
From Atoms to Cells: Interactive
and Illustrative Visualization of
Digitally Reproduced Lifeforms

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Mathieu Le Muzic
Matrikelnummer 1326132

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Priv.-Doz. Dipl.-Ing. Dr.techn Ivan Viola

Diese Dissertation haben begutachtet:

Wien, 6. Oktober 2016
Mathieu Le Muzic

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

From Atoms to Cells: Interactive
and Illustrative Visualization of
Digitally Reproduced Lifeforms

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Mathieu Le Muzic
Registration Number 1326132

to the Faculty of Informatics

at the TU Wien

Advisor: Priv.-Doz. Dipl.-Ing. Dr.techn Ivan Viola

The dissertation has been reviewed by:

Vienna, 6th October, 2016
Mathieu Le Muzic

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Mathieu Le Muzic
Apartment 15, The Needleworks 41-43, Albion Street, Leicester LE1 6GF, United Kingdom

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 6. Oktober 2016
Mathieu Le Muzic

v

Abstract

Macromolecules, such as proteins, are the building blocks of the machinery of life, and
therefore are essential to the comprehension of physiological processes. In physiology,
illustrations and animations are often utilized as a mean of communication because they
can easily be understood with little background knowledge. However, their realization
requires numerous months of manual work, which is both expensive and time consuming.
Computational biology experts produce everyday large amount of data that is publicly
available and that contains valuable information about the structure and also the function
of these macromolecules. Instead of relying on manual work to generate illustrative
visualizations of the cell biology, we envision a solution that would utilize all the data
already available in order to streamline the creation process.

In this thesis are presented several contributions that aim at enabling our vision. First,
a novel GPU-based rendering pipeline that allows interactive visualization of realistic
molecular datasets comprising up to hundreds of millions of macromolecules. The
rendering pipeline is embedded into a popular game engine and well known computer
graphics optimizations were adapted to support this type of data, such as level-of-detail,
instancing and occlusion queries. Secondly, a new method for authoring cutaway views
and improving spatial exploration of crowded molecular landscapes. The system relies
on the use of clipping objects that are manually placed in the scene and on visibility
equalizers that allows fine tuning of the visibility of each species present in the scene.
Agent-based modeling produces trajectory data that can also be combined with structural
information in order to animate these landscapes. The snapshots of the trajectories are
often played in fast-forward to shorten the length of the visualized sequences, which
also renders potentially interesting events occurring at a higher temporal resolution
invisible. The third contribution is a solution to visualize time-lapse of agent-based
simulations that also reveals hidden information that is only observable at higher temporal
resolutions. And finally, a new type of particle-system that utilize quantitative models as
input and generate missing spatial information to enable the visualization of molecular
trajectories and interactions. The particle-system produces a similar visual output as
traditional agent-based modeling tools for a much lower computational footprint and
allows interactive changing of the simulation parameters, which was not achievable with
previous methods.

vii

Kurzfassung

Makromoleküle, wie z.B. Proteine, sind die grundlegenden Bausteine von der Maschinen
des Lebens und somit essentiell für das Verständnis von physiologischen Prozessen.
Illustrationen und Animationen dienen häufig als Mittel für die Kommunikation in
der Physiologie, weil sie einfach und mit wenig Hintergrundwissen zu verstehen sind.
Ihre Entwicklung braucht jedoch oft Monate von teurer und zeitintensiver manueller
Arbeit. Experten aus dem Bereich von Computational Biology produzieren jeden Tag
riesige Mengen von öffentlich zugänglichen Daten, welche wertvolle Informationen über
die Strukturen und Funktionen von Makromoleküle enthalten. Wir haben die Vision
den Erstellungsprozess von illustrativen Visualisierungen im Bereich der Zellbiologie zu
optimieren, wobei die gesamten verfügbaren Daten benutzt werden, anstatt auf rein
manuelle Arbeit angewiesen zu sein.

Im Rahmen dieser Arbeit werden mehrere Ansätze vorgestellt, welche darauf abzielen
diese Vision zu realisieren. Der erste Teil dieser Arbeit beschreibt eine Rendering Pipeline,
welche interaktive Visualisierung von realistischen molekularen Datensätze ermöglicht
mit Hunderten Millionen Markromolekülen. Die Rendering Pipeline ist in einer weit
verbreiteten Spiele Engine entwickelt und bekannte Computergraphik Optimierungen
wie level-of-detail, instancing und occlusion queries wurden adaptiert wurden um die
molekularen Datensätze zu unterstützen. Im zweiten Teil dieser Arbeit wird eine neue
Methode für die Erstellung von Cutaway Views präsentiert, welche die räumlichen
Erkundung von überfüllten molekularen Landschaften verbessert. Die Methode basiert
auf der Benutzung von Clipping-Objekten, welche manuell in der Szene platziert werden
und einem Visibility-Equalizer, welcher den visuellen Feinabgleich von den verschiedenen
Objekten in der Szene ermöglicht. Um solche Szene zu animieren wird häufig agenten-
basierte Modellierung eingesetzt, welche Raumkurven produziert die mit mit strukturellen
Information kombiniert werden können. Momentaufnahmen von den Raumkurven werden
häufig im Schnellablauf abgespielt um die Länge der visualisierten Sequenz zu verkürzen,
wodurch jedoch auch potentiell interessante Ereignisse nicht mehr sichtbar sein können.
Im dritten Teil dieser Arbeit wird ein Ansatz präsentiert, der Zeitrafferaufnahmen von
agentenbasierten Simulationen visualisiert, welcher versteckte Informationen aufdeckt,
die nur mit eine höheren zeitlichen Auflösung sichtbar wären. Der letzte Teil dieser
Arbeit beschreibt einen neuen Typ von Partikelsystemen, welcher quantitative Modelle
als Input benutzt und fehlender räumliche Information generiert, um die Visualisierungen
von Molekularen Raumkurven und Interaktionen zu visualisieren. Das Partikelsystem

ix

produziert einen ähnlichen visuellen Output, wie traditionelle agentenbasierten Modelle,
allerdings mit geringeren Rechenaufwand. Zusätzlich erlaubt das System interaktiv
Simulationsparameter zu verändern, was mit bisherigen Methoden nicht möglich gewesen
ist.

Contents

Abstract vii

Kurzfassung ix

Contents xi

I Overview 1

1 Introduction 3
1.1 Scope and Contributions . 6
1.2 Contributions of Co-authors . 11
1.3 Thesis Structure . 12

2 Background and Related Work 13
2.1 Visualization of Biological Structures . 14
2.2 Visualization of Biological Systems . 17

3 Rendering and Composition of Molecular Landscapes 23
3.1 Level of Detail . 26
3.2 Instancing . 27
3.3 Occlusion Culling . 29
3.4 Fibres Structures . 30
3.5 Occlusion Management . 32

4 Emulating the Machinery of Life 35
4.1 Observing Multiple Time Scales Simultaneously 37
4.2 Quantity-Driven Particle Behaviour . 40

5 Conclusion 45
5.1 Summary . 45
5.2 Lessons Learned . 47
5.3 Future Work . 48

xi

II Publications 51

A Illustrative Visualization of Molecular Reactions using Omniscient
Intelligence and Passive Agents 53

B Illustrative Timelapse:
A Technique for Illustrative Visualization of Particle-Based Simula-
tions 65

C cellVIEW:
A Tool for Illustrative and Multi-Scale Rendering
of Large Biomolecular Datasets 75

D Visibility Equalizer:
Cutaway Visualization of Mesoscopic Biological Models 87

Bibliography 99

Part I

Overview

1

CHAPTER 1
Introduction

Biochemistry lies at the root of complex biological systems that describe the machinery of
life. In order to understand how we work, we must first understand the complete cascade
of events that begin at the atomic level. Because biological systems span several scales
of space and time as well as scientific fields, such as biology, chemistry, mathematics,
or medicine, it is crucial to communicate advances in biochemistry efficiently between
experts with different scientific backgrounds. Moreover, there is also a growing interest
from the general audience to understand how living organisms work.

Visual communication is undeniably efficient for educating a non-expert audience about
how physiological processes function. A quick glance into physiological textbooks is enough
to realize that they would be close to useless without any illustrations. Illustrations,
such as the ones made by David Goodsell, are often used to convey information in such
textbooks. The illustrator likes to depict entire sceneries on the mesoscale levels, as
shown in Figure 1.1, which would be impossible to observe otherwise in such detail using
current microscopy instruments. His paintings rightfully balance scientific accuracy and
clarity, which makes them very popular because they are accessible to a large audience.

The realization of such illustrations, however, is very laborious and requires highly skilled
individuals. The first step of the creation process consists of gathering knowledge from
the scientific literature, in order to fully understand the process that is to be depicted.
This task demands a thorough knowledge of biology, as scientific articles are intended to
be read by experts and peers. Based on gathered information, the illustrator will decide
how to compose the scene, i.e., which macromolecular structures should be present, where
should they be located, in which quantities, and what behaviour should they exhibit.

The second step of the creation process is the drawing. It is important not to confuse
the work of a scientific illustrator with the work of an artist. Although they both aim at
conveying a message or an idea, the artist has the freedom to hide his message behind
a curtain of abstraction. On the contrary, an illustrator has to convey a message as

3

1. Introduction

Figure 1.1: A painting made by David S. Goodsell of a cross-section revealing the internals
of a mitochondrion. The view focuses on the outer and inner membrane of the organelle
(green). The genome is shown in yellow, and the remaining proteins are both coloured
according to their type and location. Note how the Goodsell arranged the scene to ensure
that all the key elements are visible in a single image, and how the visual mapping of
shapes and colors contribute to the clarity of the image.

clearly as possible in order to expose scientific concepts to an uninformed audience. This
concretely means that the illustrator is bound to a set of logical guidelines in terms of
composition, lighting, color-coding or storytelling.

While some illustrators prefer working with paper and pencil or 2D composition software
such as Adobe Photoshop, the new generation of illustrators grew with 3D rendering
and animation packages such as Autodesk Maya, Maxon Cinema4D or Blender, made
mainstream by the popularization of digital effects in the movie industry. The use of
such computer aided design tools greatly facilitates the drawing of three dimensional
shapes. Perspective and lighting effects, for instance, are automatically handled by the
software, thus leaving artists more time to work on other aspects such as material design,
composition, or post-processing. Since less time is spent working on single images, it is
also less cumbersome to produce animated stories. Consequently, over the last decade,
3D animation became an increasingly popular means of visual communication for cell
biology.

A famous animated educational material is "The Inner Life of the Cell" [Bol06] realized
in 2006 by the XVIVO medical illustration studio, which was appointed by Harvard

4

University. This short animated video beautifully depicts in less than 10 minutes, the
logical sequence of events that describe complex biochemical processes of a living cell.
The shape of macromolecules are based on real structural information available from
public databases and their behaviour based on the most recent knowledge of cell biology.
Furthermore, environments surrounding each event is also accurately depicted to provide
important information about location and scale. This outstanding work took an entire
team of experts and 14 months to produce, which is a good average production time for an
educational material of this length. Unfortunately, on top of being time-consuming, the
production of such films is also very costly, which limits the accessibility and availability
of such visualization.

Another type of media that has a great potential for educational purposes, is interactive
applications. Compared to movies, interactive titles, such as computer games, are able
to keep the player engaged with educational content using the traditional reward system
present in many computer games. Immune Attack [oAS08] and Sim Cell [Gam13] are
two famous examples of edutainment titles whose goal is to reveal the functioning of
living cells through accomplishment of actions that are part of physiological processes.
Promising new VR devices have also emerged over the last years, and are now paving the
way for more exciting and engaging user experiences that could have a great educational
outreach. However, the production of high quality interactive content, similarly to
animated films, is also a lengthy and costly enterprise, as technicians and programming
experts are also needed in addition to the team.

Interactive applications may also have an educational purpose without necessarily intro-
ducing gameplay mechanisms or score-based rewards. Interactive map applications, such
as Google Earth [Goo01], are a good example. Unlike static maps, these applications
enable on-demand access to specific information. Through a set of 2D interactions such
as zoom, rotate, and pan, or 3D interactions such as tilt, the user is free to navigate to
whichever part of earth that he deems interesting. It also features multiple zoom levels
from planets down to the size of building, houses or even cars. Another strong advantage
of the platform is crowd-based collaboration. Three dimensional data obtained from
scans of entire cities can be provided by the municipalities and added to the platform for
in-depth city architecture exploration. Finally, the platform is not only bound to static
representation of earth, dynamic data such as traffic or meteorology provided by third
party applications can also be added in the platform. The final outcome is a system that
enables omniscient and three dimensional observation of the planet and its dynamics,
based on available data. The educational outreach of this software is undeniable as
it transcend all types of media previously used, and provides unconstrained access to
multiple types of information at once.

To our knowledge, the concept of reproducing an observable 3D virtual environment
as such has not yet been transposed to the level of an entire cell. In order to achieve
this enterprise one would need access to important data such as the three dimensional
structures of macromolecules and greater ensembles that form the compartments and
various organelles of the cells. Cells also carry important functions expressed in biological

5

1. Introduction

systems and represented as reaction networks between micro and macromolecules. This
input information is used by scientists to model parts of living cells and produce datasets
that describe the dynamic behaviour of molecules such as concentration charts, reactions
events and 3D diffusion patterns. Fortunately, a large amount of biological knowledge is
already available via online public databases. Concerning structural data, the Protein
Data Bank [BKW+77], for instance, is a project that aims at grouping every known
protein structures in a large public data base. Thanks to this resource, it is trivial to access
the atomic structure of a very large number of proteins and use it for illustrative purposes.
Concerning procedural data, Ecocyc [KCVGC+05], is another example of a public
database that aim at gathering extensive procedural descriptions of the biological systems
that are ongoing in the E. Coli bacterium. Based on these descriptions, biologists have
also managed to run partial and whole-cell simulation of the systems occurring inside these
species on super computers, and they also made the results publicly available [KPC14].
Similarly to satellite data, or traffic data in Google Earth, the data present in these
databases is steadily updated with most recent scientific knowledge by a large crowd of
researchers.
To address the limitations of traditional scientific animations workflows, which are
time-consuming and expensive, we envision a new type of solution that would be more
streamlined and relying on scientific data. Since the visualized output would directly
derive from the data, it would become much less cumbersome to create new content
or update the existing ones with new information based on recent scientific discoveries.
Additionally, we also aim at providing the means to explore the 3D space in real-time
across multiple scales, and also to interact with physiological properties of the environment
in order to keep the subject even more engaged with the content. Despite the large
quantity of available data, there is yet no solution that could generate a comprehensible
digital cell based on this data, which would be both dynamic and multi-scale. What is
truly needed is a solution that would collect and use all this data and enable real-time
visualization and interaction with the showcased models. Although data-collection and
real-time rendering are important aspects, this ambitious enterprise also comprises many
interesting visualization-related challenges. In this thesis, we present the methodology
that we employed to address the various challenges that we have encountered along the
way.

1.1 Scope and Contributions
The central vision of this project is to develop a technology that would provide interactive
visualization of digitally reproduced cellular lifeforms in order to spread state-of-the-art
knowledge of cell biology more easily to the broad audience. Similarly to map navigation
tools, we want to offer boundless exploration through the environment and massive
zooming from the tiniest atom to the entire organism, so that the audience can query
any region of a cell and learn about it on-demand, see Figure 1.2. We also envision the
whole model to be dynamic in order to explain the complex machinery that allow the
cells to sustain, function, and reproduce.

6

1.1. Scope and Contributions

Figure 1.2: Multi-scale visualization of the HIV virus with cellVIEW, a program developed
in the course of this PhD project. This image show the massive zooming capabilities
from entire organisms down to single atoms, while also revealing intermediate structures
such as organelles, compartments and macromolecules.

The scenario that explains how physiological processes work is far from linear, as these
processes are designed to respond to multiple type of environmental changes. Therefore,
we also wish to provide the means to interact with the functions of life in terms of changing
environmental conditions in order to observe and learn how the life-form responds to
such change. To achieve this vision, our approach is to integrate up-to-date biological
knowledge from several online databases that contain frequently updated scientific findings
related to a particular organism. For example, one database will provide us with the
structural description on a microscopic spatial scale, another database will provide
information on an atomic detail, yet another database will provide us with information on
physiology such as reaction networks and life-cycle simulations. A good starting point for
our enterprise would be to begin with small unicellular organisms such as E.coli bacterium
or Mycoplasma mycoides. These are so-called model organisms because we already have
an extensive knowledge about their functioning and structure, so the integration of this
information into a visual depiction seems within reach.

In this thesis are presented different research projects that were all driven by this
vision. To illustrate how the different contributions of this PhD project fit together,
these are laid out in a flow diagram starting from input data to final visual output,
and shown in Figure 1.3. The figure also contains a list of relevant first authorship
publications referenced in the diagram. Second authorship contributions are also included
in this diagram but are not discussed in this thesis. The contributions are encapsulated
into blocks that correspond to the stages of a classic computer visualization pipeline,
and which are described in the following sections. It is worth mentioning that all
the pieces of software associated with these contributions were developed with the
same visualization framework, cellVIEW, with the ambition to compile all the work
we achieved in a unified solution. In 2016, cellVIEW was also awarded Best Technical
Solution at the Austrian Computer Graphics Awards, during the PIXELvienna conference.
Executable version and source code are freely available and can be downloaded here:
https://www.cg.tuwien.ac.at/research/projects/illvisation/cellview/cellview.php.

7

1. Introduction

Figure 1.3: The flow diagram describing the visualization pipeline which we designed for
this PhD project. The contributions of this thesis are placed along the workflow, and the
numbering corresponds to the publication listing below the diagram.

This thesis is based on the following publications:

A Mathieu Le Muzic, Julius Parulek, Anne-Kristin Stavrum, and Ivan Viola.
Illustrative Visualization of Molecular Reactions Using Omniscient Intelligence and
Passive Agents. In Computer Graphics Forum, pages 141–150, 2014.

B Mathieu Le Muzic, Manuela Waldner, Julius Parulek, and Ivan Viola. Illustrative
Timelapse: a Technique for Illustrative Visualization of Particle-based Simulations.
In IEEE Pacific Visualization Symposium (PacificVis), pages 247–254, 2015.

C Mathieu Le Muzic, Ludovic Autin, Julius Parulek, and Ivan Viola. cellVIEW: a
Tool for Illustrative and Multi-scale Rendering of Large Biomolecular Datasets. In
Proceedings of the Eurographics Workshop on Visual Computing for Biology and
Medicine, pages 61–70, 2015.

D Mathieu Le Muzic, Peter Mindek, Johannes Sorger, Ludovic Autin, David S.
Goodsell, and Ivan Viola. Visibility Equalizer: Cutaway Visualization of Mesoscopic
Biological Models. In Computer Graphics Forum, pages 161–170. 2016.

The following article are also related to this thesis:

I Manuela Waldner, Mathieu Le Muzic, Matthias Bernhard, Werner Purgathofer,
and Ivan Viola. Attractive Flicker: Guiding Attention in Dynamic Narrative
Visualizations. In IEEE Transactions on Visualization and Computer Graphics,
pages 256–265, 2014.

II Nicholas Waldin, Mathieu Le Muzic, Manuela Waldner, Eduard Gröller, David
S. Goodsell, Autin Ludovic, and Ivan Viola. Chameleon: Dynamic Color Mapping
for Multi-Scale Structural Biology Models. In Proceedings of the Eurographics
Workshop on Visual Computing for Biology and Medicine, pages 53–62, 2016.

8

1.1. Scope and Contributions

1.1.1 Preparing The Raw Data

In our particular use case, the input data is coming from various sources, and needs to be
unified before being visualized. Structural information of large number of macromolecules,
is publicly available via online databases. Additionally, it is also possible to obtain a valid
spatial arrangement of large ensembles of proteins that form mesoscale models for entire
cells. The trajectory and reaction history of individual particles for a given biological
system may be obtained by modeling approaches called agent-based modelling. This
data can thus be combined with structural information in order to reproduce a similar
visual output as in animated movies.

However, particle-based modeling has a high computational footprint, which prohibits us
from interacting with the simulation in real-time since the data must be precomputed.
Quantitative modelling, such as kinetic modeling, is much more lightweight to compute
but only provides quantitative and relational information, and the spatial component is
entirely missing from the model description. Therefore, we have developed a new type
of solution, which is able to generate 3D particle animations, driven by the results of a
quantitative simulation, which is described in Paper A. The light computational footprint
of quantitative models thus allows fast in-situ visualization of particle trajectories and
interactions, which was not achievable up to that point.

1.1.2 Filtering

Input data processed by the visualization pipeline consists of positions of single atoms
for the macromolecular structures, on the one hand, and the trajectory data for entire
groups of molecules, on the other hand. Because of the chaotic nature of the forces
driving the motion of molecules inside living cells, the raw visualization of such data
often results in an overly complex visual output, which is challenging to comprehend.
Thus, it is important to filter out irrelevant and redundant features such as excessively
erratic motion and occluding elements to reveal important underlying information buried
in the chaos.

Trajectory data is often visualized in fast-forward to shorten the viewing of overly long
sequences, which also speeds up the motion of individual particles. Consequently, it is
almost impossible to keep track of individual elements and observe key reaction events
that enable that same process. Indeed, rates of physiological processes operate at a much
larger time scale than the movement of individual particles. With direct visualization,
one can observe only one of these scales, either the physiological process or the behaviour
of individual particles. In Paper B, we have investigated how to simultaneously convey
two phenomena that reside at different temporal scale levels. In particular, we have
aimed at developing a technique that can show the complexity of diffusion in fast-forward
and simultaneously allows viewers to see physiologically-relevant events that would not
be observable at such temporal resolution.

Another issue that derives from densely crowded environments is the presence of a large
number of bodies that may obstruct the view to key macromolecules and important

9

1. Introduction

reaction events. A characteristic of molecular bodies is that many of them actually share
the same atomic structure. Our technique, called Visibility Equalizer, and described in
Paper D, allows the user to see inside dense arrangements of proteins, by providing an
explicit control over the visibility of entire groups of molecules sharing a similar structure.
Rather than completely displaying or removing entire sets of proteins, we introduced the
concept of fuzzy visibility, which allows reducing the concentration of visible elements of
a given type, thus revealing the internals of a cell while preserving important contextual
information.

1.1.3 Mapping

The next operation of the pipeline is the mapping, which determines visual properties
such as shape or color. Because the data we want to visualize features multiple scales,
from single atoms and up to entire cells, it is important to adapt the visual representation
accordingly to ensure an optimal comprehension of the scene at any given zoom level.
A level-of-detail scheme is an optimization technique often used in computer graphics
and visualization to accelerate the rendering. The principle consists of progressively
switching between simplified shape proxies as the camera distances itself from objects. In
the case of molecular visualization, level of detail is two fold, on the one hand, it allows
to speed up performance, and on the other hand it can also be utilized to filter out high
frequency details, as molecules tend to have complex shapes, which may clutter the view
when observing molecular landscapes in their entirety. In Paper A and Paper C we
have explored the use of level-of-detail schemes, specifically designed for macromolecular
structures.

Color is a strong visual cue that is extensively used in molecular visualization. In large
scenes comprising many macromolecular elements, color coding can have multiple folds.
It can either be used to discriminate atoms with different physio-chemical properties, such
as charge or hydrophobicity, structural properties such as the type of atom, amino-acid,
chain, protein, or even spatial properties such as the membership of element to a given
subregion of an organism. Often these properties can only be optimally observed at one
single zoom level. In Paper II we developed a novel dynamic coloring approach that
optimises the color coding based on the current zoom level in order to ensure that only
the most relevant information is revealed when exploring multi-scale atomic structures.

1.1.4 Dynamic Visual Guidance

Traditional focus+context approaches are commonly utilized to highlight key interactions
between molecular agents when observing an ongoing biological system. However, these
may fail when observing the results on large projection displays because they should
be effective both for the foveal as well as the peripheral vision, especially when viewing
large ensembles of particles that exhibit very chaotic motion patterns. Therefore, we
have investigated how to guide the viewer to interesting events in a dense dynamic scene
of interacting molecules that are presented on such type of display. In Paper I, we have

10

1.2. Contributions of Co-authors

developed a special type of dynamic guidance based on subtle flicker that is effective at
guiding the viewer’s gaze towards interesting events, is unobtrusive, does not use any
visual variables that encode the data, and incurs only a minimal visual modification to
the presented scene.

1.1.5 Rendering

The rendering is arguably the most crucial part of our visualization pipeline, as it is
meant to display challengingly large and dynamic molecular datasets at a high frequency
refresh rate. Realistic atomic structures of entire cells consist of thousands to millions
of macromolecules, themselves composed of a few thousands atoms each, resulting in
an memory footprint that exceeds the capacity of today’s high end graphics hardware.
Fortunately, many molecules present in these scenes share the same structure, which
allows us to utilize the concept of instancing. Every structure of a particular protein
macromolecule is stored on the graphics hardware (GPU) only once, while the positions
and orientations of the molecules are stored separably. Instancing is useful for reducing
the size of redundant datasets, but also helps to reduce the number of necessary draw calls,
which tremendously accelerates the performance when rendering hundreds of thousands
of elements. When it comes to the geometric representation of a single macromolecule,
we model and render it as a set of atom spheres drawn using 2D impostors, which have
a much lower vertex count than 3D tessellated spheres for the same visual output. We
also utilize a level-of-detail scheme to dynamically switch between proxies according to
the distance of molecules to the camera, which is presented in Paper A. In Paper C,
further acceleration techniques have been designed to optimize the rendering speed even
further, such as occlusion culling, as well as a new rendering pipeline dedicated to large
and linear fibre structures.

1.2 Contributions of Co-authors

All manuscripts that constitute this thesis were written during the PhD project and the
author of this thesis is also their main author. The first author has put the scattered
thoughts of the entire research team and realized a concrete and meaningful technology
out of it. He was responsible for the development of cellVIEW as well as the prototyped
software of the technologies presented in the papers. Ivan Viola, the main supervisor of
this thesis, coauthored all manuscripts. Viola is the primary investigator of the research
team, and many interesting concepts presented here emerged from his imagination long
before the project was even funded. He also provided indispensable mentorship, and high
level ideas for a fruitful research direction thus contributing to the crystallization of ideas
throughout the projects. Paper A, B, C, were all co-authored by Julius Parulek who
helped with the conception and implementation of the rendering pipeline, and he also
provided valuable advices and support during the writing of manuscripts. He also helped
porting the prototyped technology to the Unity 3D game engine. Paper A received
the participation of Anne-Kristin Stavrum who joined the project as a biologist and

11

1. Introduction

was given the task to conceive physiological models utilised to prototype the presented
technology. Paper B was also co-authored by Manuela Waldner who helped designing
and run the user studies, provided insightful inspiration, and also actively participated in
the writing of the article. Paper C was co-authored by Ludovic Autin, who conceived
the showcased models, helped with the development of cellVIEW, and also provided
support and insightful advices. Paper D was co-authored by Peter Mindek as second
first author since both authors were deemed to have contributed equally to the success
of this article, this mention is also present in the publication. Paper D also received
additional help from Johannes Sorger for the writing of the manuscript, and the design
choices were also influenced by the feedback we received from Ludovic Autin and David
S. Goodsell.

1.3 Thesis Structure
This thesis consists of two parts. The first part summarizes individual contributions and
findings and also aims at describing how these single pieces fit together as part of a bigger
picture. The second part contains the published articles. Chapter 2 follows the first
introductory chapter with an overview of previous work related to the visualization of
structural and systems biology models, with an emphasis on multi-scale visualization. A
more detailed overview of related works is contained in the individual papers in the second
part of this thesis. Following the related work, we provide in-depth details about the
contributions, starting with the visualization of strictly static and structural information
in Chapter 3. In Chapter 4, we present the work that is concerned with the visualization
of large-scale structures enhanced with dynamic procedural information obtained from
real scientific data. Finally, we conclude the first part of the thesis in Chapter 5.

12

CHAPTER 2
Background and Related Work

In biochemistry, there exists two distinct experimental protocols, respectively called dry
and wet laboratories. Wet laboratories are where chemical agents are physically manip-
ulated and then observed. Dry laboratories are where computational or mathematical
methods are employed for the modelling and analysis of biochemical processes. Over the
last decades, the use of in-silico experiments (dry laboratories) have significantly increased
due to the development of new software and the decreasing costs of super-computers.
Despite being often criticized for being too approximate, dry laboratory experiments
represent a valuable source of information for researchers nonetheless.

In 2013 Martin Karplus, Michael Levitt and Arieh Warshel were awarded the Nobel prize
in Chemistry for their work on theoretical modelling for complex chemical systems [Kar14].
Their work highlights the importance of theoretical modelling as a tool to complement
experimental techniques as wet-lab experiments are usually complex and expensive to
conduct. The analysis of theoretical modeling brings researchers the necessary guidance
to formulate new hypotheses, which can be later on verified in wet laboratories, thus
saving the time and money needed to run too many wet lab experiments. As a result
of the increasing popularity of dry lab experiments, a significant amount of data has
already been gathered and produced.

Data is often stored in digital format and may be shared with peers via online databases.
Structural biology and Systems biology are branches of molecular biology that both
heavily rely on computational methods. Structural biology informs us about how things
look, i.e., what is the atomic structure of a protein, while systems biology informs us
about how things work, i.e., what are the micro and macromolecular interactions that
influence the functioning of living organisms.

13

2. Background and Related Work

Figure 2.1: Different types of representation used in molecular visualization. (a) The
ribbon diagram reveals structural information hidden inside the structure, such as
the formation of sheets or helices along the protein chains. (b) The van der Waals
representation, also called space filling, renders individual atoms as 3D spheres. (c)
The stick model represents the bonds betweens two atoms with lines, but unlike space
filling it does not encode the atomic radius. (d) The surface representation wraps the
entire molecule with a tight hull that facilitates the detection of cavities that may host
important reaction sites.

2.1 Visualization of Biological Structures

Structural biology is the branch of biology that is concerned by the structure of biological
macromolecules, such as proteins or DNA, for example, and focuses on understanding
the relationship between the structure of molecules and their function. Data acquisition
methods, such as X-ray crystallography, are commonly used to read the atomic structure
of proteins, i.e., the positions or atoms, their type, and the type of bonds between them.
Acquired atomic structures are often stored in digital files and shared via public data bases,
such as the Protein Data Bank [BKW+77], to facilitate collaboration among peers. This
information is then processed to decrypt underlying important structural information,
and also used to run molecular dynamics (MD) simulations, which aim at reproducing
atomic interactions and forces to observe the actual behaviour of macromolecules over
time. Visualization is an important component of this discipline, because atoms are
arranged and assembled in three dimensional space and therefore, a visual representation
is often required. Biologists developed several types of representation to illustrate
molecular structures, and are supported by mainstream visualization packages such as
VMD [HDS96] or PyMol [Sch15].

A popular representation among structural biologists is the secondary structure or ribbon
diagram (Figure 2.1a), which is used to reveal properties of the protein backbones, such as
sheets or helices. The van der Waals surface (Figure 2.1b) is probably the most commonly
understood representation and simply shows atoms as spheres whose radius corresponds
to the atomic radius. The simplest representation is the sticks model (Figure 2.1c), where
each bond is represented as a line, and color coding is used to indicate the atom type at
the line extremities or joints. Finally, the molecular surface representation (Figure 2.1d)
is used to show a continuous surface that closely surrounds atoms of a protein, and that

14

2.1. Visualization of Biological Structures

Figure 2.2: The principle of cellPACK, by courtesy of Ludovic Autin. Firstly, recipes
are designed based on available information, such as protein structures, concentrations,
distribution and compartment shapes. Then the software reads the recipe and generates a
plausible assembly of molecules based on collision constraints, in order to generate a larger
structure featuring structural information down to the level of atoms, which would not
be possible to acquire otherwise with traditional methods such as X-ray crystallography.

also closes small holes between atoms that are not accessible by small solvent molecules.
This method was first introduced to reveal information that is not salient enough with
other types of representations, such as the presence of pockets and cavities buried in
the protein structure that can potentially host important reaction sites. In scientific
illustrations, the shape of a protein is an important aspect to convey as it is tightly related
to its function. Therefore the surface or space-filling representations are often preferred,
because they communicate shape information more efficiently. Furthermore, these models
can easily be stored as polygon meshes, which are supported by 3D animation packages.
BioBlender [ACZ+12], Molecular Maya [Cla], ePMV [JAG+11], are examples of plugins
for animation packages that were specifically developed to ease the loading and rendering
of molecular surface meshes in animation packages.

X-ray crystallography is limited because it cannot capture large and complex structures
such as organelles, viruses, or cells in their entirety. Electron microscopy imaging, on the
other hand, still does not offer enough resolution to capture individual atoms which make
the segmentation task between proteins extremely challenging. So far, only little is known
about spatial arrangement of proteins that form greater structures, and their manual
modeling would be a cumbersome and time-consuming task. To fill the mesoscale gap
between atoms and cells, scientists from the Scripps Research Institute have developed
cellPACK [JAAA+15], a tool to procedurally construct large mesoscale structures, such
as entire viruses or cells, at atomic resolution. cellPACK incorporates the most recent
knowledge obtained from biology to generate these models, such as protein structures
obtained from crystallography, concentrations and spatial distribution observed in vitro,

15

2. Background and Related Work

and 3D shape of compartments acquired from electron microscopy.

They summarize all this data in structural descriptions which they call a recipe, which is
then used as input to generate entire models of viruses and cells via a packing method
based on collisions constraints. This concept is depicted in Figure 2.2. Their algorithm is
designed to progressively insert molecules inside given compartments. They use a spatial
partitioning scheme to detect overlapping structures and find an appropriate location
to insert new shapes, guaranteeing no overlap with previously inserted elements. As an
output, their tool generates a list that contains the position, rotation, and type of all the
macromolecules that compose the organism. Additionally, their method also supports
packing fibre data, such as DNA, or RNA, which is stored as spline control points in the
resulting file.

The initial goal of cellPACK was to generate valid protein ensembles that form organisms
and that also contain atomic data in order to serve as input for large-scale molecular
dynamics simulations. Furthermore, the generated structures can also be loaded in 3D
rendering and animation packages for illustration purposes. These large models are thus
highly valuable to us, as they contain complex data that would have to be modeled
manually otherwise. They are also publicly available and can be easily updated with the
most recent knowledge of cell biology. However, the overwhelmingly large number of
elements that may compose these mesoscale structures begin to truly challenge animation
packages that were not designed with such constraints in mind. While it is possible
to render still images in very high quality, real-time visualization of these models is
simply not possible, even with simplified surface meshes. This affects the productivity of
those who create the models, as well as those who are using it for illustration purposes,
and it also compromises the transition to the next generation of interactive scientific
illustrations.

Although the polygon mesh is currently the most common shape representation supported
by animation packages and game creation software, it might not always provide the best
performance for large and complex datasets. Indeed, the rendering of highly detailed
meshes requires an overwhelmingly large number of polygons which can stress the
rendering pipeline and video memory usage. Reducing the number of polygons for surface
meshes can help improving performance significantly, but it also removes important high
frequency structural details, and for larger scenes real-time performance requirements are
often still not met. To keep up with the increasing size of atomic datasets, visualization
experts developed new cutting edge techniques that do not rely on polygon meshes. Tarini
et al. [TCM06] introduced a novel visualization technique inspired from 2D billboards, a
popular concept in computer games. The technique consists of drawing camera-facing
2D sphere impostors rather than tessellated 3D spheres for rendering individual atoms.
As a result, the drawing of a molecule comprising 1000 atoms, for example, requires only
4000 vertices —4 vertices per atom— to form the camera facing quads, while polygon
meshes would require a number of vertices up to one or two orders of magnitude higher.
Thus, they are able to interactively render large macromolecules with a much smaller
computational and memory footprint.

16

2.2. Visualization of Biological Systems

Shortly afterwards, Lampe et al. [LVRH07] extended the billboard technique by leveraging
the programmable GPU rendering pipeline to reduce memory bandwidth usage and GPU
driver overhead. Instead of storing the entire atomic structure of a protein on the GPU,
they only store the position of amino-acids which are the building blocks of proteins.
Since there is a relatively low number of different amino-acid types, up to 20 different
types, they take advantage of the multiple occurrences of these elements to reduce the
number of overall bytes needed to render a protein. Alternatively, Grottel et al. [GRDE10]
proposed to improve the rendering speed of large particle-based datasets by implementing
occlusion culling to discard hidden particle chunks from the rendering pipeline based on
the depth information obtained in the previous frame. Hence, only the sphere impostors
that are guaranteed to be visible will be processed by the graphics pipeline, thus greatly
increasing the rendering performance for dense particle datasets.

Lindow et al. [LBH12] subsequently presented a novel approach which relies on ray-casting
instead. For each protein structure, they store the individual atoms in small and fitting
3D grids and upload the protein grid on the video memory. Upon rendering, they first
draw the bounding box of the grid, and subsequently, in the fragment computing program,
they cast a ray for each fragment in order to find the first hit with an atom sphere. The
ray-tracing is thus performed locally for each macromolecule rather than globally for the
entire scene, which means that ray-traversal routines could still be executed for proteins
that are occluded and non visible in the final result. Their method supports rendering
of very large structures with up to several billion atoms. Mesoscale landscapes usually
feature a high number of individual proteins that share the same structure. In order to
spare video memory usage, which is usually restricted in size on graphics device, they
also use the principle of instancing. Instead of storing every atom of the scene on the
video memory, they only upload the position and rotation of individual proteins to the
video memory and upload unique protein structures only once.

Falk et al. [FKE13] extended this approach by introducing depth-based occlusion culling
and used simpler grid traversal schemes to reduce computing for proteins that are located
far away from the camera. They reported being able to render sparse cytoskeleton
datasets for an entire cell, with up to 25 billion atoms at 3.6 fps on modern graphic
hardware. While the presented methods only support the van Der Waals representation,
a few techniques were also developed to improve the rendering of large and highly detailed
molecular surfaces using GPU computing and efficient supporting structures instead of
meshes [KSES12] [PV12] [PB13] [KGE11] [SI12]. However, none of these surface-based
methods is yet able to compete in terms of performance with most recent van der Waals
rendering methods presented by Lindow et al. [LBH12] and Falk et al. [FKE13].

2.2 Visualization of Biological Systems

Systems biology is the branch of biology concerned with computational or mathematical
modeling of complex biological systems. The organization of biological systems spans
several scales; on the level of single cells they typically describe signalling or regulatory

17

2. Background and Related Work

Figure 2.3: Pathway reaction cycle describing the process of energy production during
aerobic respiration and which takes place inside mitochondria, also known as TCA or
Krebs cycle [Kre08]. This type of procedural description informs us about the type of
elements participating in metabolic processes and their role. Initially, these descriptions
are used to build models and run scientific simulations. Alternatively they could also be
utilized to generate the scenario of explanatory animations to inform the public.

functions of living cells, such as energy production, gene expression, and ability to divide
or die. Such systems consist of a reaction network between molecular agents such as
enzymes, metabolites, or proteins. The reaction network is denoted as pathway, an
example is provided in Figure 2.3. Based on the pathway description, scientists reproduce
the dynamics of a system in silico, via simulation tools, and observe the changes in species
concentrations over time. The results of the simulation are then further analysed to
predict and understand how these systems change over time and under varying conditions,
and potentially develop solutions to health issues. The complex reaction networks are
usually described with a custom markup language, such as SBML [HFS+03], and used as
input for the simulation tools. Similar to protein structures, the system descriptions are
often shared with peers via public online databases. Biologists have developed several
methods to simulate the dynamics of a system. Depending on their modus operandi the
modeling approach can either be deterministic or stochastic. Models may also feature
spatial information or be purely quantitative.

Quantitative modeling, also known as kinetic modeling, relies on the use of differential
equation systems to compute the species concentrations at a given time and is therefore
deterministic. Results only vary according to the initial conditions such as concentrations

18

2.2. Visualization of Biological Systems

and reaction rates that are predefined in the model. Additionally, the models may also
feature spatial details such as location of a species in a subregion of a cell. This approach
was the first one to be introduced and still remains very popular among systems biologists
because it is reliable and computationally inexpensive. Another type of modeling is agent-
based modeling. This method differs greatly from the strictly mathematical approach used
in kinetic modeling. It aims at reproducing the original reaction-diffusion behaviour of
biochemical agents in three dimensional space and is therefore stochastic. This technology
was primarily developed to simulate and understand complex migration pattern among
animal or human populations. The concept was then transposed to study the behaviour
of chemical species as more capable computer hardware became available and affordable.
With agent-based modeling, actors of systems are virtually represented as a 3D points
in space and subject to constant random motion based on diffusion speeds observed in
vitro. New elements are introduced or removed according to individual reaction events.
Reaction events are triggered based on local proximity of potential reaction partners and
reaction probabilities based on the reaction rates observed in-vitro.

Software, such as CellDesigner [FMKT03], TinkerCell [CBS09], and VCell [MSS+08] are
designed to facilitate the research process by providing a unique solution for modeling,
simulation, and data analysis in a single framework. These tools usually cover non-
spatial models (quantitative modelling), except VCell which also supports the use of
an external agent-based simulation modules called Smoldyn [AABA10]. At this stage,
scientists studying these models have very limited ways to see how these mathematical
models of physiology behave. They can interact with the model by specifying input
parameters to the simulation and the resulting visualizations are often time-concentration
plots. Even when the simulation method produces spatial information that can be
visualized, such as particle-based modeling, these tools will generally favour highly
abstracted visualizations which expert users prefer and understand. Therefore, with
such visual form, it is hard to relate the models to what is visually observed in wet-lab
experiments. In interdisciplinary physiological sciences this might hamper communication
of results. However, the underlying data present in the models contains thorough dynamic
descriptions of how these biological systems work. These models inform us about the
species present in a system, their quantities, location, diffusion speed, reaction partners,
and reaction rates. When associated with corresponding structural information this data
could potentially help to digitally reproduce an illustrative and dynamic model of a cell.

Biology, medicine, and other sciences can strongly profit from a visualization of physiology
in order to gain, verify, and communicate the knowledge and the hypotheses in this
field. While the visualization of spatial trajectory data is often not crucial for the study
of metabolic pathways, in specific cases such as signalling pathways for example, such
visualization might be informative to scientists that are interested in observing the spatial
distribution of small signalling molecules over time. Therefore, a few specific tools were
developed to allow three dimensional visualization of particle trajectories obtained from
agent-based simulation results. CellBlender [cel16] is a software conceived as a plug-in
for the 3D animation package Blender, which allows to model, design, and visualize

19

2. Background and Related Work

Figure 2.4: Playback of the trajectory data modeled with MCell, and rendered in
cellVIEW. The model was only designed for demonstration purposes and depicts a
mitochondrion from outside (left) and inside (right). The model features channel proteins
diffusing on the outer membrane of the organelle (red), and small ATP molecules (green)
exiting the organelle through the channel proteins. The process which only is partially
depicted here is the production of energy (ATP) in the core of the organelle that is then
released outside the matrix in order to be consumed elsewhere in the cell.

particle-based models computed with MCell [KBK+08]. The cell compartments of a
given model are represented as 3D meshes and can be modeled or loaded via the Blender
interface. Via the custom interface of the tool, expert users can specify the model
parameters, such as the species types, initial quantities, and diffusion speed.

MCell also supports 3D and 2D diffusion models for the particles. 3D diffusion is applied
to elements diffusing freely inside a volume, while 2D diffusion is applied to elements
that are embedded in a membrane and only diffuse along the compartment surface, such
as channel proteins. Users must then input the reactions of the model by specifying the
participants, the products and the reaction probability. Particles diffusing in 3D are also
able to diffuse outside their initial compartment, and these crossing events must also be
defined. The user interface also features a multitude of advanced parameters to fine tune
the modeling. Finally, the user specifies the duration of a single step in nanoseconds,
and the desired number of steps. The duration of one simulation step will determine
the precision of the simulation. MCell then runs the computation offline based on the
model properties previously set up in CellBlender, and produces large files that contain
trajectory data for each single particle and for the given number of simulation steps.
The trajectory data is then converted to a key-frame particle animation format which is
readable in Blender. The simulation may then be played back for real-time exploration
or rendered in movies. Additionally, it is also possible to use custom meshes to show the
shapes of the molecules.

Although this type of modeling technique was invented for scientific purposes, we envision
that the generated data could also be utilized to digitally reproduce the functioning
of cells for explanatory purposes. Indeed, the resulting visualization carry important
information as it allows the depiction of complex biological systems in the form of 3D

20

2.2. Visualization of Biological Systems

diffusion and reaction animations, which can also be embedded in their environment, see
Figure 2.4. Falk et al. [FKRE09] developed a framework to playback particle trajectories
with additional overlaid information to trace the history of individual particles, such
as trajectory and previously undergone reactions. A direct approach to visualizing
raw trajectory data, however, may often result in an overly cluttered view due to an
overwhelmingly large number of elements diffusing randomly in every directions, and
may often be close to incomprehensible, even for expert users. To provide a clearer
overview of the spatial information, Falk et al. [FKRE10] followed up their previous
work and proposed a novel volume-based representation of the agents density to better
observe migration pattern of a selected species. An advantage of this approach is that
it significantly reduces visual clutter and highlights important spatial properties much
more efficiently. However, this approach was only designed for a certain type of domain
users, rather than for the laymen. Although it may help reducing overall visual clutter, it
also removes individual particle behaviour, which would be crucial to showcase in order
to ensure that the underlying information, i.e., the actual function of each actor of the
system, is perceived by the viewer.

21

CHAPTER 3
Rendering and Composition of

Molecular Landscapes

Up to this point, the rendering methods presented in the visualization literature have
reached unprecedented levels of performance, in terms of size of supported datasets and
rendering speed, thus enabling real-time rendering of large molecular structures generated
with cellPACK [JAAA+15]. The most recent presented solution is capable of rendering
25 billion atoms at 3.6 fps in HD resolution. However, the rendering approach fails to
provide a comfortable user experience, as one expects between 24 and 60 Hz on average
for interactive entertainment, and more than 75 Hz for VR content. The rendering
should also leave enough resources free for eventual additional computation, such as
the physics simulation of the molecular bodies for real-time animation, for example.
Moreover, none of the techniques mentioned above have proved to efficiently support
other types of molecular structures that exhibit a more complex organization, such as
lipid membranes, nucleic acids or fibres, which ought to be taken into account for a
precise depiction of molecular landscapes. These are indeed more challenging to render,
because the assembling blocks of these structures are considerably smaller and also more
numerous than with protein data.

In order to provide a truer depiction of micro-organisms and improve real-time user
experience, we decided to investigate new rendering approaches that would address
all these limitations. A shortcoming of the volumetric approach presented by Lindow
et al. [LBH12], is that for each rendered macromolecule, additional expensive ray-
traversal routines are required during the per-fragment processing, which may unbalance
parallel thread execution and cause considerable bottlenecks, especially with dense scenes
composed of small individual macromolecules. We opted for an impostor-based method
for the design of our rendering pipeline, which requires more individual per-fragment
thread execution per macromolecule, but is far more balanced and suitable for parallel
processing and also does not require expensive volume sampling operation upon rendering.

23

3. Rendering and Composition of Molecular Landscapes

Figure 3.1: Rendering benchmark achieved with a virtual dataset made out of 250 smaller
blood plasma datasets, and comprising up to 15 billion atoms in total. The software is
capable of rendering the entire dataset at 60 frames per seconds, and from any point of
view in the 3D scene. The level-of-detail scheme ensures a fast refresh rate when looking
at the dataset in its entirety, and the occlusion queries optimize the performance when
closely looking at a sub-region of the dataset.

The pipeline that we have designed directly follows-up the work of Lampe et al. [LVRH07].
It relies on GPU computing and aims at minimizing GPU driver-overhead caused when
issuing too many draw commands to the GPU. We also optimized the rendering by
adapting well-known computer graphics techniques, such as level of detail, instancing,
and occlusion culling, allowing us to render up to several billion atoms with a steady
60 Hz refresh rate, see Figure 3.1. The rendering solution which we developed, dubbed
cellVIEW, was implemented with a popular game engine, and the rendering pipeline was
embedded in the core of the engine. The project received help from the researchers of
the Scripps Research Institute, namely Ludovic Autin, who provided support to import
cellPACK models in cellVIEW. Results of the visualization of cellPACK models with
cellVIEW are shown in Figure 3.2.

A particularity of the scenes generated with cellPACK is that they aim at reproducing
molecular crowding which can be observed in vitro and results in dense concentrations of
macromolecules. So far, state-of-the-art methods that are able to render up to several
billion atoms interactively have only showcased protein datasets with a low population
density, which means that less macromolecules are present in the viewport at once. Unlike
previous work, cellVIEW was specifically designed to render large scale and realistic
datasets featuring accurate protein densities. Besides increasing the computational
complexity of the rendering, denser scenes may also cause major occlusion issues because
important internal structures, such as DNA for example, may be hidden by surrounding
elements. Hence, we also propose a custom scene composition pipeline to adjust the
visibility of proteins, while preserving important contextual information.

24

Figure 3.2: Handmade Illustrations of David S. Goodsell (left) next to images rendered
with cellVIEW and captured in real-time. The depicted organisms are the HIV surrounded
by blood plasma proteins (a) and Mycoplasma (b), which is a small bacterium. The
datasets were modeled with cellPACK and are still work in progress, the RNA contained
inside the HIV capsid, for example, is not yet present, as well as the bi-lipid membrane
of Mycoplasma. Real-time rendering is very helpful during the modeling process because
it allows to quickly verify and validate of the models, which renders the modeling
process much less cumbersome. Additionally, it becomes less time consuming to create
illustrations since the system also allows us to quickly compose the scene with the visibility
equalizer to ensure that important elements are visible without manually modifying the
position of the macromolecules.

25

3. Rendering and Composition of Molecular Landscapes

Figure 3.3: The level-of-detail concept (LOD) applied to macromolecules. Using a
clustering algorithm, simplified atomic structures are generated, which comprise fewer
and larger spheres instead of atoms, called meta-atoms. Impostors are used to generate
the spheres and thus the computational footprint for rendering the proxies is greatly
reduced, down to only a few dozen of spheres for the most simplified proxies.

3.1 Level of Detail
Level of detail (LOD) is a method often used in computer games to cope with the limited
polygon budget of real-time applications. The principle consists of drawing simpler mesh
representations for distant objects since they have a lower pixel coverage compared to
objects nearer to the camera, and therefore less details can be shown. From an original
3D model with a high number of polygons, proxy models are generated to create an
atlas of meshes with gradually simplified geometries, as visually explained in Figure 3.3.
Upon rendering of a model, the LOD proxy is then selected based on the distance to the
camera.

This concept was applied to molecular visualization by Parulek et al. [PJR+14] who
presented a continuous level-of-detail scheme for molecular surface rendering. Molecular
surfaces are useful for scientific exploration of cavities and pockets. Because computing
the surface for dynamic molecular datasets in real-time is expensive, they propose to
restrict the computation of high resolution surface details to a subset of the macromolecule
located near the camera. For the most distant regions they simplify the atomic structure
to reduce the computation times, which also reduces high frequency surface details. They
use clustering algorithms to simplify the atomic structure of a protein with fewer and
larger spheres, which we refer to as meta-atoms. We also use clustering to simplify
protein structures, but we directly render the spheres resulting from the clustering as 2D
impostors instead of computing the surface. Clustering allows a reduction of the number
of spheres from 75% for the first LOD proxy up to 99% for the most simplified proxies.
We also use different shading materials for original atomic structures and the proxies.
For proteins closer to the camera and showing the entire atomic data, we highlight the
surface details using high-frequency illumination. For proteins located further away that
are showing only simplified structures, we only highlight low frequency shape details to
make the meta-atoms less salient and the overall shape smoother.

A naive rendering strategy would be to issue a single draw command per macromolecule.

26

3.2. Instancing

However, each draw command will cause a small latency due to GPU-driver overhead,
regardless the number of rendered spheres. When dealing with complex scenes, the
accumulation of the GPU-driver latency would cause a severe bottleneck, which would
simply forbid real-time rendering. With legacy GPU-instancing, one may group proteins
sharing a similar structure and LOD proxy in a single draw command. In most complex
use-cases, however, there may be up to several thousand different macromolecule types,
and half of dozen of LOD levels. Issuing that many draw operations would thus unnec-
essarily compromise the efficiency of the rendering pipeline. Therefore, we developed
an optimized rendering pipeline which is able to render an entire set of macromolecules
with different structures and LOD proxies in a single draw command, thus removing
GPU-driver entirely.

3.2 Instancing
Instanced drawing is a concept widely used in computer graphics that aims at reducing the
memory bandwidth and footprint, as well as reducing the GPU-driver latency caused by
a large number of draw commands. This concept was applied by Lampe et al. [LVRH07]
who used the geometry shader stage to instantiate the atomic structure of entire amino
acids, also called residues, directly from the GPU rasterization pipeline. Amino-acids are
the building blocks of proteins, and there are around 20 different types of amino acid.
They initially store the atomic structures of each residue type in the video memory in a
dedicated buffer, and they also store in separate buffers the position, rotation, and type
of all amino acids that compose a protein. With their method, they are able to render
an entire residue with a single initial per-vertex operation. During the vertex shader
execution, amino acid properties such as position, rotation, and type, are read from the
video memory and passed on to the next shader stage, i.e., the geometry shader. The
geometry shader program then fetches the local atom positions for the corresponding
residue from the video memory, which are then transformed with the residue position and
rotation. For each residue atom, new triangles are injected around atom centroids, and
then processed in the final per-pixel shader stage to form 2D sphere impostors, similarly
to Tarini et al. [TCM06]. It is also possible to launch the execution of multiple vertex
shader programs in a single draw operation, thus reducing the latency accumulation
caused when sending multiple rendering commands to the GPU.
Given a protein composed of 4000 atoms and 250 amino acids, the memory footprint of
a protein would thus be reduced from 16000 32 bits numbers (4000 × 3 floating-point
numbers per atom position, and one integer for the type) to 2000 numbers (250 × 7
floating-point numbers per amino acid position and rotation and one integer for the type
and excluding residue atoms, which may be are reused by other molecules). Although
there is a finite number of amino-acid structures, there also exists an infinite number of
possible rotational conformations, that may often change along a single protein chain.
Therefore, it is rather challenging to accurately depict protein structures with this
approach. To address this limitation, it would be preferable to apply the same concept
of instancing to entire proteins instead of single residues. It would also help reducing the

27

3. Rendering and Composition of Molecular Landscapes

memory footprint of the scene as only the type, position, and rotation would suffice to
describe a single protein (only 8 numbers needed per protein). However, the geometry
shader causes a considerable latency as the number of injected geometries increases,
and therefore it is only possible to instantiate a few dozen triangles efficiently with this
method. Indeed, a single geometry shader program is responsible for transforming and
injecting multiple geometries, but this operation is performed in serial, while it would be
more efficient to distribute the workload across multiple threads instead.

The tessellation shader is a feature that is now available on most recent graphics hardware,
and is also available on high-end mobile devices. Similarly to the geometry shader, this
shader stage is designed to dynamically inject geometries in the rendering pipeline from
a GPU program. While the geometry shader is only designed to inject a few dozens
of triangles maximum, the tessellation shader is able to efficiently inject thousands of
triangles by dispatching the work on multiple threads. Initially, the feature was developed
to selectively increase the level of detail of sub-regions of meshes, based on the camera
distance and surface curvature. The tessellation engine is also able to inject other types
of primitives than polygons, such as lines or vertices. We use this feature to dynamically
control the number of spheres to be rendered from the GPU program executed in the
rendering pipeline. Similarly to Lampe et al. [LVRH07], only one initial vertex shader
thread is required to draw an entire molecule, but the maximum number of vertices that
can be injected per thread is up to two orders of magnitude greater with our approach.

The vertex shader, which is the first stage of the pipeline, is used to fetch protein
information such as position, rotation, and type, from the video memory, and these will
then be passed on to the next stages of the pipeline. Based on the protein type and
distance to the camera, we select the corresponding LOD proxy, which informs us about
the number of spheres required to draw the given protein. We then notify the tessellation
engine about the number of vertices that we want to inject, i.e., one vertex per atom or
meta-atom. The tessellation engine will then dispatch the execution of a thread batch
comprising one thread per vertex. Each thread is initially given a unique ID, which is
used to fetch the corresponding sphere information from the main video memory, such as
the local position and radius of atoms or meta-atoms. After transforming the local sphere
position with the protein position and rotation, the sphere centroid is passed on to the
next shader stage, i.e., the geometry shader. Subsequently, the geometry shader is used
to inject the remaining vertices around the sphere centroids to form the triangles of the
2D sphere billboards. The tessellation shader supports injecting of up to 4096 vertices
maximum at once, and when combined with the geometry shader the pipeline is able to
generate up to 8192 triangles from a single initial per-vertex program. An advantage of
this technique is that it allows to render an entire scene comprised of several hundreds of
thousands of proteins in a single draw command regardless of the protein type or LOD
proxy, thus approaching zero driver overhead.

28

3.3. Occlusion Culling

3.3 Occlusion Culling
Upon rendering macromolecular landscapes, a large number of geometries are processed
through the rendering pipeline, which may overload the graphics hardware and cause
bottlenecks. Per-fragment processing is, by far, the most computationally demanding
stage of our pipeline. Because the scenes are very dense, a large number of spheres
overlap each other at a single pixel location, which in turn results in an overly large
number of concurrent depth-tests thus slowing down the rendering. An efficient way to
reduce this computational load is occlusion culling, and is also widely used in computer
games. The principle of occlusion culling is to exclude objects that are partially or
completely hidden by other visible objects from the rendering pipeline, in order to spare
computation. There exists on modern graphics hardware, a fixed functionality called
hardware occlusion queries (HOQ), which allows computing the number of visible pixels
of rasterized geometries based on an input depth texture. The depth texture may either
be generated beforehand (depth-only pre-pass), or simply recycled from the previous
frame.

Grottel et al. [GRDE10] presented an efficient rendering pipeline for large particle-based
datasets, using HOQ to discard large chunks of the data that is hidden in the current
viewport. They use a uniform grid to spatially partition the dataset and perform
occlusion queries for each grid cell using cubes as bounding geometries. Each query
result is individually read back to the application after a certain latency, which is due
to the processing in the graphics pipeline. Additionally, since one draw command must
be issued for each single query, the GPU driver overhead causes a small latency that
accumulates with the number of queries. For the specific use-case demonstrated by
Grottel et al. [GRDE10], this approach seems reasonable because of the relatively low
number of queries needed (one query per grid cell with a 15× 15× 15 resolution). In our
use-case, we would need to perform one occlusion query for each individual macromolecule
present in the scene. Averagely complex scenes generated with cellPACK may easily
comprise up to millions of individual instances when small lipid molecules are present,
and therefore the presented approach is guaranteed to perform poorly with such scenes.

A more suitable approach would have to be specifically designed to reduce execution times
of individual queries and also to limit GPU-driver overhead. Hierarchical Z-Buffer (HiZ
buffer) is a method introduced by Green et al. [GKM93] that is commonly used to perform
visibility look-up’s efficiently. Based on an input depth map, they compute mip-maps
with a custom algorithm in order to only retain the deepest values for each texture
down-sampling operation. Hence, a single pixel from a lower resolution mip-map will
indicate the deepest value from the entire region covered by this pixel in higher resolution
mip-maps. Subsequently, for each object to be queried, they compute a camera-facing
bounding square. Based on the pixel coverage and position of the squares, they perform
a series of look-up’s at a specific resolution in order to minimize the number of texture
accesses, which tend to slow down the computation. The use of camera-facing squares as
bounding regions allows to cover the entire square with only 4 texture look-up’s at the
right mip resolution, thus guaranteeing a constant execution time, regardless of object

29

3. Rendering and Composition of Molecular Landscapes

sizes. Finally, in case the depth of a given square is deeper than all of the four values
queried, the object is then guaranteed to be hidden and may safely be discarded from
the rendering.

Without a proper query batching mechanism, however, the overhead caused by individual
queries would simply be too high to allow real-time computation with our datasets.
Therefore, we propose to adapt this method to run in parallel on graphics processing
units, in order to perform multiple queries simultaneously, and thus speeding-up the
operation. Because only one thread execution is needed to compute a single query, we
are also able to dispatch the GPU computation of multiple queries in a single command,
thus approaching zero GPU-driver overhead. With our most complex scene, we were able
to save up to 50% of the rendering computation thanks to batched occlusion queries.

3.4 Fibres Structures

A crucial component of living organisms are fiber and polymer structures, such as DNA
strands. These structures store and convey the genetic code of living organisms, and
therefore, it is important to convey how they work, which is tightly tangled with how they
look. These structures are composed of small monomers, called nucleotides, made out of
a few dozen of atoms and assembled in long chains. One approach to render this type of
data efficiently would be to use instancing, similarly to protein data, and to store the
position, rotation, and type, of each nucleotide on the video memory. However, the large
number of monomers contained in the entire genome, and the relatively small atomic
size of individual monomers, will likely result in a considerable memory usage overhead
that would limit the quantity of displayed information. Moreover, these macromolecules
are dynamic entities, and therefore it is important to visualize structural changes over
time to illustrate them faithfully. In order to display the trajectory of a molecular
dataset, the data must transit from CPU to GPU, either beforehand, or streamed during
the visualization. In the case of visualization of large genome datasets, the trajectory
information is likely to be streamed on-the-fly to the GPU, because the data contained
in all the simulation snapshots might not fit into the video memory. However, even on
most recent graphics hardware, transferring data from CPU to GPU is still relatively
slow. Although the video memory might be large enough to store millions of instances
contained in a single frame, it does not guarantee that sequential simulation snapshots
could be loaded and displayed in real-time.

Our solution to limiting the memory footprint and bandwidth of fibre structures is to
only use the control points of a spline as input, and to position each individual nucleotide
along the spline upon rendering, using GPU computing. There exist tools that can model
the structure of DNA strands simply from control points [LO08] [HLLF13]. However,
none of these methods are implemented on the GPU; the entire genome data is first
computed on the CPU and must be transferred to the GPU in order to be rendered,
which may stress the memory bandwidth and usage for very large datasets. The rendering
pipeline which we developed for the fibres relies on the tessellation shader to dynamically

30

3.4. Fibres Structures

Figure 3.4: Screen capture of the genome of mycoplasma rendered in real-time with
cellVIEW at more than 60 frames per second, and comprising over 1 million pairs
of nucleotides. The control points of the DNA curve are uploaded to the GPU and
the monomers are dynamically instantiated along the spline via a GPU program upon
rendering.

inject atoms of the nucleotides along the fibre curve segments. An advantage of our
fibre rendering pipeline is that the previous technologies that we have developed to
optimize the rendering of protein data, such as LOD or occlusion culling, may also be
seamlessly used with the fibre data. Additionally, since only the curve data is needed
as input, the animation of the fibre structures becomes much more trivial to compute.
Indeed, mainstream physics animation tools that are GPU-based may be used instead
of CPU-based scientific tools, which guarantees a considerable performance boost. In
order to support different types of fibres, it is important to first understand how their
structures are organized. In the case of DNA fibres, a well-known structure is the B-DNA,
which exhibits the recognizable double-helix pattern. The structure is also very simple to
model: a spacing of 3.4Å and a rotation of 34.3 degrees between adjacent nucleotides. We
also define an average number of 12 nucleotides per segments. Based on this knowledge,
we are able to generate long and continuous B-DNA strand, using only control points
and building rules as input information.

The pipeline is designed to render one segment of the curve (12 nucleotides) for each
invocation of the per-vertex program. The vertex program accesses the main video
memory to read the control points information for the current segment as well as the
building rule of the current fibre structure. The building rules and the segment curvature
are used to compute the position and rotation of the nucleic acids along the curve segment,
and this information is then passed on to the next shader stages. Based on the building
rules of the segment and its distance to the camera, we estimate the number of spheres
required to draw the fibre segment. We then notify the tessellation engine about the

31

3. Rendering and Composition of Molecular Landscapes

number of vertices that we want to inject, i.e., one vertex per sphere. The tessellation
engine will dispatch the execution of a thread batch comprising one thread per sphere.
Upon processing individual spheres in the tessellation stage, the corresponding sphere
information is fetched from the main video memory, such as the local position and radius
of atoms or meta-atoms. After transforming the local sphere position with the position
and rotation of the corresponding nucleic acid, the sphere centroid is passed on to the
next shader stage, i.e., the geometry shader. Subsequently, the geometry shader is used
to inject the remaining vertices around the sphere centroids, in order to form the triangles
of the 2D sphere billboards. A final render of our fast genome rendering pipeline is shown
in Figure 3.4.

3.5 Occlusion Management
The phenomenon of molecular crowding is used to describe a solution when macromolecules
are present in high concentrations. Such conditions occur routinely in living cells; cellular
interiors are 20–30% volume-occupied by macromolecules, which corresponds to an
approximate range of 200–300 mg/mL. The cytosol of E. Coli, for instance, contains
about 300–400 mg of macromolecules per millilitre. Therefore, an accurate depiction of
the internal structure of cells often results in a very dense arrangement of macromolecules.
Without efficient means to selectively remove occluding objects, it would therefore be
impossible to observe hidden internal structures that play essential roles in the functioning
of biological systems. In scientific illustrations and visualizations, cutaway views are
often employed as an effective technique for occlusion management in densely packed
scenes. However, a limitation of strict cutaway views is that important contextual
information is removed. Illustrators must make sure that the essential information, such
as the proportions of molecular agents present in the system, are rightfully represented
and not simply clipped away. While mainstream visualization and illustration software
feature cutaway tools, they do not provide the means to easily perform advanced scene
composition for such scenes.
We propose a novel method for solving occlusion problems due to molecular crowding.
In contrast with existing techniques, we take advantage of the characteristics of complex
molecular landscapes such as the scenes modeled with cellPACK. These models usually
contain hundreds of thousands of individual macromolecules, however, many of them
share the same structure. Therefore, by reducing the concentration of elements sharing a
similar structure, we may reveal hidden features and also preserve important information
such as the type of contextual elements and their location. This concept of a "fuzzy
visibility" resembles the “screen-door transparency” technique popular in the early days of
computer graphics, and where transparency is achieved by placing small holes in a polygon
to reveal what is present behind. When reducing the concentration of macromolecules
to reveal structures that are located behind, we also ensure that elements are removed
uniformly across the scene to preserve the proportions of the correct spatial distribution.
A potential limitation of this approach is that it will communicate erroneous quantitative
information to the viewer. In order to avoid misconceptions, we optionally propose to

32

3.5. Occlusion Management

(a)

(b)

Figure 3.5: Cut-awy view of the HIV + blood plasma dataset authored with the
Visibility Equalizer. (a) The inside of the HIV capsid (clear blue proteins surrounded
by yellow capsid proteins) is set as object of interest, which ensures occluders to be
removed dynamically from any point of view. (b) Demonstration of the "fuzzy visibility"
concept. Above the manually positioned clipping plane the user can decide to override
the concentration of displayed elements. Additionally, we also propose to render the
ghost of the removed elements, to reduce visual clutter only the first layer of removed
molecules is drawn.

display the removed elements with a ghosting effect such as transparency or contours only.
To achieve this effect, discarded elements are first drawn as opaque geometries with the
depth-test enabled in a separate texture before being composed on top of visible elements
with alpha blending. Therefore, only the first layer of removed elements are shown, which
helps minimizing visual clutter compared with full scene traversal transparency. Screen
captures of scenes composed with the Visibility Equalizer are shown in Figure 3.5.

To assist the scene composition, we additionally display a bar chart over the view that
provides real-time quantitative feedback about the visibility of each macromolecular
type. A single bar comprises three distinct regions that indicate the visibility properties
for a given species, as shown in Figure 3.6. The grey region bar indicates the number
of macromolecules that are currently discarded from the rendering. The dark green
region indicates the proportion of rendered molecules that are currently visible, while the
light green region indicates the proportion of them that are currently occluded by other
macromolecules. The bar chart thus provides an overview of the visibility properties
that are helpful for scene composition. For instance, if the user wishes to observe a
particular species, he will immediately be informed about the quantity of this species

33

3. Rendering and Composition of Molecular Landscapes

(a)

(b)

Figure 3.6: The concept of Visibility Equalizer. For each group of similar macromolecules
a stack of bar is displayed, which informs us about their visibility. The gray bar tells
us the percentage of instances that have been clipped, either by a clipping plane or the
"fuzzy visibility". The dark green bar informs us about the number of instances currently
visible on the screen, and the light green bar about the number of instances rendered but
occluded by other molecules. By dragging the bar the user can thus easily modify the
visibility of entire groups of proteins and intuitively compose and inspect a given dataset
only with a limited set of user interactions.

that are occluded by other structures, and will adapt the visualization accordingly. The
modulation of the proportion of visible elements is also done via the quantitative view
by simply dragging the edge between the grey and green regions.

Another useful functionality for scene composition is the selection of species of interest.
When selecting a particular macromolecular type as species of interest, occluding elements
of a different types are then guaranteed to be discarded in order to provide full-visibility
for the species of interest. Since this method is view-dependent, it is necessary to
compute occluding elements routinely when the camera position is updated. Therefore,
we developed a custom culling pipeline using GPU computing to guarantee a smooth
user experience even with scenes featuring a large number of objects. Macromolecules
that are set as species of interest are first rendered in a separate off-line depth texture
and used as input to perform image-based occlusion queries for each of the remaining
elements and detect occluders. Additionally to our quantitative approach for occlusion
management, we also provide support for traditional clipping objects such as planes,
cubes, or spheres that can be placed in the 3D scene manually.

34

CHAPTER 4
Emulating the Machinery of Life

Our grand vision is to digitally reproduce the complex mechanisms ongoing inside
living organisms and expose them to a larger audience. An essential part of this vision
is to provide an interactive visualization technology that would allow the viewers to
directly interact with the showcased content. Another important aspect is the use of
computational biology data to minimize manual creation of digital assets and show what
is currently known and where are the borders of our knowledge. So far, we collected
static models of entire viruses and cells and developed new methods to efficiently visualize
them in real-time with a multi-scale approach. However, to fully accomplish our vision,
the next challenge is to provide the means to animate macromolecules, in order to depict
the story which is associated with their function. In animated movies conceived for
public dissemination of cell biology, the actors of the machinery of life are traditionally
animated with standard animation methods such as key frame animation. Because these
animations must be conceived and authored manually, the creation process in usually
very expensive and time consuming. Furthermore, the work has to be updated frequently
if one wishes to keep the material up to date with state-of-the-art research in cell biology.
Experts in computational biology constantly produce large amounts of data for their
research, which contain valuable information that could also be used to automatize the
creation process of animated content.

Structural biology already provides us important information about how things look,
e.g., the atomic structures of key macromolecules. They also utilize this information to
set-up dynamics simulations (molecular dynamics or MD) and reproduce the physical
behaviour of atom in three dimensions, in order to understand the role they play in the
machinery of life. Unfortunately, this type of modeling is computationally demanding and
is greatly limited in terms of size and length by the power of modern computers. Systems
biology, on the other hand, is the branch of biology concerned by the study of complex
biological systems using computational or mathematical modeling. A typical systems
biology model consists of a reaction network between molecular agents that characterizes

35

4. Emulating the Machinery of Life

its functioning on the molecular level, also known as a pathway. The reaction network
describes the complex cascade of reactions that enables a given process, such as gene
expression, energy production from nourishment, reproduction, or destruction of a cell.
A model also contains quantitative information such as initial concentrations of species
and reaction rates that are observed in vitro. This information is then used to initialize
simulation programs that aim at modeling the variation in species concentration over
time. Based on simulation results, experts are able to formulate hypotheses, which they
can verify in wet laboratory experiments. Systems biology experts are generally interested
in analysing quantitative information and merely concerned about viewing the actual
structure of the individual molecular agents that are simulated. However, data produced
by these experts contains valuable details about complex processes that could be used
to efficiently produce dynamic 3D illustrations and would significantly improve the way
visual communication of cell biology is traditionally done. Indeed, these models already
contain enough details to procedurally lay out the scenario of an animated sequence,
such as which elements should react together, in which region, in which order, and at
which rate.

Standard computational models usually employ a strictly quantitative approach, which
are computationally inexpensive but do not provide spatial information other than the
sub-region of the cell or organism in which elements are located. Particle-based modeling
is a computational modeling approach which has recently emerged. The principle behind
this technique is very singular as it aims at reproducing the reaction-diffusion behaviour of
each individual molecule contained in the system. In order to reduce computational costs,
the reaction-diffusion process is extremely simplified compared to traditional molecular
dynamics. To summarize this principle, each molecule is represented as a 3D point
and subject to a simple random walk motion to simulate the diffusion in a crowded
environment, and reactions between agents are triggered upon collision between the
bounding spheres of two particles. Particle-based modeling is thus more appealing to us
compared to other modeling approaches, as it provides additional particle trajectories
that can simply be played back in a virtual scene to automatically generate animated
sequences. In this chapter, we investigate the use of systems biology data combined with
structural information to generate comprehensive visualization of simulated processes. In
the first part, we will show how to overcome a major drawback of playing-back particle
trajectory data, which is how to deal with the prevailing chaos that is naturally present in
living cells when observing the reaction-diffusion process for a large number of particles.
Another limitation of particle-based modeling is that the simulation must be precomputed
beforehand due to its high computational cost, which prohibits interactive changes of the
simulation parameters during the visualization. Compared to particle-based modeling,
quantitative modeling, such as kinetic modeling, has a very light computational footprint.
In the second part, we will explore the use of an hybrid approach using particle systems
and kinetic modeling to produce a similar visual output as particle-based modeling with
a much lighter computational cost, thus enabling interactive changes of the simulation
parameters in real-time.

36

4.1. Observing Multiple Time Scales Simultaneously

Figure 4.1: Screenshot of frame t and t+3 of a molecular animation Apoptosis made by
Drew Berry [Ber06]. Mind how the main reaction is forced to remain fairly stationary
(upper arrow), while molecules in the background move very quickly (lower arrow).
Illustrative timelapse is inspired by this effect, and aims at reproducing it based on real
scientific data only.

4.1 Observing Multiple Time Scales Simultaneously

In particle-based modeling, also known as agent-based modeling, the reaction-diffusion
is explicitly simulated for each individual particle present in the system. In a single
simulation step, the simulation routine performs a random displacement for each particle
to mimic the diffusion phenomenon in a crowded environment, and also trigger reaction
events upon collision of two neighbouring particles. Although the primary use case
for this type of modeling is to provide experts quantitative information, the modeling
approach is also capable of producing 3D trajectory data and reaction log as output, which
can be used to visualize the underlying spatial information [FKRE09]. Particle-based
simulations, on one hand, traditionally operate at a very small frequency, typically of
the order of nanoseconds for a single simulation step. The duration of the simulation,
on the other hand, is usually several orders of magnitude larger, up to several seconds,
thus resulting in a very large number of simulation steps. Hence, there exists a large
time-scale discrepancy between the life of individual particles and the life of a given
simulated process.

Because of the overwhelmingly large number of simulation steps, it is sensible to only show
simulation frames spaced at a constant given interval to reduce the viewing length. This
is also referred to as fast-forward or timelapse. A major challenge with the visualization
of particle trajectories in fast-forward, is the strong visual clutter caused by the fast
erratic motion of individual particles diffusing in every direction. When viewing such
results, one can observe the overall motion of swarming particles, but it is impossible to
notice individual particles reacting. However, to provide a clear visual explanation of a
given process, it is crucial to showcase individual reaction events to illustrate the role
of each key macromolecule present in the system. But in order to visualize individual
reactions, it is necessary to have a close-up on reacting elements and also to reduce the
playback speed to the minimum to allow visual tracking of individual particles. We are
therefore facing the following conundrum: we can either observe the entire process in a

37

4. Emulating the Machinery of Life

reasonable amount of time without seeing individual reactions, or we can slow down the
simulation and observe individual particles thus increasing greatly the viewing length.
A complete overview of the process would therefore require to constantly change the
temporal resolution back and forth, as there is currently no technique that would enable
us to see two phenomena occurring at two different time scales in a single view. To
address this issue, we propose a new type of visualization for particle-data inspired from
animated illustrations of cell biology and that respects the following guidelines:

1. The viewing length should be minimum and therefore the trajectory data should
be played back in fast-forward.

2. Individual particles should move slow enough to be traceable with human eyes,
especially those with a high degree of interest.

3. Events of interest, such as reactions, should be salient and last enough time in
order to be noticeable by a human eye.

4. Despite eventual alterations to respect the previous guidelines, the visualization
should be as realistic as possible to avoid misconceptions.

The last requirement was formulated in accordance with the results of a study by
Jenkinson et al. [JM12], which demonstrated that a more realistic depiction of a process
can enhance the viewer’s understanding compared to a highly abstracted one, we also
observed the same principle in animated movies as shown in Figure 4.1.

4.1.1 Speed Reduction

To reduce the viewing length of a simulation, the trajectories of the particles are played-
back in fast-forward. To achieve this, we only display snapshots of the trajectory at a
fixed interval. Thus, the spatial information between two displayed snapshots is simply
omitted, resulting in larger position leaps between consecutive frames and faster particle
motion. Because of the increased speed of the particles, it might be difficult to keep
track of individual particles between two consecutive frames, which prevents the viewer
from observing key reaction events. In accordance with our guideline rule Number 2, we
apply a speed reduction filter to shorten the trajectories of individual particles. The filter
mechanism consists of reducing displacements between the current position of particles
and their original trajectory positions sampled from the dataset at a given time. The
displacements are reduced according to the speed reduction factor as shown in Figure 4.2.
Particles thus follow their original trajectories but are displaced over shorter distances
and their speed is decreased. As a result, the particle motion is much smoother and easier
to follow by human eyes while preserving a fast playback speed. The speed reduction
filter also causes a small delay between particles and their original trajectories, however,
because of the chaotic nature of the Brownian motion particle, this delay is hardly
noticeable. Indeed, diffusing molecules travel much slower than entities with a more

38

4.1. Observing Multiple Time Scales Simultaneously

Figure 4.2: The speed reduction principle. The black dots represent the non-filtered
trajectory and the red line the reduced one. When sampling the next position from the
raw trajectory, we downscale the displacement that would originally move the particle to
the sampled position. This approach has the advantage of smoothing the trajectory while
causing a minimum amount of latency. The displacement toward the raw-trajectory is
downscale by a the speed reduction factor which controls the smoothness of the motion.

linear motion, and therefore even if the particle lags behind its original trajectory it is
almost certain to be located in its vicinity.

4.1.2 Reaction Highlighting

In particle-based simulation of biochemical reaction networks, reactions are punctual
events that occur upon collision of two potential reaction partners. In the event of
a reaction, the resulting products will immediately be injected in the system as the
operation is performed in a single simulation step. Therefore, it might be difficult to
observe single reactions. Additionally, when viewing the simulation in fast-forward, many
important reaction events might simply be omitted due to frame dropping. Without
showing reaction events, molecular agents will appear and disappear from the visualization
without providing the necessary visual clues to understand what might have caused it.
We therefore prolong the duration of the reactions to make them stand out and to inform
the viewer about the nature of these events. Shortly before each reaction event, we
apply attraction forces to steer the reactants towards the reaction location. During this
procedure the original motion of the particle is overwritten by attraction forces. To
emphasize reaction events, reacting elements are highlighted with vivid colors to contrast
with the rest of the scene. The slow attraction animation and the color highlighting
thus guarantees that the viewer is informed that a reaction is about to happen. Once
a reaction is accomplished, the products are introduced and their original motion is
restored.

4.1.3 Lens Effect

Because of the slow movement of the particles compared to their original trajectories,
the viewer may be misguided about the true diffusion properties of molecular agents.
To preserve a realistic impression of molecular motion despite trajectory reducing, we

39

4. Emulating the Machinery of Life

Figure 4.3: The spherical object-space modifies the speed reduction of the particles based
on their distance to the centre of a virtual sphere. Inside the sphere the trajectories of
the particles are reduced so that the viewer can visually keep track of them. Outside
the lens the particles are subject to their original chaotic motion thus conveying a true
impression of chaos and stochastic motion.

introduce a temporal focus+context technique that applies visual abstraction of molecular
trajectories solely in the foreground (focus), while showing more realistic —yet often
untraceable— motion in the background (context). By showing the actual particle
trajectories in the background we want to create an illusion of chaos, thus informing the
viewer about their real diffusion speeds while allowing him to observe important reaction
events in the same view. We propose two methods to achieve this effect. The first method
operates in object space and is described in Figure 4.3. We define a region anchored
in front of the camera in which molecular agents will be subject to a significant speed
reduction. Outside of this region we progressively decrease the speed reduction until
reaching the background zone where the original particle trajectories are shown. The
second method we propose operates in image space. We limit the displacement of particles
to a distance defined in pixel-space and based on the smooth pursuit eye-movement limit
used in psychology research. When using a perspective projection in the visualization,
elements close to the camera appear to move much slower than those further away in z
direction. In fact, their screen space velocity is approximately the same, this illusion is
due to the differences in pixel coverage of particles that are located in the background.
This effect results in a smooth and continuous transition between the motion of front
and background particles, which is more tedious to obtain with the world-space approach
because it requires additional fine tuning.

4.2 Quantity-Driven Particle Behaviour
In systems biology, there exist various modeling approaches that are either deterministic,
such as quantitative modeling, or stochastic, such as agent-based modeling. One advantage
of agent-based models, as discussed above, is the presence of spatial information that
can easily be displayed in a 3D view. Although the visualization may often be overly
cluttered, we previously demonstrated that it is possible to apply filtering methods to
improve the clarity and expose essential parts to the viewer. However, the computational

40

4.2. Quantity-Driven Particle Behaviour

footprint of particle-based models is very high compared to quantitative models, because
it must account for the reaction and diffusion of each single reacting entities, which are
usually present in large quantities. The simulation is therefore often precomputed prior
to the visualization. As simulations are complex to setup and to compute, the creation
and exploration of multiple scenario is thus slowed by this workflow. Additionally, with
large and complex models, the resulting trajectory files may be challenging, over tens
of gigabytes of data for 100000 snapshots and only 5000 individual particles, which is
cumbersome to manipulate when dealing with a multitude of different scenario.

A more practical workflow for our use case would be to visualize the particle positions
on-the-fly as the simulation runs. With such an approach, it would also become possible to
influence the course of a simulation, for instance, increase the temperature, or introduce
new species, and to directly observe the impact of these changes without having to
run another simulation or deal with overly large files. Most-efficient simulation tools,
such as Smoldyn [AABA10], are able to compute single simulation steps in a matter of
seconds, thanks to efficient parallel algorithms running on GPU. A few tools additionally
support in-situ visualization of particle-based models computed in real-time with such
an approach. However, the computation is still too demanding to deliver a smooth user
experience even on high-end commodity hardware, which prohibits the use of these tools
for interactive and explanatory applications.

Additionally, to visualize and understand a biological system, one must be able to
observe the logical cascade of reactions described in the reaction network, as depicted
in scientific animations. With particle-based modeling, it is impossible to influence
where and when reactions will occur. Therefore, the viewing of an entire cascade of
reactions may be very tedious because it requires manual spatial exploration and waiting
times between successive reactions. To overcome this issue, we would have to gain
control over where reactions might occur. This can only be achieved by decoupling the
quantitative information from the spatial information. In other words, we would need to
use a modeling approach that would allow us overwriting spatial information without
influencing the course of the simulation. Quantitative modeling methods, such as kinetic
modeling, do not feature particle trajectory data. They are also much faster to compute
and could easily be simulated along with a complex 3D visualization with high frequency
refresh rates. To address the previous limitations of particle-based modeling, we thus
chose to explore the use of quantitative information to drive 3D particle animations in
real-time.

With particle-based modeling, the behaviour of individual particles directly influences
the concentration of species over time, as reactions are only triggered by collision events.
Given a reaction A+B ⇒ C, for example, when two reactants A and B are closely located
next to each other, then a reaction is likely to occur. In the event of a reaction, elements
A and B will then fuse to produce element C, thus increasing the concentration of element
C and decreasing the concentration of elements A and B. In particle-based simulations,
individual agents are thus actors of their own fates. We propose a new type of particle
system where the behaviour of particles is purely driven by quantitative information. We

41

4. Emulating the Machinery of Life

Figure 4.4: Workflow of the passive agent-base system. A biological process is represented
as a metabolic network model, which is numerically simulated. The controlling module,
called Omniscient Intelligence, (OI) routinely reads the results from the quantitative
simulation, and dispatches reaction events to the agents. Agents are diffusing in the 3D
scene, passively waiting for reaction order from the OI. Upon reaction events the target
agents are steered towards each others and forced to react. Finally the position and
rotation of the molecules are passed to the rendered which renders the set of particles
according to their structural information. Via user input it is also possible to interact
with the simulation parameters and affect the outcome of the visualization.

introduce a new type of agent, whose behaviour mostly depends on external parameters,
and which we dub passive agents. As the quantitative simulation advances, the system
will query the number of reactions to occur at a given time, and subsequently force passive
agents to react. Hence, passive agents do not play any role in the simulation process,
their only function is to act as a visualization proxy to show quantitative information
in three dimensions. While the visual output is hardly distinguishable from an actual
particle-based simulation, the benefits of this approach is two-fold. Firstly, the simulation
of the reaction network is very lightweight to compute, which makes this approach much
more usable for interactive applications. Secondly, the spatial information is completely
decoupled from the simulation, which means that we can have control over where reactions
will occur. This approach grants us the freedom to dynamically trigger a cascade of
reactions directly in the viewport in order to facilitate storytelling of complex reaction
networks. This would not be possible with an agent-based simulation.

The workflow of our passive-agents system is shown in Figure 4.4 and is laid out as
follows: On the one hand, we have a biological system described as a reaction network and
modeled with a scientific simulation software using a kinetic modeling approach. On the
other hand, we have a 3D scene filled with potential reactants, and which is set according
to the initial conditions of the model, such as the initial quantity and location of each
species. Each passive-agent additionally undergoes a 3D random walk motion to simulate
the diffusion process, similarly to traditional particle-based simulation. We then routinely
query the quantitative simulation to fetch information about the number of reactions
that are meant to occur at time t. Assuming a reaction of type A + B ⇒ C, for example,
the particle system will first randomly select two elements A and B based on their spatial

42

4.2. Quantity-Driven Particle Behaviour

proximity. The two particles will then be subject to attraction forces until they enter in
collision. Upon collision of the reactants, the reaction is performed, products are injected
and the reactants are removed from the system. Finally, the reaction products return to
a normal diffusion behaviour until they get chosen for a subsequent reaction defined in
the network. By default, the reaction participants are randomly chosen in the 3D scene,
but it is also possible to set a reaction priority to a few elements present in the viewport,
in order to show cascades of reactions without having to browse through the entire scene.

43

CHAPTER 5
Conclusion

The initial aim of this PhD project was to develop a visualization platform that would keep
the audience and multidisciplinary experts informed about state-of-the-art knowledge in
cell biology, using interactive 3D visualization as means of communication. We intended
to use as much available scientific data as possible to reduce the amount of manual work
traditionally needed for creating digital assets for such content, and make this enterprise
possible only with a small team of researchers. We also aimed at providing interaction,
which is not usually present in traditional visual communication of cell biology, although
it is clear that it would have a strong and beneficial impact on the learning experience.
Therefore, the presented techniques have a strong emphasis on GPU-computing in order
to deliver a responsive user experience with high-frequency refresh rates. To achieve
this ambitious goal, we first identified and isolated the most challenging parts of the
pipeline and focused on addressing them individually. In some cases, these challenges
where addressed by improving current state-of-the-art techniques, such as large scale
molecular rendering, but we also presented novel concepts to solve visualization problems
that have not yet been investigated in the context of cell biology, such as the concepts of
Omniscient Intelligence, Illustrative Timelapse or Visibility Equalizer.

5.1 Summary

We first proposed a novel technique to render large sets of proteins, while preserving
atomic-scale details when zooming in. Previous methods utilized the concept of instancing,
but also relied on ray casting, which fails to deliver high frequency refresh rates. We
proposed to utilize the rasterization pipeline instead because it features a powerful
tessellation engine that allows us to dynamically control the level of detail and reduce
GPU-driver overhead. Fiber structures, such as DNA for example, are present in large
quantity inside living cells, but tend to have a more complex structure than proteins.
Therefore, as a follow-up, we extended this technique to support these structures. We

45

5. Conclusion

also increase the rendering speed by developing an occlusion culling scheme inspired by
techniques traditionally used in graphically advanced computer games.

Up to this point, the scenes used to showcase rendering techniques were made up for
benchmarking purposes and not realistically modelled to reflect the correct density of
proteins present inside living cells. Our technique has proven to deliver fast frame rates,
even when using realistic whole-cell atomic structures provided by the researchers of the
Scripps Research Institute, and modelled with cellPACK. These realistic models aim
at reproducing a natural arrangements of proteins inside living cells and viruses, which
are subject to molecular crowding and therefore densely packed next to each others. As
a result, when displaying the entire datasets, only the most frontal atoms are visible,
thus hiding important structural information buried internally. We also proposed a novel
solution to solve occlusion problems when visualizing whole-cell structural models. We
utilize the fact that many macromolecules present inside the cells actually share a similar
atomic structure to reduce the concentration of displayed elements of a given type, and
clear the view to reveal hidden structures. While the exact number of displayed elements
is overridden, important information about the location of these structures and the
proportions are preserved.

So far, we have only addressed challenges that are concerned with the visualization of static
datasets. However, to truly express the function of these structures, we must animate
them to communicate where they travel and how they interact with their surroundings.
In computational biology, there is a modeling technique called particle-based modeling
that can reproduce biological systems on the scale of entire cells while providing spatial
information such as 3D trajectory and reaction history. When directly viewing the results
of such simulation, it is very difficult to observe the behaviour of individual particles
because of the large number of elements present in the system, and because of their
fast and erratic diffusion motion. A solution to this problem would be to increase the
temporal resolution of the visualization to observe individual particles, and to constantly
go back and forth between two temporal scales to observe either the simulated process or
single particles. To improve the visualization of multi-scale processes, we propose a novel
time-lapse method that is designed to visualize the results of a simulation at the temporal
resolution of the system, while applying a speed reduction filter to particles so that their
motion can comfortably be perceived by human eyes. The filtering is only applied in the
focus region while the original motion is preserved in the context area. This partition
helps to preserve the original impression of chaos and prevent us from misguiding the
viewer. This illusion was first introduced by the scientific illustrator Drew Berry in one of
his animated films [Ber06], we then formalized this concept and transposed it to scientific
visualization.

A major downside of particle-based modeling is the large computational footprint, which
obliges us to precompute the simulation before visualizing it. This constraint prohibits us
from providing a truly interactive experience where the viewer would be able to interact
with the simulation parameters and instantly observe the changes. Kinetic modeling is
a strictly quantitative modeling approach, which is much faster to compute, but does

46

5.2. Lessons Learned

not provide spatial information. In order to utilize kinetic modeling to generate 3D
spatial animations, we invented a new type of particle system that is able to convert
the quantitative information into a spatial representation enhanced with structural
information. We introduced the notion of passive agents, which unlike traditional agents,
have their behaviour dictated by the omniscient intelligence, a controlling mechanism that
utilizes the quantitative information to dispatch reaction order to the agents. The particle
system relies on GPU computing to routinely perform diffusion motion displacement and
neighbouring search, allowing us to emulate the behaviour of several million molecules
in real-time, while providing a similar visual output as genuine particle-based modeling.
Since spatial data and simulation are decoupled, we thus gain control over what particular
elements are going to react and when. With particle-based modeling, this behaviour is
stochastic, which means that when focusing on a given particle, we have no guarantee
that the particle will undergo a complete reaction cycle described in the pathway in a
reasonable amount of time, which is impractical for story-telling. With passive agents, we
gain the ability to focus on a single element and to force it to undergo an entire reaction
cycle, thus facilitating the viewing of relevant physiological events.

5.2 Lessons Learned
In the course of this thesis, we have learned that biological entities tend to feature a
large number of elements sharing a similar structure, and that we can often use this
specificity to our advantage when addressing visualization challenges. For example, cells
are composed of multiple sub-cellar entities, such as Mitochondria or Golgi apparatus,
which are present in multiple instances. The building blocks of cells are organelles are
the proteins, in the case of Erythrotytes (red blood cells) for instance, about 2⁄3 of their
structure is made out of haemoglobin proteins. The internal structures of proteins reveal
long chains of smaller links, called amino acids, and it only exists a few tens of different
types, which are mostly composed of 6 distinct atomic elements (C, N, O, H, S, Se). The
presence of so called "building block", or structures (n) repeated several times (N), is thus
a phenomenon that is occurring on several magnification levels, from atoms up to entire
cells. In our contributions, we utilize this "n « N" specificity in the following contexts:

Rendering: we can render one object many times, we can use instancing and reduce
the GPU driver overhead resulting into an immense speed-up if n « N.

Memory Management: instancing naturally reduces the memory footprint for storing
the same object only once instead of multiple times, which is crucial for rendering a scene
using consumer level graphics hardware.

Occlusion Management: we can utilize this characteristic when we want to cut away
some part of the data. We can remove some instances of a particular building block as
long as we keep few of them in the scene so that the viewer understands their spatial
distribution in the cut-away area from the visible ones.

47

5. Conclusion

Visual Story-telling: we can tell a story about a process using any structural building
block, we do not need to use a particular one and and follow the course of a realistic
particle behaviour that may not always reveal important information. This gives us
freedom for designing explanatory storytelling visualization techniques.

5.3 Future Work

The models employed to showcase the dynamics of biological systems are only simple yet
realistic demonstration models, which do not truly compare in complexity with the large
systems that we initially wanted to showcase such as en entire and functioning E.Coli
bacterium. Although we showed that the techniques we designed are able to support real
scientific data, we yet have to combine structural and physiological composition for entire
cells instead. This ambitious goal could only be fully achieved with a tight collaboration
with biology experts. To facilitate the collection and validation of information from
different online sources, it would also be interesting to develop automated means to
collect this information and compile it into a meta-model comprising both structural
and procedural information. Hence, once new information is available, the system would
be able to scan all the sources and update the model accordingly, thus saving us from
tedious and cumbersome manual operations.

We also need to figure out how to scale upward with the models that we are able to
render. So far, we are able to render viruses or prokaryotic cells such as HIV, Mycoplasma
mycoides or Escherichia Coli. Eukaryotes are the cells that compose living organisms
such as plants and animals, therefore it is important to explain their mechanism to
understand how we work. These cells, however, are much bigger than prokaryotes as they
contains membrane bound organelles such as Mitochondria or Golgi apparatus, which
may be as large as a bacterium and are therefore much more challenging to render. To
render these larger structures we would need new ways of representing shapes other than
spheres while preserving the massive zooming continuum. We would also need to work
even closer with the scientists to help them gather and extract important information
from the raw data they collect.

An important aspect which we have not yet explored and would be worth investigating in
future work is accurate real-time collision detection for large molecular datasets. Although
particle-based modeling or passive agents provides us the 3D trajectory of macromolecules,
these approaches only consider molecules as a simple 3D point and the notion of shape
or collision with surrounding bodies is simply ignored. Thanks to the democratization of
graphics hardware it is now possible to perform large-scale rigid-body collision-detection
for up to several million of individual bodies, in real-time and on commodity hardware.
It would be worthwhile to integrate such system with the visualization of molecular
landscapes, not only it would correct overlapping bodies when viewing dynamic data,
but it would also allow us to generate large structures similarly to the ones modelled
with cellPACK but in real-time. Indeed, the computational footprint of cellPACK does
not allow the creation of models in real-time, however, with such technology we would

48

5.3. Future Work

be able to overcome this limitation and to progressively model a sub-region of a cell that
is visible in the viewport as we navigate though the scene. This would also allow us to
discard structural information which is not currently visible and address the memory
space limitation of graphics hardware, thus enabling the visualization of even larger
structures than the ones currently supported with cellVIEW.

Another aspect which is worth investigating is dynamic story-telling to visually explain
biological networks that are usually described as cryptic diagrams and only comprehensible
by domain experts. While we have successfully accomplished the task of showing how
elements of a system move and interact with other elements, it is now clear to us that
showcasing only a realistic view of a system might not suffice to efficiently and visually
communicate this type of information. With the concept of Omniscient Intelligence,
we have shown how to distort the normally stochastic behaviour to present a complete
reaction cycle in a reasonable amount of time. We now have to start thinking about
new methods to morph this approach with more traditional 2D information and possibly
provide intermediate views and transitions between realistic 3D representation and static
2D reaction diagrams.

49

Part II

 Publications

51

PAPER A
Illustrative Visualization of
Molecular Reactions using

Omniscient Intelligence and
Passive Agents

Published in [LMPSV14] by the Eurographics Association.

53

Eurographics Conference on Visualization (EuroVis) 2014
H. Carr, P. Rheingans, and H. Schumann
(Guest Editors)

Volume 33 (2014), Number 3

Illustrative Visualization of Molecular Reactions
using Omniscient Intelligence and Passive Agents

M. Le Muzic1, J. Parulek2, A.K. Stavrum2, and I. Viola1,2

1Institute of Computer Graphics and Algorithms, Vienna University of Technology, Austria
2Department of Informatics, University of Bergen, Norway

Figure 1: Demonstration of our system capabilities from three different zooming levels (left to right). We showcase a scene
containing 106 diffusing and reacting molecules in real-time at 30 FPS.

Abstract
In this paper we propose a new type of a particle systems, tailored for illustrative visualization purposes, in partic-
ular for visualizing molecular reactions in biological networks. Previous visualizations of biochemical processes
were exploiting the results of agent-based modeling. Such modeling aims at reproducing accurately the stochastic
nature of molecular interactions. However, it is impossible to expect events of interest happening at a certain time
and location, which is impractical for storytelling. To obtain the means of controlling molecular interactions, we
propose to govern passive agents with an omniscient intelligence, instead of giving to the agents the freedom of
initiating reaction autonomously. This makes it possible to generate illustrative animated stories that communi-
cate the functioning of the molecular machinery. The rendering performance delivers for interactive framerates
of massive amounts of data, based on the dynamic tessellation capabilities of modern graphics cards. Finally, we
report an informal expert feedback we obtained from the potential users.

1 Introduction

Biochemistry is difficult to understand without any visual
explanation. For this reason, processes, such as cell division,
DNA transcription, or DNA repair are often being commu-
nicated via animated movies. In comparison to static rep-
resentations, animated movies allow explaining more effi-
ciently how the physical appearance of molecules influences
the functioning of the process. To produce such movies, sci-
entific illustrators employ 3D animation packages along with

real scientific data. They are using structure descriptions to
design the visual aspect of molecular compounds. They also
have tools to ease the import, animation, and rendering of
those structures such as ePMV [JAG∗11] and Molecular-
Maya [mol13].

Although structural information is needed to explain the
form of a molecule, it does not convey explicit informa-
tion about its function. This information has to be added
by the illustrator manually through complex tasks, such as

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.12370

M. Le Muzic et al. / Illustrative Visualization of Molecular Reactions using Omniscient Intelligence and Passive Agents

key-frame animation. Consequently, the creation process of
animated content is time-consuming and expensive, taking
up to months or years.

Our goal is to improve visual communication in the
field of biochemistry by generating illustrative visualizations
of molecular reactions involved in biochemical processes.
Computational biology provides description of structural
and procedural models replicating the function of biologi-
cal processes. We suggest to merge these two data sources
and to automatically produce visualizations communicating
both structure and function of the molecular machinery.

Current techniques in mesoscale visualization already
provide ways to visualize biochemical processes by exploit-
ing the results of agent-based simulations. However, those
techniques are heavy to compute and challenging to repre-
sent at the level of individual molecules. Indeed, due to the
stochastic nature of the simulation and visual complexity,
it is challenging to keep track of the reactions describing a
biochemical process. The resulting visualizations manage to
show realistic views of a given process, but they do not really
succeed at communicating its function.

We propose a new procedural abstraction technique that
selectively distorts the reaction-diffusion process, to visual-
ize the function and structural characteristics of the studied
metabolic system. In contrast to direct visualization of agent-
based simulations, our technique shows reactions events di-
rectly in the viewport and composing explanatory anima-
tions sequences related to the visualized process. Just like
cutaways or exploded views visually abstract the structure to
convey how things look, our technique visually abstracts the
process to convey how things work. Below are the two main
contributions we present in this paper in order to achieve our
goal:

• A novel particle system approach using passive agents,
controlled by omniscient intelligence.

• A novel rendering technique for instant visualization of a
vast amount of molecules.

2 Related work

We structure the prior work review along our two contribu-
tions, namely the abstraction of processes and structure.

2.1 Visualization of Biological Networks

Visualization is essential for the analysis of metabolic net-
works as it provides a clear picture of relationships among
metabolites. It is often employed when e.g., depicting path-
ways, which are stored in the KEGG [KG00] database. Tra-
ditional visualization in the domain of biology is based on
graph representations. These allow for step-wise analysis of
a particular process, but also graph aspects such as central-
ity, cardinality, degree, etc. The visualization community has
contributed to enrich pathway visualizations by, for example,
defining requirements for pathway visualization [SND05]

and by depicting the pathway in the context of related in-
formation [LPK∗13].

Agent-based simulations provide the means of represent-
ing the dynamics of metabolic networks in their natural em-
bedding of the 3D world. They compute the positions of
particles that are supposed to mimic a realistic behavior of
the metabolites. By exploiting the results of agent-based
simulation software, such as ChemCell [PS03] or Smol-
dyn [AB04], it is possible to produce videos or even real-
time visualizations of metabolic processes. The output of
such visualizations, however, lacks any means for focusing
on events of interest.

Falk et al. [FKRE09] presented a tool which reads the re-
sults of an agent-based simulation and enables interactive
visual exploration of the results. The aim of their visualiza-
tion is to describe the process of signal transduction on both
mesoscopic, and molecular level. The individual molecules
are represented in 3D space as spherical glyphs, and their
positions are updated over time according to the value stored
in the agent-based simulation. The tool also allows the user
to track specific particle inside a cell. The trajectory is rep-
resented as a trail in 3D space providing information about
directions and reactions.

The visualization of the raw agent-based simulation using
individual particles, however, suffers from high visual com-
plexity. The large number of displayed particles and their
chaotic organization, due to diffusion motion, makes the un-
derstanding of the visualized processes difficult. To tackle
this issue, Falk et al. adopted a volume-based rendering ap-
proach [FKRE10], using aggregation to convert the particle
data into a density volume, which is then rendered via ray
casting. This visualization filters out the prevailing chaos and
offers a more intuitive representation of the general particle
motion.

A more recent work on visualization of agent-based simu-
lations by de Heras Ciechomski et al. introduces a system for
designing and visualizing cellular models [dHCKMK13].
Their visualization framework aims at providing a bio-
physics research and exploration tool within a 3D computer-
game environment. The tool allows the user to render the re-
sults of an agent-based simulation with 3D representations
of the corresponding molecular structures employing ray-
tracing. The rendering module, however, does not take any
advantage of GPU computing and does not achieve real-time
performances.

Reviewed approaches of individual-based visualization of
biological networks are all aimed at the same goal, which is
to give insight on how biological processes actually work.
Whether we see videos or real-time visualizations, the pro-
cess is usually not, or only partially, understood because of
the stochastic nature of the simulation results. Even when
tracking single elements and bringing them into focus, there
is still no guarantee that interesting events will happen. One
can, for instance, use volumetric rendering to visualize the

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

142

M. Le Muzic et al. / Illustrative Visualization of Molecular Reactions using Omniscient Intelligence and Passive Agents

spatial distribution of particular molecular quantities, but
this does not provide enough details about the process it-
self, such as the key steps along a reaction chain, known as
pathway. We address this problem by providing automated
means for illustrative visualization of the molecular reac-
tions involved in a given pathway.

2.2 Visualization of Molecular Structures

The second aspect we relate our work to is interactive molec-
ular visualization. Visual and geometrical molecular repre-
sentations are covered extensively in the scientific literature.
They are traditionally employed for analytical tasks, such
as binding site analysis, where surface-based representations
are utilized, e.g., solvent excluded surfaces [GB78], minimal
molecular surfaces [Ede99], or surfaces based on the sum-
mation of Gaussian densities [Bli82]. Nevertheless, these
representations are often difficult to compute and are tailored
towards the analysis of small molecular compounds. Instead,
we employ a representation that is frequently used by cellu-
lar modeling systems [FKE13], the so-called Van der Waals
(VdW) representation. It represents each atom of a molecule
as a set of spheres.

To speed up rendering of spheres, Tarini et al. presented
a real-time algorithm for visualizing molecules by means of
VdW representations [TCM06]. They employed 2D sphere
billboarding for rendering individual atoms of molecular
systems. Daae Lampe et al. [DVRH07] have introduced
an even faster rendering of VdW atoms by exploiting bill-
boards of proteins. The molecules were generated utilizing
geometry shaders. In our approach, we go one step further
by exploiting the tessellation shader to generate the entire
molecule, not limited to the proteins as it was the case in the
technique proposed by Daae Lampe et al.

Most VdW molecular models refer to the original work
done by David Goodsell [Goo03], who has developed a
simplistic, but expressive style for representing molecules
through space filling. This illustration approach has been re-
cently adopted by Falk et al. [FKE13] to depict large meso-
scopic cellular models. Their scene is visualized via ray cast-
ing performed efficiently on the underlying grid structures.
Additionally, each molecule is stored in its own supporting
grid, which is then traversed in a level-of-detail (LOD) man-
ner. The authors initially achieved at least 3.6 frames per
second (fps) for scenes with 25× 109 atoms. The work of
Falk et al. has been a follow-up approach to a technique pro-
posed by Lindow et al. [LBH12]. The ray casting was per-
formed after the bounding boxes of all molecules were ren-
dered. Again, a supporting grid storing the molecular atoms
is still required, leading to at least 3 fps for 109 atoms. We
employ an optimized approach using a straightforward LOD
scheme, but importantly, we are not bound to any grid-based
supporting structure. Our rendering technique forms visual-
ization elements on the fly, which additionally allows us to
alter the positions of molecular atoms dynamically.

Our aim is to provide an environment for creating auto-
mated illustrations, yet there are also studies in the litera-
ture, which address more scientifically oriented schemes for
solving and visualizing immersive molecular simulations.
A powerful framework for visualizing large-scale atomistic
simulations was presented by Reda et al. [RFK∗13]. They
employ a ball-and-stick model combined with volumetric
surfaces to convey the uncertainty in molecular boundaries.
Moreover, they utilize GPU-based ray-casting, implemented
in an immersive CAVE environment, providing the means to
render atomistic simulations of millions of atoms. Recently,
a CPU-based solution for visualization of large molecu-
lar simulations was proposed by Knoll et al. [KWN∗13].
Again, the ball-and-stick representation is combined with
volume data to provide a compound visualization. More-
over, an efficient preprocessing scheme allows to perform
fast ray-casting implementation on multicore CPUs. Stone
et al. [SVS13] introduce a visual system to analyze petas-
cale molecular dynamic simulations. The system employs
GPU compute nodes and VMD scene data structure to visu-
alize molecular surfaces obtained from very large biomolec-
ular complexes. In comparison to these systems, our work is
realized through causal PCs with modern graphics card sup-
porting tessellation shader capabilities. Moreover, our focus
lies on illustrative aspects while the actual simulation analy-
sis is excluded.

3 Passive Agents and Omniscient Intelligence

Scientific illustrators are explaining biology through visual
storytelling, e.g., a sequence of events illustrating a reaction
chain along a metabolic pathway. In order to produce illus-
trative visualizations of metabolic processes, we would also
need to show reaction events in a story-structured manner.
So far the tools and techniques developed to visualize such
processes were solely based on agent-based models, and re-
actions are only initiated according to probabilities and col-
lision events. Due to the stochastic nature of the reaction
events, we cannot predict the time nor the location of these
events, which is clearly impractical for storytelling. In this
section we describe how our system is capable of selectively
distorting the reaction-diffusion process, to convey the func-
tion and structural characteristics of the studied metabolic
system. A schematic overview of the system is also given in
Figure 2.

3.1 Overview

Instead of using agents as simulation entities, we propose
to use passive agents to reflect the dynamics of quantitative
simulations. According to the agent classification given by
Kubera et al. [KMP10], passive agents are entities that can
undergo actions, but not initiate them. In our system, passive
agents are unable to start reactions autonomously, they can
only receive reaction orders from an omniscient intelligence
(OI), which controls their behavior. Figure 3 shows a com-

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

143

M. Le Muzic et al. / Illustrative Visualization of Molecular Reactions using Omniscient Intelligence and Passive Agents

Figure 2: Overview of our system: A biological process is represented by a metabolic network model, which is numerically
simulated. The Omniscient Intelligence module routinely reads the results from the quantitative simulation, and dispatches
reaction events to the agents. The final stage of the pipeline represents elements with their structural models and renders the
entire scene at interactive framerates.

parison between a fully stochastic system, and a controllable
system.

The OI is tightly coupled with the quantitative simulation,
which runs in parallel. The simulation module reads and
simulates procedural descriptions of biological processes. Its
role is to provide information about the number of reaction
events for a given reaction type in real-time. These results
are then used by the OI, which is responsible for triggering
reaction orders of the passive agents. More details about the
quantitative simulation are given in Subsection 3.3.

Agent-based simulations result in motion of chemicals
that is hard to observe by viewer when displayed directly.
Either it is too fast to perceive it, or when the simulation is
slowed down to observable speed, the probability that the
viewpoint will display a reaction is extremely low. There-
fore, we showcase a motion of molecular compounds which
does not represents the results of a simulation. Instead, we
employ an illustrative type of molecular motion that is per-
ceivable by human observer, while showing a scene where
reactions are frequently happening.

When triggering a reaction, the OI chooses reaction part-
ners according to their spatial vicinity and drives the reaction
using steering forces. The OI also chooses the reaction can-
didates to assure that reactions are well distributed in space.
We provide technical details concerning the OI in Section 4.
Additionally, when reactions occur, the random motion of
particles is blended with the reaction steering forces. This
prevents linear trajectories, which would otherwise result in
unnatural motion (Fig. 4).

We render our passive agents according to molecular
structure descriptions. Additionally to the structure, we as-
sign to the molecules distinct colors in function of their
species type. We developed a custom rendering pipeline ca-
pable of displaying large amounts of structures at interactive
framerates, which we describe in details in Section 5. Addi-

Reaction A

Reaction B

Reaction C

Reaction A

Reaction BReaction C

(a) (b)

Figure 3: Comparison between a fully stochastic system (a)
and our system (b). In a fully stochastic system we can ob-
serve reaction happening in the scene at random locations,
and without any follow-up according to the pathway. On the
other hand, in our system it is possible to visualize reaction
immediately and to build reactions sequences.

tionally, we highlight the reacting elements by increasing the
color intensity and also display text-based information about
the different actors of ongoing reactions in the focus.

3.2 Story Composition

At any time, the user may set focus on any molecule shown
in the scene. Once in focus, the camera starts following the
actor. Moreover, the actor is prioritized over other molecules
of the same type to undergo the next reaction. This gives
us the freedom to trigger a reaction at a desired location,
which we use to build molecular stories depicting chains of
reactions.

After the reaction of the focused element is completed, the
focus is automatically shifted to one of the products. This fa-
cilitates tracking of the reactions described in the pathway. It
happens often in biological networks that one reaction pro-
duces several products which are susceptible to take part in

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

144

M. Le Muzic et al. / Illustrative Visualization of Molecular Reactions using Omniscient Intelligence and Passive Agents

Figure 4: Description of the reaction motion, we blend a
random walk motion (left), with linear interpolation (mid-
dle) in order to get a consistent attraction motion (right).

reactions of different types. This results in forks in the reac-
tion network. The same principle holds for species that are
involved in different types of reactions. In such case, the sys-
tem will either assign a default choice, or requests a decision
from the user.

In addition to animations, reactions are also responsible
for creating/removing molecules. The reaction dispatching
guarantees that a correct number of elements is formed to
match with the quantitative simulation. Consistency is es-
sential to preserve for visually communicating the pathway
of entire units such as mitochondria or E.coli, for instance.
There, the availability of molecular structures will affect
whether a reaction can be shown or if not enough chemical
elements are available to carry out the reaction.

3.3 Quantitative Simulation

The OI is tightly coupled with the quantitative simulation.
Our system uses COPASI API [HSG∗06] as simulation en-
gine. The engine reads and simulates biological network files
stored in the SBML format [HFS∗03]. The SBML format is
a bioinformatics format based on XML syntax. It describes,
among many other properties, the type of molecular species
involved in the process, their initial concentrations, as well
as the different reactions which constitutes the process. Be-
low are the reaction categories we show in our visualization
system:

1. 0→ A 6. A + E→ B + E
2. A→ B 7. A + E→ B + C + E
3. A→ B + C 8. A + B + E→ C + E
4. A + B→ C 9. A + B + E→ C + D + E
5. A + B→ C + D

where the zeroth order reaction (1) represents the injec-
tion of a new element into the system, unimolecular reac-
tions (2,3) involve one molecular entity, bimolecular reac-
tions (4,5) involve two molecular entities, enzymatic reac-
tions (6−9) involve additional catalyzers.

4 Agent Computation

The OI executes two different routines, prior to the render-
ing, in order to compute the positions and orientations of the
passive agents. In this section we provide implementation

details about these two routines, which we name respectively
reaction dispatching routine and agent updating routine. To
be able to handle a large number of elements, we perform the
computation in parallel on the GPU, using CUDA. The im-
plementation of our particle system is inspired by the GPU
version of agent-based simulation from Dematte [Dem10],
where we adjusted his approach to be able to introduce the
omniscient intelligence. Large memory buffers are allocated
on the GPU memory and hold the individual properties of
the passive agents in an Array-of-Structure (AOS) manner.

Each passive agent is composed of the following prop-
erties: ID, Type, Position, Orientation, LinearVelocity,
AngularVelocity, ReactionID. The ID, is a unique ID given
to every single molecule, the Type describes the chemi-
cal compound, such as AT P for example. The Position,
Orientation, Linear and AngularVelocity are all physics
related properties, and the ReactionID is an ID, which is
unique for each reaction and assigned to all the participat-
ing structures. The ReactionID of a non-reaction element is
always null.

4.1 Reaction Dispatching

This routine ensures the communication between the simu-
lation and the passive agents. At the beginning of the rou-
tine, prior to the first call, we uniformly populate the scene
space with molecules. The molecules are added according
to the initial concentrations defined in the model. The initial
concentrations will guarantee that enough potential reaction
partners are present in the scene before starting to initiate the
individual reactions. Then, on each call, the routine requests
the simulation engine to compute a new integration step and
dispatches the resulting reaction events to the passive agents.

In the case of a reaction of category (1) 0 → A, new
elements are simply inserted at the end of the buffers. All
buffers must be sorted prior to this step so that empty slots
are kept at the end of the buffers. Other categories of reac-
tions (unimolecular, bimolecular and enzymatic), work on
a similar basis. Given a single reaction of category (4) A +
B → C, the modus operandi is the following: First, the OI
selects a candidate of type A from the scene. To select an
element of given type efficiently, the buffers are previously
sorted according to the type of the molecule. The sorting is
done using fast GPU sorting operations [BH11] and must
be repeated for each routine call. We also keep track of the
number of molecules of each type on the CPU. This allows
us to determine the parts of the sorted buffers, which only
contain elements of a given type. Since elements are ran-
domly distributed in the scene, we consider any element of
the buffer to have a random location. Therefore we simply
select the first element of the section containing only ele-
ments of type A to undergo the reaction. Figure 5 represents
how CPU book-keeping allows us to select elements of a
given type from the GPU sorted buffers.

Once the first element of the reaction is selected, the scene

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

145

M. Le Muzic et al. / Illustrative Visualization of Molecular Reactions using Omniscient Intelligence and Passive Agents

A A A A A A B B B B C C C C D D E E E ...

0 6 10 14 16

...

...

Type

ID

Pos

...

A: 0
B: 6
C: 10
D: 14
E: 16
...

CPU

GPU

Figure 5: Representation of the Array-of-Structure allo-
cated on the GPU memory, each index value corresponds to
one molecule and can be used to access the properties form
the different buffer. On the CPU a book-keeping is constantly
maintained in order to access elements of a given type, when
the buffers are all sorted according to the molecule type

is traversed in order to find the closest element of type B.
When dealing with a large number of particles it is impor-
tant to provide means for an efficient lookup into the scene.
In order to rapidly search across large scene of elements
we employ a GPU-based subdivision technique based on the
work of Le Grand [LG07], which was also employed by De-
matte [Dem10]. The technique computes a uniform 3D grid
of the scene, where each grid cell contains a list of elements
located inside. The search is performed by browsing the sur-
rounding cells for the closest partner element. The grid res-
olution is chosen according to the density of displayed ele-
ments. In case the partner search fails, we enlarge the search-
ing radius in order to browse more surrounding cells, and
thus improve the chance to successfully find a reaction part-
ner. Once the reaction partner has been found, elements A
and B will both have their reaction IDs set to the same ID,
and will no longer be available for reactions until their on-
going reaction is over.

4.2 Agent Updating

This routine is responsible for the motion of the agents
and must therefore be called every frame in order to guar-
antee smooth animations. It is also responsible for chang-
ing substrates into products at the end of a reaction. There
are two types of motion which can influence the trajec-
tory of a given particle; the diffusion and the reaction mo-
tion. We apply motion to the agents using physical forces,
based on the rigid-body physics simulation scheme intro-
duced by Baraff [Bar01]. Each particle carries attributes,
such as position, rotation, linear and angular velocity. The
current position and rotation values are integrated using the
Euler method.

The reaction motion consists of attraction forces repre-
sented as 3D vectors that point towards the direction of the
reaction partner. Since the buffers are constantly reorganized
due to the sorting operations of the first routine, we need an
easy way to group reaction partners in order to apply the
attraction forces. We use the reaction ID, common to each

partner of a reaction, to sort our buffers. During an ongoing
reaction the routine also checks for collision between reac-
tion partners, using a simple collision detection scheme de-
fined by Le Grand [LG07]. Once all the partners of a reaction
are in contact with each other, the routine starts a timeout. At
the end of the timeout the reactant types are either changed
into new ones (products), remain unchanged (enzymes), or
are removed entirely from the scene, depending on the type
of the reaction. In the aftermath, the reaction ID of the par-
ticipants is reset, and they may again diffuse freely within
the scene and take part in other reactions.

The Brownian motion that brings the molecular machin-
ery into chaotic motion, results from a constant bouncing
from the crowd of surrounded molecules. In order to mimic
its mechanics, we apply impulse forces in a stochastic man-
ner. We generate random force vectors at regular intervals
using cuRAND, which we apply to the particles. This can be
efficiently performed in parallel since the diffusion motion
of each element is independent from the others. The magni-
tude of the random force and the size of the intervals can be
modified in order to tweak the resulting motion. Since forces
are simply represented by directional vectors, it is straight-
forward to minimize the linear steering motion by linear in-
terpolation of two driving forces.

5 Rendering

Each molecule is visualized by means of the VdW repre-
sentation, where atoms are defined as spheres of given radii.
Instead of having meshes of spheres, we use billboards ren-
dered in the fragment shader. We additionally perform z-
buffer correction [DVRH07]. This technique, as it has been
demonstrated previously [TCM06, PRV13], significantly in-
creases performance as compared to tessellated primitives.
One of the challenging tasks is to render millions of dy-
namic atoms, O(106), molecules involving O(104) atoms at
interactive frame rates. One potential solution is to upload
all the atoms information for each frame to the GPU, which
would require a large CPU to GPU transfer bandwidth. In
our approach we generate a texture buffer containing all the
required atom positions, defined in the PDB file format.

We invoke the rendering of the molecules by using a sin-
gle vertex as an input, i.e., the center of the molecules. This
point is accompanied with the rotational quaternion repre-
senting the current orientation of the molecule. The data is
obtained by reading from the CUDA buffers used by the OI
in Section 4, thus saving transfer cost from CPU to GPU. In
the next stage, we exploit tessellation and geometry shaders
to emit the individual atoms of the molecules. In an ideal
case, the total number of tessellation levels equals the num-
ber of atoms. Using this approach we are able to form maxi-
mally 4K atoms due to current hardware limitations. There-
fore, we also utilize the capabilities of the geometry shader
that can produce another 64 atoms per output created by
the tessellation evaluation shader. As a result we are able to
produce up to 262144 atoms per one vertex call. In the tes-
sellation control shader, we exploit isolines as patch primi-

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

146

M. Le Muzic et al. / Illustrative Visualization of Molecular Reactions using Omniscient Intelligence and Passive Agents

tives. This requires to specify two outer tessellation levels by
gl_TessLevelOuter[0] = gl_TessLevelOuter[1] =

√
#atoms.

Then in the tessellation evaluation shader each atom id is
defined by a combination tessellation variables as follows:

id = gl_TessCoord.x×gl_TessLevelOuter[0]+

+gl_TessCoord.y×gl_TessLevelOuter[0]×
×gl_TessLevelOuter[1].

Based on this id, the necessary atom is fetched from the
texture buffer holding the atom coordinates and the radius.

Afterward, each atom is processed via the geometry
shader to generate a billboard. In case when #atoms exceeds
4K, we specify #atoms = 4K and perform the generation of
the remaining atoms, multiplies of #atoms/4K in the geom-
etry shader. For example, when we would like to form 12K
atoms, each geometry shader pass will produce three atoms,
i.e., three billboards, instead of one. We apply also a view
frustum culling in the vertex shader to avoid tessellating of
molecules outside the viewing frustum.

5.1 Level of Detail

#atoms= 3730

L Hdistance from the camera

2488 1492 747

Figure 6: An example of our molecular Level-of-Detail. With
increasing distance to the camera, more atoms are skipped.
The radii of the remaining atoms are scaled accordingly.

When rendering large molecular scenes, there is no need
to visualize all the molecules in full detail, i.e., with the full-
atom count. Especially, this is evident when the screen space
area is occupied with molecules, which span over only few
image pixels. This is the case of molecules that are located
far away in the current view. We exploit the primary task of
tessellation shaders to lower the number of the tessellation
levels according to an increasing camera distance. The ver-
tex shader decides on the number of atoms to be generated,
i.e., #atoms parameter in the tessellation control shader. This
is achieved by setting up two discrete boundaries, L and H,
where the number of atoms being created is interpolated be-
tween both boundaries (Fig. 6).

In order to achieve as smooth transition as possible be-
tween neighboring LODs, and as well to preserve the molec-
ular structure close to the original form, we propose the fol-
lowing strategy. For each molecule, the atoms are sorted by
an increasing distance from the center of the bounding box
that encapsulates the molecule. Based on the molecular cen-
ter and its position within [L,H], we decide on the number
of atoms to be skipped. When approaching the H boundary

we skip more and more atoms, i.e., rendering only each n-
th atom. As a result of this procedure, we remove always
the same atoms from the molecule at a certain distance,
which keeps a scene view more persistent than when per-
forming removal, for instance, stochastically. Still this can
be performed in a more elaborated way, e.g., ordering the
molecular atoms by a certain importance criterion, and re-
moving atoms that are less important. Our method is simple
and straightforward, and produces visually pleasing results
(Fig. 7). In addition to the atom skipping, we scale the ra-
dius by a value k ∈ [1,max_scale], new_radius = radius∗k.
Value k increases linearly within [L,H], i.e., k =max_scale∗(

depth−L
H−L

)
. This will close the gaps that can appear after the

removal of atoms.

5.2 Shading

Our shading model employs a set of visual effects that
enhance shape and depth information. The entire shading
scheme is inspired by the approach presented by David
Goodsell [Goo09]. We use his system of visual cues, i.e, con-
stant shading, contour and depth enhancement, which he em-
ploys in molecular illustrations. We apply these visual cues
in the focus and context style, where the focus is represented
by a selected pathway. The reacting elements of the pathway
are visually enhanced by employing more saturated colors
(Fig. 8). On the other hand, the context molecules are dis-
played via pale colors.

6 Results

The visualization of described particle-based system is
showcased on two different molecular pathways. The first
pathway is a simplified version of the NAD pathway (Fig. 8).
Nicotinamide adenine dinucleotide (NAD) is found in all liv-
ing cells, and has a number of important functions. It is well
known for its involvement in redox reactions, where it acts
as an electron carrier. In addition it is used as a substrate for
post translational modifications of proteins. When NAD is

Figure 7: An example of LOD application. The same scene
is rendered without (left, 43 948 997 atoms) and with LOD
(right, 7 227 817 atoms). Notice that for the molecules that
are further in the back (the closeups), only negligible differ-
ences are visible.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

147

M. Le Muzic et al. / Illustrative Visualization of Molecular Reactions using Omniscient Intelligence and Passive Agents

Figure 8: Snapshots from the NAD pathway. The examples show four extracted frames from four reactions involved in NAD
pathway. We see four enzymes (yellow — NAMPT_ATP, blue — NMNAT1_NMN, green — NNMT, red — PARP1) that catalyze
these reactions. The camera follows metabolites that take part in reactions (small molecules). The navigation is done fully
automatically, where in a case that there are two reaction products a user can interactively select which one to follow.

Agents NAD cycle [ms] glyoxylate cycle [ms]
20000 9.5 10

100000 12 13
200000 16 18
500000 23 25

Table 1: Performance results of the agent computation (one
frame) for the NAD and TCA cycle with approximately 50
and 500 reactions triggered per second.

used as a substrate, it gets broken down into nicotinamide
(Nam) and ADP-ribose. ADP-ribose is used in various pro-
cesses, while Nam enters the NAD salvage pathway to re-
generate NAD.

The second one is the glyoxylate cycle. The glyoxylate
cycle is used by plants, bacteria and fungi to produce carbo-
hydrates. Parts of the cycle overlap with the tricarboxylic
acid (TCA) cycle. The split between the two cycles hap-
pens when ICL converts isocitrate to glyoxylate and succi-
nate in the glyoxylate cycle, while ICD converts isocitrate
to α-ketoglutarate in the TCA cycle. This cyclic pathway al-
lows cells to obtain energy from fat.

6.1 Agent Computation Performance

We provide a performance analysis of the computation of the
particles, i.e., the OI routines. We demonstrate the interactive
performance of our system using the two different network
models, both showing different characteristics such as initial
quantities and reaction rates. In this analysis the two models
also showcase a different number of reactions triggered by
second (approximately 50 reactions per second for the NAD
cycle and 500 reaction per second for the glyoxylate cycle).
This number simply reflects the differences in reaction rates
between the reactions of the two networks. Since the two
OI routines are not running at the same pace, we provide
an average computation time, accounting for both routines,
for a given frame (see Table 1). The performance was mea-

sured on an Intel Core i7-3930 CPU 3.20 GHz coupled with
a GeForce GTX Titan GPU.

6.2 Rendering Performance

Just like many molecular rendering techniques, the perfor-
mance strongly depends on the position and orientation of
the camera, the size and number of displayed elements, and
in our case, on the level-of-detail parameters. Therefore, we
limit the evaluation of our rendering to a stress rendering
test of a large data set, analogously to the evaluation method
as in Falk et al. [FKE13]. We set up a scene containing 4
million instances of large molecules, of four different types,
from 2000 up to 12000 atoms each. This gives us an effective
number of 30 billion (3 ×1010) of atoms for the dataset. The
molecules are populated randomly in space inside a spheri-
cal volume. We center the camera and ensure that the entire
scene fits into the screen. The size of the viewport for this
measure is 1920 × 1080 (HD). The testing hardware was
identical to performance analysis of our particle system. The
number of atoms emitted through the tessellation and geom-
etry shaders is actually smaller than the amount of effec-
tive atoms in the scene, because of the dynamic level of de-
tail. We render the scene with an average computation time
of 80 ms per frame. The rendering speed is approximately
10 fps for a scene containing 30 billions of effective atoms,
where 13092630 atoms were actually emitted by the render-
ing pipeline. When decreasing the number of molecules to 1
million, we achieve 30 fps (Fig. 1).

7 User Feedback

We have demonstrated the outcome of our framework to sev-
eral experts in the area of biology education, dissemination
of biological research, and molecular illustration.

The molecular illustrator had specific reservations to the
outcome video we showed him. His critical remarks were di-
rected towards an apparently direct motion of the particles;
there was according to him still lack of randomness in the
particle motion. This is a valid point, the main reason was to

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

148

M. Le Muzic et al. / Illustrative Visualization of Molecular Reactions using Omniscient Intelligence and Passive Agents

provide clarity when showing reactions, which would not be
case when using dense scenes. This critical point, however,
can be solved by giving higher prominence to the random
walk motion component than to the motion triggered by the
reaction event. We have increased the amount of randomness
in the accompanying video. The second critical point was re-
lated to the vast space our animation was depicting, i.e., the
molecular crowding was not present in the video sequence.
This can be partially solved by increasing the number of par-
ticles in the scene. However, as we at this point do not detect
collisions, in a very crowded scene the lack of collisions will
lead to visible artifacts in the animation. The collision detec-
tion thus will have to be integrated into our particle system
to support animations with molecular crowding.

The professor teaching molecular biology praised the en-
tire framework for the provided interactivity. Still, she raised
several critical points. In order to be used for learning pur-
poses, the environment could be more physically accurate.
Again, we were advised to increase the density of elements.
Additionally, we were suggested to perform zooming-in ac-
tion when a binding event is happening, in order to achieve
better focus for the viewer. Another suggestion was to em-
ploy metadata, describing the current scene view, pathways,
and molecules, which should accompany the 3D view. The
major complaint was about the speed of the reactions. She
suggested to slow down the animation when a reaction is
happening. Many of the aforementioned ideas are very rel-
evant suggestions, and we will consider these in follow-up
work on advanced visual guidance in molecular machiner-
ies.

The experts on dissemination of biology were on the other
hand very positive concerning the demonstration of our new
technology. Their current workflow is frame-based and the
output is a linear video. They have raised a strong inter-
est in including our system in their workflow and expressed
several functionalities that would enable the integration into
their work processes. Experts imagine to employ our system
in visual communication of intracellular signaling cascades,
which are based on the interaction of two or more macro-
molecules. The most crucial functionality to them seems the
exporting feature of spatial and temporal subparts as well as
camera paths of the animation into common formats of 3D
modeling packages. While their workflow will still include
keyframe animation of major actors of a molecular story, our
system can demonstrate the contextual environment in which
the story is embedded in.

8 Conclusions and Future Work

We have developed a novel concept of particle system, tai-
lored for creation of interactive molecular illustrations. The
concept integrates scientific data from structural and systems
biology. While autonomous agents do not allow us specify-
ing the visualization intent, our method allows for directing

the behavior of passive agents through the newly introduced
omniscient intelligence.

Based on the idea of representing the simulation quantita-
tively with a particle-based visualization, we have proposed
a new way to represent the form and the function of a given
biochemical process. The same concept could also be po-
tentially translated to a larger family of dynamical systems
where visualization might be the right tool to explore and
analyze them, such as population dynamics, migration pat-
terns, or crowd simulations.

Our visualization, however, does not allow to display
complex processes, such as protein transport, and assumes
that the reactions are solely taking place in a single compart-
ment. To be able to explain biochemical process in their en-
tirety we would firstly need to address this issue. Secondly,
the collision detection scheme we adopted is certainly too
trivial to showcase realistic animation of molecular crowd-
ing, which would require collision-detection at the levels of
single atoms.

Finally, current means that guide the viewer are based on
the simple approach of a camera following the actor and text-
based description of the reaction participants. In future work,
we wish to integrate graph-based network visualization to
our system, in order to provide a deeper understanding of
the pathway of a process at the glance.

9 Acknowledgments

This project has been funded by the Vienna Science and
Technology Fund (WWTF) through project VRG11-010 and
additionally supported by EC Marie Curie Career Integration
Grant through project PCIG13-GA-2013-618680. Addition-
ally, this work has been carried out within the PhysioIllustra-
tion research project #218023, which is funded by the Nor-
wegian Research Council.

References

[AB04] ANDREWS S. S., BRAY D.: Stochastic simulation of
chemical reactions with spatial resolution and single molecule
detail. Physical biology 1, 3 (2004), 137. 2

[Bar01] BARAFF D.: Physically based modeling: Rigid body sim-
ulation. ACM SIGGRAPH Course Notes 2, 1 (2001). 6

[BH11] BELL N., HOBEROCK J.: Thrust: A 2 6. GPU Computing
Gems Jade Edition (2011), 359. 5

[Bli82] BLINN J.: A generalization of algebraic surface drawing.
ACM Transactions on Graphics 1 (1982), 235–256. 3

[Dem10] DEMATTÉ L.: Parallel particle-based reaction diffusion:
a gpu implementation. In Parallel and Distributed Methods in
Verification, 2010 Ninth International Workshop on, and High
Performance Computational Systems Biology, Second Interna-
tional Workshop on (2010), IEEE, pp. 67–77. 5, 6

[dHCKMK13] DE HERAS CIECHOMSKI P., KLANN M.,
MANGE R., KOEPPL H.: From biochemical reaction networks to
3d dynamics in the cell: The ZigCell3D modeling, simulation and
visualisation framework. In Proceedings of IEEE BioVis (2013),
pp. 41–48. 2

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

149

M. Le Muzic et al. / Illustrative Visualization of Molecular Reactions using Omniscient Intelligence and Passive Agents

[DVRH07] DAAE LAMPE O., VIOLA I., REUTER N., HAUSER
H.: Two-level approach to efficient visualization of protein
dynamics. IEEE Transactions on Visualization and Computer
Graphics 13, 6 (2007), 1616–1623. 3, 6

[Ede99] EDELSBRUNNER H.: Deformable smooth surface de-
sign. Discrete & Computational Geometry 21, 1 (1999), 87–115.
3

[FKE13] FALK M., KRONE M., ERTL T.: Atomistic visualiza-
tion of mesoscopic whole-cell simulations using ray-casted in-
stancing. Computer Graphics Forum 32, 8 (2013), 195–206. 3,
8

[FKRE09] FALK M., KLANN M., REUSS M., ERTL T.: Visual-
ization of signal transduction processes in the crowded environ-
ment of the cell. In Proceedings of IEEE PacificVis 2009 (2009),
pp. 169–176. 2

[FKRE10] FALK M., KLANN M., REUSS M., ERTL T.: 3D vi-
sualization of concentrations from stochastic agent-based signal
transduction simulations. In Proceedings of IEEE International
Symposium on Biomedical Imaging: From Nano to Macro (ISBI
’10) (2010), pp. 1301–1304. 2

[GB78] GREER J., BUSH B. L.: Macromolecular shape and sur-
face maps by solvent exclusion. Proceedings of the National
Academy of Sciences of the United States of America 75, 1
(1978), 303–307. 3

[Goo03] GOODSELL D.: Illustrating Molecules. 2003, ch. 15,
pp. 267–270. 3

[Goo09] GOODSELL D.: The Machinery of Life. Springer, 2009.
7

[HFS∗03] HUCKA M., FINNEY A., SAURO H. M., BOLOURI
H., DOYLE J. C., KITANO H., ARKIN A. P., BORNSTEIN B. J.,
BRAY D., CORNISH-BOWDEN A., ET AL.: The systems biol-
ogy markup language (sbml): a medium for representation and
exchange of biochemical network models. Bioinformatics 19, 4
(2003), 524–531. 5

[HSG∗06] HOOPS S., SAHLE S., GAUGES R., LEE C., PAHLE
J., SIMUS N., SINGHAL M., XU L., MENDES P., KUMMER U.:
Copasi - a complex pathway simulator. Bioinformatics 22, 24
(2006), 3067–3074. 5

[JAG∗11] JOHNSON G. T., AUTIN L., GOODSELL D. S., SAN-
NER M. F., OLSON A. J.: ePMV embeds molecular modeling
into professional animation software environments. Structure 19,
3 (2011), 293–303. 1

[KG00] KANEHISA M., GOTO S.: Kegg: kyoto encyclopedia of
genes and genomes. Nucleic Acids Res 28, 1 (2000), 27–30. 2

[KMP10] KUBERA Y., MATHIEU P., PICAULT S.: Everything
can be agent! In Proceedings of International Conference on
Autonomous Agents and Multiagent Systems (2010), pp. 1547–
1548. 3

[KWN∗13] KNOLL A., WALD I., NAVRÁTIL P. A., PAPKA
M. E., GAITHER K. P.: Ray tracing and volume rendering large
molecular data on multi-core and many-core architectures. In
Proceedings of the 8th International Workshop on Ultrascale Vi-
sualization (New York, NY, USA, 2013), UltraVis ’13, ACM,
pp. 5:1–5:8. 3

[LBH12] LINDOW N., BAUM D., HEGE H.-C.: Interactive
rendering of materials and biological structures on atomic and
nanoscopic scale. Computer Graphics Forum 31, 3 (2012). 3

[LG07] LE GRAND S.: Broad-phase collision detection with
cuda. GPU Gems 3 (2007), 697–721. 6

[LPK∗13] LEX A., PARTL C., KALKOFEN D., STREIT M.,
GRATZL S., WASSERMANN A. M., SCHMALSTIEG D., PFIS-
TER H.: Entourage: Visualizing relationships between biological

pathways using contextual subsets. IEEE Transactions on Visu-
alization and Computer Graphics, 12 (2013), 2536–2545. 2

[mol13] Molecular Maya 1.3 website:
www.molecularmovies.com/toolkit, 2013. 1

[PRV13] PARULEK J., ROPINSKI T., VIOLA I.: Seamless ab-
straction of molecular surfaces. In Proceedings of SCCG (2013),
pp. 120–127. 6

[PS03] PLIMPTON S. J., SLEPOY A.: ChemCell: a particle-
based model of protein chemistry and diffusion in microbial cells.
United States. Department of Energy, 2003. 2

[RFK∗13] REDA K., FEBRETTI A., KNOLL A., AURISANO J.,
LEIGH J., JOHNSON A., PAPKA M., HERELD M.: Visualizing
large, heterogeneous data in hybrid-reality environments. Com-
puter Graphics and Applications, IEEE 33, 4 (July 2013), 38–48.
3

[SND05] SARAIYA P., NORTH C., DUCA K.: Visualizing bio-
logical pathways: requirements analysis, systems evaluation and
research agenda. Information Visualization 4, 3 (2005), 191–205.
2

[SVS13] STONE J. E., VANDIVORT K. L., SCHULTEN K.: Gpu-
accelerated molecular visualization on petascale supercomputing
platforms. In Proceedings of the 8th International Workshop on
Ultrascale Visualization (New York, NY, USA, 2013), UltraVis
’13, ACM, pp. 6:1–6:8. 3

[TCM06] TARINI M., CIGNONI P., MONTANI C.: Ambient oc-
clusion and edge cueing to enhance real time molecular visualiza-
tion. IEEE Transactions on Visualization and Computer Graph-
ics 12, 5 (2006), 1237–1244. 3, 6

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

150

PAPER B
Illustrative Timelapse:

A Technique for Illustrative
Visualization of Particle-Based

Simulations

Published in [LMWPV15] by IEEE.

65

Illustrative Timelapse: A Technique for Illustrative Visualization
of Particle-Based Simulations

Mathieu Le Muzic1 Manuela Waldner1 Julius Parulek2 Ivan Viola1

1Vienna University of Technology, Austria
2University of Bergen, Norway

Figure 1: Screen capture of an outer mitochondrial membrane featuring adenosine triphosphate (ATP) molecules (in green) crossing larger
voltage-dependent anion channel (VDAC) proteins (in dark red). Our real-time technique lets us observe results of mesoscale particle simulation
in fast-forward while showcasing perceivable moving molecules and a scene full of stochastic motion and interactions

ABSTRACT

Animated movies are a popular way to communicate complex phe-
nomena in cell biology to the broad audience. Animation artists
apply sophisticated illustration techniques to communicate a story,
while trying to maintain a realistic representation of a complex dy-
namic environment. Since such hand-crafted animations are time-
consuming and cost-intensive to create, our goal is to formalize
illustration techniques used by artists to facilitate the automatic
creation of visualizations generated from mesoscale particle-based
molecular simulations. Our technique Illustrative Timelapse sup-
ports visual exploration of complex biochemical processes in dy-
namic environments by (1) seamless temporal zooming to observe
phenomena in different temporal resolutions, (2) visual abstraction
of molecular trajectories to ensure that observers are able to visually
follow the main actors, (3) increased visual focus on events of inter-
est, and (4) lens effects to preserve a realistic representation of the
environment in the context. Results from a first user study indicate
that visual abstraction of trajectories improves the ability to follow
a story and is also appreciated by users. Lens effects increased the
perceived amount of molecular motion in the environment while
trading off traceability of individual molecules.

Index Terms: I.3.7 [COMPUTER GRAPHICS]: Three-
Dimensional Graphics and Realism—Animation; I.6.3 [SIMULA-
TION AND MODELING]: Applications—

1 INTRODUCTION

In molecular biology, visual explanations such as still images and
animated movies are often employed to describe how things work
to a lay audience. Empirical studies have also shown that anima-
tions are helpful for a better understanding of molecular biology on

the academic level [14]. Over the last years, animated movies have
become increasingly popular thanks to tools such as ePMV [15] or
Molecular Maya [2], easing the import of molecular structures into
3D animation packages. But despite these special-purpose model-
ing tools, scientific movies are still created via hand-crafted key-
frame animation, which is tedious, time consuming and can be very
expensive, too. The lack of automated techniques clearly hampers
the communication of the outcome from biological sciences to the
general audience.

In order to improve the way how visual communication is tra-
ditionally being made, visualization scientists have experimented
with the use of data from computational biology to reproduce dy-
namic and 3D mesoscale environments. A commonly employed
technique is mesoscale particle-based simulation, since it features
information about the type and the location of each single molecule
over a time-course. This technique was initially developed for sys-
tems biologists to study spatial and quantitative properties of bio-
logical pathway models.

Direct visualization of the simulation results consist of display-
ing particle positions on screen and consecutively for each simu-
lated step. Because particle simulations operate at very small time
steps, typically of the order of nanoseconds, the resulting number
of steps can often be very large. Observing an entire biochemical
process can therefore lead to overly long visualization sequences.
To shorten the duration of the visualization, it is common to only
display simulation frames spaced at a constant given interval. This
is usually referred to as fast-forward or timelapse. However, when
using large lapses, the scene may exhibit visual clutter due to the
artifacts of the frame-dropping and the very fast motion of the par-
ticles. As a result, one can hardly keep track of individual elements
throughout consecutive frames, which may be an unpleasant expe-
rience and also cause a misinterpretation of the scene.

We present Illustrative Timelapse, a novel technique to re-
duce visual clutter caused by dynamic fast-forward visualization
of molecular simulation data on the mesoscale level. Illustrative
Timelapse supports seamless temporal zooming and ensures that

247

on any zoom level the motion trajectory of scene elements can be
followed by the gaze of human observers. Inspired by hand-crafted
animated illustration techniques, Illustrative Timelapse shortens the
trajectory of particles so that each element is below the maximum
velocity that can be followed and tracked by smooth pursuit eye
movements. As a result, we obtain a slower and easily perceiv-
able motion of individual molecules, while remaining in the vicin-
ity of their original motion in accordance to underlying scientific
data (Figure 1). We also observed that some artists made the choice
of blending abstracted views together with realistic views in order
to enhance the viewer’s comprehension (see, for instance, work by
Drew Berry [5]). Illustrative Timelapse therefore uses a lens sys-
tem that seamlessly merges the abstracted dynamic visualization
with the raw data to lower the risk of misinterpretation in diffusion
speed and we assess its effectiveness through a user study.

We envision scientific utility of our newly developed technique
in two scenarios, where both scenarios include dynamics spanning
over multiple temporal scales. Being able to simultaneously per-
ceive events whose timespan is several orders of magnitude apart
from each other, has been considered as a very useful technology
by our cooperating scientific partners from the field of biology. The
first scenario would be the authoring phase when a stochastic model
is being developed. Here our Illustrative Timelapse technique can
be part of a visual debugger framework that enables the author
to see whether the system behaves as intended. The second sce-
nario would be the explanatory exploration of the simulation con-
tent, where the intended audience would be interactively exploring
dynamics in various parts of the 3D scene. By applying Illustrative
Timelapse to a particular part in the scene, the viewer will be able to
perceive the physiologically relevant content, while the rest of the
scene would not be distorted and will convey in which dynamics
the physiological process is embedded in.

2 RELATED WORK

We structure the prior work review in two parts. In the first part
we relate with research about biology and techniques that employ
computational biology to generate illustrative visualizations. In the
second part we provide a broader overview of techniques used in
different time-dependent visualization and video-based graphics re-
search areas.

2.1 Mesoscale Cellular Visualization
There are several tools described in the literature which aim at mod-
eling signaling pathways on the mesoscale level via particle-based
simulations. The most popular ones are MCell [23], Smoldyn [4]
or more recently the Cellular Dynamic Simulator [6]. They all fea-
ture graphics modules to showcase the results of the simulation.
Among those tools, MCell has one of the most advanced visual-
ization modules, CellBlender [1], which is a plug-in for Blender, a
3D animation package commonly used by 3D artists. The module
was introduced to ease the creation of models for MCell by bridg-
ing 3D modeling and biological modeling in one single powerful
tool. It allows for direct visualization of the particles embedded in
their cellular structures represented as 3D meshes. However, direct
visualization of particle-based simulation is mostly intended as a
visual support for expert users in their modeling task. The outcome
exhibits high visual complexity due to the large number of visual-
ized particles and their diffusion driven chaotic organization, which
is impractical for dissemination of biological sciences to a broader
audience. Moreover, in case of large temporal simulations it is quite
cumbersome to loop over all the frames to locate and understand the
events of interest.

Falk et al. [8] presented a tool which reads the results of a
particle-based simulation and enables interactive visual exploration
of the results. The aim of their visualization is to describe the pro-
cess of signal transduction on both mesoscopic and molecular level.
The individual molecules are represented in 3D space as spherical
glyphs and their positions are updated over time according to the
simulation values. The tool also allows the user to track specific
particles inside a cell. The trajectory is represented as a trail in

3D space providing information about directions and reactions. In
addition, they employ depth-of-field and depth cues, encoded as a
color gradient, to emphasize molecules and their trajectories. This
represents a useful focus+context visualization technique, which
helps to guide attention in crowded cellular environments. In our
work, we employ focus+context techniques not only to filter the
visual appearance, but also the level of detail of dynamic proper-
ties. In a follow-up work, Falk et al. [9] developed a new tech-
nique to improve visualization of large mesoscopic cellular models
to observe particle simulations together with real molecular struc-
ture data. The entire scene is processed by means of ray casting of
spheres, which is efficiently performed on the underlying grid struc-
tures holding the molecular positions. Additionally, each molecule
has its own supporting grid, which is then traversed based on the
given level of detail manner. The authors achieved 3.6 frames per
second for scenes containing 25×109 atoms.

More recently, Le Muzic et al. [20] proposed a new type of par-
ticle systems designed for illustrative visualization of molecular re-
actions. The main idea behind this work was to show sequences
of molecular reactions describing a molecular pathway, and em-
bedded in their cellular environment. They claim this task to be to
cumbersome using a particle-based approach due to the stochastic
behavior of the simulation. Instead, they propose to use quantitative
simulations, to control the behavior of molecules and force them to
react directly in the viewport. They also distort the real diffusion
values in order to perceive moving elements more easily. While
the location of elements and reaction is chosen based on illustrative
considerations, the quantities and reactions rates remain in accor-
dance with real scientific data. Moreover due to lightweight com-
putation of quantitative models, the simulation is able to run simul-
taneously with the visualization, whereas traditional particle-based
approaches have to be precomputed prior the visualization.

The later work adopted a new approach, more oriented towards
storytelling rather than strict scientific exploration. However the
fact that diffusion rates and thus spatial location of particles are not
depicted realistically may lead to misconceptions in audience non
familiar with the basic underlying phenomena. Only particle-based
simulation tools are able to provide accurate spatial information and
yet there is still no elegant solution available that could automati-
cally generate explanatory visualizations out of this type of data.
This work is an attempt to fill the gap left in this domain; with
Illustrative Timelapse we aim at providing an interactive and guid-
ing tool for spatio-temporal exploration of mesoscale particle-based
simulations. By adopting illustration techniques from animations
and videos, we provide a new way to present complex molecular
scenes from particle-based simulations, to achieve a maximum de-
gree of understanding for a broad audience.

2.2 Time-dependent Visualization
In general, time-dependent data can be visualized using either a
static or a dynamic representation [3]. While in the information
visualization domain static representations are far more common,
we explore challenges arising when using dynamic representations
as dynamics is a fundamental property of molecular interactions.
Wolter et al. [26] presented a model for time-varying visualiza-
tions utilizing dynamic representations. In their model, they dis-
tinguish between user time (the real time we perceive), simulation
time (time changes in the simulated process) and visualization time
(a normalized time frame for showing the complete simulation).
They demonstrate their model on scientific simulation data that can
be visualized with interactively changeable temporal resolutions.
However, they do not abstract the resulting dynamic visualization
in case the processes cannot be followed by human observers any
more, due to large velocities in low temporal resolutions.

While there is little related work on visual abstraction tech-
niques for dynamic visualizations, video-based graphics research
addresses a conceptually similar challenge to create short video
synopses out of long input videos. Adaptive fast-forward, for in-
stance, chooses an optimal playback speed based on the estimated
information density in the input video to create compact surveil-

248

Figure 2: Three consecutive frames of a MCell based simulation visualized using CellBlender. When directly visualizing the molecular positions
obtained from the simulation data, it is very challenging to track the molecules in consecutive time steps (cf., red circle).

lance camera streams [11]. Instead of dropping uninformative
frames to create a video synopsis, Space-Time Video Montage [17]
and Dynamic Video Synopsis [22] extract and reassemble informa-
tive space-time portions into a smaller video space-time volume.
These techniques work well if the input video contains longer tem-
poral sequences or spatial regions of low information density. How-
ever, this is not the case in mesoscale molecular simulations, where
the entire environment is filled with constantly moving elements.

An extreme case of video synopsis is the compression of a short
input video into a single still image. This can be achieved by merg-
ing multiple frames with salient content into a static image [24], by
visualizing clustered movement trajectories of tracked elments in
surveillance streams [12], or a combination of these two approaches
[19]. Nevertheless, our goal is to preserve the dynamic represen-
tation so users can obtain a deeper understanding of the temporal
properties of biochemical processes, as opposed to static represen-
tations commonly found in biology text books.

To reduce visual clutter in fast-forward videos, Höferlin et
al. [13] investigated different methods to represent elements with
high velocities. According to their empirical findings, simple drop-
ping of frames without any visual abstraction led to the best per-
formance when users were asked to detect a specific object in the
surveillance video as well as subjectively rate the motion percep-
tion of objects in the video. The videos used in their study were
sped-up by a factor of 10 and 20, respectively and scene elements
like pedestrians or cars could still be easily traced without any vi-
sual abstraction. In contrast, in mesoscale molecular simulations,
movement speed of individual elements and the duration of a se-
quence of reactions involved in biochemical processes often differ
in a factor of 100 and more. With these speed differences, simple
frame dropping as well as conventional visual abstraction methods
like motion blur, fail to preserve traceable object trajectories.

First-person hyper-lapse videos create stabilized fast-forward
videos of helmet camera recordings by reconstructing and smooth-
ing the 3D camera trajectory [18]. In our work, we adopt the con-
cept of spatio-temporal trajectory smoothing to create smooth fast-
forward visualizations of long input data. However, we smooth the
trajectories of the scene elements instead of the camera path. In ad-
dition, we ensure that the user is provided with a visual reference
to the original speed to prevent extensive misinterpretations of the
movement properties of the involved actors.

3 REQUIREMENT ANALYSIS

Visualization of particle-based molecular simulations on the
mesoscale level aims at providing a better understanding of cell bi-
ology by means of realistic representations [8]. Despite the overall
chaos of the output, it reveals important features, such as quantities,
spatial distribution, scales, and motion. Most complex biochemical
processes also comprise at least two temporal scales: local (e.g.,
the behavior of a single molecule at a certain time) and global (the
entire process that is simulated). While molecules are constantly
moving by a constant displacement in every simulation frame, on
the other hand, physiologically meaningful interactions may only
be happening every 100th step, for instance. So in the case of

large simulations (> 105 frames), it would be quite inefficient and
cumbersome to observe the entire sequences of frames. However,
speeding up the animation so that more interesting events are hap-
pening within a reasonable time-frame would result in a chaotic and
unwatchable animation. Indeed, individual molecules are moving
so quickly between two consecutive frames, that it becomes impos-
sible for a human observer to follow them, as indicated in Figure 2.

Instead of employing realistic simulations, scientific illustrators
hand-craft animated visualizations to ensure that the essential in-
formation is intuitively presented to the viewer. For instance, in
the movie Apoptosis made by Drew Berry [5], which is depicted in
Figure 3, exemplary reactions in the foreground are slowed down
and emphasized, while elements in the background are moving with
very high velocity. When watching the video one gets the impres-
sion of a very fast overall particle motion, but in reality this impres-
sion is a carefully crafted illusion. Assuming the constancy among
the shown molecular species, the viewer adopts an impression that
the foreground elements are behaving in the same way as the same
species in the background and perceives these as moving similarly
fast.

Figure 3: Screenshot of frame m and m+ 3 of a molecular anima-
tion [5]. Mind how the main reaction is forced to remain fairly sta-
tionary (upper arrow), while molecules in the background move very
quickly (lower arrow).

Inspired by such hand-crafted animations, we formulated four
requirements for the automatic creation of illustrative visualiza-
tions from particle-based molecular simulations:

R1: The visualization should show the simulated process in a
reasonable amount of time, irrespective of the number of simula-
tion frames. The duration of the visualization can either be pre-
defined (for instance, to be part of a scientific movie with pre-
defined length) or interactively chosen by the user.

R2: Secondly, it has to be possible to keep track of individual
elements in the visualization—especially those with a high degree
of interest at a certain time. This means that there should be a max-
imum velocity of elements in the resulting visualization, so that
human observers can visually trace them.

R3: Thirdly, visibility of events with high degree of interest (e.g.,
molecular reactions or channel protein transfers) should be guaran-
teed. Reactions are usually represented as punctual events in parti-
cle simulations and therefore might be difficult to perceive because
they do not last longer than a simulation step or might simply be
skipped due to frame dropping.

249

R4: Fourthly, the visualization should be as realistic and
detailed as possible. This requirement is in accordance with the
results of a study by Jenkinson et al. [14], which demonstrated that
a more realistic depiction of a process can enhance the viewer’s
understanding compared to a highly abstracted one.

Clearly, these requirements partially contradict each other: A
realistic representation of a visualization with a low temporal res-
olution will lead to large displacements—and as a consequence,
velocities—of individual elements, violating R2. Hand-crafted an-
imations, like the one shown in Figure 3, have demonstrated that
there are ways to visually trade fidelity against an appealing repre-
sentation to create animations that are valuable for a general audi-
ence. What is missing is a formalism to apply these artistic prin-
ciples to visualizations that are automatically generated from sci-
entific simulation data. The goal of Illustrative Timelapse is there-
fore to find a trade-off to at least partially satisfy all four require-
ments for the automatic production of illustrative visualizations
from particle-based molecular simulations.

4 ILLUSTRATIVE TIMELAPSE

Illustrative Timelapse is an illustrative visualization technique for
semantic zooming [21] in the temporal domain. Its concept is based
on the deformation of time exemplified, for instance, in the anima-
tion of Drew Berry [5] shown in Figure 3. The motion pattern is
selectively simplified in order to convey a particle’s trajectory in a
clearly understandable motion, rather than representing the entire
particle path, which could not be traced by human observers any-
way. This selective abstraction can be applied globally to the entire
scene, within a dedicated region in the scene, or as a function of
eye-space depth. Illustrative Timelapse performs four operations to
fulfill the requirements formulated above:

1. Temporal zooming allows users to interactively change the
temporal resolution of the visualization (Section 4.1).

2. Visual abstraction reduces the speed of particles according to
the temporal resolution (Section 4.2).

3. Emphasizing ensures that important reactions are visualized for
a minimum duration and visually stand out (Section 4.3).

4. Lens effects preserve non-abstracted movements in the context,
so that a more realistic impression of molecular motion is de-
picted (Section 4.4).

With these operations, Illustrative Timelapse supports visual ex-
ploration of complex phenomena in a user-defined time frame (→
R1), trading visualization realism (→ R4) against good visibility of
important events (→ R3) and easily perceivable velocities (→ R2).

4.1 Temporal Zooming
As input, our technique uses particle-based simulation data ob-
tained from computational biology. Let us assume that the input
particle simulation contains N frames, where each frame represents
a discrete step in the simulation of ∆t. Each frame contains a set
of molecules (particles) given by their type and position. In ad-
dition, information about the reactions (type, time, location, and
participants) is provided by the simulation tool, which defines the
changes in molecular states between frames.

To visualize such a simulation, we map these N simulation
frames into a new set of M≤N visualization frames. The number of
visualization frames can be chosen so that M = d · f , where d is the
desired duration of the output visualization in seconds and f is the
number of visualized frames per second. The smaller the desired
duration d, the lower the temporal resolution of the visualization
and the larger the displacement of elements between consecutive vi-
sualization frames. Alternatively, users can directly change the tem-
poral resolution during run-time—for instance when first watching
the simulation in a low temporal resolution to get an overview and
subsequently zooming in to observe parts of the simulation in more
detail. The number of visualization frames would then be M = N

z ,
where z≥ 1 is the temporal zoom factor.

For each visualization frame m ∈ {1, . . . ,M}, the corresponding
simulation frame n = m N

M is obtained from the simulation data.
When directly visualizing all the simulation steps so that M = N,
each visualization element’s position p[m] directly corresponds to
the position b[n] from the simulation data. Otherwise, we use
nearest-neighbor interpolation to determine p[m] from the simu-
lation data, which is equivalent to simple dropping of simulation
frames.

(a)

(b)

Figure 4: A sample movement trajectory over 12 frames: (a) the
original trajectory (ρ = 1) and (b) a reduced version visualized in red
(ρ = 0.5) which is equivalent to a displacement reduction of 50% of
the distance between the current position and the next sampled point
on the trajectory.

4.2 Visual Abstraction

From psychology research, it is well known that there is a lower
and an upper velocity limit a human observer is able to follow with
an uninterrupted, smooth eye movement (smooth pursuit). For the
upper limit, this threshold lies at 50◦ to 70◦ of visual angle per
second for a single target with predictable trajectory [7]. Assuming
a visualization frame rate of 60 Hz, a monitor resolution of 110
ppi and an optimal distance between user and monitor of ∼ 60
cm, elements should be displaced less than ∼ 40 pixels per frame
to stay below this maximum velocity threshold. However, this
threshold also varies between individuals [7] and elements with
unpredictable trajectories or surrounded by distractor elements
generally need to move slower to be trackable [27]. Experimental
findings also suggest that smaller targets are harder to track than
larger ones [16]. Since our visualization consists of a large number
of molecules subject to unpredictable Brownian motion, the
amount of per-molecule displacement per frame should therefore
be significantly below this 40-pixel threshold if we want to ensure
that viewers are able to follow individual elements with smooth
pursuit eye movements. We reduce the speed of the particles, using
a straightforward temporal filtering technique. This technique
allows to shorten the motion path of the particles while preserving
them in the vicinity of their original trajectories. We opted for this
solution because it is light to implement and to compute and offers
a lot of control over the desired speed of particles. Such method
also is commonly used in eye tracking research to improve the
stability of gaze-controlled cursors [28].

250

We formulate this as an Infinite Impulse Response (IIR) low-pass
filter in the following form:

p[m] = (1−ρ)p[m−1]+ρb[n], (1)

where m refers to the current visualization frame, n to the cor-
responding simulation frame, p[m− 1] is the filtered 3D position
of the particle in the previous visualization frame and b[n] is the
discrete 3D trajectory position obtained from the simulation. The
displacement magnitude ρ ∈ [ρmin,1] is chosen according to the se-
lected temporal resolution, where ρmin corresponds to an arbitrarily
defined minimum value of ρ . The smooth signal thus is obtained by
blending the result of the previous output of the filter (i.e., p[m−1])
with the Brownian motion specified by the simulation (i.e., b[n]), as
illustrated in Figure 4(b).

4.3 Reactions Emphasis
In particle-based simulations, changes in molecular states, e.g., cre-
ation or consumption, are the results of molecular reactions. As a
consequence, such events can greatly enhance the viewer’s com-
prehension of the underlying process. This is why they are often
depicted very explicitly in illustrated movies (see, for instance, the
connected brown and green macromolecules in Figure 3).

However, in the simulation, reactions are represented as punctual
events that only take place in a single simulation step, which is very
short and can therefore be hard to perceive. Additionally, when
creating a visualization in low temporal resolution (fast-forward),
reactions will likely be filtered out because they often take place
between two visualized lapses. As a result in the visualization,
molecules will suddenly change state, without providing any hint
about how it occurred or which molecules it reacted with.

We therefore prolong the duration of the reactions to make them
stand out and to inform the viewer about the nature these events.
Information about reaction locations, times and participants is first
read out from the simulation data in order to anticipate reaction
events during the visualization. We use this information to asso-
ciate new or missing particles between consecutive frames to their
corresponding reactions, thus the birth or death of particles will
only occur as a result of a reaction event. Then, a few seconds be-
fore each individual reaction and until the end of the reaction, par-
ticipating reactants are attracted toward the reaction location. It is
worth mentioning that during this operation particles are not longer
subject to their original trajectories. In order to ensure all reactants
to meet each other at the right time, we apply a per-frame displace-
ment to the particles in direction of the reaction location. We also
adapt the magnitude of these displacements according to the dis-
tance between particles and reaction sites in order to obtain uniform
reaction durations. To emphasize reaction events, the color of re-
acting elements is highlighted, thus contrasting with the rest of the
scene. Once a reaction is accomplished, the elements are subject to
their respective original trajectories again.

4.4 Lens Effects
To preserve a realistic impression of molecular motion despite tra-
jectory reducing, we introduce a temporal focus+context technique
that applies visual abstraction of molecular trajectories solely in
the foreground (focus), while showing more realistic—yet often
untraceable—motion in the background (context). With a lens ef-
fect, parameter ρ (Eq. 1) is dynamically adjusted for each element
according to some lens-specific rules. We introduce two lens ef-
fects: the world lens (Section 4.4.1) adjusts ρ based on the world-
space distance to a movable spherical lens, while the maximum
velocity lens (Section 4.4.2) reduces ρ dynamically, based on an
element’s displacement in screen space between two consecutive
frames.

4.4.1 World Lens
We represent the world lens as a two-layered sphere with an in-
ner radius surrounding the focus region and an outer radius beyond
which we define the context region. The area between the inner and

(a)

(b)

Figure 5: Illustration of two lens effects. a) Visual abstraction (red
trails) within the world lens (illustrated with inner radius only, with-
out transition area). b) Dynamic displacement reduction based on
screen-space distance.

outer radius represents a smooth transition between both regions.
We fixed the center of the sphere to the camera position, so that
objects with increasing distance from the camera and screen cen-
ter, respectively, are less abstracted. The world lens concept can be
compared with well-known focus+context techniques from the spa-
tial domain, like fisheye views [10], which increase the spatial zoom
level locally, while preserving an overview in the periphery. Note
that the world lens does not affect the temporal zoom level itself,
but rather acts as a spatial filter on the amount of visual abstrac-
tion applied on the movement trajectories. Figure 5(a) illustrates
the effect of the world lens on the visualized particle trajectories.

4.4.2 Maximum Velocity Lens
We define the second lens effect by limiting the displacement of
molecules between consecutive frames. The user defines a maxi-
mum displacement threshold in screen space (dmax), which should
typically lie clearly below the maximum smooth pursuit velocity
threshold (cf., Section 4.2). The displacement magnitude ρ is then
defined as follows:

ρ = min{ dmax

‖b∗[n]− p∗[m−1]‖ ,1}, (2)

where p∗[m− 1] and b∗[n] are the particle’s previous position
in the visualization and current position in the simulation, respec-
tively, mapped to 2D screen space. In contrast to the world lens,
the amount of visual abstraction is hereby defined solely by the el-
ement’s trajectory projection onto the screen, not its position in the
world space (see Figure 5(b)).

When using a perspective projection in the visualization, this
maximum velocity lens automatically leads to the effect that ele-
ments close to the camera appear to move much slower than those
further away in z direction. In fact, their screen space velocity is ap-
proximately the same. This illusion is due to the differences in size
and displacement of particles that are located in the background.
Since the particles move at the same screen velocity, we can achieve
a more harmonious effect than with the world lens.

While the world lens requires educated guesses for the maxi-
mum amount of visual abstraction as well as the radii of the spher-
ical lens for different temporal resolutions, the maximum velocity
lens is defined by the single value of dmax, which could be derived

251

empirically from psychophysics experiments. With this approach,
it is possible to interactively change the temporal resolution, while
ρ is automatically adjusted by the maximum velocity lens. In the
simple definition of Eq. 2, visual abstraction is not affected by the
element’s distance to the screen center on the x-y-plane, as for the
world lens. To achieve such an effect, dmax can be dynamically in-
creased with increasing distance between p∗[m−1] and the screen
center.

It is worth mentioning that the maximum velocity lens may in-
duce an accumulating delay between the current position of parti-
cles and their original trajectories, especially with very linear mo-
tion. However, in the real world due to Brownian motion, molecules
do not exhibit linear trajectories, they rather move in every direc-
tions and spread relatively slowly, even in fast forward. Therefore,
such motion characteristics guarantees that there will not be much
significant delay when applying this approach to molecular simula-
tions.

(a)

(b)

(c)

(d)

Figure 6: Screen capture of our Illustrated Timelapse system which
features 25000 particles reacting and diffusing smoothly at more than
50 frames per seconds. (a) Succinate thiokinase (blue) reacting with
ADP (orange) inside mitochondrion (b) ATP (green) is produced from
Succinate thiokinase (c) ATP about to exit the organelle via VDAC
(red) (d) ATP outside mitochondrion.

5 IMPLEMENTATION

In our work, we employ MCell –previously introduced in Section
2– for the modeling and simulation of biochemical processes and
we use Unity3D as visualization framework. Computation with
MCell can be quite slow depending on the complexity of the model
and is simply not suitable for real-time simulation, therefore we
precompute the data prior to the visualization.

It is also worth mentioning that MCell does not take collisions
between molecular entities into account during the simulation and
this is usually the case in particle-based mesoscale simulation. As
the result, when visualizing a dense simulation of large molecules
they are very likely to intersect, whether the particle trajectories are
abstracted or not. To solve this issue one could simply perform
collision detection between particles, via a physics engine for in-
stance, and offset the particle position accordingly in order to avoid
overlapping molecules.

To enable real-time rendering of a large number of high qual-
ity molecules, we also developed a module based on the technique
proposed by Le Muzic et al. [20]. This module allows us to load
molecular structures stored in the PDB format and to display their
Van der Waals surface in real-time using tessellation shaders.

6 USE CASE

Thanks to our illustrative technique we are able to observe a
perceivable fast-forward visualization of the molecular machinery
while also showing a scene full of stochastic motion together with
molecular reactions. We evaluated our technique via a user study
on a very simple model of adenosine triphosphate (ATP) molecules
diffusing throughout the mitochondrial outer membrane towards the
cytosol. Mitochondria are cellular components present in most cells
of living species, which is mainly responsible for the energy man-
agement of the cell. Its size usually varies between 0.5 and 10 mi-
crometers. On the outer membrane, it features voltage-dependent
anion channels (VDAC) proteins, acting as pores and responsi-
ble for the passage of molecules across the membrane. Those are
around 20− 30 Å large, which is sufficient to let small molecules,
such a ATP, pass through while restraining larger molecules from
crossing the membrane. VDAC transport proteins are found in
very large quantities across the membrane and are also very densely
packed together. As computation time and simulation output data
size greatly increase with the number of frames and particles, we re-
duced the amount of molecules to a total number of 5000 particles
in this example since it already featured a fairly large number of
frames (105). The visualization was running smoothly at more than
60 frames per seconds on a desktop equipped with an Inter Core i7-
3930 3.20 GHz CPU processor coupled with an NVidia GTX Titan
GPU processor.

We also enriched the previous model in order to demonstrate the
scalability of our technique. This second model additionally fea-
tures ADP and succinate thiokinase molecules. Succinate thioki-
nase is an enzyme which diffuses freely and reacts inside the mi-
tochondrial matrix and is responsible for the production of ATP
molecules from ADP, a small ligand previously produced by the
other actors of the Krebs cycle. This example comprised a to-
tal number of 25000 particles and was running smoothly at more
than 50 fps on the same machine we used in the previous exam-
ple. The diffusion constants we used were 106 cm2/s for ATP and
ADP and 107 cm2/s for VDAC and succinate thiokinase, those val-
ues were identical in the previous example. We hereby presented a
more complex depiction of the mitochondrial machinery by show-
ing molecules and reaction taking place inside the mitochondrial
matrix. It is worth mentioning that although enriched, this model
still contains only a minimal fraction of processes in the respec-
tive organelle. We were also able to observe a much more densely
packed scene as previously and we started to foresee occlusion
problems that might occur in such conditions. A series of screen
captures which depict the sequence of events we describe in this
model is shown in Figure 6.

252

7 USER STUDY

We performed a preliminary user study to investigate the effect of
an increasing amount of visual abstraction as well as the lens ef-
fect, on the ability to follow individual events, perceived move-
ment speed of the molecules (i.e., the velocity of Brownian mo-
tion) and the subjective visual appeal of the resulting visualization.
For this purpose, users had to subjectively rate these three aspects
after watching videos of the scene described in Section 6. Since
our research questions did not involve any interactive exploration
of the scene and the desired measurements were solely subjective,
the study was performed online.

7.1 Setup
26 users finished the study (aged 24 to 58, four females). Except for
two users, all were related to computer sciences and had no exten-
sive knowledge in biology. Two users reported red-green weakness,
but produced consistent results and where therefore included in the
analysis. We employed a 3×2 within-subjects design with the fol-
lowing factors:

• the amount of visual abstraction on three levels: none (no tra-
jectory reduction, but simple fast-forwarding instead), minimal
(slight trajectory smoothing so individual elements could be par-
tially tracked with a considerable amount of effort) and smooth
(strong trajectory smoothing so individual elements could be
tracked effortlessly) and

• whether or not the visual abstraction was shown only within a
spatially limited lens.

Since the lens has no impact when using no visual abstraction,
this results in five different visualization conditions users had to
watch and rate: no abstraction, minimal abstraction with and with-
out lens as well as smooth visualization with and without lens. The
ρ values for minimal and smooth visual abstraction were obtained
in an informal pilot experiment where we showed the results of a
simulation sped up a 100 times and three users were subjectively
selecting a value within a range of ρ = 0 to ρ = 1, so it was easily
possible to track an individual element (ρs = 0.05) or possible only
with considerable effort (ρm = 0.1). For the world lens effect, we
had an inner radius of r1 = 10 and an outer radius of and r2 = 20
in world units (1×10−8nm), while the mitochondrion shown in the
video had a maximum length of 100×10−8nm.

Since absolute judgment of visual appeal, traceability, and speed
is difficult, we used comparative questionnaires to obtain subjec-
tive ratings: We showed all pair-wise combinations of the five
videos in a side-by-side view, resulting in ten comparisons with two
videos each. It is worth mentioning that video where not actually
shown side-by-side but where superposed instead, because of the
large frame width we obtained at 720p resolution. The videos were
presented in embedded YouTube players with 720p resolution and
users were free to watch the videos as many times as they wished—
synchronously or one after the other. For each comparison, users
were asked to select one of the two videos (or “no difference”) for
the three questions listed in Table 1. In addition, users could leave
a comment at the end of the study. The order in which the video
pairs were presented was randomized.

Q1 Which video was more visually pleasing to watch?
Q2 In which video was it easier to follow molecules

diffusing through the membrane?
Q3 In which video did the molecules move faster?

Table 1: The three questions for each pair-wise comparison.

We expected to observe that visual abstraction would lead to im-
proved traceability, but also reduce the perceived molecular speed
dramatically. With the world lens, we expected that users would re-
port that elements move faster compared to global abstraction, but
that the capability to trace individual elements is hardly affected.

7.2 Results
For each vote for a particular video, we assigned the value 1 to
the respective condition, while we assigned 0.5 for both conditions
if the users selected “no difference”. We used the Case V Scal-
ing model by Thurstone [25] to convert all obtained pair-wise com-
parison values into interval scale. The values were transformed so
that the minimum obtained z-value for each question corresponds
to zero.

No abstraction Minimal(lens) Smooth (lens) Minimal Smooth

Visual Appeal

Traceability

Perceived Speed
0 0,5 1 1,5 2 2,5 3 3,5

Figure 7: Average z-scores per visualization condition (color-coded)
for the three questions listed in Table 1. Higher values are better.

As expected, both global visual abstraction methods (minimal
and smooth) led to improved traceability of particles in the visual-
ization (orange and red mark in Figure 7, center), as compared to
the non-abstracted version (green mark). Similarly, the perceived
speed of particles was much lower in the abstracted visualizations
than in the non-abstracted one (see orange, red, and green mark in
Figure 7, bottom).

The world lens could not fully preserve the traceability of parti-
cles compared to the globally abstracted version (compare blue and
purple marks to orange and red marks in Figure 7, center). How-
ever, the increased velocity in the context indeed led to a faster
perception of overall particle movement (see blue and purple marks
in Figure 7, bottom).

In terms of visual appeal ratings, the obtained intervals are very
similar to the traceability ratings (compare Figure 7 top and center).
In other words, the smoother the overall motion, the more visually
appealing the users rated the visualization.

Some users commented that tracing individual elements – es-
pecially the small ATP molecules – was generally hard, even in
the abstracted versions of the visualization. A few suggested us-
ing stronger visual highlight effects to make reactions more evi-
dent. Also, one user criticized the fact that reactions were also high-
lighted in the “blurred out-of-focus regions”, where reactions were
“not at all” visible—presumably especially in the lens conditions,
where the blurred regions were also visualized with non-abstracted
motion. One user also reported that “the different movement speeds
for particles nearer and further away in some videos feel weird”,
which was probably caused by the world lens effect.

7.3 Discussion
Our preliminary user study results indicate that with increased tra-
jectory smoothing, the ability to trace individual elements is better
than if observing a non-abstracted visualization. Unsurprisingly,
our study also showed that the perceived motion speed was de-
creased due to the decreased velocity of the elements. The world
lens used in our experiment could alleviate this underestimation
effect to some extent, but in turn leads to more difficulties when
keeping track of individual elements as well as decreased aesthetics
ratings.

Due to these observations, together with selected user statements
collected during the study, we iterated the lens design and created
the maximum velocity lens, described in Section 4.4.2. In addi-
tion, the reaction highlighting should clearly be coupled with the
lens effect: Only if elements can be easily traced by the observer’s
gaze, a visual highlight should attract the user’s attention to those
elements that are about to react. Otherwise, the attention is directed
towards contextual scene regions, whose primary purpose is actu-
ally to generate a realistic impression of the environment, but not to
communicate the story of the visualized process in focus.

253

Nonetheless, illustrative techniques always compromise realism
when providing an explanatory visual description to enhance the
viewer’s understanding of selected aspects. It is therefore up to
the visualization designer to define priorities and choose the level
of visual abstraction accordingly—just like illustrations and visual
storytelling.

It is worth mentioning that in order to fully evaluate our tool a
few points would need to be further evaluated. Firstly, our study did
not include the maximum velocity lens, which would be needed to
judge its usability and effectiveness more objectively. Secondly, the
fact that our technique provides means for interactive exploration
also calls for further investigations, requiring users to accomplish a
set of tasks instead of simply rating a video. And finally we ought
to conduct more empirical research to obtain the best candidates for
the parameters ρ and the maximum traceable velocity dmax in such
chaotic systems.

8 CONCLUSION AND FUTURE WORK

With Illustrative Timelapse we introduced a new technique for in-
teractive and explanatory exploration of mesoscale particle-based
simulation on multiple temporal scales. Our system is capable of
showing traceable moving molecules, when viewing processes in
fast-forward which is important for an artistic depiction of biologi-
cal sciences. While abstracting original motion from the simulation
we also provide a more accurate representation of the molecular
diffusion in the context area, similarly as in animated movies. In
future work, it might be worthwhile investigating whether our pro-
posed technique would also apply to other types of simulation, such
and molecular dynamics for instance.

Although this technique has a great potential for dissemination
of biological sciences it also comprises a few limitations: Firstly,
the simulation has to be pre-computed prior to the visualization
which disallows user interaction with the simulation outcome. This
problem can be tackled by executing the mesoscale simulation on
accelerated hardware such as supercomputers or graphics process-
ing units and thereby enable interactivity. The second limitation is
about potential occlusion problems that can occur with very dense
scenes. Indeed, molecules are usually subject to molecular crowd-
ing inside their cellular compartments. Therefore, in order to pro-
vide a more faithful representation to the viewer we would have
to develop new visualization techniques aiming at providing a high
degree of understanding despite clutter due to molecular crowding.
In addition, we also plan to extend the perceptual study in order
to cover the points that were not yet evaluated and which we dis-
cussed in Section 7.3. We also wish to compare our the IIR filter
with other techniques such as B-splines for instance in order to find
out which technique offers the best visual abstraction. Finally we
will reinforce cooperation with domain experts, in order to develop
more complex models and provide and better interactive depiction
of the machinery of life via our technique.

ACKNOWLEDGEMENTS

This project has been funded by the Vienna Science and Technology
Fund (WWTF) through project VRG11-010 and additionally sup-
ported by EC Marie Curie Career Integration Grant through project
PCIG13-GA-2013-618680. Additionally, this work has been car-
ried out within the PhysioIllustration research project 218023,
which is funded by the Norwegian Research Council. We would
also like thank the collaborators of this project, Stefan Bruckner,
Helwig Hauser, Matthias Ziegler and Matthias Bernhard.

REFERENCES

[1] Cellblender. http://code.google.com/p/cellblender/.
Accessed: 2014-12-01.

[2] Molecular maya. http://www.molecularmovies.com/
toolkit/. Accessed: 2014-12-01.

[3] W. Aigner, S. Miksch, H. Schumann, and C. Tominski. Visualization
of Time-Oriented Data. Springer Science & Business Media, 2011.

[4] S. S. Andrews and D. Bray. Stochastic simulation of chemical re-
actions with spatial resolution and single molecule detail. Physical
biology, 2004.

[5] D. Berry. Apoptosis. http://youtu.be/DR80Huxp4y8?t=
1m50s, 2006. The Walter and Eliza Hall Institute.

[6] M. J. Byrne, M. N. Waxham, and Y. Kubota. Cellular dynamic sim-
ulator: an event driven molecular simulation environment for cellular
physiology. Neuroinformatics, 2010.

[7] J. D. Enderle. Models of Horizontal Eye Movements: Early models of
saccades and smooth pursuit. Morgan & Claypool Publishers, 2010.

[8] M. Falk, M. Klann, M. Reuss, and T. Ertl. Visualization of signal
transduction processes in the crowded environment of the cell. In
Proceedings of IEEE PacificVis 2009, 2009.

[9] M. Falk, M. Krone, and T. Ertl. Atomistic visualization of mesoscopic
whole-cell simulations using ray-casted instancing. Computer Graph-
ics Forum, 2013.

[10] G. W. Furnas. Generalized fisheye views. In Proceedings of the
SIGCHI conference on Human factors in computing systems, 1986.

[11] B. Hoeferlin, M. Hoeferlin, D. Weiskopf, and G. Heidemann.
Information-based adaptive fast-forward for visual surveillance. Mul-
timedia Tools and Applications, 2011.

[12] M. Hoeferlin, B. Hoeferlin, D. Weiskopf, and G. Heidemann. Inter-
active schematic summaries for exploration of surveillance video. In
Proceedings of the 1st ACM International Conference on Multimedia
Retrieval, 2011.

[13] M. Hoeferlin, K. Kurzhals, B. Hoferlin, G. Heidemann, and
D. Weiskopf. Evaluation of fast-forward video visualization. IEEE
Transactions on Visualization and Computer Graphics, 2012.

[14] J. Jenkinson and G. McGill. Visualizing protein interactions and dy-
namics: evolving a visual language for molecular animation. CBE-
Life Sciences Education, 2012.

[15] G. T. Johnson, L. Autin, D. S. Goodsell, M. F. Sanner, and A. J. Ol-
son. ePMV embeds molecular modeling into professional animation
software environments. Structure, 2011.

[16] C. W. Johnston and F. J. Pirozzolo. Neuropsychology of Eye Move-
ment. Psychology Press, 2013.

[17] H.-W. Kang, Y. Matsushita, X. Tang, and X.-Q. Chen. Space-time
video montage. In 2006 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, 2006.

[18] J. Kopf, M. F. Cohen, and R. Szeliski. First-person hyper-lapse videos.
ACM Transaction on Graphics, 2014.

[19] A. Meghdadi and P. Irani. Interactive exploration of surveillance video
through action shot summarization and trajectory visualization. IEEE
Transactions on Visualization and Computer Graphics, 2013.

[20] M. L. Muzic, J. Parulek, A.-K. Stavrum, and I. Viola. Illustrative
visualization of molecular reactions using omniscient intelligence and
passive agents. Computer Graphics Forum, 2014.

[21] K. Perlin and D. Fox. Pad: An alternative approach to the computer
interface. In Proceedings of the 20th Annual Conference on Computer
Graphics and Interactive Techniques, 1993.

[22] A. Rav-Acha, Y. Pritch, and S. Peleg. Making a long video short:
Dynamic video synopsis. In 2006 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2006.

[23] J. R. Stiles, T. M. Bartol, et al. Monte carlo methods for simulating
realistic synaptic microphysiology using mcell. Computational neu-
roscience: realistic modeling for experimentalists, 2001.

[24] L. Teodosio and W. Bender. Salient stills. ACM Transactions on Mul-
timedia Computing, Communications, and Applications, 2005.

[25] L. L. Thurstone. The measurement of values. Univer. Chicago Press,
1959.

[26] M. Wolter, I. Assenmacher, B. Hentschel, M. Schirski, and T. Kuhlen.
A time model for time-varying visualization. Computer Graphics Fo-
rum, 2009.

[27] J.-J. O. d. Xivry and P. Lefèvre. Saccades and pursuit: two outcomes
of a single sensorimotor process. The Journal of Physiology, 2007.

[28] X. Zhang, X. Ren, and H. Zha. Improving eye cursor’s stability for eye
pointing tasks. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 2008.

254

PAPER C
cellVIEW:

A Tool for Illustrative and
Multi-Scale Rendering

of Large Biomolecular Datasets

Published in [LMAPV15] by the Eurographics Association.

75

Eurographics Workshop on Visual Computing for Biology and Medicine (2015)
K. Bühler, L. Linsen, and N. W. John (Editors)

cellVIEW: a Tool for Illustrative and Multi-Scale Rendering
of Large Biomolecular Datasets

Mathieu Le Muzic1 and Ludovic Autin2 and Julius Parulek3 and Ivan Viola1

1Institute of Computer Graphics and Algorithms, TU Wien, Austria
2Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA.

3Department of Informatics, University of Bergen, Norway

Figure 1: Real-time screen-shot of an illustrative cross-section of the HIV virus surrounded by blood plasma. Our rendering
tool is directly integrated in the Unity3D game engine and is able to render datasets with up to 15 billion atoms smoothly at
60Hz and in high resolution. Because these datasets exhibit high visual complexity, we opted for an illustrative rendering style
to improve shape perception, inspired by the style of scientific illustrators.

Abstract

In this article we introduce cellVIEW, a new system to interactively visualize large biomolecular datasets on the
atomic level. Our tool is unique and has been specifically designed to match the ambitions of our domain experts
to model and interactively visualize structures comprised of several billions atom. The cellVIEW system integrates
acceleration techniques to allow for real-time graphics performance of 60 Hz display rate on datasets representing
large viruses and bacterial organisms. Inspired by the work of scientific illustrators, we propose a level-of-detail
scheme which purpose is two-fold: accelerating the rendering and reducing visual clutter. The main part of our
datasets is made out of macromolecules, but it also comprises nucleic acids strands which are stored as sets of
control points. For that specific case, we extend our rendering method to support the dynamic generation of DNA
strands directly on the GPU. It is noteworthy that our tool has been directly implemented inside a game engine.
We chose to rely on a third party engine to reduce software development work-load and to make bleeding-edge
graphics techniques more accessible to the end-users. To our knowledge cellVIEW is the only suitable solution
for interactive visualization of large bimolecular landscapes on the atomic level and is freely available to use and
extend.

c© The Eurographics Association 2015.

DOI: 10.2312/vcbm.20151209

Le Muzic et al. / cellVIEW: a Tool for Illustrative and Multi-Scale Rendering of Large Biomolecular Datasets

1. Introduction

Computational biology already offers the means to model
large structural models of cell biology, such as viruses or
bacteria on the atomic level [JGA∗14] [JAAA∗15]. Visu-
alization of macromolecular structures plays an essential
role in this modelling process of such organisms. The most
widely known visualization softwares are: VMD [HDS96],
Chimera [PGH∗04], Pymol [DeL02], PMV [S∗99], ePMV
[JAG∗11]. These tools, however, are not designed to ren-
der a large number of atoms at interactive frame-rates and
with full-atomic details (Van der Walls or CPK spheri-
cal representation). Megamol [GKM∗15] is a state-of-the-
art prototyping and visualization framework designed for
particle-based data and which currently outperforms any
other molecular visualisation software or generic visualiza-
tion frameworks such VTK/Paraview [SLM04]. The system
is able to render up to 100 million atoms at 10 fps on com-
modity hardware, which represents, in terms of size, a large
virus or a small bacterium. Larger bacteria, however, such
as the well known E. coli, made out of tens of billions of
atoms, which is two orders of magnitude bigger than what
the highest-end available solution is able to render.

According to our domain experts, responsive visual feed-
back is of a great value for the modelling process of such
organisms. However, none of the currently available solu-
tions are able to serve the ambitions of our domain experts,
which is to model large macromolecular structures such as
E. coli. Related works have already presented bleeding-edge
techniques that can render large datasets with up to billions
of atoms at interactive framerates on commodity graphics
hardware [LBH12] [FKE13] [LMPSV14]. However, to our
knowledge, the tools which implemented these techniques
were either not publicly available, or remained in the proto-
typing stage. Indeed, a very cumbersome task for researchers
is releasing and maintaining a usable version of the source
code once the article has been published. The presented tech-
niques are often a proof-of-concept that would require sub-
stantial software development work to ensure a maximum
degree of accessibility. Unfortunately, this is often omitted
because of a busy research schedule and is simply left in the
hand of interested third party developers. Consequently, if
this task remains unachieved, end-users are unlikely to use
state-of-the-art techniques in their work.

cellVIEW is a new solution that enables fast rendering
of very large biological macromolecular scene. Unlike Meg-
amol, which is designed for generic particle-data, cellVIEW
is primarily designed for large biomolecular landscapes, and
thus, exploits the repetitive nature of such structures to im-
prove the rendering performance. While the main function
of this tool is to assist our domain experts in their modelling
task, the visualization of these datasets could also serve an
educational purpose. By interactively showcasing the ma-
chinery of life in science museums, for instance, we could

Figure 2: An illustration of David Goodsell depicting a
cross section of a Mitochondrion. Given the complexity of
the scene the artist deliberately chose to render molecules
with highly abstracted shapes.

also improve the understanding of basic cell biology of the
laymen audience.

cellVIEW is built on top of state-of-the-art techniques,
and also introduces new means to efficiently reduce the
amount of processed geometries. The approach we demon-
strate in cellVIEW improves rendering performance com-
pared to related work by introducing efficient occlusion
culling and robust level-of-detail schemes. Our level-of-
detail scheme also abstracts the shape of macromolecules
efficiently, thus reducing visual clutter, as seen on the artis-
tic depictions of David Goodsell in Figure 2. We show-
case our tool with real, large-scale scientific data such as
the HIV virus and Mycoplasma bacterium, which were pro-
vided by our cooperating domain scientists. Their datasets,
not only contain information relative to the location of indi-
vidual macromolecules, but also provide the path of nucleic
acids strands, which is stored in the form of control points.
We additionally extend our method to procedurally gener-
ate DNA strands on-the-fly via the GPU tessellation shader,
thus reducing the modelling effort as well as GPU transfer
times and memory space. Our system is implemented using
a user-friendly and popular game engine. The ease of use of
the engine guarantees our tool a maximum degree of acces-
sibility, thus bridging the gap between bleeding-edge tech-
niques and actual use in real applications. Additionally, since
game engines are gaining in popularity among the visualiza-
tion community, we anticipate third-party users adopting our
tool, and thereby breaking the barriers caused by heteroge-
neous toolset usage across research departments.

2. Related Work

Large-scale Molecular Visualization Lindow et al.
[LBH12] have first introduced a method capable of quickly
rendering large-scale atomic data consisting of several bil-
lions of atoms on commodity hardware. Rather than transfer-
ring the data from CPU to GPU every frame, they store the

c© The Eurographics Association 2015.

62

Le Muzic et al. / cellVIEW: a Tool for Illustrative and Multi-Scale Rendering of Large Biomolecular Datasets

structure of each type of molecule only once and utilize in-
stancing to repeat these structures in the scene. For each type
of protein a 3D grid structure containing all the atoms is cre-
ated and then stored on the GPU memory. Upon rendering,
the bounding boxes of the instances are drawn and individu-
ally raycasted, similar to volumetric billboards [DN09]. Sub-
sequently Falk et al. [FKE13] presented a similar approach
with improved depth culling and hierarchical ray casting for
impostors that are located far away and do not require a full
grid traversal. Although this implementation features depth
culling, their method only operates on the fragment level,
while they could have probably benefited from a culling
on the instance level too. With their new improvement they
managed to obtain 3.6 fps in full HD resolution for 25 billion
atoms on a NVidia GTX 580, while Lindow et al. managed
to get around 3 fps for 10 billions atoms in HD resolution
on a NVIDIA GTX 285. Le Muzic et al. [LMPSV14], intro-
duced another technique for fast rendering of large particle-
based datasets using the GPU rasterization pipeline instead.
They were able to render up to 30 billions of atoms at 10 fps
in full HD resolution on a NVidia GTX Titan. They utilize
tessellation shaders to inject atoms on-the-fly into the GPU
pipeline similar to the technique of Lampe et al. [LVRH07].
In order to increase the rendering speed they dynamically
reduce the number of injected atoms according to the cam-
era depth. To simplify the molecular structures they discard
atoms uniformly along the protein chain and increase the ra-
dius of remaining atoms to compensate for the volume loss.
This level-of-detail scheme offers decent results for low de-
grees of simplification, but it does not guarantee preserving
the initial shape of the molecules, resulting in poor image
quality with highly simplified shapes.

Occlusion Culling A key aspect when rendering large
and complex scenes is efficient occlusion culling. Grottel et
al. [GRDE10] presented a method to perform coherent oc-
clusion culling for particle-based datasets, which is closely
related to Deferred Splatting [GBP04] and relies on temporal
coherency. Their particle data is stored in a uniform grid, and
they operate the culling at two-levels: at the level of grid cells
first, and at the atomic level afterwards. Individual atoms
are rendered via 2D depth impostors, because they have a
much lower vertex count than sphere meshes for the same
results. At the beginning of each frame they render an early
depth pass with atoms that were visible during the previous
frame. This pass results in an incomplete depth buffer that
they utilize to determine the visibility of the remaining par-
ticles. For the coarse-level culling they determine the visibil-
ity of the grid cells by testing their bounding boxes against
the incomplete depth buffer via hardware occlusion queries
(HOQ). For the fine-level culling they test the visibility of
individual atoms in the final render using the well known
hierarchical Z-buffer (HZB) visibility technique [GKM93].
They construct the HZB from the incomplete depth buffer
beforehand, and during the final render, they discard frag-
ment operations from the vertex shader if the visibility test

fails, thus compensating for the lack of early fragment rejec-
tion with depth impostors.

Illustrative Molecular Visualization When rendering
large structures the speed of execution is not the only con-
cern. As the structures increase in size, they are also increas-
ing in complexity, and it is necessary to display the data
in the most suitable way. Ambient occlusion, for instance,
has been shown to play an essential role when dealing with
large molecular structures, as it provides important depth
cues which increase shape perception [GKSE12, ESH13].
But the rendering style is not the only means to define visual
encoding, geometric abstraction should be applied as well.
Parulek et al. [PJR∗14], demonstrated a continuous level-
of-detail scheme for molecular data. Their object-space ap-
proach offers detail-on-demand in the focus area while ap-
plying gradual shape simplification schemes elsewhere. At
the finest level of detail they were showcasing solvent ex-
cluded surface (SES) representation and abstracted molec-
ular shape for distant molecule. They introduced an inter-
esting abstraction approach, other than molecular surfaces,
based on union of spheres obtained via clustering methods.
Several common clustering methods are compared and eval-
uated.

Modelling of Nucleic Acids Chains DNA plays a key
role in cell biology, and thus is an important part of our
datasets. Therefore, as with protein data, we shall also pro-
vide the means for efficient rendering of this type of struc-
ture. There are several scientific modeling tools [MC98,
LO08, HLLF13] designed to generate DNA strands from a
simple set of control points. These techniques, however, are
all performed on the CPU, which means that geometry data
must be uploaded on the GPU prior to the rendering. Be-
cause of the cost of transferring data from CPU to GPU,
such approach would likely perform poorly when rendering
and animating long DNA strands. Therefore, we introduce a
new GPU-based approach which relies on dynamic instanc-
ing of DNA base-pairs along a curve. This approach is sim-
ilar to the work of Lampe et al. [LVRH07], who use the ge-
ometry shader to dynamically instantiate residues along the
protein backbone. The major difference here is the introduc-
tion of procedural building rules based on scientific data and
the use of the tessellation shader, which offer a much greater
bandwidth of injected primitives. Moreover, by changing the
building rules, our approach can also be extended and ap-
plied to fibres or repetitive objects that are present in cellu-
lar environment (actin filaments, microtubules, lipoglycane,
etc.).

Game Engines and Biomolecular Visualization Game
engines are becoming increasingly popular in the molecular
visualization community. Shepherd et al. [SZA∗14] have de-
veloped an interactive application to showcase 3D genome
data using a game engine. Their visualization is multi-
scale and is able to render a large amount of data thanks
to the implementation of a level-of-detail scheme. Various

c© The Eurographics Association 2015.

63

Le Muzic et al. / cellVIEW: a Tool for Illustrative and Multi-Scale Rendering of Large Biomolecular Datasets

works on interactive illustration of biological processes have
also mentioned using game engines to interactively visu-
alize biomolecular processes in 3D, such as polymeriza-
tion [KPV∗14] and membrane crossings [LMWPV15]. Sim-
ilarly to our work, Baaden et al. [LTDS∗13] developed a
molecular viewer which offers artistic and illustrative ren-
dering methods based on the Unity3D game engine. Their
primary intention was to democratize biomolecular visual-
ization thanks to the use of a more intuitive and user friendly
framework. Their tool has managed to prove that game en-
gines are also useful in serious visualization projects. One
noticeable technical difference between cellVIEW and Uni-
tyMol, other than the scale of the supported datasets, is that
our tool is fully integrated in the "What you see is what you
get" (WYSIWYG) editor of the Unity3D engine. Thus, our
tool coexists with the engine toolset which provides a rich
set of functionalities that can be directly used to enhance the
quality of our visualization.

3. Efficient Occlusion Culling

The overwhelmingly increasing size of structural biology
datasets calls for efficient means for reducing the amount
of processed geometries. Our rendering pipeline is based on
the work of Le Muzic et al. [LMPSV14], which relies on the
tessellation shader to dynamically inject sphere primitives
in the pipeline for each molecule. However, without proper
occlusion culling, the injection of sphere primitives would
still be performed, even if a molecule is completely hidden
behind occluders. The presented occlusion culling method is
inspired by the work of Grottel et al. [GRDE10]. We have re-
visited their technique to provide efficient occlusion culling
for macromolecular datasets that are several orders of mag-
nitude larger than the ones showcased with their method.

3.1. Temporal coherency

We developed a custom visibility technique, implemented
with compute shaders and using the well-known hierarchi-
cal Z-buffer (HZB) occlusion culling. This solution has the
advantage to reduce GPU driver overhead compared to HOQ
used by Grottel et al. [GRDE10], since multiple queries can
be performed in a single call. The approach rely on the use
of an item-buffer to precisely determine the visibilty of the
molecules at the end of a frame. Then at the beginning of
the next frame, the previously visible molecules are firstly
drawn. This will result in an partially complete frame, in
case of eventual camera motion. The next step is to deter-
mine the remaining visible elements in order to complete
the frame. We generate the HZB from the partially complete
depth buffer and we compute the visibility information for
the remaining molecules. The remaining visible molecules
are finally drawn and we use the item buffer to determine
which molecules are present on the screen at the end of this
frame. The sequential steps of our occlusion culling method
for a given frame are laid down as follows:

Figure 3: Depth conservative sphere impostors, in order to
benefit from early depth culling for depth impostors we must
guaranty that the output depth will be greater than the depth
of the billboard.

1. Clear HZB and depth buffer
2. Draw visible molecules at the previous frame
3. Generate HZB from the depth buffer obtained in step 2
4. Compute HZB-visibility for the remaining molecules
5. Draw HZB-visible molecules from step 4
6. Find visible molecules via item-buffer for the next frame

3.2. Accelerating Texture Writes

Individual atoms are rendered via 2D sphere impostors, be-
cause they have a much lower vertex count than sphere
meshes for the same results. The depth of the sphere impos-
tors is corrected in the fragment shader in order to mimic a
spherical volume. Upon drawing the atoms, many of them
are actually occluded by other atoms of the same or sur-
rounding molecules. These atoms would normally be pro-
cessed, as a well-known limitation of graphics hardware, so
far, has been the lack of early depth fragment rejection for
depth impostors. Thanks to advances in graphics hardware
however, it is now possible to activate early depth rejection
when a fragment is modifying the output depth value. Hence,
thanks to this feature, we may now easily avoid fragment
computation for hidden atoms. This feature is called conser-
vative depth output. Once activated, in order for conserva-
tive depth output to work, we must output a depth which is
greater than the depth of the 2D billboard. This way the GPU
is able to tell if a fragment will be occluded beforehand by
querying the visibility internally. A description of the depth
conservative output sphere impostor is given in Figure 3. Ad-
ditionally, to limit the number of texture writes, we only out-
put the id of the molecules to the render texture upon render-
ing. The colors are fetched afterwards in post-processing by
reading the molecules properties from the id.

4. Twofold Level-of-Detail

Proteins are key elements of biological organisms, and thus
it is important to visualize them in order to understand how
these work. They are also present in fairly large quantities,
which is challenging to render interactively without proper
level-of-detail schemes (LOD). Additionally, their complex
shapes might cause a high degree of visual clutter, which
may render overly complex images. We propose a twofold
LOD scheme which provides rendering acceleration and of-

c© The Eurographics Association 2015.

64

Le Muzic et al. / cellVIEW: a Tool for Illustrative and Multi-Scale Rendering of Large Biomolecular Datasets

Figure 4: Our level-of-detail scheme allows to reduce the
number of sphere primitives from 10182 to 50 while preserv-
ing the overall shape of the protein. From left to right, the
protein is shown with (i) full-atomic detail, (ii) only 15 per-
cent of the overall sphere count, (iii) 5 percent and (iv) 0.5
percent.

fers a clearer depiction of the scene using smoothly ab-
stracted shapes. Our technique also offer a seamless contin-
uum between the different levels of abstractions from highly
detailed to highly abstracted.

Our rendering pipeline is based on the work of Le Muzic
et al. [LMPSV14], where LOD was dynamically deter-
mined during the tessellation stage. To reduce the number
of spheres, atoms were periodically skipped along the pro-
tein backbone, and the radii of remaining atoms were in-
creased to compensate the volume loss. This technique, al-
though fully dynamic, offers poor results for highly deci-
mated molecules since it does not guarantee to preserve the
overall shape. We employ clustering methods instead, sim-
ilar to the technique of Parulek et al. [PJR∗14], to simplify
the shape of the molecules and reduce the number of prim-
itives to render. Atoms corresponding to one cluster are re-
placed by a single sphere with a radius that approximates
the size of the cluster. Clustering offers a very good decima-
tion ratio as well as accurate shape abstraction, because it
tends to preserve low-frequency details. With higher shape
accuracy we are also able to switch to simpler LOD proxies
closer to the camera, thus gaining in render speed without
compromising image quality.

The clustering of the molecules is precomputed and re-
sults in a set of spheres which are stored in the GPU memory.
We compute our LOD levels using a GPU-based K-means
clustering algorithm. In our tests, we deemed that four levels
were sufficient with our current datasets. The compression
factor of each level was manually chosen to obtain the best
performance/image quality ratio. The results of the cluster-
ing of our four levels is shown in Figure 4. These parameters
can be easily changed via the editor interface. A side-by-side
comparison between our illustrative LOD compared to full
atomic detail is provided in Figure 5.

5. Dynamic DNA Generation

Animating individual molecules is fairly straightforward be-
cause modifying the atomic structure may not be required.
In the case of DNA, the positions of the control points of
the DNA path highly influence its structure, namely the po-
sitions and rotations of the individual nucleic acids. As a

Figure 5: Side-by-side comparison of our illustrative LOD
compared with full atomic details. Our illustrative LOD pro-
vides smoother and elegant shapes, while also reducing the
processing load.

result, each modification of the control points of the DNA
path requires a new computation of the strand. Current ap-
proaches are only performed on the CPU, [HLLF13, LO08,
MC98] which means that the whole nucleic acids chain has
to be transferred to the GPU upon re-computation. While
this approach is viable for low to mid sized DNA strands, it
is likely to perform poorly for large and dynamic DNA paths
featuring a large number of control points.

We propose to use the dynamic tessellation to leverage the
generation of nucleic acid strands. So far we have only used
tessellation to instantiate data stored in the GPU memory.
However it is possible to include building rules characteris-
tic to the DNA’s well known geometry to procedurally gener-
ate a double helix structure simply based on control points.
Thus, data transfers as well as GPU memory space can be
dramatically reduced.

Similar to GraphiteLifeExplorer [HLLF13], our goal is
more illustrative than strict biomolecular modeling. There-
fore we privilege rendering performance over accuracy, and
we provide only a limited array of folding types. Although
the study of DNA structures has revealed many different
types of folding, requiring complex modeling algorithms,
the most commonly recognizable shape that of B-DNA that
exhibits a regular structure which is simple to model: a spac-
ing of 3.4Å and a rotation of 34.3◦ between each base. Based
on these rules we are able to procedurally generate B-DNA
strands based on path control points via GPU dynamic tes-
sellation. The workflow which we employ is described as
follow:

c© The Eurographics Association 2015.

65

Le Muzic et al. / cellVIEW: a Tool for Illustrative and Multi-Scale Rendering of Large Biomolecular Datasets

1. Resample control points (on the CPU).
2. Compute smooth control point normals (on the CPU).
3. Upload control point data to the GPU
4. Draw all the path segments in one pass, one vertex shader

per segment
5. Read the control points and adjacent points needed for

smooth cubic interpolation. (In vertex shader, for each
segment)

6. Do uniform sampling along the cubic curve segment to
determine the positions of the bases. (In vertex shader,
for each segment)

7. Pass the position of the bases to the tessellation shader.
(In vertex shader, for each segment)

8. Compute normal vector of each base using linear interpo-
lation between the control points normals (In tessellation
shader, for each base)

9. Inject atom, then translate and rotate accordingly (In tes-
sellation shader, for each atom of each base)

10. Render sphere impostor from injected atom (In geometry
& fragment shader, for each atom of each base)

5.1. Smooth Normals Computation

A well known challenge when dealing with 3D splines is to
determine smooth and continuous frames along the whole
curve. Any twists or abrupt variation in frame orientation
would cause visible artifacts due to irregularities in the DNA
structure, which should be avoided at all costs. We perform
the computation of the smooth and continuous frames pri-
marily on the CPU. We first determine the normal direc-
tion for every control point of the path. Then, we sequen-
tially browse the control points and rotate the normal direc-
tion vector around the tangent vector in order to minimize
the variation in orientation compared to the previous control
point normal. The recalculated normals are then uploaded to
the GPU along with the control points positions. Then, dur-
ing the instantiation of the nucleic acids, we obtain the nor-
mal vector of a nucleic acid by linear interpolation between
the two normal vectors of the segment.

5.2. Double Helix Instancing

When instancing individual pairs of nucleic acids in the tes-
sellation shader, we first fetch the nucleic acid atoms, po-
sition them along the curve, orient them toward the normal
direction and then rotate then around the tangent vector in
order to generate the double helix. We always orient the first
base of a segment according to the normal direction only,
while the subsequent bases are all oriented towards the nor-
mal direction first and then rotated with an increasing angu-
lar offset of 34.3◦ around the tangent of the curve. The angu-
lar offset of a given base is defined as follows: α = i×34.3,
where i corresponds to the index of the base inside a seg-
ment. The last base of a segment must therefore always per-
form an offset rotation of (360− 34.3)◦ around the tangent
vector. This way it connects smoothly to the first base of the

Figure 6: Procedural generation of B-DNA structures via
GPU dynamic tessellation. In the first image we can see the
position of the individual bases. The color gradient high-
lights the individual segments. In the second image we draw
the smooth normals along the curve, the color desaturation
shows the direction of the vector. The third image shows the
rotation offset of the normal vector along the tangent, and
the last image shows the final result.

next segment, which is oriented towards the normal vector
only. The result of the procedural generation of B-DNA is
given in Figure 6 as well as a visual explanation of the dif-
ferent steps.

5.3. Control Points Resampling

Given that the bases of a segment must perform a revolu-
tion to connect smoothly to the next segment, it is trivial
to determine the number of bases per segment as follows:
n = 360÷ 34,3. From the number of bases per segment we
can easily deduce the required size of a segment as follows:
s = n× 3.4 Å, which results in a segment length of approx-
imately 35 Å . This constraint implies that all control points
be spaced uniformly with a distance of 35 Å. However, it
may be the case that control points obtained via modelling
software have arbitrary spacing. Therefore, we must resam-
ple the control points along the curve to ensure a uniform
spacing before uploading it to the GPU. Although we resam-
ple the control points according to the B-DNA build rules,
the length of the interpolated curve segments will always be
slightly greater because of the curvature. We did not find
this to be visually disturbing, mostly because consecutive
segments in our dataset did not showcase critically acute an-
gles, so the overall curvature of individual curve segments
remained rather low.

6. Results

We have tested our tool with several datasets of different na-
ture and sizes. The datasets were modelled with cellPACK
[JAAA∗15], a modelling tool for procedural generation of

c© The Eurographics Association 2015.

66

Le Muzic et al. / cellVIEW: a Tool for Illustrative and Multi-Scale Rendering of Large Biomolecular Datasets

Dataset Size Raw LOD O. Culling LOD + O. Culling
HIV 15M 80 130 110 140

HIV + blood plasma 60M 25 90 60 120
HIV + blood plasma x 250 15B <1 15 <1 60

Mycoplasma DNA 12M 70 n/a n/a n/a

Table 1: Performance comparison for each dataset used in our study. During our tests we have monitored the rendering speed
with various camera settings, from far-out to close-up and from many angles. The measured performance represents the slowest
render speed obtained, in frame per seconds at full HD resolution. The first column shows the size of the dataset in terms of
number of atoms, then from left to right: without optimizations, with LOD only, with occlusion culling only and finally with
LOD and occlusion culling.

Figure 7: The results of our rendering test, showing DNA from Mycoplasma on the left and HIV in blood plasma on the right.
The first dataset has approximatively 11 million atoms and the second one approximatively 15 billion

large biomolecular structures. cellPACK is developed and
used by our domain experts, it is publicly available and of-
fers to anyone the means for experimenting and creating
their own models. Our program reads the files that are gener-
ated by cellPACK and is able to reconstruct and display the
scene in a multiscale approach. The generated files comprise
of a list of elements with their properties such as name, posi-
tion, rotation, and PDB identifier that indicates the atomic
structure [SLJ∗98]. The structural data is directly fetched
online from the Protein Data Bank via the PDB identifier.
In case an entry is not present or refers to a custom PDB
file, we load the protein information from a dedicated repos-
itory provided by the domain experts. The generated files
also include control points for the linear or repetitive type of
structures such as DNA, unfolded peptide, lypoglycane, etc.

6.1. Use cases

HIV Virus + Blood Plasma The first dataset we showcase
is a combination of two datasets: the HIV virus [JGA∗14]
surrounded by blood plasma. The HIV is a retrovirus and
thus only contains RNA, which features much more com-
plex modeling rules than DNA and forbids dynamic pro-
cedural generation. For this specific case the atomic struc-
ture of RNA would have to be modelled ad-hoc with a third
party tool before being loaded in cellVIEW. Without the ge-
nomic information, the dataset comprises a total of 60 mil-
lions atoms consisting in 40 different types of molecules.

For the purpose of benchmarking, we periodically repeat this
dataset to reach an overall number of 15 billion atoms.

Mycoplasma To demonstrate the use of our dynamic
building rules for DNA, we use the data from Mycoplasma
mycoide, one of the smallest bacteria with a genome of
1,211,703 baise pairs. Mycoplsama has been widely stud-
ied by biologists, and was the first organism to be fully syn-
thetized. For this dataset we only showcase a preliminary
model built with cellPACK and containing only a quarter
of the total genome. This dataset comprises a set of 9617
control points defining the overall path of the DNA and the
PDB reference of the nucleic acid base pairs. The pairs are
instanced along the path resulting in an overall number of
11,619,195 atoms. We were able to procedurally generate
and render the entire dataset at 70 fps without any culling nor
LOD schemes. With this test we simply wanted to show the
raw computation time in order to demonstrate the efficiency
of our technique. Naturally, when using LOD and culling
schemes like with protein data, the performance would con-
siderably increase and would not impact the rest of the com-
putation. The results of the two datasets are shown in Figure
7, and a preliminary render of the Mycoplasma is shown in
Figure 8.

6.2. Performance Analysis

It is rather challenging to precisely evaluate the performance
of our tool, as the speed of execution depends on many fac-

c© The Eurographics Association 2015.

67

Le Muzic et al. / cellVIEW: a Tool for Illustrative and Multi-Scale Rendering of Large Biomolecular Datasets

Figure 8: Preliminary results of the Mycoplasma model. The
model additionally features proteins, RNA and lycosomes.

tors, such as camera position or level-of-detail parameters,
and which are arbitrarily chosen. It is also worth mentioning
that available software solutions are not able to deal with the
amount of data presented in our largest datasets. Therefore
we did not perform a thorough comparison with available
software solutions and related work. We perform an intra-
performance evaluation instead, using our different datasets.

Table 1 provides a descriptive listing of the rendering
performance for each dataset, with and without our opti-
mizations. The rendering tests were performed on an In-
tel Core i7-3930 CPU 3.20 GHz machine coupled with a
GeForce GTX Titan X graphics card with 12GB of video
RAM. During our tests we have monitored the rendering
speed with various camera settings, from far-out to close-
up and from many angles. The measured performance repre-
sents the slowest render speed obtained, in frame per seconds
at full HD resolution. The LOD parameters were carefully
tuned in order to obtain the best ratio between performance
and image quality. From these results we can clearly see the
impact of the LOD in terms of performance for all datasets.
We can also observe that the culling greatly improves the
rendering speed when displaying a very dense dataset. Ad-
ditionally, our tool is able to render datasets which are equiv-
alent in size to the ones showcased in related work at higher
framerates (> 60fps).

It is worth mentioning that it would always be possible to
render larger datasets at more than 60 fps using more aggres-
sive LOD settings and thus trading image quality. However,
one could question the utility of this approach to display
datasets that would be one or several orders of magnitude

larger. Indeed, when viewing our largest dataset in its en-
tirety, the view starts to exhibit graining artefacts due to the
very small screen-size of individual molecules. These arte-
facts create unwanted visual clutter, and therefore another
type of approach rather than the particle-based one should
be considered in this case.

7. Expert Feedback & Discussion

Domain experts who have experimented with cellVIEW
have responded favorably and with great enthusiasm. One
of our domain experts, a core actor of the cellPACK project,
wrote:

Prior to cellVIEW, visualizing this type of data was cum-
bersome for the experts and as the scale increased, it was
often not possible to view large models with all structures
turned on with a standard computer. cellVIEW now provides
state-of-the-art techniques to accomplish this task. Some ex-
perts were dismayed that cellVIEW could not yet be imple-
mented in their lab’s preferred or homemade visualization
toolsets (i.e., not simply a python or C++ library they could
access), but most had some experience working with the
Unity 3D framework, so the transition to this standalone tool
was sufficient. For large biological structures, such as My-
coplasma mycoides, the cellPACK viewers are currently un-
able to visualize the complete models produced by the pack-
ing algorithm. Because cellVIEW can handle Mycoplasma
and larger models in atomic detail and with ease, it is evi-
dent that cellVIEW will become a critical tool for cellPACK
users who wish to explore multi-scale modeling extremes
such whole bacterial cells and ultimately whole mammalian
cells.

cellVIEW is open source, free to use, and available
online, as well as the datasets modelled with cellPACK
(https://github.com/illvisation/cellVIEW). With cellVIEW
we wanted to guarantee the maximum degree of accessi-
bility as possible. Therefore, we opted for a well-known,
generic, and universal development framework to encourage
third-party users to experiment and also to contribute to our
project, such as visualization scientists, scientific illustrators,
biologists or students. Although this solution might not have
been the most preferred one for our main users at first, the
ease of use of the tool has shown to be very valuable to them.
The main advantage to us is that the development and main-
tenance of the core platform is already taken care of. This
allows small teams of researchers to allocate their resources
more efficiently and to focus on developing the actual tech-
nologies more quickly. However, the engine also presents
a few drawbacks which would need to be addressed in the
future in order to become a stronger contender as a visual-
ization framework. Firstly, the advanced GPU programming
features we use to develop cellVIEW are based on DirectX
11, which makes our tool only available to Windows plat-
forms, at least until Unity3D supports advanced GPU pro-
gramming with OpenGL. Another major drawback is that

c© The Eurographics Association 2015.

68

Le Muzic et al. / cellVIEW: a Tool for Illustrative and Multi-Scale Rendering of Large Biomolecular Datasets

the source code of the core of the engine is not yet publicly
available, which may be critical in case a missing core fea-
ture would need to be manually coded.

8. Conclusions and Future Work

We have introduced cellVIEW, a tool for real-time multi-
scale visualization of large molecular landscapes. Our tool
is able to load files generated by cellPACK a powerful mod-
eling tool for representing entire organisms at the atomic
level. cellVIEW was engineered to work seamlessly inside
the Unity3D game engine, which allows us to prototype and
deploy quickly and to leverage performance via advanced
GPU programming. The method which we presented also
features notable improvements over previous works. We pro-
vide the means for efficient occlusion culling, which is cru-
cial when dealing with such large scale datasets. We also
implemented a level-of-detail scheme, which allows both ac-
celeration of rendering times and provides a clear and accu-
rate depiction of the scene. Finally, we demonstrated the use
of dynamic tessellation to generate biolmolecular structures
on-the-fly based on scientific modeling rules.

In future work we would like to tighten the collaboration
with domain experts and achieve interactive viewing of more
complex organisms and bacteria such as E. coli. As the scale
increases the view exhibits highly grainy results due to the
very small size of molecules. In the future we would like to
focus on better representation for this case, and perhaps find
new semantics that could be integrated in our level-of-detail
continuum. We also would like to use our rendering to ex-
periment with in-situ simulations as a visual exploration tool
for scientists, and also as an educational tool to showcase the
machinery of life to a lay audience.

Acknowledgement

This project has been funded by the Vienna Science and
Technology Fund (WWTF) through project VRG11-010
and also supported by EC Marie Curie Career Integra-
tion Grant through project PCIG13-GA-2013-618680. Ad-
ditionally, this work has been carried out within the Phys-
ioIllustration research project 218023, which is funded by
the Norwegian Research Council. Autin,L. received support
from the National Institutes of Health under award number
P41GM103426.

References

[DeL02] DELANO W. L.: The pymol molecular graphics system.
2

[DN09] DECAUDIN P., NEYRET F.: Volumetric billboards. In
Computer Graphics Forum (2009), vol. 28, Wiley Online Library,
pp. 2079–2089. 3

[ESH13] EICHELBAUM S., SCHEUERMANN G., HLAWITSCHKA
M.: Pointao improved ambient occlusion for point-based visual-
ization. 3

[FKE13] FALK M., KRONE M., ERTL T.: Atomistic visualiza-
tion of mesoscopic whole-cell simulations using ray-casted in-
stancing. In Computer Graphics Forum (2013), vol. 32, Wiley
Online Library, pp. 195–206. 2, 3

[GBP04] GUENNEBAUD G., BARTHE L., PAULIN M.: Deferred
splatting. In Computer Graphics Forum (2004), vol. 23, Wiley
Online Library, pp. 653–660. 3

[GKM93] GREENE N., KASS M., MILLER G.: Hierarchical z-
buffer visibility. In Proceedings of the 20th annual conference
on Computer graphics and interactive techniques (1993), ACM,
pp. 231–238. 3

[GKM∗15] GROTTEL S., KRONE M., MULLER C., REINA G.,
ERTL T.: Megamol a prototyping framework for particle-
based visualization. Visualization and Computer Graphics, IEEE
Transactions on 21, 2 (2015), 201–214. 2

[GKSE12] GROTTEL S., KRONE M., SCHARNOWSKI K., ERTL
T.: Object-space ambient occlusion for molecular dynamics. In
Pacific Visualization Symposium (PacificVis), 2012 IEEE (2012),
IEEE, pp. 209–216. 3

[GRDE10] GROTTEL S., REINA G., DACHSBACHER C., ERTL
T.: Coherent culling and shading for large molecular dynamics
visualization. In Computer Graphics Forum (2010), vol. 29, Wi-
ley Online Library, pp. 953–962. 3, 4

[HDS96] HUMPHREY W., DALKE A., SCHULTEN K.: Vmd: vi-
sual molecular dynamics. Journal of molecular graphics 14, 1
(1996), 33–38. 2

[HLLF13] HORNUS S., LÉVY B., LARIVIÈRE D., FOUR-
MENTIN E.: Easy dna modeling and more with graphitelifeex-
plorer. PloS one 8, 1 (2013), 53609. 3, 5

[JAAA∗15] JOHNSON G. T., AUTIN L., AL-ALUSI M., GOOD-
SELL D. S., SANNER M. F., OLSON A. J.: cellpack: a virtual
mesoscope to model and visualize structural systems biology.
Nature methods 12, 1 (2015), 85–91. 2, 6

[JAG∗11] JOHNSON G. T., AUTIN L., GOODSELL D. S., SAN-
NER M. F., OLSON A. J.: epmv embeds molecular modeling
into professional animation software environments. Structure 19,
3 (2011), 293–303. 2

[JGA∗14] JOHNSON G. T., GOODSELL D. S., AUTIN L., FORLI
S., SANNER M. F., OLSON A. J.: 3d molecular models of whole
hiv-1 virions generated with cellpack. Faraday discussions 169
(2014), 23–44. 2, 7

[KPV∗14] KOLESAR I., PARULEK J., VIOLA I., BRUCKNER S.,
STAVRUM A.-K., HAUSER H.: Illustrating polymerization us-
ing three-level model fusion. arXiv preprint arXiv:1407.3757
(2014). 4

[LBH12] LINDOW N., BAUM D., HEGE H.-C.: Interactive
rendering of materials and biological structures on atomic and
nanoscopic scale. In Computer Graphics Forum (2012), vol. 31,
Wiley Online Library, pp. 1325–1334. 2

[LMPSV14] LE MUZIC M., PARULEK J., STAVRUM A.-K., VI-
OLA I.: Illustrative visualization of molecular reactions using
omniscient intelligence and passive agents. In Computer Graph-
ics Forum (2014), vol. 33, Wiley Online Library, pp. 141–150. 2,
3, 4, 5

[LMWPV15] LE MUZIC M., WALDNER M., PARULEK J., VI-
OLA I.: Illustrative timelapse: A technique for illustrative visual-
ization of particle-based simulations. In Visualization Symposium
(PacificVis), 2015 IEEE Pacific (2015), IEEE, pp. 247–254. 4

[LO08] LU X.-J., OLSON W. K.: 3dna: a versatile, integrated
software system for the analysis, rebuilding and visualization of
three-dimensional nucleic-acid structures. Nature protocols 3, 7
(2008), 1213–1227. 3, 5

c© The Eurographics Association 2015.

69

Le Muzic et al. / cellVIEW: a Tool for Illustrative and Multi-Scale Rendering of Large Biomolecular Datasets

[LTDS∗13] LV Z., TEK A., DA SILVA F., EMPEREUR-MOT C.,
CHAVENT M., BAADEN M.: Game on, science-how video game
technology may help biologists tackle visualization challenges.
PloS one 8, 3 (2013), 57990. 4

[LVRH07] LAMPE O. D., VIOLA I., REUTER N., HAUSER H.:
Two-level approach to efficient visualization of protein dynam-
ics. Visualization and Computer Graphics, IEEE Transactions
on 13, 6 (2007), 1616–1623. 3

[MC98] MACKE T. J., CASE D. A.: Modeling unusual nucleic
acid structures. 3, 5

[PGH∗04] PETTERSEN E. F., GODDARD T. D., HUANG C. C.,
COUCH G. S., GREENBLATT D. M., MENG E. C., FERRIN
T. E.: Ucsf chimera a visualization system for exploratory re-
search and analysis. Journal of computational chemistry 25, 13
(2004), 1605–1612. 2

[PJR∗14] PARULEK J., JÖNSSON D., ROPINSKI T., BRUCKNER
S., YNNERMAN A., VIOLA I.: Continuous levels-of-detail and
visual abstraction for seamless molecular visualization. In Com-
puter Graphics Forum (2014), vol. 33, Wiley Online Library,
pp. 276–287. 3, 5

[S∗99] SANNER M. F., ET AL.: Python: a programming language
for software integration and development. J Mol Graph Model
17, 1 (1999), 57–61. 2

[SLJ∗98] SUSSMAN J. L., LIN D., JIANG J., MANNING N. O.,
PRILUSKY J., RITTER O., ABOLA E.: Protein data bank (pdb):
database of three-dimensional structural information of biologi-
cal macromolecules. Acta Crystallographica Section D: Biolog-
ical Crystallography 54, 6 (1998), 1078–1084. 7

[SLM04] SCHROEDER W. J., LORENSEN B., MARTIN K.: The
visualization toolkit. Kitware, 2004. 2

[SZA∗14] SHEPHERD J. J., ZHOU L., ARNDT W., ZHANG Y.,
ZHENG W. J., TANG J.: Exploring genomes with a game engine.
Faraday discussions 169 (2014), 443–453. 3

c© The Eurographics Association 2015.

70

PAPER D
Visibility Equalizer:

Cutaway Visualization of
Mesoscopic Biological Models

Published in [LMMS+16] by the Eurographics Association.

87

Eurographics Conference on Visualization (EuroVis) 2016
K.-L. Ma, G. Santucci, and J. van Wijk
(Guest Editors)

Volume 35 (2016), Number 3

Visibility Equalizer
Cutaway Visualization of Mesoscopic Biological Models

M. Le Muzic†1, P. Mindek1, J. Sorger1,2, L. Autin3, D. S. Goodsell3, and I. Viola1

1TU Wien, Austria 2VRVis Research Center, Vienna, Austria 3The Scripps Research Institute, La Jolla, California, USA

(a) (b) (c) (d)

Figure 1: The workflow of our method for a model of HIV surrounded with blood plasma proteins. (a) The entire dataset is shown. The blood
serum (shown in red) is occluding the virus. (b) Clipping objects are added to selectively clip molecules to reveal the HIV capsid. (c) The
illustrator decides to show more of the matrix proteins (shown in blue), so their clipping is disabled. However, they are now occluding the
view of the capsid. (d) The probabilistic clipping has been used to selectively remove those matrix proteins occluding the capsid, but some
of them are left in the scene to indicate the presence of this type of protein on the virus membrane. The capsid has been clipped with view
space clipping to reveal its internal structure.

Abstract
In scientific illustrations and visualization, cutaway views are often employed as an effective technique for occlusion manage-
ment in densely packed scenes. We propose a novel method for authoring cutaway illustrations of mesoscopic biological models.
In contrast to the existing cutaway algorithms, we take advantage of the specific nature of the biological models. These models
consist of thousands of instances with a comparably smaller number of different types. Our method constitutes a two stage
process. In the first step, clipping objects are placed in the scene, creating a cutaway visualization of the model. During this
process, a hierarchical list of stacked bars inform the user about the instance visibility distribution of each individual molecular
type in the scene. In the second step, the visibility of each molecular type is fine-tuned through these bars, which at this point
act as interactive visibility equalizers. An evaluation of our technique with domain experts confirmed that our equalizer-based
approach for visibility specification is valuable and effective for both, scientific and educational purposes.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Viewing
algorithms

† The first two authors contributed equally. .
Contact: {mathieu | mindek}@cg.tuwien.ac.at

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.12892

Le Muzic, Mindek et al. / Visibility Equalizer

1. Introduction

Molecular biology is an emerging field that is characterized by
rapid advances of the current state of knowledge. New discoveries
have to be communicated frequently to a large variety of audiences.
However, due to their structural and phenomenal complexity, it is
challenging to convey the discoveries of molecular phenomena. On
a mesoscale level, where thousands or millions of macromolecules
form a given structure, this challenge is amplified by the presence
of multiple spatio-temporal scales. Currently, illustrations are the
most widely-used form of communicating mesoscale structures. To
reveal the internal composition of mesoscale structures, such as
viruses or bacteria, illustrators often employ clipping, section views
or cutaways in their work.

Considering the rapid evolution of knowledge in the field of bi-
ology, it is necessary to adapt the traditional illustration pipeline
so that new knowledge can be easily added into illustrations, in-
stead of tediously redrawing the entire structure. Virtual 3D mod-
els of cells and other mesoscale molecular structures can be uti-
lized for these purposes. Biologists have designed tools, such as
cellPACK [JAAA∗15], to procedurally generate 3D models that
represent the structure of micro-organisms such as viruses, or entire
cells at atomic resolution. Based on a set of input parameters, indi-
vidual molecules are algorithmically assembled into these complex
organic static structures. The parameter set consists of a specifica-
tion of molecular types, concentrations and spatial distribution that
define where the instances are distributed in a given compartment.
The resulting 3D models, in the most complex cases, may consist
of thousands of various molecular types, which in turn, may re-
sult in millions of molecules and billions of atoms. The instances
are densely packed within the predefined compartments, to repli-
cate the actual molecular crowding phenomena prevailing in living
organisms. Due to the high density of these scenes, inner struc-
tures that are essential for conveying the function of the organism
remain hidden. It is therefore important to develop visualization
techniques that would procedurally reproduce the occlusion man-
agement methods used in traditional illustration. Currently, this is
achieved by placing clipping objects in the scene, which remove
specified parts of the displayed model. However, illustrators have
to make sure that the essential information, e.g., the ratio of mul-
tiple molecular ingredients, is represented and not either hidden in
the volume or clipped away (Fig. 2a). To do this, they would need
to visually inspect the presence of each single ingredient in the re-
sulting visualization (Fig. 2b).

To alleviate this process, we present our first contribution: a
method that quantifies the overall visibility of the model contents.
We display a stacked bar for each molecular type that encodes the
ratio of visible, clipped, and occluded instances of the respective
type for the current viewpoint and clipping setting. During the pro-
cess of placing clipping objects in the scene, these bars continu-
ously reveal molecular types that are underrepresented or overrep-
resented. This enables the illustrator to modify the placement of
the clipping objects in such a way that every molecular type is ad-
equately represented in the scene. We call this the coarse level of
the visibility specification process.

To preserve important structures that would be removed by clip-
ping objects such as cutting planes, traditional illustrations also of-

(a) (b)

Figure 2: (a) Various types of protein molecules and (b) their em-
bedding into a mesoscale model. It is a demanding task to deter-
mine which molecular types are visible and how many of their in-
stances are shown.

ten reintroduce parts of the removed structures in front of the re-
vealed cross sections. In Figure 2b, for instance, the glycoproteins
(yellow molecules) of the HIV particle that are not occluding the
object of interest, in this case the capsid containing the RNA, are
left in the illustration to communicate their presence on the surface
of the virus (Fig. 2a). In this way, the main components of the virus
particle can be illustrated in a single image. The process of fine-
tuning the visibility is extremely time-consuming, as the illustrator
has to manually pick individual molecular instances to be reintro-
duced or removed from the scene.

To speed up this visibility fine-tuning process, we propose our
second contribution: a novel method for managing the visibility of
instances. Instead of binary enabling or disabling the presence of
all instances for a given molecular type, we offer the possibility
to show a desired number of them. The main purpose of this ap-
proach is to increase the visibility of hidden structures by remov-
ing redundant parts of occluding instances while preserving some
of them. An analogy of this approach can be drawn with “Screen-
Door Transparency”, a trivial way to obtain transparency in com-
puter graphics by placing small holes in a polygon to reveal what is
present behind. Additionally, we propose the novel metaphor of the
visibility equalizer for controlling this effect efficiently. To explain
its role, we use the metaphor of hi-fi sound reproduction where the
volume control is used for adjusting the output sound uniformly on
all frequencies. Such a mechanism corresponds to our coarse level
visibility specification of the clipping objects, where all molecular
types are uniformly removed from the clipped regions. However,
hi-fi sound systems also allow users to fine-tune the volume levels
of individual frequency bands through an equalizer. Following this
metaphor, the visibility levels of molecular types are represented
as stacked bars that form our visibility equalizer. All visibility bars
are interactive, thus allowing the user to adjust desired levels just
as with a sound equalizer. After drawing relation to previously pro-
posed visibility management techniques in the next section, we will
discuss the technique of visibility equalizers in further detail in the
remaining sections of the paper.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

162

Le Muzic, Mindek et al. / Visibility Equalizer

2. Related Work

Related work can be categorized into occlusion management tech-
niques and molecular visualization. We will concentrate on the for-
mer, according to the focus of this paper.

2.1. Occlusion Management

Related occlusion management techniques can be categorized into
object centric approaches and transfer function based approaches.
In object centric approaches, the geometry or parts of the volume
that are obstructing one or more particular objects of interest are
(partially) removed. In transfer function based approaches, the user
assigns importances to intervals of the volume data values.

Object Centered Approaches. Cutaway and ghosting techniques
were first introduced by Feiner & Seligmann [FS92] in 1992. Their
work inspired several follow-up approaches [DWE02, DWE03,
WEE03, VKG04, VKG05, KTH∗05] that were later summarized in
the survey by Viola & Gröller [VG05] under the collective term of
smart visibility techniques. They coined this term to describe ex-
pressive visualization techniques that smartly uncover the most im-
portant features of the displayed data, i.e., cutaway views, ghosted
views, and exploded views.

Krüger et al. [KSW06] developed a system that applies trans-
parency and shading to enable focus&context visualization in
volume data sets with a simple point&click interface. Li et al.
[LRA∗07] propose a cutaway design based on the geometry of
the occluder in contrast to previous approaches that were based on
the occludee. Burns & Finkelstein [BF08] applied the concept of
importance-driven cutaways for volume data to polygonal mod-
els. Lawonn et al. [LGV∗16] extend this approach to present a
composite technique that combines the visualization of blood flow
with the surrounding vessel structures. Baer et al. [BGCP11] pub-
lished a perceptual evaluation of smart visibility techniques for two
ghosted view approaches in comparison to semi-transparent ap-
proaches. The results clearly favored the ghosted view techniques.
Sigg et al. [SFCP12] propose an approach for automatic cutaway
box placement with optimized visibility for target features that are
specified as degree-of-interest functions during interactive visual
analysis of the volume data. Lidal et al. [LHV12] defined five de-
sign principles for cutaway visualization of geological models. The
approach by Diaz et al. [DMNV12] preserves the relevant context
information in volume clipping by allowing the user to extrude seg-
mented surfaces such as bone structures from the clipping plane.

Since these approaches are object centered, they deal with (par-
tial) occlusion of individual objects. For our data, partial or even
complete occlusion of individual molecules is not an issue. The
data is not composed of large singular entities such as polygonal or
segmented volumetric objects where each single one has a seman-
tic meaning. Instead, there are thousands or hundreds of thousands
of instances that stem from only a couple of dozen molecule types.
Therefore it does not matter if individual instances are occluded, as
long as the structures that they form are preserved. Our approach
is therefore fundamentally different from existing occlusion man-
agement approaches as it combines principles from object centered
and transfer function based approaches.

Transfer Function Based Approaches. Since our molecule data
is composed of a dense point cloud that resembles volumetric data
on a nonregular grid, our approach is also related to transfer func-
tion based approaches. However, instead of a wide range of at-
tribute values distributed over voxels, our data features a compara-
bly smaller number of molecule types. This characteristic enables
our visibility equalizer approach. The context-preserving volume
rendering model [BGKG05] uses a function of shading intensity,
gradient magnitude, distance to the eye point, and previously accu-
mulated opacity to selectively reduce the opacity in less important
data regions. Contours of surfaces that would be removed due to
opacity remain visible, as the amount of illumination received is
taken as a measure whether a point should be visible or not. Burns
et al. [BHW∗07] propose a multimodal approach that combines CT
scan data and real-time ultrasound data. Importance driven shading
is used to emphasize features of higher importance that have been
revealed through the ghosting.

In his PhD thesis [Vio05], Viola presents an optimization strat-
egy for automatically assigning visual mapping to voxels so that
segmented objects in the volume are visible as specified by the user.
Correa et al. [CM11] used a similar approach for applying visibility
directly to voxels, without the notion of segmented objects. In our
approach, we control visibility by interacting with the stacked bars
of the visibility equalizer to modify the clipping object properties
for each icndividual molecule type. Ruiz et al. [RBB∗11] propose
an approach for automatic transfer function optimization by mini-
mizing the informational divergence between a user specified tar-
get distribution and the visibility distribution captured from certain
viewpoints.

Transfer function based approaches are well suited for volumet-
ric data that contains segmentable structures, such as the organs or
bones in a medical scan. For molecular data this only holds par-
tially true, as some types of molecules do indeed form continuous
structures that could be made visible with a transfer function (e.g.,
membranes, nucleus). On the other hand, within these structures
there is a more noise-like distribution of these molecules that can-
not be segmented into solid structures.

2.2. Multi-Scale Visualization of Molecular Structures

Lindow et al. [LBH12] were the first to introduce a fast method
for the real-time rendering of large-scale atomic data on consumer
level hardware. They utilize instancing on the GPU to repeat these
structures in the scene. For each molecule type, a 3D grid of the
atoms is created and stored on the GPU. Falk et al. [FKE13] further
refined the method with improved depth culling and hierarchical
ray casting to achieve faster rendering performance for even larger
scenes.

A novel and more efficient approach for rendering large molecu-
lar datasets was introduced by Le Muzic et al. [LMPSV14], which
is based on brute-force rasterization rather than ray-tracing. To re-
duce the number of drawn geometries they rely on the tessella-
tion shader to perform dynamic level-of-detail rendering. Their ap-
proach allows switching between different degrees of coarseness
for the molecular structures on the fly, thus allowing the entire
scene to be rendered in a single draw call efficiently, approaching

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

163

Le Muzic, Mindek et al. / Visibility Equalizer

Figure 3: An illustration of the workflow with the visibility equalizer. (1) Clipping objects filter out elements in the data based on their
type and location. (2) The clipping is applied in serial, i.e., the output of a clipping object constitute the input of the next one. The visibility
information of the entire scene is routinely collected and updated in the visibility equalizer to keep the viewer informed about the current state
of the data. (3) The clipping parameters of a given clipping object can later on be refined by interacting with the bar charts of the visibility
equalizer to offer more control on the clipping, such as fuzziness.

zero driver overhead. As a follow up, they developed and released
cellVIEW [LAPV15], a tool designed for rendering large-scale
molecular scenes, which was implemented with Unity3D, a pop-
ular 3D engine. cellVIEW was primarily developed to showcase
large molecular structures generated with cellPACK [JAAA∗15],
a tool developed to procedurally generate accurate and multi-scale
models of entire viruses and cells.

Our visibility equalizer technique is built upon cellVIEW to im-
prove the navigation and exploration of large molecular scenes gen-
erated with cellPACK. cellVIEW leverages GPU computing and
parallel programming to enable real-time rendering and therefore,
to provide a smooth and responsive user-experience, the visibility
equalizer was developed with the same programming paradigm.

3. Overview

The two main components of our method are the clipping objects
and the visibility equalizer. The workflow of our method is depicted
in Figure 3. We distinguish between object space object clipping
and view space object clipping. Object space clipping discards ele-
ments according to their distance to a geometric shape. View-space
clipping discards elements according to whether or not they oc-
clude certain objects in the current viewport. The role of the visibil-
ity equalizer is two fold: to provide important information about the
visibility of molecular species, and to let users override the behav-
ior of the clipping objects by directly manipulating the equalizer
values. Each set of stacked bars show three types of quantitative
information for a given type of ingredient: a - the ratio of visible
instances to the total number of instances; b - the ratio of occluded
instances to the total number of instances; c - the ratio of dicarded
instances to the total number of instances. The visual encoding of
the visibility equalizer is illustrated in Figure 4. By dragging the
light green bar, the proportion of instances affected by the object-
space clipping is modified, while dragging the dark green bar modi-
fies the proportion of instances affected by the view-space clipping.

4. Object Space Clipping

Clipping objects define how instances shall be discarded depending
on their location or type. They can operate either in object space or
in view space. In this Section, we will explain in detail how clipping
objects operate in object space.

4.1. Clipping Object Distance

Clipping objects are associated with geometric shapes to specify a
region of the domain that is influenced by the clipping. Our sys-
tem currently supports the following set of primitive shapes: plane,
cube, sphere, cylinder and cone. We compute the distance between
the instance centroids and the clipping region to identify instances
that lie inside that region. To accelerate the computation, we solve
the problem analytically using a mathematical description of the
clipping region as a 3D signed distance field (SDF).

Due to the architecture of the rendering technique which is em-
ployed, the instances information (position, rotation, type, radius,
etc.) is already stored large buffers stored on the GPU memory.
To speed up the clipping operation and avoid data transfer costs,
the distance is computed in parallel in a compute shader program,
prior to the rendering, with one thread allocated per instance. The
position, rotation, scale and geometry type of every clipping object
must be additionally uploaded to the GPU in order to define the cor-
rect clipping region SDF. In a single thread and for each clipping
object, the required information is fetched from the video memory
and is used to compute the signed distance between an instance and
the clipping object. When an object needs to be clipped, a dedicated
flag in a GPU buffer is updated. The flag is then accessed during the
rendering to discard the clipped instance.

4.2. Clipping Filtering

A clipping object also comprises a set of parameters that override
the clipping state of instances based on their type. This filtering op-
eration is performed if an instance is located inside the clipping re-
gion, in the same compute shader program described in Section 4.1.
The first parameter controls the percentage of discarded instances

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

164

Le Muzic, Mindek et al. / Visibility Equalizer

Figure 4: Illustration of the visibility equalizers. Each molecular
ingredient has its own stacked bar showing (a) instances visible
from the current viewpoint, (b) occluded instances, (c) instances
clipped away by the clipping objects.

in the clipping region for a given type. We refer to this value as
object space clipping probability. This value can be increased or
decreased by dragging the light green bar in the visibility equal-
izer. It is important to mention that with multiple clipping objects,
interaction with the light green bar in the visibility equalizer will
only affect the clipping probability of the selected clipping object.

Upon start-up of the system, each instance is given a uniformly
distributed random number between 0 and 1, and which will remain
unchanged. Then, for each instance, we compare this value with the
clipping probability in the computer shader program. If the constant
random number is higher than the clipping probability, the instance
is marked as discarded, and will not be rendered. For example, if
the clipping probability value is equal to zero, all instances in the
clipping region will be clipped, whereas if the value is equal to
one, no instances will be clipped. A value between zero and one
thus controls the degree of fuzziness of a clipping, as explained in
Figure 5.

The other parameters allow users to control the clipping based on
properties such as the size of the molecules (weight) and their over-
all number (concentration). Via the user interface and for a given
clipping object, the user defines ranges that correspond to the de-
sired concentration and molecular weight. Instances whose proper-
ties lie outside these ranges are simply discarded and will not be
rendered.

4.3. Falloff Function

To increase control over the object space clipping, we use a falloff
function. The falloff function gradually modulates the effect of the
clipping with respect to the distance from the clipping shape as il-
lustrated in Figure 5. The farther away from the clipping surface
an instance is, the higher its clipping probability will be. The ob-
ject space clipping probability of a molecule on the 3D position p
is multiplied by the falloff function f (p). The falloff function is
defined as follows:

f (~p) = 1−min(1,(d(~p)/m)c) (1)

where d(p) is the distance to the clipping surface from the point
p. The function is parametrized by m and c, where m is the max-
imum distance up to which the object-space clipping probability
takes effect, and c specifies the exponent of the falloff function. It
is important to mention that the falloff function will not preserve
the user-defined clip-ratio displayed in the visibility equalizer.

(a) (b) (c)

Figure 5: Illustration of the falloff function mechanism: (a) ele-
ments located further than distance d from the clipping object are
clipped, (b) elements between the clipping object and d are uni-
formly clipped, (c) elements are removed gradually based on their
distance to the clipping object to further customize its behaviour.

5. View Space Clipping

While object space clipping with primitive shapes allows for a high
degree of flexibility, it may also require cumbersome manual oper-
ations for more complex set-ups. We therefore provide additional
functionalities to selectively remove occluding instances in front of
a set of ingredients set focus, to ensure them a maximum degree of
visibility. The focus state can be manually specified via the visibil-
ity equalizer by ticking a dedicated checkbox in front of the stacked
bars.

5.1. Occlusion Queries

When an ingredient type is set as focus, occluding instances of a
different type may be selectively removed to reveal the occludees.
To identify occluding instances, we perform occlusion queries.
Nowadays, modern graphics hardware is able to perform occlusion
queries easily using the fixed-functionality. This method requires
one draw call per query, which may induce driver overhead with
several thousands of queries. We compute the queries manually in-
stead, using a custom shader program, because it allows the queries
to be computed in a single GPU draw call, thus approaching zero
driver overhead. In-depth technical details about this approach are
described by Kubisch & Tavenrath [KT14].

We first render all the focused ingredients to an off-screen tex-
ture. This texture will then serve as a depth-stencil mask for the
occlusion queries. There can be several ingredient types constitut-
ing the object of focus for a given clipping object. Thereafter, we
render the bounding spheres of the potential occluders in a single
draw call using instancing, on top of the depth-stencil mask. Thanks
to early depth-stencil functionality, available on modern graphics
hardware, fragments that will pass the test and be executed are guar-
anteed to belong to an occluder. We then update the clipping state
of the occluding instance by updating its corresponding occlusion
flag stored in the main video memory directly from the fragment
program.

5.2. Clipping Filtering

Similarly to the object space clipping, we provide an additional pa-
rameter to control the degree of fuzziness of the view-dependent

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

165

Le Muzic, Mindek et al. / Visibility Equalizer

(a) (b) (c) (d)

Figure 6: View-space clipping, (a) shows the full HIV Capsid, (b)
shows the uniformly distributed clipping, (c) demonstrate the aper-
ture effect and (d) shows the results of the 2D distance transform
of the clipping mask.

clipping, which we refer to as view-space clipping probability. This
value is set by the user for each ingredient type, and is modified by
dragging the dark green bar in the visibility equalizer. The view-
space clipping probability is evaluated after an instance is flagged
as occluder in the same shader program mentioned in Section 5.1.
We compare the clipping probability with a random number, ini-
tially defined and described in Section 4.2. If the random number
is higher than the clipping probability, the instance will remain as
clipped, otherwise it will be displayed. This will however result in
a uniformly distributed number of visible occluders over the ob-
ject of focus. Such a distribution might not always be the best de-
sign choice, because it fragments heavily the overall structure of
the occluders and makes it difficult to see the occludees, as shown
in Figure 6b.

We propose an alternative technique for fuzzy removal of oc-
cluding instances, which we dub the aperture effect. We define an
additional parameter, the aperture coefficient, which controls the
2D distance from the instance to the edges of the occludees mask
below which occluding instances shall be clipped. A example of the
aperture effect is shown in Figure 6c. To enable this effect we com-
pute the 2D distance transform of the occludees mask which we
store in a separate off-line texture. We use the GPU Jump Flood-
ing Algorithm by Rong & Tan [RT06] to interactively recompute
the 2D distance field every frame. After the computation of the dis-
tance transform, the texture stores the distance to the contours of
the shape for each pixel. Then, while computing occlusion queries
in the fragment shader, we simply look-up the distance for the cur-
rent fragment, and discard instances according to the user-defined
aperture coefficient.

5.3. Contextual Anchoring

When observing still images of cut-away scenes, it might be chal-
lenging to perceive the depth of objects correctly, despite using
lighting-based depth cues. We propose an additional method for
depth guidance, which we call contextual anchoring. The concept
is to override the results of clipping, to preserve elements located in
proximity to non-clipped elements that would normally be clipped.
This principle in shown in Figure 7, where we can observe parts
of the green membrane anchored around channel molecules, and
which indicate that they are located on the surface of the object.

Figure 7: Illustration of contextual anchoring with an HIV particle.
Despite the cutaway, some of the glyco-proteins (in yellow) are dis-
played and their surrounding lipid molecules (green) is preserved
as contextual information.

We were able to procedurally reproduce this effect by applying a
depth bias to the occlusion queries computation for selected fo-
cused molecules. This bias will ensure that contextual elements will
no longer overlap the focus and will therefore be preserve as illus-
trated in Figure 8.

6. Equalizing Visibility

The visibility equalizer comprises a series of stacked bars that con-
vey important visibility information for each ingredient type. The
three colors correspond respectively to the number of visible, oc-
cluded and clipped instances, as explained in Figure 4. In order to
fill the stacked bars with correct values, we must count the number
of clipped and visible instances, and this operation must be repeated
on every update.

6.1. Counting Clipped Instances

We perform the counting of the clipped instances on the GPU, in a
dedicated compute shader program, since all the data already reside
in the video memory. We previously declare a dedicated buffer on
the GPU to hold the number of clipped instances for each ingredi-
ent type, and which shall be cleared before each counting operation.
Counting the clipped instances is a rather straightforward task since
the clipping state of each instance is routinely computed and stored
in a dedicated GPU buffer. Once the clipping routine is performed,
we simply browse through all the instances, and if an instance is
flagged as clipped, we increase the counter in the GPU buffer that
corresponds to the number of clipped instances for the given type.
It is important to use an atomic increment operation for the count-
ing to avoid concurrent accesses to the same counter value from
different threads.

6.2. Counting Visible Instances

In order to count the number of visible instances for a given view-
point, we first need to generate an instance buffer, which is a texture
that contains, for each pixel, the unique instance id of the rendered
molecule. We first start to flag visible instances in a post-processing
shader, by browsing all the pixels of the instance buffer. In case an
instance is present in the instance buffer, it is guaranteed to have at
least one pixel visible on the screen, and it is therefore flagged as

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

166

Le Muzic, Mindek et al. / Visibility Equalizer

(a) (b)

Figure 8: The principle of the depth-bias used for contextual an-
choring. The dark bars represents the depth values of the mask from
the side, in one dimension. Elements in grey correspond to poten-
tial occluders, while elements in red and green correspond to oc-
cludees. The red type is subject to contextual anchoring. (a) With-
out contextual anchoring, the depth of occluders (grey) is overlap-
ping the depth of the mask and will therefore be discarded. (b) With
contextual anchoring, the depth of the occludees (red) is shifted so
that context elements (purple) no longer overlap the focus and re-
main unclipped.

visible in a dedicated GPU buffer. To store the number of visible in-
stances per type, we also need to declare an additional GPU buffer,
which must be previously cleared each time visible instances are
counted. In a second stage, similarly to the counting of the clipped
instances, we browse through all the instances in a dedicated com-
pute shader, while fetching the visibility information which was
previously computed. Should an instance be flagged as visible, the
counter that corresponds to the number of visible instances for the
given type will be increased using an atomic increment operation.
Once the information about the number of visible and clipped in-
stances is obtained, the data is then transferred to the CPU and used
to update the visibility equalizer.

7. Results and Performance Analysis

To showcase the capabilities of our method, we applied it to three
different mesoscale molecular scenes. For the rendering, we used
cellVIEW [LAPV15], a tool designed to efficiently render large
molecular scenes on the GPU and implemented with Unity3D. The
different datasets have been generated by the domain experts with
cellPACK [JAAA∗15], a modeling tool for procedural generation
of large biomolecular structures. cellPACK summarizes and incor-
porates the most recent knowledge obtained from structural biology
and system biology to generate comprehensive mesoscale models.
Based on experimentally obtained data (such as proteins structure,
concentration and spatial distribution), the tool is able to generate
entire models of viruses and cells via a packing method based on
collision constraints.

The first dataset is a model of an HIV particle in blood serum that
contains 20502 instances of 45 different protein types and 215559
instances of lipid molecules. In Figure 9a, we show an example of a
single clipping plane used to reduce the concentration of the blood
serum molecules, so that the HIV proteins are visible. However, to
avoid misleading the viewer about the actual concentration of the
blood molecules, we render clipped proteins with a ghosting effect.

This communicate true information about the concentration, while
reducing visual clutter caused by the dense arrangement of blood
serum proteins. Figure 1 shows sequential step for production a
comprehensible cut-away illustration with the HIV dataset.

The second dataset is a model of Mycoplasma mycoides that
contains 5380 proteins of 22 different types. Figure 9b shows how
fuzzy-clipping is used to reduce visual clutter to illustrate the posi-
tions of the ribosomes (shown in blue) within the cell.

The third dataset, shown in Figure 9c is a model of an immature
HIV which contains 1081 instances of 13 different protein types.
We applied several clipping objects to reveal the internal structure
of the virus. The blood serum (blue) has been preserved around the
particle using the fuzzy clipping to illustrate how it encloses the
HIV particle. The visibility equalizer is displayed as well, showing
the ratios of visible and clipped instances of the individual molec-
ular ingredients. The white boxes to the left of each stacked bar are
used to mark the given ingredient or compartment as focus.

Figure 10 shows the mature HIV dataset clipped with a single
plane. The contextual anchoring is applied to reintroduce parts of
the clipped membrane (grey) around the envelope proteins (blue).

The visibility equalizer is designed to limit the computational
overhead in order to offer a fast and responsive user experience. To
demonstrate the responsiveness of our method, we measured the
computation time for the object-space clipping, view-space clip-
ping and 2D distance transform, respectively. The application was
running on a machine equipped with an Intel Core i7-3930 CPU
3.20 GHz machine coupled with a GeForce GTX Titan X graphics
card with 12GB of video RAM. The computation of the object-
space clipping, compared to the rendering task performed by cel-
lVIEW, is very lightweight and does not impact the overall perfor-
mance too much. It took 0.3 milliseconds to evaluate the 236061
instances of the HIV + blood dataset without clipping any of them.
It took 0.5 milliseconds in total to slice the dataset in half and 0.6
milliseconds to clip it entirely. The increasing cost corresponds to
the writing operations to the video memory, which are performed
when an instance is clipped. It is important to mention that neither
the shape of the clipping object nor the number of clipping objects
have a meaningful influence on the performance.

The view-space clipping, however, requires more computational
work that could impact the responsiveness. Indeed, for computing
occlusion queries, occluders and occludees must be additionally
rendered, which adds extra work to the rendering pipeline. For this
reason, only the bounding spheres of the molecules are rendered
instead of their entire structures, which may consist of hundreds
or thousands of spheres, in order to guarantee a minimal computa-
tional overhead. We measured 0.07 milliseconds for rendering the
depth-stencil mask with 12142 instances (HIV proteins), and 0.57
milliseconds for the computation of the 223919 occlusion queries
corresponding to the remaining objects of the scene (blood proteins
+ lipid residues). Additionally, the 2D distance transform that is
needed for the aperture effect also requires additional computation.
It took 0.15 milliseconds for computing the distance transform of
the previous depth-stencil mask at a resolution of 512 by 512 pixels.
Unlike object-space clipping, the view-space clipping computation
cost will keep increasing with additional operations. Therefore, it

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

167

Le Muzic, Mindek et al. / Visibility Equalizer

(a) (b) (c)

Figure 9: Advanced clipping options in real test systems. (a) A falloff function is used to gradually clip serum molecules (red) from bottom
to top to reveal the HIV capsid, with ghosting to give cues about the overall concentration. (b) Selective clipping is used to reveal the location
of ribosome (blue) in a model of Mycoplasma mycoides. (c) Internal structures of a immature HIV model are shown by several clipping
objects. On the left, the visibility equalizer is shown.

is a good strategy to keep a low number of view space clipping
objects, especially with very large scenes.

8. User Feedback

We evaluated the usefulness of our tool by collecting informal user
feedback from domain experts in biological illustration and molec-
ular biology. In both cases, we did a remote walk-through intro-

Figure 10: HIV clipped with a plane. Contextual anchoring is used
to indicate the proximity of envelope proteins (dark blue) with the
lipid membrane (grey) The dark spots represent shadows projected
into interior proteins.

duction of our software, while collecting first impressions. Addi-
tionally, we gave them an executable version of the software and
asked them to write a short summary of their experience after try-
ing the tool by themselves. We first sent an early version of our tool
to a biomedical illustrator with a strong academic background in
chemistry. His overall feedback was very positive, he enjoyed the
responsiveness of the tool, and the novel concept of fuzziness and
gradient clipping. Here is a quote from his written feedback:

“...in my opinion it can be a very useful toolkit for an illustrator
in the biomedical field...It also seems very promising for interac-
tive teaching and also for animation purposes... One very useful
feature of the software is the possibility to “cut” planes of interest
of a particular space, and keeping the information of all “layers”
by creating a “gradient” of concentration of the ingredients of the
displayed molecular recipe. A visualization that resembles an “ex-
ploded model” but for biological assembly and it can be achieved
without manually selecting every instance you would like to hide.”

Secondly, we interviewed an expert in the domain of molecu-
lar biology and visualization. For this second interview, the over-
all feedback was also quite positive. He greatly enjoyed how easy
and fast it was to perform clipping, and also enjoyed the user in-
terface for manipulating the cut object parameters. He also wished
for several additional features to improve the usability of the tool,
such as filtering based on biomolecular properties and rendering the
ghosts of the clipped instances. These features have since been im-
plemented in the current version of the software, as seen in Figure
9a. Here is a quote from the written feedback we collected:

“...The aperture cutting feature is especially useful for exploring
a feature or object in the context of a crowded molecular environ-
ment. The ability to retain a subset of the clipped objects (“fuzzy
clipping”) is an interesting feature that could be very useful under
certain circumstances. The feature is useful if one wants to get an
impression of reducing the concentration of some of the molecular
ingredients, or of what a gradient of certain molecular ingredients
would look like.”

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

168

Le Muzic, Mindek et al. / Visibility Equalizer

9. Conclusion and Future Work

In this paper, we present a novel method for authoring cutaway il-
lustrations of mesoscopic molecular models. Our system uses clip-
ping objects to selectively remove instances based on their type and
location. To monitor and fine-tune the process, we introduce the
visibility equalizer. It keeps the user informed about the number of
molecular instances removed by the clipping objects, or occluded
in the current viewport. Moreover, the visibility equalizer allows
the users to directly override the behaviour of the clipping objects
in order to fine-tune the visibility of molecular ingredients within
the scene.

The visibility equalizer concept demonstrates a scenario where a
visualization metaphor, such as the stacked bar chart, can serve as
a user interface for performing a specific task, in our case to ma-
nipulate 3D data to authorize cutaways. The method allows users
to create comprehensive illustrations of static biological models in
realtime. This was confirmed by gathering feedback from domain
experts. While the concept was applied to a specific domain, we
also wish to develop other examples where the (information) visu-
alization would act simultaneously as an interface to steer the view.

There are also several follow-up ideas which we would like to
focus on in the future, to strengthen data exploration and show-
casing with cellVIEW. Firstly, we would like to explore automatic
clipping mechanisms to assist the user with the placement of clip-
ping objects based on the nature of the scene and shape analysis.
Secondly, we would also like to try our visibility equalizer concept
with time-dependent datasets and enhance it to provide the means
for authoring illustrations of dynamic datasets.

Our Visibility Equalizer method is built on top of
cellVIEW and Unity3D, which are both free to use for
non-commercial use, the source code is publicly available,
as well as the showcased scenes modelled with cellPACK
(https://github.com/illvisation/cellVIEW).

Acknowledgement

This project has been funded by the Vienna Science and Tech-
nology Fund (WWTF) through project VRG11-010 and also sup-
ported by EC Marie Curie Career Integration Grant through project
PCIG13-GA-2013-618680. Johannes Sorger has been partially
supported in the scope of the FWF-funded project P24597-N23
(VISAR) and the COMET K1 program of the Austrian Funding
Agency (FFG). Ludovic Autin received support from the National
Institutes of Health under award number P41GM103426. We would
like to thank Aysylu Gabdulkhakova and Manuela Waldner for in-
sightful comments.

References

[BF08] BURNS M., FINKELSTEIN A.: Adaptive cutaways for compre-
hensible rendering of polygonal scenes. In SIGGRAPH Asia (Singapore,
2008), ACM, pp. 154:1–154:7. 3

[BGCP11] BAER A., GASTEIGER R., CUNNINGHAM D., PREIM B.:
Perceptual evaluation of ghosted view techniques for the exploration of
vascular structures and embedded flow. Computer Graphics Forum 30,
3 (2011), 811–820. 3

[BGKG05] BRUCKNER S., GRIMM S., KANITSAR A., GRÖLLER

M. E.: Illustrative context-preserving volume rendering. In Proceed-
ings of the Seventh Joint Eurographics / IEEE VGTC Conference on Vi-
sualization (Leeds, United Kingdom, 2005), EUROVIS’05, pp. 69–76.
3

[BHW∗07] BURNS M., HAIDACHER M., WEIN W., VIOLA I.,
GRÖLLER M. E.: Feature emphasis and contextual cutaways for multi-
modal medical visualization. In Proceedings of the 9th Joint Eurograph-
ics / IEEE VGTC Conference on Visualization (Sweden, 2007), EURO-
VIS’07, pp. 275–282. 3

[CM11] CORREA C., MA K.-L.: Visibility histograms and visibility-
driven transfer functions. Visualization and Computer Graphics, IEEE
Transactions on 17, 2 (Feb 2011), 192–204. 3

[DMNV12] DÍAZ J., MONCLÚS E., NAVAZO I., VÁZQUEZ P.: Adaptive
cross-sections of anatomical models. Computer Graphics Forum 31, 7
(2012), 2155–2164. 3

[DWE02] DIEPSTRATEN J., WEISKOPF D., ERTL T.: Transparency
in interactive technical illustrations. Computer Graphics Forum 21, 3
(2002), 317–325. 3

[DWE03] DIEPSTRATEN J., WEISKOPF D., ERTL T.: Interactive cut-
away illustrations. Computer Graphics Forum 22, 3 (2003), 523–532.
3

[FKE13] FALK M., KRONE M., ERTL T.: Atomistic visualization of
mesoscopic whole-cell simulations using ray-casted instancing. Com-
puter Graphics Forum 32, 8 (2013), 195–206. 3

[FS92] FEINER S., SELIGMANN D.: Cutaways and ghosting: satisfying
visibility constraints in dynamic 3d illustrations. The Visual Computer
8, 5-6 (1992), 292–302. 3

[JAAA∗15] JOHNSON G. T., AUTIN L., AL-ALUSI M., GOODSELL
D. S., SANNER M. F., OLSON A. J.: cellPACK: a virtual mesoscope
to model and visualize structural systems biology. Nature methods 12, 1
(Jan. 2015), 85–91. 2, 4, 7

[KSW06] KRÜGER J., SCHNEIDER J., WESTERMANN R.: Clearview:
An interactive context preserving hotspot visualization technique. Vi-
sualization and Computer Graphics, IEEE Transactions on 12, 5 (Sept
2006), 941–948. 3

[KT14] KUBISCH C., TAVENRATH M.: Opengl 4.4 scene rendering tech-
niques. NVIDIA Corporation (2014). 5

[KTH∗05] KRÜGER A., TIETJEN C., HINTZE J., PREIM B., HERTEL
I., STRAUSSG.: Interactive visualization for neck-dissection planning.
In Proceedings of the Seventh Joint Eurographics / IEEE VGTC Con-
ference on Visualization (Leeds, United Kingdom, 2005), EUROVIS’05,
pp. 295–302. 3

[LAPV15] LE MUZIC M., AUTIN L., PARULEK J., VIOLA I.: cel-
lVIEW: a tool for illustrative and multi-scale rendering of large
biomolecular datasets. In Eurographics Workshop on Visual Computing
for Biology and Medicine (Sept. 2015), pp. 61–70. 4, 7

[LBH12] LINDOW N., BAUM D., HEGE H.-C.: Interactive rendering
of materials and biological structures on atomic and nanoscopic scale.
Computer Graphics Forum 31, 3 (2012), 1325–1334. 3

[LGV∗16] LAWONN K., GLASSER S., VILANOVA A., PREIM B., ISEN-
BERG T.: Occlusion-free blood flow animation with wall thickness visu-
alization. Visualization and Computer Graphics, IEEE Transactions on
22, 1 (Jan 2016), 728–737. 3

[LHV12] LIDAL E. M., HAUSER H., VIOLA I.: Design principles for
cutaway visualization of geological models. In Proceedings of Spring
Conference on Computer Graphics (SCCG 2012) (May 2012), pp. 53–
60. 3

[LMPSV14] LE MUZIC M., PARULEK J., STAVRUM A.-K., VIOLA I.:
Illustrative visualization of molecular reactions using omniscient intel-
ligence and passive agents. Computer Graphics Forum 33, 3 (2014),
141–150. 3

[LRA∗07] LI W., RITTER L., AGRAWALA M., CURLESS B., SALESIN
D.: Interactive cutaway illustrations of complex 3D models. In SIG-
GRAPH ’07 (San Diego, California, 2007), ACM. 3

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

169

Le Muzic, Mindek et al. / Visibility Equalizer

[RBB∗11] RUIZ M., BARDERA A., BOADA I., VIOLA I., FEIXAS M.,
SBERT M.: Automatic transfer functions based on informational diver-
gence. Visualization and Computer Graphics, IEEE Transactions on 17,
12 (Dec 2011), 1932–1941. 3

[RT06] RONG G., TAN T.-S.: Jump flooding in gpu with applications to
voronoi diagram and distance transform. In Proceedings of the 2006
Symposium on Interactive 3D Graphics and Games (New York, NY,
USA, 2006), I3D ’06, ACM, pp. 109–116. 6

[SFCP12] SIGG S., FUCHS R., CARNECKY R., PEIKERT R.: Intelli-
gent cutaway illustrations. In Visualization Symposium (PacificVis), 2012
IEEE Pacific (Feb 2012), pp. 185–192. 3

[VG05] VIOLA I., GRÖLLER E.: Smart visibility in visualization.
In Computational Aesthetics in Graphics, Visualization and Imaging
(2005), The Eurographics Association. 3

[Vio05] VIOLA I.: Importance-Driven Expressive Visualization. PhD
thesis, Institute of Computer Graphics and Algorithms, Vienna Univer-
sity of Technology, Favoritenstrasse 9-11/186, A-1040 Vienna, Austria,
June 2005. 3

[VKG04] VIOLA I., KANITSAR A., GRÖLLER M. E.: Importance-
driven volume rendering. In Proceedings of the Conference on Visu-
alization ’04 (Washington, DC, USA, 2004), VIS ’04, IEEE Computer
Society, pp. 139–146. 3

[VKG05] VIOLA I., KANITSAR A., GRÖLLER M. E.: Importance-
driven feature enhancement in volume visualization. Visualization and
Computer Graphics, IEEE Transactions on 11, 4 (July 2005), 408–418.
3

[WEE03] WEISKOPF D., ENGEL K., ERTL T.: Interactive clipping tech-
niques for texture-based volume visualization and volume shading. Vi-
sualization and Computer Graphics, IEEE Transactions on 9, 3 (July
2003), 298–312. 3

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

170

Bibliography

[AABA10] Steven S Andrews, Nathan J Addy, Roger Brent, and Adam P Arkin.
Detailed simulations of cell biology with smoldyn 2.1. PLoS Comput Biol,
6(3):e1000705, 2010.

[ACZ+12] Raluca Mihaela Andrei, Marco Callieri, Maria Francesca Zini, Tiziana
Loni, Giuseppe Maraziti, Mike Chen Pan, and Monica Zoppè. Intuitive
representation of surface properties of biomolecules using bioblender. BMC
bioinformatics, 13(4):1, 2012.

[Ber06] Drew Berry. Apoptosis. http://youtu.be/DR80Huxp4y8?t=1m50s,
2006. The Walter and Eliza Hall Institute.

[BKW+77] Frances C Bernstein, Thomas F Koetzle, Graheme JB Williams, Edgar F
Meyer, Michael D Brice, John R Rodgers, Olga Kennard, Takehiko Shi-
manouchi, and Mitsuo Tasumi. The protein data bank. European Journal
of Biochemistry, 80(2):319–324, 1977.

[Bol06] David Bolinsky. The inner life of a cell. XVIVO, 2006.

[CBS09] Deepak Chandran, Frank T Bergmann, and Herbert M Sauro. Tinkercell:
modular cad tool for synthetic biology. Journal of biological engineering,
3(1):1, 2009.

[cel16] Cellblender. https://github.com/mcellteam/cellblender,
2016. Accessed: 2016-08-08.

[Cla] Clarafi. Molecular maya. https://clarafi.com/tools/mmaya.

[FKE13] Martin Falk, Michael Krone, and Thomas Ertl. Atomistic visualization of
mesoscopic whole-cell simulations using ray-casted instancing. In Computer
Graphics Forum, volume 32, pages 195–206. Wiley Online Library, 2013.

[FKRE09] Martin Falk, Michael Klann, Matthias Reuss, and Thomas Ertl. Visual-
ization of signal transduction processes in the crowded environment of
the cell. In 2009 IEEE Pacific Visualization Symposium, pages 169–176.
IEEE, 2009.

99

http://youtu.be/DR80Huxp4y8?t=1m50s
https://github.com/mcellteam/cellblender

[FKRE10] Martin Falk, Michael Klann, Matthias Reuss, and Thomas Ertl. 3d visual-
ization of concentrations from stochastic agent-based signal transduction
simulations. In 2010 IEEE International Symposium on Biomedical Imag-
ing: From Nano to Macro, pages 1301–1304. IEEE, 2010.

[FMKT03] Akira Funahashi, Mineo Morohashi, Hiroaki Kitano, and Naoki Tanimura.
Celldesigner: a process diagram editor for gene-regulatory and biochemical
networks. Biosilico, 1(5):159–162, 2003.

[Gam13] Strange Loop Games. Sim cell, 2013.

[GKM93] Ned Greene, Michael Kass, and Gavin Miller. Hierarchical z-buffer visibility.
In Proceedings of the 20th annual conference on Computer graphics and
interactive techniques, pages 231–238. ACM, 1993.

[Goo01] Google. Google earth, 2001.

[GRDE10] Sebastian Grottel, Guido Reina, Carsten Dachsbacher, and Thomas Ertl.
Coherent culling and shading for large molecular dynamics visualization.
In Computer Graphics Forum, volume 29, pages 953–962. Wiley Online
Library, 2010.

[HDS96] William Humphrey, Andrew Dalke, and Klaus Schulten. Vmd: visual
molecular dynamics. Journal of molecular graphics, 14(1):33–38, 1996.

[HFS+03] Michael Hucka, Andrew Finney, Herbert M Sauro, Hamid Bolouri, John C
Doyle, Hiroaki Kitano, Adam P Arkin, Benjamin J Bornstein, Dennis
Bray, Athel Cornish-Bowden, et al. The systems biology markup language
(sbml): a medium for representation and exchange of biochemical network
models. Bioinformatics, 19(4):524–531, 2003.

[HLLF13] Samuel Hornus, Bruno Lévy, Damien Larivière, and Eric Fourmentin. Easy
dna modeling and more with graphitelifeexplorer. PloS one, 8(1):e53609,
2013.

[JAAA+15] Graham T Johnson, Ludovic Autin, Mostafa Al-Alusi, David S Goodsell,
Michel F Sanner, and Arthur J Olson. cellpack: a virtual mesoscope to
model and visualize structural systems biology. Nature methods, 12(1):85–
91, 2015.

[JAG+11] Graham T Johnson, Ludovic Autin, David S Goodsell, Michel F Sanner,
and Arthur J Olson. epmv embeds molecular modeling into professional
animation software environments. Structure, 19(3):293–303, 2011.

[JM12] Jodie Jenkinson and Gaël McGill. Visualizing protein interactions and
dynamics: evolving a visual language for molecular animation. CBE-Life
Sciences Education, 11(1):103–110, 2012.

100

[Kar14] Martin Karplus. Development of multiscale models for complex chemical
systems: from h+ h2 to biomolecules (nobel lecture). Angewandte Chemie
International Edition, 53(38):9992–10005, 2014.

[KBK+08] Rex A Kerr, Thomas M Bartol, Boris Kaminsky, Markus Dittrich, Jen-
Chien Jack Chang, Scott B Baden, Terrence J Sejnowski, and Joel R Stiles.
Fast monte carlo simulation methods for biological reaction-diffusion
systems in solution and on surfaces. SIAM journal on scientific computing,
30(6):3126–3149, 2008.

[KCVGC+05] Ingrid M Keseler, Julio Collado-Vides, Socorro Gama-Castro, John In-
graham, Suzanne Paley, Ian T Paulsen, Martín Peralta-Gil, and Peter D
Karp. Ecocyc: a comprehensive database resource for escherichia coli.
Nucleic acids research, 33(suppl 1):D334–D337, 2005.

[KGE11] Michael Krone, Sebastian Grottel, and Thomas Ertl. Parallel contour-
buildup algorithm for the molecular surface. In Biological Data Visualiza-
tion (BioVis), 2011 IEEE Symposium on, pages 17–22. IEEE, 2011.

[KPC14] Jonathan R Karr, Nolan C Phillips, and Markus W Covert. Wholecell-
simdb: a hybrid relational/hdf database for whole-cell model predictions.
Database, 2014:bau095, 2014.

[Kre08] The krebs cycle. https://en.wikipedia.org/wiki/Citric_
acid_cycle, 2008.

[KSES12] Michael Krone, John E Stone, Thomas Ertl, and Klaus Schulten. Fast
visualization of gaussian density surfaces for molecular dynamics and
particle system trajectories. EuroVis-Short Papers, 1:67–71, 2012.

[LBH12] Norbert Lindow, Daniel Baum, and H-C Hege. Interactive rendering of
materials and biological structures on atomic and nanoscopic scale. In
Computer Graphics Forum, volume 31, pages 1325–1334. Wiley Online
Library, 2012.

[LMAPV15] Mathieu Le Muzic, Ludovic Autin, Julius Parulek, and Ivan Viola. cel-
lview: a tool for illustrative and multi-scale rendering of large biomolecular
datasets. In Proceedings of the Eurographics Workshop on Visual Com-
puting for Biology and Medicine, pages 61–70. Eurographics Association,
2015.

[LMMS+16] Mathieu Le Muzic, Peter Mindek, Johannes Sorger, Ludovic Autin, David S
Goodsell, and Ivan Viola. Visibility equalizer cutaway visualization of
mesoscopic biological models. In Computer Graphics Forum, volume 35,
pages 161–170. Wiley Online Library, 2016.

101

https://en.wikipedia.org/wiki/Citric_acid_cycle
https://en.wikipedia.org/wiki/Citric_acid_cycle

[LMPSV14] Mathieu Le Muzic, Julius Parulek, Anne-Kristin Stavrum, and Ivan Viola.
Illustrative visualization of molecular reactions using omniscient intelli-
gence and passive agents. In Computer Graphics Forum, volume 33, pages
141–150. Wiley Online Library, 2014.

[LMWPV15] Mathieu Le Muzic, Manuela Waldner, Julius Parulek, and Ivan Viola. Illus-
trative timelapse: A technique for illustrative visualization of particle-based
simulations. In 2015 IEEE Pacific Visualization Symposium (PacificVis),
pages 247–254. IEEE, 2015.

[LO08] Xiang-Jun Lu and Wilma K Olson. 3dna: a versatile, integrated software
system for the analysis, rebuilding and visualization of three-dimensional
nucleic-acid structures. Nature protocols, 3(7):1213–1227, 2008.

[LVRH07] Ove Daae Lampe, Ivan Viola, Nathalie Reuter, and Helwig Hauser. Two-
level approach to efficient visualization of protein dynamics. IEEE trans-
actions on visualization and computer graphics, 13(6):1616–1623, 2007.

[MSS+08] Ion I Moraru, James C Schaff, Boris M Slepchenko, ML Blinov, Frank
Morgan, Anuradha Lakshminarayana, Fei Gao, Ye Li, and Leslie M Loew.
Virtual cell modelling and simulation software environment. IET systems
biology, 2(5):352–362, 2008.

[oAS08] Federation of American Scientists. Immune attack, 2008.

[PB13] Julius Parulek and Andrea Brambilla. Fast blending scheme for molecular
surface representation. IEEE transactions on visualization and computer
graphics, 19(12):2653–2662, 2013.

[PJR+14] Julius Parulek, Daniel Jönsson, Timo Ropinski, Stefan Bruckner, Anders
Ynnerman, and Ivan Viola. Continuous levels-of-detail and visual abstrac-
tion for seamless molecular visualization. In Computer Graphics Forum,
volume 33, pages 276–287. Wiley Online Library, 2014.

[PV12] Julius Parulek and Ivan Viola. Implicit representation of molecular surfaces.
In Visualization Symposium (PacificVis), 2012 IEEE Pacific, pages 217–
224. IEEE, 2012.

[Sch15] Schrödinger, LLC. The PyMOL molecular graphics system, version 1.8.
November 2015.

[SI12] László Szécsi and Dávid Illés. Real-time metaball ray casting with fragment
lists. In Eurographics (Short Papers), pages 93–96, 2012.

[TCM06] Marco Tarini, Paolo Cignoni, and Claudio Montani. Ambient occlusion
and edge cueing for enhancing real time molecular visualization. IEEE
transactions on visualization and computer graphics, 12(5):1237–1244,
2006.

102

	Abstract
	Kurzfassung
	Contents
	Overview
	Introduction
	Scope and Contributions
	Contributions of Co-authors
	Thesis Structure

	Background and Related Work
	Visualization of Biological Structures
	Visualization of Biological Systems

	Rendering and Composition of Molecular Landscapes
	Level of Detail
	Instancing
	Occlusion Culling
	Fibres Structures
	Occlusion Management

	Emulating the Machinery of Life
	Observing Multiple Time Scales Simultaneously
	Quantity-Driven Particle Behaviour

	Conclusion
	Summary
	Lessons Learned
	Future Work

	Publications
	Illustrative Visualization of Molecular Reactions using Omniscient Intelligence and Passive Agents
	Illustrative Timelapse: A Technique for Illustrative Visualization of Particle-Based Simulations
	cellVIEW: A Tool for Illustrative and Multi-Scale Rendering of Large Biomolecular Datasets
	Visibility Equalizer: Cutaway Visualization of Mesoscopic Biological Models
	Bibliography

