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Abstract

This thesis is divided into two parts. The first part is devoted to the inves-
tigation of lambda-terms. Our main goal will be to determine the number
of certain lambda-terms of a given size, as well as their asymptotic number
as their size tends to infinity. We will derive asymptotic results for vari-
ous subclasses of lambda-terms, while the problem of counting unrestricted
lambda-terms is still unsolved. In order to give an explanation for that, we
will explicate the difficulties that have to be overcome in order to be able to
establish the asymptotics of lambda-terms. Finally, we will focus on some
structural properties of lambda-terms, thereby showing that the structure of
lambda-terms highly differs from that of trees, although lambda-terms are
closely related to Motzkin-trees.
In the second part of this thesis we will investigate both labeled and un-
labeled directed acyclic graphs (DAGs). The asympotics for labeled DAGs
can be determined easily while the asymptotic behavior of unlabeled DAGs
is still unknown. Furthermore we will show some very interesting results on
the structure of DAGs, e.g. asymptotically almost all DAGs are weakly con-
nected. At last, we will investigate two subclasses of DAGs that are of special
interest, namely (labeled and unlabeled) extensional and (labeled) essential
DAGs.
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Zusammenfassung

Enstprechend dem Titel, besteht diese Diplomarbeit aus zwei Teilen. Der
erste Teil behandelt Lambda-Terme. Insbesondere sind wir an der Anzahl
bestimmter Lambda-Terme einer gewissen Größe interessiert, sowie an der
asymptotischen Anzahl, wenn ihre Größe gegen unendlich geht. Wir wer-
den die asymptotische Anzahl an Termen für spezielle Unterklassen von
Lambda-Termen herleiten, jedoch nicht für die Klasse aller Lambda-Terme.
Dieses Problem ist bisher noch offen und wir werden sehen, dass noch einige
Schwierigkeiten bewältigt werden müssen um eine Lösung dafür zu finden.
Am Ende des ersten Teils zeigen wir noch einige interessante Eigenschaften
über die Struktur von Lambda-Termen. Dabei wird insbesondere auffallen,
dass sich diese Struktur grundlegend von der von Bäumen unterscheidet, ob-
wohl Lambda-Terme in enger Beziehung zu Motzkin-Bäumen stehen.
Im zweiten Teil dieser Diplomarbeit untersuchen wir sowohl markierte als
auch unmarkierte gerichtete azyklische Graphen (directed acyclic graphs,
DAGs). Im Fall von markierten DAGs lässt sich das asymptotische Verhalten
einfach bestimmen, während das für unmarkierte DAGs noch unbekannt ist.
Weiters werden wir einige interessante Resultate über die Struktur von DAGs
präsentieren, z.B. dass asymptotisch fast alle DAGs schwach zusammenhän-
gend sind. Zum Schluss werden wir noch zwei Unterklassen von DAGs un-
tersuchen, die von besonderem Interesse sind, nämlich sogennante (markierte
und unmarkierte) extensionale DAGs und (markierte) essentielle DAGs.
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Introduction

The problems of enumerating lambda-terms and directed acyclic graphs (DAGs)
are popular topics in combinatorics, which have been investigated thoroughly
over the past years. At the first sight both lambda-terms and DAGs appear
to be very simple structures, in the sense that their construction can easily
be described. The fascination for these structures therefore arises from the
fact that there are still a lot of unanswered questions about their number
and structural properties. The lambda-calculus was invented in the 1930s by
Church and Kleene for the investigation of decision problems and after more
than 80 years there are still many open problems concerning the number of
lambda-terms. So far no one has yet accomplished to derive the asymptotics
of the number of lambda-terms due to the fact that their number increases
very fast (superexponentially) with increasing size, which makes the common
methods of analytic combinatorics inapplicable.
Lambda-terms can to some extent (by identifying them with a special kind
of tree-like structure) be regarded as DAGs, while reversely most DAGs do
not correspond to lambda-terms. Consequently, the increase of the number
of DAGs is even greater than that of lambda-terms. Therefore it seems likely
to assume that the problem of counting DAGs is unsolved as well. But we
will see that by introducing a special generating function the asymptotics for
the number of labeled DAGs can actually be determined. Unfortunately, in
case of unlabeled DAGs the asymptotic behavior is still unknown.
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The aim of this thesis is to give an thorough introduction to the combinatorics
of lambda-terms and DAGs. We will discuss both their number and structure,
and investigate some interesting subclasses.
According to the title this thesis is divided into two parts. In the first part
we will investigate the number and structure of lambda-terms. Their formal
definition will be given in Chapter 1, where further important definitions and
notations will be introduced.
Our fundamental tools for gaining information on the number of a cer-
tain combinatorial class are generating functions together with the symbolic
method, singularity analysis and the saddle-point method, which will be in-
troduced in Chapter 2.
As mentioned before, unfortunately these concepts cannot be applied to the
class of lambda-terms. In Chapter 3 we will explain in detail why this is the
case and give lower and upper bounds for the number of lambda-terms of a
certain size. The exact number of lambda-terms of a given size, as well as the
asymptotic number, still remain unsettled and it seems as there are a lot of
obstacles which need to be conquered in order to solve them. However, there
are results on the asymptotic behavior of certain subclasses of lambda-terms,
which allow the use of the methods of analytic combinatorics introduced in
Chapter 2. An exhaustive treatment of the various subclasses that have been
investigated so far will be presented in Chapter 4.
In Chapter 5 we will briefly give some results on the structure of lambda-
terms. It is very interesting that although lambda-terms are somewhat re-
lated to Motzkin trees, their structure is totally different compared to that
of trees, while it rather resembles that of DAGs.

The second part of this thesis is devoted to the investigation of both labeled
and unlabeled DAGs. In Chapter 6 we will introduce some basic definitions
and explain the relation between lambda-terms and DAGs. In Chapter 7
recurrence relations for the number of DAGs of a certain size will be set up.

2



In the labeled case the recurrence will be very descriptive, while the recursion
for unlabeled DAGs will turn out to be much more complex. Then a special
generating function for the number of labeled DAGs will be introduced that
adopts an intriguing representation. Moreover, in Chapter 7 we will present
a bijection between the number of labeled DAGs and the number of (0,1)-
matrices with positive eigenvalues.
Chapter 8 will be concerned with the investigation of the asymptotic behavior
of DAGs. Due to the explicit representation of the special generating func-
tion of labeled DAGs, their asymptotics can easily be determined. However,
as mentioned before, the asymptotic behavior of unlabeled DAGs appears
to remain unsolved. Nevertheless, by fixing the number of edges we estab-
lish asymptotics for both labeled and unlabeled DAGs, which will also be
presented in Chapter 8.
In Chapter 9 we will investigate some properties of the structure of labeled
DAGs. First we will see that almost all DAGs are weakly connected. Then
we will derive an interesting result on the average number of out-points of
a random DAG, namely that for sufficiently large sizes the number of out-
points is less than 4. As a last result on the structure of labeled DAGs we
will show that the height of DAGs is asymptotically normally distributed.
Finally, in Chapter 10, we will consider two subclasses of DAGs that are of
special interest, namely extensional and essential DAGs.
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Part I

Lambda-terms
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Chapter 1

Basic definitions

In this chapter we introduce the basic definitions and notations that will be
used throughout the first part of this thesis. This contains the definition of
lambda-terms and lambda-trees, and since we are interested in the enumer-
ation of those objects we also need to define their size. In doing so we will
stick to the definitions given in [2] and [18].

First of all we have to define what a lambda-term is.

Definition 1.1 (lambda-terms, [18, Def. 3])
Let V be a countable set of variables. The set Λ of lambda-terms is defined
by the following grammar:

1. every variable in V is a lambda-term,

2. if T and S are lambda-terms then TS is a lambda-term,

3. if T is a lambda-term and x is a variable then λx.T is a lambda-term.

We call TS an application and λx.T an abstraction.
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Remark 1.2
The name application arises, since lambda-terms of the form TS can be re-
garded as functions T (S), where the function T is applied to S, which in turn
can be a function itself.

Both application and repeated abstraction are not commutative, i.e. in gen-
eral the lambda-terms TS and ST , as well as λx.λy.M and λy.λx.M , are
different (with the exceptions of T = S and none of the variables x or y
occurring in M).

Definition 1.3 (bound, free variables, [2, Def. 2.1.6])
A variable x occurs free in a lambda-term if it is not in the scope of a λx. .
Otherwise we call it a bound variable.

Each λ binds exactly one variable (which may occur several times in the
terms), and each variable can be bound by at most one λ.

Definition 1.4 (open, closed lambda-term)
A lambda-term is closed if it contains no free variables; otherwise it is called
open.

Now we introduce some notational conventions that will be used throughout
this thesis:

(i) x, y, z, . . . denote arbitrary variables.

(ii) M,N,L, . . . denote arbitrary lambda-terms.

(iii) The lambda-term λx1. . . . λxn.M is read as λx1.(λx2.(. . . (λxn.M)) . . .),
whereas MN1 . . . Nn is an abbreviation of (. . . ((MN1)N2) . . . Nn).
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(iv) The symbol ≡ denotes syntactic equality.

Definition 1.5 (subterm, [2, Def. 2.1.8])
The collection S(N) of subterms of a lambda-term N is defined inductively
as follows:

(i) S(x) = {x},

(ii) S(N1N2) = S(N1) ∪ S(N2) ∪ {N1N2},

(iii) S(λx.N1) = S(N1) ∪ {λx.N1}.

Lambda-terms can be seen as rooted unary-binary trees containing additional
directed edges. Note that the resulting structures are in general no trees in
the sense of graph theory, but due to their close relation (see Def.1.6) they
are called lambda-trees.

Definition 1.6 (lambda-tree, [18, Def. 5])
With every lambda-term T, the corresponding lambda-tree G(T) can be con-
structed in the following way:

• If x is a variable then G(x) is a single node labeled with x. Note that
x is unbound.

• G(PQ) is a lambda-tree with a binary node as root, having the two
lambda-trees G(P ) (to the left) and G(Q) (to the right) as subtrees.

• The tree G(λx.P ) is obtained from G(P ) in four steps:

1. Add a unary node as new root.

2. Connect the new root by an undirected edge with the root of G(P).

3. Connect all leaves of G(P ) labelled with x by directed edges with
the new root.

9



4. Remove all labels x from G(P ). Note that now x is bound.

Obviously applications correspond to binary nodes and abstractions corre-
spond to unary nodes.

z

z

Figure 1.1: The lambda-trees representing the terms λx.((λy.(xy))z) and
(λx.(x(λy.y))(λx.(λy.zy)).

Removing all directed edges and labels yields the underlying unary-binary
tree of the lambda-tree.

Due to this correspondence of lambda-terms and lambda-trees, we some-
times call the variables leaves, and the path connecting the root with a leaf
a branch.

There are different approaches as to how one can define the size of a lambda-
term, and a lambda-tree respectively. We will introduce the two most com-
mon ones and also give an additional and rather unconventional definition of
the size, which leads to very interesting results.

Most commonly the size |T | of a lambda-term T is defined in the following
way:
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Definition 1.7 (size1 of a lambda-term)

|x| = 1

|λx.M | = 1 + |M |

|MN | = 1 + |M |+ |N |

As we can see, |T | is the total number of nodes of the lambda-tree G(T ).

The other popular definition for the size ‖T‖ of a lambda-term T , that will
also be used in parts of this thesis, is the following:

Definition 1.8 (size2 of a lambda-term)

‖x‖ = 0

‖λx.M‖ = 1 + ‖M‖

‖MN‖ = 1 + ‖M‖+ ‖N‖

As we can see, ‖T‖ is the number of all internal nodes of the lambda-tree
G(T).

As an example, for the terms T = λx.((λy.(xy))z) and S = (λx.(x(λy.y))(λx.(λy.zy)),
pictured in Figure 1.1, it holds that |T | = 7, ‖T‖ = 4, |S| = 11 and ‖S‖ = 7.

Since we are interested in the enumeration of lambda-terms and the set V
of variables is infinite, we have to introduce further conventions in order to
prevent having infinitely many lambda-terms of a certain size.

Definition 1.9 (α-equivalence)
Two lambda-terms M and N are α-equivalent, denoted by M ≡α N , if they
only differ by the names of their bound variables.
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In the following we will consider α-equivalent terms to be equal and therefore
we write for example λx.x ≡ λy.y.

Additionally, we may assume the free variables of a lambda-term to be con-
secutively numbered with x1 being the left-most variable occurring in the
lambda-term and x2 being the next free variable that occurs that is not al-
ready present in the term and so on. In short, the names of the different
free variables are not important in the sense that they can be renamed, i.e.
λx.yx ≡ λx.zx. Since we will mainly focus on closed lambda-terms, these
considerations will not concern us for too long, but for the sake of complete-
ness they have to be mentioned.

At last, we now want to present another interesting approach of defining the
size of a lambda-term, introduced in [17], which originated from the field of
computer science. Yet before we can give the formal definition, we have to
introduce another well-established representation of lambda-terms, called De
Bruijn representation (see [14]). The purpose of this representation was to
eliminate the occurrences of variable names, which simplifies the process of
identifying two equivalent terms.

Definition 1.10 (De Bruijn representation)
In the De Bruijn representation of a lambda-term variables are replaced by
positive integers (called De Bruijn indices), that represent the number of λ’s
on the path connecting a variable with its binding λ in the corresponding
lambda-tree. Thus, the abstraction which binds a variable n is the n-th λ

before the variable. A variable n is free if the prefix which has this variable
as its last symbol contains less than n λ’s.

For example, the De Bruijn representation of the lambda-term λx.λy.xy is
λλ21 and that of λx.λy.λz.((xz)(yz)) is λλλ(31)(21). This representation
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makes the use of variables unnecessary and allows us to say that two lambda-
terms are equivalent if they have the same De Bruijn representation. So, what
we are actually interested in is the number of different De Bruijn represen-
tations of a given size.

Now, following the notation of [17], we will replace the variable n by a se-
quence of n symbols, namely a string of n − 1 so-called ’successors’ S and
a so-called ’zero’ 0 at the end. The examples from above can therefore be
rewritten in the following form:

λλ21, corresponding to the lambda-term λx.λy.xy, can be rewritten as λλ(S0)0

and the term λλλ(31)(21), which corresponds to λx.λy.λz.(xz)(yz) has the
representation λλλ((SS0)0)((S0)0).

Now we are able to define the size of a lambda-term, as it has been done in
[17]:

Definition 1.11 (size3 of a lambda-term, [17, p.2])
Considering a lambda-term T to be in the representation introduced above,
the size |T | can be computed as follows:
|0| = a, |Sn| = |n|+ b, |λM | = |M |+ c, |MN | = |M |+ |N |+ d.

Using this definition of the size we have for the examples given above |λλ(S0)0| =
2a+ b+ 2c+ d and |λλλ((SS0)0)((S0)0)| = 4a+ 3b+ 3c+ 3d.
In [17] the authors made the following assumptions about the constants
a, b, c, d:

1. a, b, c, d are non-negative integers

2. a+ d ≥ 1

13



3. b, c ≥ 1

4. gcd(b, c, a+ d)=1

The second assumption arises from the fact that if the zeros and the applica-
tions both had size 0 (i.e. a+ d = 0), this would result in an infinite number
of terms of a given size, because any number of applications and zeros could
be inserted into a term without increasing its size. The third assumption can
be explained similarly, since successors or abstractions having size 0 (i.e. b
or c equals to 0), would yield an infinite number of terms of a given size, be-
cause one could insert any length of strings of successors or abstractions into
a term without increasing its size. The last assumption is a rather technical
one, which provides pleasant properties for further estimations (see [17] for
more details).

This definition of the size has a very interesting property: Since variables
that have many successors have a greater size than those having fewer suc-
cessors, it follows that the size of a given lambda-term is increased compared
to the size we defined in Def. 1.7 and Def. 1.8. This corresponds to a shift of
the lambda-terms to higher sizes, with the result that there are fewer terms
of small sizes. Thus, the number of lambda-terms increases more slowly with
increasing size, which is the reason why, using this definition of the size, they
can be counted (cf. [17]). In Chapter 3 we will see why this is not possible
for our combinatorial definition of the size (Def. 1.7, Def. 1.8).

Now one could try to set the variables in such a way that this new size
corresponds to size1 (Def. 1.7). This would yield a = 1, b = 0, c = 1 and
d = 1. Unfortunately, by the comments stated above, we are not allowed to
set b = 0. This would only be possible if we just took closed lambda-terms
into account. However, if we did so, we would lose the advantage that a
variable with many successors has a bigger size, which therefore would not

14



lead to the desired shift of the lambda-terms and still no counting would be
possible.

Remark 1.12
For a = b = c = d = 1 we get the so-called natural size, which has been
discussed in [6].
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Chapter 2

Methods

Now we want to introduce some tools and methods that will be used within
this thesis. Our goal is to count combinatorial objects of a certain size n
and estimate their asymptotic behavior as n tends to infinity. In order to do
so the concepts of generating functions and singularity analysis are essential.
Furthermore, we will introduce the saddle-point method, which is very useful
to obtain some information on the asymptotics of rapidly growing sequences.
The results presented in this chapter are strongly based on the book ’Ana-
lytic Combinatorics’ of Flajolet and Sedgewick ([15]), to which we also refer
the interested reader for gaining further information.

2.1 Symbolic Method and Generating Functions

The symbolic method has proved to be a very simple and efficient approach
for various combinatorial enumeration problems. Yet before we can give an
accurate explanation, we need to introduce some basic definitions, as they
can be found in [15]:

17



Definition 2.1 (combinatorial class, [15, Def. I.1])
A combinatorial class A is a finite or denumerable set, on which a size func-
tion is defined, satisfying the following conditions:
(i) The size of an element is a non-negative integer.
(ii) The number of elements of any given size is finite.

We can see that any set of lambda-terms together with one of the size func-
tions defined in Chapter 1 represents a combinatorial class.

We denote by An the number of objects in class A having size n. Our goal is
to gain some information about the numbers An, either explicitly (if possible)
or asymptotically for n→∞.

Two combinatorial classes A and B are called (combinatorially) isomorphic,
if the sequences (An)n≥0 and (Bn)n≥0 are identical, i.e. An = Bn ∀n ∈ N0.

Definition 2.2 (ordinary generating function, OGF, [15, Def. I.4])
The ordinary generating function (OGF) of a combinatorial class A is the
formal power series A(z) =

∑∞
n=0Anz

n.

Equivalently, the OGF of the class A admits the representation A(z) =∑
α∈A z

|α|, where |α| denotes the size of α. We say that the variable z marks
the size in the generating function A(z).
Generating functions can also involve more than one variable, each of them
marking different parameters (e.g. the number of free leaves, the number
of unary-nodes, etc.). For our purposes bivariate generating functions, i.e.
functions depending on two variables, will be sufficient:

A(z, u) =
∑
n≥0

∑
m≥0

An,mz
num.

18



By [zn] we denote the operation of coefficient extraction, i.e.

[zn]A(z) = [zn]

(∑
n≥0

Anz
n

)
= An,

which returns the number of objects of the corresponding combinatorial class
A of size n.

Since we will work with generating functions throughout this thesis, we have
to define the sum and the product of formal power series:

The sum is defined by

A(z) +B(z) =
∑
n≥0

Anz
n +

∑
n≥0

Bnz
n =

∑
n≥0

(An +Bn)zn,

and the product by

A(z) ·B(z) =
∑
n≥0

Anz
n ·
∑
n≥0

Bnz
n =

∑
n≥0

n∑
k=0

AnBn−kz
n.

Now we have all the knowledge that is necessary in order to explain the sym-
bolic method, which will be one of our most important tools throughout this
thesis.
Within the symbolic method combinatorial classes are built directly in terms
of simpler classes by means of a collection of combinatorial constructions,
which can easily be translated into generating functions. We will now in-
troduce some of these elementary combinatorial constructions, that will be
particularly important, as well as their translation into generating functions.
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Definition 2.3 (union of disjoint sets, [15, p.23])
Let A and B be disjoint combinatorial classes with size functions | · |A and
| · |B and let C denote the combinatorial class which satisfies C = A∪B. The
size function | · |C of C is given as follows: For c ∈ C

|c|C =

{
|c|A for c ∈ A
|c|B for c ∈ B

Therefore we get Cn = An + Bn, which yields C(z) = A(z) + B(z) for the
genrating function of the combinatorial class C.

Thus, the union of disjoint sets translates to the sum of the generating func-
tions of the combinatorial classes. Note that the construction of the combi-
natorial sum A + B is essentially the same as the disjoint union, with the
difference that the condition of disjointness can be omitted, since the ele-
ments in B which are already in A can be regarded as copies of themselves,
hence making A and B disjoint (see [15, p.25]).
Another important construction is the cartesian product:

Definition 2.4 (cartesian product, [15, p.23])
Let A and B be combinatorial classes with size functions | · |A and | · |B and
let C denote the the combinatorial class which satisfies C = A × B := {c =

(a, b) : a ∈ A, b ∈ B}. The size function | · |C of C is given as follows: For
c = (a, b) ∈ C

|c|C = |a|A + |b|B.

Considering all possibilities we immediately get Cn =
∑n

k=0AkBn−k, which
by the definition of the product of two power series yields C(z) = A(z) ·B(z).

We see that the construction of the cartesian product translates to the prod-
uct of the generating functions of the combinatorial classes.
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Two combinatorial structures that are needed frequently are the neutral set
and the atomic set. The neutral set E consists of one element of size 0, while
the atomic set Z contains just one element of size 1. The respecting gener-
ating functions are E(z) = 1 and Z(z) = z.

A summary of the most important constructions, that will be needed at later
points in this thesis, and their translations into generating functions is given
in the following table:

Combinatorial Construction Generating Function
Neutral Set E = {ε} E(z) = 1

Atomic Set Z = {a} Z(z) = z

Disjoint Union/ Sum C = A ∪ B = A+ B C(z) = A(z) +B(z)

Cartesian Product C = A× B C(z) = A(z) ·B(z)

Now we will demonstrate this concept by means of counting Motzkin trees,
which are ordinary unary-binary trees, whose size is defined in Def. 1.7, i.e.
the size equals to the total number of nodes.

Example 2.5 (Motzkin trees)
LetM(z) =

∑∞
n=0Mnz

n be the generating function of the classM of Motzkin
trees, i.e. Mn denotes the number of Motzkin trees of size n.
The class of Motzkin trees can be formally specified by

M = Z + (Z ×M) + (Z ×M×M).

This specification results from the structure of unary-binary trees: They can
either consist of a single node (which is represented by the first summand),
or they are made up of a node that has either one or two children (cf. the
second and the third summand).
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Translating into generating functions yields

M(z) = z + zM(z) + zM2(z). (2.1)

Thus, we have a quadratic equation in M(z), which has the solutions

M(z)1,2 =
1− z ±

√
1− 2z − 3z2

2z
.

By (2.1) it follows that M(0) = M0 = 0, which implies

M(z) =
1− z −

√
1− 2z − 3z2

2z
.

�

In the next section we will turn to the analysis of the coefficients of generating
functions in order to gain asymptotic information on the number of structures
of a certain size.

2.2 Singularity Analysis

Singularity analysis relies on the simple principle that some special points
of a generating function, called singularities, are reflected in the function’s
coefficients. Therefore we gain information on the number of certain objects
of a given size by determining the singularities of the OGF of the combinato-
rial class. These interesting results can be obtained by no longer considering
generating functions as formal power series, but as functions in the complex
plane that are analytic around 0. We will see in the next chapter by means
of the example of lambda-terms that unfortunately some sequences grow too
fast, with the result that they are not analytic around 0 and therefore the
concept of singularity analysis cannot be applied. We refer the reader who
is not familiar with basic concepts of complex analysis to [15], since we will
use some of these concepts in the sequel.
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Definition 2.6 (singularity, [15, Def. IV.4])
Given a function f defined in the region interior to the simple closed curve
γ, a point z0 on the boundary (γ) of the region is a singularity, if f is not
analytically continuable to z0.

In short, singularities are points where a function f is not analytic.
The singularities which are closest to the origin, are called the dominant sin-
gularities of f , and will turn out to be particularly important. Their distance
to the origin is called the radius of convergence of f(z).

The general form of the coefficients of a generating function looks like [zn]F (z) =

Anθ(n), where A denotes the exponential growth factor and θ(n) a subexpo-
nential factor, i.e. lim sup |θ(n)| 1n = 1.

In [15] Flajolet and Sedgewick introduced the following two principles:

First Principle of Coefficient Asymptotics:
The location of a function’s singularities dictates the exponential growth (An)

of its coefficients.
Second Principle of Coefficient Asymptotics:
The nature of a function’s singularities determines the associate subexponen-
tial factor (θ(n)).

The first principle is specified by the following theorem:

Theorem 2.7 (Exponential growth formula, [15, Thm. IV.7])
If f(z) is analytic at 0 and R is the radius of convergence, i.e. R := sup{r ≥
0| f is analytic in |z| < r}, then the coefficient fn = [zn]f(z) satisfies

fn ∼
(

1

R

)n
.
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For functions with non-negative coefficients, including all combinatorial gen-
erating functions, one can also adopt

R := sup{r ≥ 0| f is analytic at all points of 0 ≤ z < r}

Thus, the exponential factor can easily be determined by determining the
radius of convergence. In order to derive the subexponential factor, we have
to distinguish between certain kinds of functions:
For rational and, more generally, for meromorphic functions, which have only
polar singularities, the subexponential factor θ(n) is of polynomial growth.

Theorem 2.8 (Expansion of meromorphic functions, [15, Thm. IV.10])
Let f(z) be a function meromorphic at all points of the closed disc |z| ≤ R,
with poles at points α1, α2, . . . , αm. Assume that f(z) is analytic at all points
of |z| = R and at z = 0. Then there exist m polynomials {

∏
j(x)}mj=1 such

that

fn ≡ [zn]f(z) =
m∑
j=1

∏
j

(n)α−nj +O(R−n).

Furthermore the degree of
∏

j is equal to the order of the pole of f at αj
minus one.

Now we consider functions whose singularities are of richer nature than poles.
For this purpose we need the following considerations:
If f(z) is singular at z = ζ, then g(z) ≡ f(zζ) satisfies

[zn]f(z) = ζ−n[zn]f(zζ) = ζ−n[zn]g(z),

where g(z) now has a singularity at z = 1. Consequently, in the following
we will w.l.o.g. only discuss functions that are singular at z = 1 in order to
determine the subexponential factor.
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Our goal is to translate an expansion of a function near its singularity into
an asymptotic approximation of its coefficients. Suppose we have a function
f(z) that is singular at z = 1 and has an asymptotic expansion of the form
f(z) = σ(z) + O(τ(z)) near z = 1, where τ(z) = o(σ(z)) as z → 1, with σ
and τ being of the form (1− z)−α for α ∈ C \ Z≤0, which is called standard
scale of functions. Then we get

fn ≡ [zn]f(z) = [zn]σ(z) + [zn]O(τ(z)). (2.2)

For functions of the standard function scale, we have the following result:

Theorem 2.9 ([15, Thm. VI.1])
Let α ∈ C \ Z≤0. Then

[zn](1− z)−α ∼ nα−1

Γ(α)

(
1 +

∞∑
k=1

ek
nk

)
,

where ek is a polynomial in α of degree 2k.

Thus, the term [zn]σ(z) in Equation (2.2) can easily be described asymptoti-
cally. What is left to do is to extract the coefficients of the error terms in the
expansion of the function near the singularity, which can be achieved by the
so-called transfer theorems, which guarantee that [zn]O(τ(z)) = O([zn]τ(z)).
The basic condition for this transfer is analyticity in a certain region, called
∆-domain.

Definition 2.10 (∆-domain, [15, Def. VI.1])
Given two numbers φ, R with R > 1 and 0 < φ < π

2
, the open domain

∆(φ,R), defined as

∆(φ,R) = {z | |z| < R, z 6= 1, |arg(z − 1)| > φ},

is called a ∆-domain.
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Now we can formulate the transfer theorems:

Theorem 2.11 (Transfer-theorems, [15, Thm. VI.3, Cor. VI.1])
Let α be an arbitrary complex number in C\Z≤0 and suppose f(z) is analytic
in a ∆-domain ∆ with an isolated singularity at z = 1. Then we get for
z ∈ ∆, z → 1

Big-Oh transfer:
O((1− z)−α)→ fn = O(nα−1)

Little-Oh transfer:
o((1− z)−α)→ fn = o(nα−1)

Sim-transfer:

f(z) ∼ (1− z)−α → fn ∼
nα−1

Γ(α)

Remark 2.12
We will call the number −α the type of the singularity.

Now we have all the tools to determine an asymptotic behavior of a func-
tion’s coefficients by performing a term-by-term transfer from the asymptotic
expansion of the function near its singularity.
We will explain these concepts by the example of Motzkin trees.

Example 2.13 (Motzkin trees, continuation)
From Example 2.5 we know that the generating function M(z) of Motzkin
trees has the representation

M(z) =
1− z −

√
(1 + z)(1− 3z)

2z
.

Therefore it is singular at z = −1 and z = 1/3, with the dominant singularity
being z = 1/3.
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The important condition that M(z) is analytic in a ∆-domain is fulfilled.
Around the point 1/3, a singular expansion is obtained by multiplying

√
1− 3z

and the analytic expansion of the factor (1 + z)1/2/(2z), which yields

M(z) = 1− 31/2
√

1− 3z +O((1− 3z)3/2).

Applying the term-by-term transfer, and using Γ(−1
2
) = −2

√
π, we get

Mn =

√
3

4πn3
3n +O(3nn−2).

�

2.3 Saddle-point method

The saddle-point method, also known as method of steepest descent, is a
very powerful tool for obtaining asymptotic information about rapidly grow-
ing functions. It is typically applied to entire functions (that have no sin-
gularities) or functions with singularities that exhibit an exponential growth
around their singularities. There are many books that include exhaustive
presentations of this approach. We will stick to the descriptions given in [15]
and [26].

Our goal is to derive the asymptotic behavior of the coefficients of a gener-
ating function G(z), which is assumed to be analytic in the origin and has
non-negative coefficients, given in integral form by

[zn]G(z) =
1

2iπ

∫
C
G(z)

dz

zn+1
,

where C encircles the origin, lies within the domain where G is analytic and
is positively oriented (cf. Cauchy’s coefficient formula, [15, Thm. IV.4]).
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The saddle-point method for Cauchy coefficient integrals is a special case of
the general saddle-point method with the integrand being F (z) = G(z)/zn+1,
which we will now briefly introduce.

First of all, consider that there are three different kinds of points on the sur-
face representing the modulus of an analytic function F (z), namely ordinary
points, zeros and saddle-points (cf. [15, Fig. VIII.1]). Thus, there are no
local maxima (cf. maximum modulus principle).

Definition 2.14 (saddle-point, [15, p. 543])
A saddle-point is a point z0, such that F (z0) 6= 0 and F ′(z0) = 0.

It is easy to see that for our purposes the saddle-point z0 > 0 will always
be unique, since in case of enumeration problems we only have non-negative
coefficients, which implies F ′′(z) > 0 on the positive real line.

In order to proceed we set F (z) = ef(z), where both F (z) and f(z) depend
on a large parameter n.

The saddle-point method is based on the fact that we are allowed to shift
contours of integration when estimating integrals of analytic functions.
The basic idea is to choose the contour in such a way that it passes through
the single saddle-point. The saddle-point then presents a local maximum of
the integrand along the path, while the rest of the contour (further away
from the saddle-point) is asymptotically negligible. We get essentially:

Saddle-point method = Choice of contour + Laplace’s method

The first step in applying the saddle-point method is to find the saddle-point
z0, using the saddle-point equation F ′(z0) = 0 or equivalently f ′(z0) = 0.
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Then we have to perform the splitting of the integration contour C = C(0) ∪
C(1), where C(0), called the "central part", contains z0 (or passes sufficiently
close to it), and C(1) is formed of the remaining "tails". This splitting has to
be carried out independently for each application of the saddle-point method
taking into account the growth of the integrand and thereby has to fulfil the
following conditions:

• The contribution of the tails has to be asymptotically negligible (cf.
[15, p.552], condition SP1):∫

C(1)
F (z)dz = o

(∫
C
F (z)dz

)
.

• In the central region the quantity of f(z) in the integrand has to be
asymptotically well approximated by a quadratic function. (cf. [15,
p.552], condition SP2)

• The tails can be completed back, introducing only negligible error
terms, meaning that the incomplete Gaussian integral is asymptoti-
cally equivalent to a complete one. (cf. [15, p.553], condition SP3)

If all these assumptions are fulfilled, we get the following saddle-point ap-
proximation:

Theorem 2.15 (Saddle-point approximation, [15, Thm. VIII.3])
If the contour integral of a function F (z) = ef(z) along the path C fulfils the
conditions listed above, we get

1

2iπ

∫
C
ef(z)dz ∼ ± ef(z0)√

2πf ′′(z0)
,

where z0 is the saddle-point of F (z), and the ± reflects the orientation of the
contour.
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In case of Cauchy coefficient integrals, we often make use of polar coordinates
and set z = reiθ, where the radius r of the circle is chosen equal to (or close
to) the positive saddle-point value.

Thus, we need to estimate

[zn]G(z) =
r−n

2π

∫ π

−π
G(reiθ)e−niθdθ.

The saddle-point equation can now be written as

a(r) := r
G′(r)

G(r)
= n. (2.3)

In order for the saddle-point method to be applicable, we would need to
check all the conditions introduced above. Fortunately, for Cauchy coefficient
integrals it is possible to specify a certain set of functions that fulfil the
necessary conditions, namely Hayman-admissible functions.

Definition 2.16 (Hayman-admissibilty, [15, Def. VIII.1])
Let G(z) have radius of convergence ρ with 0 < ρ ≤ +∞ and be always
positive on some subinterval (R0,ρ) of (0, ρ). The function G(z) is Hayman-
admissible, if it satisfies the following conditions, with a(r) as defined in (2.3)

and b(r) := rG
′(r)
G(r)

+ r2G
′′(r)
G(r)
− r2

(
G′(r)
G(r)

)2
:

H1. Capture condition: limr→ρ a(r) = +∞ and limr→ρ b(r) = +∞

H2. Locality condition: For some function θ0(r) defined over (R0, ρ) and
satisfying 0 < θ0 < π, one has

G(reiθ) ∼ G(r)eiθa(r)−θ
2b(r)/2 as r → ρ,

uniformly in |θ| ≤ θ0(r).
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H3. Decay condition: Uniformly in θ0(r) ≤ |θ| < π

G(reiθ) = o

(
G(r)√
b(r)

)
.

The big advantage of Hayman-admissible functions is that they fulfil a va-
riety of closure properties. So, if we can express our function of interest in
terms of other functions that we know are Hayman-admissible, we do not
have to check the necessary conditions, which spares a lot of work.
For a Hayman-admissible function G(z) we get the saddle-point approxima-
tion

[zn]G(z) ∼ G(r)

rn
√

2πb(r)
as n→∞,

where r is the saddle-point and b(r) := rG
′(r)
G(r)

+ r2G
′′(r)
G(r)

− r2
(
G′(r)
G(r)

)2
=

r
(
rG
′(r)
G(r)

)′
.

2.4 Working process

All the concepts that have been introduced in this chapter allow us to handle
a great variety of combinatorial problems. We will now give a short sum-
mary of the working process underlining the different application fields of the
established approaches.

• First we set up formal specifications for the combinatorial classes of
interest.

• The symbolic method transforms these specifications into equations
that define generating functions.
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• By treating generating functions as analytic objects in the complex
plane, we are able to give estimations of their coefficients. For any of
the following methods to work, we therefore need analyticity around 0.

– For meromorphic functions, whose singularities are just poles, we
can use Thm. 2.8.

– For functions with essential singularities (not poles) that exhibit
moderate (polynomial) growth around the singularity, we can ap-
ply singularity analysis.

– Functions without any singularities or with singularities at which
the function exhibits exponential growth can often be treated by
the saddle-point method.
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Chapter 3

Counting lambda-terms

In this chapter the problem of counting lambda-terms is introduced and it is
explained why the common methods of analytic combinatorics, introduced
in Chapter 2, fail for this purpose. Moreover we will present the concept of
contexts (Section 3.2) and discuss the asymptotic behavior of the number of
closed lambda-terms (Section 3.3). In Section 3.4 we present the polynomials
Pn(m) associated with the number of lambda-terms of size n with at most m
distinct free variables and in the last section we give lower and upper bounds
for the number of closed lambda-terms of a certain size. As mentioned in
Chapter 1, there are different ways how the size of a lambda-term can be
defined. Since the results presented in this thesis are based on different
sources, we will sometimes have to switch between the two common sizes
introduced in the first chapter (Def. 1.7, Def. 1.8). Mostly we will use
one definition consistently throughout a whole chapter or section, which will
be stated at the respective beginning. Throughout Chapter 3 the second
definition for the size of a lambda term (Def. 1.8) is used; i.e. the size
corresponds to the number of inner nodes.
Most of the results given in this chapter are based on [19], where further
information can be found.
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3.1 Counting lambda-terms with at mostm dis-

tinct free variables

Our goal in this section is to set up a recursion for the number of lambda-
terms with a bounded number of free variables.
In Chapter 3.1 - 3.4 we only consider lambda-terms modulo α-equivalence,
i.e. now the terms λx.yx and λx.zx are regarded to be different. Let M =

{x1, . . . , xm}. Then Tn,m denotes the set of lambda-terms of size n with the
property that its set of free variables is a subset of M . Let Tn,m denote the
cardinality of the set Tn,m.
We get the following equations:

T0,m = m, (3.1)

Tn+1,m = Tn,m+1 +
n∑
i=0

Ti,mTn−i,m (3.2)

The first summand of the recursion corresponds to the number of lambda-
terms of size n+ 1 starting with an abstraction. Such a lambda-term results
from a lambda-term of size n by adding a lambda that becomes the new root
of the corresponding lambda-tree. The term of size n, out of which the new
lambda-term results, can have at most one free variable more, in case this
variable gets bound by the new lambda. The second summand derives from
the lambda-terms of size n+ 1 starting with an application. Obviously such
a term arises from two smaller lambda-terms with at most m distinct free
variables whose sizes add to n, because the application node, which connects
those two terms, has itself size one.

We get an induction, that relies on two variables (n and m), with the distinct
feature that one is decreasing (the size n), and the other one is increasing
(the maximum number of free variables m). It is this growth of m, why
treatments by generating functions and classical analytic combinatorics fail.
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Special interest lies in the number of closed lambda-terms of size n, which
obviously corresponds to Tn,0.

The first values of Tn,0 are:
0, 1, 3, 14, 82, 579, 4741, 43977, 454283, 5159441, 63782411, . . .

Remark 3.1
In case of variable size 1, the sequence Tn,0 looks like:
0, 1, 2, 4, 13, 42, 139, 506, 1915, 7558, 31092, 132170, 580466, 2624545, . . .

Although the problem of determining the asymptotic number of closed lambda-
terms is still unsolved, we know that it is superexponential in n (i.e. it grows
faster than an for any a), but it is asymptotically smaller than nn.

Before we can give an explanation for this behavior, we have to introduce
the concept of so-called i-contexts (see [19]).

3.2 Counting contexts

Contexts are lambda-terms where the free variables are replaced by so-called
holes, which are considered to be distinct and are basically the same as free
variables. The important difference is that a variable can occur multiple
times in a term, while each hole occurs only once and can be filled (sub-
stituted) independently of the other holes in the term. An i-context is a
lambda-term with exactly i holes. Obviously 0-contexts correspond to closed
lambda terms.

Let cn,i denote the number of i-contexts of size n.
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Then we get

c0,1 = 1,

c0,i = 0, for i 6= 1.

Considering how an i-context of size n + 1 can be constructed from smaller
ones yields the following recursion ([19, p.9]):

cn+1,i =
n+1∑
j=i

(
j

i

)
cn,j +

i∑
j=0

n∑
k=0

ck,jcn−k,i−j

In analogy to the recursion for the numbers Tn,m (Equ. (3.2)) we distinguish
between the two cases that the term starts either with an abstraction or an
application.
The first summand corresponds to the i-contexts of size n + 1 starting with
an abstraction: In order to derive such a term we add a new unary root
to a j-context (j ∈ {i, . . . , n + 1}) of size n and choose a set of j − i holes
among the j holes which we substitute by occurrences of the variable that is
bound by the new lambda. There are

(
j
i

)
cn,j such i-contexts for every fixed

j. Summing up yields the number of all i-contexts of size n+ 1 starting with
an abstraction.
The second summand gives the number of i-contexts of size n + 1 starting
with an application. Such a term results by combining a j-context of size k
and a (i − j)-context of size n − k (j ∈ {0, . . . , i}, k ∈ {0, . . . , n}) with a
newly added binary node. Again summing up yields the desired number.

Due to the fact that 0-contexts correspond to closed lambda-terms, we are
now ready to give some results on the asymptotic behavior of closed lambda-
terms.
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3.3 The asymptotic behavior of closed lambda-

terms

First we introduce the bivariate generating function L(z, u) =
∑

n,i≥0 cn,iz
nui,

where z marks the size and u the number of holes. Remember that the size of
a lambda-term still corresponds to the number of its inner nodes (Def. 1.8).

Lemma 3.2 ([19, Prop. 3])
Let cn,i denote the number of i-contexts of size n. The bivariate generating
function L(z, u) =

∑
n,i≥0 cn,iz

nui satisfies the following equation:

L(z, u) = u+ zL(z, u+ 1) + zL(z, u)2.

Proof. To prove this functional equation we use the symbolic method, as it
has been done in [7]. Therefore we first have to introduce the following atomic
classes: the class of application nodes A, the class of abstraction nodes U ,
the class of bound leaves D and the class of free leaves F 1.
Then the class L of equivalence classes of lambda-terms can be specified by

L = F + (A× L2) + (U × subs(F → F +D,L)),

where the substitution operator subs(F → F+D,L) corresponds to replacing
arbitrarily many free leaves in L by bounded ones.
This specification gives rise to the above functional equation for L(z, u) =∑

n,i≥0 cn,iz
nui, where z counts the size and u the number of free leaves, or

the number of holes respectively.

1Actually the class F is the class of holes, because we consider the free leaves to be
anonymous.
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The equation
L(z, u) = u+ zL(z, u+ 1) + zL(z, u)2

has the following solution

L(z, u) =
1−

√
1− 4z(u+ zL(z, u+ 1))

2z
.

Proceeding equivalently as in [19] we state M(z, u) = 2zL(z, u).

Then M(z, u) = 1−
√

1− 4zu− 2zM(z, u+ 1) and hence M(z, 0) =

1−

√√√√
1− 2z(1−

√
1− 4z − 2z(1−

√
1− 8z − 2z(1−

√
1− 12z − 2z(1−

√
1− 16z − ..)))).

As stated in [7], [19] and [10], the singularities ofM(z, u) are the singularities
of M(z, u+ 1) and zu > 0 with 1− 4zuu− 2zuM(zu, u+ 1) = 0, which yields
zu < 1

4u
(since zuM(zu, u + 1) > 0). Therefore L(z, 0) has a sequence of

singularities (zu)u∈N which tends to 0, which implies that the radius of con-
vergence is 0. Remembering Theorem 2.7 this implies that the coefficients of
the generating function L(z, 0) grow faster than an for any a ∈ R. As stated
before, such a behavior is called superexponential growth.

This rapid growth is caused by the various possibilities of connecting the
unary nodes with certain leaves. If we cancelled all those pointers we would
get ordinary unary-binary trees, which are counted by the large Schröder
numbers. These are asymptotically equivalent to

(
1

3−2
√
2

)n
1√
πn3/2 ([13]).

This gives of course a first lower bound for the Tn,0, but we will derive better
bounds in Section 3.5.

Remark 3.3
In case of defining the size of a lambda-tree as the number of its internal
and external nodes (Def. 1.7), i.e. the size of variables is 1, the well-known
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Motzkin-numbers equal the number of unary-binary trees. In Chapter 2 (Ex-
ample 2.13) we derived that the number of Motzkin-trees is asymptotically
equivalent to

√
3

4πn3 3n.

Note that the generating function of open lambda-terms can be derived
from the generating function of closed lambda-terms by L(z, 1) − L(z, 0) =
(1−z)L(z,0)−zL(z,0)2

z
. Thus, the problems of counting open or closed lambda-

terms are essentially the same and by solving one of them we immediately
get the solution for the other one. Therefore in the following we will only
focus on closed lambda-terms.

3.4 The polynomials Pn

In the last section it has been shown why it is very difficult to handle unre-
stricted lambda-terms. Now we will present an interesting approach, intro-
duced in [19], which associates the numbers Tn,m (cf. Section 3.1) with the
following polynomials Pn(m) in m:

P0(m) = m,

Pn+1(m) = Pn(m+ 1) +
n∑
i=0

Pi(m)Pn−i(m).

Obviously the sequence (Pn(0))n≥0 corresponds to the sequence (Tn,0)n≥0.
Therefore the constant coefficient of a polynomial Pn(m) is exactly equal to
the number of closed lambda terms of size n.

Lemma 3.4 ([19, Lem. 1])
For every n, the degree of the polynomial Pn is equal to n+ 1.

Proof. This can easily be seen by induction on n.
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Thus, every polynomial Pn has the form

Pn(m) = p[1]n m
n+1 + p[2]n m

n + . . .+ p[i]nm
n+2−i + . . .+ p[n+1]

n m+ p[n+2]
n .

Lemma 3.5 ([19, Lem. 2])
For every n ≥ 0 and i ≥ 0,

p
[1]
0 = 1, p

[i]
0 = 0 for i > 1, (3.3)

p
[i]
n+1 =

i−2∑
j=0

(
n+ 1− j
i− 2− j

)
p[j+1]
n +

i∑
k=1

n∑
j=0

p
[k]
j p

[i+1−k]
n−j . (3.4)

Proof. The Equations (3.3) are valid, because it holds that P0(m) = m. To
derive Equation (3.4) we have to consider that the ith leading coefficient in
the polynomial Pn+1(m + 1) can be derived by summing the coefficients of
mn+3−i in the polynomials Pn(m+ 1) and

∑n
j=0 Pj(m)Pn−j(m).

• Since Pn(m+ 1) = p
[1]
n (m+ 1)n+1 + . . .+p

[i−1]
n (m+ 1)n+3−i + . . .+p

[n+2]
n

the coefficient of mn+3−i is(
n+ 1

i− 2

)
p[1]n +

(
n

i− 3

)
p[2]n +. . .+

(
n+ 3− i

0

)
p[i−1]n =

i−2∑
j=0

(
n+ 1− j
i− 2− j

)
p[j+1]
n .

• The j-th summand of
∑n

j=0 Pj(m)Pn−j(m), is equal to(
p
[1]
j m

j+1 + . . .+ p
[k]
j m

j+2−k + . . .+ p
[j+2]
j

)
·
(
p
[1]
n−jm

n−j+1 + . . .+ p
[i+1−k]
n−j mn−j+1+k−i + . . .+ p

[n−j+2]
n−j

)
.

Thus, the coefficient of mn+3−i in
∑n

j=0 Pj(m)Pn−j(m) is given by

i∑
k=1

n∑
j=0

p
[k]
j p

[i+1−k]
n−j .
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n Pn

0 m

1 m2 +m + 1

2 2m3 + 3m2 + 5m + 3

3 5m4 + 10m3 + 22m2 + 25m + 14

4 14m5 + 35m4 + 94m3 + 154m2 + 163m + 82

5 42m6 + 126m5 + 396m4 + 838m3 + 1277m2 + 1235m + 579

6 132m7 + 462m6 + 1654m5 + 4260m4 + 8384m3 + 11791m2 + 10707m + 4741

7 429m8 + 1716m7 + 6868m6 + 20742m5 + 49720m4 + 90896m3 + 120628m2 + 104055m + 43977

8 1430m9 + 6435m8 + 28396m7 + 98028m6 + 275886m5 + 617096m4 + 1068328m3 + 1352268m2 + 1117955m + 454283

Table 3.1: The first nine polynomials Pn ([19, Fig. 2]).

A combinatorial interpretation of the coefficients p[i]n can be given, considering
how a lambda-term can be constructed from contexts. Assume we have an
i-context of size n, which per definition has i holes and no free variables.
By filling the i holes with free variables taken among m ones, we build a
term of size n with exactly i occurences of free variables. There are cn,imi

such terms. Thus, for the number of lambda terms of size n with at most m
distinct free variables, we get

Tn,m = cn,n+1m
n+1 + . . .+ cn,im

i + . . .+ cn,0,

which is the polynomial Pn(m). It follows that cn,n+2−i = p
[i]
n , which implies

that the coefficients of the polynomials Pn count the i-contexts of size n.

Remark 3.6
Using variable size 1 and therefore a slightly different definition of the poly-
nomials Pn Lescanne provides explicit formulas for the leading coefficients,
the second leading coefficients and in case of the odd polynomials also for the
third leading coefficients. The interested reader is referred to [21] for more
details.
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3.5 Lower and upper bounds

In this section we derive lower and upper bounds for the number of closed
lambda-terms of size n. One lower bound has already been mentioned,
namely the ’Large Schröder numbers’, which count ordinary unary-binary
trees (for leaf size 0). Now we will give a more precise one, as it can be found
in [13].
Let λn denote the number of closed lambda-terms of size n (where the size
still is defined as in Def. 1.8, i.e. variables have size 0).

Theorem 3.7 ([13, Thm. 5.1])
For any ε ∈ (0, 4) we have

λn &

(
(4− ε)n

ln(n)

)n− n
ln (n)

Proof. A lower bound for λn is given by the number LB(n, k) of lambda-
terms of size n that start with k head-lambdas and have no other lambda
below. Considering that the lower part of the term is a binary tree with
n− k inner nodes and therefore n− k + 1 leaves, which can be bound by k
lambdas, we have LB(n, k) = C(n − k)kn−k+1, where C(i) denotes the i-th
Catalan number. For k =

⌈
n

ln(n)

⌉
this yields

λn ≥ C

(
n−

⌈
n

ln(n)

⌉)(⌈
n

ln(n)

⌉)n−d n
ln(n)e+1

.

With the well-known asymptotics of the Catalan numbers C(n) ∼ 4n

n3/2
√
π

(see for example [15]) it follows:
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λn &
4n−d

n
ln(n)e(

n−
⌈

n
ln(n)

⌉)3/2√
π

(⌈
n

ln(n)

⌉)n−d n
ln(n)e+1

&

(
4n

ln(n)

)n− n
ln(n) 1

p(n)
for some positive polynomial p

&

(
(4− ε)n

ln(n)

)n− n
ln(n)

since
(

4

4− ε

)n− n
ln(n)

& p(n).

With similar arguments David et al. also exhibited an upper bound for λn.

Theorem 3.8 ([13, Thm. 5.6])
For any ε > 0 we have

λn .

(
(12 + ε)n

ln(n)

)n− n
3 ln(n)

Sketch of proof. The idea of the proof is to show that the number λn of closed
lambda-terms of size n is asymptotically equal to the number Tn of closed
lambda-terms of size n with less than 3n

ln(n)
and more than n

3 ln(n)
unary nodes

(cf. [13, Thm. 5.4]). Consequently, such a lambda-term can have at most
n− n

3 ln(n)
binary nodes and therefore at most n− n

3 ln(n)
+1 leaves. The upper

bound for Tn can be obtained in the following way:

• First we consider binary trees consisting of at most n −
⌊

n
3 ln(n)

⌋
bi-

nary nodes. With the simple estimation for the Catalan numbers,
C(n + 1) ≥

∑n
i=0C(i), we get that the number of these binary trees

does not exceed C
(
n−

⌊
n

3 ln(n)

⌋
+ 1
)
.

• Then we insert at most 3n
ln(n)

unary nodes in such a tree, which can be
done in less then

(
3n

d 3n
ln(n)e

)
ways.
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• Finally, each of the (at most) n+ 1− n
3 ln(n)

leaves can be bound by at

most 3n
ln(n)

lambdas, resulting in a maximum of
(

3n
ln(n)

)n+1− n
3 ln(n) possi-

ble bindings.

Therefore, we get

λn ∼ Tn . C

(
n−

⌈
n

3 ln(n)

⌉
+ 1

)(
3n⌊
3n

ln(n)

⌋)( 3n

ln(n)

)n+1− n
3 ln(n)

.

Using again the asymptotic expansion of the Catalan numbers and some
simplifications similar to the proof for the lower bound (Theorem 3.7) we get
the desired result.

Remark 3.9
Note that the ratio between the upper and the lower bounds that we obtained
for λn is exponential, while λn itself is superexponential ([13, p.16]).
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Chapter 4

Counting restricted closed
lambda-terms

This chapter gives an overview over some restrictions on the structure of
lambda-terms that have been imposed in order to get a simplification of the
counting problem. All of the restrictions that will be introduced involve a
limitation of the possible variable bindings in a lambda-term, since we know
that these various possibilities cause the fast growth of lambda-terms with
the consequence that the radius of convergence is 0. Thus, unlike unrestricted
lambda-terms, the ones presented in this chapter can be counted by methods
introduced in Chapter 2. In Section 4.1 we will prescribe the total number
of unary nodes in a lambda-tree, while in Section 4.2 we restrict the nesting
levels of unary nodes. At last, in Section 4.3 we consider lambda-terms where
each unary node can only bind a prescribed number of leaves, namely BCI-
and BCK-lambda-terms.
For the entire Chapter 4 the first definition for the size of a lambda-term
(Def. 1.7) is used, i.e. variables have size 1.
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4.1 Lambda-terms with prescribed number of

unary nodes

As mentioned above, the first restriction on lambda-terms that we will focus
on, concerns the total number of unary nodes in a term. In Subsection 4.1.1
we will prescribe the exact number of unary nodes, while in Subsection 4.1.2
we will investigate lambda-terms that have an upper bound for the total
number of unary nodes. The results given in this section are based on [11].

4.1.1 Closed lambda-terms with exactly q unary nodes

Let Sq denote the set of lambda-terms that have exactly q unary nodes.
Our goal is derive an equation for the bivariate generating function Sq(z, f)

associated with Sq, where z marks the total size and f the number of free
leaves.
Obviously S0 contains just ordinary binary trees, which are enumerated by
the well known Catalan numbers. Thus, we have

S0(z, f) =
1−

√
1− 4fz2

2z
.

Using the symbolic method with the notations from Section 3.3 (cf. proof of
Lemma 3.2) we derive the following equation for q = 1:

S1 = (U × subs(F → F +D,S0)) + (A,S0,S1) + (A,S1,S0).

The first summand corresponds to those terms that have the unique unary
node as their root, whereby each leaf can either be bound or not. The other
two summands correspond to all other terms, i.e. terms where the root is a
binary node and the unique unary node appears in one of the subtrees.

46



This yields
S1(z, f) = zS0(z, f + 1) + 2zS0(z, f)S1(z, f),

which has the following solution:

S1(z, f) =
zS0(z, f + 1)

1− 2zS0(z, f)
=

1−
√

1− 4(f + 1)z2

2
√

1− 4fz2
.

For q ≥ 1 we proceed analogously and therefore we get

Sq = (U × subs(F → F +D,Sq−1)) +

q∑
l=0

(A,Sl,Sq−l),

which translates into

Sq(z, f) = zSq−1(z, f + 1) + z

q∑
l=0

Sl(z, f)Sq−l(z, f).

Solving yields the following term for Sq(z, f):

Sq(z, f) =
z

1− 2zS0(z, f)

(
Sq−1(z, f + 1) +

q−1∑
l=1

Sl(z, f)Sq−l(z, f)

)
.

Remember that our special interest lies in the number of closed lambda-
terms. Thus, we set f = 0, resulting in

Sq(z, 0) = z

(
Sq−1(z, 1) +

q−1∑
l=1

Sl(z, 0)Sq−l(z, 0)

)
.

In order to solve this recursion we need the following lemma.
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Lemma 4.1 ([11, Lem. 5])
Let σq(f) =

√
1− 4(f + q)z2 for q ≥ 0 (σq is actually a function in the two

variables z and f, but since z plays no role for our purpose and for the proof of
the lemma, we omit it). Then, for all q ≥ 0, there exists a rational function
Rq in q+1 variables such that

Sq(z, f) = − z
q−1σq(f)

2
q−1∏
l=0

σl(f)

+Rq(z, σ0(f), . . . , σq−1(f)).

Moreover, the denominator of Rq(z, σ0(f), . . . , σq−1(f)) is of the form
∏

0≤l<q
σl(f)αl,q

where the exponents α0,q, . . . , αq−1,q are positive integers.

Proof. The lemma follows by induction on q.

For the generating function of closed lambda-terms with exactly q unary
nodes Sq(z, 0) it follows directly by setting f = 0 ([11, Lem. 6])

Sq(z, 0) = −
zq−1

√
1− 4qz2

2
q−1∏
l=0

√
1− 4lz2

+Rq(z, 1,
√
1− 4z2, . . . ,

√
1− 4(q − 1)z2). (4.1)

Its dominant singularities are z = ± 1
2
√
q
.

In order to exhibit an asymptotic behavior for the coefficients of Sq(z, 0) we
have to consider that a lambda-term with exactly q unary nodes and i leaves
has i − 1 binary nodes and size n = q + 2i − 1. Thus, we get the following
result.
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Theorem 4.2 ([11, Prop. 4])
The number of closed lambda-terms with exactly q unary nodes of size n is 0
for n = q mod 2. Otherwise its asymptotic value is

[zn]Sq(z, 0) ∼
√

2

2q
√

(q − 1)!
√
πn3

(
√
q)n, as n→∞.

Proof. The term Rq from Equ. (4.1) has singularities at z = ± 1
2
√
l
for 1 ≤ l <

q, while the first term has singularities of smaller type at z = 1
2
√
q
. Hence the

first term gives the dominant contribution to the asymptotics of [zn]Sq(z, 0),
which yields

[zn]Sq(z, 0) ∼ [zq+2i−1]
−zq−1

√
1− 4qz2

2
∏q−1

l=1

√
1− 4lz2

∼ [zi]
−
√

1− 4qz

2
∏q−1

l=1

√
1− 4lz

, as n→∞.

Since the denominator
∏q−1

l=1

√
1− 4lz contributes a multiplicative factor

q−1∏
l=1

√
1− l

q
= q(1−q)/2

√
(q − 1)!

we obtain the desired result by using singularity analysis and the fact that
Γ(−1

2
) = −2

√
π.

4.1.2 Closed lambda-terms with at most q unary nodes

Let S≤q(z, f) be the generating function for lambda-terms with at most
q unary nodes, where again z marks the size, i.e. the total number of
nodes, and f marks the number of free leaves. Obviously, it holds that
S≤q(z, f) =

∑q
l=0 Sl(z) and therefore the results obtained for a fixed number

of unary nodes can be applied (see [11, Section 4.4]).
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The dominant singularity of S≤q(z, f) arises from Sq(z, f), whereas the con-
tribution of the other summands Sl(z, f) with l < q to the asymptotics of the
coefficients of S≤q(z, f) are negligible. Therefore the asymptotic behavior for
the number of closed lambda-terms of a fixed or a bounded number of unary
nodes is the same.

4.2 Lambda-terms with bounds on the nesting

levels of unary nodes

In this section we focus on lambda-terms that are restricted by an upper
bound for the number of the nesting levels of their unary nodes. This re-
striction can either be local, by bounding the unary length of each binding,
or global, by bounding the unary height of the lambda-term.

Consider a lambda-term T and its associated enriched tree G(T ).

Definition 4.3 (unary length, [11, Def. 1])
The unary length of the binding of a leaf e by some abstraction λe in T is
defined as the number of unary nodes on the path connecting λe and e in the
underlying Motzkin tree and it is denoted by lu(e).

Definition 4.4 (unary height, [11, Def. 2])
The unary height of a vertex v of T is defined as the number of unary nodes
on the path from the root to v in the underlying Motzkin tree and is denoted
by hu(v).
The unary height of the lambda-term T , denoted by hu(T ), is defined by

max
v vertex of T

hu(v).
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4.2.1 Closed lambda-terms of bounded unary length of

bindings

Let G≤k denote the class of closed lambda-terms where all bindings have
unary length less than or equal to k. In order to derive an equation for the
generating function G≤k(z) associated with G≤k we have to introduce further
classes of unary-binary trees, as it has been done in [11]:
We denote by P̂(i,k) the class of unary-binary trees such that every leaf can
be labeled in min{hu + i, k} ways. With Z being the class of atoms, and
A and U denoting again the class of application nodes, and unary nodes
respectively, we get the following specification for the classes P̂(i,k) by using
the symbolic method:

P̂(k,k) = kZ + (A× P̂(k,k) × P̂(k,k)) + (U × P̂(k,k))

and

P̂(i,k) = iZ + (A× P̂(i,k) × P̂(i,k)) + (U × P̂(i+1,k)), for i < k.

Translating into generating functions and solving for P̂ (k,k)(z) and P̂ (i,k)(z),
we obtain

P̂ (k,k)(z) =
1− z −

√
(1− z)2 − 4kz2

2z
, (4.2)

and

P̂ (i,k)(z) =
1−

√
1− 4iz2 − 4z2P̂ (i+1,k)(z)

2z
for i < k. (4.3)

Clearly, the class P̂(0,k) is isomorphic to the class G≤k and therefore it holds
that G≤k(z) = P̂ (0,k)(z).
The Equations (4.2) and (4.3) can be rewritten in the form

P̂ (i,k)(z) =
1

2z

(
1− 1[i=k]z −

√
R̂k−i+1,k(z)

)
,
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where
R̂1,k(z) = (1− z)2 − 4kz2,

R̂2,k(z) = 1− 4(k − 1)z2 − 2z + 2z2 + 2z

√
R̂1,k,

and

R̂i,k(z) = 1− 4(k − i+ 1)z2 − 2z + 2z

√
R̂i−1,k(z), (4.4)

for 3 ≤ i ≤ k + 1.

Hence, we get G≤k(z) =
1−
√
R̂k+1,k(z)

2z
, which involves k + 1 nested radicals.

As described in Chapter 2, we now have to determine the location and type
of the dominant singularity of G≤k(z) in order to determine the asymptotics
of its counting sequence. Since the generating function is built of nested
radicals the singularities are the values where at least one of the radicands
vanishes.

Lemma 4.5 ([11, Lem. 9])
Let ρ̂k be the dominant singularity of the function G≤k(z). Then ρ̂k = 1

1+2
√
k

comes from the innermost radicand and is of type 1
2
.

Sketch of proof. First of all, note that the dominant singularities of G≤k(z)

and
√
R̂k+1,k(z) are the same.

By induction on j it can easily be seen that the function R̂j,k(z) is strictly
decreasing on the positive real line (cf. [11], Lem. 7).

The next step is to prove that the dominant singularity of the radical
√
R̂j,k(z)

is unique (cf. [11], Lem. 8): Let z0 > 0 denote dominant singularity of
R̂j,k(z). Assume that z0 is a root of R̂j,k(z). Then 2z0P̂

(k−j+1,k)(z0)+1j=kz0 =

1. If there was another (complex) root x = z0e
iθ of R̂j,k(z), having the same

52



modulus as z0, we would have

1 = 2z0P̂
(k−j+1,k)(z0) + 1j=kz0 =

∣∣∣2z0eiθP̂ (k−j+1,k)(z0e
iθ) + 1j=kz0e

iθ
∣∣∣ .

Regarding P̂ (k−j+1)(z) as the generating function of some appropriate class
of lambda-terms implies that its coefficients are positive for all sufficiently
large n. But this yields

∣∣∣2z0eiθP̂ (k−j+1,k)(z0e
iθ) + 1j=kz0e

iθ
∣∣∣ < 1,

whenever θ 6= 0, which leads to a contradiction. Hence z0 cannot be a root of
R̂j,k(z), and therefore has to be a zero of some R̂j−l,k(z) with 0 < l < j. But
this again results in a contradiction by using the same arguments as above.
Thus, we get that the dominant singularity is unique.
Now we determine the roots of the innermost radicand R̂1,k(z), which is a
quadratic equation and has two roots: 1

1+2
√
k
and 1

1−2
√
k
. Since k is a positive

integer, ρ̂k = 1
1+2
√
k
is the dominant singularity of the generating function

P̂ (1,k)(z) and it is of type 1
2
. What is now left to do, is to show that none

of the radicands R̂j,k, 2 ≤ j ≤ k + 1, has a positive root that is smaller or
equal to ρ̂k. This can be seen by induction on j and the fact that R̂j,k(z) is
decreasing on R+.

By means of the following proposition we are finally able to establish the
asymptotic behavior of the number of lambda-terms having only bindings of
bounded unary length, as it was done in [11].

Proposition 4.6 ([11, Prop. 5])
Let ρ̂k be the root of the innermost radicand R̂1,k(z). Then

R̂1,k(ρ̂k(1− ε)) = 2(1− ρ̂k)ε+O(ε2) (4.5)
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and

R̂j,k(ρ̂k(1− ε)) = cj ρ̂
2
k +

4ρ̂
3
2
k k

1
4√∏j−1

l=2 cl

√
ε+O(ε), (4.6)

for 2 ≤ j ≤ k + 1, where c1 = 1 and cj = 4j − 5 + 2
√
cj−1 for 2 ≤ j ≤ k + 1.

Sketch of proof. Using the Taylor expansion of R̂1,k(z) around ρ̂k and setting
z = ρ̂k(1 − ε) we obtain Equation (4.5). The next step is to compute an
expansion of R̂j,k(z) around ρ̂k, where 2 ≤ j ≤ k + 1. Using Equation (4.5)
and the recursive relation (4.4) for R̂j,k(z), we can show Equation (4.6) for
j = 2. The desired result is then obtained by induction on j.

Now we are in the position to give the final result of this subsection:

Theorem 4.7 ([11, Thm. 1])
For the generating function G≤k(z) of lambda terms where all bindings have
unary length not larger than k it holds that

[zn]G≤k(z) ∼

√√√√ 2k +
√
k

4π
∏k+1

j=2 cj
n−

3
2 (1 + 2

√
k)n, as n→∞, (4.7)

where

c1 = 1 and cj = 4j − 5 + 2
√
cj−1, for 2 ≤ j ≤ k + 1.

Proof. Remember that the generating function of G≤k(z) has the represen-
tation

G≤k(z) =
1

2z

(
1−

√
R̂k+1,k(z)

)
.
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From Lemma 4.5 we know that its dominant singularity ρ̂k = 1
1+2
√
k
is al-

gebraic and of type 1
2
. Thus, using singularity analysis, we get the factor

n−
3
2 (1 + 2

√
k)n in Equation (4.7).

Now we consider the constant (w.r.t. n) term of Equation (4.7). From
Proposition 4.6 we get

R̂k+1,k(ρ̂k(1− ε)) = ck+1ρ̂
2
k +

4ρ̂
3
2
k k

1
4√∏k

l=2 cl︸ ︷︷ ︸
:=dk+1

√
ε+O(ε).

Therefore it follows that

G≤k(ρ̂k(1− ε)) =
1− ρ̂k

√
ck+1

2ρ̂k
− dk+1

4ρ̂2k
√
ck+1

√
ε+O(ε),

which gives

[zn]G≤k(z) ∼ − dk+1

4ρ̂2k
√
ck+1

[zn]

√
1− z

ρ̂k
, as n→∞.

Setting in the formulas for dk+1 and ρ̂k and using some basic simplifications
yields the desired result.

Remark 4.8
In [11] the authors showed that the multiplicative constant in Equation (4.7)
decreases very fast for k → ∞. More precisly they established the following
equation (see [11, Prop. 6]):√√√√ 2k +

√
k

4π
∏k+1

j=2 cj
=

1

D2k+1e
√
k+1

√
(k + 1)

1
4 (2k +

√
k)

k!

(
1 +O

(
1√
k

))
, as k →∞,

where D =
√
πωe

1
4
− 5

4
γ+ζ( 1

2
), ω is a computable constant with numerical value

ω ≈ 0, 118 . . ., and γ is the Euler-Mascheroni constant .
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4.2.2 Closed lambda-terms of bounded unary height

In this subsection we are going to investigate the asymptotic behavior of
closed lambda-terms with bounded unary height, i.e. each branch in the cor-
responding lambda-tree contains a limited number of unary-nodes.
Let H≤k denote the class of closed lambda-terms with unary height less than
or equal to k.
In order to set up an equation for H≤k, we again have to introduce further
classes of unary-binary trees, as presented in [11].
Let P(i,k) be the class of unary-binary trees such that i+hu(e) ≤ k for every
leaf e (i.e. the unary height of each leaf e is at most k − i) and every leaf e
is colored with one out of i+ hu(e) colors.
Obviously, P(0,k) is isomorphic to the class H≤k. For general i, P(i,k) is
isomorphic to the class of closed lambda-terms, where the underlying unary-
binary tree consists of a path of i unary nodes with an appended Motzkin
tree beneath that has unary height less than or equal to k − i. Each leaf e
can then be bound in i+hu(e) ways in order for the lambda-term to become
closed.

Analogously to the previous subsection, the classes P(i,k) can be recursively
specified by using the symbolic method:

P(k,k) = kZ + (A×P(k,k) × P(k,k)),

and

P(i,k) = iZ + (A×P(i,k) × P(i,k)) + (U × P(i+1,k)), for i < k.

Translating into generations functions and solving for P (k,k) and P (i,k) we
obtain

P (k,k)(z) =
1−
√

1− 4kz2

2z
,
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and

P (i,k)(z) =
1−

√
1− 4iz2 − 4z2P (i+1,k)(z)

2z
for i < k. (4.8)

Due to the isomorphism mentioned above, we directly get an expression
for the generating function H≤k(z) = P (0,k)(z), which involves k + 1 nested
radicals (just as the generating function G≤k of the number of closed lambda-
terms of bounded unary length did):

H≤k(z) =

1−

√
1− 2z + 2z

√
. . .

√
1− 4(k − i+ 1)z2 − 2z + 2z

√
. . .+ 2z

√
1− 4kz2

2z

We will now proceed analogously to the case of bounded unary length of
bindings, by determining the dominant singularity of this generating func-
tion together with its type.

First we have to define two auxiliary sequences which will be important for
our further considerations:

Definition 4.9 ([11, Def. 6])
Let (ui)i≥0 be the integer sequence defined by

u0 = 0 and ui+1 = u2i + i+ 1, for i ≥ 0

and (Ni)i≥0 by
Ni = u2i − ui + 1 for all i ≥ 0.

Remark 4.10 ([11, Rem. 6])
Obviously the two sequences (ui)i≥0 and (Ni)i≥0 are strictly increasing and
have super-exponential growth.
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Now we will show that the bounding of the unary height leads to a very un-
usual behaviour, namely the location and number of the dominant radicands
changes with the bound k.

Remark 4.11
In [11] the authors showed that for Motzkin trees of bounded unary height
the generating function also involves nested radicals, and the dominant sin-
gularity comes from the outermost one. Additionally, we just saw that the
dominant singularity for lambda-trees of bounded unary length (cf. Lemma
4.5) comes from the innermost radicand.

Denoting by Ri,k(z) the i−th radicand (1 ≤ i ≤ k+1) ofH≤k(z), according to
the numbering from the innermost radicand outwards, we have by Equation
(4.8)

P (i,k)(z) =
1−

√
Rk−i+1,k(z)

2z
,

Writing the radicands recursively yields

R1,k(z) := 1− 4kz2

and for 2 ≤ i ≤ k + 1

Ri,k(z) := 1− 4(k − i+ 1)z2 − 2z + 2z
√
Ri−1,k, (4.9)

which gives

Ri,k(z) = 1−4(k−i+1)z2−2z+2z

√
1− . . .

√
1− 4(k − 1)z2 − 2z + 2z

√
1− 4kz2.

We get H≤k(z) = P (0,k)(z) =
1−
√
Rk+1,k(z)

2z
, and therefore the dominant sin-

gularities of H≤k(z) and
√
Rk+1,k(z) are the same.
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Theorem 4.12 ([11, Thm. 2])
Let (Ni)i≥0 be the sequence defined in Def. 4.9 and k be an integer. Define j
as the integer such that k ∈ [Nj, Nj+1).

• If k 6= Nj, then the dominant radicand of H≤k(z) is the j-th radicand
(counted from the innermost one outwards), and the dominant singu-
larity ρk is of type 1

2
.

• Otherwise, the j−th and the (j+1)−st radicand vanish simultaneously
at the dominant singularity of H≤k(z), which is equal to 1

2uj
and of type

1
4
.

Sketch of proof. Analogously to the proof of Lemma 4.5 we start by show-
ing that for every k > 0 and 1 ≤ i ≤ k + 1, the real function Ri,k(z) is
strictly decreasing on the positive real line (cf. [11, Lem. 11]) and that the
dominant singularity of the radical

√
Ri,k(z) is unique (cf. [11, Lem. 12]).

Since the proof for that is very similar to that for R̂i,k(z), introduced in the
previous subsection, we will skip the details and refer the reader to the proof
of Lemma 4.5, or Lemma 11 and 12 of [11] respectively.
For the integers j ≥ 1 and k ∈ [Nj, Nj+1) let σi,k (i = 1, . . . , j+1) denote the
smallest positive root of the radicand Ri,k(z). Then we get that σi+1,k ≤ σi,k,
because if x0 is a singularity of some radical, it is also a singularity of all the
radicals lying more outwards.
Now we assume that the singularity σj,k, which per definition is a root of
Rj,k, is also a root of the radicand Rj+1,k. We will show that then it holds
that σj,k = 1

1+
√

1+4(k−j)
and Rj−p,k(σj,k) = 4αpσ

2
j,k, for all p < j, with the

sequence αp being defined by{
α0 = 0,

αp = (αp−1 + p)2 for p ≥ 1.

(cf. [11, Lem. 15]).
The term for σj,k can be easily derived by shifting Equation (4.9) from j to
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j + 1 and using that for σi,k both radicands Rj,k and Rj+1,k vanish. The
equation for Rj−p,k(σj,k) can be obtained by again considering Equ. (4.9) for
z = σj,k, which results in

0 = Rj,k = −4z2 + 2z
√
Rj−1,k(z),

leading to Rj−1,k(z) = 4z2. Iterating yields the desired form for Rj−p,k.
The next step is to show that if there is a z that cancels both radicands Rj,k

and Rj+1,k, then we must have k = Nj, with Nj being defined by N0 :=

0 and Ni := αi − αi−1 (cf. [11, Lem. 16]). Note that this sequence is
precisely the sequence (Ni)i≥0 introduced in Def. 4.9. We already know
that that the simultaneous vanishing of both radicands implies that z =

σj,k = 1

1+
√

1+4(k−j)
. Using the Equation for Rj−p,k(σj,k) obtained above,

yields 1− 4kσ2
j,k = 4σ2

j,kαj−1, which results in σ2
j,k = 1

4(k+αj−1)
. Thus we get(

1

1 +
√

1 + 4(k − j)

)2

=
1

4(k + αj−1)
.

Setting l = k− j and solving leads to k = (j + αj−1)
2 − αj−1, which is equal

to k = αj − αj−1 by the recursion for αp.
What is left to do is now to show that no more than two radicands can vanish
at the same time and if so, then they are consecutive ones (cf. [11, Lem. 17]).
To do so, we assume that there were two non-consecutive radicands Ri,k and
Rj,k vanishing simultaneously. Since we know that the zeros of the radicands
decrease this would imply that all the radicands Rl,k for i ≤ l ≤ j vanish at
the same time. But this could only happen for z = σi,k, where the polynomial
part 1−4(k−j+1)z2−2z simplifies to 4(j−i−1)z2, which is strictly positive
as soon as j > i+ 1. Therefore we see that it is not possible that more than
two successive radicands vanish simultaneously.
The types of the singularities are obvious, since they arise from square roots,
and for the case when two radicands vanish simultaneously the radicands are
successive ones.
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To finally get the asymptotics for the number of lambda-terms of bounded
unary height, we need the following auxiliary lemma, which gives some infor-
mation on the behavior of the radicands in a neighborhood of the dominant
singularity.

Lemma 4.13 ([11, Prop. 9])
Let ρ = σj,Nj be the dominant singularity of H≤Nj(z). Then for any ε > 0

(i)

Rj,Nj(ρ− ε) = γjε+O(ε2) with γj = − d

dz
Rj,Nj(ρ).

(ii)
Rj+1,Nj(ρ− ε) = 2ρ

√
γjε

1
2 +O(ε),

(iii) for p ≥ 2,

Rj+p,Nj(ρ− ε) = 4ρ2λp−1 +
(2ρ)

3
2γ

1
4
j

2p−2
√∏p−2

i=1 λi

ε
1
4 +O(ε

1
2 )

with the sequence (λi)i≥1 defined by λ0 = 0 and λi+1 = i+ 1 +
√
λi for

i ≥ 0.

Sketch of proof. The proof is similar to that of Proposition 4.6. The Taylor
expansion of Rj,Nj(z) around ρ yields (i). Using the recurrence relation (4.9)
for Rj,k(z) we immediately get (ii). By computing the expansion of Rj+2,Nj

around ρ and proceeding by induction the last result (iii) of the lemma can
be obtained.

Now we are in the position to give the asymptotic behaviour of the number
of lambda-terms with bounded unary height.
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Theorem 4.14 ([11, Thm. 3])
Let (Ni)i≥0 and (ui)i≥0 be as in Def 4.9.

(i) If there exists j ≥ 0 such that Nj < k < Nj+1, then there exists a
constant hk such that

[zn]H≤k(z) ∼ hkn
−3/2(σj,k)

−n, as n→∞.

(ii) If there exists j such that k=Nj, then the following asymptotic relation
holds:

[zn]H≤Nj(z) ∼ hkn
−5/4(σj,k)

−n = hNjn
−5/4(2uj)

n, as n→∞,

where

hNj =
γ
1/4
j (2uj)

1/4

2Nj−j+2
√

2Γ(3/4)

√∏Nj−j
i=1 λi

,

with γj and the sequence (λi)i≥0 as defined in the previous lemma.

Sketch of proof. The expressions for [zn]H≤k(z) follow immediately from the
fact that the dominant singularity for the cases k 6= Nj and k = Nj is of type
1
2
and 1

4
, and then applying singularity analysis as introduced in Chapter 2.

The last equation for hNj can be obtained analogously as the term in Lemma 4.7
(Equation (4.7)) by means of Lemma 4.13 and H≤Nj = 1

2z
(1−

√
RNj+1,Nj(z)),

using also Γ(−1
4
) = −4Γ(3

4
) for further simplifications.

Remark 4.15
The constant hNj decreases exponentially fast as j →∞. See [11, Prop. 13]
for more detailed information.
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4.3 BCI- and BCK-lambda-terms

Further simplifications of lambda-terms are represented by BCI(p)- and BCK(p)-
lambda-terms. The restriction within BCI(p)-terms lies in the prescribed
number of exactly p leaves that are bound by each lambda, while in a
BCK(p)-term all lambdas bind at most p leaves. The first three subsections
are devoted to the estimation of the asymptotic behavior of BCI(1)- and
BCK(1)-lambda-terms, as well as to computing the ratio between BCI(1)-
terms and BCK(1)-terms. The results given in those three subsections (4.3.1,
4.3.2, 4.3.3) are mainly based on [18]. In Subsection 4.3.4 we will give asymp-
totics for the number of BCI(p)-terms, estimated in [10]. The last subsection
(4.3.5) deals with the asymptotic number of BCK(2)-terms, which has been
derived in [9]. Remember that the size of a lambda-term is still defined as
the total number of its nodes (Def. 1.7).

4.3.1 BCI(1)-lambda-terms

The simplest subclass of BCI(p)-lambda-terms are the BCI(1)-lambda-terms,
which are often just referred to as BCI-terms.

Definition 4.16 (BCI-lambda-terms)
The class of BCI-lambda-terms is built of all closed lambda-terms, where each
lambda binds exactly one leaf.

In a BCI-lambda-term the number of leaves is equal to the number of unary
nodes and greater by one than the number of binary nodes. Thus, the size
of BCI-terms is equal to 3k + 2 (k binary nodes, k + 1 unary nodes and
k+ 1 leaves). Denoting the number of BCI-terms of size n by an, we get that
an = 0 for n 6≡ 2 mod 3. Thus, for the number a∗n of BCI-lamda-terms with
n binary nodes, it holds that a∗n = a3n+2.
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Lemma 4.17 ([18, Lem.37])
The sequence (a∗n) satisfies the recurrence:

a∗0 = 1, a∗1 = 5, (4.10)

a∗n = 6na∗n−1 +
n−2∑
i=1

a∗i a
∗
n−i−1, for n ≥ 2. (4.11)

Proof. The initial conditions (4.10) are derived by considering that the only
BCI-term of size 2 (no binary nodes) is λx.x. and that there are five BCI-
terms of size 5 (one binary node): λxy.xy, λxy.yx, (λx.x)(λx.x), λx.(λy.y)x,
and λx.x(λy.y). In order to prove Equation (4.11) let P be a BCI-term with
n ≥ 2 binary nodes. As usual we distinguish between the terms starting
with an application and those starting with an abstraction. Both cases are
depicted in Figure 4.1.

a∗i

@

a∗n−i−1
a∗n−i

λx

+
@ @

x x

or

Figure 4.1: Two ways of obtaining a BCI term with n ≥ 2 binary nodes (cf.
[18], Fig.4; application nodes are labeled with @ for a better differentiation).

• 1.case: P starts with an application, i.e. P ≡ MN .
Such a term results by combining two smaller BCI-terms whose sizes
add to n− 1. This gives

∑n−1
i=0 a

∗
i a
∗
n−i−1 possibilities.
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• 2.case: P starts with an abstraction, i.e. P ≡ λx.M , where x occurs
free in M exactly once. Obviously the parent of the leaf labeled with x
has to be a binary node. Thus,M can be seen as a lambda-tree for some
BCI-term Q with n − 1 binary nodes with an additional leaf labeled
with x (and therefore also with an additional edge). The insertion of
the edge that contains the leaf x can either appear to the right or to
the left (cf. Figure 4.1). Since the number of all edges in the tree for
the BCI-term Q is 3n− 1, we all together have 2(3n− 1)a∗n−1 possible
insertions.

Summing up we get Equation (4.11).

The first values of (an) are the following ([18, p.687]):

0, 0, 1, 0, 0, 5, 0, 0, 60, 0, 0, 1150, 0, 0, 27120, 0, 0, 828250, 0, 0, 30220800, . . .

With A(x) denoting the generating function for the sequence (a∗n), we get

6x2
∂A(x)

∂x
+ xA2(x) + (4x− 1)A(x) + 1 = 0, A(0) = 1.

This is a non-linear Riccati differential equation, which therefore has a non-
elementary function as solution. We could study this equation and thereby
estimate the asymptotic behavior of the sequence (a∗n), but instead we briefly
want to introduce another approach, that has been performed in [8] and that
is also applicable for BCK(1)-terms.

Bodini et al. showed that there is a one-to-one correspondence between BCI-
terms and special classes of rooted combinatorial maps. These maps can be
regarded as connected graphs (with possible loops and multi-edges) embed-
ded in an oriented surface up to homotopy ([8, p.3]). But we will deal with
another definition of maps, which will be useful for further considerations.
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In [8, Def. 1.1], a map is introduced as a triplet (E,α, β), where E is a finite
set of half-edges, α is a permutation on E and β is an involution on E without
any fixed points. Additionally α and β have to generate a transitive subgroup
of the permutation group. The permutations α and β contain information
on the order of the half-edges around the vertices and of the correspondence
between two half-edges. Using this definition a rooted map is a map with a
distinguished half-edge.
The size of a map is defined as the number of its half-edges.

Now we are able to give the following result:

Theorem 4.18 ([8, Thm. 3.4])
The class of BCI-terms is in bijection with the class of unlabeled rooted maps
with root degree of 2 and all other vertex degrees equal to 3. A BCI-term of
size 3k + 2 corresponds to a map of size 6k + 2.

We will explain this bijection by means of an example.
We start with a map of size 8 with root degree 2 (the cross marks the half-
edge corresponding to the root of the map) and all other vertex degrees equal
to 3:

By performing a so-called right-depth-first traversal (see [8, p.6]), we get a
unique spanning tree of the map. All the edges that are not contained in
that tree are now presented as dashed lines.
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Then we insert a node in each of the dashed edges, thereby creating a new
edge for each insertion. The new edges (that would be visited next in the
right-depth-first traversal in order to receive a spanning tree) are now re-
placed by continuous lines.

In [8] this process is introduced as so-called L-morphing.

The last step is to replace the dashed edges with arcs pointing away from
the root, resulting in the following BCI-term of size 5:

It can easily be seen that this process is invertible by performing each of the
steps backwards (cf. [8, Lem. 2.5]).

Thus, by establishing the asymptotic behavior of the specific class of unla-
beled rooted maps introduced in Theorem 4.18, the authors in [8] derived the
asymptotics for the number of BCI-terms. The advantage of this approach
is, that an explicit formula for the generating function C(z) of rooted maps
with root degree 2 and all other vertex degrees 3, as well as the asymptotics
of its coefficients, is known. Thus, we calculate

[x3k+2]A(x) = [x6k+2]C(x),

and obtain the following result:
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Theorem 4.19 ([8, Thm. 3.8])
For n ≡ 2 mod 3 the number an of BCI-terms is asymptotically

an ∼
3
√

2
√

6

2n1/6
√
π

(
2n

e

)n/3
(1− 1

2n
+O(n−2)) for n→∞.

Otherwise it holds that an = 0.

Map

Tree

(λx.x)(λy.y)

Map

Tree

λx.((λy.y)x)

Figure 4.2: Two rooted unlabeled maps and their corresponding BCI-lambda-
terms, and lambda trees respectively (cf. [8, Fig. 5]).

4.3.2 BCK(1)-lambda-terms

In contrast to the strictly prescribed number of one binding of each lambda,
as it is the case for BCI-terms, BCK(1)-terms just use this number as an
upper bound. Equivalently to BCI-terms we will denote the BCK(1)-terms
simply as BCK-terms, as it is often done in the literature.
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Definition 4.20 (BCK-lambda-term)
The class of BCK-lambda-terms contains all closed lambda-terms, where each
lambda binds at most one leaf.

Let bn denote the number of BCK-terms of size n.

Lemma 4.21 ([18], Lem. 39)
The sequence (bn) satisfies the following recursive equation:

b0 = b1 = 0, b2 = 1, b3 = 2, b4 = 3, (4.12)

bn = bn−1 + 2
n−3∑
i=0

ibi +
n−1∑
i=0

bibn−i−1 + 1 for n ≥ 5. (4.13)

Proof. The initial conditions (4.12) follow directly from the fact that there
are are no BCK-terms of size 0 and 1, there is one term of size 2, namely
λx.x, two terms of size 3, namely λxy.x, and λxy.y, and three terms of size
4: λxyz.x, λxyz.y and λxyz.z.
In order to determine Equation (4.13) let P be a BCK-term of size n ≥ 5.
We perform again a distinction of cases:

• 1. case: P starts with an application, i.e. P ≡ MN . This case is
analogously to the BCI-case (cf. 1. case in the proof of Lemma 4.17),
and therefore leads to

∑n−1
=0 bibn−i−1 possibilities.

• 2. case: P is in the form of an abstraction, P ≡ λx.M and x occurs
free in M exactly once. We have to consider two subcases here, which
are both depicted in Figure 4.3.

– Case 2a: M ≡ λx1 . . . xn−2.x.
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x

λxn−2

λx1

λx

Case 2a.

bi

λx

+

x
λxn−1−3

λx1

@

or
x
λxn−1−3

λx1

@

Case 2b.

Figure 4.3: Both subcases of the second case of the construction of a BCK-
term of size n ≥ 5 (cf. [18, Fig. 5]).

– Case 2b: M is a term built of a BCK-term Q of size i = 2, . . . , n−3

with an additional term λx1 . . . xn−i−3.x inserted on one of its
edges or on the edge joining λx with Q. Since Q has i − 1 edges
and the insertion can either be carried out on the left or on the
right, this case gives us 2

∑n−3
i=2 ibi possibilities.

Thus, from case 2 we derive altogether 1+2
∑n−3

i=2 ibi possibilities.

• 3. case: P is in the form of an abstraction, P ≡ λx.M and x does not
occur free in M . This case gives of course bn−1 possibilities, since M
can be any BCK-term of size n− 1.

Summing up yields Equation (4.13).

The first values of (bn) are the following (cf. [18, p.688]):

0, 0, 1, 2, 3, 9, 30, 81, 225, 702, 2187, 6561, 19602, 59049, 177633, 532170, 1594323, . . .
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With B(x) denoting the generating function for the sequence (bn), we get

2x4
∂B(x)

∂x
+ (x− x2)B2(x)− (1− x)2B(x) + x2 = 0, B(0) = 0.

Again we obtain a non-linear Riccati differential equation, but solving the
equation has turned out to be much more complicated than in the BCI-
case. Therefore we use the approach introduced in the previous subsection,
that is taking advantage of an isomorphism between a special class of rooted
unlabeled maps and BCK-lambda-terms.

Theorem 4.22 ([8, Thm.3.5])
The class of BCK-terms is in bijection with the class of unlabeled rooted maps
with root degree of 1 or 2 and all other vertex degrees equal to 2 or 3. In this
correspondence, a BCK-term of size k + 1 is associated with a map of size
2k.

The isomorphism follows the same algorithm as for the BCI case by perform-
ing the L-morphing process. Investigating asymptotics for the suitable class
of maps the authors in [8] proved the following result.

Theorem 4.23 ([8, Thm. 3.10])
The number bn of BCK-lambda-terms is asymptotically

bn ∼
e1/18 3
√

2√
6πn1/6

(
2n

e

)n/3
e1/2(2n)

2/3−1/6(2n)1/3 .
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4.3.3 Ratio of BCI to BCK

We already know that there are no BCI-terms of size n 6≡ 2 mod 3 and that
the set of BCI-terms is a proper subset of the set of BCK-terms. In this
subsection we will show that the ratio of BCI-terms of size n to BCK-terms
of size n, tends to 0.
Each BCK-term can be obtained from a BCI-term with some additional
(possibly none) lambdas. Therefore we obtain the following formula for bn
depending on the sequence an:

Lemma 4.24 ([18, Lem. 41])
For k ∈ N the following formula holds

b3k+2 =
k∑
i=0

(
3k

3i

)
a3i+2

Proof. A BCI-term of size 3i+2 can be transformed into a BCK-term of size
3k+ 2 by inserting 3k+ 2− 3i− 2 = 3k− 3i additional lambdas. Using that
the number of possibilities to choose k elements out of n with repetition is(
n+k−1
n−1

)
gives

(
3k

3k−3i

)
=
(
3k
3i

)
possible insertions of the 3k− 3i lambdas in the

3i+ 1 edges of the BCI-term.

Theorem 4.25 ([18, Thm. 42])
The asymptotic ratio of BCI-terms to BCK-terms is equal to 0.

Proof. By Theorem 4.19 and Lemma 4.24, we get

a3k+2

b3k+2

≤ a3k+2

a3k+2 +
(
3k
3

)
a3k−1

→ 0, as k →∞.
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Remark 4.26
Using the asymptotics for BCI- and BCK-lambda-terms (Theorem 4.19 and
4.23) we are able to derive the asymptotic ratio between the number of BCI-
and BCK-terms of size n for n = 2 mod 3 (cf. [8, Cor. 3.11]):

an
bn
∼ 3e−2

−1/3n2/3+1/6 3√2n1/3−1/18

4.3.4 BCI(p)-lambda-terms

The aim of this subsection is to derive asymptotics for the number of BCI(p)-
terms, as it is done in [10].

Definition 4.27 (BCI(p)-lamda-term, [10, Def. 1])
BCI(p) is the (non-empty) set of closed lambda-terms where each unary node
has exactly p pointers, i.e. binds exactly p occurences of its variable.

The smallest BCI(p)-terms consist of a unary node at the beginning, followed
by p leaves that are bound by the lambda. Obviously, by removing the unary
root and all its pointers, we get an ordinary binary tree. Therefore the num-
ber of smallest BCI(p)-terms is equal to the number of binary trees with p−1

binary nodes, which is exactly the Catanlan number C(p − 1) =
(
2p−2
p−1

)
/p.

The size of such a term is clearly p− 1︸ ︷︷ ︸
binary nodes

+ p︸︷︷︸
leaves

+ 1︸︷︷︸
root

= 2p.

In Subsection 4.3.1 we derived that there are only BCI(1)-terms of size n =

2 mod 3. Analogously we get for the size n of a BCI(p)-term with j unary
nodes that n = (2p + 1)j − 1 (because it has pj leaves and therefore pj − 1

binary nodes).
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Let us denote by gn = g
(p)
n the number of BCI(p)-terms of size n and by

Gp(z) the generating function of this sequence.

With the considerations above we have

Gp(z) =
∑
j≥1

gj(2p+1)−1z
j(2p+1)−1.

Proposition 4.28 ([10, Prop. 4])
The generating function of BCI(p)-terms satisfies the differential equation

Gp(z) = C(p− 1)z2p + zGp(z)2 + ∆pGp(z) (4.14)

where

∆p =

p∑
l=1

αl,p
l!
zl+2p+1Dl

with constants αl,p defined by

αl,p =
∑

∑
i si=l;

∑
i isi=p

(
l

s1, . . . sp

) p∏
m=1

(
2m

m

)sm
. (4.15)

Proof. In order to derive a formal equation for BCI(p)-terms, note that a
BCI(p)-term falls into exactly one of the following three categories:

• It is either a smallest term (which are explained above).

• Or its root is a binary node and the two sub-terms attached to the root
are themselves BCI(p)-terms.

• Or its root is a unary node and the sub-term attached to the root is an
open BCI(p)-term with exactly p free leaves.

Therefore we get the following formal specification for the set T of BCI(p)-
terms:

T = S ∪ ({◦} × T × T ) ∪ ({◦} × T̃ ),
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where S is the set of all smallest BCI(p)-terms, and T̃ a certain set of open
BCI(p)-terms.

The first summand of Equation (4.14) obviously corresponds to the first case,
where we have a smallest term. Remember that we already got that there
are C(p− 1) such terms and that they have the size 2p. Clearly, the second
summand is represented by the case that the root is a binary node, i.e. case
2. To derive the third summand we will give a step-by-step explanation how
to create such a term T̃ ∈ {◦} × T̃ :
We start with a BCI(p)-term T and mark p of its nodes, where multiple
choices of the same node are allowed. With every choice of a leaf we also
"hit" the edge leading to it. In case of the root the corresponding edge is
the edge connecting it with the new root. Now assume that l edges are hit
and si of them exactly i times. We then replace an edge that is hit i times
by a path where at each node of the path a binary tree is attached, either to
left or to the right, such that the number of leaves of all these binary trees
altogether is i. Since each of the replacements creates i new leaves and i new
internal nodes, the whole replacement process yields

∑p
i=1 isi new leaves and

p new internal nodes in T . T̃ is now obviously an open BCI(p)-term of size
|T | + 2p + 1. For a bijection we also have to consider the other direction:
We start with a BCI(p)-term T with a unary node as root. By removing the
root and all its pointers we get a term with p free leaves. Obviously these
leaves must be children of binary nodes and therefore they form binary trees
consisting of free leaves only.
What is now left to do is to count in how many ways such a construction
can be done. Note that the generating function of binary trees is T (u) =∑

n≥1C(n − 1)un = 1−
√
1−4u
2

. Thus, the number of sequences of left- or
right-binary trees with exactly i leaves is

[ui]
1

1− 2T (u)
= [ui]

1√
1− 4u

=

(
2i

i

)
.
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Each of the si edges that is hit i times can therefore be raplaced by one of
these

(
2i
i

)
sequences of binary trees. This gives the factor

∏p
i=1

(
2i
i

)si in Equa-
tion (4.15). The factor

(
l

s1,...,sp

)
in Equation (4.15) accounts for the different

possibilities how to partition the l edges according to the times that they are
hit. Finally we have to consider that marking l distinct edges corresponds
to applying the operator zlDl/l! on the level of generating functions and it
also arises a factor z2p+1, since we created 2p+1 new nodes during the whole
replacement process.

Regarding Equation (4.14) it is now easy to set up a recurrence relation for
the coefficients of Gp(z).

Proposition 4.29 ([10, Prop. 10])
The coefficients gn(2p+1)−1 satisfy the recursion

gn(2p+1)−1 =
n−1∑
l=1

gj(2p+1)−1g(n−1−l)(2p+1)−1+Qp(n−1)g(n−1)(2p+1)−1, for n ≥ 2,

with initial condition g(2p+1)−1 = C(p− 1) and where

Qp(n) =

p∑
m=1

αm,p

(
n(2p+ 1)− 1)

m

)
,

with αm,p defined as in (4.15).

Proof. The proposition follows directly by translating Equation (4.14): The
first term of the equation only affects the case n = 1, the second term is a
Cauchy product and the differential operator yields a shift of the coefficients
of the power series and a multiplication by Qp(n− 1).

We will now establish another representation for the polynomials Qp(n),
which will be useful for further estimations.
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Lemma 4.30 ([10, Lem. 11])
The polynomials Qp(n) can be represented more explicitly as

Qp(n) = 4p
(

(p+ 1
2
)n+ p− 3

2

p

)
.

Proof. By setting f(u) = 1√
1−4u we can easily see that αm,p = [up](f(u)−1)m.

Since the occurring binomial coefficient is zero for m > p, we get

Qp(n) =

p∑
m=1

αm,p

(
n(2p+ 1)− 1)

m

)

= [up]
∑
m≥1

(
(2p+ 1)n− 1)

m

)
(f(u)− 1)m

= [up]f(u)(2p+1)n−1

= 4p
(

(p+ 1
2
)n+ p− 3

2

p

)
.

Our goal is now to derive the asymptotic behavior of the number of BCI(p)-
terms of size n. For that purpose we are going to linearize the differential
equation, which is possible because of the fast growth of the coefficients of
Gp(z). As we have already mentioned in the last chapter the significant
increase in the number of lambda-terms of a given size when compared to
Motzkin trees comes from the large number of ways of binding a leaf to
unary nodes. Thus, the contribution of the term G2

p corresponding to the
binary tree-like structure, will turn out to be asymptotically negligible when
compared to that of the differential term which involves the various possible
bindings of leaves.

Therefore we will work with the linearized equation

Lp(z) = Cp−1z
2p + ∆pLp(z).
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Theorem 4.31 ([10, Thm. 18])
Set lp,n = [zn]Lp(z). Then, for fixed p and n→∞

lp,n ∼ Bpβ
n−1
p nγp(n− 1)!p

where

Bp = C(p− 1)

p∏
k=1

1

Γ
(

1 + 2(p−k)−1
2p+1

)
= C(p− 1)exp

(
−2p+ 1

2

∫ 2

1

log(Γ(x))dx

)(
1 +O

(
1

p

))
, as p→∞,

≈ C(p− 1)(1.0844375142 . . .)(2p+1)/2

(
1 +O

(
1

p

))
and

βp =
(4p+ 2)p

p!
, γp =

p(p− 2)

2p+ 1
.

Proof. The linearized equation Lp(z) = C(p−1)z2p+∆pLp(z) implies lp,2p =

C(p− 1) and lp,n = Qp(n− 1)lp,n−2p−1 for n > 2p. Thus

lp,(2p+1)n−1 = C(p− 1)
n−1∏
j=1

Qp(j)

= C(p−1)
n−1∏
j=1

4j
[
(j + 1

2
)n+ j − 3

2

]
·
[
(j + 1

2
)n+ j − 5

2

]
. . .
[
(j + 1

2
)n+ j − 2j+1

2

]
j!

,

which can be simplified to

C(p− 1)βn−1p (n− 1)!p
n−1∏
j=1

p∏
k=1

(
1 +

2(p− k)− 1

2p+ 1
· 1

j

)
.

Now observe that for n→∞ it holds that

C(p− 1)
n−1∏
j=1

p∏
k=1

(
1 +

2(p− k)− 1

2p+ 1
· 1

j

)
∼ Bpn

γp .

The asymptotics for Bp can be derived from Euler McLaurin’s formula.
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The authors in [10] also derived the asymptotic behavior for the non-linearized
equation (Equation (4.14)). We will only give the result as it can be seen
that it rarely differs from the solution obtained in Theorem 4.31:

Remark 4.32 ([10, Thm. 19])
For p ≥ 2, the number of BCI(p)-terms of size (2p+1)n−1 is asymptotically

Apβ
n−1
p nγp(n− 1)!p

where βp and γp are as defined in Theorem 4.31 and Ap = apBp with Bp as
in Theorem 4.31 and ap = 1 +O(1/(pep)), as p→∞.

4.3.5 BCK(2)-terms

Compared to BCI(p)-terms it is a lot more difficult to enumerate BCK(p)-
terms, which are a proper superset of BCI(p)-terms. In this subsection we
will just give the basic idea of how to derive asymptotics for the number of
BCK(2)-terms by presenting an approach introduced in [9]. For more detailed
information see [9], where also a brief outlook for the problem of determining
the asymptotic number of BCK(p)-terms with p > 2 can be found.

Definition 4.33 (BCK(p)-lambda-term, [10, Def. 1])
BCK(p) is the set of closed lambda-terms where each unary node binds at
most p leaves.

Let Fp(z) be the generating function associated to BCK(p)-terms.
In [10] the authors showed the following result:
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Proposition 4.34 ([10, Prop.8])
Let M(z, u) denote the generating function of Motzkin trees where z marks
the size (i.e. the total number of nodes) and u marks the number of leaves.
This function is given by the unique power series solution of M(z, u) = uz+

zM(z, u) + zM(z, u)2, that is

M(z, u) =
1− z −

√
(1− z)2 − 4uz2

2z
.

Then Fp(z) is given as the solution of

Fp(z) = z[up]
M(z, u)

1− u
+ zFp(z)2 + z[up]

1

1− u
Fp

(
z

1− 2zM [z, u)

)
.

Sketch of proof. Similar to the BCI-case (cf. Proposition 4.28): As minimal
structures we have Motzkin trees with an additional root having pointers
to all leaves. The application-case is equivalent. The terms starting with
a unary root node (and not being smallest terms) can be generated in the
following way:
We fix the number l of pointers we want to have at the root and then do
an edge hitting process as in the BCI case with the difference that now we
substitute the hit edges by sequences of left or right Motzkin trees with
an additional unary root node (corresponding to the nodes in the paths
which substitute the hit edges) such that these trees have altogether l leaves.
Recalling on the level of generating functions edge hitting corresponds to
applying a differential operator, we get the differential equation for Fp(z).

Since we are interested in the number of BCK(2)-terms, we set p = 2 and
with F (z) := F2(z) we get:

F (z) = z[u2]
M(z, u)

1− u
+ zF (z)2 + z[u2]

1

1− u
F

(
z

1− 2zM(z, u)

)
.

Analogously to the BCI(p)-case we proceed by omitting the quadratic term,
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which yields

G(z) = z[u2]
M(z, u)

1− u
+ z[u2]

1

1− u
G

(
z

1− 2zM(z, u)

)
.

Moreover, in [9] it has been shown, that this modification leads only to a
difference by a multiplicative constant in the asymptotic result ([9, Prop.5]).
Unfortunately G(z) is not an analytic function, due to the fast growth of its
coefficients gn. Thus we will work with the exponential generating function
(see for example [15])

H(z) =
∑
n≥0

gn
n!
zn,

which is an entire function, that is also Hayman-admissible ([9, Lemma 6]).

Applying the saddle point method to H(z) the authors in [9] obtained an
asymptotic behavior of hn = [zn]H(z) up to a multiplicative constant.

Using that the asymptotics of the coefficients of the generating functions
G(z) and F (z) only differ by a multiplicative constant, i.e.

fn
gn

=
fn
n!hn

→ const,

we get the asymptotics for fn:

Theorem 4.35 ([9, Thm. 1])
The asymptotic number of BCK(2)-terms of size n satisfies

fn ∼ An2n/52n/5e−2n/5exp

(
2−8/5n4/5 +

7 · 24/5

15
n3/5 − 17 · 21/5

75
n2/5 − 41 · 23/5

500
n1/5

)
n−3/5

where A is some positive constant.
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Chapter 5

Structure of lambda-terms

The structure of lambda-terms strongly differs from that of trees, while it
rather resembles the structure of directed acyclic graphs, which will be intro-
duced in the second part of this thesis. This chapter is split into two sections:
The first one gives results on the structure of lambda-terms obtained by ex-
periments where lambda-terms have been randomly generated, performed in
[36]. In the second section we will present some results established in [13]
which have been formally proved by means of codings.

5.1 Experimental results

In [36] Jue Wang derived an algorithm for the random generation of lambda-
terms, which we will not discuss in detail. The aim of this section is to
simply point out a few interesting properties of lambda-terms that have been
detected by experiments based on random generation. In this section the size
of a lambda-term corresponds to the total number of nodes in the enriched
lambda-tree (Def. 1.7), i.e. variables have size 1.
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5.1.1 Top-Level Application Nodes

We start by considering the percentage of lambda-terms that start with an
application among all lambda-terms (see [36, Section 5.1]). For that purpose
the number of lambda-terms in the appropriate classes have been recursively
computed. Fig. 5.1 shows that the percentage of terms with top-level appli-
cation nodes decreases rapidly with increasing size. This will not appear to
be a big surprise - as mentioned at some earlier points in this thesis, it is the
number of possible variable bindings that leads to the great increase in the
number of terms. Remember that for BCI(p)-terms and BCK(2)-terms we
worked with the linearized equation and omitted the quadratic term (corre-
sponding to lambda-terms starting with a binary node), which altered the
asymptotic number only by a multiplicative constant. As an example for size
10 there are only 550 terms with an application node at the top-level out of
a total of 7558 terms.

Figure 5.1: Percentage of lambda-terms with top-level application nodes from
size 0 to 300 ([36, Fig.11]).
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5.1.2 Ratio of application nodes to lambda nodes

Now we present some results on the ratio of the total number of application
nodes to lambda nodes in an arbitrary lambda-term (see [36, Section 5.2]).
Wang randomly generated 10,000 terms and then calculated the ratio of bi-
nary to unary nodes. In contrast to the result presented in the previous
subsection, which has been derived explicitly by solving a recursion, the re-
sult given in this subsection is probabilistic. Consequently, the accuracy of
the results presented in Fig. 5.2 depends on how well the 10,000 generated
terms represent the total set of lambda-terms. In Figure 5.2 it can be seen
that the ratio of application nodes to lambda nodes is steadily increasing as
the size of the lambda-term increases and it exceeds the value 1 already for
a small size, i.e. if the size of the lambda-term is big enough the average
number of application nodes is greater than that of lambda nodes.

Figure 5.2: Ratio of application nodes to lambda nodes in terms from size 0
to 8000 ([36, Fig.12]).
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5.1.3 Percentage of dummy variable bindings

In this subsection we consider the percentage of so-called dummy variable
bindings among all variable bindings (see [36, Section 5.3]). A dummy vari-
able binding is characterized by bound variables that do not occur in the
body of the term. As an example, in the term λx(λy.x), λy is a dummy
binding while λx is not a dummy binding. Considering for example lambda-
terms of size 4. There are altogether 6 variable bindings out of 10 (i.e. 60%)
that are dummies (cf. [36, Fig.1]).
Fig. 5.3 shows the percentage of dummy bindings in lambda-trees for size
10 to 4000. Analogously to the result presented in the previous subsection,
the data that has been used to derive Figure 5.3 is based on 10,000 ran-
domly generated terms. It can easily be seen that with increasing size there
are more lambda nodes that are actually binding variables and less dummy
bindings.

Figure 5.3: Percentage of dummy variable bindings for terms from size 0 to
4000 ([36, Fig.13]).
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5.2 Results proved by codings

In this section we will give the basic idea of some results on the structure
of lambda-terms, that can be formally proved by means of codings. This
approach has been introduced in [13], where we refer the interested reader
to, for gaining more detailed information. Throughout this section, the size
of a lambda-term corresponds to the number of its inner nodes, i.e. variables
have the size 0.

Within [13] the following properties of lambda-terms (amongst others, which
will not be discussed any further in this thesis) have been shown:

• A random lambda-term starts with a long chain of lambdas ([13, Thm. 6.3]).

• Head lambdas bind "many" occurences, meaning that in a random
lambda-term head lambdas actually bind some variables ([13, Sec-
tion 6.2]).

• A random term avoids any fixed closed lambda-term, i.e. that given
any fixed closed lambda-term, almost no term has this term as a sub-
term ([13, Section 6.3]).

• The maximum number of incomparable binding lambda nodes of typi-
cal lambda-terms, meaning that there is no branch in the lambda-tree
containing more than one of those lambda-nodes (called lambda-width
of a term), is very small. More precisely almost all closed lambda-terms
are of width at most 2 ([13, Section 6.4]).
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In order to give the exact formulations of the theorems that contain the
results summarized above, we would need to introduce a lot of additional
notations and definitions, which would exceed the limits of this thesis. Con-
sequently, this also makes it very difficult to give a sketch of the proofs for the
mentioned properties. Therefore we will just briefly introduce the scheme,
with which the authors in [13] proved those results. The interested reader is
referred to [13] for the complete proofs.

First a set Λn(P) of closed lambda-terms of size n satisfying some property
P is introduced. The next step is to define an injective and size-preserving
function φPn : Λn(P) → Λn (called a coding) in such a way that the ratio
between the number of elements in the image of φPn and all the elements in
Λn(P) is asymptotically 0. Then it follows that this property is not satisfied
by a random lambda-term.
In order to show the results above, one has to consider successive sets of
lambda-terms X1, . . . , Xk with Xi+1 ⊆ Xi and prove:

(1) The ratio of the number of lambda-terms in X1 compared to the number
of all lambda-terms is asymptotically 1.

(2) The ratio between the number of lambda-terms in Xi \ Xi+1 and the
number of all lambda-terms is asymptotically 0. This implies that the ratio
of the number of lambda-terms in Xi+1 among all closed lambda-terms is
asymptotically 1.

88



Part II

DAGs
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Chapter 6

Definitions

The second part of this thesis is devoted to the problem of counting directed
acyclic graphs (DAGs), which are closely related to lambda-trees, especially
each lambda-tree can be considered as a DAG. In this chapter we will intro-
duce some basic definitions that will be used in the subsequent chapters.

Definition 6.1 (directed acyclic graph, DAG)
A directed acyclic graph (DAG), is a directed graph without any directed
cycles.

It is easy to see, that every lambda-tree can be regarded as a DAG by re-
moving all vertex labels and directing all undirected edges downwards (i.e.
away from the root). Since then no arc ends at a node that is closer to the
root than the start node of the arc, it follows that there cannot be any cycles
(cf. Figure 6.1). Obviously the reverse is not true, i.e. there are DAGs, that
do not correspond to lambda-trees (cf. for example Figure 6.2).

Definition 6.2 (in-degree, out-degree, out-point, terminal vertex)
The in-degree of a vertex is the number of its incoming arcs, i.e. the number
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of directed edges pointing to the vertex. Equivalently, the out-degree of a
vertex is the number of its outgoing arcs, i.e. the number of directed edges
that start in this vertex. An out-point is a vertex, that has no incoming arcs,
i.e. in-degree 0. Vertices that have out-degree 0 are called terminal vertices.

z

Figure 6.1: The lambda-tree representing the term λx.(λy.(xy))z and the
corresponding unlabeled DAG.

Figure 6.2: An unlabeled DAG, that can not be regarded as the enriched
tree of some lambda-term.
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Definition 6.3 (in-, out-neighbourhood)
The in-neighbourhood of a vertex v, is the set of all vertices that have outgoing
arcs leading to the vertex v. Analogously the set of all vertices that are reached
by arcs starting in v is called the out-neighbourhood of v.

We can give necessary and sufficient conditions, which all have to be fulfilled
for a DAG to correspond to a lambda-tree:

• The graph is weakly connected.
→ Obvious.

• There is only one out-point.
→ The out-point of the DAG obviously corresponds to the unique root
in the lambda-tree.

• Every vertex with out-degree greater than 0 (except for the unique out-
point) has in-degree 1.
→ This condition prevents bindings of inner nodes.

• Every terminal vertex has in-degree at most 2.
→ This condition prevents that a variable gets bound by more than
one unary node.

• For a vertex v with in-degree 2, let p1 and p2 be the predecessors of v.
Then there has to be a path leading from p1 to p2 or from p2 to p1.
→ This condition ensures that a lambda only binds variables that are
in its scope.
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• For a vertex v with out-degree k ≥ 3, k−1 of the out-going edges must
point to terminal vertices and for all of these vertices there has to be
another path connecting them with the vertex v.
→ This condition ensures that if we remove all the pointers, the un-
derlying tree is indeed a unary-binary tree and there is no vertex that
has more than two children.

So, we see, that a DAG has to fulfill a lot of constrictions in order to corre-
spond to a lambda-tree, and therefore (as we will see in the following chap-
ters) the number of DAGs exceeds the number of lambda-terms by far.

In contrast to the varying size of lambda-terms the size of a DAG is consis-
tently defined as follows:

Definition 6.4 (size of a DAG)
The size of a DAG G is defined as the total number of its vertices, and is
denoted by |G|.

In the following, when we talk about "labeled DAGs", we mean DAGs with
labeled nodes and unlabeled edges, i.e. for a labeled DAG of size n we take
{1, 2, . . . , n} to be the vertex set.

Definition 6.5 (isomorphic)
Two DAGs G and H of size n are isomorphic, if there is a permutation
π : {1, 2, . . . , n} → {1, 2, . . . , n} acting on the point sets of the graphs which
preserves the arcs, i.e. every edge 〈u, v〉 is in G if and only if the edge
〈π(u), π(v)〉 is in H.

We will consider two isomorphic DAGs to be equal, just like we did for
lambda-terms.
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Chapter 7

Counting DAGs

Now we are going to investigate the number of DAGs of a given size. We
will discuss both the labeled and the unlabeled case, starting with the easier
one, namely the problem of counting labeled DAGs.

7.1 Labeled DAGs

In the first part of this section we will set up a recursion for the number of
labeled DAGs of size n and establish an interesting representation for the
generating function of this number. The second part deals with another
approach, namely we are going to show that there is a bijection between the
number of labeled DAGs of size n and the number of n × n (0,1)-matrices
with positive eigenvalues.

7.1.1 Recurrence and Generating Function

From now on let an be the number of labeled DAGs of size n.

Our goal is to set up a recursion for an. This has independently been done by
Robinson in [28] and Stanley in [32], but we will closely stick to Rodionov’s
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work [30], which is based on the aforementioned ones.

First we introduce the generating functions An(x) =
∑∞

r=0 an,rx
r, which are

polynomials in x with the coefficients an,r equal to the number of labeled
DAGs of size n having r arcs.

Obviously, it holds that an = An(1).

Theorem 7.1 ([30, Thm. 1])
The polynomials An(x) when n ≥ 0 satisfy the recursion

n∑
m=0

(−1)m
(
n

m

)
(1 + x)m(n−m)Am(x) = δn0,

where δn0 is Kronecker’s symbol.

Proof. For n = 0, the formula is true by definition, since A0(x) = 1. For
n ≥ 1 set N = {1, . . . , n} and for any non-empty subset α ⊆ N let Aαn,r
(with r ≥ 0) denote the set of all labeled DAGs of size n with r arcs and all
points vi, with i ∈ α, being out-points. Clearly, the inclusion ∅ 6= α ⊆ β ⊆ N

implies Aβn,r ⊆ Aαn,r. Thus, using the inclusion-exclusion principle, we get

an,r =
∑
∅6=α⊆N

(−1)|α|−1|Aαn,r|, (7.1)

with |α| denoting the number of elements in α.

Next we have to consider that the arcs of any graph G ∈ Aαn,r can be divided
into two classes:

• The first class consists of the directed edges 〈vi, vj〉, where i, j ∈ N \α.

• The second class is built of the arcs going from vi, i ∈ α, to vj, j ∈ N\α.
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Note that, if there are k arcs in the first class, then there are r−k arcs in the
second one. Therefore the following formula holds for α with |α| = m ≥ 1:

|Aαn,r| =
r∑

k=0

(
m(n−m)

r − k

)
an−m,k. (7.2)

Using (7.1) and (7.2) we get the following equality:

an,r =
n∑

m=1

(−1)m−1
(
n

m

) r∑
k=0

(
m(n−m)

r − k

)
an−m,k

Thus, we get

An(x) =
n∑

m=1

(−1)m−1
(
n

m

) ∞∑
r=0

r∑
k=0

(
m(n−m)

r − k

)
an−m,kx

r

=
n∑

m=1

(−1)m−1
(
n

m

) ∞∑
k=0

[
∞∑
r=k

(
m(n−m)

r − k

)
xr−k

]
an−m,kx

k

=
n∑

m=1

(−1)m−1
(
n

m

)
(1 + x)m(n−m)An−m(x).

By using an = An(1), we get the following result:

Theorem 7.2 ([28, Equ. (13)])
The numbers an of labeled DAGs of size n satisfy the recursion

an =
n∑

m=1

(−1)m−1
(
n

m

)
2m(n−m)an−m,

with a1 = 1.

In order to get a better combinatorial understanding of this equation (which
will be particularly important in Chapter 10), we will give a brief interpre-
tation of the occurring factors (see [28], or [16, p. 1415]):
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The basic idea for setting up the recursion is to consider a DAG as an ex-
tension of another DAG of lower size by adding some additional out-points.
Obviously the resulting graph is again a DAG. Now for example, consider we
add one additional out-point to a DAG of size n−1, then the number an−1 has
to be multiplied by 2(n−1)(1), which is the number of possibilities to connect
the n− 1 pre-existing vertices to the single n-th vertex, and by

(
n
1

)
, namely

the number of possible ways to label the n-th vertex. However, thereby those
new DAGs having two out-points (where one out-point already existed) have
been counted twice, so we have to subtract these double-counts. But this in
turn removes the number of all DAGs with three out-points, which therefore
must be added back in, and so on. Using the inclusion-exclusion principle
the recursive formula for an follows.

The first values of an are ([28, Table 1]):

1, 1, 3, 25, 543, 29281, 3781503, 1138779265, 783702329343, . . .

Now we introduce the so-called "special generating function", as it has been
done by Robinson in [28]:

A(t) =
∞∑
n=0

an
n!

2−(n2)tn

The big advantage of this function is that it adopts a very nice representation,
due to which the asymptotic behavior of the coefficients an can easily be
determined, as we will see in the next chapter.

Theorem 7.3 ([30, Thm. 2])
The special generating function A(t) is given by the formula

A(t) =

(
∞∑
m=0

(−1)m

m!
2−(m2 )tm

)−1
. (7.3)
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Proof. We follow the proof of [28] and [30], while Stanley in [32] discovered
this equation independently by means of the chromatic polynomial. (He used
the fact that if χG is the chromatic polynomial of a labeled symmetric graph
G on p points, then (−1)pχG(−1) is the number of acyclic orientations of G.)
Define

B(t) =
∞∑
m=0

(−1)m

m!
2−(m2 )tm.

By formally multiplying the series A(t) and B(t) we get

A(t)B(t) =
∞∑
n=0

( ∑
k+m=n

ak(−1)m

k!m!
2−(k2)−(m2 )

)
tn

=
∞∑
n=0

[
n∑
k=0

(−1)k
(
n

k

)
2k(n−k)ak

]
︸ ︷︷ ︸

=δn0 by Theorem 7.1

(−1)n

n!
2−(n2)tn ≡ 1

It follows that Equation 7.3 holds in any neighbourhood of zero in which the
function B(t) has no roots.

7.1.2 A Bijection

As stated in the beginning of Section 7.1, the aim of this subsection is to
show that the number of DAGs of size n is equal to the number of n × n

(0, 1)-matrices whose eigenvalues are positive real numbers.

Eric W. Weisstein ([25]) came up with the idea that there could be a relation
between those two numbers, when he computed the numbers of real n × n
(0, 1)-matrices that have positive eigenvalues and observed that the resulting
sequence of values coincided with the sequence A003024 in [31], which counts
labeled DAGs of size n. McKay et al. ([25]) accomplished to prove the fact
that there actually is a one-to-one correspondence between those numbers,
which we will now present.
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Theorem 7.4 ([25], Thm. 1.1)
For each n = 1, 2, 3 . . ., the number of labeled DAGs of size n is equal to
the number of real n × n matrices of zeros and ones whose eigenvalues are
positive real numbers.

Remark 7.5
The eigenvalues of these matrices are actually all equal to one, as the proof
of Thm. 7.4 will show.

Proof. Consider a labeled DAG G and let A = A(G) be its vertex adjacency
matrix. Obviously A has only zeros on the diagonal, because otherwise there
would be cycles of length 1. Now we define B = I +A, where I denotes the
identity matrix. Note that the resulting matrix B is again a (0,1)-matrix.

• First we show that B has only positive eigenvalues:
Note that the eigenvalues will not change if the vertices of the graph G
are renumbered in accordance with the partial order that it generates.
Since then no arc would end at a vertex that has a smaller index than
than its start node, A = A(G) would be strictly upper triangular,
and B would be upper triangular with 1’s on the diagonal. Thus, all
eigenvalues of B are equal to 1.

• Now we will show the reverse direction. Let B be a n × n (0,1)-
matrix whose eigenvalues λ1, λ2, . . . , λn are all positive real numbers.
Then we have
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1 ≥ 1

n
trace(B) (since all Bi,i ≤ 1)

=
1

n
(λ1 + λ2 + . . .+ λn)

≥ (λ1λ2 . . . λn)
1
n (by the arithmetic-geometric mean inequality)

= (det(B))
1
n

≥ 1 (since det(B) is a positive integer).

It follows that the arithmetic and geometric means of the eigenvalues
are equal, which implies that the eigenvalues are all equal, namely all
λi(B) = 1. Thus, B has only ones on the diagonal.
Now we can regard B as the adjacency matrix of a directed graph H,
having a loop at each vertex. Since

trace(Bk) =
n∑

i=1

λki =
n∑

i=1

1 = n,

for all k, the number of closed walks of length k in H is n.
Since trace(Bk) = n, there are only ones on the diagonal of Bk and
therefore it follows that in H there is exactly one closed walk of length
k from every vertex to itself. Thus, there are no other closed walks
than the loops at each vertex.
By putting A = B − I, we get that in A there are no closed walks
of any length, which implies that A is a (0,1)-matrix representing the
adjacency matrix of a labeled DAG of size n.
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7.2 Unlabeled DAGs

In order to derive a recursion for the number of unlabeled DAGs of a given
size, we follow the work of Robinson ([29]).
We denote by An the number of unlabeled DAGs of size n and by Sn the
symmetric group of all n! permutations of the point set {1, 2, . . . , n}.

We consider a permutation g ∈ Sn to act on the vertex set of any labeled
DAG of size n by relabeling its vertices according to g. For example, if
g = (1)(2 3) then g(α) = α, g(β) = β, g(γ) = δ and g(δ) = γ, with α, β, γ
and δ as depicted in Figure 7.1.

Since two DAGs are isomorphic if and only if they can be mapped onto each
other by a member of Sn, the number of orbits of all labeled DAGs of size n
under Sn counts precisely the number An of unlabeled DAGs of size n.

Therefore we use the following lemma:

Lemma 7.6 (Burnside’s Lemma, [12, p.249, Thm. B])
If G is a finite group represented as permutations on a finite object set, then

|orbits of G| = 1

|G|
∑
g∈G

|fixed points of g|.

Applying the Burnside’s Lemma to Sn, acting on labeled DAGs of size n, we
get

An =
1

n!

∑
g∈Sn

|α such that g(α) = α|︸ ︷︷ ︸
=:N(g)

.
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1

2 3

α

1

2 3

β

2

1 3

γ

3

1 2

δ

Figure 7.1: Four labeled DAGs of size 3 ([29, Fig. 1]).

Thus, for any g ∈ Sn we have to find the number N(g) of labeled DAGs α
of size n such that g(α) = α.

We start by setting up a recursion for N(g) using the inclusion-exclusion
principle:

Let g ∈ Sn be the product of the disjoint cycles γ1,γ2, . . . , γm of length l(1),
l(2), . . . , l(m). The condition g(α) = α implies that the vertices in any cycle
γi (1 ≤ i ≤ m), must either all be out-points of α or all be non-out-points of α.
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Now we define Qi (1 ≤ i ≤ m) to be the set of labeled DAGs of size n, such
that g(α) = α (for the fixed permutation g) with all points of γi being out-
points of α.
Since every DAG of size n > 0 has at least one out-point, there must be a
cycle that consists of out-points of α only. Therefore there is no labeled DAG
fixed by g, that is not in any of the sets Q1,. . . , Qm.

The inclusion-exclusion principle yields

0 = N(g)−
∑

1≤i≤m

|Qi|+
∑

1≤i<j≤m

|Qi ∩Qj| ∓ . . . ,

which can be written as follows:

N(g) = −
∑

∅6=I⊆{1,...,m}

(−1)|I||
⋂
k∈I

Qk|

Thus, for any non-empty subset I of {1, . . . ,m} we have to determine the
number |

⋂
k∈I Qk|, which equals the number of labeled DAGs fixed by g,

where all the cycles γk with k ∈ I contain only out-points.

First take a look at the cycles γi and γj with i ∈ I and j /∈ I. If there is
an arc 〈x, y〉 from a vertex x ∈ γi to y ∈ γj in a DAG α fixed by g, then α
obviously also contains the arcs 〈g(x), g(y)〉, 〈g2(x), g2(y)〉,. . . , which are just
〈γi(x), γj(y)〉, 〈γ2i (x), γ2j (y)〉, . . . . Thus, we first arrive at 〈γpi (x), γpj (y)〉 =

〈x, y〉 for p = lcm(l(i), l(j)), which denotes the least common multiple of l(i)
and l(j). Since in total there are l(i)l(j) arcs from γi to γj, they fall into
exactly gcd(l(i), l(j)) different cycles, which stands for the greatest common
divisor of the point cycle lengths.
Those cycles of arcs must either all be contained in α or none of them is
in α, which results in 2gcd(l(i),l(j)) possibilities for arcs between γi and γj.
Multiplying together all the independent possibilities for the choices of i and
j, gives

2
∑
i∈I

∑
j /∈I gcd(l(i),l(j))
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different configurations of arcs leading from out-points to the remaining ver-
tices in a DAG fixed by g.

Now we independently investigate the sub-graph induced by the points of
the cycles γj for j /∈ I, which could be any DAG fixed by

∏
j /∈I γj.

Therefore we get |
⋂
k∈I Qk| = 2

∑
i∈I

∑
j /∈I gcd(l(i),l(j))N(

∏
j /∈I γj), which yields

the following recursion for N(g):

N(g) = −
∑

∅6=I⊆{1,...,m}

(−1)|I|2
∑
i∈I

∑
j /∈I gcd(l(i),l(j))N(

∏
j /∈I

γj). (7.4)

We can see by induction on the number n of vertices, that N(g) only depends
on the cycle length in the representation of g as disjoint cycles. Therefore
we can put Equation (7.4) in terms of cycle types Z(g) =

∏
1≤i≤n a

σi
i , which

are monomials in the commuting variables a1, a2, . . ., where σi denotes the
number of cycles of g of length i. Grouping the subsets I according to the
number τi of cycles of length i contained in I, and by the fact that for fixed
values of τi, there are

∏
i

(
σi
τi

)
such sets I with |I| =

∑
i τi for each subset,

Equation (7.4) becomes

N(
∏
j

a
σj
j ) = −

∑
0≤τi≤σi

(−1)
∑
i τiN(

∏
j

a
σj−τj
j )2

∑
i,j τi(σj−τi) gcd(i,j)

∏
i

(
σi
τi

)
,

where the term for τ1 = τ2 = . . . = τn = 0 is omitted in the summation. We
have the initial value N(1) = 1 representing the case in which all the points
are out-points, which includes just the single DAG with n =

∑
i iσi points

and no arcs.

Since for the number of unlabeled DAGs of size n we haveAn = 1
n!

∑
g∈Sn N(g),

this can be rewritten in terms of cycle types as

An =
∑

N(
∏
i

aσii )/
∏
i

σi!i
σi ,
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where we sum over all sequences σ1, σ2, . . . , σn of non-negative integers such
that n =

∑
i iσi. In order to prove this, Robinson ([29]) showed that the

number of elements g of Sn with Z(g) =
∏

i a
σi
i is exactly n!/

∏
i σi!i

σi , for
any such sequence:
There are n! assignments of the numbers {1, 2, . . . , n} to a fixed sequence of
cycles with σi of length i for all 1 ≤ i ≤ n, but any two of them that represent
the same permutation are considered to be equal. This explains the denom-
inator

∏
i σi!i

σi , since equivalent assignments are generated by swapping the
entire cycles of length i among themselves, which can be done in σi! different
ways for each i, and by rotating the assignment for each cycle of length i

in any of the i possible ways keeping the cyclic order fixed, which gives iσi

different possibilities.

By determining N(
∏

i a
σi
i ) with the recursion obtained above, we can esti-

mate the numbers An recursively.

The first values of An are the following ([29, Table 2]):

1, 1, 2, 6, 31, 302, 5984, 243668, 20286025, 3424938010, 1165948612902, . . .

Remark 7.7
In [29] Robinson established a more efficient way to determine the numbers
An, by using the generating function Z(A) in a1, a2, a3, . . ., which is given by

Z(A) =
∑
σi≥0

N(
∏
i

aσii )
∏
i

aσii /
∏
i

σi!i
σi .

An can then be found by simply summing the coefficients of all the monomials∏
i a

σi
i with n =

∑
i iσi.

The big advantage lies in introducing the operation ∗ for monomials defined
by (∏

i

aτii

)
∗

(∏
j

a
νj
j

)
= 2

∑
i,j τiνj gcd(i,j)

∏
i

aτii
∏
j

a
νj
j ,
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with which we get (see [29, p.35])

e−
∑
i≥1 ai/i ∗ Z(A) = 1.

Since the polynomial Z≤n(A) consisting of the terms of Z(A) with
∑

i iσi ≤ n

is all that contributes to the terms Zn+1(A) with
∑

i iσi = n+ 1, we can start
with Z0(A) = 1 and find Zn(A) for successive values n by taking advantage
of the distributive property of ∗ over + (see [29, pp.35] for more details).

Figure 7.2: The six unlabeled DAGs of size 3 ([29, Fig. 3]).
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Chapter 8

Asymptotics

As mentioned before, it is easy to establish the asymptotic behavior of the
number of labeled DAGs due to the explicit representation for their gener-
ating function (cf. Theorem 7.3). This result will be presented in Section
8.1. Unfortunately we do not have such a representation for the generating
function of unlabeled DAGs. In order to get some results on their asymp-
totics we fix the number of edges in the DAG. In Section 8.2 we investigate
the asymptotic behavior of labeled DAGs with a fixed number of edges. Fi-
nally, in the last section of this chapter, Section 8.3, we derive results on the
asymptotics of unlabeled DAGs with a prescribed number of edges.

8.1 Asymptotic behavior of the number of la-

beled DAGs

In order to obtain the asymptotic behavior of the sequence an enumerating
labeled DAGs of size n, we analyse the special generating function A(t) and
therefore use its specific representation

A(t) =
1

B(t)
,
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where

B(t) =
∞∑
m=0

(−1)m

m!
2−(m2 )tm, (8.1)

which we derived in Chapter 7 (cf. Theorem 7.3). Note that B(t) is an
entire function. From [28] it is known that B(t) has the zeros ω0 ≈ 1.488079

and ω1 ≈ 4.881141 (ω3 ≈ 13.56, ω4 ≈ 85 - furthermore the authors of [28]
conjectured that ωi = (i+ 1)2i + o(2i)).
Therefore A(t) is meromorphic inside the circle of radius ω1, with a single
pole at ω0. Thus we can apply singularity analysis - more precisely we can
apply Theorem 2.8, introduced in Chapter 2, which gives the following result
(see [32],[35],[22]):

Theorem 8.1
The asymptotic behavior of the numbers an of labeled DAGs of size n is

an ∼ λn!2(n2)ω−n as n→∞, (8.2)

where ω = ω0 = 1.4880785455997102947 . . . is the least root of B(t), given in
Equation 8.1 and λ = − 1

ωB′(ω)
= 1.7410611252932298403 . . . .

Remark 8.2
Robinson ([28]) got the same result by developing and analyzing a convergent
series for an, namely

an = n!2(n2)
∞∑
j=0

1

ωn+1
j B(ωj/2)

,

where ω0, ω1, ω2, . . . denote the zeros of B with increasing modulus.
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8.2 Asymptotic behavior of the number of la-

beled DAGs with a fixed number of edges

In [5] the authors extended Equation (8.2) to an,q, which denotes the number
of labeled DAGs of size n with q unlabeled edges. By denoting N =

(
n
2

)
and

B(x, y) =
∑∞

n=0
(−1)nxn
n!(1+y)N

, they obtained the following result:

Theorem 8.3 ([5, Thm. 1])
Let ε > 0 be given and suppose q = q(n) satisfies εN ≤ q ≤ (1− ε)N for all
large n. Then

an,q ∼ n!

(
N

q

)
e−x

2r

B(νω, r)ωn+1
(8.3)

where
r =

q

N − q
, ν =

N − q
N

, x =
νωB(ν2ω, r)

2B(νω, r)

and ω = ω(r) > 0 is the smallest solution of the equation B(ω, r) = 0.

In order to prove this theorem we need the following two auxiliary lemmas
(Lemma 8.4, Lemma 8.6):

Lemma 8.4 (Central limit theorem, [5, Lem. 2])
Let Xn(r) be a random variable with Pr{Xn(r) = m} proportional to an,mrm

and suppose that q = q(n) with 0 < ε < q/N < 1 − ε, r = q
N−q and ω(r) is

as in Theorem 8.3. Then there is a function K = K(n) = o(n) such that as
n→∞

1

K

q+K−1∑
m=q

Pr{Xn(r) = m} ∼ e−v
2/2√

2πσn(r)2
,

where
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v =
nrω′(r)

σn(r)ω(r)
, σn(r)2 =

Nr

(1 + r)2

and the rate of convergence depends on ε.

Idea of proof. Let

µn(r) =
Nr

1 + r
− nrω′(r)

ω(r)
.

The idea of the proof is to show that the characteristic function of

Yn(r) =
Xn(r)− µn(r)

σn(r)

converges pointwise to e−t
2/2 and then using the continuity theorem ([20,

p.52, Thm. 2]) to get a central limit theorem for Yn(r).
Let us define An(y) =

∑N
q=0 an,qy

q.
The characteristic function of Xn is given by

EeitXn =
∑
m

Pr{Xn(r) = m} · eitm = c · An(reit).

Therefore by setting gn(t) = logAn(reit), the logarithm of the characteristic
function of Xn is

gn(t)− gn(0) = g′n(0)t+ g′′n(0)
t2

2
+O(Mt3),

with M being the maximum modulus of g(3)n (u) for 0 ≤ u ≤ t.
The derivatives g′n(t), g′′n(t) and g(3)n (t) can be calculated by means of Lemma 1
of [5], and by evaluating them at t = 0 we get

gn(t)− gn(0) = iµn(r)t− σ2
n(r)

t2

2
+ o(1),

for t = o(n12/3).
Now we derive for the characteristic function of Yn:

EeitYn = Ee
Xn(r)−µn(r)

σn(r) = egn(
t

σn(r))−
iµn(r)t
σn(r)

−g(0) ∼ e−t
2/2,

for t = o(n−2/3σn(r)).
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This central limit theorem enables us to formulate a corollary, which gives a
very interesting result on the structure on DAGs:

Corollary 8.5
The average number of edges in a labeled DAG of size n is ∼ n2

4
.

This follows immediately by calculating

lim
r→1

µn(r) = lim
r→1

(
Nr

1 + r
− nrω′(r)

ω(r)

)
∼
(
n
2

)
2
∼ n2

4
.

In Chapter 9 we will focus on more results on the structure of DAGs. Now we
return to the proof of Theorem 8.3, for which we need the second auxiliary
lemma given below, which is a more combinatorial one:

Lemma 8.6 ([5, Lemma 3])
Let K(n) = o(n) and ε > 0 be given. If n, q → ∞ in such a way that
ε < q/N < 1− ε, then

an,q+k ∼
(
N − q
q

)k
an,q

uniformly for |k| < K(n) at a rate depending on K(n) and ε.

Proof. Let Pn be the set of all ordered partitions of {1, 2, . . . , n}. For π ∈
Pn let |π| = s denote the number of blocks of π and let Bi = Bi(π), for
i = 1, . . . , s, be the blocks of π, with bi = |Bi|. Additionally we will use the
following notations:

g(π) =
s∑
i=1

(
bi
2

)
and h(π) = g(π) +

s−1∑
i=1

bibi+1.
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Now we have to introduce some further definitions that will be necessary for
the proof:
Let D be a labeled DAG with n vertices. First we define an ordered partition
of vertices of D inductively as follows:
D1 := D, Bi is the set of out-points of Di and Di+1 := Di − Bi. Then the
so-called tower T (D) of D contains all the vertices of D with the arcs going
from Bi(π(D)) to Bi+1(π(D)) for i ≥ 1. In the following we denote by q(T )

the number of arcs in T = T (D).

The proof consists of two parts.

• In the first part we show that a linear bound on g(T ) leads to linear
bounds on h(T ) and q(T ). More precisely if T is the tower of a labeled
DAG of size n with g(T ) ≤ C1n, it follows that q(T ) < (2C1 + 1)n and
h(T ) < (3C1 + 1)n:
This can be shown by using the arithmetic-geometric mean inequality
for b2i and b2i+1, which yields

bibi+1 ≤
(
bi
2

)
+

1

2
bi +

(
bi+1

2

)
bi+1.

Thus, we get

q(T ) ≤ h(T )− g(T ) =
s−1∑
i=1

bibi+1 < 2
s∑
i=1

(
bi
2

)
︸ ︷︷ ︸
≤C1n

+n ≤ (2C1 + 1)n,

and

h(T ) = g(T )︸︷︷︸
≤C1n

+
s−1∑
i=1

bibi+1︸ ︷︷ ︸
≤(2C1+1)n

≤ (3C1 + 1)n.

• In the second part we prove that most DAGs have small g(D): Let
us suppose that 0 < ε < m

N
< 1 − ε for all n > n0. Then there is a

114



C2 = C2(ε, n0) such that the fraction of labeled DAGs of size n with m
arcs and g(D) > C2n is less than (1− ε)n: The number of DAGs with
g(D) = j is at most

|Pn|
(
N − j
m

)
< nn

(
N − j
m

)
.

For all bi = 1 we get

n!

(
N − n+ 1

m− n+ 1

)
>
(n
e

)n(m− n
N

)n(
N

m

)
>
(nm

3N

)n(N
m

)
.

Thus for n > n0 the fraction is less than(
3N

m

)n ∑
j>C2n

(
N − j
N

)m
≤ C3

(
3

e

)n
e−εC2n, (8.4)

where C3(ε) > 0. For sufficiently large C2 this is less than (1− ε)n.

Therefore we get the following result:

an,m =
∑
T

(
N − h(T )

m− q(T )

)
∼

∑
g(T )≤C2n

(
N − h(T )

m− q(T )

)
.

Finally we have to show that(
N − h(T )

q + k − q(T )

)
∼
(
N − q
q

)k (
N − h(T )

q − q(T )

)
for g(T ) ≤ C2n. This can be proved by means of Stirling’s formula, the
bounds for h(T ) and q(T ), which have been derived in the first part of the
proof, and log(1 + u) = u + O(u2) (see [5, p.21] for the details). Putting all
together completes the proof.

Now we are able to prove Theorem 8.3 by combining our analytical and
combinatorial results.
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Proof of Theorem 8.3. Define An(y) =
∑N

q=0 an,qy
q as in the proof of Theo-

rem 8.4. By the Lemmas 8.4 and 8.6 we get

e−v
2/2

√
2πσn(r)

An(r) ∼ 1

K

q+K−1∑
m=q

an,mr
m ∼ 1

K

q+K−1∑
m=q

an,qr
q = an,qr

q.

Using An(r) ∼ n!(1 + r)Nω−nC(r) with C(r) = 1
ωB(νω,r)

(see [5], p.16f) and

(1 + r)Nr−qC(r)√
2πσn(r)

=
NN

qq(N − q)N−qωB(νω, r)

√
(1 + r)2

2πNr
∼
(
N

q

)
1

ωB(νω, r)
,

we get

an,q ∼
e−v

2/2

√
2πσn(r)

n!(1 + r)Nω−nC(r)

rq
∼ e−v

2/2n!ω−n
(
N

q

)
1

ωB(νω, r)
.

Noting that v = −nx
√

r
N
∼ −x

√
2r completes the proof.

8.3 Comparison of the asymptotics of labeled

and unlabeled DAGs with a fixed number

of edges

In the previous section, we derived the asymptotic behavior of the numbers
an,q of labeled DAGs. The aim of this section is to use the results obtained
for an,q to get some information on the asymptotics of the numbers An,q,
which count unlabeled DAGs of size n with q arcs. The results given in this
section are based on [4].

Theorem 8.7 ([4, Thm. 2])
Let ε > 0 be given and suppose q = q(n) satisfies εN < q < (1− ε)N for all
large n. Then

an,q ∼ n!An,q.
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The proof of this theorem is very technical, therefore we will only give the
idea and the basic steps.

Sketch of proof. We will use some definitions and notations introduced in the
proof of Lemma 8.6.
Let π be a permutation of {1, . . . , n} that acts on the vertices of a labeled
DAG D by permuting the vertex labels and let F (π, T ) be the number of
labeled DAGs of size n with q arcs with tower T (cf. Lemma 8.6 for the
definition of the tower of a DAG) that are fixed by π. By Burnside’s lemma
(Lemma 7.6) we get

n!An,q =
∑
π,T

F (π, T ) = an,q +
∑
T

∑
π 6=1

F (π, T ) = an,q +
∑
1

+
∑
2

,

where
∑

1 is the sum of F (π, T ) over T and π 6= 1 with g(T ) < n1.2 and
∑

2

is the same sum with g(T ) ≥ n1.2 (cf. Lemma 8.6 for the definition of g(T )).
Our goal is now to show that both sums,

∑
1 and

∑
2, are equal to o(an,q).

• In order to get
∑

2 = o(an,q) we use the same arguments as in the
second part of the proof of Lemma 8.6, which yields∑

g(T )≥n1.2

F (1, T ) ≤ an,q

(
3N

q

)n
Ce−n

1.2 q
N .

(cf. Equation (8.4).)
Since q

N
> ε and F (π, T ) ≤ F (1, T ), we get∑

2

≤ n!
∑

g(T )≥n1.2

F (1, T ) = o(an,q).

• Now we are going to show that
∑

1 = o(an,q), which is more extensive
than the first case - therefore we will skip some of the technical details.
Bender and Robinson ([4]) used the ideas of Wright ([37]) to prove the
desired result. Wright showed that F (π, T ) is the coefficient of xQ in
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∏
(1 + xi)Pi , where Pi = Pi(π, T ) denotes the orbits of size i.

Thus for any positive real x it can be shown ([4, p. 365]) that,

F (π, T ) ≤ x−Q(1 + x)E
(

1 + x2

(1 + x)2

)(E−P1)/2

,

where E = N −h(T ) (cf. Lemma 8.6 for the definition of h(T )) are the
potential edges from which Q = q − q(T ) must be chosen once T has
been specified.
By setting x = Q/(E −Q) and β = (1 + x2)/(1 + x)2 we get

F (π, T ) ≤ EEβ(E−P1)/2

QQ(E −Q)E−Q
≤ C
√
N

(
E

Q

)
β(E−P1)/2

≤ CnF (1, T )β(E−P1)/2. (8.5)

The fact that g(T ) ≤ n1.2 implies (by the first part of the proof of
Lemma 8.6)

bi ≤ Cn0.6, q(T ) ≤ Cn1.2, h(T ) ≤ Cn1.2.

Therefore, and since ε < q
N
< 1− ε, it follows that β is bounded above

by β(ε) < 1 for all T with g(T ) < n1.2. Now let π, which is acting on
the set {1, . . . , n}, have n−a fixed points. Then it is easy to show that

E − P1 ≥
an

4
(8.6)

(see [4, p.366]).
Thus by (8.5) and (8.6) we get the following result:∑

1

≤
∑
π 6=1

∑
T

CnF (1, T )βan/4
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≤ Cn
∑
T

F (1, T )
∑
a≥1

naβan/4

= Cnan,q
∑
a≥1

(nβn/4)a

≤ C̃n2an,qβ
n/4 = o(an,q).
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Chapter 9

Structure of DAGs

In this chapter we investigate some properties of the structure of DAGs. We
already derived that the average number of edges in a labeled DAG of size n
is ∼ n2

4
(cf. Corollary 8.5). In the first section of this chapter we are going

to show that asymptotically almost all DAGs (unlabeled and labeled) are
weakly connected ([4]). In the next section we will show that the number of
out-points in labeled DAGs decreases with increasing size ([23]), e.g. from
some n onwards, more than 99, 7% of all labeled DAGs of size n have less
than 4 out-points. At last we present an interesting result, proved by McKay
in [24], namely that the height of labeled DAGs of size n is asymptotically
normally distributed with mean C1n and variance C2n.

9.1 Weakly connected DAGs

As mentioned above, in this section we will show that asymptotically almost
all DAGs are weakly connected. Therefore we follow the work of Bender and
Robinson ([4]).
Let cn,q be the number of weakly connected labeled DAGs of size n with q
arcs and Cn,q shall stand for the number of unlabeled ones.
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Theorem 9.1 ([4, Thm. 2])
Let ε > 0 be given and suppose q = q(n) satisfies εN < q < (1− ε)N for all
large n, with N =

(
n
2

)
. Then

an,q ∼ cn,q and An,q ∼ Cn,q.

We will prove cn,q ∼ an,q and then specify the small changes that are needed
to prove Cn,q ∼ An,q.

Sketch of proof. To construct an unlabeled DAG of size n with q arcs, we can
take n linearly ordered points and connect them with q edges in such a way
that each edge is oriented towards the lower point. Since this also creates
some redundant constructions, we get

an,q ≤ n!An,q ≤ n!

(
N

q

)
. (9.1)

It is easy to see that

an,q − cn,q ≤
∑
i,j

1≤i≤n/2

Tij, (9.2)

where
Tij =

(
n

i

)
ai,jan−i,q−j.

The idea of the proof is to show that the right hand side of Equation (9.2)
is o(an,q).

By Equation (9.1) and some further estimations concerning binomial coeffi-
cients (see [4, p. 367] for the detailed estimation) we get

∑
j

Tij ≤ n!

(
N

q

)
e−i(n−i)ε, for i ∈ I = [1;

n

2
] and j ≤

(
i

2

)
.
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Now we perform a distinction of cases:

• First case: I = [C log n, n
2
]

We get∑
i∈I

∑
j

Tij ≤ n!

(
N

q

)∑
i∈I

e−i(n−i)ε ≤ n!

(
N

q

)
O(e−Cn logn). (9.3)

Since ε < ν < 1− ε in Theorem 8.3 and r is bounded away from 0 and
∞, it follows that x, ω, and B(νω, r) are bounded away from 0 and∞.
By (8.3) and (9.3), we get∑

i∈I

∑
j

Tij = o(an,q).

• Second case: I = [1, C log n]

For i ∈ I we have (by the definition of Tij)

1

an,q

∑
j

Tij =
∑
j

(
n

i

)
ai,j

an−i,q−j
an,q

.

Using the following estimation (see [4, pp. 367] for the technical details)

(
n

i

)
ai,j

an−i,q−j
an,q

≤
(

1− i(n− i)
N

)q
eO(i2), (9.4)

we get, for sufficiently large n,

∑
j

Tij =
∑
j≤i2

Tij (since j ≤
(
i

2

)
≤ i2)
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≤
(

1− i(n− i)
N

)q
eO(i2)an,q (by 9.4)

≤ exp

(
−i(n− i)q

N
+O(i2)

)
an,q

≤ e−Cinan,q.

Thus,

∑
1≤i≤C log n

∑
j

Tij ≤ an,q
∑
i≥1

(e−Cn)i = o(an,q).

Combining the results obtained for both cases yields an,q− cn,q = o(an,q) and
therefore completes the proof of an,q ∼ cn,q.

Let us now briefly consider the unlabeled case: By replacing all occurrences
of a∗,∗ by A∗,∗ and omitting all references to

(
n
i

)
and n!, all equations following

(9.1) remain valid. The references to Theorem 8.3 still hold, since An,q ∼ an,q
n!

,
as it has been proved in the previous chapter (cf. Theorem 8.7).

9.2 Number of out-points

Let a(k)n be the number of labeled DAGs of size n with exactly k out-points.
Obviously a(0)n = 0 for n > 0, since there is no DAG without any out-points,
and

∑
k a

(k)
n = an.

Let A(k)(z) =
∑∞

n=k a
(k)
n

zn

n!2(
n
2)

be the special generating function of the se-

quence a(k)n .

Now we are going to show that this generating function has also an explicit
representation similar to A(z) (cf. Thm. 7.3), due to which it is easy to
determine the asymptotic behavior of its coefficients.
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Theorem 9.2 ([23, Cor. 1])
The generating function A(k)(z) is given by the formula

A(k)(z) =
zk

k!2(k2)

B(2−k)

B(z)
,

where B(z) is defined as in Thm. 7.3.

Proof. From [23] Prop. 1 we know that the number a[k]n of labeled DAGs
of size n, whose set of out-points is a fixed k-element subset of {1, . . . , n},
satisfies the recursion

n∑
t=k

(
n− k
t− k

)
an−t2

(t−k)(n−t)a
[k]
t = 2k(n−k)an−k. (9.5)

For every fixed k the right hand side of Equation (9.5) counts the number
of labeled DAGs of size n with {1, . . . , k} being a subset of the set of all
out-points. Now, considering how such DAGs can be obtained from DAGs
of lower sizes, where the set of out-points is a fixed k-element subset of
{1, . . . , n}, yields the left hand side of the equation:
Suppose the subgraph S consisting of all vertices which are accessible from
any vertex of {1, . . . , k} consists of t vertices. Then an−t enumerates all pos-
sible subgraphs on the remaining n − t vertices and 2(t−k)(n−t) enumerates
all possible sets of arcs from these vertices to the vertices of the subgraph
S (taking into account the absence of arcs which leads to the vertices of
{1, . . . , k}). Since there are

(
n−k
t−k

)
possibilities for the choice of the t vertices

of S the recursion follows.

Additionally, it obviously holds that

a(k)n =

(
n

k

)
a[k]n .

Therefore, and by setting t = s + k and n = m + k, Equation (9.5) can be
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rewritten as follows:

m∑
s=0

m!

s!(m− s)!
am−s2

s(m−s)a
(k)
k+sk!s!

(k + s)!
= 2kmam.

By using the identity
2(i+j2 ) = 2(i2)2(j2)2ij

we get

2s(m−s) =
2(m2 )2(k2)

2(k+s2 )2(m−s2 )
2ks.

Therefore we have

m∑
s=0

am−s

(m− s)!2(m−s2 )

a
(k)
k+s2

ks

(k + s)!2(k+s2 )
=

am2km

k!2(k2)m!2(m2 )
,

which is equivalent to our desired result by using A(z) = 1
B(z)

and comparing
coefficients.

Now we want to determine the asymptotic behavior of the numbers a(k)n .
Remember that for the asymptotics of labeled DAGs of size n we got the
following result (Theorem 8.1):

an ∼ λn!2(n2)ω−n as n→∞,

where ω ≈ 1.4880785 denotes the least root of B(t) =
∑∞

m=0
(−1)m
m!

2−(m2 )tm,
and λ = − 1

ωB′(ω)
≈ 1.74106.

Theorem 9.3 ([23, Prop. 2])
As n→∞,

a(k)n ∼
ωkB(2−kω)

k!2(k2)
an,

where k ≥ 1 is fixed.
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Proof. Just as A(z), A(k)(z) has radius of convergence ω and one singu-
lar point on the circle |z| = ω, namely a simple pole at ω with residue
ωk

k!2(
k
2)

B(2−kω)
B′(ω)

(cf. Thm 9.2). By applying singularity analysis and using the

asymptotics of an (Thm. 8.1) the theorem follows.

Now we introduce a uniform probability distribution, and let ξn be the ran-
dom variable corresponding to the number of out-points in a random labeled
DAG of size n. The next Theorem follows as an immediate consequence of
Theorem 9.3.

Theorem 9.4 ([23, Thm. 1])
As n→∞, for any fixed natural number k,

P{ξn = k} → φk =
ωkB(2−kω)

k!2(k2)
.

The limiting probabilities φk decrease very fast with increasing k. For the
first values we have φ1 = 0.5743 . . . , φ2 = 0.3662 . . . and φ3 = 0.0564 . . . .
Thus it follows that for sufficiently large n, more than 99.7% of all labeled
DAGs of size n have less than 4 out-points.

Let Φ(z) =
∑∞

k=0 φkz
k be the generating function of the limiting distribution.

Corollary 9.5 ([23, Cor. 3])
Φ(z) = B(ω(1− z)).
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Proof.

∞∑
k=0

B(2−kω)ωk

k!2(k2)
zk =

∞∑
k=0

zk

k!2(k2)

∞∑
n=0

(−1)nωn+k

n!2(n2)2kn

=
∞∑
k=0

∞∑
n=0

(−1)nzkωn+k

k!n!2(k+n2 )

=
∞∑
m=0

(−1)mωm

m!2(m2 )

m∑
k=0

(
m

k

)
(−1)kzk

=
∞∑
m=0

(−1)mωm

m!2(m2 )
(1− z)m.

Remark 9.6
Liskovets obtained the following estimate for the values of the distribution
function for arbitrary n (see [23, Prop. 3]):
For all n ≥ r ≥ 2,

P{ξn ≤ r} ≥ 1− n− r
n+ 1

2

(r + 1)!2(r2)
.

9.3 Height of DAGs

In this section we will investigate the asymptotic behavior of the height of
a random labeled DAG of size n. The results are based on McKay’s work
([24]).

Definition 9.7 (height)
The height h(D) of a labeled DAG D is the length of the longest directed path
in D.
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We are going to prove that the values of h(D) over all labeled DAGs D of
size n are asymptotically normally distributed with mean C1n and variance
C2n.

Let us denote by An the set of all labeled DAGs of size n and let A =⋃∞
n=1An.

Definition 9.8 (asymptotically normal, [24, p.459])
A function f : A → R is asymptotically normal over A with mean µ = µ(n)

and variance σ2 = σ2(n) if

lim
n→∞

sup
x

∣∣∣∣P (n, µ+ σx, f)− 1√
2π

∫ x

−∞
e−t

2/2dt

∣∣∣∣ = 0,

where
P (n, z, f) =

|{D ∈ An|f(D) ≤ z}|
|An|

.

In order to prove the normality of the height we will use the following theorem
of Bender.

Theorem 9.9 ([3, Thm. 1])
Let f(z, w) have a power series expansion f(z, w) =

∑
n,k≥0 an(k)znwk with

non-negative coefficients. Suppose there exists

(i) an A(s) continuous and non-zero near 0,

(ii) an r(s) with bounded third derivative near 0,

(iii) a non-negative integer m, and

(iv) ε, δ > 0,
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such that (
1− z

r(s)

)m
f(z, eδ)− A(s)

1− z/r(s)

is analytic and bounded for |s| < ε, |z| < |r(0)|+ δ.

Let µ = − r′(0)
r(0)

, σ2 = µ2 − r′′(0)
r(0)

.

If σ 6= 0 then then an(k) is asymptotically normal with µn = nµ and σ2
n =

nσ2.

McKay mentioned that it should be possible to prove stronger local limit
theorems for the same quantities, using Theorems 3 or 4 of [3], but it seems
very difficult to verify the additional requirements.

Definition 9.10 (layers, [24])
Let V0 = V0(D) be the set of out-points of a DAG D.
For k = 1, 2, . . ., we define Vk = Vk(D) inductively to be the set of out-points
of the graph V (D) \ (V0 ∪ V1 ∪ . . . ∪ Vk−1). We denote by Vh the last Vi that
is not-empty. The sets V0, V1, . . . , Vh are called the layers of D.

Clearly h = h(D) is the height of D. Remember that (V0, V1, . . . , Vh) is called
the tower of D.

Now we introduce the special generating function

B(x, (y1, y2, . . .)) =
∑
n≥1

∑
D∈A

(n!2(n2))−1xny
n1(D)
1 y

n2(D)
2 . . . ,

where ni = ni(D) denotes the number of layers of D which have size i.
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Theorem 9.11 ([24, Thm. 2.1])

B(x, (y1, y2, . . .)) =
∑

v1,...,vh

h−1∏
i=0

(1− 2−vi)vi+1

h∏
i=0

xviyvi

vi!2
(vi2 )

,

where the sum is over all tuples (v0, v1, . . . , vh) such that h ≥ 0 and vi ≥ 1

for 0 ≤ i ≤ h.

Proof. We want to count the number of labeled DAGs of size n with height
h and |Vi(D)| = vi for a fixed (v0, . . . , vh) with 0 ≤ i ≤ h. Obviously
v0 + . . .+ vn = n. There are

(
n

v0,v1,...,vh

)
possibilities of assigning vertex labels

to the layers V0, V1, . . . , Vh. The in-neighbourhood of each vertex of layer Vi
can be a subset of V0∪ . . .∪Vi−1, which contains at least one element of Vi−1.
Clearly this gives 2v0+...+vi−1−2v0+...+vi−2 = 2v0,v1,...,vi−2(2vi−1−1) possibilities.
Thus the number of DAGs corresponding to (v0, v1, . . . , vh) is(

n

v0, v1, . . . , vh

) h∏
i=1

(2v0,v1,...,vi−1)vi(1− 2−vi−1)vi ,

which completes the proof.

Now we will introduce some auxiliary notations, as it has been done in [24]:

Let Λ be the infinite matrix

Λ = diag

(
xy1,

x2y2

4
, . . . ,

xiyi

i!2( i
2)
, . . .

)
,

and
M = (mij), where mij = (1− 2−i)j for1 ≤ i, j <∞.

Additionally, we define for any matrix M det(M) to be the determinant of
M , adj(M) to be the adjoint matrix of M and S(M) to be the sum of all
the entries of M . With I being the infinite identity matrix, the following
equality holds:

131



Theorem 9.12 ([24, Thm. 2.2])

B(x, (y1, y2, . . .)) = S((I − ΛM)−1Λ)

Proof. Clearly, the sum of the terms in Theorem 9.11 corresponding to any
specific value of h is S((ΛM)hΛ). Thus,

B(x, (y1, y2, . . .)) = S(Λ + ΛMΛ + (ΛM)2Λ + . . .) = S((I − ΛM)−1Λ).

Using (I − ΛM)−1 = adj(I − ΛM)/ det(I − ΛM), it can be shown (by the
fact that the entries of Λ decrease very rapidly down the diagonal, see [24,
p.461]) that each entry of adj(I− ΛM), their sum, and det(I − ΛM) are en-
tire functions in x for the yi (i ≥ 1) being fixed and uniformly bounded values.

Now we are ready to give the main result of this section:

Theorem 9.13 ([24, Thm. 3.1])
There are constants C1 ≈ 0, 7643344264 and C2 ≈ 0, 1452097407 such that
the height function h is asymptotically normal over A with mean C1n and
variance C2n.

Proof. Define

H(x, y) =
∑
n≥1

∑
D∈An

xnyh(D)

n!2(n2)
.

By Theorem 9.12 and the comments stated above we get

H(x, y) =
c(x, y)

yd(x, y)
,

where c(x, y) = S(adj(I − ΛM)Λ) and d(x, y) = det(I − ΛM) with Λ =

Λ(x, (y, y, . . .)). As mentioned before c(x, y) and d(x, y) are entire functions
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in x for fixed y. Therefore the singularities of H(x, y) are given by the zeros
of d(x, y) which are not cancelled by zeros of c(x, y). For example at x = 0

we have a zero of both c(x, y) and d(x, y).
Since H(x, 1) = 1

B(x)
, and the smallest zero of the entire function B(x) is a

simple pole at ω ≈ 0, 488078 (cf. Thm 8.1) we can apply Theorem 9.9 with
m = 0 and a function r(s) with r(0) = ω.
The computation of the constants was done in [24] by use of Maple.

In [24] McKay presented another interesting result, namely that the number
of layers of a labeled DAG of a given size is also asymptotically normally
distributed:

Theorem 9.14 ([24, Thm. 3.3])
Let k ≥ 1. For D ∈ A, define nk(D) to be the number of layers of D with
size k. Then there are positive constants Ck,1 and Ck,2 such that the function
nk is asymptotically normal over A with mean Ck,1n and variance Ck,2n.

Sketch of proof. Define

Nk(x, y) =
∑
n≥1

∑
D∈An

xnynk(D)

n!2(n2)
.

Then
Nk(x, y) =

e(x, y)

f(x, y)
,

where e(x, y) = S(adj(I − ΛM)Λ), and f(x, y) = det(I − ΛM), with Λ =

Λ(x, (1, 1, . . . , y, 1, 1, . . .)), and y being the k-th entry of the second argument.
The proof now proceeds analogously to that of Theorem 9.13.

The following table (Figure 9.1) shows the number of DAGs of size n with
height h:
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Chapter 10

Special classes

This chapter is devoted to the investigation of two special subclasses of DAGs,
namely extensional and essential DAGs. We will derive recursive formulas
for the number of those special labeled DAGs of a given size and estimate
their asymptotic behavior as the size tends to infinity. Additionally we will
briefly discuss the problem of deriving the number of unlabeled extensional
DAGs. The results given in this chapter are based on [35], [27] and [34].

10.1 Extensional DAGs

We start with the definition of an extensional DAG:

Definition 10.1 (extensional DAG, )
A DAG G is called extensional if for all pairs of vertices u, v of G, u 6= v

implies that u and v do not have the same out-neighbourhood.

10.1.1 Labeled extensional DAGs

Let en denote the number of labeled extensional DAGs of size n.
Then we get the following result:
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Theorem 10.2 ([35, Equ. (2)])
The numbers en of labeled extensional DAGs of size n satisfy the recursion

en =
n∑
k=1

(−1)k+1

(
n

k

)
(2n−k − n+ k)ken−k, (10.1)

with e0 = 1, where xn = x(x− 1) . . . (x− n+ 1) denotes a falling factorial.

This equation has been derived by Wagner in [35], and by Policriti and
Tomescu in [27]. It is quite similar to the recursion for the number an of
labeled DAGs of size n (therefore the proof of the recursion works analo-
gously), but with the difference that instead of the factor 2k(n−k) we have a
factor (2n−k − n + k)k. This modification can be explained by the following
considerations:
First of all there are 2n−k possibilities to connect the k newly added out-points
with the n − k pre-existing vertices, but n − k choices are forbidden by the
definition of extensional DAGs, since they are already out-neighbourhoods
of the pre-existing vertices. Additionally we have to use a falling factorial
rather than a k-th power, because the new out-neighbourhoods have also to
be pairwise distinct.

Remark 10.3
In Equation (10.1) we could just sum up until n−dlog2 ne instead of n, since
the non-null terms of this sum are those with 2n−k ≥ n (cf. [27], Thm. 1).

The number of labeled extensional DAGs of size 1 to 7 is ([35]):
1, 2, 12, 216, 10560, 1297440, 381013920

Our next goal is to estimate the asymptotic behavior of the sequence en.

For this purpose we follow the work of Wagner ([35]) and rewrite Equ. (10.1)
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as
n∑
k=0

(−1)n−k

(n− k)!
2−(k2)−(n−k2 ) ek

k!

n−1∏
j=k

(1− 2−kj) = δn0.

Since the product
∏n−1

j=k (1−2−kj) is approximately 1, we rewrite the equation
again resulting in

n∑
k=0

(−1)n−k

(n− k)!
2−(k2)−(n−k2 ) ek

k!
=

n−1∑
k=0

(−1)n−k

(n− k)!
2−(k2)−(n−k2 ) ek

k!

(
1−

n−1∏
j=k

(1− 2−kj)

)
+δn0.

Now let
E(x) =

∑
n≥0

enx
n

2(n2)n!

be the special generating function of the sequence en and B(x) is defined as
in the previous chapters by

B(x) =
∑
n≥0

(−1)nxn

2(n2)n!
.

Using these notations the equation above transforms to

E(x)B(x) = 1 +
∑
n≥0

n−1∑
k=0

(−1)n−kek
k!(n− k)!

2−(k2)−(n−k2 )

(
1−

n−1∏
j=k

(1− 2−kj)

)
xn︸ ︷︷ ︸

=:ψ(x)

.

Now we are going to show that ψ(x), which defines the sum on the right
hand side of the equation, converges for |x| < 2ω.

For that purpose note that the inequality ek ≤ ak ≤ C1k!2(k2)ω−k holds for
some constant C1, so that
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∣∣∣∣∣
n−1∑
k=0

(−1)n−kek
k!(n− k)!

2−(k2)−(n−k2 )

(
1−

n−1∏
j=k

(1− 2−kj)

)
xn

∣∣∣∣∣
≤ C1 ·

n−1∑
k=0

2−(n−k2 )ω−k

(
1−

n−1∏
j=k

(1− 2−kj)

)
|x|n.

Using
n−1∏
j=k

(1− 2−kj) ≥ 1−
n−1∑
j=k

2−kj ≥ 1− n22−k,

we get

n−1∑
k=0

2−(n−k2 )ω−k

(
1−

n−1∏
j=k

(1− 2−kj)

)
|x|n ≤ n2|x|n

n−1∑
k=0

2−(n−k2 )(2ω)−k.

Since the product 2−(n−k2 )(2ω)−k is maximal for k = n− 3
2
− log2(ω), reaching

a value of C2(2ω)−n for some constant C2, we finally get∣∣∣∣∣
n−1∑
k=0

(−1)n−kek
k!(n− k)!

2−(k2)−(n−k2 )

(
1−

n−1∏
j=k

(1− 2−kk)

)
xn

∣∣∣∣∣
≤ C1C2n

3

(
|x|
2ω

)n
.

This proves that the function ψ(x) is holomorphic for |x| < 2ω. Therefore
E(x) =

∑
n≥0

enxn

2(
n
2)n!

is meromorphic for |x| < 2ω, except for a simple pole at
ω.

By applying singularity analysis, we obtain

en ∼
n!2(n2)(1 + ψ(ω))

−φ′(ω)ωn+1
.

Thus, we can formulate the following theorem:
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Theorem 10.4 ([35, p.5])
The asymptotic behavior of the sequence en of extensional labeled DAGs of
size n is

en ∼ αω−nn!2(n2),

with α = −(1 + ψ(ω))/(ωφ′(ω)) ≈ 0, 567952.

Now we are able to determine the ratio between labeled extensional DAGs
and all labeled DAGs:

Corollary 10.5 ([35, Thm. 1])
The ratio of labeled extensional DAGs among all labeled DAGs is

lim
n→∞

en
an

= 1 + ψ(ω) ≈ 3, 065509−1 ≈ 0, 326210

The error term for the ratio can be described by an additional factor 1 +

O(γ−n) for any fixed γ > 2, since the next singularity has absolute value at
least 2ω.

10.1.2 Unlabeled extensional DAGs

Now we turn to the problem of counting unlabeled extensional DAGs, which
will turn out to be reducible to the labeled case, that has just been discussed
in the previous subsection.

In [27] it has been shown that labeled extensional DAGs have the nice prop-
erty that their automorphism group is always trivial:
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Lemma 10.6 ([27, Lem. 2])
Given a labeled extensional DAG G, the automorphism group Aut(G) of G
is {idG : V (G) → V (G)}, where V (G) is the set of all vertices of G and
idG(v) = v, for all v ∈ V (G).

Proof. Let f ∈ Aut(G) and let c = (x1, . . . , xr) be a cycle of length r ≥ 2

in the disjoint cycle decomposition of the permutation f on V (G). We will
now show that this leads to a contradiction, which implies that there can
only be cycles of length 1, i.e. the automorphism group is trivial. The
cycle (x1, . . . , xr) implies that f(x1) = x2, and by the extensionality of G,
we have that the out-neighbourhoods of x1 and x2 are not equal. As f is an
automorphism, we know that the out-neighbourhoods of x1 and x2 must have
the same cardinality, hence their out-neighbourhoods cannot be empty and
therefore there is a y1, which is in the out-neighborhood of x1, but not in that
of x2. Now suppose that f(y1) = y1. Then 〈f(x1), f(y1)〉 = 〈x2, y1〉 ∈ E(G),
which is a contradiction to y1 not being in the out-neighbourhood of x2.
Therefore f(y1) 6= y1 and hence y1 belongs to a cycle of the permutation
f on V (G) of length greater than or equal to 2. We can repeat the above
procedure arbitrarily many times, and, as the number of vertices ofG is finite,
we will reach a vertex already visited. We thus contradict the acyclicity of
G.

This property of extensional DAGs to have trivial automorphism groups,
makes it very easy to set up a recursion for the number of unlabeled exten-
sional DAGs, because their number is simply en/n!.

Let En be the number of unlabeled extensional DAGs of size n.

With the arguments above we derive again a recursive equation for En that
is similar to that of the number an of labeled DAGs of size n:
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Theorem 10.7 ([27, Thm. 2])
The numbers En of unlabeled extensional DAGs of size n satisfy the recursion

En =
n∑
k=1

(−1)k+1

(
2n−k − n+ k

k

)
En−k,

with E0 = 1.

Obviously in the unlabeled case, we have to use a binomial coefficient instead
of a falling factorial (cf. Equation (10.1)), since the order of the vertices is
irrelevant.

The number of unlabeled extensional DAGs of size 1 to 7 is ([35], Sloane’s
A001192): 1, 1, 2, 9, 88, 1802, 75598

Clearly, the asymptotic behavior of the number En follows immediately from
that of en:

Theorem 10.8
The asymptotic behavior of the sequence En of unlabeled extensional DAGs
of size n is

En ∼ αω−n2(n2),

with α = −(1 + ψ(ω))/(ωφ′(ω)) ≈ 0, 567952.

Remember that in Section 8.3 we have shown that almost all DAGs have
a trivial automorphism group (cf. Theorem 8.7). Therefore Corollary 10.5
holds for unlabeled extensional DAGs as well:

141



Corollary 10.9
The ratio of unlabeled extensional DAGs among all unlabeled DAGs is

lim
n→∞

En
An
≈ 3, 065509−1 ≈ 0, 326210

10.2 Essential DAGs

Now we focus on another interesting subclass of labeled DAGs, namely la-
beled essential DAGs. They originate from the study of Bayesian networks
(see for example [1]), and their enumeration has been studied by Steinsky in
[34] and [33].

Definition 10.10 (essential DAG, [35, p.14])
A DAG is called essential if there is no pair of two vertices u and v such that
the in-neighbourhood of u is the union of the in-neighbourhood of v and the
set {v}, i.e. there is no arc from a vertex v to a vertex u such that u has the
same in-neighbours as v (except for v itself).

Let ên denote the number of labeled essential DAGs of size n.

The recursion for ên can be set up in the same way as the recursion for an by
using the inclusion-exclsuion principle with the difference that now we add
k terminal vertices (vertices with out-degree 0) to an essential DAG of size
n − k, instead of k out-points. This has the advantage that removing such
a terminal vertex from an essential DAG produces another essential DAG,
because it does not influence the parents of any remaining vertex. Obviously
any DAG of size n > 0 has at least one terminal vertex.
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Theorem 10.11 ([34, p.270])
The numbers ên of labeled essential DAGs of size n satisfy the recursion

ên =
n∑
k=1

(
n

k

)
(2n−k − n+ k)kên−k, (10.2)

with ê0 = 1.

Again we have a factor 2n−k − n + k, since this is the number of possi-
bilities to connect the pre-existing n − k vertices with the newly added k

terminal vertices, where n − k choices (namely the in-neighbourhoods of
the pre-existing vertices) are forbidden by the defining property of essential
DAGs. In contrast to labeled extensional DAGs (cf. Equation (10.1)) the
in-neighbourhoods of the k terminal vertices do not necessarily have to be
distinct, therefore we have a k-th power instead of the falling factorial.

The number ên of labeled essential DAGs from size 1 to 7 is ([34], Table 1):
1, 1, 4, 59, 2616, 306117, 87716644

In [33] the asymptotic behavior of labeled essential DAGs has been derived.

Theorem 10.12 ([33, Thm. 1])
The asymptotic behavior of the sequence ên of labeled essential DAGs of size
n is

ên ∼ αn!ω−n2(n2),

with
α ≈ 13, 6517978−1 ≈ 0, 1275334679.
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1 12

4 12

24 6

Figure 10.1: All unlabeled essential DAGs of size 4, together with the number
of their possible labelings ([34, Figure 2]).

Proof. The proof is analogous to that of Theorem 10.4: The recursion (10.2)
is rewritten in the form

B(x)Ê(x) = 1 + h(x),

for some function h(x), where Ê(x) =
∑∞

n=0
ênzn

n!2(
n
2)

denotes the special gen-

erating function of the sequence ên. Then it is shown that h is holomorphic

144



for |x| < 2ω and by applying singularity analysis, we get that

ên ∼ αn!ω−n2(n2),

with

α = −(1− h(ω))/(ωφ′(ω)) ≈ 0, 1275334679 . . . .

Corollary 10.13 ([33, Cor. 1])
The proportion of labeled essential DAGs among all labeled DAGs is

lim
n→∞

ên
an
≈ 0, 073250.

In [35] it has been shown, that the distribution of the number of arcs, the
number of out-points and the height are the same for extensional and essential
DAGs, as well as for the family of all DAGs (The results for extensional and
essential DAGs can be shown analogously to those for all DAGs with some
simple modifications). This implies that all of them have essentially the same
shape. This might be very different for other subclasses of DAGs, such as
lambda-trees, as we have seen in the first part of this thesis.
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