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Kurzfassung der Dissertation

Der erste Teil dieser Dissertation beschäftigt sich mit einer sorgfältigen Analyse verschiedener
bedingter Risikomaße. Diese sind eine Verallgemeinerung von klassischen Risikomaßen,
wie etwa Value at Risk oder expected Shortfall, und können als Basis für dynamisches
Risikomanagement verwendet werden. Basierend auf bedingten unteren Quantilen definieren
wir Distortion-Risikomaße mittels einer pfadweisen Lebesgue-Stieltjes-Darstellung und geben
eine umfangreiche Liste bedingter Eigenschaften an. Bedingter expected Shortfall mit
stochastischem Niveau tritt dann als Spezialfall von Distortion-Risikomaßen auf, wobei wir
auch eine Definition mit expliziter Dichte und angepasster Indikatorfunktion geben. Letztere
Darstellung basiert auf einer verallgemeinerten Definition des bedingten Erwartungswertes
mit sigma-integrierbaren Zufallsvariablen. Wir beweisen zusätzliche Eigenschaften und
geben weitere alternative Darstellungen für bedingten expected Shortfall. Als dynamisches
Risikomaß betrachtet, gilt vor allem die Supermartingaleigenschaft sowie wachsendes Risiko
für Submartingale. Gewichteter bedingter expected Shortfall, welcher beta- und alpha-Value-
at-Risk miteinschließt, ergibt sich als Spezialfall von bedingten Distortion-Risikomaßen.
Darauf aufbauend führen wir Risikobeiträge von gewichtetem bedingten expected Shortfall
ein und beweisen mehrere Eigenschaften, wie z.B. bedingte Kohährenz und die Allokation
nach Euler. Es ist möglich, Kapitalallokationen sowie Risikobeiträge von Teilportfolios
auszurechnen, um den Ursprung der größten Risiken zu identifizieren. Wir geben abschließend
einige motivierende Beispiele, wie z.B. eine Anwendung auf diskrete Zeitreihen. Der erste
Teil dieser Dissertation bietet, vereinfacht ausgedrückt, eine solide und umfangreiche Analyse
von diversen neuen, wie auch bekannten, bedingten Risikomaßen, welche explizit berechnet
werden können und somit sowohl für Praktikerinnen und Praktiker, als auch für Forscherinnen
und Forscher Verwendung finden.

Der zweite Teil dieser Dissertation beschäftigt sich mit der Entwicklung eines Frameworks
zur Schätzung von stochastischen Sterbetafeln und, in weiterer Folge, zur Modellierung
von kumulierten Risiken in Kredit-, Pensions- und Lebensversicherungsportfolios, basierend
auf einer Erweiterung des Kreditrisikomodells CreditRisk+. Das Ableben jedes einzel-
nen Versicherungsnehmers wird durch gemeinsame stochastische Risikofaktoren gesteuert,
welche direkt mit diversen Todesursachen wie etwa Krebs oder Herz-Kreislauf-Erkrankungen
verknüpft werden können. Unser Modell bietet einen äußerst effizienten und numerisch sta-
bilen Algorithmus zur exakten Berechnung der Verlustverteilung des Portfolios zu gegebenen
historischen Sterbedaten. Wie von diversen Aufsichtsbehörden gefordert, können Risikomaße
wie Value-at-Risk und expected Shortfall dieser Verlustverteilungen leicht berechnet werden.
Basierend auf öffentlich zugänglichen Daten entwickeln wir verschiedene Schätzverfahren,
wobei, aufgrund der Komplexität des Problems, Markov Chain Monte Carlo (MCMC) von
besonderer Bedeutung ist. Basierend auf australischen Daten zeigen wir die Funktionsweise,
sowie weitere Anwendungen unseres Modells. Unser Modell erlaubt vor allem die Analyse von
Stressszenarien, wodurch Einblicke in den Wirkungsmechanismus diverser unvorhergesehener

iii



Schadensereignisse und die damit einhergehenden Auswirkungen auf Versicherungsleis-
tungen ermöglicht werden. Solche Szenarien können der Ausbruch einer Epidemie, die
Verbesserung von medizinischen Behandlungen, sowie die Entwicklung wirkungsvollerer
Medikamente sein. Weitere Anwendungen unseres Modells beinhalten die Vorhersage von
Sterbewahrscheinlichkeiten und demographischen Verschiebungen.
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Abstract

In the first part of this thesis we deal with a detailed analysis of several classes of conditional
risk measures which are natural generalisations of classical risk measures such as value at risk
or expected shortfall. They provide the basis for an assessment of acceptable risk in a dynamic
environment to cover unexpected losses. Based on the upper envelope and conditional
lower quantiles, we define conditional distortion risk measures via a pathwise Lebesgue–
Stieltjes integral representation and give a collection of different properties. Conditional
expected shortfall arises as a special case of conditional distortion risk measures. We also
give a definition via an explicit density with adjusted indicator function on a modelling
setup involving stochastic levels and generalised conditional expectations based on sigma-
integrability. We prove additional properties and give several alternative representations of
conditional expected shortfall. Furthermore, we point out the link to dynamic risk measures
and show a supermartingale property, as well as the property of prospective increase in
uncertainty for submartingales. Weighted conditional expected shortfall, which includes
beta- and alpha-value-at-risk, also arises as a special case of conditional distortion risk
measures. We then introduce contributions to weighted conditional expected shortfall
and prove several properties, including conditional coherence and Euler allocation. It is
possible to derive allocation of capital and, in particular, contributions of subportfolios in
order to identify main sources of risk. We end with some motivating examples including
a time series application. Thus, the first part provides a sound approach and a thorough
analysis of some well-known, as well as new classes of conditional risk measures which
can be calculated explicitly. Therefore, we provide a useful toolbox for risk measurement,
addressing practitioners, as well as scientists working in this field.

In the second part of this thesis, using an extended version of the credit risk model
CreditRisk+, we develop a flexible framework to estimate stochastic life tables and to
model credit, life insurance and annuity portfolios, including actuarial reserves. Deaths
are driven by common stochastic risk factors which may be interpreted as death causes
like neoplasms, circulatory diseases or idiosyncratic components. Our approach provides
an efficient, numerically stable algorithm for an exact calculation of the one-period loss
distribution where various sources of risk are considered. As required by many regulators,
we can then derive risk measures for the one-period loss distribution such as value at risk
and expected shortfall. Using publicly available data, we provide estimation procedures
for model parameters including classical approaches, as well as Markov chain Monte Carlo
methods. We conclude with a real world example using Australian death data. In particular,
our model allows stress testing and, therefore, offers insight into how certain health scenarios
influence annuity payments of an insurer. Such scenarios may include outbreaks of epidemics,
improvement in health treatment, or development of better medication. Further applications
of our model include modelling of stochastic life tables with corresponding forecasts of death
probabilities and demographic changes.
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Chapter 1

Introduction

Over the past few years risk management has become increasingly important
in the financial industry, mainly due to new regulatory requirements such as
Basel III and Solvency II. On the other hand, the financial crises of 2007 to
2008 quite dramatically demonstrated that risk management tools had often
been chosen wrongly, such that tail risks and dependencies had consistently been
underestimated. As a consequence, risk management and risk measurement are
active fields of mathematical research with numerous unsolved problems and issues
to address. This thesis deals with two issues in the context of risk management
and is thus divided into two parts. In the first part we provide a sound approach
towards various classes of conditional risk measures and give a thorough analysis
of mentionable properties. In the second part we then deal with risk aggregation
in credit and life insurance portfolios, as well as risks associated to it. In the
following few paragraphs, we will introduce the reader to some classical concepts,
as well as to problems we address.

1.1 Introduction to Part I: Advanced conditional risk mea-
surement

Before we start with the introduction to conditional risk measurement, we go a step back
and briefly discuss the traditional concept of risk measures and recall well-known examples,
cf. McNeil, Frey and Embrechts [85] for a comprehensive introduction to risk management. A
risk measure should quantify the downside risk of a financial position in monetary units such
that if this amount of money is added to the position—often called economic capital—the
risk is acceptable.1 In the financial industry, including banks and insurance companies,
capital requirements are increasingly regulated. For example, banking regulation under
Basel III requires financial institutions to hold capital above some minimum amount, also
known as floor capital, to cover unexpected losses. This additional capital requirement is
divided into three components: Tier 1, Tier 2 and Tier 3 capital. Which risk measures have
to be used for derivation and technical details can be found on the website of the Basel
Committee on Banking Supervision.

Many classes of risk measures, mostly based on economical reasoning, have been defined.
For example, coherent risk measures form an important class and were first introduced

1 It should be noted that in our framework losses are positive. This assumption is not consistent in the
literature and may lead to some changes of signs, inequalities or other minor technicalities.
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Chapter 1. Introduction

in Artzner et al. (1997) [7] and further generalised by Artzner et al. (2002) [8], as well
as Delbaen [29]. Coherent risk measures are normalised, translation invariant, monotone,
subadditive and positively homogeneous, see Definition 1.1. A famous example of a coherent
risk measure is expected shortfall, see Footnote 10, or sometimes also referred to as average
value at risk and closely related to tail value at risk or conditional value at risk. This risk
measure can be derived using an average of value at risk at different levels. Value at risk
itself is a non-coherent risk measure as it is non-subadditive, in general. Subadditivity,
or also often referred to as diversification, simply states that the sum of two stand-alone
capital requirements is higher than the overall capital requirement, i.e., merging risks
never creates extra risk. Note that for heavy-tailed distributions value at risk can strongly
violate subadditivity as, for example, outlined in Embrechts et al. [43]. However, under the
assumption of elliptical loss distributions, it can be shown that value at risk is coherent,
see Embrechts, McNeil and Straumann [40]. Numerous papers deal with the question
whether value at risk or expected shortfall is the most relevant risk measure in practical
situations with the fewest shortcomings. Replacing subadditivity and positive homogeneity
by convexity gives the class of convex risk measures which can be equivalently characterised
by convex acceptance sets. As convexity is a weaker property compared to subadditivity
and positive homogeneity, this class contains coherent risk measures. The motivation behind
convexity is that positive homogeneity has been criticised for ignoring liquidity and risk
concentration. Later, also the class of quasiconvex risk measures was introduced as discussed
in Cerreia-Vioglio et al. [21]. This incomplete list of risk measures should just serve the
purpose of providing a few references for further reading and a brief introduction to some
classical concepts. Further references are given throughout this thesis.

Next, we recall the definition of conditional risk measures as a natural extension to
classical risk measures which are just using unconditional information. As it is interesting
to consider partial and dynamically changing information for a more risk-sensitive approach,
many classes of conditional risk measures have been introduced and considered in the
literature where, for example, Acciaio, Föllmer and Penner [1], as well as Cheridito, Delbaen
and Kupper [23] provide comprehensive introductions. Many contributions to conditional
convex risk measures and their representation in terms of conditional expectation can be
found in Detlefsen and Scandolo [35]. In particular, conditional expected shortfall has been
widely discussed in the literature in the past few years. For example, it is used in the work
of McNeil and Frey [84] where, for continuous distribution functions, their representation
coincides with Definition 5.3. In the textbook of McNeil, Frey and Embrechts [85] different
methods for measuring market risk in the conditional, as well as in the unconditional case are
discussed. Also Peracchi and Tanase [92], as well as Leorato et al. [80] deal with estimation of
conditional expected shortfall. Very importantly, conditional risk measures can also be used
for portfolio selection and portfolio optimisation. Acciaio and Goldammer [2] study these
problems based on conditional convex risk measures, in particular, using conditional expected
shortfall and the conditional entropic risk measure. Another application of conditional risk
measures arises in the context of systemic risk where spatial risk measures are introduced,
see Föllmer [48]. Within this thesis, we will study several explicitly defined conditional risk
measures based on very general settings, including conditional lower quantiles, conditional
distortion risk measures, conditional expected shortfall, weighted conditional expected
shortfall and contributions to weighted conditional expected shortfall.

Throughout this thesis, we will work on a probability space denoted by (Ω,F ,P)2 with

2 We do not denote the probability in the following results.
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1.1. Introduction to Part I: Advanced conditional risk measurement

σ-algebra F on Ω and probability measure P. All random variables are assumed to be real-
valued unless stated otherwise. Let G and H denote further sub-σ-algebras with H ⊂ G ⊂ F .
Filtrations are denoted by (Ft)t∈[0,∞). Using suitable embeddings, such a continuous-time
setting covers discrete, finite and infinite cases as well. The following definition introduces
conditional counterparts of convex and coherent risk measures.

Definition 1.1 (Conditional risk measures). Given a sub-σ-algebra G ⊂ F , let L(P) denote
a suitable subset of L0(Ω,F ,P,R+)3 such that the map ρ[· |G]: L(P)→ L0(Ω,G,P,R+) is
well-defined. Then, ρ is called a conditional risk measure given G if, for all X,Y ∈ L(P), it
satisfies the following conditional properties:
(a) Conditional normalisation: ρ[0 |G] = 0 a.s.4

(b) Conditional translation invariance:5 If Z: Ω→ R is G-measurable and X + Z ∈ L(P),
then ρ[X + Z |G] = ρ[X |G] + Z a.s.

(c) Conditional monotonicity: If X ≤ Y a.s., then ρ[X |G] ≤ ρ[Y |G] a.s.

A conditional risk measure is called conditional convex risk measure if, in addition, it satisfies
the following property:
(d) Conditional convexity: If Z: Ω→ [0, 1] is G-measurable with XZ + Y (1− Z) ∈ L(P),

then ρ[XZ + Y (1− Z) |G] ≤ ρ[X |G]Z + ρ[Y |G](1− Z) a.s.

A conditional convex risk measure is called conditional coherent risk measure if, in addition,
it satisfies the following property:
(e) Conditional positive homogeneity: If Z ≥ 0 a.s. is G-measurable such that XZ ∈ L(P),

then ρ[XZ |G] = ρ[X |G]Z a.s.

Remark 1.2. For technical, as well as consistency reasons, we sometimes have to assume that
conditional risk measures are defined for infinite losses—thus the use of L0(Ω,F ,P,R+)—and
that they map into a space with infinite values. Economically, this can be interpreted as
capital requirements for losses which cannot be compensated simply by money anymore. A
setting including the value −∞, additionally, is avoided as this leads to complications in
many arguments and would correspond to unlimited gains which is not possible in practical
situations.

To go one step Furthermore, dynamical risk measures can be introduced which deal
with the evolution of risk over time. If a filtered probability space is given, the theory of
conditional risk measures can be used to consider the evaluation of risk at different moments
in time by conditioning on the corresponding σ-algebra, i.e., dynamic risk measures can be
interpreted as a sequence of conditional risk measures.

Definition 1.3 (Dynamic risk measures). Given an interval I ⊂ [0,∞), as well as a
filtered probability space (Ω,F , (Ft)t∈I ,P), consider a suitable subset of random variables
L(P) ⊂ L0(Ω,F ,P) such that conditional risk measures ρt[· |Ft]: L(P)→ L0(Ω,Ft,P), for
t ∈ I, are well-defined. Then, (ρt[· |Ft])t∈I is called dynamic risk measure.

3 The set of equivalence classes of all P-a.s. equal F-measurable random variables with values in R ∪ {∞}
is denoted by L0(Ω,F ,P,R+). L0(Ω,F ,P) denotes the set of all elements of L0(Ω,F ,P,R+) which are real-
valued. A ‘suitable’ subset of L0(Ω,F ,P,R+) at least covers the set of bounded elements in L0(Ω,F ,P,R+)
or may equal L0(Ω,F ,P,R+), depending on the specific risk measure.

4 Abbreviation for P-almost surely.
5 Sometimes also referred to as conditional cash invariance.
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Chapter 1. Introduction

Dynamic risk measures provide a rich range of possible applications. In particular,
they fit with dynamic financial models and thus can be perfectly used for stress testing in
risk management. In credit risk, such a consideration of an evolution of acceptable risk
corresponds to the term ‘point-in-time’. Dynamical settings may lead to results which
heavily fluctuate over time. Fluctuations are often reasonable as the riskiness of a portfolio
of securities, insurance contracts or credit contracts varies with market fundamentals, such
as the current level of market volatility or other sources of uncertainty. The work of Acciaio,
Föllmer and Penner [1] provides a useful basis and an extensive collection of references
concerning dynamic risk measures in a discrete-time setting. Furthermore, the authors show
how to identify a conditional risk measure of a stochastic process with a conditional risk
measure of a random variable defined on an appropriate product space. In continuous-time
settings, Delbaen [31] provides an extensive and technically sound study of dynamic risk
measures. Another important concept for dynamic risk measures which is broadly discussed
in the two papers mentioned above is time-consistency, see Definition 10.6. The basic idea
of time-consistency is that if a financial position is preferable to a benchmark at some future
point in time, then it should also be preferable to this benchmark today. Unfortunately, just a
limited range of conditional risk measures satisfy strong or weak versions of time-consistency
which is why we are aiming for alternative dynamic properties.

In Chapter 3 we start with the definitions of G-measurable upper envelope and conditional
lower quantiles based on the slightly less general definitions as, for example, given in Cheridito
and Stadje [24] or McNeil and Frey [84, Section 2]. The latter is a slightly generalised
concept of conditional lower quantiles used in quantile regression, see Koenker [74]. Our
definitions do not rely on the existence of regular conditional distributions as their existence
is not guaranteed in general. For the definition of conditional lower quantiles and other
subsequent conditional risk measures, including conditional expected shortfall, we use the
notion of essential suprema and essential infima for which we refer to the textbook of He,
Wang and Yan [65, Chapter I.3] or Föllmer and Schied [49, Chapter A.5]. Moreover, we
use a general version of conditional expectation which is defined for σ-integrable random
variables. For the definition of σ-integrability, as well as several basic results we again
refer to [65, Chapter I.4]. As in the classical case, note that for existence of conditional
expectation it suffices to assume σ-integrability of either X− or X+ using Remark 5.6(d).

In Chapter 4 conditional lower quantiles are then used to define conditional distortion
risk measures via a pathwise Lebesgue–Stieltjes representation. The theory of distortion risk
measures goes back to Yaari’s dual theory [132] and the axiomatic definition in Wang, Young
and Panjer [126]. Our definition is based on the work of Dhaene et al. [37]. We avoid the
use of Choquet integrals since our definition fits nicely with the theory of conditional lower
quantiles. For completeness note that there exists the concept of spectral risk measures,
cf. Acerbi [4] and [62], which is closely related to distortion risk measures. We prove several
properties of conditional distortion risk measures including coherence under concavity of
the distortion process. Recently, distortion risk measures gained popularity as they are
extensively used in conic finance, see Madan and Cherny [81] and related literature. We
provide a conditional framework for distortion risk measures which can potentially be used
to provide a sound approach for conic finance in a dynamic setting. Moreover, similarly as
in Acciaio and Goldammer [2], conditional distortion risk measures can potentially be used
for portfolio selection in a dynamic setting. For an approach in the classical, unconditional
case see Sereda et al. [112].

In Chapter 5 we define conditional expected shortfall via an adjusted indicator function.
Obtaining the conditional lower quantile representation, we see that conditional expected
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1.1. Introduction to Part I: Advanced conditional risk measurement

shortfall arises as a special case of conditional distortion risk measures. Subsequently, we
list several properties of conditional expected shortfall which are mostly immediate, as
the previously obtained results for conditional distortion risk measures apply. All these
properties are based on a general setting including discrete-time and continuous-time models.
Some alternative, direct proofs of properties for conditional expected shortfall are given in
Section 10.2. Extending the idea of conditional expected shortfall we could also introduce
higher moment conditional coherent risk measures where the classical, unconditional case
is, for example, analysed in Krokhmal [76]. Moreover, this would give rise to conditional
versions of Kusuoka representations of various conditional risk measures, cf. Dentcheva,
Penev and Ruszczyński [34]. These topics are not discussed in this thesis. Moreover, we will
not discuss elicitable risk measures which were introduced by Bellini and Bignozzi [10].

As another special case of conditional distortion risk measures, in Chapter 6 we introduce
weighted conditional expected shortfall. It is a weighted integral over all levels of conditional
expected shortfall and, therefore, allows a weighted consideration of different levels of risk
aversion at the same time. It is a straight-forward generalisation of traditional weighted
expected shortfall and, in particular, includes conditional versions of beta- and alpha-value-
at-risk, cf. Cherny and Madan [25, Example 2.9].

The section about weighted conditional expected shortfall is followed by the introduction
of contributions to weighted conditional expected shortfall in Chapter 7. These contributions
give the impact of a subportfolio to weighted conditional expected shortfall of the total
portfolio. This is, for example, required if an overall bank capital should be allocated amongst
various lines of business or other levels. It is a straight-forward generalisation of traditional
contributions to expected shortfall as in Kalkbrener [70] and Schmock [111, Section 7.3].
We prove several properties including subportfolio continuity and a representation by a
directional derivative which gives rise to the Euler allocation in continuous settings.

In Chapter 8 we give some illustrative examples to show applications of the provided
theory. Among other things, we take a look at a time-series example taken from McNeil
and Frey [84]. We also give an application to an extended version of the credit risk model
CreditRisk+, see Schmock [111, Section 6], which can be used for scenario analysis.

Remarks 1.4. (Preliminary comments).
(a) Note that throughout this thesis losses are assumed to be positive. Thus our results

are based on lower quantiles since we do not want to artificially increase losses. These
conventions vary in the literature and mainly result in changes in signs, technical details,
as well as left- and right-continuity.

(b) Note that some risk measures depend on a given risk level δ. In practical situations δ
takes values close to one, e.g., δ ∈ {0.9, 0.95, 0.995}.

(c) Since the level of risk aversion depends on previous developments on the market, δ
can be chosen G-measurable. For an example with varying delta involving conditional
expected shortfall see Acciaio and Penner [3, Example 1.38(2)].

Given sub-σ-algebra G ⊂ F , Table 1.1 provides a summary of important conditional
properties which are satisfied by different conditional risk measures, including G-measurable
upper envelope XG as given in Chapter 3.1, conditional lower quantiles qG,δ(X) as given in at
Section 3.2, conditional distortion risk measures ρg[X |G] as given in Section 4.1, conditional
expected shortfall ESδ[X |G ] as given in Section 5.1 and weighted conditional expected
shortfall ESG[X |G ] as given in Section 6.1. Details and proofs can be found in respective
sections.
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Chapter 1. Introduction

Table 1.1: Collection of conditional properties of different conditional risk measures. Answers
are meant in a general sense and do not apply to special cases such as δ = 0 a.s.

XG qG,δ(X) ρg[X |G] ESδ[X |G ] ESG[X |G ]

Coherence yes no no6 yes yes

Convexity yes no no6 yes yes

Com. additivity yes yes yes yes yes

Cond. com. additivity yes yes yes yes yes

Monotonicity ≤st(G) yes yes yes yes yes

Monotonicity ≤icx(G) yes yes no6 yes yes

Law-determined yes yes yes yes yes

Regularity yes yes yes yes yes

Time-consistency yes no7 no no no

Supermartingale yes no no yes yes

Fatou yes yes yes yes yes

Continuity from below yes yes yes yes yes

To summarise, the main objectives of the first part of this thesis include the following
bullet points in the context of conditional and dynamic risk measures:
(a) Give and collect mathematically rigorous and explicit definitions for sometimes intuitively

used conditional versions of notions like essential supremum and quantile, distortion
risk measure, expected shortfall, weighted expected shortfall and risk contributions.
Definitions should be kept as general as possible so that restricting assumptions like
boundedness of random variables are not required.

(b) Transfer usual properties to conditional versions.

(c) Prove notable properties of conditional versions.

(d) Find alternatives to time-consistency.

(e) Provide a useful risk management toolbox for practitioners and researchers as conditional
and dynamic risk measures provide the basis for an assessment of acceptable risk in a
dynamic environment.

1.2 Introduction to Part II: Risk aggregation with applica-
tions to credit and life insurance

Risk aggregation of large portfolios in credit, life insurance or related fields typically is a very
challenging task due to high computational complexity. Thus, in applications, Monte Carlo
is the most commonly used approach to approximate loss distributions of such portfolios
as it is easy to implement for all different kinds of stochastic settings but lacks finesse and
speed. In this work we propose a new approach to model aggregated risk in annuity and
life insurance portfolios over one period , as well as a possibility to stochastically model
mortality, considering several sources of risk. Coming from credit risk, this model allows
flexible handling of dependence structures within a portfolio via common stochastic risk

6 Yes, for pathwise concave g.
7 Just middle and weakly acceptance, as well as rejection consistent.
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1.2. Introduction to Part II: Risk aggregation

factors. Extensions to multi-period settings are possible but just partially analysed in this
thesis. The setting and algorithm used here are based on extended CreditRisk+ as introduced
in Schmock [111, Section 6]. No simulation is required, which, unlike Monte Carlo, allows a
very efficient implementation to derive loss distributions exactly given the input data and
the chosen granularity associated with stochastic rounding, see Schmock [111, Section 6.2.2].

Two further observations have led us to the study given in the second part of this thesis.
First, life insurers and pension funds usually use deterministic first-order life tables to
derive premiums, forecasts, risk measures for portfolios and other related quantities. These
first-order life tables are derived from second-order life tables8 plus artificially added risk
margins associated with longevity, size of the company, selection phenomena, estimation and
various other sources, see, for example, Pasdika and Wolff [91]. The risk margins described
there often lack stochastic foundation and are certainly not consistently appropriate for
all companies due to a possibly twisted mix of these risks, see Chapter 13. We are aiming
for a unified and stochastically sound approach to tackle these risks. Secondly, we have
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Figure 1.1: Australian death rates for mental and behavioural disorders (left), as well as for
circulatory diseases (right) from from 1987 to 2011 for age categories 75–79 years, 70–74
years and 65–69 years, as well as both genders.

observed drastic shifts in death rates due to certain death causes over the past decades.
This phenomenon is usually not captured by generation life tables which incorporate only
an overall trend in death probabilities. As an illustration of this fact, Figure 1.1 shows
death rates based on Australian data9 for death causes, such as mental and behavioural

8 Best estimates of the current mortality of a population.
9 Same data are used in Section 15.1. Annual number of registered deaths in Australia for calender years

1922 to 2011 for different death causes based on the International Statistical Classification of Diseases and
Related Health Problems (ICD) is available at the Australian Institute of Health and Welfare (AIHW).
There, deaths are categorised by underlying cause of death, i.e., a disease or injury that initiated the train of
morbid events leading directly to death. Australian population data are available at the Australian Bureau
of Statistics, given annually for June 30 including estimates for births, deaths and migration. In this thesis,
motivated by the approach of the AIHW, death rates are then defined as the number of deaths for a given
calender year and cause of death divided by the estimated resident population of Australia on June 30 of
that year. Due to suitably rich Australian data, this approach suffices and coincides with Definition 11.2.
But note that estimation of crude death rates is a delicate issue due to non-constant population and deaths
occurring randomly throughout each calender year, cf. Gerber [52]. Death rates do not coincide with death
probabilities obtained by some statistical model as death rates always contain statistical fluctuations.
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Chapter 1. Introduction

disorders and circulatory diseases, from 1987 to 2011 for various age categories and both
genders. Diseases of the circulatory system, such as ischaemic heart disease, have been
clearly reduced throughout the past years while death rates due to mental and behavioural
disorders, such as dementia, have doubled for older age groups. This observation nicely
illustrates the existence of serial dependence amongst different death causes.

In Chapter 11 we develop a framework which stochastically incorporates death probabil-
ities into the model and which, simultaneously, accounts for longevity risk in various ways.
Longevity risk essentially reflects any potential risk associated with increasing expected
future life times of policyholders. This can result in higher than expected annuity payments
from an insurer’s perspective since policyholders will ‘outlive their savings’. Motivated by
regulatory risk management standards, our model is used to derive all annuity payments
of an insurer for the next period and thus we are, at first glance, not aiming for long-term
forecasts or pricing. Annuity payments in our model can range from fixed annual pension
payments to variable annuities or index-linked annuity payments with any kind of optionality.
Since many approaches and their implementations, in particular Monte Carlo, for deriving
loss distributions of large portfolios are very slow, our aim is to provide an alternative, faster,
yet flexible approach. Under all these criteria, we choose the application of an extension of
a collective risk model, called extended CreditRisk+. As the name suggests, it is a credit
risk model used to derive loss distributions of credit portfolios and originates from the
classical CreditRisk+ model which was introduced by Credit Suisse First Boston [16] in
1997. Within credit risk models it is classified as a Poisson mixture model. Identifying
default with death makes the model perfectly applicable for various kinds of life insurance
portfolios and annuity portfolios. For the latter, the situation is more elaborate in contrast
to typical credit portfolios as we are interested in the tail of the distribution where only few
deaths (defaults) happen. This, together with a special interest in longevity risk, has led us
to an argumentation based on annuity portfolios. Nevertheless, generalisations to other life
insurance contracts are straight-forward. Extended CreditRisk+ provides a flexible basis for
modelling multi-level dependencies and allows a fast and numerically stable algorithm for
risk aggregation, even in settings with large portfolios. For a more theoretical background,
the reader is referred to the Schmock [111] and the references therein. The algorithms
described there, originally due to Giese [54] for which Haaf, Reiß and Schoenmakers [63]
proved numerical stability, use multivariate iterated Panjer’s recursions, as well as stochastic
rounding for efficient and exact results. The relation to Panjer’s recursion was first pointed
out by Gerhold, Schmock and Warnung [53, Section 5.5]. Panjer’s recursion is an iterative
procedure to derive exact distributions of certain random sums, such as Poisson sums, up to
a desired cumulative probability. As we are going to see, we are also able to derive value at
risk and expected shortfall10 of the whole portfolio loss for arbitrary levels exactly. In our
model, deaths are driven by independent stochastic risk factors which are associated with
different underlying causes of death, see Assumption 12.3, in such a way that variation in

10 Whenever losses are positive, value at risk (VaR) at level δ ∈ [0, 1] of a random variable X: Ω→ R is
defined by qδ(X) = inf{x ∈ R ∪ {∞}|P(X ≤ x) ≥ δ} for δ > 0 and q0(X) := infδ′∈(0,1) qδ′(X) for δ = 0, i.e.,
value at risk is the lower δ-quantile of the distribution function of X or the corresponding infimum for δ = 0.
Given that losses are positive, expected shortfall at level δ ∈ (0, 1) of X is then defined by

ESδ[X] =
1

1− δ

∫ 1

δ

qt(X) dt =
E
[
X 1X>qδ(X)

]
+ qδ(X)(P(X ≤ qδ(X))− δ)

1− δ ,

for δ = 0 by ES0[X] := infδ′∈(0,1) ESδ′ [X], as well as for δ = 1 by ES1[X] := inf{z ∈ R ∪ {∞}|X ≤ z a.s.}.
See, for example, [85] or [111] for further information about these risk measures.
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1.2. Introduction to Part II: Risk aggregation

these risk factors represents unforeseen changes in mortality, e.g., due to advances in medical
treatments or sporadic epidemics. Note that in most cases multiple causes lead to death of
a single person, see AIHW [89] for a discussion of this topic. Whilst not analysed in this
thesis, multiple death causes are interesting insofar as dependencies amongst various causes
can be examined with respect to joint occurrence. Considering a setting based on extended
CreditRisk+, the number of deaths of each policyholder is then assumed to be Poisson
distributed with stochastic intensity, given risk factors. Thus, serving as an approximation
for the true case with single deaths, each person can die multiple times within a period.
But, with proper parameter scaling, approximations to the true case with single deaths are
very good and final loss distributions are accurate due to Poisson approximation, as well
as related results, see Barbour, Holst and Janson [9] or Vellaisamy and Chaudhuri [124]
and the references therein. Introducing a Poisson mixture distribution for the number of
deaths allows derivation of the portfolio loss distribution via iterated Panjer’s recursion,
as mentioned above. Extended CreditRisk+ even allows for dependent risk factors which
makes the model, as well as estimation more involved, see Section 19.1.

Given suitable mortality data, in Chapter 12 we provide several methods to estimate
model parameters including matching of moments, a maximum a posteriori approach and
maximum likelihood. Death and population data are usually freely available on governmental
websites or at statistic bureaus. When using maximum a posteriori and maximum likelihood
procedures for our high-dimensional models, standard deterministic numerical optimisation
routines are not capable of finding solutions. Thus, we suggest the use of Markov chain
Monte Carlo (MCMC) methods to derive estimates where we choose the random walk
Metropolis–Hastings within Gibbs algorithm. It gives reliable results, is easy to implement
and provides an approximation for the posterior distribution of parameters in a Bayesian
sense. The usage of MCMC in a real world example is illustrated in Section 15. There, we
estimate model parameters for Australian death data which results in a setting with 362
model parameters to be estimated. Results are listed in Section 19.3.

A great advantage of our model is that it automatically incorporates many different
sources of risks, such as trends, statistical volatility risk and parameter risk, see Chapter 13.
These risks are reflected in reduced mortality rates and contribute to the risk of longevity.
Effects originating from selection risk within individual companies, as well as structural
differences amongst different lines of business11 are not directly addressed in this thesis as
we could not find suitable publicly available portfolio data. Whenever portfolio data are
available, Remark 13.1 illustrates an approach towards the incorporation of portfolio data
and individual information into our model.

Moreover, our setting with common risk factors allows scenario analysis in the sense that
we can check impacts on annuity portfolios of unexpectedly higher- or lower-than-expected
death rates due to certain underlying causes as outlined in Chapter 14.

In Chapter 16 we illustrate further applications of our model including mortality and
population forecasts. In particular, we compare our model with a one-factor setting to the
traditional Lee–Carter model, see Lee and Carter [78], Brouhns, Denuit and Vermunt [17]
or Kainhofer, Predota and Schmock [69, Section 4.5.1], and conclude that they both give
roughly the same results. We also derive expected future life time for Australians in the
year 2013 and observe interesting, unexpected results, as given in Section 19.3.

Chapter 17 briefly illustrates validation and model selection techniques. Model validation
approaches are based on our assumed dependence and independence structures. All tests

11 Often, clients with a particular risk profile are attracted by specific insurance products.
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Chapter 1. Introduction

suggest that the model suitably fits Australian data.
In a nutshell, the model proposed here offers a wide range of applications and has

advantages over some other approaches, including the following:
(a) The model provides a flexible risk management tool to derive loss distributions of annuity

and life insurance portfolios over one period with a special focus on longevity risk as
required by many supervisory authorities. In particular, common stochastic risk factors
introduce dependence amongst policyholders.

(b) There exists a numerically stable algorithm for our model to derive loss distributions
exactly up to a desired cumulative probability given the input data and the chosen
granularity associated with stochastic rounding, see Schmock [111, Section 6.2.2]. Risk
measures such as value at risk and expected shortfall can then be easily calculated. All
in all, the model ensures high accuracy and fast execution times, simultaneously.

(c) Various sources of longevity risk can be incorporated in the model, including trends,
statistical volatility risk and estimation risk.

(d) The concept of common stochastic risk factors allows scenario analysis to show implica-
tions of changes in health treatments or other unexpected shifts in death rates.

(e) Further applications of the model include stochastic modelling of population forecasts
and life tables which is a big advantage in contrast to point estimates.
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Chapter 2

Motivating Examples

In the introduction we give some indication why conditional and dynamic risk
measurement might be very useful and which shortcomings we want to address.
To make these motivations more explicit, we give some introductory examples
below and suggest a few desirable properties.

A desired, often-cited property for dynamic risk measures is time-consistency as given
in Definition 10.6. But, especially in a continuous-time setting, just very few12 conditional
risk measures satisfy this property, see Kupper and Schachermayer [77, Subsection 1.2].
Therefore, we are aiming for alternative desirable properties of conditional and dynamic
risk measures as given in the motivation below.

Given a filtration (Ft)t≥0, consider an (Ft)t≥0-adapted martingale (Mt)t≥0, as well as a
conditional risk measure ρ[· |Fs] with s ≥ 0. Considering a martingale as a fair game where
expectations of the outcome stay constant over time, it is desirable that risk increases with
time, i.e., the further we look into the future the higher the risk. Therefore, we want to
have an prospective increase in uncertainty, i.e.,

ρ[Mt1 |Fs] = ρ[E[Mt2 |Ft1 ] |Fs] ≤ ρ[Mt2 |Fs] a.s., (2.1)

for all t1, t2 ≥ 0 with s ≤ t1 ≤ t2.
Another desirable property of conditional risk measures in a dynamic setting can easily

be motivated. Given a filtration (Ft)t∈[0,T ] with T > 0, consider a dynamic risk measure
(ρt[· |Ft]t)t∈[0,T ]. Then, for FT -measurable X: Ω→ R, it is desirable that this dynamic risk
measure satisfies the supermartingale property

E[ρt[X |Ft]|Fs] ≤ ρs[X |Fs] a.s., for all s, t ∈ [0, T ] with 0 ≤ s ≤ t ≤ T . (2.2)

Formulated in words, this means that in expectation risk should decrease the closer we come
to maturity as the amount of information increases. Why the converse is not desirable is
captured by the following simple example.

Example 2.3 (A binomial lattice). Consider the following two-period binomial lattice
(X0, X1, X2) where, starting from zero, we move one unit higher with probability p = 0.3
and one unit lower with probability 1− p = 0.7, independently of the previous move. Note
that losses are assumed to be positive in this thesis.

12 Conditional expectation, G-measurable upper envelopes, as well as conditional entropic risk measures
satisfy time-consistency in a continuous-time setting.
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X2 = 2

X1 = 1

X0 = 0 X2 = 0

X1 = −1

X2 = −2

p = 0.3

1− p = 0.7

p2 = 0.09

p(1− p) = 0.21

(1− p)
p = 0.21

(1− p)2
= 0.49

Then, it is immediate that the classical, unconditional lower quantile of X2 at a 90 percent
level gives zero, i.e., indicates no risk at inception. But on the other hand, starting from
X1 = 1, the lower quantile of X2 at a 90 percent level gives two. Analogously, starting from
X1 = −1, the lower quantile of X2 at a 90 percent level gives zero. Thus, in expectation,
the lower quantile of X2 given X1 gives 0.6 implying that, suddenly, risk is apparent. Hence,
it dominates the classical lower quantile and violates (2.2). This example illustrates that a
failing supermartingale property can potentially lead to non-identifiable risk at inception.

Remark 2.4 (Motivation I). In a dynamic setting, conditional risk measures should satisfy
consistency properties. As just very few conditional risk measures satisfy time-consistency,
we are aiming for alternatives such as the supermartingale property, see (2.2), or prospective
increase in uncertainty, see (2.1). As we are going to see, both properties are satisfied by
conditional expected shortfall and weighted conditional expected shortfall, see Chapter 5
and Chapter 6, respectively.

Recalling Definitions 1.1 and 1.3, we proceed with an example where value at risk is a
function of a common stochastic risk factor and, therefore, random. Defining conditional
risk measures will get more involved and will require additional techniques once we condition
on arbitrary sub-σ-algebras.

Example 2.5 (Different quantiles in scenario analysis, see Section 15.2). Let us consider
our annuity model as introduced in Definition 11.11. It is based on the credit risk model
extended CreditRisk+, see Schmock [111, Section 6], and basically aggregates losses in
credit, life insurance or annuity portfolios. Dependence is introduced via common stochastic
risk factors. In the context of life insurance or annuities we identify these stochastic risk
factors with different death causes. As outlined in Section 15.2, it is then straight-forward to
analyse different mortality scenarios via estimating risk factor realisations and corresponding
aggregated losses. High risk factor realisations correspond to increased mortality whilst
low risk factor realisations correspond to decreased mortality, reflecting longevity risk. In
particular, depending on risk factor realisations, aggregated losses can increase or decrease.
More specifically, in Section 15.2 we test the scenario in which deaths due to neoplasms are
reduced for all age groups and genders by 25 percent in 2013 which results in an estimated
risk factor realisation of λ2(2013− t0) = 0.7991 with t0 = 1986. As an illustration, we go one
step further and test what happens to lower quantiles, i.e., value at risk, see Footnote 10, of
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Figure 2.1: Densities and 95 percent quantiles of portfolio loss Lscen for different risk factor
realisations λ2(2013− t0).

the aggregated loss Lscen if we vary risk factor realisations. Figure 2.1 shows the density
and quantiles at level 95 percent for losses Lscen based on different risk factor realisations
λ2(2013− t0). It nicely illustrates how distributions and lower quantiles shift, given different
risk factor realisations. Thus, in this case, we may view lower quantiles as a function of
the risk factor for neoplasms, i.e., as a conditional generalisation given this risk factor. In
Figure 2.2 we plot lower quantiles at levels 90, 95 and 99 percent as a function of the risk
factor for neoplasms Λ2(2013− t0) = λ2(2013− t0). Since lower risk factor realisations lead
to fewer deaths and thus to increased annuity payments from an insurer’s perspective, lower
quantiles are decreasing in λ2(2013− t0).

0.5 1.0 1.5 2.0

23
90

0
24

10
0

24
30

0
24

50
0

risk factor realisation

lo
ss

 q
ua

nt
ile

99% quantile
95% quantile
90% quantile

Figure 2.2: Quantiles of portfolio loss Lscen at levels 90, 95 and 99 percent as functions of
risk factor realisations λ2(2013− t0).
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Remark 2.6 (Motivation II). We want to give sound definitions of various classes of conditional
risk measures which can be calculated explicitly. Moreover, we desire as general definitions
as possible with none or just weak integrability conditions.13

Example 2.7 (Conditional risk measurement for time series). In the paper of McNeil and
Frey [84] an estimation procedure for conditional quantiles and conditional expected shortfall
of a heteroscedastic financial return series is presented. There, volatility is modelled via a
GARCH model with tails of the innovation distribution being estimated via extreme value
theory. Stochasticity of volatility leads to a conditional setting. Via backtesting they show
that the approach using conditional risk measures leads to better, more risk sensitive results.
We use a similar setting in Example 8.1 where several conditional risk measures are derived
explicitly.

Remark 2.8 (Motivation III). Conditional approaches can lead to improved, more risk sensi-
tive risk measurement. This can be of particular interest in the presence of heteroscedasticity
within time series.

13 In the definition of several conditional risk measures, authors often require the existence of regular
conditional probabilities which need not necessarily exist, cf. Stoyanov [116, Section 2.4].
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Chapter 3

Upper Envelope and Conditional
Quantiles

In this chapter we start with the well-known definition of G-measurable upper
envelopes and recall several properties, including time-consistency. They are
then used in the definition of conditional lower quantiles with stochastic level δ.
Conditional lower quantiles with deterministic level, cf. Cheridito and Stadje [24]
or McNeil and Frey [84, Section 2], are a a well-understood generalisation of
classical lower quantiles. There also exists a pointwise definition of conditional
lower quantiles, cf. Acciaio and Goldammer [2], which requires the existence
of regular conditional probabilities. Our definition is based on the notion of an
essential infimum and is well-defined for all F-measurable X: Ω → R ∪ {∞}
without any integrability conditions. We then proof notable properties within our
generalised setting. Invoking the papers mentioned above, some of these properties
are well-known for the less general definition whilst others—like existence of
a version of conditional lower quantiles with measurable paths, conditionally
comonotonic additivity, Fatou properties or continuity from below—could not be
found in previous literature. Some counterexamples then give indications which
properties are not satisfied by conditional lower quantiles.

3.1 Upper envelope

We start with the introduction of G-measurable upper envelopes for a given sub-σ-algebra
G ⊂ F which is a coherent and time-consistent conditional risk measure for itself and will
occur in the definition of conditional lower quantiles and conditional expected shortfall. The
notion of a G-measurable upper envelope is also used in Goldammer and Schmock [57] and
is also known as conditional worst-case risk measure, see Föllmer [50].

Definition 3.1 (G-measurable upper envelope). Given a sub-σ-algebra G ⊂ F , consider
an F-measurable random variable X: Ω → R ∪ {∞}. Define XG as the G-measurable
upper envelope of X, i.e., as the essential infimum of all G-measurable random variables
Z: Ω→ R ∪ {∞} satisfying P(X ≤ Z) = 1.

Example 3.2 (Example 2.3 continued). Recalling Example 2.3 and Definition 3.1, we
immediately get that the upper envelope of X2 given information σ(X0), i.e., at inception,

17



Chapter 3. Upper Envelope and Conditional Quantiles

yields

X
σ(X0)
2 = 2 .

Conversely, the upper of X2 given information σ(X1), i.e., after one step, yields

X
σ(X1)
2 =

{
2 on {X1 = 1} ,

0 on {X1 = −1} .

This nicely illustrates the general pattern that the more information you have the smaller
the risk gets, see Remarks 3.3(d).

Remarks 3.3 (Some properties). Given Definition 3.1, for F-measurable random variables
X,Y : Ω→ R ∪ {∞} we have the following:
(a) Conditional properties of the G-measurable upper envelope can be found in Lemma 3.18

for the case δ = 1.

(b) Note that XG is G-measurable and satisfies XG ≥ X a.s. G-measurability of XG

follows by [49, Theorem A.32(a)]. To show the inequality, let ΦG(X) be the set of
all G-measurable Z: Ω → R ∪ {∞} which are greater than or equal to X a.s. For
Z,Z ′ ∈ ΦG(X) we have min{Z,Z ′} ∈ ΦG(X). Thus, by [49, Theorem A.33(b)], we can
represent XG as the a.s. pointwise limit of a decreasing sequence (Zn)n∈N in ΦG(X).
Then, for n ∈ N, we have Zn ≥ X a.s. which implies XG ≥ X a.s.

(c) Obviously, X ≤ Y a.s. implies XG ≤ Y G a.s.

(d) For sub-σ-algebras H ⊂ G ⊂ F we have XG ≤ XH a.s. since ΦH(X) ⊂ ΦG(X), with the
notation used above. Thus, if X− is σ-integrable given H, then E[XG |H] ≤ XH a.s.,
i.e., the upper envelope satisfies the supermartingale property14 in the sense of partial
ordering as in Bochner [15].

(e) If X is G-measurable, then XG = X a.s.

(f) We have (X + Y )G ≤ XG + Y G a.s. This follows as X ≤ XG a.s. and Y ≤ Y G a.s. imply
X + Y ≤ XG + Y G a.s. Therefore, XG + Y G ∈ ΦG(X + Y ).

(g) If X,Y ≥ 0 a.s., then (XY )G ≤ XGY G a.s. To show this, note that X ≤ XG a.s. and
Y ≤ Y G a.s. imply XY ≤ XGY G a.s. Therefore, XGY G ∈ ΦG(XY ).

(h) For a G-measurable Z: Ω → R ∪ {∞} we have the identity (X + Z)G = XG + Z a.s.
First note that (X +Z)G ≤ XG +ZG = XG +Z a.s., by (f) and (e). On the other hand,
(X + Z)G − Z ∈ ΦG(X) which implies XG ≤ (X + Z)G − Z a.s.

(i) For a G-measurable Z: Ω → [0,∞] we have (XZ)G = XGZ a.s. On the one hand
(XZ)G ≤ XGZG = XGZ a.s., by (e) and (g). On the other hand, define

Z∗ :=


(XZ)G

Z on {Z > 0} ,

XG on {Z = 0} .

Then, Z∗ ∈ ΦG(X) as X ≤ Z∗ a.s. which implies XG ≤ (XZ)G/Z on {Z > 0} a.s.15 On
the set {Z = 0} the relationship holds a.s. by (e), as 0G = 0 a.s.

14 See Lemma 5.23(n), Corollary 5.27 and Lemma 6.5(m) for the supermartingale property of conditional
expected shortfall and weighted conditional expected shortfall.

15 Throughout this thesis, a property is said to hold on some set H a.s. if it holds on H \N , for some
F-P-null-set N .
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3.2. Definition of conditional lower quantiles

(j) Given another sub-σ-algebra H ⊂ G ⊂ F , suppose that X− is σ-integrable with respect
to G. Then, E[X |G ]H ≤ XH a.s. because, for every H-measurable Z: Ω → R ∪ {∞},
X ≤ Z a.s. implies E[X |G ] ≤ E[Z |G ] = Z a.s. Lemma 5.23(o) gives the more general
result, termed as supermartingale property, for conditional expected shortfall.

Lemma 3.4 (Coherence). Given a sub-σ-algebra G ⊂ F , consider Definition 3.1 and
set LG,env(P) := L0(Ω,F ,P,R+). Then, the G-measurable upper envelope is a coherent
conditional risk measure on LG,env(P).

Proof. The conditional properties monotonicity, normalisation, subadditivity, translation
invariance and positive homogeneity follow by Remark 3.3(c), (e) (f), (h) and (i), respectively.

Furthermore, we can easily obtain the tower property for upper envelopes. This is a
desirable property since this immediately implies time-consistency in a dynamic setting. In
particular, the G-measurable upper envelope preserves this property even in a continuous-time
framework.

Lemma 3.5 (Tower property). Given sub-σ-algebras H ⊂ G ⊂ F , consider an F-measurable
X: Ω→ R ∪ {∞}. Then, the upper envelope satisfies (XG)H = XH a.s.

Proof. As XG ≥ X a.s. by Remarks 3.3(b), we have (XG)H ≥ XH a.s. Conversely, invoking
Remarks 3.3(d), XG ≤ XH a.s. and thus, using the notation of Remarks 3.3(b), XH ∈
ΦH(XG) which gives (XG)H ≤ XH a.s.

Remark 3.6 (Time-consistency). Given a filtered probability space (Ω,F , (Ft)t∈I ,P), with
I ⊂ [0,∞), consider F-measurable X,Y : Ω → R ∪ {∞}. Then, the upper envelope is
time-consistent, i.e., for any two stopping times σ, τ : Ω→ I with the property σ(ω) ≤ τ(ω)
for all ω ∈ Ω we have XFτ ≤ Y Fτ a.s. implies XFσ ≤ Y Fσ a.s. This immediately follows
since Fσ ⊂ Fτ , cf. [72, Lemma 2.15], and by using Remarks 3.3(c), as well as Lemma 3.5,
i.e., conditional monotonicity and tower property of the upper envelope. Thus, the upper
envelope is also rejection and acceptance consistent, as well as middle and weakly rejection
and acceptance consistent, see Definition 10.6. Also note that the tower property is exactly
recursiveness as defined in Delbaen [31, Section 6], i.e., (XFσ)Fτ = XFτ a.s.

3.2 Definition of conditional lower quantiles

The following definition introduces conditional lower quantiles which are straight-forward
conditional generalisations of lower quantiles. Cheridito and Stadje [24] as well as McNeil
and Frey [84, Section 2] provide a similar conditional concept with deterministic level
δ ∈ [0, 1] which is closely related to conditional lower quantiles as in our approach. In Jouini
and Napp [68] conditional quantiles are introduced under the existence of regular conditional
probability measures, but not analysed in detail. Here, we avoid a definition of conditional
quantiles based on regular conditional probabilities as their existence heavily depends on
the structure of (Ω,G). In Stoyanov [116, Section 2.4] a simple example is given where
no regular conditional probability measure exists. Sufficient conditions for the existence
of regular conditional probabilities can be found in Parthasarathy [90, Chapter V.8] and
Kallenberg [71, Theorem 6.3]. In statistics, a slightly less general concept of conditional
quantiles is used in quantile regression, cf. Koenker [74].

19



Chapter 3. Upper Envelope and Conditional Quantiles

Definition 3.7 (Conditional lower quantiles). Given a sub-σ-algebra G ⊂ F , let level
δ: Ω→ [0, 1] be G-measurable. Then, for an F -measurable X: Ω→ R∪{∞}, the conditional
lower δ-quantile qG,δ(X) of X given G is defined as the essential infimum of all G-measurable
Z: Ω→ R∪{∞} satisfying P(X ≤ Z |G) ≥ δ a.s. on {δ > 0}, as well as ess inf δ′∈(0,1)qG,δ′(X)
on {δ = 0}.

Remark 3.8. If we skipped the separate definition of conditional lower quantiles on {δ = 0},
then we would get qG,δ(X)1{δ=0} = −∞1{δ=0} a.s. for all random variables X which leads
to inconsistencies in several properties, including normalisation.

Remark 3.9 (Conditional upper quantiles). In a similar fashion as for conditional lower
quantiles, we may define conditional upper δ-quantile qG,δ(X) of X given G as the essential
supremum of all G-measurable Z: Ω→ R∪{∞} satisfying P(X < Z |G) ≤ δ a.s. on {δ < 1}16,
as well as ess sup δ′∈(0,1)q

G,δ′(X) on {δ = 1}. Properties of this risk measure are noted in
Remark 3.26.
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Figure 3.1: Comparison of unconditional lower quantiles (top) and unconditional upper
quantiles (bottom) at levels δ ∈ {0.2, 0.5, 0.8, 1} for the distribution function (cdf) of a
discrete random variable X.

Remark 3.10 (Link between lower and upper conditional quantiles). Given the notions of
Definition 3.7 and Remark 3.9, note that qG,δ(X) = −qG,1−δ(−X) a.s. which follows by
Föllmer and Schied [49, Theorem A.34].

16 Equivalently we can define qG,δ(X) as the essential supremum of all G-measurable random variables
Z: Ω → R ∪ {∞} satisfying P(X ≤ Z |G) ≤ δ a.s. or as the essential infimum of all G-measurable random
variables Z: Ω→ R ∪ {∞} satisfying P(X ≤ Z |G) > δ a.s., on {δ < 1}.
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3.2. Definition of conditional lower quantiles

Remarks 3.11. (Some remarks on conditional lower quantiles).

(a) Setting G trivial17, Definition 3.7 becomes the standard definition lower quantiles
or value at risk, cf. McNeil, Frey and Embrechts [85, Section 2.2.2], for all levels
δ ∈ (0, 1] given by F←(δ) = qδ(X) := inf{x ∈ R ∪ {∞}|F (x) ≥ δ} where F denotes
the distribution function of X. At δ = 0 our definition for lower quantiles becomes
F←(0) = q0(X) := infδ′∈(0,1) F

←(δ′) but note that this is not the standard approach
in the literature. Basic properties and interesting counterexamples of the generalised
inverse can be found in Embrechts and Hofert [39]. For further interesting properties of
upper quantiles see the lecture notes of Schmock [111, Section 7.1]. Correspondingly,
we define upper quantiles by F→(δ) = qδ(X) := sup{x ∈ R ∪ {−∞}|P(X < x) ≤ δ},
for δ ∈ [0, 1), and F→(1) = q1(X) := supδ′∈(0,1) F

→(δ′). Then, [0, 1] 3 δ → F→(δ) is
right-continuous. In Figure 3.1 some lower and upper quantiles of a discrete cumulative
distribution are given. We can observe that they only differ on constant segments of the
function and that they coincide on δ = 1 due to the extra definition in that point.

(b) Note that qG,1(X) = XG a.s. This identity in particular implies that the G-measurable
upper envelope also satisfies properties (d) to (h) from Lemma 3.18.

(c) We have qG,δ(X)1{δ>0} > −∞ a.s.

(d) In Bellini, Müller and Roszza [11] generalised quantiles are analysed and used as risk
measures. Expectiles arise as special cases of such generalised quantiles.

Example 3.12 (Illustrative example). Given n = 10, let X1, . . . , Xn: Ω → {0, 1} be i.i.d.
Bernoulli random variables on F with P(X1 = 1) = 0.2, indicating defaults of companies
1, . . . , n. Then, clearly, X :=

∑n
i=1Xi follows a binomial distribution with parameters

(10, 0.2) and gives the total number of defaults of companies 1, . . . , n. Moreover, given
an event G ∈ F with P(G) = 0.8, consider the sub-σ-algebra G ⊂ F generated by G,
i.e., G = σ(G), where we assume that X1, . . . , Xn are conditionally independent given G.
The event G represents a joint upgrade in credit ratings of all companies—for example a
resolved financial crisis—such that P(Xi = 1 |G) = 0.1 for all i ∈ {1, . . . , n}. Henceforth,
Gc represents a joint downgrade in credit ratings—for example due to the outburst of a
financial crisis—such that P(Xi = 1 |Gc) = 0.6 for all i ∈ {1, . . . , n}. Consequently, the lower
quantile, equal to value at risk, at level δ := 0.95 of the number of defaults of companies
1, . . . , n is given by

qδ(X) = min{k ∈ {0, . . . , n}|P(X ≤ k) ≥ δ} = 4 (3.13)

while the conditional lower quantile at level δ given G, see Section 3.2, is given by

qG,δ(X) = min{k ∈ {0, . . . , n}|P(X ≤ k |G) ≥ δ} =

{
3 on G ,

8 on Gc .

Thus, the last expression gives quantiles of the number of defaults given a positive or negative
credit event. Comparing this result to the classical, unconditional case in (3.13) illustrates
that a positive credit event reduces risk, measured in terms of conditional lower quantiles,
whilst a negative increases risk.

17 G is called trivial if P(G) ∈ {0, 1} for all G ∈ G.
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Chapter 3. Upper Envelope and Conditional Quantiles

3.3 Properties of conditional lower quantiles

In the following, we list several properties of conditional lower quantiles and see that this
concept is a natural conditional generalisation of value at risk.

Lemma 3.14. Given a sub-σ-algebra G ⊂ F , let X: Ω → R ∪ {∞} be F-measurable,
as well as let δ, δ′: Ω → [0, 1] be G-measurable with δ ≤ δ′ a.s. Then, it holds that
P(X ≤ qG,δ(X) |G) ≥ δ and qG,δ(X) ≤ qG,δ′(X), both a.s.

Proof. The second part is immediate by definition of conditional lower quantiles. For the
first argument let ΦG,δ(X) be the set of all G-measurable Z: Ω → R ∪ {∞} satisfying
P(X ≤ Z |G) ≥ δ a.s. For a Z ∈ ΦG,δ(X) we have

E
[
1{X≤Z}∩G

]
≥ E[δ1G] , G ∈ G .

For Z, Z̃ ∈ ΦG,δ(X), define Y := min{Z, Z̃} and note that {Z ≥ Z̃} ∈ G. Then,

E
[
1{X≤Y }∩G

]
= E

[
1{X≤Y }1{Z≥Z̃}∩G

]
+ E

[
1{X≤Y }1{Z<Z̃}∩G

]
, G ∈ G .

Taking conditional expectations, we obtain

E
[
1{X≤Y }∩G

]
≥ E

[
δ1{Z≥Z̃}∩G

]
+ E

[
δ1{Z<Z̃}∩G

]
= E[δ1G] , G ∈ G .

Therefore, Y ∈ ΦG,δ(X). Thus, [49, Theorem A.33(b)] can be applied which states that
the essential infimum qG,δ(X) can be represented as an a.s. pointwise limit of a decreasing
sequence (Zn)n∈N in ΦG,δ(X). Thus, for every n ∈ N,

E
[
1{X≤Zn}∩G

]
≥ E[δ1G] , G ∈ G .

As n→∞, note that 1{X≤Zn} ↘ 1{X≤Z} since {X ≤ qG,δ(X)} =
⋂
n∈N{Zn ≥ X}, and thus

E
[
1{X≤Zn}∩G

]
↘ E

[
1{X≤qG,δ(X)}∩G

]
≥ E[δ1G] , G ∈ G ,

which implies P(X ≤ qG,δ(X) |G) ≥ δ a.s. by definition of conditional expectation.

Lemma 3.15 (Nice version of conditional lower quantiles). Given a sub-σ-algebra G ⊂ F ,
define the interval I := [0,∞). Consider an F-measurable X: Ω→ R∪ {∞} and let (δt)t∈I
be a (G)t∈I-adapted 18 [0, 1]-valued process with increasing and left-continuous paths.19

Then, there exists a version of (qG,δt(X))t∈I with increasing and left-continuous paths with
corresponding topology on R := R ∪ {±∞}.20

Remark 3.16. In particular, this increasing and left-continuous version of conditional lower
quantiles is progressively measurable on (G)t∈I and thus B(I)⊗F-measurable.

18 Adapted to the constant filtration (G)t∈I .
19 When speaking about pathwise properties in this thesis, we always assume all paths (and not just

almost all paths) to satisfy a certain property in order to avoid problems with joint measurability as, for
example, given in [131, Example 7.24].

20 The classical notions for left-continuity do not apply at infinity. See Embrechts and Hofert [39] for some
further remarks on this issue in the context of generalised inverse functions.
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3.3. Properties of conditional lower quantiles

Proof of Lemma 3.15. First re-define the process (qG,δt(X))t∈I for every rational t ∈ I within
the corresponding equivalence class of a.s. equal random variables. Define IQ := I ∩Q and,
for u, v ∈ IQ with u < v, set

Nu,v := {ω ∈ Ω |qG,δu(X)(ω) > qG,δv(X)(ω)} .

By Lemma 3.14, Nu,v is a null set in G and thus

N :=
⋃
u∈IQ

⋃
v∈IQ
u<v

Nu,v

is a null set with N ∈ G as well. On the null set N the process (qG,δt(X))t∈I can be defined
arbitrarily, e.g. set to zero. For all t ∈ I \ IQ and ω ∈ Ω \ N , define

qG,δt(X)(ω) := lim
IQ3u→t−

qG,δu(X)(ω) (3.17)

where the limit exists since IQ is dense in I and since qG,δu(X)(ω) is increasing in u, for all
u ∈ IQ and ω ∈ Ω. Thus, the process we gain has increasing paths which are left-continuous
with corresponding topology on R. Therefore, this version of the process is progressively
measurable on the constant filtration (G)t∈I , cf. Karatzas and Shreve [72, Proposition 1.13].

For all t ∈ I \IQ, we now need to show that, based on (3.17), qG,δt(X) still is a conditional
lower quantile. By Lemma 3.14 and the monotone convergence theorem for conditional
expectation, see [65, Theorem 1.19(1)], we have, for every t ∈ I \ IQ,

P(X ≤ qG,δt(X) |G) = lim
IQ3u→t−

P(X ≤ qG,δu(X) |G) ≥ lim
IQ3u→t−

δu = δt a.s.

If we now choose a G-measurable random variable Z with properties Z ≤ qG,δt(X) a.s. and
P(Z < qG,δt(X)) > 0, then there exists an ε > 0 such that B := {qG,δ(X)− Z > ε} satisfies
P(B) > 0. Due to the left-continuity of (qG,δt(X))t∈I there exists a u∗ ∈ IQ with u∗ < t
such that P(B ∩{qG,δt(X)− qG,δu∗ (X) < ε}) > 0. Thus, P(Z < qG,δu∗ (X)) > 0 which implies
that Z cannot be a conditional lower δu∗-quantile of X and thus not a conditional lower
δu∗-quantile of X by Lemma 3.14. Hence, qG,δt(X) defined as in (3.17) is a conditional
δt-quantile.

Lemma 3.18 (Properties of conditional lower quantiles). Given a sub-σ-algebra G ⊂ F ,
consider F-measurable X,Y : Ω→ R21 and let level δ: Ω→ [0, 1] be G-measurable. Then,
conditional lower quantiles of Definition 3.7 have the following conditional properties22:
(a) Conditional normalisation:

qG,δ(0) = 0 a.s.

(b) Conditional positive homogeneity: If Z: Ω→ [0,∞) is G-measurable, then

qG,δ(XZ) = qG,δ(X)Z a.s.

(c) Conditional translation invariance: If Z: Ω→ R ∪ {∞} is G-measurable, then

qG,δ(X + Z) = qG,δ(X) + Z a.s.

21 It can be shown easily that Items (b), (c), (d), (e), (g) with X ≤ Y a.s., (i), (j) and (k) also hold for
F-measurable X,Y : Ω→ R ∪ {∞}.

22 To guarantee consistency, we choose the conventions ∞ · 0 = (−∞) · 0 = 0 · ∞ = 0 · (−∞) := 0, as well
as ∞+ (−∞) = −∞+∞ :=∞.
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Chapter 3. Upper Envelope and Conditional Quantiles

(d) Comonotonic additivity: If X and Y are comonotonic, see Definition 10.11, then

qG,δ(X + Y ) = qG,δ(X) + qG,δ(Y ) a.s.

(e) Conditionally comonotonic additivity: If X and Y are conditionally comonotonic with
respect to G, see Definition 10.11, then

qG,δ(X + Y ) = qG,δ(X) + qG,δ(Y ) a.s.

(f) Independence: If X is independent of G, then

qG,δ(X) = F←(δ) a.s.,

where F←: [0, 1]→ R denotes the lower quantile function of the distribution function
F of X, i.e., F←(y) = inf{x ∈ R |P(X ≤ x) ≥ y} for every y ∈ (0, 1], as well as
F←(0) := infy∈(0,1) F

←(y).

(g) Monotonicity: If X ≤st(G) Y , see Definition 10.14, then

qG,δ(X) ≤ qG,δ(Y ) a.s.

In particular, X ≤st(G) Y is satisfied if X ≤ Y a.s.

(h) Determined by conditional law: If E[f(X) |G ] = E[f(Y ) |G ] a.s. for every bounded and
continuous function f : R→ R, then

qG,δ(X) = qG,δ(Y ) a.s.

(i) Regularity: If A ∈ G, then X1A = Y 1A a.s. implies

qG,δ(X)1A = qG,δ(Y )1A a.s.

(j) Let f : R ∪ {∞} → R ∪ {∞} be increasing, then

qG,δ(f(X)) ≤ f(qG,δ(X)) a.s.,

with equality if f is strictly increasing.

(k) Middle and weak time-consistency: Let H be a sub-σ-algebra with H ⊂ G and assume
that δ and Z: Ω→ R are H-measurable. Then, qG,δ(X) ≤ Z a.s. implies qH,δ(X) ≤ Z
a.s. as well as qG,δ(X) ≥ Z a.s. implies qH,δ(X) ≥ Z a.s., i.e., conditional lower quantiles
are middle, thus weakly, acceptance and rejection consistent.

(l) Conditional Fatou I: Let (Xn)n∈N be a sequence of real-valued random variables con-
verging to X in conditional probability23, i.e., limn→∞ P(|X −Xn| ≥ ε |G) = 0 a.s. for
every ε > 0. Then,24

lim inf
n→∞

qG,δ(Xn) ≥ qG,δ(X) a.s.

23 In particular, almost sure convergence implies convergence in conditional probability by applying
conditional bounded convergence, cf. [65, Theorem 1.20]. Also not that if (Xn)n∈N converges to X in
probability, we may always find a subsequence which converges to X in conditional probability, again by
conditional bounded convergence.

24 Note that due to countability of natural numbers lim infn→∞ qG,δ(Xn) is G-measurable and that it is
not necessary to use an essential limit inferior.
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3.3. Properties of conditional lower quantiles

(m) Conditional Fatou II: Let (Xn)n∈N be a sequence of real-valued random variables. Then,
X := lim infn→∞Xn satisfies

lim inf
n→∞

qG,δ(Xn) ≥ qG,δ(X) a.s. (3.19)

(n) Continuity from below:25 Let (Xn)n∈N be an increasing sequence of real-valued random
variables converging to X from below, i.e., Xn ↗ X a.s. as n→∞. Then,

lim
n→∞

qG,δ(Xn) = qG,δ(X) a.s.

Remarks 3.20. (Counterexamples for conditional lower quantiles).

(a) Not a supermartingale. Let X be Bernoulli distributed with parameter p = 1
2 and define

σ-algebras F = G = σ(X) and H = {∅,Ω}. Then,

qG,δ(X) = X , δ ∈ [0, 1] ,

as well as

qH,δ(X) =

{
0 for δ ∈

[
0, 1

2

)
,

1 for δ ∈
[

1
2 , 1
]
.

Thus, E[qG,δ(X)|H] = 1
2 for all δ ∈ [0, 1] which implies that the supermartingale

property, as given in Lemma 5.23(n) for conditional expected shortfall, does not hold in
general for conditional lower quantiles.

(b) Not time-consistent. A counterexample, to show that time-consistency does not hold for
a dynamic version of value at risk which is closely related to our concept of conditional
lower quantiles, is given in Cheridito and Stadje [24, Example 3.1]. Alternatively,
we can prove this by showing that qG,δ(X) is not recursive, i.e., we give an example
where qH,δ(qG,δ(X)) < qH,δ(X). See Delbaen [31, Section 6] for equivalence between
time-consistency and recursiveness. Let Ω := {ω1, ω2, ω3, ω4} where F is given by the
power set of Ω and where P({ωi}) := 1

4 for all i ∈ {1, 2, 3, 4}. Moreover, let H := {∅,Ω},
as well as G := {∅, {ω1, ω2}, {ω3, ω4},Ω} and let the random variable X be given by

X(ω) = 1{ω1}(ω)− 1{ω4}(ω) , ω ∈ Ω .

As easily can be seen, conditional lower quantiles satisfy

qG,δ(X)(ω) = −1{ω3,ω4}(ω) , δ ∈
[
0,

1

2

]
and ω ∈ Ω ,

as well as

qH,δ(X)(ω) = 0 , δ ∈
(1

4
,
3

4

]
and ω ∈ Ω . (3.21)

On the other hand,

qH,δ(qG,δ(X))(ω) = −1 , δ ∈
[

0,
1

2

]
and ω ∈ Ω ,

25 Modulo some mild technicalities, it is known that the Fatou property as given in (m) and continuity
from below are equivalent for conditional convex risk measures, cf. Acciaio and Goldammer [2, Appendix A].
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Chapter 3. Upper Envelope and Conditional Quantiles

which implies qH,δ(qG,δ(X)) < qH,δ(X) for all δ ∈
(

1
4 ,

1
2

]
. This gives a counterexample to

rejection consistency and, therefore, to time-consistency of conditional lower quantiles.
Moreover, note that

E[X |G ] (ω) =
1

2

(
1{ω1,ω2}(ω)− 1{ω3,ω4}(ω)

)
, ω ∈ Ω ,

implying that the conditional lower quantile of E[X |G ] is given by

qG,δ(E[X |G ])(ω) =
1

2
, δ ∈

(1

2
, 1
]

and ω ∈ Ω .

Thus, by Equation (3.21), we have qG,δ(E[X |G ]) > qG,δ(X) for δ ∈
(

1
2 ,

3
4

]
which shows

that conditional lower quantiles do not satisfy the supermartingale property and the
uncertainty decrease in projections as given in Lemma 5.23(n) and (o), in general.

(c) Fatou’s lemma for conditional lower quantiles is limited. Consider probability space
([0, 1],B([0, 1]), λ) where λ denotes the Lebesgue–Borel measure on Borel-σ-algebra
B([0, 1]) and let G = F = B([0, 1]). Then, define intervals

An :=
[ k

2m
,
k + 1

2m

]
, n ∈ N ,

where m := blog2(n)c and k := n− 2m. These intervals repeatedly jump through [0, 1]
and get smaller such that limn→∞ P(An) ≤ limn→∞

2
n = 0. Then, for all n ∈ N, define

Xn := 1Bn with Bn := Ac
n and set X := 1. Clearly, Xn converges to X in probability as

n → ∞ since P(|Xn −X| ≥ ε) = P(An) ≤ 2
n for all ε ∈ (0, 1]. On the other hand, for

every G-measurable δ: Ω→ [0, 1], Lemma 3.18(c) implies

lim inf
n→∞

qG,δ(Xn) = lim inf
n→∞

1Bn = 0 < X = qG,δ(X) a.s.

Hence, Fatou’s lemma for conditional lower quantiles does not hold under the assumption
of convergence in probability.

(d) Not continuous from above. Consider the probability space ([0, 1],B([0, 1]), λ) where λ
denotes the Lebesgue–Borel measure on Borel-σ-algebra B([0, 1]) and let G := {∅,Ω}.
Set δ = 1

2 and consider a Bernoulli random variable X(ω) := 1[δ,1](ω) for all ω ∈ Ω.

Then, for every n ∈ N and ω ∈ Ω, define Xn(ω) := 1[δn,1](ω) with δn = 1
2 −

1
n+1 .

Note that Xn ↘ X a.s. as n → ∞. But, on the other hand, qG,δ(X) = 0, as well as
qG,δ(Xn) = 1 for all n ∈ N which implies

lim
n→∞

qG,δ(Xn) 6= qG,δ(X) .

Proof of Lemma 3.18. As a convention, we assume that δ > 0 a.s., since on {δ = 0} all
results follow by passing to the essential infimum and taking the cases of ±∞ into account.

(a) Using the same notation as in the proof of Lemma 3.14, we have qG,δ(0) ∈ ΦG,δ(0)
and, for every Z ≤ 0 a.s. with P(Z < 0) > 0, we have qG,δ(Z) /∈ ΦG,δ(0) which gives the
result.

(c) Using the notation as in the proof of Lemma 3.14, we get qG,δ(X)+Z ∈ ΦG,δ(X+Z) as
P(X+Z ≤ qG,δ(X)+Z |G) = P(X ≤ qG,δ(X) |G) ≥ δ a.s. and as qG,δ(X)+Z is G-measurable.
Therefore,

qG,δ(X + Z) ≤ qG,δ(X) + Z a.s.
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3.3. Properties of conditional lower quantiles

Conversely, we have qG,δ(X + Z)− Z ∈ ΦG,δ(X) as qG,δ(X + Z)− Z is G-measurable and as
P(X ≤ (qG,δ(X + Z)− Z) |G) = P(X + Z ≤ qG,δ(X + Z) |G) ≥ δ a.s. Therefore,

qG,δ(X) ≤ qG,δ(X + Z)− Z a.s.

Altogether, qG,δ(X + Z) = qG,δ(X) + Z a.s. On the set {δ = 1} the result immediately
follows from Remarks 3.3(h).

(b) On {Z = 0} the result follows by (a). Otherwise, similarly as for (c) we have
qG,δ(XZ) = qG,δ(X)Z a.s., for Z ≥ 0 a.s. On {δ = 1} we can use Remarks 3.3(i).

(d) As comonotonicity implies conditional comonotonicity with respect to G, as shown
in Lemma 10.13, the result follows by (e).

(e) Note that if one side of the equation equals infinity on some set with positive measure,
so does the other. Thus, we may assume both sides to be finite a.s. First, let (qG,t(X))t∈[0,1]

be the version of the process of conditional lower quantiles with left-continuous and increasing
paths as of Lemma 3.15. By extending the probability space, if necessary, we may assume
the existence of a random variable U on (Ω,F ,P) which is independent of G and uniformly
distributed on [0, 1] meaning that P(U ≤ t) = t for all t ∈ [0, 1]. Then, by Lemma 10.3(b)
and since X and Y are conditionally comonotonic, we get, for all x, y ∈ R,

P(X ≤ x, Y ≤ y |G) = min{P(X ≤ x |G),P(Y ≤ y |G)}
= P

(
U ≤ min{P(X ≤ x |G),P(Y ≤ y |G)}

∣∣G)
= P

(
U ≤ P(X ≤ x |G), U ≤ P(Y ≤ y |G)

∣∣G) a.s.

Consequently, if we use the result obtained in (5.16) and the corresponding notation, we
get, for all x, y ∈ R,

P(X ≤ x, Y ≤ y |G) = P(qG,U (X) ≤ x, qG,U (Y ) ≤ y |G) a.s. (3.22)

Then, fix a G-measurable random variable Z: Ω→ R and note that

{X + Y ≤ Z} =
⋃

p,q,r∈Q
p+q−r≤0

(
{X ≤ p} ∩ {Y ≤ q} ∩ {Z ≤ r}

)
,

which, due to the countability of Q, can be rearranged as

{X + Y ≤ Z} =
⋃
n∈N

(
{X ≤ pn} ∩ {Y ≤ qn} ∩ {Z ≤ rn}

)
=:
⋃
n∈N

An(X,Y ) ,

where pn, qn, rn ∈ Q with pn + qn− rn ≤ 0 for all n ∈ N. Now, define B1(X,Y ) := A1(X,Y )
and Bn(X,Y ) := An(X,Y ) \Bn−1(X,Y ) for all n ∈ N which is a family of disjoint events
such that {X + Y ≤ Z} =

⋃
n∈NBn(X,Y ). Correspondingly, we get

{qG,U (X) + qG,U (Y ) ≤ Z} =
⋃
n∈N

Bn(qG,U (X), qG,U (Y )) .

Then, by induction, by (3.22), as well as by the definition of generalised conditional
expectation, we get

P(Bn(X,Y ) |G) = P
(
Bn(qG,U (X), qG,U (Y ))

∣∣G) a.s., for all n ∈ N .
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Chapter 3. Upper Envelope and Conditional Quantiles

Finally, conditional monotone convergence as given in [65, Theorem 1.19(1)] implies

P(X + Y ≤ Z |G) =
∑
n∈N

P(Bn(X,Y ) |G) =
∑
n∈N

P
(
Bn(qG,U (X), qG,U (Y ))

∣∣G)
= P(qG,U (X) + qG,U (Y ) ≤ Z |G) a.s.,

(3.23)

for all G-measurable Z: Ω→ R.

Next, we want to show that Z∗ := qG,δ(X) + qG,δ(Y ) is the conditional lower quantile of
X + Y with respect to G. Therefore, by (5.16),

{qG,U (X) + qG,U (Y ) ≤ Z∗} ⊃ {qG,U (X) ≤ qG,δ(X)} ∩ {qG,U (Y ) ≤ qG,δ(Y )}
=
{
U ≤ min{P(X ≤ qG,δ(X) |G),P(Y ≤ qG,δ(Y ) |G)}

}
⊃ {U ≤ δ} a.s.

which, by (3.23) and by using Lemma 10.3(b) again, implies

P(X + Y ≤ Z∗ |G) ≥ δ a.s.

Thus, qG,δ(X + Y ) ≤ Z∗ a.s. On the other hand, let ε ≥ 0 a.s. be G-measurable such that
for A := {ε > 0} we have P(A) > 0. Then, by (5.16) again, up to a null set, we have

{qG,U (X) + qG,U (Y ) > Z∗ − 2ε}
⊃ {qG,U (X) > qG,δ(X)− ε} ∩ {qG,U (Y ) ≤ qG,δ(Y )− ε}
=
{
U > max{P(X ≤ qG,δ(X)− ε |G),P(Y ≤ qG,δ(Y )− ε |G)}

}
.

Since P(X ≤ qG,δ(X)− ε |G) < δ a.s. and P(Y ≤ qG,δ(Y )− ε |G) < δ a.s. on A, we get, using
Lemma 10.3(b),

P(X + Y > Z∗ − 2ε |G) > δ a.s. on A ,

i.e., Z∗ − 2ε cannot be a conditional δ-quantile with respect to G. Hence, qG,δ(X + Y ) = Z∗

a.s. which gives the result.

(f) Note that due to Lemma 10.3(b) we can conclude P(X ≤ Z |G) = F (Z), for every
G-measurable random variable Z: Ω→ R, where F denotes the distribution function of X.
Since F (x) ≥ y is equivalent to F←(y) ≤ x for all x ∈ R and y ∈ [0, 1], cf. McNeil, Frey and
Embrechts [85, Appendix A.1.1], we get

qG,δ(X) = ess inf{Z: Ω→ R ∪ {∞} is G-measurable |Z ≥ F←(δ)}
= F←(δ) a.s.

(g) By Lemma 3.14 and Lemma 10.15 we have

P(X ≤ qG,δ(Y ) |G) ≥ P(Y ≤ qG,δ(Y ) |G) ≥ δ a.s.,

which, similar as in Lemma 3.14, yields the result.

(h) The result immediately follows by Lemma 10.15(a).

(i) This follows from conditional positive homogeneity in (b).

(j) Note that 1{X≤Z} ⊂ 1{f(X)≤f(Z)}. Thus,

P(f(X) ≤ f(qG,δ(X)) |G) ≥ P(X ≤ qG,δ(X) |G) ≥ δ a.s.,
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3.3. Properties of conditional lower quantiles

implying that f(qG,δ(X)) ≥ qG,δ(f(X)) a.s. For the case where f is strictly increasing,
let Z∗ be G-measurable with Z∗ ≤ f(qG,δ(X)) a.s. and P(Z∗ < f(qG,δ(X))) > 0. Then,
f−1(Z∗) ≤ qG,δ(X) a.s. where the inequality is strict with strictly positive probability. Thus,

P
(
P(X ≤ f−1(Z∗) |G) ≥ δ

)
= P

(
P(f(X) ≤ Z∗ |G) ≥ δ

)
< 1

since qG,δ(X) is the conditional δ-quantile of X which implies that Z∗ cannot be a conditional
δ-quantile of f(X). Hence, f(qG,δ(X)) ≤ qG,δ(f(X)) which gives the result.

(k) If qG,δ(X) ≤ Z a.s. for H-measurable δ and Z, then

P(X ≤ Z |H) ≥ P(X ≤ qG,δ(X) |H) = E
[
P(X ≤ qG,δ(X) |G)

∣∣H] ≥ δ a.s.,

by Lemma 3.14 and properties of conditional expectation, see [65, Chapter I.4]. Thus, we
have qH,δ(X) ≤ Z a.s. For the second statement let qG,δ(X) ≥ Z a.s., for H-measurable δ
and Z, and assume that there exists an H-measurable set H such that qH,δ(X) < Z − ε on
H, for a constant ε > 0. Thus, by Lemma 3.14, P(X ≤ Z − ε |H) ≥ δ a.s. on H. On the
other hand, as qG,δ(X) ≥ Z a.s. is assumed,

P(X ≤ Z − ε |H) ≤ E
[
P(X ≤ qG,δ(X)− ε |G)

∣∣H] < δ a.s. on H .

This gives a contradiction to P(X ≤ Z − ε |H) ≥ δ a.s. Hence, H has to be a null set which
gives the result.

(l) On {qG,δ(X) = −∞} the result is immediate. Thus, assume qG,δ(X) > −∞ a.s. Note
that, for all G-measurable Z1, Z2: Ω→ R which satisfy Z1 = Z2 − ε < Z2 < qG,δ(X) a.s. and
constant ε > 0, we have

P(Xn ≤ Z1 |G) ≤ P(X ≤ Z2 |G) + P(|X −Xn| ≥ ε |G) a.s.

Since the last term tends to zero as n→∞ by assumption, we get, for γ := P(X ≤ Z2 |G),

lim sup
n→∞

P(Xn ≤ Z1 |G) ≤ γ < δ a.s.,

where the inequality on the right follows by the minimality of qG,δ(X). Thus, defining
An :=

⋃
m≥n{P(Xm ≤ Z1 |G) > (δ + γ)/2} for n ∈ N, we have that (An)n∈N is a decreasing

sequence of sets with limn→∞ P(An) = 0, as well as qG,δ(Xn )1Ac
n
≥ Z1 1Ac

n
a.s. for all n ∈ N.

Thus, lim infn→∞ qG,δ(Xn) ≥ Z1 a.s. Since Z1 can approach qG,δ(X) arbitrarily close, the
result follows.

(m) Define the sequence Yn := Xn ∧ X for all n ∈ N and note that limn→∞ Yn = X
a.s. Since almost sure convergence implies convergence in conditional probability for all
σ-algebras G, see Footnote 23, we can apply (l) to conclude

lim inf
n→∞

qG,δ(Yn) ≥ qG,δ(X) a.s.

The result then follows by conditional monotonicity of conditional lower quantiles, see (g),
since Yn ≤ Xn a.s. for all n ∈ N.

(n) Note that conditional monotonicity in (g) implies

lim sup
n→∞

qG,δ(Xn) ≤ qG,δ(X) a.s.

Combining this observation with the conditional Fatou property in (l), the result immediately
follows since almost sure convergence implies convergence in conditional probability.
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Chapter 3. Upper Envelope and Conditional Quantiles

Remark 3.24 (qG,δ(X) as a conditional risk measure). Given Definition 3.7 and considering
levels δ which satisfy δ > 0 a.s., conditional lower quantiles qG,δ(·) can be seen as conditional
risk measures defined on LG,quant(P) := L0(Ω,F ,P). However, they are not coherent as
subadditivity is even violated in the classical case unless special distributional properties
are assumed, see Embrechts, McNeil and Straumann [40].

Remark 3.25. By setting G trivial, see Footnote 17, all results in Lemma 3.18 correspond
to the respective properties of value at risk. In particular, Lemma 3.18(e) corresponds to
comonotonic additivity of value at risk as outlined in Pflug [94, Proposition 3(v)].

Remark 3.26 (Properties of conditional upper quantiles). Note that by Remark 3.10 many
properties of conditional lower quantiles can immediately be transferred to conditional upper
quantiles, modulo some mild adaptions. The first statement of Lemma 3.14 changes to
P(X ≤ qG,δ(X) |G) ≤ δ a.s. whereas the second statement remains valid. In Lemma 3.15
we just have to replace ‘left-continuous’ by ‘right-continuous’ twice. Properties (a) to (k)
of Lemma 3.18 hold one-to-one for conditional upper quantiles whereas for conditional
Fatou properties (l) and (m) the conclusions change to lim supn→∞ qG,δ(Xn) ≤ qG,δ(X) a.s.
Continuity from below in (n) changes to continuity from above for increasing Xn ↗ X a.s.
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Chapter 4

Conditional Distortion Risk
Measures

In this Chapter we define and analyse conditional distortion risk measures which
are a natural extension to classical, unconditional distortion risk measures as
given, for example, in the work of Dhaene et al. [37, Section 2]. The generalisation
of distortion risk measures to a conditional setting has not been studied in the
previous literature as far as the authors know. The basic idea is to create a
conditional risk measure which takes a weighted average of conditional lower
quantiles at various stochastic levels, i.e., a mixture of different levels of risk
aversion. Such an approach covers various other conditional risk measures such
as conditional expected shortfall. Many properties can immediately be obtained
from the corresponding result of conditional lower quantiles. In particular, the
Fatou property holds for all conditional distortion risk measures. Considering a
distortion process with concave paths gives a conditionally coherent risk measure.

4.1 Definition of conditional distortion risk measures

Motivated by the unconditional case as in Dhaene et al. [37, Section 2], we introduce the
class of conditional distortion risk measures. Consequently, we create a weighted average
of conditional lower quantiles at various levels using a distortion process which is given in
Definition 4.1. Distortion processes are a natural extension to distortion functions within
the classical approach. As there exists a modification of conditional lower quantiles with left-
continuous paths, see Lemma 3.15, the distortion process is assumed to have left-continuous
paths as well.

Definition 4.1 (Distortion process). Given a sub-σ-algebra G ⊂ F , a (G)t∈[0,1]-adapted
process g: [0, 1]×Ω→ [0, 1] with increasing, right-continuous paths and boundary conditions
g(0, ·) = 0 a.s., g(1, ·) = 1 a.s. is called distortion process.

Remark 4.2. According to the definition above, each path [0, 1] 3 t 7→ g(t, ω), with ω ∈ Ω,
of a distortion process g is in the space D([0, 1]) equipped with the Skorohod topology,
cf. Billingsley [14, Chapter 3]. As paths are right-continuous, a distortion process g is
B([0, 1])⊗ G-measurable with B([0, 1]) denoting the Borel σ-algebra on [0, 1], cf. Karatzas
and Shreve [72, Proposition 1.13].

31



Chapter 4. Conditional Distortion Risk Measures

Definition 4.3 (Suitable subspace). Given a sub-σ-algebra G ⊂ F , let g be a distortion
process as given in Definition 4.1. By L−G,g,cdrm(P) we denote the set of all F-measurable
X: Ω→ R with ∫

[0,1]
q−G,1−t(X) g(dt, ·) <∞ a.s.,

where q−G,1−t(X) := max{0,−qG,1−t(X)} and where (qG,u(X))u∈[0,1] denotes the version of
conditional lower quantiles with increasing, left-continuous paths, see Lemma 3.15. By
LG,g,cdrm(P) we denote the set of all X ∈ L−G,g,cdrm(P) such that∫

[0,1]
|qG,1−t(X)| g(dt, ·) <∞ a.s.

Remark 4.4. Integrals in the definitions above and below are pathwise Lebesgue–Stieltjes
integral with respect to the measure induced by the paths of the distortion process and,
moreover, they are indistinguishable from corresponding stochastic integrals, cf. the textbook
of Protter [95, Theorem 17, Section 5, Chapter II]. Of course, tools from general stochastic
integration can be used, again see [95, Chapter II].

Definition 4.5 (Conditional distortion risk measures). Given a sub-σ-algebra G ⊂ F , let
g be a distortion process in the sense of Definition 4.1. Consider an X ∈ L−G,g,cdrm(P) and
let (qG,u(X))u∈[0,1] denote the version of conditional lower quantiles with increasing and
left-continuous paths, see Lemma 3.15. Then, the conditional g-distortion risk measure with
respect to G is defined by the pathwise Lebesgue–Stieltjes integral

ρg[X |G] :=

∫
[0,1]

qG,1−t(X) g(dt, ·) .

Remarks 4.6. (Conditional distortion risk measures).
(a) Conditional distortion risk measures provide a wide and flexible range of useful condi-

tional risk measures. In particular, many different structures of risk aversion can be
modelled.

(b) In the unconditional case with trivial G, see Footnote 17, distortion risk measures can
be defined via Choquet integrals, cf. Vitali [125], Choquet [27], or Denneberg [33] for
theoretical results including the theory of capacities. These theoretical concepts are
transferred to risk measurement in the papers of Dhaene et al. [36, Section 5.1] as well
as [37, Section 2]. In this thesis we choose a definition using conditional lower quantiles
in order to benefit from our previously derived results and to avoid an introduction of a
conditional version of Choquet integrals.

(c) As X ∈ L−G,g,cdrm(P), we know that negative parts of the integral are finite while positive
parts and, therefore, conditional distortion risk measures may still be infinite.

(d) Fasen and Svejda [46] analyse conditionally consistent multi-period distortion risk
measures which, in contrast to conditional distortion risk measures as introduced in this
thesis, are based on a different concept.

Remarks 4.7 (Special cases of distortion risk measures). Similar as in the unconditional case,
cf. Sereda et al. [112, Section 25.5], conditional lower quantiles and conditional expected
shortfall arise as special cases of conditional distortion risk measures. In particular, using
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the assumptions of Definition 4.5 and letting δ: Ω → [0, 1] be G-measurable, we get the
following:

(a) Conditional lower quantile: qG,δ(X) = ρg[X |G] a.s. with distortion process

g(t, ω) :=

{
0 for 0 ≤ t < 1− δ(ω) and ω ∈ Ω ,

1 for 1− δ(ω) ≤ t ≤ 1 and ω ∈ Ω .

Thus, in general, distortion risk measures are not subadditive.

(b) Conditional expected shortfall: Assume that 0 < δ < 1 a.s. and consider the quantile
representation of conditional expected shortfall as given in Lemma 5.12. Then, we have
ESδ[X |G ] = ρg[X |G] a.s. with distortion process

g(t, ω) := min
{ t

1− δ(ω)
, 1
}
, t ∈ [0, 1] and ω ∈ Ω .

4.2 Properties of conditional distortion risk measures

In this section we provide a list of various conditional properties of conditional distortion
risk measures. In particular, all conditional properties hold in the unconditional case, i.e.,
for trivial G, see Footnote 17, as well. Most results are easily obtained from respective
results of conditional lower quantiles.

Lemma 4.8 (Properties of conditional distortion risk measures). Recall Definitions 4.1, 4.3
and 4.5. Given a sub-σ-algebra G ⊂ F and distortion process g and let X,Y ∈ L−G,g,cdrm(P).
Then, conditional g-distortion risk measures have the following conditional properties,
considering conventions of Footnote 22:

(a) Conditional normalisation:

ρg[0 |G] = 0 a.s.

(b) Conditional positive homogeneity: If Z: Ω→ [0,∞) is G-measurable, then

ρg[XZ |G] = ρg[X |G]Z a.s.

(c) Conditional translation invariance: If Z: Ω→ R ∪ {∞} is G-measurable, then

ρg[X + Z |G] = ρg[X |G] + Z a.s.

(d) Comonotonic additivity: If X and Y are comonotonic, see Definition 10.11, then

ρg[X + Y |G] = ρg[X |G] + ρg[Y |G] a.s.

(e) Conditionally comonotonic additivity: If X and Y are conditionally comonotonic with
respect to G, see Definition 10.11, then

ρg[X + Y |G] = ρg[X |G] + ρg[Y |G] a.s.
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(f) Independence: If X is independent of G, then

ρg[X |G] =

∫
[0,1]

F←(1− t) g(dt, ·) a.s.,

where F←: [0, 1]→ R denotes the lower quantile function of the distribution function
F of X, i.e., F←(y) = inf{x ∈ R |P(X ≤ x) ≥ y} for all y ∈ (0, 1] as well as
F←(0) = infy∈(0,1) F

←(y).

(g) Conditional monotonicity: If X ≤st(G) Y , see Definition 10.14, then

ρg[X |G] ≤ ρg[Y |G] a.s.

(h) Determined by conditional law: If E[f(X) |G ] = E[f(Y ) |G ] a.s. for every bounded and
continuous function f : R→ R, then

ρg[X |G] = ρg[Y |G] a.s.

(i) Regularity: If A ∈ G, then X 1A = Y 1A a.s. implies

ρg[X |G]1A = ρg[Y |G]1A a.s.

(j) If f : R→ R is convex and if X ∈ LG,g,cdrm(P), then

f(ρg[X |G]) ≤
∫

[0,1]
f(qG,1−t(X)) g(dt, ·) a.s.

If in addition f is strictly increasing, then

f(ρg[X |G]) ≤ ρg[f(X) |G] a.s.

If f is concave, instead, then the reverse inequalities hold where for ρg[f(X) |G] to exist
we require f(X) ∈ L−G,g,cdrm(P) in our definition.

(k) Conditional Fatou I: Let (Xn)n∈N be a sequence of random variables bounded from
below by some G-measurable C: Ω→ R converging to X in conditional probability, i.e.,
limn→∞ P(|X −Xn| ≥ ε |G) = 0 a.s. for every ε > 0, see Footnote 23. Then,

lim inf
n→∞

ρg[Xn |G] ≥ ρg[X |G] a.s.

(l) Conditional Fatou II: Let (Xn)n∈N be a sequence of random variables bounded from
below by some G-measurable C: Ω→ R. Then, X := lim infn→∞Xn satisfies

lim inf
n→∞

ρg[Xn |G] ≥ ρg[X |G] a.s. (4.9)

(m) Continuity from below: Let (Xn)n∈N be an increasing sequence of real-valued random
variables bounded from below by some G-measurable C: Ω→ R converging to X from
below, i.e., Xn ↗ X a.s., as n→∞. Then,

lim
n→∞

ρg[Xn |G] = ρg[X |G] a.s.
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4.2. Properties of conditional distortion risk measures

(n) Alternative representation with a left-continuous distortion process:

ρg[X |G] =

∫
[0,1]

qG,t(X) g(dt, ·) a.s.

where g(t, ·) = 1− g(1− t, ·) for all t ∈ [0, 1].

(o) Derivative representation: If for a.a. ω ∈ Ω there exists a measurable derivative function
g′(·, ω): [0, 1]→ [0,∞) with g(t, ω) =

∫
[0,t] g

′(u, ω) du for all t ∈ [0, 1], then

ρg[X |G] =

∫
[0,1]

qG,1−t(X)g′(t, ·) dt a.s.

If in addition the distortion process g has concave paths, then we have the following:
(p) Conditional monotonicity under concavity: If either X ≤icx(G) Y or X ≤cx(G) Y , and if

in addition X1{δ=1} ≤st(G) Y 1{δ=1}, see Definition 10.14, then

ρg[X |G] ≤ ρg[Y |G] a.s.

(q) Subadditivity: If X + Y ∈ L−G,g,cdrm(P), then

ρg[X + Y |G] ≤ ρg[X |G] + ρg[Y |G] a.s.

Conversely, if P([0, 1] 3 t 7→ g(t, ·) is concave) < 1 and if there exists an F-measurable
random variable U which is uniformly distributed on [0, 1] and independent of G26, then
there exist F-measurable real-valued random variables X0 and Y0 such that, on some
set C ∈ F with P(C) > 0, we have

ρg[X0 + Y0 |G] > ρg[X0 |G] + ρg[Y0 |G] a.s.

(r) Conditional convexity: If Z: Ω → [0, 1] is G-measurable with integrability condition
XZ + Y (1− Z) ∈ L−G,g,cdrm(P), then

ρg[XZ + Y (1− Z) |G] ≤ ρg[X |G]Z + ρg[Y |G](1− Z) a.s.

Proof. We choose the approach to directly proof most results using previously derived
properties of conditional lower quantiles. Alternatively, most proofs can also be obtained by
pathwise reasoning.

Items (a) to (g) follow by the corresponding statement in Lemma 3.18 and by linearity
of stochastic or Lebesgue–Stieltjes integrals, respectively. Note that for (d) and (e), using
Lemma 3.15 as well as Lemmas 3.18(d) to (e), we have that (qG,t(X + Y ))t∈[0,1] and

(qG,t(X) + qG,t(Y ))t∈[0,1] are indistinguishable. Hence, X + Y ∈ L−G,g,cdrm(P) since, for
a.a. ω ∈ Ω,(

qG,t(X)(ω) + qG,t(Y )(ω)
)− ≤ 2 max{q−G,t(X)(ω), q−G,t(Y )(ω)} , t ∈ [0, 1] .

Moreover, if one side in the result of (d) or (e) takes the value ∞, so does the other a.s.,
respectively.

(h) The result follows by Item (b).

26 Note that such a random variable U always exists on an enlarged probability space.
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Chapter 4. Conditional Distortion Risk Measures

(i) The result follows by conditional positive homogeneity of conditional lower quantiles,
see Lemma 3.18(b).

(j) The first statement follows by pathwise application of Jensen’s general inequality on
finite spaces, cf. [88, Theorem 1.8.1]. The second statement then follows by Lemma 3.18(j).

(k) By translation invariance from (c), we may assume without loss of generality that
Xn is non-negative for every n ∈ N. Note that due to the pathwise measurability of
[0, 1] 3 t 7→ qG,δ(Xn), for n ∈ N, the process [0, 1] 3 t 7→ lim infn→∞ qG,δ(Xn) is pathwise
measurable as well. Then, a pathwise application of Fatou’s lemma as, for example, given
in Kallenberg [71, Lemma 1.20] and of Lemma 3.18(l) immediately yield the result.

(l) Define the sequence Yn := Xn ∧X for all n ∈ N and note that limn→∞ Yn = X a.s.
Since almost sure convergence implies convergence in conditional probability as remarked in
Footnote 23, we can apply (k) to conclude

lim inf
n→∞

ρg[Yn |G] ≥ ρg[X |G] a.s.

The result then follows by conditional monotonicity of conditional lower quantiles, see (g),
since Yn ≤ Xn a.s. for all n ∈ N.

(m) Note that conditional monotonicity in (g) implies

lim sup
n→∞

ρg[Xn |G] ≤ ρg[X |G] a.s.

Combining this observation with the conditional Fatou property in (k), the result immediately
follows since almost sure convergence implies convergence in conditional probability.

(n) and (o) These two results follow by a pathwise reasoning with basic properties of
Lebesgue–Stieltjes integrals, cf. [20, Chapter 6], where we use the version of conditional
lower quantiles (qG,t(X))t∈[0,1] with left-continuous and increasing paths, see Lemma 3.15.

(p) Let ω ∈ Ω be fixed and use the version of conditional lower quantiles (qG,t(X))t∈[0,1]

with left-continuous and increasing paths as given in Lemma 3.15. Thus, (qG,t(X)(ω))t∈[0,1]

is a classical lower quantile function in the sense of Remarks 3.11(a) of a distribution function
Fω. To see this, define

Fω(x) := sup{u ∈ (0, 1] |qG,u(X)(ω) ≤ x} , x ∈ R ,

with sup∅ := 0. Since qG,δ(X)(ω) is increasing, Fω is increasing as well and Fω(−∞) = 0
and Fω(∞) = 1 which means that Fω is a distribution function with lower quantile function
qG,·(X)(ω). Thus, we can proceed with pathwise reasoning and use the unconditional case
analogously as in [115, Proof of Theorem 2.1]. They note that there exists an increasing,
positive and integrable function φω such that

g(t, ω) =

∫ t

0
φω(u) du , t ∈ [0, 1) ,

where g is given in (n). We can invoke [115, Proof of Theorem 2.1] again to conclude

ρg[X |G](ω) =

∫
(0,1)

∫
[u,1)

qG,t(X)(ω) dt φω(du) + g(1−)XG a.s.

Note that the equality above is simply a consequence of properties of Riemann–Stieltjes
integrals. Of course, the analogous result is true for Y . Since X ≤icx(G) Y or, alternatively,
X ≤cx(G) Y , Remarks 5.25(d) implies∫

[u,1)
qG,t(X) dt ≤

∫
[u,1)

qG,t(Y ) dt a.s., for every u ∈ (0, 1) ,

36



4.2. Properties of conditional distortion risk measures

which then together with the monotonicity of φω, i.e., positivity of increments dφω, yields
the result.

(q) With a similar pathwise argumentation as in (p) for fixed ω ∈ ω, we can apply the
result from the unconditional case, see [33, Theorem 6.3], to conclude that subadditivity
holds in the conditional setting if the paths of g are concave. Of course, if the left side takes
the value ∞, so does the right side, a.s.

To show the converse statement, we use a similar idea as in [130, Theorem 2.2]. Note
that under the stated assumptions, there exist points 0 < α < β ≤ 1 and a t ∈ (0, 1) such
that for C := {g(tα+ (1− t)β, ·) < tg(α, ·) + (1− t)g(β, ·)} we have

P(C) > 0 . (4.10)

Without loss of generality we may assume that t = 1
2 which can easily be seen by considering

the case that g has a discontinuity in (0, 1] and by the case that g is continuous on (0, 1].
Then, set η := α+β

2 and, for U uniformly distributed on [0, 1] and independent of G, define

X0 = 1{U∈[0,η]}

and

Y0 = 1{U∈[0,α]} +
1

2
1{U∈(η,β]} .

Conditional distributions are, for x ∈ R, given by P(X0 ≤ x |G) = (1−η)1[0,1)(x)+1[1,∞)(x),
as well as by P(Y0 ≤ x |G) = (1− η)1[0,1/2)(x) + (1− α)1[1/2,1)(x) + 1[1,∞)(x) and finally by
P(X0 + Y0 ≤ x |G) = (1− β)1[0,1/2)(x) + (1− η)1[1/2,1)(x) + (1−α)1[1,2)(x) + 1[2,∞)(x), a.s.,
respectively. Henceforth, by Definition 3.7 and by Lemma 10.3(b), it is straight-forward to
calculate conditional lower quantiles of X0, Y0 and X0 + Y0. In particular, these conditional
lower quantiles are deterministic step functions. Thus, by computing the Lebesgue–Stieltjes
integrals using (n), we get

ρg[X0 |G] = g(η, ·) , a.s. on C ,

and

ρg[Y0 |G] = g(α, ·) +
1

2

(
g(η, ·)− g(α, ·)

)
, a.s. on C ,

as well as

ρg[X0 + Y0 |G] = 2g(α, ·) +
(
g(η, ·)− g(α, ·)

)
+

1

2

(
g(β, ·)− g(η, ·)

)
, a.s. on C .

Consequently, by (4.10),

ρg[X0 + Y0 |G]−
(
ρg[X0 |G] + ρg[Y0 |G]

)
=

1

2
g(β, ·) +

1

2
g(β, ·)− g(η, ·) > 0 , a.s. on C ,

which gives the result.

(r) This result follows by the statements in (b) and (q).

Corollary 4.11 (Coherence). Conditional distortion risk measures are conditionally coher-
ent if the distortion process has concave paths.
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Chapter 4. Conditional Distortion Risk Measures

Remark 4.12 (A little trick). When deriving conditional distortion risk measures, a little trick
can sometimes avoid calculation of conditional lower quantiles in the right tail, i.e., conditional
lower quantiles at levels close to one. This is particularly interesting for applications in
extended CreditRisk+, see Schmock [111, Section 6], where loss distributions are recursively
calculated up to a desired cumulative probability, i.e., the right tail of the distribution is
not known. First, consider the same assumptions as in Lemma 4.8 where, in addition, X−

is σ-integrable and where we use the version of conditional lower quantiles (qG,t(X))t∈[0,1]

with left-continuous and increasing paths as given in Lemma 3.15. Assume that paths of
the distortion process g are linear in a surrounding of zero, i.e., there exist G-measurable
random variables Z,U : Ω→ [0,∞), with 0 < U ≤ 1 a.s., such that g(t, ·) = tZ a.s. for all
0 ≤ t ≤ U . Moreover, assume that gZ(t, ω) := g(t, ω) − tZ(ω), for t ∈ [0, 1] and ω ∈ Ω,
has increasing paths for a.a. ω ∈ Ω. Then, using the quantile representation of conditional
expectation of Lemma 5.21 and a basic property of Lebesgue–Stieltjes integrals, see Carter
and van Brunt [20, Theorem 6.1.2], we get

ρg[X |G] = E[X |G ] Z +

∫
[0,1−U ]

qG,1−t(X) gZ(dt, ·) a.s.

Alternatively, if gZ(t, ω) has decreasing paths for a.a. ω ∈ Ω, as it is the case for conditional
expected shortfall, then

ρg[X |G] = E[X |G ] Z −
∫

[0,1−U ]
qG,1−t(X) (−gZ)(dt, ·) a.s.

In particular, for conditional expected shortfall at G-measurable level δ: Ω → (0, 1), see
Definition 5.3, the above formula simplifies to

ESδ[X |G ] =
1

1− δ

(
E[X |G ]−

∫
(0,δ)

qG,t(X) dt

)
a.s.
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Conditional Expected Shortfall

In this chapter we give an explicit definition of conditional expected shortfall
with stochastic level via an adjusted indicator function, similarly as in Acciaio
and Goldammer [2]. Our definition covers all real-valued random variables such
that no integrability condition is needed. Notably, we then proof a conditional
quantile representation of conditional expected shortfall which immediately gives
the link to conditional distortion risk measures. Many properties, most of which
are well-known, can then be directly transferred from conditional distortion risk
measures. In particular, we prove two dynamic properties—the supermartingale
property and prospective increase in uncertainty for submartingales—which give
alternatives to time-consistency.

5.1 Definition of conditional expected shortfall

Our next goal is to give an explicit definition of conditional expected shortfall using an
adjusted indicator function. This approach is motivated by the classical, unconditional
case as given in Schmock [111, Section 7.2] and can be, for example, found in Acciaio
and Goldammer [2]. In particular, it avoids the usage of acceptance sets or limits. It
is thus easy to implement in many situations. In a next step, we obtain a conditional
quantile representation of conditional expected shortfall which immediately gives the link to
conditional distortion risk measures, see Remarks 4.7(b).

Definition 5.1 (Adjusted indicator function). Given a sub-σ-algebra G ⊂ F , let level
δ: Ω→ [0, 1] be G-measurable. Then, for an F-measurable X: Ω→ R define the adjusted
indicator function fG,δ,X : Ω→ [0, 1] by

fG,δ,X := 1{X>qG,δ(X)} + βG,δ,X1{X=qG,δ(X)}

where βG,δ,X : Ω→ [0, 1] is G-measurable satisfying

βG,δ,X :=


P(X≤qG,δ(X) |G)− δ
P(X=qG,δ(X) |G)

on the event
{
P
(
X = qG,δ(X)

∣∣G) > 0
}
,

0 on the event
{
P
(
X = qG,δ(X)

∣∣G) = 0
}
.

Remarks 5.2. (Adjusted indicator function).
(a) Note that βG,δ,X ∈ [0, 1] a.s. because

P(X < qG,δ(X) |G) ≤ δ ≤ P(X ≤ qG,δ(X) |G) a.s.
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Chapter 5. Conditional Expected Shortfall

Therefore, fG,δ,X is [0, 1]-valued a.s.

(b) It holds that E[fG,δ,X |G ] = 1− δ a.s. because

E[fG,δ,X |G ] = P(X > qG,δ(X) |G) + βG,δ,X P(X = qG,δ(X) |G) a.s.

(c) If sub-σ-algebra G is trivial, see Footnote 17, then we adopt the notation as used in
Schmock [111, Section 7.2] and write fδ,X := fG,δ,X , as well as βδ,X := βG,δ,X .

Definition 5.3 (Conditional expected shortfall). Given a sub-σ-algebra G ⊂ F , let level
δ: Ω→ [0, 1] be G-measurable. Then, for an F-measurable X: Ω→ R, conditional expected
shortfall of X at level δ given G is defined by

ESδ[X |G ] :=


XG on {δ = 1} ,

1
1−δ E[fG,δ,XX |G ] on {0 < δ < 1} ,

ess infδ′∈(0,1)
1

1−δ′ E[fG,δ′,XX |G] on {δ = 0} ,

where the adjusted indicator function fG,δ,X is given by Definition 5.1.

Example 5.4 (Illustrative Example 3.12 continued). If we are interested in expected
shortfall and conditional expected shortfall27 at level δ = 0.95 of the total number of defaults
of companies 1, . . . , n, see Section 5.1, we find

ESδ[X] =
1

1− δ

( n∑
k=qδ(X)+1

kP(X = k) + βδ,X qδ(X)P(X = qδ(X))

)
= 4.80

as well as

ESδ[X |G ] =
1

1− δ

( n∑
k=qG,δ(X)+1

kP(X = k |G) + βG,δ,X qG,δ(X)P(X = qG,δ(X) |G)

)

=

{
3.29 on G ,

9.05 on Gc .

Again, this illustrates that depending on the credit rating scenario risk measured in terms
of conditional expected shortfall can increase or decrease. Moreover, in this example we
observe that classical, unconditional expected shortfall is less than the mean of conditional
expected shortfall. This result is called the supermartingale property and is true in general,
see Lemma 5.23(n).

Remarks 5.5. (Conditional expected shortfall).
(a) For trivial G, see Footnote 17, the definition above amounts to the standard definition

of expected shortfall, cf. Schmock [111, Section 7.2].

(b) For trivial G, see Footnote 17, expected shortfall can be calculated explicitly in many mod-
els including collective risk models such as the credit risk model extended CreditRisk+,
cf. Schmock [111, Section 7.2]. In particular, using the identity E[X 1A] = E[X]−E[X 1Ac ]
for a random variable X and a measurable set A, we see that it is not necessary to
calculate the right tail of the distribution of X, see Remark 4.12.

27 Expected shortfall at level δ gives the expected number of defaults exceeding the corresponding δ-quantile
divided by 1− δ. Its conditional extension is conditional expected shortfall where, in our case, we condition
on two different credit rating events.
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(c) Acceptance sets and robust representation. Conditional expected shortfall and many
other conditional risk measures can be defined using acceptance sets. Under particular
continuity conditions, conditional convex risk measures have a robust representation in
terms of a minimal penalty function, cf. Acciaio and Penner [3, Chapters 1.2 and 1.3]
and the references therein.

Remarks 5.6. (σ-integrability of conditional expected shortfall).

(a) Define the set M := {δ > 0}. Then, Definition 5.3 implies that 1M (fG,δ,XX)− is
σ-integrable with respect to G. To see this, note that 1MfG,δ,XX ≥ X̃ a.s. where
X̃ := 1M min{0, qG,δ(X)} is G-measurable. Therefore, Ωn := {|X̃| ≤ n} ∈ G for all
n ∈ N, and Ωn ↗ Ω as n → ∞. Then, E[1M∩Ωn(fG,δ,XX)−] ≤ E[1Ωn |X̃|] ≤ n for
every n ∈ N which implies that 1M (fG,δ,XX)− is σ-integrable with respect to G. Hence,
conditional expected shortfall is well-defined.

(b) Again, define M := {δ > 0}. If XG <∞ a.s., then Definition 5.3 implies that 1MfG,δ,XX
is σ-integrable with respect to G. To see this, note that 1M (fG,δ,XX)− ≤ X̃ a.s. where
we define X̃ := −1M min{0, qG,δ(X)} which is G-measurable. On the other hand,

1M |fG,δ,XX| ≤ max{X̃,XG} := X̂ since (fG,δ,XX)+ ≤ XG . Therefore, for all n ∈ N,

Ωn := {X̂ ≤ n} ∈ G, as well as Ωn ↗ Ω as n → ∞. Then, for every n ∈ N, we have
E[1M∩Ωn |fG,δ,XX|] ≤ E[1ΩnX̂] ≤ n which implies that 1MfG,δ,XX is σ-integrable with
respect to G.

(c) The definition of conditional expected shortfall on {δ = 0} is due to the fact that
E[fG,0,XX |G ] = E[X |G ] need not necessarily exist.

(d) For a non-negative random variable X ≥ 0 we can write

E[X |G ] = ess sup
n∈N

E[min{X,n}|G ] a.s.

where, for every n ∈ N, the random variable min{X,n} is σ-integrable with respect to
G as it is even integrable.

Lemma 5.7. Given sub-σ-algebra G ⊂ F , let X,Y : Ω → R be F-measurable and let
δ: Ω→ [0, 1] be G-measurable. Moreover, assume that Y ≥ 0 a.s. is σ-integrable with respect
to G. Define

FYG,δ,X :=
{
f : Ω→ [0, 1]

∣∣ f is F-measurable and E[f Y |G ] = E[fG,δ,X Y |G ] a.s.
}

where the adjusted indicator function fG,δ,X is given by Definition 5.1. Then, the following
holds:

(a) Conditional optimality of fG,δ,X . If 1{δ=0}X
− is σ-integrable with respect to G, then

E[fG,δ,XXY |G ] is well-defined with values in R ∪ {∞} and

ess sup
f∈FYG,δ,X

E[fXY |G ] = E[fG,δ,XXY |G ] a.s.

(b) If f∗ ∈ FYG,δ,X satisfies E[f∗XY |G ] = E[fG,δ,XX Y |G ] < ∞ a.s., then f∗ = fG,δ,X
a.s. on the event {Y > 0, X 6= qG,δ(X)}.
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(c) If 0 < δ < 1 a.s. as well as if fG,δ,XX and Y are conditionally uncorrelated28 given G,
then

E[fG,δ,XXY |G ] = E[fG,δ,XX |G ] E[Y |G ] = (1− δ) ESδ[X |G ] E[Y |G ] a.s.

Remark 5.8. Note that fG,δ,X ∈ FYG,δ,X .

Proof of Lemma 5.7. (a) Note that E[fG,δ,XXY |G ] is a well-defined random variable in
R ∪ {∞} since (fG,δ,XXY )− = Y (fG,δ,XX)− ≤ Y min{0, qG,δ(X)} a.s., by Remark 5.6, as
well as by positivity and σ-integrable of Y .

First, consider the set M := {0 < δ < 1} and let f ∈ FYG,δ,X such that (fXY )− is
σ-integrable with respect to G. On {E[fG,δ,XXY |G] =∞} the result of the lemma follows
trivially. Therefore, we may assume E[fG,δ,XXY |G] <∞ a.s. Then, for every G ∈ G,

1M E[(f − fG,δ,X)Y qG,δ(X)1G |G] = 1G∩M qG,δ(X)E[(f − fG,δ,X)Y |G] = 0 a.s.,

since fG,δ,X ∈ FYG,δ,X by Remark 5.8. This observation implies, a.s.,

1M
(
E[fXY 1G |G]− E[fG,δ,XXY 1G |G]

)
= 1M E[(f − fG,δ,X)(X − qG,δ(X))Y 1G |G]

= 1M E[(f − fG,δ,X)(X − qG,δ(X))Y 1{X>qδ(X)}1G |G]

+ 1M E[(f − fG,δ,X)(X − qG,δ(X))Y 1{X<qδ(X)}1G |G] ≤ 0 ,

i.e., the supremum is identical with E[fG,δ,XXY |G].
On N := {δ = 0} we have fG,δ,X = 1 a.s. Therefore, 1N f = 1N a.s., for all f ∈ FYG,δ,X

which gives the result. On N ′ := {δ = 1} we have βG,δ,X = 0 which implies fG,δ,X1N ′ = 0
a.s. and f 1N ′ = 0 a.s., for all f ∈ FYG,δ,X , which again immediately implies the result.

(b) Assume that there exists an f∗ ∈ FYG,δ,X with

E[f∗XY |G ] = E[fG,δ,XXY |G ] <∞ a.s.

Then, by the above calculations, P(f∗ < fG,δ,X , X > qG,δ(X), Y > 0 |G) = 0, as well as
P(f∗ > fG,δ,X , X < qG,δ(X)Y > 0) |G) = 0, both a.s. Therefore, f∗ = fG,δ,X on the set
{X 6= qG,δ(X), Y > 0} a.s.

(c) This result immediately follows from the definition of conditional correlation and the
definition of conditional expected shortfall.

Definition 5.9. Given a sub-σ-algebra G ⊂ F and a G-measurable δ: Ω→ (0, 1), let FG,δ
denote the set of all conditional probability densities given G on (Ω,F ,P) bounded by 1

1−δ ,
i.e.,

FG,δ,X :=
{
f : Ω→ [0,∞)

∣∣∣f is F-measurable, E[f |G ] = 1 a.s. and f ≤ 1

1− δ
a.s.
}
.

Furthermore, for an F-measurable X: Ω→ R, define

FG,δ :=
{
f ∈ FG,δ

∣∣E[X+f |G] <∞ a.s. or E[X−f |G] <∞ a.s.
}
.

28 Two random variables ξ, ζ: Ω→ R are conditionally uncorrelated given G, where G is a sub-σ-algebra
G ⊂ F , if E[ξζ |G ] = E[ξ |G ] E[ζ |G ] a.s. given that all conditional expectations exist. In particular, ξ and ζ
are conditionally uncorrelated given G if they are conditionally independent given G subject to existence of
E[ξζ |G ], E[ξ |G ] and E[ζ |G ].

42



5.2. Properties of conditional expected shortfall

Remark 5.10. The definitions above are motivated by the classical, unconditional case as in
Schmock [111, Section 7.2]. Note that, for sub-σ-algebras H ⊂ G ⊂ F , we have FG,δ ⊂ FH,δ.
Furthermore, FG,δ′ ⊂ FG,δ for all G-measurable δ, δ′: Ω→ (0, 1) with δ′ ≤ δ a.s.

Remark 5.11 (Conditional expected proportional shortfall). Analogously as in the classical
case as given in Belzunce et al. [12], we can now define a scale invariant conditional risk
measure29 based on conditional expected shortfall and conditional value at risk called
conditional expected proportional shortfall. Therefore, consider a sub-σ-algebra G ⊂ F as
well as an F-measurable X: Ω→ R. Define

D+(X,G) = {δ |δ is G-measurable with 0 ≤ δ ≤ 1 a.s. and qG,δ(X) > 0 a.s.} .

Then, conditional expected proportional shortfall of X at level δ ∈ D+(X,G) is given by

CEPSδ[X |G ] := (1− δ)
(

ESδ[X |G ]

qG,δ(X)
− 1

)
.

This risk measure is scale invariant as, for G-measurable Z: Ω→ (0,∞) and for δ ∈ D+(X,G),
Lemma 3.18(b) and Lemma 5.23(b) imply

CEPSδ[XZ |G ] = CEPSδ[X |G ] a.s.

Furthermore, recall Definition 10.11 and note that conditional expected proportional short-
fall is comonotonically subadditive for non-negative random variables with continuous
distributions because, for F -measurable X,Y : Ω→ R and δ ∈ D+(X,G)∩D+(Y,G), we get

CEPSδ[X + Y |G ] = (1− δ)
(

ESδ[X |G ]− qG,δ(X)

qG,δ(X) + qG,δ(Y )
+

ESδ[Y |G ]− qG,δ(Y )

qG,δ(X) + qG,δ(Y )

)
≤ CEPSδ[X |G ] + CEPSδ[Y |G ] a.s.,

by Lemma 3.18(d) and Lemma 5.23(f). Further properties are left to the reader. Note that
for trivial G, see Footnote 17, it is possible to derive asymptotic results as δ ↗ 1 of the term
ESδ[X |G ] /qG,δ(X)30. Depending on the tail behaviour of the distribution of X, different
limits arise, cf. McNeil, Frey and Embrechts [85] and Embrechts et al. [43].

5.2 Properties of conditional expected shortfall

In the lecture notes of Schmock [111, Lemma 7.20], as well as in various other references,
different properties of expected shortfall are noted. As we could not find a comprehensive
list of properties for conditional expected shortfall in the representation we used, we will
give them in the following lemmas.

We start with a result which shows that conditional expected shortfall is a distortion
risk measure with concave distortion process

g(t, ω) := min
{ t

1− δ(ω)
, 1
}
, t ∈ [0, 1] and ω ∈ Ω ,

as anticipated in Example 4.7(b).

29 We refer to it as a conditional risk measure even though it is not a conditional risk measure in the
narrower sense, according to Definition 1.1, as conditional translation invariance and conditional monotonicity
are violated.

30 This term is also known as shortfall to quantile ratio.
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Lemma 5.12 (Conditional quantile representation). Given a sub-σ-algebra G ⊂ F , let
δ: Ω→ (0, 1) be G-measurable. For an F-measurable X: Ω→ R let (qG,t(X))t∈[0,1] be the
version of conditional lower quantiles with left-continuous and increasing paths as given in
Lemma 3.15. Then, conditional expected shortfall of Definition 5.3 satisfies

ESδ[X |G ] =
1

1− δ

∫
[δ,1)

qG,t(X) dt =
1

1− δ

∫
(0,1−δ]

qG,1−t(X) dt a.s. (5.13)

Corollary 5.14 (Nice version). Set I := [0,∞). If (δt)t∈I is a (G)t∈I-adapted (0, 1)-valued
process with continuous paths, Lemma 5.12 and Definition 5.3 imply that there exists a
version of (ESδt [X |G ])t∈I which has continuous paths. This observation remains valid if we
replace continuous by right- or left-continuous in the assumption and conclusion.

Proof of Lemma 5.12. Note that integrals in (5.13) are well-defined and that the second
equality is obvious. By enlarging the probability space, if necessary, we may assume the
existence of a random variable U on (Ω,F ,P) which is independent of G and uniformly
distributed on [0, 1], meaning that P(U ≤ t) = t, for all t ∈ [0, 1]. Note that the random
variable Ω 3 ω 7→ qG,U(ω)(X)(ω) is F-measurable since it can be written as a composition
of the measurable mappings [0, 1]× Ω 3 (t, ω) 7→ qG,t(X)(ω) and Ω 3 ω 7→ (U(ω), ω). For
every x ∈ R and t ∈ (0, 1), we have

1{qG,t(X)≤x} = 1{P(X≤x |G)≥t} a.s., (5.15)

since, by Definition 3.7 of conditional lower quantiles,

P
(
{qG,t(X) ≤ x} \ {P(X ≤ x |G) ≥ t}

)
= 0 ,

as well as
P
(
{P(X ≤ x |G) ≥ t} \ {qG,t(X) ≤ x}

)
= 0 .

Note that with a similar argumentation as in Lemma 3.15 and using the dominated con-
vergence theorem for conditional expectation, cf. [65, Theorem 1.20], there exists a version
of R 3 x 7→ P(X ≤ x |G) which has increasing and right-continuous paths. Taking this
version of conditional probabilities implies that the functions in (5.15) are decreasing and
left-continuous in t, as well as increasing and right-continuous in x. Thus, we do not face
problems with null sets in the subsequent argumentation, see Remark 5.20 for a motivating
example.

Based on the previous equations we get, for all G-measurable Z: Ω→ R,

1{qG,U (X)≤Z} = 1{U≤P(X≤Z |G)} a.s., (5.16)

implying

P(qG,U (X) ≤ Z |G) = P(U ≤ P(X ≤ Z |G) |G) = P(X ≤ Z |G) a.s. (5.17)

Note that the the second equality above follows by a basic property of conditional ex-
pectation, see Lemma 10.3(b). Define δ′ := P(X ≤ qG,δ(X) |G). Then, δ′ ≥ δ and
qG,t(X) = qG,δ(X) for every t ∈ [δ, δ′], both a.s. Therefore, again by Lemma 10.3(b)
and by conditional bounded convergence as, for example, given in [65, Theorem 1.20] on
qG,U (X) = limn→∞

∑kn
j=1 qG,αj−1,n(X)1U∈[αj−1,n,αj,n) for proper partitions of the unit interval

with mesh tending to zero 0 = α0,n < α1,n < · · · < αkn,n = 1 with n ∈ N, we have∫
[δ,1)

qG,t(X) dt =

∫
(δ′,1)

qG,t(X) dt+

∫
[δ,δ′]

qG,t(X) dt

= E
[
qG,U (X)1{U>δ′}

∣∣G]+ qG,δ(X)(δ′ − δ) a.s.

(5.18)
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5.2. Properties of conditional expected shortfall

Moreover, by (5.16) we find that {U > δ′} = {qG,U (X) > qG,δ(X)} a.s. Thus, using Fubini’s
theorem for generalised conditional expectation, see Lemma 10.4,

E
[
qG,U (X)1{U>δ′}

∣∣G] = E
[∫

(0,∞)
1{qG,U (X)>t} dt1{qG,U (X)>qG,δ(X)}

∣∣∣∣G]
=

∫
(0,∞)

E
[
1{qG,U (X)>max{t,qG,δ(X)}

∣∣G] dt a.s.

Note that Lemma 10.4 can be applied since, with a similar argumentation as in Lemma 3.15
and using conditional dominated convergence, cf. [65, Theorem 1.20], there exists a version
of

R 3 t 7→ E
[
1{qG,U (X)>max{t,qG,δ(X)}

∣∣G]
which has increasing paths. Applying (5.17) gives

E
[
qG,U (X)1{U>δ′}

∣∣G] = E
[
X 1{X>qG,δ(X)}

∣∣G] a.s.

Substituting this result into (5.18) implies∫
[δ,1)

qG,t(X) dt =

∫
(δ′,1)

qG,t(X) dt+

∫
[δ,δ′]

qG,t(X) dt

= E
[
X1{X>qG,δ(X)}

∣∣G]+ E
[
qG,δ(X)

(
1{X≤qG,δ(X)} − δ

)∣∣G] a.s.

(5.19)

Lemma 5.2(a) then gives the result. Note that (qG,U (X)1{U>δ′})
− is σ-integrable with respect

to G. To see this, recall that (qG,U (X)1{U>δ′})
− ≤ X ′ a.s. where X ′ := −min{0, qG,δ′(X)}

is G-measurable. Thus, Ωn := {|X ′| ≤ n} ∈ G for all n ∈ N, and Ωn ↗ Ω as n→∞, since
δ′ > 0 a.s. Then, for every n ∈ N, we have E[1Ωn(qG,U (X)1{U>δ′})

−] ≤ E[1Ωn |X ′|] ≤ n,
i.e., (qG,U (X)1{U>δ′})

− is σ-integrable with respect to G. Hence, E[qG,U (X)1{U>δ′} |G] is
well-defined. Continuous paths follow by definition.

Remark 5.20 (Null sets can be cruel). Consider (Ω,F ,P) := ([0, 1],B([0, 1]), λ) where λ
denotes the Lebesgue–Borel measure on Borel-σ-algebra B([0, 1]) . Define two measurable
functions f, g: [0, 1] × Ω → R by ft(ω) = 0 and gt(ω) = 1{ω}(t), for ω ∈ Ω and t ∈ [0, 1].
Then, ft = gt a.s. for every t ∈ [0, 1]. Defining the identity map U(ω) := ω for all ω ∈ Ω
gives fU = 0 and gU = 1, both a.s. Thus, fU < gU a.s. This example illustrates that it
is crucial to take special versions of the functions used in (5.15) in order to avoid such
phenomena involving null sets.

Corollary 5.21. Given a sub-σ-algebra G ⊂ F , let X: Ω→ R be F-measurable such that
X− is σ-integrable with respect to G. Moreover, consider the version of (qG,δ(X))δ∈(0,1) with
left-continuous, increasing paths, as given in Lemma 3.15, as well as let (P(X ≤ t |G))t∈R
be the version of conditional probabilities with right-continuous, increasing paths. Then,

E[X |G ] =

∫
(0,1)

qG,t(X) dt =

∫ ∞
0

P(X > t |G) dt−
∫ 0

−∞
P(X ≤ t |G) dt a.s.

In particular, in this case, ESδ[X |G ] = E[X |G ] =
∫

(0,1) qG,t(X) dt a.s. on {δ = 0}.

Proof. The first equality immediately follows using the same argumentation as in the proof
of Lemma 5.12 and Equation (5.19) with δ = 0. The last statement then follows by (5.26).
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For the second equality note that, for every n ∈ N, we have

E[min{X,n}|G ] = E
[∫ ∞

0
1{min{X,n}>t} dt

∣∣∣∣G]− E
[∫ ∞

0
1{X≤t} dt

∣∣∣∣G] a.s.

Then, using the conditional Fubini theorem of Lemma 10.4, we can conclude

E[min{X,n}|G ] =

∫ ∞
0

P(min{X,n} > t |G) dt−
∫ 0

−∞
P(X ≤ t |G) dt a.s.

Letting n→∞ gives the result by applying monotone convergence and conditional monotone
convergence, see [65, Theorem 1.20].

Remark 5.22. If G is trivial, see Footnote 17, then the previous result corresponds to the
well known fact that, for a real-valued random variable X with E[X−] <∞, we may write

E[X] =

∫
(0,1)

F←(t) dt

where F← denotes the lower quantile function of X, see Remarks 3.11(a).

Many properties of conditional expected shortfall immediately follow by corresponding
results of conditional distortion risk measures. Alternative proofs for some of these results
are provided in Appendix 10.2.

Lemma 5.23 (Properties of conditional expected shortfall). Given a sub-σ-algebra G ⊂ F ,
let X,Y : Ω→ R be F-measurable and let δ: Ω→ [0, 1] be G-measurable. Then, conditional
expected shortfall of Definition 5.3 has the following conditional properties, considering
conventions of Footnote 22:

(a) Conditional normalisation:

ESδ[0 |G ] = 0 a.s.

(b) Conditional positive homogeneity: If Z: Ω→ [0,∞) is G-measurable, then

ESδ[XZ |G ] = ESδ[X |G ] Z a.s.

(c) Conditional translation invariance: If Z: Ω→ R ∪ {∞} is G-measurable, then

ESδ[X + Z |G ] = ESδ[X |G ] + Z a.s.

(d) Subadditivity:

ESδ[X + Y |G ] ≤ ESδ[X |G ] + ESδ[Y |G ] a.s.

(e) Conditional convexity: If Z: Ω→ [0, 1] is G-measurable, then

ESδ[XZ + Y (1− Z) |G ] ≤ ESδ[X |G ] Z + ESδ[Y |G ] (1− Z) a.s.

(f) Comonotonic additivity: If X and Y are continuously distributed and if they are
comonotonic, see Definition 10.11, then

ESδ[X + Y |G ] = ESδ[X |G ] + ESδ[Y |G ] a.s.
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5.2. Properties of conditional expected shortfall

(g) Conditionally comonotonic additivity: If X and Y are conditionally comonotonic with
respect to G, see Definition 10.11, then

ESδ[X + Y |G ] = ESδ[X |G ] + ESδ[Y |G ] a.s.

(h) Independence: If X is independent of G, then

ESδ[X |G ] = ESδ[X] a.s.,

where ESt[X] denotes the unconditional expected shortfall at deterministic level t ∈ [0, 1],
cf. Schmock [111, Section 7.2], i.e., ESt[X] = ESt[X |H] a.s. where H is a trivial σ-
algebra, see Footnote 17.

(i) Conditional monotonicity: If either X ≤icx(G) Y or X ≤cx(G) Y , and if in addition
X1{δ=1} ≤st(G) Y 1{δ=1}, see Definition 10.14, then

ESδ[X |G ] ≤ ESδ[Y |G ] a.s.

In particular, the assumptions are satisfied if X ≤ Y a.s.

(j) Monotonicity in the adjusted indicator function: Let X: Ω → [0,∞) be positive and
consider an F-measurable function f : Ω → [0,∞). Then, if f ≤icx(G) fG,δ,X , see
Definitions 5.3 and 10.14,

E[fX |G ] ≤ ESδ[X |G ] a.s.

(k) Determined by conditional law: If E[f(X) |G ] = E[f(Y )|G ] a.s. for every bounded and
continuous function f : R→ R, then

ESδ[X |G ] = ESδ[Y |G ] a.s.

(l) Regularity: If A ∈ G, then X 1A = Y 1A a.s. implies

ESδ[X |G ] 1A = ESδ[Y |G ] 1A a.s.

(m) If f : R→ R is strictly increasing, as well as convex and if |ESδ[X |G ] | <∞ a.s., then

f(ESδ[X |G ]) ≤ ESδ[f(X) |G ] a.s.

If f is concave, then the reverse inequality holds.

(n) Supermartingale: Let H ⊂ G ⊂ F be two σ-algebras and let δ be H-measurable. If
(XfG,δ,X)− or if (ESδ[X |G ])− is σ-integrable with respect to H, then

E[ESδ[X |G ] |H] ≤ ESδ[X |H] a.s.

(o) Uncertainty decrease of projections: Let H ⊂ G ⊂ F be two σ-algebras and let δ be
H-measurable. If X is σ-integrable with respect to H, then

ESδ[E[X |G ] |H] ≤ ESδ[X |H] a.s.
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(p) Conditional Fatou I: Let (Xn)n∈N be a sequence of real-valued random variables bounded
from below by some G-measurable C: Ω→ R converging to X in conditional probability,
i.e., limn→∞ P(|X −Xn| ≥ ε |G) = 0 a.s. for every ε > 0, see Footnote 23. Then,

lim inf
n→∞

ESδ[Xn |G ] ≥ ESδ[X |G ] a.s.

(q) Conditional Fatou II: Let (Xn)n∈N be a sequence of random variables bounded from
below by some G-measurable C: Ω→ R. Then, X := lim infn→∞Xn satisfies

lim inf
n→∞

ESδ[Xn |G ] ≥ ESδ[X |G ] a.s. (5.24)

(r) Continuity from below: Let (Xn)n∈N be an increasing sequence of real-valued random
variables bounded from below by some G-measurable C: Ω→ R converging to X from
below, i.e., Xn ↗ X a.s. as n→∞. Then,

lim
n→∞

ESδ[Xn |G ] = ESδ[X |G ] a.s.

(s) Bounds: Define E[X+ |G ] /0 =∞, then

qG,δ(X) ≤ ESδ[X |G ] ≤ min

{
E[X+ |G ]

1− δ
,XG

}
a.s.

(t) Scenario representation: Using the notation of Lemma 5.7 and Definition 5.9, the
following holds:

(1) ESδ[X |G ] = 1
1−δ ess supf∈F1

G,δ,X
E[fX |G ] on {0 < δ < 1} a.s.

(2) ESδ[X |G ] = ess supf∈FG,δ,X E[fX |G ] on {0 < δ < 1} a.s.

(3) ESδ[X |G ] = ess supf∈FG,δ E[fX |G ] a.s. if we either have E[X+ |G ] < ∞ or

E[X− |G ] <∞, both a.s. on {0 < δ < 1}.
(4) ESδ[X |G ] = ess infZ∈L0(Ω,G,P)(Z + 1

1−δ E[(X − Z)+ |G ]) on {0 < δ < 1} a.s. where

L0(Ω,G,P) is given in Footnote 3. Z ∈ L0(Ω,G,P) attains the infimum if and only
if Z = qG,δ(X) on {P(X ≤ qG,δ(X) |G) > δ} and qG,δ(X) ≤ Z ≤ qG,δ(X) a.s. on
{P(X ≤ qG,δ(X) |G) = δ}.

Proof. On {0 < δ < 1}, Items (a) to (r), except (j) and (n), follow by the corresponding
result for conditional distortion risk measures with distortion process

g(t, ω) := min
{ t

1− δ(ω)
, 1
}
, t ∈ [0, 1] and ω ∈ Ω .

Note that X,Y ∈ LG,g,cdrm(P) if δ > 0 a.s. since qG,δ(X) > 0 a.s., see Definition 4.1. By
invoking Corollary 5.26, the results then extend to the essential infimum, i.e., on {δ = 0},
where it is necessary to define ∞ − ∞ := ∞. On {δ = 1}, the results follow by the
corresponding results in Lemmas 3.4 and 3.18. Moreover, as we use Remarks 5.25(d) for
the proof of Lemma 4.8(p) in the previous section, we have to give an alternative proof for
conditional monotonicity of conditional expected shortfall, see (i).

(i) Define M := {0 < δ < 1}. Since X ≤icx(G) Y , Lemma 10.15(c) applied to convex
functions h(x, z) := (x− z)+ with x, z ∈ R implies, for all G-measurable Z: Ω→ R,

1M

(
Z +

1

1− δ
E[(X − Z)+ |G]

)
≤ 1M

(
Z +

1

1− δ
E[(X − Z)+ |G]

)
a.s.
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5.2. Properties of conditional expected shortfall

Thus, by Representation 5.23(t4),

1M ESδ[X |G ] ≤ 1M ESδ[Y |G ] a.s.

The result remains true if the weaker order X ≤cx(G) Y is assumed. The result extends to
the essential infimum, i.e., on {δ = 0}. On {δ = 1} the result follows by Lemma 3.18(g).

(j) By definition of fG,δ,X , there exists a (G)t∈[0,1]-adapted process (h(t, ·))t∈R with
increasing paths such that fG,δ,X = h(X, ·) a.s. Note that by a fundamental property of
lower inverse functions, see Remarks 3.11(a) and [39], we have 1{h(X,·)≤x} = 1{X≤h←(x,·)}
for all x ∈ R where R 3 x 7→ h←(x, ω) denotes the pathwise lower inverse of h(·, ω) for all
ω ∈ Ω. Thus, for all x, y ∈ R, we get

P(fG,δ,X ≤ x,X ≤ y |G) = P(X ≤ min{h←(x, ·), y}|G)

= min
{
P(fG,δ,X ≤ x |G),P(X ≤ y, |G)

}
a.s.,

which states that fG,δ,X and X are conditionally comonotonic given G. Thus, an application
of Lemma 10.15(d) gives the result.

(n) First, define M := {0 < δ < 1}. By Representation (t3) of Lemma 5.23 and the
tower property of conditional expectation, see [65, Theorem 1.22],

1M ESδ[X |H] = 1M ess sup
f∈FH,δ

E[fX |H] = 1M ess sup
f∈FH,δ

E[E[fX |G ]|H] a.s.

By Remark 5.10 and by defining fG,δ,X/(1 − δ) =: f̃G,δ,X ∈ FG,δ with fG,δ,X defined as in
Definition 5.1, we get

1M ess sup
f∈FH,δ

E[E[fX |G ] |H] ≥ 1M ess sup
f∈FG,δ

E[E[fX |G ]|H] ≥ 1M E
[
E
[
f̃G,δ,XX

∣∣G]∣∣H]
= 1M E[ESδ[X |G ]|H] a.s.,

which proves the result on M . The result of course extends to the essential infimum, i.e. on
{δ = 0}. By Remarks 3.3(d), note that XH ≥ XG a.s. on {δ = 1} and thus

E
[
XG
∣∣H]−XH = E

[
XG −XH

∣∣H] ≥ 0 a.s.,

which gives the result.
(o) First, consider the result on the set M := {0 < δ < 1}. Let F1

H,δ,X be defined as in

Lemma 5.7 and define F1
H,δ,X(G) as the set of all f ∈ F1

H,δ,X which are G-measurable. Then,
for every F-measurable f : Ω→ R, we get

1M E[f E[X |G ] |H] = 1M E[E[f |G ] E[X |G ]|H] a.s.

Thus, using Lemma 5.7(a),

1M ESδ[E[X |G ]|H] =
1M

1− δ
ess sup
f∈F1

H,δ,X

E[f E[X |G ] |H] ≤ 1M
1− δ

ess sup
f∈F1

H,δ,X(G)

E[fX |H]

≤ 1M
1− δ

sup
f∈F1

H,δ,X

E[fX |H] = 1M ESδ[X |H] a.s.

On {δ = 1} the result follows by Remarks 3.3(j). Finally, on {δ = 0}, we have

1{δ=0} ESδ[E[X |G ]|H] ≤ 1{δ=0} ESδ′ [X |H] a.s., for all δ′ ∈ (0, 1) ,
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implying that

1{δ=0} ESδ[E[X |G ]|H] = 1{δ=0} ess inf
δ′∈(0,1)

ESδ′ [E[X |G ] |H]

≤ 1{δ=0} ess inf
δ′∈(0,1)

ESδ′ [X |H] = 1{δ=0} ESδ[X |H] a.s.

(s) First, on {0 < δ < 1}, note that X ≤ X+ implies ESδ[X |G ] ≤ ESδ[X
+ |G ] a.s. by (i).

Furthermore, fG,δ,X ≤ 1 a.s. Using these observations for the upper bound, both bounds
follow directly from Definition 5.3. On {δ = 0} the lower bound follows by taking the
essential supremum on both sides whereas the upper bound follows as X ≤ X+ a.s. On
{δ = 1} we have E[X+ |G ] /(1− δ) =∞ and qG,1(X) = ES1[X |G ] = XG , both a.s.

(t1) The first representation follows directly from Lemma 5.7.
(t2) and (t3) The proof of these results works similarly as the proof of Lemma 5.7.

If f̃G,δ,X := fG,δ,X/(1 − δ) ∈ FG,δ,X , then the essential supremum is an upper bound for
ESδ[X |G ] and (t2) holds on {ESδ[X |G ] =∞}. Thus, we may assume ESδ[X |G ] <∞ a.s.
Then, necessarily, E[X+ |G ] < ∞ a.s. and hence FG,δ,X = FG,δ a.s. Consider an f ∈ FG,δ
with E[fX |G ] > −∞ a.s. We have E[f − f̃G,δ,X |G] = 0 a.s. and hence, for every G ∈ G,

E[fX 1G |G]−E
[
f̃G,δ,XX 1G

∣∣G] = E
[
(f − f̃G,δ,X)(X − qG,δ(X))1G

∣∣G]
= E

[
(f − f̃G,δ,X)(X − qG,δ(X))1{X>qδ(X)}1G

∣∣G]
+ E

[
(f − f̃G,δ,X)(X − qG,δ(X))1{X<qδ(X)}1G

∣∣G] ≤ 0 a.s.,

implying that the supremum is identical with E[f̃G,δ,XX |G].
(t4) Using the last term in (5.19), we can write

ESδ[X |G ] =
1

1− δ

(
E
[
X 1{X>qG,δ(X)}

∣∣G]+ E
[
qG,δ(X)

(
1{X≤qG,δ(X)} − δ

)∣∣G])
=

1

1− δ
E
[
(X − qG,δ(X))+

∣∣G]+ qG,δ(X) a.s.,

which gives equality in the case Z = qG,δ(X).
Thus, we have to show that the term Z + 1

1−δ E[(X − Z)+ |G ] takes an essential infimum
for Z = qG,δ(X). Let Z: Ω → R be G-measurable and fixed from now on. Then, for
M := {qG,δ(X) < Z},

1M (X − qG,δ(X))+ ≤ 1M
(
(Z − qG,δ(X))1{X>qG,δ(X)} + (X − Z)+

)
a.s.,

with strict inequality on the event {qG,δ(X) < X < Z}. Adding qG,δ(X)(1− δ) to both sides
and taking conditional expectations with respect to G, we get

1M
(
qG,δ(X)(1− δ) + E

[
(X − qG,δ(X))+

∣∣G])
≤ 1M

(
qG,δ(X)(1− δ) + (Z − qG,δ(X))P(X > qG,δ(X) |G)) + E

[
(X − Z)+

∣∣G])
≤ 1M

(
Z (1− δ) + E

[
(X − Z)+

∣∣G]) a.s.,

since P(X ≤ qG,δ(X) |G) ≥ δ a.s., by Lemma 3.14. Equality in the equation above holds if
and only if P(qG,δ(X) < X < Z) = 0 and P(X ≤ qG,δ(X) |G) = δ a.s. which, by the definition
of conditional lower and upper quantiles, is equivalent to qG,δ(X) < Z ≤ qG,δ(X) a.s. on the
set {P(X ≤ qG,δ(X) |G) = δ}.

Conversely, consider the set M c := {qG,δ(X) > Z} and note that

1Mc (X − qG,δ(X))+ ≤ 1M
(
(Z − qG,δ(X))1{X≥qG,δ(X)} + (X − Z)+

)
a.s.
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Just as before, we get

1Mc

(
qG,δ(X)(1− δ) + E

[
(X − qG,δ(X))+

∣∣G])
≤ 1Mc

(
qG,δ(X)(1− δ) + (Z − qG,δ(X))P(X ≥ qG,δ(X) |G)) + E

[
(X − Z)+

∣∣G])
≤ 1Mc

(
Z (1− δ) + E

[
(X − Z)+

∣∣G]) a.s.,

since P(X < qG,δ(X) |G) < δ a.s. because otherwise we would get a contradiction to the
minimality of qG,δ(X). Moreover, P(X < qG,δ(X) |G) < δ implies that the inequality above
is strict on M c which finally gives the result.

Remarks 5.25. (Conditional expected shortfall).

(a) Whilst many papers assume bounded losses for conditional expected shortfall, the results
in Lemma 5.23 apply to all random variables.

(b) Note that properties (a), (b), (c), (d) and (i) in Lemma 5.23 imply that conditional
expected shortfall is a conditional coherent risk measure. In the work of Acciaio
and Penner [3, Example 1.10] it is also shown that conditional expected shortfall is
conditionally coherent.

(c) Lemma 3.15, Corollary 5.14 and Lemma 5.23(s) imply ESδ[X |G ]↗ XG a.s. given that
δ ↗ 1 a.s. with corresponding topology on R = R ∪ {∞}.

(d) Given the same setup as in the lemma above, assume that X ≤icx(G) Y or X ≤cx(G) Y ,
see Definition 10.14. Then Lemmas 5.12, 5.21 and 5.23(i) imply∫

[δ,1)
qG,t(X) dt ≤

∫
[δ,1)

qG,t(Y ) dt a.s.

Note that this result is also valid on {δ = 0} and {δ = 1}, given that integrals
exist for the latter. For trivial G, see Footnote 17, this result is closely related to
alternative representations of increasing convex orders and convex orders, see Shaked
and Shanthikumar [113, Theorems 3.A.5 and 4.A.3].

(e) Time-consistency. In general, conditional expected shortfall is neither time-consistent
nor recursive as Example 8.3 will show. Note that time-consistency and recursiveness
are equivalent, cf. Delbaen [31, Section 6]. But, as stated in Lemma 3.5, at level
δ = 1 conditional expected shortfall is time-consistent even in a continuous-time setting.
Cheridito and Stadje [24, Sections 4–5] show that there exist time-consistent alternatives
to conditional expected shortfall in a discrete-time setting. Also assuming a discrete-
time setting, Roorda and Schumacher [105, Definitions 8.2 and 8.4] define dynamically
consistent tail value at risk and sequentially consistent tail value at risk which give
dynamically consistent and sequentially consistent alternatives to conditional expected
shortfall. In Acciaio and Penner [3, Example 1.38(2)] it is shown that, in a dynamic
setting, stochastic levels (δt)t∈N which vary over time can lead to middle and weak
acceptance consistency of conditional expected shortfall. They also show that, in general,
conditional expected shortfall is not even weakly time consistent.

(f) In Detlefsen and Scandolo [35, Proposition 2] it is shown that a conditional risk measure
satisfies regularity if it is normalised, translation invariant, monotone and convex, all
meant in a conditional sense.
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(g) Similarly as in Remarks 3.3(j), the result of (o) takes a look at conditional expected
shortfall of conditional expectation. Note that this property does not hold for conditional
lower quantiles, see Remarks 3.20(b), and therefore conditional distortion risk measures,
in general.

(h) Scenario representations of Lemma 5.23(t1) to (t3) are equivalent to the widely used
dual definition of conditional expected shortfall as given, for example, in Acciaio and
Penner [3, Example 1.10].

(i) For an economic interpretation of the scenario representation given in Lemma 5.23(t4),
assume that based on the given information G you can choose an amount Z and enter
into a special stop-loss insurance contract such that whenever your loss X is above Z
you must pay the fair insurance premium E[(X −Z)+ |G] multiplied by security loading
factor 1/(1− δ). In exchange you receive amount X − Z to cover losses above Z. Of
course, this deal may deliver positive, as well as negative returns. If Z is chosen too
high, then the deductible is high in the case when X > Z happens. Conversely, if Z is
too small, the premium is high when X > Z happens. The optimal solution is given by
Lemma 5.23(t4), i.e., qG,t(X) ≤ Z ≤ qG,t(X) a.s.

(j) If X is G-measurable, then ESδ[X |G ] = X a.s. This immediately follows from
Lemma 5.23(c).

(k) In the classical, unconditional case on an atomless probability space, it can be shown that
worst conditional expectation—a risk measure closely related to expected shortfall—is
the smallest coherent risk measure which is law-determined, satisfies the Fatou property
and dominates value at risk, see, for example, Delbaen [30, Theorem 6.10], as well as
Artzner et al. [8, Proposition 5.4] for a similar result. In Delbaen [30, Theorem 6.8] it
is shown that value at risk itself is the minimum of all coherent risk measures which
dominate value at risk and satisfy the Fatou property, i.e., there exists no smallest
coherent risk measure with the Fatou property that dominates value at risk.

Corollary 5.26 (Nice version II). Given a sub-σ-algebra G ⊂ F , let I = [0,∞). Consider an
F-measurable X: Ω→ R and let (δt)t∈I be a [0, 1]-valued process on (G)t∈I with increasing,
càdlàg or continuous paths. Then, there exists a version of the process (ESδt [X |G ])t∈I with
increasing, càdlàg or continuous paths, respectively, with corresponding topology on R.

Proof. Let ω ∈ Ω. Using Corollary 5.14 or the conditional quantile representation of
conditional expected shortfall as given in Lemma 5.12, alternatively, we get the result for
all {t ∈ I |0 < δt(ω) < 1}. Thus, as ES0[X |G ] ≤ ESδt [X |G ] ≤ ES1[X |G ] a.s., we may find a
version of the process (ESδt [X |G ])t∈I with increasing paths if (δt)t∈I has increasing paths.
Càdlàg or continuous paths, whenever (δt)t∈I approaches zero from the right or one from
the left, follow by the definition of conditional expected shortfall as an essential infimum at
{δt = 0} or by Remarks 5.25(c), respectively, using the corresponding topology on R.

The following corollary gives the supermartingale property, see Example 2.3, of conditional
expected shortfall. Note that this result holds simultaneously for weighted conditional
expected shortfall. Detlefsen and Scandolo [35] provide a general approach towards the
supermartingale property in a discrete-time setting. They give sufficient conditions for
the supermartingale property to hold and they show that this property is satisfied by the
dynamic entropic risk measure.
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Corollary 5.27 (Supermartingale property). Setting I = [0,∞), consider a filtration
F = (Ft)t∈I as well as an F-measurable X: Ω→ R such that X is σ-integrable with respect
to F0. Moreover, let (δt)t∈I be a [0, 1]-valued F-adapted process with decreasing paths. Then,
the process (ESδt [X |Ft])t∈I is a supermartingale.

Proof. Note that the process (ESδt [X |Ft])t∈I is F-adapted. Using the tower property of
general conditional expectation, see [65, Theorem 1.22], (ESδt [X |Ft])− is σ-integrable with
respect to Fs, for every s, t ∈ I with s ≤ t. From Lemma 5.23(n) and Corollary 5.26 we
obtain, for all s, t ∈ I with s ≤ t,

E[ESδt [X |Ft]|Fs] ≤ ESδt [X |Fs] ≤ ESδs [X |Fs] a.s.,

which gives the supermartingale property.

Remark 5.28. Note that the result of Corollary 5.27 in particular includes the case when
(δt)t∈I has constant paths. Moreover, if the filtration (Ft)t∈I is right-continuous, if F0

contains all P-null sets and if the mapping t→ E[ESδt [X |Ft]] is right-continuous, then there
exists a càdlàg version of (ESδt [X |Ft])t∈I , cf. Klenke [73, Theorem 21.24].

Not surprisingly, taking a look at conditional expected shortfall of submartingales gives
the following result.

Corollary 5.29 (Prospective increase in uncertainty for submartingales). Given I := [0,∞)
and a filtration F = (Ft)t∈I , let (Mt)t∈I be an F-submartingale. Then,

ESδ[Mt1 |Fs] ≤ ESδ[Mt2 |Fs] a.s.,

for all s, t1, t2 ∈ I with s ≤ t1 ≤ t2 and Fs-measurable δ: Ω→ [0, 1].

Remark 5.30 (Fair game). In particular, the result above holds for F-martingales which
implies that risk associated with a fair game, measured in terms of conditional expected
shortfall, increases over time.

Proof of Corollary 5.29. The result immediately follows by Lemma 5.23(i) and (o).
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Chapter 6

Weighted Conditional Expected
Shortfall

In this chapter we define weighted conditional expected shortfall which has not
been previously discussed in the literature and which is based on the classical,
unconditional approach as in Cherny and Madan [25, Example 2.6]. Since it
is a weighted average of conditional expected shortfall at different stochastic
levels, all properties from the previous chapter can be directly transferred to
weighted conditional expected shortfall. This class thus provides a flexible family
of conditional coherent risk measures satisfying numerous properties. We point
out the link to conditional distortion risk measures and discuss beta-weighted
conditional expected shortfall, motivated by the classical case as in Cherny and
Madan [25, Example 2.9].

6.1 Definition of weighted conditional expected shortfall

Recalling Definition 5.3, we observe that conditional expected shortfall depends solely on a
single level δ of risk-aversion. As several levels might be interesting for measuring risk, we go
one step further and introduce weighted conditional expected shortfall based on the analogous,
unconditional approach as in Cherny and Madan [25, Example 2.6], called weighted value
at risk. Under mild conditions, weighted conditional expected shortfall arises as a special
case of conditional distortion risk measures as shown in Lemma 6.8.

Definition 6.1 (Suitable subspace). Given a sub-σ-algebra G ⊂ F , let G: [0, 1]×Ω→ [0, 1]
be a (G)t∈[0,1]-adapted weighting process which has increasing, right-continuous paths with

boundary conditions G(0, ·) = 0 a.s. and G(1, ·) = 1 a.s. By L−G,G,wces(P) we denote the set
of all F-measurable X: Ω→ R with∫

[0,1]
ES−t [X |G ] G(dt, ·) <∞ a.s.,

where ES−t [X |G ] := max{0,−ESt[X |G ]} and where (ESt[X |G ])t∈[0,1] denotes the version
of conditional expected shortfall at level t with continuous paths as given in Lemma 5.12.
By LG,G,wces(P) we denote the set of all X ∈ L−G,G,wces(P) for which∫

[0,1]
|ESt[X |G ] |G(dt, ·) <∞ a.s.
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Definition 6.2 (Weighted conditional expected shortfall). Given a sub-σ-algebra G ⊂ F
and a weighting process G with the properties specified in Definition 6.1, let X ∈ L−G,G,wces(P)
and let (ESt[X |G ])t∈[0,1] denote the version of conditional expected shortfall at level t with
continuous paths as given in Lemma 5.12. Then, conditional G-weighted expected shortfall
is defined by the pathwise Lebesgue–Stieltjes integral

ESG[X |G ] :=

∫
[0,1]

ESt[X |G ] G(dt, ·) .

Remark 6.3. As X ∈ L−G,G,wces(P), we know that the negative part of the integral is finite
while the positive part may still be infinite.

Remark 6.4 (Conditional expected shortfall as a special case). Given G-measurable level
δ: Ω → (0, 1] and setting G(t, ·) := 1[δ,1](t) for all t ∈ [0, 1] and ω ∈ Ω, then weighted
conditional expected shortfall simplifies to conditional expected shortfall, i.e.,

ESG[X |G ] = ESδ[X |G ] a.s.

6.2 Properties of weighted conditional expected shortfall

Lemma 6.5 (Properties of weighted conditional expected shortfall). Given a sub-σ-algebra
G ⊂ F and a process G with the properties specified in Definition 6.1, let X,Y ∈ L−G,G,wces(P).
Then, weighted conditional expected shortfall of Definition 6.2 has the following conditional
properties, considering conventions of Footnote 22:

(a) Conditional normalisation:

ESG[0 |G ] = 0 a.s.

(b) Conditional positive homogeneity: If Z: Ω→ [0,∞) is G-measurable, then

ESG[XZ |G ] = ESG[X |G ] Z a.s.

(c) Conditional translation invariance: If Z: Ω→ R ∪ {∞} is G-measurable, then

ESG[X + Z |G ] = ESG[X |G ] + Z a.s.

(d) Subadditivity: If X + Y ∈ L−G,G,wces(P)

ESG[X + Y |G ] ≤ ESG[X |G ] + ESG[Y |G ] a.s.

(e) Conditional convexity: If Z: Ω → [0, 1] is G-measurable with integrability condition
XZ + Y (1− Z) ∈ L−G,G,wces(P), then

ESG[XZ + Y (1− Z)|G ] ≤ ESG[X |G ] Z + ESG[Y |G ] (1− Z) a.s.

(f) Comonotonic additivity: If X and Y are continuously distributed and if they are
comonotonic, see Definition 10.11, then

ESG[X + Y |G ] = ESG[X |G ] + ESG[Y |G ] a.s.
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(g) Conditionally comonotonic additivity: If X and Y are conditionally comonotonic with
respect to G, see Definition 10.11, then

ESG[X + Y |G ] = ESG[X |G ] + ESG[Y |G ] a.s.

(h) Independence: If X is independent of G, then

ESG[X |G ] =

∫
[0,1]

ESt[X] G(dt, ·) a.s.,

where ESt[X] denotes the unconditional expected shortfall at deterministic level t ∈ [0, 1],
cf. Schmock [111, Section 7.2], i.e., ESt[X] = ESt[X |H] a.s. where H denotes a trivial
σ-algebra, see Footnote 17.

(i) Conditional monotonicity: If either X ≤icx(G) Y or X ≤cx(G) Y , and if in addition
X1{δ=1} ≤st(G) Y 1{δ=1}, see Definition 10.14, then

ESG[X |G ] ≤ ESG[Y |G ] a.s.

In particular, the assumptions are satisfied if X ≤ Y a.s.

(j) Determined by conditional law: If E[f(X) |G ] = E[f(Y )|G ] a.s. for every bounded and
continuous function f : R→ R, then

ESG[X |G ] = ESG[Y |G ] a.s.

(k) Regularity: If A ∈ G, then X 1A = Y 1A a.s. implies

ESG[X |G ] 1A = ESG[Y |G ] 1A a.s.

(l) If f : R→ R is strictly increasing, as well as convex and if X ∈ LG,G,wces(P) a.s., then

f(ESG[X |G ]) ≤ ESG[f(X)|G ] a.s.

If f is concave, then the reverse inequality holds where for ESG[f(X)|G ] to exist we
require f(X) ∈ L−G,G,wces(P).

(m) Supermartingale: Let H ⊂ G ⊂ F be two sub-σ-algebras and let G be (H)t∈[0,1]-adapted.
If ESG[X |G ] and (ESt[X |G ])− for all t ∈ [0, 1] are σ-integrable with respect to H, then

E[ESG[X |G ] |H] ≤ ESG[X |H] a.s.

(n) Uncertainty decrease of projections: Let H ⊂ G ⊂ F be two σ-algebras and let G be
(H)t∈[0,1]-adapted. If X− is σ-integrable with respect to G and if E[X |G ] ∈ L−H,G,wces(P),
then

ESG[E[X |G ] |H] ≤ ESG[X |H] a.s.

(o) Conditional Fatou I: Let (Xn)n∈N be a sequence of real-valued random variables bounded
from below by some G-measurable C: Ω→ R converging to X in conditional probability,
i.e., limn→∞ P(|X −Xn| ≥ ε |G) = 0 a.s. for every ε > 0, see Footnote 23. Then,

lim inf
n→∞

ESG[Xn |G ] ≥ ESG[X |G ] a.s.
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(p) Conditional Fatou II: Let (Xn)n∈N be a sequence of random variables bounded from
below by some G-measurable C: Ω→ R. Then, X := lim infn→∞Xn satisfies

lim inf
n→∞

ESG[Xn |G ] ≥ ESG[X |G ] a.s.

(q) Continuity from below: Let (Xn)n∈N be an increasing sequence of real-valued random
variables bounded from below by some G-measurable C: Ω→ R converging to X from
below, i.e., Xn ↗ X a.s. as n→∞. Then,

lim
n→∞

ESG[Xn |G ] = ESG[X |G ] a.s.

(r) Bounds: If the left side in the inequality below is well-defined, then∫
[0,1]

qt,G(X)G(dt, ·) ≤ ESG[X |G ] ≤ E[X+ |G]

∫
[0,1]

1

1− t
G(dt, ·) a.s.,

(s) Conditional quantile representations:

(1) ESG[X |G ] =
∫

[0,1)
1

1−t
∫

[t,1) qs,G(X) dsG(dt, ·) on {G(1−, ·) = 1} a.s.

(2) ESG[X |G ] =
∫

[0,1) qs,G(X)
∫

[0,s]
G(dt,·)

1−t ds on {G(1−, ·) = 1} a.s.

(3) ESG[X |G ] =
∫

[0,1) qs,G
(
X
∫

[0,s]
G(dt,·)

1−t
)
ds on {G(1−, ·) = 1} a.s.

Proof. All properties follow by corresponding results in Lemma 5.23 and pathwise funda-
mental properties of Lebesgue–Stieltjes integrals such as linearity, monotonicity, monotone
convergence, Jensen’s inequality or Fatou’s lemma, respectively. As (ESδ[Xt |G ])t∈[0,1] is
jointly measurable due to increasing and continuous paths, note that, for Item (m), the
conditional Fubini theorem of Lemma 10.4 can be used to deduce

E[ESG[X |G ] |H] =

∫
[0,1]

E[ESt[X |G ] |H] G(dt, ·) a.s.

Applying Lemma 5.23(n), as well as Fubini’s theorem, again, yields the corresponding
result. Moreover, note that conditional quantile representations in (s) follow by the quantile
representation of conditional expected shortfall, see Lemma 5.12, and by interchanging order
of integration via Fubini’s classical theorem, cf. Kallenberg [71, Theorem 1.27].

Corollary 6.6. Weighted conditional expected shortfall is a coherent conditional risk mea-
sure.

Remark 6.7 (Dynamic results). The results obtained in Corollaries 5.27 and 5.29 hold
analogously for weighted conditional expected shortfall by applying Lemma 6.5(m) and (n),
respectively.

As previously mentioned, weighted conditional expected shortfall can be written as
a conditional distortion risk measure under mild conditions. This result is shown in the
following lemma.

Lemma 6.8 (Link to conditional distortion risk measures). Given a sub-σ-algebra G ⊂ F ,
consider a process G as given in Definition 6.1 with constraint G(1−, ·) = 1 a.s. and
let X ∈ LG,G,wces(P). Then, G-weighted conditional expected shortfall ESG[X |G ] is a
conditional distortion risk measure ρg[X |G] with pathwise concave distortion process

g(t, ·) =

∫
[0,t)

∫
[0,1−s]

G(dr, ·)
1− r

ds , t ∈ [0, 1] . (6.9)
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Proof. Note that due to Lemma 6.5(s2), we may write

ESG[X |G ] =

∫
[0,1)

q1−s,G(X)

∫
[0,1−s]

G(dr, ·)
1− r

ds , a.s.

Thus, recalling Lemma 4.8(o) and defining the process g by (6.9), the representation of
ESG[X |G ] as a conditional distortion risk measure follows. Obviously, g has continuous
and increasing paths since the inner integral is positive. Moreover, g(0, ·) = 0 a.s. and, by
Fubini’s theorem,

g(1, ·) =

∫
[0,1)

∫
[r,1)

ds
G(dr, ·)
1− r

= G(1)−G(0) = 1 a.s.

Thus, Definition 4.5 and Lemma 4.8(o) imply that conditional G-weighted expected shortfall
is a distortion risk measure. Note that since

(0, 1) 3 t 7→ ∂

∂t
g(t, ω) =

∫
[0,1−t]

G(dr, ω)

1− r
, ω ∈ Ω ,

is decreasing. Thus, all paths of g are concave.

Lemma 6.10 (Alternative representations). Given a sub-σ-algebra G ⊂ F , consider a
process G as given in Definition 6.1. Let X ∈ L−G,G,wces(P) and let the sequence of adjusted
indicator functions (fG,t,X)t∈[0,1] be given by Definition 5.1 where we take the pathwise
right-continuous version of it and define

fG,G,X :=

∫
[0,1)

fG,t,X
1− t

G(dt, ·) . (6.11)

Moreover, assume that fG,G,XX is σ-integrable with respect to G and, for each t ∈ [0, 1] and
ω ∈ Ω, let G←(t, ω) be the pathwise generalised inverse of G, see Remarks 3.11(a). Then,

ESG[X |G ] =

∫
[0,1]

ESG←(t,·)[X |G ] dt = E[fG,G,XX |G ] + (1−G(1−, ·))XG a.s. (6.12)

In particular, if in addition G is trivial, see Footnote 17, and if G(1−) = 1, then we have
ESG[X] := ESG[X |G ] = E[Y ] where Y has distribution function G ◦ F with F denoting the
distribution function of X and for G see Lemma 4.8(n).

Remark 6.13. Given t ∈ [0, 1], note that G←(t, ·) is G-measurable as G←(t, ω) ≤ x is
equivalent to G(x, ω) ≥ t for all x ∈ R and ω ∈ Ω. Thus, {G←(t, ·) ≤ x} = {G(x, ·) ≥ t} ∈ G
for all x ∈ R which gives G-measurability of G←(t, ·).

Proof of Lemma 6.10. Note that due to Lemma 3.15 there exists a version of the process
[0, 1] 3 t 7→ fG,t,X with right-continuous decreasing paths. In particular, these paths are
either continuous or a right-continuous indicator function. The first equality in (6.12) follows
by the definition of weighted conditional expected shortfall and by a pathwise application of
a change-of-variable formula for Lebesgue–Stieltjes integrals, cf. [45]. Then, by using the
definition of conditional expected shortfall, we get,∫

[0,1]
ESG←(t,·)[X |G ] dt =

∫
[0,G(1−,·))

E[fG,G←(t,·),XX |G]

1−G←(t, ·)
dt+ (1−G(1−, ·))XG a.s.
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By a pathwise application of a change-of-variable formula for Lebesgue–Stieltjes integrals,
cf. [45], we get∫

[0,G(1−,·))

fG,G←(t,·),X

1−G←(t, ·)
dt =

∫
[0,1)

fG,t,X
1− t

G(dt, ·) = fG,G,X a.s. (6.14)

Thus, due to the σ-integrability of fG,G,XX, we can apply the conditional Fubini theorem
of Lemma 10.4 to conclude∫

[0,G(1−,·))

E[fG,G←(t,·),XX |G]

1−G←(t, ·)
dt = E[fG,G,XX |G ] a.s.,

which gives (6.12).

If G is trivial, see Footnote 17, then the distortion representation of Lemma 6.8 gives

ESG[X] =

∫
[0,1)

F←(t) g(dt) .

Thus, by a change-of-variable formula for Lebesgue–Stieltjes integrals, see Carter and van
Brunt [20, Theorem 6.2.1], and since F←(F (x)) = x unless F (x− ε) = F (x) for some ε > 0
and every x ∈ R, we get

ESG[X] =

∫
R
F←(F (x)) g(F (dx)) =

∫
R
x g(F (dx)) = E[Y ]

where Y is a random variable with distribution function g ◦ F .

Lemma 6.15. Given a sub-σ-algebra G ⊂ F , let G be a process as given in Definition 6.1.
Let X: Ω→ R be F-measurable and consider fG,G,X as defined in (6.11). Then,

E[fG,G,X |G ] = G(1−, ·) a.s., (6.16)

and fG,G,X and X are conditionally comonotonic with respect to G.

Proof. Using Equation (6.14), as well as the conditional monotone convergence theorem,
see, for example, [65, Theorems 1.19(1) and 1.20], we get

E[fG,G,X |G ] = E
[∫

[0,G(1−,·))

fG,G←(t,·),X

1−G←(t, ·)
dt

∣∣∣∣G]
= lim

n→∞
E
[∫

[0,G(1−,·)−1/n)

fG,G←(t,·),X

1−G←(t, ·)
dt

∣∣∣∣G] a.s.

Since the integral inside the latter conditional expectation is certainly finite, we may use
the conditional Fubini theorem of Lemma 10.4 to obtain

E[fG,G,X |G] = lim
n→∞

∫
[0,G(1−,·)−1/n)

E[fG,G←(t,·),X |G]

1−G←(t, ·)
dt

=

∫
[0,G(1−,·))

E[fG,G←(t,·),X |G]

1−G←(t, ·)
dt a.s.

Then, since E[fG,G←(t,·),X |G] = 1−G←(t, ·) a.s., (6.16) follows.
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By definition of fG,G,X , there exists a (G)t∈[0,1]-adapted process (h(t, ·))t∈R with increasing
paths such that fG,G,X = h(X, ·) a.s. Note that by a fundamental property of lower inverse
functions, see Remarks 3.11(a) and [39], we have 1{h(X,·)≤x} = 1{X≤h←(x,·)} for all x ∈ R
where R 3 x 7→ h←(x, ω) denotes the pathwise lower inverse of h(·, ω) for all ω ∈ Ω. Thus,
for all x, y ∈ R, we get

P(fG,G,X ≤ x,X ≤ y |G) = P(X ≤ min{h←(x, ·), y}|G)

= min
{
P(fG,G,X ≤ x |G),P(X ≤ y, |G)

}
a.s.,

which states that fG,G,X and X are conditionally comonotonic given G.

Remark 6.17. For a related statement in the context of conditional monotonicity with the
additional assumption of the existence of a transition kernel, see Jouini and Napp [68].

Lemma 6.18 (Conditional monotonicity in fG,G,X). Given a sub-σ-algebra G ⊂ F , consider
a process G as defined in Definition 6.1 with additional constraint G(1−, ·) = 1 a.s. Consider
an X ∈ LG,G,wces(P) with X ≥ 0 a.s. and let fG,G,X be given by Lemma 6.10. Moreover,
consider a measurable function f : Ω → [0,∞) such that f ≤icx(G) fG,G,X where ≤icx(G)

denotes conditional increasing convex order, see Definition 10.14. Then,

E[fX |G ] ≤ E[fG,G,XX |G ] = ESG[X |G ] a.s. (6.19)

Proof. On {ESG[X |G ] =∞} the result is clear. Thus, we may assume ESG[X |G ] <∞ a.s.
Since G(1−, ·) = 1 a.s. by assumption and since X and fG,G,X are conditionally comonotonic
with respect to G, see Lemma 6.15, we can apply Lemma 10.15(d) to obtain the result.

As a particular example of weighted conditional expected shortfall we define beta-weighted
conditional expected shortfall. This conditional risk measure is motivated by beta-value-at-
risk and alpha-value-at-risk, see Cherny and Madan [25, Example 2.9], which arise as special
cases.

Definition 6.20 (Beta-weighted conditional expected shortfall). Consider a sub-σ-algebra
G ⊂ F . For G-measurable α, β with α > β > −1 a.s., let Bα,β denote the conditional beta
distribution with parameters α− β and β + 1, i.e.,

Bα,β(t) =

∫ t

0

1

B(α− β, β + 1)
xα−β−1(1− x)β dx , t ∈ [0, 1] ,

where B denotes the beta function. Then, beta-weighted conditional expected shortfall of a
random variable X ∈ LG,Bα,β ,wces(P) is defined as ESBα,β [X |G ].

The following lemma is a generalisation to the result which is obtained in Cherny and
Madan [25, Example 2.9]. In particular, if sub-σ-algebra G is trivial, see Footnote 17, then
our result coincides with the result given in their paper.

Lemma 6.21. Given a sub-σ-algebra G ⊂ F and an F-measurable X: Ω→ R such that X−

is σ-integrable with respect to G, let α, β: Ω→ N0 be G-measurable with α > β a.s. and let
(Xi)i∈N be a sequence of F-measurable i.i.d. copies of X. Moreover, let the F-measurable
random variable ξ: Ω → N be conditionally independent of X and (Xi)i∈N given G with
conditional distribution P(ξ = k |G) = 1

β1{α−β+1,...,α}(k). Then,

ESBα,β [X |G ] = E
[

1

β

α∑
i=α−β+1

X(i)

∣∣∣∣G] = E[X(ξ) |G] a.s.,
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Chapter 6. Weighted Conditional Expected Shortfall

where Bα,β is defined in Definition 6.20 and where X(1), . . . , X(α) denote the order statistics
of X1, . . . , Xα satisfying X(1) ≤ · · · ≤ X(α) a.s.

Remark 6.22. Fixing β = 1 results in the so-called conditional alpha-value-at-risk, see again
[25, Example 2.9] for the classical case. It can be written as

ESBα,1 [X |G ] = E[max{X1, . . . , Xα}|G ] a.s.

Proof of Lemma 6.21. The second equality immediately follows if we use decomposition
1 =

∑α
k=α−β+1 1{ξ=k} together with the stated conditional independence assumption of ξ,

as well as its uniform distribution. For the first equality, if necessary, enlarge the probability
space such that all following random variables exist and are F -measurable. Let (Ui)i∈N be a
vector of F -measurable random variables which are mutually conditionally independent and
conditionally independent of ξ given G, as well as uniformly distributed on [0, 1]. Given G,
let U(1), . . . , U(α) denote the order statistics of U1, . . . , Uα. Similarly as in [25, Example 2.9],
we can then conclude

d2

dt2
P(U(ξ) ≤ t |G) =

1

β

α∑
k=α−β+1

d

dt

(
α!

(α− k)!(k − 1)!
tk−1 (1− t)α−k

)
=

α!

(α− β − 1)!β!
tα−β−1 (1− t)β−1 a.s., for all t ∈ [0, 1] .

Thus, by the fundamental theorem of calculus,

P(U(ξ) ≤ t |G) = gα,β(t) a.s., for all t ∈ [0, 1] ,

where

gα,β(t) :=

∫
[0,t)

∫
[0,s]

Bα,β(dr, ·)
1− r

ds , t ∈ [0, 1] .

Recalling Lemma 10.3 and (5.17), for every G-measurable Z: Ω→ R, we obtain

P(X(ξ) ≤ Z |G) = P
(
U(ξ) ≤ P(X ≤ Z |G)

∣∣G) = gα,β(P(X ≤ Z |G)) a.s.

Since gα,β is pathwise strictly increasing, we get

qt,G(X(ξ)) = qg←α,β(t),G(X) a.s., for all t ∈ [0, 1] .

Thus, by invoking Lemma 4.8(n) and by using a change-of-variable formula for Lebesgue–
Stieltjes integrals, cf. [45], we get

E[X(ξ) |G] =

∫
[0,1)

qt,G(X) dgα,β(t) a.s.

This, together with Lemma 6.8, finally yields E[X(ξ) |G] = ESBα,β [X |G ] a.s.
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Chapter 7

Contributions to Weighted
Conditional Expected Shortfall

In this chapter we introduce contributions to weighted conditional expected
shortfall based on the approach chosen in Schmock [111, Section 7.3] where
classical, unconditional contributions to expected shortfall are discussed. We
show that under mild conditions on the weighting process, weighted conditional
expected shortfall contributions are a coherent allocation principle in the sense
of Kalkbrener [70]. Besides other properties, we prove a directional derivative
representation of weighted conditional expected shortfall contributions which then
gives rise to the Euler allocation principle in a conditional setting.

7.1 Definition of contributions to weighted conditional ex-
pected shortfall

Based on the concept of contributions to expected shortfall within the classical case as
discussed in Schmock [111, Section 7.3], we will now analyse contributions to weighted
conditional expected shortfall. This conditional concept provides the possibility to derive
weighted conditional expected losses caused by a subportfolio or by some individual obligors
in a financial or insurance portfolio. For an axiomatic approach to risk capital allocation
see Kalkbrener [70]. Contributions to conditional lower quantiles are not introduced in this
thesis as they are more involved to define. Already in the unconditional case, following the
approach of Tasche [119] we observe that existence of value at risk contributions depends on
technical constraints. Therefore, we prioritise the concept of weighted conditional expected
shortfall contributions as they can be defined in a very general way.

Definition 7.1 (Suitable subspace). Given a sub-σ-algebra G ⊂ F , let G: [0, 1]×Ω→ [0, 1]
be a (G)t∈[0,1]-adapted weighting process with increasing, right-continuous paths, as well
as boundary conditions G(0, ·) = 0 a.s. and G(1, ·) = 1 a.s. Moreover, let portfolio loss
L: Ω → R be F-measurable. By L−G,G,L,contr(P) we denote all F-measurable subportfolio

losses X: Ω → R such that fG,G,LX
− is σ-integrable with respect to G where fG,G,L is

defined in (6.11). By LG,G,L,contr(P) we denote the cone of those X ∈ L−G,G,L,contr(P) such
that fG,G,LX is σ-integrable with respect to G.

Definition 7.2 (Weighted conditional expected shortfall contributions). For sub-σ-algebra
G ⊂ F , consider weighting process G with the properties specified in Definition 7.1. Let
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portfolio loss L: Ω→ R be F -measurable and let subportfolio loss X ∈ L−G,G,L,contr(P). Then,
the G-weighted conditional expected shortfall contribution of subportfolio loss X to the total
portfolio loss L is defined as

ESG[X,L|G ] := E[fG,G,LX |G ] + (1−G(1−, ·))XG .

Definition 7.3 (Conditional expected shortfall contributions). For G-measurable level
δ: Ω→ [0, 1] set G(t, ·) = 1[δ,1](t) for all t ∈ [0, 1]. Given the definitions above and ignoring
boundary condition G(0, ·) = 0 a.s. for a moment, let L: Ω→ R be F -measurable, as well as
let X ∈ L−G,G,L,contr(P). Then, the conditional expected shortfall contribution of subportfolio
loss X to the total portfolio loss L is defined as

ESδ[X,L|G ] :=

{
ESG[X,L|G ] on {δ > 0} ,

ess infδ′∈(0,1)
1

1−δ′ E[fG,δ′,LX |G] on {δ = 0} .

Consequently, it is easy to see that

ESδ[X,L|G ] =


XG on {δ = 1} ,

1
1−δ E[fG,δ,LX |G ] on {0 < δ < 1} ,

ess infδ′∈(0,1)
1

1−δ′ E[fG,δ′,LX |G] on {δ = 0} .

Remarks 7.4. (Notes on conditional expected shortfall contributions).
(a) Recalling the definition of the adjusted indicator function fG,δ,L in Definition 5.1,

conditional expected shortfall contributions give the expected subportfolio loss of all
outcomes which contribute to large losses in the total portfolio, i.e., losses exceeding the
conditional lower quantile, given G.

(b) Note that results for weighted conditional expected shortfall contributions, derived
in the following section, directly apply to conditional expected shortfall contributions
ESδ[X,L|G ] as well.

(c) If G is trivial, see Footnote 17, then the definition of conditional expected shortfall
contributions is identical with the usual definition of expected shortfall contributions
ESδ[X,L] as, for example, given in Schmock [111, Section 7.3].

Example 7.5 (Illustrative Example 3.12 continued). Next, we take a closer look at expected
shortfall contributions of the subportfolio Y1 := X1 +X2 to the total portfolio X, as well as
their conditional generalisations. Such a subportfolio may represent a collection of companies
in a specific industry or country. Defining Y2 := X3 + · · ·+Xn yields, for all k ∈ {0, 1, 2},

E
[
Y1 1{X>qδ(X)}

]
=

2∑
k=0

kP(Y1 = k,X > qδ(X))

=

2∑
k=0

kP(Y1 = k)P(Y2 > qδ(X)− k) ,

which gives the expected shortfall contribution of subportfolio Y1 to the total portfolio X at
level δ = 0.95, denoted by ESδ[Y1, X],

ESδ[Y1, X] =
1

1− δ

2∑
k=0

kP(Y1 = k)
(
P(Y2 > qδ(X)− k) + βδ,X P(Y2 = qδ(X)− k)

)
= 0.96 .
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7.1. Definition of contributions to weighted conditional expected shortfall

Analogously, the contribution of Y2 to the total portfolio X is ESδ[Y2, X] = 3.84. Then, as

E
[
Y1 1{X>qδ(X)}

∣∣G] =
2∑

k=0

kP(Y1 = k,X > qG,δ(X) |G)

=

2∑
k=0

kP(Y1 = k |G)P(Y2 > qG,δ(X)− k |G) ,

we may similarly obtain conditional contributions of the subportfolio Y1 to the total portfolio
X given credit rating events G = σ(G)

ESδ[Y1, X |G ]

=
1

1− δ

2∑
k=0

kP(Y1 = k |G)
(
P(Y2 > qG,δ(X)− k) + βG,δ,X P(Y2 = qδ(X)− k |G)

)
=

{
0.65 on G ,

1.81 on Gc .

Finally, conditional contributions of the subportfolio Y2 to the total portfolio X given credit
rating events G are given by

ESδ[Y2, X |G ] =

{
2.63 on G ,

7.24 on Gc .

As intuition suggests, depending on the given credit rating event contributions of subportfolios
change but not entirely in a linear way. Moreover, recalling the results for conditional
expected shortfall obtained in Example 5.4, we observe linear aggregation of subportfolios
in the classical, as well as conditional case, i.e.,

ESδ[X] = ESδ[Y1, X] + ESδ[Y2, X] ,

as well as
ESδ[X |G ] = ESδ[Y1, X |G ] + ESδ[Y2, X |G ] .

This result is true in general as shown in Lemma 7.7(a) and (g). Assuming that linear
aggregation should hold, we could now take a naive approach and define contributions Π[Y1]
and Π[Y2] of Y1 and Y2, respectively, as

Π[Yi, X] :=
ESδ[Yi]

ESδ[Y1] + ESδ[Y2]
ESδ[X] , i ∈ {1, 2} ,

i.e., as the fraction of the subportfolio risk to the aggregated subportfolio risk and scaled
by the total portfolio risk. Correspondingly for the conditional case, we could define naive
conditional contributions as

Π[Yi, X |G] :=
ESδ[Yi |G ]

ESδ[Y1 |G ] + ESδ[Y2 |G ]
ESδ[X |G ] , i ∈ {1, 2}.

The results are shown in Figure 7.1 where we compare the naive approach, i.e., Π[Yi, X] and
Π[Yi, X |G], to conditional and unconditional expected shortfall contributions, i.e., ESδ[Yi, X]
and ESδ[Yi, X |G ] for i ∈ {1, 2}. Obviously, both approaches give the same cumulated risk
capital but contributions change. Naive contributions are less skewed, meaning that greater
losses get relatively smaller allocations as in the case of expected shortfall contributions.
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Y1 Y2 Y1 Y2 Y1 Y2

0
1

2
3

4
5

6
7

CES contribution
naive contribution

Figure 7.1: Comparison of naive risk contributions (grey) to expected shortfall and conditional
expected shortfall contributions (blue), i.e., left the unconditional case with ESδ[Yi, X] and
Π[Yi, X], in the middle the conditional case on G, as well as right the conditional case on
Gc with ESδ[Yi, X |G ] and Π[Yi, X |G] for i ∈ {1, 2}.

7.2 Properties of contributions to weighted conditional ex-
pected shortfall

Lemma 7.6. Given the assumptions of Definition 7.3 and, in addition, X ∈ LG,G,L,contr(P),
note that contributions to weighted conditional expected shortfall can be represented as a
weighted average of contributions to conditional expected shortfall, i.e.,

ESG[X,L |G ] =

∫
[0,1]

ESG←(t,·)[X,L|G ] dt .

Proof. Note that by definition of weighted conditional expected shortfall contributions and
by definition of fG,G,L in (6.11) we have

ESG[X,L|G ] = E[fG,G,LX |G ] + (1−G(1−, ·))XG

= E
[∫

[0,G(1−,·))

fG,G←(t,·),L

1−G←(t, ·)
X dt

∣∣∣∣G]+ (1−G(1−, ·))XG , a.s.

Now, recall Equation 6.14 and note that we can find a measurable version of(
E
[ fG,G←(t,·),L

1−G←(t, ·)
X
∣∣∣G])

t∈[0,G(1−,·))

as there exist versions of (G←(t, ·))t∈[0,G(1−,·)), as well as (fG,G←(t,·),L)t∈[0,G(1−,·)) with
increasing paths. Thus, together with σ-integrability of fG,G,LX, we can apply the conditional
Fubini theorem, see Lemma 10.4, to obtain

ESG[X,L|G ] =

∫
[0,G(1−,·))

E
[ fG,G←(t,·),L

1−G←(t, ·)
X
∣∣∣G] dt+ (1−G(1−, ·))XG

=

∫
[0,1]

ESG←(t,·)[X,L|G ] dt a.s.,

which gives the result.

Having proved the latter result, some of the following results can be derived by reducing
the problem to conditional expected shortfall contributions whilst others have to be proven
directly.
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Lemma 7.7 (Properties of weighted conditional expected shortfall contributions). Given a
sub-σ-algebra G ⊂ F , consider a process G with the properties specified in Definition 7.1.
Let L: Ω→ R be F-measurable and let X,Y ∈ L−G,G,L,contr(P). Then, weighted conditional
expected shortfall contributions have the following conditional properties:
(a) Consistency with weighted conditional expected shortfall:

ESG[L,L|G ] = ESG[L |G ] .

(b) Diversification: If X ∈ LG,G,L,contr(P), then

ESG[X,L|G ] ≤ ESG[X |G ] a.s.

For conditional expected shortfall contributions it suffices if X ∈ L−G,G,L,contr(P).

(c) Invariance of portfolio scale: If Z: Ω→ [0,∞) is G-measurable, then

ESG[X,LZ |G ] = ESG[X,L |G ] a.s.

(d) Portfolio translation invariance: If Z: Ω→ R is G-measurable, then

ESG[X,L+ Z |G ] = ESG[X,L|G ] a.s.

(e) Conditional positive homogeneity: If Z: Ω→ [0,∞) is G-measurable, then

ESG[XZ,L |G ] = ESG[X,L|G ] Z a.s.

(f) Conditional translation invariance: If Z: Ω→ R is G-measurable, then

ESG[X + Z,L|G ] = ESG[X,L|G ] + Z a.s.

(g) Conditional linearity: If Z1, Z2: Ω → [0,∞) are G-measurable and if in addition
XZ1 + Y Z2 ∈ L−G,G,L,contr(P), then

ESG[XZ1 + Y Z2, L|G ] ≤ ESG[X,L|G ] Z1 + ESG[Y,L |G ] Z2 a.s.

If G(1−, ·) = 1 a.s., then we have equality above. If X,Y ∈ LG,G,L,contr(P), the result
holds for all G-measurable Z1 and Z2.

(h) Conditional monotonicity: If X ≤ Y a.s., then

ESG[X,L|G ] ≤ ESG[Y, L |G ] a.s.

(i) Conditionally uncorrelated: If X and fG,G,L are conditionally uncorrelated given G, see
Footnote 28, then

ESG[X,L|G ] = G(1−, ·)E[X |G ] + (1−G(1−, ·))XG a.s.

(j) Subportfolio continuity: If G(1−, ·) = 1 a.s. and if X,Y ∈ LG,G,L,contr(P), then∣∣ESG[X,L|G ]− ESG[Y,L |G ]
∣∣ ≤ ESG

[
|X − Y |, L

∣∣G] ≤ ESG
[
|X − Y |

∣∣G] a.s.
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(k) Portfolio continuity: Given X ∈ LG,G,L,contr(P), assume that in addition we either have
P(L ≤ qG,G←(t,·)(L) |G) = G←(t, ·) a.s. or that X is a.s. constant on {L = qG,G←(t,·)(L)}
for all t ∈ [0, 1]. Then, weighted expected shortfall contributions of X are continuous at
L, meaning that for every sequence (Ln)n∈N of real-valued random variables converging
to L in conditional probability, i.e., limn→∞ P(|L − Ln| ≥ ε |G) = 0 for every ε > 0,
such that X ∈ LG,G,Ln,contr(P) for all n ∈ N it holds that

ESG[X,L|G ] = lim
n→∞

ESG[X,Ln |G ] in L1 .

(l) Representation of weighted conditional expected shortfall contribution by directional
derivative: Let G(1−, ·) = 1 a.s. and suppose that X ∈ LG,G,L,contr(P). If, for all
t ∈ [0, 1], either P(L ≤ qG,G←(t,·)(L) |G) = G←(t, ·) a.s. or if X is a.s. constant on
{L = qG,G←(t,·)(L)}, then

ESG[X,L|G ] = lim
n→∞

ESG[L+ εnX |G ]− ESG[L|G ]

εn
in L1 ,

for every sequence (εn)n∈N of G-measurable real-valued random variables tending to
zero a.s. with P(

⋃
n∈N{εn = 0}) = 0 and L,L+ ε1X,L+ ε2X, · · · ∈ LG,G,wces(P).

Corollary 7.8 (Conditional coherent allocation). Considering sub-σ-algebra G ⊂ F and
weighting process G such that G(1−, ·) = 1 a.s., weighted conditional expected shortfall
contributions satisfy all three conditional coherent allocation axioms31 as follows: For a
portfolio X = X1 + · · ·+Xn, n ∈ N, with X ∈ L−G,G,wces(P), as well as Xi ∈ L−G,G,X,contr(P)
for all i ∈ {1, . . . , n} we have conditional linear aggregation

ESG[X1, X |G ] + · · ·+ ESG[Xn, X |G ] = ESG[X |G ] a.s.,

by Lemma 7.7(a) and (g), as well as diversification as given in Lemma 7.7(b) and portfolio
continuity as given in Lemma 7.7(k).

Remarks 7.9. (Portfolio continuity and directional derivative).
(a) The conditions in Lemma 7.7(k) and (l), i.e., P(L ≤ qG,G←(t,·)(L) |G) = G←(t, ·) a.s. and

X being a.s. constant on {L = qG,G←(t,·)(L)} for all t ∈ [0, 1], simplify to the easier
conditions P(L ≤ qG,δ(L) |G) = δ a.s. and X being a.s. constant on {L = qG,δ(L)} if we
want to have the results for conditional expected shortfall contributions ESδ[X,L|G ].
It should also be mentioned that these properties are necessary in certain settings, see
Schmock [111, Example 7.32] for a counterexample.

(b) Euler allocation32: For I := {0, . . . , T}, let (Ω,F , (Ft)t∈I ,P) be a filtered probability
space and consider a portfolio with d ∈ N discounted assets. Rd-valued discounted
asset prices (Xt)t∈I are (Ft)t∈I -adapted and, for t ∈ I, we write Xt = (X1

t , . . . , X
d
t ).

Moreover, consider an Rd-valued trading strategy (Ht)t∈I where Ht = (H1
t , . . . ,H

d
t )

gives the number of shares held in the corresponding assets over the period (t− 1, t] and
is Ft−1-measurable for t ∈ I \ {0}. Portfolio loss (Lt)t∈I is then given by L0 = 0 and

Lt =

t∑
s=1

d∑
i=1

H i
s∆′Xi

s , t ∈ I \ {0} ,

31 These axioms are simply transferred from corresponding classical, unconditional axioms as given in
Kalkbrener [70].

32 For an axiomatic approach to Euler allocation see, for example, Tasche [120].
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with ∆′Xi
s := (Xi

s−1−Xi
s). If ∆′Xi

t ∈ L−G,G,Lt,contr(P) and (−Xi
t) ∈ L−G,G,Lt−Lt−1,contr(P)

for i ∈ {1, . . . , d} and t ∈ I \ {0}, then

ESG
[
∆′Xt

i , Lt
∣∣Ft−1

]
= Xi

t−1 + ESG
[
−Xi

t , Lt − Lt−1

∣∣Ft−1

]
a.s.,

by Lemma 7.7(d) and (f). Thus, at time t ∈ I \ {0} for asset i ∈ {1, . . . , d}, the risk
associated with the contribution given Ft−1 of loss ∆′Xi

t to the total accumulated
portfolio loss Lt comes down to the contribution of the i-th asset to the portfolio loss∑d

i=0H
i
t∆′Xi

t . Moreover, if all necessary assumptions for the derivative representation
in Lemma 7.7(l) are satisfied, we get the Euler allocation, for all i ∈ {1, . . . , d} and
t ∈ I \ {0},

ESG
[
∆′Xt

i , Lt
∣∣Ft−1

]
=
∂ ESG[Lt |Ft−1]

∂H i
t

a.s.

This result corresponds to derivative representations of shortfall risk measures as outlined
in Tasche [119] for the classical case. It shows that weighted conditional expected shortfall
contributions measure the change rate of weighted conditional expected shortfall of the
total portfolio loss Lt when holdings H i

t in asset i, with i ∈ {1, . . . , d}, are increased or
decreased at time t ∈ I \ {0}.

Proof of Lemma 7.7. (a) The result follows by Definition 7.2 and Lemma 6.10.
(b) Recall the notation of Lemma 5.7. As fG,δ,L ∈ F1

G,δ,X , for all G-measurable levels
δ: Ω→ [0, 1], we get

E[fG,δ,LX |G ] ≤ ess sup
f∈F1

G,δ,X

E[fX |G ] = E[fG,δ,XX |G ] a.s.

Thus, whenever X ∈ LG,G,L,contr(P), the proof of Lemma 7.6 implies

E[fG,G,LX |G ] =

∫
[0,G(1−,·))

E
[ fG,G←(t,·),L

1−G←(t, ·)
X
∣∣∣G] dt

≤
∫

[0,G(1−,·))
E
[ fG,G←(t,·),X

1−G←(t, ·)
X
∣∣∣G] dt = E[fG,G,XX |G ] a.s.

(c) and (d) It is easy to see that fG,δ,LZ = fG,δ,L a.s. and fG,δ,L+Z = fG,δ,L a.s. which
imply fG,G,LZ = fG,G,L a.s. and fG,G,L+Z = fG,G,L a.s., respectively, for all G-measurable
δ: Ω→ [0, 1]. The result then follows by Definition 7.2.

(e), (f) and (g) The statements follow from linearity of conditional expectation, for which
we refer to [65, Theorem 1.18], and Remarks 3.3(f)–(i).

(h) The result follows from Lemma 6.10, Definition 7.2 and Lemma 3.18(g), as

E[fG,G,LX |G ] ≤ E[fG,G,LY |G ] a.s.

(i) The result follows from Lemma 6.15.
(j) Setting V := X − Y , by Jensen’s inequality from Lemma 10.3(a) we have∣∣ESG[V,L |G ]

∣∣ =
∣∣E[fG,G,LV |G ] + (1−G(1−, ·))XG

∣∣
≤
∣∣E[fG,G,LV |G ]

∣∣+
∣∣(1−G(1−, ·))XG

∣∣
≤ E[|fG,G,LV ||G ] + (1−G(1−, ·))|X|G = ESG[|V |, L|G ] a.s.

This proves the lower inequality. The upper inequality follows from (b).
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(k) Since the proof is longer, let us reduce the problem. We will first show the result
for conditional expected shortfall contributions ESG←(t,·)[X,L|G ] which then extends to
weighted conditional expected shortfall contributions ESG[X,L|G ]. To see this, assume
that we have shown the result for ESG←(t,·)[X,L|G ] for all t ∈ [0, 1]. Then, note that by
Corollary 7.6, as well as by Fubini’s theorem, cf. Kallenberg [71, Theorem 1.27],

E
[∣∣ESG[X,Ln |G ]− ESG[X,L|G ]

∣∣]
≤ E

[∫
[0,1]

∣∣ESG←(t,·)[X,L |G ]− ESG←(t,·)[X,Ln |G ]
∣∣ dt]

=

∫
[0,1]

E
[∣∣ESG←(t,·)[X,L |G ]− ESG←(t,·)[X,Ln |G ]

∣∣] dt , n ≥ n∗ ,

where n∗ is chosen such that the integrand in the last expression is bounded from above
by some constant. Note that we may find such an n∗ due to Equation (7.13). Taking
limits n→∞ and applying the dominated convergence theorem as, for example, given in
Kallenberg [71, Theorem 1.21], gives

lim
n→∞

E
[∣∣ESG[X,Ln |G ]− ESG[X,L|G ]

∣∣]
≤
∫

[0,1]
lim
n→∞

E
[∣∣ESG←(t,·)[X,L|G ]− ESG←(t,·)[X,Ln |G ]

∣∣] dt = 0 ,

which shows that it is enough to prove the result for conditional expected shortfall contribu-
tions ESδ[X,L |G ].

Secondly, let t ∈ [0, 1] be fixed and define δ := G←(t, ·). On {δ = 1} the result is
trivial since the sequence is constant. On {δ = 0} the result follows by passing to the
essential infimum once we have proven the result for {0 < δ < 1}. Thus, we may assume
0 < δ < 1 a.s. Given ε > 0, there exists a constant z such that the bounded random variable
Xε := X 1{|X|≤z} satisfies E[|X −Xε|] = E

[
|X|1{|X|>z}

]
≤ ε, by dominated convergence.

By subportfolio continuity (j) and by translation invariance (f), it therefore suffices to prove
the result for bounded X.

Thirdly, without loss of generality we may assume that E[X 1{L=qG,δ(L)} |G] = 0 a.s. be-
cause in case P(L = qG,δ(L) |G) > 0 with strictly positive probability we could, using
translation invariance from (f), switch to X ′ := X − a where,

a :=


E[X 1{L=qG,δ(L)} |G]

P(L=qG,δ(L) |G) on {P(L = qG,δ(L) |G) > 0} ,

0 on {P(L = qG,δ(L) |G) = 0} .

This simplifies the adjusted indicator function fG,δ,L as given by Definition 5.1. Due to
linearity (g), we may restrict to those X which are bounded by 1− δ.

Having reduced the problem, let ε > 0. By right-continuity of distribution functions,
there exists an η > 0 such that

P(0 < |L− qG,δ(L)| < 2η) ≤ ε . (7.10)

Since (Ln)n∈N converges to L in conditional probability, we have convergence in probability
by taking expectations and by conditional bounded convergence as, for example, given in
[65, Theorem 1.20]. Thus, there exists an nε ∈ N such that

P(|L− Ln| ≥ η) ≤ ε , n ≥ nε , (7.11)
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and, by Lemma 3.18(l),

P(qG,δ(L)− qG,δ(Ln) > η) ≤ ε , n ≥ nε . (7.12)

Moreover, note that |1A − 1B| = 1A∩Bc + 1Ac∩B for all A,B ∈ F .

In the following, by considering three cases, we will show that

E
[∣∣ESδ[X,L |G ]− ESδ[X,Ln |G ]

∣∣] ≤ 8ε , a.s., for all n ≥ nε . (7.13)

Since ε > 0 is arbitrary, the equation above implies the desired L1-convergence result. From
now on, let ε > 0 be fixed and let n ≥ nε, as above, and define

MR1,R2(n) := {LR1qG,δ(L), LnR2qG,δ(Ln)} , R1, R2 ∈ {<,>,≤,≥} . (7.14)

Case I: Starting on the set M := {qG,δ(Ln) > qG,δ(L) +η}, we do not need the additional
assumptions made in the lemma. First, note that in this case

1M (1− βG,δ,X) E
[
1{Ln=qG,δ(Ln)}

∣∣G] = 1M
(
δ − P(Ln < qG,δ(Ln) |G)

)
≤ 1M

(
P(L < qG,δ(L) |G)− P(Ln < qG,δ(Ln) |G)

)
≤ 1MP(M≤,≥(n) |G) a.s.

Taking expectations in the expression above and using (7.11) we get

E
[
1M (1− βG,δ,X) E

[
1{Ln=qG,δ(Ln)}

∣∣G]] ≤ P(M ∩M≤,≥(n)) ≤ ε . (7.15)

By partitioning {Ln ≥ qG,δ(Ln)} we get

1M (1− δ) ≤ 1M P(Ln ≥ qG,δ(Ln) |G)

= 1M
(
P(M>,≥(n) |G) + P(M≤,≥(n) |G)

)
a.s.

Hence, taking expectations on both sides gives P(M ∩M>,≥(n)) ≥ E[1M (1− δ)]− ε. Parti-
tioning {L > qG,δ(L)} yields

1M (1− δ) ≥ 1M P(L > qG,δ(L) |G)

= 1M
(
P(M>,≥(n) |G) + P(M>,<(n) |G)

)
a.s.

Thus, taking expectations on both sides again and using P(M ∩M>,≥(n)) ≥ E[1M (1− δ)]−ε
yield P(M ∩M>,<(n)) ≤ ε. Finally, using the definition of conditional expected shortfall
contributions, since E[X 1{L=q} |G] = 0 a.s. and by the boundedness of X by 1− δ we obtain

1M
∣∣ESδ[X,L |G ]− ESδ[X,Ln |G ]

∣∣
≤ 1M

(
(1− βG,δ,X) E

[
1{Ln=qG,δ(Ln)}

∣∣G]+ E
[∣∣1{Ln≥qG,δ(Ln)} − 1{L>qG,δ(L)}

∣∣ ∣∣G])
= 1M

(
(1− βG,δ,X) E

[
1{Ln=qG,δ(Ln)}

∣∣G]+ P(M≤,≥(n) |G) + P(M>,<(n) |G)
)

a.s.

Thus, by (7.15) and since P(M ∩M>,<(n)) ≤ ε,

E
[
1M
∣∣ESδ[X,L|G ]− ESδ[X,Ln |G ]

∣∣] ≤ 3ε

which ends the first case.
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Case II: Secondly, consider the case on M c = {qG,δ(Ln) ≤ qG,δ(Ln) + η} for the two
different assumptions given in (k). Note that, by using (7.10) and (7.11), as well as by
partitioning M>,≤(n) we get

P(M c ∩M>,≤(n)) =P
(
M c ∩ {qG,δ(L) < L < qG,δ(L) + 2η} ∩ {Ln ≤ qG,δ(Ln)}

)
+ P

(
M c ∩ {L ≥ qG,δ(L) + 2η} ∩ {Ln ≤ qG,δ(Ln)}

)
≤ 2ε .

(7.16)

Case II(a): Let the assumption P(L ≤ qG,δ(L) |G) = δ a.s. be satisfied. By partitioning
{Ln ≤ qG,δ(Ln)} we obtain

1Mc δ ≤ 1Mc P(Ln ≤ qG,δ(Ln) |G)

= 1Mc

(
P(M≤,≤(n) |G) + P(M>,≤(n) |G)

)
a.s.

Taking expectations on both sides and (7.16) yield P(M c ∩ M≤,≤(n)) ≥ E[1Mc δ] − 2ε.
Moreover, partitioning {L ≤ qG,δ(L)} yields

1Mc δ ≥ 1Mc P(L ≤ qG,δ(L) |G) = 1Mc

(
P(M≤,>(n) |G) + P(M≤,≤(n) |G)

)
a.s.

Thus, taking expectations on both sides and using P(M c ∩M≤,≤(n)) ≥ E[1Mc δ]− 2ε give
P(M c ∩M≤,≤(n)) ≤ E[1Mc δ], as well as P(M c ∩M≤,>(n)) ≤ 2ε. Furthermore, we get

1Mc βG,δ,X E
[
1{Ln=qG,δ(Ln)}

∣∣G] = 1Mc

(
P(Ln ≤ qG,δ(Ln) |G)− δ

)
= 1Mc

(
P(M>,≤(n) |G) + P(M≤,≤(n) |G)− δ

)
a.s.,

(7.17)

and hence E
[
1M βG,δ,X E[1{Ln=qG,δ(Ln)} |G]

]
≤ 2ε by taking expectations on both sides and

using (7.16). Finally, using the definition of conditional expected shortfall contributions,
since E[X 1{L=q} |G] = 0 a.s. and by the boundedness of X by 1− δ it follows

1Mc

∣∣ESδ[X,L|G ]− ESδ[X,Ln |G ]
∣∣

≤ 1Mc

(
βG,δ,X E

[
1{Ln=qG,δ(Ln)}

∣∣G]+ E
[∣∣1{Ln>qG,δ(Ln)} − 1{L>qG,δ(L)}

∣∣ ∣∣G])
= 1Mc

(
βG,δ,X E

[
1{Ln=qG,δ(Ln)}

∣∣G]+ P(M>,≤(n) |G) + P(M≤,>(n) |G) a.s.

Thus, by (7.16) and (7.17), as well as since P(M c ∩M≤,>(n)) ≤ 2ε, we get

E
[
1Mc

∣∣ESδ[X,L|G ]− ESδ[X,Ln |G ]
∣∣] ≤ 6ε .

This implies (7.13) and thus ends the proof for the case P(L ≤ qG,δ(L) |G) = δ a.s.
Case II(b): For this case, let X be a.s. constant on the set {L = qG,δ(L)}. Therefore,

E[X 1{L=qG,δ(L)} |G] = 0 a.s. implies E[|X|1{L=qG,δ(L),Ln=qG,δ(Ln)} |G] = 0 a.s., as well as
E[|X|1{L=qG,δ(L),Ln>qG,δ(Ln)} |G] = 0 a.s. Thus, by the boundedness of X,

E
[
|X|1{Ln=qG,δ(Ln)}

∣∣G]
1− δ

=
E
[
|X|1{L6=qG,δ(L),Ln=qG,δ(Ln)}

∣∣G]
1− δ

≤ P
(
L 6= qG,δ(L), Ln = qG,δ(Ln)

∣∣G)
≤ P

(
0 < |L− qG,δ(L)| < 2η

∣∣G)+ P
(
|L− qG,δ(L)| ≥ 2η, Ln = qG,δ(Ln)

∣∣G) a.s.

Taking expectations on both sides and using (7.10), (7.11), as well as (7.12) gives

E
[E[|X|1{Ln=qG,δ(Ln)}

∣∣G]
1− δ

]
≤ 3ε. (7.18)
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Moreover, we get

E
[
|X|1M≤,>(n)

∣∣G]
1− δ

≤ P(L ≤ qG,δ(L), Ln > qG,δ(Ln) |G)

= P(qG,δ(L)− 2η < L ≤ qG,δ(L), Ln > qG,δ(Ln) |G)

+ P(L ≤ qG,δ(L)− 2η, Ln > qG,δ(Ln) |G) a.s.

Again, taking expectations on both sides and using (7.10), (7.11), as well as (7.12) yields

E
[E[|X|1M≤,>(n)

∣∣G]
1− δ

]
≤ 3ε . (7.19)

Finally, using the definition of conditional expected shortfall contributions together with
0 ≤ βG,δ,X ≤ 1 a.s. and E[X 1{L=q} |G] = 0 a.s., we obtain

1Mc

∣∣ESδ[X,L|G ]− ESδ[X,Ln |G ]
∣∣

≤ 1Mc

E
[
|X|1{Ln=qG,δ(Ln)}

∣∣G]
1− δ

+
E
[
|X|1M>,≤(n)

∣∣G]
1− δ

+
E
[
|X|1M≤,>(n)

∣∣G]
1− δ

a.s.

Thus, by the boundedness of X and by (7.16), (7.18), as well as (7.19), we get

E
[
1Mc

∣∣ESδ[X,L|G ]− ESδ[X,Ln |G ]
∣∣] ≤ 8ε .

This implies (7.13) and thus ends the proof of the second case.
(l) Let n ∈ N and start on the set M := {εn > 0}. By consistency (a), diversification (b)

and linearity (g), we get

1M ESG[L+ εnX |G ] ≥ 1M ESG[L+ εnX,L|G ]

= 1M
(

ESG[L |G ] + εn ESG[X,L|G ]
)

a.s.,

and hence

1M
ESG[L+ εnX |G ]− ESG[L|G ]

εn
≥ 1M ESG[X,L|G ] a.s. (7.20)

By Definition 7.2 and consistency (a), we have

1M ESG[L,L+ εnX |G ] = 1M
(
E[fG,G,L+εnXL|G ] + (1−G(1−, ·))LG

)
= 1M

(
E[fG,G,L+εnX (L+ εn) |G ]− εn E[fG,G,L+εnXX |G ]

)
= 1M

(
ESG[L+ εnX |G ]− εn ESG[X,L+ εnX |G ]

)
a.s.,

where, by diversification (b),

1M ESG[L,L+ εnX |G ] ≤ 1M ESG[L|G ] a.s.

These last two observations imply

1M ESG[X,L+ εnX |G ] ≥ 1M
ESG[L+ εnX |G ]− ESG[L|G ]

εn
a.s. (7.21)

To get the corresponding results on {εn < 0}, simply apply (7.20) and (7.21) to ε′n = −εn,
as well as X ′ = −X and use the fact that ESG[X,L|G ] = −ESG[X ′, L|G ] a.s., by linearity
as given in (g).

Note that (L+ εnX) converges to L almost surely and thus in conditional probability
as n→∞. Hence, using (7.20) and (7.21), we can apply (k) to obtain

ESG[X,L|G ] = lim
n→∞

ESG[L+ εnX |G ]− ESG[L|G ]

εn
in L1 .
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Chapter 8

Illustrative Applications of
Conditional Risk Measures

In this section we give a few illustrative examples where different conditional
risk measures are calculated explicitly. We start with time series applications
in Examples 8.1 and 8.2 which are based on a study of McNeil and Frey [84].
Moreover, Example 8.3 shows some basic calculations and proves that conditional
expected shortfall in general is neither time-consistent nor, equivalently, recursive,
cf. Delbaen [31, Section 6] and see Remark 5.25(e). Finally, Example 8.5 shows
another application of conditional risk measures with a scope to scenario analysis
where conditioning is subject to risk factors in the credit risk model extended
CreditRisk+, see Schmock [111, Section 6]. This example is closely related to
Example 2.5 and to the annuity model discussed in the second part of this thesis.

Example 8.1. The first example is taken from McNeil and Frey [84] where negative log
returns of financial asset prices are modelled in order to calculate conditional lower quantiles
and conditional expected shortfall. Let (Xt)t∈Z be a family of F-measurable real-valued
random variables on (Ω,F ,P). Dynamics are given by

Xt = µt + σtZt , t ∈ Z ,

where (Zt)t∈Z is an independent and identically distributed sequence of random variables
with mean zero, unit variance and marginal distribution function F . For t ∈ Z define the
filtration Ft := σ(Xs, s ≤ t) and assume that µt and σt are measurable with respect to Ft−1

where, in addition, σt > 0 a.s. for every t ∈ Z.

Due to the assumption of independence of (Zt)t∈Z, we can use Lemma 10.3(b) to conclude
that, for every t ∈ Z and every Ft−1-measurable Z: Ω→ R,

P(Xt ≤ Z |Ft−1) = P
(
Zt ≤

Z − µt
σt

∣∣∣Ft−1

)
= F

(Z − µt
σt

)
a.s.

Thus, conditional lower quantiles at Ft−1-measurable level δt: Ω→ [0, 1], see Definition 3.7,
are given by

qδt,Ft−1(Xt) = µt + σtF
←(δt) a.s., for all t ∈ Z ,

where F← denotes the lower quantile function of F , see Remarks 3.11(a).
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Next, we want to calculate conditional expected shortfall at Ft−1-measurable level
δt: Ω→ [0, 1] using Definitions 5.1 and 5.3. Note that fFt−1,δt,Xt = fFt−1,δt,Zt a.s. for every
t ∈ Z. Thus, by Remarks 5.2(b) as well as Remarks 3.3(h) and (i),

ESδt [Xt |Ft−1] = µt + σt ESδ[Zt |Ft−1] a.s.,

which, by Lemma 5.12, can also be written as

ESδt [Xt |Ft−1] = µt +
σt

1− δ

∫
[δ,1)

F←(u) du a.s., on {0 < δt < 1} .

The conditional distortion risk measure ρg[Xt |Ft−1] with distortion process g adapted to
the constant filtration (Ft−1)s∈[0,1], see Definitions 4.1 and 4.5, is then given by

ρg[Xt |Ft−1] = µt + σt

∫
[0,1]

F←(1− u) g(du, ·) a.s.

For GARCH-type models McNeil and Frey [84] provide an estimation procedure for condi-
tional lower quantiles and conditional expected shortfall where the tail of F is modelled via
extreme value distributions.

Example 8.2. Considering a similar setting as before, we want to show an easy application
of conditional expected shortfall contributions as defined in Chapter 7. Consider the same
assumptions as in Example 8.1 where, in addition, the stochastic process (Xt)t∈Z is a sum
of two processes, i.e.,

Xt = Xt,1 +Xt,2 , t ∈ Z ,

where Xt,i := µt,i + σt,iZt with µt,i and σt,i being Ft−1-measurable for i = 1, 2 and t ∈ Z
such that σt,1 > σt,2 > 0 a.s. Thus, we are given a process where its components Xt,1 and
Xt,2 are conditionally comonotonic with respect to Ft−1 for all t ∈ Z. Using the results of
the previous example, we get, for all t ∈ Z,

ESδt [Xt |Ft−1] = (µt,1 + µt,2) + (σt,1 + σt,2) ESδt [Zt |Ft−1] a.s.

Since fFt−1,δt,Xt = fFt−1,δt,Zt a.s., conditional expected shortfall contributions of Xt,i to Xt

at Ft−1-measurable level δt: Ω→ [0, 1] are, for all t ∈ Z, given by

ESδt [Xt,i, Xt |Ft−1] = µt,i + σt,i ESδt [Zt |Ft−1] a.s., for i = 1, 2 .

Alternatively, assume that Xt,2 := µt,2 + σt,2 (−Zt) for all t ∈ Z, i.e., the components Xt,1

and −Xt,2 are conditionally comonotonic with respect to Ft−1 for all t ∈ Z. Just as before,
for all t ∈ Z, we get

ESδt [Xt |Ft−1] = (µt,1 + µt,2) + (σt,1 − σt,2) ESδt [Zt |Ft−1] a.s.

and
ESδt [Xt,1, Xt |Ft−1] = µt,1 + σt,1 ESδt [Zt |Ft−1] a.s.

This example illustrates the sensitivity of conditional expected shortfall contributions to the
underlying dependence structure. In particular, conditional expected shortfall contributions
of a subportfolio can be greater, as well as smaller than conditional expected shortfall of the
whole portfolio itself for different dependence structures, e.g., we may set µt,1 = µt,2 = 0 for
all t ∈ Z.
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Example 8.3. For a continuous or discrete time interval I ⊂ [0,∞) let X = (Xt)t∈I be
a stochastic process such that E[|Xt|] <∞ for all t ∈ I with independent increments and
let (Ft)t∈I denote the natural filtration induced by X. Thus, for all t, T ∈ I with t < T ,
(XT −Xt) is independent of Ft. Moreover, for all t ∈ I, assume level δt: Ω→ (0, 1) to be
Ft-measurable.

We start with a derivation of conditional lower quantiles, see Definition 3.7, and of
conditional expected shortfall, see Definition 5.3. By translation invariance and a property
under independence of conditional lower quantiles, see Lemma 3.18(c) and (f), we immediately
get

qFt,δt(XT ) = Xt + qFt,δt(XT −Xt) = Xt + F←(δt) a.s.,

for all t, T ∈ I with t < T . Using the quantile representation of conditional expected
shortfall of Lemma 5.12, we get

ESδt [XT |Ft] =
1

1− δt

∫
[δt,1)

Xt + F←(u) du = Xt + ESδt [XT −Xt] a.s., (8.4)

where ESδt [XT −Xt] denotes classical, unconditional expected shortfall of (XT −Xt), see
Remarks 5.5(a). From now on, let s, t, T ∈ I with s < t ≤ T , as well as Fs-measurable
level δs: Ω→ (0, 1) be fixed. Using Equation (8.4) twice, together with the supermartingale
property of Corollary 5.27, we get

ESδs [XT |Fs] ≥ E[ESδs [XT |Ft]|Fs] = E[Xt |Fs] + ESδs [XT −Xt] a.s.,

which implies

ESδs [XT −Xs]− E[XT −Xs] ≥ ESδs [XT −Xt]− E[XT −Xt] .

Note that this inequality is related to the uncertainty decrease of projections as given in
Lemma 5.23(o). For a standard Brownian motion, the inequality above is immediate since
both expectations equal zero and since in that case expected shortfall is given by, cf. McNeil,
Frey and Embrechts [85, Example 2.18],

ESδ′ [XT −Xt] =
√
T − t φ(Φ−1(δ′))

1− δ′
, δ′ ∈ (0, 1) ,

where φ denotes the continuous density, as well as where Φ−1 denotes the inverse distribution
function of a standard normal distribution. Moreover, Equation (8.4) and subadditivity of
expected shortfall, cf. Lemma 5.23(d), imply

ESδs [ESδs [XT |Ft]|Fs] = Xs + ESδs [XT −Xt] + ESδs [Xt −Xs] ≥ ESδs [XT |Fs] a.s.

Note that in the case of a standard Brownian motion the inequality is strict if s < t < T .
Thus, conditional expected shortfall is not recursive, in general, and hence not time-consistent.
For the equivalence of recursiveness and time-consistency see Delbaen [31, Section 6].

Conditional distortion risk measures are straight-forward to derive. Moreover, using the
result of (8.4), conditional G-weighted expected shortfall of XT , with t, T ∈ I and t < T , as
well as (Ft)u∈I -adapted process G as given in Definition 6.2, is given by

ESG[X |Ft] =

∫
[0,1]

Xt + ESr[XT −Xt] G(dr, ·) = Xt + ESG[XT −Xt] a.s.,

where ESG[XT −Xt] is given as in Lemma 6.5(h). Hence, we see that in an independent-
increment-setting all conditional risk measures described in this thesis can be simplified to
an unconditional representation.
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Chapter 8. Illustrative Applications of Conditional Risk Measures

Example 8.5. Let us consider a simplified version of the collective risk model extended
CreditRisk+ which is related to Example 2.5 and to the annuity model discussed in the
second part of this thesis. Also see Schmock [111, Section 6] for further information and a
detailed introduction to this model. Modifications of this model are given in Section 11.2
and Section 19.1.1. We assume m ∈ N obligors and a collection G of non-empty subsets of
all obligors {1, . . . ,m}, called risk groups, which are subject to joint defaults. Each single
obligor at least belongs to one risk group. We are given K ∈ N non-idiosyncratic risk factors
Λ := (Λ1, . . . ,ΛK) which are the joint drivers of the number of occurring defaults. Their
support is assumed to be countable and strictly positive with Var(Λk) > 0 and E[Λk] = 1 for
k ∈ {1, . . . ,K}. Moreover, we are given one-year default probabilities pg ∈ [0, 1] for all risk
groups g ∈ G. Weight, or susceptibility, of idiosyncratic risk is denoted by wg,0 ∈ [0, 1] and
weights of non-idiosyncratic risks are denoted by wg,k ∈ [0, 1] for k ∈ {1, . . . ,K} such that

K∑
k=0

wg,k = 1 .

For each group g ∈ G, the default number due to idiosyncratic risk, denoted by Ng,0, is
independent of every other random variable and has a Poisson distribution

L(Ng,0) = Poisson(pgwg,0) .

For each group g ∈ G, the default numbers due to non-idiosyncratic risk factors Λ, denoted
by Ng,1, . . . , Ng,K , are conditionally Poisson-distributed

L(Ng,k |Λ) = Poisson(pgwg,kΛk) .

Moreover, assume that conditionally on Λ non-idiosyncratic defaults{
Ng,k

∣∣ g ∈ G, k ∈ {1, . . . ,K}}
are independent. The sequence of Ng0-valued random losses of obligor i ∈ {1, . . . ,m} in risk
group g ∈ G due to risk k ∈ {0, . . . ,K} for default number n ∈ N, denoted by (Lg,i,k,n)i∈g ,
is independent and identically distributed and independent of all other random variables.
In particular, for all g ∈ G, i ∈ {1, . . . ,m}, k ∈ {0, . . . ,K} and n ∈ N, we assume Lg,i,k,n to
be Bernoulli distributed with

p := P(Lg,i,k,n = 1) = 1− P(Lg,i,k,n = 0) .

Moreover, define Gi := {g ∈ G | i ∈ g} for each obligor i ∈ {1, . . . ,m}. Then, the total loss
in the extended CreditRisk+ framework is given by

L :=
m∑
i=1

∑
g∈Gi

K∑
k=0

Ng,k∑
n=1

Lg,i,k,n .

Due to our assumptions, see Schmock [111, Section 6.9.2], L has a conditional Poisson
distribution

L(L |Λ) = Poisson(λ(Λ))

where the random parameter λ(Λ) is given by

λ(q) := p

m∑
i=1

∑
g∈Gi

pg

(
wg,0 +

K∑
k=1

wg,k qk

)
, q = (q1, . . . , qK) ∈ (0,∞)K .
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In the following, we want to calculate conditional lower quantiles and conditional expected
shortfall for different levels δ, conditioned on Λ. Note that σ(Λ)-measurable random
variables can be written as measurable functions of Λ. Thus, since L has a conditional
Poisson distribution,

P(L ≤ f(Λ) |Λ) =
∑

q∈supp Λ

1{Λ=q}P(L ≤ f(q) |Λ) = e−λ(Λ)

bf(Λ)c∑
j=0

(λ(Λ))j

j!
a.s.,

which equals the distribution function of a Poisson distribution with parameter λ(Λ) eval-
uated at f(Λ). For simplicity, we assume a deterministic level δ ∈ (0, 1). The task, when
calculating conditional lower quantiles as given in Definition 3.7, is to find minimal—in the
sense of an essential infimum—f(Λ) such that the expression above is greater or equal than
δ. Thus, obviously,

qδ,σ(Λ)(L) = F←Λ (δ) , δ ∈ (0, 1) , (8.6)

where F←q for q > 0 denotes the lower quantile function of a Poisson distribution with
parameter λ(q), see Remarks 3.11(a). Explicitly, we have

F←q (δ) = min

{
k ∈ N0

∣∣∣∣e−λ(q)
k∑
j=0

(λ(q))j

j!
≥ δ
}
, δ ∈ (0, 1) and q ∈ (0,∞)K .

Using the quantile representation of conditional expected shortfall of Lemma 5.12, we finally
get a representation for conditional expect shortfall as follows:

ESδ[L|σ(Λ)] =

∫
[δ,1)

F←Λ (t) dt a.s. (8.7)

With respect to scenario analysis, (8.6) and (8.7) show how a change in the underlying risk
factors transforms risk in a credit or a annuity portfolio using CreditRisk+. In Chapter 12
we provide estimation procedures for a simplified version of extended CreditRisk+ in the
context of life insurance and annuity portfolios. Using this approach, realisations of risk
factors Λ under various scenarios can be estimated, see Chapter 14. Just to mention a few,
such scenarios can correspond to macro economic events, to an overall shift in credit ratings
after a financial crisis, or to the introduction of new effective treatments in the context of
longevity risk in life insurance.
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Chapter 9

Conclusion to Advanced
Conditional Risk Measurement

Conclusively, in the first part of this thesis we give a mathematically sound and very general
approach to several classes of well-known and also new conditional risk measures which
provide the basis for an assessment of acceptable risk in a dynamic environment. We give
and collect rigorous, explicit definitions for sometimes intuitively used conditional versions
of notions like essential supremum and quantile, distortion risk measure, expected shortfall,
weighted expected shortfall and risk contributions. Various notable properties for all these
conditional risk measures and dynamic counterparts are transferred or proven so that we
provide a useful toolbox for practitioners, as well as researchers. As an alternative for
time-consistency we suggest two other dynamic properties which are satisfied by conditional
expected shortfall, as well as weighted conditional expected shortfall. We also introduce
risk contributions to weighted conditional expected shortfall quantifying the risk of a
subportfolio to the whole portfolio and prove notable properties. Ultimately, we observe
that most properties which hold in the classical, unconditional risk measures can be proven
in the conditional case as well. Thus, in some cases, conditional risk measures may seem as a
trivial extensions to classical, unconditional cases. But, in particular, if we use random levels
of risk aversion and if we condition on general sub-σ-algebras, as in the case of stochastic
processes, definitions of conditional risk measures have to be chosen very carefully so that
all quantities are well-defined and so that classical properties are preserved.
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Chapter 10

Appendix to Advanced Conditional
Risk Measurement

In this chapter we give some essential definitions and basic results which are
used throughout this thesis. We start with the definition of σ-integrable ran-
dom variables and then introduce the notion of time-consistency as given, for
example, in Delbaen [31, Section 6], as well as its weaker forms. Conditional
entropic risk measures are mentioned as an important class of time-consistent
risk measures. Moreover, we define conditional versions of comonotonicity and
stochastic ordering. We also give some preliminary technical results including
a Fubini-type theorem for conditional expectations. Moreover, in Section 10.2
we provide alternative proofs to some items in Lemma 5.23 where the usage of
results taken from conditional distortion risk measures is avoided.

10.1 Basic concepts and definitions

Definition 10.1 (σ-integrability). Given a sub-σ-algebra G ⊂ F , consider an F -measurable
X: Ω → R. Then, X is called σ-integrable with respect to G if there exists a sequence
(Ωn)n∈N ⊂ G, where Ωn ⊂ Ωn+1 for all n ∈ N, and P(Ω \

⋃
n∈N Ωn) = 0 such that

E[|X 1Ωn |] <∞ for all n ∈ N.

Remark 10.2. The definition of σ-integrability with respect to G is taken from He, Wang
and Yan [65, Definition 1.15]. Similar as in the classical case, we can define conditional
expectations for quasi-σ-integrable random variables, i.e., for random variables where just
the negative or just the positive part is σ-integrable. Various desired properties still hold.

Lemma 10.3 (Two properties of conditional expectation based on σ-integrability). Given
a sub-σ-algebra G ⊂ F , consider an F-measurable X: Ω→ R. Then, we get the following
conditional properties:

(a) Conditional Jensen: Assume that X is σ-integrable with respect to G and let c: R→ R
be a convex function. Then,

E[c(X) |G ] ≥ c(E[X |G ]) a.s.

(b) Assume that X− is σ-integrable with respect to G and consider G-measurable Z: Ω→ R.
Let h: R2 → R be a measurable function such that h(X,Z)− is σ-integrable with respect
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to G and assume that X is independent of G. Then,

E[h(X,Z) |G ] = H(Z) a.s.,

where H(z) = E[h(X, z)] for all z ∈ R.

Proof. (a) The proof is similar to Williams [129, Chapter 9.8, Proof of (h)] by simply using
the general version of conditional expectation and its properties from [65, Chapter I.4]
instead.

(b) A similar result also appears in [86, Lemma A.0.1(v)], as well as [13, Example 34.3]
and thus we will just sketch the proof. First note that the result is true for functions of the
form h = 1F×G where F is F -measurable and where G is G-measurable. Using a monotone
class argument we get the result for bounded measurable h. The general case follows by
taking the limit over bounded functions tending to h.

Lemma 10.4 (A Fubini-type theorem for generalised conditional expectation). Given
a sub-σ-algebra G ⊂ F and σ-finite measure space (S,Σ, µ), let X: S × Ω → R33 be a
Σ⊗F-measurable stochastic process such that

∫
S Xs µ(ds) is σ-integrable with respect to G.

Moreover, assume that there exists a Σ⊗ G-measurable version of (E[Xs |G ])s∈S. Then,

E
[∫

S
Xs µ(ds)

∣∣∣∣G] =

∫
S
E[Xs |G ] µ(ds) a.s.

Proof. Define RX =
{
G ∈ G

∣∣ E[∣∣ ∫S Xs µ(ds)
∣∣1G] < ∞}. Then, using Fubini’s theorem,

cf. [71, Theorem 1.27], as well as fundamental properties of generalised conditional expecta-
tion, see [65, Chapter I.4],

E
[
1G

∫
S
Xs µ(ds)

]
=

∫
S
E[1GXs] µ(ds) =

∫
S
E
[
1G E[Xs |G ]

]
µ(ds) <∞ , G ∈ RX .

If we apply Fubini’s theorem again, we get

E
[
1G

∫
S
Xs µ(ds)

]
= E

[
1G

∫
S
E[Xs |G ] µ(ds)

]
, G ∈ RX ,

which yields the result due to the definition of generalised conditional expectation and since∫
S E[Xs |G ] µ(ds) is G-measurable.

Remark 10.5 (Joint measurability). Let S = [0,∞) and Σ = B([0,∞)). Then the condition
that X is Σ ⊗ F-measurable is, for example, satisfied if Xs is F-measurable for every
s ∈ S, and if [0,∞) 3 t 7→ X(t, ω) is right-continuous or left-continuous for every ω ∈ Ω,
cf. Karatzas and Shreve [72, Proposition 1.13]. If in addition those paths are increasing,
then there exists a version of (E[Xs |G ])s∈S which is Σ⊗ G-measurable. This follows by a
similar argumentation as in Lemma 3.15.

Next, we define time-consistency based on the papers of Delbaen [31, Section 6] and
Acciaio and Penner [3].

33 We define X(s, ω) = Xs(ω) for all s ∈ S and ω ∈ Ω.
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Definition 10.6 (Time-consistency). Recalling Definitions 1.1 and 1.3, as well as given a
filtration (Ft)t∈I with index set I ⊂ [0,∞), consider a dynamic risk measure (ρt)t∈I defined
on a suitable subset L ⊂ L0(Ω,F ,P). Moreover, consider stopping times τ, σ: Ω→ I such
that σ ≤ τ a.s. For X,Y ∈ L consider property

ρτ [X] ≤ ρτ [Y ] (≥ resp.) ⇒ ρσ[X] ≤ ρσ[Y ] (≥ resp.) . (10.7)

Then, define the following:
(a) (ρt)t∈I is called (strongly) time-consistent if, for every X ∈ L, either direction of (10.7)

holds for all Y ∈ L.

(b) (ρt)t∈I is called middle rejection or acceptance consistent, respectively, if, for every
X ∈ L, Implication (10.7) holds for all Y ∈ L ∩ L0(Ω,Fσ,P) where Fσ = {A ∈ F |
A ∩ {σ ≤ t} ∈ Ft, for all t ∈ T}.

(c) (ρt)t∈I is called weakly rejection or acceptance consistent, respectively, if, for every
X ∈ L, Implication (10.7) holds for all constants Y ∈ R.

Remarks 10.8. (Time-consistency).
(a) Note that definitions of time-consistency slightly vary in the literature.

(b) Every form of time-consistency can be interpreted as follows. If a financial position X
is preferable to some other financial position or benchmark Y at a random time τ in
the future, then this position should also be preferable at an earlier time σ. The richer
the class of benchmarks Y , the stronger the result.

(c) For a definition of time-consistency based on bounded random variables we refer to
Delbaen [31, Section 6], as well as Acciaio and Penner [3, Section 1.4.2] and the references
therein. In [31, Section 6] equivalent characterisations are shown, including recursiveness.

(d) The definitions of rejection and acceptance consistency, as well as corresponding middle
and weak versions are adapted from Acciaio and Penner [3, Section 1.4.2]. Note that in
our case losses are assumed to be positive.

(e) Time-consistency is the strongest of the above properties and implies (b) and (c). Middle
rejection and acceptance consistency imply weak rejection and acceptance consistency,
respectively.

(f) For further readings on dynamic risk measures and time-consistency we refer to Acciaio
and Penner [3], Cheridito, Delbaen and Kupper [23], Delbaen [31], Detlefsen and
Scandolo [35], as well as Kupper and Schachermayer [77] and the references therein.

(g) In Rosazza Gianin [106] time-consistent risk measures are constructed using non-linear
g-expectations arising from backward stochastic differential equations.

(h) Time consistency can also be defined for processes instead of random variables, cf. Cherid-
ito, Delbaen and Kupper [23].

The following risk measure, called conditional entropic risk measure, is not analysed in
this thesis but essential in the context of time-consistency in a continuous-time setting, see
Kupper and Schachermayer [77, Subsection 1.2]. Entropic risk measures and conditional
entropic risk measures are also analysed in Acciaio and Goldammer [2], Cheridito, Delbaen
and Kupper [23], Detlefsen and Scandolo [35], as well as Föllmer and Schied [49, 50].
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Definition 10.9 (Conditional entropic risk measure). Given a sub-σ-algebra G ⊂ F , let
γ: Ω→ (−∞,∞] be G-measurable. Then, recalling Definition 3.1 of the upper envelope XG ,
for an F-measurable X: Ω→ R the conditional entropic risk measure with parameter γ is
given by

ρent
γ [X |G] =


XG on {γ =∞} ,
1
γ logE[eγX |G] on {γ ∈ R \ {0}} ,

ess infγ0>0
1
γ0

logE[eγ0X |G] on {γ = 0} .

Remarks 10.10. Given the assumptions of Definition 10.9, we get the following:

(a) If exp(γX) is σ-integrable with respect to G, then, using Jensen’s inequality as given in
Lemma 10.3(a), we get ρent

0 [X |G] = E[X |G ] and 1{γ>0}ρ
ent
γ [X |G] ≥ 1{γ>0} E[X |G ], as

well as 1{γ<0}ρ
ent
γ [X |G] ≤ 1{γ<0} E[X |G ], all a.s.

(b) Conditional entropic risk measures are conditional convex risk measures. But, in general,
they are not positively homogeneous and, thus, not conditionally coherent. In the
special case γ =∞ a.s. conditional entropic risk measures are conditionally positively
homogeneous, see Remarks 3.3(i).

(c) Given a filtration (Ft)t∈I with I ⊂ [0,∞), it is easy to see that conditional entropic risk
measures with F0-measurable parameter γ are time-consistent. On {γ ∈ R \ {0}} this
can be shown by direct calculation. The result immediately extends to {γ = 0}. On
{γ =∞} time-consistency follows by Remark 3.6.

(d) Given a filtration (Ft)t∈I with some index set I ⊂ [0,∞), assume that exp(γX) is
σ-integrable with respect to G. Then, for a given F0-measurable parameter γ with γ > 0
a.s., (ρent

γ [X |Ft])t∈I is a supermartingale which follows by Jensen’s inequality as, for
example, given in Lemma 10.3(a).

The definition below is geared for our purposes and gives the definition of conditional
comonotonicity. In particular, if σ-algebra G is trivial, see Footnote 17, then the definition
of conditional comonotonicity corresponds to the classical definition of comonotonicity as
given in McNeil, Frey and Embrechts [85, Definition 5.15], i.e., for all x, y ∈ R we require
P(X ≤ x, Y ≤ y) = min

{
P(X ≤ x),P(Y ≤ y)

}
.

Definition 10.11 (Conditional comonotonicity). Given a sub-σ-algebra G ⊂ F , two random
variables X,Y : Ω → R are said to be conditionally comonotonic with respect to G if
P(X ≤ x, Y ≤ y |G) = min

{
P(X ≤ x |G),P(Y ≤ y |G)

}
a.s. for all x, y ∈ R.

Remark 10.12. (Comonotonicity and conditional comonotonicity). An alternative definition
of conditional comonotonicity and several other characterisations, including the definition
we use here, are given in Jouini and Napp [68]. There, existence of regular conditional
distributions and corresponding transition kernels is assumed. There exist further equivalent
definitions of comonotonicity, e.g., definitions via comonotonic sets, which can potentially
be generalised to the conditional case.

Lemma 10.13. Given Definition 10.11, consider a sub-σ-algebra G ⊂ F . If X and Y are
comonotonic, then they are conditionally comonotonic with respect to G as well. The reverse
statement is not true, in general.
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Proof. Given x, y ∈ R, note that by definition of classical comonotonicity we either have
P(X > x, Y ≤ y) = 0 or P(X ≤ x, Y > y) = 0. Thus, either P(X > x, Y ≤ y |G) = 0 a.s. or
P(X ≤ x, Y > y |G) = 0 a.s. since we would end up with a contradiction otherwise. The
first result then follows since

P(X ≤ x, Y ≤ y |G) = P(X ≤ x |G)− P(X ≤ x, Y > y |G)

= P(Y ≤ y |G)− P(X > x, Y ≤ y |G) a.s.

For a counterexample that conditional comonotonicity does not imply comonotonicity in
general, set G = F . Then,

P(X ≤ x, Y ≤ y |G) = 1{X≤x,Y≤y} = min{1{X≤x}, 1{Y≤y}}
= min

{
P(X ≤ x |G),P(Y ≤ y |G)

}
a.s.

Hence X and Y are always conditionally comonotonic with respect to G = F . If the second
implication were true, all random variables would be comonotonic which obviously is a
wrong statement.

In the following, we define conditional stochastic ordering. A similar approach can be
found in Rüschendorf [109, Section 2] which is a straight-forward generalisation of classical
stochastic ordering, cf. Shaked and Shanthikumar [113]. The notation used here is adapted
to the notation in [113].

Definition 10.14 (Conditional ordering). Given a sub-σ-algebra G ⊂ F , let X,Y : Ω→ R
be F-measurable. Then, define the following:
(a) Conditional first stochastic order: If E[h(X) |G ] ≤ E[h(Y ) |G ] for all increasing functions

h: R → R such that h(X)− and h(Y )− are σ-integrable with respect to G, define
X ≤st(G) Y .

(b) Conditional convex order: If E[h(X) |G ] ≤ E[h(Y ) |G ] for all convex functions h: R→ R
such that h(X)− and h(Y )− are σ-integrable with respect to G, define X ≤cx(G) Y .

(c) Conditional increasing convex order: If E[h(X)|G ] ≤ E[h(Y )|G ], for all increasing and
convex functions h: R→ R such that h(X)− and h(Y )− are σ-integrable with respect
to G, define X ≤icx(G) Y .

Lemma 10.15. Given a sub-σ-algebra G ⊂ F , let X,Y : Ω → R be F-measurable. Then,
we have the following conditional properties:
(a) If E[f(X)|G ] = E[f(Y )|G ] a.s. for every bounded and continuous function f : R→ R,

then, for every G-measurable Z: Ω→ R,

P(X ≤ Z |G) = P(Y ≤ Z |G) a.s.

(b) If X ≤st(G) Y , then, for every G-measurable Z: Ω→ R,

P(X ≤ Z |G) ≥ P(Y ≤ Z |G) a.s.

(c) Let h: R2 → R be a measurable function such that R 3 x 7→ h(x, z) is increasing, as
well as convex for all z ∈ R and such that R 3 z 7→ h(x, z) is continuous for each x ∈ R.
If X ≤icx(G) Y , then, for all G-measurable Z: Ω→ R such that h(X,Z)− and h(Y,Z)−

are σ-integrable with respect to G,

E[h(X,Z) |G ] ≤ E[h(Y, Z)|G ] a.s.
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(d) Given F-measurable fX , fY , X, Y : Ω→ [0,∞), assume that X and Y share the same
conditional distribution given G, i.e., L(X |G) = L(Y |G) a.s., as well as that fY and Y
are conditionally comonotonic given G, see Definition 10.11. Then, if fX ≤icx(G) fY ,

E[fXX |G ] ≤ E[fY Y |G ] a.s. (10.16)

Proof. (a) Define fk(x, z) = (1− k(x− z)+)+ for all k ∈ N and x, z ∈ R. Then, note that
fk is bounded and continuous in both variables for every k ∈ N and that

1{X≤Z} = lim
k→∞

fk(X,Z) a.s.

Moreover, note that there exists a sequence (Zn)n∈N of simple G-measurable real-valued
random variables with Zn → Z a.s., i.e., Zn is of the form Zn =

∑jn
i=1 αi,n1Ai,n with jn ∈ N

and αi,n ∈ R where {Ai,n}1≤i≤jn is a G-measurable partition of Ω for every n ∈ N. Thus, by
conditional bounded convergence and conditional monotone convergence, see He, Wang and
Yan [65, Theorems 1.19(1) and 1.20],

P(X ≤ Z |G) = lim
k→∞

lim
n→∞

jn∑
i=1

1Ai,n E
[
fk(X,αi,n)

∣∣G] a.s.

Consequently, since fk(·, z) is bounded and continuous for every k ∈ N and z ∈ R,

P(X ≤ Z |G) = lim
k→∞

lim
n→∞

jn∑
i=1

1Ai,n E
[
fk(Y, αi,n)

∣∣G] a.s.,

which yields the result using the same argumentation for Y as well.
(b) Similarly as in the proof of (a), define fk(x, z) = (1 − k(x − z)+)+ for k ∈ N and

x, z ∈ R and note that these functions are bounded and continuous in both variables. Using
the same notation and argumentation as above, we get

P(X ≤ Z |G) = lim
k→∞

lim
n→∞

jn∑
i=1

1Ai,n E
[
fk(X,αi,n)

∣∣G] a.s.

Consequently, since 1− fk(·, z) is increasing in the first variable for z ∈ R fixed and since
X ≤st(G) Y , we have

P(X ≤ Z |G) ≥ lim
k→∞

lim
n→∞

jn∑
i=1

1Ai,n E
[
fk(Y, αi,n)

∣∣G] a.s.

Again, the result follows by conditional bounded and conditional monotone convergence, see
[65, Theorems 1.19(1) and 1.20].

(c) The proof is similar to the cases before. Note that there exists a decreasing se-
quence of simple G-measurable real-valued random variables with Zn ↘ Z a.s. where
Zn =

∑kn
i=1 αi,n1Ai,n with the same notation as in (a). Thus, since h is continuous in the

second argument and by conditional monotone convergence, see [65, Theorem 1.19(1)], we
get

E[h(X,Z) |G ] = lim
n→∞

kn∑
i=1

1Ai,n E
[
h(X,αi,n)

∣∣G] a.s.,
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where the result remains true if we replace X by Y . Thus, the result follows by the definition
of conditional increasing convex order.

(d) On {E[fY Y |G ] =∞} the result is clear. Thus, we may assume E[fY Y |G ] <∞ a.s.
Note that we have

E[fY Y |G ] = E
[∫ ∞

0

∫ ∞
0

1{Y >u,fY >v} du dv

∣∣∣∣G] a.s.

Using the conditional Fubini theorem of Lemma 10.4 twice, we get

E[fY Y |G ] =

∫ ∞
0

∫ ∞
0

P(Y > u, fY > v |G) du dv a.s.

Note that all assumptions of Lemma 10.4 are satisfied. This can be shown by using monotone
convergence as in the proof of Corollary 5.21 and by using suitable versions with measurable
paths of (P(Y > u, fY > v |G))u≥0, for fixed v ≥ 0, as well as of (E[1{fY >v}Y |G])v≥0. Then,
since Y and fG,G,Y are conditionally comonotonic with respect to G, we get

E[fY Y |G ] =

∫ ∞
0

∫ ∞
0

min
{
P(Y > u |G),P(fY > v |G)

}
du dv a.s.

Define F (u) := P(X > u |G) = P(Y > u |G), as well as GY (u) := P(fY > u |G) for all u ≥ 0.
Then, the integrand in the equation above can, for fixed u ≥ 0, be written as

min{F (u), GY (v)} = F (u)1[0,αY (u)](v) +GY (v)1(αY (u),∞)(v) , v ≥ 0 ,

where αY (u) = ess inf{Z ≥ 0 |Z ∈ L0(Ω,G,P) and GY (Z) ≤ F (u)}, see Footnote 3. Thus,

E[fY Y |G ] =

∫ ∞
0

(
F (u)αY (u) +

∫ ∞
αY (u)

GY (v) dv

)
du a.s. (10.17)

Similarly as above, define αX(u) := ess inf{Z ≥ 0 |Z ∈ L0(Ω,G,P) and GX(Z) ≤ F (u)} for
u ≥ 0, where GX(z) := P(fX > z |G) for all z ≥ 0. Similarly as for Equation (10.17), we get

E[fXX |G ] ≤
∫ ∞

0

(
F (u)αX(u) +

∫ ∞
αX(u)

GX(v) dv

)
du a.s.,

with an inequality instead. Thus, we have the desired result if we can show, for every u ≥ 0,

F (u)αX(u) +

∫ ∞
αX(u)

GX(v) dv ≤ F (u)αY (u) +

∫ ∞
αY (u)

GY (v) dv a.s. (10.18)

Note that the conditional Fubini theorem of Lemma 10.4 implies, for every u ≥ 0,∫ ∞
αY (u)

GY (v) dv =

∫ ∞
0

E
[
1{αY (u)≤v<fY }

∣∣G] dv = E
[
(fY − αY (u))+

∣∣G] a.s.

Since fX ≤icx(G) fY , we have E[(fX − α)+ |G] ≤ E[(fY − α)+ |G] a.s. for all α ∈ R. Hence,
by approximating αY (u) with G-measurable simple functions and by using conditional
monotone convergence, we may conclude∫ ∞

αY (u)
GX(v) dv ≤

∫ ∞
αY (u)

GY (v) dv a.s., for all u ≥ 0 .
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Hence, given u ≥ 0, set M := {αY (u) ≥ αX(u)}, as well as M c := Ω \M and conclude that
the inequality in (10.18) follows if

F (u)(αX(u)− αY (u)) + 1M

∫ αY (u)

αX(u)
GX(v) dv − 1Mc

∫ αX(u)

αY (u)
GX(v) dv ≤ 0 a.s.,

or, equivalently,

0 ≤ 1M

∫ αY (u)

αX(u)
(F (u)− GX(v)) dv + 1Mc

∫ αX(u)

αY (u)
(GX(v)− F (u)) dv a.s. (10.19)

Since we have F (u) ≥ GX(v) a.s., on {v > αX(u)}, as well as F (u) ≤ GX(v) a.s., on
{0 ≤ v < αX(u)}, the integrals in (10.19) are both positive and finally (10.16) follows.

10.2 Some alternative proofs for conditional expected short-
fall

Some alternative proofs of Lemma 5.23. (a) On {0 < δ < 1}, by definition of conditional
expected shortfall, ESδ[0 |G ] = 1

1−δ E[fG,δ,0 0 |G ] = 0 a.s. Thus, on {δ = 0},

ES0[0 |G ] = ess inf
δ∈(0,1)

1

1− δ
E[fG,δ,0 0 |G ] = 0 a.s.

Obviously, the upper envelope satisfies XG = 0 a.s. and thus the statement follows on
{δ = 1}.

(b) On {0 < δ < 1}, by Lemma 3.18(b), we have qG,δ(XZ) = qG,δ(X)Z a.s. Therefore, we
know that βG,δ,XZ = βG,δ,X a.s. and fG,δ,XZ = fG,δ,X a.s. As Z is G-measurable and bounded,
we get ESδ[XZ |G ] = ESδ[X |G ] Z a.s. using [65, Theorem 1.21]. On {δ = 0} the result follows
from the representation of conditional expected shortfall at level zero using the essential
infimum. On {δ = 1} the result follows from Remark 3.3(i) as ESδ[X |G ] = qG,δ(X) = XG .

(c) On {0 < δ < 1}, by Lemma 3.18(c), we have qG,δ(X + Z) = qG,δ(X) + Z a.s. Again,
this implies βG,δ,X+Z = βG,δ,X a.s. and fG,δ,X+Z = fG,δ,X a.s. Using linearity of conditional
expectation again and G-measurability of Z, we get ESδ[X + Z |G ] = ESδ[X |G ] + Z a.s. by
[65, Theorems 1.18 and 1.21]. On {δ = 0} the result follows from the representation of
conditional expected shortfall using the essential infimum. On {δ = 1} the result follows
from Remark 3.3(h) as ESδ[X |G ] = qG,δ(X) = XG a.s.

(d) On {0 < δ < 1}, as

E[fG,δ,X |G ] = E[fG,δ,Y |G ] = E[fG,δ,X+Y |G ] = 1− δ a.s.,

note that F1
G,δ,X = F1

G,δ,Y = F1
G,δ,X+Y a.s. By Lemma 5.23(t1) and linearity of conditional

expectation, see [65, Theorem 1.18], we get

ESδ[X + Y |G ] =
1

1− δ
ess sup

f∈F1
G,δ,X+Y

E[f (X + Y )|G ]

≤ 1

1− δ

(
ess sup

f∈F1
G,δ,X+Y

E[fX |G ] + ess sup
f∈F1

G,δ,X+Y

E[f Y |G ]
)

= ESδ[X |G ] + ESδ[Y |G ] a.s.
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On {δ = 0} the result follows from the representation of conditional expected shortfall using
the essential infimum. On {δ = 1} the result follows from Remarks 3.3(f).

(e) This result follows from (b) and (d).
(f) and (g) On {0 < δ < 1} both results follow from Lemma 3.18(d) and (e), the quantile

representation in Lemma 5.12 and the linearity of Lebesgue integrals. On {δ = 0} the same
result follows from the representation of conditional expected shortfall using the essential
infimum.

(k) On {0 < δ < 1}, the result immediately follows by the quantile representation of
conditional expected shortfall, see Lemma 5.12, and by Lemma 3.18(h). The result extends
to the infimum, i.e. on {δ = 0}. On {δ = 1}, the result also follows by Lemma 3.18(h).

(l) On {0 < δ < 1}, the result follows by a fundamental property of generalised conditional
expectation, see [65, Theorem 1.21]. The result extends to the infimum, i.e., on {δ = 0}.
On {δ = 1}, the result also follows by Lemma 3.3(i).

(p) By translation invariance from (c), we may assume that without loss of generality
Xn is non-negative for every n ∈ N. Similar to the proof of (d), we can show that
F1
G,δ,X = F1

G,δ,Xn a.s. for every n ∈ N. By Definition 5.3, we may write

(1− δ) ESδ[X |G ] = E[fG,δ,XX |G ] .

Using Fatou’s Lemma for conditional expectation, see [65, Theorem 1.19(2)], we get

E[fG,δ,XX |G ] ≤ lim inf
n→∞

E[fG,δ,XXn |G ] a.s.

Furthermore, by Lemma 5.7, for every n ∈ N we have

E[fG,δ,XXn |G ] ≤ ess sup
f∈F1

G,δ,Xn

E[fXn |G ] = (1− δ) ESδ[Xn |G ] a.s.

Dividing by 1− δ proves the result.
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Chapter 11

Modelling Annuity Portfolios with
Extended CreditRisk+

In this chapter we develop an approach for modelling annuity, life insurance
and credit portfolios using a special version of extended CreditRisk+ as given in
Schmock [111, Section 6]. Dependence is introduced via common stochastic risk
factors which can be identified with different death causes in the context of life
insurance and annuities. Within this model, there exists an efficient, numerically
stable algorithm for deriving loss distributions exactly. Furthermore, we point out
possible generalisations of our annuity model and give an introductory example.
In particular, this chapter illustrates our way of thinking and prepares the reader
for all further applications.

11.1 Annuity portfolios

In this section we introduce the key components of our annuity model. The setting can
immediately be applied to other life insurance portfolios.

Definition 11.1 (Policyholders and death indicators). Given a probability space (Ω,F ,P),
let {1, . . . ,m} with m ∈ N denote the set of policyholders in the annuity portfolio and let
F-measurable death indicators N1, . . . , Nm: Ω→ N0 indicate the number of deaths of each
policyholder in the following period. Event {Ni = 0} indicates no death for i ∈ {1, . . . ,m}.

In reality, death indicators are Bernoulli random variables34 as each person can just
die once. Unfortunately in practice, such an approach is not tractable for calculating loss
distributions of large portfolios as execution times of implementations explode. Alternatively,
one can always rely on Monte Carlo techniques which are computationally expensive if
numerical errors should be small. On the contrary, we will assume the number of deaths
of a each policyholder to be compound Poisson distributed. As we are going to see in
Lemma 11.19, assuming our model with Poisson distributed deaths gives an efficient way for
calculating loss distributions using an algorithm based on Panjer’s recursion, also for large
portfolios. Ultimately, calibration of the model also gets easier since sums of independent
Poisson distributions are Poisson distributed again, with a modified intensity.

There are mainly two possibilities how to calibrate death indicators N1, . . . , Nm.

34 A random variable X is Bernoulli distributed with parameter q ∈ [0, 1] if P(X = 1) = 1−P(X = 0) = q.

95



Chapter 11. Modelling Annuity Portfolios with Extended CreditRisk+

Definition 11.2 (Scaling via survival probabilities). Given Definition 11.1, assume that
P(Ni ≥ 1) = q∗i for all i ∈ {1, . . . ,m} where q∗i denotes the probability of death of policyholder
i in the following period.

Remark 11.3 (Alternative scaling via expectations). Instead of matching survival probabilities
as described above, one can also set E[Ni] = q∗i for all i ∈ {1, . . . ,m}. Several numerical
trials in our setting show that this alternative approach mostly gives worse results than the
approach from the definition above, see Section 19.2. In particular, in the tail where just
few deaths happen. This alternative scaling approach is more risk averse since, in that case,
survival probabilities are higher than in the approach of Definition 11.2. In Section 16.1, we
compare our annuity model to the Lee–Carter model and see better fits if we set E[Ni] = q∗i ,
especially for older age categories.

Remark 11.4 (Multiple deaths). Obviously, the proposed model has a major shortcoming
as it allows for multiple deaths of each policyholder. From a theoretical point of view, the
approach with random sums, in particular random Poisson sums, is justified by the Poisson
approximation and generalisations of it, see for example Vellaisamy and Chaudhuri [124].
Since annual death probabilities for ages up to 85 are less than 10 percent, multiple deaths
are relatively unlikely for all major ages. See Remarks 11.23(d) for a short comparison of
errors made by Monte Carlo to errors made by the Poisson mixture approach.

Definition 11.5 (Payments). Given Definition 11.1, let d ∈ N denote the dimension of
payments including a dimension for annuity payments to policyholders35. The independent
F-measurable random vectors X1, . . . , Xm: Ω→ Nd0 denote portfolio payments within the
following period given survival, i.e., on {Ni = 0} for all i ∈ {1, . . . ,m}. Correspondingly, the
independent36 F -measurable random vectors Y1, . . . , Ym: Ω→ Nd0 denote portfolio payments
in the following period which need not be paid or which are not received due to death, i.e.,
on {Ni ≥ 1} for all i ∈ {1, . . . ,m}, and are assumed to be independent of N1, . . . , Nm.

Remarks 11.6. (Annuity payments and reserves).

(a) Given a policyholder i ∈ {1, . . . ,m}, each dimension of the d-valued random vector Xi

represents positive payments to or from this policyholder in the case of survival over
the next period such as annuities paid to i, premiums paid by i or actuarial reserves37

being declared at the end of the next period. In the case many policyholders hold
several insurance contracts, further dimensions for different lines of business can be
added. In practice, not more than three dimensions are recommended as otherwise
the recursive algorithm described in Lemma 11.19 can become very time-consuming.
Correspondingly, Yi represents payments of or to policyholder i in the following period
which need not be paid in the case i dies within this period. Thus, note that Xi and Yi
do not necessarily share the same distribution due to possible sub periodical payments.
Positivity in every component of Xi and Yi is required as otherwise Panjer’s recursion
does not work. Nevertheless, we can model payments with opposite signs with our
d-dimensional setting, see Remark 11.24.

35 Further dimensions may represent for paid premiums, actuarial reserves to be declared and payments
for various other lines of business, see Remarks 11.6.

36 To prepare our model for Panjer’s recursion, see Lemma 11.19, we assume independence amongst
payments. Dependence is later on introduced via dependent number of deaths.

37 The actuarial reserve of a contract at the time t is the conditional expected value of all discounted
future cash flows and thus, in general, stochastic.
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(b) For all i ∈ {1, . . . ,m}, Xi and Yi may be stochastic as in the case of unit-linked
annuities, for monthly payments, when using stochastic discount factors or for annuities
with optionality, as well as deterministic as in the case of fixed pension payments and
premiums with deterministic discounting.

(c) A possible setting. Let policyholder i ∈ {1, . . . ,m} be fixed and let Ai denote annuity
payments to this policyholder within the following period given that he or she survives.
Moreover, in the case i survives, let Pi denote the premium that has to be paid and
let Ri denote the actuarial reserve for the corresponding contract which has to be
declared at the end of this period. Correspondingly, for a random variable A′i having
the same distribution as Ai, let A′iUi denote annuity payments within the next period
which need not be paid in the case of death of policyholder i where Ui is continuously
uniformly distributed on (0, 1] or discretely uniformly distributed on {1/m, 2/m, . . . , 1}
with m ∈ N. This indicates continuous or periodic payments throughout a period.
Also, for a random variable P ′i having the same distribution as Pi, let P ′i Ui denote
premiums which are not paid by i due to death. Then, set Xi = (Ai, Pi, Ri) and
Yi = (A′iUi, P

′
i Ui, Ri). Note that Yi thus becomes the sub-periodic fraction of payments

which need need not be paid in the case of death appearing uniformly throughout the
period.

(d) Using the technique of stochastic rounding, see Schmock [111], we may assume Xi and
Yi to be [0,∞)d-valued for all i ∈ {1, . . . ,m}.

Remark 11.7 (Time issues). For notational convenience we omit time indices as we are mostly
confronted with a one-period setting. If required, we add a time index t to all quantities
appearing in our model as, for example, done in the context of parameter estimation or
forecasting.

Definition 11.8 (Total loss). Given Definitions 11.1 and 11.5, define cumulative payments
which need not be paid due to deaths

S :=
m∑
i=1

Ni∑
j=1

Yi,j ,

where (Yi,j)j∈N for every i ∈ {1, . . . ,m} is an i.i.d. sequence of random variables with
L(Yi,j) = L(Yi) for all i ∈ {1, . . . ,m} and j ∈ N where L denotes the distribution of the
argument. Then, the total portfolio loss is defined as

L :=
m∑
i=1

Xi − S .

Remarks 11.9. (Total loss).

(a) S is the sum of all annuity payments, premiums and actuarial reserves which need not
be paid, are received and declared, respectively, in the following period due to deaths
of policyholders. L on the other hand is the total portfolio loss over the next period.
Note that we are interested in large losses of L, i.e., the right tail of its distribution.
This translates into the case where just few policyholders die such that many annuity
payments have to be made. Correspondingly, small values of S, i.e., the left tail of its
distribution, is the part of major interest and major risk.
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(b) Since Poisson approximation just works properly for small values of death probabilities
q∗i for all i ∈ {1, . . . ,m}, extended CreditRisk+ is not suitable to calculate loss L directly
via the sum

m∑
i=1

Ni∑
j=1

Yi,j

where Ni denotes the survival indicator with P(Ni ≥ 1) = 1− q∗i and where (Yi,j)j∈N
for all i ∈ {1, . . . ,m} are i.i.d. copies of Yi.

(c) Appropriate dependence structures between
∑m

i=1Xi and S have to be assumed. The
cases of independence, as well as perfect positive and negative dependence, called
comonotonicity and countermonotonicity, are easy to calculate. The illustrative example
in Section 19.2 suggests that assuming independence will be sufficient in many appli-
cations. This is intuitive in the presence of monthly or fortnightly payments due to
diversification effects over time.

(d) In Section 19.2 we give an illustrative example which compares the model with Poisson
distributed deaths to the model with Bernoulli distributed deaths.

(e) (Bounds for value at risk and expected shortfall) Letting d = 1 and given marginal
distributions of

∑m
i=1Xi and S, it is always possible to derive approximative bounds

for value at risk of L using techniques given in the works of Embrechts, Rüschendorf
and Puccetti [42, 97], for example. Note that upper and lower bounds for quantiles of
L are in general not obtained by the extreme dependence scenarios of comonotonicity
and countermonotonicity as shown in Embrechts and Puccetti [41]. Upper bounds
for expected shortfall on arbitrary levels are easy to obtain as this risk measure is
comonotonically additive, as well as sub additive, see Schmock [111], which implies that
risk is maximised under countermonotonicity of

∑m
i=1Xi and S. Techniques for further

bounds of expected shortfall can be found in Puccetti [96].

(f) The sum
∑m

i=1Xi can be calculated using usual convolution, fast Fourier transform
(FFT) or normal approximation, given that all required additional assumptions are
satisfied, respectively.

(g) If Ni is a Bernoulli random variable and if Xi = Yi,1 a.s. for i ∈ {1, . . . ,m}, then the
sum

L∗ =
m∑
i=1

Yi,1 − S =
m∑
i=1

(1−Ni)Yi,1

calculates the exact loss and, therefore, we refer to L∗ as the loss of the exact model.

11.2 Annuity model with independent risk factors

To make our model applicable in practical situations and to ensure a flexible handling
in terms of multi-level dependence, we introduce stochastic risk factors. Risk factors
are designed to model effects which simultaneously influence death probabilities of many
policyholders due to a common exposure to the same type of risk. In the context of annuities
and life insurance, risk factors can be identified with causes of death such as neoplasms,
cardiovascular diseases or idiosyncratic components. In terms of credit risk, risk factors may
correspond to economic variates such as gas prices or political stability.
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Definition 11.10 (Common stochastic risk factors). Given Definitions 11.1, 11.2 and 11.5,
consider F -measurable risk factors Λ1, . . . ,ΛK : Ω→ [0,∞) with K ∈ N0 and corresponding
weights wi,0, . . . , wi,K ∈ [0, 1] for every policyholder i ∈ {1, . . . ,m}. Risk index zero
represents idiosyncratic risk and we require wi,0 + · · ·+ wi,K = 1 for all i ∈ {1, . . . ,m}.

To guarantee a flexible and yet numerically tractable model, we need to make probabilistic
assumptions. The approach here is based on Schmock [111, Section 6]. This model is
referenced as extended CreditRisk+ and enables us to apply an algorithm based on iterated
Panjer’s recursion.

Definition 11.11 (The annuity model). Given Definitions 11.5, 11.1, 11.2 and 11.10, we
call our model an annuity model if in addition the following is satisfied:
(a) Death indicators N1,0, . . . , Nm,0: Ω→ N0 are independent from one another, as well as

all other random variables and, for all i ∈ {1, . . . ,m}, they are Poisson distributed with
intensity qiwi,0 where qi := − log(1− q∗i ), i.e.,

P
( m⋂
i=1

{Ni,0 = ni,0}
)

=

m∏
i=1

e−qiwi,0
(qiwi,0)ni,0

ni,0!
, n1,0, . . . , nm,0 ∈ N0 .

(b) Risk factors Λ1, . . . ,ΛK : Ω→ [0,∞) are independent and, for all k ∈ {1, . . . ,K}, they
have a gamma distribution with mean ek = 1 and variance σk

2
k > 0, i.e., with shape and

inverse scale parameter 1/σ2
k such that their densities are given by

fΛk(x) =

 (ek/σ
2
k)e

2
k/σ

2
k

Γ(e2k/σ
2
k)

e−xek/σ
2
k xe

2
k/σ

2
k−1 for x > 0 ,

0 for x ≤ 0 ,

where Γ(x) :=
∫∞

0 tx−1e−t dt for x > 0 denotes the gamma function. Also the degenerate
case with σ2

k = 0 for k ∈ {1, . . . ,K} is allowed.

(c) Given risk factors, death indicators (Ni,k)i∈{1,...,m},k∈{1,...,K}: Ω→ Nm×K0 are indepen-
dent and, for every policyholder i ∈ {1, . . . ,m} and k ∈ {1, . . . ,K}, they are Poisson
distributed with random intensity qiwi,kΛk, i.e.,

P
( m⋂
i=1

K⋂
k=1

{Ni,k = ni,k}
∣∣∣∣Λ1, . . . ,ΛK

)
=

m∏
i=1

K∏
k=1

e−qiwi,kΛk
(qiwi,kΛk)

ni,k

ni,k!
a.s.,

for all (ni,k)i∈{1,...,m},k∈{1,...,K} ∈ Nm×K0 .

(d) For every policyholder i ∈ {1, . . . ,m}, the total number of deaths Ni is split up additively
according to risk factors as

Ni = Ni,0 + · · ·+Ni,K .

Thus, by our model construction, E[Ni] = qi (wi,0 + · · ·+ wi,K) = − log(1− q∗i ).

Remarks 11.12. (Death probabilities and age categories).
(a) For notational convenience, qi is termed as death probability even though it is an

intensity and just an approximation to the true death probability q∗i = 1− exp(−qi) for
all i ∈ {1, . . . ,m}.
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(b) Usually, death probabilities qi and weights wi,k are for each gender categorised into
age groups so that policyholders within a certain age band and same gender share the
same parameters. In our estimation example based on Australian data, we consider
homogeneous age categories of five years length.

(c) Notation is kept general as individual information or risk behaviour of certain policy-
holders may be incorporated into death probabilities and weights. To be able to use
individual information correctly, portfolio data are necessary and estimation procedures
have to be adapted, see Remark 13.1.

Remark 11.13 (Interpretation of risk factors). Item (c) in Definition (11.11) states that
if risk factor Λk for death cause k ∈ {1, . . . ,K} takes large or small values, then the
likelihood of death due to cause k increases or decreases, respectively, simultaneously for all
policyholders depending on the weight wi,k. Given policyholder i ∈ {1, . . . ,m}, note that
weights wi,0, . . . , wi,K indicate the vulnerability of policyholder i to risk factors Λ1, . . . ,ΛK .
For a practical example, assume that a new, very effective cancer treatment is available such
that fewer people die from lung cancer. This situation would have a longevity effect on all
policyholders, but particularly on smokers. Such a scenario would then correspond to the
case when the risk factor for neoplasms shows a small realisation. The other way round,
assume that we face a very hot summer. Then the likelihood to pass away due to heart
failure increases. This example would correspond to a large realisation of the risk factor
for cardiovascular diseases. Since such scenarios are previously unknown, it makes sense
to model risk factors stochastically which, in our setting, immediately leads to stochastic
death probabilities.

Remark 11.14 (Moments of Ni,k). Given the annuity model from Definition 11.11 with K
non-idiosyncratic risk factors, let k ∈ {1, . . . ,K} and consider policyholder i ∈ {1, . . . ,m}.
Then, for the number of deaths Ni,k due to risk factor Λk we have

E[Ni,k] = E[E[Ni,k |Λk ]] = E[qiwi,kΛk] = qiwi,k , (11.15)

and, using the law of total variance as in Schmock [111, Lemma 3.48],

Var(Ni,k) = E[Var(Ni,k |Λk)] + Var(E[Ni,k |Λk ])

= E[qiwi,kΛk] + Var(qiwi,kΛk)

= qiwi,k(1 + qiwi,kσ
2
k) .

(11.16)

Analogously, for all i, j ∈ {1, . . . ,m} with i 6= j,

Cov(Ni,k, Nj,k) = E[Cov(Ni,k, Nj,k |Λk)] + Cov(E[Ni,k |Λk ] ,E[Nj,k |Λk ])

= 0 + qiqjwi,kwj,k Cov(Λk,Λk)

= qiqjwi,kwj,kσ
2
k .

(11.17)

This result will be used in Section 17 for model validation. A similar result also holds for the
more general model with multi-level dependent risk factors, see Schmock [111, Section 6.5].

As already mentioned in the introduction, there exists a numerically stable algorithm to
derive the loss distribution of S. Based on the more general approach as given in the lecture
notes of Schmock [111, Section 6.7], we briefly recall the algorithm so that the reader can
immediately implement it. For the more general algorithm and a pseudo implementation of
it see Section 19.1.
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Definition 11.18. Given the annuity model of Definition 11.11, for notational convenience
in the next lemma define the cumulative Poisson intensity

λk,ν :=

m∑
i=1

qiwi,kP(Yi = ν) ,

for loss size ν ∈ Nd0 \ {0} due to risk factor k ∈ {0, . . . ,K}, and, correspondingly, the
cumulative Poisson intensity for non-zero losses

λ̄k :=
∑
ν∈Sk

λk,ν =
m∑
i=1

qiwi,k (1− P(Yi = 0))

where Sk := {ν ∈ Nd0 \ {0}|λk,ν > 0}. For k ∈ {0, . . . ,K}, if λ̄k > 0, define

qk,ν :=

{
λk,ν/λ̄k for all ν ∈ Nd0 \ {0} ,

0 for ν = 0 ∈ Nd0 ,

as well as if λ̄k = 0,

qk,ν :=

{
0 for all ν ∈ Nd0 \ {0} ,

1 for ν = 0 ∈ Nd0 .

Finally, define pk := λ̄kσ
2
k/(1 + λ̄kσ

2
k) ∈ [0, 1) for all k ∈ {1, . . . ,K}, as well as

λ := λ̄0 +
K∑
k=1

λ̄k
1 + λ̄kσ

2
k

c(pk)

where

c(p) :=
∑
n∈N

pn−1

n
=

{
− log(1−p)

p for p ∈ (0, 1) ,

1 for p = 1 .

Note that all definitions also work in the degenerate case σ2
k = 0 for k ∈ {1, . . . ,K}.

Lemma 11.19 (Algorithm for exact derivation of the loss distribution). Given the annuity
model of Definition 11.11 and considering Definition 11.18, there exists a numerically
stable algorithm based on Panjer’s recursion which allows an exact computation of the
probability distribution of S up to every desired cumulative probability. More precisely,
P(S = 0) = exp

(
λ(c0 − 1)

)
and, recursively,38

P(S = ν) =
λ

νi

∑
n=(n1,...,nd)∈Nd0

0<n≤ν

nicnP(S = ν − n) , ν = (ν1, . . . , νd) ∈ Nd0 \ {0} , (11.20)

where i ∈ {1, . . . , d} can be chosen arbitrarily such that νi 6= 0 and where

cν =
1

λ

(
λ̄0q0,ν −

K∑
k=1

bk,ν
λ̄k

1 + λ̄kσ
2
k

c(pk)

)
, ν ∈ Nd0 . (11.21)

38 The inequality 0 < n ≤ ν is to be understood in a component-wise sense where for the strict inequality
it suffices to have a strict inequality in at least one component.
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If λ > 0, then, for all k ∈ {1, . . . ,K}, bk,0 = qk,0c(pk qk,0)/c(pk), as well as

bk,ν =
1

1− pk qk,0

(
qk,ν
c(pk)

+
pk
νi

∑
n∈Sk,
n≤ν

(νi − ni)qk,n bk,ν−n
)
, ν ∈ Nd0 \ {0} , (11.22)

Conversely, if λ = 0, then

cν =

{
0 for ν ∈ Nd0 \ {0} ,

1 for ν = 0 ∈ Nd0 .

Proof. A detailed derivation of the more general formula in extended CreditRisk+ is given
in Schmock [111, Sections 6.6 and 6.7]. The main idea is to represent the random sum S as
a Poisson sum. This can be achieved via deriving the probability-generating function of S
which is, for at least all z = (z1, . . . , zd) ∈ Cd with ‖z‖∞ ≤ 1, given by

E
[ d∏
i=1

zSii

]
=

∑
ν=(ν1,...,νd)∈Nd0

P(S = ν)
d∏
i=1

zνii = exp
(
λ(ϕ̃(z)− 1)

)
,

where ϕ̃(z) =
∑

ν∈Nd0
cν
∏
zνii with cν given by (11.21). The form of the probability-

generating function implies that S is a Poisson sum which, by applying multi-variate
Panjer’s recursion, gives the result.

Remarks 11.23. (Comments on the extended CreditRisk+ algorithm).

(a) If Y1, . . . , Ym are one-dimensional and deterministic, then the algorithm above is basically
due to Giese [54] for which Haaf, Reiß and Schoenmakers [63] proved numerical stability.
The relation to Panjer’s recursion was first pointed out by Gerhold, Schmock and
Warnung [53, Section 5.5]. Schmock [111, Section 5.1] generalised the algorithm to the
multivariate case with dependent risk factors and risk groups, based on the multivariate
extension of Panjer’s algorithm given by Sundt [118].

(b) The recursive sums in (11.20) and (11.22) are due to the multivariate extension of
Panjer’s algorithm. Since just positive terms are added, the algorithm is numerically
stable, in general. Nevertheless, numerical underflow may occur, see Remark 16.9 as
well as Rudolph [108].

(c) The extended CreditRisk+ model has no stochastic errors but approximates death
indicators via compound Poisson distributions. Implementations of the algorithm
described above are significantly faster than Monte Carlo approximations for comparable
error levels. To avoid long execution times for implementations of extended CreditRisk+

with large annuity portfolios, greater loss units can be used, i.e., random variables
Y1, . . . , Ym are rounded a priori to multiples of some N-valued loss unit. Negative effects
of this deviation from exact calculations can be reduced by using stochastic rounding,
see Schmock [111, Section 6.2.2]. There, random variables are rounded to loss units such
that expectations remain the same before and after rounding. Also for the calculation
of value at risk and expected shortfall, smoothing algorithms can be used to get more
accurate results.

(d) To compare execution times of extended CreditRisk+ to Monte Carlo we may look at
a portfolio with just idiosyncratic risk consisting of m = 10 000 policyholders, each
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having a death probability of q = 0.015 where we choose the alternative scaling as
outlined in Remark 11.3. Losses Y1, . . . , Ym are deterministic and equal to one for all
policyholders. Thus in the case of Bernoulli distributed death indicators Ni the sum S
has binomial distribution with parameters (10 000, 0.015). Using Poisson approximation,
see Schmock [111], we can conclude that the total variation39 between the distributions
for the model with Bernoulli distributed and Poisson distributed deaths is bounded
above by 0.015. On the other hand, using Monte Carlo with 50 000 simulations as an
approximation for the true model with Bernoulli distributed deaths, the total variation
between those distributions is 0.0159 in our simulation and, thus, dominates the Poisson
approximation in terms of total variation. Our implementation in ‘R’ has a system time
of 21.6 seconds for the Monte Carlo approach and 0.01 seconds for extended CreditRisk+

up to a cumulative probability of 0.999. Execution times for extended CreditRisk+

depend on how clever you choose recursions in (11.20) as many quantities equal zero.
This simple example illustrates that with similar accuracy Monte Carlo is significantly
slower than extended CreditRisk+.

Remark 11.24 (Approximation for multi-dimensional settings). Given our annuity model
with d ≥ 2, note that the algorithm described in Lemma 11.19 returns the exact distribution
of S up to some cumulative level δ ∈ (0, 1)—usually close to one—called a sub-distribution.
If we are interested in the distribution of f(S) for some measurable function f : Nd0 → R,
then the previously derived sub-distribution can be used to derive an approximation. More
explicitly, let µ denote the probability measure induced by f(S) and let ν denote the
corresponding measure induced by the sub-distribution with ν(R) = δ < 1. Then, the total
variation distance between µ and ν, see Footnote 39, is given by

dTV(µ, ν) = 1− δ .

This, in particular, applies to settings where Y1, . . . , Ym are also allowed to take negative
values. In that case, we can simply define

Yi := (max{Yi, 0},−min{Yi, 0})

and get an approximation for the total loss S1 − S2 via the extended CreditRisk+ algorithm
with S = (S1, S2). Note that Panjer’s recursion does not allow for a direct derivation of
total loss distributions with positive and negative losses.

11.3 Generalised and alternative models

Up to now, we applied a simplified version of extended CreditRisk+ to derive cumulative
payments in annuity portfolios. A major shortcoming in this approach is the limited
possibility of modelling dependencies amongst policyholders and death causes. In the most
general form of extended CreditRisk+ as described in Schmock [111, Section 6], it is possible
to introduce risk groups which enable us to model joint deaths of several policyholders and

39 The total variation distance dTV between two probability measures µ and ν, e.g., push-forward measures
induced by random variables, on a measurable space (S,S) is defined by

dTV(µ, ν) := sup
A∈S

(µ(A)− ν(A)) .

See, e.g., Schmock [111, Definition 3.7] and the references therein.
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it is possible to model dependencies amongst death causes, see Section 19.1.1. Dependencies
can take a linear dependence structure combined with dependence scenarios to model
negative correlations as well. Risk factors may then be identified with statistical variates
such as average blood pressure, average physical activity or the average of smoked cigarettes,
etc., and not directly with death causes. Moreover, for each policyholder individually, the
general model allows for losses which depend on the underlying cause of death. This gives
scope to the possibility of modelling—possibly new—life insurance products with payoffs
depending on the cause of death as, for example, in the case of accidental death benefits.
Including all extensions mentioned above, a similar algorithm as given in Lemma 11.19 may
still be applied to derive loss distributions, again see Schmock [111, Section 6.7], as well as
Section 19.1.1. Estimation of model parameters on the other hand gets more involved and
is subject to current research.

Instead of using extended CreditRisk+ to model annuity portfolios, i.e., an approach
based on Poisson mixtures, we can assume a similar Bernoulli mixture model. In such a
Bernoulli mixture model, conditionally Poisson distributed deaths are simply replaced by
conditionally Bernoulli distributed deaths. A variation of a Bernoulli mixture model may in
our case be given via replacing Definition 11.11(a), (c) and (d) by L(Ni,0) = Bernoulli(qiwi,0)
and

L(Ni,k |Λ1, . . . ,ΛK) = L(Ni,k |Λk) = Bernoulli(min{1, qiwi,kΛk}) a.s. ,

as well as
Ni = min{1, Ni,0 +Ni,1 + · · ·+Ni,K} ,

respectively, for all i ∈ {1, . . . ,m} and k ∈ {1, . . . ,K}. The textbook of McNeil, Frey and
Embrechts [85, Section 8] gives a comprehensive introduction to credit risk models including
Poisson and Bernoulli mixture models. In general, explicit and efficient derivation of loss
distributions in the case of Bernoulli mixture models is not possible anymore. Thus, in
this case, one has to rely on other methods such as Monte Carlo. Estimation of model
parameters works similarly as discussed in Section 12 modulo some obvious changes in the
posterior density and likelihood as illustrated in (16.12). For Bernoulli mixture models it is
possible to give asymptotic distributions for large portfolios, see [85, Section 8.4.3] again and
the references therein. As illustrated in Section 19.2, Poisson approximation, see for example
Vellaisamy and Chaudhuri [124], suggests that loss distributions derived from Bernoulli and
Poisson mixture models are similar in terms of total variation distance if death probabilities
are small.

Another modelling approach is the usage of threshold models where default occurs if
some critical random variable falls below a deterministic critical value, see McNeil, Frey
and Embrechts [85, Section 8.3]. Threshold models use copulas to model dependence.
Furthermore, in their work [85, Section 8.4.4] it is shown that threshold models may
be written as Bernoulli mixture models. Thus, arguing with Poisson approximation and
assuming independent risk factors, Bernoulli mixture models, as well as threshold models can
be approximated by our proposed model. Versions of threshold models include CreditMetrics
and KMV models, again see [85, Example 8.6], which both provide the feature of considering
credit rating migrations.

11.4 An introductory example with a common risk factor

In this example we consider an annuity portfolio with the main objective of illustrating
the effect of a common stochastic risk factor. Therefore, consider the annuity model of
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Definition 11.11 with an artificial portfolio of five groups and deterministic annual payments
10, 20, 30, 40, as well as 50, each having 1 000 policyholders, i.e., m = 5 000 in total. For
simplicity, there is no other form of surrender or any other form of contract and there are
no actuarial reserves. In each of those five groups, half of the people have an annual death
probability of qi = 0.05 whereas the other half has an annual death probability of qi = 0.1.
Thus, if no policyholder dies, the insurer has to face cumulative payments of 150 000.

To create dependence between policyholders, we introduce one non-idiosyncratic risk
factor Λ1 with σ2

1 := Var(Λ1) = 0.25 and provide three different settings for corresponding
weightings. For the first case define weights wi,0 = wi,1 = 0.5 for each policyholder
i ∈ {1, . . . ,m} which means that each policyholder is equally influenced by idiosyncratic
risk and by Λ1. For the second case set wi,1 = 1 for all policyholders i ∈ {1, . . . ,m} which
means that there is no idiosyncratic risk. This corresponds to the situation when a change
in risk factor Λ1 hits all policyholders simultaneously with 100 percent. Of course, this
setting produces heavier tails, i.e., a higher likelihood that just very few people die. For the
third case we switch to wi,1 = 0 for all policyholders i ∈ {1, . . . ,m} which means that only
idiosyncratic risk is present and deaths occur independently among all policyholders.

Table 11.1: Value at risk of L at different levels δ, i.e., qδ(L), in our annuity model using
the extended CreditRisk+ algorithm with a loss unit of one.

wi,0 = 0.5 wi,0 = 1 wi,0 = 0

level δ wi,0 = 0.5 wi,1 = 0 wi,1 = 1

0.950 142 600 139 800 146 220

0.990 143 470 140 220 147 750

0.999 144 210 140 690 148 870

Table 11.1 lists value at risk of L, see Definition 11.8, in our artificial annuity portfolio
using the classical CreditRisk+ algorithm40 with a loss unit of one. Not surprisingly, the
third case with no idiosyncratic risk creates the highest risk since there is a high probability
that a low realisation of risk factor Λ1 leads to just very few deaths. This is due to the fact
that the Poisson intensity qiΛ1 of Ni,1 gets very small for all policyholders i ∈ {1, . . . ,m}
simultaneously and, therefore, increases the likelihood of surviving. Note that the model
with wi,1 = 0 involves just idiosyncratic risk and is not influenced by the risk factor Λ1, i.e.,
deaths occur independently with probability qi for all policyholders i ∈ {1, . . . ,m}.

To demonstrate that the quantities derived in our model are close to those of a Bernoulli
mixture model we compare them via Monte Carlo. The number of deaths in that case equals
min{Ni,0 +Ni,1, 1} for all policyholders i ∈ {1, . . . ,m} where Ni,0 is Bernoulli distributed
with qi (1−wi,1) and where Ni,1 is conditionally Bernoulli distributed with given realisations
of risk factor Λ1, i.e., the probability of death of i due to risk factor Λ1 given Λ1 = λ
is min{qiwi,1λ, 1}. Using 50 000 simulations of Λ1 = λ, each followed by a simulation of
min{Ni,0 +Ni,1, 1} for all i ∈ {1, . . . ,m}, Table 11.2 gives corresponding value at risk for
the total portfolio loss L at various levels. In brackets, conservative 95 percent confidence
intervals for value at risk estimates in our simulation are given, i.e., intervals such that with
a probability of at least 95 percent the true values of value at risk lie in them. The method

40 In this simple case with deterministic losses we can use the traditional CreditRisk+ algorithm as
described in [16] and need not use extended CreditRisk+. In ‘R’ the package ‘crp.CSFP’ [67] provides
an implementation of CreditRisk+ using the algorithm described in Giese [54] for which Haaf, Reißand
Schoenmakers [63] proved numerical stability.
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Table 11.2: Value at risk of L at different levels δ, i.e., qδ(L), in a Bernoulli mixture model
at different levels using 50 000 simulations with 95 percent binomial confidence intervals in
brackets.

wi,0 = 0.5 wi,0 = 1 wi,0 = 0

level δ wi,1 = 0.5 wi,1 = 0 wi,1 = 1

0.950
142 670

(−30;+30)
139 750

(−10;+10)
146 170

(−50;+40)

0.990
143 510

(−40;+50)
140 150

(−20;+20)
147 720

(−50;+80)

0.999
144 240

(−70;+40)
140 570

(−30;+50)
148 850

(−60;+90)

to calculate these intervals can be found in Shevchenko [114, Section 3.2.1]. Comparing
the results of Table 11.1 and Table 11.2, we immediately see the close relationship amongst
those two approaches.

Increasing the number of simulations of Λ1 leads to decreased sample variances of derived
value at risk and tighter error bounds. As one would expect, empirical variances of derived
value at risk increase with higher levels of value at risk.

Conclusively, we observe that the calculations in extended CreditRisk+ are very fast,
yet accurate compared to a Bernoulli mixture model, besides all approximations. Changing
weightings from purely idiosyncratic risk towards risk which is concentrated in a common
stochastic risk factor creates heavier tails in loss distribution L. Thus, in that case, value at
risk increases significantly.

106



Chapter 12

Parameter Estimation of our
Annuity Model

In this chapter we provide several approaches for parameter estimation in our
annuity model given publicly available data based on the whole population of
a country. We develop the following four estimation approaches: Matching of
moments, a version of maximum a posteriori, maximum likelihood and Markov
chain Monte Carlo (MCMC). Whilst matching of moments estimates are easy to
derive in real world applications, maximum a posterior and maximum likelihood
estimates cannot be calculated by deterministic numerical optimisation. Thus,
we use MCMC as a slow but powerful alternative. We later apply these different
approaches in an illustrative example, Section 12.5, as well as in a real world
example, see Chapter 15.

McNeil, Frey and Embrechts [85, Section 8.6] consider statistical inference for Poisson
mixture models and Bernoulli mixture models. They briefly introduce moment estimators
and maximum likelihood estimators for homogeneous groups in Bernoulli mixture models.
Alternatively, they derive statistical inference via a generalised linear mixed model rep-
resentation for mixture models which is distantly related to our setting. In their ‘Notes
and Comments’ section the reader can find a comprehensive list of interesting references.
Nevertheless, most of their results and arguments are not directly applicable to our case
since we use a different parametrisation and since we usually have rich data of death counts
compared to the sparse information of company defaults.

Our primary goal is to identify risk factors and estimate their variances, as well as
corresponding weights and death probabilities. We consider trends in mortality, as well
as trends in risk factor weights and model them as non-random events where overfitting
should be avoided. Therefore, we suggest the usage of suitably easy trend curves which are
parametrised by a few parameters. All remaining random fluctuations should be explained
by risk factors and their variations. Note that all proposed parameter families of death
probabilities and weights can be changed freely in order to meet specific needs. Such changes
just result in minor, obvious adaptions in certain formulas. This issue is particularly easy to
address within the Markov chain Monte Carlo approach as introduced in Section 12.4.

In order to be able to derive statistically sound estimates, we make the following
simplifying assumptions:
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Assumption 12.1 (Simplifying assumptions for estimation of risk factors). Given the an-
nuity model from Definition 11.11, consider discrete-time periods 1, . . . , T 41 and additionally
assume the following:

(a) For all t ∈ {1, . . . , T}, quantities qi(t) and corresponding weights wi,k(t), respectively,
are the same for all representative policyholders i ∈ {1, . . . ,m} within the same age
category a ∈ {1, . . . , A}, same gender g ∈ {f,m} and with respect to the same risk factor
Λk(t) with death cause k ∈ {0, . . . ,K}. For notational purposes we may therefore define
qa,g(t) := qi(t) and wa,g,k(t) := wi,k(t) for a representative policyholder i of age category
a and gender g with respect to risk factor Λk(t).

(b) All random variables at time t ∈ {1, . . . , T} are assumed to be independent of random
variables at some different point in time s 6= t with s ∈ {1, . . . , T}.

(c) For each k ∈ {1, . . . ,K}, risk factors Λk(1), . . . ,Λk(T ) are identically distributed.

Remarks 12.2. (Simplifying assumptions).

(a) Assumption 12.1(a) is just needed for consistent estimation and is reasonable in the
sense that we do not have individual information of dead people and how exposed they
were to certain risk factors. For prediction purposes, within a portfolio of policyholders,
individual death probabilities and weights can be considered since additional information
as, for example, smoker or non-smoker may be available.

(b) Assumption 12.1(b) is also needed for estimation purposes but may easily be violated
in practice. If, for example, fewer people die from neoplasms in a certain year due to a
new treatment, then more people will die from other causes in subsequent years since
everyone has to die at some point. This phenomenon can be seen as a serial correlation
effect. But as we will remove a lot of dependence via trends in death probabilities
and weights, see Assumption 12.12, such dependence effects seem to be negligible for
Australian data which is shown in Section 17 via several validation techniques.

Data for the number of living people and deaths, as well as data for causes of deaths
are usually freely available on governmental websites. In the case of Australia data can be
found at the Australian Bureau of Statistics, AIHW, or related institutions. If suitable rich
information of deaths and their causes is available for a certain portfolio of policyholders,
estimation can of course be based on this specific data. Nevertheless, we suggest to base
parameter estimation on data from the whole population of a country since this guarantees
suitable rich information for all death causes and minimal selection effects.

Assumption 12.3 (Available data). For every age category a ∈ {1, . . . , A}, gender g ∈
{f,m} and year t ∈ {1, . . . , T} with T ≥ 2 the database is assumed to contain historical
population counts ma,g(t)

42 and historical number of deaths na,g,k(t)
43 due to underlying

death cause k ∈ {0, 1, . . . ,K}. An underlying death cause is to be understood as the disease
or injury that initiated the train of morbid events leading directly to death.

41 In this section we add t as time index.
42 For Australia, estimates for resident population data are available at the website of the Australian

Bureau of Statistics where a detailed documentation of the used statistical methods is given. Based on census
counts, several adjustment components such as census undercount and immigration are taken into account.

43 For Australia, we may take ICD-9 and ICD-10 classified death data from AIHW.
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Remark 12.4 (Death probabilities). To be consistent in our approach, we will estimate
death probabilities qa,g(t) from death data na,g,k(t) and ma,g(t). Usually, death probabilities
are also publicly available in the form of second order life tables44 where effects such as
migration are taken into account as well. Note that estimation of death probabilities always
requires a careful handling of mortality trends.

To make our model applicable to real world data, we have to specify common stochastic
risk factors (Λ0(t), . . . ,ΛK(t))t∈{1,...,T}. We recommend the approach to directly identify
risk factors with death causes 0, 1, . . . ,K. This leads to the following assumption.

Assumption 12.5 (Data and model linkage). Given Assumption 12.3, as well as our
annuity model of Definition 11.11, the observations of historical annual deaths na,g,k(t)

45

with age a ∈ {1, . . . , A}, gender g ∈ {f,m}, due to death cause k ∈ {0, . . . ,K} and at time
t ∈ {1, . . . , T} correspond to realisations of the random variable

Na,g,k(t) :=
∑

i∈Ma,g(t)

Ni,k(t) ,

where Ma,g(t) ⊂ {1, . . . ,m(t)} denotes the set of representative policyholders of specified age
group and gender with |Ma,g(t)| = ma,g(t). Note that Ni,k(t) is the number of deaths of
policyholder i due to death cause k in year t. Death cause zero corresponds to ill-defined
and not reported deaths, i.e., idiosyncratic components.

Remark 12.6 (Weights). Given Assumption 12.5 and using Remark 11.14, we have

E[Na,g,k(t)] = ma,g(t)qa,g(t)wa,g,k(t) ,

for all a ∈ {1, . . . , A}, g ∈ {f,m}, k ∈ {0, . . . ,K} and t ∈ {1, . . . , T}. In particular, this
implies that in average the weight wa,g,k(t) gives the fraction of people dying from death cause
k compared to all deaths, i.e., E[Na,g,k(t)] /(ma,g(t)qa,g(t)). Moreover, for all a ∈ {1, . . . , A}
and g ∈ {f,m} we have E[

∑K
k=0Na,g,k(t)] = ma,g(t)qa,g(t).

Since expectations of risk factors (Λ1(t), . . . ,ΛK(t))t∈{1,...,T} are by assumption fixed
to one, it remains to estimate variances of risk factors, corresponding weights and death
probabilities. Note that in the parametrisation we use, see Assumption 11.11, we have
Var(Λk(t)) = σ2

k for all k ∈ {1, . . . ,K} and t ∈ {1, . . . , T}.
Whilst it is common knowledge that people tend to live longer, real world data also

show that weights for certain death causes change heavily over time. This also happens on
a short-term scale and mostly with a clear monotone trend. If we did not account for trends
in weights, then estimated risk factor variances would be far too high and residuals would
not be gamma distributed. To avoid overfitting on the other hand, we do not want to make
trends too complicated. Thus, to account for mortality trends, we use the following family
of death probabilities and weights. Note that once we have estimated parameters within
this family, we can make projections of death probabilities and weights into the future, see
Section 16 for further discussions in this topic. In order for these parameter families to be
well-defined, we use the following functions.

44 For Australia this information is available at the Australian Bureau of Statistics for 2002-2012.
45 As a convention throughout this thesis, estimators are always denoted by capital letters whereas

realisations of these estimators, as well as estimates are always written with corresponding lower case letters.
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Definition 12.7 (Laplace distribution and trend reduction). The Laplace distribution
function with mean one and variance two is given by

FLap(x) =
1

2
+

1

2
sign(x)

(
1− exp(−|x|)

)
, x ∈ R , (12.8)

with corresponding (lower) quantile function

(FLap)−1(y) = −sign(2y − 1) log(1− |2y − 1|) , y ∈ [0, 1] . (12.9)

Trend reduction with parameters (ζ, η) ∈ R× (0,∞) is given by

Tζ,η(t) =
1

η
arctan(ζ + ηt) , t ∈ R . (12.10)

Remarks 12.11. Given the definition above, we can draw some immediate conclusions.

(a) For x < 0, (12.8) becomes exp(x)/2.

(b) Expression (12.10) will we used for a trend reduction technique which is motivated by
Kainhofer, Predota and Schmock [69, Section 4.6.2]. There they replace linear time
t ∈ N0 by time shift T0,η(t) with η = 1

t0
. Then, parameter η gives the inverse of the

time t0 when an initial trend is halved. Parameter ζ on the other hand gives the shift
on the arctangent curve.

(c) Note that limx→±∞ arctan(x) = ±π
2 .

(d) Expression (12.10) is related to the Cauchy distribution function FC
ζ,η with parameters

(ζ, η) ∈ R× [0,∞) via FC
ζ,η(x) = 1

2 + 1
π Tζ,η(x) for all x ∈ R.

Assumption 12.12 (Parameter family for trends in death probabilities and weights). Given
the annuity model of Definition 11.11 and Assumption 12.1, as well as a ∈ {1, . . . , A},
g ∈ {f,m} and t ∈ {1, . . . , T}, death probability qa,g(t) ∈ [0, 1] satisfies

qa,g(t) = FLap
(
αa,g + βa,gTζa,g ,ηa,g(t)

)
, (12.13)

where αa,g, βa,g, ζa,g ∈ R and ηa,g ∈ (0,∞). Additionally given k ∈ {0, . . . ,K}, weight
wa,g,k(t) ∈ [0, 1] satisfies

wa,g,k(t) =
exp

(
ua,g,k + va,g,kTφk,ψk(t)

)∑K
j=0 exp

(
ua,g,j + va,g,j Tφj ,ψj (t)

) , (12.14)

with ua,g,0, va,g,0, φ0, . . . , ua,g,K , va,g,K , φK ∈ R, as well as ψ0, . . . , ψK ∈ (0,∞). Define the
support of parameters for death probabilities E := R3×A×2) × (0,∞)A+2 and for weights
F := R2×A×2×K+K × (0,∞)K .

Remarks 12.15. Given Assumption 12.12, we may draw some immediate conclusions.

(a) Death probabilities (12.13) and weights (12.14) are between zero and one where, in
particular, the constraint wa,g,0 + · · ·+ wa,g,K = 1 for all a ∈ {1, . . . , A} and g ∈ {f,m}
is satisfied.
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(b) Vectors α46 and u can be interpreted as intercept parameters for death probabilities and
weights, respectively. Henceforth, β and v are trend parameters, see Remarks 12.11(b).
Parameters ζ, as well as φ give the shift of trend reduction and η, as well as ψ give
the corresponding speed of trend reduction. The smaller the values of η and ψ, the
slower the trend reduction. Kainhofer, Predota and Schmock [69, Section 4.6.2] suggest
a value of 0.01 for the speed of trend reduction, i.e., trends have a half time of 100
years. Meaningful values for η and ψ usually lie in the interval (0.001, 0.1). A clear
trend reduction in mortality improvements can be observed in Japan since 1970, see
Pasdika and Wolff [91, Section 4.2], and also for females in Australia, see Remark 16.14.
Since particularly Japan has a very old population, it seems reasonable to assume trend
reduction techniques for long-term forecasts in other countries.

(c) Estimation issues. To avoid a far too complicated modelling setup, we assume trend
parameters φk and ψk in (12.14) to be depend solely on death cause k ∈ {0, . . . ,K}.
The intuition behind this approach is that the evolution in the trend (initial point of
trend reduction φk and speed of trend reduction ψk) is equal over all age categories and
genders for a given death cause as better treatments influence all groups simultaneously.
Still, trend parameters in (12.14) and also in (12.13) are usually hard to estimate when
just few years of observations are available as various parameter values roughly yield the
same trend curve—in particular for values of η and ψ close to zero and absolute values
of ζ and φ above one. It is therefore suggested that all or some of these parameters
are chosen to be fixed if long-term projections are not the primarily goal. Moreover, to
avoid messy behaviour of estimation procedures, we suggest to assume one as an upper
bound for parameters η and ψ, as well as an upper bound for absolute values of ζ and
φ. This is not a major restriction as otherwise trends would be too extreme.

(d) As (12.10) gives roughly a linear function of t if parameter η is small, we can replace
Tζa,g ,ηa,g(t) by t to provide a simpler setting guaranteeing easier estimation. Note that
trend reduction (12.10) guarantees that limiting values for death probabilities and
weights are non-degenerate.

(e) Note that as death probabilities are lower than 0.5 for most ages, (12.13) gives roughly
an exponential decay in time, see Remarks 12.11(a). Thus, it gets obvious that (12.13)
is motivated by the Lee–Carter model, see Lee and Carter [78], Brouhns, Denuit and
Vermunt [17], as well as Kainhofer, Predota and Schmock [69, Section 4.5.1], where
the time-dependent term Tζa,g ,ηa,g(t) is replaced by time-dependent trend components
κt and then estimated via a combination of method of moments and a singular value
decomposition. See Section 17 for a link between our approach and the Lee–Carter
method. Furthermore, our approach is linked to the Swiss Nolfi-Ansatz, see, for example,
Kainhofer, Predota and Schmock [69, Section 4.5].

(f) As also mentioned in Remark 12.22, we could base all parameter families for death
probabilities and weights on logistic regression. Then, we unfortunately loose the link
to the Lee–Carter approach.

(g) For old ages, the mortality trend given in (12.13) might not be sufficient and, therefore,
models should be selected carefully. For a discussion on this topic see Kainhofer, Predota
and Schmock [69, Section 4.7.2].

46 For notational purposes in the context of estimation, we write α for (αa,g(t))a∈{1,...,A},g∈{f,m},t∈{1,...,T}
and analogously for all other high-dimensional parameters appearing in this thesis.

111



Chapter 12. Parameter Estimation of our Annuity Model

(h) For the maximum a posteriori approach in Section 12.2, the maximum likelihood
approach in Section 12.51 and corresponding MCMC approaches in Section 12.4, families
for death probabilities and weights can be modified arbitrarily without changing the
principle of each method. In particular, phenomena such as cohort effects can be
incorporated, see Cairns et al. [19], as well as Remark 16.14.

(i) Note that for fixed a ∈ {1, ..., A} and g ∈ {f,m} Equation (12.14) is invariant under a
constant shift of parameters (ua,g,k)k∈{0,...,K} as well as of parameters (va,g,k)k∈{0,...,K}
if φ0 = · · · = φK and ψ0 = · · · = ψK for the latter. Thus, for each a ∈ 1, ..., A and
g ∈ {f,m}, we can always chose fixed and arbitrary values for ua,g,0 and va,g,0, for
example, if φ0 = · · · = φK and ψ0 = · · · = ψK for the latter case.

Remark 12.16 (Long-term projections). Given a ∈ {1, ..., A} and g ∈ {f,m}, long-term
projections of death probabilities using (12.13) give, for all a ∈ 1, ..., A and g ∈ {f,m},

lim
t→∞

qa,g(t) = FLap
(
αa,g + βa,g

π

2ηa,g

)
.

Likewise, long-term projections for weights using (12.14) are given by

lim
t→∞

wa,g,k(t) =
exp

(
ua,g,k + va,g,k

π
2ψk

)∑K
j=0 exp

(
ua,g,j + va,g,j

π
2ψk

) .
i.e., weights are peaked in death causes with highest trends. Also, alternative families for
weights can be considered as outlined in Remark 12.17.

Remark 12.17 (Alternative families for weights). Given Assumption 12.12, let a ∈ {1, . . . , A},
g ∈ {f,m}, k ∈ {0, . . . ,K} and t ∈ {1, . . . , T}. Instead of using (12.14), weights can be
defined via

wa,g,k(t) =
FLap

(
ua,g,k + va,g,kTφk,ψk(t)

)∑K
j=0 F

Lap
(
ua,g,j + va,g,j Tφj ,ψj (t)

) .
The great advantage of this family is that long-term forecasts are approximatively (modulo
trend reduction) equally weighted amongst death causes with positive trend. Thus, we obtain
some long-term equilibrium. But, when it comes to estimation, this family can produce messy
results as weights are often not uniquely determined since FLap(x+ c) = exp(c)FLap(x) for
all x, c ≤ 0. Thus, alternative families for weights can be considered as briefly outlined in
Remark 12.17. Another possibility is to use a (quasi) linear family of weights

wa,g,k(t) =
ua,g,k + va,g,kTφk,ψk(t)∑K
j=0 ua,g,j + va,g,j Tφj ,ψj (t)

where we have to assume 2ua,g,j ≥ π |va,g,j | for all j ∈ {0, . . . ,K} to make weights positive.
This constraint usually leads to an underestimation of trends which is why we do not
recommend this approach.

Remark 12.18 (High dimensionality). It should be mentioned that in our proposed setup we
are confronted with a model based on more than 300 parameters. Therefore, deterministic
numerical optimisation of a posteriori functions and likelihood functions is difficult and
even for Markov chain Monte Carlo (MCMC) methods, see Section 12.4, it is hard to judge
whether mixing of MCMC chains is sufficient. The latter problem can be tackled via running
several MCMC chains for each parameter with different starting values and check whether
all chains converge to the same stationary distribution. Depending on the purpose of the
model, the number of parameters can be reduced. For further discussions on this topic, see
Chapter 17.
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12.1. Estimation via matching of moments

12.1 Estimation via matching of moments

This approach is straight forward but needs a simplifying assumption to guarantee inde-
pendent and identical random variables over time. We refer to it as matching of moments
approach.

Assumption 12.19 (I.i.d. setup). Given the annuity model of Definition 11.11, as well
as Assumption 12.3 and Definition 12.5, assume that death counts (Na,g,k(t))t∈{1,...,T} are
i.i.d., i.e., assume that ma,g := ma,g(1) = · · · = ma,g(T ) and qa,g := qa,g(1) = · · · = qa,g(T ),
as well as wa,g,k := wa,g,k(1) = · · · = wa,g,k(T ) for every a ∈ {1, . . . , A}, g ∈ {f,m} and
k ∈ {0, . . . ,K}.

To approximately achieve such an i.i.d. setting, we suggest to transform death counts
Na,g,k(t) such that E[Na,g,k(1)] = · · · = E[Na,g,k(T )] for all a ∈ {1, . . . , A}, g ∈ {f,m} and
k ∈ {0, . . . ,K} as outlined in the following remark.

Remark 12.20 (Modification of given data). Given the annuity model from Definition 11.11
and Assumption 12.3, modify the number of deaths na,g,k(t), the total number of people
ma,g(t), death probabilities qa,g(t) and weights wa,g,k(t) such that Assumption 12.19 is
approximatively met for each age category a ∈ {1, . . . , A}, gender g ∈ {f,m}, death cause
k ∈ {0, . . . ,K} and year t ∈ {1, . . . , T} as follows:

n′a,g,k(t) :=

⌊
ma,g(T )qa,g(T )wa,g,k(T )

ma,g(t)qa,g(t)wa,g,k(t)
na,g,k(t)

⌋
, t ∈ {1, . . . , T} ,

and, correspondingly,

ma,g :=
ma,g(T )

ma,g(t)
ma,g(t) = ma,g(T ) , t ∈ {1, . . . , T} ,

as well as

qa,g :=
qa,g(T )

qa,g(t)
qa,g(t) = qa,g(T ) , t ∈ {1, . . . , T} ,

and

wa,g,k :=
wa,g,k(T )

wa,g,k(t)
wa,g,k(t) = wa,g,k(T ) , t ∈ {1, . . . , T} .

Remark 12.21. Using the modification of Remark 12.20, we manage to remove long term
trends in mortality and therefore erase variability in the data which is not driven by stochastic
events. Furthermore, we manage to keep ma,g(t), qa,g(t) and wa,g,k(t) constant over time
such that it is legitimate to assume an i.i.d. setting for transformed data in the sense of
Assumption 12.19. Time indices may then be dropped. In particular, this data modification
will be used for model validation in Section 17.

To be able to modify data as described above, we have to estimate death probabilities
and weights a priori. This can be done as follows:

Remark 12.22 (Estimation of death probabilities). Given Assumption 12.12, as well as
recalling Remark 12.6, for a ∈ {1, . . . , A} and g ∈ {f,m} we may derive estimates(

q̂MM
a,g (t)

)
t∈{1,...,T} =

(
FLap

(
α̂MM
a,g + β̂MM

a,g Tζ̂MM
a,g ,η̂

MM
a,g

(t)
))

t∈{1,...,T}
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for death probabilities (qa,g(t))t∈{1,...,T} via minimising the mean squared error, i.e.,

arg inf
αa,g ,βa,g ,ζa,g ,ηa,g

T∑
t=1

(∑K
k=0 na,g,k(t)

ma,g(t)
− FLap

(
αa,g + βa,gTζa,g ,ηa,g(t)

))2

.

If parameters ζ and η are previously fixed, this result can be obtained by simply regressing(
(FLap)−1

(∑K
k=0 na,g,k(t)

ma,g(t)

))
t∈{1,...,T}

on (Tζa,g ,ηa,g(t))t∈{1,...,T}. Rougher estimates for αa,g and βa,g can always be derived by
using linear regression on logarithmic death rates, see Remarks 12.15(d). Alternatively, we
can use logistic regression which implies that death probabilities take the form

log
qa,g(t)

1− qa,g(t)
= αa,g + tβa,g , t ∈ {1, . . . , T} .

In that case, we loose the link to Lee–Carter models.

Remark 12.23 (Estimation of weights). Given Assumption 12.12 and Remark 12.6, as well
as Remark 12.22, we may derive estimates (ûMM

a,g,k, v̂
MM
a,g,k, φ̂

MM
k , ψ̂MM

k )t∈{1,...,T} for parameters
(ua,g,k, va,g,k, φk, ψk)t∈{1,...,T} for all a ∈ {1, . . . , A} and g ∈ {f,m} via minimising the mean
squared error to death rates, i.e.,

arg inf
ua,g ,va,g ,φk,ψk

T∑
t=1

(
na,g,k(t)

ma,g(t) q̂MM
a,g (t)

− exp
(
ua,g + va,gTφk,ψk(t)

))2

,

for all age categories a ∈ {1, . . . , A}, genders g ∈ {f,m} and k ∈ {0, . . . ,K}. Again, if
parameters φ and ψ are previously fixed, this can be obtained by simply regressing(

log
na,g,k(t)

ma,g(t) q̂MM
a,g (t)

)
t∈{1,...,T}

on (Tφk,ψk(t))t∈{1,...,T}. Estimates (ŵMM
a,g,k(t))t∈{1,...,T} are then given by (12.14).47 Note that,

while using regression techniques, we always have to check carefully if necessary assumptions
such as constant variances of residuals are satisfied. Otherwise, we can switch to other
generalised linear regression models or weighted least squares, depending on the data.

Once death probabilities and weights, as well as trends have been estimated such that
Assumption 12.19 is satisfied (approximatively) via modifications suggested in Remark 12.20,
risk factor variances may be estimated.

Lemma 12.24. Given Assumptions 12.1, 12.5 and 12.19, for each age a ∈ {1, . . . , A},
gender g ∈ {f,m}, death cause k ∈ {0, . . . ,K} and time t ∈ {1, . . . , T}, define

W ∗a,g,k(t) :=
Na,g,k(t)

ma,g qa,g
,

47 These are rough estimate but, as

K∑
j=0

exp
(
ûMM
a,g,k + v̂MM

a,g,kTφMM
k

,ηMM
k

(t)
)

is usually close to one, they provide suitable starting values for the more sophisticated approaches below.
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as well as

W
∗
a,g,k :=

1

T

T∑
t=1

W ∗a,g,k(t) .

Then, E
[
W
∗
a,g,k

]
= E

[
W ∗a,g,k(t)

]
= wa,g,k, i.e., W

∗
a,g,k and W ∗a,g,k(t) are unbiased estimators

for wa,g,k.

Proof. Since na,g,k(t) is a realisation of
∑

i∈Ma,g(t)Ni,k(t), we have

E
[
W
∗
a,g,k

]
=

1

T

T∑
t=1

∑
i∈Ma,g

E[Ni,k(t)]

ma,g qa,g
,

for each a ∈ {1, . . . , A}, g ∈ {f,m}, ck ∈ {c0, . . . , cK} and t ∈ {1, . . . , T}. Thus, since
E[Ni,k(t)] = qa,gwa,g,k for every representative policyholder i of the specified category, the
result follows.

Lemma 12.25. Given Assumptions 12.1, 12.5 and 12.19, define the estimator for the
variance of W ∗a,g,k(t) as

Σ̂2
a,g,k =

1

T − 1

T∑
t=1

(
W ∗a,g,k(t)−W

∗
a,g,k

)2
, (12.26)

for all age categories a ∈ {1, . . . , A}, genders g ∈ {f,m} and death causes k ∈ {0, . . . ,K}.
Then, recalling Assumption 11.11, we have

E
[
Σ̂2
a,g,k

]
= Var

(
W ∗a,g,k(t)

)
=

wa,g,k
ma,g qa,g

+ σ2
kw

2
a,g,k . (12.27)

Proof. For notational convenience and without loss of generality we omit time parameters
in all random variables in this proof as we have an i.i.d. setting. Also, fix a ∈ {1, . . . , A},
g ∈ {f,m} and k ∈ {1, . . . ,K}. Note that (W ∗a,g,k(t))t∈{1,...,T} is an i.i.d. sequence. Thus,

since Σ̂a,g,k is an unbiased estimator for the standard deviation of W ∗a,g,k(t) and W
∗
a,g,k,

see Lehmann and Romano [79, Example 11.2.6], we immediately get

E
[
Σ̂2
a,g,k

]
= Var

(
W
∗
a,g,k

)
= Var

(
1

ma,g qa,g

∑
i∈Ma,g

Ni,k

)
.

Using the law of total variance as in [111, Lemma 3.48] together with Definition 11.11(c)
gives

m2
a,g q

2
a,g E

[
Σ̂2
a,g,k

]
= E

[
Var

( ∑
i∈Ma,g

Ni,k

∣∣∣∣Λk)]+ Var

(
E
[ ∑
i∈Ma,g

Ni,k

∣∣∣∣Λk])

=
∑

i∈Ma,g

E[Var(Ni,k |Λk)] + Var

( ∑
i∈Ma,g

E[Ni,k |Λk ]

)
.

Since Var(Ni,k|Λk) = E[Ni,k |Λk] = qa,gwa,g,kΛk a.s. for all representative policyholders
i ∈Ma,g with |Ma,g| = ma,g, the equation above simplifies to

E
[
Σ̂2
a,g,k

]
=

wa,g,k
ma,g qa,g

+ w2
a,g,k Var(Λk) ,

which gives the result.
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Remark 12.28. Having obtained (12.27) and recalling Assumption 11.11, we get, for all
a ∈ {1, . . . , A}, g ∈ {f,m} and k ∈ {0, . . . ,K},

E
[
Σ̂2
a,g,k −

wa,g,k
ma,g qa,g

]
= σ2

kw
2
a,g,k

and, thus, summing up over all age categories and genders gives

E

[∑A
a=1

∑
g∈{f,m}

(
Σ̂2
a,g,k −

wa,g,k
ma,g qa,g

)∑A
a=1

∑
g∈{f,m}w

2
a,g,k

]
= σ2

k , k ∈ {1, . . . ,K} . (12.29)

Replacing qa,g and wa,g,k by their estimates q̂MM
a,g (T ) and ŵMM

a,g,k(T ) in Equation (12.29),
see Remarks 12.22 and 12.23, we may define the following matching of moments estimates
for risk factor variances.

Definition 12.30 (Estimates for risk factor variances). Given Assumptions 12.1, 12.5 and
12.19 as well as Remarks 12.23 and 12.22, the matching of moments estimate for σk for all
k ∈ {1, . . . ,K} is defined as

σ̂MM
k :=

√√√√√max

{
0,

∑A
a=1

∑
g∈{f,m}

(
σ̂2
a,g,k −

wMM
a,g,k(T )

ma,g qMM
a,g (T )

)
∑A

a=1

∑
g∈{f,m}(w

MM
a,g,k(T ))2

}
, (12.31)

where σ̂2
a,g,k is the estimate corresponding to estimator Σ̂2

a,g,k.

Remark 12.32. σ̂MM
k can equal zero and therefore may not detect variation in data properly.

With a similar argumentation as for (12.29), we could define an alternative matching of
moments estimator using

E

[
1

2A

A∑
a=1

∑
g∈{f,m}

Σ̂2
a,g,k −

wa,g,k
ma,g qa,g

w2
a,g,k

]
= σ2

k , k ∈ {1, . . . ,K} .

The problem of this definition is that for categories with few observations of deaths summands
can become very large. In particular, if weights are zero, then fractions may not even be
defined.

12.2 Estimation via a maximum a posteriori approach

While the matching of moments approach requires several modifications of the data to gain
constant weights and death probabilities, the approach in this section does not require any
of these. It is a variation of maximum a posteriori estimation based on Bayesian inference.
For an introduction to Bayesian inference see, for example, Shevchenko [114, Section 2.9].
In particular, Definition 11.11(c) will be of great importance. One main advantage of this
approach is the fact that we obtain estimates for risk factor realisations which is very useful
for scenario analysis, see Chapter 14. Also, handy approximations for estimates of risk
factor realisations and variances are obtained in this section. The basic idea is to express
the joint posterior distribution of all parameters via conditional distributions.
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Lemma 12.33 (Posterior density). Given Assumptions 12.1 and 12.5, as well as 12.12,
consider parameters θq := (α, β, ζ, η) ∈ E, θw := (u, v, φ, ψ) ∈ F , risk factor realisations
λ := (λk(t)) ∈ (0,∞)K×T of Λ := (Λk(t)) ∈ (0,∞)K×T and σ := (σk) ∈ [0,∞)K , as well

as data n := (na,g,k(t)) ∈ NA×2×(K+1)×T
0 . Assume that parameters are independent so that

their prior distribution may be written as48

π(θq, θw, σ) := 1E(θq)1F (θw)1(0,∞)K (σ) . (12.34)

Then, the posterior density π(θq, θw, λ, σ |n) of parameters given data N = n is up to
constant given by 49

π(θq, θw, λ, σ |n) ∝ π(θq, θw, σ)π(λ |θq, θw, σ)`(n |θq, θw, λ, σ)

=

T∏
t=1

(( A∏
a=1

∏
g∈{f,m}

e−ρa,g,0(t)ρa,g,0(t)na,g,0(t)

na,g,0(t)!

) K∏
k=1

(
e−λk(t)/σ2

k λk(t)
1/σ2

k−1

Γ(1/σ2
k)(σ2

k)
1/σ2

k

×
A∏
a=1

∏
g∈{f,m}

e−ρa,g,k(t)λk(t) (ρa,g,k(t)λk(t))
na,g,k(t)

na,g,k(t)!

))
π(θq, θw, σ) ,

(12.35)

where π(λ |θq, θw, σ) denotes the prior density of risk factors at Λ = λ given all other
parameters, where `(n |θq, θw, λ, σ) denotes the likelihood of N = n given all parameters
and where we have ρa,g,k(t) = ma,g(t)qa,g(t)wa,g,k(t) for all a ∈ {1, . . . , A}, g ∈ {f,m},
k ∈ {1, . . . ,K} and t ∈ {1, . . . , T}.

Proof. The first proportional equality follows by Bayes’ theorem which is also widely used
in Bayesian inference, see, for example, Shevchenko [114, Section 2.9]. Due to independence
amongst risk factors and since they are gamma distributed with mean one and variances σ2,
we have

π(λ |θq, θw, σ) =
K∏
k=1

T∏
t=1

(
e−λk(t)/σ2

k λk(t)
1/σ2

k−1

Γ(1/σ2
k)(σ2

k)
1/σ2

k

)
.

If θq ∈ E, θw ∈ F , λ ∈ (0,∞)K×T and σ ∈ [0,∞)K , then note that due to Definition 11.11,
as well as Assumption 12.1 we have

`(n |θq, θw, λ, σ) = P
( A⋂
a=1

⋂
g∈{f,m}

K⋂
k=0

T⋂
t=1

{
Na,g,k(t) = na,g,k(t)

} ∣∣∣∣Λ = λ

)

=
A∏
a=1

∏
g∈{f,m}

T∏
t=1

(
e−ρa,g,0(t) ρa,g,0(t)na,g,0(t)

na,g,0(t)!

×
K∏
k=1

P
(
Na,g,k(t) = na,g,k(t)

∣∣Λk(t) = λk(t)
))

,

48 Here we are confronted with a so-called improper prior, see Shevchenko [114, Section 2.9.5], since it
is not a density with respect to the Lebesgue–Borel measure in the usual sense due to the infinite support
of σ2. This prior distribution does not carry any information about the parameters to be estimated and it
corresponds to independent uniform distributions of all components with respective supports.

49 The symbol ‘∝’ denotes proportionality almost everywhere, i.e., equality almost everywhere up to a
multiplicative constant which is independent of the parameters, see Shevchenko [114, Theorem 2.3]. If we
restrict to continuous densities, then we can drop almost everywhere.
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which then gives (12.35) since, for all a ∈ {1, . . . , A}, g ∈ {f,m} and k ∈ {1, . . . ,K}, as well
as t ∈ {1, . . . , T},

P
(
Na,g,k(t) = na,g,k(t)

∣∣Λk(t) = λk(t)
)

= P
( ∑
i∈Ma,g(t)

Ni,k(t) = na,g,k(t)

∣∣∣∣Λk(t) = λk(t)

)

= exp
(
−ma,g(t)qa,gwa,g,kλk(t)

) (ma,g(t)qa,gwa,g,kλk(t)
)na,g,k(t)

na,g,k(t)!
,

where i ∈Ma,g(t) with |Ma,g(t)| = ma,g(t) are representatives of the specified category.

Remark 12.36. (Maximum a posteriori approach)

(a) Notation for posterior and conditional densities is adapted to the notation used in the
textbook of Shevchenko [114, Section 2.9].

(b) The approach described above may look like a pure Bayesian inference approach but note
that risk factors Λk(t) are truly stochastic and, therefore, we refer to it as a maximum
a posteriori estimation approach.

(c) Consider the assumptions of Lemma 12.33. Since the products in (12.35) can become
very small, it is recommended to use the logarithm of posterior densities which are

denoted by log π(θq, θw, λ, σ |n). For n ∈ NA×2×(K+1)×T
0 they are given by

log π(θq, θw, λ, σ |n) =

T∑
t=1

(
A∑
a=1

∑
g∈{f,m}

(
na,g,0(t) log ρa,g,0(t)− ρa,g,0(t)− log(na,g,0(t)!)

)
+

K∑
k=1

(
− log Γ

( 1

σ2
k

)
−

log σ2
k

σ2
k

− λk(t)

σ2
k

+
( 1

σ2
k

− 1
)

log λk(t)

+
A∑
a=1

∑
g∈{f,m}

(
na,g,k(t) log

(
ρa,g,k(t)λk(t)

)
− ρa,g,k(t)λk(t)− log(na,g,k(t)!)

)))
,

(12.37)

if θq ∈ E, θw ∈ F , λ ∈ (0,∞)K×T and σ ∈ [0,∞)K . Otherwise, the logarithmic posterior
density takes the value −∞.

Having derived the posterior density, we can now define corresponding maximum a
posteriori estimates.

Definition 12.38 (Maximum a posteriori estimates). Recalling (12.35) and (12.37) as well
as given the assumptions of Lemma 12.33, maximum a posteriori estimates for parameters
θq, θw, λ and σ, given uniqueness, are defined by(

θ̂MAP
q , θ̂MAP

w , λ̂MAP, σ̂MAP
)

:= arg sup
θq ,θw,λ,σ

π(θq, θw, λ, σ |n)

= arg sup
θq ,θw,λ,σ

log π(θq, θw, λ, σ |n) .
(12.39)
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12.2. Estimation via a maximum a posteriori approach

Remarks 12.40. (Maximum a posteriori estimates).
(a) Using real world data, risk factor variances usually take small values less than 0.1. Thus,

assuming an upper bound for these parameters is legitimate so that (12.34) becomes a
proper density modulo a normalisation constant. Estimates for risk factor realisations λ
should then take values close to one, except outliers. Death probabilities should be close
to values derived by the Lee–Carter method and close to values in life tables. Weights
ŵMAP should be close to ŵMM.

(b) In general, there exists no closed form solution for maximum a posteriori estimates.
Deterministic or stochastic numerical optimisation schemes have to be applied but, for
suitable data, approximations exist, see Remark 12.47.

(c) Numerical issues. Deterministic optimisation in (12.39) may quickly lead to numerical
issues due to high dimensionality and due to the flat surface of the function to be
optimised which may yield to failure of some gradient methods. Adaption of convergence
tolerance can lead to better results. In ‘R’ the optimisation routine nlminb, see [99], gives
stable results in simple examples. But, also this procedure quickly breaks down in more
involved settings. One alternative is to use Markov chain Monte Carlo as described in
Section 12.4 or as in Shevchenko [114, Section 2.11]. Otherwise, we suggest to estimate
weights and death probabilities as outlined in Section 12.1 a priori and then proceed
with optimisation in (12.39) over σ and λ. Alternatively, Lemma 12.41 or Remark 12.47
can be used.

As maximum a posteriori estimates are hard to obtain, we can give some necessary
characterisations of the solutions which can then be used as easy-to-calculate approximations.

Lemma 12.41 (Conditions for maximum a posteriori estimates). Given Definition 12.38,
estimates λ̂MAP and σ̂MAP satisfy, for every k ∈ {1, . . . ,K} and t ∈ {1, . . . , T},

λ̂MAP
k (t) =

1/(σ̂MAP
k )2 − 1 +

∑A
a=1

∑
g∈{f,m} na,g,k(t)

1/(σ̂MAP
k )2 +

∑A
a=1

∑
g∈{f,m} ρa,g,k(t)

(12.42)

if 1/(σ̂MAP
k )2 − 1 +

∑A
a=1

∑
g∈{f,m} na,g,k(t) > 0, as well as

2 log σ̂MAP
k +

Γ′
(
1/(σ̂MAP

k )2
)

Γ
(
1/(σ̂MAP

k )2
) =

1

T

T∑
t=1

(
1 + log λ̂MAP

k (t)− λ̂MAP
k (t)

)
, (12.43)

where, for given λ̂MAP
k (1), . . . , λ̂MAP

k (T ) > 0, (12.43) has a unique solution which is strictly
positive. In particular, for every k ∈ {1, . . . ,K},

2 log σ̂MAP
k =

1

T

T∑
t=1

(
1 + log

1/(σ̂MAP
k )2 − 1 +

∑A
a=1

∑
g∈{f,m} na,g,k(t)

1/(σ̂MAP
k )2 +

∑A
a=1

∑
g∈{f,m} ρa,g,k(t)

−
1/(σ̂MAP

k )2 − 1 +
∑A

a=1

∑
g∈{f,m} na,g,k(t)

1/(σ̂MAP
k )2 +

∑A
a=1

∑
g∈{f,m} ρa,g,k(t)

)
−

Γ′
(
1/(σ̂MAP

k )2
)

Γ
(
1/(σ̂MAP

k )2
) . (12.44)

Remark 12.45. The term Γ′(x)/Γ(x), known as digamma function or ψ-function, is extensively
discussed in the literature, see for example Chaudhry and Zubair [22] and Qi et al. [98], as
well as the references therein.
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Proof of Lemma 12.41. First, set

π∗(n) := log π(θq, θw, λ, σ |n) .

Then, for every k ∈ {1, . . . ,K} and t ∈ {1, . . . , T}, differentiating (12.37) gives

∂π∗(n)

∂λk(t)
=

1/σ2
k − 1

λk(t)
− 1

σ2
k

+

A∑
a=1

∑
g∈{f,m}

(na,g,k(t)
λk(t)

− ρa,g,k(t)
)
.

Setting this term equal to zero and solving for Λk(t) gives (12.42). Similarly, for every
k ∈ {1, . . . ,K}, we obtain

∂π∗(n)

∂σ2
k

=
1

σ4
k

T∑
t=1

(
log σ2

k − 1 +
Γ′(1/σ2

k)

Γ(1/σ2
k)
− log λk(t) + λk(t)

)
.

Again, setting this term equal to zero and rearranging the terms gives (12.43).

For existence and uniqueness of a solution in (12.43), given λ̂MAP
k (1), . . . , λ̂MAP

k (T ) > 0,
let k ∈ {1, . . . ,K} and note that the right side in the equation is strictly negative unless
λ̂MAP
k (1) = · · · = λ̂MAP

k (T ) = 1 in which case there is no variability in the risk factor, i.e.,
σ2
k = 0. Then, note that

f(x) := log x− Γ′(x)

Γ(x)
, x > 0 ,

is continuous and
1

2x
< f(x) <

1

2x
+

1

12x2
, x > 0 , (12.46)

which follows by Qi et al. [98, Corollary 1] together with f(x + 1) = 1/x + f(x) for all
x > 0. As we want to solve −f(1/x) = −c for some given c > 0, note that f(0+) = ∞,
as well as limx→∞ f(x) = 0. Thus a solution of Equation (12.43) has to exist for given
λ̂MAP
k (1), . . . , λ̂MAP

k (T ) > 0. Furthermore,

f ′(x) =
1

x
−
∞∑
i=0

1

(x+ i)2
<

1

x
−
∫ ∞
x

1

z2
dz = 0 , x > 0 ,

where the first equality follows by Chaudhry and Zubair [22]. This implies that −f(1/x)
and f(x) are strictly decreasing. Thus, the solution of (12.43) is unique. Equation (12.44)
then follows by substituting (12.42) into (12.43).

Remark 12.47 (Approximations). Given Definition 12.38, let weights and death probabilities,
as well as risk factor variances be estimated a priori using, for example, matching of moments
as given in Section 12.1, as well as Remark 12.22 and Remark 12.23. Then, (12.42) provides
an approximation for risk factor realisations. Alternatively, we can use a rougher approach
to derive approximative maximum a posteriori estimates for λ and σ. Based on (12.42), for
all k ∈ {1, . . . ,K} and t ∈ {1, . . . , T}, if

A∑
a=1

∑
g∈{f,m}

na,g,k(t) , k ∈ {1, . . . ,K} and t ∈ {1, . . . , T} ,
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is large, it is reasonable to define

λ̂MAPappr
k (t) :=

−1 +
∑A

a=1

∑
g∈{f,m} na,g,k(t)∑A

a=1

∑
g∈{f,m} ρa,g,k(t)

(12.48)

as an approximative estimate for λk(t) where ρa,g,k(t) := ma,g(t)qa,g(t)wa,g,k(t). In particu-
lar, this approximation is independent of estimates for σ. Having derived approximative
estimates for λ, we can use (12.43) to get estimates for σ which exist and are unique.
Alternatively, note that due to (12.46), we get

−2 log σ̂MAP
k −

Γ′
(
1/(σ̂MAP

k )2
)

Γ
(
1/(σ̂MAP

k )2
) =

(σ̂MAP
k )2

2
+O

(
(σ̂MAP
k )4

)
, k ∈ {1, . . . ,K} .

Furthermore, if we use second order Taylor expansion for the logarithm, then the right hand
side of (12.43) gets, for all k ∈ {1, . . . ,K},

1

T

T∑
t=1

(
λ̂MAP
k (t)− 1− log λ̂MAP

k (t)
)

=
1

2T

T∑
t=1

((
λ̂MAP
k (t)− 1

)2
+O

((
λ̂MAP
k (t)− 1

)3))
.

This approximation is better the closer the values of λ are to one. Thus, using these
observations, an approximation for risk factor variances σ2 is given by

σ̂MAPappr
k :=

√√√√ 1

T

T∑
t=1

(
λ̂MAPappr
k (t)− 1

)2
, k ∈ {1, . . . ,K} , (12.49)

which is simply the sample variance of λ̂MAP. Note that this estimate would be an intuitive
guess for estimating the variance of risk factors given realisations.

Remark 12.50 (An easy but accurate approach). We have two possibilities to avoid optimi-
sation of the maximum a posteriori function in (12.39). In both cases, we estimate death
probabilities and weights, i.e., parameters θq and θw, a priori via matching of moments.
Then, we can use Equation (12.44) to find estimates for risk factor variances σ2 which then
yield estimates for risk factor realisations λ via Equation (12.42). Note that, in general,
Equation (12.44) does not have a unique solution as the function is oscillating around
zero as σk ↘ 0. The second possibility to estimate λ and σ2 is to use approximations in
(12.48) and (12.49). Note that |λ̂MAP

k (t)− 1| < |λ̂MAPappr
k (t)− 1| for all k ∈ {1, . . . ,K} and

t ∈ {1, . . . , T}, implying that (12.49) will dominate solutions obtained by (12.43) in most
cases.

12.3 Estimation via maximum likelihood

Thirdly, we propose a classical estimation approach following maximum likelihood. Maximum
likelihood estimation immediately guarantees nice asymptotic properties of estimators under
mild regularity conditions. Unfortunately, similarly as for the maximum a posteriori
approach, estimates are not given explicitly and deterministic numerical optimisation easily
breaks down due to high dimensionality.
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Lemma 12.51 (Likelihood function). Given Assumptions 12.1, 12.5 and 12.12, define

nk(t) :=
A∑
a=1

∑
g∈{f,m}

na,g,k(t) , k ∈ {0, . . . ,K} and t ∈ {1, . . . , T} ,

as well as ρa,g,k(t) := ma,g(t)qa,g(t)wa,g,k(t) for all a ∈ {1, . . . , A} and g ∈ {f,m} and

ρk(t) :=

A∑
a=1

∑
g∈{f,m}

ρa,g,k(t) .

Then, the likelihood function `(n |θq, θw, σ) of parameters θq := (α, β, ζ, η) ∈ E, as well as

θw := (u, v, φ, ψ) ∈ F and σ := (σk) ∈ [0,∞)K given data n := (na,g,k(t)) ∈ NA×2×(K+1)×T
0

is given by

`(n |θq, θw, σ) =

T∏
t=1

(( A∏
a=1

∏
g∈{f,m}

e−ρa,g,0(t)ρa,g,0(t)na,g,0(t)

na,g,k(t)!

)

×
K∏
k=1

(
Γ(1/σ2

k + nk(t))

Γ(1/σ2
k)(σ2

k)
1/σ2

k (1/σ2
k + ρk(t))

1/σ2
k+nk(t)

A∏
a=1

∏
g∈{f,m}

ρa,g,k(t)
na,g,k(t)

na,g,k(t)!

))
.

(12.52)

Proof. Analogously to the derivation of (12.35), we get

`(n |θq, θw, σ) = P(N = n |θq, θw, σ) =
T∏
t=1

(( A∏
a=1

∏
g∈{f,m}

e−ρa,g,0(t)ρa,g,0(t)na,g,0(t)

na,g,0(t)!

)

×
K∏
k=1

E
[
P
( A⋂
a=1

⋂
g∈{f,m}

{
Na,g,k(t) = na,g,k(t)

} ∣∣∣∣Λk(t))]
)
,

where P(N = n |θq, θw, σ) denotes the probability of the event {N = n} given parameters.
Note that this expression is not a conditional probability per se. Then, for all k ∈ {1, . . . ,K}
and t ∈ {1, . . . , T}, Λk(t) is gamma distributed with mean one and variance σ2

k. Therefore,
taking expectations in the equation above gives

E
[
P
( A⋂
a=1

⋂
g∈{f,m}

{
Na,g,k(t) = na,g,k(t)

} ∣∣∣∣Λk(t))]

= E
[
e−ρk(t)Λk(t)

A∏
a=1

∏
g∈{f,m}

(ρa,g,k(t)Λk(t))
na,g,k(t)

na,g,k(t)!

]

=

( A∏
a=1

∏
g∈{f,m}

ρa,g,k(t)
na,g,k(t)

na,g,k(t)!

)∫ ∞
0

e−ρk(t)xt x
nk(t)
t

x
1/σ2

k−1
t e−xt/σ

2
k

Γ(1/σ2
k)(σ2

k)
1/σ2

k

dxt .

The integrand above is a density of a gamma distribution—modulo the normalisation
constant—with parameters 1/σ2

k + nk(t) and 1/σ2
k + ρk(t). Therefore, the corresponding

integral equals the multiplicative inverse of the normalisation constant, i.e.,(
(1/σ2

k + ρk(t))
1/σ2

k+nk(t)

Γ(1/σ2
k + nk(t))

)−1

, k ∈ {1, . . . ,K} and t ∈ {1, . . . , T} .

Putting all results together gives (12.52).
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12.3. Estimation via maximum likelihood

Since the products in (12.52) can become very small, we recommend to use the log-
likelihood function instead which is given in the following remark.

Remark 12.53 (Log-likelihood function). The log-likelihood function log `(n |θq, θw, σ) is, for

n ∈ NA×2×(K+1)×T
0 , given by

log `(n |θq, θw, σ) =

T∑
t=1

(
A∑
a=1

∑
g∈{f,m}

(
na,g,0(t) log ρa,g,0(t)− ρa,g,0(t)− log(na,g,0(t)!)

)
+

K∑
k=1

(
log

Γ(1/σ2
k + nk(t))

Γ(1/σ2
k)

−
log σ2

k

σ2
k

−
( 1

σ2
k

+ nk(t)
)

log
( 1

σ2
k

+ ρk(t)
)

+
A∑
a=1

∑
g∈{f,m}

(
na,g,k(t) log ρa,g,k(t)− log(na,g,k(t)!)

)))
,

(12.54)

if θq ∈ E and θw ∈ F , as well as σ ∈ [0,∞)K . Otherwise, the log-likelihood function takes
the value −∞. For implementations we recommend to write the first term in the third row
as

log
Γ(1/σ2

k + nk(t))

Γ(1/σ2
k)

= log Γ
( 1

σ2
k

+ nk(t)
)
− log Γ

( 1

σ2
k

)
and to use the log-gamma function, e.g., the lgamma function in ‘R’ see [99], as Γ(1/σ2

k+nk(t))
may lead to overflow errors. Alternatively, the identity Γ(x+ n)/Γ(x) =

∏n
j=1(x+ j − 1)

for all n ∈ N0, as well as x > 0 can be used to obtain

log
Γ(1/σ2

k + nk(t))

Γ(1/σ2
k)

=

nk(t)∑
j=1

log
( 1

σ2
k

+ j − 1
)
.

Definition 12.55 (Maximum likelihood estimates). Recalling (12.52) and (12.54), as well
as given the assumptions of Lemma 12.51, maximum likelihood estimates for parameters
θq, θw and σ, given uniqueness, are defined by(

θ̂MLE
q , θ̂MLE

w , σ̂MLE
)

:= arg sup
θq ,θw,σ

`(n |θq, θw, σ)

= arg sup
θq ,θw,σ

log `(n |θq, θw, σ) .
(12.56)

Remark 12.57 (Numerical issues). In many examples, maximum likelihood estimates are
unique but numerical optimisation is needed to finally derive them. However, numerical
issues can occur as outlined in Remarks 12.40(c). Switching to a Bayesian setting, Markov
chain Monte Carlo can be used to derive estimates with stochastic numerical optimisation,
see Section 12.4.

Remark 12.58 (Setup embedding and asymptotic variance). Given Definition 12.55, assume
that we have a priori estimated death probabilities and weights such that a transformation
as suggested in Remark 12.23 leads to an i.i.d. setting. Moreover, let k ∈ {1, . . . ,K} be fixed.
Using a suitable embedding, we can identify the random vectors (Na,g,k(t))a∈{1,...,A},g∈{f,m}
for all t ∈ {1, . . . , T} with a one-dimensional random variable and can therefore assume that
we are confronted with a classical i.i.d. maximum likelihood setting. Then, the estimator
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Σ̂MLE
k of estimate σ̂MLE

k given by (12.56)—and correspondingly for all other parameters—is
asymptotically unbiased and asymptotically efficient as T →∞. In particular, this estimator
is asymptotically normally distributed with asymptotic variance

lim
T→∞

Var
(
Σ̂MLE
k

)−1
= E

[
∂2 log `(n |θq, θw, σ)

∂σ2
k

]
=

∑
n∈NA×2×(K+1)×T

0

(
∂ log `(n |θq, θw, σ)

∂σk

)2

`(n |θq, θw, σ) .

This term is known as Fisher information and is widely discussed in the statistical literature,
see, for example, Harville [64], as well as Lehmann and Romano [79, Section 12.4.1].

12.4 Estimation via Markov chain Monte Carlo

As briefly outlined in Remarks 12.40(c) and 12.57, deriving maximum a posteriori estimates
and maximum likelihood estimates via deterministic numerical optimisation can be chal-
lenging or sometimes impossible due to high dimensionality. To give a rough estimate of
the number of variables to be optimised, assume that we have eight age categories starting
from age 50 for each gender, data for 15 years and ten non-idiosyncratic risk factors. In this
case we end up with 394 parameters (362 to be optimised as weight parameters u and v for
one risk factor can be chosen arbitrarily, see Remarks 12.12(i)) for the maximum likelihood
approach.

Alternatively, we can use a stochastic optimisation method called Markov chain Monte
Carlo—referred to as MCMC from now on in this section. Introductions to this topic can be
found, for example, in Gilks, Richardson and Spiegelhalter [55], Gamerman and Lopes [51],
as well as Shevchenko [114, Section 2.11]. Its original purpose is to approximate integrals of
the form

E[f(X)] =

∫
Rd
f(x1, . . . , xd)π(x1, . . . , xd) dx1 . . . dxd ,

for a measurable function f : Rd → R, with d ∈ N, and for some Rd-valued random variable
X with density π. Many different MCMC algorithms exist amongst which we find the
random walk Metropolis–Hastings within Gibbs algorithm. This is the algorithm we are going
to work with and which we are going to briefly introduce in this section. The basic idea
is to sample from an Rd-valued time-homogeneous Markov chain (Xi)i∈N with stationary
density50 π, in the case a direct generation of π is complicated or very expensive, typically
if d is large. In particular, if there exists a transition probability density51 p(x, y) for all

50 Given a transition kernel P (x,A) = P(X2 ∈ A |X1 = x) for all x ∈ Rd and all Borel sets A ∈ B(Rd)
of an Rd-valued time-homogeneous Markov chain (Xi)i∈N, density π: Rd → [0,∞) is called stationary if∫
Rd π(x) dx = 1 and ∫

A

π(x) dx =

∫
Rd
π(x)P (x,A) dx , A ∈ B(Rd) .

Note that these conditional probabilities always exist in our case as B(Rd) is a Borel space, see, for example,
Kallenberg [71, Theorem 6.3].

51 Given a transition kernel P : Rd × B(Rd)→ [0, 1], corresponding densities are given by

p(x, y) =
∂P (x, (−∞, y1]× · · · × (−∞, yd])

∂y1 . . . ∂yd
, x, y = (y1, . . . , yd) ∈ Rd ,

if they exist. In our particular case, p(x, y) is explicitly given for all x, y ∈ Rd satisfying x 6= y and with an
atom in x = y.
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12.4. Estimation via Markov chain Monte Carlo

x, y ∈ Rd with x 6= y which satisfies the detailed balance equation

π(x)p(x, y) = π(y)p(y, x) , x, y ∈ Rd , (12.59)

then π is a stable density. To see this, note that, for every A ∈ B(Rd), integrating the left
side of (12.59) gives∫

A

∫
Rd
π(x)p(x, y) dy dx =

∫
A
π(x) dx−

∫
A
π(x)P (x, {x}) dx

and integrating the right side of (12.59) gives∫
A

∫
Rd
π(y)p(y, x) dy dx =

∫
Rd
π(y)

(
P (y,A)− P (y, {y})1y∈A

)
dx dy

=

∫
Rd
π(y)P (y,A) dy −

∫
A
π(y)P (y, {y}) dy .

Then, in the case of the random walk Metropolis–Hastings within Gibbs algorithm, we
split up in the form p(x, y) = q(x, y)α(x, y) with an arbitrary52 transition kernel density
q(x, y) for new proposals which are accepted with acceptance probabilities

α(x, y) =

{
min

{
1, π(y)q(y |x)

π(x)q(x |y)

}
for x 6= y ,

1 for x = y ,

and rejected with probability 1− α(x, y). It is immediate that p(x, y) satisfies (12.59) and,
thus, has stationary density π. Given mild regularity conditions53, sample chains generated
by this method converge to the stationary distribution, see, for example, Tierney [121] and
also Robert and Casella [103, Sections 6–10] for general properties of this algorithm.

In our context, an MCMC approach requires a Bayesian setting which we automatically
have in the maximum a posteriori approach, see Section 12.2. Similarly, we can switch
to a Bayesian setting in the maximum likelihood approach, see Section 12.3, by simply
multiplying the likelihood function with some prior density of parameters, e.g., an improper
constant prior. Thus, in the following, we base our argumentation solely on the maximum a
posteriori approach and leave the straight-forward application to the maximum likelihood
approach to the reader.

If we set π = π(θq, θw, λ, σ) in the maximum a posteriori approach, the application of
the random walk Metropolis–Hastings within Gibbs algorithm is straight-forward. Our
goal is to get many samples (θiq, θ

i
w, λ

i, σi), with i ∈ N, from the posterior distribution of
(12.35) where the mode of these samples then corresponds to an approximation for (12.39).
More stable estimates in terms of mean squared error, see Shevchenko [114, Section 2.10],
are obtained by taking the mean over all samples once MCMC chains sample from the
stationary distribution.

Remark 12.60 (Attention please). Taking the mean over all samples as an estimate, of
course, can lead to troubles if posterior distributions of parameters are, e.g., bimodal, such
that we end up in a region which is highly unlikely. It is therefore suggested to always have

52 At least having the same support as π.
53 If q is aperiodic, as well as irreducible and if α(x, y) > 0 for every possible value x, y ∈ Rd, then the

Markov chain is irreducible and aperiodic with stationary density π. In particular, this holds if q is normally
or truncated normally distributed with the right support.
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Chapter 12. Parameter Estimation of our Annuity Model

a closer look at estimated posterior distributions and, if possible, to use every generated
sample for further derivations. In Section 15.2, samples from MCMC are used to run our
annuity model multiple times in order to extract parameter uncertainty. In that case it is
possible to derive distributions of quantiles.

In the next step, we are giving a short sketch of the random walk Metropolis–Hastings
within Gibbs algorithm as described in Shevchenko [114, Section 2.11.1] based on the
maximum a posteriori approach. For notational convenience we use abbreviations xi =
(xij)j∈{1,...,h} = (θiq, θ

i
w, λ

i, σi), for i ≥ 0. Note that the dimension of each sample equals
h = 8A+ 2(2A(K + 1) +K + 1) +KT +K for the maximum a posteriori approach, see
Section 12.2.

Input: Based on the assumptions of Lemma 12.33, we require the posterior function
π(· |n): Rh → [0,∞) and, for all j ∈ {1, . . . , h}, transition kernel densities
fj(· |xj , τj) given the previous state xj and tuning parameter τj , e.g. from
the normal or truncated normal density with mean xj ∈ R and some
standard deviation τj > 0. This variance can be chosen arbitrarily at the
beginning or be adapted throughout the procedure.

Output: Samples from a Markov chain with stationary density π(· |n).

1 initialise x0 with a value in the support of π(· |n);
2 for i = 1 to M such that sampled long enough from stationary distribution do
3 set xi = xi−1;
4 for j = 1 to h do
5 generate sample proposal x̂ij from transition kernel density fj(· |xij , τj);
6 derive acceptance probability

α(i, j) = min

{
1,
π(x̂ |n)fj(x

i
j | x̂ij , τj)

π(xi |n)fj(x̂ij |xij , τj)

}
, (12.61)

where x̂ := (xi1, . . . , x
i
j−1, x̂

i
j , x

i−1
j+1, . . . );

7 simulate u from a uniform distribution on [0, 1];
8 if u < αi,j, then
9 change position to proposal xij = x̂ij ;

10 else

11 remain in previous position, i.e., xij = xi−1
j ;

12 end

13 end

14 end

Algorithm 12.1: Single step random walk Metropolis–Hastings within Gibbs
algorithm

Algorithm 12.1 is easy to implement and very powerful when many other methods
break down due to high dimensionality. Acceptance probabilities do not depend on the
normalisation constant of the posterior distribution. Thus, posterior densities just have
to be specified up to a multiplicative constant which means that we can drop normalising
factors. As already mentioned, depending on the chosen initial values and the chosen
tuning parameter τj the method requires a certain burn-in period until the system becomes

126



12.4. Estimation via Markov chain Monte Carlo

stationary. This can be checked best through plotting chains. A typical class of transition
kernel densities are normal or truncated normal distributions. The latter is bounded and,
therefore, ensures the existence of a proper density of the posterior distribution. Again,
note that MCMC in general returns an approximation for the joint posterior distribution of
all parameters. It thus allows for error estimates, as well as probabilistic statements about
estimators. But note that ultimately we are troubled with the curse of dimensionality as we
will never be able to get an accurate approximation of the joint posterior distribution in a
setting with several hundred parameters.

Remarks 12.62. (Useful hints for Algorithm 12.1).
(a) Estimates derived by matching of moments as described in Section 12.1 can be used as

initial values x0 to ensure a shorter burn-in period.

(b) Number of iterations M ∈ N has to be chosen such that we sample long enough from
the stationary distribution in order to make the numerical error, due to finite number
of samples, acceptably small. A measure for numerical error due to finite number of
samples is the concept of standard errors as, for example, defined in the textbook of
Shevchenko [114, Section 2.12.2].

(c) Tuning parameters τj with j ∈ {1, . . . , h} can be chosen fixed or be adapted throughout
the procedure. Badly chosen tuning parameters can lead to poor behaviour of MCMC
chains, i.e., slow convergence towards the stable distribution. Typically, one tries to
get average acceptance probabilities close to 0.234 which is asymptotically optimal for
multivariate Gaussian proposals as shown in Roberts, Gelman and Gilks [104]. If the
average acceptance probability of a parameter is too low, then proposals are too extreme
and, therefore, not accepted very often. Then, a reduction of standard deviation τj in
the proposal distribution may help. The reverse statement holds for high acceptance
probabilities.

(d) Choosing an appropriate prior distribution, the stated algorithm works analogously
using the likelihood function as given in (12.52).

(e) In many cases it is preferable to use the logarithm of posterior densities to avoid extreme
values in high dimensions. Therefore, taking the logarithm of (12.61) gives

logα(i, j) = min
{

0, log π(x̂ |n) + log f(xij | x̂ij , τj)
− log π(xi |n)− log f(x̂ij |xij , τj)

}
.

We then accept if log u < logα(i, j).

(f) Instead of generating a proposal for each parameter separately, it is legitimate and often
better to sample proposals for several parameters, called blocks, in one step. Blocks can
help to tackle issues with high correlation amongst parameters. For example, proposals
for parameters (uia,g,k)k∈{0,...,K} may be sampled from a (K + 1)-dimensional normal
distribution. Such an approach leads to a faster algorithm but tuning gets more involved.

(g) As our implementations for high-dimensional MCMC settings face long execution times,
it should be noted that there exist several possibilities of parallelisation and enhancements
of the algorithm, ranging from easy to very sophisticated, see, e.g., Wilkinson [128]
and Rosenthal [107, Section 4]. The easiest way is to run several independent MCMC
chains with different starting points on different CPUs in a parallel way, each with a
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Chapter 12. Parameter Estimation of our Annuity Model

reduced number of steps, e.g., 20 times 1 000 steps instead of 20 000 consecutive steps.
It is recommended to use over-dispersed distributions for the different starting values.
Special care has to be taken for random number generation in parallel codes as identical
seeds can produce inconsistent results.

12.5 Illustrative example of estimation procedures

Consider the annuity model of Definition 11.11 with one age category a0 having m = 100 000
policyholders, one gender g0 and one non-idiosyncratic risk factor Λ1, i.e., K = 1, over a
period of T = 25 years. Furthermore, recall Assumption 12.12 and set ζa0,g0 = φ0 = φ1 = 0,
as well as ψ0 = ψ1 =: ψ, for sake of simplicity. Further parameter values are provided in
Table 12.1. Note that with such a setting, values for ua0,g0,0 and va0,g0,0 can be assumed to
be fixed and need not be estimated, see Remarks 12.15(i).

Table 12.1: True parameter values for modelling setup.

αa0,g0 βa0,g0 ηa0,g0 ua0,g0,0 ua0,g0,1 va0,g0,0 va0,g0,1 ψ σ2
1

true −4.00 −0.01 0.01 0.00 1.00 0.02 −0.02 0.02 0.10

We proceed as follows: First, we start with a simulation of death counts. Therefore, we
simulate realisations (λ1(t))t∈{1,...,50} of risk factors (Λ1(t))t∈{1,...,25}. These realisations are
then used to simulate the Poisson distributed number of deaths n, see Assumption 12.5, with
parameters qa0,g0wa0,g0,0 for idiosyncratic deaths and qa0,g0wa0,g0,1λk(t) for non-idiosyncratic
deaths for all t ∈ {1, . . . , 50}.

As an illustration, we compare different estimation procedures given a simulation of
death counts. Estimates are derived via matching of moments following the steps suggested
in Remark 12.23 as well as Markov chain Monte Carlo (MCMC) methods based on (12.39)
and (12.56) as described in Section 12.4. Starting values for maximum a posteriori and
maximum likelihood estimates are derived in ‘R’ using the nlminb optimisation routine,
see [99], but are not reliable as deterministic methods can get stuck in local maxima. For
MCMC approaches we use 20 000 simulations with a burn-in period of 5 000 and proposals
derived from truncated normal distributions. Standard deviations of the MCMC chains
are abbreviated by ‘standard dev.’. Adaptive tuning of MCMC is used such that mean
acceptance probabilities are all close to the optimal54 value of 0.234.

Table 12.2 summarises estimation results for some model parameters derived by all the
different methods. Theses results illustrate that all estimation procedures give reasonable
results for this simulation where, in particular, the matching of moments approach shows
surprisingly accurate estimates whilst being easy and fast to calculate. True values of
parameters are always between five and 95 percent quantiles of the chains generated by
MCMC. Mode estimates of MCMC, i.e., parameter samples which give the highest value of
the posteriori or likelihood function, are the analogue to corresponding point estimates of
maximum a posteriori (MAP) and maximum likelihood (MLE) whereas mean estimates are
more stable and, therefore, preferred. In particular, whilst all other procedures underestimate
risk factor variance σ2

1, mean estimates give better results as they account for skewness
of posterior distributions. Trend reduction parameters ηa0,g0 and ψ are particularly hard

54 Asymptotically under Gaussian proposals, see Roberts, Gelman and Gilks [104].
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Table 12.2: True values, estimates for matching of moment (MM), as well as for MCMC
approaches with maximum a posteriori (MAP MCMC) and maximum likelihood (MLE
MCMC). MCMC methods use 20 000 simulations and a burn-in period of 5 000. Standard
errors are given in percent and defined as in Shevchenko [114, Section 2.12.2] with block
size 40.

αa0,g0 βa0,g0 ηa0,g0 ua0,g0,1 va0,g0,1 ψ σ2
1

deterministic

true −4.000 −0.010 0.010 1.000 −0.020 0.020 0.100

matching moments −3.988 −0.012 0.000 0.956 −0.016 0.010 0.070

MAP MCMC

mode −3.988 −0.012 0.000 0.975 −0.016 0.010 0.070

mean −3.981 −0.013 0.032 0.987 −0.022 0.027 0.099

5% quantile −4.048 −0.019 0.003 0.775 −0.044 0.002 0.057

95% quantile −3.920 −0.007 0.078 1.204 −0.006 0.061 0.164

standard dev. 0.038 0.004 0.023 0.129 0.012 0.018 0.035

standard err. (in %) 0.188 0.018 0.106 0.655 0.060 0.086 0.084

MLE MCMC

mode −3.994 −0.011 0.001 1.034 −0.025 0.034 0.071

mean −3.990 −0.013 0.028 1.005 −0.022 0.027 0.096

5% quantile −4.050 −0.018 0.003 0.812 −0.037 0.002 0.056

95% quantile −3.930 −0.008 0.069 1.182 −0.007 0.064 0.153

standard dev. 0.037 0.003 0.021 0.113 0.009 0.019 0.031

standard err. (in %) 0.176 0.015 0.080 0.550 0.043 0.081 0.065

to estimate and confidence intervals are wide as surfaces of the posterior function and the
likelihood function are flat along these parameters. It may therefore be useful to define trend
reduction parameters a priori in order to avoid unstable behaviour of estimation procedures.
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Figure 12.1: True and estimated risk factor realisations λ1(1), . . . , λ1(25) using the maximum
a posteriori approach with deterministic optimisation (MAP), with its approximation in
(12.48) (MAP appr.) and with the MCMC algorithm (MCMC mode, MCMC mean) , as
well as corresponding error bars at five and 95 percent quantiles.
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Chapter 12. Parameter Estimation of our Annuity Model

Figure 12.1 shows risk factor realisations for risk factors Λ1(1), . . . ,Λ1(25), as well as
their estimated values using the approximation given by (12.48) and using the MCMC
method within the maximum a posteriori setting. Estimate for risk factor variance σ2

1

obtained by (12.49) is given by 0.070. Again, note that estimates are reasonably accurate
and, in particular, that Approximations (12.48) and (12.49) provide good results.
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Figure 12.2: MCMC chains and density histograms for σ2
1 (left) and λ1(1) (right).

Figure 12.2 then shows MCMC chains and corresponding density histograms for pa-
rameters σ2

1 and βa0,g0 within the maximum likelihood and the maximum a posteriori
setting, respectively. First of all, we can observe stationary behaviour of both MCMC
chains. Remarkably, as illustrated in the left density histogram for parameter σ2

1, posterior
distributions of some parameters, i.e., the stationary distributions of the corresponding
MCMC chains, are significantly right skewed. This observation outlines the fact that MCMC
mode estimates may differ from MCMC mean estimates. Right skewed posterior distributions
of risk factor variance σ2

1 is reasonable as MCMC captures the risk of underestimating
variances due to limited observations with possibly just few tail events.

Finally, Figure 12.3 shows estimates for death probabilities qa0,g0(1), . . . , qa0,g0(25) and
weights wa0,g0,1(1), . . . , wa0,g0,1(25) of risk factor Λ1 using matching of moments, as well as
MCMC based on the maximum likelihood approach. The blue dash-dotted lines, denoted by
MCMC mean, give estimates which are obtained by inserting means of estimated parameters
into (12.13) and (12.14). The red dash dotted line gives five and 95 percent quantiles for
death probabilities and weights from joint posterior distributions of parameters obtained by
MCMC. True death probabilities and true weights always lie within these confidence intervals.
Death rates at time t ∈ {1, . . . , 25} are simply given by (na0,g0,0(t) +na0,g0,1(t))/(m · qa1,g(t))
for death probabilities and by na0,g0,i(t)/(na0,g0,0(t) + na0,g0,1(t)) for weights with i ∈ {0, 1}.
Remark 12.63 (Conclusion). This example suggests that matching of moments estimates, as
well as estimates for risk factor realisations and variance given by (12.48) and (12.49) show
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accurate and stable results while being straight-forward and fast to calculate. In general,
maximum a posteriori estimates and maximum likelihood estimates usually show better
results but are computationally much more expensive. Numerical optimisation routines
such as gradient methods easily break down due to high number of parameters. MCMC
methods provide very good results and give posterior distributions of estimates but, if not
parallelised, execution times are higher.

Remark 12.64 (Blocks). Using proposal blocks for parameters (ua0,g0,0, ua0,g0,1), as well as
(va0,g0,0, va0,g0,1) is also possible in this example. It makes tuning more involved whilst the
reduction in proposals leads to faster execution times and reduced correlation amongst
MCMC chains. This observation is a general pattern in our annuity model, i.e., sampling
proposals from multidimensional distributions reduces correlations amongst MCMC chains
but makes tuning more difficult.
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Figure 12.3: Death probability estimates qa0,g0(1), . . . , qa0,g0(25) and weight estimates
wa0,g0,1(1), . . . , wa0,g0,1(25) using matching of moments (MM) and mean MCMC estimates
(MCMC mean) with five and 95 percent quantiles. Points show death rates.
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Chapter 13

Types of Risk

Regulators often require security margins in life tables when modelling annuity
or certain life insurance products and portfolios to account for different sources
of risk, including trends, volatility risk, model risk and parameter risk. Based on
the requirements for Austria and Germany, see for example Kainhofer, Predota
and Schmock [69], as well as Pasdika and Wolff [91], respectively, this chapter
provides a short discussion on the main risks associated with annuity and life
insurance portfolios as well as how they are incorporated in our annuity model
of Definition 11.11. Note that the main risk associated with annuity portfolios is
longevity which can be split into several sources.

The following sections do not cover the whole entity of different sources of risk but should
encourage the reader to think critically about our modelling assumptions and how they may
account for an advanced risk management. Some of the risks mentioned below are directly
captured within our annuity model and others require additional portfolio information. If
additional portfolio data are not available, certain security loadings can be added either
to previously estimated death probabilities or as additional factor in the trend component
βa,g(t) of Assumption 12.12, see Remark 13.1.

13.1 Trends

In our model, mortality trends are incorporated via Assumption 12.12 which is motivated
by the Lee–Carter model. It is straight forward to arbitrarily change parameter families
such that it fits the data as in the case when trends change fundamentally or when trends
tend to increase. Such a phenomenon was observed in Austria around 1970, see Kainhofer,
Predota and Schmock [69, Sections 4.5.3 and 4.6.2]. If other families for weights are used,
one always has to check that they sum up to one over all death causes. Note that for certain
alternative parameter families, mean estimates obtained from Markov chain Monte Carlo
do not necessarily sum up to one anymore. Changing model parameter families may also
be necessary when using long-term projections since long-term trends are fundamentally
different from short-term trends. In this thesis, trend reduction techniques are incorporated
via a time shift Tζ,η(t) to avoid vanishing death probabilities and weights in the far future
based on the approach taken in Kainhofer, Predota and Schmock [69, Sections 4.6.2], see
Remark 12.16. Since over the past few years mortality trends dramatically changed for
higher ages, for example, in Austria, again see [69, Sections 4.7.2], it may be useful to
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assume different trend families for different age categories in our model. Further estimation
and testing procedures for trends in composite Poisson models in the context of convertible
bonds can be found in Schmock [110].

Trends for weights are particularly interesting insofar as the model becomes sensitive to
the change in the vulnerability of policyholders to different death causes over time. Cross
dependencies over different death causes and different ages can occur. Such an effect can
arise as a reduction in death rates of a particular cause can lead to increased death rates in
another cause, several periods later, as people have to die at some point. Using Australian
data, see Chapter 15, we see a general reduction in deaths due to circulatory diseases
whereas, simultaneously, deaths due to mental and behavioural disorders get more frequent.
Such observations may be crucial to forecast requirements for geriatric care, as well as
medical supplies and resources. Note that our exponential family of weights, see (12.14),
gives long-term forecasts which tend to peak in one risk factor. Nevertheless, estimation
results are very accurate and mid-term forecasts show nice results, see Section 16.2.

Another major risk, which is usually not addressed in other annuity models, is the risk of
unexpected deviations from a trend. In our model, this issue is captured with the variability
introduced by common stochastic risk factors which effect all policyholders due to their
weight simultaneously.

13.2 Statistical volatility risk

Assuming that the model choice is right and that estimated values are correct, life tables
still just give mean values of death probabilities over a whole population. Therefore, in the
case of German data it is suggested to add a gender-specific security margin of 6.26 percent
for males and 7.22 percent for females to account for the risk of random fluctuations in
deaths, approximately at a 95 percent quantile, see Pasdika and J. Wolff [91, Section 2.4.1].
More recently, see the German Actuarial Association (DAV) [28, Section 4.1], this security
margin is assumed to be not gender specific due to legal reasons and it is set to 7.4 percent.
In particular for small portfolios, this risk can be crucial since the law of large numbers may
not apply. In our annuity model this risk is captured automatically. In particular, extreme
statistical fluctuations can be found in the tails of the total portfolio loss distribution.

A direct comparison of the suggested security margin of 7.4 percent on death probabilities
to an outcome of our annuity model, like certain quantiles in the total loss distribution, is
not really meaningful. As a reference, we can use the same approach as given in Chapter 12
to estimate quantiles for death rates via setting Yi = 1 for all i ∈Ma,g(T ). These quantiles
then correspond to statistical fluctuations around death probabilities. In particular, in
Example 16.8 we roughly observe a deviation from death probability of 8.4 percent for the
five percent quantile and of 8.7 percent for the 95 percent quantile of females aged 55 to 60
years in 2002, i.e., these values are in line with a security margin of 7.4 percent.

13.3 Model, selection and parameter risk

Modelling is usually a projection of a sophisticated real world problem on a relatively simple
subspace which cannot cover all facets and observations in the data. Therefore, when
applying our model to a portfolio of policyholders, we usually find structural differences
to the data which is used for estimation. There may also be a difference in mortality
rates between individual companies since different types of insurance products attract
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different types of policyholders with a different individual risk profile. In addition, changes
in the structure of future business and of mortality trends cannot be predicted and are
therefore subject to uncertainty. Also, the actual data used for estimation may be subject
to statistical fluctuations. In Germany, for these risks a minimal security margin of ten
percent is suggested, see Pasdika and Wolff [91, Section 2.4.2]. These risks are not directly
addressed in our model since they are data-related problems by nature and, thus, they can
just be resolved by using portfolio data, see Remark 13.1.

Another major risk are selection effects. Observed mortality rates in insurance portfolios
often show a completely different structure due to self-selection of policyholders. In particular,
for ages around 60, this effect is very strong. In Germany, a security margin for death
probabilities of 15 percent is suggested to cover selection effects, see DAV [28, Section 4.2].
In our particular case, to account for this source of risk we can subtract a risk margin
of death probabilities before calculating the loss distribution via extended CreditRisk+.
Preferably, this risk margin should be based on portfolio data, see Remark 13.1.

The risk of statistical fluctuations in the data pool, i.e., parameter risk, which is used
for estimation can be captured by our model in two ways. First, using Markov chain
Monte Carlo (MCMC) for estimation of model parameters as described in Section 12.4
returns samples of the joint posterior distributions of the estimators. Thus, to account for
parameter risk we can derive loss distributions in our annuity model of Definition 11.11
using different parameter samples taken from the MCMC chain. As our proposed extended
CreditRisk+ algorithm is numerically very efficient, we can easily run it for several thousand
realisations of the MCMC chain. This procedure then yields approximated distributions
of quantiles and expected shortfall such that we can a posteriori choose appropriate risk
margins to account for parameter risk. Secondly, we may choose an elegant approach where
we assume the parameters qa,g(t)wa,g,k(t) for a ∈ {1, . . . , A}, g ∈ {f,m}, k ∈ {1, . . . ,K}
and t ∈ {1, . . . , T} to be random rather than fixed. Therefore, assume that risk factors
Λk(t) are gamma distributed with shape parameter αk, as well as scale parameter βk

55 and
assume that qa,g(t)wa,g,k(t) is independent of all other random variables and has a beta
distribution with parameters (γa,g,k(t), αk − γa,g,k(t))56 with 0 < γa,g,k(t) < αk. In this case,
qa,g(t)wa,g,k(t)Λk(t) is again gamma distributed, see Stuart [117], with shape parameter
γa,g,k(t) and scale parameter βk. Assuming a suitable family for (γa,g,k(t))t∈{1,...,T} such that
trends in death probabilities and weights are considered as in Assumption 12.12, we can
derive estimates for this modified approach with slightly adapted likelihood and posterior
functions, see Sections 12.2 and 12.3. Alternatively, we can estimate parameters γa,g,k(t)
with a ∈ {1, . . . , A}, g ∈ {f,m}, k ∈ {1, . . . ,K} and t ∈ {1, . . . , T} via matching of moments
using previously derived estimates for death probabilities and weights from the original

55 Its density is then given by

fΛk (x) =


β
αk
k

Γ(αk)
e−βkxxαk−1 for x > 0 ,

0 for x ≤ 0 ,

where Γ denotes the gamma function. Note that this distribution coincides with Definition 11.11(b) with
ek = αk/βk and σ2

k = αk/β
2
k, i.e., when expectations are set to one.

56 Its density is given by

fBαk,γa,g,k(t)
(x) :=

{
1

B(αk,γa,g,k(t))
xαk (1− x)γa,g,k(t) for x ∈ [0, 1] ,

0 otherwise ,

where B(y, z) :=
∫ 1

0
ty−1 (1− t)z−1 dt for all y, z > 0 denotes the beta function.
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model. In both cases, loss distributions can then be derived with a similar algorithm as
described in Lemma 11.19.

Alternatively, in Kainhofer, Predota and Schmock [69, Sections 4.7.1] it is suggested
that all these risks are addressed by adding a constant security margin on the trend. This
approach has the great conceptional advantage that the security margin is increasing over
time and does not diminish as in the case of direct security margins on death probabilities.

Remark 13.1 (Portfolio mortality data and individual information). If suitable company or
portfolio data are available, risk margins for selection effects can be estimated as follows.
First, calibrate the model using whole population data as previously illustrated and assume
that variances of risk factors and weights for all age categories are fixed. Then, estimate
death probabilities for company or portfolio data using any estimation procedure outlined
in Chapter 12 where we just need to optimise over parameters α, β, ζ, η. This approach
translates into the assumption that the subportfolio has the same characteristics as the
whole population portfolio in terms of risk factor changes such as unexpected improvements
of treatments and in terms of risk factor weights. Henceforth, this approach leads to
risk margins on death probabilities as suggested by the DAV. Alternatively to the last
step, recalling the more general model of Section 19.1.1, it is also possible to estimate risk
factor means e given portfolio data and keeping all other parameters fixed. If necessary,
further parameters such as risk factor variances can also be re-estimated. These procedures
can be adapted freely such that individual information—such as smoker/non-smoker or
address—can be considered. Various effects can occur when using individual information.
Firstly, risk factor weights may shift so that it is necessary to re-estimate weights based
on individual information. Secondly, it is possible that information such as address implies
social standards which may indicate individual reaction on improvements in medication due
high costs and, therefore, results in changed risk factor variances.
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Scenario Analysis

Scenario analysis is widely used in the financial industry to test reactions of
portfolios—credit contracts, trading books, annuities—on stress events such as
interest rate spikes or stock market drawdowns. In this short chapter we show
that our annuity model is capable of testing scenarios of unexpectedly increased
or decreased number of deaths due to a certain cause and the impact of it on
a portfolio. Such a scenario may be the introduction of a new, very effective
treatment or the unexpected outburst of an epidemic.

Definition 14.1 (Scenario). Given the annuity model of Definition 11.11 and data for
periods 1, . . . , T , a scenario is defined as a projected and potentially stressed vector of
number of deaths (Na,g,k(T + 1))(a,g,k)∈I = (nscen

a,g,k(T + 1))(a,g,k)∈I at period T + 1 for a
subset I = IA × Ig × IK ⊂ {1, . . . , A} × {f,m} × {1, . . . ,K} of age groups IA, genders Ig
and death causes IK .

Once we are given a scenario, we want to estimate the impact of it on the portfolio for
the next period T + 1. We proceed in three steps:

First, we estimate all model parameters with any of the procedures given in Chapter 12
using data for 1, . . . , T without considering the scenario. This step need not be repeated
when other scenarios within the same setting are tested.

Then, in the second step, we estimate realisations of risk factors for the period T + 1
given our scenario. Therefore, we use a slightly changed version of the maximum a posteriori
estimation procedure defined in Section 12.2. More precisely, we use a modelling setup with
fixed, previously estimated risk factor variances σ2

k and parameter forecasts qa,g(T + 1), as
well as wa,g,k(T +1) for all a ∈ {1, . . . , A}, g ∈ {f,m} and k ∈ {0, . . . ,K}, extrapolated from
the estimation in the first step. The number of people ma,g(T + 1) for all a ∈ {1, . . . , A} and
g ∈ {f,m} can also be extrapolated from the data or be derived from population forecasts.
Optimisation of (12.35) with respect to (λk(T + 1))k∈IK gives estimates for risk factor

realisations at T + 1, denoted by (λ̂MAP
k (T + 1))k∈IK . Alternatively and more easily, we

may use Equation (12.42) to derive estimates for (λ̂MAP
k (T + 1))k∈IK . Note that due to the

independence of risk factors over time and due to independence amongst them, we just have
to consider terms at time T + 1 and terms within our scenario, i.e., within index set IK .

In the third step, run the annuity model with extended CreditRisk+ for time T + 1
with estimated parameter forecasts and the modification that risk factors (Λk(T + 1))k∈IK
are not random but replaced by their estimates (λ̂MAP

k (T + 1))k∈IK , i.e., we run the model
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given risk factor realisations of our scenario. As outlined in Section 15.2 for a very simple
example, all common stochastic risk factors which are replaced by deterministic values
(λ̂MAP
k (T + 1))k∈IK can be joined with idiosyncratic risk such that new weights wscen

a,g,k(T + 1)
become, for all a ∈ IA and g ∈ Ig,

wscen
a,g,0(T + 1) = wa,g,0(T + 1) +

∑
k∈IK

wa,g,k(T + 1)λ̂MAP
k (T + 1) ,

as well as

wscen
a,g,k(T + 1) =

{
0 for k ∈ Ik ,

wa,g,k(T + 1) for k /∈ Ik .

Then, weights over all death causes may not sum up to one anymore but Lemma 11.19 still
can be applied. Thus, the loss distribution of the annuity portfolio and risk measures will
change according to the stated scenario.

Remark 14.2 (Alternative representation of scenarios). Given a subset of stressed groups
I = IA × Ig × IK ⊂ {1, . . . , A} × {f,m} × {1, . . . ,K}, a scenario may also be given in the
form that certain death rates suddenly decrease by x ∈ (−∞, 100]|I| percent within the
following period. In that case, recalling Definition 14.1, simply set

nscen
a,g,k(T + 1) =

⌊
ma,g(T + 1)qa,g(T + 1)

ma,g(T )qa,g(T )

(
1− x

100

)
na,g,k(T )

⌋
, (a, g, k) ∈ I ,

where the first term above accounts for trends in mortality and population growth. Then,
using this data, perform the three steps described before to derive impacts of this scenario.

An application of this approach towards scenario analysis based on Australian data is
given in Section 15.2. Since the extended CreditRisk+ algorithm is very fast, many different
scenarios can easily be tested as indicated in Example 2.5.
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A Real World Example

As a real-world application for the previously described estimation procedures,
in this chapter we take a look at Australian data for the period 1987 to 2011.
We estimate parameters of our annuity model with ten non-idiosyncratic risk
factors using the matching of moments approach, see Section 12.1, as well as
the maximum likelihood approach with Markov chain Monte Carlo (MCMC), see
Section 12.4. Then, based on the estimated model, we build a simple annuity
portfolio and derive several interesting results including a scenario of reduced
mortality due to neoplasms.

15.1 Estimation

As an applied example for estimation in our annuity model from Definition 11.11, as well
as for some further applications, we take annual death data from Australia for the period
1987 to 2011. We fit our annuity model using the matching of moments approach as
given in Section 12.1, as well as the maximum likelihood approach with Markov chain
Monte Carlo (MCMC), see Section 12.4. Data source for historical Australian population,
categorised by age and gender, is taken from the Australian Bureau of Statistics and data
for the number of deaths categorised by death cause and divided into eight age categories57

for each gender is taken from the AIHW. The provided death data are divided into 19
different death causes—based on the ICD-9 or ICD-10 classification—where we identify the
following ten of them with common non-idiosyncratic risk factors: ‘certain infectious and
parasitic diseases’, ‘neoplasms’, ‘endocrine, nutritional and metabolic diseases’, ‘mental and
behavioural disorders’, ‘diseases of the nervous system’, ‘circulatory diseases’, ‘diseases of
the respiratory system’, ‘diseases of the digestive system’, ‘external causes of injury and
poisoning’, ‘diseases of the genitourinary system’. We merge the remaining eight death
causes to idiosyncratic risk as their individual contributions to overall death counts are small
for all categories. Data handling needs some care as there was a change in classification of
death data in 1997 as explained at the website of the Australian Bureau of Statistics or as
in Magnus and Sadkowsky [82, Appendix A]. Australia introduced the tenth revision of the
International Classification of Diseases (ICD-10, following ICD-9) in 1997, with a transition

57 50–54 years, 55–59 years, 60–64 years, 65–69 years, 70–74 years, 75–79 years, 80–84 years and 85+
years, denoted by a1, . . . , a8, respectively. Younger people are not taken into account in this example as their
contribution in annuity portfolios is minor since retirement age is usually above 50. If more age groups are
considered, the number of parameters increases and special care has to be taken when tuning MCMC.
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Chapter 15. A Real World Example

period from 1997 to 1998. Within this period, comparability factors58 were produced as
given in Table 15.1. Thus, for the period 1987 to 1996, death counts have to be multiplied
by corresponding comparability factors and rounded to the nearest integer in order to avoid
data inconsistencies.

Table 15.1: Comparability factors for ICD-9 to ICD-10.

death cause factor

infectious 1.25

neoplasms 1.00

endocrine 1.01

mental 0.78

nervous 1.20

circulatory 1.00

respiratory 0.91

digestive 1.05

genitourinary 1.14

external 1.06

not elsewhere (idio.) 1.00

Trends are considered via Assumption 12.12 where trend reduction parameters are fixed
a priori with values ζai,g = φk = 0 and ηai,g = ψk = 1

150 for all i ∈ {1, . . . , 8}, g ∈ {f,m}
and k ∈ {0, . . . ,K} with K = 10. Thus, within the maximum likelihood framework,
we end up with 394 parameters59 in our annuity model. For the matching of moments
approach we follow the approach suggested in Remarks 12.22 and 12.23 to account for
trends. Risk factor variances are then estimated via Approximations (12.48) and (12.49)
of the maximum a posteriori approach as they give more reliable results than matching
of moments. As numerical optimisation for maximum likelihood breaks down due to high
dimensionality, we use MCMC in this maximum likelihood setting instead. Assuming
constant prior distributions, we use Algorithm 12.1 with single-step proposals taken from
truncated normal distributions60 with suitable bounds. Using joint proposals turns out to
be too complicated to tune. Based on 40 000 MCMC steps with burn-in period of 10 000 we
are able to derive estimates of all parameters where starting values are taken from matching
of moments, as well as (12.48) and (12.49). Tuning parameters are frequently re-evaluated
in the burn-in period. As the execution time of our algorithm is roughly seven hours on a
standard computer in ‘R’, several parallel MCMC chains can be run, each with different
starting values. With such an approach we can reduce execution times significantly.

Proper tuning of MCMC with real world data is very important as chains may not show
a nice stationary behaviour in the case of poor tuning. As an illustration, Figure 15.1 shows
MCMC chains of the variance of risk factor61 for external causes of injury and poisoning

58 The comparability factor for the idiosyncratic part is set to one here as it cannot be calculated from
other given comparability factors.

59 362 to be optimised as idiosyncratic weight parameters are fixed, see Remarks 12.12(i).
60 Using truncated normal distributions for proposals of all parameters translates into the assumption

of bounded prior distributions which guarantees a proper posterior distribution. Of course, parameters
for variances and death probabilities are unbounded a priori but, with reasonably large bounds, samples
of the MCMC chains never come close to these boundaries. Moreover, using normal proposals for these
parameters instead does not influence the results significantly. Thus, it is legitimate to use truncated normal
distributions for proposals.

61 The legend for death causes and age categories is given in Table 19.5.
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Figure 15.1: MCMC chains and corresponding density histograms (excluding first 10 000
samples) for the variance of risk factor for deaths due to external causes of injury and
poisoning σ2

9 (left), as well as for parameter α2,f (right), i.e., parameter for logarithmic
death probability intercept of females aged 55 to 59 years.

σ2
9, as well as of the parameter α2,f for logarithmic death probability intercept of females

aged 55 to 59 years. As already observed in the density histograms of Figure 12.2, we
observe in Figure 15.1 that stationary distributions of MCMC chains for risk factor variances
are typically right skewed. This indicates risk which is associated with underestimating
variances due to limited observations of tail events.

Table 15.2 shows estimates for risk factor standard deviations using matching of moments,
Approximation (12.49), as well as mean estimates of single-step MCMC with corresponding
five and 95 percent quantiles, as well as standard errors. First, Table 15.2, as well as the
full list in Section 19.3 illustrate that Approximations (12.48) and (12.49) and matching
of moments estimates for parameters α, β, u and v are close to mean MCMC estimates.
Standard errors, as defined in Shevchenko [114, Section 2.12.2] with block size 50, for
corresponding risk factor variances are given in Section 19.3 and are consistently smaller
than three percent in our case. Risk factor standard deviations are small but tend to
be higher for death causes with just few deaths as statistical fluctuations in the data are
higher compared to more frequent death causes. Small risk factor standard deviations
support the simplifying assumption of independent risk factors as random effects overlay
joint dependencies amongst death causes. See Chapter 17 for further, more rigorous model
validation. Solely estimates for the risk factor standard deviation of mental and behavioural
disorders give higher values which gets more obvious when looking at realisations of risk
factors in Figure 15.2.
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Table 15.2: Estimates for risk factor standard deviations σ = (σ1, . . . , σ10) using matching
of moments (MM), approximation as given in (12.49) (appr.) and MCMC mean estimates
(mean), as well as corresponding standard deviations (stdev.) and five and 95 percent
quantiles (5% and 95%).

MM appr. mean 5% 95% stdev.

infectious 0.1932 0.0787 0.0812 0.0583 0.1063 0.0147

neoplasms 0.0198 0.0148 0.0173 0.0100 0.0200 0.0029

endocrine 0.0743 0.0340 0.0346 0.0245 0.0469 0.0068

mental 0.1502 0.1357 0.1591 0.1200 0.2052 0.0265

nervous 0.0756 0.0505 0.0557 0.0412 0.0728 0.0098

circulatory 0.0377 0.0243 0.0300 0.0224 0.0387 0.0053

respiratory 0.0712 0.0612 0.0670 0.0510 0.0866 0.0110

digestive 0.0921 0.0645 0.0728 0.0548 0.0943 0.0123

external 0.1044 0.0912 0.1049 0.0787 0.1353 0.0176

genitourinary 0.0535 0.0284 0.0245 0.0141 0.0346 0.0066

As we use the MCMC approach based on maximum likelihood to reduce number of
parameters, we do not directly derive estimates for risk factor realisations λ. Instead, we can
use Equation (12.42) to derive approximations for risk factor realisation estimates where all
required parameters are taken from the MCMC estimation. Results are shown in Figure 15.2.
In the top figure we observe a massive jump in the risk factor for mental and behavioural
disorders between 2005 to 2006 which is mainly driven by an unexpectedly high increase in
deaths due to dementia, also see the report on dementia for Australia of the AIHW.
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Figure 15.2: Estimated risk factor realisations for all death causes using (12.42) based on
estimates taken from MCMC.
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In the lower part of Figure 15.2, for example, we observe increased risk factor realisations
of diseases of the respiratory system over the years 2002 to 2004. This is mainly driven by
many deaths due to influenza and pneumonia during that period. Thus, besides its main
purpose to derive loss distributions of annuity portfolios, our model provides a useful tool
to detect phenomena in death data.

Table 15.3: Estimated weights for all death causes in years 2011, 2021 and 2031 using
(12.14) with MCMC mean estimates for ages 60 to 64 years (left) and 80 to 84 years (right)
for both genders. Five and 95 percent quantiles for the year 2031 are given in brackets.

60 to 64 years 80 to 84 years

2011 2021 2031 (quant.) 2011 2021 2031 (quant.)

male

neoplasms 0.499 0.531 0.547
(

0.561
0.531

)
0.324 0.359 0.378

(
0.392
0.364

)
circulatory 0.228 0.165 0.116

(
0.123
0.109

)
0.325 0.242 0.173

(
0.181
0.164

)
external 0.056 0.060 0.062

(
0.073
0.053

)
0.026 0.028 0.028

(
0.033
0.024

)
respiratory 0.051 0.043 0.036

(
0.040
0.032

)
0.106 0.101 0.092

(
0.101
0.083

)
endocrine 0.044 0.053 0.062

(
0.070
0.055

)
0.047 0.062 0.077

(
0.084
0.070

)
digestive 0.041 0.039 0.036

(
0.040
0.031

)
0.027 0.024 0.020

(
0.023
0.018

)
nervous 0.029 0.040 0.052

(
0.061
0.045

)
0.045 0.054 0.061

(
0.068
0.055

)
not elsewhere (idio.) 0.018 0.023 0.028

(
0.034
0.023

)
0.015 0.017 0.018

(
0.020
0.016

)
infectious 0.014 0.019 0.025

(
0.033
0.020

)
0.015 0.019 0.022

(
0.027
0.019

)
mental 0.013 0.019 0.027

(
0.036
0.019

)
0.041 0.068 0.105

(
0.130
0.078

)
genitourinary 0.008 0.008 0.008

(
0.010
0.006

)
0.028 0.027 0.025

(
0.028
0.023

)
female

neoplasms 0.592 0.628 0.648
(

0.662
0.629

)
0.263 0.293 0.303

(
0.319
0.288

)
circulatory 0.140 0.092 0.060

(
0.065
0.055

)
0.342 0.233 0.149

(
0.158
0.140

)
respiratory 0.072 0.071 0.069

(
0.078
0.060

)
0.100 0.116 0.126

(
0.139
0.113

)
endocrine 0.038 0.038 0.037

(
0.043
0.032

)
0.051 0.061 0.068

(
0.074
0.061

)
nervous 0.036 0.043 0.051

(
0.060
0.043

)
0.054 0.068 0.080

(
0.089
0.071

)
external 0.035 0.033 0.032

(
0.038
0.026

)
0.024 0.025 0.023

(
0.027
0.020

)
digestive 0.031 0.028 0.024

(
0.029
0.020

)
0.034 0.029 0.023

(
0.027
0.020

)
not elsewhere (idio.) 0.022 0.023 0.023

(
0.028
0.019

)
0.023 0.025 0.024

(
0.027
0.022

)
infectious 0.014 0.017 0.020

(
0.027
0.015

)
0.017 0.021 0.024

(
0.028
0.020

)
mental 0.012 0.019 0.032

(
0.046
0.021

)
0.062 0.102 0.155

(
0.188
0.118

)
genitourinary 0.009 0.007 0.005

(
0.006
0.004

)
0.029 0.028 0.026

(
0.028
0.023

)

As already presumed in Figure 1.1 in the introduction, our model observes major shifts
in weights of certain death causes over previous years as shown in Table 15.3. This table lists
weights wa,g,k(t) for all death causes estimated for year 2011, as well as forecasted for years
2021 and 2031 using (12.14) with MCMC mean estimates for ages 60 to 64 years (left) and
80 to 84 years (right). It is obvious that, on top of general reduced mortality, the proportion
of deaths for certain certain causes has changed massively over the period 1987 to 2011.
Moreover, our model forecasts suggest that if these trends in weight changes persist, then
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the future gives a whole new picture of mortality. First, deaths due to circulatory diseases
are expected to decrease whilst neoplasms will become the leading death cause over most age
categories. Moreover, deaths due to mental and behavioural disorders are expected to rise
massively for older ages. This observation nicely illustrates the serial dependence, amongst
different death causes62 captured by our model. High uncertainty in forecasted weights is
reflected by wide confidence intervals (values in brackets) for the risk factor of mental and
behavioural disorders. These confidence intervals are derived from corresponding MCMC
chains and, therefore, solely reflect uncertainty associated with parameter estimation. Note
that results for estimated trends depend on the length of the data period as short-term
trends might not coincide with mid- to long-term trends.

Table 15.4: Leading death causes with weights in brackets for males of all age categories in
years 2011, 2031 and 2051 using (12.14) with MCMC mean estimate.

male

2011 2031 2051

1. neoplasms (0.385) neoplasms (0.363) neoplasms (0.307)

50–54 years 2. circulatory (0.223) external (0.166) external (0.163)

3. external (0.151) circulatory (0.131) infectious (0.142)

1. neoplasms (0.469) neoplasms (0.498) neoplasms (0.474)

55–59 years 2. circulatory (0.222) circulatory (0.119) infectious (0.092)

3. external (0.085) external (0.089) external (0.083)

1. neoplasms (0.502) neoplasms (0.550) neoplasms (0.535)

60–64 years 2. circulatory (0.226) circulatory (0.114) nervous (0.077)

3. external (0.055) endocrine (0.061) endocrine (0.074)

1. neoplasms (0.505) neoplasms (0.575) neoplasms (0.575)

65–69 years 2. circulatory (0.226) circulatory (0.101) endocrine (0.082)

3. respiratory (0.072) endocrine (0.066) mental (0.075)

1. neoplasms (0.474) neoplasms (0.550) neoplasms (0.544)

70–74 years 2. circulatory (0.241) circulatory (0.104) mental (0.111)

3. respiratory (0.083) endocrine (0.074) endocrine (0.093)

1. neoplasms (0.405) neoplasms (0.478) neoplasms (0.466)

75–79 years 2. circulatory (0.277) circulatory (0.129) mental (0.185)

3. respiratory (0.100) mental (0.084) endocrine (0.098)

1. neoplasms (0.327) neoplasms (0.385) neoplasms (0.371)

80–84 years 2. circulatory (0.324) circulatory (0.169) mental (0.239)

3. respiratory (0.106) mental (0.115) endocrine (0.092)

1. circulatory (0.395) circulatory (0.249) mental (0.329)

85+ years 2. neoplasms (0.217) neoplasms (0.239) neoplasms (0.216)

3. respiratory (0.115) mental (0.164) circulatory (0.133)

Taking a look at projected leading death causes for years 2011, 2031 and 2051 as given
in Tables 15.4 and 15.5, we can observe an overall increase in deaths due to neoplasms, as
well as mental and behavioural disorders whilst deaths due to circulatory diseases tend to
decrease. This potential increase in deaths due to mental and behavioural disorders for
older ages will have a massive impact on social systems as, typically, such patients need

62 If fewer people die from circulatory diseases, the average age will increase. Simultaneously, an increase
in (currently) hardly treatable old-age death causes, such as dementia, at some later stage cannot be avoided.
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long-term geriatric care.

Table 15.5: Leading death causes with weights in brackets for females of all age categories in
years 2011, 2031 and 2051 using (12.14) with MCMC mean estimate.

female

2011 2031 2051

1. neoplasms (0.576) neoplasms (0.552) neoplasms (0.493)

50–54 years 2. circulatory (0.118) external (0.100) external (0.102)

3. external (0.091) circulatory (0.069) not elsewhere (0.081)

1. neoplasms (0.603) neoplasms (0.615) neoplasms (0.581)

55–59 years 2. circulatory (0.112) nervous (0.056) nervous (0.077)

3. respiratory (0.058) respiratory (0.052) not elsewhere (0.068)

1. neoplasms (0.597) neoplasms (0.653) neoplasms (0.652)

60–64 years 2. circulatory (0.141) respiratory (0.074) mental (0.071)

3. respiratory (0.074) circulatory (0.059) respiratory (0.068)

1. neoplasms (0.551) neoplasms (0.619) neoplasms (0.609)

65–69 years 2. circulatory (0.162) respiratory (0.075) mental (0.112)

3. respiratory (0.083) circulatory (0.060) nervous (0.065)

1. neoplasms (0.467) neoplasms (0.535) neoplasms (0.522)

70–74 years 2. circulatory (0.212) respiratory (0.103) mental (0.142)

3. respiratory (0.098) circulatory (0.081) respiratory (0.092)

1. neoplasms (0.365) neoplasms (0.414) neoplasms (0.378)

75–79 years 2. circulatory (0.271) respiratory (0.117) mental (0.245)

3. respiratory (0.103) mental (0.116) respiratory (0.108)

1. circulatory (0.340) neoplasms (0.295) mental (0.324)

80–84 years 2. neoplasms (0.263) mental (0.168) neoplasms (0.256)

3. respiratory (0.101) circulatory (0.145) respiratory (0.126)

1. circulatory (0.441) circulatory (0.273) mental (0.503)

85+ years 2. neoplasms (0.131) mental (0.231) circulatory (0.092)

3. mental (0.101) neoplasms (0.127) neoplasms (0.090)

15.2 A simple annuity portfolio with applications to param-
eter risk and scenario analysis

Based on the data and the model estimated in Section 15.1, we now build a simple annuity
portfolio. Assume m = 1 600 policyholders which distribute uniformly over all age categories
and genders, i.e., each category contains 100 policyholders with corresponding death proba-
bilities, as well as weights as previously estimated and forecasted for 2012,63 i.e., for the
following year after the last data observation. Annuities Xi = Yi for all i ∈ {1, . . . ,m} are
paid annually and take deterministic values in {11, . . . , 20} such that ten policyholders in
each age and gender category share equally high payments. This gives a total of

m∑
i=1

Xi = 24 800

63 Forecasted in the sense that we use estimates of α, β, u, v to derive death probabilities and weights as
given in Assumption 12.12 at time 2012.
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Chapter 15. A Real World Example

cumulative annuity payments if every policyholder survives. Then, running the extended
CreditRisk+ algorithm as given in Lemma 11.19 for the sum

S =
m∑
i=1

Ni(2012−t0)∑
j=1

Yi,j ,

with initial year t0 = 1986 and where Ni(2012 − t0) denotes the number of deaths of
policyholder i ∈ {1, . . . ,m} in 2012 and where (Yi,j)j∈N are independent copies of Yi, yields
the exact loss distribution L = 24 800−S. This distribution together with 95 and 99 percent
quantiles is illustrated in Figure 15.3.
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Figure 15.3: Loss distribution of L calculated with extended CreditRisk+ and corresponding
95 and 99 percent quantiles.

More interestingly, we want to show an application of Section 13.3 and quantify parameter
risk in our model. More precisely, we want to use the posterior distribution of parameters
to account for errors which may occur due to estimation uncertainty, as well as due to
statistical fluctuations in Australian data. Therefore, we choose the approach suggested in
Section 13.3 where we run extended CreditRisk+ several times to derive the distribution
of S for different parameter samples from the MCMC chain. Here, we use 1 000 different
samples of the posterior distribution of parameters so that we end up with an empirical
distribution of the loss distribution of L. This makes it possible to derive an approximations
for distributions of various quantiles of L which is illustrated in Figure 15.4 for the case
of 95 and 99 percent quantiles. Obviously, if we believe that MCMC gives a suitable
approximation of the posterior distribution of parameters, parameter risk is substantial.

As an application of Chapter 14 we analyse a scenario, indexed by ‘scen’, where death
rates due to neoplasms suddenly decrease. Again, we use previously estimated parameters,
forecasted for time 2012, and assume that deaths due to neoplasms are reduced by 25 percent
in 2012 over all age categories. More precisely, set N scen

a,g,2(2012− t0) = b0.75Na,g,2(2011− t0)c
as well as ma,g(2012− t0) = ma,g(2011− t0) for all age categories a ∈ {1, . . . , A} and both

genders g ∈ {m, f}. Then, given this scenario, we derive risk factor realisation λ̂MAP
2 (2012−t0)

using Equation (12.42) which gives λ̂MAP
2 (2012− t0) = 0.7991. The common risk factor for

neoplasms is then assumed to be deterministic and can therefore be joined with idiosyncratic
risk, i.e., for all a ∈ {1, . . . , A}, as well as g ∈ {m, f} we can define new idiosyncratic weights

wscen
a,g,0(2012− t0) = wa,g,0(2012− t0) + wa,g,2(2012− t0)λ̂MAP

2 (2012− t0)
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Figure 15.4: Distributions of 95 and 99 percent quantiles based on MCMC chain realisations.

and leave all other weights unchanged except the one for neoplasms

wscen
a,g,k(2012− t0) =

{
0 for k = 2 ,

wa,g,k(T + 1) for k ∈ {1, 3, 4, . . . , 10} .

Note that in our scenario, weights do not sum up to one anymore but Algorithm 11.19 still

works. Thus, distributions of Sscen :=
∑m

i=1

∑Nscen
i (2012−t0)

j=1 Xi and Lscen := 24 800− Sscen

can easily be calculated.

23600 23800 24000 24200 24400

0.
00

0
0.

00
1

0.
00

2
0.

00
3

loss

pr
ob

ab
ilit

y 
de

ns
ity

loss scenario
95% quantile scenario
99% quantile scenario
loss
95% quantile
99% quantile

Figure 15.5: Loss distributions of L and Lscen, calculated with extended CreditRisk+, as
well as corresponding 95 and 99 percent quantiles.

Figure 15.5 shows probability distributions of loss L, as well as of scenario loss Lneo with
corresponding 95 percent and 99 percent quantiles. Corresponding quantiles of S, Sscen, as
well as of L and Lscen are listed in Table 15.6. There, the main message is that a reduction
of 25 percent in cancer death rates leads to a change of roughly six percent in small quantiles
of S, i.e., in the dangerous left tail of S corresponding to high losses in L due to just few
deaths.
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Chapter 15. A Real World Example

Table 15.6: Value at risk of S and Sscen (top), as well as L and Lscen (bottom) at different
levels δ, i.e., qδ(S) and qδ(S

scen), as well as qδ(L) and qδ(L
scen), using extended CreditRisk+.

level δ no scenario: S with scenario: Sscen

0.10 654 611

0.05 616 574

0.01 546 507

level δ no scenario: L with scenario: Lscen

0.90 24 147 24 190

0.95 24 185 24 227

0.99 24 255 24 294
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Chapter 16

Stochastic Life Tables and
Mortality Forecasts

In this chapter we analyse further applications of our annuity model. First,
Section 16.1 gives a short comparison between the one-factor Lee–Carter model
and our annuity model with one common stochastic risk factor. Not surprisingly,
both models deliver roughly the same interpolation results. But when it comes
to prediction, confidence intervals obtained by the Lee-Carter approach seem
to overestimate variations of death rates as shown in Example 16.8. Thus, in
Section 16.2 we provide an advanced forecasting procedure for death rates and
weights within our annuity model which uses multiple common stochastic risk
factors giving tighter confidence bands. Using a similar approach, Section 16.3
provides a sophisticated stochastic procedure for population forecasts. Finally,
in Section 16.4 we suggest an approach for producing and forecasting life tables
using MCMC. This approach then enables us to derive expected future life time
where some surprising results occur.

Modelling mortality has a long tradition and, therefore, a vast amount of approaches
can be found in the literature. Amongst important achievements in the 19th century we find
the famous works of Gompertz [58] and Makeham [83]. Based on the ideas of Gompertz
and Makeham, several generalisations and applications can be found in the literature, see,
for example, Wetterstrand [127]. Furthermore, many other parametric and non-parametric
models have been developed, see Andersen and Vaeth [6] for a comprehensive study of various
models. Stochastic mortality models have been introduced in the early 1990s amongst which
we find the often-cited Lee–Carter model, see Lee and Carter [78], as well as numerous
extensions, see, for example, Brouhns, Denuit and Vermunt [17]. Another important
stochastic mortality model, which allows incorporation of cohort effects, was introduced by
Cairns, Blake and Dowd [18]. It is a stochastic generalisation of the model introduced by
Perks [93]. A quantitative comparison of several important stochastic mortality models can
be found in Cairns et al. [19].

As our annuity model primarily deals with mortality, it is perfectly capable of modelling,
estimating and forecasting life tables, as well as population counts. Most importantly,
we have tools to estimate model parameters based on publicly available data. Using our
annuity model, in particular together with Markov chain Monte Carlo, we can even choose
appropriate security margins in the form of quantiles to account for statistical fluctuations,
parameter risk and other uncertainties, see Chapter 13 for further discussion on this topic.
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Chapter 16. Stochastic Life Tables and Mortality Forecasts

16.1 Comparison with Lee–Carter

To show that our multi-factor approach covers traditional models for estimating life tables as
well, we compare the annuity model of Definition 11.11 to the elegant Lee–Carter approach
introduced by Lee and Carter [78]. Given the number of living people ma,g(t), as well as

annual deaths na,g(t) :=
∑K

k=0 na,g,k(t) for age category a ∈ {1, . . . , A}, gender g ∈ {f,m}
and periods t ∈ {1, . . . , T}, the Lee–Carter approach models logarithmic death rates

log ra,g(t) := log
na,g(t)

ma,g(t)

in the form
log ra,g(t) = µa,g + κtνa,g + εa,g,t ,

with independent normal error terms εa,g,t with mean zero and a common time-specific
components (κ̂t)t∈{1,...,T}. Hence, death rates are driven by age- and gender-specific parts
µa,g, νa,g and a time component κt. Using suitable normalisations, estimates µ̂a,g, ν̂a,g and κ̂t
for the components µa,g, νa,g and κt for all a ∈ {1, . . . , A}, g ∈ {f,m} and t ∈ {1, . . . , T} may
be derived via method of moments and singular value decompositions such that estimated
logarithmic death rates are then given

log r̂LCa,g (t) := µ̂a,g + κ̂t ν̂a,g . (16.1)

Note that normalisation approaches for parameters in the Lee–Carter model are not unique
throughout the literature, see Kainhofer, Predota and Schmock [69, Section 4.5.1] and
Brouhns, Denuit and Vermunt [17]. Since the Lee–Carter method just uses the highest
eigenvalue in the singular value decomposition, it is intuitively clear that this approach
should coincide with one-factor models. To make this observation more rigorous, consider
our annuity model with alternative scaling E[Ni(t)] = q∗i , see Remark 11.3, and one common
stochastic risk factor Λ1(t) with fixed weights wa,g,1(t) = 1 for all a ∈ {1, . . . , A}, g ∈ {f,m}
and t ∈ {1, . . . , T}. Thus, given data ma,g(t) and na,g(t) :=

∑K
k=0 na,g,k(t) for a ∈ {1, . . . , A},

g ∈ {f,m} and t ∈ {1, . . . , T}, we first have to estimate model parameters and risk factor
realisations (λ1(t))t∈{1,...,T} using the maximum a posteriori approach, see Section 12.2.
Since we just use a monotone time trend for death probabilities, see (12.13), we should use
realisations λ1(t) of risk factor Λ1(t) to compensate for the variation introduced by κt in
the Lee–Carter approach. Henceforth, recalling (16.1), we expect

r̂LC
a,g (t) ≈ q̂MAP

a,g (t)λ̂MAP
1 (t) ,

for each a ∈ {1, . . . , A}, g ∈ {f,m} and t ∈ {1, . . . , T}. Thus, given that q̂MAP
a,g (t) < 0.5 for

a ∈ {1, . . . , A}, g ∈ {f,m} and t ∈ {1, . . . , T}, see Remarks 12.11(a), this conjecture implies
that µ̂a,g + log 2 + c ≈ α̂MAP

a,g , as well as κ̂t ν̂a,g − c ≈ β̂MAP
a,g Tθ̂MAP

a,g ,η̂MAP
a,g

(t) + log λ̂MAP
1 (t) with

some constant c ∈ R.

Example 16.2. Using Australian death data from 1987 to 2011 as given in Section 15.1,
we compare the outcomes of our annuity model to the Lee–Carter model as described
above. Trends are considered via Assumption 12.12 where trend reduction parameters are
fixed a priori with values ζai,g = φ1 = 0 and ηai,g = ψ1 = 1

150 for all i ∈ {1, . . . , 8} and

g ∈ {f,m}. Mean estimates q̂MAP
a,g (t), as well as λ̂MAP

1 (t) are derived using MCMC based on
the maximum a posteriori approach, see Section 12.2, with 25 000 iterations and a burn-in
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Figure 16.1: Estimated death rates from 1987 to 2011 using the Lee–Carter approach and
MCMC with the maximum a posteriori approach (MAP) in our annuity model for males (top
left) and females (top right) aged 80 to 84 years. Visually, the results are indistinguishable
since relative differences for males (bottom left), as well as females (bottom right) are low.

period of 5 000. Note that we use alternative scaling, as described in Remark 11.3, so that
death probabilities equal Poisson intensities, i.e., corresponding means of death indicators.
Estimates obtained from the Lee–Carter model can be calculated using the function lca in
‘R’ of the ‘demography’ package [101]. Results are shown in Figure 16.1 where we observe
the close relationship amongst both interpolation procedures for the age group 80 to 84
years and both genders. Visually, the results for both approaches are indistinguishable since
relative differences are less than one percent. Also, for all other age categories, outcomes of
both approaches are almost identical.

16.2 Forecasting death rates and rates of different death
causes

Using our annuity model of Definition 11.11 and recalling Assumption 12.12, it is straight-
forward to forecast death rates, as well as rates of different death causes and to give
corresponding confidence intervals. Using death rates, uncertainty in the form of confidence
intervals represent statistical fluctuations, as well as random changes in risk factors. Addition-
ally, using results obtained by Markov chain Monte Carlo (MCMC), see Section 12.4, it is even
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Chapter 16. Stochastic Life Tables and Mortality Forecasts

possible to incorporate parameter uncertainty into predictions. Therefore, for the i-th sample
θi := (αi, βi, ζi, ηi, ui, vi, φi, ψi, σi) with i ∈ N of parameters θ = (α, β, ζ, η, u, v, φ, ψ, σ) of
the MCMC chain, i.e., for a realisation of the posterior distribution of parameters, define
death probabilities

log q̂ia,g(t) := αia,g + βia,gTθa,g ,ηa,g(t) , (16.3)

as well as weights

ŵia,g,k(t) =
exp

(
uia,g,k + via,g,kTφk,ψk(t)

)∑K
j=0 exp

(
uia,g,j + via,g,j Tφj ,ψj (t)

) , (16.4)

for all a ∈ {1, . . . , A}, g ∈ {f,m} and t ∈ {T + 1, . . . , S} with some S ≥ T + 1.
First, to forecast death probabilities and weights we may simply use Equations (16.3)

and (16.4) for periods t ∈ {T + 1, . . . , S} with some S ≥ T + 1 for various MCMC samples
θi with i ∈ N. Hence, this approach gives forecasts for death probabilities and weights where
trends and uncertainty associated with parameter risk are included.

Alternatively, if we want to include statistical volatility risk in order to compare forecasts
with true death rates and true rates of certain death causes, we suggest the following approach:
For a specific age category a ∈ {1, . . . , A} and gender g ∈ {f,m}, set ma,g(t) := ma,g(T )64, as
well as Yj(t) := 1 for all people j ∈Ma,g(T ) with |Ma,g(T )| = ma,g(T ) and t ∈ {T+1, . . . , S}.
Then, for a single estimate θ̂ of parameter vector θ—for forecasts without parameter
uncertainty—or for various MCMC parameter samples (θ̂i)i∈N with N ⊂ N—for forecasts
with parameter uncertainty—simply run our annuity model, see Section 11.2, with parameters
forecasted for times t ∈ {T + 1, . . . , S} by (16.3) and (16.4). We then obtain the distribution
of the total number of deaths Sa,g(t) or Sia,g(t) given θ̂ or θ̂i, respectively. For the case
without parameter uncertainty, forecasted death rate r̂a,g(t) is given by

P
(
r̂a,g(t) =

n

ma,g(T )

)
= P(Sa,g(t) = n) , n ∈ N0 , (16.5)

at time t ∈ {T + 1, . . . , S}, for age category a ∈ {1, . . . , A} and gender g ∈ {f,m}. Distribu-
tions of forecasted death rates r̂ia,g(t) based on parameter sample θ̂i with i ∈ N are similarly
given by

P
(
r̂ia,g(t) =

n

ma,g(T )

)
= P(Sia,g(t) = n) , n ∈ N0 . (16.6)

We can then derive confidence intervals at every desired level where for the latter approach,
based on multiple MCMC samples, quantiles of quantiles can be derived to account for
parameter uncertainty. Note that, with our Poisson mixture approach, death rates r̂a,g(t)
and r̂ia,g(t) with i ∈ N can take values greater than one with positive—but very small—
probability.

Remark 16.7. The approach described above enables us to forecast death rates where
uncertainty associated with random fluctuations and random changes in risk factors is
included. In addition, if various MCMC parameter samples are considered, parameter
uncertainty can be incorporated. Conversely, possible changes in trends are not captured by
this approach, i.e., trends are assumed to be a priori estimated and then fixed. This issue
can, for example, be tackled by re-estimating model parameters at each consecutive time for
all outcomes of our annuity model.

64 This assumption is somehow restricting as population does not stay constant over time which then leads
to slightly reduced statistical fluctuation. Thus, our forecasted confidence bands will be a bit too wide. To
avoid this, we may use population forecasts taken from governmental websites or use the approach outlined
in Section 16.3.
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16.2. Forecasting death rates and rates of different death causes

Forecasting rates of certain death causes requires a slightly more sophisticated approach
as each weight influences all the others within a certain age category a ∈ {1, . . . , A} and
gender g ∈ {f,m}. We suggest the usage of our annuity model where, in addition, losses are
allowed to take different values depending on the underlying death cause, see Section 19.1
for the general extended CreditRisk+ model. More precisely, for age category a ∈ {1, . . . , A}
and gender g ∈ {f,m}, we use exactly the same approach as for death rates forecasts where,
in addition, the loss of policyholder j ∈Ma,g(T ) due to death cause k0 ∈ {0, . . . ,K} at time
t ∈ {T + 1, . . . , S} is defined via

Yj,k(t) :=

{
(1, 0) for k 6= k0 ,

(1, 1) for k = k0 .

Using the extended CreditRisk+ algorithm with parameters forecasted for the period
t ∈ {T + 1, . . . , S}, see (16.3) and (16.4), based on a single estimate of θ or based on
various MCMC parameter samples (θ̂i)i∈N with N ⊂ N—for forecasts with parameter
uncertainty—then returns a two-dimensional random vector Sa,g,k0(t) := (Sa,g(t), Sa,g,k0(t))
or Sia,g,k0

(t) := (Sia,g(t), S
i
a,g,k0

(t)), respectively. In that case, the first component gives the
total number of deaths and the second component gives the total number of deaths due to
cause k0. The distribution of forecasted death rate r̂a,g,k0(t) due to cause k0 ∈ {0, . . . ,K} is
then, excluding parameter uncertainty, given by

P(r̂a,g,k0(t) ∈ [x, y]) :=
∑

(n1,n2)∈N2
0

n2
n1
∈[x,y]

P
(
Sa,g(t) = (n1, n2)

)
,

or, including parameter uncertainty via consideration of various MCMC samples, forecasted
rate r̂ia,g,k0

(t) for sample θ̂i with i ∈ N is given by

P(r̂ia,g,k0
(t) ∈ [x, y]) :=

∑
(n1,n2)∈N2

0
n2
n1
∈[x,y]

P
(
Sia,g(t) = (n1, n2)

)
,

for all x, y ∈ R with x ≤ y, at time t ∈ {T + 1, . . . , S}, for age category a ∈ {1, . . . , A}
and gender g ∈ {f,m}. Again confidence intervals, as well as quantiles of quantiles for the
approach based on multiple MCMC samples can easily be derived at every desired level.

Of course, using these forecasts, different health scenarios can be tested and how they
influence mortality, as well as how they result in changes of rates for various death causes.
As already remarked in Section 11.3 and as suggested in Section 16.4, for the purpose of
modelling life tables we can alternatively use Bernoulli mixture models instead of Poisson
mixture models to avoid the shortcoming of multiple deaths.

Example 16.8 (Prediction of death rates). As an illustration of the forecasting approaches
mentioned above, we predict death rates for Australia and derive confidence intervals in
order to compare these results with the Lee–Carter approach, as well as with realised, true
death rates. As in Section 15.1, we use Australian death and population data, now for the
years 1979 to 2001, to estimate model parameters via MCMC. Again, note that we have to
modify the data according to comparability factors given in Table 15.1. Using the mean of
20 000 MCMC samples we forecast death rates and corresponding confidence intervals out
of sample for the period 2002 to 2011 via our annuity model, see (16.5).
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Figure 16.2: Forecasted death rates and 90 percent confidence intervals in Australia for the
years 2002 to 2011 of females aged between 55 and 60 years within our annuity model (AM)
and the Lee–Carter model (LC), as well as true death rates.

We can then compare these results to realised death rates within the stated period and
to forecasts obtained by the Lee–Carter model. Therefore, Figure 16.2 gives death rate
forecasts and corresponding five percent and 95 percent quantiles for our approach and the
Lee–Carter approach, as well as realised, true death rates obtained in the years 2002 to 2011
in Australia for females aged 55 to 59 years. For our approach, the middle dashed, blue
line gives forecasts for death probabilities obtained by mean MCMC estimates, see (12.13),
and the upper and lower dashed, blue lines give quantiles for death rates obtained by (16.5).
Correspondingly, the dash-dotted, red lines give forecasts using a univariate time series
model obtained by coefficients from the fitted Lee–Carter model, see [17, 69, 78]. For the
latter, we use the function lca in ‘R’ of the ‘demography’ package [101]. We can draw several
conclusions from this figure. First, true death rates always fall in the 90 percent confidence
band for both procedures. Secondly, confidence intervals obtained from the Lee–Carter
approach are mostly wider than confidence intervals obtained by our model. As we assume
the trend to be fixed in our model, spreads between five and 95 percent quantiles do not
increase significantly over time whereas the autoregressive behaviour within Lee–Carter
forecasts leads to growing spreads over time. More precisely for our annuity model, spreads
between forecasts for death probabilities and 95 percent quantiles for death rates increase
from 8.7 percent in 2002 to 9.1 percent in 2011, as well as spreads between forecasts for
death probabilities and 5 percent quantiles for death rates increase from 8.4 percent in 2002
to 8.7 percent in 2011. Note that the confidence bands obtained in our approach roughly
correspond to the commonly suggested security margin of 7.4 percent, see Section 13.2, for
statistical fluctuations.

As another and more risk-sensitive illustration, Figure 16.3 shows the contribution of
parameter uncertainty to quantiles obtained by our annuity model. Out of the 20 000
MCMC samples we take every hundredth sample to forecast quantiles of quantiles of death
rates for the years 2002 to 2011 via (16.6). Taking every sample of the MCMC chain
would require fairly long execution times. Again, we plot five and 95 percent quantiles of
forecasts for death rates within our annuity model, as well as 90 percent confidence bands
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Figure 16.3: Forecasted death rates and 90 percent confidence intervals in Australia for the
years 2002 to 2011 of females aged between 55 and 60 years within our annuity model (AM),
as well as 90 percent confidence bands for stated quantiles indicating parameter uncertainty
(shaded area).

based on these 200 MCMC samples, given as shaded areas. These shaded areas translate
into uncertainty associated with parameter risk as MCMC samples from the posterior
distribution of parameters. When using forecasts solely based on MCMC mean estimates,
uncertainty purely comes from statistical fluctuations and random changes in risk factors.
The uncertainty associated with parameter risk65 is not negligible and increases over time
from 9.8 percent in 2002 to 10.8 percent in 2011 for the five percent quantile and from 6.5
percent in 2002 to 8.7 percent in 2011 for the 95 percent quantile.

Remark 16.9 (Numerical underflow). Note that one has to be careful regarding numerical
underflow as P(Sa,g(t) = 0), see Lemma 11.19, can become very low. To fix this problem, a
suitable positive constant c∗ can be added to parameter λ. Then, Recursion (11.20) yields
the exp(c∗)-fold of P(Sa,g(t) = ν) for all ν ∈ N0.

16.3 Population forecasts

As we are able to estimate trends for death probabilities and trends for weights in our model
based on data for the periods 1, . . . , T , see Chapter 12, we can project them into the future
and derive population forecasts and their distributions for t ∈ {T + 1, . . . , S} with some
S ≥ T + 1.

It is straight-forward to derive population forecasts for the next period as it just requires
the usage of our annuity model of Definition 11.11 with Yi(T + 1) := 1 for all people
i ∈ {1, . . . ,mT+1} living at time T + 1. In that case all deaths of people are aggregated.
For further periods the problem becomes more involved as information about age and
gender is not preserved under the aggregation of deaths within extended CreditRisk+ and,
therefore, necessary categorisation of people is not possible anymore. This problem can be

65 Width of the confidence band (shaded area), divided by quantiles of forecasts based on mean MCMC
estimates (blue dashed line).
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tackled by changing to a setup with higher dimensions where additional dimensions carry
information about age and gender. Then, unfortunately, the algorithm quickly becomes
computationally very expensive as the summation in (11.20) has to be performed over each
point in a high-dimensional grid.

We illustrate this idea with a forecast for the group of females who will be aged 60 to
64 years in ten years. This results in a two-dimensional setting. Extensions to other, or
more age categories and periods are straight-forward to obtain. The basic idea is that we
choose two-dimensional losses where the second coordinate indicates if a person transits
to the higher age group in the following year, given survival. Starting at time T , we want
to predict the number of deaths for the period T + 1 for females aged 50 to 54 years as
these people will become the relevant age category in ten years from now. Assume that
we have population counts mT for females aged 50 to 54 years at time T . Then, we set
Yi(T + 1) = (1, 0) if i ∈ {1, . . . , b4

5mT c} or Yi(T + 1) = (0, 1) otherwise. This corresponds
to the simplifying assumption that at each time step a certain percentage of people moves
to the higher age category. For i.i.d. copies (Yi,j(T + 1))j∈N of Yi(T + 1), define

S(T + 1,mT ) :=

mT∑
i=1

Ni(T+1)∑
j=1

Yi,j(T + 1) .

Let πi: R2 → R for i ∈ {1, 2} denote the projection on the i-th coordinate. Then, note that
π1(S(T + 1,mT )) and π2(S(T + 1,mT )) count the total number of deaths within the period
T + 1 of people who would and would not, respectively, change into the higher age category
if they survived. Then, the number of people living in age category 50 to 54 years at T + 1
is obtained by

M1(T + 1,mT ) :=
⌊4

5
mT

⌋
− π1(S(T + 1,mT )) + ε1,T+1

and, for age category 55 to 59 years, by

M2(T + 1,mT ) :=
⌈1

5
mT

⌉
− π2(S(T + 1,mT )) + ε2,T+1

where ε1,T+1 and ε2,T+1 denote exogenous correction terms for migration66. As a convention,
we set negative values of Mi(t + 1,mt) equal to zero. Using previously estimated model
parameters as described in Chapter 12, we can derive the joint distribution of the random
sum S(T + 1,mT ) using extended CreditRisk+.

In the next step, this procedure can simultaneously be performed for period T + 2 for
each m1,T+1 and m2,T+1 in the support of M1(T + 1,mT ) and M2(T + 1,mT ), respectively,
using parameter forecasts of death probabilities and weights for time T + 2 as outlined
in Remark 12.12. Therefore, set mT+1 := m1,T+1 +m2,T+1 and note that all people who
now belong to m2,T+1, have a changed death probability and changed weightings due to
the transition into the older age category 55 to 59 years. We then set Yi(T + 2) = (1, 0)
if i ∈ {1, . . . , b3

4m1,T+1c}, or Yi(T + 1) = (0, 1) otherwise. Again, we use the simplifying
assumption that a certain percentage of people moves to the higher age category. Similarly

66 Immigration rates and forecasts, as well as fertility rates can mostly be found on governmental web
sites. In the case of Australia these data can be found at website of the Department of Immigration and
Border Protection.

156

https://www.immi.gov.au/media/fact-sheets/15population.htm
https://www.immi.gov.au/media/fact-sheets/15population.htm


16.4. Death probability forecasts using Markov chain Monte Carlo

as before, we can derive

S(T + 2,mT+1) :=

mT+1∑
i=1

Ni(T+2)∑
j=1

Yi,j(T + 2) ,

as well as the number of people living in age category 50 to 54 years at T + 2

M1(T + 2,m1,T+1,m2,T+1) :=
⌊3

4
m1,T+1

⌋
− π1(S(T + 2,mT+1)) + ε1,T+2 (16.10)

and, for age category 55 to 59 years,

M2(T + 2,m1,T+1,m2,T+1)

:=
⌈m1,T+1

4

⌉
+m2,T+1 − π2(S(T + 2,mT+1)) + ε2,T+2

(16.11)

where, again, ε1,T+2 and ε2,T+2 denote exogenous correction terms for migration. Final
distributions of Mi(T + 2,M1(T + 1,mT ),M2(T + 1,mT )) for i ∈ {1, 2} are then obtained
by mixing (16.10) and (16.11) with distributions of M1(T + 1,mT ) and M2(T + 1,mT ).
This approach can then be iterated analogously up to period T + 10 to finally derive a
stochastic population forecast for females aged 60 to 64 years in ten years time. From a
computational point of view, it is advisable to discretise distributions using the method of
stochastic rounding, see Schmock [111].

Obviously, the major problem is to transfer the prior information about age and gender
of each policyholder to the distribution of S a posteriori. In theory, this is easy as we can
switch to a high-dimensional setting but, for applications, this becomes a burden in terms
of computational complexity.

16.4 Death probability forecasts using Markov chain Monte
Carlo

Using our annuity model of Section 11.2 with just idiosyncratic risk, i.e., K = 0, it
is straight-forward to derive and forecast death probabilities. Prediction of death rates
and corresponding confidence intervals work similarly as outlined in the more advanced
approach67 of Section 16.2. Alternatively, one common stochastic risk factor with a weight
of one, i.e., no idiosyncratic risk, can be assumed in which case any of the estimation
procedures provided in Chapter 12 can be used. However, relying solely on idiosyncratic
risk, it is possible to assume death indicators to be independent and Bernoulli distributed
instead of Poisson distributed. Then, recalling Assumption 12.5 and following the approach
provided in Lemma 12.51, the likelihood function for parameters (α, β, ζ, η) given data n is
given by

`B(n |α, β, ζ, η) =

T∏
t=1

A∏
a=1

∏
g∈{f,m}

(
ma,g(t)

na,g,0(t)

)
qa,g(t)

na,g,0(t) (1− qa,g(t))ma,g(t)−na,g,0(t) ,

(16.12)
with 0 ≤ na,g,0(t) ≤ ma,g(t) for all a ∈ {1, . . . , A}, g ∈ {f,m} and t ∈ {1, . . . , T}. Using
death data for dates {1, . . . , T}, this likelihood function can then be used to estimate

67 For a derivation of life tables based on multiple risk factors we could not find sufficiently rich data which
is why we stick with a simpler approach in this section.

157



Chapter 16. Stochastic Life Tables and Mortality Forecasts

parameters and corresponding forecasts for dates t ∈ {T + 1, T + 2, . . . } via the parameter
family given in (12.13), i.e.,

qa,g(t) = FLap
(
αa,g + βa,gTζa,g ,ηa,g(t)

)
. (16.13)

Similarly, of course, matching of moments or maximum a posteriori estimation can be used
instead.

Remark 16.14 (Trend reduction). Using either simple linear regression of logarithmic Aus-
tralian death rates or, otherwise, the stated approach, both for the years 1974 to 2013
grouped into four ten-year-blocks, we can actually observe a depreciating trend parameter
βa,f over most ages for females. For males, we do not see such a clear trend at the moment.
Nevertheless, we can assume that it is legitimate to incorporate trend reduction for long-term
forecasts in Australia, also see Remarks 12.15(b). Unsuccessfully, we have also tried to find
cohort effects in Australian data such as patterns in trend reduction which shift along the
time path of certain generations. Solely, the generation born between 1945 and 1955 shows
some trend acceleration.

Furthermore, it is of major interest to derive expected future life time for each age
category once death probabilities have been estimated. To be consistent concerning longevity
risk, mortality trends should be included in the derivation of expected future life time as a
60-year-old today with probably not have as good medication as a 60-year-old in several
decades. However, it seems that this is not the standard approach in the literature. In
particular in the case of Australia, life tables obtained by the Australian Bureau of Statistics
for the years 2011 to 2013 are simply derived by taking death rates for the years 2011 to
2013 without considering mortality trends. However, based on the definitions given, for
example, in Kainhofer, Predota and Schmock [69, Section 5.4], we define expected future
life time68 of a person in age category a ∈ {1, . . . , A}, of gender g ∈ {f,m}, at date T by

ea,g(T ) = E[Ka,g(T )] =
∞∑
k=1

kpa,g(T ) (16.15)

where survival probabilities69 over k ∈ N years are given by

kpa,g(T ) :=
k−1∏
j=0

(
1− qa+j,g(T + j)

)
and where Ka,g(T ) denotes the number of completed future years lived by a person of
particular age and gender at time T . Note that the series above can be assumed to be
a finite sum as survival probabilities are set to zero above some maximum age, e.g., 120
years. Correspondingly, by a simple change of order of summation, the standard deviation
of Ka,g(T ) for each a ∈ {1, . . . , A} and g ∈ {f,m}, at date T is given by

sa,g(T ) =
√

Var(Ka,g(T )) =

√√√√2
∞∑
k=1

kkpa,g(T )− ea,g(T )− ea,g(T )2 . (16.16)

68 More precisely, we should be talking about expected curtate future life time as we calculate the expected
number of completed future years lived by a person, i.e., we ignore the fraction of the death year when this
person dies. For a formula for true expected future life time with a yearly constant force of mortality see, for
example, [69, Section 5.4].

69 The definition of survival probabilities over k ∈ N years as a product over one-year survival probabilities
corresponds to the classical approach in life insurance. In our case, the product consists of one-year survival
probabilities over transiting age groups with corresponding projections into the future.
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In the following example we use this approach to derive the 2013 life table and expected
future life time for Australians based on data for the years 1971 to 2013 where mortality
trends are considered. In this example we see a remarkable jump in life expectancy when
considering mortality trends which implies a massive impact on social budgets, pension
funds, as well as insurance companies.

Example 16.17 (Prediction of death probabilities). As an illustration of this simple
interpolating and forecasting approach mentioned above, we derive the 2013 Australian
life table and corresponding expected future life times based on publicly available death
data70 for the years 1971 to 2013. A complete list of results is given in Section 19.4. Death
data are divided into 100 one-year age groups and a group 100+. As in Chapter 15, we use
likelihood function (16.12) to estimate model parameters via MCMC. For stable estimation
we fix ζa,g = 0 for all ages a ∈ {0, . . . , 100+} and both genders g ∈ {f,m}.

Based on 35 000 MCMC samples with a burn-in period of 15 000, we get death probabili-
ties, as well as mortality trends for each age and gender by inserting means over sample
chains into (16.13). Note that MCMC provides samples from the posterior distribution of
parameters such that parameter uncertainty can be estimated via confidence intervals on
death probabilities. In this example, we observe negligible parameter uncertainty due to a
long period of data which is why MCMC quantiles are not listed in Section 19.4, such as 90
percent confidence intervals for expected future life times are consistently smaller than 0.4
years.

Once parameters α, β and η have been estimated, we smooth all components along
ages for each gender separately using function cobs in ‘R’ of the ‘cobs’ package [87] with
25 knots so that noise for forecasted death probabilities is reduced. These smoothing
splines are very flexible as various constraints such as positivity or fixed knots can be
imposed. Note that the less knots we use, the rougher the smoothing gets. Even more
restricting, Kainhofer, Predota and Schmock [69, Section 4.7.3] make trends monotonic by
partial linear interpolation to avoid non-monotone death probabilities. Logarithmic death
probabilities log qa,g(t) with corresponding forecasts, see (16.13), mortality trends βa,g, as
well as trend reduction parameters ηa,g for males (left) and females (right) are provided in
Figure 16.4. Recall that 1/ηa,g gives the time when initial trends are halved. We can draw
some immediate, well-known conclusions. First we see an overall improvement in mortality
over all ages where the trend is particularly strong for young ages and ages between 50 and
80 whereas the trend vanishes and even gets negative towards the age of 100 implying a
natural barrier for life expectancy. Furthermore, we see the classical hump of increased
mortality driven by accidents around the age of 20 which is more developed for males.
Long-term forecasts of death probabilities can show non-monotonic behaviour due to the
massive hump in the mortality trend, as well as slow trend reduction around the age of 50 to
60. This may imply that the strong effect on mortality improvement is just temporary Trend
reduction parameters ηa,g show similar patterns for males and females where reduction is
stronger for females. This indicates a convergence of male death probabilities towards female
death probabilities which can also be observed in expected future life times, see Section 19.4.
Moreover, estimation results get noisy for very high ages due to sparse data.

For the derivation of expected future life times, we assume a death probability of zero
for ages 121+ and constant parameters αa,g, βa,g and ηa,g (before smoothing) for ages
a ∈ {101, . . . , 120} given by previously estimated, corresponding parameters for group 100+.

70 Death counts and population counts for each age and gender are taken from the Australian Bureau of
Statistics and again the Australian Bureau of Statistics, respectively.
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Figure 16.4: Australian logarithmic death probabilities (top) for 2013, as well as forecasts for
2063 and 2113, i.e., (log qa,g(43), log qa,g(68), log qa,g(93))a∈{1,...,A}, based on our annuity
model using Australian mortality data from 1971 to 2013, as well as corresponding mortality
trends (middle), i.e., (βa,g)a∈{1,...,A}, and trend reduction (bottom), i.e., (ηa,g)a∈{1,...,A}, for
males (left) and females (right).

This approach does certainly not reflect real world observations but, nevertheless, it is
used due to non-available data for older ages and minor impact on final results as just few
people get older than 100 years. Kainhofer, Predota and Schmock [69, Section 4.7.2] provide
a more sophisticated approach towards this issue. We can draw a remarkable conclusion
from the results provided in Section 19.4. Whilst the Australian Bureau of Statistics made
a press release in late October 2014 saying that ‘Aussie men now expected to live past 80’,
our model states that Australian men, born in 2013, are expected to live 87.95 years. This
divergence arises as we consider mortality trends, even including trend reduction. If no
trend is considered in our model, we end up with a life expectancy of roughly 80 years
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for Australian men, born in 2013, coinciding with the result published by the Australian
Bureau of Statistics. Thus, there is a gap of eight years in life expectancy for males and
almost six years for women between our model with trend and without trend. It is thus
highly recommended for every company or organisation which is exposed to longevity risk
to consider mortality trends when modelling life insurance contracts or annuities as a gap of
several years can have a massive impact on long-term liabilities.
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Chapter 17

Model Validation and Model
Selection

In this chapter we propose several validation techniques in order to check whether
our annuity model of Definition 12.1 fits the given data or not. Results for
Australian data, as given in Chapter 15, strongly suggest that the proposed model
is suitable. Furthermore, we recall some classical model selection approaches.

For the following sections in this chapter assume that we are given data as described in
Assumptions 12.3 and 12.5 and assume that model parameters have been estimated by means
of a method described in Section 12. If any of the following validation approaches suggests
misspecification in the model or if parameter estimation does not seem to be accurate, one
possibility to tackle these problems is to reduce risk factors, i.e., merge death causes. A
more formal approach would be a reduction of risk factors via principal component analysis
or independent component analysis, see, e.g., Hyvärinen, Karhunen and Oja [66]. That
being said, we would unfortunately lose the direct interpretation of risk factors as death
causes.

17.1 Validation via cross-covariance

Having estimated all model parameters in our annuity model of Definition 11.11, transform
the data as described in Remark 12.23 such that we may assume that sequence of number
of deaths (N ′a,g,k(t))t∈{1,...,T} of age category a ∈ {1, . . . , A}, gender g ∈ {f,m} and cause
k ∈ {0, . . . ,K} is i.i.d. over time. Therefore, we may drop time parameter t for notational
convenience. Based on Equation (11.17) and Assumption 12.5, for every a ∈ {1, . . . , A},
g ∈ {f,m}, as well as k ∈ {0, . . . ,K}, we may deduce that

Var(N ′a,g,k) =

{
ma,g qa,gwa,g,0 for k = 0 ,

ma,g qa,gwa,g,k + (ma,g qa,gwa,g,k )2σ2
k else ,

(17.1)

and, for all a′ ∈ {1, . . . , A}, g′ ∈ {f,m} with a 6= a′ or g 6= g′ and k ∈ {1, . . . ,K}, based on
Equation (11.17) we get

Cov(N ′a,g,k, N
′
a′,g′,k) =

∑
i∈Ma,g

∑
i′∈Ma′,g′

Cov(N ′i,k, N
′
i′,k)

= ma,gma′,g′ qa,g qa′,g′wa,g,kwa′,g′,kσ
2
k ,

(17.2)
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where |Ma,g| = ma,g and |Ma′,g′ | = ma′,g′ . When death probabilities, weights, and risk
factor variances are derived via Markov chain Monte Carlo (MCMC), see Section 12.4, we
can use the samples from the Markov chains to derive quantiles, e.g., five and 95 percent
quantiles, of (17.1) and (17.2). Then, these bounds can be compared to corresponding
sample variances

sa,g,k :=
1

T − 1

T∑
t=1

(n′a,g,k(t)− n′a,g,k)2 ,

where n′a,g,k := 1/T
∑T

s=1 n
′
a,g,k(s), and to corresponding sample covariances

qa,g,a′,g′,k :=
1

T − 1

T∑
t=1

(n′a,g,k(t)− n′a,g,k)(n′a′,g′,k(t)− n′a′,g′,k) ,

for all a, a′ ∈ {1, . . . , A} and g, g′ ∈ {f,m}, as well as k ∈ {0, . . . ,K} with a 6= a′ or g 6= g′.
Note that estimators corresponding to these estimates for variances and covariances are
unbiased.

Remark 17.3 (Example of Chapter 15, continued). Applying the validation procedure for
cross-covariances as described above to the example of Chapter 15, we get that 45.9 percent
of all sample variances and covariances lie within the five and 95 percent quantiles of (17.1)
and (17.2), respectively, based on our derived MCMC chain. Thus, roughly half of all
variances Var(N ′a,g,k) and covariances Cov(N ′a,g,k, N

′
a′,g′,k) are accepted on a 10 percent

significance level.

17.2 Validation via independence

One major outcome of our modelling approach is that death counts for different death
cause intensities are independent as independent risk factors are assumed. Thus, for
all a, a′ ∈ {1, . . . , A} and g, g′ ∈ {f,m}, as well as k, k′ ∈ {0, . . . ,K} with k 6= k′ and
t ∈ {1, . . . , T}, we have

Cov(Na,g,k(t), Na′,g′,k′(t)) = 0 .

Having estimated all model parameters in our annuity model of Definition 11.11 by means
of Chapter 12, transform the data as described in Remark 12.20 and subsequently normalise
the transformed data, given Var(N ′a,g,k(t)|Λk(t)) > 0 a.s., as follows:

N∗a,g,k(t) :=
N ′a,g,k(t)− E[N ′a,g,k(t)|Λk(t)]√

Var(N ′a,g,k(t)|Λk(t))
=
N ′a,g,k(t)−ma,g qa,gwa,g,kΛk(t)√

ma,g qa,gwa,g,kΛk(t)
,

for a ∈ {1, . . . , A}, g ∈ {f,m}, k ∈ {0, . . . ,K} and t ∈ {1, . . . , T} with Λ0(t) := 1. Using
the conditional central limit theorem as discussed in Grzenda and Zi

‘
eba [59], we have

N∗a,g,k(t) → N(0, 1) in distribution as ma,g(t) → ∞ where N(0, 1) denotes the standard
normal distribution. Thus, using estimates for parameters α, β, ζ, η, u, v, φ, ψ and λ, indicated
by a hat and obtained by one of the methods described in Chapter 12, we get estimates for
death probabilities and weights via Assumption 12.12 such that normalised death counts
n∗a,g,k(t) are given by

n∗a,g,k(t) =
n′a,g,k(t)−ma,g q̂a,g ŵa,g,k λ̂k(t)√

ma,g q̂a,g ŵa,g,k λ̂k(t)
,
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for all a ∈ {1, . . . , A}, g ∈ {f,m}, k ∈ {0, . . . ,K} and t ∈ {1, . . . , T} with λ̂0(t) := 1. Then,
assuming that each pair (N∗a,g,k(t), N

∗
a′,g′,k′(t)) for a, a′ ∈ {1, . . . , A} and g, g′ ∈ {f,m}, as

well as k, k′ ∈ {0, . . . ,K} with k 6= k′ and t ∈ {1, . . . , T} has a joint normal distribution with
some correlation coefficient ρ and standard normal marginals, we may derive the sample
correlation coefficient

Ra,g,a′,g′,k,k′ :=

∑T
t=1(N∗a,g,k(t)−N∗a,g,k)(N∗a′,g′,k′(t)−N∗a′,g′,k′)√∑T

t=1(N∗a,g,k(t)−N∗a,g,k)2
∑T

t=1(N∗a′,g′,k′(t)−N∗a′,g′,k′)2
,

where N∗a,g,k := 1/T
∑T

s=1N
∗
a,g,k(s). Then, the test of the null hypothesis ρ = 0 against

the alternative hypothesis ρ 6= 0 rejects the null hypothesis at an δ-percent level, see, for
example, Lehmann and Romano [79, Chapter 5.13], when

|Ra,g,a′,g′,k,k′ |√
(1−R2

a,g,a′,g′,k,k′)/(T − 2)
> Kδ,T , (17.4)

with Kδ,T such that
∫∞
Kδ,T

tT−2(y) dy = δ/2 where tT−2 denotes the density of a t-distribution

with (T −2) degrees of freedom. Note that in this case we test for correlation. If a significant
correlation is present, one can always merge several death causes and look whether the model
fits better afterwards. Various other non-parametric tests for independence are mentioned
in the literature where rank tests are the most popular ones. See Feuerverger [47], as well as
Lehmann and Romano [79, Chapter 6.8] for details about rank tests and further references.

Remark 17.5 (Example of Chapter 15, continued). Applying the validation procedure for
independence as described above to the example of Chapter 15, we get that 88.9 percent of
all independence tests, see (17.4), are accepted at a five percent significance level. Thus, we
may assume that our model fits the data suitably with respect to independence amongst
death counts due to different causes.

17.3 Validation via serial correlation

Note that Assumption 12.1(b) guarantees that the sequence (Na,g,k(t))t∈{1,...,T} is indepen-
dent and thus uncorrelated for all a ∈ {1, . . . , A}, g ∈ {f,m} and k ∈ {0, . . . ,K}. Using the
same data transformation and normalisation as in Section 17.2, we may assume that random
variables (N∗a,g,k(t))t∈{1,...,T} are identically and standard normally distributed. Then, we
can check for serial dependence and autocorrelation in the data. If we find such dependence
structures, then the model specifications will probably not fit the data. Many tests are
available most of which assume an autoregressive model with normal errors such as the
Breusch–Godfrey test, see Godfrey [56]. For the Breusch–Godfrey test a linear model is fitted
to the data where the residuals are assumed to follow an autoregressive process of length
p ∈ N. Then, (T − p)R2 asymptotically follows a χ2 distribution with p degrees of freedom
under the null hypothesis that there is no autocorrelation. In ‘R’, an implementation of the
Breusch–Godfrey is available within the function bgtest in the ‘lmtest’ package, see [133].

Remark 17.6 (Example of Chapter 15, continued). Applying the validation procedure for
serial correlation based on the Breusch–Godfrey test as described above to the example of
Chapter 15, the null hypothesis, i.e., that there is no serial correlation of order 1, 2, . . . , 10,
is not rejected at a five percent level in 93.8 percent of all cases. Again, this is an indicator
that our model with trends for weights and death probabilities fits the data suitably
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Beyond serial correlation, it may be interesting to look at serial effects over different
death causes and age categories as there may be causalities between a reduction in deaths
due to certain death causes and a possibly lagged increase in different ones. Note that we
already remove a lot of dependence via time-dependent weights and death probabilities. As
illustrated in Figure 1.1, such serial effects are visible in the case of mental and behavioural
disorders and circulatory diseases. In the context of health care systems it is crucial to pay
attention to such dependent developments as, for example, duration and costs of geriatric
care heavily depend on underlying diseases.

17.4 Validation via risk factor realisations

In our annuity model, risk factors Λ are assumed to be independent and identically gamma
distributed with mean one and variance σ2

k for every k ∈ {1, . . . ,K}, Λk(1), . . . ,Λk(t). Based
on these assumptions, we can use estimates for risk factor realisations λ to judge whether our
model adequately fits the data. These estimates can either be obtained via MCMC based
on the maximum a posteriori setting or by Equations (12.42) or (12.48). Given estimates
λ̂ := λ̂MAP of risk factor realisations λ we may use following two different approaches.

First, for each k ∈ {1, . . . ,K}, we may check whether estimates λ̂k(1), . . . , λ̂k(T ) suggest
a rejection of the null hypothesis that they are sampled from a gamma distribution with
mean one and variance σ2

k. The classical way is to use the Kolmogorov–Smirnov test, see,
for example, Lehmann and Romano [79, Chapter 6.13] and the references therein, as well
as Footnote 71. In ‘R’ an implementation of this test is provided by the ks.test function,
see [99]. The null hypotheses is rejected as soon as the test statistic supx∈R |FT (x)− F (x)|
exceeds the corresponding critical value where FT denotes the empirical distribution function
of samples λ̂k(1), . . . , λ̂k(T ) and where F denotes the gamma distribution function with
mean one and variance σ2

k. Secondly, we can test whether the independence assumption
amongst Λ1(t), . . . ,ΛK(t) for each t ∈ {1, . . . , T} can be accepted via some non-parametric
test for independence as, for example, shown in Lehmann and Romano [79, Chapter 6.8]
and Feuerverger [47].

Remark 17.7 (Example of Chapter 15, continued). Testing whether risk factor realisations
are sampled from a gamma distribution via the Kolmogorov–Smirnov test as described
above gives acceptance of the null hypothesis for all ten risk factors on all suitable levels of
significance. Note that, as we fit risk factors to given data, it is not surprising that all null
hypotheses are accepted.

17.5 Model selection

As briefly discussed in Remark 12.18, our proposed setup may lead to models with several
hundred parameters and may therefore be over-parametrised. Nevertheless, the modelling
setup always depends on the ultimate goal. For example, if the development of all death
causes is of interest, then a reduction of risk factors is not wanted. On the contrary, in the
context of annuity portfolios several risk factors may be merged to one risk factor as their
contributions to the risk of the total portfolio are small. To decide which model to use,
model choice criteria, as described below, should be used. In our case, we have the problem
that a reduction in risk factors leads to a different data structure and, therefore, information
criteria cannot be applied straight away. In this section we describe some approaches how
the problem of selecting a suitable model can be addressed.
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First we give a short recap of some major information criteria for given model parameters
θ with likelihood function `(n |θ) and with corresponding maximum likelihood estimate
θ̂ := θ̂MLE. Upper case Θ denotes estimators in a Bayesian setting corresponding to θ. The
classical Akaike information criterion (AIC), see Akaike [5], based on the Kullbeck–Leibler
mean information, is given by

AIC := 2q − 2 log `
(
n
∣∣ θ̂)

where q = K + 4A + 4AK is the number of model parameters in our setup and `(n |θ)
is the likelihood function given by Equation (12.52), evaluated at its maximum θ̂. The
Bayesian information criterion (BIC), also called Schwarz’ information criterion, gives
another asymptotic criterion for model selection. Invoking Robert [102, Section 7], it is
defined as

BIC := q (log T + log 2π)− 2 log `
(
n
∣∣ θ̂)

where, in addition, T denotes the sample size of of the data n. A Bayesian alternative to
the two criteria described above is the deviance information criterion (DIC). It is defined
as, see Robert [102, Section 7] and the references therein,

DIC := 2(E[D(Θ)|N = n]−D(E[Θ|N = n])) +D(E[Θ|N = n]) , (17.8)

given data N = n and deviance

D(z) := −2 log `(n |z) + C , z ∈ Rk ,

with C being a constant, common to all candidate models, which may therefore be chosen
arbitrarily. The close relationship of DIC to AIC is obvious. Expectations in (17.8) can be
approximated using MCMC samples from parameter estimation. All the above information
criteria have a term which penalises a higher number of model parameters, i.e., a measure of
complexity, and they have a term which rewards for high values of the likelihood function,
i.e., a measure of goodness of fit. Finally, we choose the model specification with lowest
AIC, BIC or DIC. Using these approaches and the likelihood function given in (12.52), we
can now select amongst different parameter families of weights and death probabilities, see
Remark 12.12, for which AIC, BIC or DIC is minimised. We can also use AIC, BIC and
DIC to select an optimal number of risk factors in our model under the premise that we are
just interested in the number of people dying and not in the development of certain death
causes. Therefore, for notational convenience, define N∗ := (N∗a,g(t)) ∈ NA×2×T

0 with

N∗a,g(t) =

K∑
k=1

Na,g,k(t) ,

for all a ∈ {1, . . . , A}, g ∈ {f,m}, k ∈ {1, . . . ,K} and t ∈ {1, . . . , T}. We can then derive
the likelihood function corresponding to N∗ via convolution of the joint likelihood function
(12.52). In applications we suggest to use fast Fourier transform (FFT) methods to derive
these convolutions. Again, we may choose the number of risk factors such that AIC, BIC or
DIC is minimised.
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Chapter 18

Conclusion to Risk Aggregation
with Applications to Credit and
Life Insurance

We develop a model, based on the collective risk model extended CreditRisk+, to derive loss
distributions of annuity and life insurance portfolios over one period. Death probabilities
are incorporated stochastically into the model and dependence is introduced via common
stochastic risk factors. Yet, there exists a fast and numerically stable algorithm to derive
loss distributions exactly, even for large portfolios. Furthermore, it is possible to derive
various risk measures of the total loss distribution exactly, including value at risk and
expected shortfall. Such a risk management tool is required by many regulators in the
financial industry. We provide various estimation procedures based on publicly available data.
Methods range from matching of moments, maximum a posteriori to maximum likelihood.
The latter two require the use of Markov chain Monte Carlo due to high dimensionality in
common settings. We briefly analyse different sources of risk which are captured by our
model. Based on Australian mortality data from 1997 to 2011, we provide a real world
example with corresponding estimation results. Furthermore, we show more applications of
our annuity model including scenario analysis, as well as mortality forecasts and population
forecasts as otherwise mortality is overestimated. In particular, we see that it is crucial
to consider mortality trends in our annuity model when considering long-term forecasts.
For completeness, we give different model validation techniques and briefly recall some
model selection tools. Model validation techniques suggest that our model suitably fits
Australian data. In the appendix we give scope to the most general version of our model
with multi-level dependence structures where estimation procedures are subject to current
research.

To summarise, our approach provides a useful risk management tool to analyse annuity
and life insurance portfolios where mortality is modelled stochastically. The model allows
for various other applications, including forecasts. Besides its complexity, it is still easy to
interpret and easy to explain—also to non-mathematicians—as the concept of risk factors is
common in economics.
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Chapter 19

Appendix to Risk Aggregation
with Applications to Credit and
Life Insurance

This chapter deals with several issues. In Section 19.1 we provide the most
general form of extended CreditRisk+ and recall the corresponding algorithm
for deriving loss distributions exactly. In Section 19.2 we give an introductory
example which should convince the reader that multiple deaths in our annuity
model are not a major issue. In Section 19.3 we list all estimates of the real world
example given in Chapter 15. Finally, in Section 19.4 we provide Australian
male and female life tables for 2013 based on Example 16.17.

19.1 Extended CreditRisk+

19.1.1 General model and Panjer’s recursion

As mentioned in Section 11.3, there exist several extensions to our annuity model. Therefore,
we shortly introduce the most general case of extended CreditRisk+ based on the results in
Schmock [111, Section 6]. Estimation procedures for the general model are subject to future
research. Besides risk groups and dependence scenarios, interpretations of all quantities
stay the same as in Chapter 11. Risk groups are used to model joint deaths of several
policyholders simultaneously. Further dependence is introduced via a linear dependence
structure amongst death causes and via dependence scenarios. For notational purposes,
note that the usage of the term risk factor slightly changes in the general case in contrast
to the independent case, see Section 11.2. We provide definitions for a portfolio of annuity
payments which need not be paid in the case of death to get the loss S′ corresponding to
the sum S in Definition 11.8.

Definition 19.1 (Extended annuity model, quantities). Consider a probability space
(Ω,F ,P) such that all following random variables are well-defined. Then, we assume the
following:

(a) Let 1, . . . ,m, with m ∈ N, denote all policyholders and let the collection G denote
non-empty subsets of all policyholders which are subject to joint death where, for each
g ∈ G, the death probability is given by q∗g and set qg := − log(1− q∗g).
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(b) Consider C ∈ N non-idiosyncratic death cause intensities Λ1, . . . ,ΛC as well as K ∈ N
risk factors R1, . . . , RK .

(c) Consider a non-empty finite set J of dependence scenarios and a probability distribution
on J with corresponding random variable J .

(d) For each dependence scenario j ∈ J , consider a (C + 1)× (K + 1)-dimensional matrix
Aj = (ajc,k)c∈{0,...,C},k∈{0,...,K} with non-negative entries where aj0,k = 0 for all j ∈ J
and k ∈ {1, . . . ,K}.

(e) For the random matrix AJ :=
∑

j∈J Aj 1{J=j}, non-negative death cause intensities
Λ1, . . . ,ΛC are given by

Λc = aJc,0 +
K∑
k=1

aJc,kRk , c ∈ {1, . . . , C} .

(f) Correspondingly, for all g ∈ G and j ∈ J , let idiosyncratic weights be denoted by
w0,g,j ∈ [0, 1] and let non-idiosyncratic weights be denoted by wc,g,j ∈ [0, 1], for

c ∈ {1, . . . , C} such that
∑C

c=0wc,g,j = 1.

(g) Let the N0-valued random variables Nc,g,j denote the number of deaths due to death
cause c ∈ {0, . . . , C} of risk group g ∈ G, as well as scenario j ∈ J and define

Nc,g :=
∑
j∈J

Nc,g,j 1{J=j} .

(h) For every group g ∈ G, every death cause c ∈ {0, . . . , C}, every dependence scenario
j ∈ J and dimension d ∈ N, let the (Nd0)g-valued i.i.d. sequence (Yc,g,i,j,n)i∈g with n ∈ N
denote the annuity payments to the respective policyholder in the following period
which need not be paid due to death of death cause c. They are independent of all other
random variables and they may also include the discounted actuarial reserve, as well as
different lines of business, see Remark 11.6.

(i) The cumulative loss is then given by

S′ :=
∑
j∈J

1{J=j}
∑
g∈G

C∑
c=0

Nc,g,j∑
n=1

∑
i∈g

Yc,g,i,j,n .

Based on these quantities, we consider some probabilistic assumptions to guarantee the
existence of a stable numerical algorithm to derive the loss distribution of S′ exactly.

Definition 19.2 (Generalised annuity model). Given Definition 19.1, we assume the
following:
(a) Conditioned on J , the N0-valued random variables (N0,g)g∈G are independent from one

another and from all other random variables and their joint distribution is given by

P
( ⋂
g∈G
{N0,g = n0,g}

∣∣∣∣ J) =
∏
g∈G

e−qgw0,g,J a
J
0,0

(qgw0,g,J a
J
0,0)n0,g

n0,g!
a.s.,

for all n0,g ∈ N0 and g ∈ G.
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19.1. Extended CreditRisk+

(b) Risk factors R1, . . . , RK are independent and gamma distributed with mean ek > 0 and
variance σ2

k > 0. For all k ∈ {1, . . . ,K}, the degenerate case σ2
k = 0 is also allowed.

(c) Conditioned on the random variables J,R1, . . . , RK , the N0-valued random variables
(Nc,g)c∈{1,...,C},g∈G are independent and their joint distribution is given by

P
( ⋂
g∈G

C⋂
c=1

{Nc,g = nc,g}
∣∣∣∣ J,R1, . . . , RC

)
=
∏
g∈G

C∏
c=1

e−qgwc,g,J Λc (qgwc,g,J Λc)
nc,g

nc,g!
a.s.,

for all nc,g ∈ N0 with c ∈ {1, . . . , C} and g ∈ G.

(d) The random variables R1, . . . , RK and the scenario random variable J are independent.

(e) E[w0,g,J a
J
0,0 +

∑C
c=1wc,g,J Λc] = 1.

With such a setting, death cause intensities can be dependent by means of a linear
dependence structure and dependence scenarios. In particular, many correlation structures
amongst death causes are possible to achieve. Also, in this more general case, there exists a
numerically stable algorithm which is based on iterated Panjer’s recursion to derive loss
distributions exactly, similarly as in Lemma 11.19. For further details see Schmock [111].

Definition 19.3. Given the generalised annuity model of Definitions 19.1 and 19.2, for
notational convenience in the next lemma, first define probability distributions of group
losses

qc,g,j,ν :=
∑

µ=(µi)i∈g∈(Nd0)g∑
i∈g µi=ν

P(Yc,g,i,j,1 = µi for all i ∈ g) ,

for all c ∈ {0, . . . , C}, g ∈ G, j ∈ J and ν ∈ Nd0. Then, define the cumulative Poisson
intensity

λj,k,ν :=
∑
g∈G

q∗g

C∑
c=0

wc,g,j a
j
c,k qc,g,j,ν ,

for loss size ν ∈ Nd0 \ {0} due to risk factor k ∈ {0, . . . ,K} and dependence scenario j ∈ J ,
as well as, correspondingly, the cumulative Poisson intensity for non-zero losses

λ̄j,k :=
∑
ν∈Sj,k

λj,k,ν ,

where Sj,k := {ν ∈ Nd0 \ {0}|λj,k,ν > 0}. If λ̄j,k > 0 for dependence scenario j ∈ J and
k ∈ {0, . . . ,K}, define

qj,k,ν :=

{
λj,k,ν/λ̄j,k for all ν ∈ Nd0 \ {0} ,

0 for ν = 0 ∈ Nd0 ,

as well as, if λ̄k = 0,

qj,k,ν :=

{
0 for all ν ∈ Nd0 \ {0} ,

1 for ν = 0 ∈ Nd0 .
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Finally, for all j ∈ J and k ∈ {0, . . . ,K}, pj,k := λ̄j,kσ
2
k/(ek + λ̄j,kσ

2
k) ∈ [0, 1) as well as

λj := λ̄j,0 +

K∑
k=1

λ̄j,k
e2
k

ek + λ̄j,kσ
2
k

c(pj,k) ,

where

c(p) :=
∑
n∈N

pn−1

n
=

{
− log(1−p)

p for p ∈ (0, 1) ,

1 for p = 1 .

Note that all definitions also work in the degenerate case σ2
k = 0 for all k ∈ {1, . . . ,K} as

well.

Using Definitions 19.1 and 19.2, we can obtain a generalisation of Lemma 11.19 where
an iterated Panjer algorithm is used to derive loss distributions of our annuity model.

Lemma 19.4. Given the annuity model of Definitions 19.1 and 19.2, there exists a numeri-
cally stable algorithm based on iterated Panjer’s recursion which allows an exact computation
of the probability distribution of S′ up to every desired cumulative probability. More precisely,
P(S′ = 0) =

∑
j∈J exp

(
λj (cj,0 − 1)

)
P(J = j) and, recursively,

P(S′ = ν) =
∑
j∈J

dj,νP(J = j) , ν = (ν1, . . . , νd) ∈ Nd0 \ {0} , (19.5)

with dj,0 = exp
(
λj (cj,0 − 1)

)
and

dj,ν =
λj
νi

∑
n∈Nd0

0<n≤ν

nicj,ndj,ν−n , ν ∈ Nd0 \ {0} , (19.6)

where i ∈ {1, . . . , d} can be chosen arbitrarily such that νi 6= 0 and where 0 < n ≤ ν is
meant in the sense of Footnote 38. Moreover, if λj > 0 for scenario j ∈ J ,

cj,ν =
1

λj

(
λ̄j,0qj,0,ν +

K∑
k=1

bj,k,ν λ̄j,k
e2
k

ek + λ̄j,kσ
2
k

c(pj,k)

)
, ν ∈ Nd0 , (19.7)

where, for all k ∈ {1, . . . ,K}, bj,k,0 = qj,k,0c(pj,k qj,k,0)/c(pj,k) and

bj,k,ν =
1

1− pj,k qj,k,0

(
qj,k,ν
c(pj,k)

+
pj,k
νi

∑
n∈Sj,k,
n≤ν

(νi − ni)qj,k,n bj,k,ν−n
)
, (19.8)

for all ν ∈ Nd0 \ {0}, where i ∈ {1, . . . , d} is chosen such that νi 6= 0. Conversely, if λj = 0
for dependence scenario j ∈ J ,

cj,ν =

{
0 for ν ∈ Nd0 \ {0} ,

1 for ν = 0 ∈ Nd0 .

Proof. A detailed derivation is given in Schmock [111, Section 6.6].
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19.1.2 Pseudo implementation of the algorithm

In this section we provide a pseudo implementation of the iterated Panjer algorithm within
CreditRisk+ which is described in Lemma 19.4. The algorithm for the simple annuity model
works simultaneously, see Lemma 11.19, in which case we have G = {{1}, . . . , {m}}, one
dependence scenario j, as well as K = C with aJc,k = 1{c}(k) for all c, k ∈ {1, . . . , C}.

Input: Quantities given in Definitions 19.1 and 19.2.
Output: Exact distribution of S′ up to value ν∗ ∈ Nd0 exceeding some cumulative

level δ ∈ (0, 1)d, i.e., P(S′ ≤ ν∗) ≥ δ.
1 for c ∈ {0, . . . , C}, g ∈ G, j ∈ J and ν ∈ Nd0, see Definition 19.3, do
2 derive qc,g,j,ν ;
3 derive λj,k,ν ;
4 derive λ̄j,k, qj,k,ν ;
5 derive pj,k;
6 derive λj ;

7 end
8 for j ∈ J and k ∈ {0, . . . ,K} do
9 initialise bj,k,0 = qj,k,0c(pj,k qj,k,0)/c(pj,k);

10 initialise cj,0, see Equation (19.7);
11 initialise dj,0 = exp

(
λj (cj,0 − 1)

)
;

12 end
13 initialise P(S′ = 0) =

∑
j∈J exp

(
λj (cj,0 − 1)

)
P(J = j);

14 for ν = 0 to ν∗, see Footnote 38, do
15 for j ∈ J and k ∈ {0, . . . ,K} do
16 derive bj,k,ν , as well as cj,ν and store them;
17 derive dj,ν ;

18 end
19 derive P(S′ = ν) =

∑
j∈J dj,νP(J = j) and go to next ν;

20 end

Algorithm 19.1: Extended CreditRisk+ algorithm

Remarks 19.9. (Some notes on Algorithm 19.1).

(a) Note that for distributions Yc,g,i,j,1 with infinite support, calculation of qc,g,j,ν has to be
stopped at some suitable level of approximation.

(b) For the derivation of bj,k,ν and dj,ν we have to recall previous values bj,k,n, cj,n and dj,n
for certain 0 ≤ n ≤ ν. Thus, these values have to be stored for further usage in this
recursive procedure.

(c) In the one-dimensional case when going to the next ν ∈ N0, we just take the consecutive
integer. In the multi-dimensional case when going to the next ν ∈ Nd0, one has to go
through the space Nd0 such that no values required for the recursions in (19.6) and (19.8)
are left out. Of course, for d ≥ 2, there are multiple possibilities of how to jump through
Nd0. Note that this procedure quickly becomes time-consuming for higher dimensions
which is why we suggest to choose a maximum dimension of d = 3.
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19.2 Introductory example justifying multiple deaths

The main purpose of this simple example is to convince the reader that the setup with
multiple deaths is suitable for large portfolios and that it gives accurate results, combined
with an highly efficient algorithm. We use notation and assumptions as introduced in
Chapter 11. Consider a portfolio of m = 1 000 policyholders with annuity payments made
continuously over time. In the case of survival, independent annuity payment X1, . . . , Xm

follow a log-normal distribution with parameters µ = 4 and σ = 0.5, i.e., roughly with
mean 61.87 and standard deviation 42.52. The independent random variables Y1, . . . , Ym,
i.e., the amounts which need not be paid in the case of death, take the form Yi = UiXi,1

for all i ∈ {1, . . . ,m} where Xi,1 and Xi share the same distribution, as well as where
Ui is uniformly distributed on (0, 1] and independent of all other random variables, also
see Remark 11.6(c). Moreover, all policyholders i ∈ {1, . . . ,m} share an annual death
probability of q∗ = 0.05.

Table 19.1: Value at risk (top) and expected shortfall (bottom) for various levels δ of gains S∗

and S in our example with N∗i being Bernoulli distributed and Ni being Poisson distributed
with P(Ni = 0) = 1− q∗ (Poisson) and E[Ni] = q∗ (Poisson’), indicated by prime, based on
10 000 simulations. 95 percent binomial confidence intervals are given in brackets. Bounds
are given for S∗ with P(Ni = 0) = 1− q∗ based on the Kolmogorov–Smirnov distance and
the Wasserstein metric.

Bernoulli Poisson Poisson’
lower

bound
upper
bound

level δ value at risk qδ(·)

0.01
1 007.87

(−19.1;+12.2)
1 005.16

(−16.3;+21.5)
985.88

(−16.6;+15.4) 827.59 1 061.85

0.05
1 174.09

(−9.6;+10.1)
1 170.17

(−9.4;+9.9)
1 138.79

(−9.8;+8.9) 1 151.59 1 197.17

0.15
1 325.84

(−7.3;+8.3)
1 324.91

(−7.0;+7.4)
1 292.84

(−7.0;+7.8) 1 315.73 1 334.80

0.85
1 922.95

(−10.0;+11.0)
1 925.94

(−7.9;+9.7)
1 881.84

(−9.2;+12.0) 1 911.71 1 934.97

0.95
2 114.15

(−11.9;+14.7)
2 139.00

(−13.8;+16.9)
2 077.45

(−15.5;+16.0) 2 089.59 2 144.82

0.99
2 333.72

(−18.0;+22.8)
2 373.00

(−19.2;+30.3)
2 300.47

(−20.9;+31.7) 2 257.98 2619.87

level δ expected shortfall ESδ[·]

0.01 1 631.45 1 634.92 1 592.58 1 624.19 1 638.71

0.05 1 653.46 1 657.15 1 614.30 1 645.89 1 661.02

0.15 1 699.61 1 704.01 1 660.16 1 691.15 1 708.07

0.85 2 090.60 2 105.27 2 051.30 2 042.66 2 138.53

0.95 2 257.61 2 285.17 2 222.59 2 113.82 2 401.41

0.99 2 483.49 2 512.10 2 452.86 1 764.52 3 202.45

Based on Monte Carlo, our aim is to compare empirical distributions of the following
two models: For the first model, i.e., the exact model, N∗1 , . . . , N

∗
m denote Bernoulli random

variables with P(N∗i = 1) = 1−P(N∗i = 0) = q∗ and where Xi = Xi,1 a.s. for all policyholders

i ∈ {1, . . . ,m}. Thus, we are interested in the sums S∗ =
∑m

i=1

∑N∗i
j=1 Yi =

∑m
i=1N

∗
i Yi and
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L∗ =
∑m

i=1Xi − S∗. Note that, for sums and death counts, an asterisk indicates the model
with Bernoulli distributed deaths. For the second model, number of deaths N1, . . . , Nm are
Poisson random variables with P(Ni = 0) = 1− q∗ for all policyholders i ∈ {1, . . . ,m} and
we are interested in the sums S =

∑m
i=1

∑Ni
j=1 Yi,j and L =

∑m
i=1Xi − S where (Yi,j)j∈N are

independent copies of Yi. Table 19.1 lists quantiles for S∗ and S using 10 000 simulations
with the given model specifications. Quantiles for the model with Poisson distributed deaths
with specification E[Ni] = q∗, indicated by a prime, are also listed. Obviously, the latter
specification does not show a good fit for quantiles in the left tail of S which is why we
suggest to use specification P(Ni = 0) = 1− q∗ for most applications. In brackets, based
on our simulation, conservative 95 percent binomial confidence intervals for value at risk
estimates are given, i.e., intervals such that with a probability of at least 95 percent the true
value of value at risk is in this interval. The method to calculate these confidence intervals
can be found in Shevchenko [114, Section 3.2.1]. Based on the empirical distributions of S∗

and S, the estimated Kolmogorov–Smirnov distance is 0.0089 and the estimated Wasserstein
distance with Euclidean metric is 7.1897.71 Based on these distances we can derive bounds
for value at risk and expected shortfall for the model with Poisson distributed deaths as
shown in Tables 19.1 and 19.3, see Schmock [111, Section 7]. Note that these bounds are
just estimates as we use simulation. As we can see in Table 19.1, the fit of our model with
multiple deaths is good on all levels for value at risk, as well as expected shortfall given
scaling P(Ni = 0) = 1− q∗ of Definition 11.2.

Table 19.2: Kolmogorov–Smirnov and Wasserstein distance between empirical loss distri-
butions L∗ and L based on 10 000 simulations with Bernoulli distributed deaths N∗i and
Poisson distributed deaths Ni with P(Ni = 0) = 1 − q∗ using three different dependence
assumptions.

Poisson
indep.

Poisson
comon.

Poisson
countermon.

Kolmogorov–Smirnov distance 0.0111 0.0587 0.0850

Wasserstein distance 17.2716 220.6057 244.2475

Calculating the total loss L =
∑m

i=1Xi − S now raises the question which form of
dependence we should assume between

∑m
i=1Xi and S. We try three types of dependence:

independence, comonotonicity and countermonotonicity. For the notions of comonotonicity
and countermonotonicity and their applications in risk management see, for example, McNeil,
Frey and Embrechts [85]. To achieve the results for comonotonicity and countermonotonicity,
we order all simulations of

∑m
i=1Xi and S and then simply subtract them. For comonotonicity

both simulations are ordered ascending and for countermonotonicity one of them has to be
ordered in a descending manner. For the results based on independence, we simply add the
two empirical distributions of

∑m
i=1Xi and S as they are simulated independently in the

case of Poisson distributed deaths. Table 19.2 illustrates the fit for each form of dependence
between the empirical distributions of

∑m
i=1Xi and S. As already illustrated earlier, it

71 For information and definitions of Kolmogorov-Smirnov and Wasserstein distances—or metrics, more
precisely—see Schmock [111]. For the derivation of the Kolmogorov–Smirnov distance we use the function
ks.test in ‘R’ of the ‘stats’ package [99] and for the derivation of the Wasserstein distance we use the function
emd in ‘R’ of the ‘emdist’ package [122]. The latter calculates the so-called earth mover’s distance which is
equivalent to the Wasserstein distance. The emd-function struggles with the high number of simulations
which is why we derive an estimate with just half the simulation points.
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shows that the fit of our model with multiple deaths compared to the exact model with
Bernoulli distributed deaths is good, in particular under the assumption of independence
between total loss

∑m
i=1Xi and S with scaling P(Ni = 0) = 1− q∗ for all i ∈ {1, . . . ,m}.

Table 19.3: Value at risk, expected shortfall for various levels for L∗ and L with Bernoulli
distributed deaths N∗i and Poisson distributed deaths Ni with with scaling P(Ni = 0) = 1−q∗
and the independence assumption based on 10 000 simulations. 95 percent binomial confidence
intervals are given in brackets. Bounds are given for L∗ based on the Kolmogorov–Smirnov
distance and the Wasserstein metric.

Bernoulli
Poisson

indep.
lower

bound
upper
bound

level δ value at risk qδ(·)

0.01
57 779.56

(−72.1;+81.0)
57 652.29

(−97.3;+94.1) na 58 086.67

0.05
58 488.73

(−46.4;+48.9)
58 446.92

(−51.1;+45.6) 58 368.24 58 602.89

0.15
59 147.69

(−29.6;+27.3)
59 104.49

(−24.1;+32.0) 59 093.03 59 195.15

0.85
61 335.62

(−34.2;+30.1)
61 346.01

(−29.3;+37.2) 61 282.05 61 381.12

0.95
61 968.83

(−39.7;+44.6)
62 010.18

(−35.4;+46.6) 61 868.21 62 106.98

0.99
62 716.55

(−63.7;+76.5)
62 771.25

(−67.8;+71.5) 62 375.86 na

level δ expected shortfall ESδ[·]

0.01 60 271.07 60 268.95 60 253.62 60 288.52

0.05 60 357.74 60 359.50 60 339.55 60 375.92

0.15 60 533.86 60 539.55 60 513.54 60 554.18

0.85 61 921.29 61 958.56 61 806.14 62 036.43

0.95 62 545.90 62 604.26 62 200.47 62 891.33

0.99 63 695.59 63 781.38 61 968.44 65 422.75

Obviously, the model where
∑m

i=1Xi and S are independent fits better compared to
the models using comonotonicity and countermonotonicity. In Table 19.3 we therefore
list quantiles for the simulated total portfolio loss L with Poisson distributed deaths Ni

under the assumption of independence against the simulated portfolio loss L∗ with Bernoulli
distributed deaths N∗i . As in Table 19.1, conservative 95 percent binomial confidence
intervals for value at risk estimates are given in brackets. Estimated Kolmogorov–Smirnov
distance and Wasserstein distance with Euclidean metric between L and L∗ are then used
to drive bounds for quantiles and expected shortfall of the loss with Poisson distributed
deaths as given in Schmock [111, Section 7].

One possible justification why independence fits very well is the comparison of standard
deviations of the different approaches. Table 19.4 shows standard deviations of our model
with different dependence assumptions based on our simulations, as well as true standard
deviations, given by Formulas (19.10) and (19.11). The cases of comonotonicity and counter-
monotonicity between

∑m
i=1Xi and S always give lower and upper bounds, respectively, for

the variance of its sum, see for example Cheung and Vanduffel [26]. Note the almost perfect
fit between Monte Carlo standard deviations and true standard deviations. To derive true
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standard deviations of the total loss, recall that L∗ denotes the total portfolio loss under
the assumption that N∗i is Bernoulli distributed and that L denotes the total portfolio loss
where Ni is Poisson distributed with P(Ni = 0) = 1− q∗ for all i ∈ {1, . . . ,m}. If

∑m
i=1Xi

and S are independent, then straight-forward calculation yields

Var(L∗) = Var

( m∑
i=1

Xi −
m∑
i=1

NiUiXi

)
=

m∑
i=1

Var(Xi (1−NiUi))

=

m∑
i=1

(
E
[
X2
i

]
E
[
(1−NiUi)

2
]
− E[Xi]

2
(

1− q∗

2

)2)
.

As E[(1−NiUi)
2] = 1− q∗ + E[N2

i ] E[U2
i ] = 1− 2q∗/3 for all i ∈ {1, . . . ,m}, we finally get

Var(L∗) =
m∑
i=1

(
E[X2

i ]
(

1− 2q∗

3

)
− E[Xi]

2
(

1− q∗

2

)2)
. (19.10)

Correspondingly, for the case with Poisson distributed deaths, we have

Var(L) = Var

( m∑
i=1

Xi −
m∑
i=1

Ni∑
j=1

Yi,j

)
=

m∑
i=1

(
Var(Xi)−Var

( Ni∑
j=1

Yi,j

))
.

As E[Ni] = Var(Xi) = − log(1− q∗) =: q for all i ∈ {1, . . . ,m}, Wald’s formula for random
sums gives, see, for example, Schmock [111, Section 4.7.1],

Var

( Ni∑
j=1

Yi,j

)
= E[Ni] Var(Yi,j) + E[Yi,j ]

2 Var(Ni)

= q
(

Var(UiXi,1) + E[UiXi,1]2
)

=
q

3
E
[
X2
i

]
,

which, substituted in the previous equation, implies

Var(L) =

m∑
i=1

(
E[X2

i ]
(

1− q

3

)
− E[Xi]

2
)
. (19.11)

Table 19.4: Empirical standard deviations (stdev.) of L∗ and L for different dependence
assumptions based on 10 000 simulations, as well as true standard deviations.

Bernoulli
exact

Poisson
indep.

Poisson
comon.

Poisson
counter.

empirical stdev. of L∗ and L 1 055.78 1 085.92 1 338.46 754.68

true stdev. of L∗ and L 1 054.66 1 082.21 na na

19.3 Real world MCMC estimation results

In this section we give estimation results for the real world example given in Chapter 15.
We assume a setup with ten common stochastic risk factors and eight age groups for each
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gender which gives 362 model parameters to be optimised. These parameters are estimated
from given Australian death and population data taken from governmental websites, also see
Chapter 15. Table 19.6 gives matching of moments estimates (Match. moments), as well as,
Markov chain Monte Carlo mean estimates (MCMC mean) based on 30 000 samples within
the maximum likelihood setting, standard deviations (Standard dev.), five percent and 95
percent quantiles (5% quantile, 95% quantile), mean acceptance probabilities (Accept. prob.)
and standard errors (Standard error)72 for all parameters. Mode estimates, i.e., parameters
which give the highest value of the log-likelihood function, are not given as they are dominated
by mean estimates. Note that risk factor variances for the matching of moments approach
are estimated via (12.48) and (12.49). Evaluation time is roughly seven hours. If parallelised,

Table 19.5: Legend for age categories and death causes.

index age category death cause

0 not elsewhere (idio.)

1 50–54 years infectious

2 55–59 years neoplasms

3 60–64 years endocrine

4 65–69 years mental

5 70–74 years nervous

6 75–79 years circulatory

7 80–84 years respiratory

8 85+ years digestive

9 external

10 genitourinary

evaluation times of less than 20 minutes can be achieved. For notational convenience, we
identify age categories and death causes with numbers as given in Table 19.5. Parameters
for males are denoted by ‘m’ and for females by ‘f’.

There are two remarkable observations. First, matching of moment estimates show very
good results while being easy and quick to calculate. Secondly, risk factor variances are
small which gives indication that our model and families for trends describe the given data
reasonably well. For further discussion on adequacy of our model see Chapter 17.

Table 19.6: Estimates for our annuity model based on Australian data from 1987 to 2011
using matching of moments, as well as MCMC with 30 000 steps.

para- match. MCMC 5% 95% accept. standard standard
meter moments mean quantile quantile prob. dev. error

α1,m −4.4442 −4.4345 −4.4521 −4.4166 0.2367 0.0108 0.000454
α2,m −3.8659 −3.8523 −3.8667 −3.8374 0.2097 0.0090 0.000386
α3,m −3.3069 −3.2973 −3.3093 −3.2847 0.2277 0.0075 0.000315
α4,m −2.8063 −2.7997 −2.8117 −2.7879 0.2325 0.0072 0.000317
α5,m −2.3290 −2.3220 −2.3344 −2.3100 0.2215 0.0072 0.000325
α6,m −1.8701 −1.8615 −1.8735 −1.8496 0.2462 0.0073 0.000331
α7,m −1.4386 −1.4277 −1.4403 −1.4148 0.2152 0.0077 0.000352
α8,m −0.9461 −0.9353 −0.9485 −0.9229 0.2272 0.0079 0.000367
α1,f −4.9756 −4.9726 −4.9933 −4.9514 0.2190 0.0129 0.000527

72 Defined as in Shevchenko [114, Section 2.12.2] with block size 50.
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Table 19.6: Estimates for our annuity model based on Australian data from 1987 to 2011
using matching of moments, as well as MCMC with 30 000 steps.

para- match. MCMC 5% 95% accept. standard standard
meter moments mean quantile quantile prob. dev. error

α2,f −4.4794 −4.4739 −4.4910 −4.4562 0.2062 0.0107 0.000431
α3,f −4.0017 −3.9956 −4.0091 −3.9812 0.2078 0.0087 0.000346
α4,f −3.5073 −3.5017 −3.5147 −3.4883 0.2948 0.0079 0.000324
α5,f −2.9817 −2.9733 −2.9861 −2.9608 0.2097 0.0077 0.000341
α6,f −2.4342 −2.4248 −2.4375 −2.4124 0.2376 0.0076 0.000339
α7,f −1.8936 −1.8817 −1.8953 −1.8681 0.2206 0.0083 0.000387
α8,f −1.1795 −1.1678 −1.1820 −1.1535 0.2325 0.0087 0.000420
β1,m −0.0256 −0.0263 −0.0275 −0.0251 0.2221 0.0007 0.000032
β2,m −0.0322 −0.0331 −0.0341 −0.0321 0.2472 0.0006 0.000026
β3,m −0.0361 −0.0367 −0.0375 −0.0358 0.1987 0.0005 0.000021
β4,m −0.0358 −0.0362 −0.0370 −0.0354 0.2221 0.0005 0.000021
β5,m −0.0338 −0.0342 −0.0350 −0.0334 0.2378 0.0005 0.000021
β6,m −0.0293 −0.0298 −0.0306 −0.0291 0.2490 0.0005 0.000022
β7,m −0.0229 −0.0236 −0.0245 −0.0228 0.2711 0.0005 0.000023
β8,m −0.0104 −0.0111 −0.0120 −0.0102 0.3262 0.0005 0.000025
β1,f −0.0224 −0.0226 −0.0241 −0.0212 0.1980 0.0009 0.000036
β2,f −0.0265 −0.0269 −0.0281 −0.0257 0.2359 0.0007 0.000029
β3,f −0.0275 −0.0278 −0.0288 −0.0269 0.2238 0.0006 0.000024
β4,f −0.0286 −0.0289 −0.0298 −0.0280 0.2152 0.0005 0.000022
β5,f −0.0278 −0.0283 −0.0292 −0.0274 0.1822 0.0005 0.000023
β6,f −0.0265 −0.0271 −0.0279 −0.0263 0.3295 0.0005 0.000022
β7,f −0.0209 −0.0216 −0.0225 −0.0208 0.2901 0.0005 0.000025
β8,f −0.0077 −0.0084 −0.0095 −0.0075 0.2143 0.0006 0.000028
u1,m,0 −4.0278 −4.0278 na na na na na
u2,m,0 −4.3493 −4.3493 na na na na na
u3,m,0 −4.7611 −4.7611 na na na na na
u4,m,0 −4.8991 −4.8991 na na na na na
u5,m,0 −4.7991 −4.7991 na na na na na
u6,m,0 −4.7306 −4.7306 na na na na na
u7,m,0 −4.6540 −4.6540 na na na na na
u8,m,0 −4.2780 −4.2780 na na na na na
u1,f,0 −4.1212 −4.1212 na na na na na
u2,f,0 −4.3228 −4.3228 na na na na na
u3,f,0 −4.1519 −4.1519 na na na na na
u4,f,0 −4.2093 −4.2093 na na na na na
u5,f,0 −4.2212 −4.2212 na na na na na
u6,f,0 −4.2234 −4.2234 na na na na na
u7,f,0 −4.1600 −4.1600 na na na na na
u8,f,0 −3.9748 −3.9748 na na na na na
u1,m,1 −4.8179 −4.8553 −5.0244 −4.6845 0.2260 0.1051 0.004719
u2,m,1 −5.1691 −5.1501 −5.3070 −5.0039 0.1919 0.0929 0.004050
u3,m,1 −5.2899 −5.2447 −5.4068 −5.0741 0.2383 0.0997 0.004436
u4,m,1 −5.2882 −5.2653 −5.4115 −5.1127 0.2380 0.0898 0.004061
u5,m,1 −5.2476 −5.2205 −5.3438 −5.1013 0.2327 0.0751 0.003330
u6,m,1 −4.9477 −4.9002 −5.0082 −4.7819 0.2392 0.0681 0.003077
u7,m,1 −5.0017 −4.8799 −4.9971 −4.7674 0.2412 0.0674 0.003006
u8,m,1 −4.8736 −4.8231 −4.9188 −4.7221 0.2608 0.0598 0.002636
u1,f,1 −5.3563 −5.2237 −5.4843 −4.9573 0.2286 0.1599 0.006951
u2,f,1 −5.0857 −5.1281 −5.3450 −4.8967 0.2322 0.1356 0.005786
u3,f,1 −4.9586 −4.9784 −5.1500 −4.8117 0.2922 0.1035 0.004239
u4,f,1 −4.8918 −4.8716 −5.0059 −4.7326 0.2619 0.0837 0.003467
u5,f,1 −5.0575 −5.0612 −5.1909 −4.9340 0.2321 0.0776 0.003347
u6,f,1 −4.8571 −4.8297 −4.9449 −4.7115 0.2367 0.0712 0.003188
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Table 19.6: Estimates for our annuity model based on Australian data from 1987 to 2011
using matching of moments, as well as MCMC with 30 000 steps.

para- match. MCMC 5% 95% accept. standard standard
meter moments mean quantile quantile prob. dev. error

u7,f,1 −4.9602 −4.9158 −5.0160 −4.8045 0.1800 0.0657 0.003019
u8,f,1 −5.0033 −4.9478 −5.0298 −4.8684 0.2185 0.0491 0.002216
u1,m,2 −1.0292 −1.0775 −1.1960 −0.9680 0.2992 0.0688 0.003361
u2,m,2 −0.9854 −0.9897 −1.0869 −0.8973 0.2319 0.0596 0.002924
u3,m,2 −0.9965 −1.0066 −1.1109 −0.9114 0.2858 0.0603 0.002970
u4,m,2 −1.0867 −1.0856 −1.1780 −0.9898 0.2290 0.0555 0.002746
u5,m,2 −1.2188 −1.1876 −1.2520 −1.1278 0.2803 0.0390 0.001908
u6,m,2 −1.3845 −1.3770 −1.4451 −1.2964 0.2371 0.0439 0.002168
u7,m,2 −1.5613 −1.5232 −1.5883 −1.4720 0.2188 0.0351 0.001717
u8,m,2 −1.8489 −1.8306 −1.8855 −1.7770 0.2347 0.0327 0.001589
u1,f,2 −0.5675 −0.5878 −0.7389 −0.4536 0.2505 0.0877 0.004291
u2,f,2 −0.6817 −0.7234 −0.8570 −0.5954 0.2631 0.0798 0.003909
u3,f,2 −0.8091 −0.8383 −0.9323 −0.7539 0.2289 0.0551 0.002672
u4,f,2 −1.0027 −1.0111 −1.0764 −0.9419 0.2397 0.0408 0.001964
u5,f,2 −1.2437 −1.2437 −1.3018 −1.1838 0.2141 0.0357 0.001725
u6,f,2 −1.5434 −1.5404 −1.6066 −1.4814 0.1797 0.0373 0.001826
u7,f,2 −1.8917 −1.8879 −1.9419 −1.8144 0.2039 0.0376 0.001844
u8,f,2 −2.3319 −2.3249 −2.3661 −2.2898 0.2179 0.0233 0.001116
u1,m,3 −3.8678 −3.8715 −4.0227 −3.7333 0.2147 0.0888 0.004097
u2,m,3 −3.7550 −3.7332 −3.8547 −3.6155 0.2248 0.0745 0.003428
u3,m,3 −3.7914 −3.7814 −3.9030 −3.6703 0.2476 0.0697 0.003273
u4,m,3 −3.8240 −3.8074 −3.9192 −3.6947 0.2713 0.0665 0.003145
u5,m,3 −3.8762 −3.8239 −3.9087 −3.7420 0.2648 0.0514 0.002394
u6,m,3 −3.9027 −3.8939 −3.9786 −3.8031 0.2714 0.0524 0.002465
u7,m,3 −3.9225 −3.8876 −3.9632 −3.8168 0.2453 0.0450 0.002074
u8,m,3 −3.9504 −3.9359 −4.0070 −3.8625 0.2320 0.0445 0.002054
u1,f,3 −3.8332 −3.8248 −4.0130 −3.6441 0.2319 0.1111 0.005027
u2,f,3 −3.5723 −3.6020 −3.7589 −3.4490 0.2536 0.0958 0.004351
u3,f,3 −3.4476 −3.4735 −3.5883 −3.3621 0.2096 0.0697 0.003154
u4,f,3 −3.4451 −3.4433 −3.5313 −3.3547 0.2152 0.0532 0.002370
u5,f,3 −3.5066 −3.4954 −3.5760 −3.4109 0.2107 0.0496 0.002250
u6,f,3 −3.6029 −3.6011 −3.6849 −3.5244 0.2339 0.0482 0.002246
u7,f,3 −3.6820 −3.6867 −3.7549 −3.6078 0.2748 0.0449 0.002093
u8,f,3 −3.9607 −3.9794 −4.0350 −3.9253 0.2167 0.0333 0.001539
u1,m,4 −5.1455 −5.1647 −5.4041 −4.9502 0.2374 0.1394 0.006321
u2,m,4 −5.3045 −5.3221 −5.5242 −5.1031 0.2037 0.1311 0.005958
u3,m,4 −5.4969 −5.5057 −5.6652 −5.3128 0.2261 0.1073 0.004867
u4,m,4 −5.5890 −5.5850 −5.7591 −5.3227 0.2363 0.1277 0.006056
u5,m,4 −5.3995 −5.3637 −5.4994 −5.2037 0.2484 0.0905 0.004204
u6,m,4 −5.0384 −5.0703 −5.2116 −4.8793 0.2613 0.0945 0.004540
u7,m,4 −4.5697 −4.6006 −4.7179 −4.4272 0.2302 0.0823 0.003987
u8,m,4 −4.1185 −4.1452 −4.2689 −3.9523 0.3544 0.0941 0.004617
u1,f,4 −5.6623 −5.6527 −5.9731 −5.3410 0.3014 0.1934 0.008239
u2,f,4 −5.9077 −5.8989 −6.2070 −5.5720 0.2272 0.1881 0.008269
u3,f,4 −5.9563 −5.9763 −6.2388 −5.7106 0.2132 0.1573 0.006985
u4,f,4 −5.7354 −5.7436 −5.9311 −5.5508 0.2156 0.1161 0.005157
u5,f,4 −5.3013 −5.3512 −5.4926 −5.1601 0.2564 0.0980 0.004505
u6,f,4 −4.7881 −4.8340 −4.9727 −4.6545 0.2354 0.0955 0.004609
u7,f,4 −4.3328 −4.3555 −4.4905 −4.2183 0.1859 0.0813 0.003970
u8,f,4 −3.8327 −3.8401 −3.9486 −3.6873 0.3190 0.0765 0.003764
u1,m,5 −4.1793 −4.2062 −4.3557 −4.0537 0.2139 0.0930 0.004171
u2,m,5 −4.4335 −4.4144 −4.5440 −4.2809 0.2237 0.0785 0.003473
u3,m,5 −4.5237 −4.5192 −4.6556 −4.3843 0.2213 0.0837 0.003889
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Table 19.6: Estimates for our annuity model based on Australian data from 1987 to 2011
using matching of moments, as well as MCMC with 30 000 steps.

para- match. MCMC 5% 95% accept. standard standard
meter moments mean quantile quantile prob. dev. error

u4,m,5 −4.3262 −4.3196 −4.4223 −4.2046 0.2682 0.0664 0.003020
u5,m,5 −4.2258 −4.1940 −4.2812 −4.1062 0.2371 0.0530 0.002412
u6,m,5 −3.8915 −3.8894 −3.9841 −3.7965 0.1796 0.0575 0.002746
u7,m,5 −3.7354 −3.6921 −3.7759 −3.6132 0.2029 0.0493 0.002330
u8,m,5 −3.7863 −3.7304 −3.8061 −3.6567 0.2270 0.0457 0.002145
u1,f,5 −3.9329 −3.9125 −4.1054 −3.7320 0.2527 0.1144 0.005164
u2,f,5 −3.9556 −3.9833 −4.1570 −3.8115 0.2125 0.1050 0.004874
u3,f,5 −3.9582 −3.9717 −4.0955 −3.8505 0.2504 0.0744 0.003292
u4,f,5 −4.0062 −4.0081 −4.1100 −3.9092 0.2225 0.0610 0.002699
u5,f,5 −3.9202 −3.9104 −3.9982 −3.8238 0.3031 0.0531 0.002366
u6,f,5 −3.8197 −3.8220 −3.9063 −3.7392 0.2341 0.0503 0.002323
u7,f,5 −3.7925 −3.7788 −3.8567 −3.6899 0.2293 0.0494 0.002329
u8,f,5 −3.8113 −3.7403 −3.7957 −3.6816 0.2670 0.0343 0.001585
u1,m,6 −0.9566 −0.9804 −1.0917 −0.8726 0.2515 0.0685 0.003346
u2,m,6 −0.8749 −0.8487 −0.9421 −0.7527 0.2201 0.0582 0.002850
u3,m,6 −0.8081 −0.7880 −0.8953 −0.6963 0.2861 0.0602 0.002969
u4,m,6 −0.7093 −0.6825 −0.7788 −0.5796 0.2367 0.0578 0.002856
u5,m,6 −0.6315 −0.5780 −0.6428 −0.5139 0.2564 0.0406 0.001992
u6,m,6 −0.5843 −0.5568 −0.6254 −0.4814 0.2274 0.0432 0.002137
u7,m,6 −0.5571 −0.4893 −0.5569 −0.4304 0.2029 0.0365 0.001797
u8,m,6 −0.5478 −0.5023 −0.5554 −0.4445 0.2421 0.0332 0.001625
u1,f,6 −1.5642 −1.5562 −1.7120 −1.4141 0.2287 0.0900 0.004358
u2,f,6 −1.2591 −1.2692 −1.4181 −1.1379 0.2361 0.0847 0.004137
u3,f,6 −1.0506 −1.0524 −1.1484 −0.9668 0.2330 0.0560 0.002698
u4,f,6 −0.8093 −0.7928 −0.8591 −0.7251 0.2345 0.0404 0.001931
u5,f,6 −0.6237 −0.5986 −0.6576 −0.5386 0.2300 0.0368 0.001783
u6,f,6 −0.4799 −0.4551 −0.5286 −0.3939 0.2264 0.0397 0.001952
u7,f,6 −0.3826 −0.3526 −0.4081 −0.2784 0.3206 0.0377 0.001852
u8,f,6 −0.3575 −0.3256 −0.3639 −0.2881 0.2564 0.0236 0.001150
u1,m,7 −3.3985 −3.4525 −3.6010 −3.2975 0.2229 0.0900 0.004188
u2,m,7 −3.0424 −3.0442 −3.1663 −2.9314 0.2576 0.0722 0.003363
u3,m,7 −2.6988 −2.7125 −2.8054 −2.6119 0.2470 0.0612 0.002925
u4,m,7 −2.5249 −2.5298 −2.6366 −2.4299 0.2465 0.0605 0.002939
u5,m,7 −2.3436 −2.3176 −2.3838 −2.2488 0.2088 0.0415 0.001991
u6,m,7 −2.3163 −2.3120 −2.3916 −2.2318 0.2397 0.0490 0.002391
u7,m,7 −2.2705 −2.2348 −2.2949 −2.1790 0.2257 0.0350 0.001672
u8,m,7 −2.2026 −2.1998 −2.2732 −2.1339 0.2340 0.0415 0.002020
u1,f,7 −3.0609 −3.0834 −3.2625 −2.9135 0.2316 0.1072 0.005015
u2,f,7 −2.8145 −2.8617 −3.0339 −2.7134 0.2219 0.0961 0.004567
u3,f,7 −2.7219 −2.7566 −2.8782 −2.6464 0.2211 0.0699 0.003324
u4,f,7 −2.6422 −2.6527 −2.7357 −2.5682 0.2892 0.0522 0.002433
u5,f,7 −2.6713 −2.6708 −2.7335 −2.6047 0.2379 0.0399 0.001851
u6,f,7 −2.8352 −2.8309 −2.8972 −2.7546 0.2580 0.0433 0.002063
u7,f,7 −2.9907 −2.9742 −3.0455 −2.8948 0.2387 0.0458 0.002210
u8,f,7 −2.8523 −2.8268 −2.8744 −2.7754 0.2673 0.0305 0.001452
u1,m,8 −2.9601 −2.9858 −3.1218 −2.8557 0.2609 0.0813 0.003841
u2,m,8 −3.0740 −3.0558 −3.1829 −2.9382 0.2467 0.0741 0.003518
u3,m,8 −3.1986 −3.1997 −3.3154 −3.0870 0.2457 0.0688 0.003272
u4,m,8 −3.3983 −3.3839 −3.4828 −3.2759 0.2564 0.0622 0.002954
u5,m,8 −3.6247 −3.5810 −3.6714 −3.4900 0.2233 0.0549 0.002581
u6,m,8 −3.5991 −3.5724 −3.6693 −3.4720 0.2317 0.0580 0.002755
u7,m,8 −3.5277 −3.4695 −3.5561 −3.3912 0.2391 0.0490 0.002270
u8,m,8 −3.3220 −3.2830 −3.3560 −3.2152 0.3311 0.0422 0.001927
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Table 19.6: Estimates for our annuity model based on Australian data from 1987 to 2011
using matching of moments, as well as MCMC with 30 000 steps.

para- match. MCMC 5% 95% accept. standard standard
meter moments mean quantile quantile prob. dev. error

u1,f,8 −3.3783 −3.3883 −3.5769 −3.2257 0.2171 0.1067 0.004948
u2,f,8 −3.3880 −3.4104 −3.5683 −3.2551 0.2756 0.0936 0.004328
u3,f,8 −3.3496 −3.3640 −3.4852 −3.2506 0.2079 0.0714 0.003231
u4,f,8 −3.4046 −3.4028 −3.4966 −3.3049 0.2557 0.0578 0.002574
u5,f,8 −3.4292 −3.4140 −3.4935 −3.3266 0.2396 0.0505 0.002267
u6,f,8 −3.3828 −3.3680 −3.4476 −3.2858 0.2033 0.0481 0.002239
u7,f,8 −3.2865 −3.2632 −3.3411 −3.1798 0.2466 0.0479 0.002244
u8,f,8 −3.2082 −3.1864 −3.2420 −3.1335 0.2155 0.0331 0.001545
u1,m,9 −2.2003 −2.2020 −2.3407 −2.0780 0.2276 0.0798 0.003864
u2,m,9 −2.7208 −2.6882 −2.8233 −2.5740 0.2474 0.0734 0.003515
u3,m,9 −3.2461 −3.2150 −3.3452 −3.0842 0.1930 0.0779 0.003771
u4,m,9 −3.6122 −3.5774 −3.6949 −3.4694 0.2467 0.0696 0.003310
u5,m,9 −3.8529 −3.7818 −3.8914 −3.6732 0.2602 0.0662 0.003133
u6,m,9 −3.9732 −3.9205 −4.0207 −3.8017 0.2019 0.0658 0.003142
u7,m,9 −4.0407 −3.9623 −4.0623 −3.8662 0.2394 0.0589 0.002756
u8,m,9 −3.8570 −3.7774 −3.8687 −3.6838 0.2730 0.0564 0.002657
u1,f,9 −2.7315 −2.7057 −2.8797 −2.5456 0.2310 0.1007 0.004816
u2,f,9 −3.1048 −3.1116 −3.2833 −2.9578 0.2341 0.0979 0.004642
u3,f,9 −3.4553 −3.4459 −3.5793 −3.3136 0.2919 0.0806 0.003678
u4,f,9 −3.7185 −3.6809 −3.7966 −3.5657 0.2302 0.0694 0.003136
u5,f,9 −3.8805 −3.8411 −3.9497 −3.7291 0.2349 0.0667 0.003032
u6,f,9 −4.0297 −3.9778 −4.0836 −3.8839 0.2030 0.0606 0.002800
u7,f,9 −4.0687 −4.0182 −4.1148 −3.8941 0.2426 0.0649 0.003065
u8,f,9 −3.9386 −3.8811 −3.9631 −3.8024 0.2981 0.0472 0.002239
u1,m,10 −5.5548 −5.5932 −5.8239 −5.3630 0.3007 0.1405 0.005491
u2,m,10 −5.3966 −5.3705 −5.5633 −5.1878 0.2103 0.1147 0.004823
u3,m,10 −5.0330 −5.0177 −5.1657 −4.8690 0.1979 0.0884 0.003843
u4,m,10 −4.8532 −4.8223 −4.9448 −4.6969 0.2476 0.0748 0.003229
u5,m,10 −4.6336 −4.6026 −4.6962 −4.5068 0.2491 0.0575 0.002514
u6,m,10 −4.0052 −3.9809 −4.0655 −3.8944 0.2550 0.0521 0.002393
u7,m,10 −3.6663 −3.6070 −3.6783 −3.5429 0.2388 0.0415 0.001867
u8,m,10 −3.3733 −3.3561 −3.4225 −3.2917 0.2878 0.0393 0.001788
u1,f,10 −4.1922 −4.1902 −4.4143 −3.9875 0.3203 0.1309 0.005367
u2,f,10 −4.0403 −3.9939 −4.1807 −3.8139 0.2475 0.1108 0.004739
u3,f,10 −3.9698 −3.9700 −4.1085 −3.8375 0.2579 0.0820 0.003407
u4,f,10 −3.9376 −3.9321 −4.0351 −3.8318 0.2295 0.0616 0.002538
u5,f,10 −3.9756 −3.9593 −4.0448 −3.8727 0.1920 0.0527 0.002250
u6,f,10 −3.8109 −3.8004 −3.8826 −3.7228 0.2543 0.0480 0.002145
u7,f,10 −3.7326 −3.7050 −3.7769 −3.6232 0.2083 0.0458 0.002117
u8,f,10 −3.6701 −3.6511 −3.7005 −3.6066 0.2497 0.0288 0.001296
v1,m,0 0.0034 0.0034 na na na na na
v2,m,0 0.0163 0.0163 na na na na na
v3,m,0 0.0302 0.0302 na na na na na
v4,m,0 0.0297 0.0297 na na na na na
v5,m,0 0.0225 0.0225 na na na na na
v6,m,0 0.0177 0.0177 na na na na na
v7,m,0 0.0168 0.0168 na na na na na
v8,m,0 0.0107 0.0107 na na na na na
v1,f,0 0.0240 0.0240 na na na na na
v2,f,0 0.0314 0.0314 na na na na na
v3,f,0 0.0132 0.0132 na na na na na
v4,f,0 0.0192 0.0192 na na na na na
v5,f,0 0.0206 0.0206 na na na na na
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19.3. Real world MCMC estimation results

Table 19.6: Estimates for our annuity model based on Australian data from 1987 to 2011
using matching of moments, as well as MCMC with 30 000 steps.

para- match. MCMC 5% 95% accept. standard standard
meter moments mean quantile quantile prob. dev. error

v6,f,0 0.0193 0.0193 na na na na na
v7,f,0 0.0169 0.0169 na na na na na
v8,f,0 0.0175 0.0175 na na na na na
v1,m,1 0.0527 0.0534 0.0425 0.0641 0.2318 0.0065 0.000298
v2,m,1 0.0537 0.0534 0.0440 0.0634 0.2714 0.0058 0.000255
v3,m,1 0.0417 0.0391 0.0283 0.0493 0.1969 0.0064 0.000288
v4,m,1 0.0412 0.0396 0.0295 0.0494 0.2816 0.0060 0.000269
v5,m,1 0.0386 0.0362 0.0284 0.0445 0.2175 0.0048 0.000215
v6,m,1 0.0296 0.0261 0.0186 0.0331 0.2145 0.0045 0.000203
v7,m,1 0.0352 0.0270 0.0200 0.0341 0.2468 0.0043 0.000193
v8,m,1 0.0292 0.0254 0.0193 0.0311 0.2544 0.0036 0.000164
v1,f,1 0.0554 0.0485 0.0328 0.0641 0.3094 0.0096 0.000417
v2,f,1 0.0331 0.0365 0.0223 0.0498 0.2526 0.0083 0.000356
v3,f,1 0.0263 0.0285 0.0178 0.0395 0.2707 0.0066 0.000272
v4,f,1 0.0238 0.0228 0.0134 0.0317 0.2473 0.0056 0.000232
v5,f,1 0.0352 0.0350 0.0263 0.0432 0.2534 0.0051 0.000221
v6,f,1 0.0312 0.0297 0.0217 0.0373 0.2540 0.0048 0.000218
v7,f,1 0.0366 0.0337 0.0267 0.0400 0.1844 0.0042 0.000194
v8,f,1 0.0336 0.0298 0.0247 0.0350 0.2107 0.0031 0.000141
v1,m,2 0.0028 0.0031 −0.0044 0.0111 0.2136 0.0047 0.000231
v2,m,2 0.0093 0.0086 0.0026 0.0151 0.1798 0.0039 0.000193
v3,m,2 0.0126 0.0124 0.0062 0.0188 0.2813 0.0038 0.000187
v4,m,2 0.0170 0.0164 0.0106 0.0224 0.2616 0.0036 0.000177
v5,m,2 0.0198 0.0172 0.0133 0.0214 0.2178 0.0025 0.000124
v6,m,2 0.0200 0.0189 0.0143 0.0234 0.2811 0.0028 0.000136
v7,m,2 0.0178 0.0148 0.0116 0.0189 0.3027 0.0021 0.000105
v8,m,2 0.0129 0.0113 0.0080 0.0144 0.2302 0.0019 0.000094
v1,f,2 0.0004 0.0005 −0.0081 0.0101 0.2313 0.0054 0.000266
v2,f,2 0.0076 0.0094 0.0013 0.0175 0.2585 0.0049 0.000239
v3,f,2 0.0121 0.0133 0.0079 0.0195 0.2965 0.0036 0.000173
v4,f,2 0.0170 0.0168 0.0119 0.0211 0.2766 0.0028 0.000135
v5,f,2 0.0204 0.0201 0.0161 0.0240 0.3025 0.0024 0.000116
v6,f,2 0.0228 0.0225 0.0187 0.0269 0.2393 0.0025 0.000120
v7,f,2 0.0233 0.0229 0.0183 0.0263 0.2287 0.0023 0.000112
v8,f,2 0.0124 0.0118 0.0098 0.0142 0.2968 0.0013 0.000064
v1,m,3 0.0261 0.0244 0.0150 0.0341 0.1823 0.0058 0.000272
v2,m,3 0.0216 0.0192 0.0113 0.0273 0.2104 0.0048 0.000222
v3,m,3 0.0278 0.0261 0.0188 0.0336 0.2078 0.0044 0.000207
v4,m,3 0.0322 0.0307 0.0236 0.0380 0.2463 0.0043 0.000205
v5,m,3 0.0366 0.0330 0.0276 0.0385 0.2218 0.0033 0.000156
v6,m,3 0.0354 0.0342 0.0288 0.0397 0.2505 0.0033 0.000154
v7,m,3 0.0351 0.0325 0.0280 0.0373 0.2489 0.0028 0.000130
v8,m,3 0.0295 0.0282 0.0238 0.0325 0.2252 0.0026 0.000123
v1,f,3 0.0134 0.0129 0.0018 0.0247 0.1969 0.0070 0.000316
v2,f,3 0.0066 0.0081 −0.0014 0.0180 0.2354 0.0060 0.000270
v3,f,3 0.0073 0.0083 0.0010 0.0159 0.2162 0.0045 0.000204
v4,f,3 0.0156 0.0149 0.0087 0.0207 0.2399 0.0036 0.000161
v5,f,3 0.0205 0.0197 0.0139 0.0252 0.2806 0.0034 0.000151
v6,f,3 0.0276 0.0274 0.0223 0.0329 0.2306 0.0032 0.000149
v7,f,3 0.0293 0.0297 0.0249 0.0340 0.2165 0.0028 0.000129
v8,f,3 0.0326 0.0339 0.0306 0.0372 0.2385 0.0020 0.000092
v1,m,4 0.0389 0.0402 0.0262 0.0554 0.1943 0.0088 0.000406
v2,m,4 0.0359 0.0377 0.0241 0.0509 0.2259 0.0084 0.000384
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Table 19.6: Estimates for our annuity model based on Australian data from 1987 to 2011
using matching of moments, as well as MCMC with 30 000 steps.

para- match. MCMC 5% 95% accept. standard standard
meter moments mean quantile quantile prob. dev. error

v3,m,4 0.0465 0.0464 0.0336 0.0562 0.1947 0.0067 0.000307
v4,m,4 0.0531 0.0529 0.0360 0.0646 0.2297 0.0083 0.000395
v5,m,4 0.0572 0.0554 0.0443 0.0641 0.2547 0.0061 0.000287
v6,m,4 0.0580 0.0609 0.0473 0.0700 0.1847 0.0061 0.000297
v7,m,4 0.0525 0.0559 0.0445 0.0634 0.2319 0.0053 0.000261
v8,m,4 0.0517 0.0544 0.0412 0.0620 0.1911 0.0061 0.000302
v1,f,4 0.0448 0.0457 0.0265 0.0650 0.2568 0.0117 0.000507
v2,f,4 0.0514 0.0534 0.0339 0.0719 0.2339 0.0115 0.000511
v3,f,4 0.0584 0.0617 0.0452 0.0772 0.3193 0.0098 0.000439
v4,f,4 0.0607 0.0627 0.0496 0.0747 0.2287 0.0074 0.000331
v5,f,4 0.0587 0.0633 0.0506 0.0721 0.2247 0.0063 0.000293
v6,f,4 0.0596 0.0641 0.0518 0.0738 0.2123 0.0063 0.000309
v7,f,4 0.0612 0.0640 0.0547 0.0727 0.2808 0.0052 0.000256
v8,f,4 0.0590 0.0606 0.0502 0.0681 0.2066 0.0051 0.000253
v1,m,5 0.0268 0.0261 0.0161 0.0366 0.2143 0.0062 0.000282
v2,m,5 0.0358 0.0341 0.0256 0.0423 0.2605 0.0051 0.000227
v3,m,5 0.0401 0.0391 0.0305 0.0477 0.2094 0.0053 0.000247
v4,m,5 0.0305 0.0300 0.0225 0.0367 0.2584 0.0043 0.000194
v5,m,5 0.0357 0.0332 0.0275 0.0394 0.2391 0.0036 0.000163
v6,m,5 0.0281 0.0274 0.0216 0.0336 0.2909 0.0036 0.000173
v7,m,5 0.0258 0.0228 0.0178 0.0281 0.2198 0.0032 0.000150
v8,m,5 0.0251 0.0211 0.0166 0.0257 0.1882 0.0027 0.000130
v1,f,5 0.0246 0.0228 0.0116 0.0344 0.2263 0.0070 0.000316
v2,f,5 0.0277 0.0291 0.0181 0.0398 0.1928 0.0065 0.000302
v3,f,5 0.0264 0.0268 0.0193 0.0347 0.1999 0.0047 0.000208
v4,f,5 0.0305 0.0299 0.0233 0.0365 0.2414 0.0040 0.000181
v5,f,5 0.0328 0.0318 0.0263 0.0375 0.2346 0.0035 0.000156
v6,f,5 0.0345 0.0345 0.0292 0.0402 0.2790 0.0033 0.000152
v7,f,5 0.0366 0.0356 0.0304 0.0405 0.2338 0.0031 0.000145
v8,f,5 0.0371 0.0322 0.0285 0.0356 0.2444 0.0021 0.000099
v1,m,6 −0.0209 −0.0225 −0.0298 −0.0146 0.2469 0.0047 0.000229
v2,m,6 −0.0236 −0.0264 −0.0328 −0.0204 0.2957 0.0038 0.000186
v3,m,6 −0.0257 −0.0281 −0.0345 −0.0211 0.2271 0.0039 0.000190
v4,m,6 −0.0296 −0.0321 −0.0385 −0.0257 0.2398 0.0037 0.000183
v5,m,6 −0.0302 −0.0344 −0.0388 −0.0299 0.2350 0.0027 0.000133
v6,m,6 −0.0268 −0.0293 −0.0338 −0.0248 0.2133 0.0028 0.000136
v7,m,6 −0.0216 −0.0267 −0.0303 −0.0226 0.2042 0.0023 0.000111
v8,m,6 −0.0144 −0.0180 −0.0213 −0.0147 0.2809 0.0019 0.000094
v1,f,6 −0.0216 −0.0235 −0.0326 −0.0138 0.2182 0.0056 0.000272
v2,f,6 −0.0347 −0.0350 −0.0436 −0.0256 0.2692 0.0053 0.000256
v3,f,6 −0.0356 −0.0363 −0.0419 −0.0298 0.2393 0.0037 0.000176
v4,f,6 −0.0388 −0.0409 −0.0457 −0.0363 0.3020 0.0029 0.000136
v5,f,6 −0.0355 −0.0377 −0.0419 −0.0336 0.2121 0.0025 0.000120
v6,f,6 −0.0312 −0.0332 −0.0372 −0.0283 0.2928 0.0026 0.000128
v7,f,6 −0.0262 −0.0285 −0.0331 −0.0250 0.2111 0.0023 0.000114
v8,f,6 −0.0170 −0.0194 −0.0216 −0.0173 0.2492 0.0014 0.000067
v1,m,7 −0.0013 −0.0002 −0.0103 0.0099 0.2447 0.0061 0.000284
v2,m,7 −0.0091 −0.0097 −0.0170 −0.0015 0.2840 0.0047 0.000216
v3,m,7 −0.0111 −0.0109 −0.0177 −0.0045 0.2132 0.0040 0.000189
v4,m,7 −0.0049 −0.0049 −0.0113 0.0021 0.2370 0.0039 0.000191
v5,m,7 −0.0049 −0.0071 −0.0116 −0.0028 0.2896 0.0027 0.000126
v6,m,7 0.0009 0.0000 −0.0047 0.0053 0.2130 0.0031 0.000149
v7,m,7 0.0014 −0.0013 −0.0051 0.0027 0.2261 0.0023 0.000111
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19.3. Real world MCMC estimation results

Table 19.6: Estimates for our annuity model based on Australian data from 1987 to 2011
using matching of moments, as well as MCMC with 30 000 steps.

para- match. MCMC 5% 95% accept. standard standard
meter moments mean quantile quantile prob. dev. error

v8,m,7 0.0017 0.0013 −0.0028 0.0054 0.3368 0.0025 0.000122
v1,f,7 −0.0072 −0.0059 −0.0168 0.0055 0.2738 0.0068 0.000315
v2,f,7 −0.0029 −0.0004 −0.0098 0.0101 0.3121 0.0061 0.000287
v3,f,7 0.0042 0.0059 −0.0016 0.0139 0.2164 0.0047 0.000222
v4,f,7 0.0083 0.0085 0.0024 0.0141 0.2138 0.0037 0.000174
v5,f,7 0.0151 0.0150 0.0104 0.0192 0.2540 0.0027 0.000125
v6,f,7 0.0235 0.0233 0.0184 0.0278 0.2389 0.0029 0.000138
v7,f,7 0.0288 0.0277 0.0228 0.0323 0.2233 0.0029 0.000140
v8,f,7 0.0190 0.0175 0.0141 0.0208 0.2546 0.0020 0.000096
v1,m,8 0.0108 0.0100 0.0013 0.0191 0.2760 0.0056 0.000265
v2,m,8 0.0070 0.0054 −0.0024 0.0138 0.2198 0.0049 0.000235
v3,m,8 0.0009 0.0000 −0.0076 0.0070 0.2442 0.0044 0.000210
v4,m,8 0.0010 −0.0005 −0.0073 0.0063 0.2320 0.0041 0.000192
v5,m,8 0.0071 0.0036 −0.0022 0.0096 0.2112 0.0036 0.000169
v6,m,8 0.0013 −0.0010 −0.0070 0.0052 0.2371 0.0037 0.000175
v7,m,8 −0.0032 −0.0076 −0.0128 −0.0023 0.2386 0.0032 0.000146
v8,m,8 −0.0106 −0.0137 −0.0181 −0.0095 0.2200 0.0026 0.000119
v1,f,8 0.0098 0.0101 0.0001 0.0216 0.2914 0.0066 0.000302
v2,f,8 0.0035 0.0043 −0.0056 0.0137 0.2298 0.0058 0.000267
v3,f,8 −0.0042 −0.0040 −0.0116 0.0040 0.2396 0.0047 0.000209
v4,f,8 −0.0024 −0.0033 −0.0103 0.0031 0.2472 0.0040 0.000178
v5,f,8 −0.0007 −0.0020 −0.0081 0.0034 0.2628 0.0035 0.000156
v6,f,8 −0.0006 −0.0017 −0.0070 0.0040 0.1912 0.0033 0.000152
v7,f,8 −0.0027 −0.0043 −0.0093 0.0008 0.2309 0.0031 0.000142
v8,f,8 −0.0062 −0.0077 −0.0111 −0.0043 0.2394 0.0021 0.000096
v1,m,9 0.0139 0.0112 0.0025 0.0208 0.2627 0.0055 0.000267
v2,m,9 0.0120 0.0091 0.0017 0.0178 0.2395 0.0048 0.000233
v3,m,9 0.0161 0.0131 0.0051 0.0214 0.2716 0.0050 0.000239
v4,m,9 0.0128 0.0100 0.0030 0.0177 0.2350 0.0045 0.000213
v5,m,9 0.0096 0.0044 −0.0028 0.0111 0.2476 0.0043 0.000205
v6,m,9 0.0105 0.0066 −0.0009 0.0132 0.2814 0.0042 0.000201
v7,m,9 0.0167 0.0114 0.0056 0.0175 0.2785 0.0037 0.000173
v8,m,9 0.0174 0.0116 0.0063 0.0173 0.2454 0.0034 0.000161
v1,f,9 0.0155 0.0131 0.0029 0.0239 0.1895 0.0063 0.000303
v2,f,9 0.0110 0.0110 0.0011 0.0216 0.2451 0.0061 0.000290
v3,f,9 0.0051 0.0039 −0.0050 0.0127 0.2274 0.0053 0.000240
v4,f,9 0.0032 0.0001 −0.0075 0.0084 0.2464 0.0048 0.000216
v5,f,9 0.0042 0.0015 −0.0063 0.0086 0.2768 0.0045 0.000203
v6,f,9 0.0095 0.0062 −0.0002 0.0130 0.2353 0.0040 0.000185
v7,f,9 0.0161 0.0128 0.0053 0.0191 0.2874 0.0041 0.000195
v8,f,9 0.0167 0.0130 0.0080 0.0180 0.2506 0.0031 0.000147
v1,m,10 0.0237 0.0259 0.0112 0.0404 0.2748 0.0089 0.000355
v2,m,10 0.0226 0.0215 0.0096 0.0338 0.2555 0.0073 0.000307
v3,m,10 0.0073 0.0075 −0.0024 0.0174 0.2363 0.0059 0.000253
v4,m,10 0.0126 0.0110 0.0029 0.0191 0.2407 0.0049 0.000211
v5,m,10 0.0181 0.0157 0.0093 0.0220 0.2074 0.0038 0.000169
v6,m,10 0.0094 0.0073 0.0020 0.0131 0.2192 0.0034 0.000154
v7,m,10 0.0051 0.0006 −0.0034 0.0053 0.2105 0.0026 0.000119
v8,m,10 0.0029 0.0013 −0.0026 0.0050 0.2753 0.0023 0.000105
v1,f,10 −0.0282 −0.0280 −0.0422 −0.0130 0.1962 0.0089 0.000360
v2,f,10 −0.0351 −0.0371 −0.0496 −0.0243 0.2415 0.0076 0.000313
v3,f,10 −0.0274 −0.0274 −0.0368 −0.0175 0.2359 0.0058 0.000236
v4,f,10 −0.0144 −0.0148 −0.0222 −0.0076 0.2114 0.0045 0.000181
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Table 19.6: Estimates for our annuity model based on Australian data from 1987 to 2011
using matching of moments, as well as MCMC with 30 000 steps.

para- match. MCMC 5% 95% accept. standard standard
meter moments mean quantile quantile prob. dev. error

v5,f,10 0.0023 0.0009 −0.0052 0.0068 0.2641 0.0037 0.000154
v6,f,10 0.0064 0.0060 0.0008 0.0114 0.2224 0.0032 0.000143
v7,f,10 0.0097 0.0079 0.0030 0.0124 0.2361 0.0028 0.000130
v8,f,10 0.0141 0.0127 0.0101 0.0156 0.2184 0.0017 0.000076
σ2

1 0.0373 0.0066 0.0034 0.0113 0.2513 0.0025 0.000057
σ2

2 0.0004 0.0003 0.0001 0.0004 0.2289 0.0001 0.000002
σ2

3 0.0055 0.0012 0.0006 0.0022 0.2327 0.0005 0.000012
σ2

4 0.0225 0.0253 0.0144 0.0421 0.2278 0.0089 0.000221
σ2

5 0.0057 0.0031 0.0017 0.0053 0.2107 0.0012 0.000026
σ2

6 0.0014 0.0009 0.0005 0.0015 0.2324 0.0003 0.000010
σ2

7 0.0051 0.0045 0.0026 0.0075 0.2700 0.0016 0.000032
σ2

8 0.0085 0.0053 0.0030 0.0089 0.2505 0.0019 0.000041
σ2

9 0.0109 0.0110 0.0062 0.0183 0.2308 0.0039 0.000100
σ2

10 0.0029 0.0006 0.0002 0.0012 0.2429 0.0003 0.000007

19.4 Australian life tables 2013

Below, based on Example 16.17 and using MCMC with 20 000 samples, Australian male and
female life tables for 2013 are. For notational purposes we leave out time parameter T = 43.
Moreover, for a closer link to traditional notation, age categories are denoted by x for males
and by y for females and gender variables are left out. For each age x ∈ {0, 1, . . . , 100+}, and
correspondingly for y, the table gives annual death probabilities qx for males aged between
x and x + 1 in 2013, as well as survivors lx based on a starting value of 100 000 people.
Furthermore, smoothed mortality parameters αx, as well as smoothed trend parameters βx
and ηx are provided, as well as expected future life times (EFLT) with and without trends.
Expected future life time with trend is given by Equation (16.15) whereas expected future
life time without trend is simply calculated by using the 2013 period life table, i.e.,

e∗x =
∞∑
k=1

k−1∏
j=0

(
1− qx+j

)
, x ∈ {0, 1, . . . , 100+} .

Table 19.7: 2013 Australian male life table.

age death surv. intercept trend trend EFLT EFLT std.

prob. up to x param. param. reduc. old new dev.

x qx lx αx βx ηx e∗x ex sx

0 0.004063 100000 −3.1721 −0.0503 0.0254 79.41 87.95 13.53
1 0.000923 99594 −4.5478 −0.0483 0.0188 78.74 87.24 12.40
2 0.000301 99502 −5.6108 −0.0466 0.0138 77.81 86.25 12.18
3 0.000140 99472 −6.3611 −0.0450 0.0105 76.83 85.21 12.15
4 0.000093 99458 −6.7986 −0.0436 0.0089 75.84 84.14 12.17
5 0.000086 99449 −6.9235 −0.0425 0.0088 74.85 83.08 12.20
6 0.000092 99440 −6.9072 −0.0415 0.0095 73.86 82.01 12.24
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Table 19.7: 2013 Australian male life table.

age death surv. intercept trend trend EFLT EFLT std.

prob. up to x param. param. reduc. old new dev.

x qx lx αx βx ηx e∗x ex sx

7 0.000095 99431 −6.9210 −0.0407 0.0100 72.87 80.94 12.28
8 0.000093 99422 −6.9652 −0.0401 0.0104 71.87 79.87 12.31
9 0.000088 99412 −7.0396 −0.0397 0.0105 70.88 78.80 12.35

10 0.000080 99403 −7.1442 −0.0395 0.0105 69.88 77.72 12.39
11 0.000076 99396 −7.2061 −0.0393 0.0102 68.89 76.65 12.44
12 0.000080 99388 −7.1525 −0.0389 0.0098 67.90 75.57 12.48
13 0.000097 99380 −6.9833 −0.0383 0.0092 66.90 74.49 12.53
14 0.000131 99370 −6.6985 −0.0376 0.0084 65.91 73.41 12.57
15 0.000200 99357 −6.2982 −0.0367 0.0075 64.92 72.33 12.61
16 0.000310 99338 −5.8932 −0.0356 0.0064 63.93 71.25 12.63
17 0.000438 99307 −5.5944 −0.0343 0.0055 62.95 70.19 12.63
18 0.000560 99263 −5.4018 −0.0328 0.0048 61.98 69.12 12.61
19 0.000652 99208 −5.3155 −0.0312 0.0041 61.01 68.07 12.56
20 0.000688 99143 −5.3354 −0.0294 0.0035 60.05 67.02 12.50
21 0.000696 99075 −5.4075 −0.0274 0.0031 59.09 65.97 12.44
22 0.000711 99006 −5.4778 −0.0252 0.0027 58.13 64.92 12.37
23 0.000734 98935 −5.5461 −0.0228 0.0025 57.18 63.87 12.31
24 0.000766 98863 −5.6126 −0.0203 0.0024 56.22 62.82 12.24
25 0.000807 98787 −5.6772 −0.0176 0.0024 55.26 61.78 12.17
26 0.000851 98707 −5.7342 −0.0150 0.0025 54.30 60.73 12.10
27 0.000891 98623 −5.7780 −0.0129 0.0027 53.35 59.68 12.02
28 0.000926 98535 −5.8087 −0.0113 0.0030 52.40 58.63 11.94
29 0.000956 98444 −5.8261 −0.0101 0.0035 51.45 57.58 11.86
30 0.000981 98350 −5.8303 −0.0095 0.0040 50.50 56.53 11.78
31 0.000999 98254 −5.8212 −0.0093 0.0048 49.55 55.48 11.70
32 0.001012 98155 −5.7990 −0.0096 0.0061 48.60 54.43 11.62
33 0.001021 98056 −5.7635 −0.0104 0.0079 47.64 53.37 11.55
34 0.001029 97956 −5.7149 −0.0116 0.0101 46.69 52.31 11.48
35 0.001037 97855 −5.6530 −0.0133 0.0127 45.74 51.25 11.41
36 0.001051 97754 −5.5779 −0.0155 0.0158 44.79 50.19 11.34
37 0.001074 97651 −5.4896 −0.0182 0.0194 43.84 49.13 11.28
38 0.001111 97546 −5.3881 −0.0214 0.0234 42.88 48.06 11.22
39 0.001168 97438 −5.2734 −0.0250 0.0278 41.93 46.99 11.17
40 0.001247 97324 −5.1454 −0.0291 0.0327 40.98 45.92 11.11
41 0.001352 97202 −5.0127 −0.0332 0.0374 40.03 44.85 11.05
42 0.001475 97071 −4.8838 −0.0366 0.0410 39.09 43.79 10.98
43 0.001614 96928 −4.7585 −0.0395 0.0437 38.14 42.72 10.91
44 0.001765 96771 −4.6369 −0.0418 0.0455 37.20 41.66 10.84
45 0.001927 96601 −4.5191 −0.0435 0.0462 36.27 40.59 10.76
46 0.002096 96415 −4.4050 −0.0446 0.0460 35.34 39.54 10.68
47 0.002271 96212 −4.2946 −0.0451 0.0448 34.41 38.48 10.59
48 0.002446 95994 −4.1879 −0.0450 0.0426 33.49 37.43 10.50
49 0.002617 95759 −4.0849 −0.0444 0.0394 32.58 36.37 10.40
50 0.002779 95509 −3.9856 −0.0431 0.0353 31.66 35.32 10.30
51 0.002940 95243 −3.8884 −0.0416 0.0309 30.75 34.27 10.21
52 0.003115 94963 −3.7916 −0.0402 0.0267 29.84 33.22 10.11
53 0.003309 94667 −3.6951 −0.0389 0.0229 28.93 32.18 10.01
54 0.003531 94354 −3.5990 −0.0377 0.0193 28.03 31.13 9.91
55 0.003792 94021 −3.5034 −0.0367 0.0161 27.13 30.09 9.81
56 0.004103 93664 −3.4081 −0.0357 0.0132 26.23 29.05 9.70
57 0.004474 93280 −3.3131 −0.0348 0.0106 25.34 28.02 9.59
58 0.004913 92863 −3.2186 −0.0340 0.0083 24.45 26.99 9.47
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Table 19.7: 2013 Australian male life table.

age death surv. intercept trend trend EFLT EFLT std.

prob. up to x param. param. reduc. old new dev.

x qx lx αx βx ηx e∗x ex sx

59 0.005426 92407 −3.1244 −0.0333 0.0063 23.57 25.97 9.35
60 0.006015 91905 −3.0307 −0.0327 0.0047 22.70 24.96 9.22
61 0.006678 91352 −2.9373 −0.0323 0.0033 21.84 23.96 9.08
62 0.007411 90742 −2.8443 −0.0319 0.0023 20.99 22.97 8.94
63 0.008206 90070 −2.7516 −0.0316 0.0015 20.14 22.00 8.78
64 0.009055 89331 −2.6594 −0.0315 0.0011 19.31 21.04 8.62
65 0.009952 88522 −2.5675 −0.0314 0.0010 18.49 20.09 8.44
66 0.010934 87641 −2.4760 −0.0313 0.0010 17.67 19.16 8.27
67 0.012053 86683 −2.3849 −0.0312 0.0011 16.87 18.23 8.08
68 0.013332 85638 −2.2942 −0.0310 0.0011 16.07 17.32 7.90
69 0.014798 84496 −2.2039 −0.0306 0.0011 15.29 16.43 7.70
70 0.016481 83246 −2.1140 −0.0302 0.0011 14.52 15.56 7.50
71 0.018408 81874 −2.0249 −0.0297 0.0012 13.76 14.70 7.30
72 0.020608 80367 −1.9373 −0.0291 0.0012 13.02 13.86 7.09
73 0.023126 78710 −1.8512 −0.0285 0.0012 12.30 13.05 6.88
74 0.026012 76890 −1.7665 −0.0277 0.0012 11.59 12.25 6.66
75 0.029328 74890 −1.6832 −0.0268 0.0012 10.90 11.48 6.43
76 0.033144 72694 −1.6014 −0.0259 0.0012 10.23 10.74 6.21
77 0.037544 70284 −1.5210 −0.0249 0.0012 9.58 10.02 5.98
78 0.042629 67646 −1.4421 −0.0237 0.0012 8.95 9.33 5.74
79 0.048516 64762 −1.3646 −0.0225 0.0012 8.35 8.67 5.51
80 0.055346 61620 −1.2886 −0.0212 0.0012 7.77 8.05 5.27
81 0.062957 58210 −1.2139 −0.0200 0.0012 7.23 7.45 5.04
82 0.071038 54545 −1.1408 −0.0189 0.0012 6.72 6.90 4.80
83 0.079511 50670 −1.0691 −0.0179 0.0011 6.23 6.38 4.56
84 0.088278 46641 −0.9988 −0.0171 0.0011 5.77 5.88 4.33
85 0.097223 42524 −0.9300 −0.0165 0.0011 5.33 5.41 4.11
86 0.106559 38390 −0.8608 −0.0160 0.0022 4.90 4.97 3.89
87 0.117261 34299 −0.7896 −0.0156 0.0055 4.48 4.53 3.69
88 0.131289 30277 −0.7163 −0.0155 0.0110 4.08 4.11 3.51
89 0.150717 26302 −0.6410 −0.0154 0.0188 3.70 3.72 3.34
90 0.175783 22338 −0.5636 −0.0156 0.0288 3.35 3.37 3.20
91 0.202091 18411 −0.4905 −0.0158 0.0394 3.07 3.08 3.08
92 0.225491 14690 −0.4282 −0.0160 0.0488 2.84 2.85 2.97
93 0.245558 11378 −0.3767 −0.0161 0.0571 2.67 2.68 2.89
94 0.262068 8584 −0.3359 −0.0163 0.0644 2.54 2.54 2.82
95 0.274834 6334 −0.3058 −0.0165 0.0705 2.44 2.44 2.77
96 0.284875 4593 −0.2824 −0.0166 0.0755 2.37 2.37 2.72
97 0.293376 3285 −0.2615 −0.0168 0.0794 2.31 2.30 2.69
98 0.300386 2321 −0.2430 −0.0169 0.0822 2.27 2.26 2.66
99 0.305911 1624 −0.2271 −0.0170 0.0838 2.24 2.22 2.65

100+ 0.309923 1127 −0.2136 −0.0172 0.0844 2.23 2.20 2.63
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Table 19.8: 2013 Australian female life table.

age death surv. intercept trend trend EFLT EFLT std.

prob. up to y param. param. reduc. old new dev.

y qy ly αy βy ηy e∗y ey sy

0 0.002206 100000 −3.4305 −0.0500 0.0116 83.92 89.48 11.42
1 0.000584 99779 −4.8679 −0.0488 0.0142 83.11 88.64 10.64
2 0.000213 99721 −5.9787 −0.0476 0.0164 82.16 87.65 10.45
3 0.000107 99700 −6.7627 −0.0463 0.0184 81.17 86.63 10.41
4 0.000074 99689 −7.2199 −0.0451 0.0201 80.18 85.60 10.41
5 0.000070 99682 −7.3505 −0.0438 0.0215 79.19 84.56 10.42
6 0.000077 99675 −7.3310 −0.0425 0.0227 78.19 83.53 10.43
7 0.000081 99667 −7.3381 −0.0412 0.0235 77.20 82.49 10.44
8 0.000083 99659 −7.3717 −0.0398 0.0241 76.21 81.45 10.46
9 0.000083 99651 −7.4318 −0.0385 0.0244 75.21 80.41 10.47

10 0.000079 99642 −7.5185 −0.0371 0.0244 74.22 79.37 10.48
11 0.000078 99635 −7.5819 −0.0357 0.0242 73.22 78.33 10.50
12 0.000081 99627 −7.5722 −0.0343 0.0237 72.23 77.29 10.51
13 0.000092 99619 −7.4895 −0.0329 0.0229 71.24 76.25 10.53
14 0.000110 99610 −7.3337 −0.0314 0.0218 70.24 75.20 10.55
15 0.000143 99599 −7.1049 −0.0299 0.0204 69.25 74.16 10.56
16 0.000185 99584 −6.8718 −0.0284 0.0188 68.26 73.12 10.56
17 0.000225 99566 −6.7034 −0.0269 0.0169 67.27 72.08 10.55
18 0.000257 99543 −6.5997 −0.0254 0.0147 66.29 71.04 10.54
19 0.000275 99518 −6.5607 −0.0238 0.0122 65.30 70.01 10.52
20 0.000278 99491 −6.5864 −0.0223 0.0095 64.32 68.97 10.49
21 0.000274 99463 −6.6383 −0.0209 0.0071 63.34 67.94 10.47
22 0.000273 99436 −6.6781 −0.0198 0.0057 62.36 66.90 10.45
23 0.000272 99408 −6.7059 −0.0192 0.0053 61.38 65.86 10.43
24 0.000272 99381 −6.7215 −0.0189 0.0059 60.39 64.82 10.42
25 0.000273 99354 −6.7251 −0.0190 0.0076 59.41 63.78 10.40
26 0.000276 99327 −6.7165 −0.0194 0.0102 58.42 62.73 10.39
27 0.000282 99300 −6.6959 −0.0202 0.0138 57.44 61.69 10.38
28 0.000293 99272 −6.6632 −0.0214 0.0185 56.46 60.65 10.36
29 0.000310 99243 −6.6183 −0.0230 0.0241 55.47 59.60 10.35
30 0.000334 99212 −6.5614 −0.0250 0.0308 54.49 58.55 10.34
31 0.000364 99179 −6.4924 −0.0270 0.0375 53.51 57.51 10.33
32 0.000399 99143 −6.4113 −0.0291 0.0434 52.53 56.46 10.31
33 0.000439 99103 −6.3180 −0.0310 0.0483 51.55 55.42 10.29
34 0.000486 99060 −6.2127 −0.0329 0.0524 50.57 54.37 10.27
35 0.000541 99012 −6.0953 −0.0347 0.0556 49.60 53.32 10.24
36 0.000602 98958 −5.9736 −0.0364 0.0579 48.62 52.28 10.22
37 0.000664 98898 −5.8551 −0.0381 0.0593 47.65 51.24 10.18
38 0.000724 98833 −5.7401 −0.0397 0.0598 46.68 50.20 10.14
39 0.000783 98761 −5.6284 −0.0413 0.0595 45.72 49.16 10.10
40 0.000836 98684 −5.5201 −0.0427 0.0582 44.75 48.12 10.06
41 0.000888 98601 −5.4151 −0.0440 0.0565 43.79 47.08 10.01
42 0.000943 98514 −5.3135 −0.0449 0.0546 42.83 46.04 9.97
43 0.001003 98421 −5.2152 −0.0454 0.0526 41.87 45.00 9.92
44 0.001068 98322 −5.1203 −0.0456 0.0504 40.91 43.96 9.87
45 0.001138 98217 −5.0287 −0.0454 0.0482 39.96 42.92 9.82
46 0.001215 98106 −4.9406 −0.0449 0.0457 39.00 41.88 9.77
47 0.001300 97986 −4.8557 −0.0440 0.0432 38.05 40.84 9.71
48 0.001395 97859 −4.7743 −0.0427 0.0405 37.10 39.80 9.66
49 0.001503 97723 −4.6962 −0.0411 0.0377 36.15 38.77 9.60
50 0.001628 97576 −4.6214 −0.0392 0.0347 35.21 37.73 9.54
51 0.001765 97417 −4.5476 −0.0371 0.0316 34.26 36.70 9.48
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Table 19.8: 2013 Australian female life table.

age death surv. intercept trend trend EFLT EFLT std.

prob. up to y param. param. reduc. old new dev.

y qy ly αy βy ηy e∗y ey sy

52 0.001908 97245 −4.4721 −0.0352 0.0284 33.32 35.67 9.41
53 0.002057 97059 −4.3951 −0.0334 0.0250 32.39 34.64 9.34
54 0.002210 96860 −4.3165 −0.0319 0.0215 31.45 33.62 9.26
55 0.002371 96646 −4.2363 −0.0304 0.0179 30.52 32.59 9.19
56 0.002557 96416 −4.1545 −0.0292 0.0145 29.60 31.57 9.11
57 0.002790 96170 −4.0712 −0.0281 0.0117 28.67 30.56 9.02
58 0.003071 95902 −3.9863 −0.0271 0.0095 27.75 29.54 8.94
59 0.003402 95607 −3.8997 −0.0263 0.0079 26.84 28.54 8.84
60 0.003780 95282 −3.8116 −0.0257 0.0069 25.93 27.54 8.74
61 0.004195 94922 −3.7220 −0.0252 0.0063 25.03 26.54 8.63
62 0.004636 94523 −3.6307 −0.0249 0.0056 24.13 25.56 8.51
63 0.005102 94085 −3.5379 −0.0247 0.0051 23.25 24.58 8.39
64 0.005589 93605 −3.4435 −0.0247 0.0045 22.36 23.61 8.25
65 0.006095 93082 −3.3475 −0.0249 0.0040 21.49 22.65 8.12
66 0.006645 92515 −3.2499 −0.0251 0.0036 20.62 21.70 7.97
67 0.007277 91900 −3.1507 −0.0253 0.0032 19.76 20.76 7.83
68 0.008004 91231 −3.0500 −0.0254 0.0029 18.90 19.82 7.68
69 0.008842 90501 −2.9476 −0.0254 0.0026 18.06 18.89 7.52
70 0.009809 89701 −2.8437 −0.0254 0.0023 17.22 17.98 7.36
71 0.010920 88821 −2.7389 −0.0253 0.0021 16.39 17.08 7.19
72 0.012192 87851 −2.6338 −0.0252 0.0020 15.57 16.19 7.02
73 0.013651 86780 −2.5284 −0.0250 0.0018 14.76 15.31 6.84
74 0.015328 85595 −2.4228 −0.0247 0.0018 13.97 14.45 6.66
75 0.017260 84283 −2.3169 −0.0244 0.0018 13.18 13.61 6.47
76 0.019489 82828 −2.2108 −0.0241 0.0018 12.42 12.78 6.27
77 0.022067 81214 −2.1044 −0.0237 0.0019 11.66 11.97 6.08
78 0.025057 79422 −1.9977 −0.0232 0.0020 10.93 11.19 5.87
79 0.028532 77432 −1.8908 −0.0227 0.0022 10.21 10.42 5.66
80 0.032581 75223 −1.7836 −0.0221 0.0024 9.51 9.68 5.45
81 0.037298 72772 −1.6773 −0.0215 0.0029 8.83 8.97 5.24
82 0.042821 70058 −1.5731 −0.0208 0.0040 8.17 8.28 5.03
83 0.049377 67058 −1.4709 −0.0200 0.0057 7.53 7.62 4.81
84 0.057282 63747 −1.3708 −0.0192 0.0080 6.92 6.99 4.60
85 0.066925 60095 −1.2727 −0.0183 0.0108 6.35 6.39 4.39
86 0.078333 56073 −1.1767 −0.0176 0.0143 5.80 5.83 4.17
87 0.091310 51681 −1.0827 −0.0169 0.0183 5.29 5.31 3.97
88 0.105841 46962 −0.9908 −0.0165 0.0229 4.83 4.84 3.76
89 0.121806 41991 −0.9009 −0.0163 0.0281 4.40 4.40 3.56
90 0.139025 36877 −0.8131 −0.0163 0.0338 4.01 4.01 3.37
91 0.157304 31750 −0.7273 −0.0165 0.0402 3.65 3.65 3.18
92 0.176480 26755 −0.6436 −0.0168 0.0471 3.33 3.32 3.01
93 0.196426 22034 −0.5620 −0.0174 0.0546 3.05 3.03 2.84
94 0.217055 17706 −0.4824 −0.0182 0.0627 2.79 2.77 2.69
95 0.238312 13863 −0.4048 −0.0191 0.0713 2.57 2.54 2.55
96 0.259794 10559 −0.3293 −0.0201 0.0794 2.37 2.33 2.42
97 0.281172 7816 −0.2559 −0.0210 0.0856 2.21 2.15 2.31
98 0.302434 5618 −0.1845 −0.0218 0.0901 2.07 1.99 2.21
99 0.323461 3919 −0.1152 −0.0224 0.0928 1.97 1.85 2.13

100 0.344038 2651 −0.0479 −0.023 0.0937 1.91 1.74 2.00
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Glossary

a (index) index for age category, page 108
AIC Akaike information criterion, page 167
AIHW Australian Institute of Health and Welfare, page 7
a.a. P-almost-all, page 35
a.s. P-almost-surely, page 3
α = (αa,g) intercept parameter for death probabilities, page 110

Bα,β cumulative conditional beta distribution function with parame-
ters α− β and β + 1, page 61

β = (βa,g) trend parameter for death probabilities, page 110
βG,δ,X adjustment for indicator function fG,δ,X , page 39
BIC Bayesian information criterion, page 167

CEPSδ[X |G ] conditional expected proportional shortfall given G, page 43

δ level of risk aversion, page 21
DIC deviance information criterion, page 167

ea,g, ex,ey expected future life time of a person with age a and gender g, or
males from group x, or females from group y, respectively, with
trends considered, page 158

e∗x, e∗y expected future life time of males in group x or females in group
y, respectively, without trends considered, page 188

ess inf essential infimum, page 20
ess sup essential supremum, page 20
η = (ηa,g) trend reduction parameter for death probabilities, page 110
ESδ[X] classical, unconditional expected shortfall, page 8
ESδ[X |G ] conditional expected shortfall given G, page 40
ESδ[X,L|G ] contributions to conditional expected shortfall given G of sub-

portfolio loss X to loss L, page 64
ESG[X] G-weighted expected shortfall, page 77
ESBα,β [X |G ] Beta-weighted conditional expected shortfall given G, page 61

ESG[X |G ] G-weighted conditional expected shortfall given G, page 56
ESG[X,L|G ] contributions to G-weighted conditional expected shortfall given

G of subportfolio loss X to loss L, page 64

F← lower quantile function of increasing function F , page 21

193



Glossary

F→ upper quantile function of increasing function F , page 21
fG,G,X G-weighted adjusted indicator function, page 59
fG,δ,X adjusted indicator function, page 39
(Ft)t∈[0,∞) filtration, page 3

FLap Laplace distribution function, page 110
FYG,δ,X optimality set for conditional expected shortfall, page 41

FG,δ conditional probability densities given G bounded from above by
1

1−δ , page 42

FG,δ,X conditional probability densities given G bounded from above by
1

1−δ with integrability condition, page 42

g (index) index for gender, page 108
G,H sub-σ-algebras, page 3

ICD International Statistical Classification of Diseases and Related
Health Problems, page 7

i.i.d. independent and identically distributed, page 21

K number of non-idiosyncratic risk factor, page 99
k (index) index for risk factor, page 99

L portfolio loss, page 97

L0(Ω,F ,P,R+) set of equivalence classes of all P-a.s. equal F -measurable random
variables with values in R ∪ {∞}, page 3

L0(Ω,F ,P) all elements of L0(Ω,F ,P,R+) which are real-valued, page 3
Λk k-th non-idiosyncratic risk factor or death cause, page 99
λk risk factor realisation of risk factor Λk, page 117
LC Lee–Carter model, page 150
LG,quant(P) domain for conditional lower quantiles as risk measure, page 30
LG,g,cdrm(P) domain for conditional distortion risk measures with integrability

condition, page 32
L−G,g,cdrm(P) domain for conditional distortion risk measures with semi-

integrability condition, page 32
LG,env(P) domain for upper envelopes as risk measure, page 19
LG,G,wces(P) domain for G-weighted conditional expected shortfall with inte-

grability condition, page 55
L−G,G,wces(P) domain for G-weighted conditional expected shortfall with semi-

integrability condition, page 55
L−G,G,L,contr(P) domain for G-weighted conditional expected shortfall contribu-

tions with semi-integrability condition, page 63
LG,G,L,contr(P) domain for G-weighted conditional expected shortfall contribu-

tions with integrability condition, page 63
`(n |θq, θw, σ) likelihood function of parameters given death data, page 122
`(n |θq, θw, λ, σ) likelihood function of parameters given death data, page 117
lx, ly number of male survivors up to group x, or female survivors up

to group y, respectively, page 188
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Glossary

MAP maximum a posteriori, labelling for corresponding estimators
(upper case) and estimates, page 118

MAPappr approximations in the maximum a posteriori approach, page 121
MCMC Markov chain Monte Carlo, page 9
MLE maximum likelihood estimation, labelling for corresponding esti-

mators (upper case) and estimates, page 123
MM matching of moments, labelling for corresponding estimators

(upper case) and estimates, page 113
ma,g population with age a and gender g, page 108
Ma,g set of representative people with age a and gender g such that

|Ma,g| = ma,g, page 109

na not applicable, page 179
Na,g,k, na,g,k death indicator and realisation for age a, gender g and risk factor

k, page 109
N ′a,g,k, n

′
a,g,k transformed death indicator and realisation for age a, gender g

and risk factor k, page 113
N∗a,g,k, n

∗
a,g,k normalised transformed death indicator and realisation for age

a, gender g and risk factor k, page 164
Ni death indicator for policyholder i, page 95
Ni,k death indicator for policyholder i and risk factor k, page 99

(Ω,F ,P) probability space, page 2
≤st(G) conditional first stochastic order, page 87

≤cx(G) conditional convex order, page 87

≤icx(G) conditional increasing convex order, page 87

φ = (φk) trend reduction parameter for weights, page 110
ΦG(X) set of G-measurable Z: Ω→ R ∪ {∞} with X ≤ Z a.s., page 18
Poisson(λ) Poisson distribution with intensity λ, page 78
π(θq, θw, λ, σ |n) posterior distribution of parameters given death data, page 117
π(θq, θw, σ) prior distribution of corresponding parameters, page 117
π(λ |θq, θw, σ) prior distribution of risk factor realisations given parameters,

page 117
∝ equal up to a constant multiplicative factor, page 117
ψ = (ψk) trend reduction parameter for weights, page 110

qa,g death probability (intensity) for age a and gender g, page 108
q∗i death probability for policyholder i, page 96
qi death probability (intensity) for policyholder i, page 99
qδ(X) lower quantile, page 21
qG,δ(X) conditional lower quantile given G, page 20
qδ(X) upper quantile, page 21
qG,δ(X) conditional upper quantile given G, page 20

Ra,g,a′,g′,k,k′ sample correlation coefficient, page 165
ρg[X |G] conditional g-distortion risk measure given G, page 32
ρent
γ [X |G] conditional entropic risk measure given G, page 86
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Glossary

S gain due to deaths in portfolio, page 97
sa,g, sx, sy standard deviation of the future life time of a person with age a

and gender g, or males from group x, or females from group y,
respectively, page 158

σ = (σk) standard deviation for risk factors, page 99

Σ̂2
a,g,k estimator for risk factor standard deviations with matching of

moments, page 115

T time horizon, T > 0, page 108
t time variable, page 108
θq short for (α, β, ζ, η), page 117
θw short for (u, v, φ, ψ), page 117
Tζ,η trend reduction with parameters ζ and η, page 110

u = (ua,g,k) intercept parameter for weights, page 110

v = (va,g,k) trend parameter for weights, page 110

wa,g,k weight for age a, gender g and risk factor k, page 108

W ∗a,g,k(t), W
∗
a,g,k estimators for weights with matching of moments, page 114

ζ = (ζa,g) trend reduction parameter for death probabilities, page 110

196



Bibliography
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stochastics (K. Sandmann and P. J. Schönbucher, eds.), Springer-Verlag, Berlin, 2002,
Essays in honour of Dieter Sondermann, pp. 1–37. 52

[31] , The structure of m-stable sets and in particular of the set of risk neutral
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[43] P. Embrechts, G. Puccetti, L. Rüschendorf, R. Wang, and A. Beleraj, An academic
response to Basel 3.5, Risks 2 (2014), no. 1, 25–48. 2, 43
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