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Kurzfassung

Fehler in nebenläufigen Programmen sind oftmals sehr schwierig aufzuspüren und zu
erklären. Ein Hauptgrund hierfür ist, dass es für Menschen grundsätzlich schwierig
ist, nebenläufige Programmausführungen zu verstehen und so die möglichen Verschrän-
kungen der Ausführungsstränge vorauszusehen. Es kommt erschwerend hinzu, dass in
verschiedenen Ausführungen eines nebenläufigen Programms die Interaktion der Aus-
führungsstränge und die Reihenfolge von Ereignissen unterschiedlich sein kann. Ein
solches nicht-deterministisches Verhalten kann zu einem fehlerhaften und unerwünschten
Verhalten des Programms führen, dessen Ursprung schwer zu analysieren ist. Die vor-
liegende Dissertation stellt effektive Techniken vor, welche den Programmierer oder die
Programmiererin darin unterstützen, die Ursache von Fehlern in nebenläufigen Program-
men zu ermitteln und zu verstehen. Unsere Techniken sind hierbei nicht auf bestimmte
Fehlerarten beschränkt. Wir präsentieren ein allgemeines Framework, um Fehler sowohl
in nebenläufigen Programmen, in denen die Ausführungsstränge über einen gemeinsamen
Speicher kommunizieren (“shared memory multithreaded programs”), als auch in neben-
läufigen Sytemen, in welchen die Kommunikation über den Austausch von Nachrichten
stattfindet (“message passing concurrent systems”), zu finden.

Wir stellen Techniken basierend auf zwei unterschiedliche Ansätzen vor. Der erste Ansatz
erkennt Anomalien in der Programmausführung mittels statistischer Analyse und der
Extraktion und Auswertung von Mustern (“pattern mining”). Wir adaptieren einen weit
verbreiteten Ansatz, das sogenannte “sequential pattern mining”, um Anomalien aus
Datensätzen bestehend aus fehlerhaften und korrekten Ausführungspfaden zu extrahieren.
Anomalien in Form von Ereignisssequenzen legen die problematische oder unerwartete
Reihenfolge nebenläufiger Ereignisse offen, welche Fehler verursachen können. Um die
Skalierbarkeit des “sequential pattern mining”–Algorithmus sicherzustellen, schlagen wir
drei verschiedene Approximationsmethoden vor, welche für jeweils verschiedene Problem-
stellungen geeignet sind. Die erste Methode unterapproximiert Anomalien, indem sie diese
auf Sequenzen von Ereignissen beschränkt, welche in Ausführungspfaden hintereinander
auftauchen. Die zweite Methode macht das Problem der Musterauswertung (“pattern
mining”) handhabbarer, indem Ausführungspfade mittels Partitionierung gekürzt werden.
Die dritte Methode basiert auf einer neuen Abstraktionstechnik, welche die Skalierbarkeit
des “sequential pattern mining”–Algorithmus erhöht. Diese Methode reduziert die Länge
der Ausführungspfade und die Anzahl verschiedener Ereignisse in den Ausführungspfaden,
bewahrt jedoch die Reihenfolge zwischen den Ereignissen einschließlich der Kontext-

xi



wechsel. Kontextwechsel sind häufig entscheidend für das Verständnis von Fehlern in
nebenläufigen Programmen. Die Fehlermuster, welche durch diese Methode extrahiert
werden, legen nicht nur die problematischen Verschränkungen offen, sondern auch den
Kontext in welchem der Fehler auftrat.

Unser zweiter Ansatz verwendet eine beweisbasierte Methode, um fehlerrelevante Ab-
schnitte (“slices”) fehlerhafter Ausführungspfade zu erkennen. Diese Technik analysiert
einen einzelnen symbolischen Ausführungspfad, um ein Codefragment und einen Ablauf
zu isolieren, welcher einen Fehler verursacht, und generiert außerdem Annotationen,
die fehlerhafte Programmzustände beschreiben. Diese Technik erweitert existierende
Techniken, die auf sequenzielle Programme beschränkt sind, für die Anwendung auf
nebenläufige Programme.

Wir evaluieren die Effizienz und Effektivität unserer Techniken auf Benchmarks, welche
eine große Bandbreite an Fehlern abdecken, wie sie in realen, nebenläufigen Programmen
typischerweise vorkommen. Des Weiteren vergleichen wir die Stärken und Schwächen
des Ansatzes basierend auf dem Auffinden von Anomalien mit jenen des beweisbasierten
Ansatzes.



Abstract

Concurrency bugs are among the most difficult software bugs to detect and diagnose. This
is mainly due to the inherent inability of humans to comprehend concurrently executing
computations and to foresee the possible interleavings that they can entail. In concurrent
programs, interactions between concurrent computations and the order of program events
can vary across executions. This nondeterminism may result in erroneous and undesired
program behavior whose root cause is difficult to analyze. Facing the challenge of
debugging concurrent programs, this dissertation proposes effective concurrency bug
explanation techniques to assist programmers in understanding the cause of failure in
concurrent programs. Our techniques which do not rely on any characteristics specific to
one type of bug, provide general frameworks for explaining bugs both in shared memory
multithreaded programs and message passing concurrent systems.

In devising our dynamic techniques for bug explanation, we follow two different approaches,
namely anomaly detection and slicing. Our anomaly detection techniques are based
on statistical analysis and pattern mining. These techniques adapt a standard pattern
mining algorithm called sequential pattern mining to extract anomalies from datasets
of failing and passing execution traces. Anomalies in the form of sequences of events
reveal the problematic or unexpected order between concurrent events which may cause a
failure. To address scalability issues of the standard sequential pattern mining algorithm
in extracting anomalies, we propose three different approximation methods according to
the problem setting. The first technique under-approximates anomalies by limiting them
to sequences of events which occur consecutively in traces. The second technique makes
the pattern mining problem more tractable by shortening the length of the traces via
partitioning them into subtraces. The third technique is based on a novel abstraction
technique for improving the scalability of the pattern mining algorithm. This technique
reduces the length and the number of distinct events in traces while preserving the
ordering information between the events of original traces including context switches
which are crucial for understanding concurrency bugs. The bug patterns extracted by
this technique not only reveal the problematic interleavings but also the context in which
the bug occurred.

In a completely different approach, we use a proof-based technique to construct semantics-
aware slices from failing traces. This technique analyzes a single symbolic execution trace
to isolate a slice comprising a code fragment and schedule causing a concurrency bug as
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well as annotations that describe the erroneous program states. Our slicing technique, in
fact, generalizes existing interpolation-based frameworks for sequential bug explanation
to a concurrency setting.

We evaluate the efficiency and effectiveness of our proposed techniques on benchmarks
covering a broad range of real-world concurrency bugs. Moreover, we compare the
strengths and limitations of the anomaly detection techniques with the proof-based
slicing technique.
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CHAPTER 1
Introduction

1.1 Motivation
Nowadays, parallel and concurrent systems ranging from multicore systems containing
several cores on a single chip to Internet cloud systems spanning several different machines
have become ubiquitous. Physical limitations hinder the performance of sequential
computation to be increased according to the scaling trend projected by Moore’s law.
Consequently, system designers have considered parallelism as the primary means to
improve the performance of computing systems.

To exploit the parallelism of hardware, programs and algorithms have been parallelized
as well, and deployed in all kinds of computing systems–from Internet cloud systems to
desktops to mobile systems. They are even used for controlling safety critical systems such
as medical devices [LT93] and cars [KOESH07]. As a result, our modern life increasingly
depends upon the correct and reliable functioning of concurrent systems.

In general, making the software correct and guaranteeing that it behaves according to
its specification is difficult. The main barrier to software reliability is the large number
of program behaviors which the programmer needs to consider in order to ensure that
the program satisfies its specification. Due to challenges involved in making the software
correct, it typically contains bugs, which are defects in the program code that can result
in the failure. Failure is the failing or incorrect program behavior. Previous studies have
shown that software bugs caused about 25–35% of system down time [MS00] and 50% of
security vulnerabilities [CER].

Concurrency makes the matters even worse. A concurrent program comprises two or
more pieces of sequential code that can be executed concurrently or simultaneously. In
concurrent programs, the number of program behaviors increases exponentially with the
number of concurrent components. Especially, interactions between concurrent compu-
tations significantly impact the number of potential program behaviors. Programmers
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1. Introduction

tend to think sequentially, therefore, they may easily overlook some of the interactions
that their programs encompass. Unforeseen interactions between concurrently executing
components may then result in erroneous and nondeterministic program behavior whose
root cause is difficult to analyze. Concurrency bugs due to not properly synchronized con-
current components, therefore, widely exist in concurrent programs. A survey conducted
at Microsoft in 2007 on 684 technical staffs revealed the frequency of this type of bugs:
over 60% of respondents routinely have to deal with concurrency related bugs [GN08].
Moreover, bugs in concurrent systems can result in financial loss, severe injuries, or
even the loss of life as history reminds us. In 1980s, a concurrency bug in Terac 25, an
X-ray machine caused radiation overdoses which killed some patients and severely injured
others [LT93]. In 2003, a race condition triggered in an energy management system
caused power outage for two days in the northeastern America which resulted in around
6 billion dollars of financial loss [Pou04]. Recently, Nasdaq’s Facebook IPO was delayed
for half an hour due to a race condition which caused millions of dollars loss [Nas].
To improve software quality, testing and model checking have been primarily used. Testing
tries to find bugs in a program by exploring its execution paths. Covering all execution
paths is impractical, therefore testing techniques often guarantee coverage only according
to some criteria, for instance, covering branches or statements. Testing is quite efficient
in finding bugs and widely used in practice. However, it is not complete and it does
not guarantee that the failure won’t occur after deployment. On the other hand, model
checking aims at providing a formal proof that the system is correct with respect to
a given specification. If the system does not satisfy the specification, model checkers
typically provide counterexamples as witnesses. However, model checkers scale poorly
and their usage is limited in practice.
Testing and model checking of concurrent programs have been studied for years in
academia and industry. The testing techniques for this type of programs mainly explore
the space of program behaviors systematically or with random strategies to identify
problematic interactions that cause the failure [MQ07, MQ06, Sen08]. These techniques
provide various coverage guarantees over the space of interleavings.
Both testing and model checking only expose the bug by revealing the failing behavior of
the program. They do not provide the root cause information for the revealed failure.
Debugging is the process of understanding the cause of failures, locating and fixing bugs
once their existence have been established. This process usually begins with reproducing
the failing behavior, and subsequently isolating and fixing the code fragments responsible
for the failure, using the observed failing behavior and the source code. In practice,
programmers typically locate the bugs in their code using a highly involved, manual
process. The debugging process which involves inspecting lengthy failing behaviors is, in
general, notoriously time-consuming. A 2013 Cambridge University study found that
software developers spend 50% of their programming time “fixing bugs” or “making code
work” [BJGC13].
Debugging concurrent programs is even more challenging and time-consuming. This is
because concurrency bugs are considered as “Heisenbugs” which rarely surface and are
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1.1. Motivation

hard to reproduce. Successive executions of a concurrent program do not necessarily
produce the same results because of nondeterminism. This makes reproducing the failing
behavior hard. In the Microsoft survey cited above, on average, developers spend seven
days between finding a concurrency bug and applying a fix. In some cases, this may
last up to several months. According to [JPPS11], Mozilla developers spent nearly two
months to completely understand and fix a concurrency bug, even though they knew the
specific interaction between the threads leading to the failure.

To debug concurrent programs, various concurrency bug detectors have been proposed.
Bug detectors analyze source code or execution to isolate the concurrency bugs existing
in the program. These detectors have in common that they focus on detecting only
one particular type of bug such as data races or atomicity violations (see Chapter 2),
hence relying on characteristics specific to that type of bug [LPSZ08]. Moreover, many
of them have high false positive rates [EMBO10], therefore programmers may require
more context to determine whether the results show the real bug.

Recently, more general frameworks have been proposed for debugging concurrent pro-
grams [LC09, LWC11, PVH10, PVH12, JTLL10, WWY+14, KKW15, GHR+15]. These
techniques try to isolate the cause of failure once a failing behavior has been exposed
via testing or model checking. However, some of them rely on given pattern templates
for each type of bug [PVH10, PVH12, WWY+14], some may miss bugs due to not
considering all the relevant ordering information [LC09, PVH10], and logical constraint
based methods face scalability issues in practice [KKW15].

Considering the challenges involved in debugging concurrent programs and limitations
of the current methods, there is still a great need for general frameworks to effectively
address various types of concurrency bugs. This dissertation focuses on developing
techniques to facilitate debugging concurrent programs. Our techniques do not exploit
characteristics specific to one type of bug, thus addressing different types of bugs both in
shared memory multithreaded programs and message passing concurrent systems. In
addition, they do not rely on any given pattern templates or annotations.

In the remainder of this chapter, we first introduce the problem that we focus on in this
dissertation which is explaining concurrency bugs or understanding the cause of failure
in concurrent systems. This is done by defining basic notions of fault, error, failure
and the constituent steps of software debugging process. We then briefly discuss the
limitations of the state-of-the-art approaches in addressing this problem (see Chapter 2
for a detailed discussion). Finally, by describing the contributions of this dissertation
in brief, we provide an overview of the approaches that this dissertation presents for
addressing the problem.
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1. Introduction

1.2 Overview

1.2.1 Software Bugs

A fault is a defect in the program code which is also referred to as a bug in the software
engineering literature. It is created at design or implementation time which makes the
program not comply with the specification. It can also be created due to imprecise and
incomplete specification of the program’s functionality. In this dissertation, the terms bug
and fault are used interchangeably, and our assumption is that the specification is precise
and complete and bugs are due to the programmer’s mistake at implementation time. As
an example, computation faults are those faults in which a variable after a computation
contains a value different from what was expected according to the specification. In
C/C++, casts between signed to unsigned numbers can result in a computation fault
because if the value of the signed primitive can not be represented using an unsigned
primitive, it can produce an unexpected value. In Listing 1.1, if the error condition in
the code above is met, then the return value of readdata() will be 4,294,967,295 on a
system that uses 32-bit integers. If this value is passed to the standard memory copy or
allocation functions, it may lead to an exploitable buffer overflow or underflow condition.
Therefore, in this example cast between signed to unsigned at Line 6 is a fault which
may cause a failure. As another example, in Listing 1.2, the function computes |x1− x2|,
however, the condition at Line 4 is wrong and should have been x1 > x2 instead. Due
to the faulty condition of Line 4, in cases where x1 6= x2 the assertion at Line 13 gets
violated.

1 uns igned i n t r eadda ta ( )
2 {
3 i n t amount = 0 ;
4 . . .
5 i f ( r e s u l t == ERROR )
6 amount = −1;
7 . . .
8 r e t u r n amount ;
9 }

Listing 1.1: Signed to unsigned conver-
sion fault

1 compute_d i f f ( x1 , x2 )
2 {
3 i f ( x1 != x2 ) {
4 i f ( x1 < x2 )
5 d i f f = x1 − x2 ;
6 e l s e
7 d i f f = x2 − x1 ;
8 }
9 e l s e {
10 d i f f = 0 ;
11 . . .
12 }
13 a s s e r t ( d i f f >= 0 ) ;
14 }

Listing 1.2: Fault in a condition

During the execution of the program code, the fault may be triggered which means that
the faulty code may be executed under certain conditions. When the fault is triggered, it
creates an infection in the program state which is a discrepancy between the program
state and the intended program behavior. We refer to an infected state as an error.

Every program state consists of values of program variables as well as the program counter
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1.2. Overview

containing the current control location. The intended program behavior is defined by the
program specification. An automatic way of comparing program states with the intended
program behavior is by using the assertion technique. For example, in Listing 1.2, with
the input (0,1) the program goes through the lines 3-5 and 13. After the execution of
Line 5, the state is an error since diff = −1 and according to program specification diff
should always be greater than or equal to zero: diff ≥ 0.

A fault in the program code has to be triggered in order to cause an error, otherwise it
does not necessarily leads to an error. For example, in Listing 1.2, with the input (2,2)
the faulty statement at Line 4 gets never executed, consequently no error occurs during
the program execution. If the error propagates during the remaining program execution,
it leads to a failure which is the violation of the program specification. A failure is an
observable error in the program behavior, for instance, a crash or an incorrect output.
In Listing 1.2, with the input (0,1) the error occurring after the execution of Line 5
propagates to Line 13 in which the assertion gets violated. The violated assertion is an
example of a failure.

7

7 Error state

777 Error state

7777

Correct state

Faulty code

Variable values

Program
states

User observes failure

P
ro
gr
am

ex
ec
ut
io
n

Figure 1.1: Propagation of error from fault to failure

A fault may not be propagated continuously, it may be overwritten, masked or corrected
by some program action. Therefore, for the occurrence of a failure the fault in the code
has to be triggered and then the error caused by the defect needs to be propagated.
Every failure is thus caused by some error, and every error is caused by some earlier
error originating at the fault which constitutes a cause-effect chain from fault to failure.
Figure 1.1 illustrates the cause-effect chain from fault to failure [Zel09].
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1. Introduction

1.2.2 Debugging

When a program fails we want to realize the reason and fix it. Debugging is a software
engineering process which starts after a failing behavior has been observed in a program,
and can be decomposed into the following essential steps [Zel09, Chapter 1]:

1. Reproducing the failing behavior.

2. Analyzing the cause of failure by isolating the cause-effect chain from fault to
failure.

3. Localizing the faulty part of the program code.

4. Fixing the fault.

We refer to the second step as fault explanation and the third step as fault localization.
Among all the four steps of debugging, fault explanation is concerned with “understanding
how the failure occurs”, and is considered as the most challenging and time-consuming
part of debugging. Fault explanation results in isolating the cause of failure and can
greatly facilitate localizing and fixing the fault (third and forth steps). Reproducing
the failing behavior (first step) can only be difficult for a nondeterministic program
such as a concurrent program where the programmer does not have full control over the
execution environment (we will introduce methods proposed for reproducing the behavior
of concurrent programs in Chapter 2, Section 2.2.3).

Considering Figure 1.1, in order to find the fault we need to isolate the transition from a
correct state to the error state. This process is both a search in space (we have to find out
which part of the state is infected) and in time (we have to find out when the infection or
error takes place). These searches in space and time are quite challenging even for simple
programs. Every state can contain up to millions of variables. Moreover, a program
execution can have several thousands or up to millions of these states. Therefore, space
and time form a wide area in which only two points are known: the initial state which
is entirely correct and the final failure state which has an infected part. Within the
area spanned by space and time, the aim of debugging is to locate the fault which is a
single transition from a correct state to an error state which eventually causes the failure.
Figure 1.2 illustrates this process [Zel09, Chapter 1].

In principle, all debugging problems can be solved manually by analyzing source code
and observing the failing program behavior at run time. In other words, debugging can
be done by having source code and a failing execution trace. As discussed previously,
this process which involves search in time and space is quite time-consuming and tedious.
Therefore, a large number of automated debugging techniques have been proposed to
reduce the manual effort involved in debugging. Specially for debugging sequential
programs, a wide variety of tools and techniques have been proposed [WD09, Ali12].
According to the underlying principles and assumptions, we classify these approaches
into three broad categories, namely slicing, anomaly detection and causality analysis.
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Figure 1.2: Isolating the fault: search in space and time. A fault manifests itself as a
transition from a correct state (X) to an error state (7), where a faulty statement causes
the initial infection.

• Slicing techniques: They effectively narrow down the search for the root cause of a
failure by identifying the relevant statements and variables to the failure. Therefore,
to locate the faulty statements the programmer needs only to focus on the slice.

• Anomaly detection techniques: They extract anomalies by examining differences
between passing and failing execution traces. Anomalies are properties that are
only common or frequent in failing traces but not in passing traces. Similar to
slices, anomalies can effectively narrow down the search for the root cause of the
failure.

• Causality analysis techniques: They aim at locating the fault or the root cause
of the failure by isolating the cause-effect chain from the fault to the failure in a
failing trace.

We present a detailed discussion of each of these categories in Chapter 2, Section 2.1.
As we will see, the techniques belonging to one of the categories introduced above have
been mainly proposed for debugging sequential programs, and only in a few cases for
debugging concurrent programs. Since the techniques proposed for exposing and detecting
concurrency bugs are based on the specific characteristics of concurrency bugs, we treat
them as a separate category.

In the following, we define the basic notions of concurrent programs and interleaving
semantics. We then provide a brief introduction of the common types of concurrency
bugs and how they have been addressed in the previous work. A detailed discussion of
concurrency bugs and concurrency bug detectors is given in Chapter 2, Section 2.2.1.

7
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1.2.3 Concurrent Programs and Interleaving Semantics

A sequential program specifies sequential execution of a list of statements. Therefore, it
imposes a total ordering on the execution of the statements it specifies which results in a
single thread of control. A concurrent program comprises two or more pieces of sequential
code that may be executed concurrently or simultaneously. Unlike sequential programs,
a concurrent program has multiple threads of control in which every thread corresponds
to the execution of one of the pieces of sequential code. Therefore, each thread specifies a
total order on the execution of its statements. Since by default there is no order between
the execution of the statements of different threads, a concurrent program imposes a
partial ordering on its statements. As a consequence, when a concurrent program is
executed repeatedly even with the same input the actions from different threads may
be executed in different orderings. We refer to the ordering of execution of actions in a
concurrent program as scheduling. Since the scheduling of a concurrent program may
vary every time it is executed, it may reveal different behaviors even with the same input.
This property of concurrent programs is referred to as nondeterminism.

Interleaving semantics is widely used for modeling the nondeterministic behavior of
concurrent programs. We assume that the statements (actions) of a thread are atomic,
which means that their execution is not interrupted and they are always executed to the
completion. Two atomic actions a and b from two different threads are concurrent, denoted
by a‖b, if either a can be executed before b or vice versa. Using interleaving semantics
we can model executions of concurrent programs as total orders by nondeterministically
choosing one order between concurrent actions.

In a concurrent program, multiple threads interact via communication and synchronization.
Communication mechanisms for concurrent programs are generally based on either shared
memory or message passing. In the shared memory mechanism, some or all of a program’s
variables are accessible to multiple threads. These variables are referred to as shared
variables. Communication between the threads then happens via read and write accesses
to shared variables. In the message passing mechanism, there is no shared variable. For
communication, threads perform explicit send and receive operations to transmit data
via message passing channels.

As we discussed, in a multithreaded program by default there is no order between the
execution of the statements of different threads. Synchronization is a mechanism for
imposing order on the concurrent actions of different threads. In message passing systems,
synchronization is generally implicit: a message must be sent before it can be received.
If a thread attempts to receive a message that has not yet been sent, it will wait for
the sender to catch up. However, in shared memory systems synchronization is not
generally implicit. Language constructs such as locks, monitors and semaphores are used
for synchronizing accesses to shared variables, otherwise, a receiving thread could read
the old value of a variable, before it has been written by the sender.

During the execution of a concurrent program, actions of each thread are executed in the
program order of that thread and synchronization operations determine the order between
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the actions of different threads. Since a priori there is no order between the synchronization
points of different threads, timing of operations or scheduler determines the order in
which threads reach synchronization points. The variation in the order in which threads
arrive at synchronization points can in turn change the order of other operations in the
execution. Therefore, an execution follows a schedule nondeterministically. As we have
already discussed, different schedules can result in different outcomes even with the same
input.

1.2.4 Concurrency Bugs - Concurrency Bug Detectors

Due to nondeterminism, communication and synchronization are two main challenges in
designing and implementing concurrent programs, and consequently the main sources of
concurrency bugs. Concurrency bugs can lead to unintended program behavior as the
result of particular ordering of actions in different threads. In fact, the failures caused by
concurrency bugs depend on the execution schedule. In other words, concurrency bugs
manifest only in a particular execution schedule. Figure 1.3 shows a typical concurrency
bug due to scheduling. In this figure, Thread 1 stores a value into a pointer variable
called pRec and then dereferences it later. If Thread 2 nullifies pRec (statement 3) before
Thread 1 dereferences it (statement 2), the program crashes. However, if statement 3
is executed after statement 2, the program does not crash. Since in practice particular
schedules which lead to a failure occur rarely, detecting and diagnosing concurrency bugs
is quite challenging.

1: pRec = q;

2: pRec->read();

Thread 1

3: pRec = NULL;

Thread 2
1: pRec = q;
2: pRec->read();

Thread 1

3: pRec = NULL;

Thread 2

Figure 1.3: A typical concurrency bug due to scheduling: The program crashes with the
scheduling 1→ 3→ 2 (left) but not with the scheduling 1→ 2→ 3 (rigth).

To detect and explain concurrency bugs, researchers have focused on common types of
concurrency bugs [LPSZ08] such as data races (concurrent conflicting accesses to the
same memory location) and atomicity/serializability violations (an interference between
supposedly indivisible critical regions). The detection of data races requires no knowledge
of the program semantics and has therefore received ample attention (see Chapter 2).
Freedom from data races, however, is neither a necessary nor a sufficient property to
establish the correctness of a concurrent program: benign data-races include races that
affect the program outcome in a manner acceptable to the programmer [EMBO10]. In
particular, it does not guarantee the absence of atomicity violations, which constitute
the predominant class of non-deadlock concurrency bugs [LPSZ08]. Atomicity violations
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are inherently tied to the intended granularity of code segments (or operations) of a
program. Automated atomicity checking therefore depends on heuristics [XBH05] or
atomicity annotations [FQ03] to obtain the boundaries of operations and data objects.

The past two decades have seen numerous tools for the exposure and detection of
data races [SBN+97a, NM91b, EA03b, FF10, EQT10], atomicity or serializability viola-
tions [FQ03, LTQZ06, XBH05, PLZ09], or more general frameworks which also address
order violations (execution of threads in an unintended order) [LC09, PVH12]. As we
will discuss in Chapter 2, the majority of these techniques address only one specific type
of concurrency bugs, thus lack generality. Moreover, they rely on given heuristics or bug
patterns which restrict their applicability.

In this dissertation, we propose formal proof-based as well as statistical methods for
concurrency bug explanation. Our techniques do not exploit any characteristics specific
to one type of concurrency bug, therefore providing general frameworks for concurrency
bug explanation. We consider both shared memory multithreaded programs and message
passing concurrent programs. Our statistical techniques for concurrency bug explanation
are based on anomaly detection and our proof-based technique is based on slicing.

1.3 Contributions
This dissertation makes contributions to the field of debugging concurrent programs
by proposing general frameworks for concurrency bug explanation. Empirical results
obtained by the implementation of these frameworks show the effectiveness as well as
efficiency of the proposed techniques in explaining concurrency bugs. We divide our
techniques into two categories of anomaly detection and slicing.

1.3.1 Anomaly Detection for Debugging Concurrent Systems

Our anomaly detection techniques are based on mining datasets of execution traces. We
use a standard pattern mining method called sequential pattern mining for extracting
anomalies from datasets of failing and passing execution traces. Anomalies in the form
of sequences of events reveal problematic interleavings or interactions in a concurrent
system. With these techniques, we address bugs both in multithreaded shared memory
programs and concurrent systems with message passing mechanism.

Message Passing Concurrent Systems. We present techniques for explaining coun-
terexamples indicating the violation of a desired property in a message passing concurrent
system. The counterexamples are obtained by explicit state model checking of a faulty
concurrent system. In these techniques:

• We formalize the notion of explanatory sequences as the anomalies that are extracted
through mining datasets of counterexamples and correct execution traces.
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• We show the intractability of standard pattern mining algorithms in extracting ex-
planatory sequences due to the combinatorial explosion of the potential candidates.

• To address the scalability issues in applying standard pattern mining algorithms
for extracting explanatory sequences, we propose two approximation techniques.

• We evaluate the efficiency and effectiveness of the proposed approximations in
practice.

Shared Memory Multithreaded Programs. Our anomaly detection technique for
understanding bugs in shared memory multithreaded programs is based on mining
execution traces produced as the result of testing these types of programs. In this
technique:

• We formalize the notion of bug explanation pattern as the anomalies that are
extracted through mining datasets of failing and passing execution traces. We
provide also the underlying theoretical rational.

• We propose a novel abstraction technique for making the problem of mining bug
explanation patterns tractable.

• We show the effectiveness and efficiency of our abstraction technique in analyzing
lengthy execution traces of real world applications.

1.3.2 Semantics-aware Slicing Technique for Debugging Concurrent
Systems

While our anomaly detection approach is based on analyzing a set of concrete execution
traces, in our slicing approach we analyze a single symbolic execution. In this technique,
a failing trace is translated into an unsatisfiable logical formula. From a proof of
unsatisfiability interpolants are extracted. These interpolants are then used to construct
a slice of the failing trace that abstracts from the irrelevant statements and explains the
faulty behavior.

Recent work [ESW12, CESW13, MSTC14] showed how interpolation can be used to
construct semantics-aware slices in sequential software. In our slicing technique:

• We lift the existing formal framework of interpolation-based slicing to a concurrency
setting:

– We consider control- and data-dependency between threads in addition to
intra-thread dependencies, adding the ability to reflect hazards such as race
conditions and atomicity violations.

– We prove that the slices produced using the hazard-aware interpolation are
sound and sufficient to trigger the failure.
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• We demonstrate the effectiveness of hazard-aware interpolation in explaining com-
mon types of concurrency bugs through the empirical evaluation.

1.3.3 Outline

Chapter 2 introduces state-of-the-art (semi)automated software debugging techniques.
Especially, this chapter focuses on the three fundamental approaches proposed to automate
debugging software, namely slicing, anomaly detection and causality analysis. We discuss
state-of-the-art concurrency bug detectors. We provide also a discussion of the strengths
and weaknesses of these approaches.

The remaining chapters present our contributions listed previously in this section. Chap-
ters 3, 4 cover the anomaly detection methods for counterexample explanation in message
passing concurrent systems. Chapter 5 presents the anomaly detection method for
explaining bugs in multithreaded shared memory programs. Chapter 6 is dedicated to
our interpolation-based slicing technique for concurrent programs. Finally, we provide
some concluding remarks and a discussion of future work in Chapter 7.

The materials in Chapters 3-6 which cover our contributions listed in Sections 1.3.1 and
1.3.2 are published as journal or conference papers. The techniques in Chapters 3 and 4
are presented in [LTB12] and [LTB13], respectively. The abstraction and mining method
of Chapter 5 is presented in [TBWW16] and [TBWW14]. [TBWW14] was nominated
for the best paper award at the Runtime Verification conference 2014, and invited
for a special edition of FMSD [TBWW16]. The interpolation-based slicing method of
Chapter 6 is presented in [HSNTB+16].
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CHAPTER 2
Background and Previous Work

2.1 Automated Debugging Techniques
In Section 1.2.2, we introduced the three fundamental approaches proposed for automating
and facilitating debugging software. These approaches, namely slicing, anomaly detection
and causality analysis, are discussed in detail in this chapter. Furthermore, we provide
a discussion of their strengths and limitations. Although these approaches have been
proposed mostly for debugging sequential programs, they have also been applied in some
cases for debugging concurrent programs.

In Section 2.2.1, we discuss the state-of-the-art concurrency debugging tools. We provide
a more detailed discussion of these tools and techniques in comparison with our own
techniques in the “Related Work” sections of the Chapters 3-6. In Section 2.2.3 of
this chapter we present the related work which focuses on exposing and reproducing
concurrency bugs.

2.1.1 Slicing

A program slice consists of statements of a program that (potentially) affect the values
computed at some point of interest in the program, referred to as a slicing criterion [Tip95].
A slicing criterion usually consists of a pair (program location, variable). Weiser first
introduced the concept of a program slice [Wei81], and considered slices as abstractions
programmers make while doing debugging. To understand the cause of the failure, for
every variable with an incorrect value in the failing state, we identify the statements or
values which could have influenced it. These are the relevant statements which could
have potentially caused the failure. By identifying relevant statements, at the same time,
the statements which are irrelevant to the failure are also identified. Isolating the relevant
statements helps us to effectively narrow down our search space for the cause of the
failure by focusing on relevant values and statements and ignoring the irrelevant ones.
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To isolate a program slice which is relevant to a failure, we need to reason backward
starting from the failing state. For example, the piece of code in Listing 2.1 outputs the
value of x which is always zero. If we reason backward from the statement “cout << x;”
(Line 5), we find that the value of x in this statement comes from the assignment at
Line 4. Similarly, the value zero of y at Line 4 comes from the assignment at Line 3.
Therefore, only statements at Lines 3 and 4 are relevant for the value of x at Line 5.
Moreover, the input value of x at Line 2 is irrelevant for its value at Line 5.

1 i n t x , y ;
2 c i n >> x ;
3 y = 0 ;
4 x = y ;
5 cout << x ;

Listing 2.1: Example: relevant/irrelevant statements to a slicing criterion

Backward reasoning for determining relevant/irrelevant statements can be done on the
source code without executing the program. However, for this reasoning we need to
know the possible order of execution between the statements because in an execution
only earlier statements may influence later statements. To this end, a control flow graph
(CFG) [Muc97, §7] which is derived from the source code and shows the possible flow of
control between the statements can be used. In a control flow graph, each statement of
a program is mapped to a node. Edges between the nodes represent the possible flow
of control between the statements. For example, an edge from the statement A to the
statement B means that during execution B may be executed immediately after A. For
example, Figure 2.1 depicts control flow graph of Listing 2.2.

For computing program slices in addition to knowing the order of execution of statements,
we need to know how the statements affect each other. Statements can influence each
other in two ways. Either one statement writes a value to a variable which is used by
another statement or one statement control the execution of another statement. Therefore,
there are two types of dependencies between the statements in a program:

• Data Dependency: statement B is data dependent on statement A, if:

– A writes a variable like V which is read by B, and
– there is at least one path in the control flow graph from A to B in which V is

not written by any other statement.

• Control Dependency: statement B is control dependent on statement A, if outcome
of A determines whether B is executed.

For example, in Listing 2.2 statement at Line 3 is data dependent on statement at Line 2
because it reads a value of x which is written at Line 2. Similarly, statements at Lines 4
and 6 are also data dependent on Line 2. Moreover, statements at Lines 4 and 6 are
control dependent on statement at Line 3 because the outcome of “x >= 0” determines
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which one will be executed. Figure 2.1 shows control flow graph of Listing 2.2 along
with control- and data-dependencies between the nodes. A graph like Figure 2.1 is a
program-dependence graph since it reflects all the dependencies within a program.

1 i n t x , y ;
2 x = 10 ;
3 i f ( x >= 0)
4 y = x ;
5 e l s e
6 y = −x ;

Listing 2.2: Example: data- and
control-dependencies

Entry

int x, y;

x = 10;

if(x >= 0)

y = x;

y = −x;

Exit

yes
no

Figure 2.1: Listing 2.2 Dependence graph,
control-dependencies: dotted arrows (left), data-
dependencies: dashed arrows (right)

Using control- and data-dependencies, we can isolate a program slice which may have
influenced a specific statement. The corresponding operation is called slicing. The slice
consisting of a set of statements that can influence a given statement is referred to as
the backward slice of that statement. Formally, the backward slice of the statement
B, SB(B), is defined as SB(B) = {A|A→∗ B} in which A→ B denotes a dependency
relation: B is data- or control-dependent on A, and ∗ denotes the transitive closure of
this dependency relation [Zel09, Chapter 7]. For example, the backward slice of Line 4 in
Listing 2.2 consists of Lines 2 and 3. Similarly, the forward slice of a given statement A
is defined as the set of all statements that can be influenced by A.

Static Slicing

When a slice is computed from the source code and by using control- and data-dependencies,
it is referred to as a static slice since only statically available information is used for
computing the slice. Static information is obtained by analyzing the source code without
executing the program. There exists a large body of work on static slicing of programs.
The original definition of program slicing which first introduced by Weiser in [Wei84] is
based on iterative solution of dataflow equations [Tip95]. For every node of control flow
graph (CFG), dataflow equations are defined by taking data-dependencies into account.
These equations are then solved in an iterative process until a fixed point is reached.
Ottenstein and Ottenstein defined slicing as a reachability problem in the dependence
graph of a program [OO84]. As we have seen, PDG or program dependence graph
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represents the data- and control-dependencies between the statements of a program.
Various algorithms have also been proposed for static slicing of programs in the pres-
ence of unstructured control flow (statements such as goto, break, continue), composite
data types and pointers, interprocedural static slicing, and static slicing of distributed
programs. Detailed discussion of these algorithms can be found in [Tip95].
As we have already discussed, slicing reduces the debugging search domain based on the
idea that the cause for an incorrect variable value at a statement can be found in the
static slice associated with that variable-statement pair. In fact, slices are typically much
smaller than original programs, therefore using them greatly speed up the debugging
process. Binkley and Harman [BH03] examined size of slices in 43 C programs and found
that on the average a backward slice contains under 30% of the original programs.
However, static analysis methods for computing the slices from the source code are
imprecise or unsound. For example, Findbugs 1 which is a static analyzer tool has a false
positive rate of 50% [Zel09, Chapter 7]. Producing false positives is due to the fact that,
in general, most interesting problems in static analysis are undecidable. Consequently,
static analysis techniques resort to conservative approximation. Arrays and pointers are
examples of constructs that make tracking dependencies difficult.

Dynamic Slicing

Similar to a static slice, a dynamic slice encompasses a part of the program that could
have influenced a specific statement. However, a dynamic slice is extracted from a single
concrete run, so it does not hold for all possible runs of a program like a static slice.
Moreover, it uses the dynamic information obtained from the program execution. Since
debugging starts after observing a failing behavior, it makes more sense to construct
a slice from the failing run than from the entire program for understanding the cause
of the failure. Dynamic slices are more precise than static slices since they exploit
runtime information. Moreover, they are much smaller compared to static slices. While
a static backward slice typically encompasses 30% of a program code, a dynamic slice
only encompasses 5% of the executed statements. Furthermore, the executed statements
form a subset of all statements of the program [Zel09, Chapter 9].
To compute a dynamic slice, a trace which is an ordered list of statements during the
program execution is required. Traces can be generated by instrumenting the program
using tools like Cil2, Llvm3 or Pin4. In Figure 2.2, a sample trace is given which
is generated while executing the code snippet in Listing 2.3 with input n = 2. The
trace shows the execution history, and is a sequence of events each corresponding to the
execution of a statement in Listing 2.3. When a statement is executed more than once,
the corresponding events are distinguished with indices. Following the data- and control-
dependencies for the statement at Line 12 shows that the static slice of this statement

1http://findbugs.sourceforge.net/
2http://sourceforge.net/projects/cil/
3http://llvm.org/
4https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
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contains the entire code. However, the dynamic slice of this statement computed from the
trace in Figure 2.2 excludes the statement at Line 8. Note that for input n = 2, the loop
is executed twice and the assignments x = 18 and x = 17 are each executed once. Since
the assignment of 18 to x in the first iteration of the loop is “killed” by the assignment
of 17 to x in the second iteration, the statement at Line 8 is excluded from the dynamic
slice.

1 i n t n , i , x , z ;
2 c i n >> n ;
3 i = 1 ;
4 w h i l e ( i <= n ) {
5 i f ( i \% 2 == 0)
6 x = 17 ;
7 e l s e
8 x = 18 ;
9 z = x ;
10 i ++;
11 }
12 cout << z ;

Listing 2.3: Example: signed to un-
signed conversion fault

21 cin >> n;
32 i = 1;
43 i <= n;
54 i%2 == 0;
85 x = 18;
96 z = x;
107 i ++;
48 i <= n;
59 i%2 == 0;
610 x = 17;
911 z = x;
1012 i ++;
413 i <= n;
1214 cout << z;

Figure 2.2: A sample trace of Listing 2.3
with input n = 2

Different techniques have also been presented for dynamic slicing. A survey of dynamic
program slicing can be found in [Tip95]. As we discussed, dynamic slicing is more suitable
for debugging. However, it causes overhead since it requires logging of traces in order
to record which statements are executed in which order. Moreover, it lacks generality:
Dynamic slices are only applicable to a single run and cannot be generalized to other
runs.

2.1.2 Anomaly Detection

Similar to slices, anomalies which are properties that are only common or frequent in
failing runs but not in passing runs can effectively narrow down the search for faults in
the code. Anomalies as common or frequent properties of “only” failing runs are just
abnormal behaviors which are, in turn, a deviation from the normal behaviors. They are
not incorrect behavior, therefore they do not imply a defect or fault. However, they can
be good indicators of faults and they are considered as potential defects. In other words,
abnormal properties of a program run are more likely to indicate defects than normal
properties of the run. Therefore, in searching for faults it makes sense to first extract
anomalies and then inspecting them for finding the faults. Anomalies are characterized
by certain properties of the program run such as:
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• Code coverage: Code that is (frequently) executed in failing runs but not in passing
runs.

• Call sequences: Sequences of function calls that (frequently) occur only in failing
runs.

• Variable values: Variables that (frequently) take certain values in failing runs only.

Techniques for extracting anomalies examine the differences between the common prop-
erties of a set of passing runs and a set of failing runs. One of the simplest methods for
detecting anomalies is comparing the code coverage of passing and failing runs. To this
end, a coverage tool which instruments code such that the execution keeps track of all
lines being executed is required. These tools are usually used for assessing the quality
of a test suite. Therefore such coverage information from testing can be visualized to
guide the user in detecting anomalies. Tarantula is a tool for visualizing coverage
anomalies [JHS02]. In this tool color is used to visually map the participation of each
program statement in the outcome of the execution of the program with a test suite,
consisting of both passed and failed test cases. Based on this visual mapping, a user can
inspect the statements which are only or frequently executed in failing runs to locate
potentially faulty statements. A case study in [JHS02] shows that focusing on abnormal
statements allowed programmers to ignore 80% of the code.

Renieris and Reiss also proposed a coverage based fault localization method [RR03].
However, in their method, rather than comparing the coverage information of a set of
passing runs with a set of failing runs, a single failing run is compared with its nearest
neighbor. The nearest neighbor of a failing run is a passing run whose coverage is the most
similar to the failing run as measured by a distance metric on coverage sets of program
runs. Using these two runs, the method in [RR03] removes the set of statements executed
by the passed run from the set of statements executed by the failed run(set difference).
The resulting set of statements is the initial set of statements from which the programmer
should start searching for the fault. In a case study, Renieris and Reiss [RR03] showed
that nearest neighbor approach predicts the location of faults better than two other
coverage based methods (these two methods are similar to those presented in [AHLW95]
and [PS92]). In this work, in 17% of all test runs of the Siemens test suite [HFGO94],
the location of the fault could be narrowed down to 10% or less of the program code.

In coverage based fault localization methods, single statements are considered to be
correlated with failure. However, in some cases failures occur due to a sequence of method
calls tied to a specific object. For example, using streams in Java without explicitly
closing them can lead to failure. If too many files are left open before the garbage
collector destroys the unused streams, file handles may run out which results in a failure.
Therefore, a sequence of method calls to a stream which is not followed by a call to close
indicates a fault. Dallmeier et al. [DLZ05] proposed a lightweight technique for detecting
failure-correlated call sequences in a Java program. In this technique, the method call
sequences from multiple passing runs and one failing run are compared. During runtime,
for each object the call-sequence sets which contain short sequences (of some specific
length like k) of consecutive calls initiated by the object are captured. Every class, is then
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assigned a weight according to the comparison of the call-sequence sets of its objects from
multiple passing runs and one failing run. Classes with higher weights exhibit many call
sequences only present in the failing run. Therefore, they are considered more suspicious.
In a case study, Dallmeier et al. [DLZ05] found that sequences of calls always predicted
defects better than simply comparing coverage. Overall, the technique pinpointed the
faulty class in 36% of all test runs with similar low cost as capturing and comparing code
coverage.

The main problem with the approaches described above is that they heavily rely on
the quality of the test suite. Therefore, the resulting set of suspicious statements that
they produce depends on which failing and passing program runs have been used for
comparison. In these methods, when the initial set of suspicious statements does not
contain the fault, they provide a ranking on the remaining statements of the program
based on their proximity to the suspicious statements in the System Dependence Graph or
SDG [RR03]. A System Dependence Graph (SDG) models inter- and intra- dependencies
both control and data between statements of a program while PDG models dependencies
inside a procedure.

In addition to code coverage, there are other aspects of program runs that can be used
for anomaly detection. Liblit et al. [LAZJ03, LNZ+05] proposed a fault localization
technique which instruments programs with predicates at particular points and monitors
their values during program execution. One type of predicates they use is for tracking
the return value of functions. In C functions, the sign of the return value is often used
to indicate success or failure. In their method, at each scalar returning function call
site, they track six predicates showing whether the returned value is ever < 0, ≤ 0,
> 0, ≥ 0, = 0, or 6= 0. Finally, predicates are pruned and ranked according to some
statistical measures for inspection by the programmer. This method has been designed
for isolating bugs in programs after they have been deployed. It uses the data sampled
at instrumentation points while the program is being executed at users’ machines.

We have seen different properties that can be collected from multiple runs for anomaly
detection. Another approach for leveraging multiple runs is to generate likely invariants
which hold for all runs and then use them for detecting anomalies. Invariants identify
program properties which are valid for all program runs. Ernst et al. [ECGN01] proposed
a dynamic invariant detection technique implemented in a tool called Daikon for
discovering invariants that hold for all observed runs. In Daikon, invariants for methods
(specification) are in the form of pre- and post-conditions. For the post-condition of
shell_sort(), for instance, the invariant specifies that the return value of the method is
the sorted form of the input array. Daikon maintains a library of patterns of invariants
over variables and constants. A program is instrumented in a way that all values of
all variables at all entries and exits of all functions are logged into a trace file during
runtime. After program execution, the trace file is analyzed by Daikon to extract likely
invariants based on the values of variables. Daikon’s output is a set of likely invariants
that are statistically justified by the trace file. The obvious drawback of Daikon is that
it is limited to a library of patterns for extracting invariants. Therefore, it cannot detect
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invariants whose patterns do not exist in its library. In general, new patterns can always
be added into Daikon’s invariant library. However, a large number of the patterns
increases the running time of Daikon. For each program point, invariant detection time
is cubic in the number of variables that are in scope at that point because patterns
involve at most three variables.

Diduce [HL02] is another invariant inference tool which infers invariants on-the-fly
specifically for detecting anomalies and isolating bugs. In contrast to Daikon, Diduce
computes invariants while program is running. However, it infers only a very specific set
of invariants which are defined on the values of a set of tracked expressions at various
program points. During “training” mode, Diduce learns invariants by relaxing invariant
hypotheses as needed during a run. In “checking” mode, it reports about invariant
violations (or relaxations) which occur along the way. Although Diduce is more limited
than Daikon in terms of inferring various forms of invariants, it has been shown to be
effective in detecting bugs in a number of programs [HL02].

2.1.3 Causality Analysis

Slicing and anomaly detection can only effectively narrow the search for actual faults
in the code. They isolate the potential faults but not the actual faults which caused
the failure. However, causality analysis techniques aim at locating the actual faults.
Debugging itself is, in fact, performing a causality analysis. This is due to the fact that
in the search for a fault we are, actually, looking for the cause-effect relationship.

Philosophers have long been struggling with the problem of what it means for one event
to cause another. Lewis has proposed a theory of causality in which a cause is something
that makes a difference: If there had not been a cause c, there would had not been an
effect e (counterfactual dependence) [Lew01]. In this theory, we have the notion of possible
worlds, alternative worlds and similarity between these worlds which is evaluated based
on the notion of distance metrics between the worlds. According to Lewis’ counterfactual
reasoning, an effect e is dependent on a cause c in a world w if and only if in all worlds
most similar to w in which ¬c it is also the case that ¬e. Lewis, then, equates causality
to an evaluation on the basis of the distance metrics between possible worlds.

Automated debugging approaches aiming at isolating the actual cause mostly use Lewis’
counterfactual reasoning as the causality framework. In these approaches, execution
traces are considered as possible worlds. Effects are the observed failure which are
typically a violated assertion or a crash. A passing trace which is the most similar to
a failing trace is considered as an alternative world. Different techniques use different
distance metrics to compute the similarity between the traces. Causes are, then, defined
as the differences between a failing and the most similar passing trace.

Delta Debugging

Delta Debugging detects causes of failure by systematically minimizing the difference
between a failing and a passing run through several experiments. It differs from program
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analysis in that it is purely experimental, so it does not require knowledge or analysis of
the program code. The authors of [ZH02] introduce delta debugging as a general fully
automatic approach for debugging: “Delta Debugging can be applied to all circumstances
that in any way affect the program execution. Delta Debugging is fully automatic:
whenever some regression test fails, an additional Delta Debugging run automatically
determines the failure-inducing circumstances.”

Delta Debugging requires as input a failing run r7 and a passing run rX. The difference
between these two runs is defined as δ so that applying δ to rX produces r7: δ(rX) = r7.
For example, δ can represent the difference between inputs of r7 and rX [ZH02], the
difference between two corresponding states of r7 and rX [Zel02], or in concurrent
programs the difference between the thread schedules of r7 and rX [CZ02], as we will
explain in the following. To find the cause of failure, δ is systematically minimized
through several tests or iterations. To this end, the initial change δ is decomposed into
a number of elementary changes δ1, . . . , δn. The method then searches for a minimal
subset of elementary changes which causes the failure. The minimality of this subset
is defined as removing any single change from it would cause the failure to disappear.
The search is done via a modified binary search in which the initial set of elementary
changes is partitioned into subsets during the iterations of algorithm. At every iteration,
the chosen subset of changes is then applied to rX using a test function. The algorithm
assumes the existence of a test function which applies a set of elementary changes to rX
and determines the outcome which can be failing(7), passing(X) or undefined(?) 5. In
best case, the algorithm performs like a binary search while in worst case, the number of
iterations of algorithm or test runs is quadratic in the number of elementary changes.

In [ZH02], Delta Debugging is used for simplifying and isolating failure inducing inputs.
When a program fails given some input, not all the elements of input are relevant to
the failure. For example, if the input is a C file or an HTML file, usually only a small
part of it is causal or relevant to the failure. Therefore, in [ZH02], cause is defined in the
program input and isolated by systematically narrowing down the difference δ between
the actual input where the failure occurs and another given input where the failure does
not occur.

Although simplifying the failure-inducing input facilitates the debugging process, it
does not reveal the faulty parts of the code which need to be fixed. In addition,
method of [ZH02] has some other limitations. In this method, decomposition of δ into
elementary changes is problem specific and the method does not suggest any general
way of decomposition. In case of a C-file as input, for instance, each δi can correspond
to the ith C token of the C-file. On the other hand, the performance of the algorithm
heavily depends on the decomposition of δ, which can only be done by knowing the
structure of the input. Moreover, the performance of the algorithm depends on how the
set of elementary changes are partitioned into subsets during the search. The efficient

5The function test returns 7 if the original failure occurs. To this end, test returns 7 if the run crashes
at the same location as r7–that is, the program counter and the backtrace of calling functions must be
identical. test returns X if the program exits without failure and ? in all other cases[Zel02].
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partitioning of these sets also depends on having knowledge about the structure of the
input. In general, the underlying assumption of the method is that the input is structured.
Therefore, it is hard to see how the technique would be applied to arbitrary programs
with generally unstructured inputs such as sets of numbers.

Delta Debugging in [Zel02] is used to isolate in every state of the program the relevant
variables and values to the failure. Therefore, in this work, cause is defined in the program
state and isolated by systematically minimizing the difference δ between a program
state of the failing run and the corresponding state of the passing run. The underlying
assumption in [Zel02] is that the given failing and passing traces are similar. For the
running example of [Zel02], these traces were generated using similar inputs. However,
the assumption that similar inputs produce similar traces is not necessarily true in general.
Instrumentation points at which states from two traces are compared need to be given by
the programmer. Moreover, not every two states from the failing and the passing traces
can be compared. Only those states with identical program counter and backtrace of
their corresponding locations are comparable. Comparison of states involves generating
memory graphs containing typically several thousands of variables. To precisely determine
which variables are added or deleted in a failing state (compared to a passing state), the
largest common subgraph of the corresponding memory graphs needs to be computed,
which is an NP-complete problem in general. Finally, although this method facilitates
debugging, it does not explicitly reveal the faulty statements because it only detects the
cause in individual states. To find the faulty statement, the cause-effect chain needs to
be isolated by the programmer.

In [CZ02], for a multithreaded program failure-inducing thread schedules are isolated as
the cause of failure. In this work, Delta Debugging is used for systematically narrowing
down the difference between the thread schedules of a passing and a failing run until
a minimal difference achieved. A thread schedule T is represented as an ordered list
of n clock times: T = 〈t1, t2, . . . , tn〉 in which ti < ti+1 for all 1 ≤ i ≤ n and each ti
corresponds to a thread switch between the threads. To compare the thread schedules of
a failing run with a passing run, the assumption is that both schedules have the same
length. In case they do not have the same length the shorter schedule needs to be padded
with “dummy” thread switches which would occur after the execution of the program
in question ended. The difference or δ between the two schedules is defined as a set of
thread switch changes, δi, each corresponding to the difference between the ith thread
switch of passing and failing thread schedules: |tXi − t7i|. δis are further decomposed
into atomic changes δi,1, δi,2, ... each narrowing the difference between tXi and t7i by one
clock unit. Delta Debugging then isolates a minimal subset of δi,j which are relevant for
the failure.

Considering the way δi,js are defined, the method seems to be applicable only if failing and
passing traces are over the same set of events. In other words, failing and passing traces
need to take the same execution path and differ only in scheduling. This requirement
significantly limits the application of the method since generation of these traces involves
several tests. Moreover, thread switches tis are only represented by clock times and
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they do not show the corresponding threads. Therefore, it seems that the assumption
of the method is that corresponding thread switches of failing and passing traces are
between the same threads which also restricts the choice of the input failing and passing
traces. The number of elementary changes δi,j can quickly become very large because it
is quadratic in the length of the schedules. Therefore, a significant number of tests are
required for isolating the failure inducing difference.

Error Explanation with Distance Metrics

Based on Lewis’ counterfactual causality reasoning, Groce et al. [GCKS06] developed a
tool called Explain, which extends the CBMC6 model checker [KCL04], for assisting users
in understanding and isolating errors in ANSI C programs. Given an ANSI C program, the
bounded model checker CBMC generates a set of constraints that encodes all executions of
the program up to a certain loop unwinding depth. The loop unwinding depth determines
the maximum number of times each loop may be executed. The representation of
the constraints is based on static single assignment (SSA) form [CFR+91] and loop
unwinding. By conjoining the set of constraints that encodes the executions of a program
P up to a certain depth with the negation of the specification of P , CBMC produces a
Boolean satisfiability formula, S. Using a SAT solver, CBMC then finds any satisfying
assignment of S which represents a counterexample, a finite execution of the program that
violates the specification. Given a counterexample, by solving an optimization problem
Explain finds the most similar passing execution as measured by a distance metric on
executions of P . The distance between two executions a and b, d(a, b), is defined as the
number of variables to which a and b assign different values. This is due to the fact
that all executions of P are encoded as a series of assignments in the SSA form based
representation. Moreover, all these executions (for a fixed loop unwinding depth) are
represented as assignments to the same variables. The differences (∆s) between the most
similar passing execution and the counterexample, after being refined by a slicing step, is
given to the programmer as the cause of failure or the bug explanation.

Since sequential programs are deterministic, the only change Explain can make in
searching for a passing execution is the input values. Consequently, ∆s can contain
assignments which are only due to different input values and are not relevant to the bug.
The slicing step of the method is, in fact, for filtering such assignments from the bug
explanations. Moreover, ∆s does not necessarily reveal the faulty parts of the code. In
[WYIG06], two code fragments are given for which Explain fails to isolate the faulty
statements. One of these examples is shown in Listing 2.4 which is supposed to find the
maximum of three inputs.

6http://cprover.org/cbmc/
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1 f ind_max ( x1 , x2 , x3 )
2 {
3 max = x1 ;
4 . . .
5 i f (max <= x2 )
6 max = x2 ;
7 . . .
8 i f (max >= x3 )
9 max = x3 ;
10 . . .
11 a s s e r t (max >= x1 ) ;
12 a s s e r t (max >= x2 ) ;
13 a s s e r t (max >= x3 ) ;
14 }

Listing 2.4: Computing the maximum of three inputs

The input (0,1,0) results in an execution that violates the assertion at Line 12. The
buggy condition of Line 8 (it should have been max <= x3) causes the assertion failure.
According to the distance metric used in Explain [GCKS06], the most similar passing
execution to the counterexample can be generated by the input (0,0,0). Table 2.1
compares the variable assignments at different execution steps of the counterexample
and the passing execution. Each row in the table shows the name of the variables or
conditions, their corresponding program locations (specified with @), their values, and
the distance as is measured in [GCKS06]. Since at Line 6 there is a different assignment

Table 2.1: Counterexample and passing executions for find_max

Variables/Conditions Variable/Condition Valuations in Distance
Counterexample Passing execution

x1 @ 1 0 0
1x2 @ 1 1 0

x3 @ 1 0 0
max @ 3 0 0

(max <= x2) @ 5 true true
max @ 6 1 0 1

(max >= x3) @ 8 true true
max @ 9 0 0

(max >= x1) @ 11 true true
(max >= x2) @ 12 false true

to max, Explain would classify Line 6 as cause of the failure. However, Line 6 and the
condition at Line 5 are both correct, and the bug is at Line 8.
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Halpern and Pearl Causality Framework

The naive interpretation of the Lewis counterfactual test leads to a number of inadequate
or even fallacious inferences of causes. The following story, presented by Hall in [Hal04],
demonstrates some of the difficulties in this definition. Suppose that Suzy and Billy
both pick up rocks and throw them at a bottle. Suzy’s rock gets there first, shattering
the bottle. Since both throws are perfectly accurate, Billy’s would have shattered the
bottle had it not been preempted by Suzy’s throw. Thus, according to the counterfactual
condition, Suzy’s throw is not a cause for shattering the bottle (because if Suzy wouldn’t
have thrown her rock, the bottle would have been shattered by Billy’s throw). Since
the counterfactual dependence does not capture all the subtleties involved in causality,
Halpern and Pearl proposed a framework for causality analysis which is an extension of
the Lewis’ counterfactual model. They refer to this framework as structural equation
model (SEM) [HP05, Hal15]. In Halpern and Pearl causality framework, roughly speaking,
A is considered to be the cause of B if B counterfactually depends on A under some
contingency. For example, Suzy’s throw is a cause of the bottle shattering because the
bottle shattering counterfactually depends on Suzy’s throw, under the contingency that
Billy doesn’t throw.

At the heart of the structural model approach is the idea that causality can be represented
in terms of functional relations between the variables of some domain. In this framework,
the causal relations between a set of variables is represented by a set of structural
equations. These structural equations express information about the effects of potential
interventions. A causal model M is defined, then, as a set of variables together with a
set of functional relations which encode the causal relationship between the variables.
A causal formula φ is a Boolean combination of formulas of the form X = x in which
X is a variable and x is a possible value of this variable. The actual cause (“cause” for
short) of a formula φ in the causal model M is of the form X1 = x1 ∧ ... ∧Xk = xk in
which each Xi where 1 ≤ i ≤ k refers to a variable and the corresponding xi is a possible
value of that variable. A formula of the form X1 = x1 ∧ ... ∧Xk = xk is defined as the
cause of φ in the causal model M under certain conditions. These conditions are referred
to as AC1, AC2 and AC3 in [HP05, Hal15]. AC1 just says that A cannot be a cause of
B unless A and B are both true in the causal model M . AC3 ensures the minimality
of the cause. The core definition of cause lies in AC2. It has two parts: first is, in fact,
a counterfactual test and the second restricts the causes satisfying the counterfactual
test because as we discussed counterfactual test can be permissive. For a more detailed
treatment we refer the interested reader to [HP05, Hal15].

The work in [BBDC+09] relate the formal definition of causality of Halpern and Pearl to
finding the cause of failure in counterexamples. They adapt Halpern and Pearl definition
of causality to the analysis of a counterexample π with respect to a temporal logic
formula ϕ (for definition of temporal logic see [BK08]). They analyze counterexamples
produced from hardware model checkers. They view a trace (counterexample) as a set
of pairs 〈location, signal〉, and look for the pairs that are the causes for the failure of
ϕ according to the definition of cause in [HP05, Hal15]. They argue that the causality
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analysis of a counterexample π and a temporal logic formula ϕ can be modeled as a binary
causal model in which the variables are Boolean. Therefore, they present the significantly
simpler version of causality for binary causal models in which the counterexample π and
the formula ϕ are considered as a binary causal model. In the counterexample trace
π = s0, s1, . . . , each si is a state of the hardware model which is a valuation of Boolean
signals v. The cause of the failure of ϕ in π is in the form of a pair 〈s, v〉 where s is
a state and v a Boolean signal. Since computing causality for binary causal models is
NP-complete [EL02], they show that computing the set of causes for the failure of a linear
temporal logic (LTL) (see [BK08] for syntax and semantics of LTL) on a single trace is
also NP-complete. To improve scalability, they propose a polynomial-time algorithm for
approximating the set of causes. The experimental evaluation performed on real-world
examples demonstrate that the causes computed by the approximate algorithm match
the user’s intuition on all the examples.

In [LFL13], the structural equation model (SEM) by Halpern and Pearl is adapted
to compute causality for counterexamples generated by model checking of concurrent
systems. Since in concurrent systems event interleavings can be the cause of the error,
(race conditions, for instance) the order of occurrence of events needs to be considered
as a potential causal factor for failure. Therefore, the authors of [LFL13] extend the
structural equation model to account for event orderings. In their adapted framework
from [HP05, Hal15], they consider only Boolean variables, hence a binary causal model.
The Boolean variables in this model represent occurrence of events. In order to express
and reason about the order of the occurrence of events, the authors of [LFL13] define an
event order logic. The logic uses a set of event variables which are Boolean and a set of
Boolean connectives ∧, ∨ and ¬. To express the ordering of events the logic uses the
ordered conjunction operator ∧. . The formula A ∧. B is satisfied if and only if events A
and B occur in a trace and A occurs before B. The formal semantics of this logic can be
found in [KLL11]. Using the event order logic, cause in [LFL13] is defined in the form of
an event order logic formula, therefore, in this setting the order of occurrence of events
can also be extracted as cause. For computing causes, they extend depth-first search and
breadth-first search algorithms used for state space exploration in explicit state model
checking. The main limitation of this work is that for computing the combination of
events which are causal for a property violation, the method needs to consider all possible
finite bad and good execution traces. The existential and universal quantifiers in the
conditions defined in their causality framework show that for checking these conditions
they need to consider all the possible finite executions of the system. (Since they use
explicit state space model checker Spin [Hol03], they analyze only finite state models.)

Model-based Diagnosis

We have seen so far debugging approaches based on Lewis’ counterfactual reasoning and
Halpern and Pearl’s structural equation model for causality analysis. There exist also
approaches based on theory of diagnosis [Rei87] for automatically computing the cause
of a failure in a program. The theory of diagnosis is a general theory which addresses
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the diagnostic reasoning for finding the faulty components in a system [Rei87]. This
theory is applicable to a wide variety of practical settings such as digital and analogue
circuits, medicine and database updates. Moreover, the theory leads to an algorithm
for computing all diagnoses. In this theory, the system is described in a suitable logic.
There exists a failing observation of the system which is also represented as a logical
formula. The failing observation is a system behavior which conflicts with what the
system description predicts should happen if all its components were behaving correctly.
By combining the system description with failing observation and the assumption that
all the components of the system are correct, we get an inconsistent formula. A diagnosis
is, then, defined as a conjecture that a minimal set of components are faulty so that by
allowing these components to be faulty in the inconsistent formula mentioned above, the
formula becomes satisfiable.

The theory of diagnosis underlies the method proposed in [JM11] for performing fault
localization in C programs. Given a program, a test case which results in a failure and
the corresponding failing execution, the method (which has been implemented in a tool
called BugAssist) outputs a minimal set of program statements such that fixing them
makes the failing execution disappear. Using the bounded model checking and a bound
obtained from the execution of the failing test, they encode the semantics of a bounded
unrolling of the program as a Boolean formula. Every satisfying assignment of this
formula corresponds to a feasible program execution up to a certain unrolling depth. By
conjoining this formula with a correctness specification (an assertion, or a “golden output”)
and a failing test case, they construct an unsatisfiable formula. This unsatisfiable formula
is then given to a maximum satisfiability solver. Maximum satisfiability (MAX-SAT)
is the problem of determining the maximum number of clauses of a Boolean formula
which can be satisfied simultaneously by any given valuations [LM09]. The complement
of a maximum satisfiable subset (MSS) is a set of clauses whose removal makes the
formula satisfiable and are referred to as a minimum correction set (MCS). Since the
maximum satisfiable subset (MSS) is maximal, the complement of this set (MCS) is
minimal [LS05]. Using a MAX-SAT solver, BugAssist computes a maximal set of
clauses of the unsatisfiable formula which can be satisfied simultaneously (MSS), and
outputs the complement of this set (MCS) as a candidate cause of failure or a diagnosis.
Since there may be several of these minimal sets of clauses, the tool enumerates each of
them as a candidate cause or a diagnosis.

The main issue with the method of BugAssist in [JM11] is performance. As the
experimental results show when the programs are not large, the tool performs efficiently.
However, for larger programs (around 370-730 LOC) the corresponding MAX-SAT solver
could not process the generated formulas. Therefore, they had to use trace reduction
techniques such as program slicing or delta debugging to isolate failure-inducing inputs.
Even after reducing the trace size, for a case study with a relatively long trace it took
BugAssist around 11h to find the exact location of the bug. Moreover, as we have
explained, BugAssist may report multiple causes of failure or fault locations although in
the experiments of [JM11] this number remained small. Therefore, the authors of [JM11]
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proposed running the localization algorithm repeatedly with different failing executions
and based on that subsequently ranking candidate fault locations.

2.2 Debugging Concurrent Programs
So far we focused mostly on different approaches proposed for debugging sequential
codes. In this section, we discuss concurrency bug detectors which are generally based
on exploiting the characteristics of common types of concurrency bugs.

2.2.1 Concurrency Bugs - Concurrency Bug Detectors

In the following, we introduce the common types of concurrency bugs that arise in
practice according to a study by Lu et al. [LPSZ08]. The study focuses on four major and
important open source applications: MySQL (database management system), Apache
(web server), Mozilla (web browser), and OpenOffice (a free version of the MS Office suite).
The 105 bugs studied in [LPSZ08] are divided into two broad categories of deadlock(30%)
and non-deadlock(70%) bugs. These two categories of bugs have different properties. In
this dissertation, bugs from both categories are addressed.

Deadlock

A deadlock occurs when threads mutually wait in a non-preemptive fashion for each
other to release an acquired shared resource, for example locks. Therefore, they prevent
executions from making any progress. A simple deadlock example is given in Figure 2.3.
In this figure, Thread1 holds Lock1 and waits for Lock2 while Thread2 holds Lock2 and
waits for Lock1 (held by Thread1). Therefore, both threads are waiting for each other
without making any progress. As we can see, there is a cycle in Figure 2.3 which is
indicative of a deadlock. Deadlocks similar to the one depicted in Figure 2.3 can easily

Thread 1 Lock 1

Thread 2Lock 2

holds

holds
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for

w
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Figure 2.3: A simple deadlock example

be avoided by defining a locking discipline. For example, a locking discipline can be
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/∗− − − Thread 1 − − −∗/
. . .
w r i t e ( sha redVar ) ;
. . .

/∗− − − Thread 2 − − −∗/
. . .
r ead ( sha redVar ) ;
. . .

Figure 2.4: Race condition: simultaneous memory accesses (at least one write)

choosing an order among all locks and making sure when threads grab more than one
lock, they acquire them in the same order.

In addition to deadlock prevention mechanisms, there also exist techniques for detecting
deadlocks. Static deadlock detection approaches are based on type systems [BLR02],
dataflow analyses, or model checking [God97, MQ07, HP00]. Type-based approaches rely
on significant annotations. Model checkers have scalability problems. Approaches based
on dataflow analysis, although have been applied to large programs, are highly imprecise.

Data Races

Two memory access instructions from different threads conflict if both target the same
memory location and at least one of them is a write operation. A data race occurs if two
conflicting memory accesses happen concurrently, without synchronization (Figure 2.4).
However, not all data races are erroneous. Benign data races include races that affect
the program outcome in a manner acceptable to the programmer such as updates to
logging/debugging variables [EMBO10].

Data race detection methods can be broadly classified into static and dynamic. Static
race detectors [EA03a, NAW06] analyze the source code without executing the program.
Static techniques are more prone to false positives because of relying on approximate
information such as pointer aliasing. Dynamic race detection [SBN+97a, FF10, PS07] is
based on instrumenting the program and monitoring the execution. Dynamic techniques
produce less false positives than static techniques since they monitor an actual execution
of the program. However, they may miss some races since they monitor a single execution.

Dynamic data race detectors are based on lockset analysis [SBN+97a], happens-before
(hb) analysis [FF10, PS07], or a combination of the two [OC03]. A lockset is a set of
locks which are held at a program location. In lockset analysis, locksets are computed
for all locations in a program. A data race is detected when conflicting accesses from
program locations with disjoint locksets occur. This type of analysis usually produces
many false positives [EMBO10].

Happens-before analysis is based on happens-before relation (hb) which was first suggested
by Lamport for message passing systems [Lam78]. The happens-before relation is defined
for all memory access events (reads, writes) and synchronization events (release, acquire)
that happen in an execution trace of a multithreaded program. If a and b are two events
in an execution trace σ of a multithreaded program, a happens-before b in σ, denoted by
a

hb−→σ b, if a occurs before b and if: (1) a and b are two events issued by the same thread
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in the program order, or (2) a and b are acquire and release events both operating on the
same synchronization object.

If two operations in an execution trace are not related by the happens-before relation,
they are considered concurrent. Therefore, happens-before imposes a partial order over
the operations of an execution trace as we have seen before. The hb relation between
the conflicting memory accesses can be computed based on synchronization points. In
happens-before analysis [FF10, PS07], during a program execution the happens-before
relation is computed and a data race is detected if conflicting accesses are not ordered by
hb. The computation of hb is based on comparing the logical time stamps of accesses
from different threads to the same shared variable. The happens-before analysis can be
done precisely, but it incurs an overhead and moreover dynamic executions have limited
coverage.

Freedom from data races, however, does not establish the correctness of a concurrent
program since it does not guarantee the absence of atomicity violations, which constitute
the predominant class of non-deadlock concurrency bugs [LPSZ08].

Atomicity Violations

Atomicity/serializability is a property of a sequence of program actions. A sequence of
program actions is considered as atomic if other threads observe either the result from
the execution of all of them or none of them, but not the partial result from the execution
of some of them. Atomicity can be ensured by proper use of synchronization mechanism
such as locking. Atomicity violation is a type of failure that occurs when an interference
(context-switch) happens in a supposedly atomic block. If this block accesses a shared
variable and its execution is interleaved by instructions in another thread that access the
same shared variable, the interleaving may violate the atomicity of the block. Figure 2.5
shows two code fragments that non-atomically update the balance of a bank account
(stored in the shared variable balance) by depositing or withdrawing given values. The
example does not contain a data race, since balance is protected by the lock balance_lock.
The interleaving that occurs in Thread 1 between read and write of balance at statements
S1 and S2 causes a stale value to be written in balance at S2, “killing” the transaction
of Thread 2 which updates balance at statement S4. Statements S1 and S2 need to
be executed atomically which can be achieved by protecting them with the same lock
similar to the atomic block in Thread 2 which contains S3 and S4. In fact, there exists
no atomicity violation bug in Thread 2 since update of balance is done in an atomic block
and no interleaving can occur between S3 and S4.

Atomicity violation bugs can involve more than one variable. The atomicity violation
bug in the bank account example (Figure 2.5) involving a single variable is referred to
as a single-variable atomicity violation in previous work [PVH12, LC09]. There exists
also multi-variable atomicity violations in which occurrence of interleaving between the
accesses to multiple variables in an intended atomic block can cause a failure. Figure 2.6

30



2.2. Debugging Concurrent Programs

. . .
pthread_mutex_lock(balance_lock);

S1: bal = balance;
pthread_mutex_unlock(balance_lock);

if (bal+depositVal≤MAX)
bal = bal+depositVal;

pthread_mutex_lock(balance_lock);
S2: balance = bal;

pthread_mutex_unlock(balance_lock);
. . .

Thread 1-Deposit

. . .
pthread_mutex_lock(balance_lock);

S3: bal = balance;
if (bal-withdrawVal≥MIN)

bal = bal-withdrawVal;
S4: balance = bal;

pthread_mutex_unlock(balance_lock);
. . .

Thread 2-Withdrawal

Figure 2.5: Atomicity violation in update of bank account balance (Single-variable
Atomicity violation)

. . .
pthread_mutex_lock(l);

S1: o.str = “m”;
pthread_mutex_unlock(l);

pthread_mutex_lock(l);
S2: o.len = 1;

pthread_mutex_unlock(l);
. . .

Thread 1

. . .
pthread_mutex_lock(l);

S3: s = o.str;
S4: l = o.len;

pthread_mutex_unlock(l);
. . .

Thread 2

Figure 2.6: Multi-variable Atomicity violation

illustrates a multi-variable atomicity violation. In this figure, o is an object whose
properties str and len are correlated, therefore they have to be updated atomically.

However, in Thread 1, updates of these two properties are not in the same critical region
with the same lock. Occurrence of an interleaving after S1 causes values of these two
properties read by Thread 2 to be inconsistent. While S3 in Thread 2 reads the new
value of str (updated by S1 from Thread 1), S4 reads an old value of len since S2 has
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not been executed at this point. The solution to this problem is protecting S1 and S2
with the same lock.

Various techniques both static and dynamic have been proposed for detecting atomicity
violations. Artho et al. [AHB03] is among the first efforts to characterize atomicity
violations for shared memory concurrent programs, referred to it as high level data races.
In this work, for each thread, views which are sets of memory locations that are accessed
in a single critical region (a block of code protected by a lock), are computed. Views of
different threads are then compared. If one thread accesses data together in the same view
and another thread accesses the same data separately in different views, a view consistency
violation implying an atomicity violation is reported. The static analysis method of [FQ03]
relies on a type and effect system for expressing and checking the atomicity of methods
in a program. A limitation of this work is that it requires programmers to specify all
synchronization points. Avio [LTQZ06] detects single-variable atomicity violations by
learning memory access patterns from a sequence of passing training executions, and
then monitoring whether these patterns are violated in subsequent runs. The patterns
which Avio learns during training are pairs of memory accesses which are executed
atomically. These patterns are called access interleaving invariants (AI). Avio can only
detect atomicity violations involving pairs of accesses to the same memory location. The
simple heuristic used in Avio leads to some false positives which are dealt with using
post processing. Similar to Avio, AtomTracker [MOT10] infers atomic regions by
observing passing executions during training phase. The inferred atomic regions are then
used for identifying atomicity violations. Unlike Avio, AtomTracker consider atomic
blocks larger than pairs of memory accesses. The accuracy of both AtomTracker and
Avio depends on the training set which consists of only passing executions. Moreover,
they do not take into account the frequency of observation of atomicity constraints in
the training runs which can improve the learning process.

Svd [XBH05] is a tool that approximates atomic regions based on some heuristics, using
control and data-dependencies, without relying on given atomic annotations. It then
uses deterministic replay to detect atomicity violations. Atomizer [FF04] is a dynamic
approach that uses modified lockset analysis to detect when the atomicity of atomic
blocks is violated during an execution.

The main limitations of these techniques is their dependency on heuristics or atomicity
annotations for obtaining atomicity constraints.

2.2.2 Concurrency Bug Explanation

Concurrency bug detectors we discussed so far address only one specific type of concurrency
bug such as atomicity violation or data races. Moreover, many of these detectors have
high false positive rates [FF04, SBN+97a], therefore accuracy is another challenge. There
exists also large body of work on explaining or localizing concurrency bugs after they
are triggered. The aim of these techniques is not to detect or trigger the concurrency
bugs, but understanding the cause of the failure after a failing behavior is observed. In
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. . .
S0: // pthread_join(worker);
S1: mut = NULL;

. . .

Thread 1 (main)

. . .

S2: pthread_mutex_lock(mut);
. . .

Thread 2 (worker)

Figure 2.7: Order Violation (extracted from PBZip2 )

addition, these techniques provide more general frameworks which also address order
violation.

Order Violations

An order violation occurs when threads execute in an unexpected order which leads to a
failure: two sequential accesses from two different threads to the same shared memory
location where at least one of them is a write. Although pattern of memory access in order
violation is similar to race condition, they are different as the cause in order violation is
due to an unintended order of execution of threads. Figure 2.7 gives an example of an
order violation. In this figure, since the main thread deinitializes the shared variable mut
with a null value at S1 “before” the worker thread finishes, the context switch (depicted
with dashed line) causes the program to crash with null-pointer exception at S2. This
problem can be solved if the main thread waits for the worker thread to finish (statement
S0) and then deinitializes mut with a null value.

Although data race detectors such as [SBN+97a, NAW06] can detect the order violation
in Figure 2.7, recently more general frameworks for concurrency bug detection have been
proposed that address non-deadlock bug types that we discussed so far.

Statistical methods are effective in localizing bugs in sequential programs (Section 2.1.2).
Recently they have been applied for localizing concurrency bugs. Methods proposed
in [LC09, LWC11, PVH10, PVH12] by statistically modeling program executions provide
more general approaches to concurrency debugging. All these techniques collect shared
memory accesses between threads during program execution and output a set of memory
accesses ranked by suspiciousness.

Bugaboo [LC09] and Recon [LWC11] construct a form of communication graph called
context-aware communication graph for detecting concurrency bugs. A communication
graph encodes inter-thread data flow of a program execution in which nodes represent
memory instructions and edges represent inter-thread communication via shared memory.
An edge between two nodes representing memory instructions from two different threads,
the source and the sink, shows that the sink instruction read or overwrote data written
by the source instruction. Concurrency bugs may lead to edges that are only present or
frequent in graph of failing executions, therefore graph differences can reveal problematic
communications. Although this technique is often useful, but insufficient in general. This
is because for some bugs (such as the one in Figure 2.6) the problematic edges are present
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both in communication graphs of failing and passing executions. Authors of [LC09]
demonstrated that basic communication graphs are insufficient for general concurrency
bug detection. This inadequacy lead them to develop context-aware communication
graphs which add access ordering information including the communication context to
communication graphs. Communication context is a short (for example, 5 entries) history
of type of shared memory operations performed in an execution and is maintained by
each thread. Recon [LWC11] extends Bugaboo by reconstructing temporal sequences
of communication events, and using machine learning to infer which sequences most
likely explain a concurrency bug. The limitation of these two tools is that they rely on a
bounded size context for bug detection and if the relevant ordering information is not
encoded they may miss the bug.

Falcon [PVH10] and the follow-up work Unicorn [PVH12] monitor pairs of memory
accesses in execution traces which are then combined into problematic patterns. These
patterns are produced using a set of pattern templates for different bug categories
including single- and multi-variable atomicity violations as well as order violations.
Furthermore, Unicorn restricts these patterns to windows of some specific length, which
results in a local view of the traces. The suspiciousness of a pattern is computed by
comparing the number of times the pattern appears in a set of failing traces and in a set
of passing traces.

The techniques discussed above start searching for the cause of the failure after the bug
is triggered during testing of the program. For example, Unicorn [PVH12] executes
each subject program 100 times and analyzes the resulting failing and passing traces.
Bugaboo [LC09] collects 25 buggy runs and 25 non-buggy runs for further analysis.

CCI [JTLL10] proposes a statistical method for diagnosing production run failures caused
by concurrency bugs. CCI monitors interleaving-related predicates at run time and it
then uses statistical models to process run time information collected from many runs to
identify the root causes of production run failures. To keep run time overhead low, CCI
applies sampling strategies for collecting the values of predicates at run time.

The method proposed in [WWY+14] identifies buggy shared memory accesses as the cause
of the failure in concurrent programs. Similar to Unicorn [PVH12], this method also
uses an exhaustive list of pattern templates for order violations, single- and multi-variable
atomicity violations. However, in contrast to Unicorn this method only requires a single
failing run for comparison with a number of passing runs which makes the method more
practical. This is due to the fact that capturing elusive failing runs is more difficult in
practice.

ConcBugAssist [KKW15] is a logical constraint based symbolic method for diagnosis
and repairing concurrency bugs. Similar to BugAssist [JM11] (Section 2.1.3), this tool
encodes program behaviors up to a given bound using the bounded model checker CBMC.
MAX-SAT solver is then used to compute a minimum subset of the inter-thread ordering
constraints that are responsible for the failure which is the violation of an assertion.
They show in the experiments that the set of inter-thread ordering constraints contained
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in the diagnosis result of the tool represent on average a small fraction of the ordering
constraints in the failing execution. Using the diagnosis result, ConcBugAssist also
computes potential repairs which are modifications to the source code of the original
program that are sufficient for eliminating the observed failure. Due to the dependency
of ConcBugAssist on a bounded model checker, it faces scalability issues as the code
size increases. In [KKW15], ConcBugAssist has been evaluated by applying it only to
small programs whose lines of code are between 19 and 244.

In [GHR+15], SMT solver is used to compute succinct representation of concurrent error
traces. Given an error trace, the method explores all the permutations of the events of
the trace that correspond to feasible traces and lead to violation of the specification. The
generalization of the discovered incorrect interleavings are represented as HB-formulas that
are Boolean combinations of happens-before constraints between events. As an application,
they use HB-formulas representing incorrect interleavings for bug summarization. The
assumption of the authors in [GHR+15] is that HB-formulas which are constraints on
scheduling are sufficient, for instance, for explaining concurrency bugs which are mostly
due to bad ordering of instructions in a trace. While ConcBugAssist [KKW15] takes
into account all the executions of the program up to a given bound, HB-formulas in
[GHR+15] represent only reorderings of a fixed set of events.

2.2.3 Exposing and Reproducing Concurrency Bugs

The debugging work we discussed so far focuses on starting from a program failure,
inferring the cause of the failure, and providing information for fixing the bug. Other
prior work has focused on the related but orthogonal goal of testing or model checking
concurrent programs to expose and reveal program failures. We include some of these
techniques here because of the important link between testing or model checking (finding
failures) and debugging (finding the cause of the failure and fixing them).

Exposing concurrency bugs require not only a bug triggering input but also a bug
triggering interleaving. In theory, concurrency testing is the process of testing a concurrent
program for correct behavior under all possible interleavings associated with every input.
In practice, exploring the huge interleaving space of concurrent programs is infeasible.
The common practice for exposing concurrency bugs has been stress testing which
evaluates the behavior of a concurrent program under heavy load. Although stress testing
indirectly increases the variety of thread schedules (interleavings), it is neither sufficient
nor predictable since it may not cover bug triggering schedules and it cannot find the
same error again. As we know concurrency bugs are considered as “Heisenbugs” which
rarely surface and are hard to reproduce. Therefore, there is no guarantee that they can
be revealed by stress testing.

Randomized scheduling is similar to stress testing, but increases the randomness of
the OS scheduler by inserting random delays, context switches, or thread priority
changes [BAEFU06]. It improves on stress testing by finding buggy schedules more
effectively. Probabilistic concurrency testing (PCT), method presented in [BKMN10]
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is a randomized algorithm which also quantifies the probability of missing concurrency
bugs. PCT, in fact, provides a guaranteed probability of finding bugs in every run of the
program.

Several different techniques have been proposed for systematically exploring the inter-
leaving space [MQ07, FHRV13, YCGK07]. Chess [MQB07] is a successful concurrency
testing tool based on iterative context-bounding, a search algorithm that systematically
explores the executions of a multithreaded program (with a fixed input) in an order
that prioritizes executions with fewer context switches [MQ07]. It distinguishes between
preempting and nonpreempting context switches. A preempting context switch, or a
preemption, occurs when the scheduler suspends the execution of the running thread
at an arbitrary point, for example, at the expiration of a time slice. A nonpreempting
context switch occurs when the running thread voluntarily yields its execution, either at
termination or when it blocks on an unavailable resource such as a lock. Chess bounds
the number of preemptions while leaving the number of nonpreempting context switches
unbounded [MQ07]. Bounding the number of preemptions has several powerful and
desirable consequences for systematic state space exploration of multithreaded programs
such as scalability [MQ07]. Chess, in fact, replaces the OS scheduler with its own
scheduler and runs the program several times with different scheduling choices.

Inspect [YCGK07] is a systematic concurrency testing tool which has been shown capable
of detecting concurrency bugs such as data races, deadlocks, etc., in real-world PThreads
C/C++ programs. It systematically explores all possible interleavings of a multithreaded
C/C++ program under a specific testing scenario, employing dynamic partial order
reduction (DPOR) (proposed in [FG05]). Partial order reduction (POR) techniques are
used for combating the state space explosion problem by avoiding interleaving independent
transitions during search in the state space of a concurrent system [CGP99].

Concolic (concrete and symbolic) testing [GKS05] is a technique first introduced for
testing sequential code. There, the set of possible inputs (the only parameter that can
change for sequential programs) is systematically explored to provide standard code
coverage guarantees, such as branch coverage, for the program. ConCrest [FHRV13] is
a testing tool for concurrent programs which generalizes concolic testing to concurrent
programs. The goal in ConCrest is achieving maximum code coverage for a concurrent
program by systematically exploring both input and scheduling space. While Chess and
Inspect for a particular input run the program to expose the failure inducing thread
schedule, con2colic testing in ConCrest looks for the combination of an input and a
schedule which causes a failure.

Tools such as Inspect and Chess are also referred to as runtime (or dynamic) model
checkers since they check the correctness of the program by running the actual code.
Verisoft [God97] and Java PathFinder [VM05] are other execution-based or runtime
model checkers for concurrency bug detection in C/C++ and Java multithreaded programs,
respectively.

Static model checkers have also been widely used for exposing bugs in concurrent systems.
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In this type of model checkers, first a model of a concurrent system is extracted. The
model checker then systematically checks whether the formal model of the system satisfies
a formalized property [BK08]. Spin [Hol03] is an explicit state space model checker
which exhaustively explores the state space of a model in order to locate all property
violating states. Therefore, it can be used for model checking finite state models such as
communication protocols.

The testing and model checking tools only reveal full failing executions, and do not
provide root cause information. Therefore, using these approaches does not free the
programmer from understanding the cause of the failure and fixing it manually. Similarly,
techniques proposed for recording and deterministic replay of executions in concurrent
programs [LMC87, MCT08] allow only to reproduce a failing execution for further analysis,
without providing useful information for debugging. For example, the Delta Debugging
method of [CZ02] which isolates failure-inducing thread schedules as the cause of failure
in multithreaded programs uses a tool called Dejavu [ACN+01] for deterministic replay
of executions of multithreaded java programs. During the execution of a java program,
Dejavu records the input and the thread schedule which will be used later for restoring
the execution of the program deterministically.
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CHAPTER 3
Counterexample Explanation by

Anomaly Detection

As we have seen previously, the interleaving semantics commonly used to interpret the
computation of concurrent systems imposes a total order on the execution of concurrent
actions in a system. Concurrency is then interpreted as nondeterministic choices between
different interleavings [BK08]. System designers are used to thinking sequentially when
designing a system. In concurrent systems, it is therefore highly probable that they
do not foresee some interleavings that their system encompasses. As a consequence, it
is a widely held view that one of the main sources of failure in concurrent systems is
unforeseen interleavings resulting in undesired behavior or unexpected results [BK08].

Model checkers are particularly well-suited for detecting concurrency bugs due to the
exhaustive exploration of all possible interleavings of the concurrent actions that they
perform. They can therefore reveal bugs which are impossible or difficult to find by
testing methods. Model checking which is an established technique for the automated
analysis of hardware and software systems, systematically checks whether a formal model
M of the system satisfies a formalized property P [BK08]. If M contains a fault so
that M does not satisfy P , as a symptom of the fault in the model, the model checker
generates a counterexample to the satisfaction of P . Given that counterexamples are only
symptoms of faults in the model, a significant amount of manual analysis is required in
order to locate a fault that constitutes a root cause for the presence of the counterexample
in the model. System designers need to inspect lengthy counterexamples of sometimes
up to thousands of events in order to understand the cause of the violation of P by M .
Since this manual inspection is time consuming and error prone, an automatic method
for explaining counterexamples that assist system designers in localizing faults in their
models is highly desirable.

In this chapter, we present an automated method for explaining counterexamples indi-
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cating the violation of a desired property in concurrent systems. Our method benefits
from the analysis of a large number of counterexamples that can be generated by a
model checking tool such as Spin [Hol03]. When Spin explores exhaustively the state
space of a model in order to locate all property violating states, it can generate a set
of counterexamples. We refer to the set of counterexamples that show how the model
violates a property, as the bad dataset. With the aid of Spin, it is also possible to
produce a set of execution traces that do not violate the property. We refer to this set of
non-violating traces as the good dataset.

Our method for explaining counterexamples is an anomaly detection technique based
on examining the differences in the traces of the good and bad datasets. The anomalies
produced by our method, which are given in the form of sequences of actions, can reveal
to the system designer unforeseen interleavings that lead the system to a failure.

3.1 Counterexamples, Anomalies
In this section, we define basic notions such as counterexamples, system models, traces, and
properties. We, then, introduce the notion of anomalies for counterexample explanation.
We recap the terminology of sequential pattern mining and explain how we apply this
technique to extract anomalies from sets of traces.

3.1.1 System Models and Counterexamples

Our goal is to explain the violation of a safety property in a concurrent system. Such
a violation represents that there exist undesired or unsafe states which are reachable
by system executions. We use the explicit state model checker Spin [Hol03] in order to
compute system executions that lead from an initial state of the system into a property
violating state, often referred to as counterexamples. In the following, we formalize the
notion of the model of a concurrent system which is expressed in Promela the modeling
language of Spin [Hol03].

A model of a concurrent system expressed in Promela consists of a finite number of
processes, each referred to as a proctype1, and a set of shared variables V. Every proctype
is represented by a control flow automaton (CFA) 〈Lp, Tp, λp, L0p〉, where Lp and Tp are
sets of nodes and edges, respectively, L0p the initial node, and λp is a labeling function
linking edges to basic statements. The set of basic statements in Promela which we denote
by Act comprises six elements: assignments, assertions, print statements, send or receive
statements, and conditionals (or expressions) [Hol03]. Send and receive statements are
communication instructions in the form of “c ! val” and “c ? var”, respectively, where c is
a channel (a buffer with a specific size), val a value (an expression), and var a variable(or
a constant). In CFA, the set of nodes Lp corresponds to the points of control within the
proctype, and the set of edges Tp defines the flow of control. The edge labels defined

1proctype is the keyword used in Promela for defining a process.
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by λp are the basic statements which specify either the executability or the effect of
execution of an edge.

A state s is a mapping from the variables of system (including V and local variables of
proctypes) to values. If an edge is labeled with an expression φ, the valuation of φ in the
system state determines the executability of that edge. Otherwise, the effect of executing
an edge on the system state is according to the semantics of the basic statement that the
edge is labeled with. (We refer the interested reader to [Hol03] for the semantics of basic
statements.) Figure 3.1 shows an example of a CFA. Note that for nodes with more than
one outgoing edge, more than one edge can be executable simultaneously (for modeling
nondeterminism).

x == y

x != y c ! m

c ? n
x = n

Figure 3.1: Sample control
flow automaton (CFA) for a
model in Promela

The semantics engine in Spin executes a Promela model
in a step by step manner, selecting one executable state-
ment in each step. If more than one statement is exe-
cutable, one of them is selected, for instance, randomly
for execution. The semantics engine continues executing
statements until no executable statements remain [Hol03].
The behavior of a model which is the sequence of states
observed during the execution is formalized using the
notion of executions. An execution results from the reso-
lution of the possible nondeterminism in the model. In concurrent systems, an execution is
mainly the result of the nondeterministic choice between the concurrent actions, referred
to as interleaving. The semantics engine in Spin implements an interleaving semantics
for resolving the nondeterminism.

Definition 1 (Execution). An execution ρ corresponding to an interleaving of basic
statements from proctypes of a system model, is an alternating sequence of states s and
basic statements α ∈ Act: ρ = s0, α1, s1, α2, . . . , αn, sn, . . . such that for all 0 ≤ i the
execution of αi+1 in state si leads to state si+1 which is denoted by: si

αi+1→ si+1.

Counterexamples. We use linear temporal logic (LTL) [BK08] to specify properties
and we use σ 6|= ϕ to express that a system execution σ violates an LTL property ϕ.
Executions which violate a property are referred to as counterexamples. In our setting, we
ignore the states visited during an execution and focus only on the statements α ∈ Act
which are executed. Therefore, we define a trace as follows:

Definition 2 (Trace). A trace σ = 〈e1, e2, ..., en〉 is a finite sequence of events that
corresponds to an interleaving of basic statements from proctypes of a system model.
(Each ei corresponds to the execution of a basic statement α ∈ Act in the system model.)
A trace σ can correspond to several executions, however it is considered as feasible if it
has at least one corresponding execution.

In our setting, we formally define the events of a trace as follows:
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Definition 3 (Event). An event is a tuple 〈id, pid, loc, type〉, where id is an identifier, pid
and loc are the proctype identifier and the program location of the corresponding action,
type ∈ Act is the corresponding action from the set of basic statements of Promela.

Two events have the same identifier id if they are issued by the same proctype and agree
on the program location, and the type. However, each event in the trace is unique.
Therefore, two events with the same id are distinguished by their index in the sequence
of a trace. As Definitions 2 and 3 show, we ignore the values of variables.

When we use the terms counterexample or trace, we refer to Definition 2. Note that
executions of a system model can possibly be infinite (Definition 1), however we only
consider finite executions in our analysis, hence a trace is defined as a finite sequence of
events in Definition 2. This is due to the fact that counterexamples showing the violation
of safety properties are finite execution fragments.

Since our method is based on anomaly detection, we need a set of counterexamples
as well as a set of correct or non-violating traces for comparison. We refer to a set
of counterexamples violating a given property ϕ as a bad dataset, denoted by ΣB:
ΣB = {σ | σ 6|= ϕ}. The good dataset comprises the correct or non-violating traces that
satisfy ϕ. Such traces can be generated by producing counterexamples to ¬ϕ. This is
justified by the following lemma:

Lemma 3.1.1. For an execution ρ, if ρ satisfies ϕ, denoted as ρ |= ϕ, then it holds that
ρ |= ϕ⇔ ρ 6|= ¬ϕ [BK08].

If ϕ is a safety property, the negation of this property yields a liveness property. The
counterexamples violating a liveness property are infinite lasso shaped traces.

Definition 4. Let φ̂ and φ′ denote finite trace fragments. We call φ = φ̂.(φ′)ω an infinite
lasso shaped trace where φ̂ is the finite prefix of φ and ω denotes the infinite repetition of
φ′.

For the purpose of our analysis we produce a finite good trace from an infinite good trace
φ by concatenating φ̂ with one occurrence of φ′: φfin = φ̂.φ′. We refer to a set of such
traces as a good dataset, denoted by ΣG: ΣG = {φfin | φ |= ϕ}

3.1.2 Explanatory Sequences

As we have discussed in Section 1.2.2 of Chapter 1, in order to understand the cause of the
failure in a counterexample (failing trace), we need to isolate inside the counterexample,
the cause-effect chain which reveals a combination of events relevant to a property
violation. Although in sequential programs a single event can be causal for a failure, in
concurrent systems the specific order between the occurrence of at least two events from
two different threads triggers the error. In a concurrent system, therefore, the order of
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events inside a counterexample can also be causal for the occurrence of a failure and can
hence point to a bug.

In this work, we explain concurrent counterexamples by identifying ordered sequences
of events inside the counterexamples which are relevant to the failure. We refer to such
sequences revealing specific orders between concurrent events inside a counterexample
which are presumed to be causal for the property violation as explanatory sequences. We
use anomaly detection for isolating explanatory sequences (Section 3.1.3).

A Motivating Example

Using an example case study we illustrate how a deadlock can occur due to the specific
order of execution of a set of actions in the model of a concurrent system. The model
we use in this example is taken from the BEnchmarks for Explicit Model checkers
(BEEM) [Pel06]. It is a Real-time Ethernet protocol named Rether. This protocol is a
contention-free token bus protocol for the data-link layer of the ISO protocol stack. Its
purpose is to provide guaranteed bandwidth, deterministic and periodic network access
to multimedia applications over commodity Ethernet hardware. The Promela code of
this model consists of three proctypes:

1. The Node proctype, which corresponds to a node in the protocol. It communicates
with the Token and Bandwidth proctypes in order to access the bandwidth slots.
In our example, only two instances of Node proctype, which are named Node_0
and Node_1, are created at run time.

2. The Bandwidth proctype, which manages the access of the nodes to the real-time
transmission. It allocates and frees the real-time transmission slots upon receiving
reserve and release messages from the nodes.

3. The Token proctype, which guarantees deterministic and periodic access to the
bandwidth by handing in a token to the nodes in turn.

In order to make the original model taken from [Pel06] smaller and simpler, we have
reduced the values of its parameters as follows:

N = 2 Number of the nodes
Slots = 3 Number of slots (a bandwidth)
Real-time slots = 1 Maximum number of slots for real-time transmission

(should be smaller than Slots)

In Figure 3.2, the last 33 events of a counterexample with 72 events which shows how the
Rether model goes to a deadlock state are given. Each column in Figure 3.2 represents
the events belonging to one proctype whose name appears as the title of the column.
These events correspond to the execution of Promela statements of the 4 proctypes of
the model.
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(1) release!0
(2) release?i
(3) granted = 0
(4) in_RT[i] == 1
(5) ok!0
(6) ok?0
(7) done!0
(8) done?0
(9) (i < 2 && in_RT[i] == 0); i = i + 1;
(10) i == 2
(11) (NRT_count > 0 && next == 1)
(12) visit_1!0
(13) visit_1?rt
(14) rt == 0
(15) goto finish
(16) done!0
(17) done?0
(18) (NRT_count > 0 && next == 0
(19) visit_0!0
(20) visit_0?rt
(21) rt == 0
(22) goto finish
(23) done!0
(24) done?0
(25) NRT_count == 0
(26) NRT_count = 3− RT_count
(27) i = 0
(28) (i == 0 && in_RT[i] == 1)
(29) visit_0!1
(30) visit_0?rt
(31) rt == 1
(32) granted == 0
(33) in_RT[i] = 0

Bandwidth Node_0 Token Node_1

Figure 3.2: The last 33 events of a counterexample for the Rether protocol

By manual inspection and following the data- and control-dependencies we can identify a
sequence of 12 events in the counterexample that explain the occurrence of the deadlock.
These 12 events are highlighted by displaying them in bold font in Figure 3.2 and
correspond to events 1-6 and 28-33. In order to understand how this sequence leads
the system into a deadlock state we need to inspect the parts of the Promela code
of the model which include the statements corresponding to the 12 events identified
above. These parts are given in Figure 3.3 in which the numbers inside parenthesis refer
to the corresponding event from the spotted 12 events from Figure 3.2. After Node_0
requests from Bandwidth the release of the corresponding real-time slot, in_RT[0], by
sending release ! 0 (event 1), Bandwidth fails to do two correlated actions in an atomic
step. These two actions are sending an acknowledgment back (ok!0, event 5), and freeing
the corresponding real-time slot (in_RT[0] = 0, event 33). Due to scheduling there is a
gap of 26 events between these two correlated events which results in a deadlock state.
In the following, we explain the problem in more detail.

After the occurrence of events 5 (Line 11 of Bandwidth) and 6 (Line 29 of Node_0) in
Figure 3.2, Lines 12 and 25 from Bandwidth and Node_0, respectively, become enabled
simultaneously. As the trace in Figure 3.2 shows, among the two enabled statements
Line 25 of Node_0, which corresponds to event 7 in this figure is chosen for execution.
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Following the execution of event 31 in Figure 3.2 corresponding to Line 10 of Node_0,
control is transferred to Line 14 of this proctype which is an if statement. Lines 15 and
16 of this if statement are both enabled simultaneously since Line 16 is a goto statement,
and the guard of Line 15, granted == 0, is true. This is because the value of granted is
set to zero at event 3 in Figure 3.2 and remains unchanged up to event 31. As Figure 3.2
shows, Line 15 of Node_0, which corresponds to event 32 in this figure, is executed. After
execution of this line, Node_0 blocks and cannot take any action as the Promela code
of this proctype in Figure 3.3 shows. At this point, Bandwidth also blocks waiting for a
node proctype, Token blocks waiting for Node_0, and Node_1 blocks waiting for Token.
This circular waiting results in a deadlock state.

One interesting characteristic of the identified sequence in Figure 3.2 is that the 12
events belonging to it do not occur adjacently inside the counterexample. While the
first and the last six events occur next to each other, between these two groups of
events there is a gap of 21 events. This is due to the nondeterministic scheduling of
concurrent events due to the interleaving semantics implemented in Spin. As we have
seen above, although Line 12 of the Bandwidth proctype was enabled after event 6, due
to the nondeterministic execution of concurrent actions its execution is deferred to step
33. Dashed line in Figure 3.2 illustrate the gap between the position in the trace in which
the statement Bandwidth.in_RT[i] = 0 becomes enabled, and the position in which it is
actually executed.

The identified sequence in Figure 3.2 explaining the deadlock is an example of an explana-
tory sequence which reveals an unforeseen interleaving. The presumed intention of the
model designer is that statements 11 and 12 of Bandwidth to be executed in an atomic
step, which means they could not be interleaved with the actions of other proctypes.
However, the proctype was implemented in a faulty way, so that its concurrent execution
with other proctypes allowed the two mentioned statements to be executed nonatomically,
and hence lead to a deadlock.

3.1.3 Mining Explanatory Sequences

As we have seen above, in an interleaved trace of concurrent events, the events belonging
to a sequence which reveals an unforeseen interleaving do not necessarily occur next
to each other. To the contrary, they can occur at an arbitrary, unbounded distance
from each other, due to scheduling. The explanatory sequences are therefore, in general,
subsequences of counterexamples. We define, formally, a subsequence relationship amongst
sequences as follows:

Definition 5. A sequence π = 〈p0, p1, p2, ..., pm〉 is a subsequence of another sequence
σ = 〈e0, e1, e2, ..., en〉, which is denoted by π v σ, if there exist integers 0 ≤ i0 < i1 < i2 <
i3... < im ≤ n where p0 = ei0 , p1 = ei1 , ..., pm = eim. We also call σ a super-sequence of
π: σ w π.
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Notice that a subsequence is not necessarily contiguous in the super-sequence. To capture
the concept of a contiguous subsequence we introduce the notion of a substring:

Definition 6. ψ = 〈q0, q1, q2, ..., qm〉 is a substring of σ = 〈e0, e1, e2, ..., en〉, if and only
if there exist consecutive integers from 0 ≤ i0 to (i0 + m) ≤ n such that q0 = ei0 , q1 =
ei0+1, ..., qm = ei0+m.

In our motivating example (Section 3.1.2), the explanatory sequence consisting of 12
events is a subsequence of the counterexample. However, it has two portions, events 1-6
and events 28-33, each is a substring of the original counterexample. Since explanatory
sequences appear as subsequences of couterexamples, in order to isolate them via anomaly
detection we need to extract subsequences which are only common or frequent in the bad
dataset. Let FSΣB

and FSΣG
denote the set of frequent subsequences in the bad ΣB and

the good ΣG datasets, respectively. For counterexample explanation we extract anomalies
as defined in Equation 3.1. According to this equation, anomalies are subsequences that
are frequent in the bad dataset ΣB but not in the good dataset ΣG.

anomalies = FSΣB
\ FSΣG

(3.1)

To detect anomalies we use a standard pattern mining algorithm called sequential pattern
mining which extracts the frequent subsequences from a dataset of sequences without
limitations on the relative distance of events belonging to the subsequences [AS95] [DP07].
This data mining technique has diverse applications in areas such as the analysis of
customer purchase behavior, the mining of web access patterns or motifs in DNA sequences.
Frequent subsequence mining is an active area of research and a number of algorithms
for mining frequent subsequences have been developed which have been proven to be
efficient in practice with respect to various test datasets [YHA03, WH04, PHMA+01].

Sequential Pattern Mining

We now give a brief overview of terminology used in sequential pattern mining, for a more
detailed treatment we refer the interested reader to the cited literature and in particular
to [DP07].

A sequence dataset S, {s1, s2, ..., sn}, is a set of sequences. The support of a sequence
p in S is the number of the sequences in S that p is a subsequence of: supportS(p) =
|{s | s ∈ S ∧ p v s}|. Given a minimum support threshold, min_supp, the sequence p is
considered a sequential pattern or a frequent subsequence if its support is no less than
min_supp: supportS(p) ≥ min_supp. We denote the set of all sequential patterns mined
from S with the given support threshold min_supp by FSS,min_supp, i.e., FSS,min_supp =
{p | supportS(p) ≥ min_supp}.

By contrasting the sequential patterns of the bad and the good datasets, we can extract
patterns that are only frequent in the bad dataset. These patterns that are only frequent
or common in the bad dataset, reveal anomalies, and hence can be indicative to the cause
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of failure in concurrent system executions. However, as we will argue in the following,
this at first sight promising tool fails due to the inherent complexity of the problem.

3.1.4 Challenges in Mining Explanatory Sequences as Sequential
Patterns

In general, it can be shown that the problem of mining sequential patterns from a dataset
of sequences is NP-hard. The complete proof is given in [Yan04], [Yan06]. Here, we
provide a proof sketch.

Proof Sketch of NP-hardness

In order to show that the sequential pattern mining problem is NP-hard, it is sufficient to
prove that the frequent itemsets mining problem [Goe03], which is the problem of mining
frequent itemsets from a dataset of transactions, is NP-hard. This is because the latter
problem can be reduced to the former one.

NP-hardness of Frequent Itemset Mining. Let I be a set of items. The set
X = {i1, i2, . . . , ik} where il ∈ I, 1 ≤ l ≤ k is called an itemset over I. A transaction
over I is a couple T = (tid, I) where tid is the transaction identifier and I is an itemset
over I. A transaction dataset D over I is a set of transactions over I. The support of an
itemset X in D is defined as: supportD(X) = |{tid | (tid, I) ∈ D, X ⊆ I}|. An itemset
is called frequent if its support is no less than a given minimum support threshold.

The transaction dataset D can be represented as a bipartite graph G = (U, V,E) in
which U and V are the two distinct vertex sets of G, and E is the set of edges. In this
representation, U corresponds to the set of items I, and V corresponds to the set of
transaction identifiers: {tid | (tid, I) ∈ D}. The edge set E = {(u, v)|u ∈ U and v ∈ V }
represents all the (i, tid) pairs where i ∈ I is an item and tid a transaction identifier.

The problem of enumerating all maximal frequent itemsets from a transaction dataset D
corresponds to the task of enumerating all maximal bipartite cliques in a bipartite graph G.
A bipartite clique is a complete bipartite subgraph of a bipartite graph. Determining the
number of maximal bipartite cliques in a bipartite graph is a #P-complete problem [Val79].
#P-completeness is used to capture the notion of the hardest counting problems, just as
the concept of NP-completeness characterizes the hardest decision problems.

The above complexity arguments are based on worst-case complexity considerations [Yan04].
A number of sequential pattern mining algorithms have been developed that have proven
to be efficient in practice with respect to various test datasets [AS95], [WH04], [PHMA+01].
However, the datasets that these algorithms have been evaluated on are sparse (w.r.t
sequence length and number of sequence elements), with an average sequence length of
less than 100. The densest dataset that an efficient sequential pattern mining algorithm,
Bide, can mine with a high support threshold of 90% has an average sequence length of
258 [WH04].
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Model #Trace Avg. Trace Len. Max Trace Len.
Bad ds. Good ds. Bad ds. Good ds. Bad ds. Good ds.

Brp 660 25671 5985 5580 10539 10501
Rether 1061 26249 73263 63201 134629 134629
lann 989 20838 5737 6369 12612 12617
gear 614 10174 1994 3837 4512 4547
POTS 4109 107029 3006 5386 7988 8482

train-gate 222 3798 334 675 907 942

Table 3.1: Dataset characteristics

The characteristics of the bad and the good datasets of a number of Promela modeling
case studies of concurrent systems are given in Table 3.1. In this table, the first four
case studies are taken from [Pel06]. (The names of the corresponding Promela files for
these case studies are given in Table 3.2.) The POTS model was developed by us as a
sample model with numerous deadlock problems. This model is a non-trivial example of
a telephony switch which comprises four concurrently executing proctypes corresponding
to two users and two phone handlers. Each user in this model talks to a phone handler for
making calls. The phone handlers are communicating with each other in order to switch
and route user calls. In Table 3.1, the column “#Trace” gives the number of the traces in
the bad and the good datasets and the columns “Avg.Trace Len.” and “Max Trace Len.”
represent average and maximum length of the traces in these datasets, respectively.

It can be inferred from Table 3.1 that the bad and the good datasets are highly dense
with the average sequence length of more than 1000 (except for the “train-gate” case
study). We conclude that mining sequential patterns from the dataset of counterexamples
generated from typical concurrent system models is intractable due to lengthy sequences
and dense datasets.

3.2 Mining Substrings
To address the complexity challenges we encountered in mining sequential patterns from
the bad and the good datasets, we abandon the feature of arbitrary distance between
the events of a subsequence that we consider to reveal anomalies pointing at the causes
of failures. As an approximation, we extract sequences that consist of consecutive
events. Therefore, these sequences are substrings (Definition 6) of the execution traces
contained in the good and bad datasets. Even though, as we have seen in the example
of Section 3.1.2, a sequence that explains how a deadlock occurs is not necessarily the
substring of a counterexample, it may contain portions which actually occur as substrings
of a counterexample. In the example of Section 3.1.2, the sequences consisting of events
〈1, 2, 3, 4, 5, 6〉 and 〈28, 29, 30, 31, 32, 33〉, which are portions of explanatory sequence for
the occurrence of a deadlock, are substrings of the counterexample. As we will explain in
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this Section, by focusing on substrings which only occur in a set counterexamples, we
will be able to provide anomalies which give hints at why a property is violated.

Therefore, we replace the definition of anomalies in (3.1) with a new definition in (3.2).
According to this definition, anomalies are the substrings of length ` in the bad dataset
which do not belong to the substrings of length ` in good dataset.

anomalies = SΣB ,` \SΣG,` (3.2)

where SΣB ,` and SΣG,` refer to the substrings of length ` in the bad ΣB and the good
ΣG datasets, respectively. The length of the substrings, `, which is the parameter of
the method, can take various values. Since substrings of length ` can be extracted from
a sequence of length n in O(n) time, we avoid scalability problems. As we will see
when presenting the experimental evaluation, the small value of ` = 2 is adequate for
explaining counterexamples using a fairly large set of case studies. To further justify
this point, consider how a relatively short substring of length two can be indicative
for the cause of a deadlock occurrence. For our running example in Section 3.1.2, the
substring 〈31, 32〉 occurs only in the set of counterexamples. Although s = 〈31, 32〉 is
only a small part of the spotted sequence which explains the occurrence of deadlock,
〈1, 2, 3, 4, 5, 6, 28, 29, 30, 31, 32, 33〉, s can greatly facilitate identifying the other ten events
of this explanatory sequence in the counterexample. In particular, the substring s =
〈31, 32〉 shows that the variables Node_0.rt has the value 1 and Node_0.granted has the
value 0, respectively at the same time. The statements which affect the values of these
two variables, can be easily found in the counterexample. The value of the variable
Node_0.granted becomes 0 at step 3 and remains unchanged until the end of the trace.
The value 1 of the variable Node_0.rt is due to the value 1 of the global variable in_RT[0]
while the value of this variable should be changed to 0 immediately after the variable
Node_0.granted becomes 0.

Since due to scalability issues explanatory sequences revealing the cause-effect chains in
counterexamples could not be extracted, we extract anomalies in the form of substrings
of counterexamples, and show that they can greatly facilitate the search for explanatory
sequences. The following sections describe in detail the steps of our method.

3.2.1 Generation of the Good and the Bad Datasets

For generating the good and the bad datasets, we use the explicit state Spin model
checking tool [Hol03]. The default search algorithm that Spin uses for the exhaustive
exploration of the state space is depth first search. When Spin locates the first violating
state, it stops the search and reports the path from the initial state to the violating state
as a counterexample. The presence of one counterexample is sufficient to show that the
model does not comply with the specification.

There is also an option in Spin to not stop the search after locating the first violating
state [Hol03]. With this option, “-c0 -e”, Spin continues the search up to a given depth
limit or until all states have been reached in order to locate all property violating states.
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Our current strategy for generating the bad dataset is to use this option of Spin in
order to explore exhaustively the state space of the model and to detect all the violating
states and their corresponding counterexamples. Since the default depth limit in Spin
is 10,000, we increase the depth limit until we can be certain that the state space has
been exhaustively explored. Since DFS is used by Spin for exploring the state space,
each violating state is visited once and so only one counterexample per violating state is
generated.

Since the bad dataset contains the traces that violate some ϕ, the good dataset should
include the traces that satisfy ϕ. Such traces can be generated by producing counterex-
amples to ¬ϕ because a counterexample that shows the violation of the negation of a
property actually satisfies that property according to Lemma 3.1.1.

The reachability property we consider in this work is deadlock-freedom, therefore we
need to find a way to formalize the negation of that property in Spin. Notice that while
the absence of deadlock is a safety property, its negation, which claims the presence of
deadlocks, is a liveness property. As a consequence, the counterexamples to the presence
of deadlocks are lasso-shaped infinite traces [Hol03](Section 3.1.1).

We specify the “presence of deadlock” property in Promela, the modeling language of the
Spin model checker, by using a special state predicate named timeout. This predicate
becomes true when the system blocks, i. e., when no statement in the model can be
executed. We then specify the “presence of deadlock” property as always eventually there
will be a deadlock, which can be expressed as requiring that always eventually the timeout
predicate will become true. Spin tries to generate a counterexample for this property.
The resultant counterexample will be a lasso-shaped infinite trace that never deadlocks.
For the generation of the good dataset we also use the Spin option to not stop the search
after generating the first counterexample for this property. Note that traces in the bad
and good datasets are modeled according to Definition 2, and the events of the traces
according to Definition 3.

3.2.2 Contrasting Sequence Sets

Substrings of length ` can be extracted from a trace by sliding a window of size ` over it.
Figure 3.4 shows the nine possible substrings of length two that can be extracted from a
trace of length 10 by sliding a window of size two over it. This set of substrings of length
two, in fact, shows all the pair of events which occur next to each other in a trace. We
refer to a set of all substrings of length ` of a trace as a sequence set of length ` of that
trace.

We define sequence sets formally as follows (as proposed in [DLZ05] in another setting,
see Section 2.1.2):

Definition 7 (Sequence Set). Let σ = 〈e1, e2, . . . , en〉 denote a trace. The sequence
set of length ` of σ, denoted by ssσ,`, is the set of all substrings of length ` of σ:
ssσ,` = {ψ|ψ is a substring of σ and |ψ| = `}
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As another example, consider σ = 〈a, b, c, a, b, c, d, c〉 and ` = 2. The resulting sequence
set of length ` of σ is: ssσ,` = {〈a, b〉 , 〈b, c〉 , 〈c, a〉 , 〈c, d〉 , 〈d, c〉}.

In our method, we are interested in the common substrings of a dataset (either a bad or
a good dataset). To this end, we compute sequence sets of individual traces in a dataset
and then make a union of all the sequence sets:

SΣB ,` =
⋃

1≤i≤|ΣB |
{ssσi,`|σi ∈ ΣB} (3.3)

SΣG,` =
⋃

1≤i≤|ΣG|
{ssρi,`|ρi ∈ ΣB} (3.4)

The resulting anomalies is a set of substrings of length ` that only occur in the bad
dataset, ΣB, and is computed as follows:

anomalies = SΣB ,` − SΣG,`, (3.5)

where “–” is a set difference.

The length of the substrings, `, is the only parameter in computing the final result-
ing anomalies. We shall discuss the impact of choosing different values for ` in the
experimental results section.

Post-processing

After computing anomalies by using (3.5), we get a number of substrings which need to
be inspected manually by the user for understanding the cause of the failure. Since each
substring is only a part of an explanatory sequence, the programmer needs to identify
other parts of the explanatory sequence in the counterexample in order to understand the
cause of a failure and subsequently localizing the faulty parts of the model. Therefore,
for every substring we also provide to the user a counterexample in which the substring
occurs. Since a substring can occur in multiple counterexamples, in order to select
one to give to the user, we compare the positions of occurrence of substring in these
counterexamples. We choose the counterexample in which the substring occurs earliest
(or has the least position of occurrence). Intuitively, we assume that when the substring
occurs earlier in a counterexample, it is closer to the beginning of explanatory sequences
or the cause of failure, hence the programmer has fewer events to inspect. In the selected
counterexample, other distinguishing substrings computed by (3.5) may occur as well,
therefore we also provide them to the user.

In order to make the user inspection faster, we propose a ranking mechanism for the
resulting substrings computed by (3.5). The ranking is based on the position of occurrence
of substrings in the corresponding counterexamples. The substrings with smaller position
of occurrence in a counterexample are ranked higher. As argued above, it would be easier
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for the programmer to locate explanatory sequences using substrings which are ranked
higher.

Finally, the output of the method will be a ranked list of tuples of the form:

〈{ai | ai ∈ ssσ,`, 0 ≤ i ≤ |ssσ,`|}, σ〉,

in which σ ∈ ΣB is a counterexample chosen as described above.

Like all other debugging activities in which a check, analyze, fix loop is iterated until all
the bugs are fixed, our method should also be used as an iterative process.

Evaluation Score. To evaluate the quality of the outputs generated by our method we
propose a quantitative measure that enables us to compare different outputs. We define
a score based on the amount of the effort that is required for locating an explanatory
sequence in a counterexample by using the output of our method. Since these sequences
directly allow the user to identify the faulty part of the model, as we assumed above, the
computed score also reflects the amount of manual effort required for locating the faulty
part of the model.

The output of our method consists of a number of substrings, so we first define a score
for individual substrings. The score of the output will then be the score of the substring
which is ranked first in the output. The score of a substring is defined based on the
distance in terms of the number of the events between the location of the substring in a
counterexample and the first event of an explanatory sequence in the same counterexample.
This number, in fact, represents the maximum number of events that the user needs
to inspect in the counterexample in order to find an explanatory sequence. As we
have explained so far, the identification of explanatory sequences finally needs to be
done manually with the aid of the anomalies produced by our method. Therefore, the
score of a substring depends on the beginning of the position of the corresponding
explanatory sequence in a counterexample. We normalize this distance with respect to
the counterexample length.

The following formulas define how a score is computed for a substring produced as the
output of our method. Let Pos(a)σ and Pos(π)σ denote the position of the substring a
and the explanatory sequence π in the counterexample σ, respectively. |σ| denotes the
length of the counterexample σ. The score of the substring a is formally defined as:

distance = Pos(a)σ − Pos(π)σ

scorea = 1− distance

|σ|
(3.6)

For the substring 〈31, 32〉 in our running example (Section 3.1.2), the score is 30
72 , where 30

is according to Equation 3.6 the distance between the substring 〈31, 32〉 and the spotted
explanatory sequence in the counterexample, and 72 is the length of the counterexample.
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If a0 refers to the first substring in the ranked list of the method output, we define the
output-score as:

output-score = scorea0 , (3.7)
where scorea0 is the score of a0 according to (3.6).

3.3 Experimental Results
In this section, we present the result of applying our counterexample explanation method
on a number of concurrent systems whose Promela models were taken from [Pel06]. All
these models have the deadlock problem. The experiments were performed on a 2.67
GHz PC with 8 GB RAM and Windows 7 64-bit operating system. The experiments
were designed to illustrate the effectiveness of the outputs of our method in facilitating
understanding the cause of failures in concurrent systems. In the experiments, we show
that the anomalies produced by our method can greatly help the programmer in the
search for explanatory sequences. We assume that the identification of explanatory
sequences (as cause-effect chains) directly allow the user to locate the faulty parts of
the model. This assumption is true for all case studies that we used as well as for the
example presented in Section 3.1.2.

In Table 3.2, the results of applying our method to six case studies when ` = 2, are given
along with the corresponding scores. The name of the corresponding Promela file is given
inside the parentheses in front of the name of the model. The average running time of
the method for these case studies is 52.44 sec. In this table, the second column shows the
number of substrings with length two which are computed by the method according to
Equation 3.5. The last column in Table 3.2 represents the number of different explanatory
sequences that can be detected by the programmer with the aid of the substrings of
length two which are computed by the method. Note that one fault in the code may
manifest differently at run time. Therefore, one fault may result in different explanatory
sequences. Referring to the method of the generation of the bad dataset in Section 3.2.1,
the counterexamples in the bad dataset may be caused due to different faults or defects
in the model. Therefore, the substrings computed by our method may give hints to
different faults. For example, as Table 3.2 shows for the Brp model, with the aid of the
extracted six substrings, we could detect three different explanatory sequences for the
occurrence of a deadlock, each implying a different fault in the model. Currently, the
programmer has to realize himself/herself whether the extracted substrings imply the
same fault or multiple faults.

In Table 3.2, the Brp model has the highest score of 1 which means that the first ranked
substring in the output coincides with the start of a sequence that explains a deadlock
occurrence. Notice that we use the proposed method as part of an iterative debugging
process. After each run of the method, aided by the generated substrings, the user will
try to remove as many causes of deadlock as possible. In case the model still contains a
deadlock after being modified, the user will apply the method again. This procedure can
be iterated until all deadlocks in the model have been removed. As an example, after the
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Model #Substrings
(` = 2)

Score #Expl. Seq.

Brp(brp.3.pm) 6 1 3
Modified Brp 6 1 2

Rether(rether.4.pm) 24 0.27 15
lann(lann.1.pm) 8 0.97 2
gear(gear.1.pm) 21 0.66 14

train-gate(train-gate.1.pm) 27 0.78 9

#Substrings (` = 2): No. of Substrings with length two
#Expl. Seq.: No. of Explanatory Sequences

Table 3.2: Summary of the results of the method

first iteration on the Brp model the total number of counterexamples was reduced from
660 to 182 due to the removal of the root cause of some deadlock. The results achieved
by applying the method to the modified version of the Brp model in the second iteration
are given in the second row of Table 3.2.

Considering the original length of the counterexamples given in Table 3.1, it can be
inferred from the data of Table 3.2 the effectiveness of the substrings computed by our
method in analysis of counterexamples for understanding the cause of the failure.

By increasing the value of parameter `, the number of the generated substrings will also
be increased. Consequently, the programmer needs more effort for examining them. In
Table 3.3, the numbers of the generated substrings for ` = 2 and ` = 3 for five case studies
are given in the columns “#Substrings ` = 2” and “#Substrings ` = 3”, respectively. The
last column in this table shows the percentage of increase in the number of the generated
substrings. We can see in this table that for the last three case studies, the number of
the generated substrings of length three is significantly larger than those with length two.
Therefore, the substrings of length three increase the amount of manual effort required
for inspecting them. From Table 3.3, we can infer that substrings of length two impose
less inspection effort on the programmer when analyzing the counterexamples. As a
consequence, the generation of substrings of length three is only done when no substrings
of length two can be generated by Equation 3.5 which was not the case for the case
studies of Table 3.2.

3.4 Comparison with the Work by Groce and Visser
The most closely related work to ours is that of Groce and Visser [GV03]. It extends Java
PathFinder [VM05] with error explanation facilities. Given a counterexample, their
method generates a set of negatives, which are multiple variations of that counterexample
in which the error occurs, and a set of positives, which are variations in which the error
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Model #Substrings Relative Increase
` = 2 ` = 3

Brp(brp.3.pm) 6 6 %0
Rether(rether.4.pm) 24 24 %0
lann(lann.1.pm) 8 29 %262.5
gear(gear.1.pm) 21 35 %66

train-gate(train-gate.1.pm) 29 62 %113.8

Table 3.3: Comparison of the number of the substrings with ` = 2 and ` = 3

does not occur. They analyze the common features of each set and the differences between
the sets in order to provide an explanation for the counterexample. The focus of their
work is on finite counterexamples demonstrating the violation of safety properties such
as assertion violations and deadlocks.

To compare our work with theirs, we implemented the algorithm proposed in [GV03] for
the generation of a set of positives for a given counterexample inside the Spinja [dJR10]
toolset. The main problem we encountered in applying this algorithm to our case studies
was that we could not always generate a non-empty set of positives. This occurred, for
instance, in our experiments with the Brp model. Notice that the potential emptiness
of the positive set is also mentioned as a potential difficulty in practice in [GV03]. In
our method, on the other hand, we consider the complete set of good traces that can be
generated with the aid of Spin, and hence we cannot encounter the problem of an empty
positive set for any case study that does at all reveal a “good” behavior.

The work in [GV03] proposes three different analyses for explaining counterexamples,
namely transition analysis, invariant analysis and minimal transformation analysis
between negatives and positives. Among these three analyses, only the third one, which
takes the order of execution of actions into account, is similar to our method and can be
used for revealing concurrency problems such as unforeseen interleavings. In this analysis,
the authors of [GV03] compare a negative and a positive in order to determine the
divergent sections of what they refer to as a state-action path. These divergent sections
along with the associated positive and negative form a transformation. In Figure 3.5, a
negative with 64 events along with a positive with 473 events derived for the Rether case
study [Pel06], are given. Due to space limitations, only the first 20 events and the last 15
events of these traces are shown in this figure. The events in this figure are represented
as a combination of two numbers separated by a “ . ”. The number at the left side of
“ . ” corresponds to the event id and the number at the right side of “ . ” corresponds
to the proctype id. For example, “413.11” refers to the event with id =413 which is
issued by proctype 11. The first 19 events are identical both in the positive and in the
negative, thus the divergent sections start from event 20 in both traces. These divergent
sections last until the end of the positive and the negative since they do not share a
common portion at the end of their traces. Therefore, the transformation generated
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by [GV03] will consist of two traces with 45 and 454 events. However, in our method two
substrings of length two, 〈369.10, 375.10〉 and 〈375.10, 9.1〉, as well as the negative itself
with 64 events are given to the programmer for further analysis. We conclude that while
with the transformation analysis of [GV03] the programmer needs to inspect traces of
45 and 454 events, in our method he/she needs to inspect at most 48 events in order
to understand how a deadlock occurs. 48 is, in fact, the number of events between the
position of 〈369.10, 375.10〉 and the position of event “2.1” which is the beginning of the
explanatory sequence for the occurrence of a deadlock in the counterexamples. These
two positions in the counterexample are 62 and 15, respectively, and in Figure 3.5 they
are connected by arrows and straight lines. In conclusion, our method appears, at least
for the case study we considered here, to require less effort on behalf of the programmer
in order to understand the reason for the failure than the equivalent analysis according
to the work in [GV03].

3.4.1 Related Work

There are a number of works on automatically explaining counterexamples using different
technical approaches and having different objectives. The work documented in [BBDC+09]
using the notion of causality introduced by Halpern and Pearl [HP05] formally defines
a set of causes for the failure of a property on a given counterexample trace (See
Chapter 2, Section 2.1.3). For the explanation of a counterexample, this method deals
with what values on the counterexample cause it to falsify the property. In [WYIG06]
Wang et al. focus on explaining the class of assertion violation failures. Their method
uses an efficient weakest precondition algorithm which is executed on a single concrete
counterexample in order to extract a minimal set of contradicting word-level predicates.
Groce et al. [GCKS06] developed a tool called Explain, which extends the CBMC model
checker [KCL04], for assisting users in understanding and isolating errors in ANSI C
programs based on Lewis’ counterfactual causality reasoning(See Chapter 2, Section 2.1.3).
Given a counterexample, Explain finds the most similar successful execution based on a
distance metric on execution traces. The differences (∆s) between the most successful
execution and the counterexample, after being refined by a slicing step, is given to the
programmer as an explanation. The distance between executions a and b is measured
based on the number of the variables to which a and b assign different values. In contrast
to the three methods cited above, our counterexample analysis method does not consider
any values that are assigned to variables, instead only the order of execution of actions
inside execution traces are taken into account. Therefore, we are able to give explanations
to counterexamples in which the violation of a property is due to a specific order of
execution of actions. Moreover, the other methods are based on an analysis of one single
counterexample while in our method for extracting commonalities we use non-singleton
sets of counterexamples.

The work by Ball et al. [BNR03] compares a counterexample with a set of similar correct
traces in order to extract single program statements that are only executed in the
counterexample. These program statements are reported to the user as the suspicious
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parts of the program code that are likely to be the cause of the violation of the property.
In this method, if a counterexample violates a property at some control location c of the
program code, then the execution traces that reach to c without violating the property are
considered as similar correct traces. The method has been implemented in the context of
the Slam project in which a software model checker that automatically verifies temporal
safety properties of C programs has been developed [BR02]. Since this method only
considers single program statements, it cannot express counterexamples in which the
violation of a property is due to a specific order of execution of actions. The criteria they
use for finding similar correct traces are similar to those used by the method in [GV03].
In fact, the method in [GV03] is most closely related to ours, so we provide a detailed
comparison of this method with ours at the beginning of this section.

There are a few fault localization techniques based on testing which are analogous to
ours and consider the actual order of execution of the statements in the program in order
to locate the fault in the program code [NAW+08] [DLZ05]. The work of [DLZ05] had an
important influence on our method.

3.5 Summary
In this chapter, we presented an anomaly detection method for explaining the model
checking counterexamples demonstrating the violation of a desired property in message
passing concurrent system models. In particular, we have focused on deadlock detection
using the Spin model checker. By comparing a set of counterexamples with a set of
correct traces that never deadlock, we extract a number of explanatory sequences that
prove to point to the root cause of the deadlock occurrence in the model. Experimental
results showed the effectiveness of our method and discussed measures to reduce the effort
of the model designer when localizing the root cause for the occurrence of a deadlock in
the model. We also compared our work extensively to related work, in particular the
approach by Groce and Visser.
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1 a c t i v e proctype Bandwidth ( ) {
2 byte i = 0 ;

4 i d l e : i f
5 : : r e s e r v e ? i ; goto r e s ;
6 : : r e l e a s e ? i ; goto r e l ; (2)
7 f i ;

9 r e l : i f
10 : : atomic {in_RT [ i ] == 1 ; (4)
11 ok ! 0 ; (5)
12 in_RT [ i ] = 0 ; (33)
13 RT_count = RT_count−1;}
14 goto i d l e ;

16 : : in_RT [ i ] == 0 ; goto e r r o r_ s t ;
17 f i ;

19 . . .

21 e r r o r_ s t :
22 f a l s e ;
23 }

1 a c t i v e proctype Token ( ) {
2 byte i = 0 ;
3 . . .
4 s t a r t : i f
5 : : i = 0 ; goto RT_phase ;
6 f i ;

8 RT_phase : i f
9 : : d_step { i < 2 && in_RT [ i ] == 0 ;
10 i = i + 1 ;} goto RT_phase ;

12 : : atomic { i == 0 && in_RT [ i ] == 1 ; (28)
13 v i s i t _ 0 ! 1 ; } (29)
14 goto RT_wait ;

16 : : atomic { i == 1 && in_RT [ i ] == 1 ;
17 v i s i t _ 1 ! 1 ; } goto RT_wait ;

19 : : i == 2 ; goto NRT_phase ;
20 f i ;

22 RT_wait : i f
23 : : atomic {done ? 0 ; i = i + 1 ;}
24 goto RT_phase ;

26 f i ;
27 . . .
28 }

1 a c t i v e proctype Node_0 ( ) {
2 byte r t = 0 ;
3 byte g ran ted = 0 ;

5 i d l e : i f
6 : : v i s i t _ 0 ? r t ; goto s t a r t ; (30)
7 f i ;

9 s t a r t : i f
10 : : r t == 1 ; goto RT_action ; (31)
11 : : r t == 0 ; goto NRT_action ;
12 f i ;

14 RT_action : i f
15 : : g r an t ed == 0 ; goto e r r o r_ s t ; (32)
16 : : goto f i n i s h ;
17 : : atomic { r e l e a s e ! 0 ; (1)
18 g ran ted = 0 ;} (3)
19 goto wait_ok ;
20 f i ;

22 . . .

24 f i n i s h : i f
25 : : done ! 0 ; goto i d l e ;
26 f i ;

28 wait_ok : i f
29 : : ok ? 0 ; goto f i n i s h ; (6)
30 f i ;

32 e r r o r_ s t :
33 f a l s e ;
34 }

Figure 3.3: Parts of the Promela model of the Rether Protocol
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Figure 3.4: A trace fragment along with a sequence set of length two
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Figure 3.5: A negative and a positive trace for the Rether protocol
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CHAPTER 4
Mining Sequential Patterns to

Explain Concurrent
Counterexamples

In Chapter 3, we proposed an anomaly detection method for explaining concurrent
counterexamples. We showed that using our method, concurrency bugs can be explained
in general by only analyzing the good and the bad traces and without exploiting the
characteristics of specific bugs such as deadlocks or atomicity violations. For the method
of Chapter 3, we introduced the concept of explanatory sequences as an ordered sequence
of events inside counterexamples which reveal the specific orders between concurrent
events inside a counterexample which are presumed to be causal for the property violation.
We showed that due to scheduling the events belonging to an explanatory sequence do not
occur necessarily next to each other. In general, they occur as a subsequence (Definition 5)
of a counterexample showing that events belonging to an explanatory sequence can occur
at an arbitrary distance from each other. Therefore, we maintained that sequential pattern
mining algorithms, which extract the frequent subsequences from a dataset of sequences
without limitations on the relative distance of events belonging to the subsequences,
are an adequate and obvious choice to extract explanatory sequences from large sets of
counterexamples. However, as we discussed in Chapter 3, Section 3.1.4, mining sequential
patterns from the datasets of counterexamples generated from typical concurrent system
models is intractable. To address the complexity challenges we encountered in mining
sequential patterns from the bad and the good datasets, we proposed as an approximation
to extract substrings comprising consecutive events, from the traces of bad and good
datasets for counterexample explanation.

In this chapter, we improve our explanation by extracting sequences of events which
do not necessarily occur contiguously inside counterexamples. In other words, we
propose a method for extracting explanatory sequences which occur as subsequences of
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4. Mining Sequential Patterns to Explain Concurrent Counterexamples

counterexamples. The method uses sequential pattern mining techniques for extracting
explanatory sequences. However, to make the mining problem more tractable, we propose
a trace length reduction technique.

4.1 Preliminaries
Since the setting in this work is similar to the work in Chapter 3, we refer the reader
to Section 3.1 of that chapter for definition of counterexamples, system models, traces,
and properties. In this section, we present a running example which will be used for
describing the method. Moreover we provide more details on the functioning of sequential
pattern mining techniques since they are used for computing anomalies in the method of
this chapter.

4.1.1 Running Example

Using this example, similar to the motivating example of Chapter 3, Section 3.1.2, we
illustrate how a deadlock can occur due to the temporal order of execution of a set of
actions in the model of a concurrent system. Referring to this example, we motivate
that contrasting sequential patterns of the bad and good datasets can reveal the ordered
sequences of actions that can help to explain the violation of a property, such as a
deadlock in a concurrent system. We use the model of a preliminary design of a plain
old telephony system (POTS)1 as an example. This model was generated with the visual
modeling tool Vip [KL00] and contains a number of deadlock problems. It comprises
four concurrently executing processes corresponding to two users and two phone handlers.
Each user in this model talks to a phone handler for making calls. The phone handlers
are communicating with each other in order to switch and route user calls.

In the Promela code of the POTS case study, there exist four proctypes, namely User1,
PhoneHandler1, User2, and PhoneHandler2. Every user communicates with one phone
handler via two channels with capacity one. One of the two channels between a user
and a phone handler is used for sending messages from the user to the corresponding
phone handler and the other one is used for the opposite direction (Figure 4.1). The
communication between users and corresponding phone handlers is asynchronous since
channels have capacity greater than zero in the Promela code [Hol03] 2. A proctype
blocks when it tries to send a message via a full channel.

In Figure 4.2, a fragment of a counterexample indicating the occurrence of a deadlock
in the POTS model, is given. In this figure, vertical bars are used for showing the
relative order between the execution of the instructions from different proctypes (time
increases in these bars from top to bottom). In this figure, arrows depict “send” and

1The Promela code of the POTS case study is available at http://www.inf.uni-
konstanz.de/soft/tools/CEMiner/POTS7-mod-07-dldetect-never.prm. (July 2012)

2In Promela, channels with capacity zero are used for synchronous communications like the channels
in the Rether protocol, the running example of Chapter 3.
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“receive” instructions, and are labeled with messages (dashed arrows correspond to receive
instructions).

Figure 4.1: POTS channels

User1 PhoneHandler1

User2 PhoneHandler2

From the sequence of send and receive messages in Fig-
ure 4.2, it can be inferred that the channel from Phone-
Handler1 to User1 becomes full after sending the dial-
tone message for the second time because there exists
no corresponding receiving message from User1. There-
fore, PhoneHandler1 blocks after executing the statement
phone_number != 1 while trying to send a busy-tone

message to User1. User1 also blocks after sending the second on-hook which makes the
channel from User1 to PhoneHandler1 also full. Due to the symmetry in the model, a
similar interaction (which has not be shown in Figure 4.2) also occurs between the User2
and PhoneHandler2 which finally leads the system to a deadlock state. The presumed
assumption of the model designer is that a user is synchronized with the corresponding
phone handler so that when the phone handler sends a dial-tone message, the user subse-
quently receives it before taking any other action. However, as we can see in Figure 4.2,
the model is faulty, therefore, the first dial-tone messages is only received after six events,
and the second one has never been received.

In order to realize the problem in Figure 4.2 which we described above, the model designer
needs to inspect all the events issued by User1 and PhoneHandler1. This is because the
order between the sending and receiving messages reveal how these two processes block.
In Figure 4.2, by projecting the trace into events of User1 and PhoneHandler1, we
get a sequence of 14 events in which the events do not occur adjacently inside the
counterexample. Instead, they are interspersed with unrelated events belonging to the
interaction of the User2 and PhoneHandler2.

As we discussed in Chapter 3, in general events belonging to an explanatory sequence can
occur at an arbitrary distance from each other due to the non-deterministic scheduling
of concurrent events. In other words, they occur as subsequences (Definition 5) of the
counterexamples.

4.1.2 Sequential Pattern Mining (revisited)

In Section 3.1.3 of Chapter 3, we briefly introduced the terminology used in sequential
pattern mining algorithm. Since in the method of this chapter we use this type of
algorithm for detecting anomalies we provide more details on it such as defining closed
patterns. The following paragraph is repeated from the previous chapter in order to
make the presentation self-contained.

A sequence dataset S, {s1, s2, ..., sn}, is a set of sequences. The support of a sequence
p in S is the number of the sequences in S that p is a subsequence of: supportS(p) =
|{s | s ∈ S ∧ p v s}|. Given a minimum support threshold, min_supp, the sequence p is
considered a sequential pattern or a frequent subsequence if its support is no less than
min_supp: supportS(p) ≥ min_supp. We denote the set of all sequential patterns mined
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PhoneHandler1 User1 PhoneHandler2 User2 

off-hook 
off-hook 

dial-tone 
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off-hook 

dial-tone 

dial-tone 
dial-digit 

phone_number !=1 
busy-tone 

phone_number = 0 
dial-digit 

phone_number !=1 

on-hook 

Figure 4.2: A fragment of a counterexample in POTS model

from S with the given support threshold min_supp by FSS,min_supp, i.e., FSS,min_supp =
{p | supportS(p) ≥ min_supp}.

As an example, consider a sequence dataset S that has five sequences:

S = {〈a, b, c, e, d〉,
〈a, b, e, c, f〉,
〈a, g, b, c, h〉,
〈a, b, i, j, c〉,
〈a, k, l, c〉}

With min_supp = 4, we obtain:

FSS,4 = {〈a〉 : 5,
〈c〉 : 5,
〈a, c〉 : 5,
〈b〉 : 4,
〈a, b〉 : 4,
〈b, c〉 : 4,
〈a, b, c〉 : 4}
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where the numbers following the patterns denote the respective supports of the patterns.

Since mining all sequential patterns will typically result in a combinatorial number of
patterns, algorithms, such as [YHA03, WH04] only mine closed sequential patterns. A
closed sequential pattern is a pattern which does not have any super-sequence (Definition 5
in Chapter 3) with the same support. In FSS,4, 〈a, b, c〉 is a closed pattern while 〈b, c〉
and 〈a, b〉 are not closed since the support of their super-sequence 〈a, b, c〉 is equal to their
supports (which is 4). A closed pattern encompasses all the frequent patterns with the
same support value which are all subsequences of it. For example, in FSS,4, the closed
pattern 〈a, b, c〉 encompasses three patterns including 〈b〉, 〈a, b〉, and 〈b, c〉 (but not 〈a, c〉
since its support is 5).

The set of all closed sequential patterns mined from S with the given support threshold
min_supp, denoted by CSS,min_supp, is defined as follows:

Definition 8. CSS,min_supp = {π | π ∈ FSS,min_supp ∧ @π′ ∈ FSS,min_supp such that
π @ π′ ∧ support(π) = support(π′)}.

Since every frequent pattern is represented by a closed pattern, mining closed patterns
leads to a more compact result set. For example, while FSS,4 contains seven patterns,
CSS,4 has only two patterns:

CSS,4 = {〈a, c〉 : 5,
〈a, b, c〉 : 4}

4.2 Counterexample Explanation Method

4.2.1 Computing Anomalies

In our method we mine only closed patterns in order to avoid a combinatorial explosion.
For explaining counterexamples, we first mine closed sequential patterns from the bad
(ΣB) and the good datasets (ΣG) with the given minimum support thresholds min_suppB
and min_suppG, respectively. We refer to the sets of closed patterns mined from the bad
and the good datasets as CSΣB ,min_suppB

and CSΣG,min_suppG
, respectively. Contrasting

the sequential patterns of the good and the bad datasets results in anomalies which are
the patterns that are only frequent in the bad dataset and is defined formally as:

Definition 9. ASmin_suppB ,min_suppG
= {π | π ∈ CSΣB ,min_suppB

∧ π 6∈ CSΣG,min_suppG
},

where ASmin_suppB ,min_suppG
denotes the set of anomalies that can be extracted from ΣB

and ΣG by mining closed patterns using minimum support thresholds min_suppB and
min_suppG.

The set ASmin_suppB ,min_suppG
is computed according to (4.1):

ASmin_suppB ,min_suppG
= CSΣB ,min_suppB

− CSΣG,min_suppG
, (4.1)
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where “–” denotes a set difference operation.

The anomalies computed according to (4.1) are a set of ordered sequences of events which
give an explanation for the property violation. As we will show in the experiments, the
extracted set of anomalies is indicative of one or several faults inside the model. These
anomalies can hence be used as the clues to the exact location of the faults inside the
model and thereby greatly facilitate the manual fault localization process.

4.2.2 Trace Length Reduction

In Section 3.1.4 of Chapter 3 we discuss that mining sequential patterns from the datasets
of counterexamples is intractable. As we argue, this observation is due to inherent
characteristics of those datasets, in particular the average length of the sequences and the
number of different events that they include. We conclude that we need some technique
for reducing the length of the counterexamples in order to make the use of sequential
pattern mining in this application domain tractable.

To reduce the length of the traces, we propose to partition the traces into subtraces which
are significantly shorter than original traces, and consequently mining patterns from them
becomes feasible. To this end, we exploit the recurrence of events inside the traces of
non-terminating communication protocols which we are mainly focusing on. The system
models of these message passing concurrent systems contain only a few number of basic
statements (see Section 3.1.1 of Chapter 3). Therefore, in the (supposedly infinite) traces
of these models events occur repeatedly (infinitely often).

In the model of a communication protocol, we have a number of processes (proctypes in
Promela) that communicate via message channels in order to achieve a common goal.
Therefore, the communications in this model are not random, but according to scenarios
which are defined at design time. Scenarios which are illustrated typically using sequence
diagrams 3 specify how processes and in what order they interact. For example, Figure 4.3
depicts two scenarios for the POTS model. The vertical bars (referred to as lifelines in
a sequence diagram) represent the temporal order between the sending and receiving
of different messages. Obviously, there are more scenarios in the POTS model such as
interactions between two phone handlers, however Figure 4.3 only shows two simple
scenarios involving only one user and one phone handler.

A trace of a communication protocol comprises instances of its scenarios. For example,
Figure 4.4 illustrates a trace of the POTS model consisting of one instance of scenario 1 in
Figure 4.3 between User1 and PhoneHandler1 and two instances of scenario 2 one between
User1 and PhoneHandler1 and the other between User2 and PhoneHandler2. Note that
the events belonging to interactions of User1 and PhoneHandler1 are interspersed with
interactions between User2 and PhoneHandler2. This is because scenarios in Figure 4.3
define only interactions between one user and one phone handler. Therefore, two pairs of
one user and one phone handler can interact concurrently.

3https://en.wikipedia.org/wiki/Sequence_diagram.
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Figure 4.3: Two simple scenarios for the POTS model

As we have seen above, a trace of a communication protocol can be partitioned into
fragments, each corresponding to an instance of a scenario. This observation lead us to
the idea of partitioning the traces into subtraces for reducing the length of the original
traces. Ideally, each subtrace corresponds to an instance of a scenario. Instead of mining
original traces, subtraces are then taken into account.

Partitioning the Traces into Subtraces

In order to partition a trace into subtraces that each corresponds to an instance of a
scenario, we need to break the trace at the occurrence of an initiating event of a scenario.
For example, in the Rether protocol (Section 3.1.2 of Chapter 3) all the scenarios start
with the execution of statement i = 0 in Token proctype which is Line 5 in Figure 3.3.
Therefore, traces can be decomposed into subtraces by breaking them at the events
corresponding to the execution of this statement. In the POTS model, there exist two
initiating events: sending an off-hook message from User1 to PhoneHandler1 or sending
the same message from User2 to PhoneHandler2. As we will see in the experimental
results section, for this case study we broke the traces at sending an off-hook message
from User1 to PhoneHandler1 because this event occurs more frequently in the traces
than the other one, and moreover the resulting subtraces are shorter. Table 4.1, shows
the number of subtraces and their average lengths by breaking the traces in ΣB at the
occurrence of these two events. Note that the initiating events are given as input to the
method, and are not currently determined automatically (cf. Figure 4.6).

For protocols, like POTS, where there exist more than one initiating event for scenarios,
determining an event at which to break up the traces is a heuristic decision. One strategy
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Figure 4.4: A sample trace consisting of three scenarios for the POTS model

Event: off-hook #Subtraces Subtraces Avg. Len. Avg. Len. Red. (%)
User1→ PhoneHandler1 2046 25 98.5%
User2→ PhoneHandler2 1444 36 97.8 %

Table 4.1: Results of breaking the traces in ΣB of the POTS model at two initiating
events.

for determining the event to break up the traces is by calculating how much reduction
can be gained on the average from each individual action, and then to choose the one
with the highest reduction ratio. Another heuristic is choosing the event which divide the
traces more evenly or result in subtraces with more similar length. In our experiments,
we chose the event which is more frequent in the bad dataset, and moreover results in a
higher reduction ratio, for instance, for the POTS model we chose sending an off-hook
message from User1 to PhoneHandler1 (Table 4.1).

Let r be an initiating event for scenarios inside a trace σ = 〈e1, e2, ..., en〉. If r occurs m
times inside σ, breaking σ at the m positions of r in σ results in m+ 1 subtraces (or m if
σ starts with r or ends with it). Each subtrace contains the sequence of events between
each two consecutive positions of r in σ:
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Definition 10. Let integers 0 ≤ r1 < r2 < ... < rm ≤ n refer to m positions of r inside
σ. σi,r =

〈
eri−1 , eri−1+1, ..., eri−1

〉
where 1 < i < m+ 1 is the ith subtrace of σ. The first

σ1,r and the last σm+1,r subtrace are 〈e1, ..., er1−1〉 and 〈erm , ..., en〉, respectively.

Instead of analyzing the temporal order between all the events of σ, we examine the
temporal order between the events of a subtrace σi,r, 1 ≤ i ≤ m+ 1 in isolation. Since
each subtrace provides a local view on the sequence of events occurred inside σ, by
examining the temporal order between the events of a subtrace, we, therefore, lose a
global view of the trace. However, due to our decomposition technique which tries to map
the local views to individual scenarios, we are still able to isolate problematic interactions
inside a single scenario. For example, for the counterexample given in Figure 4.2 if we
divide the trace when User1 goes off-hook, we get two subtraces as given in Figure 4.5.
Either of these two subtraces reflect the synchronization problem in the model: a dial-tone
message is sent by PhoneHandler1, however User1 subsequently does not receive it before
taking any other action. Notice that as a consequence of this abstraction we lose access

PhoneHandler1 User1 PhoneHandler2 User2 

off-hook 
off-hook 

dial-tone 
dial-tone 

on-hook 
dial-tone 

phone_number = 0 
dial-digit 

off-hook 

dial-tone 
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busy-tone 
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Figure 4.5: A counterexample in POTS model divided into two subtraces

to the causes of failures that spread over multiple scenarios.
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As we will see in the experimental results section, this reduction technique can reduce
the average sequence length of the datasets significantly, and hence can make mining
sequential patterns from them feasible.

Threats to Validity.

It should be noted that this reduction technique is mainly applicable to traces comprising
scenarios which specify how the concurrent components should interact, such as non-
terminating communication protocols. For some large models the proposed reduction
technique may still not sufficiently reduce the length of the traces. As we have seen
the produced anomalies for explaining counterexamples only contain one instance of the
initiating event r for scenarios. If however for understanding the cause of the property
violation inside the counterexample, the isolation of an ordered sequence of events
containing more than one instance of r is required, then the analysis of the subtraces
would not be sufficient. In other words, since we lose some temporal order by analyzing
only the subtraces, there may exist some concurrency bugs which our method cannot
explain.

4.2.3 Contrasting Sequential Patterns

Instead of mining patterns from the bad ΣB and good ΣG datasets, we mine patterns
from the datasets of subtraces obtained by breaking the traces in original datasets at the
occurrence of some given event, for instance, r. We refer to the resulting datasets which
contain the subtraces of ΣB and ΣG as subt(ΣB, r) = {σr | σr is a subtrace of σ and σ ∈
ΣB} and subt(ΣG, r) = {φr | φr is a subtrace of φ and φ ∈ ΣG}, respectively.

In analogy with Equation 4.1, anomalies are then computed by

ASmin_suppB ,min_suppG,r = CSsubt(ΣB ,r),min_suppB
− CSsubt(ΣG,r),min_suppG

. (4.2)

For mining closed sequential patterns we use an algorithm called CloSpan [YHA03]. The
flowchart of our method is given in Figure 4.6.

The anomalies generated by Equation 4.2 are the distinguishing patterns representing
the set of sequences of actions that are only frequent or typical in the bad dataset. The
user defined threshold values, min_suppB and min_suppG in Equation 4.2 are, in fact,
the parameters of our method. By decreasing the value of the support threshold, the
number of the generated sequential patterns from a dataset of traces increases.

Post-processing. In order to reduce the number of the mined patterns, we remove
the patterns which are substrings of some other generated pattern. This is because
the ordering relationship that can be inferred from these patterns can also be inferred
from the longer patterns that these patterns are substrings of (Filtering Patterns step in
Figure 4.6).
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Figure 4.6: Flowchart of the counterexample explanation method

Moreover, to facilitate the interpretation of the result set obtained by Equation 4.2 we
divide the anomalies into a number of groups so that each group contains patterns which
are all subsequences of the longest pattern in that group. Intuitively, these patterns refer
to the same problematic interaction. Figure 4.7 shows an example of such a group of
patterns. In this figure, numbers refer to event ids (Definition 3). The longest pattern
containing 9 events and appearing at the top, is the super-sequence of the other two
patterns. Inspecting the patterns of one group reveal interesting temporal orders between
the events. For example, one temporal order that can be inferred from the longest pattern
in Figure 4.7 is between three events with ids “334”, “1426”, and “444”: 〈334, 1426, 444〉.
From the other two patterns which are subsequences of the longest pattern, it can be
inferred that not always event “1426” occurs between events “334” and “444” because the
sequence 〈334, 444〉 is also frequent, and not always event “1426” is preceded by event
“334” because the sequence 〈1406, 1426, 444〉 is also frequent.

The groups of patterns are then ordered based on the length of the longest pattern
inside them. Groups with the shorter length of the longest pattern will be ranked higher
because the analysis of these patterns by the user requires less effort.
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〈64, 1406,334,1426,444, 484, 1806, 644, 1986〉

〈64,1406,1426,444, 484, 1806, 644, 1986〉

〈64, 1406,334,444, 484, 1806, 644, 1986〉

@

@

Figure 4.7: Patterns inside one group

4.3 Experimental Evaluation
The experiments that we report on in this section were performed on a 2.67 GHz PC
with 8 GB RAM and Windows 7 64-bit operating system. The prototype implementation
of our method was realized using the programming language C#.Net 2010. We discuss
the results obtained by applying our method to a number of case studies. In these
experiments, we evaluated our method from two main aspects:

• Can the proposed length reduction technique efficiently shorten the traces, such
that mining sequential patterns from the traces becomes feasible?

• How effectively can the generated anomalies reveal the problematic interactions in
concurrent system, hence explaining concurrency bugs?

Case Study 1: POTS Model. We first applied our method to the POTS model
(see Section 4.1.1) in order to obtain explanations for the occurrence of deadlocks. The
traces were shortened in length by breaking them at the positions User1 sends an off-hook
message to PhoneHandler1 as it has been discussed in Section 4.2.2. In order to study
the effect of the threshold value (min_supp) on the number of the generated patterns
appearing in the final result set, we applied different threshold values (min_supp), starting
with a comparatively high threshold value of 90%. Figure 4.8 illustrates how fast the
number of the computed closed sequential patterns in the datasets increases by decreasing
the threshold value (min_supp). To understand the cause of the failure, the patterns in
the final result set needs to be inspected by the model designer. Inspection of a result
set with fewer number of patterns requires less effort. Therefore, we gradually decrease
the thresholds until explanatory sequences emerge. Moreover, Figure 4.8 shows the
effectiveness of our filtering step in reducing the number of the generated patterns. The
reduction is by a factor of approximately 0.5.

Table 4.2 shows the amount of the length reduction we gained by applying our length
reduction technique on the bad and good datasets of the POTS model. From this table,
it can be inferred partitioning the traces into subtraces is quite efficient in reducing the
length of the original traces.
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Figure 4.8: Number of the closed sequential patterns in the bad and good datasets before
and after filtering.

In Figure 4.9, the number of the anomalies obtained by Equation 4.2 along with the
number of the groups that these anomalies are divided into are given. From Figures 4.8
and 4.9, it can be inferred that although the number of the generated closed sequential
patterns from the bad and good datasets can be quite high, the number of the anomalies
that the user needs to inspect to understand the root cause of the deadlock is mostly less

Datasets #Traces #Subtraces Traces Avg. Len. Subtraces Avg. Len. Avg. Len. Red. (%)

bad (ΣB) 4109 2046 1677 25 98.5%
good (ΣG) 107029 7258 3079 22 99.3%

Table 4.2: Length reduction results for the POTS model datasets
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than 10, at least for thresholds of not less than 20. In Figure 4.9, the precision of the
method shows the number of the sequences in the result set which actually reveal some
problematic interaction. As this figure shows, only for the thresholds of 30%, 20% and
10% the precision is less than 100%.

Mining closed sequential patterns from the good dataset of POTS with the low value of
10% for min_supp takes 359.651 s and consumes 31.327 MB of main memory while with
the low value of 90% for min_supp it takes only 0.074 sec. and consumes only 3.69 MB
of main memory.

Considering the way that we generate the good and the bad datasets, these datasets may
not include all the possible good and bad traces that can be produced by the execution of
the model. In the final result set of the method, therefore, we may get some false positives
that do not reveal any problematic behaviors in the model. The computed precision
measure for each case study shows the number of the true explanatory sequences among
all the sequences of the result set. This precision was calculated manually.
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Figure 4.9: Number of the anomalies, number of the groups of anomalies and the precision

The manual inspection of the explanatory sequences in the final result set of the method
reveals some faults in the model. In fact, two faults can be detected from the result
sets generated by the thresholds 20% and 10%. Other result sets which are generated
by higher threshold values only reveal one fault. For example, one of the explanatory
sequences computed with min_supp = 90% is given in Figure 4.10.
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PhoneHandler1 User1 
off-hook 

dial-tone 

Figure 4.10: An explanatory sequence
for POTS

PhoneHandler User 
off-hook 

dial-tone 

Figure 4.11: Part of a scenario in the
POTS model

According to the scenarios defined for this model, the expected sequence from the model
designer perspective is shown in Figure 4.11. Considering the expected sequence the
receiving of dial-tone message should always be preceded by the sending of dial-tone
message. The explanatory sequence in Figure 4.10 reveals a deviation from the expected
sequence in Figure 4.11 because in the explanatory sequence the receiving of dial-tone
message is not preceded by a corresponding sending of this message. This implicitly
reveals the presence of an unread message in the channel from PhoneHandler1 to User1.
Finally, it can be inferred that there is a lack of synchronization between the user and
the phone handler proctypes so that when the phone handler sends a dial-tone message,
the user instead of receiving that message takes another action.

It must be noted that our method is not supposed to be complete, and we use the method
as part of an iterative debugging process. After each run of the method, aided by the
revealed anomalies the user will try to remove as many causes of property violation as
possible. In case the model still contains faults after being modified, the user will apply
the method again. This procedure can be iterated until all the causes of property violation
in the model have been removed. For example, we tried to remedy the problem in POTS
by adding some code in the user proctype which removes a message dial-tone from the
channel from the phone handler proctype to the user proctype, if it is present, when
sending an on-hook message. After this modification, we again applied our method on the
resulting model, this time the number of the generated counterexamples decreased from
4109 to 2229. The produced result set reveals that there is still a lack of synchronization
between the user and the phone handler proctypes.

Case Study 2: Rether Model. The second model is a Real-time Ethernet protocol
named Rether. It was obtained from [Pel06]. In order to reduce the size and complexity of
the original model from [Pel06] we have reduced the values of its parameters. A detailed
description of this model can be found in Section 3.1.2 of Chapter 3. We applied our
method to this model in order to explain the occurrence of a deadlock. As we explained
in Section 4.2.2, the statement i = 0 in Token proctype was used for breaking the traces
because all the interactions between the processes in this model starts with the execution
of this statement. Table 4.3 shows the amount of the length reduction of the traces for
this case study.

75



4. Mining Sequential Patterns to Explain Concurrent Counterexamples

Datasets #Traces #Subtraces Traces Avg. Len. Subtraces Avg. Len. Avg. Le. Red. (%)

bad (ΣB) 8 20 322 26 92%
good (ΣG) 78 51 298 25 92%

Table 4.3: Results of length reduction for the Rether model datasets

The result of mining anomalies with min_supp = 2% is given in Table 4.4. This Table
shows the number of the computed closed patterns before and after filtering, the number
of the anomalies computed by Equation 4.2, the number of groups of anomalies, the
number of the faults detected using the anomalies through the inspection by user, and
the precision of the method.

Datasets #Closed
Patterns

#Filtered
Closed Patt.

#Anomalies #Anomaly
Groups

Precision #Detected Faults

bad 182 170 23 11 7 1good 466 244

Table 4.4: Mining results for the Rether model

Even though approximately 65% of the anomaly groups in the final result set reveal a
problematic behavior in the system, the inspection of only two of them, corresponding
to the first and to the 8th groups in the ranked result set, is required for localizing an
atomicity violation in one of the proctypes of the model. In Section 3.1.2 of Chapter 3, it
is extensively discussed which specific sequence of events reveals an atomicity violation
in this model. This problematic sequence of events correspond to two patterns (first and
8th) in the result set computed by min_supp = 2% for this case study.

Comparison with the Method of Chapter 3. The fault localization method that
we proposed in Chapter 3 aids the user in locating unforeseen interleavings inside the
counterexamples of concurrent systems by extracting a set of short substrings of mainly
length two that only occur in the bad dataset. These short substrings along with the
corresponding counterexamples are given to the user for further analysis. For example,
for this case study, this method generates 3 short distinguishing substrings of length two
which are given to the user along with the corresponding counterexamples. Using these
substrings, the user needs to inspect on the average 30 events inside the corresponding
counterexamples in order to identify the anomalous sequences pointing to an atomicity
violation bug in the model. However, the explanatory sequences detected with the method
proposed in this chapter are in themselves indicative of the atomicity violation bug in
the model. In other words, as opposed to the method of Chapter 3 an inspection of
counterexamples is not required. Specifically, in order to detect an atomicity violation
in this case study, an explanatory sequence of at least length 30 needs to be isolated
inside a counterexample. With the aid of the short substrings of length two extracted
by the method of Chapter 3, the user still needs to inspect the counterexample in order
to isolate an explanatory sequence of length 30, even though these substrings facilitate
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the user inspection greatly. However, the groups of anomalies generated by the method
of this paper contain the explanatory sequence of length 30 required for locating the
atomicity violation in the model. In fact, the last 7 events of this sequence appear in the
first group of the ranked result set and the rest of the events appear in the 8th group.
Therefore, the current method imposes less inspection effort on the user for locating the
faults in the model.

Case Study 3: Railway Model. We finally applied our method to explain counterex-
amples indicating the violation of a safety property in the small railroad crossing example
which is also used as a sample case study in [LFL13]. The desired safety property is that
the car and the train should never be in the crossing simultaneously, which is considered
a hazardous state of the system. In this small model, the length reduction step was not
necessary.

Table 4.5 summarizes the results of mining obtained with “min_supp = 90%”. Columns
“#Traces” and “Avg. Trace Len.” show the number of traces and the average trace length
in the bad and good datasets, respectively.

Datasets #Traces Avg.
Trace Len.

#Closed
Patterns

#Filtered
Closed Patt.

#Anomalies #Detected
Faults

bad 28 15 1 1 1 1good 85 15 6 2

Table 4.5: Results of mining for the Railway model

The only extracted explanatory sequence reveals a problematic sequence of events that
leads the system to an undesired state in which the variables carcrossing and traincrossing
have both the value “1”. This indicates that both a car and a train are in the crossing at
the same time, which is equivalent to a hazard state. This sequence, in fact, guides the
user to the location of an atomicity violation bug in the Gate proctype. The presumed
intention of the model designer is that the transmission of the signal “1” through the
gateCtrl channel would be performed atomically with the changing of the global variable
gateStatus to “1”. However, due to the fault in the model, the execution of these two
statements is interleaved with some other concurrent actions and leads the system to a
hazard state.

Dataset Generation. As it has been explained in Section 3.2.1 of Chapter 3, we use
the option “-c0 -e” in Spin, for generating the good and the bad datasets which can be
time-consuming for some case studies. For example, for the POTS model Spin generates
303,589 good traces which takes around 14 hours. However, the dataset generation for
the other two case studies takes less than a minute. If the generated datasets have fewer
numbers of traces than the ones generated with the option “-c0 -e”, our method is still
applicable to them since the method is not guaranteed to be complete. However, when
the datasets offer a higher coverage of the good and the bad behaviors, the output of the
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method is more precise and the number of the false positives among the explanations is
reduced. Moreover, more than one fault can be detected.

4.4 Related Work
In this section, we briefly discuss closely related work that has not yet been addressed in
earlier sections.

Pattern Mining in Software Analysis. Data mining techniques have proven to be
useful in the analysis of very large amounts of data produced in the course of different
activities during various states of the software system development cycle. Frequent
pattern mining techniques which find commonly occurring patterns in a dataset are
broadly used for mining specifications and localizing faults in program code [LKL07,
LYY+05, PNK11, FLS06, RGJ07]. The work documented in [LKL07] adapts sequential
pattern mining techniques in order to mine specifications from recorded traces of software
system executions. It seems that the patterns generated by this method can also be used
for counterexample explanation. However, we faced scalability issues when applying this
method to the POTS model case study that we introduce in Section 4.1.1. The longest
distinguishing patterns between the bad and the good datasets that could be generated
by this method were only 2 events long and did not carry any interesting information
with respect to ordering relationships amongst events. Chronicler [RGJ07] is a static
analysis tool which infers function precedence protocols defining ordering relationships
among function calls in program code. For extracting these protocols a sequence mining
algorithm is used. The methods in [LYY+05, PNK11, FLS06] use graph and tree mining
algorithms for localizing faults in sequential program code. A commonality of these
methods is that they first construct behavior graphs such as function call graphs from
execution traces. They then apply a frequent graph or tree mining algorithm on the
passing and failing datasets of constructed graphs in order to determine the suspicious
portions of the sequential program code. As opposed to this approach, our goal is to
identify sequences of interleaved actions in concurrent systems, which the above cited
works are unable to provide.

Concurrency Bug Detection Methods. Avio [LTQZ06] only detects atomicity
violations and, as opposed to our method, is tailored to only identify single variable bugs.
Examples of tools which only focus on detecting data races are lockset bug detection
tools [SBN+97b] and happens-before bug detection tools [NM91a]. In contrast to these
approaches, which lack generality and rely on heuristics that are specific to a class of
bugs, the output of our method in the form of explanatory sequences can be indicative
to any type of concurrency bugs in the program design that can be characterized by a
reachability property.

The work described in [LC09] proposes a more general approach for finding concurrency
bugs based on constructing context-aware communication graphs from execution traces.
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Context-aware communication graphs use communication context to encode access
ordering information. A key challenge of this method is, however, that if the relevant
ordering information is not encoded, bugs may not lead to graph anomalies and therefore
remain undetected. Our method does not rely on such an encoding but directly analyzes
the temporal ordering of the event. It therefore appears to be more general than the
approach in [LC09].

For a more detailed discussion of concurrency bug detection tools and techniques such as
the ones mentioned in this section see Chapter 2, Section 2.2.1.

Counterexample Explanation Methods. In Section 3.4 of Chapter 3, we provide a
detailed comparison of our method with a closely related work by Groce and Visser [GV03].
For that comparison, the arguments given in Section 3.4 of Chapter 3 are also valid for the
work of this chapter, because, the current method is the enhancement of our precursory
work. The causality checking method proposed in [LFL13] computes automatically the
causalities in system models by adapting the counterfactual reasoning based on the
structural equation model (SEM) by Halpern and Perl [HP05]. This method identifies
sequences of events that cause a system to reach a certain undesired state by extending
depth-first search and breadth-first search algorithms used for a complete state space
exploration in explicit-state model checking. It seems that the main superiority of our
method is less computational cost in terms of memory and running time for detecting
at least one fault in the model. As we have shown in Section 4.3, our method very
efficiently detected a fault in the sample case study (Railway model) of [LFL13]. The
causality checking method considers all the possible finite good and bad execution traces
for identifying the combination of events which are causal for the violation of a safety
property. Since we do not seek completeness, our mining method is still applicable even
if the datasets do not include all the possible good and bad execution traces, which can
be an impediment in practice.

Some other automated counterexample explanation techniques such as [BBDC+09,
WYIG06, GCKS06] only take the values of program or model variables into account
when computing which variable values along a counterexample trace cause a violation of
some desired property. In contrast, the method we propose here considers the order of
execution of actions and can hence explain property violations which are due to a specific
order of execution of actions.

4.5 Summary
In this chapter, we have presented an anomaly detection method for the explanation of
model checking counterexamples for message passing concurrent system models. From a
dataset of counterexamples we extract a number of explanatory sequences of events that
prove to point to the location of the fault in the model by leveraging a frequent pattern
mining technique called sequential pattern mining. An experimental analysis showed the
effectiveness of our method for a number of indicative deadlock checking case studies.
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CHAPTER 5
Abstraction and Mining of Traces

to Explain Concurrency Bugs

In Chapters 3 and 4, we presented two anomaly detection based techniques for explaining
counterexamples of message passing concurrent systems. In these techniques, anomalies
in the form of sequences of events which referred to as explanatory sequences are extracted
using a mining method called sequential pattern mining. The computed anomalies reveal
the problematic interleavings in concurrent systems which result in property violation.
In this chapter, we propose an anomaly detection technique for explaining concurrency
bugs in shared memory concurrent programs. In this technique, we analyze the execution
traces of multithreaded concurrent programs in order to isolate the problematic order
between the execution of different threads which is causal for the failure. As we have seen
in Chapter 2, data races, atomicity violations and order violations are the common types
of non-deadlock concurrency bugs that occur in shared memory concurrent programs.

Similar to the techniques proposed in Chapters 3 and 4, the technique of this chapter for
explaining concurrency bugs is oblivious to the nature of the specific bug. We assume
that we are given a set of concurrent execution traces, each of which is classified as
successful or failed. This is a reasonable assumption if the program is systematically
tested and the test suite satisfies concurrent coverage metrics [LJZ07]. Execution traces
can be generated and recorded using systematic testing tools [MQ06, MQB07, YCGK07]
or stress testing [PLZ09]. Inspecting concurrent traces manually, however, is still tedious
and time-consuming. An empirical study of strategies commonly used for diagnosing
and correcting faults in concurrent software shows that the primary concern of the
programmer is to produce and analyze a failing trace by reasoning about potential thread
interleavings based on some degree of program understanding [FKS+08]. In light of the
complexity of this task, tool support is highly desirable.

Although the traces of concurrent programs are lengthy sequences of events, only a small
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subset of these events is typically sufficient to explain an erroneous behavior. In general,
these events do not occur consecutively in the execution trace, but rather at an arbitrary
distance from each other as we have discussed in the previous two chapters. Therefore,
we use data mining algorithms to isolate ordered sequences of non-contiguous events
which occur frequently in the traces. Subsequently, we isolate anomalies by examining
the differences between the common behavioral patterns of failing and passing traces
(motivated by Lewis’ theory of causality and counterfactual reasoning [Lew01]).

Our approach which is based on anomaly detection combines ideas from the fields of
runtime monitoring [DGR04], abstraction and refinement [CGJ+00], and sequential
pattern mining [ME10]. It comprises the following three phases:

• We systematically generate execution traces with different interleavings, and record
all global operations but not thread-local operations [YCGK07], thus requiring only
limited observability. We justify our decision to consider only shared accesses in
Section 5.1. The resulting data is partitioned into successful and failed executions.

• Since the resulting traces may contain thousands of operations and events, we
present a novel abstraction technique which reduces the length of the traces as well
as the number of events by mapping sequences of concrete events to single abstract
events. We show in Section 5.2 that this abstraction step preserves all original
behaviors while reducing the number of patterns to consider significantly.

• We use a sequential pattern mining algorithm [YHA03, WH04] to identify sequences
of events that frequently occur in failing execution traces. In a subsequent filtering
step, we eliminate from the resulting sequences spurious patterns that are an artifact
of the abstraction and misleading patterns that do not reflect problematic behaviors.
The remaining patterns are then ranked according to their frequency in the passing
traces, where patterns occurring in failing traces exclusively are ranked highest.

In Section 5.4, we use a number of case studies to demonstrate that our approach yields
a small number of relevant patterns which can serve as an explanation of the erroneous
program behavior.

The work in this chapter improves and extends our previous work [TBWW14] in the
following ways:

• We formalize the notion of a bug explanation pattern.

• In Section 5.3, we lift the notion of bug explanation patterns to the patterns mined
from abstract traces.

• The algorithm for producing bug explanation patterns is presented in Section 5.3.1,
followed by a discussion of the parameters of the method and their effects. This
section also describes an optimization of the computationally costly filtering step
of [TBWW14], resulting in orders of magnitude speed up in run time.
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• In the section on experimental results, we demonstrate that our modification of the
method in [TBWW14] preserves the effectiveness of the method while achieving
more efficiency. Moreover, we show the effect of variations in the input datasets
of traces on the effectiveness of the method by bounding the number of context
switches in input traces.

5.1 Executions, Failures, and Bug Explanation Patterns
In this section, we define basic notions such as executions, events, traces, and faults. We
introduce the notion of bug explanation patterns and provide a theoretical rationale as
well as an example of their usage. We recap the terminology of sequential pattern mining
and explain how we apply this technique to extract bug explanation patterns from sets
of traces.

5.1.1 Programs and Failing Executions

We consider shared-memory concurrent programs composed of k threads with indices
{1, . . . , k} and a finite set G of shared variables. Each thread Ti where 1 ≤ i ≤ k has a
finite set of local variables Li. The set of all variables is then defined by V def= G ∪

⋃
i Li,

where 1 ≤ i ≤ k. Interaction between the threads happens via read and write accesses to
shared variables. Each thread is represented by a control flow graph whose edges are
annotated with atomic instructions. We use guarded statements to represent atomic
instructions. Let Vi = G ∪ Li (for 1 ≤ i ≤ k) denote the set of variables accessible in
thread Ti. An instruction from thread Ti is either a guarded statement assume(ϕ) . τ or
an assertion assert(ϕ) where ϕ is a predicate over Vi and τ is an assignment of the form
v := φ (where v ∈ Vi and φ is an expression over Vi). The condition ϕ must be true
for the assignment τ to be executed. It must be also true when assert(ϕ) is executed,
otherwise a failure occurs.

The guarded statement has the following three variants: (1) when the guard ϕ = true,
it can model ordinary assignments in a basic block, (2) when the assignment τ is
empty, the conditions assume(ϕ) and assume(¬ϕ) can model the execution of a branching
statement if(ϕ)− else, and (3) with both the guard and the assignment, it can model
an atomic check-and-set operation, which is the foundation of all types of concurrency
primitives [HS08]. For example, acquiring and releasing a lock l in a thread with index
i is modeled as assume(l = 0) . l := i and assume(l = i) . l := 0, respectively. Fork and
join can be modeled in a similar manner using auxiliary synchronization variables.

Each thread executes a sequence of atomic instructions in program order (determined by
the control flow graph). During the execution, the scheduler picks a thread and executes
the next atomic instruction in the program order of the thread. The execution halts if
there are no more executable atomic instructions.
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Executions. An execution ρ = S0, a1, S1, ..., Sn−1, an, Sn is an alternating sequence of
states Si and atomic execution steps ai corresponding to some interleaving of instructions
from the threads of the program. Each state S is a valuation of the variables V. Execution
steps correspond to the execution of atomic instructions of the threads. For each i, the
execution of ai in state Si−1 leads to state Si.

The sequence of states visited during an execution constitutes a program behavior. As
we have seen in Chapter 1, Section 1.2.1, a fault or bug is a defect in the program code,
which if triggered leads to an error, which in turn is a discrepancy between the actual
and the intended behavior (specified by assertions or test cases). If an error propagates,
it may eventually lead to a failure, a behavior contradicting the specification. We call
executions leading to a failure failing and all other executions passing executions.

5.1.2 Read-Write Events and Traces

Each execution of an atomic instruction assume(ϕ).v := φ in a thread such as Ti generates
read events for the variables referenced in ϕ and φ, followed by a write event for v.

Definition 11 (Read-Write Events). A read-write event is a tuple 〈id, tid, `, type, addr〉,
where id is an identifier, tid ∈ {1, . . . , k} and ` are the thread identifier and the source
code line number of the corresponding instruction, type ∈ {R,W} is the type (or direction)
of the memory access, and addr ∈ Vtid is the variable accessed.

Two events have the same identifier id if they are issued by the same thread and agree on
the line number of source code, the type, and the address. In the following, for comparing
two events we use their ids. Two events ei and ej are equal denoted by ei = ej if both
have the same ids. However, each event in the execution is unique. Therefore, two events
with the same id are distinguished by their index in the sequence of an execution. We
use Rtid(addr)− ` and Wtid(addr)− ` to refer to read and write events to the object with
address addr issued by thread tid at line number ` of the source code, respectively.

Two events conflict if they are issued by different threads, access the same shared variable
v ∈ G, and at least one of them is a write to v. Given two conflicting events e1 and e2
from two different threads such that e1 is issued before e2, we distinguish three cases
of inter-thread data-dependency: (a) flow-dependence: e2 reads a value written by e1,
(b) anti-dependence: e1 reads a value before it is overwritten by e2, and (c) output-
dependence: e1 and e2 both write the same memory location. Figures 5.1 and 5.2 show
all inter-thread data-dependencies for the shared variable balance in the passing and
failing traces of the running example given in Section 5.1.3. We use dep to denote the
set of data-dependencies between the events of an execution that arise from the order in
which the instructions are executed.

A failing and a passing execution started in the same initial state either (a) differ in
their data-dependencies dep over the shared variables, and/or (b) contain different local
computations. Local computations of thread Ti involve thread local variables, v ∈ Li.
In our setting, we assume local computations of the threads of the program are not the
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cause of the error. Therefore, in a failing and a passing execution started in the same
initial state, a discrepancy in either their data-dependencies dep over the shared variables
or the executed events explains the failure in the failing trace according to fundamental
results of concurrency control originally developed in database research [Pap79] and
Mazurkiewicz’s trace theory [Maz86]. This discrepancy is, in fact, induced by the order
of execution of the instructions of the program, which is the result of a change in the
schedule. (As an example, compare the passing and failing traces given in Figures 5.1
and 5.2.)

Our method aims at identifying sequences of events that reveal this discrepancy. Therefore,
we focus on concurrency bugs that manifest themselves in a deviation of the accesses to
and the data-dependencies between shared variables, thus ignoring failures caused purely
by a difference of the local computations. As per the argument above, this criterion
covers a large class of concurrency bugs, including data races, atomicity violations, and
order violations.

To this end, we log the order of read and write events (for shared variables) in a number
of passing and failing executions. Since we are interested in concurrency bugs which
are due to scheduling rather than input values, failing and passing traces all start from
the same initial state. Moreover, in the logged read/write events we ignore the value of
the shared variables. We assume that the addresses of variables are consistent across
executions, which is enforced by our logging tool. A trace is then defined as follows:

Definition 12. A trace σ = 〈e1, e2, ..., en〉 is a finite sequence of read-write events of
shared variables (Definition 11).

In the following, ΣF and ΣP denote sets of failing and passing traces, respectively.

5.1.3 Bug Explanation Patterns

In a failing trace, we refer to a sequence of events relevant to the failure as bug explanation
sequence. We typically can distinguish two types of events in a bug explanation sequence:
the events triggering the error (which is a discrepancy between the intended and the
actual behavior) and the events propagating the error, eventually leading to a failure. We
illustrate these notions (bug explanation sequences, triggering and propagating events)
using a well-understood example of an atomicity violation. Figure 5.1 shows two code
fragments that non-atomically update the balance of a bank account (stored in the shared
variable balance) by depositing or withdrawing given values. The example does not
contain a data race, since balance is protected by the lock balance_lock. The global array
t_array contains the sequence of amounts to be transferred. Two threads execute these
code fragments concurrently. In Figures 5.1 and 5.2, two failing traces and one passing
trace resulting from the concurrent execution of the code fragments by two threads are
given. The identifiers on (where n is a number) represent the addresses of the accessed
shared objects, and o27 corresponds to the variable balance. The events R1(o27)− 67 and
W1(o27)− 74 correspond to the read and write instructions at lines 67 and 74 of thread 1,
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. . .
pthread_mutex_lock(balance_lock);
. . .

67: bal = balance;
pthread_mutex_unlock(balance_lock);

if (bal+t_array[i].amount≤MAX)
bal = bal+t_array[i].amount;

pthread_mutex_lock(balance_lock);
74: balance = bal;

. . .
pthread_mutex_unlock(balance_lock);
. . .

Code fragment-Deposit

. . .
pthread_mutex_lock(balance_lock);
. . .

100: bal = balance;
pthread_mutex_unlock(balance_lock);

if (bal-t_array[i].amount≥MIN)
bal = bal-t_array[i].amount;

pthread_mutex_lock(balance_lock);
107: balance = bal;

. . .
pthread_mutex_unlock(balance_lock);
. . .

Code fragment-Withdrawal

1. R2(o26)− 98
2. R2(o27)− 100
3. R2(o25)− 101

4. R1(o26)− 65
5. R1(o27)− 67
6. R1(o25)− 68
7. R1(o2)− 70
8. R1(o11)− 70
9. R1(o25)− 73

10. R2(o2)− 103
11. R2(o5)− 103
12. R2(o2)− 104
13. R2(o5)− 104
14. R2(o25)− 106
15. W2(o27)− 107
16. R2(o26)− 109
17. R2(o26)− 112
18. W2(o26)− 112
19. R2(o25)− 114

20. W1(o27)− 74
21. R1(o26)− 77

Failing trace (1)

anti-dependency

output-dep.

1. R2(o26)− 98
2. R2(o27)− 100
3. R2(o25)− 101

4. R1(o26)− 65
5. R1(o27)− 67
6. R1(o25)− 68
7. R1(o2)− 70
8. R1(o11)− 70
9. R1(o25)− 73
10. W1(o27)− 74
11. R1(o26)− 77
12. R1(o26)− 80
13. W1(o26)− 80
14. R1(o25)− 82
15. R1(o1)− 57

16. R2(o2)− 103
17. R2(o5)− 103
18. R2(o2)− 104
19. R2(o5)− 104
20. R2(o25)− 106
21. W2(o27)− 107
22. R2(o26)− 109

Failing trace (2)

anti-dependency

output-dep.

Figure 5.1: Conflicting update of bank account balance

respectively. Similarly, the events R2(o27)− 100 and W2(o27)− 107 correspond to the read
and write instructions at lines 100 and 107 of thread 2, respectively.

The traces in Figure 5.1 fail because their final states are inconsistent with the expected
value of balance. For example, in failing trace (1), the reason is that o27 is overwritten with
a stale value at position 20 in the trace, “killing” the transaction of thread 2 that writes o27
at position 15. This is reflected by the sequence 〈R1(o27)− 67,W2(o27)− 107,W1(o27)− 74〉
in combination with the data-dependencies between the events as depicted in the figure.
This sequence reveals the cause of failure and is an example of a bug explanation sequence
in which the first two events 〈R1(o27)− 67,W2(o27)− 107〉 trigger the error.

Since a single fault can have different manifestations at run time, bug explanation
sequences may vary in different failing traces. For example, in Figure 5.1 the failing trace
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1. R1(o26)− 65
2. R1(o27)− 67
3. R1(o25)− 68
4. R1(o2)− 70
5. R1(o11)− 70
6. R1(o25)− 73
7. W1(o27)− 74
8. R1(o26)− 77
9. R1(o26)− 80
10. W1(o26)− 80
11. R1(o25)− 82
12. R1(o1)− 57

13. R2(o1)− 91
14. R2(o2)− 93
15. R2(o4)− 93
16. R2(o1)− 91
17. R2(o2)− 93
18. R2(o6)− 93
19. R2(o25)− 96
20. R2(o26)− 98
21. R2(o27)− 100
22. R2(o25)− 101
23. R2(o2)− 103
24. R2(o5)− 103
25. R2(o2)− 104
26. R2(o5)− 104
27. R2(o25)− 106
28. W2(o27)− 107
29. R2(o26)− 109

Passing trace

flow-dependency

Figure 5.2: Passing trace of the bank account example

(2) which fails due to the same fault as trace (1) has a different bug explanation sequence
and consequently different triggering events: 〈R2(o27)− 100,W1(o27)− 74,W2(o27)− 107〉
(the first two events trigger the error). The two bug explanation sequences discussed
above and the corresponding dependencies do not arise in any passing trace, since no
context switch occurs between the events R1(o27)− 67 and W1(o27)− 74.

Although bug explanation sequences vary in different failing traces (failing traces 1 and 2
in Figure 5.1), in the set ΣF of failing traces which all fail due to the same fault, bug
explanation sequences typically share triggering or propagating events. Assume the code
fragments of Figure 5.1 are executed in a loop by the two threads. Some traces in ΣF

will then share 〈R1(o27)− 67,W2(o27)− 107〉 as the triggering events, while in some other
traces the occurrence of sequence 〈R2(o27)− 100,W1(o27)− 74〉 triggers the error.

We refer to the portions of bug explanation sequences that occur commonly in ΣF as
bug explanation patterns such as 〈R1(o27)− 67,W2(o27)− 107〉 in the running example.
Intuitively, these patterns occur more frequently in the failing dataset ΣF than in the
set ΣP of passing traces. While the bug pattern in question may occur in passing
executions (since an error may not necessarily lead to a failure), our approach is based
on the assumption that it is less frequent in ΣP . Therefore, for explaining concurrency
bugs we examine the differences in terms of the sequence of events in the traces of the
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failing and passing datasets, which is the foundation of a large number of approaches for
locating faults in program code (see, for instance, [Zel09]). Lewis’ theory of causality
and counterfactual reasoning provides justification for this type of fault localization
approaches [Lew01].

Since our focus is on concurrency bugs which are due to problematic interactions between
threads, the triggering events are from at least two different threads and do not necessarily
occur consecutively inside the trace. In general, these events can occur at an arbitrary
distance from each other due to scheduling. Our bug explanation patterns are therefore, in
general, subsequences of execution traces. According to Definition 5, π = 〈e′0, e′1, e′2, ..., e′m〉
is a subsequence of σ = 〈e0, e1, e2, ..., en〉, denoted as π v σ, if and only if there exist
integers 0 ≤ i0 < i1 < i2 < i3... < im ≤ n such that e′0 = ei0 , e

′
1 = ei1 , ..., e

′
m = eim . We

write π @ σ if π v σ and π 6= σ. We also call σ a super-sequence of π if π v σ.

5.1.4 Mining Bug Explanation Patterns

In order to isolate bug explanation patterns in the traces of ΣF , we use sequential pattern
mining algorithms. As we have already seen in Chapters 3 and 4, these algorithms extract
frequent subsequences from a dataset of sequences without limitations on the relative
distance of events belonging to the subsequences. This data mining technique has diverse
applications in areas such as the analysis of customer purchase behavior, the mining of
web access patterns or motifs in DNA sequences.

In Chapters 3 and 4, we have introduced the terminology of sequential pattern mining. In
this section, we recap it again in order to make the presentation self-contained and adapt
it to our setting. For a more detailed treatment, we refer the interested reader to [ME10].
In our setting, we are interested in extracting subsequences occurring frequently in
ΣF and contrasting them with the frequent subsequences of ΣP . As we have already
discussed, bug explanation patterns are subsequences which occur more frequently in the
failing dataset ΣF .

In a sequence dataset Σ = {σ1, σ2, ..., σn}, a pattern is supported by a sequence if it is a
subsequence of it. The support of a sequence π is defined as

supportΣ(π) def= |{σ |σ ∈ Σ ∧ π v σ}| .

Given a minimum support threshold min_supp, the pattern π is considered a sequential
pattern or a frequent subsequence if supportΣ(π) ≥ min_supp. FSΣ,min_supp denotes the
set of all sequential patterns mined from Σ with the given support threshold min_supp and
is defined as FSΣ,min_supp = {π | supportΣ(π) ≥ min_supp}. As an example, Σ contains
the four traces given in Table 5.1. We obtain:
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Id Trace
1 R1(x),W1(x),R2(x),W2(x),R1(x),W1(x)
2 R1(x),W1(x),R1(x),W1(x),R2(x),W2(x)
3 R1(x),R2(x),W1(x),W2(x),R1(x),W1(x)
4 R2(x),R1(x),W2(x),W1(x),R1(x),W1(x)

Table 5.1: Sample dataset of traces

FSΣ,4 = {〈R1(x)〉 : 4,
〈R2(x)〉 : 4,
〈W1(x)〉 : 4,
〈W2(x)〉 : 4,
〈R1(x),W1(x)〉 : 4,
〈R1(x),W2(x)〉 : 4,
〈R2(x),W2(x)〉 : 4,
〈W1(x),R1(x)〉 : 4,
〈R1(x),W1(x),R1(x)〉 : 4,
〈R1(x),W1(x),W1(x)〉 : 4,
〈R1(x),R1(x),W1(x)〉 : 4,
〈W1(x),R1(x),W1(x)〉 : 4,
〈R1(x),W1(x),R1(x),W1(x)〉 : 4}

where the numbers following the patterns denote the respective supports of the patterns.

Notice the combinatorial number of the frequent subsequences even in this small dataset.
In order to avoid a combinatorial explosion, it is best to mine closed set of pat-
terns [YHA03, WH04]. In FSΣ,4, patterns 〈R1(x),W1(x),R1(x),W1(x)〉 : 4 and 〈R2(x),W2(x)〉 :
4, which do not have any super-sequences with the same support value are called closed pat-
terns. A closed pattern encompasses all the frequent patterns with the same support value
which are all subsequences of it. For example, in FSΣ,4, 〈R1(x),W1(x),R1(x),W1(x)〉 : 4 en-
compasses 〈R1(x)〉 : 4, 〈R1(x),W1(x)〉 : 4, 〈R1(x),W1(x),R1(x)〉 : 4 and similarly 〈R2(x),W2(x)〉 : 4
encompasses 〈R2(x)〉 : 4 and 〈W2(x)〉 : 4. Closed patterns are the lossless compression of
all sequential patterns. Therefore, in our method we mine only closed patterns in order
to avoid a combinatorial explosion. CSΣ,min_supp denotes the set of all closed sequential
patterns mined from Σ with the support threshold min_supp and is defined as

{π |π ∈ FSΣ,min_supp ∧ @π′ ∈ FSΣ,min_supp . π @ π′ ∧ support(π) = support(π′)}.

To extract bug explanation patterns from ΣP and ΣF , we first mine closed sequential
patterns with a given minimum support threshold min_supp from ΣF . At this point, we
ignore the index of events in execution traces and identify events using their id. This is
because in mining we do not distinguish between events with the same id that occur at
different positions inside a trace. The event W1(o27)− 74 in Figure 5.1, for instance, has
the same id in the failing traces and the passing trace, even though its indices in these
traces (20, 10 and 7) differ.
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To determine whether a pattern π in CSΣF ,min_supp is more frequent in ΣF than in ΣP ,
we define the notion of relative support which is computed as the following:

rel_supp(π) =
supportΣF

(π)
supportΣF

(π) + supportΣP
(π) .

Note that the values of support in ΣF and ΣP are normalized. Patterns that occur in
ΣF exclusively have the maximum relative support of 1. Patterns that occur with the
same frequency in both ΣF and ΣP have the relative support of 0.5. Therefore, from
rel_supp(π) > 0.5 we infer that π occurs more frequently in ΣF than in ΣP . We argue
that the patterns with the highest relative support are indicative of one or several faults
inside the program of interest. These patterns can hence be used as clues for the exact
location of the faults inside the program code.

Sequential pattern mining ignores the underlying semantics of the events. This has the
undesirable consequences that we obtain numerous patterns that are not explanations in
the sense of Section 5.1.3, since they do not contain context switches or data-dependencies.
In FSΣ,4, 〈R2(x),W2(x)〉 : 4 does not contain any context switches, hence cannot be a
candidate bug explanation pattern. Pattern 〈R1(x),W2(x)〉 : 4 occurs in all four traces of
Σ, however only in trace 4 the two events are anti-dependent. In all other traces, they
are not related by any data-dependencies. Accordingly, we define heuristics to consider a
pattern as a candidate bug explanation pattern.

Definition 13 (Bug Explanation Pattern). Given ΣF and ΣP and min_supp, pattern
π ∈ CSΣF ,min_supp is a candidate bug explanation pattern if rel_supp(π) > 0.5 and
∀ei ∈ π,∃ej ∈ π, i 6= j such that ei and ej are related by dep. In addition, at least two
related events should belong to two different threads.

In our method, the heuristics defined in Definition 13 are applied to the patterns of
CSΣF ,min_supp in a post-processing step after mining. This process involves mapping of
π ∈ CSΣF ,min_supp to the traces in ΣF for locating the instances of π in these traces. At
this point, the index of events inside the traces is taken into account (indices `1, `2, . . . , `m
in Definition 14).

Definition 14 (Instance of a Pattern in a Trace). I(`1, `2, . . . , `m) is an instance of
pattern π = 〈e′1, e′2, ..., e′m〉 in the trace σ = 〈e1, e2, ..., en〉 if e′1 = e`1 , e

′
2 = e`2 , . . . , e

′
m =

e`m where 1 ≤ `i ≤ n for 1 ≤ i ≤ m.

Support Thresholds and Datasets. Which threshold is adequate depends on the
number and the nature of the bugs. Given a single fault involving only one variable, most
traces in ΣF presumably share the same sequence of events that trigger the error. Since the
bugs are not known up-front, and lower thresholds result in a larger number of patterns,
we gradually decrease the threshold until bug explanations emerge. Moreover, the quality
of the explanations is better if the traces in ΣP and ΣF are similar or homogeneous in
terms of events they contain and the order between them. Our experiments in Section 5.4
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show that the sets of execution traces need not necessarily be exhaustive to enable bug
explanations.

5.2 Mining Abstract Execution Traces
With increasing length of the execution traces and number of events, sequential pattern
mining quickly becomes intractable [LTB12] (see Chapter 3, Section 3.1.4). To alleviate
this problem, we introduce macro-events that represent events of the same thread
occurring consecutively inside an execution trace, and obtain abstract events by grouping
these macros into equivalence classes according to the events they replace. Our abstraction
reduces the length of the traces as well as the number of the events at the cost of
introducing spurious traces. Accordingly, patterns mined from the abstract traces may
not occur as a subsequence of any original traces. Therefore, we eliminate spurious
patterns using a subsequent feasibility check.

5.2.1 Abstracting Execution Traces

In order to obtain a more compact representation of a set Σ of execution traces, we
introduce macros representing substrings of the traces in Σ. A substring of a trace σ is a
sequence of events that occur consecutively in σ.

Definition 15 (Macros). Let Σ be a set of execution traces. A macro-event (or macro,
for short) is a sequence of events m def= 〈e1, e2, ..., ek〉 in which all the events ei (1 ≤ i ≤ k)
have the same thread identifier, and there exists σ ∈ Σ such that m is a substring of σ.

We use events(m) to denote the set of events in a macro m. The concatenation of two
macros m1 = 〈ei, ei+1, . . . ei+k〉 and m2 = 〈ej , ej+1, . . . ej+l〉 is defined as m1 · m2 =
〈ei, ei+1, . . . ei+k, ej , ej+1, . . . ej+l〉. We denote the concatenation of a sequence of macros
Π = 〈m1,m2, . . .ml〉 as concat(Π) = m1 ·m2 · · ·ml.

Definition 16 (Macro trace). Let Σ be a set of execution traces, E the set of events
occurred in traces of Σ, and M be a set of macros. Given σ ∈ Σ, a corresponding
macro trace 〈m1,m2, . . . ,mn〉 is a sequence of macros mi ∈ M (1 ≤ i ≤ n) such that
m1 ·m2 · · ·mn = σ. We say that M covers Σ if there exists a corresponding macro trace
(denoted by macro(σ)) for each σ ∈ Σ. Moreover, we use macro(Σ) to denote a set of
macro traces corresponding to Σ.

Note that the mapping macro : E+ →M+ is not necessarily unique. Given a mapping
macro, every macro trace can be mapped to an execution trace and vice versa. For
example, for M = {m0

def= 〈e0, e2〉,m1
def= 〈e1, e2〉,m2

def= 〈e3〉,m3
def= 〈e4, e5, e6〉,m4

def=
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〈e8, e9〉,m5
def= 〈e5, e6, e7〉} and the traces σ1 and σ2 as defined below, we obtain

σ1 = 〈
tid=1︷ ︸︸ ︷

e0, e2, e3,
tid=2︷ ︸︸ ︷

e4, e5, e6,
tid=1︷ ︸︸ ︷
e8, e9〉

σ2 = 〈e1, e2︸ ︷︷ ︸
tid=1

, e5, e6, e7︸ ︷︷ ︸
tid=2

, e3, e8, e9︸ ︷︷ ︸
tid=1

〉
macro(σ1) = 〈

tid=1︷ ︸︸ ︷
m0,m2,

tid=2︷︸︸︷
m3 ,

tid=1︷︸︸︷
m4 〉

macro(σ2) = 〈 m1︸︷︷︸
tid=1

, m5︸︷︷︸
tid=2

,m2,m4︸ ︷︷ ︸
tid=1

〉 (5.1)

This transformation reduces the number of events as well as the length of the traces
while preserving the context switches which are necessary for understanding the cause of
failures in concurrent programs.

However, transforming traces to macro traces hides information about the frequency of
the original events. A mining algorithm applied to the macro traces will determine a
support of one for m3 and m5, even though the events {e5, e6} = events(m3)∩ events(m5)
have a support of 2 in the original traces. While this problem can be amended by refining
M by adding m6 = 〈e5, e6〉, m7 = 〈e4〉, and m8 = 〈e6〉, for instance, this increases the
length of the trace and the number of events, countering our original intention.

Instead, we introduce an abstraction function α : M→ A which maps macros to a set of
abstract events A according to the events they share. The abstraction guarantees that if
m1 and m2 share events, then α(m1) = α(m2).

Definition 17 (Abstract events and traces). Let R be the relation defined as R(m1,m2) def=
(events(m1) ∩ events(m2) 6= ∅) and R+ its transitive closure. We define α(mi) to
be {mj |mj ∈ M ∧ R+(mi,mj)}, and the set of abstract events A to be {α(m) |m ∈
M}. The abstraction of a macro trace macro(σ) = 〈m1,m2, . . . ,mn〉 is α(macro(σ)) =
〈α(m1), α(m2), . . . , α(mn)〉.

The concretization of an abstract trace 〈a1, a2, . . . , an〉 is the set of macro traces γ(〈a1, a2,

. . . , an〉)
def= {〈m1, . . . ,mn〉 |mi ∈ ai, 1 ≤ i ≤ n}. Therefore, we have macro(σ) ∈

γ(α(macro(σ))). Further, since for any m1,m2 ∈ M with e ∈ events(m1) and e ∈
events(m2) it holds that α(m1) = α(m2) = a with a ∈ A, it is guaranteed that
supportΣ(e) ≤ supportα(Σ)(a), where α(Σ) = {α(macro(σ)) |σ ∈ Σ}. For the exam-
ple above (5.1), we obtain α(mi) = {mi} for i ∈ {2, 4}, α(m0) = α(m1) = {m0,m1}, and
α(m3) = α(m5) = {m3,m5} (with supportα(Σ)({m3,m5}) = supportΣ(e5) = 2).

5.2.2 Mining Patterns from Abstract Traces

As we will demonstrate in Section 5.4, abstraction significantly reduces the length of
traces, thus facilitating sequential pattern mining. Since patterns mined from abstract
traces contain abstract events, in order to be used for explaining concurrency bugs they
have to be translated into the corresponding subsequences of the original traces. This
translation is done by first concretizing them into sequences of macros which we refer to
as macro patterns. The macros of each macro pattern are then concatenated to yield
patterns which are subsequences of the original traces. We argue that the resulting set of
patterns over-approximate the patterns of the corresponding original execution traces:
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Lemma 5.2.1. Let Σ be a set of execution traces, and let π = 〈e0, e1 . . . ek〉 be a
frequent pattern with supportΣ(π) = n. Then there exists a frequent pattern 〈a0, . . . , al〉
(where l ≤ k) with support at least n in α(Σ) such that for each j ∈ {0..k}, we have
∃m. ej ∈ m ∧ α(m) = aij for 0 = i0 ≤ i1 ≤ . . . ≤ ik = l.

Lemma 5.2.1 follows from the fact that each ej must be contained in some macro m and
that supportΣ(ej) ≤ supportα(Σ)(α(m)). The pattern 〈e2, e5, e6, e8, e9〉 in the example
above (5.1), for instance, corresponds to the abstract pattern 〈{m0,m1}, {m3,m5}, {m4}〉
with support 2. Note that even though the abstract pattern is significantly shorter, the
number of context switches is the same.
While our abstraction preserves the original patterns in the sense of Lemma 5.2.1, it
may introduce spurious patterns. If we apply γ to concretize the abstract pattern
from our example, we obtain four patterns 〈m0,m3,m4〉, 〈m0,m5,m4〉, 〈m1,m3,m4〉,
and 〈m1,m5,m4〉. The patterns 〈m0,m5,m4〉 and 〈m1,m3,m4〉 are spurious, as the
concatenations of their macros do not translate into valid subsequences of the traces σ1
and σ2.
Clearly, the supports of the original patterns are not preserved by abstraction. Following
from Lemma 5.2.1, we only have supportΣ(π) ≤ supportα(Σ)(〈a1, . . . , an〉) where π is a
concrete pattern that is a subsequence ofm1·. . .·mn withmi ∈ γ(ai). Since the supports of
the patterns obtained by the translation of abstract patterns are not precise, they are not
necessarily closed according to definition of closed patterns in Section 5.1.4. Therefore, we
only preserve the existence of patterns in CSΣ,min_supp by mining CSα(Σ),min_supp: for every
pattern π in CSΣ,min_supp there exists at least one macro pattern Π in γ(CSα(Σ),min_supp)
such that π v concat(Π).

5.2.3 Deriving Macros from Traces

The precision of the approximation as well as the length of the trace is inherently tied to
the choice of macros M for Σ. There is a tradeoff between precision and length: choosing
longer subsequences as macros leads to shorter traces but also more intersections between
macros.
In our algorithm, we start with macros of maximal length, splitting the traces in Σ into
subsequences at the context switches. Subsequently, we iteratively refine the resulting set
of macros by selecting the shortest macro m and splitting all macros that contain m as a
substring. In the example in Section 5.2.1, we start with M0 = {m0

def= 〈e0, e2, e3〉,m1
def=

〈e4, e5, e6〉,m2
def= 〈e8, e9〉,m3

def= 〈e1, e2〉,m4
def= 〈e5, e6, e7〉,m5

def= 〈e3, e8, e9〉}. As m2 is
contained in m5, we split m5 into m2 and m6

def= 〈e3〉 and replace it with m6. The new
macro is in turn contained in m0, which gives rise to the macro m7 = 〈e0, e2〉. At this
point, we have reached a fixed point, and the resulting set of macros corresponds to the
choice of macros in our example.
For a fixed initial state, the execution traces frequently share a prefix (representing the
initialization) and a suffix (the finalization). These are mapped to the same macro events
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1. R2(o26)− 98
2. R2(o27)− 100
3. R2(o25)− 101

4. R1(o26)− 65
5. R1(o27)− 67
6. R1(o25)− 68
7. R1(o2)− 70
8. R1(o11)− 70
9. R1(o25)− 73
10. W1(o27)− 74
11. R1(o26)− 77
12. R1(o26)− 80
13. W1(o26)− 80
14. R1(o25)− 82
15. R1(o1)− 57

16. R2(o2)− 103
17. R2(o5)− 103
18. R2(o2)− 104
19. R2(o5)− 104
20. R2(o25)− 106
21. W2(o27)− 107
22. R2(o26)− 109
. . .

Failing trace with Macros

anti-dependency

output-dep.

m0

m1

m2

m3

1. m0

2. m1

3. m2

4. m3
. . .

Macro trace

anti-dep.

output-dep.

Figure 5.3: Bug explanation with macro pattern

by our heuristic. Since these macros occur at the beginning and the end of all passing
as well as failing traces, we prune the traces accordingly and focus on the deviating
substrings of the traces.

5.3 Bug Explanation Patterns at the Level of Macros
By transforming traces into macro traces and then abstracting them, we lift the Defini-
tion 13 of bug explanation patterns to sequences of macros, accordingly. We argue that
similar to bug explanation patterns, macro patterns which are sequences of macros also
reveal the problem but at a higher level. Since context switches are preserved inside a
macro trace, a sequence of macros can expose unexpected or problematic context switches.
Figure 5.3 shows the transformation of failing trace 2 in Figure 5.1 to a sequence of
macros. The concurrency bug reflected by 〈R2(o27)− 100,W1(o27)− 74,W2(o27)− 107〉
similarly can be inferred from the sequence of macros 〈m0,m2,m3〉.

A macro pattern Π is a candidate bug explanation pattern if the following conditions are
satisfied:

1. Π contains macros of at least two different threads. The rationale for this constraint
is that we are exclusively interested in concurrency bugs.

2. For each macro in Π there is a data-dependency with at least one other macro in
Π. We lift the data-dependencies introduced in Section 5.1.2 to macros as follows:
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Two macros m1 and m2 are data-dependent iff there exist e1 ∈ events(m1) and
e2 ∈ events(m2) such that e1 and e2 are related by dep.

3. Π is more frequent in the failing dataset than in the passing dataset (determined
by the value of rel_supp).

Since there is empirical evidence that real world concurrency bugs involve only a small
number of threads, context switches, and variables [LPSZ08, MQ07], we restrict our
search to Πs with a limited number of context switches (at most 3). Accordingly, we
mine patterns of length up to 4 from abstract traces (every abstract event corresponds to
the events of one single thread). This heuristic limits the length of patterns and increases
the scalability of our analysis significantly.

Although a sequence of macros such as Π explains the bug at a high-level, in the sense
of Definition 13 there exists a bug pattern, for instance, π = 〈e1, e2, . . . , em〉 such that
π v concat(Π). For example, 〈R2(o27)− 100,W1(o27)− 74,W2(o27)− 107〉 in Figure 5.3 is
a subsequence of concat(〈m0,m2,m3〉) = m0 ·m2 ·m3.

In other words, Π provides the context in which π occurs in a failing trace. Since π does
not occur necessarily in the same context in different traces, in general there are a number
of macro patterns Π1,Π2, . . . ,Πn which contain π as a subsequence. Consequently, all
these macro patterns reflect the same problem.

5.3.1 Algorithm

Before discussing the individual steps of our bug explanation technique (Algorithm 5.2),
we provide a brief outline of the sequence mining algorithm it relies on. For mining
the closed set of patterns from the abstract traces, we apply Algorithm 5.1, a mining
algorithm similar to PrefixSpan [PHMA+01]. The algorithm is based on the Apriori
property, which states that any super-sequence of a non-frequent sequence cannot be
frequent. Therefore, the algorithm starts by finding frequent single events which are then
incrementally extended to frequent patterns. Procedure MineClosedPatterns calls the
procedure MineRecursive to recursively extend frequent patterns. In each recursive call,
procedure MineRecursive first computes all frequent events in the input dataset Σ (line 11).
In the first iteration, this dataset is equal to the input dataset of MineClosedPatterns. It
then uses these frequent events to extend pat, the last mined frequent pattern (line 13).
Since patterns are extended by adding only one frequent event e to pat, the input dataset
is shrunk by projection (line 15), which shortens the sequences by removing their prefixes
containing the first occurrence of e. This is due to the fact that these prefixes do not
contain any instances of patterns longer than the extended pattern nextPat, and they
can be safely removed from the sequences. The projected dataset newΣ is then used in
the subsequent call for growing nextPat.

The check whether a pattern is closed is done at line 14 by calling the procedure
UpdateClosed. We mine frequent patterns up to the length determined by parameter
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Algorithm 5.1 Mining closed patterns
1: procedure MineClosedPatterns(Σ,min_supp,max_pattern_len)
2: closed = {}
3: pat = {}
4: MineRecursive(pat,Σ,min_supp,max_pattern_len, closed)
5: return closed
6: end procedure

7: procedure MineRecursive(pat,Σ,min_supp,max_pattern_len, closed)
8: if |pat| ≥ max_pattern_len then
9: return

10: end if
11: Freq = {e|e ∈ events(Σ) ∧ supportΣ(e) ≥ min_supp}
12: for every e in Freq do
13: nextPat = pat+ e
14: UpdateClosed(nextPat, closed)
15: newΣ = prj(Σ)e
16: MineRecursive(nextPat, newΣ,min_supp,max_pattern_len, closed)
17: end for
18: end procedure

Algorithm 5.2 Steps of the bug explanation method
Input: ΣF ,ΣP ,min_supp
Output: bug_candidate_patterns

1: 〈α(ΣF ), α(ΣP )〉 ← AbstractTraces(ΣF ,ΣP )
2: CSα(ΣF ),min_supp ←MineClosedPatterns(α(ΣF ),min_supp, 4)
3: AbsPat← FilterPatterns_withNoContextSwitch(CSα(ΣF ),min_supp)
4: MacroPat0 ← ConcretizeAbstractPatterns(AbsPat)
5: MacroPat1 ← FilterSpuriousPatterns(MacroPat0,macro(ΣF ))
6: MacroPat2 ← FilterPatterns_withNoDataDep(MacroPat1,macro(ΣF ))
7: RelSup← ComputeRelSupp(MacroPat2,macro(ΣP ),macro(ΣF ))
8: bug_candidate_patterns← Rank_GroupPatterns(MacroPat2, RelSup)

max_pattern_len (line 8). As discussed at the beginning of this section, this parameter
is set to the heuristically chosen value of 4.

Algorithm 5.1 is applied as the second step of our method for generating bug explanation
patterns (shown in Algorithm 5.2). The mining algorithm computes the closed patterns
of length at most 4 that are frequent in the abstracted failing dataset α(ΣF ), which is
constructed in the first step.

Subsequently, we filter abstract patterns that do not contain context switches in step 3
of Algorithm 5.2 (as motivated in Section 5.3). The resulting patterns AbsPat may still
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contain spurious patterns which have no counterpart in the concrete dataset. In order
to filter spurious patterns, the abstract patterns need to be mapped to macro patterns
MacroPat0, which is done in step 4.

Steps 5 through 7 perform the filtering steps described in Section 5.3: step 5 eliminates
spurious patterns that do not occur in the original set of failing traces, step 6 eliminates
patterns whose events are not related by the dependency relation dep, as required by
Definition 13, and step 7 computes the relative support of the remaining patterns. From
these patterns, we only keep those whose rel_supp is greater than 0.5 (Definition 13).
Since there may be several patterns with the same rel_supp, at step 8, we group the
patterns according to the value of relative support and the set of data-dependencies
they contain. Therefore, patterns inside one group have the same rel_supp and set of
data-dependencies. Intuitively, they refer to the same bug. Finally, we rank these groups
of patterns according to rel_supp. Groups with maximum rel_supp are ranked highest
in the final result set and consequently inspected first by the user.

The filtering operations of steps 5 through 7 require inspection of original execution
traces. For this purpose, we can use either the concrete traces or the macro traces as a
reference. Accordingly, we have the following two options:

• Mapping macro patterns to original traces, providing the original datasets ΣF and
ΣP (instead of macro(ΣF ) and macro(ΣP )) as inputs to the procedures of steps 5-7.

• Mapping macro patterns to macro traces instead of original traces and providing
macro(ΣF ) and macro(ΣP ) as inputs to the procedures of steps 5-7.

Since macro traces are significantly shorter than the original traces, the second option
results in orders of magnitude speedup in run time. The first option, however, yields a
precise value of the (relative) supports for the macro patterns, while the second option
results in an under-approximation of the supports. This is due to the fact that by
computing only the instances (Definition 14) of a macro pattern inside a macro trace
(rather than the corresponding original trace), we exclude instances of the pattern
in which the events of one macro do not occur next to each other inside an original
trace. For example, for m0

def= 〈e1, e2, e3〉,m1
def= 〈e1, e3〉,m2

def= 〈e4, e5〉, the trace σ =
〈e1, e2, e3, e4, e5〉, and the macro pattern Π = 〈m1,m2〉, we have Π 6v macro(σ) although
(concat(Π) = 〈e1, e3, e4, e5〉) v σ. The reason is that in the instance of concat(Π) in σ
(cf. Definition 14), e1 and e3 do not occur next to each other.

In the method of [TBWW14], we used the first option in the implementation of the
method while in the method of this paper we used the second option. Therefore, we
improved performance of the method at the cost of precision of the supports of macro
patterns. Since the ratio between the support of patterns in the failing and passing
datasets is taken into account, the under-approximation of the supports does not affect
the effectiveness of the method as we will see in Section 5.4. We argue that the instances
of macro patterns we do not take into account using the modified method are insignificant
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for the purpose of bug explanation. This is because corresponding to every bug pattern π
there exists at least one macro pattern Π such that π v concat(Π). Since macro patterns
are mined from macro traces, they necessarily occur as a subsequence of at least one
macro trace. In other words, macro patterns have an instance inside at least one macro
trace. Therefore, the modified method is capable of capturing them.

Parameters of the method. For understanding the cause of a failure, the final result-
set bug_candidate_patterns needs to be inspected by the programmer. In this result
set, patterns ranked highest are inspected first. Intuitively, they are most likely to be
indicative of a bug. It must be noted that our method is not supposed to be complete,
and we use the method as part of an iterative debugging process. Therefore, as soon
as the user understands the cause of failure, he will try to remove the bug. In case the
program still contains bugs after being modified, the user will apply the method again.
In our experiments, in every case study the first pattern in bug_candidate_patterns was
indicative of the single bug in the program, hence freeing the user from the obligation to
inspect all patterns in the list or multiple applications of the method.

The bug explanation patterns are evaluated by the user. If the method does not generate
useful patterns (according to user verdict) in the first iteration, there are different
parameters which can be tuned to generate a new set of patterns. These parameters
include min_supp, max_pattern_len, ΣF and ΣP . In the experimental result section,
we analyze the effect of min_supp and traces with bounded number of context switches
on the output of method.

5.4 Experimental Evaluation
To evaluate our approach, we present nine case studies which are listed in Table 5.2
(6 of them are taken from [LC09]). The programs are C/C++ codes which belong to
three different categories: full applications, bug kernels and synthetic buggy code. The
bug kernels were extracted from Mozilla and Apache. They are 135-300 lines of code
programs which capture the essence of bugs reported in Mozilla and Apache. Synthetic
examples were created to cover a specific bug category. bzip2smp is a real multithreaded
application which uses multiple threads to speed up the compression of a file. Since
the original version taken from [bzi] does not contain a bug, we injected an atomicity
violation bug in the code.

We generate execution traces using the concurrency testing tool Inspect [YCGK07],
which systematically explores interleavings for a fixed program input. The generated
traces are then classified as failing and passing traces with respect to the violation of
a property of interest. We implemented our mining algorithm in C#. All experiments
were performed on a 2.60 GHz PC with 8 GB RAM running 64-bit Windows 7.

Our experiments were designed to answer three research questions:
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Prog. Category Name App. Version Bug Type LOC Threads

Synthetic BankAccount n/a SAV 140 3
CircularListRace n/a SAV 130 3
WrongAccessOrder n/a OV 112 3

Bug Kernel

Apache-25520(Log) Apache-2.0.48 SAV 135 4
Moz-jsClrMsgPane Mozilla MAV 290 3
Moz-jsStr Mozilla-0.9 MAV 242 3
Moz-jsInterp Mozilla-0.8 MAV 206 3
Moz-txtFrame Mozilla-0.9 MAV 230 3

Full App. bzip2smp bzip2smp 1.0 MAV 6400 3

SAV: Single-variable Atomicity Violation MAV: Multi-variable Atomicity Violation
OV: Order Violation

Table 5.2: Characteristics of the case studies

• Can our abstraction technique efficiently reduce the length of the traces, so that
mining sequential patterns becomes tractable? (Section 5.4.1)

• Do the generated bug explanation patterns accurately reveal the problematic context
switches which caused the failure in a concurrent program? (Sections 5.4.2, 5.4.3)

• To which extent does the quality of the method depend on the given datasets?
(Sections 5.4.5, 5.4.6)

5.4.1 Length Reduction by Abstraction

First, we evaluate the efficacy of our abstraction technique. In Table 5.3, for every case
study the number of traces inside the failing and passing datasets and their average lengths
are given in columns 2, 3 and 4, respectively. We use the case studies indicated by “*” to
generate long traces by increasing the size of the data structures in the corresponding
original case studies. For the traces in this table, the last column shows the average
length reduction (up to 99%) achieved by means of abstraction. For the given case
studies, the length is reduced by 91% on average.

State-of-the-art sequential pattern mining algorithms are typically applicable to sequences
of length less than 100 [YHA03, ME10]. Therefore, reduction of the original traces is
crucial. For five case studies (corresponding to rows 1,2,3,8,9,10 in Table 5.3), we used an
exhaustive set of interleavings – i.e., all execution traces Inspect was able to generate.
For WrongAccessOrder and Apache-25520(Log), we took the first 100 failing and 100
passing traces from the sets of 1427 and 32930 traces we were able to generate. For
Moz-jsClrMsgPane and Apache-25520(Log)*, failing and passing traces are chosen from
the first 820 and 702 traces generated by Inspect. For bzip2smp, we generated 220 traces
using Inspect (the first 200 of which were passing) and then chose the first 20 failing
and 20 passing traces from them. In Section 5.4.6, we study the effect of input datasets
by randomly choosing 100 failing and 100 passing traces from the set of available traces.

99



5. Abstraction and Mining of Traces to Explain Concurrency Bugs

Prog. Name |ΣF | |ΣP | Avg. Trace Len. Avg. Abst. Len. Avg. Len. Red.
BankAccount 40 5 178 13 93%
CircularListRace 64 6 187 9 95%
CircularListRace* 64 6 13,122 9 99%
WrongAccessOrder 100 100 73 19 74%
Apache-25520(Log) 100 100 115 15 87%
Apache-25520(Log)* 675 27 4,219 14 99%
Moz-jsClrMsgPane 775 45 7,144 15 99%
Moz-jsStr 70 66 407 18 95%
Moz-jsInterp 610 251 433 89 79%
Moz-txtFrame 99 91 409 57 86%
bzip2smp 20 20 12,997 13 99%

Table 5.3: Length reduction results by abstracting the traces

5.4.2 Effectiveness of the Method

In this section, we report quantitatively on the number of the final patterns generated
by the method (in the worst case the user has to inspect all of them). We also discuss
the effectiveness of the mined patterns in understanding concurrency bugs. The results
of mining bug explanation patterns for the given programs and traces are provided in
Figure 5.4. The number of the generated patterns depends on the given value of the
minimum support threshold (Section 5.1.4). Since lower thresholds yield more patterns,
in the experiments we start from the maximum value of 100% and decrease it only if it is
not sufficient for generating at least one useful pattern which accurately reveals the cause
of the failure. The horizontal axis labeled min_supp in Figure 5.4 shows the support
threshold values used in the experiments. For all case studies except Moz-txtFrame,
the maximum value of 100% is sufficient to obtain at least one useful pattern. For
Moz-txtFrame, we had to gradually decrease the threshold to 90% to find at least one
explanation.

The vertical axis shows the number of patterns (on a logarithmic scale) generated after
different steps of Algorithm 5.2. For every case study, for the given value of min_supp,
three columns from left to right, respectively, show the number of resulting abstract
patterns (step 2), the number of feasible or non-spurious patterns (step 5) and the number
of patterns remaining after removing patterns which do not satisfy the data-dependency
constraints (step 6). The fourth column from left shows the number of patterns with
maximum relative support of 1 (which only occur in the failing dataset). Although step
7 of the algorithm computes the patterns whose rel_supp is greater than 0.5 (which only
frequent in the failing dataset), since for most case studies the algorithm produced several
patterns with rel_supp = 1, only the number of these patterns are reported in Figure 5.4.
The rightmost column for every case study in Figure 5.4 shows the number of groups that
these patterns can be divided into according to the set of data-dependencies they contain.
Since there are several of these groups, we sort them in descending order according to
the number of data-dependencies. Therefore, in the final result set a group of patterns
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Figure 5.4: Mining results

with the highest value of relative support and maximum number of data-dependencies
appears at the top.

The patterns at the top of the list in the final result are inspected first by the user in
order to understand a bug. For the case study WrongAccessOrder since #Data-Dep
#Rank 1 and #Groups are all 1, the corresponding columns in Figure 5.4 are not drawn
due to the log scale of vertical axis. As the last column in Figure 5.4 shows, the resulting
number of the groups for most case studies is less than 10. (The relatively large number
of final groups for bzip2smp case study can be an effect of choosing a relatively small set
of input traces.)

Mining of abstract patterns (step 2) takes around 87ms on average. With an average
runtime of 27s, the post-processing after mining (step 3-8) is the computationally most
expensive step, but is very effective in eliminating irrelevant patterns.

We verified manually that all groups with the relative support of 1 (Figure 5.4) are an
adequate explanation of at least one concurrency bug in the corresponding program. In
the following, we explain for each case study how the inspection of only a single pattern
from these groups can expose the bug. These patterns are given in Figure 5.5. For each

101



5. Abstraction and Mining of Traces to Explain Concurrency Bugs

case study, the given pattern belongs to a group of patterns which appeared at the top
of the list in the final result set, hence inspected first by the user. In this figure, we only
show the ids of the events and the data-dependencies relevant for understanding the bugs.
Macros are separated by extra spaces between the corresponding events. It must be
noted that the events inside a macro occur consecutively inside the traces while between
the macros there can be a context switch. As we will explain in the following, from
the data-dependencies between the macros we can infer problematic context switches
between the threads.

According to the commonly used classification, we have 3 different types of concurrency
bugs in our case studies, namely single- and multi-variable atomicity violations, and
order violations.

53 54 55 53 54 56 57 58 59 60      42 43 44 45 46 30     

R2-W1 balance 

34 35 36 37 72 41      61 62 63 64 65 77 78 66 67 68     
R1-W2 balance 
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Moz-txtFrame 
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WrongAccessOrder 
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R2-W1 accountLoadFlag 
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Figure 5.5: Bug explanation patterns—case studies

Single-variable Atomicity Violation

Bank Account. The update of the shared variable balance in Figure 5.1 in Section 5.1.3
involves a read as well as a write access that are not located in the same critical region.
Accordingly, a context switch may result in writing a stale value of balance. In Figure 5.5,
we provide two patterns for BankAccount, each of which contains two macro events.
Figure 5.6 shows these patterns by mapping the ids to the corresponding read/write
events. From the anti-dependency (R2 −W1 balance) in the left pattern, we infer an
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1. R2(o1)− 91
2. R2(o2)− 93
3. R2(o4)− 93
4. R2(o1)− 91
5. R2(o2)− 93
6. R2(o6)− 93
7. R2(o25)− 96
8. R2(o26)− 98
9. R2(o27)− 100
10. R2(o25)− 101

11. W1(o27)− 74
12. R1(o26)− 77
13. R1(o26)− 80
14. W1(o26)− 80
15. R1(o25)− 82
16. R1(o1)− 57

R−W(balance)

1. R1(o26)− 65
2. R1(o27)− 67
3. R1(o25)− 68
4. R1(o2)− 70
5. R1(o11)− 70
6. R1(o25)− 73

7. R2(o2)− 103
8. R2(o5)− 103
9. R2(o25)− 106
10. W2(o27)− 107
11. R2(o26)− 109
12. R2(o28)− 110
13. W2(o28)− 110
14. R2(o26)− 112
15. W2(o26)− 112
16. R2(o25)− 114

R−W(balance)

Figure 5.6: Expansion of bug explanation patterns—bank account

Thread 2 (withdraw) Thread 1 (deposit)
. . .

bal = balance;100:
pthread_mutex_unlock(balance_lock);101:

balance = bal;74:
. . .

pthread_mutex_unlock(balance_lock);82:
. . .

R2 −W1

Figure 5.7: Mapping of bug pattern to source code

atomicity violation in the code executed by thread 2, since a context switch occurs after
R2(balance), consequently it is not followed by the corresponding W2(balance). Similarly,
from the anti-dependency R1 −W2 balance in the right pattern we infer the same problem
in the code executed by the thread 1. Since the events of these patterns include the
location in the source code, we can easily map them back to the corresponding lines of
source code. Figure 5.7 shows part of the mapping of the left pattern to the source code.
Patterns are visualized in this way and given to the user for inspection.

Circular List Race, Circular List Race*. This program removes elements from
the end of a list and adds them to the beginning using the methods getFromTail and
addAtHead, respectively. The update is expected to be atomic, but since the calls
are not located in the same critical region, two simultaneous updates can result in an
incorrectly ordered list if a context switch occurs. The first and the second macros of
the pattern in Figure 5.5 correspond to the events issued by the execution of methods
getFromTail by thread 2 and addAtHead by thread 1, respectively. Figure 5.8 shows the
pattern by mapping the ids to the corresponding read/write events. From the given
data-dependencies it can be inferred that these two calls occur consecutively during the
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1. R2(o10)− 65
2. R2(o11)− 67
3. R2(o8)− 31
4. R2(o7)− 34
5. R2(o4)− 34
6. R2(o8)− 36
7. R2(o8)− 36
8. W2(o8)− 36
9. W2(o8)− 36
10. R2(o7)− 38
11. W2(o7)− 38
12. R2(o10)− 71

13. R1(o11)− 81
14. R1(o11)− 84
15. W1(o11)− 84
16. R1(o7)− 45
17. W1(o7)− 45
18. R1(o8)− 47
19. W1(o8)− 47
. . .
28. R1(o3)− 50
29. W1(o4)− 50
30. R1(o7)− 49
31. R1(o6)− 52
32. W1(o1)− 52
33. R1(o10)− 88

CircularListRace

R−W (list[list− tail])

W− R (list− len)

W− R (list− tail)

1. W0(o3)− 106
2. R1(o3)− 54
3. R1(o7)− 56
4. W1(o7)− 56

WrongAccessOrder

W− R (fifo)

1. R1(o5)− 44
2. R1(o3)− 47
3. R1(o2)− 47
4. R1(o3)− 48
5. R1(o3)− 52
6. W1(o2)− 52
7. R1(o4)− 54
8. R1(o4)− 56

9. R2(o5)− 44
10. R2(o3)− 47
11. R2(o2)− 47
12. R2(o3)− 48
13. R2(o3)− 52
14. W2(o2)− 52
15. R2(o4)− 54

16. R2(o5)− 58
17. R2(o5)− 61
18. W2(o5)− 61
19. R2(o3)− 65
20. W2(o3)− 65
21. R2(o4)− 67

Apache-25520(Log)

R−W (log− end)

W− R (log)

Figure 5.8: Expansion of bug explanation patterns—cont.

program execution, thus revealing the atomicity violation. This is due to the fact that
the call of getFromTail by thread 2 should be followed by the call of addAtHead from the
same thread.

Apache-25520(Log), Apache-25520(Log)*. In this bug kernel, Apache modifies a
data-structure log by appending an element and subsequently updating a pointer to the
log. Since these two actions are not protected by a lock, the log can be corrupted if a
context switch occurs. The first macro of the pattern in Figure 5.5 (Figure 5.8) reflects
thread 1 appending an element to log. The second and third macros correspond to thread
2 appending an element and updating the pointer, respectively. The dependencies imply
that the modification by thread 1 is not followed by the corresponding update of the
pointer.

Order Violation

Wrong Access Order. In this program, the main thread spawns two threads, consumer
and output, but it only joins output. After joining output, the main thread frees the
shared data-structure which may be accessed by consumer which has not exited yet. The
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1. R1(o93)− 24
2. R1(o94)− 25
3. W1(o94)− 25
4. R1(o2)− 26
5. R1(o2)− 23

6. R1(o93)− 24
7. R1(o95)− 25
8. W1(o95)− 25
9. R1(o2)− 26
10. R1(o2)− 28

11. R2(o1)− 178
12. R2(o2)− 153
13. R2(o93)− 156
14. W2(o93)− 156
15. R2(o95)− 159
16. R2(o96)− 160
17. R2(o96)− 161
18. R2(o97)− 162
19. R2(o96)− 162
20. R2(o96)− 162
21. R2(o2)− 171

22. R1(o93)− 29
23. R1(o98)− 29
24. W1(o98)− 29
25. R1(o96)− 30
26. W1(o96)− 30
27. R1(o97)− 31
28. W1(o97)− 31
29. R1(o2)− 32
30. R1(o99)− 186
31. W1(o99)− 189
32. W1(o100)− 204
. . .
68. W1(o136)− 204
69. W1(o137)− 122
70. W1(o138)− 123
71. R1(o1)− 124
72. R1(o2)− 23

Moz-jsStr

W− R (totalStrings)

R−W (lengthSum)

1. R1(o433)− 5905
2. R1(o433)− 5910
3. R1(o12)− 5910
4. W1(o20)− 5910
5. R1(o434)− 5911

6. R0(o434)− 6381
7. W0(o434)− 6381

8. R1(o434)− 5915
9. R1(o435)− 5916
10. W1(o435)− 5916
11. R1(o433)− 5918
12. W1(o433)− 5918
13. R1(o433)− 5920
14. R1(o10)− 5920
. . .

bzip2smp

R
−

W
(inChunksTail)

R−W (auxVar)

1. R2(o264)− 91
2. R2(o265)− 108
3. R2(o267)− 109
4. R2(o1)− 110
5. R2(o300)− 115
6. R2(o197)− 116
7. R2(o198)− 116
8. R2(o301)− 119
9. W2(o301)− 119
10. R2(o300)− 122

11. R1(o301)− 206
12. R1(o302)− 207
13. W1(o302)− 207
14. R1(o197)− 212
15. W1(o198)− 212
16. R1(o300)− 213

Moz-jsClrMsgPane

R−W (accountLoadFlag)

Figure 5.9: Expansion of bug explanation patterns—cont.

flow-dependency between the two macros of the pattern in Figure 5.5 (Figure 5.8) implies
the wrong order in accessing the shared data-structure.

Multi-variable Atomicity Violation

Moz-jsStr. In this bug kernel, the cumulative length and the total number of strings
stored in a shared cache data-structure are stored in two variables named lengthSum and
totalStrings. These variables are updated non-atomically, resulting in an inconsistency.
The pattern and the data-dependencies in Figure 5.5 (Figure 5.9) reveal this atomicity
violation: the values of totalStrings and lengthSum read by thread 2 are inconsistent due
to a context switch that occurs between the updates of these two variables by thread 1.
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1. W1(o15)− 108
2. W1(o16)− 109
3. R1(o8)− 112

4. R2(o1)− 74
5. R2(o2)− 74
6. R2(o3)− 75

7. W2(o3)− 80
8. R2(o8)− 81
9. W2(o8)− 81

10. R1(o8)− 123
11. R1(o200)− 124
12. W1(o200)− 124
13. W1(o3)− 128
14. R1(o4)− 131
15. W1(o4)− 131

Moz-jsInterp

R−W (flush− num)

W−W (occup.− flag)

R−W (occup.− flag)

1. W1(o132)− 68
2. W1(o133)− 69
3. R1(o132)− 118

4. W2(o131)− 177
5. R2(o137)− 178
6. W2(o132)− 183
7. W2(o133)− 184
8. R2(o136)− 187
9. W2(o136)− 187

10. R1(o133)− 123
11. R1(o136)− 126

Moz-txtFrame

R−W (mContentOffset)

W− R (mContentLength)

Figure 5.10: Expansion of bug explanation patterns—cont.

Moz-jsInterp. This bug kernel contains a non-atomic update to a shared data-structure
Cache and a corresponding occupancy flag, resulting in an inconsistency between these
objects. The first and last macro-events of the pattern in Figure 5.5 (Figure 5.10)
correspond to populating Cache and updating the occupancy flag by thread 1, respectively.
The other two macros show the flush of Cache content and the resetting of occupancy
flag by thread 2. The given data-dependencies suggest the two actions of thread 1 are
interrupted by thread 2 which reads an inconsistent flag.

Moz-txtFrame. The pattern and data-dependencies of this case study in Figure 5.5
(Figure 5.10) reflect a non-atomic update to the two fields mContentOffset and mCon-
tentLength, which causes the values of these fields to be inconsistent: the values of these
variables read by thread 1 in the second and forth macros are inconsistent due to the
updates done by thread 2 in the third macro.

Moz-jsClrMsgPane. In this bug kernel, there is a flag named accountLoadFlag which is
set to true when the content of the data-structure account is loaded in to the corresponding
window frame. Since the second macro of the given pattern for this case study in Figure 5.5
(Figure 5.9) contains only the update of accountLoadFlag, it can be inferred that the
update of the flag and loading of account are not done atomically which results in an
inconsistency between these two variables.

bzip2smp. In this multithreaded application, updates of the buffer inChunks and its
pointer inChunksTail are not done in the same critical section. Therefore, occurrence of a
context switch between these two updates results in an inconsistency between the buffer
and pointer. The bug pattern of this application in Figure 5.5 (Figure 5.9) reflects the
occurrence of a context switch between the updates of the buffer (first macro) and the
pointer (third macro).
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5.4.3 User Case Study Evaluation

To evaluate the effectiveness of bug explanation patterns in facilitating debugging con-
current programs, we ran a user case study with a group of undergraduate computer
science students at Vienna University of Technology (TU Wien). We had two groups
containing 16 students each. We gave one group the bug explanation patterns of three
case studies namely WrongAccessOrder, Moz-jsInterp and Moz-jsStr. We used the other
one as the control group given only the source codes of the case studies. We refer to the
former as “M” (for mining) and latter as “S” (for source code). We asked the students
to find the corresponding concurrency bugs either by reading the source code (group
“S”) or by inspecting given patterns (group “M”). For WrongAccessOrder, Moz-jsInterp,
the violated assertions were specified in the source code and for Moz-jsStr a failing
test case was given in addition to source code. Table 5.4 summarizes the results. This
table for every programming task shows the number of the students in each group which
were able to find the concurrency bugs correctly (columns 2, 3) and the amount of time
on average that they spent on each task (columns 4, 5). As we can see, students in
the group “M” by using the bug patterns were on average 5 minutes faster in finding
the bugs. However, for two tasks, a larger number of students in group “S” were able
to locate the bug correctly. We attribute this to the fact that the students of group
“S” had more programming experiences according to their self-reported programming
experience level. In order to verify this conjecture, we divided the students of each
group into three subgroups of novice, average, and expert programmers according to
their self-reported level of programming experience. Since the majority of the students
were average programmers (11 in group “M” and 9 in group “S”), we only compared the
performance of the average subgroups. These programmers performed better in group
“M”. On average 74% and 72% of them correctly found the bugs in groups “M” and “S”,
respectively. However, the average subgroup of “M” by spending 41 minutes on average
were around 11 minutes faster than similar subgroup in “S”. According to the feedback
of the average programmers in group “M”, the given patterns were helpful in finding the
bugs. They found the given tasks at the medium level of difficulty.

Prog. Name #Correct Ans. Avg. Time (min.)
M S M S

WrongAccessOrder 9 8 13 19.5
Moz-jsInterp 10 13 15 18
Moz-jsStr 10 13 9 14
Total Avg. 9.7 11.3 12 17

M: Mining group S: Source code group

Table 5.4: User case study results
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5.4.4 Comparison with our Previous Method in [TBWW14]

As discussed in Section 5.3.1, using macro(ΣF ) and macro(ΣP ) instead of original datasets
may result in pattern loss at step 5 and an under-approximation of supports at step 7 of
Algorithm 5.2. The diagrams in Figure 5.11 show a comparison of the difference between
the number of patterns generated at steps 5-8 of Algorithm 5.2 by method of this chapter
(current) and our method presented in [TBWW14] (previous). We observed only a slight
change between the outputs of the two methods in every step. In particular, the number
of groups of patterns (step 8) is quite similar for all case studies.
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Figure 5.11: Comparison between current and previous methods

Considering the effectiveness of the patterns computed by the current method (as we
discussed in the previous section), we came to the conclusion that the slight change in
the number of patterns has not affected the quality of the final result-set or effectiveness
of the current method. Moreover, our modification of the algorithm resulted in a speed
up in running time as Table 5.5 shows. We use “–” to denote that post-processing step
did not finish within 24 hours.

5.4.5 Datasets with Context-switch bounded Traces

In this section, we study the effect of ΣF and ΣP on the output of the method. As we
have seen in Section 5.4.1, the datasets of some of our case studies do not contain all the
executions that can be generated by Inspect. In this and next section, we show that the
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Program Mining abst. patt. time Post-processing time
Previous Current

BankAccount 30 ms 141 ms 38 ms
CircularListRace 26 ms 2269 ms 45 ms
CircularListRace* 28 ms – 333 ms
WrongAccessOrder 32 ms 72 ms 40 ms
Apache-25520(Log) 55 ms 1207 ms 240 ms
Apache-25520(Log)* 117 ms 5745 ms 491 ms
Moz-jsClrMsgPane 70 ms – 941 ms
Moz-jsStr 29 ms 86.573 s 163 ms
Moz-jsInterp 257 ms 1612.785 s 3200 ms
Moz-txtFrame 266 ms 29.929 s 6058 ms
bzip2smp 46 ms – 280.595 s
Average 87 ms – 27 s

Table 5.5: Efficiency of the previous and current method

Program #context-switch original context-switch bound
max bound |ΣF | |ΣP | |ΣF | |ΣP |

BankAccount 4 3,2 40 5 19,5 5,5
CircularListRace 7 6,5,4,3 64 6 62,56,38,20 6,6,6,6
WrongAccessOrder 11 6,5,4 100 100 11,5,1 49,18,7
Apache-25520(Log) 10 5,4,3 100 100 33,10,2 63,36,13
Moz-jsClrMsgPane 8 6,5,4,3 775 45 516,278,102,27 45,45,45,19
Moz-jsStr 5 4,3 70 66 15,5 30,12
Moz-jsInterp 4 3,2 610 251 59,20 61,22
Moz-txtFrame 5 4,3 99 91 18,6 36,14

Table 5.6: Datasets with context switch bounded traces

method does not rely on an exhaustive enumeration of failing and passing interleavings
in order to compute patterns which are indicative of bugs. By bounding the number
of context switches inside the traces, we generate different passing and failing datasets.
The number of traces in these datasets for each case study is given in Table 5.6. In this
table, we can see how the size of ΣF and ΣP is reduced by bounding the number of
context switches using different bounds. For comparison, in Table 5.6 the size of datasets
generated without a bound on the number of context switches (column 3 with the header
“original”) is also given. The maximum number of context switches in these datasets is
also given in column 2 with the header named max. They are the same as the datasets in
Table 5.3 and were used in the experiments of Section 5.4.2. The diagrams in Figure 5.12
show the effect of datasets containing context switch bounded traces on the number of
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patterns generated at different steps of Algorithm 5.2. Although datasets with lower
bounds contain fewer traces, in most case studies there is only a small change in the
number of the generated patterns. Especially the last two bars from the right (#Rank 1
and #Groups) corresponding to the number of patterns with relative support of 1 and
the number of groups of these patterns in most diagrams are very similar.
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Figure 5.12: Mining results—context-switch bounded traces

In Figure 5.13, for every input dataset of Table 5.6 the patterns appeared at the top
of the final result-sets are given. As we can see, corresponding to every case study the
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patterns of different input datasets are similar in terms of the macros and the data-
dependencies they contain. Consequently, all refer to the same concurrency bug. Due to
the similarity between the patterns in Figure 5.13 and Figure 5.5, the explanations given
in Section 5.4.2 for understanding bugs from patterns of Figure 5.5 are also applicable
to the patterns of Figure 5.13. Only the pattern given for Apache-25520(Log) with
bound = 3 is slightly different from other patterns of this case study, but reveals the
same concurrency bug. In this pattern, the data-dependency between the events of the
first macro reflects thread 1 appending an element to log. However, the data-dependency
between first and second macros implies that the modification by thread 1 is not followed
by a corresponding update of the log pointer, revealing an atomicity violation in accessing
the log data-structure.

The experiments of this section show that even for input datasets containing a small
number of traces (such as datasets with bound = 2 in BankAccount or bound = 3 in
Apache-25520(Log)) the method is capable of generating useful bug explanation patterns.

5.4.6 Datasets with Randomly-chosen Traces

In Section 5.4.2, the failing and passing datasets for the two case studiesWrongAccessOrder
and Apache-25520(Log) contained the first 100 failing and 100 passing traces out of 1427
and 32930 traces available. In this section, we evaluate our method on the datasets
generated by randomly choosing 100 failing and 100 passing traces. For each of these two
case studies, we repeated the experiments 5 times, each time with different randomly
generated failing and passing datasets. The results of applying Algorithm 5.2 on these
datasets are given in Figure 5.14. As the diagrams show, we have a slight variation in
the results of the algorithm for different random input datasets.

Figure 5.15 shows for both case studies the patterns ranked top in the final result-sets
of the 5 different random datasets. The patterns are similar, hence revealing the same
concurrency bug. The patterns for Apache-25520(Log) are similar to the pattern of the
case study with bound = 3 in Figure 5.13. For WrongAccessOrder, the given patterns are
similar to patterns of the case study in both Figures 5.13 and 5.5.

5.4.7 Threats to Validity

There is a limitation to the evaluation of our method. Although most of our case studies
were used in other work, we have not applied our method to full large applications such
as Mozilla and Apache. Since logging the traces and applying the abstraction offline may
be impractical for these large applications, we plan to apply our abstraction technique
online as the traces are being generated in future work.

5.5 Related Work
Given the ubiquity of multithreaded software, there is a vast amount of work on finding
concurrency bugs. A comprehensive study of concurrency bugs [LPSZ08] identifies
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(4,3) 

CircularListRace 
(7,6,5,4,3) 

Apache-25520(Log) 
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W1-R2 log 

16          9 17 18 
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WrongAccessOrder 
(11,6,5,4) 

W2-R1 list-tail 
R2-W1 list[list-tail] 
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(4) 

(3) 

Figure 5.13: Bug explanation patterns—context-switch bounded traces (numbers in
parenthesis shows the corresponding bounds used in generating the input datasets).

data races, atomicity violations, and ordering violations as the prevalent categories of
non-deadlock concurrency bugs. Accordingly, most bug detection tools are tailored
to identify concurrency bugs in one of these categories (See Chapter 2, Section 2.2).
Avio [LTQZ06] detects single-variable atomicity violations by learning acceptable memory
access patterns from a sequence of passing training executions, and then monitoring
whether these patterns are violated. Svd [XBH05] is a tool that relies on heuristics
to approximate atomic regions and uses deterministic replay to detect serializability
violations. Lockset analysis [SBN+97a] and happens-before analysis [NM91b] are popular
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Figure 5.14: Mining results—randomly chosen traces

Apache-25520(Log) 
(Rand:  1, 2, 4, 5) 6 7 8 9 10 11 12 13      24 25 26 27 28 29 30 

R1-W2 log-end 

R1-W1 log 

6 7 8 9 10 11 12 13      35 38 39 40 43 44 42 
R1-W2 log-end 
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WrongAccessOrder 
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Figure 5.15: Bug explanation patterns—randomly chosen traces

approaches focusing only on data race detection. In contrast to these approaches, which
rely on specific characteristics of concurrency bugs and lack generality, our bug patterns
can reveal any type of concurrency bugs. The algorithms in [WS06] for atomicity
violations detection rely on input from the user in order to determine atomic fragments
of executions. Detection of atomic-set serializability violations by the dynamic analysis
method in [HDVT08] depends on a set of given problematic data access templates. Unlike
these approaches, our algorithm does not rely on any given templates or annotations.
Bugaboo [LC09] constructs bounded-size context-aware communication graphs during
an execution, which encode access ordering information including the context in which
the accesses occurred. Bugaboo then ranks the recorded access patterns according to
their frequency. Unlike our approach, which analyzes entire execution traces (at the cost
of having to store and process them in full), context-aware communication graphs may
miss bug patterns if the relevant ordering information is not encoded. Falcon [PVH10]
and the follow-up work Unicorn [PVH12] can detect single- and multi-variable atomicity
violations as well as order violations by monitoring pairs of memory accesses, which are
then combined into problematic patterns. The suspiciousness of a pattern is computed
by comparing the number of times the pattern appears in a set of failing traces and in a
set of passing traces. Unicorn produces patterns based on pattern templates, while our
approach does not rely on such templates. In addition, Unicorn restricts these patterns
to windows of some specific length, which results in a local view of the traces. In contrast
to Unicorn, we abstract the execution traces without losing information.

Methods of Chapters 3 and 4 have used pattern mining to explain concurrent counterex-
amples obtained by explicit-state model checking. In contrast to the method of this
chapter, method of Chapter 3 mines frequent substrings instead of subsequences and
method of Chapter 4 suggests a heuristic to partition the traces into shorter sub-traces.
Unlike our abstraction-based technique, both of these approaches may result in the
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loss of bug explanation sequences. Moreover, both methods are based on contrasting
the frequent patterns of the failing and the passing datasets rather than ranking them
according to their relative frequency. Therefore, their accuracy is contingent on the
values for the two support thresholds of the failing as well as the passing datasets.

Statistical debugging techniques which are based on comparison of the characteristics of
a number of failing and passing traces are broadly used for localizing faults in sequential
program code. For example, a recent work [RFZO12] statically ranks the differences
between a few number of similar failing and passing traces, producing a ranked list of
facts which are strongly correlated with the failure. It then systematically generates
more runs that can either further confirm or refute the relevance of a fact. In contrast
to this approach, our goal is to identify problematic sequences of interleaving actions in
concurrent systems.

Due to nondeterminism, cyclic debugging which is the most common methodology
used for debugging sequential software can be ineffective for debugging concurrent
programs [LMC87]. In cyclic debugging, when the programmer observes a failure,
he postulates a set of underlying causes for the failure and accordingly inserts trace
statements and breakpoints in the program code and reexecutes it. This methodology
cannot be applied for debugging concurrent programs because successive executions of
these programs do not necessarily produce the same results. Therefore, a number of
techniques such as [LMC87] proposed for reproducing the execution behavior of concurrent
programs. However, using the techniques such as [LMC87] only the execution behavior
of a concurrent program can be reproduced for further analysis. The task of isolating
and understanding the cause of failure still need to be done manually by the programmer.
Our method differs from these methods as its goal is isolating the causes of failures
automatically, hence, facilitating the task of debugging.

5.6 Summary
In this chapter, we introduced the notion of bug explanation patterns based on well-known
ideas from concurrency theory, and argued their adequacy for understanding concurrency
bugs. We explained how sequential pattern mining algorithms can be adapted to extract
such patterns from logged execution traces. By applying a novel abstraction technique,
we reduce the length of these traces to an extent that pattern mining becomes feasible.
Our case studies demonstrate the effectiveness of our method for a number of synthetic
as well as real world bugs.

5.7 Comparing the Proposed Mining Approaches:
Chapters 3–5

To address the scalability issues in applying standard sequential pattern mining algo-
rithms for explaining concurrency bugs, we proposed three approximation techniques in
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Chapters 3–5. The substring and subtrace mining methods of Chapters 3 and 4 have been
developed by exploiting the characteristics of the traces in messages passing concurrent
systems. Since substrings of some specific length ` can be extracted from a dataset Σ
containing m sequences of maximum length n in worst case in O(mn), the substring
mining method runs in polynomial time. In practice, we have shown that the average
running time of the method is 52.44 sec. for datasets with 16697 average sequence length,
134629 maximum sequence length and 9028 average number of sequences (Section 3.3).
In substring mining method, we abandon the feature of arbitrary distance between the
events of a subsequence which we consider it essential for understanding problematic
context switches. Therefore, the extracted substrings can’t reveal explanatory sequences
as defined in Section 3.1.2, but only portions of these sequences. However, we have
shown the effectiveness of these small portions in facilitating the search for explanatory
sequences by computing a quantitative score (Table 3.2).

We improved our bug explanation technique in Chapter 4 by proposing a method for
extracting sequences of events which do not necessarily occur contiguously inside traces.
In other words, the method of Chapter 4 mines subsequences from traces as opposed to
substring mining method of Chapter 3. In order to make the subsequence mining problem
more tractable, the approximation technique of Chapter 4 reduces the length of the traces
by partitioning them into subtraces. In practice, we have shown that the partitioning
technique can reduce the length of the traces on the average by 96.5% resulting into
subtraces with average length of 24. However, the partitioning technique exploits the
characteristics of traces of non-terminating communication protocols. Therefore, the
applicability of subtrace mining method is limited to traces which can be partitioned
into subtraces with minimum dependencies across the subtraces. The dependency across
the subtraces refer to, for instance, data dependencies between the events in different
subtraces or the dependency between a send event and its corresponding receive event.
Moreover, since subtraces provide a local view of the traces, as we discussed of “Threats
to Validity” in Section 4.2.2, there may exist concurrency bugs for which the method
fails to provide an explanation.

The abstraction method of this chapter (Chapter 5) addresses the main shortcomings of
the two previous methods. In contrast to substring mining method of Chapter 3, it mines
explanatory sequences which can occur as subsequences of traces. To improve scalability,
it reduces the length and the number of distinct events in traces by using an abstraction
technique. Abstract traces as opposed to subtraces preserve the ordering information
between all the events of original traces including the context switches between the
threads. We have shown in practice that the length of the traces is reduced on average by
91% using the abstraction technique. Therefore, the pattern mining from the traces up
to 13,000 events took only 87ms on average. Moreover, we proved that the abstraction
preserves the original patterns. However, it may introduce spurious patterns which can
be filtered efficiently after mining abstract patterns. Although our abstraction technique
has been shown to be efficient in reducing the length of the traces and making the pattern
mining problem tractable, it relies on the availability of a dataset of logged traces which
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can make it impractical for large applications such as Mozilla or Apache.
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CHAPTER 6
Explaining Concurrency Bugs
using Interpolant-based Slicing

In Chapters 3-5, we proposed anomaly detection techniques based on mining datasets of
concurrent traces for explaining concurrency bugs. In this chapter, we propose a different
approach for concurrency bug explanation. This approach performs slicing of a single
failing concurrent trace using a proof-based technique. In Chapter 5, we have shown
the efficiency and effectiveness of the abstraction based mining method in explaining
concurrency bugs. However, this method relies on the availability of a dataset of logged
traces. The quality of the output of the method can also be dependent on the given
failing and passing datasets even though the experimental results in Section 5.4 show
zero false positives for the given case studies.

The underlying principles of the interpolation-based slicing method of this chapter allows
us to provide a soundness proof for the method. Moreover, for constructing slices the
method analyzes only one single failing trace.

As we have seen in Chapter 2, dynamic slicing techniques [Tip95] were introduced to
effectively narrow down the search for the root cause of the failure in a failing trace
by automatically removing irrelevant statements from the trace. In these techniques,
data and control dependencies are taken into account in order to remove the statements
which do not impact the failing state via any chain of dependencies. However, the main
limitation of the dynamic slicing techniques is that they do not consider the semantics
of a failure, which can result in irrelevant statements being retained in the slice. For
example, in the failing trace given in Figure 6.1, statement 2 is irrelevant to the assertion
violation. However, dynamic slicing which considers dependencies at the syntactic level
cannot exclude this statement. Recent work [ESW12, CESW13, MSTC14] showed how
interpolation can be used to construct semantics-aware slices in sequential software.
Here, a failing trace is translated into an unsatisfiable logical formula. From a proof of
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1 x := 3;
2 y := 5;
3 z1 := y + x;
4 z2 := y− x;
5 assert(z2 > z1);

{true}
{x = 3}
{x = 3}
{z1 = y + 3,x = 3}
{z1 = z2 + 6}
{false}

Figure 6.1: A trace annotated with interpolants explaining the cause of an assertion
violation. [MSTC14]

unsatisfiability interpolants are extracted that capture the reason why the trace failed.
These interpolants are then used to construct a slice of the failing trace that abstracts
from the irrelevant statements and explains the faulty behavior. This approach produces
a slice of the original trace annotated with assertions (the obtained interpolants) showing
the relevant values and variables to the failure. The bold statements in Figure 6.1
constitute a sample slice with assertions produced by this interpolation-based slicing
technique. Notice that the outcome of assertion at line 5 is semantically independent of
y, so the statement at line 2 can be sliced.

In this chapter, we lift the existing interpolation-based slicing techniques to a concurrency
setting. To this end, we take into account control- and data-dependency between threads
in addition to intra-thread dependencies. We stress that considering inter-thread data-
dependencies allows us to isolate hazards such as race conditions and atomicity violations,
which constitute the predominant class of non-deadlock concurrency bugs [LPSZ08].
Therefore, the approach of this chapter do not rely on characteristics specific to each
type of concurrency bug, hence providing a general framework for concurrency bug
explanation.

We have implemented our approach in an automated debugging tool and applied it
to failing traces generated from concurrent C programs using the directed testing tool
ConCrest [FHRV13]. We present two detailed case studies that demonstrate the
effectiveness of hazard-aware interpolation for explaining common types of concurrency
bugs. Moreover, we report on an evaluation of our approach on a benchmark suite taken
from the literature that contain bugs found in real-world software such as Apache, MySQL,
and GCC [KKW15]. We observed that our new analysis yields precise explanations of
concurrency bugs. Often these explanations are as concise as the explanations that a
human would generate manually. We further found that, on average, our generated slices
yield a significant reduction of the number of variables and the length of the considered
traces.

6.1 Preliminaries
In this section, we formalize concurrent executions, traces, and symbolic traces. We
introduce the notion of interpolant and explain how it is used for slicing traces of
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sequential software.

6.1.1 Concurrent Programs

Similar to the method of Chapter 5, we consider shared-memory concurrent programs
composed of k threads with indices {1, . . . , k} and a finite set G of shared variables.
(This paragraph and the following can be skipped since they are similar to the content
of Section 5.1.1.) Each thread Ti where 1 ≤ i ≤ k has a finite set of local variables
Li. The set of all variables is then defined by V def= G ∪

⋃
i Li, where 1 ≤ i ≤ k. Each

thread is represented by a control flow automaton (CFA) 〈LT , ET , λT , L0T 〉, where LT
and ET are sets of nodes and edges, respectively, L0T the initial node, and λT is a
labeling function linking edges to atomic instructions. The set of nodes LT corresponds
to program locations of the thread, and the set of edges ET defines the flow of control. We
use guarded statements to represent atomic instructions. Let Vi = G∪Li (for 1 ≤ i ≤ k)
denote the set of variables accessible in thread Ti. An atomic instruction from thread
Ti is either a guarded statement assume(ϕ) . τ or an assertion assert(ϕ) where ϕ is a
predicate over Vi and τ is an assignment of the form v := φ (where v ∈ Vi and φ is an
expression over Vi). The predicate ϕ must be true for the assignment τ to be enabled.
It must be also true when assert(ϕ) is executed, otherwise a failure occurs.

The guarded statement has the following three variants: (1) when the guard ϕ = true, it
can model ordinary assignments in a basic block, (2) when the assignment τ is empty, the
conditions assume(ϕ) and assume(¬ϕ) can model the execution of a branching statement
(conditional statement) if(ϕ)− else, and (3) with both the guard and the assignment, it
can model an atomic check-and-set operation, which is the foundation of all types of
concurrency primitives [HS08]. For example, acquiring and releasing a lock l in a thread
with index i is modeled as assume(l = 0) . l := i and assume(l = i) . l := 0, respectively.
Fork and join can be modeled in a similar manner using auxiliary synchronization
variables. In the following, assumptions assume(ϕ) are also denoted by [ϕ]. Figure 6.2
shows an example of a CFA.

[P] [C]

[¬C] y:=1

x:=0
y:=x

[¬P]

Figure 6.2: CFA

As we have seen in Chapter 2 (§2.1.1), statement B is
control dependent on statement A, if outcome of A deter-
mines whether B is executed or not. We define scopes for
conditional statements according to the notion of control
dependency:

Definition 18 (Scope for Conditions). An atomic in-
struction s is in the scope of a conditional statement
c such as if(ϕ) which is modeled as assume(ϕ), if s is
control-dependent on c or in the scope of a condition that is control-dependent on c.

In Figure 6.2, x := 0 is in scope of condition C, whereas y:=x is not. Both assignments,
however, are in scope of condition P , since they are unreachable if P does not hold.
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Executions. An execution ρ = S0, e1, S1, ..., Sn−1, en, Sn is an alternating sequence of
states Si and events ei corresponding to some interleaving of atomic instructions from
the threads of the program (cf. Definition 1). Each state S is a valuation of the variables
V. Each event e corresponds to the execution of an atomic instruction of a thread.
For each i, the execution of ei in state Si−1 leads to state Si. We call the execution
ρ = S0, e1, S1, ..., Sn−1, en, Sn passing if for each assertion ei = assert(ϕ), the predicate ϕ
evaluates to true at state Si−1; otherwise we call the execution failing. Consequently, in
a failing execution the last event en corresponds to a failing assertion.

Traces. A trace σ = e1, ..., en is a finite sequence of events that corresponds to some
interleaving of atomic instructions from the threads of the program. A trace σ can
correspond to several executions, however it is considered as feasible if it has at least
one corresponding execution. A feasible trace is referred to as a passing trace if all the
corresponding executions are passing. If a feasible trace has at least one corresponding
failing execution, it is referred to as a failing trace. Intuitively, a failing trace results
from the execution of a failing test case that does not satisfy some specification ψ. The
specification ψ is modeled as an assertion assert(ϕ) which corresponds to the last event
en in the failing trace.

Given a trace σ = e1, ..., en, we use σ[i, j] to denote the subtrace ei, ei+1, . . . , ej−1, ej of σ
including the events ei and ej and σ(i, j) to denote the subtrace ei+1, . . . , ej−1 excluding
the events ei and ej . Moreover, we use σ[i] to refer to the ith event of σ which is equal
to ei.

Symbolic Traces. We use first-order logic (defined as usual) with background theories
commonly used in software verification (such as arithmetic, bit-vectors, arrays and
uninterpreted functions) to represent program expressions and predicates. true (false)
represents the predicate that is always true (false).

We encode a trace σ = e1, ..., en as a quantifier free first-order logic formula Φ(σ), which is
achieved by transforming the trace into Static Single Assignment (SSA) form [CFR+91].
We refer to Φ(σ) as a trace formula. In SSA form, each variable is defined exactly once.
Here, an event defines a variable v if v appears in the left-hand side of an assignment;
an event uses v if v appears in a condition (an assume or an assert) or the right-hand
side of an assignment. The standard mechanism to transform a trace into SSA form is
to subscript each definition of a variable with a unique version number; consequently,
each definition is uniquely identified by the corresponding SSA variable. In general SSA
representation, φ-functions resolve conflicting definitions at a control-flow merge point.
Algorithms to convert a program into SSA form are described in [CFR+91] and [Muc97,
§8.11]. Since we restrict ourselves to traces in which each thread has a single control path,
φ-functions are not required. Therefore, for traces (without control-flow merge points)
for transforming to SSA form it suffices to increase the version number of a variable
each time it is assigned and refer to the latest version of each variable in conditions and
right-hand sides of assignments. For example, for the trace σ def= [x < 1], x := y, the SSA
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form is: ssa(σ) = [x0 < 1] x1 := y0 + 1. In the following, we use ssa(σ)[i] to denote the ith
element of ssa(σ) which corresponds to the ith event of σ in the SSA form.

To construct the trace formula Φ(σ), we encode the individual events in ssa(σ) into logical
formulas as follows:

Φ(σ[i]) def=


(vk = φ) if ssa(σ)[i] is vk := φ

(ϕ) if ssa(σ)[i] is assume(ϕ)
((ϕ) ∧ (vk = φ)) if ssa(σ)[i] is assume(ϕ) . vk := φ

(ϕ) if ssa(σ)[i] is assert(ϕ)

(6.1)

where 1 ≤ i ≤ |σ|. The trace formula Φ(σ) is then a sequence of conjuncts each of which
corresponds to encoding of individual events in ssa(σ) according to (6.1):

Φ(σ) def= Φ(σ[1]) ∧ Φ(σ[2]) . . . ∧ Φ(σ[n]).

For example, for the trace σ def= [x < 1]; x := y, we obtain: Φ(σ) = (x0 < 1)∧ (x1 = y0 + 1).
Any satisfying assignment to Φ(σ) corresponds to an execution (passing) of σ; note that if
all variables in Φ(σ) are initialized before being used, Φ(σ) has only one unique satisfying
assignment.

6.1.2 Interpolation-based Slicing for Sequential Software

In this section, we recall the interpolation-based slicing approach presented in [ESW12,
CESW13, MSTC14]. In this approach interpolants represent over-approximation of the
set of reachable states during an execution and are used for slicing a failing trace.

Definition 19 (Interpolant). Let A and be B be a pair of first-order formulas such that
A ∧B is unsatisfiable. An interpolant of A and B is a first-order formula I such that
A⇒ I, B ⇒ ¬I, and Var(I) ⊆ Var(A) ∩Var(B). (Var denotes the set of free variables
in a formula.)

Definition 19 corresponds to the definition of interpolants in [McM05] under the assump-
tion that all non-logical symbols in A and B are interpreted. Similarly, we can define an
interpolation sequence for a sequence of formulas:
Definition 20 (Interpolation Sequence). Let A1, . . . , An be a sequence of first-order
formulas whose conjunction is unsatisfiable. Then I0, . . . , In is an interpolation sequence
if:

• I0 = true and In = false,
• for all 1 ≤ i < n: A1 ∧A2... ∧Ai ⇒ Ii, Ai+1 ∧Ai+2... ∧An ⇒ ¬Ii
• for all 1 ≤ i < n: Var(Ii) ∈ (Var(A1 ∧ . . . ∧Ai) ∩Var(Ai+1 ∧ . . . ∧An)).

In order to slice a failing trace using interpolants, according to Definitions 19 and 20, we
need to construct an unsatisfiable formula for computing interpolants. Given a failing
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1 z := 1;
2 x := 3;
3 x1 := x + 1;
4 z1 := z + 1;
5 assert(x1 > 5 && z1 > 5);

{true}
{true}
{z = 1}
{z = 1}
{z1 = 2}
{false}

Figure 6.3: Unsound slice. [MSTC14]

1 z := 1;
2 x := 3;
3 x1 := x + 1;
4 z1 := z + 1;
5 assert(x1 > 5 && z1 > 5);

{true}
{z = 1}
{z = 1}
{z = 1}
{z1 = 2}
{false}

Figure 6.4: Sound slice. [MSTC14]

trace σ = e1, ..., en, in which all the variables are initialized according to a failing test
case, the last event en corresponds to a failing assertion like assert(ϕ). Since ϕ evaluates
to false in σ, the trace formula Φ(σ) is an unsatisfiable formula. Using Definition 20,
we can then compute interpolants for each position i, 1 ≤ i < n in σ. Each interpolant
Ii, 1 ≤ i < n represents an over-approximation of the states reachable at position i in σ
such that the execution of events ei+1, ..., en from a state in Ii still results in the assertion
violation. Ermis et al. [ESW12] and Christ et al. [CESW13] refer to interpolants Ii
computed for each position i, 1 ≤ i < n, in σ as error invariants.

In [ESW12, CESW13], an error invariant I is considered recurring for positions i ≤ j if
I is an error invariant for both i and j. According to [ESW12, CESW13], statements
between recurring error invariants are “not needed to reproduce the failure.” Therefore,
they can be sliced from the failing trace. Moreover, the interpolants generated for slicing
irrelevant statements serve as an annotation characterizing at each point in the slice
the states eventually leading to a failing assertion. For example, in Figure 6.1 the error
invariant {x = 3} is recurring for positions 1 and 2, therefore statement 2 is sliced away
since it does not have an effect on assertion violation at line 5. Moreover, in this figure,
error invariants revealing the variables and values which are relevant to the assertion
violation annotate the statements in the slice.

Interpolants Ii are not unique, therefore a failing trace can be sliced in different ways
using interpolants. However, we are looking for sound slices in the sense of Definition 21
below:

Definition 21 (Sound Slice). A slice of a failing trace σ = e1, ..., en is a trace η =
e′1, ..., e

′
m such that e′1 = ei1, e′2 = ei2, . . . , e′m = eim where 1 ≤ i1 < i2 < . . . < im ≤ n.

The slice η is sound if the formula Φ(η) is unsatisfiable.

For example, in Figure 6.3 the computed interpolation sequence results in an unsound
slice, although interpolants are valid according to Definition 20. Based on the computed
interpolation sequence, statements 1 and 3 are irrelevant to the assertion violation since
they are surrounded by recurrent error invariants, {true} and {z = 1}, respectively.
However, by removing these two statements from the failing trace, variables z and x1
become unconstrained which makes the formula corresponding to the resulting slice
satisfiable.
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procedure Slice(η,(I0, . . . , In))
if ∃i, j . Ii is recurring for j > i then

η ← (e1, . . . , ei, ej+1, . . . , en)
Slice(η, (I0, . . . , Ii, Ij+1, . . . , In))

else
return η

end if
end procedure

Figure 6.5: Interpolation-based Slicing Algorithm

Murali et al. [MSTC14] point out that in order to obtain a sound slice by removing
statements between recurring error invariants we need to compute an inductive interpolant
sequence:

Definition 22 (Inductive Interpolant Sequence). Let A1, . . . , An be a sequence of first-
order formulas whose conjunction is unsatisfiable. The interpolation sequence I0, I1, . . . , In
in Definition 20 is inductive if for all Ii, 1 ≤ i ≤ n, we have Ii−1 ∧Ai ⇒ Ii.

Moreover, the inductive interpolant sequence for the failing trace σ corresponds to a
Hoare proof of {true} σ {false} [McM06, MSTC14]. ( {Ii−1} σ[i] {Ii} is a valid Hoare
triple for each 1 ≤ i ≤ n.) It is easy to see that the interpolant sequence in Figure 6.3
is not inductive, because (true) ∧ x = 3 6=⇒ (z = 1). A possible inductive interpolant
sequence for the trace in Figure 6.3 is given in Figure 6.4. In this figure, the resulting
slice is sound according to Definition 21. Given an inductive interpolant sequence and a
failing trace, Figure 6.5 shows the algorithm for interpolation-based slicing. Initially the
parameter η in this algorithm is equal to the original trace σ. According to [MSTC14,
Theorem 1], if (I0, . . . , In) in Figure 6.5 is an inductive interpolant sequence, the resulting
slice will be sound (Definition 21).

Control-flow Sensitive Slicing

The encoding of the failing trace using the trace formula Φ(σ) defined above fails to
capture control dependencies. Therefore, if there exist conditional statements relevant to
the failure, they will not be included in the computed slice. In Figure 6.6, according to
the computed inductive interpolant sequence the branch at line 3 is sliced away although
it is relevant to the failure. Therefore, the resulting slice does not reflect the fact that
the branch of the conditional statement has to be taken for the failure to occur. The
encoding presented in [CESW13] lifts this restriction by prefixing the conjuncts encoding
assignments in Φ(σ) with conditions of the respective scopes. Algorithm 6.1 constructs a
control-flow sensitive encoding Φfs(σ) of a failing trace [CESW13]. In this algorithm, the
conjunction of the conditions of the respective scopes is referred to as a guard.

An inductive error invariant for the encoding Φfs(σ) constructed by Algorithm 6.1 induces
a control-flow sensitive slice (cf. Definition 4 and Theorem 6 in [CESW13]):
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1 x := 1;
2 y := −1;
3 if(y < 0)

4 x := 0;
5 assert(x! = 0);

{true}
{true}
{true}
{true}
{x=0}
{false}

Figure 6.6: A flow-insensitive slice
not containing the relevant branch.

1 x0 = 1
2 y0 = −1
3 (y0 < 0)⇒ x1 = 0

4 x1 6= 0

{true}
{true}
{y0 < 0}
{x1 = 0}
{false}

Figure 6.7: Control-flow sensitive slice of
the trace in Figure 6.6 which contains the
relevant branch.

Definition 23 (Control-flow sensitive Slice). Let σ be a failing trace. A (sound) slice η
is control-flow sensitive if for every event η[k] = σ[i] and every assumption σ[j] = [C]
such that η[k] is in scope of σ[j], there is some prefix η[1, h] of η[1, k] (with h < k such
that η[h] precedes and η[h+ 1] succeeds or equals σ[j] in σ) such that η[1, h];assert(¬C)
is a failing trace.

Intuitively, the definition requires that η justifies that every branch containing a relevant
statement will be taken.

Theorem 6.1.1. Let σ be a failing trace and let I0, I1, . . . , I(|σ|−1), I|σ| be error invariants
(with I0 = true and I|σ| = false) obtained from an inductive interpolant sequence for
Φfs(σ). Let η be the slice obtained from σ by removing each subtrace σ[i, j] for which Ii−1
is recurrent. Then η is a sound control-flow sensitive slice for σ.

Proof (sketch). Since I0, I1, . . . , I(|σ|−1), I|σ| is an inductive interpolant sequence, accord-
ing to [MSTC14, Theorem 1] the induced slice using this inductive sequence is sound. It
remains to show that η is control-flow sensitive. Assume that η[j] = σ[i] (i.e., σ[i] is not
sliced), and that C encodes the conditions of its scope (the guard as in Algorithm 6.1).
Therefore, we have Ii−1 ⇒ C because otherwise Ii−1 is also an error invariant for the
subsequent position, and σ[i] should have been sliced. Moreover, due to the soundness of
η, Ii−1 is established by a prefix of η[1, j].

The control-flow sensitive encoding of the trace in Figure 6.6 (Φfs(σ)) along with the
computed interpolant sequence are given in Figure 6.7. As we can see, the resulting
slice shows that the initialization of variable y at statement 2 as well as the condition at
statement 3 are relevant for the assertion violation.

6.2 Interpolation-based Slicing for Concurrent Traces
In the following, we adapt the interpolation-based slicing technique discussed in Sec-
tion 6.1.2 to concurrent traces. Although the interpolation-based slicing technique for
sequential software (introduced in Section 6.1.2) is readily applicable to concurrent
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Algorithm 6.1 Encoding control-flow sensitive trace formulas [CESW13]
Input: Failing trace σ of length |σ|
Output: Control-flow sensitive trace formula Φfs(σ)
1: for i=1 to |σ| do
2: if σ[i] is assignment then
3: let guard def= ∧

{Φ(σ)[j] |σ[i] is in scope of σ[j]} in
4: Φfs(σ)[i] := (guard⇒ Φ(σ)[i]) ;
5: else
6: Φfs(σ)[i] := true
7: end if
8: end for

traces, a straight-forward application thereof, however, ignores several characteristics of
concurrent traces (in particular inter-thread data dependencies), resulting in slices that
may not reflect the underlying problem. We illustrate the inadequacy of the technique
discussed in Section 6.1.2 in slicing concurrent traces using a well-understood example of
an atomicity violation.

6.2.1 Motivating Example

Atomicity violations are one of the most common types of non-deadlock concurrency
bugs [LPSZ08]. Figure 6.8 shows a classic atomicity violation, in which two code fragments
non-atomically update the balance of a bank account (stored in the shared variable balance)
at locations L2 and L′2 (similar to the motivating example in Chapter 5, Section 5.1.3).
The example does not contain a data race, since balance is protected by the lock `.
The array t_array contains the sequence of amounts to be transferred, partitioned into
deposits and withdrawals. The threads T1 and T2 both execute concurrently, depositing
and withdrawing amounts of money, respectively. Figure 6.9 shows a failing execution of
the implementation. In this execution, in a loop Thread T1 executes three deposits and
Thread T2 executes two withdrawals. First, Thread T2 stores the value of the current
balance in a thread-local variable bal. At this point, Thread T1 interferes and updates the
value of balance by performing three deposit transactions. Thread T2, then, proceeds with
the now stale value stored in bal and stores the result of the two withdrawal transactions
in balance. Consequently, the execution results in a discrepancy of the expected and
the actual balance on the account. Applying the technique in Section 6.1.2 on the
concurrent trace in Figure 6.9 results in a slice given in Figure 6.10 (annotations are
not shown in this figure). As it can be seen in Figure 6.10, the deposits executed by
Thread T1 have been sliced away. This is because Thread T2 subsequently updates the
shared variable balance, ensuring that the values written by T1 do not affect the assertion.
Therefore, the slice does not reflect the problematic interference of Thread T1 which
results in the inconsistent value of balance. To remedy this problem, we take into account
the inter-thread data dependencies as well as control dependencies via locking mechanism.
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. . .
acquire `;
. . .

L1: bal := balance;
release `;

if (bal+t_array[i].amount≤MAX)
bal := bal+t_array[i].amount;

acquire `;
L2: balance := bal;

. . .
release `;
. . .

Code fragment-Deposit: T1

. . .
acquire `;
. . .

L′1: bal := balance;
release `;

if (bal-t_array[i].amount≥MIN)
bal := bal-t_array[i].amount;

acquire `;
L′2: balance := bal;

. . .
release `;
. . .

Code fragment-Withdrawal: T2

Figure 6.8: Non-atomic update of bank account balance

T2
T1

bal := balance release `
acquire ` bal := balance balance := bal release `

acquire ` balance := bal

Figure 6.9: Fragment of a Faulty Program Execution for Example in Figure 6.8

T0 : t_array[i].amount := 20//1st withdrawal amount
. . .

T2 : bal := balance;
T2 : release `;

. . .
T2 : bal := bal− t_array[i].amount
T2 : acquire `;
T2 : balance := bal;

. . .

Figure 6.10: Fragment of the computed slice for the trace in Figure 6.9 using the
techniques in § 6.1.2

6.2.2 Inter-thread Control Dependency

In Section 6.1.1, we modeled locks (as well as other synchronization mechanisms) using
guarded assignments.

acquire ` def= assume(` = 0) . ` := tid

release ` def= assume(` = tid) . ` := 0
(6.2)

Here, a value of 0 indicates that the lock ` is available, and the non-zero value tid
represents the unique identifier of the current thread. By virtue of acquire and release
being modeled using atomic guarded commands (Equation 6.2), the notion of a scope
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T0 : t_array[i].amount := 20//1st withdrawal amount
. . .

T2 : bal := balance;
T2 : release `;

T1 : acquire `;
T1 : release `;

. . .
. . .

T2 : bal := bal− t_array[i].amount
T2 : acquire `;
T2 : balance := bal;

. . .

Figure 6.11: Fragment of a control-flow sensitive slice for the concurrent trace in Figure 6.9

also extends to locks. However, we use a dynamic scope for locks, which we deem more
intuitive:

Definition 24 (Lock Scope). An event σ[k] issued by a thread t is in scope of a lock `
in trace σ if there exists an event σ[i] = acquire(`) (where i < k) issued by thread t such
that for all j with i < j < k we have that σ[j] 6= release(`) if σ[j] is an event issued by
thread t.

In Algorithm 6.1 at Line 3 locking scopes according to Definition 24 need also to be taken
into account. Therefore, the modified encoding Φfs(σ) which contains guards related to
locking scopes can be used for generating control-flow sensitive slices for concurrent traces
with locks. For example, the modified encoding results in the slice given in Figure 6.11
for the failing trace of bank account case study in Figure 6.9.

As it can be seen in Figure 6.11, by incorporating inter-thread control dependencies via
locking mechanism the resulting slice has been improved. While the slice in Figure 6.10
has ignored Thread T1 altogether, the slice in Figure 6.11 contains acquiring and releasing
lock statements of Thread T1. From this slice, it can be understood that there was a
context-switch between reading and writing of the shared variable balance in Thread T2.
Therefore, it can be inferred that perhaps this context-switch caused the inconsistency
in the value of balance. However, it is not explicit in the slice the updates of balance in
Thread T1 which caused the atomicity violation. This is due to the fact that we do not
consider inter-thread data dependencies in the encoding of concurrent traces.

6.2.3 Inter-thread Data Dependency

A data-dependence is a constraint arising from the flow of data between statements. We
use the terminology of [Muc97]:
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T1
T2

x:=1
x:=2
WAW y:=x

x:=2
WAR x:=1

y:=x
RAW

Figure 6.12: Inter-thread Data-dependencies

Read-after-write (RAW) If statement A writes a value that is read by statement B,
then the two statements are flow-dependent.

Write-after-read (WAR) An anti-dependence occurs when statement A reads a value
that is later updated (over-written) by B.

Write-after-write (WAW) An output-dependence exists if A as well as B set the value
of the same variable.

While this definition also applies to single threads, we concern ourselves exclusively
with inter-thread data-dependencies. Figure 6.12 illustrates data-dependencies between
the threads. In a trace σ, a data-dependency between different threads can indicate a
conflicting access due to a data race, an atomicity violation, or an order violation which
we refer to all as hazards.

Flow-dependence is taken into account by the vanilla SSA encoding Φ(σ) (Section 6.1.1)
since the SSA form represents use-definition pairs, and therefore also flow-dependence
explicitly. However, anti- and output-dependencies are not explicit in the vanilla SSA
encoding Φ(σ) used in Sections 6.1.2 and 6.2.2.

Similar to control-flow merge points in sequential programs, inter-thread dependencies in a
concurrent program give rise to conflicting definitions of shared variables. The Concurrent
SSA (CSSA) form of traces presented in [WKL+11, SW11] introduces π-functions to
resolve dependencies between accesses to shared variables in different threads.

Definition 25. A π-function is introduced for a shared variable x immediately before its
use (read access), and has the form π(x1, . . . , xl), where each xi, 1 ≤ i ≤ l is either the
last definition (write access) of x in the same thread as the use, or a definition (write
access) of x in another thread.

Converting a trace such as σ into CSSA form denoted by cssa(σ) consists of the following
steps:

1. Convert the trace into SSA from (as described in Section 6.1.1).

2. For each use (read access) of a shared variable x ∈ G, create a unique name such as
x′ and add the assignment x′ := π(x1, . . . , xl) before the use of x. Replace x then
with the new definition x′.
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Thread 1 Thread 2

À balance1: =bal1 + 10;

Â balance3: =π(balance1, balance2);
Ã assert(balance3 = bal1 + 20);

Á balance2: =bal1 + 10;

Figure 6.13: Trace with hazard and a π-function

Figure 6.13 shows a trace with two threads with an assignment containing a π-function
(arbitrating between the definitions balance1 and balance2) inserted before the assertion
which accesses balance.

To encode WAR and WAW dependencies, we introduce an irreflexive, transitive, and
anti-symmetric relation hb(ei, ej) which indicates that event ei occurred before event ej .
This happens-before relation enables us to encode the program order and the schedule.
In addition, rd(x, ei) and wr(x, ej) indicate that x is read at the occurrence of event ei
and written at the occurrence of ej . These primitives allow for an explicit encoding of
data-dependencies:

wr(x, ei) ∧ hb(ei, ej) ∧ rd(x, ej) ⇔ rawx(ei, ej)
rd(x, ei) ∧ hb(ei, ej) ∧ wr(x, ej) ⇔ warx(ei, ej)
wr(x, ei) ∧ hb(ei, ej) ∧ wr(x, ej) ⇔ wawx(ei, ej)

(6.3)

Hazard-sensitive Encoding

The hazard-sensitive encoding presented below incorporates inter-thread data-dependen-
cies into the encoding of a trace. To construct the hazard-sensitive encoding of a trace σ,
we convert the trace into CSSA form (cssa(σ)) by annotating the events which contain
read accesses of shared variables with corresponding π-functions. A π-function for the read
access of a shared variable x, takes as parameters the subscripted variables representing
the last definition of x in the same thread as the use and all definitions of x in other
threads (Definition 25).

Let cssa(σ)[i] contain a read access to a shared variable x and let the corresponding π-
function assign subscripted variable xi: xi = π(x1, x2, . . . , xl). If cssa(σ)[j] is an assignment
to xj and the last event before cssa(σ)[i] which updates the shared variable x, then the
π-function assigns xj to xi. In order to reflect inter-thread data-dependencies between
the events σ[i] and σ[j] and other definitions of x in σ which occur before or after these
two events, Φhs(σ[i]) adds the following formula:

PI(x, σ[i]) def= rd(x, σ[i]) ∧ (DEP(σ[i], σ[j])⇒ (xi = xj)) (6.4)
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where DEP(σ[i], σ[j]) is the following condition:

rawx(σ[j], σ[i])∧ ∧
m ∈ {e ∈ σ |wr(xk, e), 1 ≤ k ≤ l ∧ k 6= j}

(wawx(m,σ[j]) ∨ warx(σ[i],m)) (6.5)

where xk is a parameter of π-function in xi = π(x1, x2, . . . , xl), and xk 6= xj .

Intuitively, DEP(σ[i], σ[j]) states that xj is written before xi is read, and no other
definition of x interferes.

Using Formula (6.4), we define the hazard-sensitive encoding of elements of cssa(σ) as
follows:

Φhs(σ[i]) def= Φ(σ[i])∧
true if σ[i] accesses no shared var.∧
1≤k≤n

(PI(xk, σ[i])) if σ[i] reads shared var. xk∧
1≤k≤n

(PI(xk, σ[i])) ∧ wr(y, σ[i]) if σ[i] reads shared var. xk and writes shared var. y

(6.6)

where 1 ≤ i ≤ |σ| and Φ(σ[i]) is defined similar to (6.1) except that here we use cssa(σ)
instead of ssa(σ).

Finally, Φhs(σ) is a sequence of conjuncts each of which corresponds to encoding of
individual elements in cssa(σ). Since the encoding of inter-thread data-dependencies
require the hb relation between the events, we insert hb predicates encoding the happens-
before relation between every two consecutive events of σ in Φhs(σ). The following
sequence of conjuncts is then used for computing interpolant sequence:

Φhs(σ[1])∧hb(σ[1], σ[2])∧Φhs(σ[2])∧. . .∧Φhs(σ[n−1])∧hb(σ[n− 1], σ[n])∧Φhs(σ[n]),
(6.7)

where n = |σ|.

Applying inductive sequence interpolation to Formula (6.7) yields a sequence in1,
out1, . . . , inn, outn of formulas such that

ini ∧ Φhs(σ[i])⇒ outi and outi ∧ hb(σ[i], σ[i+ 1])⇒ ini+1 .

Unlike before, ini and outi propagate facts about states as well as execution order. We
can slice subtrace σ[i, j] if ini ⇒ outj , subtrace σ(i, j) if outi ⇒ inj , subtrace σ[i, j) if
ini ⇒ inj , and subtrace σ(i, j] if ini ⇒ outj . The resulting sliced trace η corresponds to a
sequence of events as well as a set of hb predicates representing context switches and
program order constraints relevant to the failure.
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Definition 26 (Hazard-sensitive slice). Given a failing trace σ, a (sound) slice η is
hazard-sensitive if for every event η[k] = σ[i] and event σ[j] such that there is an
inter-thread data-dependency between σ[j] and σ[i], there exists an event η[h] such that
η[h] = σ[j].

Theorem 6.2.1. Let σ be a concurrent failing trace and let η be the slice obtained from
σ as explained above. Then η is a sound hazard-sensitive slice of σ.

Proof (sketch). Since the sequence in1, out1, . . . , inn, outn used for computing η is an
inductive interpolant sequence, according to an argument similar to [MSTC14, Theorem
1], it can be shown that η is sound. It remains to show that η is hazard-sensitive. Assume
that η[k] = σ[i] and there is an inter-thread data-dependency between σ[j] and σ[i]. Let
ei denote σ[i] and let ej denote σ[j].

• Assume that ei is a read access to x, i.e., rd(x, ei). RAW dependencies are readily
handled by the SSA encoding. The remaining WAR dependencies are encoded in
the π-function introduced for the read access in ei (which assigns the variable xi
used in ei).
Formula (6.5) requires that every event m ∈ σ that writes to x is either visited
before the most recent write access to x or after the read access ei. Assume that
hb(m, ej) in σ. Then warx(ei,m) evaluates to false, and the interpolant ini must
imply wr(x,m), since otherwise wawx(m, ej) in the premise (6.5) of Formula (6.4)
cannot be discharged. The predicate wr(x,m) can only be introduced into the
interpolation sequence through Φhs(m), and therefore event m cannot be sliced
away. If hb(ei,m) in σ, then the premise of outi can only be discharged by wr(x,m)
contributed by hb(ei,m). Consequently, if event m is not included, the final
interpolant cannot be false.

• Assume that ei is a write access to x. Then there must also be a relevant read
access to x in η. The encoding of the corresponding π-function will enforce that
all write accesses conflicting with ei are included in the slice. This is done via the
encoded WAW dependencies in Formula (6.5).

Consider the trace in Figure 6.13. A hazard-insensitive slice would contain either the
event at À or the event at Á, but not both. Encoding (6.4) and (6.5) of the events with
π-function require the interpolant before Â to imply wawbalance(À,Á), and consequently
wr(balance,À) and wr(balance,Á). Therefore, events at À and Á as well as the hb relation
〈À,Á〉 are included in the resulting slice.
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Case Study: Hazard-Sensitive Slicing Using our new hazard-sensitive encoding,
we generated a hazard-sensitive but control-flow-insensitive slice for the case study
introduced in Section 6.2.1. Figure 6.14 shows the full hazard-sensitive but control-flow-
insensitive slice for an initial faulty trace of this case study consisting of 244 instructions.
The actual slice consists of 25 instructions that correspond to the 13 program statements
shown in Figure 6.14. Notably, the slice now includes the relevant assignments performed
by Thread T1. Statements related to acquiring and releasing locks have been sliced
away, since the values of locks are not related to the assertion violation and the slice is
control-flow-insensitive. The consecutive updates of balance in T1 and T2 included in the
slice illustrates the atomicity violation and explains the problem. These updates are now
included in the slice due to the encoding of the output dependency (waw) that exists
between them.

Note that the slice contains annotations (the interpolants generated by the constraint
solver) which aid the understanding. In the hazard-sensitive encoding, Formula (6.6), we
use hb, wr, and rd predicates, therefore, they also appear in the computed interpolants.
In Figure 6.14, they are not shown since wr, and rd predicates do not carry useful
information for understanding the bug, and the ordering information represented by hb
predicates can be inferred from the order in which the events of the slice are shown. In
the given example, the interpolants reflect the deviation of balance and bal from the
expected value. The interpolant before the assertion (balance = 60) is balance ≤ 10. The
interpolant before and after the interference of thread T1 in Figure 6.14 indicates that
the local variable bal in thread T2 only accounts for the two withdrawals performed by
T2. Thus, bal holds a stale value. The constraint is unaffected by the assignment to
the shared variable balance in thread T1. This helps the programmer recognize that the
deposits performed by T1 are not reflected in bal, even though all other statements of T1
are eliminated.

Because of the simple structure of the original traces, the interpolants in our examples
are typically conjunctions of inequalities over variables, which are easy to interpret.
Interpolants represent sets of erroneous states and are therefore generalizations of the
single states observed during the execution of the original trace, just as slices are
generalizations of the original traces. Note that the slice in combination with the
annotations in Figure 6.14 represents a sequence of Hoare triples formally proving that
the slice violates the assertion and is therefore sound (cf. Definition 21).

6.2.4 Fine-Tuning Explanations

The encodings presented in Sections 6.2.2 and 6.2.3 can be combined in a straight forward
manner. Control-flow or hazard-sensitivity can be added (or removed) by (dis-)regarding
scopes and π-functions in the encoding of a failing trace σ. Control-flow dependency can
be incorporated into π-nodes in Equation (6.4) by prefixing the assignment xi = xj with
the guard of the definition of xj at event ej :

guard(ej)⇒ (DEP(ei, ej)⇒ (xi = xj)) , (6.8)
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T0 : balance := 40;
{balance ≤ 40}
T0 : t_array[0].amount := 20; // 1st withdrawal amount
{balance ≤ t_array[0].amount + 20 }
T0 : t_array[3].amount := 10; // 2nd withdrawal amount
{balance ≤

∑
i∈{0,3} t_array[i].amount + 10 }

T2 : bal := balance;
{bal ≤

∑
i∈{0,3} t_array[i].amount + 10 }

T1 : balance := bal;
{bal ≤

∑
i∈{0,3} t_array[i].amount + 10 }

T1 : balance := bal;
{bal ≤

∑
i∈{0,3} t_array[i].amount + 10 }

T1 : balance := bal;
{bal ≤

∑
i∈{0,3} t_array[i].amount + 10 }

T2 : bal := bal− t_array[0].amount;
{bal ≤ t_array[3].amount + 10 }
T2 : balance := bal; // 1st withdrawal complete
{balance ≤ t_array[3].amount + 10 }
T2 : bal := balance;
{bal ≤ t_array[3].amount + 10 }
T2 : bal := bal− t_array[3].amount;
{bal ≤ 10}
T2 : balance := bal; // 2nd withdrawal complete
{balance ≤ 10}
T0 : assert(balance = 60);

Figure 6.14: Fully annotated hazard-sensitive slice of the trace in Figure 6.6

similar to the guard in the control-flow sensitive encoding of σ as given in Algorithm 6.1.
Moreover, Encoding (6.4) can be made insensitive to WAR dependencies by restricting m
to predecessors of ei and by dropping the disjunct warx(ei,m) from (6.5) (and similarly
for WAW dependencies). Consequently, our method provides us with a choice of control-,
WAR-, and WAW-dependencies reflected by the resulting slices.

Note that flow-dependency has a special role, since use-definition chains are explicit
in the SSA representation. The partial order given by the subset relation ⊆ over the
power-set of the remaining dependencies {cs,war,waw} reflects possible levels of detail in
slices, as illustrated by the Hasse diagram in Figure 6.15. As indicated in the diagram,
the configuration ∅ corresponds to the basic approach presented in [ESW12, MSTC14],
whereas {cs} represents the control-flow sensitive approach which incorporates both intra-
and inter-thread control dependencies.

While we see interpolants as an inherent part of the explanation, the level of detail
provided by these annotations cannot be related or formalized as easily as it is the
case for dependencies: changing the underlying encoding typically has an unpredictable
effect on the structure and strength of interpolants [DPWK10] (since interpolation is not
monotone [McM06]).
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{cs,war,waw}

{cs,war} {cs,waw} {war,waw}

{cs} {war} {waw}

∅
[ESW12, MSTC14]

Figure 6.15: Explanations: level of detail

6.3 Experiments
We have implemented our approach as an extension of the directed testing tool ConCrest
[FHRV13] and the debugging tool Vermeer [SNOSW15]. We use ConCrest for
generating error traces of concurrent programs and then produce slices for bug explanation
according to the algorithm presented in Section 6.2.

While all slices provided by our tool are sound in the sense of Definition 21, the results
from Section 6.2.4 enable the user to vary the level of detail included in the explanations.
However, it is the type and nature of concurrency bugs that determine the level of detail
required in order to have the problematic interferences between threads be reflected in
the explanation. This section provides an empirical evaluation on the effectiveness of
slices produced by our method with varying levels of detail in understanding concurrency
bugs. Specifically, we discuss in depth how the slice provided by our method reflect a
concurrency bug in the implementation of a lock-free concurrent data structure. Finally,
we provide an evaluation of how efficiently our method can reduce the size of the original
traces (in terms of statements, and variables that are included in the explanations).

6.3.1 Effectiveness of the Method

To evaluate the effectiveness of our method, we applied it on a collection of faulty C
programs. Table 6.1 summarizes our empirical results. The benchmarks in this table
are classified into two groups. The first group consists of 33 multithreaded C programs
taken from [KKW15], which combined benchmarks from several sources in the literature.
Although these programs are small in terms of the lines of code, they capture the essence
of concurrency bugs reported in various versions of open source applications such as
Mozilla, Apache, GCC, etc. The apache2 and bluetooth benchmarks in the second group,
which are taken from [FHRV13], are also simplified versions of real-world applications
with concurrency bugs. The pool-simple-2 is a lock-free concurrent data structure with
a linearizability bug. We discuss this benchmark in depth later. The remaining two
benchmarks in the second group are two variants of the program discussed in Section 6.2.1.
For each benchmark program, the name, the number of lines of code (LOC), the number
of threads, and the type of bug are listed in Table 6.1. The table also shows the number of
failing traces per benchmark. These numbers vary due to the assertions in the benchmarks
and ConCrest’s ability to produce failing traces. This variation does not reflect any
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preselection of traces. In total, ConCrest generated 90 failing traces from the 38
programs all of which we considered in our evaluation.

The remaining columns in Table 6.1 show how effective the different dependency encodings
are at revealing different types of concurrency bugs. We used four different encodings to
track data and control dependencies. In the table, hs refers to hazard-sensitive encoding
for tracking inter-thread data dependencies (Φhs(σ), see Section 6.2.3), cs refers to
control-flow sensitive encoding for tracking control dependencies (Φfs(σ) see Sections 6.2.2
and 6.1.2), and ds refers to the vanilla SSA encoding (Φ(σ) see Sections 6.1.1) for
tracking only flow-dependence between global and local variables, which is implicit in all
other encodings. The symbol “+” refers to a combination of different encodings.

Our definition of whether the bug was captured depends on the type of bug. For data
race bugs, we required that the slice reflecting the bug contains both conflicting accesses.
For atomicity violations, a slice reflecting the bug contains conflicting statements from
another thread interrupting the desired atomic region. For order violations, a slice
reflecting the bug contains conflicting statements in the problematic order. We use X if
the explanations obtained using the corresponding encoding capture the bug, and – to
indicate that the bug was not captured.

By manually inspecting the explanations we found that for all but two benchmarks,
tracking all dependencies ds+cs+hs yields slices that capture the corresponding concur-
rency bug. However, there exists at least one additional encoding for most benchmarks
which results in smaller slices that still reveal the bug. This encoding is usually hs (68%)
or cs (50%) depending on the nature of the bug and the defined assertions. In a few
benchmarks such as fibbench, even the vanilla SSA encoding ds produces slices which
reflect the concurrency bug. The benchmarks hash_table, ms_queue02, and list_seq are
the only programs that require the full ds+cs+hs encoding. These programs capture
bugs in intricate concurrent data structure implementations.

Since tracking more dependencies results in longer slices, we can stop increasing the level
of detail in a slice by including more dependencies as soon as the bug is reflected in that
explanation. For example, the explanation computed by the encoding ds+hs for the
account benchmark reveals the atomicity violation bug in this benchmark. Therefore, it
is not necessary to compute a longer slice using the ds+cs+hs encoding.

We realized that the benchmarks boop, freebsd_auditarg and gcc-java-25530 from [KKW15]
contain sequential bugs rather than concurrency bugs (although in [KKW15] they are
classified as concurrency bugs). As can be seen in Table 6.1, using the vanilla SSA
encoding ds is sufficient for understanding the sequential bugs in these benchmarks. For
the benchmark freebsd_auditarg, in two failing traces the bug is triggered by sequential
executions of the three threads. For these two traces, using any of the four encodings
results in a slice which reveals the flow of data leading to the assertion violation. However,
in one failing trace the bug is triggered due to an interference between two threads.
For this trace, only encodings ds+hs and ds+cs+hs reflect the cause of the assertion
violation (numbers (2/3) in columns ds and ds+cs for this benchmark indicate that
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t r e i b e r_ s t a c k_ t ∗ t s [ 2 ] ;
vo id poo l_ i n s ( i n t v ) {

// we assume t h a t v != EMPTY
i n t i d x = random ()%2;
ts_push(& t s [ i d x ] , v ) ;

}

i n t pool_rem ( ) {
i n t i d x = random ()%2;
f o r ( i n t i = 0 ; i < 2 ; i++) {

i n t v = ts_pop(& t s [ ( i d x+i )%2 ] ) ;
i f ( v != EMPTY) r e t u r n v ;

}
r e t u r n EMPTY;

}

vo id th r ead1 ( ) {
poo l_ i n s ( 1 ) ;
pool_rem ( ) ;

}

vo id th r ead2 ( ) {
poo l_ i n s ( 2 ) ;
i n t v = pool_rem ( ) ;
a s s e r t ( v != EMPTY) ;

}

Figure 6.16: Faulty pool based on Treiber stacks

these encodings only capture the bug in two out of the three traces).

Only for the two benchmarks apache-25520 and cherokee_01 the slices produced by our
method failed to reveal the bugs. The problem is that in these benchmark programs the
root cause of the assertion violation is that a specific branch of a conditional statement
is not taken during the execution. Our slices currently cannot reveal the non-occurrence
of an event as the cause for failure because our analysis focuses on single error traces. In
future work, we plan to consider and merge several traces in order to be able to track
the effect of alternative branches on the assertion violation. Though, with a simple
modification of the assertions that are checked in these two benchmarks, our technique is
able to capture the atomicity violations.

We were able to apply our method on 33 out of all 34 benchmark programs used
in [KKW15]. The only missing benchmark is fibbench_longer which is a variant of
fibbench with larger parameters. For this benchmark, the concurrency testing tool
ConCrest [FHRV13] we used failed to generate a failing trace. This specific benchmark
exhibits the worst-case behavior for the search heuristic implemented in ConCrest.
Though, we would like to point out that our slicing technique is not tight to any specific
testing tool and we could deploy other means for finding failing traces.

Running times We found that the generation of the slices is in general very fast with
an average of 2.43s (σ = 11.02s) across all encodings and a maximum of 168.8s. As
expected, the running times increase with the amount of detail captured by the encoding.
Generating a ds slice takes 0.43s on average (σ = 0.18s) whereas a ds+cs+hs slice takes
7.3s (σ = 21.25s).

Case Study: Lock-free Concurrent Data Structure Benchmark bankaccount_lock-
_for_loop in Table 6.2 corresponds to the example discussed in Section 6.2.1. The slice
presented there has been generated by our tool. In the following, we further discuss
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T1

T2

[ts_top[0]=-1]

ts_push(&ts[1], 1)

{ts_top[0] = −1}

ts_pop(&ts[0])
[ts_top[0] = -1]

ts_push(&ts[0], 2)
ts_top[0]:=0

{ts_top[0] ≥ 0}

ts_pop(&ts[1])
return EMPTY

ts_pop(&ts[1])

ctrl

war

Figure 6.17: Faulty execution of program in Listing 6.16 with dependencies ([] denote
conditions)

benchmark pool_simple_2 in more depth as it demonstrates that, in general, both control
and hazard-sensitive information is needed to obtain useful bug explanations.

Benchmark pool_simple_2 was provided by Andreas Haas at University of Salzburg, as a
real-world example of a linearizability bug in concurrent data structures. It comprises
a faulty implementation of a concurrent data structure that stores objects in a pool.
Listing 6.16 shows a simplified version of the actual source code that we analyzed. In order
to reduce contention, objects that are inserted into this pool are stored in two different
stacks ts[0] and ts[1]. Each time pool_ins is called, a stack will be picked randomly and
the passed value will be stored in the selected stack. Thereby, the amount of conflicting
operations from different threads at each concurrent data structure is reduced. In order
to further reduce contention, one can add more stacks.

The pool_rem operation of the pool may incorrectly return the designated value EMPTY
although the pool is not empty (checked via the assertion in thread2). The problem
can occur when pool_rem is called and, for example, stack ts[1] is empty but ts[0] is
not. Figure 6.17 shows a corresponding faulty program execution. We describe the
explanation our tool provides for one of the faulty traces generated for the pool example.
To highlight the problematic dependencies in the execution, we need to inspect the trace
at instruction level, as the interferences are not reflected at the level of the overlapping
procedure calls. The implementation of the treiber_stack data-structure uses the entry
ts_top[i] to store the index of the top element of the ith stack. The value of ts_top[i] is −1
if the corresponding stack is empty. The write access to the actual stack is implemented
using an atomic compare-and-swap operation (guaranteeing exclusive access to the top of
the stack), which only succeeds if no other thread interferes with the write operation. As
shown in Listing 6.16, pool_rem iterates over all stacks to check whether one of them
contains an element that can be removed.

In the generated trace, the assertion that ts_top[i] must be −1 for all stacks if the pool is
reported to be empty fails. The statements in Figure 6.17 are part of the slice reported by
our tool and highlight the underlying problem: thread T1 pushes an element onto stack 0
(ts_top[0]:=0) after thread T2 has determined that the stack is empty. This is captured
by the anti-dependency between the statements [ts_top[0]=-1] and ts_top[0]:=0 (denoted
by the war edge). Thread T1 then proceeds to remove the element previously pushed
by T2 onto stack 1. Consequently, thread T2 finds stack 1 empty and reports that the
pool is empty (based on a stale value of ts_top[0]), even though stack 0 still contains one
element. This is captured by the control-dependency between [ts_top[0]=-1] and return
EMPTY (denoted by the ctrl edge). Thus, even though the assignment ts_top[0]:=0 is
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implemented as an atomic compare-and-swap operation in the actual code, this does not
guarantee correctness of the lock-free implementation: the operation pool_rem is not
linearizable, since its effect is not instantaneous.

The core of the problem is accurately reflected by the control-sensitive slice generated
by our tool: return EMPTY is necessary to satisfy the premise of the assertion, and
ts_top[0]:=0 must be included to contradict the conclusion. The return statement
is control-dependent on [ts_top[0] = -1], and the explanation therefore includes the
initialization of ts_top[0].

While the control-sensitive slice that our tool computes does not explicitly include the
assumption [ts_top[0] = -1], the condition is reflected by the error invariant ts_top[0] =
−1. This information is explicit in the hazard-sensitive slice generated by our tool, which
includes the anti-dependent statements [ts_top[0] = -1] in thread T2 and ts_top[0]:=0
in thread T1. Notably, the control and hazard-sensitive slice is only marginally longer
than the control-sensitive slice: the former contains 264 instructions, whereas the latter
contains 255 instructions, or 28% of the 924 instructions of the original trace. In addition,
our tool drops roughly 44% of the variables of the original trace.

6.3.2 Quantitative Evaluation

Table 6.2 shows the effect of tracking different dependencies on the size of the slices. µ
refers to average percentage reduction as the quotient of the number of remaining and
original instructions, so smaller numbers mean smaller slices. As expected, increasing
the sensitivity of the algorithm by tracking more dependencies tends to lead to more
detailed slices, and hence smaller reductions. However, as we have seen previously,
the hazard-sensitive slices (ds+hs), which capture the concurrency bugs in 68% of the
benchmarks, on average contain 35% of the original instructions and 54% of the original
variables. We gained the maximum reduction with the vanilla data-sensitive encoding
(ds), however the resulting explanations reflected the concurrency bugs in only 23% of the
benchmarks. The amount of reduction is different across benchmarks with a maximum
of 93% for the apache2 benchmark program. As we saw in the bank account example,
slices which are hazard sensitive but not control-flow sensitive tend to be much smaller
than slices which are control-flow sensitive, but not data-hazard sensitive. In general, we
expect that control-flow sensitive slices tend to include more of the local variables of the
relevant threads, whereas the hazard sensitive slices focus on shared variables that have
inter-thread hazards.

6.4 Related Work
The use of interpolation and error invariants for the purpose of error explanation [ESW12,
CESW13, MSTC14] is discussed in some detail in Section 6.1.2. Murali et al. [MSTC14]
relates interpolation-based localization to a consistency-based analysis using unsatisfiable
cores.
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The approach most closely related to ours is implemented in ConcBugAssist [KKW15].
Similar to BugAssist [JM11], which only targets sequential programs, this tool computes
a bounded unwinding of the program (generated with CBMC [CKL04]) in an SSA formula
and then uses a MAX-SAT solver to localize the faults in the encoded traces. Thus, both
BugAssist and ConcBugAssist take into account multiple traces simultaneously which
can yield better accuracy in certain cases (e.g., benchmarks apache-25520 and cherokee_01
in our evaluation). Also, ConcBugAssist provides a mechanism for repairing the
localized faults. On the other hand, slices reported by core-guided localization techniques
such as [JM11, KKW15] (and [MSTC14]), do not contain branch conditions (or statements
explaining why they hold). Moreover, we believe that the additional information provided
by our approach in the form of error invariants can further aid the understanding of the
produced slices.
On the benchmarks from [KKW15], we have found that ConcBugAssist yields similar
reduction ratios as our tool using the ds+hs encoding. However, the dependency
of ConcBugAssist on a bounded model checker for the constraint generation entails
scalability issues. E.g., we ran ConcBugAssist on pool_simple_2. Even after simplifying
the test harness and manually determining the minimal unwinding depth to detect the
bug, the tool timed out after 45 minutes–still in the constraint generation phase. On the
other hand, our directed testing tool was able to generate a failing trace with the original
test harness in less than 2 minutes and the subsequent slice generation took at most 34s.
We observed the same issues with ConcBugAssist on the other additional benchmarks
that we considered. In general, the bounded model checker used by ConcBugAssist
appears to struggle with benchmarks that involve arrays and non-trivial loops.
Other static approaches for simplifying and summarizing concurrent error traces in-
clude [GHR+15], [HZ11], [JS10], and [KG08]. In [GHR+15], an SMT solver is used to
derive a symbolic representation of the happens-before relation of all reorderings of a
given trace that violate a safety property. The authors then show how to infer bug
summarizations from the calculated happens before formula. Our approach differs in
the way SMT solvers are deployed for bug explanation. We use interpolation to extract
explanations from a proof that a bad trace violates the property. Our encoding of
the trace ensures that the proof explicitly captures which happens before relations are
relevant for the faulty behavior. On the other hand, [GHR+15] uses model enumeration
to calculate all bad reorderings of a given trace and then computes bug summaries with
inference rules that capture specific types of concurrency bugs.
SimTrace [HZ11] and Tinertia [JS10] attempt to minimize the number of context switches
in a trace by reordering independent statements of concurrent threads. This technique is
orthogonal to the approach presented in this paper.
A large number of techniques are proposed for the exposure and detection of concurrency
bugs such as race conditions or atomicity/serializability violations. These techniques
have in common that they are geared towards specific bug characteristics [FQ03, XBH05,
LPSZ08]. Our formal approach does not rely on specific bug characteristics, hence
providing a general framework for concurrency bug explanation.
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Dynamic techniques such as Falcon [PVH10] and Unicorn [PVH12] detect single- and
multivariable atomicity violations as well as order violations by using the given bug
pattern templates. Since in our approach we encode data-dependencies, we do not use
any given bug pattern templates.

The method of Chapter 5 provides a general framework for explaining concurrency bugs
that does not rely on templates. However, the mining method of Chapter 5 for isolating
the relevant parts of traces to the error requires failing as well as passing traces. The
interpolation-based technique of this chapter only considers failing traces.

Other tools for automatically fixing concurrency-related errors include Afix [JSZ+11] and
ConcurrencySwapper [CHR+13]. The latter uses error invariants to generalize a linear
error trace to a partially ordered trace. The resulting trace is then used to synthesize a
fix. This approach may potentially benefit from our more fine-tuned trace encoding that
enables error invariants to capture concurrent data dependencies.

6.5 Summary
In this chapter, we presented a formal framework to generate concise explanations of
concurrency bugs, enabling programmers to quickly isolate and focus on the relevant
aspects of error traces. By generalizing existing interpolation-based techniques to include
data-dependency and hazards, the explanations generated by our approach can capture
a broad range of concurrency bugs. We proved that the reported slices are sound
and sufficient to trigger the failure. The experimental evaluation of our prototype
implementation showed that the approach is effective and significantly reduces the
amount of code that needs to be inspected.
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Benchmark #T LOC AIT Threads Bug ds+cs+hs ds+hs ds+cs ds

account 3 43 (58) 51.7 4 AV X X – –
apache-21287 2 30 (79) 43 3 AV X – X –
apache-25520 1 88 (192) 34 3 AV – – – –
barrier_vf_false 12 57 (85) 27 4 AV X – X –
boop 1 58 (98) 40 3 SB X X X X
cherokee_01 1 88 (188) 28 3 AV – – – –
counter_seq 1 28 (41) 29 3 DR X X – –
fibbench 2 34 (47) 34 3 AV X X X X
freebsd_auditarg 3 52 (104) 37 4 SB X X X (2/3) X (2/3)
gcc-java-25530 2 36 (86) 17 3 SB X X X X
gcc-libstdc++-3584 1 40 (104) 37 3 AV X X – –
gcc-libstdc++-21334 1 36 (86) 27 3 OV X X – –
gcc-libstdc++-40518 2 40 (104) 23 3 AV X – X –
glib-512624_02 2 50 (94) 27.5 3 AV X X – –
hash_table 1 51 (114) 69 3 AV X – – –
jetty-1187 1 24 (98) 26 3 AV X X – –
lazy01_false 2 39 (55) 23 4 OV X X X X
lineEq_2t_01 1 35 (58) 52 3 AV X X X X
linux-iio 1 54 (87) 55 3 DR X X – –
linux-tg3 1 93 (115) 167 3 DR X X X –
list_seq 1 59 (122) 53 3 AV X – – –
llvm-8441 2 149 (244) 32.5 3 AV X X – –
mozilla-61369 1 19 (68) 6 1 OV X X X X
ms_queue02 1 67 (97) 66 3 AV X – – –
mysql5 1 21 (27) 28 3 AV X X – –
mysql-644 1 68 (165) 16 3 AV X X – –
mysql-3596 1 30 (83) 6 3 DR X X X X
mysql-12848 1 51 (142) 14 2 AV X – X –
read_write_false 1 78 (140) 58 5 AV X X X X
reorder2_false 8 50 (105) 10.5 5 AV X X X X
testconc2 1 15 (19) 9 2 AV X X – –
transmission-1.42 1 25 (78) 5 3 DR X X X X
VectPrime02 1 97 (183) 115 3 AV X X – –

apache2 8 719 (–) 235.5 3 AV X – X –
bankaccount-lock-for-loop 5 103 (–) 247 3 AV X X – –
bankaccount-simple-lock 2 50 (–) 45 3 AV X X – –
bluetooth 5 87 (–) 35.8 3 AV X – X –
pool-simple-2 8 298 (–) 885.5 3 LV X – X –

Total 90 88 47 61 22

ds: Basic Encoding cs: Control-Sensitive Encoding hs: Hazard-Sensitive Encoding
#T: No. of Traces in Benchmark LOC: Lines of Codea AV: Atomicity Violation
SB: Sequential Bug DR: Data Race OV: Order Violation
LV: Linearizability Violation AIT: Average No. of Instructions in a Trace

Table 6.1: Encodings which result in slices reflecting concurrency bugs.
aThe lines of code reported are counted with the tool cloc (https://github.com/AlDanial/cloc,

v1.66) excluding comments and blank lines. The lines of code presented in brackets are as stated
in [KKW15].
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Benchmark #T ds+cs+hs ds+hs ds+cs ds
S[%] V[%] S[%] V[%] S[%] V[%] S[%] V[%]

µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ

account 3 62 12 77 6 42 10 68 6 43 8 68 6 29 5 59 5
apache-21287 2 72 0 87 0 28 0 53 0 51 0 87 0 9 0 40 0
apache-25520 1 38 – 50 – 9 – 33 – 26 – 50 – 9 – 33 –
barrier_vf_false 12 70 0 80 0 19 0 40 0 67 0 80 0 15 0 40 0
boop 1 38 – 47 – 30 – 40 – 35 – 47 – 28 – 40 –
cherokee_01 1 46 – 60 – 11 – 40 – 32 – 60 – 11 – 40 –
counter_seq 1 72 – 90 – 38 – 70 – 52 – 80 – 31 – 60 –
fibbench 2 94 3 97 3 94 3 97 3 88 3 97 3 88 3 97 3
freebsd_auditarg 3 67 7 86 0 32 5 64 0 57 10 79 10 30 8 57 10
gcc-java-25530 2 35 0 40 0 35 0 40 0 24 0 40 0 24 0 40 0
gcc-libstdc++-3584 1 62 – 79 – 35 – 64 – 46 – 71 – 30 – 57 –
gcc-libstdc++-21334 1 63 – 78 – 22 – 33 – 48 – 78 – 15 – 33 –
gcc-libstdc++-40518 2 43 0 56 0 30 0 56 0 39 0 56 0 22 0 56 0
glib-512624_02 2 84 2 100 0 47 3 80 0 60 4 85 5 38 5 65 5
hash_table 1 41 – 61 – 4 – 21 – 29 – 54 – 4 – 21 –
jetty-1187 1 81 – 100 – 35 – 78 – 58 – 89 – 27 – 67 –
lazy01_false 2 91 0 100 0 65 0 100 0 87 0 100 0 61 0 100 0
lineEq_2t_01 1 69 – 81 – 46 – 71 – 52 – 76 – 37 – 67 –
linux-iio 1 40 – 59 – 20 – 50 – 27 – 41 – 16 – 32 –
linux-tg3 1 19 – 38 – 13 – 36 – 8 – 11 – 2 – 9 –
list_seq 1 58 – 95 – 6 – 30 – 40 – 75 – 6 – 30 –
llvm-8441 2 74 4 92 0 18 0 33 0 55 7 83 8 12 0 33 0
mozilla-61369 1 67 – 100 – 67 – 100 – 67 – 100 – 67 – 100 –
ms_queue02 1 44 – 52 – 5 – 20 – 35 – 48 – 5 – 20 –
mysql5 1 82 – 89 – 46 – 67 – 46 – 89 – 25 – 67 –
mysql-644 1 38 – 33 – 38 – 33 – 25 – 33 – 25 – 33 –
mysql-3596 1 100 – 100 – 100 – 100 – 67 – 100 – 67 – 100 –
mysql-12848 1 71 – 67 – 43 – 50 – 50 – 67 – 29 – 50 –
read_write_false 1 17 – 27 – 17 – 27 – 17 – 27 – 17 – 27 –
reorder2_false 8 86 14 100 0 86 14 100 0 62 8 100 0 62 8 100 0
testconc02 1 89 – 100 – 89 – 100 – 56 – 100 – 56 – 100 –
transmission-1.42 1 100 – 100 – 100 – 100 – 80 – 100 – 80 – 100 –
VectPrime02 1 25 – 68 – 9 – 45 – 18 – 59 – 7 – 36 –

apache2 8 8 2 9 2 1 0 1 0 7 2 9 2 1 0 1 0
bankaccount-lock-for-loop 5 46 2 44 2 12 1 30 2 40 2 42 2 9 1 23 3
bankaccount-simple-lock 2 71 0 80 0 31 0 60 0 62 0 73 0 24 0 53 0
bluetooth 5 42 0 63 0 14 0 31 0 36 0 63 0 11 0 31 0
pool-simple-2 8 30 1 58 2 0 0 2 0 29 1 56 2 0 0 2 0
Total 90 58.8 72 35 54 45 67.7 27 50.5

#T: No. of Traces in Benchmark
S: Slice Size / Trace Size V: No. of Variables in Slice / No. of Variables in Trace
µ: Average σ: Standard Deviation
ds: Basic Encoding cs: Control-Sensitive Encoding
hs: Hazard-Sensitive Encoding

Table 6.2: Quotient of the number of instructions (variables) in the slice and the original
trace
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CHAPTER 7
Conclusion and Future Directions

7.1 Summary of the Contributions
This dissertation makes contributions by developing automated approaches to address the
problem of explaining concurrency bugs or understanding the cause of failure in concurrent
systems. Our work culminated in two different approaches for explaining concurrency
bugs both in message passing and shared memory concurrent programs. These two
approaches which are anomaly detection and slicing reduce the manual effort involved
in debugging concurrent programs. Our techniques based on these two approaches
provide a general framework for concurrency bug explanation which do not rely on any
characteristics specific to one type of concurrency bug.

To extract anomalies for explaining concurrency bugs, the methods of Chapters 3, 4
and 5 adapt a standard frequent pattern mining algorithm called sequential pattern
mining. We refer to the computed anomalies as explanatory sequences in message passing
systems (Chapters 3 and 4) and bug explanation patterns in multithreaded shared variable
programs (Chapter 5) and argued their effectiveness in understanding the cause of failure
in concurrent systems. In Chapter 3, we showed that mining explanatory sequences from
lengthy execution traces is intractable due to the combinatorial explosion of the potential
candidates. In order to make the problem tractable, we proposed three approximation
techniques in Chapters 3–5. The substring mining method of Chapter 3 extracts anomalies
containing events which occur consecutively inside counterexamples. Although, anomalies
can be computed efficiently using this method, they only reveal fractions of explanatory
sequences. The subtrace mining method of Chapter 4 improves our explanation by
extracting anomalies which occur as subsequences of the counterexamples. However,
anomalies are mined from subtraces which are partitions of original traces. Since subtraces
provide local view of the traces, the method of Chapter 4 may fail to explain some bugs.
The abstraction method of Chapter 5 addresses the shortcomings of the two previous
approximation techniques. It improves scalability by reducing the length and the number
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of distinct events in traces using a novel abstraction technique. Moreover, the abstraction
method preserves the original patterns because abstract traces preserve the ordering
information between events of original traces.

While the mining methods of Chapters 3–5 require logging of a number of failing and
passing traces, the slicing method of Chapter 6 analyzes one single failing trace. In
Chapter 6, we first showed the inadequacy of dynamic slicing techniques in isolating
relevant statements and values to a failure. We then proposed a formal framework based
on interpolation for constructing semantics-aware slices. The experimental evaluation
showed that the slices computed by our method provide concise explanations for different
types of concurrency bugs. Moreover, we achieved a significant reduction in the number
of variables and the length of traces using our slicing technique.

7.2 Comparison between the Proposed Approaches
As we have seen, in this dissertation, the two approaches we present for concurrency
bug explanation are based on different underlying techniques. The anomaly detection
approach is based on mining a set of concrete execution traces while the slicing approach
is based on analyzing a single symbolic trace using a proof-based technique. Therefore,
we were able to compare the efficiency and effectiveness of these approaches in explaining
bugs and to learn their strengths and limitations. Since the slicing technique has been
developed for explaining bugs in multithreaded shared variable programs, we compare it
with the mining method of Chapter 5 which has the same goal and similar setting.

Although both approaches (methods of Chapter 5 and Chapter 6) are based on dynamic
analysis and analyze execution traces, in the mining based method we only log read and
write accesses of the shared variables (Section 5.1.2) while in the slicing method we need
to log all the atomic instructions (Section 6.1.1). Therefore, the heavier instrumentation
of the source code which is required in the slicing technique results in a higher overhead
and consequently a higher slowdown at runtime.

In terms of scalability, the mining based technique performed significantly better than
than the slicing technique in our experimental evaluation. While our largest benchmark
in the slicing method has 298 LOC and traces with less than 1000 events, the mining
method could compute effective anomalies for a full application (bzip2smp) with 6400
LOC and traces with around 13000 events. Note that the events in the traces of mining
method include only read and write accesses of shared variables. Regarding efficiency, we
found that both techniques are in general very fast in generating anomalies or slices.

The outputs produced by both techniques need to be inspected by the programmer.
However, in our experiments, we found that the manual inspection of anomalies computed
by the mining technique can be done easier and faster than the manual inspection of the
slices produced by the slicing technique. In all case studies, we were able to understand
the cause of failure by inspecting the data-dependencies between at most four macros
(Figure 5.5).
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A failing trace in the slicing technique is defined as a feasible trace reaching a failing
assertion (Section 6.1.1) and the failing assertion appears in the unsatisfiable formula
which is used for constructing the slice. Therefore, the computed slice depends on the
variables that appear in the assertion. If the variables used in the definition of the
assertion are not chosen carefully, it can be the case that the bug is not captured by the
slice. However, the anomalies computed by the mining method are independent of the
defined assertions and reflect the anomalous behaviors that are frequent in the failing
traces.

However, we proved that the slices computed by the slicing technique are sound while
the mining method may produce false positives (although we did not get false positives
in our experiments). Moreover, the quality of the failing and passing datasets affect the
computed anomalies in the mining method. On the other hand, the slicing technique
analyzes one single failing trace and always generates a sound slice which is sufficient
to trigger the failure. For the mining method we lack a formal reasoning regarding the
soundness and completeness.

7.3 Future Directions
The techniques presented in this dissertation can be enhanced in terms of efficiency and
effectiveness which we plan to do as future work. Moreover the new challenges that
we faced during the development of these techniques can form the basis for the future
work. Currently, no classification and clustering are done on the anomalies generated by
the mining method. The effectiveness of the bug explanation patterns can be improved
by first clustering them according to the likelihood that they indicate the same bug.
Second, by classifying them according to the type of the concurrency bug that they
reflect. The quality of the computed anomalies can be further improved by considering
a similarity measure in generating failing and passing datasets. It is also desirable to
study the correlation between the similarity of traces in the failing and passing datasets
and the number of the different bugs that are reflected in the final result set. We plan to
investigate the possibility of making our mining based method online for analyzing the
traces as they are being generated in order to reduce the overhead of logging traces for
offline processing. Moreover, we believe that our abstraction technique (Chapter 5) has
potential application in the other domains where runtime information is being processed
and analyzed such as runtime verification.

Since the mining method of Chapter 5 based on abstraction of traces has been formalized
in the setting of multithreaded shared variable programs, we plan to adapt this technique
for explaining bugs in message passing concurrent systems as well.

To increase the accuracy of our slicing technique for bugs that are caused by the absence
of an event, we plan as future work to explore techniques for merging multiple related
traces. For example, if a bug occurs because a specific branch is not taken at runtime,
our slicing method is not able to capture that (See Section 6.3.1). This is because
we only analyze one single trace in which the specific branch that has to be taken in
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order to avoid the failure is missing. This problem can be solved by considering traces
taking alternative branches in our encoding. Moreover, we will incorporate abstraction
techniques for summarizing threads and procedure calls in order to further improve the
reduction rates for long traces.
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