDP and IDC are 

selected for further processing in Eq. 6 

Information 

element 
Data element IDS IDR IDP IDC 

F1.2  0.20 0.23   

 F1.2a   0.25 0.05 

 F1.2b   0.28 0.22 

 F1.2c   0.23 0.18 

IDi,F1.2  0.20 0.23 0.23 0.05 

 

Eq. 6 requires a set of four information defects IDi per information element. To formulate such a set 

of four IDi for the situation presented in Table 5, a straight forward approach is chosen. Experience 

shows that typically, an agent only introduces additional data elements per information element when 

expecting information gain (for example by taking the mean of two independent references). This is 

considered here, and the lowest IDP and IDC are selected from the set of provenance and context 

defects (see Table 5, where F1.2 is quantified based on n=3 data elements). Consequently, the 

information defect IDtot,F1.2 decreases (because of min IDP and IDC and also because n>1 in IDR), 

which reflects the information gain. 

The information defect approach results in a new quantity for evaluation of regional MFAs. This new 

quantity indicates the reliability of model input data and enables distinguishing material flows by 

their data quality. The evaluation procedure is applied to all flows of the Pd MFA in the following.  
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2.2.3 Application of the information defect approach 

The presented procedure for quantification of data quality is applied to the palladium (Pd) flow 

system illustrated in Figure 11. For a more detailed description of the Pd MFA and a quantitative 

diagram, please refer to the article of Laner et al. (2015a). 

  

Figure 11: Structure of the 2011 Austrian Pd MFA  by Laner et al. (2015a). The system consists of 25 flows 

(16 in the main system and 9 in subsystems “use and collection” and “waste management”).   

 

Information defects IDi per data element, IDtot per information element and IDF per flow are 

computed according to Eqs. 1-6. The results are illustrated in Figure 12. A detailed table of all 

information defects is provided in appendix 1.  

 

Figure 12: Data quality of the flows in the Pd MFA expressed as information defects IDF. Low defects indicate 

good data quality, high defects indicate poor data quality. Flows without input data are here assigned IDF=1. 
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With regard to the concept of information defects, low bars indicate good data quality (flow F1 – F3) 

and high bars indicate poor data quality (flows F4-F14, F19, F25). Information defects higher than 

0.5 signify data of considerably poor quality. For some flows, no input data were available. Clearly, 

non-existent information cannot be defective, but complete ignorance can be regarded as a maximum 

information defect. Thus, IDF=1 is assigned for unknown flows (flows F15-F18, F20-F24). The bars 

in Figure 12 denote the a priori knowledge about flows, that is, the knowledge before application of 

a material flow model. By balancing of flows in a model (in the Pd study, the STAN algorithm 

(www.stan2web.net) was applied), initially unknown flows are calculated and the a posteriori state 

of information differs from the a priori information state. Until here, the information defects enable 

assessing the state of information about a material flow system and to underpin qualitative 

observations about available information by quantitative means (subsequent applications of 

information defects in material flow modeling are outlined in the “concluding remarks” section). For 

example, data quality is often found to decrease over the lifecycle of materials and to be better for 

sectors of economic interest such as trade and manufacturing in contrast to the consumption and 

waste management sectors (see, among others, Mao et al. (2008), Graedel et al. (2004)). The results 

of the Pd case study indicate that data quality is considerably higher at the system input side, while 

data quality of flows to the environment (such as dissipative fate, flow 25) is poor. For many flows in 

the waste management sector (for example flows 20, 21), no data are available. The information 

defects do now provide an opportunity to quantitatively express data quality and to illustrate 

weaknesses and tendencies of the database in a systematic and reproducible way.  

 

2.2.4 Discussion of the information defect formalization procedure 

Data attributes can be mathematically combined in many different ways for specification of 

information defects. The formalizations of IDi, IDtot and IDF proposed here deliver mathematically 

sound and reasonable results for quantitative data quality evaluation. They have been selected from a 

number of possible formalizations based on comprehensive qualitative and quantitative tests, where 

individual steps of the quantification procedure have been varied and compared regarding their 

absolute output and their relative ranking based on Monte Carlo Simulation, surface plots and 

correlation analysis (Schwab and Rechberger 2015). The mathematically simplest alternative 

approach is to formalize the defect of information elements as an average (denoted as IDtot,average in 

the following) of all ordinal attributes (Table 4). In Figure 13, this IDtot,average is plotted against IDtot 

of the information elements of the Pd case study.  
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The averaged information defect appears to equalize the results and to deviate from IDtot, especially 

for increasing information defects. Although IDtot,average is mathematically feasible, it is of little 

meaning with regard to the information defects. That is because some data attributes are obviously 

related to others, which is not considered by IDtot,average. For example, the attribute “temporal 

divergence” interacts with the attribute “temporal variability” when it comes to data quality 

evaluation as it is obvious that outdated data (temporal divergence) is only defectuous if the data 

varies over time (temporal variability). The example of IDtot,average indicates that the adequateness of 

very simple mathematical formalizations to express information defects may be limited.  

 

Figure 13: Comparison of IDtot  to an alternative total information defect IDtot,average and data uncertainty 

estimations of Laner and colleagues. Information defects (dimensionless) are plotted on the primary, 

uncertainties (%) on the secondary y-axis. The values are sorted according to increasing IDtot. The connecting 

lines between the points are introduced to simplify visual comparison of the plotted options. 

 

To assess and discuss the results of the data quality approach, the information defects of the Pd case 

study are also compared to data uncertainties as calculated in Laner et al. (2015a) (see Figure 13). 

Laner and colleagues used an adapted version of Hedbrant and Sörme (2001) for calculation of data 

uncertainties in the Pd study. While this is based on categorization of data into five quality categories 

according to their origination, the information defect approach distinguishes data quality by a number 

of data characteristics and considers interconnections between data attributes. Figure 13 indicates that 

uncertainty calculations and IDtot can differ, but show a similar trend (Spearman rank correlation 

coefficient between uncertainty ranges and IDtot in the comparison presented is ρ=0.7, between IDtot 

and IDtot,average it is ρ=0.8). The range covered by IDtot seems less wide than the range covered by the 

uncertainty estimates (Figure 13).  
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A difference between the introduced method and other approaches to data quality, such as the one in 

Laner et al. (2015b), is, that data quality is not formalized based on static indicators and categories. 

Data quality is here formalized in a model-type setup, where different data characteristics are linked 

and may enhance or reduce the resulting information defect, depending also on the magnitude of 

related attributes. The data attributes contribute to the information defects IDi, IDtot and IDF to a 

variable extent, depending on the model formalization. The weight of data attributes in IDF in the 

formalization proposed above has been analyzed. This was done by investigating the relative impact 

of variations in inputs (individual data attributes, Table 4) on the observed variation of the output 

(IDF, Eq. 7) in a sensitivity analysis (Monte Carlo-based multiple linear regression). The relative 

weight of data attributes is displayed in Figure 14.  

 

 

Figure 14: Relative weight of individual data attributes and IDi in information defect IDF. 

 

According to the formalization presented here, the precise knowledge of the meaning of data (IDS) 

and the provenance of data (IDP) contribute most to IDF. In contrast, all input attributes considered 

would have the same weight in the alternative formalization IDtot,average mentioned earlier. Certainly, 

however, the weight of data attributes in the information defects can be varied, for example, by the 

introduction of weighting factors in Eqs. 5 and 6, or by modification of Eqs. 1-4.  

 

The application of the data quality evaluation procedure may require more time than other 

approaches (see the overview of existing methods in Laner et al. (2015b)). In return, it enables better 
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understanding of the factors determining the information quality of material flows. For convenient 

und time-saving application, the model presented here is implemented in a spreadsheet tool attached 

to the data characterization matrix (paragraph 2.1). In that spreadsheet tool, data quality can be 

calculated automatically once a database has been characterized. Evaluation of a study with the 

extent of the Pd case presented here requires 30-40 work hours. More detailed full-scale national 

material flow systems (the Pd study was not full-scale, it had a focus on EOL of consumer product 

flows) may require more time for their characterization. It may be difficult to retrieve all information 

necessary for sound data characterizations of existing studies that used other data documentation 

schemes or that provide no complete and consistent data documentation. Thus it is beneficial to apply 

the data characterization framework while preparing a study, that is, in parallel to data collection. 

 

Objective (statistical) possibilities for data quality evaluation are usually limited in MFA. Data 

quality evaluation is inevitably subjective, also with the proposed procedure. Different authors, also 

with similar backgrounds and perspectives, may still propose differing assessments of data quality. 

Nevertheless, the proposed procedure reduces the influence of author opinions and subjectivity by 

systemizing the evaluation procedure and by moving choices from generic data classifications to an 

evaluation of individual data attributes. Despite the systematic approach, agents with different 

backgrounds and with different degrees of knowledge may characterize data and their attributes 

differently and may thus produce differing results in data quality evaluation, especially when the 

approach is applied not in parallel but subsequent to a study. The method presented should be seen as 

a transparent “best guess” procedure for facilitating reproducible and transparent expert estimations 

on the abstract phenomena of “data quality”. 

 

The output of the method presented is a ranking of flows on an ordinal scale according to their data 

quality.  An alternative concept of Laner et al. (2015b) aims at providing uncertainty ranges for MFA 

data. Often, the initial idea behind uncertainty ranges is to express the reliability of the underlying 

data. Naturally, it may be difficult to express epistemic uncertainties (“lack of knowledge”) as 

absolute measures and the definition of uncertainty ranges may be highly speculative. That is why the 

approach presented here is designed to evaluate the degree of credibility of a priori data without 

simulating an absolute quantification of uncertainty. Information defects can in subsequent work be 

applied as dimensionless factors in characterization functions of material flow models and as 

indicators for the reliability of data (for example in Laner et al. (2015a)) or as factors in data 

reconciliation algorithms (for example Kopec et al. (2015)). The information defects can be applied 
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as indicators for epistemic uncertainty in data uncertainty frameworks (such as, among others, 

Dubois and Guyonnet (2011) and Clavreul et al. (2013)).  

Uncertainty ranges are practicable and often desired by material flow analysts. The dimensionless 

information defects can also be translated to uncertainty ranges by application of scaling functions 

and by multiplication with a coefficient of variation or an uncertainty factor. More than that, it is 

possible to test whether the integration of empirically derived probabilities into the information 

defect concept is adequate for particular MFA applications. As statistical characteristics such as 

dispersion measures or probability distributions are, if available, also part of the data characterization 

matrix (see attribute group “statistical characteristics” in the data characterization matrix presented in 

paragraph 2.1, this could also be exploited for characterization of observed variability. As the 

absence of information on variability can also be referred to as epistemic uncertainty, it is also part of 

the approach presented here (see the representativeness information defect (IDR) in Eq. 2, which 

increases with decreasing number of samples n).  

In combination with the data characterization framework presented in paragraph 2.1, the evaluation 

procedure proposed enables the documentation, characterization, evaluation and communication of 

the information basis of regional MFAs. The information defects indicate the reliability of data and 

help to find weak points in the data structure. They enable identifying the reason for data weaknesses 

(Is the source unreliable? Is the number of samples not high enough? Is the meaning of the data 

unclear?) and aid in adopting adequate measures for filling data gaps. When not interpreting 

information defects as factors for uncertainty evaluation but leaving them as dimensionless measures 

for a “state of knowledge”, they can be applied for measuring the information content of MFAs and 

for comparing MFAs of different substances, regions or years to one another, as proposed in the 

following paragraph. 

 

2.3 Information content and system structure 

From a graph-theoretical perspective, MFAs can be regarded as networks. These networks can be 

represented as directed graphs, in which flows connect source processes to target processes. 

Typically, network structures in Industrial Ecology can be distinguished by their topologies, and 

trivial structures can be distinguished from non-trivial, or complex, structures. In MFA, “complexity” 

is frequently understood as a structural feature of systems helpful for distinguishing material flow 

systems, or for expressing that systems are perceived to be similar (see, for example, the comparison 

of two national phosphorus systems in Klinglmair et al. (2016)). In this paragraph, the structural 
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“complexity” of material flow systems is, as opposed to their structural “triviality”, addressed in the 

same computational framework as the information content and the uncertainty of material flow 

systems.  

 

It has been argued that, in Industrial Ecology, uncertainty and complexity issues are increasingly 

relevant (Kay 2002) and that information is a notable phenomenon, also because “uncertainties 

paralyze us” and because it is not clear how much information is needed for design of systems 

(Bettencourt and Brelsford 2015). This holds also for MFA: When recalling that studies of material 

flow systems both reveal new information and depend on existing information when prepared (Chen 

and Graedel 2012), the dual role of information in MFA becomes apparent. For making informed 

MFA-based decisions, agents are not only to know about the actual MFA results on a material level, 

but also about their reliability, that is, about the „uncertainty“ and, respectively, the „information 

content“ of a given material flow system. For making good use of available data, agents also are to 

know about the “complexity” of a material flow system, as increasingly complex systems require, in 

comparison to systems of more trivial structures, increasing amounts of information in order to be 

solved. In this paragraph, the phenomena uncertainty and complexity are addressed as properties of 

regional material flow systems. The information content of material flow systems is derived from 

their uncertainty. 

 

2.3.1 Uncertainty in Material Flow Analysis 

As elaborated in paragraph 1.4, empirical evidence for evaluation of uncertainties in MFA is 

typically limited and as a consequence, established statistical measures are limited in their 

applicability. In the same regard, uncertainty ranges are of limited meaning for representation of data 

uncertainties, although they are frequently applied in MFA. As an alternative to the approaches of 

Hedbrant and Sörme (2001) and of Laner et al. (2015b), the concept of information defects (ID) has 

been introduced in paragraph 2.2. Information defects are indicators for the belief of degree an author 

has in data to be true in a specific context. Low information defects (ID0) relate to data of good 

quality, high information defects (ID1) relate to data of poor quality and ID=1 relates to complete 

ignorance. The IDs are central variables for consideration of data quality in a quantitative approach to 

uncertainty and information content in MFA as presented in this paragraph. The incentive is to avoid 

the use of uncertainty ranges, but to still allow for absolute evaluations and comparisons. As 

formalized later in this paragraph, the potential uncertainty of a system increases with its size (its 
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number of flows) and it decreases when more and better data are incorporated. Uncertainty is 

approached as the counterpart of information (cf. paragraph 1.2) and the information content of an 

MFA system increases when the system uncertainty decreases, and vice versa. 

 

2.3.2 Complexity in Material Flow Analysis 

Complexity concepts are of increasing interest for system analysis in Industrial Ecology, as put 

together in two special issues of the Journal of Industrial Ecology this journal (Dijkema and Basson 

(2009), Dijkema et al. (2015); see the respective review articles Wood and Lenzen (2009) and 

Meerow and Newell (2015)). Although the term “network” is frequently used in a qualitative sense 

(Heijungs 2015), graph theory is a rich source of concepts for quantitative analysis of network 

structures and parallels to analytical approaches in economics and in ecology have been revealed 

(Suh 2005). Many graph-theoretical applications draw from theoretical ecology (Odum 1994; 

Ulanowicz 1997) and analogies between ecosystems and social, economic and industrial systems 

have been identified (Côté and Hall 1995; Graedel 1996; Korhonen 2001; Bailey et al. 2004). As 

reviewed in Schiller et al. (2014), graph-theoretical network measures have been applied for 

describing system structures in Industrial Ecology and for comparing different systems to one 

another (for a recent application, see Nuss et al. (2016)). Despite the increasing use for analysis of 

non-trivial structures, graph-theoretical network measures such as “connectedness”, “clustering” or 

“cyclicity” have in few studies been specifically interpreted as relative complexity measures, for 

example regarding life cycle inventories (Navarrete-Gutiérrez et al. 2015) or industrial ecosystems 

(Layton et al. 2016). In MFA, complexity measures have not been specifically addressed so far, 

although graph-theoretical complexity measures are also applicable in MFA. When regarding 

complexity in the sense of “static complexity”, which refers to the “number of parts and their 

linkages” (Allenby 2009), it appears to be useful to express complexity not as a merely relative, but 

as an absolute measure, as systems (also material flow systems) may not only differ in their 

complexity because of different linkage patterns, but also because of varying system sizes. An 

alternative for analysis of network complexity is presented in this paragraph. It is elaborated 

specifically for MFA systems and is, as other approaches to complexity in Industrial Ecology, 

inspired by theoretical ecology. 

 

As material flow systems today cover increasing numbers of materials and regions, there is an 

interest in identifying similarities and differences of MFA systems (Klinglmair et al. 2016). It has 
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been observed in different fields of Industrial Ecology, that differences in system structures are to a 

varying degree to be attributed to actual differences in physical systems, but also to priorities of 

modelers, the chosen level of detail and the structure of available data (Heijungs 2015). Until now, 

both comparisons of MFA system structures and evaluations of the impact of MFA input data on 

MFA results are often limited to qualitative considerations (Klinglmair et al. 2016). A set of 

measures for specifying and comparing MFA systems by quantitative rather than sheer qualitative 

means appears to be helpful to facilitate further comparisons of MFA systems and also for 

communication of MFA results. In this paragraph, such measures are proposed. With a focus on 

flows, the uncertainty and complexity of MFA systems are formalized as properties of MFA systems 

and quantitatively expressed in the same, abstract dimension. The information content of MFA 

systems can naturally be derived from their uncertainty once this uncertainty is quantified. The 

formal framework used for computation is borrowed from the field of theoretical ecology, as 

introduced in the following. 

 

2.3.3 Information measures in theoretical ecology 

In theoretical ecology, a concept for the description of networks has been elaborated based on work 

of Rutledge et al. (1976). The concept is constructed around the narrative that the functioning of 

ecosystems can be understood by means of information theory as a function of system size, 

proportions of flows in relation to other flows and system structure. Based on these ideas, Ulanowicz 

(1980) developed a set of aggregate measures for describing the state of ecosystems. The starting 

point is a perspective on an ensemble of flows, which is, in the notation of Ulanowicz et al. (2009), 

expressed as  

 
𝐻 = −𝑘 ∑

𝑇𝑖𝑗

𝑇..
 𝑙𝑜𝑔 

𝑇𝑖𝑗

𝑇..
𝑖𝑗

 Eq. 8 

where Tij refers to a flow from agent i to j, T.. (a dot means summation over an index) refers to the 

aggregate of all flows in the system and k is to a positive scaling constant. The measure is used to 

refer to “system diversity” (Rutledge et al. 1976) or “system capacity” (Ulanowicz 1997). Rutledge et 

al. (1976) argue that H can be decomposed into two components based on information on each flows’ 

position in the system configuration, so that, in the notation brought forward by Ulanowicz et al. 

(2009), 

 
𝑋 = 𝑘 ∑

𝑇𝑖𝑗

𝑇..
 𝑙𝑜𝑔 

𝑇𝑖𝑗𝑇..

𝑇𝑖.𝑇.𝑗
𝑖𝑗

 Eq. 9 



  

 

39 

 

and 

 
𝜓 = −𝑘 ∑

𝑇𝑖𝑗

𝑇..
 𝑙𝑜𝑔 

𝑇𝑖𝑗
2

𝑇𝑖.𝑇.𝑗
𝑖𝑗

 Eq. 10 

where Ti. refers to the aggregate quantity that leaves i, T.j refers to the aggregate quantity that enters j 

and Tij refers to the quantity that both leaves i and enters j. X and ψ relate to the information-

theoretical concepts of mutual information and conditional entropy, which are measures of 

association quantifying the relation between two variables. Eq. 9 and Eq. 10 express the dependence 

between agents i and j as a function of the flow of matter from i to j in relation to the aggregate 

quantities leaving i and entering j. High X specifies that j depends predominantly on i, high ψ 

specifies that j depends little on i but mainly on other adjacent i’s. The measures have been applied 

mainly to ecosystems, for example for examining the functioning of food webs (Wulff et al. 1989; 

Baird and Ulanowicz 1989) or for comparison of ecosystems (Christian et al. 2005). It has also 

gained interest in other system-oriented fields such as economics (Goerner et al. 2009) and Industrial 

Ecology (Kharrazi et al. 2013), where it has been interpreted as a measure for the sustainability of a 

network. As highlighted by Kharrazi et al. (2013), it is a useful characteristic of the measures that 

they allow considering both intensive and extensive system properties, a feature which is utilized 

later in this work. 

 

The measures for the uncertainty and complexity of MFAs of a given size and structure proposed in 

this paragraph have a focus on the role of flows. They are based on variables relating to the quality of 

flow data and to the configuration of flows in the system. Their computation is facilitated by Eq. 8, 

Eq. 9 and Eq. 10. In order to provide a quantity that holds as a reference against which the 

uncertainty and complexity of a given MFA system can be measured, Eq. 8 is reformulated to 

express the “informational” system size S of an MFA as a function of the number of flows nF in a 

system where, for now, all flows Fi have the weight 1, and the aggregate of all flows in the system 

∑ 𝐹𝑖𝑖  (here: ∑ 𝐹𝑖𝑖 = 𝑛𝐹) is used as the scaling constant k, so that 

 

 
𝑆 = − ∑ 𝐹𝑖

𝑖

∙ ∑
𝐹𝑖

∑ 𝐹𝑖𝑖
log

𝐹𝑖

∑ 𝐹𝑖𝑖
(𝐹𝑖)

= −𝑛𝐹 𝑙𝑜𝑔
1

𝑛𝐹
 Eq. 11 

 

S is a monotonic increasing function of nF and for systems with an arbitrary number of flows, it is 

lim 𝑆
𝑛𝐹→ ∞

= ∞. A binary logarithm is chosen for computation in this thesis and the resulting quantity is 



  

 

40 

 

referred to as “informational units”. Each individual flow contributes to the magnitude of S, i.e., is a 

component of the sum, which allows quantitatively specifying the contribution of any individual Fi 

to the aggregate system uncertainty and system complexity, as elaborated in the following. 

 

2.3.4 Uncertainty of material flow systems 

A typical procedure for filling a given qualitative MFA system with numbers consists of two steps 

(Brunner and Rechberger 2016). In the first step, a priori data for specification of system variables is 

collected. This data may be incomplete and inconsistent and therefore, in the second step, is balanced 

and reconciled in an MFA model. This second step increases the completeness and decreases the 

inconsistencies of data in the model. Ideally, such balanced MFAs provide reliable information on 

material flow systems. If all flows in a system were known with absolute certainty, their “information 

content” would be maximal. It would increase with the level of detail of a given system, that is, with 

the number of flows that are  distinguished and correctly specified. As such ideal cases are unrealistic 

because of data quality limitations, there typically is a remaining degree of uncertainty in MFA 

results (Laner et al. 2014). As statistical evidence for specification of data quality is frequently 

limited in MFA, it can be expressed by reliability indicators such as the information defects 

introduced earlier. Because of data quality limitations, the actual information content of given MFA 

systems usually is lower than their potential information content, as to the uncertainty remaining in 

the system. A formal way to express this limitation by quantitative means is proposed in the 

following paragraphs.  

 

2.3.4.1 Uncertainty of systems with a priori data 

As information can be understood as the absence of uncertainty, and vice versa, S allows two 

interpretations. First, if all flows were known, it can be interpreted as the potential information 

content of a material flow system. Second, it can be interpreted as the uncertainty of a given 

qualitative material flow system, where none of the flows is known. This uncertainty may be reduced 

by integrating data on these unknown flows into the system. In other words, the uncertainty of a 

system with a priori data on flows (Uap) can be understood as a composite of S, which reflects the 

uncertainty of a system without data. Instead of assigning the equal weight 1 to all flows, as it is in 

Eq. 11, the flows can be weighted by their information defects IDFi. The uncertainty of a system with 

a priori information (Uap) can then be formulated as 
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𝑈𝑎𝑝 = − ∑ 𝐹𝑖

𝑖

∙ ∑
𝐼𝐷𝐹𝑖

∑ 𝐹𝑖𝑖
 𝑙𝑜𝑔

𝐼𝐷𝐹𝑖

∑ 𝐹𝑖𝑖

𝑛𝐹

𝑖=1

= − ∑ 𝐼𝐷𝐹𝑖  𝑙𝑜𝑔
𝐼𝐷𝐹𝑖

∑ 𝐹𝑖𝑖

𝑛𝐹

𝑖=1

 Eq. 12 

 

The measure Uap refers to the uncertainty remaining in a quantitative MFA system after data of 

varying quality on flows is considered. It is lim 𝑈𝑎𝑝
ID→0

= 0 and 𝑈𝑎𝑝 ≤ S. This becomes clear when 

considering the simple examples in Table 6 (column “uncertainty”) and the case studies in paragraph 

2.3.6. The observation that the uncertainty of flows may better be expressed in relation to the 

uncertainty of other flows in a system (Klinglmair et al. 2016) reflects in Eq. 12, where the 

uncertainty of each individual flow is not only a function of its specific ID, but also expressed in 

relation to the sum of all ID in the system. 

 

2.3.4.2 Uncertainty of balanced material flow systems 

By balancing material flow systems, conflicting model input data are reconciled and data gaps are 

closed. As a result, the uncertainty of a system decreases (i.e., the consistency of a system increases) 

when it is balanced. Consequently, the uncertainty after balancing (Ub) should be lower than the 

uncertainty before balancing (Uap). A typical application for balancing material flow systems is the 

software STAN (www.stan2web.net). In STAN, an algorithm based on the weighted least square 

method is implemented for data reconciliation. A system with information on flow quantities (linear 

constraints) is reconciled based on the relation between factors such as standard errors (see Cencic 

(2016a)). In this work, the information defects are used as factors in data reconciliation with software 

STAN.  

The uncertainty remaining in a system after balancing (Ub) is computed by replacing IDFi in Eq. 12 

by IDFi,b (information defect of Fi after balancing) and it is 𝑈𝑏 ≤ 𝑈𝑎𝑝. As both Ub and Uap are 

composites of S, the difference between the actual system uncertainty (Uap or Ub) and the system size 

S is referred to as the information content of a material flow system. 

 

2.3.4.3 Weighted uncertainty of balanced material flow systems 

While some flow quantities XFi are known before balancing (a priori data with IDFi ϵ (0,1)), others 

are typically unknown (data gaps with IDFi=1). After balancing a system, all flow quantities XFi,b in a 

system are known. Some of these flows may be quantitatively more relevant than others. Intuitively, 

knowing quantitatively major flows better contributes more to the overall state of knowledge about a 

material flow system than knowing quantitatively minor flows better. To also consider the 

quantitative relevance of flows within a system, the uncertainty measure U is adapted. Each flow is 
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weighted by 
𝑋𝐹𝑖,𝑏

∑ 𝑋𝐹𝑖,𝑏𝑖
, where XFi,b is the quantity of a balanced flow, multiplied with the number of 

flows nF so as not to change the magnitude of the summed U-measure. Combining the balanced 

information defects and the balanced flow quantities, this gives the weighted uncertainty measure 

Ub,w, which is 

 

𝑈𝑏,𝑤 = − ∑
𝑋𝐹𝑖,𝑏𝑛𝐹

∑ 𝑋𝐹𝑖,𝑏𝑖
 𝐼𝐷𝐹𝑖,𝑏 𝑙𝑜𝑔

𝐼𝐷𝐹𝑖,𝑏

∑ 𝑋𝐹𝑖,𝑏𝑖
 

𝑛𝐹

𝑖=1

 Eq. 13 

By means of Eq. 13, it can be expressed that, given data of good quality on the quantitatively most 

relevant flows of a system (large XFi,b), the information content of the system is high or, conversely, 

the uncertainty of this system is low. 

  

2.3.5 Complexity of material flow systems 

As motivated by Allenby (2009), complexity may be regarded as a system property which involves 

both the system size and linkage patterns within a system. This relates to the understanding of 

Rutledge and colleagues, where a system is maximally complex (or non-trivial) if it consists of many 

elements and when each of these elements is connected to every other element in the system. 

Respectively, a trivial network structure, such as a line network of arbitrary length, is of little or no 

complexity, although it may be of considerable size. Recalling the useful feature of Eq. 9 and Eq. 10 

to allow for combined consideration of intensive (system structure) and extensive (system size) 

dimensions motivates to apply the metrics for aggregated characterization of MFA networks. 

 

Each flow Fi is considered to define a subset. In an MFA system, Fi connects a source process yi to a 

target process zi. At both its source and target process, Fi probably has a number of neighboring 

flows in the sense of flows originating also from yi or also entering zi (see Figure 15). 

 

 

Figure 15: Each flow Fi defines a subset with two characteristics: The outdegree of its source process yi (nyi) 

and the indegree of its target process zi (nzi). A flow from zi to yi is referred to as nyizi=1. 
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Referring to the number of flows leaving yi and entering zi as the outdegree of process yi (nyi) and the 

indegree of process zi (nzi), denoting a flow Fi from yi to zi as nyizi=1 and considering the total number 

of flows nF in a system, Eq. 9 is reformulated as a measure for the triviality T of a system, so that 

 

 

𝑇 = 𝑛𝐹 ∑
𝑛𝑦𝑖𝑧𝑖

𝑛𝐹

𝑛𝐹

𝑖=1

𝑙𝑜𝑔 
𝑛𝑦𝑖𝑧𝑖𝑛𝐹

𝑛𝑦𝑖𝑛𝑧𝑖
=  ∑ log

𝑛𝐹

𝑛𝑦𝑖𝑛𝑧𝑖

𝑛𝐹

𝑖=1

 Eq. 14 

 

and its counterpart, the complexity C of a system, is formulated as  

 

 

𝐶 = −𝑛𝐹 ∑
𝑛𝑦𝑖𝑧𝑖

𝑛𝐹

𝑛𝐹

𝑖=1

𝑙𝑜𝑔 
𝑛𝑦𝑖𝑧𝑖

2

𝑛𝑦𝑖𝑛𝑧𝑖
=  − ∑ log

1

𝑛𝑦𝑖𝑛𝑧𝑖

𝑛𝐹

𝑖=1

 Eq. 15 

 

Simple examples are provided in Table 6. In the most trivial topology (a line network, example A), it 

is S=T and C=0. C increases with nF and more complicated linkage patterns in example B and 

example C. Under the condition that no process connects to any other process by more than one flow, 

systems with np processes are maximally complex if they have nF,max=(np-1)∙np flows and if each 

process connects to every other process in the system (example D). In such maximally complex 

topologies, there always is a T component and, with increasing nF,max, it is 
𝐶

𝑆
→ 1 and 

𝑇

𝑆
→ 0. For all 

above described topologies, it is S=T+C. 

 

Real-world MFAs typically are between the extreme cases illustrated in example A and example D in 

Table 6. As line networks are untypical topologies of material flow systems, there always is a C 

component in a realistic MFA. Because of MFA-specific structural limitations, C is never maximal. 

These limitations include that flows crossing the system boundary originate from or enter processes 

with an outdegree (in the case of import flows) or an indegree (in the case of export flows) of one. 

Also, pairs of processes are typically not connected in both directions but in one direction only. 

According to Eq. 11 - Eq. 15, each individual flow Fi contributes to the aggregated measures by a 

specific degree, which enables distinguishing flows from one another according to their respective 

uncertainty in the system context and their configuration in the system structure. This is further 

elaborated in two case studies presented in the following. 
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Table 6: Four examples (A-D) for illustration of the proposed system measures S (system size), U (uncertainty), T 

(triviality) and C (complexity). F1-F5 are the flow numbers. The numbers next to the flows designate the information 

defects IDFi (here considered equal for all flows to illustrate the influence of system size on the U measures). The dotted 

line represents the system boundary, flows crossing the system boundary are referred to as import or export flows. 

 Graph 
System 

measures 

A 

 

S = 4.8 

U = 1.4 

T = 4.8 

C = 0.0 

B 

  

 

S = 8.0 

U = 2.4 

T = 6.0 

C = 2.0 

C 

  

 

S = 11.6 

U = 3.5 

T = 7.6 

C = 4.0 

D 

 

 

S = 15.6 

U = 4.7 

T = 3.6 

C = 12.0 

 

 

2.3.6 Application of the measures 

The application of the proposed measures has been illustrated in simple hypothetical examples in 

Table 6. The measures can also be applied to full-scale MFAs, as presented in the following. 

Buchner et al. (2014) provide a detailed analysis of aluminum (Al) flows in Austria for the year 2010 

(Figure 16). The aluminum MFA consists of 77 flows (nF=77). The sum of all XFi,b in the system is 

about 4600 kilotonnes per year.  
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Figure 16: Flowchart of the 2010 Austrian aluminum flow system (Buchner et al. 2014). 

In van Eygen et al. (2016) a detailed study of plastics flows in Austria for the year 2010 is presented 

(Figure 17). The plastics MFA consists of 88 flows (nF=88). The sum of all XFi,b in the system is 

about 15,000 kilotonnes per year. 
 

 

 

Figure 17: Flowchart of the 2010 Austrian plastics flow system (van Eygen at al. 2016). 
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The quality of model input data (information defects IDFi) of the two studies (Figure 16, Figure 17) 

has been evaluated according to Schwab et al. (2016b). The measures for uncertainty and complexity 

in MFA (calculated according to Eq. 11- Eq. 15) of the case studies are listed in Table 7.  

Table 7: Measures for the information content and structure of the aluminum and plastics systems 

 

 

The absolute magnitude of the measures enables comparing the aluminum and the plastics systems to 

one another in an absolute sense. The fact that the Al system consists of fewer flows than the plastics 

system reflects in the measure S (Table 7). Combined absolute and relative comparisons of the 

measures provide useful information about MFA systems, as illustrated in Figure 18. A list of all 

input variables and of each individual flows’ contribution to the total system uncertainty and 

complexity is provided in appendix 1. 
 

 

Figure 18: Information content of the aluminum and plastics MFAs (calculated as differences between S, Uap 

and Ub) and their triviality and complexity. 

 Aluminum Plastics 

System size 

S 483 568 

Uncertainty 

Uap 196 335 

Ub 99 202 

Ub.w 71 168 

Structure 

T 270 296 

C 212 272 
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By means of the ratio of the uncertainty measures S, Uap and Ub, the information gain from a 

qualitative system to a system with a priori information and a balanced system can be quantified. 

The initial uncertainty of the qualitative Al system is S=483. Considering the available a priori 

information on flows Fi, the uncertainty decreases to Uap= 196. By balancing (data reconciliation and 

bridging of data gaps), the uncertainty in the system decreases to Ub= 99. In the plastics system, the 

uncertainty decreases from S=568 to Uap=335 and to Ub=202. The plastics flow system is both 

relatively and absolutely speaking more complex than the aluminum flow system, as it can be seen 

when comparing the absolute magnitude of C and the relation of C to S of the both case studies. In 

both systems, Ub,w is lower than Ub. This indicates that, both in the Al and plastics system, 

quantitatively dominating flows are known better than quantitatively minor flows (Table 7). The a 

priori data of the Al system is better than the a priori data of the plastics system. This is indicated by 

the fact that Uap equals less than half of S in the Al system, while Uap of the plastics system is only 

two fifth lower than S.  By balancing, the uncertainty of the aluminum system decreases by 21% and 

the uncertainty of the plastics system by 24%. The relation of Ub,w to S indicates that the aluminum 

system is known to an extent of 85% and the plastics system is known to an extent of 70%.  

 

2.3.7 Usefulness and limitations 

A convenient feature of the uncertainty and complexity measures presented in this thesis is that both 

phenomena are quantified as formally linked measures and expressed in the same abstract dimension. 

They enable evaluating the system structure and the state of knowledge on different MFAs or on 

MFAs at different points in their development process by quantitative means. The information gained 

by performing MFA procedures can be quantified and compared. As shown in the aluminum and 

plastics case studies, the information content of material flow systems can instantly be derived from 

the uncertainty of systems once this uncertainty is quantified. A practical characteristic of the 

measures S and U is that they represent both the information needed for construction of a qualitative 

system of flows and the data for the quantification of these flows. The more flows there are in a 

system, the higher is the total system uncertainty (resp., the potential information content of a 

system) and the more and better data are needed to minimize U. The presented procedure focuses on 

flows. Transfer coefficients, stocks and stock change rates, which are also entities that introduce 

information or uncertainty into material flow systems and that add to the complexity of systems, are 

not considered. It thus may be useful to implement these entities into the measures in further 

research. Stock change rates, for example, can be treated identically to import or export flows (which 
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originate from or enter processes with outdegree or indegree one). That way, they would contribute 

to S, reflect in the structural measures T and C and, after assigning an ID, also in the uncertainty 

measures U.  

 

It has to be recalled that the actual design of a system may for various reasons not be complete and 

representative, for example because it depends on probably arbitrary decisions of agents (Heijungs 

2015). Although differences in system design have been identified as to be relevant in MFA, 

distinctions and comparisons regarding system structures are intricate (Klinglmair et al. 2016). The 

proposed measures T and C provide an improved basis for future analyses and comparisons. While 

the term “complexity” of MFAs has been used in a qualitative manner (Klinglmair et al. 2016), it can 

now be expressed by quantitative means. Increasing complexity C of a system relates to increasing 

information demand of this system. Practically speaking, this means that an agents’ effort for data 

acquisition increases with C. Despite these possibilities, the proposed procedure for structural 

analysis is limited regarding adequate representation of some MFA-untypical topologies, which may 

be chosen by agents performing an analysis. This applies for example to loops (flows leaving and 

entering the same process in the studied unit time interval), such as flow 18 in the aluminum case 

study, and to parallel flows (flows from and to the same source and target process), such as flows 14 

and 15 in the aluminum case study (Figure 16). Parallel flows result from flows being represented in 

a more disaggregated manner than processes and can in virtually all cases be prevented by respective 

system design, that is, by disaggregating either the source process or the target process, for example 

by use of subsystems (as it is for flows 30-35 in Figure 16). For one topological particularity, the 

characteristic of the structural measures that the contribution of each Fi to C and T is expressed in 

relation to the total number of flows in the system yields notable, though unproblematic, results. For 

a Fi that connects processes with particularly high outdegree nyi and indegree nzi, so that nyi∙nzi >nF, 

the contribution of this Fi to T takes negative values (cf. the concept of “pointwise mutual 

information” in information theory). This is not the case for any flow in the two systems analyzed in 

this thesis and, though conceptually possible, improbable in real-world MFAs. Such situations reflect 

particularly high structural heterogeneity of systems, which entails that the proportions different 

flows have in C and T shift. A Fi with a negative contribution to T has a proportionately higher 

contribution to C and the aggregate measures C and T sum up to S. The usefulness of the proposed 

measures for analysis and comparison of MFA systems is further illustrated in the following chapter. 
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3 Cases 

For illustration of the concepts introduced in chapter 2, the four Austrian material flow systems 

introduced in the previous paragraphs are analyzed and compared: phosphorus (Figure 4), palladium 

(Figure 11), plastics (Figure 17), and aluminum (Figure 16). The phosphorus system (Zoboli et al. 

2015) has been addressed in paragraph 2.1, the 2011 palladium (Laner et al. 2015a) in paragraph 2.2, 

and both the 2010 plastics system (van Eygen et al. 2016) and the 2010 aluminum system (Buchner 

et al. 2014) in paragraph 2.3. In paragraph 2.1, only the main system on phosphorus has been studied 

(nF=72). In this chapter, the whole system including subsystems is analyzed (nF=122). Note that 

identifying differences in the studies is not to say that one MFA is done “better” than another (MFA 

results depend on many factors, such as the specific questions authors intend to answer and the 

availability of both qualitative and quantitative information), but to show that the proposed 

procedures can be used to detect and quantify differences in MFAs. 

 

In paragraph 3.1, the databases of the four case studies are analyzed and differences or similarities 

are described by comparison of selected data attributes. In paragraph 3.2, information defects (ID) of 

the four case studies are quantified and compared. In paragraph 3.3, the structure of the systems is 

analyzed and the information content of the material flow systems is quantified and compared. 

 

3.1 Data characterization 

The data structures of material flow systems vary with scope and goal of the studies, and 

consequently also reflect in the comparisons provided in this paragraph. Comparisons reveal 

interesting differences and similarities of material flow systems, as reflected in their database. Before 

moving to the data attributes, general characteristics of the four compared systems and their 

databases are compared in Table 8. Phosphorus is the most detailed out of the four studied systems, 

as it also reflects in the quantity of collected data elements and the number of entities (such as rates 

and concentrations) per study. The share of data gaps is highest in the palladium and the plastics 

studies, where more than one third of the flows is unknown a priori, and least for the phosphorus 

study, where 2% of the flows are unknown a priori. More details on the databases are provided in 

Appendix 1. 
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Table 8: Characteristics of the four studied material flow systems and their databases 

Database characteristics Quantity 

 Phosphorus Palladium Plastics Aluminum 

Number of flows nF 122 25 88 77 

Unknown flows (a priori) 3 9 33 18 

Number of processes 56 12 37 28 

Number of subsystems 8 2 1 1 

Number of stocks 8 5 12 8 

Number of data elements 399 48 70 73 

Number of entities 258 30 70 73 

Average number of entities per flow 2.2 3.2 1.3 1.2 

Average number of data elements per entity 1.5 1.6 1 1 

Share of flows that are described directly by 

autonomous data (%) 
5 10 63 63 

Isolated values (%) 78 67 100 100 

 

The databases of the plastics and aluminum study are of similar size. For both studies, comparatively 

high shares (63%) of directly applicable data (tonnes of plastics, resp. aluminum, per year) are 

available in the form of isolated values. For phosphorus and palladium, flows are typically quantified 

based on information on material quantities and substance concentrations, and autonomous data are 

available for few flows (5%, resp. 10%). Information on concentrations is frequently based on more 

than one reference or sample, which reflects in the lower share of isolated values in the phosphorus 

and palladium studies. Differences in the databases become also evident when comparing the 

producer categories, that is, the shares of data elements provided by authorities, by science or 

economy, or by civil society actors (Figure 19). 

 



  

 

51 

 

 

Figure 19: Producer category of data elements. 
 

Generally speaking, most data comes, in varying shares, from authorities and science. Civil society 

actors, such as consumer associations or environmental organizations, play a subordinate role as 

information producer in the four studies. Shares of data from economy vary, presumably influenced 

by factors such as economic relevance of the material, market size (small markets are observed to 

rather keep their data confidential), and absence of data from authorities in the form of official 

statistics, what makes the focus of MFA practitioners shift towards agents from economy as 

information sources. In case there are data neither from economy nor from authorities and, at the 

same time, empirical scientific information is short, MFA modelers increasingly rely on data derived 

from assumptions or from speculation, as it is the case for palladium in Figure 20 (note: information 

based on reporting, such as data from official statistics, is also considered “empirical” here, since the 

data collection processes behind these statistics ideally are empirical). 

 

Figure 20: Origination category of data elements. 
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Figure 20 illustrates a central difference between MFAs, which is the share of empirical versus 

derived information. From phosphorus and aluminum to plastics to palladium, the MFAs are 

decreasingly based on empirical information. For aluminum, trade statistics explain a major share of 

the results plotted in Figure 20. Increasing public interest in phosphorus as a pollutant and as a scarce 

resource reflects in increasing number of science-based reports published by ministries. In the 

plastics MFA, a vast share of information is based on models and calculations (origination category 

“derived (mainly from data)”). While Figure 20 illustrates a difference between the MFAs, Figure 21 

shows a similarity, which is the format of collected information. 

 

Figure 21: Entity class of information elements. 

The entity class is widely homogenous for different MFAs as, obviously, most data are collected in 

the format mass/time. Yet, the diagrams plotted in Figure 21 show differences between the studies, 

which are either because of conceptual differences or because of specific material characteristics or 

applications: For palladium, concentrations have not been considered in the format mass/mass (as for 

phosphorus and aluminum; note that in the plastics MFA, mass/mass are transfer coefficients), but as 

concentration per item. For phosphorus, areas are an important additional class of entities, reflecting 

the relevance of phosphorus in fertilizers. Differences between studied materials reflect, to a higher 

degree, in Figure 22, where information elements of the four studies are compared regarding the type 

of good they refer to. 
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Figure 22: Type of good of the entities. 

 

Most information collected for the phosphorus study relates to waste materials (such as sewage, 

manure). In the palladium case study, data has mainly been collected for palladium in automobile 

catalysts (durable consumer goods). Data on plastics has predominantly been collected on consumer 

goods and waste. The data structure of aluminum indicates a broad range of relevant product types, 

where industrial goods (such as semis and ingots) were the most data-intensive. The aluminum study 

has a focus on understanding aluminum recycling, which reflects in the share of data on waste (end-

of-life materials such as scrap have here been categorized as waste). 

 

According to the share of collected information elements, material flow systems are dominated by 

different natural or anthropogenic processes (Figure 23). As reflected in the data structure, market 

activities influence all four analyzed material flow systems. While processes of the natural 

environment (biosphere, geosphere) impact on the phosphorus system, technology appears to be, as 

inferred from the information base, a more relevant driver of the palladium, plastics and aluminum 

systems. 
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Figure 23: Primary determination of entities. 

 

The data characterization matrix (paragraph 2.1.2) consists of more than the here compared five data 

attributes. Information for further comparisons is provided in Appendix 1. Data quality-relevant 

attributes are used for quantification of information defects in the next paragraph. 
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3.2 Data quality evaluation 

The results of the data quality evaluation procedure proposed in paragraph 2.2 are displayed in Figure 

24 (phosphorus), Figure 25 (palladium), Figure 26 (plastics) and Figure 27 (aluminum). 

Documentations of data attributes, IDi and IDtot are provided in Appendix 1. Note that here, the 

quality of a priori data is evaluated, and that low information defects refer to good data quality. 

 

Figure 24: Information defects (IDF) of the phosphorus case study. 

There are few data gaps in the phosphorus case study (Figure 24). Most IDF are between 0.2 and 0.5. 

 

Figure 25: Information defects (IDF) of the palladium case study. 

In the palladium study (Figure 25), IDF increase and the number of data gaps increases when moving 

downstream. IDF are mostly between 0.2 and 0.6. 
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Figure 26: Information defects (IDF) of the plastics case study. 

In the plastics system, IDF are mostly between 0.2 and 0.5. Data gaps are predominantly in the use 

sector (flow numbers 4.1-4.36).  
 

 

Figure 27: Information defects (IDF) of the aluminum case study. 

 

The IDF in the aluminum study are comparatively low (mostly between 0.1 and 0.4), but there are 

more data gaps than in the phosphorus case. In Figure 27, a slight trend of increasing IDF when 

moving from primary production and manufacturing towards use and end-of-life sectors can be 

observed. Most data gaps are in the use (flows 36-41) and in the waste management (flows 64-73) 

sectors.  

The differences in the IDF patterns and the share of data gaps in the case studies reflect in Figure 28: 

Phosphorus, the upper curve, has comparatively low IDF and few data gaps. Aluminum has, in 
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comparison to the other studies, the lowest information defects but a number of data gaps. Plastics 

and palladium have a comparable share of data gaps, but the IDF of the plastics study are lower. 

 

 

Figure 28: Cumulative distribution of IDF in the four case studies. 

 

According to the IDF and with reference to Figure 28, the four studies can be ranked: Regarding the 

model input information, the phosphorus and the aluminum studies seem to be more reliable than the 

plastics and palladium case studies. Beyond this relative, normalized comparison, the system metrics 

proposed in the following paragraph facilitate absolute comparisons of studies by their information 

content and system structure. 

3.3 System structure and information content 

An obvious difference between the phosphorus, palladium, plastics and aluminum MFAs is the 

number of flows nF in the system (see Table 8 in paragraph 3.1). This reflects in the measure S (Eq. 

11), which represents the uncertainty of a qualitative material flow system. Considering the IDF 

(paragraph 3.2) in the uncertainty measures (Eq. 12, Eq. 13) and applying the measures for network 

structure (Eq. 14, Eq. 15) results in metrics useful for distinguishing the four material flow systems 

(see Table 9). 

For every system, the uncertainty decreases from the qualitative system (S) to a system with a priori 

data (Uap) to a balanced and reconciled system (Ub). The measure of uncertainty weighted by flow 

quantities is designated as Ub.w. 
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Table 9: Measures for the information content and system structure of the four case studies, in “informational 

units” (see paragraph 2.3) 

 Phosphorus Palladium Plastics Aluminum 

System size 

S 846 116 568 483 

Uncertainty 

Uap 300 78 335 196 

Ub 229 53 202 99 

Ub.w 234 55 168 71 

Structure 

T 475 92 296 270 

C 371 24 272 212 

 

The information content of material flow systems is specified as the difference between the 

uncertainty of a qualitative system (S) and the uncertainty of a quantitative system (Uap, Ub, or Ub,w), 

that is, as the amount of uncertainty erased (amount of information gained) during the preparation of 

an MFA. The uncertainty measures listed in Table 9 are visualized in Figure 29 (left bar for each case 

study). 

 

The measures T and C reflect the different system structures of the MFAs. Increasing T refers to 

systems of increasingly trivial structure, increasing C refers to systems of increasingly complex 

structure. T and C as listed in Table 9 are visualized in Figure 29 (right bar for each case study) and 

enable distinguishing material flow systems by their system structure. The phosphorus system is – 

absolutely speaking – the most complex system as it has the highest C. Considering the ratio between 

C and S, the plastics system is – relatively speaking - more complex than the phosphorus system. 



  

 

59 

 

 

Figure 29: Measures of the information content (left bars) and system structure (right bars) of the four case 

studies, in “informational units” (see paragraph 2.3).  

 

The results visualized in Figure 29 enable material flow systems to be distinguished by their 

information content. Comparing the plastics and aluminum cases, it can be seen that, after balancing, 

the absolute information content of the plastics study is similar to the information content of the 

aluminum study. However, at the same time, the absolute uncertainty remaining in the plastics 

system is more than double the uncertainty remaining in the aluminum system. It can also be said that 

the palladium study has, absolutely speaking, the lowest information content, and, relatively 

speaking, the highest uncertainty. In relative terms, based on a comparison of S and Ub,w, it can be 

said that the phosphorus system is known to the extent of 72 %, the palladium system to an extent of 

53%, the plastics system to an extent of 70% and the aluminum system to an extent of 85%. In 

absolute terms, the phosphorus study has the highest information content. 

3.4 Merging the case study results 

Combinations of the results of the data characterization (paragraph 3.1), data quality evaluation 

(paragraph 3.2) and system measures (paragraph 3.3) provide various insights into the informational 

basis of material flow systems. A few reflections on the results are presented in this paragraph, with a 

focus on assessing how reliable MFA results are. The usefulness of distinguishing material flow 

systems by their information content and their system structure is addressed in chapter 4. 
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In paragraph 3.1, the databases of four MFA systems have been characterized by attributes such as 

the origination and format of data elements, or the type of real-world objects the data refer to. The 

results show that the phosphorus and aluminum flow data exhibit a higher percentage of empirical 

support than the plastics data, which is mainly derived from other data, and than data of the 

palladium study, which is mainly derived from assumptions. From the comparisons provided in 

paragraph 3.1, one may infer that, according to the databases, the results of the phosphorus MFA are 

more reliable than the results of the aluminum MFA, which are more reliable than the results of the 

plastics MFA and than the results of the palladium MFA. 

 

Beyond comparisons of MFA systems by means of patterns in their databases, the results of 

paragraph 3.2 enable material flow systems to be distinguished by their data quality and data gaps. 

The aluminum database consists of better data than the phosphorus database but, at the same time, 

has a higher share of data gaps. According to paragraph 3.2, the data on both phosphorus and 

aluminum are of better quality than the data of the plastics database, which also has a much higher 

share of data gaps. The palladium database has both a high share of data gaps and includes mainly 

data of poorer quality. 

 

In paragraph 3.3, data quality and data gaps are both integrated into measures of information content. 

While a priori data contribute more to the information content of the phosphorus than of the 

aluminum study, also because of the lower number of data gaps, relatively more is known about the 

aluminum system after balancing. For palladium, both the information gained by collection of a 

priori data and by balancing is lower than for all three other studies. While the absolute information 

content of the phosphorus MFA and the relative information content of the aluminum MFA are the 

highest, the information gained by system balancing is, absolutely and relative to total system 

uncertainty, highest in the plastics MFA. Based on the case studies presented in this chapter and 

according to the procedures proposed in this thesis, it appears that MFA data quality cannot per se be 

judged based on patterns in the data structure alone since data quality depends also on combinations 

of data attributes and is specific for every flow in its particular application context. In the same sense, 

the information content of MFAs cannot per se be inferred from information on data quality since it 

also depends also on the configuration of flows in the system context. A combination of the steps, as 

elaborated in this thesis, however, expresses the phenomena “data characteristics”, “data quality” and 

“information content” as connected features and provides thorough documentation, reaching from the 

very components of an MFA, data and its attributes, to aggregate measures for system description. 
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4 Scientific contribution and limitations 

This chapter concludes the thesis with general considerations on the benefits and limitations of the 

proposed procedures and metrics. For more specific discussions on the data characterization 

framework, refer to paragraph 2.1.4, for discussions on the data quality evaluation procedure, to 

paragraph 2.2.4, and for discussions on the measures for information content and system structure, to 

paragraph 2.3.7.  

 

In this thesis, information in MFA has been framed as an object of research. Limitations to reliability 

of MFA results have been attributed to problems of limited knowledge such as the absence of 

statistical information, data quality shortcomings, or the presence of subjectivity. The limitations of 

MFA information have been conceptualized as a degree of belief and formalized as so-called 

information defects. As to the premise that every piece of information used for the compilation of an 

MFA impacts on the uncertainty of the results, these information defects are elaborated on basis of a 

detailed information inventory. Recognizing uncertainty as a property of systems, the data quality of 

each flow in a system in combination with information on the system size reflects in measures of the 

information content of a given MFA. These measures can be used to compare MFAs of different 

substances, regions or years to one another. For example, phosphorus studies of Austria, Denmark 

and the Netherlands can be analyzed regarding structural and informational differences. It can be 

determined, for example, whether MFAs of different industry metals all lack reliable information in 

similar sectors. By use of the measures for system structure, it can be determined whether structural 

differences between systems can be attributed to particular sectors, such as the production or the 

recycling sector.  

 

The value of the uncertainty concept, which is a constituting part of this thesis, is that it does not aim, 

as other MFA uncertainty concepts (Hedbrant and Sörme 2001; Laner et al. 2015b), to quantify 

uncertainty ranges, which may convey the impression of empirical evidence even if an MFA is 

actually not backed by statistical information. In avoiding the use of uncertainty ranges, uncertainty 

is here quantified in an abstract dimension and material flow systems can be compared both in an 

absolute and a relative sense. Besides comparison of MFA systems by means of aggregate measures, 

the procedure proposed in paragraph 2.3 is helpful for identifying weaknesses in MFA systems, that 

is, for identifying particularly certain or uncertain flows or sectors in a system. This can be 

represented in a convenient way by means of flowcharts, as proposed in Figure 30. It illustrates, that 

in the aluminum system (Figure 16), quantitatively major flows contribute most to the system 
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uncertainty Ub,w, even though they are mostly known better than quantitatively minor flows (compare 

Figure 27). 

 

Figure 30: Uncertainty Ub,w of the flows in the aluminum MFA displayed as a flowchart. Flow widths are 

proportional to the weighted uncertainty per flow (Eq. 13). For the total system, it is  Ub,w=71. 

The differences between the uncertainty measures are useful for system design as they help detecting 

potential flaws in the MFA: The difference between Uap and Ub indicates the degree to which a priori 

data of an MFA system is conflicting and has to be manipulated to meet mass balance constraints 

(data reconciliation). A comparatively high degree of data reconciliation indicates either that the 

respective material flow data are inconsistent, or that the qualitative system is unrealistic and has to 

be revised (or both). Additional flowcharts for illustration are provided for the plastics and aluminum 

case studies in appendix 7. The results for all four case studies are provided in appendix 1. 

 

Representations of MFA systems are not always identical to the physical reality, partially because 

they are designed based on probably limited quantitative and qualitative information, as argued in 

Klinglmair et al. (2016). Typically, the level of aggregation or disaggregation in MFA is not only 

influenced by the scope of a study, but also by information availability. To find the right balance 

between aggregation (possible loss of information) and disaggregation (possible increase of 

uncertainty) in view of the available database, the measures S and Uap proposed in paragraph 2.3 can 

be utilized: The more flows there are in a system, the higher is S and the more and better data are 

needed to minimize Uap. In an informationally optimized system, it is (S-Uap)/S 1. This optimum 

can be reached by increasing S (distinguishing more flows so that S  ∞) while decreasing Uap 

(incorporating better data so that Uap  0), or by finding the optimal S for a given Uap. This 

antagonistic interpretation of S and Uap shows that, depending on the available information basis, it is 
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usually not helpful to increase the resolution of a system when no adequate data are available. By 

contrast, given rich and detailed information, increasing the system resolution is beneficial in the 

sense of increasing S and decreasing Uap. When increasing the resolution of a system (when 

distinguishing more flows in a system), the system complexity C increases. Flows that contribute 

most to C and sectors of particularly high or low complexity can be identified and compared 

quantitatively. As illustrated in Figure 31, the aluminum system as prepared by Buchner et al. (2014) 

is most complex in the production and trade sectors. 

 

Figure 31: Complexity C of the flows in the aluminum MFA displayed as a flowchart. Flow widths are 

proportional to the contribution per flow to C (Eq. 15). For the total system, it is C=212. 

Beyond the applications of information defects (ID, paragraph 2.2) in the measures presented in 

paragraph 2.3, they can also be understood as new quantities for application as variables in other 

MFA procedures. For example, ID can be applied as variables in MFA models, for example in data 

reconciliation algorithms that include indicators of data quality (such as Kopec et al. (2015)). ID 

could also be a means for estimating standard deviations, combining aleatory uncertainty and 

epistemic uncertainty, as proposed by Cencic (2016b). As uncertainty ranges are, despite their 

limitations, convenient for MFA practitioners, ID may also be translated to symmetrical or 

asymmetrical uncertainty ranges. Here, the data characterization matrix (DCM) can be useful for 

more information-specific characterization of data uncertainty ranges. Instead of generally assuming 

normal distributions, different distribution geometries may be systematically assigned to different 

entities based on attributes documented in the DCM proposed in paragraph 2.1, for example based on 

the data attribute “property type”  (intensive or extensive entities) or other attributes that describe the 

nature of the entity considered. The formal requirements for computing arbitrary distributions in 
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MFA have been elaborated (Cencic and Frühwirth 2015). Further probabilistic and possibilistic 

methods for data manipulation in MFA, as proposed for example in Laner et al. (2015b) and Džubur 

et al. (under revision), require data quality measures as model input parameters and the ID could be 

applied. 

 

The DCM (paragraph 2.1) has been designed to cover a wide range of data characteristics, more than 

are actually useful for data quality evaluation. This is to conserve meta-information which may 

otherwise get lost, and enables interesting evaluations of MFA databases, as illustrated in the case 

studies in paragraph 3.1. Certainly, the DCM requires rich input of meta-information, and some of 

this meta-information may not be available or may have been lost over time. In such cases, MFA 

practitioners could directly estimate the information defects and move on to quantification of 

information content according to paragraph 2.3. Such estimations may be accurate and useful for 

further analysis. However, the analysis would then not only miss out the comprehensive 

documentation of meta-information but, as always when estimations are used without clear 

documentation, may lose some degree of transparency and replicability.  

 

It is important to note that subjectivity is an inevitable component of the proposed concept. Agents 

with different perspectives, backgrounds and incentives may have differing perceptions of applied 

data. This may result in varying data characterization and, consequently, in different ID 

specifications and thus in differing information content. However, it has been argued that subjectivity 

is a general component of information (Arndt 2004). As subjectivity is unavoidable, the concept 

presented is designed to restrict subjectivity regarding MFA information by systemizing the 

characterization and evaluation procedure. Despite the systematic procedure, it should be recalled 

that the information defects (paragraph 2.2) are, although the formalizations have been carefully 

elaborated, not statistically backed measures but systematic, formalized estimations. They should be 

understood as belief indicators. As long as there is no statistically exploitable data, MFA practitioners 

are limited to using estimations such as the information defects proposed here. Statistical methods 

should be applied instead whenever the available data are sufficient. It has been widely argued for 

improvements in data quality and data availability and relevant players have been identified 

(Wiedmann et al. 2011; Rechberger 2015). One can hope that in the future, available data will 

increasingly allow use of statistically established methods in MFA data quality evaluation. 
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Beyond the contributions in a scientific context, the proposed measures bring important benefits for 

communicating MFA results to third parties such as decision makers in industry and policy making.  

Lazarevic et al. (2012) reflect on the ability of tools in Industrial Ecology to objectively inform 

decision makers, that is, to provide an adequate knowledge base for making informed decisions. 

They argue that value choices, subjectivity and perspectives impact not only on the interpretation of 

results, but also on the actual generation of results. It is concluded, as supported for example by 

Finnveden et al. (2007) and Ekvall et al. (2007), that no environmental system analysis study can 

provide undisputable, clear-cut solutions or completely objective information. This holds probably 

even more when (objective) statistical information is absent, as it typically is in MFA. In order to 

increase the confidence of decision makers in MFA results, it is important to communicate more than 

aggregate results on a material level, but to also provide relevant information on the informational 

basis of MFA systems. This can be facilitated by the procedures proposed in this thesis. The 

aggregated measures for information content can be used to communicate whether MFA results are 

reliable, and the uncertainty per flow can be used to indicate weaknesses in the systems (see Figure 

30 and appendix 7). As to the comprehensive documentation in the DCM, the aggregated results can, 

if desired, easily be broken down to a level of detail making transparently visible that they depend on 

evaluations of individual attributes of data elements used in an MFA.  

 

The procedure proposed for quantitative evaluation of information content and system structure 

(paragraph 2.3) may also be applied in other areas of the field of Industrial Ecology. In principle, it 

can be used for analysis of all systems that can be represented as networks, such as life cycle 

inventories or input-output models. In MFA, it complements existing methodologies by supporting 

system design, optimized use of available information and communication of MFA results. Issues of 

data quality and system structure, which have been qualitatively discussed in previous research, can 

now be gauged and quantitatively compared by means of the measures proposed in this thesis. 

Despite these possibilities, information content and system design in MFA are, in the presence of 

limited information, inescapably subjective to a certain degree. This is both a limitation of and an 

incentive to utilizing the procedure proposed in this thesis, as it facilitates working with limited, 

nonstatistical information in a systematic and transparent way. It is hoped that, in the future, the 

proposed measures will quantify increasing information content of MFAs over time and help to 

increase the acceptance of MFA results in scientific and institutional contexts. 
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Glossary 

Complexity (system) A characteristic of a material flow system. A complex system has, as 

opposed to a trivial system, a non-trivial network topology.  

Data attributes Data-associated annotations concerning statistical properties, meaning, 

origination and application of the data. 

Database analysis A three-step procedure for analysis of MFA databases, consisting of data 

inventory, evaluation of data elements and analysis of data attributes. 

Data characterization 

matrix 

A template for systematic characterization of MFA input data and basis for 

data quality evaluation. 

Data element Representation of an entity by a numeric value (data point) or by more than 

one numeric values (interval, data set). 

Data quality Designates if data is “fit for purpose”. Data quality may be expressed by 

statistical measures or evaluated according to the ability of data to meet 

certain criteria.  

Data uncertainty A state of being uncertain about a phenomenon or event as a consequence of 

limited or missing information. 

Entity A real-world phenomenon or real-world object. 

Information Data plus meaning. 

Information background Origination and forming process of a piece of information. 

Information content Difference between the uncertainty of a quantitative MFA system and the 

uncertainty of a qualitative MFA system. 

Information defects Information shortcomings that reduce the degree of belief in a given piece 

of information to be true in a particular context. 

Information element A piece of information that represents an entity. An information element can 

consist of one or several data elements. 

Information level Information in MFA can be described on four levels (data element, 

information, information background and MFA information). 

MFA information Information with background that is put into context of an MFA study. 

System elements The components of material flow systems (“flows”, “processes”, “stocks”, 

and “materials”). 

Triviality (system) A characteristic of a material flow system. A trivial system has, as opposed 

to a complex system, a trivial network topology.  
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List of abbreviations 

A Absolute; a measurement scale of data attributes (“numbers”) 

B Binary; a measurement scale of data attributes (“yes or no”) 

C Structural complexity of a system 

DCM Data characterization matrix 

Fi Flow i 

ID Information defect 

k Positive constant 

N Nominal; a measurement scale of data attributes (“in words”) 

O Ordinal; a measurement scale of data attributes (“between 0 and 1”) 

P Process 

T Structural triviality of a system 

S “Informational” size of a system 

U Uncertainty of a system 

X Quantity of a flow 

y Source process of a flow 

z Target process of a flow  

Subscripts  

ap A priori 

b Balanced 

Fi Property of flow Fi 

S, R, P, C Information defects “semantic”, “representativeness”, “provenance” and “context”. 

A set of the four information defects S, R, P and C is designated as IDi. 

tot Total Information defect of an information element (combination of IDS, IDR, IDP 

and IDC) 

w Weighted 
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Appendences 

Appendix 1: Data characterization matrices including computation of information defects, 

information content and system structure 

The following Excel spreadsheets are provided online in the TU Catalog Plus (www.ub.tuwien.ac.at) 

and can be accessed via the library entry of this dissertation. 

 

A1.1: Phosphorus 

A1.2: Palladium 

A1.3: Plastics 

A1.4: Aluminum 
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Appendix 2: Attributes of the data characterization matrix (DCM) 

Information level Attribute group Attribute name Number Scale Description 

1 data element stat. characteristics data element form 101 N What form does the data element have? 

      location parameter 102 N Which location parameter is provided and introduced in the MFA? 

      value (numeric) 103 A What is the numeric value of this location parameter? 

      n 104 A What is the total number of samples? 

      min 105 A What is the min value? 

      max 106 A What is the max value? 

      distribution (form) 107 N What form does the probability distribution have? 

      distribution (paramet.) 108 A Which numeric values do the parameters of the distribution have? 

      dispersion (measure) 109 N Which dispersion measure is provided? 

      dispersion (numeric) 110 A Which numeric value does the dispersion measure have? 

2 information semantics description of meaning 201 N What is the meaning of the entity, described in natural language? 

      semantic precision 202 O Is the meaning of the entity precisely know and linguistically precise, or ambiguous or imprecise? 

    scale entity category 203 N Which category does the entity belong to? 

      entity class 204 N Which class does the entity belong to? 

      unit 205 N What is the unit of the entity? 

      sphere 206 N Is the entity part of the "anthroposphere" or part of the "natural environment"? 

      property type 207 N Is the data element extensive (dependent on the system size) or intensive (independent from the system size)? 

      mathematical form 208 N Is the entity discrete or continuous? 

      minimum (potential) 209 A What is the lowest possible value the data element could potentially have? 

      maximum (potential) 210 A What is the highest possible value the data element could potentially have? 

    complexity variety 211 O Does the entity refer to a vast number of possible real-world objects or to one particular object?  

      disparity 212 O How different are the real-world objects an entity refers to (e.g. "mobile phones" refers to a large number of different objects)? 

3 background availability existence 301 B Does the data element exist or not? 

  information   accessibility 302 B Is the data element accessible? 

      access restriction 303 N If not accessible, why not? 

    communication communication type 304 N How is the data element communicated? 

      access type 305 N How can the data element be accessed? 

      frequency 306 N How frequently is the data updated? 

    producer producer category 307 N In which sector was the data element produced? 

      producer type 308 N Which institution did produce the data element? 

      reference 309 N What is the specific reference? 

    origination origination category 310 N Was the data element empirically collected or derived (from data, assumptions, speculation)? 

      origination type 311 N How was the data collected? 

      origination type quality 312 O How is the quality of the origination type (precision of an empirical method, quality of a model, expertise of an estimator)? 

4 MFA information application in MFA utilization type 401 N Is the regarded data element applied for the description of a flow, a process, a stock or others? 

      autonomy 402 O Can the data element be applied in the study directly, or must it be combined with more data before? 

      layer 403 N Was this data element collected for quantification on the goods or on the substance layer? 

      type of good 404 N What kind of good does it refer to? 

    system relation primary determination 405 N Which sphere does primarily determine the value? 

      temporal variability 406 O How much does the value vary over time? 

      trend 407 N Is there a systematic temporal relation? 

      spatial variability 408 O How variable is the data over space? 

      further relation 409 N Is there, in addition to time and space, another relevant relation that could influence the adequacy of the data element? 

      variability by further relation 410 O How variable is the data element by this further relation? 

    system adequacy temporal divergence 411 A How well is the data element within the temporal system boundary? 

      spatial divergence 412 O How well is the data element within the spatial system boundary? 

      further divergence 413 O Is there a further divergence, (e.g. does the data element describe a similar, but different, process)? 

      adaptation (type) 414 N How was the data element adapted (e.g. scaled)? 

      adaptation (quality) 415 O How well does a data element after adjustment fit the system? 

      missing values     NA 
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Appendix 3: Code for the data characterization matrix (DCM)  

BINARY ATTRIBUTES (yes/no)     attribute values 
 

information level attribute group attribute no 0 1 

background information availability existence 301 The wanted data exist. The wanted data do not exist. 

background information availability accessibility 302 The wanted data are available. The wanted data are not available. 

 

ORDINAL ATTRIBUTES (ranked between 0 and 1) attribute values                   

information level attribute group attribute no. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

information semantics 
semantic 

precision 
202 

The entity is described in natural 

language in an unambiguous and 

precise way. 

  

  

  

  

  

  

  

    

The description of the entity in natural language is 

strongly ambiguous and imprecise. 

 
Complexity variety 211 

The data relate to a specific real-

world entity, e.g. " VW Golf 1.6, by 

2006", or "iPhone 5" 

      

  

          
The data relate to a vast group of entities of a 

similar class, e.g. "WEEE" 

  
disparity 212 

The values that describe objects or 

phenomena are homogenous. 

Example: Al-content of beverage 

cans 

          

        

The values to describe objects or phenomena are 

very widely spread or not manageable 

(heterogeneous). Example: Cu-content of mobile 

phones. 

information 

background 
origination 

origination 

type quality 
312 

The applied data collection method 

was conducted with good quality 

(precise measurement, estimator 

with a high level of expertise, good 

access to relevant information of an 

agent). 

                  

The applied data collection method was conducted 

with poor quality (imprecise measurement, 

estimator with poor level of expertise, scarce access 

to relevant information of an agent). 

MFA information 
application in 

MFA 
autonomy 402 

The data are applied autonomously 

in the study. 
                  

The data are applied in combination with a vast 

number of additional data elements. 

 
system relation 

temporal 

variability 
406 

The data do not vary (are constant) 

over time.                   
The data vary strongly over time. 

  

spatial 

variability 
408 

The data do not vary (are constant) 

over space.                   
The data vary strongly over space. 

  

variability 

by further 

relation 

410 
The data do not vary by a further 

relation. 

Little variability by further 

relation, for example for 

standardized technical 

processes, general socio-

cultural processes or 

globalized markets. 

                

High variability by further relation, for example for 

highly specialized processes (e.g. high tech), 

specific socio-cultural processes (e.g. consumer 

behavior), or markets (niche markets). 

 
system adequacy 

spatial 

divergence 
412 

The data fit the spatial system 

boundary. 

The data are on a different, 

but very similar spatial 

system (e.g. similar 

geography, nation with 

similar development status). 

      

  

        
The data are on a very different spatial system, or 

the location the data relate to is not specified. 

  

further 

divergence 
413 

The data fit the system, i.e. are not 

divergent by any further relation. 

The data are hardly 

divergent from the studied 

system (similar technical 

process, similar socio-

cultural process, similar 

market). 

      

  

        

The data are strongly divergent from the studied 

system (e.g. very different technical process, socio-

cultural or market process). 

  

adaptation 

(quality) 
415 

The data are adequate to the 

studied system and no adaption is 

necessary, or data after adjustment 

are considered accurate to the 

boundary of the studied system. 

  

                

Adaptations to fit the data to the studied system are 

very rough or speculative. 
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ABSOLUTE ATTRIBUTES (numbers)     
 

information level attribute group attribute no. attribute values 

data element statistical characteristics value (numeric) 103 numeric 

  
n 104 numeric 

  
min 105 numeric 

  
max 106 numeric 

  
distribution (param.) 108 numeric 

  
dispersion (numeric) 110 numeric 

information Scale minimum (pot.) 209 numeric 

  maximum (pot.) 210 numeric 

MFA information system adequacy temporal divergence 411 numeric 
 
 

NOMINAL ATTRIBUTES (text) 

 

                  
    

  

  

information 

level 

attribute 

group 
attribute no 

attribute specifications                 
    

  

  

  data element form 101 point, set, interval 
 

  

  location parameter 102 mean, mode, median, unspecified 

  distribution 107 normal, lognormal, gamma, betageneral, weibull, dirac, uniform, triang, other 

  
dispersion 

(measure) 
109 standard deviation, variance, standard error, uncert. interval (±), uncert. interval (*/)     

information semantics descr. of meaning 201 Description in natural language. 
    

  
        

  

  

  scale entity category 203 space, time, rate (x/y; time-related), quota (x/y), quantity  

  
 

entity class 204 number, mass, mass/area, mass/time, mass/mass, mass/volume, mass/item, concentration (mass.-%), area, volume, number/time, volume/time, mass/cross section, mass/item 

  
 

unit 205 dimensionless, SI-unit 

 

  

  
 

sphere 206 anthroposphere, natural environment 
      

  

  

  
 

property type 207 intensive, extensive 

  
 

mathematical 

form 
208 continuous, discrete  

information 

background 
availability access restriction 303 secrecy, costs, none  

  
communicat. 

communication 

type 
304 public, on request, conditioned, none  

  
 

access type 305 online, report, book, journal publication, proceedings, legislative document, personal communication, none  

  
 

frequency 306 one-off source, annually, biannually, five-annually, ten-annually, permanently, irregular  

  producer producer category 307 authority, science, economy, civil society  

  
 

producer type 308 statistical office, ministry, administration, university, non-university, company, industrial association, interest group, NGO, association 

  
 

reference 309 name of the institution/ Reference  

  origination 
origination 

category 
310 empirical, derived (mainly from data), derived (mainly from assumptions), derived (from speculation)  

  

 

origination type 311 counting, measurement (lab), measurement (in-situ), industrial monitoring, accounting, reporting, expert estimation, speculation, assumption, model, calculation, planning documents, survey 

 MFA 

information 

utilization in 

MFA 
utilization type 401 flow, flux, process, material, stock, stock change rate, transfer coefficient, precursor 

  
 

layer 403 good, substance, none 

  
 

type of good 404 raw material, industrial good, capital good, consumer good, durable consumer good, infrastructure, living organism, emission, waste, none  

  
system 

relation 

primary 

determination 
405 technology, market, sociosphere, political decisions, biosphere, geosphere, scientific rationale  

  
 

trend 407 increasing, decreasing, fluctuating, constant, none  

  
 

further relation 409 technology, market, interpretation, reference unit, none 

 

system 

adequacy 
adaptation (type) 414 none, scaling (temporal), scaling (spatial), scaling (to system size), conversion  
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Appendix 4: Scheme for translation of data attributes to mathematically computable scales 

Table A4.1: Attributes that need to be translated for application in the information defect functions 

Attr. No Name Translation activity Original scale Translated to 

a308 
Producer 

type 

Ranking the information producers from 0 (reliable) 

to 1 (unreliable). The producer type specification 

“science” is sub-divided by merging a308 with a305 

(access type). 

Nominal Ordinal 

a311 
Origination 

type 

Ranking the origination types from 0 (good 

origination method) to 1 (poor method). 
Nominal Ordinal 

a411 
Temporal 

divergence 

Categorizing years of divergence on a scale from 0 

(little divergence) to 1 (high divergence). 
Absolute Ordinal 

 

 

Table A4.2: Default translation of attributes applied in the case studies 

a308 (producer type) a311 (origination type) a411 (temporal divergence) 

Nominal Ordinal Nominal Ordinal Absolute Ordinal 

Statistical office 0 Counting 0 0 0 

Ministry 0.1 Measurement (lab) 0.1 1 0.1 

Administration 0.1 Measurem. (in-situ) 0.1 2 0.2 

Book 0.1 Industrial monitoring 0.1 3 0.3 

Journal publication 0.2 Accounting 0.1 4 0.4 

Proceedings 0.3 Reporting 0.1 5 0.5 

Report 0.3 Calculation 0.2 6 0.6 

Personal commun. 0.4 Model 0.3 7 0.7 

Industrial association 0.4 Survey 0.3 8 0.8 

Company 0.5 Expert estimation 0.4 9 0.9 

Association 0.8 Planning documents 0.6 ≥10 1 

NGO 0.9 Legislative document 0.8   

Interest group 0.9 Speculation 1   

None/NA 1     
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Appendix 5: Surface plots of the information defect functions 

 

 

Figure A5.1: Representativeness information defect IDR=f(b,c,n). 

 

 

Figure A5.2: Provenance information defect IDP=f(d,e,f). 
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Figure A5.3: Context information defect IDC=f(y,o,m). m is a binary attribute (0,1) and only the case m=0 is 

plotted. If m=1, it is IDC=y. 
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Appendix 6: Graphical comparison of two IDF normalization functions 

Two functions for normalization of IDtot to the measurement scale (0-1) are compared, where z is the 

number of information elements per flow (z=1, 2, 3…) which is most often 2 and typically never 

higher than 4. 

𝑆𝑄𝑅𝑇: 𝐼𝐷𝐹 =  
√∑ 𝐼𝐷𝑡𝑜𝑡,𝑖²𝑧

𝑖=1

√𝑧
   

and 

LOGISTIC:  𝐼𝐷𝐹 =  
1.5

(1+2𝑒
−3√∑ 𝐼𝐷𝑡𝑜𝑡,𝑖²𝑧

𝑖=1 )

− 0.5     

 

 

Figure A6.1: Comparison of IDF normalization by a logistic function (black) and by the square root of the 

number of information elements z (grey). 

 

It depends on the interpretation of “information defect” if LOGISTIC or SQRT is chosen for 

normalization of IDF. If information defects are regarded as “intensive quantities” (such as 

concentrations, which are intrinsic properties of a system and not dependent on the system size), 

SQRT should be chosen. SQRT averages the information defects of multiple IDtot per flow. It does 

not assume IDF to increase with increasing number of information elements. If information defects 

are regarded as degrees of believe in information to be true, LOGISTIC should be chosen. It 

accumulates the information defects of multiple IDtot per flow. It is differentiating for low 

information defects (see the quasi-linear first part of the black line in Figure A6.1). The lower the 

degree of belief in information to be true (i.e. the higher the information defect), the less 

differentiating is LOGISTIC. This reflects the assumption “the more vague information is, the lower 

are possibilities of agents to distinguish between two pieces of information”. The difference between 

SQRT and LOGISTIC is specified in two examples. 
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(1) SQRT averages, LOGISTIC accumulates 

For a flow with two information elements (IDtot,1 = 0.2 and IDtot,2 = 0.8), LOGISTIC delivers IDF = 

0.69 and SQRT delivers IDF = 0.48. SQRT produces an averaged value and enables consistent linear 

scaling of IDF throughout the measurement scale. The result of LOGISTIC is never lower than the 

highest defect of the information elements used for its calculation until the point of intersection 

between LOGISTIC and SQRT with z=1. In the above proposed parametrization of the logistic 

function, this is at√∑ 𝐼𝐷𝑡𝑜𝑡,𝑖²
𝑧
𝑖=1 = 0.7. This means that for defects above the intersection that 

diverge towards one, LOGISTIC is decreasingly differentiating (see Figure A6.1). 

 

(2) SQRT is not sensitive to the number of information elements, LOGISTIC is 

In the Pd case study, SQRT delivers lower results than LOGISTIC for all z>1 (see Figure A6.2). This 

may affect the ranking of information defects (see for example flow F19, where z=3). SQRT is not 

sensitive to z and IDF increases only with increasing IDtot of the information elements. LOGISTIC is 

sensitive to the number of information elements, and IDF increases with z. For a flow with two 

information elements, both with a defect IDtot=0.3, SQRT delivers IDF=0.3 and LOGISTIC delivers 

IDF=0.46. For three information elements with identical IDtot=0.3, SQRT delivers IDF=0.3, 

LOGISTIC delivers IDF=0.56. LOGISTIC means “the more vague information elements z per flow, 

the higher the information defect IDF”, SQRT means “the number of information elements does not 

influence the information defect”. 

 

Figure A6.2: Application of two IDF normalization options (SQRT and LOGISTIC) to the Pd case study. 
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Appendix 7: Additional flowcharts visualizing the uncertainty and complexity of the aluminum and 

plastics systems 

 

 

Figure A7.1: Uncertainty Ub of the flows in the aluminum MFA displayed as a flowchart. Flow widths are 

proportional to the uncertainty per balanced flow. For the total system, it is Ub=99. 

 

 

Figure A7.2: Difference between Uap and Ub of the flows in the aluminum MFA displayed as a flowchart, 

indicating the degree of data reconciliation per flow. 
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Figure A7.3: Uncertainty Ub of the flows in the plastics MFA displayed as a flowchart. Flow widths are 

proportional to the uncertainty per balanced flow. For the total system, it is Ub=202. 

 

Figure A7.4: Difference between Uap and Ub of the flows in the plastics MFA displayed as a flowchart, 

indicating the degree of data reconciliation per flow. 



  

 

88 

 

 

Figure A7.5: Uncertainty Ub,w of the flows in the plastics MFA displayed as a flowchart. Flow widths are 

proportional to the weighted uncertainty per flow. For the total system, it is Ub=168. 

 

Figure A7.6: Complexity C of the flows in the plastics MFA displayed as a flowchart. Flow widths are 

proportional to the contribution per flow to C. For the total system, it is C=297. 



  

 

89 

 

Appendix 8: Copies of the three journal articles 

 

Article I: Schwab, O., O. Zoboli, and H. Rechberger. 2016. A Data Characterization 

Framework for Material Flow Analysis. Journal of Industrial Ecology. 

Article II: Schwab, O., D. Laner, and H. Rechberger. 2016. Quantitative evaluation 

of data quality in regional Material Flow Analysis. Journal of Industrial Ecology. 

Article III: Schwab, O. and H. Rechberger. Information Content, Complexity and 

Uncertainty in Material Flow Analysis. Journal of Industrial Ecology. Under 

revision. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



M E T H O D S , TO O L S , A N D S O F T WA R E

A Data Characterization Framework
for Material Flow Analysis
Oliver Schwab, Ottavia Zoboli, and Helmut Rechberger

Summary

The validity of material flow analyses (MFAs) depends on the available information base, that
is, the quality and quantity of available data. MFA data are cross-disciplinary, can have varying
formats and qualities, and originate from heterogeneous sources, such as official statistics,
scientific models, or expert estimations. Statistical methods for data evaluation are most
often inadequate, because MFA data are typically isolated values rather than extensive data
sets. In consideration of the properties of MFA data, a data characterization framework for
MFA is presented. It consists of an MFA data terminology, a data characterization matrix, and
a procedure for database analysis. The framework facilitates systematic data characterization
by cell-level tagging of data with data attributes. Data attributes represent data characteristics
and metainformation regarding statistical properties, meaning, origination, and application
of the data. The data characterization framework is illustrated in a case study of a national
phosphorus budget. This work furthers understanding of the information basis of material
flow systems, promotes the transparent documentation and precise communication of MFA
input data, and can be the foundation for better data interpretation and comprehensive
data quality evaluation.

Keywords:

database analysis
data characterization matrix
data quality
industrial ecology
information quality
material flow analysis
national resource budget

Supporting information is available
on the JIE Web site

Introduction

Material Flow Analysis and Information

Material flow analysis (MFA) is a standardized input-output
system analysis methodology for the systematic investigation of
material flows into, within, and out of a given system and its
associated material stocks (Brunner and Rechberger 2004). It
has been widely applied for the analysis of material systems in
resource and waste management. MFA is commonly used for
plant-level analyses or for regional analyses, such as national
resource budgets, which represent a detailed balance of a na-
tional economy for a particular substance or good. There are
numerous examples of static MFAs (for 1 year) and dynamic
MFAs (for a time series).

Studies of anthropogenic material systems certainly reveal
otherwise unknown information (Chen and Graedel 2012).

Address correspondence to: Oliver Schwab, Institute for Water Quality, Resource and Waste Management, Vienna University of Technology, Karlsplatz 13, 1040 Vienna,
Austria.Email: oliver.schwab@tuwien.ac.at, Web: http://iwr.tuwien.ac.at/ressourcen/

© 2016 by Yale University
DOI: 10.1111/jiec.12399 Editor managing review: Seiji Hashimoto

Volume 00, Number 0

Although studies of material systems can provide information,
they also depend on information in their production process,
and a lack of useful information can be a limiting factor to the
level of detail of an analysis and its validity. Most often, the
results are inherently limited in accuracy and thus in their reli-
ability in subsequent decision-making processes (Graedel et al.
2004; Chen and Graedel 2012). The influence of information
shortcomings on the feasibility and quality of MFAs have not
been systematically investigated. However, if MFA is seen as
a way of compiling data to create information about material
stocks and flows and to aggregate this information to create
knowledge about material systems, the quality and quantity of
its very fundamental elements, data, is substantial. Despite its
importance for the validity of modeling results, there is no col-
lective understanding about what information, or more specif-
ically, data, in MFA is and how it can be characterized. In a
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wider sense, science does not have a complete idea of what
information actually is, but it is stated that it is a multilayered
phenomenon that is to be examined on various levels (Arndt
2004). This indicates that the elaboration of a general con-
cept of information may not be feasible, but specific scientific
formulations for certain aspects can be intended. An MFA-
specific concept of quantitative information is proposed in this
article.

Data in Material Flow Analysis

Data quality and data quantity are constitutive for environ-
mental modeling, also in MFA, which is often based on cross-
disciplinary data. These unstructured data can have different
formats and qualities and come from heterogeneous sources,
such as official trade statistics, scientific literature, consumer
behavior studies, and expert estimates. In some cases, exten-
sive statistical data, such as lab data on substance concentra-
tions, might be available, but analysts usually have to cope
with isolated values. An isolated value is a specification of an
entity, such as a material quantity or a substance concentra-
tion represented not by a set of data records, but by one sin-
gular datum. Consequently, statistical methods of parameter
uncertainty evaluation are often inadequate in MFA practice
(Hedbrant and Sörme 2001). Additionally, relevant data may
be confidential, lost, highly aggregated, or outdated, or real-
world phenomena may be too complex to be directly measured
and must be surveyed or derived in other indirect ways. The
background of data is not always transparent because of missing
metainformation, and the data can be inaccurate owing to mea-
surement and collection errors or biased by the interests of the
data producers. Data inaccuracy and unrepresentative data have
been identified as two major sources of uncertainties in environ-
mental modeling (Björklund 2002) and in MFA (Danius and
Burström 2001). Recognizing the shortcomings of MFA data in
combination with the mentioned variety of sources and the var-
ious ways collected data are applied in the analysis process, the
databases of studies are not always comprehensible for agents
other than the producer, and the systematic evaluation of data
quality is limited. Though different ways of dealing with data un-
certainties in MFA and related disciplines have been proposed
(Laner et al. 2014; Refsgaard et al. 2007; Hedbrant and Sörme
2001; Weidema and Wesnæs 1996), a sound understanding of
the nature of MFA data remains a subject for research.

In this article, a framework for consistent description and
characterization of a priori MFA data (before application in
a model) is presented. This can be the basis for (1) analy-
sis of an MFA study’s database structure and (2) data quality
evaluation. The focus of this article is on (1) and the pro-
posed concept is illustrated by application to a regional MFA
of phosphorus. The benefits and shortcomings for MFA prac-
tice are discussed. This study is based on the idea that a sound
understanding of applied data is necessary for data quality eval-
uation and uncertainty analysis in MFA (Laner et al. 2014),
especially in the presence of scarce information and isolated
values.

Material Flow Analysis Data
Characterization Framework

The core of this framework is a data characterization ma-
trix (DCM) that facilitates the systematic documentation and
characterization of MFA data. Before the DCM is introduced
and applied to a case study, central terms are defined.

Terminology

This terminology is to provide a conception of data and
information in MFA as a basis for precise communication within
and beyond the research community, and to contribute to a
common understanding of quantitative information in MFA.
The terminology is the foundation of the data characterization
framework.

Material Flow Analysis System Elements
MFA system elements are the components of material flow

systems, that is, flows, processes, stocks, and materials (Brunner
and Rechberger 2004). Flows are specified as mass per time, pro-
cesses as dimensionless transfer coefficients, and stocks as mass.
Material is an umbrella term for goods and substances. Each sys-
tem element is assigned a specific number as an identifier, that
is, a flow or process number. Cross-boundary flows (flows that
leave or enter the system) are called imports and exports, and
flows within the system (between processes) are called internal
flows. One or more related processes and associated flows can
be referred to as sectors, such as industry and trade sector or
consumption sector. Designating sectors can improve the com-
prehensibility and ease of communication about material flow
systems. It also enables comparing systems that differ in their
overall composition of processes, but consist of similar sectors.

Entity, Data Element, and Attribute
An entity is a real-world phenomenon or real-world object,

and its realizations are represented as data. If data in MFA are
considered to be quantitative information, data are representa-
tions of entities as numeric values (see Floridi 2013). That is,
an entity can be represented by a data element (isolated value,
interval, or data set). The number of a study’s data elements can
be larger than the number of entities because more than one
reference could be available for quantification of an entity (e.g.,
three independent references on a phosphorus concentration of
an agricultural good, i.e., three data elements on one entity).
The total of all data elements per entity is referred to as infor-
mation element. MFA data attributes are data-associated anno-
tations concerning statistical properties, meaning, origination,
and application of the data. Attributes can be designated as the
“characteristics of data” (Wang et al. 1995) and specify a data el-
ement, the relation to the entity it represents, its origination and
formation process, and its relation to the application context.

Information Level
Four levels of information in MFA can be distinguished

(figure 1). The first information level is data element, as
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Figure 1 MFA information is information in MFA context: A data
element plus meaning forms information, this information has a
background, and in the context of a MFA study it forms MFA
information.

described above, and a data element plus meaning forms infor-
mation according to Floridi (2013). Information background
represents the origination and forming process of the piece of
information. Placed in context, it forms MFA information. For
example, the entity “Aluminum content of a beverage can”
is to be specified for an MFA study. The datum is, say, “95.”
This forms information, with its meaning “Aluminum content
of a standard beverage can in central Europe in 2010, in %.”
The information background is, for example, that it has been
measured by an academic research group by X-ray analysis, but
the specific observation method and the number of samples are
unknown. It forms MFA information when applied in an MFA
study as a material specification for a designated flow or stock.
MFA information can be described by sets of attributes that are
arranged according to the four distinct information levels, as
proposed in the below introduced data characterization matrix.

Data Semantics
Semantics refers to the intrinsic meaning of a piece of infor-

mation, and data that are meaningful and truthful can become
information (Floridi 2013). For example, the data at hand may
describe the “phosphorus content of national annual crop pro-
duction in 1990.” This specification of the datas’ meaning lacks
semantic precision, because the notion of “crop” is ambiguous.
It is not known whether it refers to food crops, to cereals, or also
to energy crops and industrial crops. Data semantics can also
change over time (Madnick and Zhu 2006), such as when the
variety of cultivated crops changes. Unclear data semantics can
lead to data misinterpretation and, consequently, to drawbacks
in data quality.

System Relation and System Adequacy
System relation refers to the sphere that determines the data

(such as market processes, technological state of the art, or bio-
sphere) and the variability of a datum over time, space, and
other potential relations. Other relations can be, among others,
technology (e.g., productivity rates can differ between produc-
tion plants) or reference units (such as data that refer to fiscal

years instead of calendar years). MFA data should be adequate
for the studied system with respect to time, space, and potential
further relation. For example, data from a neighboring coun-
try might be temporally adequate, but spatially inadequate, or
might be inadequate because they describe a different technical
process (further relation).

Autonomy and Application of Data
Data that can be directly introduced in a model for the de-

scription of system elements are referred to as to be autonomous
in their application. Often, there are no ready-to-apply au-
tonomous data available for the description of MFA system
elements. These need to be instead quantified by the combina-
tion of several nonautonomous data elements. Data elements
can be applied in an MFA study as one of the typical utiliza-
tion types (flow, flux, stock, transfer coefficient, and material).
Other data elements, such as areas and numbers, are summarized
as precursors. For example, readily applicable data of mineral
phosphorus fertilizer use from consumption statistics, given in
mass of phosphorus per year, is autonomous for the purpose of a
national phosphorus budget. In contrast, the flow of phosphorus
in animal manure (flow, tonnes per year) is nonautonomous if
it needs to be calculated from the number of animals (precur-
sor, dimensionless), excretion per animal type (flux, kilograms
per animal per year) and the phosphorus concentration of ani-
mal excrement (material, %). The more nonautonomous data
elements there are to be combined for the description of a sys-
tem element, the higher is the number of potential data quality
impairments.

Origination of MFA Data
Data for MFA can be acquired either from direct ob-

servations, such as measurements, monitoring, or counting
(“empiricism”), or can be abstracted from given information. In
contrast to empiricism, the latter is in this context referred to
as “derived” and is divided into three categories: “mainly from
data” (such as reporting data that is aggregated by statistical
offices); “mainly from assumptions” (such as data from models
with many assumptions because of a scarce database); and
“from speculation” (such as guesses).

Variety and Disparity
The attributes variety and disparity describe the complex-

ity of a population. Variety refers to the number of potential
real-world objects an entity refers to, disparity to the spread
of these real-world objects’ realizations. For instance, “copper
content of smartphones” can refer to a vast number of different
smartphones (high variety), and the copper content of these
smartphones can span a wide concentration range (high dispar-
ity). In contrast, both the variety and disparity of the “aluminum
content of aluminum cans” are comparably small, because the
number of different types of aluminum cans is limited and the
range of the aluminum content is rather narrow (between 95%
and 99%). A more precise specification of a data element’s
meaning (e.g., to a particular type of smartphone) can reduce
variety and disparity.
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Table 1 Structure of the data characterization matrix by information levels and attribute groups

Information level Attribute group Description (no. of attributes) Attributes
Data element Statistical

characteristics
Documentation of statistical

information on a data element (10)
Data element form, location parameter,

value (numeric), n, minimum,
maximum, distribution (form),
distribution (parameter), dispersion
(measure), dispersion (numeric)

Semantics Specification of the meaning of a data
element (2)

Description of meaning, semantic
precision

Information Scale Specification of the format of an
entity (8)

Entity category, entity class, unit, sphere,
property type, mathematical form,
minimum (potential), maximum
(potential)

Complexity Description of the complexity of an
entity (2)

Variety, disparity

Availability Distinction if wanted information does
exist and is accessible or not (3)

Existence, accessibility, access restriction

Communication Documentation of how a piece of
information is communicated (3)

Communication type, access type,
frequency

Information
background

Producer Documentation of the agent that
produced the piece of information,
for example, an authority (3)

Producer category, producer type,
reference

Origination Documentation of the data collection
method, for example counting or
industrial monitoring (3)

Origination category, origination type,
origination type quality

Application in
MFA

Description of how a piece of
information is applied in the MFA
study (4)

Utilization type, autonomy, layer, type of
good

MFA information System relation Description of the relation between a
piece of information and the studied
system (6)

Primary determination, temporal
variability, trend, spatial variability,
further relation, variability by further
relation

System adequacy Description of a piece of information’s
adequacy to (respective divergence
from) the studied system (5)

Temporal divergence, spatial divergence,
further divergence, adaptation (type),
adaptation (quality)

Note: A more detailed description of the data attributes is provided in appendix 1 in the supporting information on the Web.

It is to be considered that data quality can decrease because
of improperly understood data semantics and limited context
knowledge (Madnick and Zhu 2006) and that information al-
ways has a subjective element (Arndt 2004). This is considered
in the data characterization framework, which, at the same time,
is designed for a high degree of transparency and replicability.
Key to the framework is the characterization of MFA data by
specification of data attributes in a DCM.

MFA Data Characterization Matrix

The database of a material flow system is documented,
structured, and analyzed in the DCM. The DCM has been
developed in an iterative process by the analysis of several
regional MFAs (Schwab and Rechberger 2014a). In the matrix,
49 data attributes are assigned to each data element of a study.
The DCM is structured according to the four information levels
(figure 1), and related attributes are grouped in attribute groups
(table 1). A more detailed description of each data attribute is

provided in appendix 1 in the supporting information on the
Journal’s website. For application of the DCM to a given MFA
database, each of these data attributes is specified individually.
For specification of the attributes, a code has been developed.
By this code, attributes are assigned to particular measurement
scales (absolute, nominal, binary, or ordinal) and ranges
of possible data attribute specifications are provided. This
facilitates the consistent completion of the matrix, also when
applied by different researchers to different regional MFAs,
and enables automated analysis of a DCM once completed.
The DCM code is provided in appendix 2 in the supporting
information on the Web and an example of a completed matrix
in appendix 3 in the supporting information on the Web.

In the following, the data characterization framework is il-
lustrated in a database analysis of a national resource budget.
This database analysis consists of three steps, which are (1) cre-
ation of data inventory, (2) characterization of data elements,
and (3) analysis of data attributes. In (1), all system elements
and the respective data elements are listed in the DCM. In (2),
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Figure 2 Schema of the Austrian phosphorus budget according to Zoboli and colleagues (2015).

the attributes are specified with the help of the DCM code, and
in (3), the DCM is analyzed attribute wise.

Application of the Data Characterization
Framework

The data characterization framework is applied to the 2009
national phosphorus (P) budget of Austria (figure 2) (Zoboli

et al. 2015), which is based on the work of Egle and colleagues
(2014). A comparatively sound database for quantification of
material flows and stocks of this phosphorus budget is available.
Data uncertainties were assessed by an approach by Laner and
colleagues (Forthcoming) and range from 10% to 90%. Nine
out of ten flows have less than 40% uncertainty, and two thirds
of the flows have less than 30%. These relatively low uncer-
tainties (compared with other regional MFAs) underline the
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Table 2 Key data on the complexity and the data basis of the
analyzed national resource budget (phosphorus in Austria 2009)

Database characteristic Quantity

Number of flows in main system 72
Number of processes 9
Number of subsystems 8
Number of stocks 7
Total number of collected data elements 308
Total number of entities 172
Average entities per flow 2.4
Average data elements per entity 1.8
Share of flows that can be described directly by

autonomous data (%)
20

Isolated values (%) 75

database’s robustness. Key information on the system and the
applied database is provided in table 2. The phosphorus budget
of Zoboli and colleagues is a flow-based model in which the
number of applied transfer coefficients is kept to a minimum.
Respectively, the scope of the here presented case study is lim-
ited to the evaluation of these phosphorus flows in the main
system and does not include processes and subsystems.

Data Inventory

The total of 308 data elements and all assigned data at-
tributes are inventoried in the DCM (table 1 and appendix 3
in the supporting information on the Web). As listed in ta-
ble 2, these 308 data elements are used for the description of
172 entities and are aggregated for the description of 72 flows.
Twenty percent of these flows are quantified directly by au-
tonomous data and 80% by the combination of data on two or
more entities.

Characterization of Data Elements and Analysis
of Data Attributes

The elements of the data inventory are evaluated by
specification of data attributes according to the code for data
characterization (appendix 2 in the supporting information
on the Web). For a complete DCM of the case study and
detailed specification of data attributes for all data elements,
see appendix 3 in the supporting information on the Web. Ex-
emplarily, selected attributes are analyzed in the following: data
producer (figure 3a), data origination (figure 3b), utilization type
(figure 4a), entity class (figure 4b), type of good (figure 5), and
primary determination (figure 6). Please note that the quan-
tities given here are not material quantities, but information
quantities. The number of samples n in figures 3, 4, 5, and 6
relates to the number of collected data elements (n = 308) or
the number of entities (n = 172).

More than half of the data were collected from authorities,
around 40% from scientific sources (figure 3a). Generally speak-
ing, data on material flows stem from authorities and data on

material qualities (composition) from science. Approximately
40% of the data elements are from empirical collections (such
as measurement or counting) and 55% are derived (either from
data, assumptions, or speculations). Most prominent are re-
ported data from third parties that are aggregated by authorities
(figure 3b), such as official trade statistics. These contribute
to the generally more robust database for cross-boundary flows
(e.g., for imports of goods) in contrast to the often weaker
database within the system (e.g., in the consumption sector).

The two most prominent references, namely, reporting data
from statistical offices and empirical data from scientific mea-
surements, are complemented by data from additional sources.
Expert estimations are important especially in the consumption
and waste management sectors, assumptions in the bioenergy
sector, and scientific models in the waste management and
crop farming sectors. For animal husbandry, simple calculations
based on data from authorities and science complement directly
applicable data. More than 40% of the data are communicated
in reports, 35% in online databases, and 10% in scientific jour-
nals or books (cf. attribute no. a305 [access type] in appendix
3 in the supporting information on the Web). The number of
data elements per entity (on average, 1.8; see table 2) is less
than or equal to four in 95% of the cases, and 75% are isolated
values.

Most of the collected data describe material flows (figure 4a)
and come in the format “mass/time” (figure 4b). Approximately
one sixth of the collected data are precursors, mainly on num-
bers and areas, and need to be combined with other data before
introduction to a model.

Forty percent of the collected data describe waste, 25% con-
sumer goods, and 20% industrial goods (figure 5). The label
“none” refers to other entities, such as conversion factors or
areas. Although the waste management sector has less flows
than other sectors, such as industry (see figure 2), most of the
collected data are on waste. This indicates that in this case, less
directly applicable, autonomous data for the description of the
waste management sector is available and, in consequence, the
overall data search effort is greater.

The attribute “primary determination” (figure 6) refers to the
spheres that primarily determine the data values. For example,
the phosphorus concentration of common wheat is primarily
determined by the biosphere, and phosphorus removal rate of a
sewage plant by the applied technology. In the analyzed study,
40% of the data elements are primarily determined by market
activities (such as domestic production of agricultural goods),
10% by technology (e.g., phosphorus removal rate from wastew-
ater), 8% within the sociosphere (e.g., consumer behavior),
30% in the biosphere (such as phosphorus content of crops),
and 6% in the geosphere (such as discharge of rivers per time
unit). Data that are primarily determined by political decisions
are applied mainly in the waste management and bioenergy
sectors (e.g., amount of phosphorus in fecal sludge applied on
agricultural fields). Examples of applied scientific rationales are
molecular masses of phosphorus and phosphorus compounds.

Although the primary determination of data is not always
unequivocal, it can indicate the main factors that shape the
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Figure 3 Data in the phosphorus case study: (a) producer category and producer type and (b) origination type. NA = not available.

Figure 4 (a) Utilization describes the utilization type of data used in the study, and (b) entity class of data describes the format of the
collected data. Concentration is in mass-%; mass/mass refers to other entities such as productivity rates.

Figure 5 Collected data relating to different types of goods. None
= no goods but other entities, such as areas or conversion factors.

data of an MFA and thus the material system itself. Clearly, the
quantity of applied data elements does not necessarily correlate
with the physical quantity of the material flows of a study. How-
ever, this can contribute to the identification of a system’s main
driving phenomena. The driving factors of material systems in
terms of physical quantities have been investigated by Klee and
Graedel (2004). Transferring this idea from physical quantities
to information quantities, the DCM can be used to reveal the
driving mechanisms of a material system from its database. The

Figure 6 Primary determination (mechanisms that primarily
determine the value of data and their change over time) of data
within the anthroposphere and the natural environment. NA = not
available.

database structure of the case study indicates that, regarding
its information quantities, the Austrian P budget appears to be
strongly perturbed by anthropogenic activities, but to be not
entirely dominated because there is still a prominent influence
of the natural environment (i.e., biosphere and geosphere; see
figure 6) on the material system.
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Discussion

The data characterization framework can contribute to MFA
in practice. First, the data terminology enables more precise
communication within and beyond the research community.
The DCM facilitates the systematic documentation of MFA
data and designated attributes. Attribute-wise data evaluation
draws a compact picture of this database as illustrated in figures
3, 4, 5, and 6. This promotes a simple and condensed representa-
tion of MFA databases, for instance, in reports or publications,
as an alternative to communicating extensive data tables. Sys-
tematic tagging of MFA data with attributes can further the
understanding of the information basis of a study, enables com-
paring different MFA studies to one another, and can give
indications regarding the quality of the data.

Nevertheless, it has to be considered that the database is
subject to the scope and level of detail of a study, which is
determined by the focus of the research. In the analyzed P bud-
get, processes such as crop farming are rather treated as “black
boxes,” whereas wastewater and waste management processes
were ranked higher in the specific interest of the research group
and were thus studied in more detail. From the experience of
this study, it can be said that the quality of available information
decreases when moving downstream the material flows (see also
Mao et al. 2008; Graedel et al. 2004). Previous database analyses
indicated the tendency of decreasing data quality when moving
from the main system into specific subsystems with higher level
of detail (Schwab and Rechberger 2014b). Both tendencies are
also owing to a decreasing share of “hard data” from authori-
ties and science, an increasing share of speculations and expert
estimations, and the decreasing autonomy of the data.

Attribute specifications are, in part, subject to authors’ judg-
ments. Therefore, these specifications can be argued over by
third persons with diverging perspectives. Author judgments
on MFA data have also been an element of previous studies
(Graedel et al. 2004; Hedbrant and Sörme 2001). The novelty
of the approach presented here is that it is not the data as such
that are judged by the authors, but individual data characteris-
tics (i.e., data attributes). Inevitably, subjectivity is intrinsic to
these judgments. Nevertheless, subjectivity is also intrinsic to
information per se. Ignoring the subjective part of information
can restrain a comprehensive understanding of it (Arndt 2004;
Berger and Berry 1988). Therefore, subjectivity is also an ele-
ment of the here-presented framework, even if it is controlled
by a standardized and transparent procedure, which, however,
can facilitate a discourse about MFA databases and collective
learning of material systems.

In the case study, metainformation on the meaning and the
formation process of data was sometimes found to be limited,
although it is imperative for data producers and data publish-
ers to provide this information. Based on the here-presented
database analysis, it can be said that this information may be
lost or become imprecise in the scientific publication and citing
process. Over time, data can appear “just to be there,” with-
out precise knowledge about its initial meaning and collection
method, which might lead to poor data quality estimations and

poor application of the data. Moreover, data can be misinter-
preted not only because of ambiguous data semantics, but also
because of diverging reference units. This was found to be the
case in the P budget, because most of the data refer to calendar
years (1 January–31 December), but some do refer to fiscal years
(often from June to June).

This framework can be enhanced with further experience in
MFA database analysis. It is not recommended that the DCM is
applied posterior to an analysis, but rather simultaneously with
the data collection process. The net working time for a database
analysis of a study with the extent of the above-described P
budget is approximately 60 to 80 hours.

Conclusion and Outlook

MFAs are typically based on diverse and often scarce infor-
mation. Most often, it is not practicable to evaluate the overall
quality and compare one MFA to another. Statistical methods
are not always sufficient for the characterization of MFA data.
Alternative data characterization methods that consider the in-
herent subjective notion of information and metainformation,
such as the framework presented here, can complement exist-
ing practice. The framework consists of a data terminology and
a characterization matrix for MFA data. It facilitates the sys-
tematic characterization and communication of databases. This
is a step toward a comprehensive understanding of the nature
and role of quantitative information in MFA. It can contribute
to data quality evaluation and high-quality MFAs, and it can
enable a comparison of analyses and their databases to another.

As indicated by the P case study, statistical offices (aggre-
gated reporting data on material quantities) and scientific liter-
ature (measurement data on material qualities) are the central
data sources. Data from industry and also from civil society (e.g.,
from interest groups) can be more relevant for similar studies
of different substances. The database for cross-boundary flows
is found to be better than for flows within the system. This is
especially because of detailed official foreign trade statistics. In
contrast, institutionalized statistics such as the latter are limited
within the system, for example, in the consumption sector. The
results indicate that there is a general tendency of the databases
to become weaker from upstream to downstream sectors, that
is, from primary production and industry to waste management.
Especially in waste management and in consumption, data pro-
ducers are required to be more active in providing disaggregated
and transparent data in consistent formats.

The assignment of data attributes to MFA data is sometimes
more ambitious than it may seem at first. Metainformation is
often of limited availability, because it is often unpublished,
has become lost, or has become imprecise over time, and its
retrieval can be complex. It is recommended that data users
and producers communicate and document the background in-
formation of data as precisely as feasible. This can be performed
by means of this data characterization framework. It can then
be the basis of further research toward the systematic evalu-
ation of MFA data quality. For a comprehensive MFA data

8 Journal of Industrial Ecology



M E T H O D S , TO O L S , A N D S O F T WA R E

uncertainty analysis that considers both epistemic uncertainty
(owing to lack of knowledge) and aleatory uncertainty (owing
to natural variability) (Dubois and Guyonnet 2011; Clavreul
et al. 2013; Laner et al. 2015), a profound understanding of
the characteristics and meaning of MFA data is imperative.
The here-proposed terminology and procedure can be the basis
of coherent MFA data communication, better data interpreta-
tion, and attribute-based data quality evaluation across different
studies and research groups.
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Quantitative Evaluation of Data Quality
in Regional Material Flow Analysis
Oliver Schwab, David Laner, and Helmut Rechberger

Summary

A method for quantitative evaluation of data quality in regional material flow analysis (MFA)
is presented. The principal idea is that data quality is a multidimensional problem that
cannot be judged by individual characteristics such as the data source, given that data from
official statistics may not be per se of good quality and expert estimations may not be
per se of bad quality, respectively. It appears that MFA data are never totally accurate and
may have certain defects that impair the quality of the data in more than one dimension.
The concept of MFA information defects is introduced, and these information defects are
mathematically formalized as functions of data characteristics. They are quantified on a scale
from 0 (no information defect) to 1 (maximum information defect). The proposed method
is illustrated in a case study on palladium flows in Austria. A quantitative evaluation of data
quality provides opportunities for understanding and assessing MFA results, their a priori
information basis, their reliability in decision making, and data uncertainties. It is a formal
step toward better reproducibility and more transparency in MFA.

Keywords:

data characterization
data quality
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information defects
material flow analysis (MFA)
substance flow analysis (SFA)

Supporting information is linked
to this article on the JIE website

Introduction

The available information base is critical for the validity
of material flow analyses (MFAs) and can differ significantly
among MFAs, depending also on the studied material and scope
of a study. A frequently performed type of regional MFAs are
so-called national resource budgets. These are detailed studies
of the supply, consumption, and disposal of a specific material by
national economies within a defined time period, usually 1 cal-
endar year (see, e.g., Egle et al. 2014; Bonnin et al. 2013). The
data basis of a detailed study usually includes not only black-
box material flow accounts, but also more-specific information
on material flows within an economy. The realizable resolution
of national resource budgets (i.e., their level of detail) depends
mainly on the goal of the MFA and on the available data basis
(see, e.g., the comparison of Danish and Austrian phosphorus
balances in Klinglmair et al. [2016]). Such data are typically un-
structured, cross-disciplinary, have different formats and quali-
ties, and come from heterogeneous sources, such as official trade
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tables, scientific measurements and models, industries, or asso-
ciations. This implies that the databases of regional MFAs are
usually highly heterogenic. In many cases, MFA data are not
based on empirically well-founded data sets, but on individual,
isolated values, which are not always provided in consistent
formats. The available information basis is often considerably
limited.

Evaluation of data uncertainties should be a component of
every MFA (Rechberger et al. 2014). In regional MFAs with
precisely defined temporal and spatial system boundaries, data
uncertainty arises mainly from limited knowledge (“epistemic
uncertainty”; see, e.g., Gottschalk et al. [2010] and Laner et al.
[2014]). Natural variability (“aleatory variability”) is virtually
excluded. That is because for every flow, there is only one cor-
rect value, which is most probably not known with absolute
certainty. Data uncertainty in regional MFAs appears to be an
epistemic phenomenon. Thus, it is closely linked to the qual-
ity of the data applied. “Data quality” refers to the perceived
degree of credibility of given data and the degree of belief that
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Figure 1 Illustration of a typical quantification of a material flow “F1.” F1 consists of two information elements, which itself consist of one
(F1.1) or more (F1.2) data elements.

the data are true in a particular context. It is, other than un-
certainty, initially not a quantitative measure, but a qualitative
description, such as “good” or “bad,” “better than,” or “worse
than.”

In MFA uncertainty evaluation, the heterogeneity of data is
a major difficulty. Simple categorization of data quality by sin-
gle data characteristics is limited, for example, because there is
no apparent quality difference between data sources (Nakajima
et al. 2013). Rather, data quality can be seen as a multidimen-
sional problem that depends, for example, on the type of the
quantified entity, data origination, and application context of
the data. Although important methodological developments
for treatment of uncertainties in MFA have been made (see,
among others, Hedbrant and Sörme 2001; Gottschalk et al.
2010; Laner et al. 2014; Wu et al. 2014; Patrı́cio et al. 2015)
and methods for data reconciliation have been introduced (e.g.,
Cencic and Frühwirth 2015; Kopec et al. 2015; Dubois et al.
2014), methods for evaluation of data quality, a prerequisite
of data uncertainty evaluation, are rare. Existing approaches to
data quality in MFAs have been reviewed by Laner and col-
leagues (2015b), and a novel approach for calculation of data
uncertainties based on five data quality indicators has been
proposed.

Building on that idea, this study provides a formal proce-
dure for systematic and quantitative evaluation of data quality
based on a diversified set of data characteristics. It enables ex-
pressing data quality as a function of these data characteristics,
some of which are possibly related to others. As a result, each
flow of a material system can be described by one value that
indicates the quality of the information applied. This value is
calculated based on evaluation of all data elements applied for
quantification of a particular flow. It is thus specific to any ma-
terial flow of interest within a temporally and spatially defined
system. For illustration, the evaluation procedure is explained
in detail for one flow of the Austrian palladium (Pd) MFA
(Laner et al. 2015a). Consequently, the procedure is applied to
all flows of the Pd MFA and its information basis is evaluated.
The benefits and shortcomings of the presented procedure are
discussed.

Characterization of Material Flow Analysis Data

The data quality evaluation is based on a MFA data charac-
terization framework, which has been proposed by Schwab and
colleagues (2016). A “data characterization matrix” facilitates
a structured inventory of all data applied in a regional MFA.
The data in this inventory are then characterized by so-called
data attributes according to a predefined syntax and scheme.
MFA data attributes are data-associated annotations concern-
ing statistical properties, meaning, origination, and application
of the data. In the previous article, the data characterization
matrix has been analyzed per data attribute for understanding
the overall database of an MFA. In this article, the matrix is
analyzed per piece of information to understand the quality of
data applied in an MFA.

Three important components of the information inventory
are “data element,” “information element,” and “flow.” A sub-
stance flow is typically quantified by multiplication of two in-
formation elements (“amount of good x per time (mass/time)”
and “substance concentration in good x (%)”). An information
element itself can be specified by one or more data elements,
where data elements are representations of real-world objects
or real-world phenomena (“entities”) as numerical values (iso-
lated values, intervals, or data sets). A typical case is illustrated
in figure 1, where a flow F1 is quantified by two information
elements. These information elements may be quantified by
data from one reference (F1.1) or by data from more than one
independent references (F1.2). For example, F1.1 may be in-
formation on the number of cars imported into an economy,
provided by official trade statistics. F1.2 may be information
on their Pd concentration in %, provided as an expert estima-
tion (F1.2a) or in scientific literature (F1.2b and F1.2c). The
data quality of flow F1 depends on the data quality of all data
elements used for its quantification.

Approach and Conceptualization

Uncertainty in regional MFA is rather an epistemic than
an aleatory phenomenon, that is, not a consequence of natural
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Figure 2 Concept of MFA information defects and their position
in the data characterization framework by Schwab and colleagues
(2016). “Data” are numerical values, “entity” is a real-world object
or phenomenon described by an information element, “qualitative
MFA system” is a system to be quantified by introduction of
quantitative information. MFA = material flow analysis.

variability, but of imperfect knowledge. Knowledge shortcom-
ings are here expressed as “defects of information” (Dubois and
Prade 2010). Information defects indicate the deviation of given
information from a desired state of perfect knowledge. They are
expressed on an ordinal scale from 0 (no information defect) to
1 (maximum information defect). The four information defects,
“semantic,” “representativeness,” “provenance,” and “context”
(IDS, IDR, IDP, and IDC), appear to be relevant for regional
MFAs (figure 2).

IDS refers to the semantic precision, or respectively, impre-
cision of the meaning of data (Does the specification “smart
phones” also refer to mobile phones from before the technolog-
ical leap, which are still “out there”?). IDR indicates how well
a given data element represents the entity of interest (Is the
complex entity “Pd concentration of mobile phones” quanti-
fied based on one or more measurements or independent refer-
ences?). IDP considers the origination and collection method
of a data element (How reliable are the information producer
and the data collection method?). IDC designates how well a
given data element fits the context of a study (Is the data ele-
ment timely and does it refer to the geographical area studied?).
These information defects are, to some degree, similar to data
quality indicators found to be useful in previous studies (Laner
et al. 2015b) in terms of, for example, the correlation in the
dimensions “time,” “space,” and “further,” which are here part
of the context information defect IDC. Other defects, such as
the semantic information defect IDS or the representativeness
information defect IDR, are new concepts of the approach pre-
sented here.

The approach is illustrated in detail for flow ten (F10) of
the Pd case study (see paragraph “Case study on Pd flows in
Austria 2011” in Laner et al. [2015a]). A fully characterized
information inventory of the Pd flow study is provided in sup-
porting information S1 available on the Journal’s website. Flow

F10 refers to the Pd flow in flat screens sold in Austria in 2011.
Laner and colleagues quantified flow F10 based on two infor-
mation elements. First, this is the per capita flow of flat screens
(information element F10.1) and, second, the Pd content in flat
screens (information element F10.2). F10.1 was calculated from
data on the 2010 German market and related assumptions. For
F10.2, information from a scientific report providing German
data of the year 2010 was used.

The information defects illustrated in figure 2 are exem-
plarily qualified for information element F10.2 (Pd content in
flat screens). The information element F10.2 has a semantic
information defect (IDS) because “flat screens” is not a clear
specification given that there are different types of flat screens.
F10.2 refers to a complex entity given that different types of
flat screens (attribute “variety”) may also differ in their Pd con-
tent (attribute “disparity”). This complex entity is quantified
based on one reference. A complex entity, in combination with
a small number of references or samples, induces a represen-
tativeness information defect IDR. Because no information is
provided on the data collection method, there may also be
a provenance information defect (IDP). The data do not fit
the actual system context (Austria 2011) because they are for
Germany in 2010. Consequently, there is a context information
defect IDC.

This vague qualitative description of information defects
enables first estimates on the overall quality of the data. A
formal procedure for quantitative estimation of the qualitatively
introduced concept of information defects is proposed in the
following.

Formalization

The information defect per flow IDF is quantified in three
steps. First, the quality of each data element is described by a
set of four defects IDi (IDS, IDR, IDP, and IDC; see figure 2).
Second, each information element is described by one total in-
formation defect (IDtot), which is an aggregation of the IDi of
the respective data element or data elements. Third, the data
quality of each flow is described as IDF, which is a combination
of the IDtot of the respective information elements (according
to the order illustrated in figure 1). Before data quality quantifi-
cation, the database of an MFA study has to be inventoried and
characterized according to the data characterization framework
(Schwab et al. 2016). The procedure of quantitative estimation
of data quality is described in the following. Exemplarily, the
information defect of the flow F10 of the Pd MFA introduced
above is quantified.

Data Attributes

Quality-relevant data attributes are listed in table 1 and
exemplarily specified for the information elements F10.1 and
F10.2 in the rightmost columns. Data attributes in text format
(e.g., the producer type, which may be, among others, “national
statistics” or “industrial association”) have been translated to
mathematically computable formats according to a translation
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Table 1 Data attributes relevant for data quality evaluation selected from the article of Schwab and colleagues (2016) and their attribute
numbers as identifiers

Data attribute Attribute no. Designator Scale F10.1 F10.2

No. of samples a104 n Absolute 1 1
Semantic precision a202 a Ordinal 0.3 0.2
Variety a211 b Ordinal 0.8 0.5
Disparity a212 c Ordinal 0.4 0.7
Producer type a308 d Ordinal 1 0.3
Origination type a311 e Ordinal 0.4 0.4
Origination quality a312 f Ordinal 0.7 0.5
Temporal variability a406 g Ordinal 0.2 0.2
Spatial variability a408 h Ordinal 1 0.1
Variability by further relation a410 i Ordinal 0 0
Temporal divergence a411 j Ordinal 1 0.1
Spatial divergence a412 k Ordinal 0.1 0.2
Further divergence a413 l Ordinal 0.2 0.0
Adaptation type a414 m Binary 0 1
Adaptation quality a415 o Ordinal 0.3 0

Note: The designators are used in the proposed formal procedure. Attributes are exemplarily specified for information elements F10.1 and F10.2 in the
rightmost columns according to the framework proposed in the article of Schwab and colleagues (2016).

scheme provided in appendix S2-1 in supporting information S2
on the Web. Consequently, all attributes in table 1 are specified
either on an ordinal scale from 0 to 1, where 0 means “good”
and 1 means “bad,” on an absolute scale (0, 1, 2 . . . ), or on a
binary scale (0 means yes, 1 means no).

In the first step of the evaluation procedure, the four in-
formation defects IDi are quantified based on the 15 attributes
listed in table 1.

Information Defects of Data Elements (IDi)

The four information defects IDi (IDS, IDR, IDP, IDC) are
described as functions of data attributes (table 1). The infor-
mation defect functions have been developed in a two-step
heuristic procedure. First, the basic function type was chosen.
Second, the relationship between data attributes, as qualified
in the section Approach and Conceptualization, was formalized as
a combination of data attributes by use of the chosen function
type. The designators a, b, . . . , o of the attributes (table 1) are
used in the functions presented in the following.

IDS is regarded as a linear function of the attribute
“semantic precision” (a, see table 1, where a = 0 represents
data with unambiguous and clear meaning and a = 1 represents
data with ambiguous or vague meaning), which means that the
information defect is high when the meaning of data is vague
(equation 1).

IDS = a (1)

IDS of information element F10.2 equals the data attribute
“semantic precision,” so that IDS,F10.2 = 0.2.

The representativeness information defect IDR is formal-
ized as an exponential function of the attributes “variety” (b),
“disparity” (c), and “number of samples” (n). IDR increases with
increasing variety and disparity (i.e., with increasing complex-
ity of the described entity). IDR and the information gain per

additional sample decrease with increasing numbers of samples
(equation 2). This relates to the equation of the standard error
of the mean, where the error (expressed as standard deviation)
decreases with increasing sample size (see Clark-Carter 2014).

IDR = (
√

b ∗ √
c)n/(n+1) ∗ (

√
b ∗ √

c)√
n

(2)

The information element F10.2 refers to a complex entity
with high variety and disparity and a small number of samples
(see table 1), so that IDR,F10.2 = 0.46.

The provenance information defect is formalized as a func-
tion of the information producer (attribute “producer type” (d),
first term in equation 3) and the way the data were collected
(attributes “origination type” (e) and “origination quality” (f),
second term in equation 3). The exponents determine the slope
and the curvature of the function, that is, their nonlinearity. An
exponent >1 results in a convex curved function. This means
that IDP is high only if both the information producer and
the data generation method are specified with high attribute
values. This way, data of a “bad” data producer are not per se
evaluated as “bad” (as would be the case in a concave function,
i.e., with an exponent <1) as long as a “good” data generation
method was applied. Here, the exponents of the first and the
second term are defined identically, that is, the information pro-
ducer and the collection method have the same relative weight
(equation 3).

IDP =
(

d 1.5 +
(

(e + f )
2

)1.5
)/

2 (3)

F10.2 was collected from a reputable scientific report which
provides expert estimations on substance concentrations. The
provenance information defect is, based on the attributes listed
in table 1, IDP,F10.2 = 0.23.
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The context information defect is formalized as a product
of two constitutive parts. First, this is the degree to which data
fits the system studied. Second, this is the quality nonadequate
data were adapted to the system, for example, by scaling. In
equation (4a), y denotes the data adequateness (ordinal (0-
1); see equation 4b), m designates if data were adapted to the
context (binary, yes/no, respective 0/1), and o refers to the
adaptation quality (ordinal, 0 to 1).

IDC = y − (1 − m) ∗ (1 − o) ∗ y (4a)

This means that nonadequate data (expressed as y, first term)
cause a high information defect, which decreases if these non-
adequate data were well adapted to the context (second term).

The variable y in equations (4a) and (4b) denotes the degree
to which data does not fit the context in three dimensions: time,
space, and further (such as technology). It is a function of the
divergence of the data from the system context (“divergence
in three dimensions,” j, k, l) and the variability of the data
(“variability in three dimensions,” g, h, i).

y = (√
g ∗

√
j +

√
h ∗

√
k +

√
i ∗

√
l
)
/3 (4b)

F10.2 does temporally and spatially diverge from the system
boundary (“divergence”), but is little variable over time and
space (“variability”) given that the composition of flat screens
in Austria and Germany can be regarded as quite similar in
2 subsequent years. The data have not been adapted to the
system boundary. Considering the data attributes listed in
table 1, it is IDC,F10.2 = 0.09. The information defect func-
tions are visualized as surface plots provided in appendix S2-2
in supporting information S2 on the Web.

Information Defects of Information Elements (IDtot)

The four information defects are aggregated to a total in-
formation defect per information element (IDtot) as Euclidian
distance (the shortest connection of any point to the origin in
an n-dimensional space) in a four-dimensional space. This is
normalized to the measurement scale (0 to 1) by the number of
information defects IDi = 4 (equation 5).

IDtot =

√√√√(
ID2

S + ID2
R + ID2

P + ID2
C

)
4

(5)

In equation (5), IDi are weighted by themselves. That means
that an information element with a high defect in one di-
mension cannot be of overall good quality, even if the other
three defects are low. When applied to F10.2 (IDS,F10.2 = 0.20,
IDR,F10.2 = 0.46, IDP,F10.2 = 0.23, and IDC,F10.2 = 0.09), this re-
sults in IDtot,F10.2 = 0.28. The procedure presented thus far can
be repeated for information element F10.1, so that IDtot,F10.1

= 0.42. The defect of information element F10.1 (number of
flat screens sold) is higher than the defect of information ele-
ment F10.2 (Pd content in flat screens). The information defect
of flow F10 can now be expressed as one flow-specific value by
combination of the two total information defects, IDtot,F10.1 and
IDtot,F10.2.

Information Defects of Flows (IDF)

IDF is formalized as the square root of the sum of squares
of all IDtot, analogous to the combination of uncertainties in
the Gaussian rule of error propagation (see the exponent in
the denominator in equation 6, where z designates the num-
ber of information elements). This term can potentially in-
crease indefinitely for increasing z and must consequentially
be normalized to the measurement scale (0 to 1). Realistically,
z is virtually never higher than four (a substance flow is typi-
cally quantified by multiplication of two information elements,
quantity of goods times concentration, and, in fewer cases, by
multiplication with additional information, such as, e.g., on
volumes or areas). The term could be normalized by the square
root of the numbers of information elements (

√
z). This straight

forward normalization is not sensitive to the number of infor-
mation elements z, and it averages the information defect of
multiple information elements. However, it appears to be more
suitable to consider that the more imprecise information there
is to be combined, the less credible is the result. Having that in
mind, IDF can be also normalized by applying a logistic func-
tion such as the one proposed in equation (6). This function
accumulates the information defects of multiple IDtot per flow.
A graphical comparison between normalization by

√
z and a

logistic function is provided in appendix S2-3 in supporting
information S2 on the Web.

IDF = 1.5(
1 + 2e−3

√∑z
i =1IDtot,i

2
) − 0.5 (6)

Applied to flow F10 with IDtot,F10.1 = 0.42 and IDtot,F10.2 =
0.28, this is IDF10 = 0.54.

Information Elements Specified by More Than One
Data Element

The evaluation procedure has been illustrated for the situa-
tion of one data element per information element. As illustrated
in figure 1, information elements may also be quantified based
on more than one data element. For example, the informa-
tion element F1.2 of the Pd study (Pd content of cars imported
to Austria) consists of three data elements (see table 2 and
supporting information S1 on the Web). That is, reference A
states that the Pd content is A%, reference B says B%, and
reference C says C%. Apparently, agents frequently introduce
the mean of available data elements in their model when they
cannot discriminate between the reliability of the three refer-
ences.

In case of more than one data element per entity, IDP and
IDC are calculated on the level of data elements and IDS and
IDR are calculated on the level of information elements (i.e., per
entity). That is, because each data element may have a different
provenance (different IDP) and may be of different adequateness
to the context (different IDC), but is used to represent the same
entity (same IDR) with the same meaning (same IDS). This
becomes clear when reconsidering the concept presented in
figure 2.
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Table 2 Information element F1.2 of the Pd study consists of three
data elements

Information element Data element IDS IDR IDP IDC

F1.2 0.20 0.23
F1.2a 0.25 0.05
F1.2b 0.28 0.22
F1.2c 0.23 0.18

IDi,F1.2 0.20 0.23 0.23 0.05

Note: The lowest IDP and IDC are selected for further processing in
equation (5).
Pd = palladium.

Equation 5 requires a set of four information defects IDi per
information element. To formulate such a set of four IDi for
the situation presented in table 2, a straightforward approach is
chosen. Experience shows that, typically, an agent only intro-
duces additional data elements per information element when
expecting information gain (e.g., by taking the mean of two in-
dependent references). This is considered here, and the lowest
IDP and IDC are selected from the set of provenance and con-
text defects (see table 2, where F1.2 is quantified based on n = 3
data elements). Consequently, the information defect IDtot,F1.2

decreases (because of min IDP and IDC and also because n>1
in IDR), which reflects the information gain.

The information defect approach results in a new quantity
for evaluation of regional MFAs. This new quantity indicates
the reliability of model input data and enables distinguishing
material flows by their data quality. The evaluation procedure
is applied to all flows of the Pd MFA in the following.

Case Study on Palladium Flows in
Austria 2011

The presented procedure for quantitative estimation of
data quality is applied to the Pd flow system illustrated in
figure 3. For a more detailed description of the Pd MFA and
a quantitative diagram, please refer to the article of Laner and
colleagues (2015a).

Information defects IDi per data element, IDtot per infor-
mation element, and IDF per flow are computed according to
equations (1) to (6). The results are illustrated in figure 4. A
detailed table of all information defects is provided in appendix
S2-4 in supporting information S2 on the Web.

With regard to the concept of information defects, low
bars indicate good data quality (flows F1 to F3) and high bars
indicate poor data quality (flows F4 to F14, F19, and F25). Infor-
mation defects higher than 0.5 signify data of considerably poor
quality. For some flows, no input data were available. Clearly,
nonexistent information cannot be defective, but complete
ignorance can be regarded as a maximum information defect.
Thus, IDF = 1 is assigned for unknown flows (flows F15 to F18
and F20 to F24). The bars in figure 4 denote the a priori knowl-
edge about flows, that is, the knowledge before application

of a material flow model. By balancing of flows in a model (in
the Pd study, the STAN algorithm [www.stan2web.net] was
applied), initially unknown flows are calculated and the a pos-
teriori state of information differs from the a priori information
state. Thus far, the information defects enable assessing the
state of information about a material flow system and underpin
qualitative observations about available information by quanti-
tative means (subsequent applications of information defects in
material flow modeling are outlined in the Concluding Remarks
and Outlook section). For example, data quality is often found
to decrease over the life cycle of materials and to be better for
sectors of economic interest, such as trade and manufacturing,
in contrast to the consumption and waste management sectors
(see, among others, Mao et al. 2008; Graedel et al. 2004).
The results of the Pd case study indicate that data quality
is considerably better at the system input side, whereas data
quality of flows to the environment (such as dissipative fate;
flow 25) is poor. For many flows in the waste management sector
(e.g., flows 20 and 21), no data are available. The information
defects do now provide an opportunity to quantitatively express
data quality and illustrate weaknesses and tendencies of the
database in a systematic and reproducible way.

Discussion of the Formalization
Procedure

Data attributes can be mathematically combined in many
different ways for specification of information defects. The for-
malizations of IDi, IDtot, and IDF proposed here deliver math-
ematically sound and reasonable results for quantitative data
quality evaluation. They have been selected from a number of
possible formalizations based on comprehensive qualitative and
quantitative tests, where individual steps of the quantification
procedure have been varied and compared regarding their ab-
solute output and their relative ranking based on Monte Carlo
simulation, surface plots, and correlation analysis (Schwab and
Rechberger 2015). The mathematically simplest alternative ap-
proach is to formalize the defect of information elements as an
average (denoted as IDtot,average in the following) of all ordinal
attributes (table 1). In figure 5, this IDtot,average is plotted against
IDtot of the information elements of the Pd case study.

The averaged information defect appears to equalize the
results and deviate from IDtot, especially for increasing infor-
mation defects. Although IDtot,average is mathematically feasible,
it is of little meaning with regard to the information defects.
That is, because some data attributes are obviously related to
others, which is not considered by IDtot,average. For example,
the attribute “temporal divergence” interacts with the attribute
“temporal variability” when it comes to data quality evalua-
tion as it is obvious that outdated data (temporal divergence) is
only defective if the data vary over time (temporal variability).
The example of IDtot,average indicates that the adequateness of
very simple mathematical formalizations to express information
defects may be limited.

To assess and discuss the results of the data quality approach,
the information defects of the Pd case study are also compared
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Figure 3 Structure of the 2011 Austrian Pd MFA (Laner et al. 2015a). The system consists of 25 flows (16 in the main system and nine in
subsystems “use and collection” and “waste management”). EOL = end of life; kg/yr = kilograms per year ; MFA = material flow analysis;
Pd = palladium.

to data uncertainties, as calculated in Laner and colleagues
(2015a) (see figure 5). Laner and colleagues used an adapted
version of Hedbrant and Sörme (2001) for calculation of data
uncertainties in the Pd study. Whereas this is based on catego-
rization of data into five quality categories according to their
origination, the information defect approach distinguishes data
quality by a higher number of data characteristics and consid-
ers interconnections between data attributes. Figure 5 indicates
that uncertainty calculations and IDtot can differ, but show a
similar trend (Spearman rank correlation coefficient between
uncertainty ranges and IDtot in the comparison presented is
ρ = .7; between IDtot and IDtot,average it is ρ = .8). The range
covered by IDtot seems less wide than the range covered by the
uncertainty estimates (figure 5).

A difference between the introduced method and other ap-
proaches to data quality, such as the one in Laner and colleagues
(2015b), is that data quality is not formalized based on static
indicators and categories. Data quality is here formalized in a
model-type setup, where different data characteristics are linked
and may enhance or reduce the resulting information defect,
depending also on the magnitude of related attributes. The data
attributes contribute to the information defects IDi, IDtot, and

IDF to a variable extent, depending on the model formalization.
The weight of data attributes in IDF in the formalization pro-
posed above has been analyzed. This was done by investigating
the relative impact of variations in inputs (individual data at-
tributes; table 1) on the observed variation of the output (IDF;
equation 6) in a sensitivity analysis (Monte Carlo–based mul-
tiple linear regression). The relative weight of data attributes is
displayed in figure 6.

According to the formalization presented here, the precise
knowledge of the meaning of data (IDS) and the provenance
of data (IDP) contribute most to IDF. In contrast, all input at-
tributes considered would have the same weight in the alterna-
tive formalization IDtot,average mentioned earlier. Certainly, how-
ever, the weight of data attributes in the information defects
can be varied, for example, by the introduction of weighting
factors in equations (5) and (6), or by modification of equations
(1) to (4).

The application of the data quality evaluation procedure may
require more time than other approaches (see the overview of
existing methods in Laner et al. [2015b]). In return, it enables
better understanding of the factors determining the informa-
tion quality of material flows. For convenient and time-saving
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Figure 4 Data quality of the flows in the Pd MFA expressed as information defects IDF. Low defects indicate good data quality; high
defects indicate poor data quality. Flows without input data are here assigned IDF = 1. MFA = material flow analysis; Pd = palladium.

Figure 5 Comparison of IDtot to an alternative total information defect IDtot,average and data uncertainty estimations of Laner and
colleagues. Information defects (dimensionless) are plotted on the primary, uncertainties (%) on the secondary y-axis. The values are sorted
according to increasing IDtot. The connecting lines between the points are introduced to enable simple comparison of the plotted options.

application, the model presented here is implemented in a
spreadsheet tool attached to the data characterization matrix
(Schwab et al. 2016), which is provided in supporting infor-
mation S1 on the Web. In that spreadsheet tool, data qual-
ity can be calculated automatically once a database has been
characterized. Evaluation of a study with the extent of the
Pd case presented here requires 30 to 40 work hours. More

detailed full-scale national resource budgets (the Pd study was
not full scale; it had a focus on end of life of consumer prod-
uct flows) may require more time for their characterization and
evaluation (a possible general system structure for these kind
of regional MFAs is proposed, e.g., in Pauliuk et al. [2015]). It
may be difficult to retrieve all information necessary for sound
data characterizations of existing studies that used other data
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Figure 6 Relative weight of individual data attributes and IDi in
information defect IDF.

documentation schemes or that provide no complete and con-
sistent data documentation. Thus, it is beneficial to apply the
data characterization framework while preparing a study, that
is, in parallel to data collection.

Concluding Remarks and Outlook

Objective possibilities for data quality evaluation are usually
limited in MFA. Data quality evaluation is inevitably subjec-
tive, also with the proposed procedure. Nevertheless, it reduces
the influence of author opinions and subjectivity by systemizing
the evaluation procedure and by moving choices from generic
data classifications to an evaluation of individual data attributes.
Despite the systematic approach, agents with different back-
grounds and with different degrees of knowledge may charac-
terize data and their attributes differently and may thus produce
differing results in data quality evaluation, especially when the
approach is applied not in parallel, but subsequent to a study.
The method presented should be seen as a transparent “best
guess” procedure for facilitating reproducible and transparent
expert estimations on the abstract phenomenon “data quality.”

The output of the method presented is a ranking of flows
on an ordinal scale according to their data quality. An alter-
native concept of Laner and colleagues (2015b) aims at pro-
viding uncertainty ranges for MFA data. Often, the initial idea
behind uncertainty ranges is to express the reliability of the
underlying data. Naturally, it may be difficult to express epis-
temic uncertainties (“lack of knowledge”) by absolute measures
and estimations on the dimension and geometry of uncertainty
ranges may be highly speculative. That is why the approach
presented here is designed to evaluate the degree of credibility
of a priori data without simulating an absolute quantification of
uncertainty. Information defects can, in subsequent work, be
applied as dimensionless factors in characterization functions
of material flow models and as indicators for the reliability of

data (e.g., in Laner et al. 2015a) or as factors in data recon-
ciliation algorithms (e.g., Kopec et al. 2015). The information
defects can be applied as indicators for epistemic uncertainty
in data uncertainty frameworks (such as, among others, Dubois
and Guyonnet [2011] and Clavreul et al. [2013]).

Uncertainty ranges are practicable and often desired by ma-
terial flow analysts. The dimensionless information defects can
also be translated to uncertainty ranges by application of scal-
ing functions and by multiplication with a coefficient of varia-
tion or an uncertainty factor. More than that, it is possible to
test whether the integration of empirically derived probabilities
into the information defect concept is adequate for particular
MFA applications. Given that statistical characteristics such
as dispersion measures or probability distributions are, if avail-
able, also part of the data characterization matrix (see attribute
group “statistical characteristics” in the data characterization
matrix of Schwab et al. [2016]), this could also be exploited
for characterization of observed variability. In contrast to the
information defects, which indicate the epistemic uncertainty,
natural variability is not a component of uncertainty. Rather,
variability is an intrinsic property of any entity with more than
one realization and thus also an intrinsic part of a complete
piece of information (e.g., as an empirically derived distribu-
tion). Not to know about variability, in return, is a knowledge
shortcoming and thus epistemic uncertainty. As such, it is also
part of the approach presented here (see the representativeness
information defect (IDR) in equation (2), which increases with
decreasing number of samples n).

In combination with the data characterization framework
presented in a previous article (Schwab et al. 2016), the evalu-
ation procedure proposed enables the documentation, charac-
terization, evaluation, and communication of the information
basis of regional MFAs. The information defects indicate the
reliability of data and help to find weak points in the data
structure. They enable identifying the reason for data weak-
nesses (Is the source unreliable? Is the number of samples not
high enough? Is the meaning of the data unclear?) and aid in
adopting adequate measures for filling data gaps. When not
interpreting information defects as factors for uncertainty eval-
uation, but leaving them as dimensionless measures for a “state
of knowledge,” the results can be applied for comparing regional
MFAs of different substances, regions, or years to one another
and for measuring the learning effect on regional material flow
systems over time.
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Abstract 

Material Flow Analysis (MFA) is a useful method for modeling, understanding and 

optimizing metabolic systems. Among others, MFAs can be distinguished by two general 

system properties: First, they differ in their complexity, which depends on the system 

structure and the system size. Second, they differ in their inherent uncertainty, which arises 

from limited data quality. In this article, uncertainty and complexity in MFA are approached 

from a system-theoretical perspective and expressed as formally linked phenomena. MFAs 

are, in a graph-theoretical sense, understood as networks. The uncertainty and complexity of 

these networks are computed by use of information measures from the field of theoretical 

ecology. The size of a system is formalized as a function of its number of flows. It defines the 

potential information content of an MFA system and holds as a reference against which 

complexity and uncertainty are gauged. Integrating data quality measures, the uncertainty of a 

quantitative MFA before and after balancing is determined. The actual information content of 

an MFA is measured by relating its uncertainty to its potential information content. The 

complexity of a system is expressed based on the configuration of each individual flow in 

relation to its neighboring flows. The proposed metrics enable different systems to be 

compared to one another and the role of individual flows within a system to be assessed. They 

provide information useful for the design of MFAs and for the communication of MFA 

results. For exemplification, the regional MFAs of aluminum and plastics in Austria are 

analyzed.   

 

Keywords: Material Flow Analysis, network, information content, uncertainty, complexity, 

Industrial Ecology 
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<heading level 1> Introduction 

Material flow analysis (MFA) provides useful information on metabolic systems that span 

natural, technological and economic environments. Procedures for preparation of MFAs and 

tools for their representation have been widely harmonized. MFAs of various scopes and 

materials have proven useful in scientific discourse and for decision making in industrial and 

institutional contexts (see, for example, Morf and Brunner (1998), Velis et al. (2013), Trinkel 

et al. (2015), Zoboli et al. (2016)). MFA incorporates databases of increasing size and quality 

and reveals more and more details on socio-metabolic systems. In that course, it has been 

argued that, in Industrial Ecology, uncertainty and complexity issues are increasingly relevant 

(Kay 2002) and that information is a notable phenomenon, also because “uncertainties 

paralyze us” and because it is not clear how much information is needed for design of systems 

(Bettencourt and Brelsford 2015). This holds also for MFA: When recalling that studies of 

material flow systems both reveal new information and depend on existing information when 

being prepared (Chen and Graedel 2012), the dual role of information in MFA becomes 

apparent. For making informed MFA-based decisions, agents are not only to know about 

MFA results on a material level, but also about their reliability, that is, about the „uncertainty“ 

and, respectively, the „information content“ of a given material flow system. For making 

good use of available data, agents also are to know about the “complexity” of a material flow 

system, as increasingly complex systems require, in comparison to systems of more trivial 

structures, increasing amounts of information in order to be solved. In this article, the 

phenomena uncertainty and complexity are addressed as properties of descriptive MFAs 

(MFAs which aim on understanding temporally and spatially precisely defined systems such 

as the flows of a material X in region Y in the year Z). The information content of material 

flow systems is derived from their uncertainty. 

<heading level 2> Uncertainty in Material Flow Analysis 

In Industrial Ecology, established statistical procedures such as stochastic modeling and 

scenario modeling are often applied for the treatment of uncertainties, for example in input-

output models (Lenzen et al. 2010), in Life Cycle Assessment (Lloyd and Ries 2007) and in 

MFA (Gottschalk et al. 2010). Often, these approaches require more information than is 

actually available as data are typically given in the form of individual, isolated values and not 

in the form of statistically exploitable datasets. This holds especially for MFAs such as the 

two cases presented later in this article, where data uncertainty relates to knowledge 

shortcomings (“epistemic uncertainty”, Laner et al. (2014)). Consequently, even though 
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methods for treatment of known data uncertainties in MFA are available (see, for example, 

Kopec et al. (2015) and Cencic (2016)), means for actual characterization and representation 

of data uncertainty in the absence of statistical evidence are limited. 

As alternatives to author judgements or expert estimates of uncertainties (as, for example, 

performed in Graedel et al. (2004), Huang et al. (2007) and Ott and Rechberger (2012)), more 

systematic and transparent approaches have been proposed. In a concept of Hedbrant and 

Sörme (2001), MFA data are assigned to five uncertainty levels according to their origin, and 

this classification is then translated to uncertainty ranges. Expanding on that idea and 

integrating elements of the LCA-specific data quality concept of Weidema and Wesnæs 

(1996), Laner et al. (2015b) propose a concept in which data uncertainties are formalized as 

functions of five data quality indicators. In an approach of Schwab et al. (2016a), data quality 

is expressed by means of multidimensional functions of data characteristics as belief 

indicators named “information defects” (ID). These IDs reflect the degree of belief in given 

information to be true in a particular MFA context. All these approaches are geared towards 

systematic estimations for a priori characterization of data when statistical information is 

absent. A difference is, that the approaches of Hedbrant and Sörme (2001) and of Laner et al. 

(2015b) aim on quantification of uncertainty ranges, while the approach of Schwab et al. 

(2016a) aims on dimensionless data quality indicators, where low information defects (ID0) 

relate to data of good quality, high information defects (ID1) relate to data of poor quality 

and ID=1 relates to complete ignorance. 

Material flow analysts often choose to represent data uncertainty by means of uncertainty 

ranges, also because these can be treated in established frameworks. If no information on 

statistical variability is provided, however, the idea behind uncertainty ranges is to express the 

degree of belief an agent has in given data to be true, although it may be difficult to specify 

uncertainty ranges in the absence of empirical evidence. As a consequence, besides the choice 

of distribution geometries, the specification of uncertainty ranges is probably arbitrary: Why 

is an uncertainty range of ± 20% for quantity X assumed and not a range of ± 30%? Is ± 100% 

a natural upper limit, or is that often rather chosen because of mathematical convenience and 

the physical constraint that the lower bound of a quantity is zero? The question remains 

whether it is useful to quantify the unquantifiable, that is, to provide quantitative uncertainty 

ranges when these are actually unknown, also because this conveys the unjustified impression 

of empirical evidence. With the incentive to avoid the use of uncertainty ranges but to still 

allow for both relative and absolute comparisons, in this article, uncertainty is regarded as a 
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system property of MFAs which involve imperfect information. As formalized later in this 

study, the potential uncertainty of a system increases with its number of flows and decreases 

when more and better data is incorporated.   

<heading level 2> Complexity in Material Flow Analysis 

Complexity concepts are of increasing interest for systems analysis in Industrial Ecology, as 

put together in two special issues of this journal (Dijkema and Basson (2009), Dijkema et al. 

(2015); see the respective review articles Wood and Lenzen (2009) and Meerow and Newell 

(2015)). Although the term “network” is frequently used in a qualitative sense (Heijungs 

2015), graph theory is a rich source of concepts for quantitative analysis of network structures 

and parallels to analytical approaches in economics and in ecology have been revealed (Suh 

2005). Many graph-theoretical applications draw from theoretical ecology (Odum 1994; 

Ulanowicz 1997) and analogies between ecosystems and social, economic and industrial 

systems have been identified (Côté and Hall 1995; Graedel 1996; Korhonen 2001; Bailey et 

al. 2004). As reviewed in Schiller et al. (2014), graph-theoretical network measures have been 

applied for describing system structures in Industrial Ecology and for comparing different 

systems to one another (for a recent application, see Nuss et al. (2016)). Despite the 

increasing use for analysis of non-trivial structures, graph-theoretical network measures such 

as “connectedness”, “clustering” or “cyclicity” have in few studies been specifically 

interpreted as relative complexity measures, for example regarding life cycle inventories 

(Navarrete-Gutiérrez et al. 2015) or industrial ecosystems (Layton et al. 2016). In MFA, 

complexity measures have not been specifically addressed so far, although graph-theoretical 

complexity measures are also applicable in MFA. When regarding complexity in the sense of 

“static complexity”, which refers to the “number of parts and their linkages” (Allenby 2009), 

it appears to be useful to express complexity not as a merely relative, but as an absolute 

measure, as systems (also material flow systems) may not only differ in their complexity 

because of different linkage patterns, but also because of varying system sizes. An alternative 

for analysis of network complexity is presented in this article. It is elaborated specifically for 

MFA systems and is, as other approaches to complexity in Industrial Ecology, inspired by 

theoretical ecology. 

As material flow systems today cover increasing numbers of materials and regions, there is an 

interest in identifying similarities and differences of MFA systems (Klinglmair et al. 2016). It 

has been observed in different fields of Industrial Ecology that differences in system structure 

are to a varying degree to be attributed to actual differences in physical systems, but also to 
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priorities of modelers, the chosen level of detail and the structure of available data (Heijungs 

2015). Until now, both comparisons of MFA system structures and evaluations of the impact 

of MFA input data on MFA results are often limited to qualitative considerations (Klinglmair 

et al. 2016). A set of measures for specifying and comparing MFA systems by quantitative 

rather than sheer qualitative means appears to be helpful to facilitate further comparisons of 

MFA systems and also for communication of MFA results. In this work, such measures are 

proposed. With a focus on flows, the uncertainty and complexity of MFA systems are 

formalized as properties of MFA systems and quantitatively expressed in the same, abstract 

dimension. The information content of MFA systems is derived from their uncertainty. The 

formal framework used for computation is borrowed from the field of theoretical ecology, as 

introduced in the following. 

<heading level 1> Information measures in theoretical ecology 

In theoretical ecology, a concept for the description of networks has been elaborated based on 

work of Rutledge et al. (1976). The concept is constructed around the narrative that the 

functioning of ecosystems can be understood by means of information theory as a function of 

system size, proportions of flows in relation to other flows and system structure. Based on 

these ideas, Ulanowicz (1980) developed a set of aggregate measures for describing the state 

of ecosystems and their potential to undergo change. The starting point is a perspective on an 

ensemble of flows, which is, in the notation of Ulanowicz et al. (2009), expressed as  

 
𝐻 = −𝑘 ∑

𝑇𝑖𝑗

𝑇..
 𝑙𝑜𝑔 

𝑇𝑖𝑗

𝑇..
𝑖𝑗

 Eq. 1 

where Tij refers to a flow from agent i to j, T.. (a dot refers to summation over an index) refers 

to the aggregate of all flows in the system and k refers to a positive scaling constant. The 

measure is used to refer to “system diversity” (Rutledge et al. 1976) or “system capacity” 

(Ulanowicz 1997). Rutledge et al. (1976) argue that H can be decomposed into two 

components based on information on each flows’ configuration in the system, so that, in the 

notation brought forward by Ulanowicz et al. (2009), 

 
𝑋 = 𝑘 ∑

𝑇𝑖𝑗

𝑇..
 𝑙𝑜𝑔 

𝑇𝑖𝑗𝑇..

𝑇𝑖.𝑇.𝑗
𝑖𝑗

 Eq. 2 

and 

 
𝜓 = −𝑘 ∑

𝑇𝑖𝑗

𝑇..
 𝑙𝑜𝑔 

𝑇𝑖𝑗
2

𝑇𝑖.𝑇.𝑗
𝑖𝑗

 Eq. 3 
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where Ti. refers to the aggregate quantity that leaves i, T.j refers to the aggregate quantity that 

enters j and Tij refers to the quantity that both leaves i and enters j. X and ψ relate to the 

information-theoretical concepts of mutual information and conditional entropy, which are 

measures of association for quantifying the relationship between two variables. Eq. 2 and Eq. 

3 express the association of agents i and j as a function of the flow of matter from i to j in 

relation to the aggregate quantities leaving i and entering j. High X specifies that j depends 

mainly on i, high ψ specifies that j depends little on i but mainly on other adjacent i’s. The 

measures have been applied to ecosystems, for example for examining the functioning of food 

webs (Wulff et al. 1989; Baird and Ulanowicz 1989) or for comparison of ecosystems 

(Christian et al. 2005). It has also gained interest in other system-oriented fields such as 

economics (Goerner et al. 2009) and Industrial Ecology (Kharrazi et al. 2013), where it has 

been interpreted as a measure for the sustainability of a network. As highlighted by Kharrazi 

et al. (2013), it is a useful characteristic of the measures that they allow considering both 

intensive and extensive system properties, a feature which is utilized later in this work. 

The measures for the uncertainty and complexity of MFAs of a given size and structure 

proposed in this article have a focus on the role of flows. The measures are based on variables 

relating to the quality of flow data and to the configuration of flows in the system. Their 

computation is facilitated by Eq. 1, Eq. 2 and Eq. 3. In order to provide a quantity that holds 

as a reference against which the uncertainty and complexity of a given MFA system can be 

measured, Eq. 1 is reformulated to express the “informational” system size S of an MFA as a 

function of the number of flows nF in a system where, for now, all flows Fi have the weight 1, 

and the aggregate of all flows in the system ∑ 𝐹𝑖𝑖  (here: ∑ 𝐹𝑖𝑖 = 𝑛𝐹) is used as the scaling 

constant k, so that 

 
𝑆 = − ∑ 𝐹𝑖

𝑖

∙ ∑
𝐹𝑖

∑ 𝐹𝑖𝑖
log

𝐹𝑖

∑ 𝐹𝑖𝑖
(𝐹𝑖)

= −𝑛𝐹 𝑙𝑜𝑔
1

𝑛𝐹
 Eq. 4 

S is a monotonic increasing function of nF and for systems with an arbitrary number of flows, 

it is lim 𝑆
𝑛𝐹→ ∞

= ∞. A binary logarithm is chosen for computation in this article and the resulting 

quantity is referred to as “informational units”. Each individual flow contributes to the 

magnitude of S, i.e., is a component of the sum, which allows quantitatively specifying the 

contribution of any individual Fi to the aggregate system uncertainty and system complexity, 

as elaborated in the following. 
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<heading level 1> Uncertainty of material flow systems 

A typical procedure for filling a given qualitative MFA system with numbers consists of two 

steps (Brunner and Rechberger 2016). In the first step, a priori data for specification of 

system variables is collected. This data may be incomplete and inconsistent and therefore, in 

the second step, is balanced and reconciled in an MFA model. This second step increases the 

completeness and decreases the inconsistencies of data in the model. Ideally, such balanced 

MFAs provide reliable information on material flow systems. If all flows in a system were 

known with absolute certainty, their information content would be maximal. It would increase 

with the level of detail of a given system, that is, with the number of flows that are 

distinguished and correctly specified. As such ideal cases are unrealistic because of data 

quality limitations, there typically is a remaining degree of uncertainty in MFA results (Laner 

et al. 2014). As statistical evidence for specification of data quality is frequently limited in 

MFA, it can be expressed by reliability indicators such as the information defects mentioned 

earlier in this article. Because of data quality limitations and the resulting uncertainty in the 

system, the actual information content of given MFA systems usually is lower than their 

potential information content. A formal way to express this limitation by quantitative means is 

proposed in this section.  

<heading level 2> Uncertainty of systems with a priori data 

As information can be understood as the absence of uncertainty, and vice versa, S allows two 

interpretations. First, if all flows were known, it can be interpreted as the potential 

information content of a material flow system. Second, it can be interpreted as the uncertainty 

of a given qualitative material flow system, where none of the flows is known. This 

uncertainty may be reduced by integrating data on these unknown flows into the system. In 

other words, the uncertainty of a system with a priori data on flows (Uap) may be expressed as 

a composite of S, which reflects the uncertainty of a system without data. Instead of assigning 

the equal weight 1 to all flows, as it is in Eq. 4, the flows can be weighted by their information 

defects IDFi. The uncertainty of a system with a priori information (Uap) can then be 

formulated as 

 

𝑈𝑎𝑝 = − ∑ 𝐹𝑖

𝑖

∙ ∑
𝐼𝐷𝐹𝑖

∑ 𝐹𝑖𝑖
 𝑙𝑜𝑔

𝐼𝐷𝐹𝑖

∑ 𝐹𝑖𝑖

𝑛𝐹

𝑖=1

= − ∑ 𝐼𝐷𝐹𝑖  𝑙𝑜𝑔
𝐼𝐷𝐹𝑖

∑ 𝐹𝑖𝑖

𝑛𝐹

𝑖=1

 Eq. 5 
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The measure Uap refers to the uncertainty remaining in a quantitative MFA system after data 

of varying quality on flows is considered. It is lim 𝑈𝑎𝑝
𝐼𝐷→0

= 0 and 𝑈𝑎𝑝 ≤ S. This becomes clear 

when considering the simple examples in Table 1 and the case studies later in this article. The 

observation that the uncertainty of flows may better be expressed in relation to the uncertainty 

of other flows in a system (Klinglmair et al. 2016) reflects in Eq. 5, where the uncertainty of 

each individual flow is not only a function of its specific ID, but also expressed in relation to 

the sum of all ID in the system. 

<heading level 2> Uncertainty of balanced material flow systems 

By balancing material flow systems, conflicting model input data is reconciled and data gaps 

are closed. As a result, the uncertainty of a system decreases (i.e., the consistency of a system 

increases) when it is balanced. Consequently, the uncertainty after balancing (Ub) should be 

lower than the uncertainty before balancing (Uap). A typical application for balancing material 

flow systems is the software STAN (www.stan2web.net). In STAN, an algorithm based on the 

weighted least square method is implemented for data reconciliation. A system with 

information on flow quantities (linear constraints) is reconciled based on the relation between 

factors such as standard errors (see Cencic (2016)). In this article, the information defects are 

used as factors in data reconciliation with software STAN.  

The uncertainty remaining in a system after balancing (Ub) is computed by replacing IDFi in 

Eq. 5 by IDFi,b (information defect of Fi after balancing) and it is 𝑈𝑏 ≤ 𝑈𝑎𝑝. As both Ub and 

Uap are composites of S, the difference between the actual system uncertainty (Uap or Ub) and 

the system size S is referred to as the information content of a material flow system. 

<heading level 2> Weighted uncertainty of balanced material flow systems 

While some flow quantities XFi are known before balancing (a priori data with IDFi ϵ (0,1)), 

others are typically unknown (data gaps with IDFi=1). After balancing a system, all flow 

quantities XFi,b in a system are known. Some of these flows may be quantitatively more 

relevant than others. Intuitively, knowing quantitatively major flows better contributes more 

to the overall state of knowledge about a material flow system than knowing quantitatively 

minor flows better. To also consider the quantitative relevance of flows within a system, the 

uncertainty measure U is adapted. Each flow is weighted by 
𝑋𝐹𝑖,𝑏

∑ 𝑋𝐹𝑖,𝑏𝑖
, where XFi,b is the quantity 

of a balanced flow, multiplied with the number of flows nF so as not to change the magnitude 
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of the summed U-measure. Combining the balanced information defects and the balanced 

flow quantities, this gives the weighted uncertainty measure Ub,w, which is 

 

𝑈𝑏,𝑤 = − ∑
𝑋𝐹𝑖,𝑏𝑛𝐹

∑ 𝑋𝐹𝑖,𝑏𝑖
 𝐼𝐷𝐹𝑖,𝑏 𝑙𝑜𝑔

𝐼𝐷𝐹𝑖,𝑏

∑ 𝑋𝐹𝑖,𝑏𝑖
 

𝑛𝐹

𝑖=1

 Eq. 6 

By means of Eq. 6, it can be expressed that, given data of good quality on the quantitatively 

most relevant flows of a system (large XFi,b), the information content of the system is high or, 

conversely, the uncertainty of this system is low.  

<heading level 1> Complexity of material flow systems 

As motivated by Allenby (2009), complexity may be regarded as a system property which 

involves both the system size and linkage patterns within a system. This relates to the 

understanding of Rutledge and colleagues, where a system is maximally complex (or non-

trivial) if it consists of many elements and when each of these elements is connected to every 

other element in the system. In contrast, a trivial network structure such as a line network is of 

little or no complexity, even though it may be of considerable size. Recalling the useful 

feature of Eq. 2 and Eq. 3 to allow for combined consideration of intensive (system structure) 

and extensive (system size) dimensions motivates to apply the metrics for aggregated 

characterization of MFA networks. 

Each flow Fi is considered to define a subset. In an MFA system, each flow Fi connects a 

source process yi to a target process zi. At both its source and target process, Fi probably has a 

number of neighboring flows, that is, flows that either also originate from yi or that also enter 

zi. Referring to the number of flows leaving yi and entering zi as the outdegree of process yi 

(nyi) and the indegree of process zi (nzi), denoting a flow Fi from yi to zi as nyizi=1 and 

considering the total number of flows nF in a system, Eq. 2 is reformulated as a measure for 

the triviality T of a system, so that 

 

𝑇 = 𝑛𝐹 ∑
𝑛𝑦𝑖𝑧𝑖

𝑛𝐹

𝑛𝐹

𝑖=1

𝑙𝑜𝑔 
𝑛𝑦𝑖𝑧𝑖𝑛𝐹

𝑛𝑦𝑖𝑛𝑧𝑖
=  ∑ log

𝑛𝐹

𝑛𝑦𝑖𝑛𝑧𝑖

𝑛𝐹

𝑖=1

 Eq. 7 

and its counterpart, the complexity C of a system, is formulated as  

 

𝐶 = −𝑛𝐹 ∑
𝑛𝑦𝑖𝑧𝑖

𝑛𝐹

𝑛𝐹

𝑖=1

𝑙𝑜𝑔 
𝑛𝑦𝑖𝑧𝑖

2

𝑛𝑦𝑖𝑛𝑧𝑖
=  − ∑ log

1

𝑛𝑦𝑖𝑛𝑧𝑖

𝑛𝐹

𝑖=1

 Eq. 8 

Simple examples are provided in Table 1. In the most trivial topology (a line network, 

example A), it is S=T and C=0. C increases with nF and more complicated linkage patterns in 
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example B and example C. Under the condition that no process connects to any other process 

by more than one flow, systems with np processes are maximally complex if they have 

nF,max=(np-1)∙np flows and if each process connects to every other process in the system 

(example D). In such maximally complex topologies, there always is a T component and, with 

increasing nF,max, it is 
𝐶

𝑆
→ 1 and 

𝑇

𝑆
→ 0. For all above described topologies, it is S=T+C. 

Table 1: Four examples (A-D) for illustration of the proposed system measures S (system size), U (uncertainty), 

T (triviality) and C (complexity). F1-F5 are the flow numbers. The numbers next to the flows 

designate the information defects IDFi (here considered equal for all flows to illustrate the 

influence of system size on the U measures). The dotted line represents the system boundary, 

flows crossing the system boundary are referred to as import or export flows. 

 Graph System measures 

A 

 

S = 4.8 

U = 1.4 

T = 4.8 

C = 0.0 

B 

  

 

S = 8.0 

U = 2.4 

T = 6.0 

C = 2.0 

C 

  

 

S = 11.6 

U = 3.5 

T = 7.6 

C = 4.0 

D 

 

 

S = 15.6 

U = 4.7 

T = 3.6 

C = 12.0 

 

Real-world MFAs typically are between the extreme cases illustrated in example A and 

example D in Table 1. As line networks are untypical topologies of material flow systems, 

there always is a C component in a realistic MFA. Because of MFA-specific structural 

limitations, C is never maximal. These limitations include that flows crossing the system 
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boundary originate from or enter processes with an outdegree (in the case of import flows) or 

an indegree (in the case of export flows) of one. Also, pairs of processes are typically not 

connected in both directions but in one direction only. According to Eq. 4 - Eq. 8, each 

individual flow Fi contributes to the aggregated measures by a specific degree, which enables 

distinguishing flows from one another according to their respective uncertainty in the system 

context and their configuration in the system structure. This is further elaborated in two case 

studies presented in the following. 

<heading level 1> Analysis and comparison of two material flow systems 

The application of the proposed measures has been illustrated in simple hypothetical 

examples in Table 1. They can also be applied to full-scale MFAs, as presented in this section. 

Buchner et al. (2014) provide a detailed analysis of aluminum (Al) flows in Austria for the 

year 2010 (Figure 1). The aluminum MFA consists of 77 flows (nF=77). The sum of all XFi,b 

in the system is about 4600 kilotonnes per year.  

 

Figure 1: Flowchart of the 2010 Austrian aluminum flow system (Buchner et al. 2014). 

 

In van Eygen et al. (2016) a detailed study of plastics flows in Austria for the year 2010 is 

presented (Figure 2). The plastics MFA consists of 88 flows (nF=88). The sum of all XFi,b in 

the system is about 15,000 kilotonnes per year. 
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Figure 2: Flowchart of the 2010 Austrian plastics flow system (van Eygen at al 2016). 

The quality of model input data (information defects IDFi) of the two studies (Figure 1, Figure 

2) has been evaluated according to Schwab et al. (2016a). The measures for uncertainty and 

complexity in MFA (calculated according to Eq. 4- Eq. 8) of the case studies are listed in 

Table 2. A list of all input variables and of each individual flows’ contribution to the total 

system uncertainty and complexity is provided in appendix S1. 

Table 2: System measures of the aluminum and plastics systems (rounded to the nearest integer) 

 

 

The absolute magnitude of the measures enables comparing the aluminum and the plastics 

systems to one another in an absolute sense. The fact that the Al system consists of fewer 

flows than the plastics system reflects in the measure S (Table 2). For systems of larger or 

 Aluminum Plastics 

System size 

S 483 568 

Uncertainty 

Uap 196 335 

Ub 99 202 

Ub.w 71 168 

Structure 

T 270 296 

C 212 272 
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smaller size, S differs more significantly: Applied to the Austrian 2009 Phosphorus MFA 

(Zoboli et al. 2015; Schwab et al. 2016b), a comparatively detailed system with 122 flows, it 

is S= 846. For a palladium MFA with 25 flows (Laner et al. 2015a; Schwab et al. 2016a) it is 

S= 116. In addition to their absolute magnitude, relative comparisons of the measures provide 

useful information about MFA systems, as illustrated in Figure 3. 

 

Figure 3: Information content of the aluminum and plastics MFAs (calculated as differences between S, Uap and 

Ub) and their structural triviality and complexity. 

By means of the ratio of the measures S, Uap and Ub, the information gain from a qualitative 

system to a system with a priori information and a balanced system is quantified. The 

information content increases with decreasing uncertainty in the system (Figure 3). The initial 

uncertainty of the qualitative Al system is S=483. Considering the available a priori 

information on flows Fi, the uncertainty decreases to Uap= 196. By balancing (data 

reconciliation and bridging of data gaps), the uncertainty in the system decreases to Ub= 99. 

In the plastics system, the uncertainty decreases from S=568 to Uap=335 and to Ub=202. The 

plastics flow system is both relatively and absolutely speaking more complex than the 

aluminum flow system, as it can be seen when comparing the absolute magnitude of C and the 

relation of C to S of the both case studies. In both systems, Ub,w is lower than Ub. This 

indicates that, both in the Al and plastics system, quantitatively dominating flows are known 

better than quantitatively minor flows (Table 2). The a priori data of the Al system is 

considerably better than the a priori data of the plastics system. This is indicated by the fact 

that Uap equals less than half of S in the Al system, while Uap of the plastics system is only 

two fifth lower than S.  By balancing, the uncertainty of the aluminum system decreases by 

21% and the uncertainty of the plastics system by 24%. The relation of Ub,w to S indicates that 
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the aluminum system is known to an extent of 85% and the plastics system is known to an 

extent of  70%.  

<heading level 1> Usefulness and limitations 

A convenient feature of the uncertainty and complexity measures presented in this article is 

that both phenomena are quantified as formally linked measures and expressed in the same 

abstract dimension. They enable evaluating the system structure and  the state of knowledge 

on different MFAs or on MFAs at different points in their development process. The 

information gained by performing MFA procedures can be quantified and compared. As 

shown in the aluminum and plastics case studies, the information content of material flow 

systems can instantly be derived from the uncertainty of systems once this uncertainty is 

quantified.  

Transparent and informative communication of results has been observed to be a shortcoming 

in different fields of Industrial Ecology (Lazarevic et al. 2012). This holds also for MFA. The 

proposed measures are one possibility to help transporting information not only on actual 

material quantities, but also on the reliability of model results. For making well-informed 

decisions for example in resource management, it may be relevant, in addition to knowing 

about aggregate system properties, to know about particularly certain or uncertain flows or 

sectors in the system. This can be represented in a convenient way by means of flowcharts, as 

proposed in Figure 4. 

 

Figure 4: Uncertainty Ub,w of the flows in the aluminum MFA displayed as a flowchart. Flow widths are 

proportional to the weighted uncertainty per flow (Eq. 6). For the total system, it is  

Ub,w=71. 

Comparing individual flows of the same system by their contribution to Ub,w (that is, by the 

components of the sum in Eq. 6) reveals relevant information for identifying critical flows, 
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weaknesses in the system and needs for further investigations, which is relevant information 

for both MFA modelers and decision makers. In the aluminum system, quantitatively major 

flows contribute most to system uncertainty Ub,w, even though they are mostly known better 

than quantitatively minor flows (compare Figure 1 and Figure 4 and see also appendix S1 in 

the supporting information on the web). Further visualizations of uncertainty U by means of 

flowcharts are provided in appendix S2 in the supporting information on the web. 

A practical characteristic of the measures S and U as presented in this article is that it 

represents both the information needed for construction of a qualitative system of flows and 

the data for quantification of these flows. The more flows there are in a system, the higher is 

the total system uncertainty (resp., the potential information content of a system) and the more 

and better data are needed to minimize U. In an informationally optimized system, it is (S-

Uap)/S 1. An optimum is reached by increasing S (distinguishing more flows) while 

decreasing Uap (incorporating better data so that Uap  0). This antagonistic interpretation of 

S and Uap shows that, depending on the available information basis, it is usually not helpful to 

increase the resolution of a system when no adequate data is provided. In return, given rich 

and detailed information, increasing the system resolution is beneficial in the sense of 

increasing S and decreasing Uap.  

The difference between Uap and Ub indicates the amount of information gained by system 

balancing, and the degree to which a priori data of an MFA system is conflicting and has to 

be manipulated to meet mass balance constraints (data reconciliation). A high degree of data 

reconciliation indicates either that the available material flow data is inconsistent, or that the 

qualitative system is unrealistic or incomplete and has to be revised (or both). 

It has to be recalled that the actual design of a system may for various reasons not be 

complete and representative, for example because it depends on probably arbitrary choices of 

agents (Heijungs 2015). Although differences in system design have been identified as to be 

relevant in MFA, distinctions and comparisons regarding system structure are intricate 

(Klinglmair et al. 2016). The proposed measures T and C provide an improved basis for future 

analyses and comparisons. While the term “complexity” of MFAs has been used in a 

qualitative manner (Klinglmair et al. 2016), it can now be expressed by quantitative means. 

Moreover, flows that contribute most to the complexity of a system and sectors of particularly 

high or low complexity can be identified and compared quantitatively (Figure 5).  
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Figure 5: Complexity C of the flows in the aluminum MFA displayed as a flowchart. Flow widths are 

proportional to the contribution per flow to C (Eq. 8). For the total system, it is  C=212. 

A flowchart on the complexity of the plastics system is provided in appendix S2 in the 

supporting information on the web. Increasing complexity C of a system relates to increasing 

information demand of this system. Practically speaking, this means that an agents’ effort for 

data acquisition increases with C. Visualizing C as a flowchart (Figure 5), flows that 

contribute most to the complexity C can be identified, and these are the flows that are most 

important to be known a priori in order to balance a system.  

The proposed procedure for structural analysis is limited regarding adequate representation of 

some MFA-untypical topologies, which may be chosen by agents performing an analysis. 

This applies for example to loops (flows leaving and entering the same process in the studied 

unit time interval), such as flow 18 in the aluminum case study, and to parallel flows (flows 

from and to the same source and target process), such as flows 14 and 15 in the aluminum 

case study (Figure 1). Parallel flows result from flows being represented in a more 

disaggregated manner than processes and can in virtually all cases be prevented by respective 

system design, that is, by disaggregating either the source process or the target process, for 

example by use of subsystems (as it is for flows 30-35 in Figure 1). For one topological 

particularity, the characteristic of the structural measures that the contribution of each Fi to C 

and T is expressed in relation to the total number of flows in the system yields notable, though 

unproblematic, results. For a Fi that connects processes with particularly high outdegree nyi 

and indegree nzi, so that nyi∙nzi >nF, the contribution of this Fi to T takes negative values (cf. 

the concept of “pointwise mutual information” in information theory). This is not the case for 

any flow in the two systems analyzed in this article and, though conceptually possible, 

improbable in real-world MFAs. Such situations reflect particularly high structural 

heterogeneity of systems, which entails that the proportions different flows have in C and T 
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shift. A Fi with a negative contribution to T has a proportionately higher contribution to C and 

the aggregate measures C and T sum up to S. 

The procedures presented in this study focuses on flows. Transfer coefficients, stocks and 

stock change rates, which are also entities that introduce information or uncertainty into 

material flow systems and that add to the complexity of systems, are not considered. It thus 

may be useful to implement these entities into the measures in further research.  Stock change 

rates, for example, can be treated identically to import or export flows (which originate from 

or enter processes with outdegree or indegree one). That way, they would contribute to S, 

reflect in the structural measures T and C and, after assigning an ID, also in the uncertainty 

measures U.  

The proposed procedures may also be applied to other tools in the field of Industrial Ecology. 

In principle, they can be used for analysis of all systems that can be represented as networks, 

such as life cycle inventories or input-output models. In MFA, they complement existing 

methodologies by supporting system design, optimized use of available information and 

communication of MFA results. Issues of data quality and system structure, which have been 

qualitatively discussed for example by Klinglmair et al. (2016) can now, by means of the 

measures proposed in this article, be gauged and quantitatively compared. Despite these 

possibilities, information content and system design in MFA are, in the presence of limited 

information, inescapably subjective to a certain degree. This is both a limitation and an 

incentive of the procedure proposed in this thesis, which makes it formally possible to work 

with limited information in a transparent way. 

<heading level 1> Nomenclature 

Abbreviations 

C Complexity 

Fi Flow i 

IDFi Information defect of Fi (subscript b – balanced) 

k Positive constant 

nF Number of flows in system 

S System size 

T Triviality 

U System uncertainty (subscripts ap, b, w – a priori, balanced, weighted) 

XFi Quantity of a flow (subscript b – balanced) 
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y Source process 

z Target process 
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