

http://www.ub.tuwien.ac.at/eng

**MSc Economics** 



Unemployment and Non-Participation: History Dependence in Job Finding Probabilities

> A Master's Thesis submitted for the degree of "Master of Science"

> > supervised by Tamás K. Papp

Bence A. Bardóczy 1325887

Vienna, 2015





## **MSc Economics**

## Affidavit

I, Bence András Bardóczy

hereby declare

that I am the sole author of the present Master's Thesis,

Unemployment and Non-Participation: History Dependence in Job Finding Probabilities

46 pages, bound, and that I have not used any source or tool other than those referenced or any other illicit aid or tool, and that I have not prior to this date submitted this Master's Thesis as an examination paper in any form in Austria or abroad.

Vienna, June 8, 2015

Signature

## Acknowledgements

I would like to thank Tamás Papp for guiding me throughout the thesis and Christian Haefke for providing me with longitudinally matched CPS data. Their help was essential for the successful completion of this project. Furthermore, I am grateful to Fabian Greimel, Tímea Virágh and Leopold Zeßner-Spitzenberg for valuable comments and discussions.

## Contents

| 1            | Introduction                                    | 1         |
|--------------|-------------------------------------------------|-----------|
|              | 1.1 Literature Review                           | 2         |
|              | 1.2 Goals for the master's thesis               | 6         |
| <b>2</b>     | Data                                            | 8         |
|              | 2.1 Margin- and classification errors           | 8         |
|              | 2.2 First look at job finding probabilities     | 9         |
| 3            | Models with short-term labor force history      | <b>14</b> |
|              | 3.1 A standard model without history dependence | 18        |
|              | 3.2 Modeling history dependence                 | 21        |
|              | 3.3 Comparing the two models                    | 22        |
| 4            | A multilevel model of history dependence        | 27        |
| 5            | Conclusion                                      | 30        |
| $\mathbf{A}$ | Definitions of labor force states               | 33        |
| в            | RStan output and convergence                    | 34        |

# List of Figures

| 1  | Share of Non-Participants among New Inflows to Employment          | 2  |
|----|--------------------------------------------------------------------|----|
| 2  | Unemployment Duration and Job Finding                              | 3  |
| 3  | Job Finding Probability by Labor Force Status                      | 10 |
| 4  | Job Finding Probability of Men by Labor Force Status               | 12 |
| 5  | Coefficients in 2006 and 2009—No History                           | 19 |
| 6  | Fitted Job Finding Probabilities in 2006 and 2009—No History       | 19 |
| 7  | Coefficients vs. Job Finding Probabilities for 2006                | 20 |
| 8  | Posterior Uncertainty of Job Finding Probabilities in 2006—History | 22 |
| 9  | Fitted Job Finding Probabilities in 2006 and 2009—History          | 23 |
| 10 | Posterior Predictive Check: Unemployment Duration                  | 25 |

## List of Tables

| 1 | Heterogeneity in Job Finding Probability (percentages) | 11 |
|---|--------------------------------------------------------|----|
| 2 | Number of Observations                                 | 16 |
| 3 | Summary Statistics for Covariates                      | 17 |
| 4 | Out-of-Sample Mean Squared Errors                      | 24 |
| 5 | Distribution of L and W across Histories               | 26 |
| 6 | Finite-Population Standard Deviations                  | 29 |
| 7 | Job Search Methods                                     | 33 |

#### Abstract

I use a novel empirical approach to study heterogeneities in labor market flows in the U.S. Using data on short-term labor force history, I develop Bayesian logit models that capture large variations in the job finding probabilities not only of the unemployed but of the non-participants, as well. A decomposition of these variations by time periods suggest that recent employment has a bigger impact on current job finding probabilities than contemporaneous search behavior. Furthermore, I document that among prime age men, non-participants are almost as likely to start working as active job-seekers. The gap narrows even further in recessions, for the job finding probability of the unemployed-looking tends to fall disproportionately.

## 1 Introduction

Losing one's job or being unable to find one are arguably the biggest idiosyncratic risks that most individuals have to face, especially in recessions. Consequently, the unemployment rate is one of the most widely followed economic statistics, featured in the popular press just as often as in academic journals. Importantly, movements in labor market stocks emerge from the continuous transitions between labor force states. For example, unemployment might rise in recessions because many more workers get fired or because jobs are hard to find. Therefore, describing the interplay and cyclical properties of worker flows is crucial for understanding labor market fluctuations.

The majority of today's structural models of labor market flows belongs to the Diamond-Mortensen-Pissarides (DMP) framework as described for example by Pissarides (2000). These models focus on the frictional job search of unemployed workers and usually abstract from non-participation. However, there are at least three good reasons for introducing non-participation into flows-based models. First, the definition of labor force participation itself is ambiguous. It has long been debated for example, whether discouraged workers—who want to work but are not searching because they believe that they could not find a job—should be counted unemployed or not.<sup>1</sup> Second, as Figure 1 shows, more non-participants have started to work in every month in the last 25 years than unemployed. I have the impression that this fact is not widely recognized, even though it is a powerful argument for studying non-participants. The third line of reasoning, put forward recently by Elsby, Hobijn and Şahin (2013), highlights the importance of cyclical movements between unemployment and non-participation in shaping the unemployment rate.

As a consequence, there is a growing interest in developing a unified model of aggregate employment, unemployment and participation. Practically, this means the inclusion of an operative labor supply channel to modern flows-based models with search frictions. Significant advances have been made in this direction by Krusell, Mukoyama, Rogerson and Şahin (2010, 2011, 2012). Non-participants however, constitute a large and widely heterogeneous fraction of the population. A prime age man who suspends active job-search for a while is classified as being out of the labor force just as retired or permanently disabled persons are. Any attempt to formalize the behavior of non-participants should deal with this heterogeneity. A difficult task, as our knowledge of the key aspects of non-participation is still rather limited. This lack of tangible stylized facts calls for further empirical studies on flows in- and out of the labor force.

Our understanding of unemployment is much more advanced, and has the potential to inform our approach to non-participation. The key aspect of unemployment is active job search. Search requires effort, hence needs to be incentivized. The incentive is the prospect of earning a surplus once successfully matched with an employer. The size of the surplus, hence optimal search effort and the implied job finding probability, depends on macroeconomic conditions and individual traits, as well. In most DMP models, the

<sup>&</sup>lt;sup>1</sup>See Jones and Riddell (1999) and references therein.

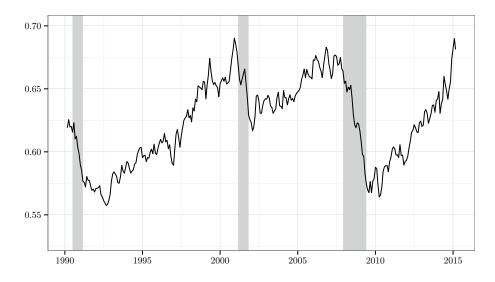



Figure 1: Share of Non-Participants among New Inflows to Employment Note: Three-month moving averages of seasonally adjusted monthly flows. Re-weighted to be representative of the US population. Official BLS series, downloaded from FRED.

relevant aggregate state variable is labor market tightness, the ratio of vacancies and unemployed in the economy. Unemployment and vacancies are negatively correlated and volatile in the data, thus job finding probability is cyclical due to macro fluctuations that affect all job-seekers.

At the individual level, job finding probability is observed to fall with unemployment duration. Regardless of its reasons, such heterogeneity contributes to the procyclicality of average job finding probability as illustrated by Figure 2. Subfigure 2a shows that job finding probabilities fell almost uniformly for all duration from 2006 to 2009 (i.e. from peak to trough of the Great Recession). Apparently, negative duration dependence in the job finding probability of the unemployed is a salient feature of the labor market. Turning to subfigure 2b reveals that the common decline was accompanied by an unequivocal shift towards longer unemployment duration. Thus, one can infer that the unemployment rate would have had risen to some extent due to this compositional shift alone.

Exploration of how aggregate- and compositional effects jointly shape labor market flows throughout the business cycle is the bigger research agenda underlying this master's thesis. In the next subsection, I briefly review the academic papers that directly influenced my work.

#### 1.1 Literature Review

It has long been observed that the unemployed have a harder time finding jobs in recessions. A classical explanation for the procyclicality of job finding probability, put forward by Darby, Haltiwanger and Plant (1985, 1986), points to the role of worker heterogeneity. They conjectured that there are two types of unemployed workers. First, a high-turnover group who undergoes frequent but short unemployment spells, i.e.

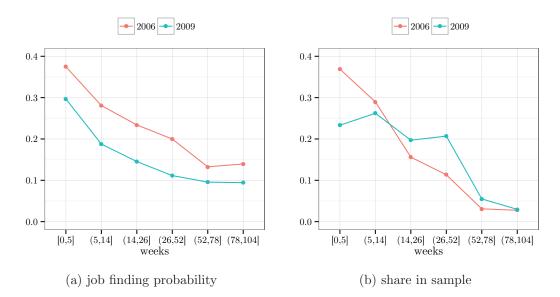



Figure 2: Unemployment Duration and Job Finding Note: Unadjusted CPS micro data for unemployed aged 16-65. Includes records matched across two months from rotation groups 2-4 and 6-8.

has high job finding probability. Second, a low-turnover group whose members seldom become unemployed, but then need more time to find a suitable job, thus their measured job finding probability is low. In recessions, disproportionately many "permanent jobs" get terminated, thus the share of low-turnover unemployed increases. All in all, unemployment rises primarily due to job destruction, while there is a side-effect: a compositional shift that lowers the average job finding probability and aggravates unemployment.

In a very influential paper, Shimer (2012) argues against this "heterogeneity hypothesis". He develops a continuous time unemployment accounting framework with two states—employment, unemployment—to measure job finding and separation rates. His method requires only aggregate data on employment and (short-term) unemployment, which makes it robust compared to standard measures of worker flows that rely on survey data which is noisier. His main point is that the job finding rate displays stronger cyclical patterns than the separation rate, hence contributes more to unemployment fluctuations. As a robustness check, he introduces non-participation as a third state, which increases the number of transition rates to six. The U–E transition rate retains its prominent role, but the elegant accounting model does not apply anymore. Thus, the first strong assumption he makes is abstracting from non-participation, as it was commonly done in the macro-labor literature until recently.

The second strong assumption behind Shimer (2012)'s method is the homogeneity of transition rates. In any given month, all the unemployed are assumed to have the same probability of finding a job, which is determined solely by aggregate shocks. He supports this assumption by means of the following exercise. First, he divides the unemployed into different groups.<sup>2</sup> He shows, that in the presence of such heterogeneity, his measure of the job finding rate gives the average job finding rate for all the unemployed. Second, he decomposes the variance of the average job finding rate to changes in population shares of the groups and changes in the group specific job finding rates. He finds that composition effects explain only a minor part of the variance. He concludes that homogeneity is an acceptable approximation, thus Darby, Haltiwanger, and Plant were wrong on two accounts: falling job finding is a more important source of high unemployment than spikes in job destruction, and worker heterogeneity plays a negligible role compared to changes in the macro conditions. The caveat in this approach is that workers might differ in ways which the covariates do no identify. Consequently, sizable composition effects with respect to unobserved, or simply omitted, heterogeneity cannot be ruled out.

Omitted unemployment duration is central to the criticism of Hornstein (2012), who warns that the duration distribution of unemployment implied by homogeneous transition probabilities is inconsistent with the data. He refines Shimer's 2-state model to distinguish between short- and long-term unemployment. He finds that the transition rates of the long-term unemployed are more volatile than that of the newly unemployed. Although job finding rate remains dominant, the employment exit rate of the long-term unemployed too has a strong correlation to the unemployment rate. His estimations suggest that the observed negative duration dependence in job finding is not causal. Rather, reported unemployment duration is more likely to pick up unobserved heterogeneity. This means that the long-term unemployed have low job finding probabilities, because they are less employable in the first place. Conversely, people who find jobs quicker would be more likely to find jobs after long spells of unemployment, too. Easily employable people do not have to search for long, thus only people with inherently low job finding probability get stuck in long-term unemployment.

Elsby, Hobijn and Şahin (2013) also stress the importance of worker heterogeneity. They use a 3-state model—employment (E), unemployment (U), and non-participation (N)—and find that flows on the participation margin are notably cyclical and account for one-third of unemployment fluctuations. They argue that part of the story is explained by compositional effects. In recessions, more workers with strong labor market attachment become unemployed. These workers are less likely to abandon search and quit the labor force, hence the average U–N transition probability falls, which increases the unemployment rate. What is interesting about their results is that they revive the heterogeneity hypothesis of Darby, Haltiwanger and Plant by a methodology inspired by Shimer. The explanation of this difference is twofold. First, as Hornstein pointed out, Shimer did not consider duration dependence. Thus, he missed an important ingredient of worker heterogeneity. In addition to the variables used by him, Elsby, Hobijn and Şahin include labor force status a year before. Moreover, they interacted all the variables, thus accounted for compositional shifts between substantially more

 $<sup>^{2}</sup>$ He considers gender, age, marital status, education, census division, reason for unemployment. One at a time, without interactions.

groups than Shimer, who isolated heterogeneity in education, marital status etc. Second, if the unemployed with lower U–N transition rates also had higher job finding rates, then the 2-state accounting scheme would understate the compositional change in unemployment exit rates: higher U–E and lower U–N transitions offset when are viewed together as the "outs of unemployment".

Shimer (2012); Hornstein (2012); Elsby et al. (2013) all agree that the job finding probability is procyclical and is strongly correlated with the unemployment rate. However, they base their analysis on variance decomposition, not structural models. Thus, there is no guarantee that they identify causal relations. Coles and Moghaddasi (2014) consider a standard DMP model with homogeneous workers, where vacancy creation is inelastic and productivity and job destruction shocks are negatively correlated.<sup>3</sup> When a job destruction shock raises unemployment, jobless workers essentially start to deplete the vacancy stock and the job finding probability falls persistently. Although the correlation of unemployment and job finding probability is large, it is triggered by job destruction. The model's predictions match the main findings of Shimer (2012) yet support the insight of Darby, Haltiwanger, and Plant that unemployment volatility is mainly driven by job destruction shocks.

Kroft, Lange, Notowidigdo and Katz (2014) impose a stylized search and matching structure on a 3-state model with negative duration dependence in the job finding probability of the unemployed. Although theirs is not a structural model either, it is certainly a step closer than variance decomposition studies. The authors find that allowing for duration dependence in the job finding probability and cyclical movements on the participation margin are both needed to match the unprecedented rise in longterm unemployment and the outward shift of the Beveridge curve observed in the Great Recession. However, their model gives rather poor predictions of the participation rate and the job finding probability of non-participants. I conjecture that these shortcomings originate from their treating the non-employed asymmetrically. Whereas they model negative duration dependence in the job finding probability of the unemployed, they assume that non-participants find jobs at a homogeneous rate. The only reason I can think of for making this assumption is data limitation: in the Current Population Survey (CPS) only unemployed respondents are asked about the length of current unemployment spell, similar data is not collected for non-participants.

The papers reviewed so far suggest that participation decisions and negative duration dependence in job finding are important ingredients of cyclical phenomena on the labor market. Another line of research addresses the controversial nature of drawing a line between unemployment and non-participation. The purpose of the classification system is to capture labor market attachment of the non-employed. Jones and Riddell (1999, 2006) argue that instead of relying on self-reported job-search behavior, clas-

<sup>&</sup>lt;sup>3</sup>The usual free entry assumption makes vacancy creation perfectly elastic. With more unemployed searching for jobs, it is easier for firms to fill vacancies, hence ceteris paribus vacancies become more valuable and firms will create more of them. As a result, unemployment and vacancies are positively correlated in the standard DMP model, a strongly counterfactual prediction. See Shimer (2005), Hornstein, Krusell and Violante (2005) and Coles and Moghaddasi (2014).

sification should be "evidence-based". What they mean by this is that labor market attachment of a group is revealed by its transition probabilities to other states. They start out from a finer partition of the non-employed, and estimate logit models of individual transitions using micro data from the Canadian Labor Force Survey. Controlling for largely the same variables as Shimer (2012), they find that those who want a job, but are not actively searching, have significantly different transition rates both from the unemployed and from other non-participants. They also note that workers on temporary layoff have much higher job finding probability than the unemployed-looking. Importantly, the authors call attention to the fact that some non-participants display rather high labor market attachment.

### 1.2 Goals for the master's thesis

Building on the insights outlined above, I undertake a novel empirical analysis of heterogeneities in labor market states. Elsby et al. (2013) argued that prior labor force status reveals differences in labor market attachment that could not be captured by contemporaneous observables. They find sizable composition effects in the U–N transition rate by distinguishing the currently unemployed based on their labor force status (E, U, or N) a year before. I elaborate on this idea by using data on short-term labor force history and apply it to job finding probabilities. Specifically, I consider threemonth histories preceding potential transitions to employment. Job finding probability has large fluctuations at business cycle frequency, but that does not necessarily imply that it is driven by aggregate shocks. The unemployed constitute a relatively small fraction of the working age population, with relatively large turnover due to flows to employment and non-participation. This means that the composition can change rather rapidly, too.

I analyze history dependence in the context of binomial logit models of job finding probability using longitudinally matched micro data from the CPS. This regression framework is similar to Jones and Riddell (1999, 2006), who estimated both multinomial and binomial logit models of transitions between labor market states. The crucial difference is that they explicitly assume that all but the last status are irrelevant for predicting transition rates. This Markov assumption is implicit in the majority of labormacro studies, but omitting history from an econometric estimation of transitions might bias the results. In fact, I find that a 3-state model (E, U, N) with three-month history captures more variation in job finding probabilities than a finer 5-state model without history, and that current status and history are correlated.

Intuitively, labor force histories are closely related to duration of current spell. Indeed, I demonstrate that allowing heterogeneity in job finding probability with respect to labor force history is sufficient to match the negative duration dependence stressed by Hornstein (2012) and Kroft et al. (2014). I also claim that looking at history has conceptual as well as practical advantages over duration. Conceptually, a sequence of states contains more information than just the length of the current spell. Of course, it is a higher dimensional object, thus comes at the cost of larger data requirement, but my hypothesis is that this extra information is valuable. Practically, most employment surveys do not gather information on time spent out of the labor force. Therefore, working with labor force history enables researchers to consider "duration dependence" for non-participants as well as for the unemployed.

Treating three-month sequences of labor market status as potentially distinct states leads to the fragmentation of the sample. Some histories, for example NEU, are rather rare thus have few observations. Having to work with small sample sizes motivates my using of Bayesian inference. Conditional on model specification, Bayesian models give precise probability statements for arbitrarily small samples and do not rely on asymptotic arguments. Bayesian methods are also well-suited to fit multilevel models. This flexible framework allows me to quantify the relative importance of status at months t - 1, t - 2, t - 3 for explaining month t transition rates. I find that recent employment has bigger impact than contemporary search-behavior.

The thesis is structured as follows. In Section 2, I describe where the data is coming from and how the sample is constructed. In Section 3, I estimate the baseline models with and without history and compare their predictions. In section 4, I develop a more elaborate multilevel model, and use it to decompose the variation in job finding probabilities by labor force status in the preceding months. Section 5 concludes.

## 2 Data

I use micro data from the Current Population Survey (CPS), the source of official employment statistics in the U.S. since 1948. In the past 67 years, the CPS has undergone several major revisions, the last of which was made in 1994. Since 2000, approximately 70,000 households are interviewed monthly based on their addresses. The survey is a rotating panel: respondents enter the sample for four months, rotate out for eight months, and then rotate back again for another four months. Therefore in principle, three-quarters of respondents are surveyed in two consecutive months (rotation groups 2-4 and 6-8). The structure of the survey therefore enables direct measurement of worker flows. For example, the average U–E transition probability is the ratio of workers who report being unemployed in one month and employed in the next. Analogously, it is in principle possible to match one-quarter of the records for four consecutive months. Thus, for rotation groups 4 and 8, the complete set of variables is available for three months before an observed potential transition. Of course, there is further loss of data due to survey non-response.

These measures of U.S. labor market flows have been used extensively in academic research. Recent examples include Shimer (2005, 2012); Elsby et al. (2013); Kroft et al. (2014) just among the papers I have already cited. These authors computed (or were provided with) transition probabilities starting from 1967. It is worth noting however, that the Bureau of Labor Statistics (BLS) itself, the institution that administers the CPS, suspended publishing gross flows data in 1952 due to concerns about its accuracy. Eventually, publication of the official series has been resumed, but only for 1990 onwards (see Frazis et al. (2005) and Ilg (2005). In the master's thesis, I only use post-1996 data, which were matched and made available to me by Christian Haefke, whom I thank again. Appendix A contains the official definitions of labor market states that apply for this period, and the notation I use throughout the master's thesis.

#### 2.1 Margin- and classification errors

Before moving on to the analysis, I shortly discuss two types of errors in the CPS that are known to affect measured flows. The first is *margin error*, the inconsistency of measured stocks and flows. While labor market stocks are constructed using all eight rotation groups, flows are necessarily based on the subsample that can be matched across a minimum of two consecutive months. There are three potential sources of inconsistency. First, systematic rotation group effects. Second, non-random attrition due to changes in residency or other reasons. Krueger, Mas and Niu (2014) find that the two are connected: significantly fewer respondents claim to be unemployed in later rotation groups, and the pattern of the bias over time mirrors that of survey nonresponse. Third, flows in and out of the scope of the CPS (turning 16, emigration, death and so on). One possible way to deal with margin error is to solve for stock-consistent flows with minimal adjustment (in sense of weighted sum of squares). Practically, margin error adjustments have small effect on measured transition probabilities as shown for example by Elsby et al. (2013).

Classification errors, assigning a worker to the wrong labor market state, are potentially more important. While some of these mistakes might offset each other in stock measures, they are likely to generate spurious transitions. For example, if hundred workers with true labor force history UUU are misclassified as UEU and similarly hundred EEE are misclassified as EUE, than all errors offset for stocks but there are two hundred spurious E–U and two hundred spurious U–E transitions. Abowd and Zellner (1985) and Poterba and Summers (1986) use CPS reinterview data to analyze misclassification. They find that most classification errors happen on the U–N margin, and the overall effects on flows are substantial. Due to data quality problems however, reconciled reinterview data are no longer being produced. Thus, it is impossible to update their adjustment matrices, which renders the proposed mechanisms less and less reliable, particularly because they assumed that classification errors are time-invariant.

The newly resumed official worker flows are corrected for margin error, and the 1994 redesign attempted to reduce classification errors through changing the wording and order of questions, computerization and so on (see Polivka and Rothgeb (1993)). Although the post-1994 data are hopefully less prone to misclassification, measured flows are still sensitive to the errors that remain. Due to data limitations however, most studies do not address this directly. An exception is the work of Elsby et al. (2013), who consider the original Abowd and Zellner (1985) correction and an ad hoc method they call "deNUNification", whereby they eliminate transitions between unemployment and non-participation that were reversed in the next month.

### 2.2 First look at job finding probabilities

Figure 3 shows time series of unadjusted job finding probabilities for the 5-state partition proposed by Jones and Riddell (2006). The four non-employed states are (i)unemployed on temporary layoff (L), who are characterized by *waiting* to be recalled to their job rather than searching; (ii) unemployed-looking (U), who are active jobseekers; (iii) want-a-jobs (W), who report desiring work but are not searching actively, (iv) other non-participants (N), who claim not wanting to work. Heavy smoothing— I took 11-month moving averages—was necessary to deal with the strong seasonality in the data.<sup>4</sup> The underlying survey data contains the records that could have been matched successfully across four consecutive months. In addition, respondents who were retired or disabled in any month are excluded. Workers aged 16-25 and older than 55 are also excluded because their labor market transitions are likely to be driven by special factors such as school holidays and retirement.

At this point, distinguishing unemployed-looking and on temporary layoff seems absolutely warranted as the latter group find employment approximately twice as fast. One can also see that want-a-jobs are closer to unemployed-looking than to other non-

<sup>&</sup>lt;sup>4</sup>The standard method in the literature is to use the up-to-date seasonal adjustment software provided by the BLS. I chose not to use the current X-13ARIMA-SEATS here because these are purely expository figures.

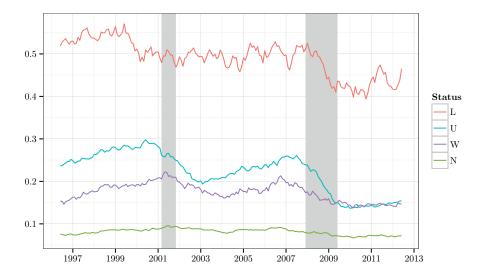



Figure 3: Job Finding Probability by Labor Force Status

Note: 11-month moving averages of the unadjusted monthly job finding probabilities of the non-employed aged 25-55. Retired and disabled workers are excluded. Matched CPS micro data from rotation groups 4 and 8.

participants. These observations are in line with Jones and Riddell (2006)'s findings for the Canadian labor market.

Notice that even these strongly smoothed series are markedly procyclical for all groups. Job finding probabilities peaked in 2006–2007, then dropped considerably as the Great Recession hit. Although to a lesser extent, the same happened in the relatively mild recession of the early 2000s. The unemployed-looking suffered the biggest decline: they were almost 40% less likely to find a job in 2009 than in 2006 as the average monthly probability fell from 24% to 14%. Want-a-jobs were affected less, their job finding probability fell by a quarter, from 19% to 15.2%. Albeit that is a considerable drop too, the gap between active job seekers and want-a-jobs seem to have closed completely. Taken at face value, this would be hard to reconcile with any standard economic model. I conjecture that it might reflect a systematic change in the way people answer the survey in recessions. The phenomenon is at least consistent, the gap between the job finding probability of the unemployed-looking and want-a-jobs narrowed in the aftermath of the 2001 recession as well. The figure is less informative on other non-participants, because their job finding probability is permanently lower than the rest's. Nevertheless, their job finding probability also fell from 9% to 7%, by more than 28%.

To motivate modeling heterogeneity within labor market states, I calculated average job finding probabilities for the cross-tabulated data in Table 1. Note that the patterns for the full sample in the first column are rather similar for the non-participants in the last column. The reason for this is that married women out of the labor force constitute by far the largest fraction of the sample. This is problematic, because non-

| 1996-2012             | Total | L    | U    | W    | N    |
|-----------------------|-------|------|------|------|------|
| $Sex \times married$  |       |      |      |      |      |
| Single women          | 14.1  | 46.9 | 18.5 | 13.7 | 9.7  |
| Married women         | 9.0   | 52.9 | 19.6 | 15.1 | 6.5  |
| Single men            | 20.2  | 42.2 | 19.5 | 18.9 | 15.3 |
| Married men           | 26.6  | 48.5 | 23.6 | 26.5 | 20.6 |
| Age                   |       |      |      |      |      |
| 25 to $35$            | 12.9  | 46.4 | 21.4 | 16.7 | 7.7  |
| 36 to 45              | 13.2  | 48.6 | 20.8 | 16.8 | 7.8  |
| 46 to 55              | 13.8  | 47.3 | 17.4 | 16.6 | 8.7  |
| Education             |       |      |      |      |      |
| Less than high school | 12.9  | 45.9 | 20.1 | 14.6 | 7.3  |
| High school           | 13.4  | 44.8 | 18.9 | 15.7 | 7.9  |
| Some College          | 13.5  | 48.8 | 20.8 | 16.7 | 8.2  |
| College               | 13.5  | 53.7 | 21.6 | 21.3 | 8.6  |
| Region                |       |      |      |      |      |
| Midwest               | 13.8  | 46.2 | 19.6 | 17.2 | 8.0  |
| Northeast             | 13.4  | 44.9 | 19.1 | 17.2 | 8.4  |
| South                 | 12.7  | 50.3 | 20.4 | 16.7 | 7.9  |
| West                  | 13.7  | 48.6 | 21.4 | 17.5 | 8.2  |
| Status 3 months ago   |       |      |      |      |      |
| Employed              | 37.7  | 53.0 | 33.4 | 38.2 | 35.5 |
| Unemployed on layoff  | 31.6  | 38.8 | 23.3 | 28.6 | 26.3 |
| Unemployed-looking    | 14.2  | 34.1 | 14.8 | 12.1 | 10.5 |
| Want a job            | 9.2   | 32.3 | 14.6 | 8.1  | 6.1  |
| Non-participants      | 4.6   | 39.9 | 17.4 | 9.5  | 3.7  |

Table 1: Heterogeneity in Job Finding Probability (percentages)

Note: Matched CPS micro data for non-employed aged 25-55 from rotation groups 4 and 8.

participant women differ markedly from other groups. First, married people find jobs quicker than singles except for women who do not want a job. Second, the gap between the job finding probabilities of unemployed and non-participants is considerably larger for women than for men. This matters as we have already seen that the gap tends to decrease in recessions. I conclude that gender and marital status are in complex interaction with labor force status. Accounting for this interaction properly would be very data-demanding, as I consider three-month histories of labor force status. On the other hand, not addressing the issue at all would distort my results as the sample is skewed towards women out of the labor force. Thus, as the focus of the thesis is on labor force history, I restrict my analysis to men.

For these prime age workers, further disaggregation by age does not seem to reveal much. However, the patterns differ across labor force states: job finding probabilities are decreasing for unemployed-looking, increasing for non-participants, and mildly parabolic for the rest. As expected, education is positively correlated with job finding,

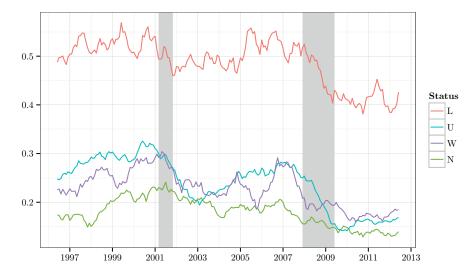



Figure 4: Job Finding Probability of Men by Labor Force Status

Note: 11-month moving averages of the unadjusted monthly job finding probabilities of the non-employed men aged 25-55. Retired and disabled workers are excluded. Includes micro data from CPS matched across four months from rotation groups 4 and 8.

although the steps are relatively small. The exception is the want-a-job category, in which college graduates have a sizable advantage. Differences between the four census regions are of similar magnitude as between educational categories. Although the effects of age, education, and region are not uniform across states either, their interactions are safer to ignore because the differences are considerably smaller and in-sample shares are more balanced than for gender.

The bottom panel attests to the profound effect of prior status. The first row shows that individuals who were employed three months earlier have very high job finding probabilities *regardless of their current status*. Although a smaller subsample, this is also true for the formerly unemployed on layoff.

The exclusion of women from the analysis reduces the sample size by 75%. This has potentially far-reaching consequences, so it is worth considering the updated version of Figure 3. The most important difference in Figure 4 is the high job finding probability of non-participants. It seems that a large fraction of prime age men start working every month, even if they said that they have not searched for or not even wanted a job. This might look suspicious, but that is what the CPS, the official employment survey of the US, tells us. On the aggregate, this is masked by the presence of stay-at-home mothers, retired and disabled, young and old persons who start working very seldom indeed.

We saw on Figure 1 that the number of N–E transitions have surpassed the number of U–E transitions in every year from 1990 onwards. As opposed to the other figures and tables in the thesis, those flows are adjusted for population weights, and are representative of the U.S. The additional insight from Figure 4 is that these high N–E flows are not just incidental transitions that become relevant only because there are many non-participants. Rather, there are people classified as out of the labor force who find jobs almost as quickly as the unemployed. Jones and Riddell (1999) argued that want-a-jobs are at least marginally attached to the labor market. In addition, I find that among prime age men, even the rest of the non-participants display considerable attachment to the labor market.

### 3 Models with short-term labor force history

Flows between labor market states are often modeled as a Markov chain, in which the current state contains all relevant information for predicting transition rates to subsequent states. A prime theoretical example is the DMP model, in which all unemployed and employed workers are homogeneous. Thinking in terms of Markov transitions permeates empirical work as well, see for example Shimer (2012) and Jones and Riddell (2006). These papers analyze heterogeneities in transition probabilities, but do not consider history dependence in any form.

In this section, I investigate the empirical validity of the Markov assumption by using data on short-term labor force history. In particular, I fit binomial logit models of the following form

$$\Pr(y_i = 1) = \operatorname{logit}^{-1}(\alpha_k + X_i\beta),$$

where *i* is the index of individuals, and *k* is the index of labor market states;  $y_i$  is the indicator of finding a job in the next period, and  $X_i$  is the vector of covariates. In the first version of the model, the  $\alpha_k$  coefficients correspond to status in the month before, while in the second they reflect history as well. I will show that paths ending in the same state correspond to significantly different job finding probabilities. Moreover, the richer model fits well the observed negative duration dependence of the unemployed, which is not targeted explicitly.

I fit the models with a general-purpose Markov Chain Monte Carlo method, the No-U-Turn Sampler. The algorithm is implemented in C++ and has user-friendly interfaces with other languages, including R. For details, see Stan Development Team (2014a,b,c). In each case, I run four Markov chains with 1000 iterations. The first 500 iterations are discarded as burn-ins, resulting in 2000 simulated sets of parameters for each model. I always check for convergence and mixing of the chains but do not discuss them in the main text. Appendix B contains the RStan outputs.

The covariates I use are age, age squared, marital status, education and region. Age, which originally takes on values between 25 and 55, is standardized by centering and dividing by two standard deviations as suggested by Gelman and Hill (2007). Education is a factor with four levels: less than high school, high school, some college, and college degree or higher. Region includes the four census regions: Northeast, Midwest, South, and West.

The choice of covariates is standard. Jones and Riddell (2006) estimate binomial logit models with the same regressors for Canadian data. The only difference is that they have a gender dummy, which I do not need, since I excluded women from the analysis. Shimer (2012) considers heterogeneity in age (7 groups), sex, race (white or nonwhite), marital status (married spouse present, spouse absent or separated, divorced or widowed, never married), nine census divisions, education (5 groups), and reason for unemployment (job loser on layoff, other job loser, job leaver, re-entrant, new entrant).

Elsby et al. (2013) takes the full interaction of gender, age (3 groups), education (4 groups), reason for unemployment (job leaver, job loser, entrant), and labor force status one year prior to the survey (E, U, N) into account. Note that the latter two authors do not fit econometric models, just apply their accounting schemes separately to the different groups.

Although Shimer (2012) has finer marital status and region partitions, he finds that heterogeneity matters little, whereas Elsby et al. (2013) can trace a large part of cyclicality in U–N transition rates to compositional changes. While taking interactions into account is potentially important as well, the authors themselves point to the inclusion of prior status as the most important difference. My goal is to elaborate on this conjecture, hence I do not partition the unemployed by reason for unemployment, because that would dramatically increase the number of possible three-month histories.

As I discussed in section 1, job finding probability over time is driven to a large extent by direct effects of aggregate fluctuations. Using several years' data without controlling for macro conditions would probably bias the results. We know that job finding probability is strongly procyclical, but we do not know whether groups with different histories are affected symmetrically. There would be numerous ways to include some indicators of macro conditions in a multilevel model. This flexibility is useful but, absent prior information, potentially dangerous.

Gelman and Hill (2007) recommends to use simple models to explore the data and inform more elaborate models. Following their advice, I start with modeling history dependence in isolation from macro conditions. To get a sense of cyclical effects, I fit the models separately for 2006 and 2009. The idea is that one year is short enough for macro conditions to change little, but has sufficiently many observations and balances out seasonality. Comparing results of a boom and a crisis year is a "non-parametric way" to learn about the relation of history dependence and business cycle and paves the way to richer models.

Table 2 contains the number of observations in the chosen years after all exclusions. In 2006, 10% and 16% of the respondents were classified as unemployed on layoff and want-a-job, respectively. The remaining three-quarters were split almost equally between unemployed-looking and other non-participants. The relevant sample for 2009 is almost twice as large. The most important difference is the dramatic increase in the number and share of respondents who claim to be unemployed. The bottom panel shows the same for a partition by history. Notice that this classification is not strictly finer, because the two subcategories of unemployment and non-participation are pooled together. Even so, there are groups with as few as 20–50 observations. The panel reveals that most of the increase in the number of currently unemployed is accounted for by the consistent job-seekers (UUU). Notice that the number of NNN remained largely the same, which corresponds to a 10 percentage point fall in the share of "permanently" out of the labor force. Lastly, EEN were the fourth largest group in 2006, but their share almost halved by 2009.

|    | status or | nun  | nber | sha   | are   |
|----|-----------|------|------|-------|-------|
|    | history   | 2006 | 2009 | 2006  | 2009  |
| 1  | L         | 431  | 919  | 10.62 | 12.49 |
| 2  | U         | 1534 | 4021 | 37.81 | 54.63 |
| 3  | W         | 654  | 957  | 16.12 | 13.00 |
| 4  | Ν         | 1438 | 1463 | 35.44 | 12.49 |
| 1  | UNU       | 95   | 248  | 2.34  | 3.37  |
| 2  | NNN       | 1045 | 1156 | 25.76 | 15.71 |
| 3  | UNN       | 125  | 186  | 3.08  | 2.53  |
| 4  | NUN       | 93   | 107  | 2.29  | 1.45  |
| 5  | UUN       | 140  | 267  | 3.45  | 3.63  |
| 6  | NUU       | 126  | 275  | 3.11  | 3.74  |
| 7  | NNU       | 111  | 182  | 2.74  | 2.47  |
| 8  | UUU       | 711  | 2499 | 17.53 | 33.95 |
| 9  | ENU       | 73   | 87   | 1.80  | 1.18  |
| 10 | ENN       | 170  | 152  | 4.19  | 2.07  |
| 11 | EUN       | 70   | 96   | 1.73  | 1.30  |
| 12 | EUU       | 267  | 604  | 6.58  | 8.21  |
| 13 | UEN       | 32   | 52   | 0.79  | 0.71  |
| 14 | NEN       | 66   | 52   | 1.63  | 0.71  |
| 15 | NEU       | 26   | 22   | 0.64  | 0.30  |
| 16 | UEU       | 82   | 154  | 2.02  | 2.09  |
| 17 | EEU       | 474  | 869  | 11.68 | 11.81 |
| 18 | EEN       | 351  | 352  | 8.65  | 4.78  |
|    |           | 4057 | 7360 | 1     | 1     |

Table 2: Number of Observations

Note: Matched CPS micro data for non-employed aged 25-55 from rotation groups 4 and 8.

Table 3 shows summary statistics for the covariates. First, we can see that the composition of the non-employed changed little between 2006 and 2009. Thus, composition effects with respect to marital status, age, education and region are unlikely to be relevant drivers of the job finding probability over time. Second, the fraction of married workers varies substantially across labor market states. There are 25% more husbands among L than the non-employed average, which is pulled down by W and N. Third, the age distribution is remarkably symmetric, except for non-participants who are slightly younger than the others. Fourth, the non-employed with high school diploma or less were more likely to be on temporary layoff, while relatively many people with at least some college level education were out of the labor force in both years. Fifth, disproportionately many respondents were on temporary layoff in the Midwest, while relatively few in the South.

| 2006                     | Total | L  | U  | W  | N  |
|--------------------------|-------|----|----|----|----|
| % married                | 44    | 55 | 46 | 37 | 41 |
| Age                      |       |    |    |    |    |
| $1^{\rm st}$ quartile    | 30    | 32 | 32 | 30 | 29 |
| $2^{\rm nd}$ quartile    | 38    | 40 | 40 | 38 | 36 |
| 3 <sup>rd</sup> quartile | 46    | 47 | 47 | 47 | 45 |
| Education                |       |    |    |    |    |
| % No High School         | 18    | 23 | 17 | 20 | 16 |
| % High School            | 35    | 45 | 37 | 37 | 28 |
| % Some College           | 19    | 17 | 18 | 17 | 22 |
| % College                | 28    | 15 | 27 | 26 | 34 |
| Region                   |       |    |    |    |    |
| % Midwest                | 24    | 35 | 25 | 24 | 21 |
| % Northeast              | 20    | 21 | 20 | 19 | 21 |
| % South                  | 29    | 18 | 31 | 30 | 30 |
| % West                   | 26    | 26 | 25 | 27 | 28 |

| 2009                     | Total | L  | U  | W  | Ν  |
|--------------------------|-------|----|----|----|----|
| % married                | 47    | 56 | 49 | 39 | 40 |
| Age                      |       |    |    |    |    |
| $1^{\rm st}$ quartile    | 30    | 32 | 31 | 30 | 28 |
| 2 <sup>nd</sup> quartile | 39    | 40 | 40 | 38 | 35 |
| 3 <sup>rd</sup> quartile | 47    | 48 | 48 | 46 | 45 |
| Education                |       |    |    |    |    |
| % No High School         | 16    | 19 | 16 | 17 | 14 |
| % High School            | 38    | 48 | 37 | 42 | 30 |
| % Some College           | 19    | 15 | 19 | 17 | 23 |
| % College                | 27    | 18 | 27 | 24 | 33 |
| Region                   |       |    |    |    |    |
| % Midwest                | 24    | 35 | 23 | 23 | 22 |
| % Northeast              | 18    | 18 | 18 | 20 | 18 |
| % South                  | 30    | 22 | 31 | 29 | 33 |
| % West                   | 27    | 24 | 28 | 28 | 26 |

Note: Matched CPS micro data for non-employed aged 25-55 from rotation groups 4 and 8.

#### 3.1 A standard model without history dependence

My benchmark model without history is a Bayesian binomial logit with flat priors

$$Pr(y_i = 1) = logit^{-1}(\alpha_k + X_i\beta),$$
  

$$k \in \{L, U, W, N\},$$
  

$$p(\alpha, \beta) \propto 1,$$
(1)

that is essentially one of the binomial models of Jones and Riddell (2006) with the necessary modifications for American data. Of course, this model could easily be estimated with maximum likelihood but, in anticipation of the more complex models with history, it is better to consistently use Bayesian methods throughout the thesis.

Figures 5 and 6 visualize the posterior distribution of job finding probability for 2006 and 2009 together. Figure 5 compares the  $\alpha_k$  coefficients, hence gives a sense of job finding probability net from the effects of the other observables. In contrast, Figure 6 shows fitted probabilities on the left-hand side of (1) conditioning on all covariates. The two graphs look very similar, and the basic results can be seen from either of them. Similarity of conditional and unconditional job finding probabilities is meaningful itself, and I will return to it later.

In light of Figure 4 that pictured the raw time series, these results are not surprising. What we learn from this simple model is the magnitude of uncertainty. First, following Jones and Riddell (1999, 2006) we can ask whether the job finding probabilities out of the four states are significantly different or not. Clearly, the temporarily laid-offs are real outliers in the U.S. as well as in Canada. On average, they resume working much more quickly than any other group can find new jobs. In comparison, the three other groups are similar. After excluding women as well as old and young people, the job finding probability of the remaining non-participants (prime age men) is remarkably high. In 2006, it was around 23% for want-a-jobs and just below 20% for the rest.

The figures also reveal that the unemployed-looking were only slightly more likely to find employment than want-a-jobs in 2006. Moreover, their job finding probability plummeted by 2009 to the level of non-participants. Taking the two years together though, U, W, and N are clearly pairwise distinct states: there is basically no overlap between the point clouds. The graphs also give a sense of cyclical change: distance from the 45° line is proportional to the decline in job finding probability. What I find most striking is the dramatic decrease in the job finding probability of the unemployedlooking. The other groups seem to have weathered the crisis better in this respect, especially the want-a-jobs.

How much of this is attributable to composition effects? Based on the results of Shimer (2012) and Tables 1 and 3, we can expect that not much. First, Shimer considered all of these covariates, some of them with more categories, yet he found weak compositional effects. Second, Table 1 revealed that job finding probability varies relatively little across age, education and region categories. However, being married is

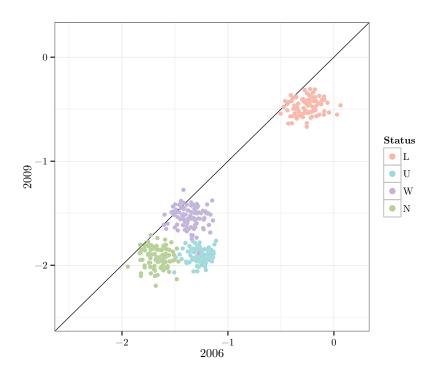



Figure 5: Coefficients in 2006 and 2009—No History Note: A sample of 100 coefficients were drawn for each state from the total 2000 simulations.

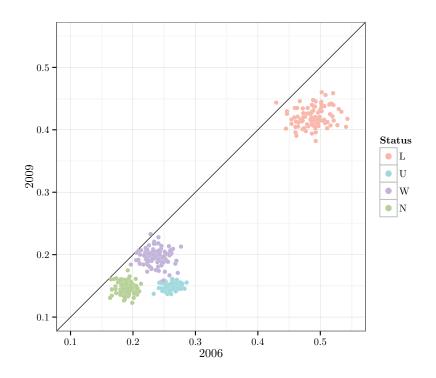



Figure 6: Fitted Job Finding Probabilities in 2006 and 2009—No History Note: Averages of fitted job finding probabilities by labor market states with a sample of 100 set of parameters from the total 2000 simulations.

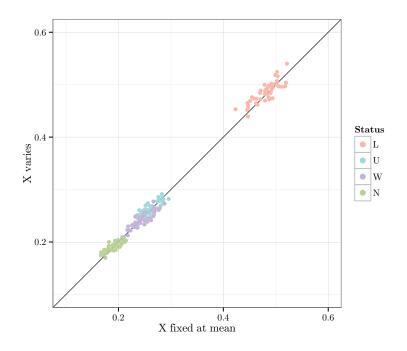



Figure 7: Coefficients vs. Job Finding Probabilities for 2006

associated with 30% higher monthly job finding probability on average. Third, Table 3 showed that the composition of the non-employed remained stable with respect to all covariates. Some insights into this question can be gained by comparing Figures 5 and 6. If the relative position of point clouds were considerably different, that would mean that the covariates in X are relevant drivers of the job finding probability over time. Although the four groups are more clearly distinct when all covariates are conditioned upon, the differences are minor.

Another way to assess the importance of within-state heterogeneity is to plot fitted probabilities on the left-hand side of (1) against fitted probabilities with covariates Xfixed at their mean values. If the covariates other than labor force status played no role, all the points would line up on the 45° line. Figure 7 shows that there is some variation in job finding probabilities due to the covariates, but they are small compared to the effect of status. In conclusion, the four non-employed groups are either similar with respect to the covariates, or the covariates explain little of the job finding probability.

My probability model confirms that composition effects *within* the four states with respect to age, marital status, education, and region are small. This does not rule out however, that the average job finding probability of all non-employed had shifted due to changing population shares of L, U, W, and N. To address that in a meaningful way, I would have to re-weight the CPS sample to make it sure that it is representative of the relevant population. That is however out of the scope of my master's thesis and is left for future research.

#### 3.2 Modeling history dependence

In full generality, all variations of three-month histories are potentially distinct states. In this subsection, I discuss a binomial logit model that allows for that possibility, while remains as close to Model (1) in every other respect as possible. In particular, I maintain the assumption that all status coefficients are independent and use the same control variables and data. Unfortunately, one year's data are insufficient for precise estimation for the 5-state partition I have used so far.<sup>5</sup> Therefore, I switch to the standard 3-state classification, which gives rise to eighteen different paths.<sup>6</sup> The model is

$$Pr(y_i = 1) = logit^{-1}(\alpha_{k_3k_2k_1} + X_i\beta),$$
  

$$k_3, k_2 \in \{E, U, N\}, \quad k_1 \in \{U, N\},$$
  

$$p(\alpha, \beta) \propto 1,$$
(2)

where  $k_n$  refers to status n months before the potential transition to employment, hence  $k_3$  is the earliest observed status and  $k_1$ , the last, cannot be employment.

Figure 8 summarizes the posterior distribution of the estimated job finding probabilities for 2006. Significant heterogeneity with respect to history is immediately apparent. According to the model, EEU and EEN both have more than 50% chance of finding new employment. Moving down on the plot, there are all those who had recently been employed. Negative duration dependence is pronounced for unemployed and non-participants alike: job finding probability is higher for those who held jobs at t - 2 rather than at t - 3, though the differences are not always significant. Nonparticipants with no recent employment have largely the same job finding probability, which is lower than that of the unemployed. For the recently employed however, labor force history accounts for more variation than current job search behavior. I show only the estimations for 2006 but the pattern is similar for 2009. Interdecile ranges are even sharper as the 2009 sample is almost twice as large.

In their search and matching model, Kroft et al. (2014) assumed that job finding probability from unemployment is subject to causal negative duration dependence, while non-participants are re-employed at a homogeneous rate. Although my model does not identify causal relations, it demonstrates that labor force history matters at least as much for non-participants as for the unemployed. In fact, the range of fitted job finding probabilities is even larger for non-participants. Therefore, homogeneity of transition rates from non-participation is at odds with the data, even for the restricted sample of non-disabled, prime age men.

Now I turn to the comparison of boom and crisis years again. Figure 9 plots the posterior mean job finding probabilities in 2006 and 2009. We can see that there was a large dispersion in job finding probabilities in both years, especially for non-participants. Interestingly, almost all subgroups of the unemployed were hit harder

<sup>&</sup>lt;sup>5</sup>With K states of which one is employment, there are  $(K-1)K^2$  different three-month histories ending in non-employment.

<sup>&</sup>lt;sup>6</sup>See Table 2 for the sample sizes.

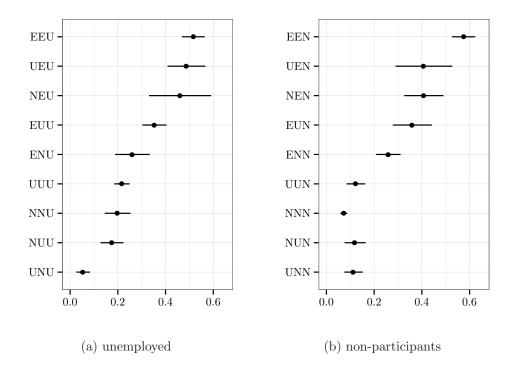



Figure 8: Posterior Uncertainty of Job Finding Probabilities in 2006—History Dots represent means, lines interdecile ranges of the group averages across simulations.

by the crisis than non-participants. Except for UNUs, who had a surprisingly low job finding probability in 2006, which is probably an outlier. The history and no history models therefore both suggest that the job finding probability of the unemployed is more strongly procyclical than that of the non-participants.

#### 3.3 Comparing the two models

Model (1) controls for a finer classification of the non-employed, while Model (2) includes history. If the Markov assumption were true, then controlling for history would only be useful to the extent that it picks up the effect of contemporaneous, omitted heterogeneity. In fact, many economists think that the history (or duration) dependence that we observe in the data is due to unobserved heterogeneity, see for example Hornstein (2012). Although causal effects are not identified separately in my framework, I will demonstrate that the 3-state model with history contains more information than the 5-state model without. The only potential caveat to deal with is the higher degrees of freedom of the history model.

One option is to look at out-of-sample forecasts, for which the difference in degrees of freedom is not troublesome. Table 4 shows mean squared errors (MSE) for the full samples and by the four non-employed states. The posteriors of the models fitted using 2006 and 2009 data are used to predict transition probabilities in the first halves of 2007 and 2010, respectively. The choice of half a year is somewhat arbitrary. The idea is that its macro environment should be sufficiently close to the estimation period, and

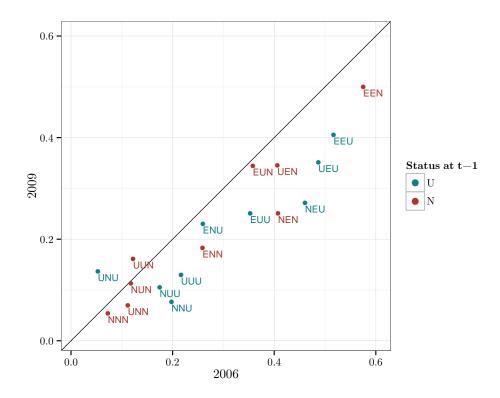



Figure 9: Fitted Job Finding Probabilities in 2006 and 2009—History

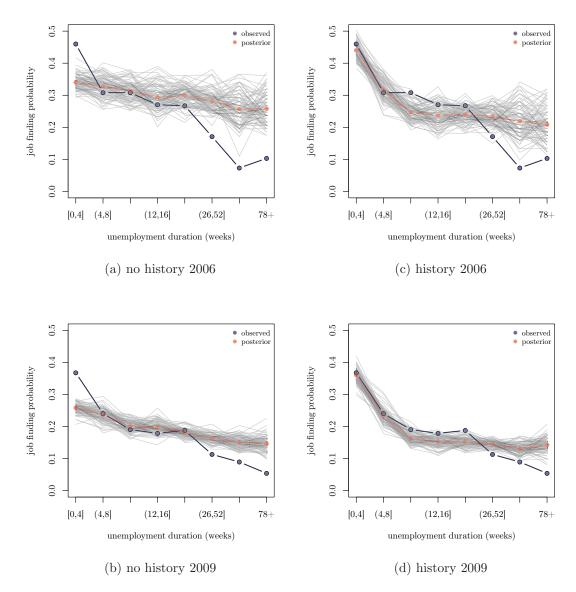
that more data is better. For this exercise, I make use of all 2000 posterior simulation, resulting in 2000 separate mean squared errors. Table 4 shows the means and standard deviations of these MSEs across the simulations.

We can see that Model (2) with history gives better predictions for both years and every group. There is one exception, temporarily laid-offs in the first half of 2010, but the difference between the two models is insignificant there. In general, the history model does considerably better for non-participants and marginally better for the unemployed. Recall however that the job finding probabilities of groups L, U, W, N were modeled explicitly in the no history model only. We have seen in section 3.1 that workers in L and U have widely disparate re-employment probabilities. Model (1) uses this information directly. Thus, it is non-trivial that the history model gives significantly better predictions for the unemployed, too.

There is another possibility to learn about model fit. The output of Bayesian models is the joint distribution of parameters given the data and the model specifics called the posterior. The posterior summarizes parameter inference and can be used to replicate the dataset via simulations. Comparison of the actual and simulated datasets can help to better understand the model fit. In Bayesian jargon, this exercise is called posterior predictive check and is commonly used in empirical work. Gelman and Hill (2007, Chapter 24) discusses the principles of predictive checking with various applications.

What aspects of the dataset would be interesting to replicate? In the introduction, I motivated modeling worker heterogeneity with the example of negative duration

| Model      | All                | L                  | U                      | W                  | Ν                  |
|------------|--------------------|--------------------|------------------------|--------------------|--------------------|
|            |                    | 2007 G             | <b>)</b> 1– <b>Q</b> 2 |                    |                    |
| No history | $0.198 \\ (0.001)$ | $0.255 \\ (0.003)$ | $0.208 \\ (0.001)$     | 0.210<br>(0.002)   | $0.157 \\ (0.001)$ |
| History    | $0.171 \\ (0.001)$ | 0.249<br>(0.002)   | $0.193 \\ (0.001)$     | $0.166 \\ (0.002)$ | $0.114 \\ (0.001)$ |
|            |                    | 2010 G             | <b>)</b> 1– <b>Q</b> 2 |                    |                    |
| No history | $0.140 \\ (0.004)$ | $0.237 \\ (0.002)$ | 0.122<br>(0.000)       | $0.135 \\ (0.001)$ | $0.130 \\ (0.001)$ |
| History    | $0.131 \\ (0.004)$ | $0.238 \\ (0.002)$ | 0.118<br>(0.000)       | 0.114<br>(0.002)   | $0.107 \\ (0.001)$ |


dependence in job finding probability. The two panels of Figure 2 demonstrate that unemployment duration has both qualities necessary for being a relevant source of composition effects. First, job finding probability varies a lot by unemployment duration: the short-term unemployed are more than twice as likely to find employment than the long-term unemployed. Second, the population shares of short- and long-term unemployed are notably cyclical, with the ratio of long-term unemployed rising is recessions. For these reasons, it is worthwhile to compare the ability of models (1) and (2) to capture negative duration dependence. As I mentioned before, the CPS does not have duration data for non-participants. Therefore, I use the unemployed subsample.

The exact procedure for Model (1) is as follows. First, I calculate the fitted job finding probabilities

$$\widehat{p}_i = \text{logit}^{-1}(\alpha_k + X_i\beta)$$

of unemployed individuals for 100 set of parameters sampled form the posterior. Second, I simulate binary U–E transitions as Bernoulli trials with success probabilities  $\hat{p}_i$ that are unique for every individual. Although unemployment duration is not used in the model, it is observed for all unemployed in the sample. Thus, it is possible to calculate the average number of transitions per units of unemployment duration. All in all, only the number of transitions is endogenous, while the covariates  $X_i$  and unemployment duration data are taken exogenously, and are the same across the 100 simulated datasets. Note that the simulated transitions reflect both parameter uncertainty and the probabilistic nature of job finding conditional on its probability. The exercise is analogous for Model (2).

Figures 10a and 10b show that the no history model implies a more or less linear decrease in job finding probability by unemployment duration. This is a pure composition effect with respect to the current state (U or L) and the covariates in  $X_i$ . Thus, while the model does capture some of the duration dependence, it falls short of explaining the sharp decrease that occurs in the first month of unemployment, and is amiss for



### Figure 10: Posterior Predictive Check: Unemployment Duration

The blue line shows the average number of transition to employment by bins of unemployment duration as observed in the data. There is a separate bin for each month up to 6 months, then one for every half a year up to 1.5 years. Duration longer than 1.5 year are pooled together in one bin. The gray lines show the same statistics for 100 simulated datasets. The red line is the mean of these 100 simulations. long-duration as well. In contrast, the history model fits very well for duration shorter than half a year, as can be seen from Figures 10c and 10d. Even though it does not fit well for long duration, it is significantly closer than the no history model. We can conclude that most of the observed duration dependence in job finding probabilities can be successfully accounted for by controlling for a short sequence of prior status.

|   | Table 5: Distribution of L and W across Histories |            |         |            |  |  |
|---|---------------------------------------------------|------------|---------|------------|--|--|
|   | history                                           | share of L | history | share of W |  |  |
| 1 | EEU                                               | 0.40       | EEN     | 0.34       |  |  |
| 2 | UEU                                               | 0.29       | UEN     | 0.56       |  |  |
| 3 | NEU                                               | 0.23       | NEN     | 0.33       |  |  |
| 4 | EUU                                               | 0.27       | EUN     | 0.56       |  |  |
| 5 | ENU                                               | 0.19       | ENN     | 0.31       |  |  |
| 6 | UUU                                               | 0.15       | UUN     | 0.57       |  |  |
| 7 | NUU                                               | 0.07       | NUN     | 0.51       |  |  |
| 8 | UNU                                               | 0.05       | UNN     | 0.42       |  |  |
| 9 | NNU                                               | 0.05       | NNN     | 0.22       |  |  |
|   |                                                   |            |         |            |  |  |

Table 5: Distribution of L and W across Histories

Note: Data comes from the 2006 sample.

Recall from Table 4 that inclusion of history improves model fit considerably more for non-participants than for the unemployed. Intuitively, this might be the case because history—recent employment, most importantly—is likely to be strongly correlated with being on temporary layoff, because those workers are supposed to have had a job from which they were sent home. It is less clear however, why would such a connection exist between wanting to work and duration short-term history. Table 5 provides some evidence for this intuition. Recent employment is clearly associated with a higher share of temporarily laid-offs. Although there is some regularity in the distribution of want-a-jobs as well—they typically have histories with a recent unemployment spell—that pattern is less pronounced. In addition, recent unemployment is less informative about current job finding probability than recent employment. All in all, distinguishing U and L captures a lot of heterogeneity in the job finding probability of the unemployed, but short-term history achieves the same for non-participants, as well.

## 4 A multilevel model of history dependence

In this section, I develop a more elaborate model to quantify the relative importance of prior labor force status at different points of time. For precise results, I need more than one year's data, thus I pool years 2002–2006. This is the five-year boom preceding the Great Recession, with relatively stable macro environment. Nevertheless, I consider including year dummies to take out fixed business cycle effects.

I keep the generality of the previous models in that there is a separate coefficient for every path. However, they are not going to be independent any more. On the one hand, this is necessary for the analysis of variance as we will see below. On the other hand, imposing a mild structure has theoretical appeal, too. To put it simply, it is a priori unlikely that NUU differ as much from UUU as from EEN. The results of the previous section confirm this intuition. Then the question is, what kind of structure is appropriate? The Markov model, which is a generally accepted approximation, says that individuals who end up being unemployed in month 3 are *the same* regardless of their former status. Taking this as a starting point, I postulate that these people are at least *more alike* then those who become non-participant in a way I formalize with the multilevel model below.

$$Pr(y_{i} = 1) = logit^{-1}(\alpha_{k_{3}k_{2}k_{1}} + X_{i}\beta + \tau_{j}),$$

$$k_{3}, k_{2} \in \{E, L, U, W, N\}, \quad k_{1} \in \{L, U, W, N\},$$

$$j \in \{2002, \dots, 2006\}$$

$$\alpha_{k_{3}k_{2}k_{1}} \sim \mathcal{N}(\mu_{k_{2}k_{1}}, \sigma_{3}^{2}),$$

$$\mu_{k_{2}k_{1}} \sim \mathcal{N}(\mu_{k_{1}}, \sigma_{2}^{2}),$$

$$\mu_{k_{1}} \sim \mathcal{N}(\mu, \sigma_{1}^{2}),$$

$$p(\alpha, \beta, \tau, \mu) \propto 1,$$

$$\sigma_{1}, \sigma_{2}, \sigma_{3} \sim half\text{-Cauchy}(0, 10).$$
(3)

The first-level regression is similar to Model (2), expect for the year fixed effects  $\tau$  and the use of the 5-state partition. Lines four to six describe the multilevel structure. Taking a particular example first,  $\alpha_{EUU}$  is a realization of  $\mathcal{N}(\mu_{UU}, \sigma_1^2)$  which reflects that the path EUU ends in UU. The hyper-parameter  $\mu_{UU}$  is estimated analogously: it is a realization of  $\mathcal{N}(\mu_U, \sigma_2^2)$  because the truncated path UU ends in U. Finally,  $\mu_U$  has a normal prior. The general pattern is that the coefficients of paths with the same ending are drawn from the same distribution, whereas paths with different endings come from hyper-distributions with different means. Notice that all hyperdistributions are normal<sup>7</sup> and only one variance parameter is estimated per level. This is a simplifying assumption, but without it identification of history-dependent variance parameters would be very weak, because we have only 4–5 paths with the same ending. This argument brings us to the next point.

<sup>&</sup>lt;sup>7</sup>I experimented with hyper-distributions with heavier tails, e.g. Student's t-distributions with low degrees of freedom, but the estimated mean parameters were robust to such changes.

In order to estimate the  $\alpha$  coefficients precisely, we need many observations per group. That is why I chose to work with the 3-state partition in Model (2). By the same logic, hyper-parameters of a multilevel model are better identified if there are many observations. However, the observations at the hyper-level are the coefficients. Thus, it is better to have many categories for identifying the hyper-parameters. Therefore, there is a trade-off between how precisely we estimate parameters of different levels. The power of multilevel models is that they not just require but also facilitate the estimation of many parameters. In an ordinary (single-level) regression like Model (1), the parameters are independent, i.e. only observations in the same category are used to estimate the corresponding coefficient. For example,  $\alpha_W$  is just the average job finding probability of want-a-jobs (up to the logit transformation of course). In contrast, a multilevel model implements partial pooling: Model (3) uses the information that individuals with history EEU have something in common with people in the LEU, UEU, WEU and NEU groups, and uses their average job finding probabilities as well to estimate  $\alpha_{EEU}$ .

The amount of partial pooling is endogenous. Coefficients from the same hyperdistribution are all pulled toward their common mean, but groups with many observations or markedly different average job finding probability are affected less. On the extreme, the coefficient of a group with zero observations would be exactly the common mean. Naturally, the amount of partial pooling depends on the multilevel variance parameters, too. The higher the variance, the less information do other groups carry. Therefore, the priors on the variance parameters are in effect the prior on the amount of partial pooling. In single-level regressions, the usual choice for a non-informative prior on variance parameters is the inverse-gamma distribution. For multilevel models however, Gelman and Hill (2007) recommend using the half-Cauchy distribution. A half-Cauchy distribution with a high scale parameter is a weakly informative prior, restricting  $\sigma$  away from very large values, which also has better numerical properties near zero.

Having obtained reasonably precise estimates of the means of the hyper-distributions, I proceed with quantifying the contribution of labor force status at different points of time. The idea is to trace back the variations in the  $\alpha$  coefficients to variations in  $\mu_{k_2k_1}$ and  $\mu_{k_1}$ . As Gelman and Hill (2007, Chapter 21) describe, variation among a batch of coefficients of a multilevel model can be summarized in two ways. The first measure is the *superpopulation* standard deviation, which captures the variability of the entire distribution the parameters are drawn from. In Model (3), these are  $\sigma_1, \sigma_2$  and  $\sigma_3$ . By construction,  $\sigma_t$  corresponds to variations in job finding probability originating from tmonths before a potential transition. Importantly however, the superpopulation standard deviation is relevant for determining the uncertainty about new groups. What we need here is a description of variation among the existing categories. This second measure is the *finite-population* standard deviation, which is simply the corrected sample standard deviation of the estimated coefficients. I define the slightly modified measures of variation

$$s_1 = \sqrt{\frac{1}{K_1 - 1} \sum_{k_1} (\mu_{k_1} - \mu)^2},\tag{4}$$

$$s_2 = \sqrt{\frac{1}{K_2 - 1} \sum_{k_1, k_2} (\mu_{k_2 k_1} - \mu_{k_1})^2},$$
(5)

$$s_3 = \sqrt{\frac{1}{K_3 - 1} \sum_{k_1, k_2, k_3} (\alpha_{k_3 k_2 k_1} - \mu_{k_2 k_1})^2},\tag{6}$$

where  $K_1 = 4, K_2 = 20$  and  $K_3 = 100$  are the number of different coefficients at each level. Notice that  $s_2$  is not a proper standard deviation because it is not the common mean of all  $\mu_{k_2k_1}$ 's that is subtracted. Rather, the distance form the mean conditional on the next state is taken. This adjustment is warranted, as my goal is to isolate the influence of prior status at one month, while the  $\mu_{k_2k_1}$ 's correspond to two-month paths. The same applies to  $s_3$ , where only the part of the variability of  $\alpha_{k_3k_2k_1}$ 's originating in month t - 3 is of interest.

|       | w/o fixed | effects | with fixe | ed effects |
|-------|-----------|---------|-----------|------------|
|       | mean      | s.d.    | mean      | s.d.       |
| $s_1$ | 0.33      | 0.16    | 0.32      | 0.16       |
| $s_2$ | 0.54      | 0.08    | 0.54      | 0.08       |
| $s_3$ | 0.49      | 0.05    | 0.49      | 0.05       |

Table 6: Finite-Population Standard Deviations

Table 6 contains the means and standard deviations of the finite-population standard deviations defined above. We can see that inclusion of year fixed effects does not affect the variation in history coefficients, most of which is due to status in month t-2. The earliest observed status contributes slightly less, but still more than the most recent status. Although the standard deviation of  $s_1$  is relatively large, it is significantly lower than  $s_2$  and  $s_3$ . Inference is more precise for  $s_2$  and  $s_3$  because there are more categories at those levels. Although the results might be surprising at first, their interpretation is straightforward. Ceteris paribus, more recent status is more important, but month t-1 is special because employment is not a valid state in it. These results suggest that having been employed recently is more important for job finding probability than current status within non-employment.

## 5 Conclusion

In the master's thesis, I used a novel empirical approach to study heterogeneities in labor market flows in the U.S. Using data on short-term labor force history, I developed Bayesian logit models that capture large variations in the job finding probabilities not only of the unemployed but of the non-participants, as well. In recent years, several studies have argued that it is important to include non-participants in labormacro models (see e.g. Elsby et al. (2013)). As it is standard in the literature, I use longitudinally matched CPS data. However, non-participants constitute a large and heterogeneous group of the working age population, and intuitively not all of them are attached to the labor market. Unfortunately, the least attached groups, such as housewifes and pensioners, are overrepresented in the CPS. Therefore, I only include non-disabled, prime age men in my sample. This way, only those are included who, at least in principle, are able to work.

One insight revealed by my analysis is that the gap between the job finding probabilities of non-participants and the unemployed is very small. First, I find that nonparticipants are quite likely to start working even if they claimed not wanting a job. Second, I distinguish temporarily laid-offs who constitute 9–14% of all unemployed from the unemployed-looking. The rationale behind this distinction is that those on temporary layoff are not searching actively but are waiting to be called back to their old job. Temporary laid-offs are almost twice as likely to resume working than the unemployed-looking. Once the two groups are considered separately, job finding rates of the unemployed-looking are not significantly higher than that of the want-a-jobs. Furthermore, the job finding probability of the unemployed-looking is the most sensitive to the business cycle. During the Great Recession, it fell by approximately 40%, making the unemployed-looking less likely to find employment than want-a-jobs.

Introducing short-term labor force history into the model revealed substantial heterogeneities in job finding probabilities. Most notably, recent employment is associated with high job finding probability regardless of current labor market status. To investigate the relative importance of previous states, I developed a multilevel model, and found quantitative evidence that prior status accounts for more variation in job finding probabilities than current search behavior. The history model also gives significantly better out-of-sample forecasts, especially for non-participants, and fits well the relation between job finding probability and weeks spent in unemployment. Taken together, these results suggest that negative duration dependence applies to non-participants as well, and can be captured by labor force history. This is a valuable insight, because data on history is generally available, while most employment surveys do no provide duration data for non-participants.

My master's thesis is an application of Bayesian multilevel modeling. I believe this to be a very promising approach to document macroeconomic phenomena using micro level data. Logical next steps would be the inclusion of macro variables like regional unemployment rates and vacancies, or the extension to transitions on other margins.

### References

- Abowd, John M., and Arnold Zellner. 1985. "Estimating Gross Labor-Force Flows." Journal of Business and Economic Statistics, 3(3): 254–283.
- Coles, Melvyn G., and Ali Kelishomi Moghaddasi. 2014. "Do Job Destruction Shocks Matter in the Theory of Unemployment?." Unpublished manuscript.
- Darby, Michael R., John C. Haltiwanger, and Mark W. Plant. 1985. "Unemployment Rate Dynamics and Persistent Unemployment under Rational Expectations." *American Economic Review*, 75(4): 614–37.
- Darby, Michael R., John C. Haltiwanger, and Mark W. Plant. 1986. "The Ins and Outs of Unemployment: The Ins Win." Working Paper 1997, National Bureau of Economic Research.
- Elsby, Michael W. L., Bart Hobijn, and Ayşegül Şahin. 2013. "On the Importance of the Participation Margin for Labor Market Fluctuations." Unpublished manuscript.
- Frazis, Harley J., Edwin L. Robison, Thomas D. Evans, and Martha A. Duff. 2005. "Estimating Gross Flows Consistent with Stocks in the CPS." Monthly Labor Review, 128.
- Gelman, Andrew, and Jennifer Hill. 2007. Data Analysis Using Regression and Multilevel/Hierarchical Models.: Cambridge University Press.
- Hornstein, Andreas. 2012. "Accounting for Unemployment: The Long and Short of It." Working Paper, Federal Reserve Bank of Richmond.
- Hornstein, Andreas, Per Krusell, and Giovanni L Violante. 2005. "Unemployment and Vacancy Fluctuations in the Matching Model: Inspecting the Mechanism." *FRB Richmond Economic Quarterly*, 91(3): 19–51.
- Ilg, Randy. 2005. "Analyzing CPS Data Using Gross Flows." Monthly Labor Review, 128.
- Jones, Stephen R. G., and W. Craig Riddell. 1999. "The Measurement of Unemployment: An Empirical Approach." *Econometrica*, 67(1): 147–161.
- Jones, Stephen R. G., and W. Craig Riddell. 2006. "Unemployment and Nonemployment: Heterogeneities in Labor Market States." *The Review of Economics and Statistics*, 88(2): 314–323.
- Kroft, Kory, Fabian Lange, Matthew J. Notowidigdo, and Lawrence F. Katz. 2014. "Long-Term Unemployment and the Great Recession: The Role of Composition, Duration Dependence, and Non-Participation." Working Paper 20273, National Bureau of Economic Research.
- Krueger, Alan, Alexandre Mas, and Xiaotong Niu. 2014. "The Evolution of Rotation Group Bias: Will the Real Unemployment Rate Please Stand Up?." Working Paper 20396, National Bureau of Economic Research.
- Krusell, Per, Toshihiko Mukoyama, Richard Rogerson, and Ayşegül Şahin. 2010. "Aggregate Labor Market Outcomes: The Roles of Choice and Chance." *Quantitative Economics*, 1(1): 97–127.

- Krusell, Per, Toshihiko Mukoyama, Richard Rogerson, and Ayşegül Şahin. 2011. "A Three State Model of Worker Flows in General Equilibrium." Journal of Economic Theory, 146(3): 1107–1133.
- Krusell, Per, Toshihiko Mukoyama, Richard Rogerson, and Ayşegül Şahin. 2012. "Is Labor Supply Important for Business Cycles?." Working Paper 17779, National Bureau of Economic Research.
- **Pissarides, Christopher.** 2000. Equilibrium Unemployment Theory, 2nd Edition.: The MIT Press.
- **Polivka, Anne E., and Jennifer M. Rothgeb.** 1993. "Overhauling the Current Population Survey: Redesigning the Questionnaire." *Monthly Labor Review*, 116(9): 10–28.
- Poterba, James M., and Lawrence H. Summers. 1986. "Reporting Errors and Labor Market Dynamics." *Econometrica*, 54(6): 1319–1338.
- Shimer, Robert. 2005. "The Cyclical Behavior of Equilibrium Unemployment and Vacancies." American Economic Review, 95(1): 25–49.
- Shimer, Robert. 2012. "Reassessing the Ins and Outs of Unemployment." Review of Economic Dynamics, 15(2): 127–148.
- Stan Development Team. 2014a. "RStan: the R interface to Stan, Version 2.5.0." URL: http://mc-stan.org/rstan.html.
- Stan Development Team. 2014b. "Stan: A C++ Library for Probability and Sampling, Version 2.5.0." URL: http://mc-stan.org/.
- Stan Development Team. 2014c. Stan Modeling Language Users Guide and Reference Manual, Version 2.5.0. URL: http://mc-stan.org/.

## A Definitions of labor force states

In this section, I present the precise definitions of labor force states that are relevant to the thesis. See the BLS website<sup>8</sup> and Polivka and Rothgeb (1993).

1. Unemployed-looking for work (U): All those who did not have a job at all during the survey reference week, made at least one specific active effort to find a job during the prior 4 weeks, and were available for work (unless temporarily ill). An active job search method is defined as any effort that could have resulted in a job offer without any further action on the part of the job-seeker.

| Active                        | Passive               |
|-------------------------------|-----------------------|
| Contacted:                    | Looked at ads         |
| employer directly/interviewed | Attended job training |
| public employment agency      | programs/courses      |
| private employment agency     | Other passive         |
| friends or relatives          |                       |
| school/university/employment  |                       |
| center                        |                       |
| Sent out resumes/filled out   |                       |
| applications                  |                       |
| Placed or answered ads        |                       |
| Checked union/professional    |                       |
| association registers         |                       |
| Other active                  |                       |

Table 7: Job Search Methods

- 2. Unemployed on layoff (L): All those who were not working and were waiting to be called back to a job from which they had been laid off. They need not be looking for work to be classified as unemployed.
- 3. Marginally attached ( $D \subset M \subset W$ ): The broadest subset of non-participants with measurable labor market attachment are those who want a job (W). Jones and Riddell (2006) calls them marginally attached.

In official BLS terminology, one must indicate that she currently wants a job, has looked for work in the last 12 months, and is available for work in order to be counted as marginally attached to the labor force (M).

Discouraged workers (D) report they are not currently looking for work for one of the following types of reasons: they believe no job is available to them in their line of work or area; they had previously been unable to find work; they lack the necessary schooling, training, skills, or experience; they face some form of discrimination.

<sup>&</sup>lt;sup>8</sup>http://www.bls.gov/cps/cps\_htgm.htm

# **B** RStan output and convergence

| Listing 1: Model $(1)$ for 20 | 101 2000 |
|-------------------------------|----------|
|-------------------------------|----------|

| Infere  | nce foi | Stan mo   | odel:  | noh_ur  | ni_pric | or.     |         |         |           |           |
|---------|---------|-----------|--------|---------|---------|---------|---------|---------|-----------|-----------|
| 4 chair | ns, ead | ch with : | iter=  | 1000; 1 | varmup= | =500; † | thin=1; | ;       |           |           |
| post-wa | armup d | draws per | cha:   | in=500, | , total | post ·  | -warmup | draws   | s=2000    |           |
|         |         |           |        |         |         |         |         |         |           |           |
|         | mean    | se_mean   | sd     | 2.5%    | 25%     | 50%     | 75%     | 97.5%   | $n_{eff}$ | Rhat      |
| a[1]    | -0.28   | 0.00      | 0.12   | -0.51   | -0.36   | -0.28   | -0.20   | -0.05   | 860       | 1.01      |
| a[2]    | -1.66   | 0.00      | 0.09   | -1.83   | -1.72   | -1.66   | -1.60   | -1.47   | 735       | 1.01      |
| a[3]    | -1.26   | 0.00      | 0.09   | -1.43   | -1.31   | -1.26   | -1.20   | -1.09   | 700       | 1.00      |
| a[4]    | -1.36   | 0.00      | 0.11   | -1.58   | -1.44   | -1.36   | -1.29   | -1.14   | 1013      | 1.00      |
| b_age   | -0.02   | 0.00      | 0.07   | -0.16   | -0.07   | -0.02   | 0.03    | 0.13    | 1733      | 1.00      |
| b_age2  | -0.02   | 0.01      | 0.15   | -0.30   | -0.11   | -0.02   | 0.09    | 0.27    | 856       | 1.01      |
| b_mar   | 0.46    | 0.00      | 0.08   | 0.30    | 0.40    | 0.46    | 0.51    | 0.61    | 769       | 1.01      |
| e[1]    | -0.05   | 0.00      | 0.06   | -0.17   | -0.08   | -0.04   | -0.01   | 0.06    | 1561      | 1.00      |
| e[2]    | -0.06   | 0.00      | 0.06   | -0.18   | -0.10   | -0.06   | -0.01   | 0.07    | 1569      | 1.00      |
| e[3]    | 0.09    | 0.00      | 0.07   | -0.06   | 0.04    | 0.09    | 0.14    | 0.23    | 1639      | 1.00      |
| e[4]    | 0.02    | 0.00      | 0.07   | -0.13   | -0.03   | 0.02    | 0.06    | 0.15    | 2000      | 1.00      |
| r[1]    | -0.06   | 0.00      | 0.07   | -0.20   | -0.11   | -0.06   | -0.02   | 0.07    | 1584      | 1.00      |
| r[2]    | -0.14   | 0.00      | 0.07   | -0.29   | -0.19   | -0.14   | -0.09   | -0.01   | 1437      | 1.00      |
| r[3]    | 0.16    | 0.00      | 0.06   | 0.05    | 0.12    | 0.16    | 0.20    | 0.28    | 1366      | 1.00      |
| r[4]    | 0.04    | 0.00      | 0.06   | -0.07   | 0.00    | 0.04    | 0.09    | 0.17    | 2000      | 1.00      |
|         |         |           |        |         |         |         |         |         |           |           |
| Samples | s were  | drawn us  | sing 1 | NUTS(d: | iag_e)  | at Fr:  | i May ( | 08 10:2 | 20:49     | 2015.     |
| For eac | ch para | ameter, 1 | n_eff  | is a d  | crude n | neasure | e of ei | ffectiv | ve samj   | ple size, |
| and Rha | at is 1 | the poter | ntial  | scale   | reduct  | tion fa | actor d | on spli | it cha:   | ins (at   |
| converg | gence,  | Rhat=1)   |        |         |         |         |         |         |           |           |
|         |         |           |        |         |         |         |         |         |           |           |

Listing 2: Model (1) for 2009

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Inferer | ice foi | Stan mo   | del:   | noh_u   | ni_pric | or.     |         |         |         |         |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|-----------|--------|---------|---------|---------|---------|---------|---------|---------|---|
| mean se_mean         sd         2.5%         50%         75%         97.5%         n_eff         Rhat           a[1]         -0.48         0         0.09         -0.66         -0.54         -0.48         -0.42         -0.31         1007         1           a[2]         -1.93         0         0.09         -2.12         -2.00         -1.93         -1.77         1287         1           a[3]         -1.91         0         0.07         -2.04         -1.95         -1.91         -1.86         -1.78         895         1           a[4]         -1.53         0         0.09         -1.71         -1.60         -1.53         -1.47         -1.35         1175         1           b_age         -0.08         0         0.06         -0.20         -0.12         -0.04         0.13         1257         1           b_mar         0.40         0         0.07         0.27         0.36         0.40         0.45         0.53         1090         1           e[1]         -0.10         0         0.05         -0.19         -0.13         -0.10         -0.07         1201         1           e[2]         -0.04         0         0.06 </td <td>4 chair</td> <td>is, ead</td> <td>ch with i</td> <td>iter=:</td> <td>1000; 1</td> <td>warmup=</td> <td>=500; 1</td> <td>thin=1</td> <td>;</td> <td></td> <td></td> <td></td> | 4 chair | is, ead | ch with i | iter=: | 1000; 1 | warmup= | =500; 1 | thin=1  | ;       |         |         |   |
| a[1] -0.48 0 0.09 -0.66 -0.54 -0.48 -0.42 -0.31 1007 1<br>a[2] -1.93 0 0.09 -2.12 -2.00 -1.93 -1.87 -1.77 1287 1<br>a[3] -1.91 0 0.07 -2.04 -1.95 -1.91 -1.86 -1.78 895 1<br>a[4] -1.53 0 0.09 -1.71 -1.60 -1.53 -1.47 -1.35 1175 1<br>b_age -0.08 0 0.06 -0.20 -0.12 -0.08 -0.03 0.05 1971 1<br>b_age2 -0.12 0 0.13 -0.37 -0.21 -0.12 -0.04 0.13 1257 1<br>b_mar 0.40 0 0.07 0.27 0.36 0.40 0.45 0.53 1090 1<br>e[1] -0.10 0 0.05 -0.19 -0.13 -0.10 -0.06 0.00 1459 1<br>e[2] -0.04 0 0.06 -0.15 -0.07 -0.03 0.00 0.07 1201 1<br>e[3] 0.09 0 0.06 -0.08 0.00 0.04 0.08 0.16 2000 1<br>r[1] -0.09 0 0.05 -0.19 -0.12 -0.09 -0.05 0.02 1315 1<br>r[2] -0.03 0 0.06 -0.15 -0.07 -0.03 0.01 0.09 1333 1<br>r[3] 0.10 0 0.05 -0.19 -0.12 0.09 -0.05 0.12 2000 1<br>Samples were drawn using NUTS(diag_e) at Fri May 08 11:11:20 2015.<br>For each parameter, n_eff is a crude measure of effective sample size,<br>and Rhat is the potential scale reduction factor on split chains (at                                                                                                                                                                                                                                                                                                                                                                    | post-wa | armup d | draws per | chai   | in=500  | , total | . post- | -warmuj | draws   | s=2000  |         |   |
| a[1] -0.48 0 0.09 -0.66 -0.54 -0.48 -0.42 -0.31 1007 1<br>a[2] -1.93 0 0.09 -2.12 -2.00 -1.93 -1.87 -1.77 1287 1<br>a[3] -1.91 0 0.07 -2.04 -1.95 -1.91 -1.86 -1.78 895 1<br>a[4] -1.53 0 0.09 -1.71 -1.60 -1.53 -1.47 -1.35 1175 1<br>b_age -0.08 0 0.06 -0.20 -0.12 -0.08 -0.03 0.05 1971 1<br>b_age2 -0.12 0 0.13 -0.37 -0.21 -0.12 -0.04 0.13 1257 1<br>b_mar 0.40 0 0.07 0.27 0.36 0.40 0.45 0.53 1090 1<br>e[1] -0.10 0 0.05 -0.19 -0.13 -0.10 -0.06 0.00 1459 1<br>e[2] -0.04 0 0.06 -0.15 -0.07 -0.03 0.00 0.07 1201 1<br>e[3] 0.09 0 0.06 -0.08 0.00 0.04 0.08 0.16 2000 1<br>r[1] -0.09 0 0.05 -0.19 -0.12 -0.09 -0.05 0.02 1315 1<br>r[2] -0.03 0 0.06 -0.15 -0.07 -0.03 0.01 0.09 1333 1<br>r[3] 0.10 0 0.05 -0.19 -0.12 -0.09 -0.05 0.12 2000 1<br>Samples were drawn using NUTS(diag_e) at Fri May 08 11:11:20 2015.<br>For each parameter, n_eff is a crude measure of effective sample size,<br>and Rhat is the potential scale reduction factor on split chains (at                                                                                                                                                                                                                                                                                                                                                                   |         |         |           |        |         |         |         |         |         |         |         |   |
| a[2] -1.93 0 0.09 -2.12 -2.00 -1.93 -1.87 -1.77 1287 1<br>a[3] -1.91 0 0.07 -2.04 -1.95 -1.91 -1.86 -1.78 895 1<br>a[4] -1.53 0 0.09 -1.71 -1.60 -1.53 -1.47 -1.35 1175 1<br>b_age -0.08 0 0.06 -0.20 -0.12 -0.08 -0.03 0.05 1971 1<br>b_age2 -0.12 0 0.13 -0.37 -0.21 -0.12 -0.04 0.13 1257 1<br>b_mar 0.40 0 0.07 0.27 0.36 0.40 0.45 0.53 1090 1<br>e[1] -0.10 0 0.05 -0.19 -0.13 -0.10 -0.06 0.00 1459 1<br>e[2] -0.04 0 0.06 -0.15 -0.07 -0.03 0.00 0.07 1201 1<br>e[3] 0.09 0 0.06 -0.03 0.05 0.09 0.13 0.21 1222 1<br>e[4] 0.04 0 0.06 -0.19 -0.12 -0.09 -0.05 0.02 1315 1<br>r[2] -0.03 0 0.06 -0.15 -0.07 -0.03 0.01 0.09 1333 1<br>r[3] 0.10 0 0.05 -0.19 -0.12 0.09 -0.05 0.12 2000 1<br>samples were drawn using NUTS(diag_e) at Fri May 08 11:11:20 2015.<br>For each parameter, n_eff is a crude measure of effective sample size,<br>and Rhat is the potential scale reduction factor on split chains (at                                                                                                                                                                                                                                                                                                                                                                                                                               |         | mean    | -         |        |         |         |         |         |         | -       | Rhat    |   |
| a[3]       -1.91       0       0.07       -2.04       -1.95       -1.91       -1.86       -1.78       895       1         a[4]       -1.53       0       0.09       -1.71       -1.60       -1.53       -1.47       -1.35       1175       1         b_age       -0.08       0       0.06       -0.20       -0.12       -0.08       -0.03       0.05       1971       1         b_age2       -0.12       0       0.13       -0.37       -0.21       -0.12       -0.04       0.13       1257       1         b_mar       0.40       0       0.05       -0.19       -0.13       -0.10       -0.06       0.00       1459       1         e[1]       -0.10       0       0.05       -0.19       -0.13       -0.10       -0.07       1201       1         e[2]       -0.04       0       0.06       -0.03       0.00       0.01       1222       1         e[4]       0.04       0       0.06       -0.08       0.00       0.04       0.02       1315       1         r[2]       -0.03       0       0.05       -0.07       -0.03       0.01       0.09       1333       1 <td>a[1]</td> <td>-0.48</td> <td>0</td> <td>0.09</td> <td>-0.66</td> <td>-0.54</td> <td>-0.48</td> <td>-0.42</td> <td>-0.31</td> <td>1007</td> <td>1</td> <td></td>                                                                                                              | a[1]    | -0.48   | 0         | 0.09   | -0.66   | -0.54   | -0.48   | -0.42   | -0.31   | 1007    | 1       |   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |         |           |        |         |         |         |         |         |         |         |   |
| b_age -0.08 0 0.06 -0.20 -0.12 -0.08 -0.03 0.05 1971 1<br>b_age2 -0.12 0 0.13 -0.37 -0.21 -0.12 -0.04 0.13 1257 1<br>b_mar 0.40 0 0.07 0.27 0.36 0.40 0.45 0.53 1090 1<br>e[1] -0.10 0 0.05 -0.19 -0.13 -0.10 -0.06 0.00 1459 1<br>e[2] -0.04 0 0.06 -0.15 -0.07 -0.03 0.00 0.07 1201 1<br>e[3] 0.09 0 0.06 -0.03 0.05 0.09 0.13 0.21 1222 1<br>e[4] 0.04 0 0.06 -0.08 0.00 0.04 0.08 0.16 2000 1<br>r[1] -0.09 0 0.05 -0.19 -0.12 -0.09 -0.05 0.02 1315 1<br>r[2] -0.03 0 0.06 -0.15 -0.07 -0.03 0.01 0.09 1333 1<br>r[3] 0.10 0 0.05 0.00 0.07 0.10 0.13 0.20 1556 1<br>r[4] 0.02 0 0.05 -0.08 -0.02 0.02 0.05 0.12 2000 1<br>Samples were drawn using NUTS(diag_e) at Fri May 08 11:11:20 2015.<br>For each parameter, n_eff is a crude measure of effective sample size,<br>and Rhat is the potential scale reduction factor on split chains (at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | -1.91   | 0         | 0.07   | -2.04   | -1.95   | -1.91   | -1.86   | -1.78   | 895     | 1       |   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a[4]    | -1.53   | 0         | 0.09   | -1.71   | -1.60   | -1.53   | -1.47   | -1.35   | 1175    | -       |   |
| b_mar       0.40       0.007       0.27       0.36       0.40       0.45       0.53       1090       1         e[1]       -0.10       0.005       -0.19       -0.13       -0.10       -0.06       0.00       1459       1         e[2]       -0.04       0.006       -0.15       -0.07       -0.03       0.00       0.07       1201       1         e[3]       0.09       0       0.06       -0.03       0.05       0.09       0.13       0.21       1222       1         e[4]       0.04       0       0.06       -0.08       0.00       0.04       0.08       0.16       2000       1         r[1]       -0.09       0       0.05       -0.19       -0.12       -0.09       -0.05       0.02       1315       1         r[2]       -0.03       0       0.06       -0.15       -0.07       -0.03       0.01       0.09       1333       1         r[3]       0.10       0       0.05       0.00       0.07       0.10       0.13       0.20       1556       1         r[4]       0.02       0       0.05       -0.02       0.02       0.05       0.12       2000                                                                                                                                                                                                                                                                                     | b_age   |         |           | 0.06   | -0.20   | -0.12   | -0.08   | -0.03   | 0.05    | 1971    | 1       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | b_age2  |         |           |        |         |         |         |         |         | 1257    |         |   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | b_mar   |         |           |        |         |         |         |         |         |         | -       |   |
| e[3]       0.09       0       0.06       -0.03       0.05       0.09       0.13       0.21       1222       1         e[4]       0.04       0       0.06       -0.08       0.00       0.04       0.08       0.16       2000       1         r[1]       -0.09       0       0.05       -0.19       -0.12       -0.09       -0.05       0.02       1315       1         r[2]       -0.03       0       0.06       -0.15       -0.07       -0.03       0.01       0.09       1333       1         r[3]       0.10       0       0.05       0.00       0.07       0.10       0.13       0.20       1556       1         r[4]       0.02       0       0.05       -0.02       0.02       0.05       0.12       2000       1         Samples were drawn using NUTS(diag_e) at Fri May 08       11:11:20       2015.         For each parameter, n_eff is a crude measure of effective sample size,         and Rhat is the potential scale reduction factor on split chains (at                                                                                                                                                                                                                                                                                                                                                                              |         |         | 0         | 0.05   | -0.19   | -0.13   | -0.10   | -0.06   | 0.00    | 1459    | -       |   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | -0.04   | 0         | 0.06   | -0.15   | -0.07   | -0.03   | 0.00    | 0.07    | 1201    | 1       |   |
| r[1] -0.09 0 0.05 -0.19 -0.12 -0.09 -0.05 0.02 1315 1<br>r[2] -0.03 0 0.06 -0.15 -0.07 -0.03 0.01 0.09 1333 1<br>r[3] 0.10 0 0.05 0.00 0.07 0.10 0.13 0.20 1556 1<br>r[4] 0.02 0 0.05 -0.08 -0.02 0.02 0.05 0.12 2000 1<br>Samples were drawn using NUTS(diag_e) at Fri May 08 11:11:20 2015.<br>For each parameter, n_eff is a crude measure of effective sample size,<br>and Rhat is the potential scale reduction factor on split chains (at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e[3]    | 0.09    | 0         | 0.06   | -0.03   | 0.05    | 0.09    | 0.13    | 0.21    | 1222    | 1       |   |
| r[2] -0.03 0 0.06 -0.15 -0.07 -0.03 0.01 0.09 1333 1<br>r[3] 0.10 0 0.05 0.00 0.07 0.10 0.13 0.20 1556 1<br>r[4] 0.02 0 0.05 -0.08 -0.02 0.02 0.05 0.12 2000 1<br>Samples were drawn using NUTS(diag_e) at Fri May 08 11:11:20 2015.<br>For each parameter, n_eff is a crude measure of effective sample size,<br>and Rhat is the potential scale reduction factor on split chains (at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | 0.04    | 0         | 0.06   | -0.08   | 0.00    | 0.04    | 0.08    | 0.16    |         |         |   |
| r[3] 0.10 0 0.05 0.00 0.07 0.10 0.13 0.20 1556 1<br>r[4] 0.02 0 0.05 -0.08 -0.02 0.02 0.05 0.12 2000 1<br>Samples were drawn using NUTS(diag_e) at Fri May 08 11:11:20 2015.<br>For each parameter, n_eff is a crude measure of effective sample size,<br>and Rhat is the potential scale reduction factor on split chains (at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | r[1]    | -0.09   | 0         | 0.05   | -0.19   | -0.12   | -0.09   | -0.05   | 0.02    | 1315    | 1       |   |
| r[4] 0.02 0 0.05 -0.08 -0.02 0.02 0.05 0.12 2000 1<br>Samples were drawn using NUTS(diag_e) at Fri May 08 11:11:20 2015.<br>For each parameter, n_eff is a crude measure of effective sample size,<br>and Rhat is the potential scale reduction factor on split chains (at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | r[2]    | -0.03   | 0         | 0.06   | -0.15   | -0.07   | -0.03   | 0.01    | 0.09    | 1333    | 1       |   |
| Samples were drawn using NUTS(diag_e) at Fri May 08 11:11:20 2015.<br>For each parameter, n_eff is a crude measure of effective sample size,<br>and Rhat is the potential scale reduction factor on split chains (at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r[3]    | 0.10    | 0         | 0.05   | 0.00    | 0.07    | 0.10    | 0.13    | 0.20    | 1556    | 1       |   |
| For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | r[4]    | 0.02    | 0         | 0.05   | -0.08   | -0.02   | 0.02    | 0.05    | 0.12    | 2000    | 1       |   |
| For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |         |           |        |         |         |         |         |         |         |         |   |
| and Rhat is the potential scale reduction factor on split chains (at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |         |           | 0      |         | 0       |         | 0       |         |         |         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | -       |           |        |         |         |         |         |         | -       | -       | , |
| convergence, Rhat=1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and Rha | at is 1 | the poter | ntial  | scale   | reduct  | ion fa  | actor ( | on spli | it cha: | ins (at |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | converg | gence,  | Rhat=1).  |        |         |         |         |         |         |         |         |   |

| Listing | 3.         | Model | (2) | ) for 2006 |
|---------|------------|-------|-----|------------|
| Listing | <b>J</b> . | model | 4   | 101 2000   |

| <pre>Inference for Stam model: noh_uni_prior.<br/>4 chains, each with iter=1000; warmup=500; thin=1;<br/>post-warmup draws per chain=500, total post-warmup draws=2000.<br/>mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat<br/>a[1] 0.08 0.00 0.13 -0.16 -0.01 0.08 0.16 0.33 920 1.00<br/>a[2] -0.56 0.01 0.27 -1.06 -0.74 -0.55 -0.38 -0.05 1589 1.00<br/>a[3] -0.53 0.01 0.38 -1.30 -0.78 -0.53 -0.29 0.21 2000 1.00<br/>a[4] -1.26 0.00 0.19 -1.65 -1.38 -1.25 -1.12 -0.91 1496 1.00<br/>a[5] -2.75 0.00 0.14 -3.03 -2.84 -2.75 -2.65 -2.56 1035 1.00<br/>a[6] -2.30 0.01 0.30 -2.94 -2.49 -2.29 -2.10 -1.74 2000 1.00<br/>a[7] -0.76 0.01 0.26 -1.30 -0.93 -0.76 -0.59 -0.25 1484 1.00<br/>a[8] -2.28 0.01 0.34 -2.97 -2.49 -2.26 -2.04 -1.65 2000 1.00<br/>a[9] -2.20 0.01 0.27 -2.76 -2.38 -2.20 -2.01 -1.67 2000 1.00<br/>a[10] -0.17 0.00 0.12 -0.40 -0.25 -0.17 -0.09 0.06 844 1.00<br/>a[11] -0.36 0.01 0.42 -1.19 -0.63 -0.36 -0.10 0.45 2000 1.00<br/>a[12] -0.27 0.01 0.28 -1.83 -1.46 -1.26 -1.08 -0.73 2000 1.00<br/>a[13] -1.27 0.01 0.28 -1.83 -1.46 -1.26 -1.08 -0.73 2000 1.00<br/>a[14] -1.64 0.01 0.25 -2.13 -1.82 -1.63 -1.46 -1.16 1747 1.00<br/>a[15] -3.20 0.01 0.49 -4.31 -3.50 -3.18 -2.85 -2.33 1740 1.00<br/>a[16] -1.74 0.01 0.25 -2.25 -1.91 -1.74 -1.58 -1.27 2000 1.00<br/>a[17] -1.74 0.01 0.25 -2.25 -1.91 -1.74 -1.58 -1.27 2000 1.00<br/>a[18] -1.50 0.00 0.12 -1.73 -1.58 -1.50 -1.42 -1.27 833 1.00<br/>b_age -0.07 0.00 0.08 -0.23 -0.13 -0.07 -0.02 0.08 1763 1.00<br/>b_age -0.07 0.00 0.08 -0.23 -0.13 -0.07 -0.02 0.08 1763 1.00<br/>b_age -0.06 0.01 0.17 -0.26 -0.05 0.06 0.18 0.38 660 1.01<br/>b_mar 0.38 0.00 0.08 -0.23 -0.13 -0.07 -0.02 1.02 1525 1.00<br/>e[3] 0.05 0.00 0.07 -0.19 -0.10 -0.05 -0.11 0.08 1257 1.00<br/>r[1] -0.05 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.00 1473 1.00<br/>r[3] 0.12 0.00 0.07 -0.19 -0.10 -0.05 -0.11 0.08 1257 1.00<br/>r[4] 0.07 0.00 0.07 -0.19 -0.10 -0.05 0.01 0.02 1525 1.00<br/>e[4] 0.07 0.00 0.07 -0.19 -0.10 -0.05 0.01 0.00 1473 1.00<br/>r[3] 0.12 0.00 0.07 -0.19 -0.10 -0.05 0.01 0.00 1473 1.00<br/>r[4] 0.07 0.00 0.07 -0.01 0.03 0.07 0.12 0.21 2000 1.00<br/>r[4] 0.07 0.00 0.07 -0.01 0.03 0.07 0.12 0.21 2000 1.00<br/>r[4] 0.07 0.00 0.07 -0.04 0.03</pre> |        | _       | -        |        | -      |         |         |         |         |          |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|----------|--------|--------|---------|---------|---------|---------|----------|------|
| <pre>post-warmup draws per chain=500, total post-warmup draws=2000.<br/>mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat<br/>a[1] 0.08 0.00 0.13 -0.16 -0.01 0.08 0.16 0.33 920 1.00<br/>a[2] -0.56 0.011 0.27 -1.06 -0.74 -0.55 -0.38 -0.05 1589 1.00<br/>a[3] -0.53 0.01 0.38 -1.30 -0.78 -0.53 -0.29 0.21 2000 1.00<br/>a[4] -1.26 0.00 0.19 -1.65 -1.38 -1.25 -1.12 -0.91 1496 1.00<br/>a[5] -2.75 0.00 0.14 -3.03 -2.84 -2.75 -2.65 -2.50 1035 1.00<br/>a[6] -2.30 0.01 0.30 -2.94 -2.49 -2.29 -2.10 -1.74 2000 1.00<br/>a[7] -0.76 0.01 0.26 -1.30 -0.93 -0.76 -0.59 -0.25 1484 1.00<br/>a[8] -2.28 0.01 0.34 -2.97 -2.49 -2.29 -2.01 -1.67 2000 1.00<br/>a[9] -2.20 0.01 0.27 -2.76 -2.38 -2.20 -2.01 -1.67 2000 1.00<br/>a[10] -0.17 0.00 0.12 -0.40 -0.25 -0.17 -0.09 0.06 844 1.00<br/>a[11] -0.36 0.01 0.23 -0.74 -0.43 -0.26 -0.11 0.18 1263 1.00<br/>a[12] -0.27 0.01 0.23 -0.74 -0.43 -0.26 -0.11 0.18 1263 1.00<br/>a[13] -1.27 0.01 0.28 -1.83 -1.46 -1.26 -1.08 -0.73 2000 1.00<br/>a[14] -1.64 0.01 0.25 -2.13 -1.82 -1.63 -1.46 -1.16 1747 1.00<br/>a[15] -3.20 0.01 0.49 -4.31 -3.50 -3.18 -2.85 -2.33 1740 1.00<br/>a[16] -0.84 0.00 0.14 -1.13 -0.93 -0.83 -0.75 -0.56 2000 1.00<br/>a[17] -1.74 0.01 0.25 -2.25 -1.91 -1.74 -1.58 -1.27 2000 1.00<br/>a[18] 1.50 0.00 0.12 -1.73 -1.58 -1.50 -1.42 -1.27 833 1.00<br/>b_age -0.07 0.00 0.08 -0.23 -0.13 -0.07 -0.02 0.08 1763 1.00<br/>b_age -0.07 0.00 0.08 -0.23 -0.13 -0.07 -0.02 0.08 1763 1.00<br/>b_age 2 0.66 0.01 0.17 -0.26 -0.05 0.06 0.18 0.38 660 1.01<br/>b_mar 0.38 0.00 0.08 -0.23 -0.13 -0.07 -0.02 0.08 1763 1.00<br/>c[3] 0.05 0.00 0.08 -0.10 -0.05 0.10 0.25 1525 1.00<br/>e[4] 0.00 0.000 0.08 -0.19 -0.10 -0.06 -0.01 0.07 2000 1.00<br/>r[1] -0.05 0.00 0.07 -0.19 -0.10 -0.05 0.10 0.20 1525 1.00<br/>r[4] 0.07 0.00 0.07 -0.19 -0.10 -0.05 0.01 0.05 0.14 2000 1.00<br/>r[1] -0.05 0.00 0.07 -0.19 -0.10 -0.05 0.01 0.05 0.142 2000 1.00<br/>r[1] -0.05 0.00 0.07 -0.19 -0.10 -0.05 0.00 1.05 0.147 1.00<br/>r[2] -0.14 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br/>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br/>r[4] 0.07 0.00 0.07 -0.06 0.03 0.07 0.12 0.21 2000 1.00<br/>r[4] 0.07 0.00 0.07 -0.06</pre>                                      |        |         |          |        |        |         |         |         |         |          |      |
| mean se_mean         sd         2.5%         50%         75%         97.5%         n_eff         Rhat           a[1]         0.08         0.00         0.13         -0.16         -0.01         0.08         0.16         0.33         920         1.00           a[2]         -0.56         0.01         0.27         -1.06         -0.74         -0.55         -0.38         -0.05         1589         1.00           a[3]         -0.53         0.01         0.38         -1.30         -0.78         -0.53         -0.21         2000         1.00           a[5]         -2.75         0.00         0.14         -3.03         -2.84         -2.75         -2.65         -2.65         -2.65         1035         1.00           a[6]         -2.30         0.01         0.30         -2.94         -2.29         -2.04         -1.65         2000         1.00           a[7]         -0.76         0.01         0.27         -2.76         -2.38         -2.20         -2.01         -1.67         2000         1.00           a[11]         -0.36         0.01         0.25         -0.17         -0.09         0.66         844         1.00           a[12]         -0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |         |          |        |        | -       |         |         |         |          |      |
| a[1] 0.08 0.00 0.13 -0.16 -0.01 0.08 0.16 0.33 920 1.00<br>a[2] -0.56 0.01 0.27 -1.06 -0.74 -0.55 -0.38 -0.05 1589 1.00<br>a[3] -0.53 0.01 0.38 -1.30 -0.78 -0.53 -0.29 0.21 2000 1.00<br>a[4] -1.26 0.00 0.19 -1.65 -1.38 -1.25 -1.12 -0.91 1496 1.00<br>a[5] -2.75 0.00 0.14 -3.03 -2.84 -2.75 -2.65 -2.50 135 1.00<br>a[6] -2.30 0.01 0.30 -2.94 -2.49 -2.29 -2.10 -1.74 2000 1.00<br>a[7] -0.76 0.01 0.26 -1.30 -0.93 -0.76 -0.59 -0.25 1484 1.00<br>a[8] -2.28 0.01 0.34 -2.97 -2.49 -2.20 -2.01 -1.67 2000 1.00<br>a[9] -2.20 0.01 0.27 -2.76 -2.38 -2.20 -2.01 -1.67 2000 1.00<br>a[10] -0.17 0.00 0.12 -0.40 -0.25 -0.17 -0.09 0.06 844 1.00<br>a[11] -0.36 0.01 0.23 -0.74 -0.43 -0.26 -0.11 0.18 1263 1.00<br>a[12] -0.27 0.01 0.28 -1.83 -1.46 -1.26 -1.08 -0.73 2000 1.00<br>a[13] -1.27 0.01 0.28 -1.83 -1.46 -1.26 -1.08 -0.73 2000 1.00<br>a[14] -1.64 0.01 0.25 -2.13 -1.82 -1.63 -1.46 -1.16 1747 1.00<br>a[15] -3.20 0.01 0.49 -4.31 -3.50 -3.18 -2.85 -2.33 1740 1.00<br>a[16] -0.84 0.00 0.14 -1.13 -0.93 -0.83 -0.75 -0.56 2000 1.00<br>a[17] -1.74 0.01 0.25 -2.25 -1.91 -1.74 -1.58 -1.27 2000 1.00<br>a[18] -1.50 0.00 0.12 -1.73 -1.58 -1.50 -1.42 -1.27 833 1.00<br>b_age -0.07 0.00 0.08 -0.23 -0.13 -0.07 -0.02 0.08 1763 1.00<br>b_age2 0.06 0.01 0.17 -0.26 -0.05 0.06 0.18 0.38 660 1.01<br>b_mar 0.38 0.00 0.08 -0.23 -0.13 -0.07 -0.02 1.08 1763 1.00<br>c[1] 0.01 0.00 0.06 -0.11 -0.03 0.01 0.05 0.13 1398 1.00<br>c[2] -0.06 0.00 0.07 -0.19 -0.10 -0.06 -0.01 0.07 2000 1.00<br>r[1] -0.05 0.00 0.07 -0.19 -0.10 -0.06 -0.01 0.07 2000 1.00<br>r[1] -0.05 0.00 0.07 -0.19 -0.10 -0.05 0.10 0.21 1525 1.00<br>c[4] 0.00 0.00 0.08 -0.10 0.00 0.05 0.14 2000 1.00<br>r[1] -0.05 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r[2] -0.14 0.00 0.07 -0.30 0.19 -0.14 -0.10 0.00 1473 1.00<br>r[4] 0.07 0.00 0.07 -0.09 0.03 0.07 0.12 0.21 2000 1.00<br>Samples were drawn using NUTS(diag_e) at Mon May 11 11:41:42 2015.<br>For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at                                                                                                                                                       | post-w | armup d | raws per | cha:   | in=500 | , total | L post- | -warmup | o draws | s = 2000 |      |
| a[1] 0.08 0.00 0.13 -0.16 -0.01 0.08 0.16 0.33 920 1.00<br>a[2] -0.56 0.01 0.27 -1.06 -0.74 -0.55 -0.38 -0.05 1589 1.00<br>a[3] -0.53 0.01 0.38 -1.30 -0.78 -0.53 -0.29 0.21 2000 1.00<br>a[4] -1.26 0.00 0.19 -1.65 -1.38 -1.25 -1.12 -0.91 1496 1.00<br>a[5] -2.75 0.00 0.14 -3.03 -2.84 -2.75 -2.65 -2.50 135 1.00<br>a[6] -2.30 0.01 0.30 -2.94 -2.49 -2.29 -2.10 -1.74 2000 1.00<br>a[7] -0.76 0.01 0.26 -1.30 -0.93 -0.76 -0.59 -0.25 1484 1.00<br>a[8] -2.28 0.01 0.34 -2.97 -2.49 -2.20 -2.01 -1.67 2000 1.00<br>a[9] -2.20 0.01 0.27 -2.76 -2.38 -2.20 -2.01 -1.67 2000 1.00<br>a[10] -0.17 0.00 0.12 -0.40 -0.25 -0.17 -0.09 0.06 844 1.00<br>a[11] -0.36 0.01 0.23 -0.74 -0.43 -0.26 -0.11 0.18 1263 1.00<br>a[12] -0.27 0.01 0.28 -1.83 -1.46 -1.26 -1.08 -0.73 2000 1.00<br>a[13] -1.27 0.01 0.28 -1.83 -1.46 -1.26 -1.08 -0.73 2000 1.00<br>a[14] -1.64 0.01 0.25 -2.13 -1.82 -1.63 -1.46 -1.16 1747 1.00<br>a[15] -3.20 0.01 0.49 -4.31 -3.50 -3.18 -2.85 -2.33 1740 1.00<br>a[16] -0.84 0.00 0.14 -1.13 -0.93 -0.83 -0.75 -0.56 2000 1.00<br>a[17] -1.74 0.01 0.25 -2.25 -1.91 -1.74 -1.58 -1.27 2000 1.00<br>a[18] -1.50 0.00 0.12 -1.73 -1.58 -1.50 -1.42 -1.27 833 1.00<br>b_age -0.07 0.00 0.08 -0.23 -0.13 -0.07 -0.02 0.08 1763 1.00<br>b_age2 0.06 0.01 0.17 -0.26 -0.05 0.06 0.18 0.38 660 1.01<br>b_mar 0.38 0.00 0.08 -0.23 -0.13 -0.07 -0.02 1.08 1763 1.00<br>c[1] 0.01 0.00 0.06 -0.11 -0.03 0.01 0.05 0.13 1398 1.00<br>c[2] -0.06 0.00 0.07 -0.19 -0.10 -0.06 -0.01 0.07 2000 1.00<br>r[1] -0.05 0.00 0.07 -0.19 -0.10 -0.06 -0.01 0.07 2000 1.00<br>r[1] -0.05 0.00 0.07 -0.19 -0.10 -0.05 0.10 0.21 1525 1.00<br>c[4] 0.00 0.00 0.08 -0.10 0.00 0.05 0.14 2000 1.00<br>r[1] -0.05 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r[2] -0.14 0.00 0.07 -0.30 0.19 -0.14 -0.10 0.00 1473 1.00<br>r[4] 0.07 0.00 0.07 -0.09 0.03 0.07 0.12 0.21 2000 1.00<br>Samples were drawn using NUTS(diag_e) at Mon May 11 11:41:42 2015.<br>For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at                                                                                                                                                       |        |         |          |        |        |         |         |         |         |          |      |
| a [2] -0.56 0.01 0.27 -1.06 -0.74 -0.55 -0.38 -0.05 1589 1.00<br>a [3] -0.53 0.01 0.38 -1.30 -0.78 -0.53 -0.29 0.21 2000 1.00<br>a [4] -1.26 0.00 0.19 -1.65 -1.38 -1.25 -1.12 -0.91 1496 1.00<br>a [5] -2.75 0.00 0.14 -3.03 -2.84 -2.75 -2.65 -2.50 1035 1.00<br>a [6] -2.30 0.01 0.30 -2.94 -2.49 -2.29 -2.10 -1.74 2000 1.00<br>a [7] -0.76 0.01 0.26 -1.30 -0.93 -0.76 -0.59 -0.25 1484 1.00<br>a [8] -2.28 0.01 0.34 -2.97 -2.49 -2.26 -2.04 -1.65 2000 1.00<br>a [9] -2.20 0.01 0.27 -2.76 -2.38 -2.20 -2.01 -1.67 2000 1.00<br>a [10] -0.17 0.00 0.12 -0.40 -0.25 -0.17 -0.09 0.06 844 1.00<br>a [11] -0.36 0.01 0.42 -1.19 -0.63 -0.36 -0.11 0.45 2000 1.00<br>a [12] -0.27 0.01 0.22 -1.19 -0.63 -0.36 -0.11 0.45 2000 1.00<br>a [13] -1.27 0.01 0.22 -1.3 -1.82 -1.63 -1.46 -1.16 1747 1.00<br>a [14] -1.64 0.01 0.25 -2.13 -1.82 -1.63 -1.46 -1.16 1747 1.00<br>a [15] -3.20 0.01 0.49 -4.31 -3.50 -3.18 -2.85 -2.33 1740 1.00<br>a [16] -0.84 0.00 0.14 -1.13 -0.93 -0.83 -0.75 -0.56 2000 1.00<br>a [17] -1.74 0.01 0.25 -2.25 -1.91 -1.74 -1.58 -1.27 2000 1.00<br>a [18] -1.50 0.00 0.12 -1.73 -1.58 -1.50 -1.42 -1.27 833 1.00<br>b _age -0.07 0.00 0.08 -0.22 -0.13 -0.07 -0.02 0.08 1763 1.00<br>b _age 2.0.66 0.01 0.17 -0.26 -0.05 0.06 0.18 0.38 660 1.01<br>b _mar 0.38 0.00 0.08 -0.22 -0.33 0.38 0.44 0.55 842 1.00<br>e [1] 0.01 0.00 0.08 -0.22 -0.33 0.38 0.44 0.55 842 1.00<br>e [2] -0.06 0.00 0.07 -0.19 -0.10 -0.06 -0.01 0.07 2000 1.00<br>a [13] -1.50 0.00 0.07 -0.19 -0.10 -0.06 -0.01 0.07 1525 1.00<br>e [4] 0.00 0.00 0.08 -0.15 -0.05 0.00 0.05 0.14 2000 1.00<br>r [1] -0.05 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.74 2000 1.00<br>r [1] 0.01 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.74 2000 1.00<br>r [2] -0.14 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r [4] 0.07 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r [4] 0.07 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r [4] 0.07 0.00 0.07 -0.09 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r [4] 0.07 0.00 0.07 -0.09 0.03 0.07 0.12 0.21 2000 1.00<br>Samples were drawn using NUTS (diag_e) at Mon May 11 11:41:42 2015.<br>For each parameter, n_eff is a crude measure o                                                                           |        |         | -        |        |        |         |         |         |         | -        |      |
| a[3] -0.53 0.01 0.38 -1.30 -0.78 -0.53 -0.29 0.21 2000 1.00<br>a[4] -1.26 0.00 0.19 -1.65 -1.38 -1.25 -1.12 -0.91 1496 1.00<br>a[5] -2.75 0.00 0.14 -3.03 -2.84 -2.75 -2.65 -2.50 1035 1.00<br>a[6] -2.30 0.01 0.30 -2.94 -2.49 -2.29 -2.10 -1.74 2000 1.00<br>a[7] -0.76 0.01 0.26 -1.30 -0.93 -0.76 -0.59 -0.25 1484 1.00<br>a[8] -2.28 0.01 0.34 -2.97 -2.49 -2.26 -2.04 -1.65 2000 1.00<br>a[9] -2.20 0.01 0.27 -2.76 -2.38 -2.20 -2.01 -1.67 2000 1.00<br>a[10] -0.17 0.00 0.12 -0.40 -0.25 -0.17 -0.09 0.06 844 1.00<br>a[11] -0.36 0.01 0.42 -1.19 -0.63 -0.36 -0.10 0.45 2000 1.00<br>a[12] -0.27 0.01 0.23 -0.74 -0.43 -0.26 -0.11 0.18 1263 1.00<br>a[13] -1.27 0.01 0.25 -2.13 -1.82 -1.63 -1.46 -1.76 1747 1.00<br>a[16] -0.84 0.01 0.49 -4.31 -3.50 -3.18 -2.85 -2.33 1740 1.00<br>a[17] -1.74 0.01 0.49 -4.31 -3.50 -3.18 -2.85 -2.33 1740 1.00<br>a[18] -1.50 0.00 0.12 -1.73 -1.58 -1.50 -1.42 -1.27 833 1.00<br>b_age -0.07 0.00 0.88 0.22 0.33 0.38 0.44 0.55 842 1.00<br>b_age 2 0.06 0.01 0.17 -0.26 -0.05 0.06 0.18 0.38 660 1.01<br>b_mar 0.38 0.00 0.08 0.22 0.33 0.38 0.44 0.55 842 1.00<br>e[1] 0.01 0.00 0.08 -0.21 -0.10 -0.06 -0.01 0.07 2000 1.00<br>c[3] 0.05 0.00 0.08 -0.22 0.33 0.38 0.44 0.55 842 1.00<br>e[4] 0.00 0.00 0.08 -0.15 -0.05 0.00 0.13 1398 1.00<br>c[2] -0.06 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1255 1.00<br>c[4] 0.00 0.00 0.07 -0.19 -0.10 -0.05 0.10 0.08 1257 1.00<br>r[4] 0.00 0.00 0.07 -0.19 -0.10 -0.05 0.10 0.08 1257 1.00<br>r[4] 0.07 0.00 0.07 -0.19 -0.10 -0.05 0.10 0.00 1473 1.00<br>r[4] 0.07 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.22 0.73 0.75 0.75 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.06 0.03 0.07 0.12 0.21 2000 1.00                                                                                                                                                                                                                                                                                                                                         |        |         |          |        |        |         |         |         |         |          |      |
| a [4] -1.26 0.00 0.19 -1.65 -1.38 -1.25 -1.12 -0.91 1496 1.00<br>a [5] -2.75 0.00 0.14 -3.03 -2.84 -2.75 -2.65 -2.50 1035 1.00<br>a [6] -2.30 0.01 0.30 -2.94 -2.49 -2.29 -2.10 -1.74 2000 1.00<br>a [7] -0.76 0.01 0.26 -1.30 -0.93 -0.76 -0.59 -0.25 1484 1.00<br>a [8] -2.28 0.01 0.34 -2.97 -2.49 -2.26 -2.04 -1.65 2000 1.00<br>a [9] -2.20 0.01 0.27 -2.76 -2.38 -2.20 -2.01 -1.67 2000 1.00<br>a [10] -0.17 0.00 0.12 -0.40 -0.25 -0.17 -0.09 0.06 844 1.00<br>a [11] -0.36 0.01 0.22 -1.19 -0.63 -0.36 -0.10 0.45 2000 1.00<br>a [12] -0.27 0.01 0.22 -1.19 -0.63 -0.36 -0.10 0.45 2000 1.00<br>a [12] -0.27 0.01 0.28 -1.83 -1.46 -1.26 -1.08 -0.73 2000 1.00<br>a [13] -1.27 0.01 0.28 -1.83 -1.46 -1.26 -1.08 -0.73 2000 1.00<br>a [14] -1.64 0.01 0.25 -2.13 -1.62 -1.63 -1.46 -1.16 1747 1.00<br>a [15] -3.20 0.01 0.49 -4.31 -3.50 -3.18 -2.85 -2.33 1740 1.00<br>a [16] -0.84 0.00 0.14 -1.13 -0.93 -0.83 -0.75 -0.56 2000 1.00<br>a [17] -1.74 0.01 0.25 -2.25 -1.91 -1.74 -1.58 -1.27 2000 1.00<br>a [18] -1.50 0.00 0.12 -1.73 -1.58 -1.50 -1.42 -1.27 833 1.00<br>b_age -0.07 0.00 0.08 -0.23 -0.13 -0.07 -0.02 0.08 1763 1.00<br>b_age 2 0.06 0.01 0.17 -0.26 -0.05 0.06 0.18 0.38 660 1.01<br>b_mar 0.38 0.00 0.08 0.22 0.33 0.38 0.44 0.55 842 1.00<br>e [1] 0.01 0.00 0.68 -0.11 -0.03 0.01 0.05 0.13 1398 1.00<br>e [2] -0.06 0.00 0.7 -0.19 -0.10 -0.06 -0.01 0.07 2000 1.00<br>a [14] -0.05 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.20 1525 1.00<br>e [4] 0.00 0.00 0.07 -0.19 -0.10 -0.05 0.10 0.20 1525 1.00<br>r [4] 0.07 0.00 0.08 -0.15 -0.05 0.00 0.05 0.14 2000 1.00<br>r [1] -0.05 0.00 0.07 -0.19 -0.14 -0.10 0.00 1473 1.00<br>r [2] -0.14 0.00 0.07 -0.19 -0.14 0.10 0.00 1473 1.00<br>r [4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r [4] 0.07 0.00 0.07 -0.01 0.08 0.07 0.12 0.21 2000 1.00<br>r [4] 0.07 0.00 0.07 -0.01 0.08 0.07 0.12 0.21 2000 1.00<br>r [4] 0.07 0.00 0.07 -0.01 0.08 0.07 0.12 0.21 2000 1.00<br>r [4] 0.07 0.00 0.07 -0.01 0.08 0.07 0.12 0.21 2000 1.00<br>r [4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r [4] 0.07 0.00 0.07 -0.06 0.03 0.07 0.12 0.21 2000 1.00                                                                                                                |        |         |          |        |        |         |         |         |         |          |      |
| a[5] -2.75 0.00 0.14 -3.03 -2.84 -2.75 -2.65 -2.50 1035 1.00<br>a[6] -2.30 0.01 0.30 -2.94 -2.49 -2.29 -2.10 -1.74 2000 1.00<br>a[7] -0.76 0.01 0.26 -1.30 -0.93 -0.76 -0.59 -0.25 1484 1.00<br>a[8] -2.28 0.01 0.34 -2.97 -2.49 -2.26 -2.04 -1.65 2000 1.00<br>a[9] -2.20 0.01 0.27 -2.76 -2.38 -2.20 -2.01 -1.67 2000 1.00<br>a[10] -0.17 0.00 0.12 -0.40 -0.25 -0.17 -0.09 0.06 844 1.00<br>a[11] -0.36 0.01 0.42 -1.19 -0.63 -0.36 -0.10 0.45 2000 1.00<br>a[13] -1.27 0.01 0.23 -0.74 -0.43 -0.26 -0.11 0.18 1263 1.00<br>a[14] -1.64 0.01 0.25 -2.13 -1.62 -1.08 -0.73 2000 1.00<br>a[15] -3.20 0.01 0.49 -4.31 -3.50 -3.18 -2.85 -2.33 1740 1.00<br>a[16] -0.84 0.00 0.14 -1.13 -0.93 -0.83 -0.75 -0.56 2000 1.00<br>a[17] -1.74 0.01 0.25 -2.25 -1.91 -1.74 -1.58 -1.27 2000 1.00<br>a[18] -1.50 0.00 0.12 -1.73 -1.58 -1.50 -1.42 -1.27 833 1.00<br>b_age -0.07 0.00 0.08 -0.23 -0.13 -0.07 -0.02 0.08 1763 1.00<br>b_age 2 0.06 0.01 0.17 -0.26 -0.05 0.06 0.18 0.38 660 1.01<br>b_mar 0.38 0.00 0.08 0.22 0.33 0.38 0.44 0.55 842 1.00<br>e[1] 0.01 0.00 0.06 -0.11 -0.03 0.01 0.07 2000 1.00<br>a[13] -0.50 0.00 0.77 -0.19 -0.10 -0.06 -0.01 0.07 2000 1.00<br>r[1] -0.05 0.00 0.08 -0.15 -0.05 0.00 0.05 0.14 2000 1.00<br>r[1] -0.05 0.00 0.07 -0.19 -0.10 -0.05 0.10 0.21 1525 1.00<br>e[4] 0.00 0.00 0.08 -0.14 -1.03 0.01 0.05 0.13 1398 1.00<br>e[2] -0.14 0.00 0.07 -0.19 -0.10 -0.05 0.10 0.20 1525 1.00<br>r[4] 0.07 0.00 0.08 -0.15 -0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.19 -0.14 -0.10 0.00 1473 1.00<br>r[4] 0.07 0.00 0.07 -0.19 -0.14 -0.10 0.00 1473 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.06 0.03 0.07 0.12 0.21 2000 1.00<br>Samples were drawn using NUTS(diag_e) at Mon May 11 11:41:42 2015.<br>For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at                                                                                                                                                                                                   |        |         |          |        |        |         |         |         |         |          |      |
| a[6] -2.30 0.01 0.30 -2.94 -2.49 -2.29 -2.10 -1.74 2000 1.00<br>a[7] -0.76 0.01 0.26 -1.30 -0.93 -0.76 -0.59 -0.25 1484 1.00<br>a[8] -2.28 0.01 0.34 -2.97 -2.49 -2.26 -2.04 -1.65 2000 1.00<br>a[9] -2.20 0.01 0.27 -2.76 -2.38 -2.20 -2.01 -1.67 2000 1.00<br>a[10] -0.17 0.00 0.12 -0.40 -0.25 -0.17 -0.09 0.06 844 1.00<br>a[11] -0.36 0.01 0.42 -1.19 -0.63 -0.36 -0.10 0.45 2000 1.00<br>a[12] -0.27 0.01 0.23 -0.74 -0.43 -0.26 -0.11 0.18 1263 1.00<br>a[13] -1.27 0.01 0.28 -1.83 -1.46 -1.26 -1.08 -0.73 2000 1.00<br>a[15] -3.20 0.01 0.49 -4.31 -3.50 -3.18 -2.85 -2.33 1740 1.00<br>a[16] -0.84 0.00 0.14 -1.13 -0.93 -0.83 -0.75 -0.56 2000 1.00<br>a[17] -1.74 0.01 0.25 -2.25 -1.91 -1.74 -1.58 -1.27 2000 1.00<br>a[18] -1.50 0.00 0.12 -1.73 -1.58 -1.50 -1.42 -1.27 833 1.00<br>b_age -0.07 0.00 0.08 -0.23 -0.13 -0.07 -0.02 0.08 1763 1.00<br>b_age 2.0.06 0.01 0.17 -0.26 -0.05 0.06 0.18 0.38 660 1.01<br>b_mar 0.38 0.00 0.08 -0.22 0.33 0.38 0.44 0.55 842 1.00<br>e[1] 0.01 0.00 0.08 -0.11 -0.03 0.01 0.05 0.13 1398 1.00<br>e[2] -0.06 0.00 0.07 -0.19 -0.10 -0.06 -0.01 0.07 2000 1.00<br>r[2] -0.14 0.00 0.08 -0.15 -0.05 0.00 0.14 2000 1.00<br>r[2] -0.14 0.00 0.07 -0.19 -0.10 -0.05 0.10 0.20 1525 1.00<br>r[4] 0.07 0.00 0.07 -0.19 -0.10 -0.05 0.01 0.07 2000 1.00<br>r[4] 0.07 0.00 0.07 -0.19 -0.10 -0.05 0.01 0.07 2000 1.00<br>r[4] 0.07 0.00 0.07 -0.19 -0.10 -0.05 0.01 0.07 2000 1.00<br>r[4] 0.07 0.00 0.07 -0.19 -0.10 -0.05 0.01 0.07 2000 1.00<br>r[4] 0.07 0.00 0.07 -0.19 -0.10 -0.05 0.01 0.07 2000 1.00<br>r[4] 0.07 0.00 0.07 -0.19 -0.10 -0.05 0.01 0.00 1473 1.00<br>r[4] 0.07 0.00 0.07 -0.19 -0.10 -0.05 0.01 0.00 1473 1.00<br>r[4] 0.07 0.00 0.07 -0.19 -0.10 -0.05 0.01 0.00 1473 1.00<br>r[4] 0.07 0.00 0.07 -0.19 -0.10 -0.05 0.01 0.00 1473 1.00<br>r[4] 0.07 0.00 0.07 -0.00 0.03 0.07 0.12 0.21 2000 1.00<br>Samples were drawn using NUTS(diag_e) at Mon May 11 11:41:42 2015.<br>For each parameter, n_eff is a crude measure of effective sample size,<br>and Rhat is the potential scale reduction factor on split chains (at                                                                                                                                                                       |        |         |          |        |        |         |         |         |         |          |      |
| a[7] -0.76 0.01 0.26 -1.30 -0.93 -0.76 -0.59 -0.25 1484 1.00<br>a[8] -2.28 0.01 0.34 -2.97 -2.49 -2.26 -2.04 -1.65 2000 1.00<br>a[9] -2.20 0.01 0.27 -2.76 -2.38 -2.20 -2.01 -1.67 2000 1.00<br>a[10] -0.17 0.00 0.12 -0.40 -0.25 -0.17 -0.09 0.06 844 1.00<br>a[11] -0.36 0.01 0.42 -1.19 -0.63 -0.36 -0.10 0.45 2000 1.00<br>a[12] -0.27 0.01 0.23 -0.74 -0.43 -0.26 -0.11 0.18 1263 1.00<br>a[13] -1.27 0.01 0.28 -1.83 -1.46 -1.26 -1.08 -0.73 2000 1.00<br>a[14] -1.64 0.01 0.25 -2.13 -1.82 -1.63 -1.46 -1.16 1747 1.00<br>a[15] -3.20 0.01 0.49 -4.31 -3.50 -3.18 -2.85 -2.33 1740 1.00<br>a[16] -0.84 0.00 0.14 -1.13 -0.93 -0.83 -0.75 -0.56 2000 1.00<br>a[17] -1.74 0.01 0.25 -2.25 -1.91 -1.74 -1.58 -1.27 2000 1.00<br>a[18] -1.50 0.00 0.12 -1.73 -1.58 -1.50 -1.42 -1.27 833 1.00<br>b_age -0.07 0.00 0.08 -0.23 -0.13 -0.07 -0.02 0.08 1763 1.00<br>b_age2 0.06 0.01 0.17 -0.26 -0.05 0.06 0.18 0.38 660 1.01<br>b_mar 0.38 0.00 0.08 0.22 0.33 0.38 0.44 0.55 842 1.00<br>e[1] 0.01 0.00 0.08 -0.11 -0.03 0.01 0.05 0.13 1398 1.00<br>e[2] -0.06 0.00 0.7 -0.19 -0.10 -0.06 -0.01 0.07 2000 1.00<br>r[1] -0.05 0.00 0.08 -0.15 -0.05 0.00 0.15 0.13 1398 1.00<br>e[4] 0.00 0.00 8 -0.15 -0.05 0.00 0.14 2.01 1.00<br>r[2] -0.14 0.00 0.07 -0.19 -0.10 -0.05 0.10 0.20 1525 1.00<br>r[4] 0.07 0.00 0.07 -0.19 -0.10 -0.05 0.10 0.20 1525 1.00<br>r[4] 0.07 0.00 0.07 -0.19 -0.14 -0.10 0.00 1473 1.00<br>r[4] 0.07 0.00 0.07 -0.19 -0.14 -0.10 0.00 1473 1.00<br>r[4] 0.07 0.00 0.07 -0.19 -0.14 -0.10 0.00 1473 1.00<br>r[4] 0.07 0.00 0.07 -0.19 -0.14 -0.10 0.00 1473 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.06 0.03 0.07 0.19 -0.14 -0.10 0.00 1473 1.00<br>r[4] 0.07 0.00 0.07 -0.06 0.03 0.07 0.12 0.21 2000 1.00                                                                                                                                                                                                                                                                                                                                                        |        |         |          |        |        |         |         |         |         |          |      |
| a[8] -2.28 0.01 0.34 -2.97 -2.49 -2.26 -2.04 -1.65 2000 1.00<br>a[9] -2.20 0.01 0.27 -2.76 -2.38 -2.20 -2.01 -1.67 2000 1.00<br>a[10] -0.17 0.00 0.12 -0.40 -0.25 -0.17 -0.09 0.06 844 1.00<br>a[11] -0.36 0.01 0.42 -1.19 -0.63 -0.36 -0.10 0.45 2000 1.00<br>a[12] -0.27 0.01 0.23 -0.74 -0.43 -0.26 -0.11 0.18 1263 1.00<br>a[13] -1.27 0.01 0.28 -1.83 -1.46 -1.26 -1.08 -0.73 2000 1.00<br>a[14] -1.64 0.01 0.25 -2.13 -1.82 -1.63 -1.46 -1.16 1747 1.00<br>a[15] -3.20 0.01 0.49 -4.31 -3.50 -3.18 -2.85 -2.33 1740 1.00<br>a[16] -0.84 0.00 0.14 -1.13 -0.93 -0.83 -0.75 -0.56 2000 1.00<br>a[17] -1.74 0.01 0.25 -2.25 -1.91 -1.74 -1.58 -1.27 2000 1.00<br>a[18] -1.50 0.00 0.12 -1.73 -1.58 -1.50 -1.42 -1.27 833 1.00<br>b_age -0.07 0.00 0.08 -0.23 -0.13 -0.07 -0.02 0.08 1763 1.00<br>b_age2 0.06 0.01 0.17 -0.26 -0.05 0.06 0.18 0.38 660 1.01<br>b_mar 0.38 0.00 0.08 0.22 0.33 0.38 0.44 0.55 842 1.00<br>e[1] 0.01 0.00 0.06 -0.11 -0.03 0.01 0.05 0.13 1398 1.00<br>e[2] -0.06 0.00 0.07 -0.19 -0.10 -0.06 -0.01 0.07 2000 1.00<br>r[1] -0.05 0.00 0.08 -0.15 -0.05 0.00 0.05 0.14 2000 1.00<br>r[1] -0.05 0.00 0.07 -0.19 -0.10 -0.06 -0.01 0.07 2000 1.00<br>r[2] -0.14 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.88 1257 1.00<br>r[2] -0.14 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r[2] -0.14 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r[2] -0.14 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r[4] 0.07 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r[4] 0.07 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r[4] 0.07 0.00 0.07 -0.09 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r[2] -0.14 0.00 0.07 -0.09 -0.19 -0.14 -0.10 0.00 1473 1.00<br>r[3] 0.12 0.00 0.07 -0.09 0.03 0.07 0.12 0.21 2000 1.00<br>Samples were drawn using NUTS(diag_e) at Mon May 11 11:41:42 2015.<br>For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at                                                                                                                                                                                                                                                                               | 1      |         |          |        |        |         |         |         |         |          |      |
| a[9] -2.20 0.01 0.27 -2.76 -2.38 -2.20 -2.01 -1.67 2000 1.00<br>a[10] -0.17 0.00 0.12 -0.40 -0.25 -0.17 -0.09 0.06 844 1.00<br>a[11] -0.36 0.01 0.42 -1.19 -0.63 -0.36 -0.10 0.45 2000 1.00<br>a[12] -0.27 0.01 0.23 -0.74 -0.43 -0.26 -0.11 0.18 1263 1.00<br>a[13] -1.27 0.01 0.28 -1.83 -1.46 -1.26 -1.08 -0.73 2000 1.00<br>a[14] -1.64 0.01 0.25 -2.13 -1.82 -1.63 -1.46 -1.16 1747 1.00<br>a[15] -3.20 0.01 0.49 -4.31 -3.50 -3.18 -2.85 -2.33 1740 1.00<br>a[17] -1.74 0.01 0.25 -2.25 -1.91 -1.74 -1.58 -1.27 2000 1.00<br>a[18] -1.50 0.00 0.12 -1.73 -1.58 -1.50 -1.42 -1.27 833 1.00<br>b_age -0.07 0.00 0.08 -0.23 -0.13 -0.07 -0.02 0.08 1763 1.00<br>b_age2 0.06 0.01 0.17 -0.26 -0.05 0.06 0.18 0.38 660 1.01<br>b_mar 0.38 0.00 0.08 0.22 0.33 0.38 0.44 0.55 842 1.00<br>e[1] 0.01 0.00 0.06 -0.11 -0.03 0.01 0.05 0.13 1398 1.00<br>e[2] -0.06 0.00 0.07 -0.19 -0.10 -0.06 -0.01 0.07 2000 1.00<br>a[14] -0.05 0.00 0.08 -0.15 -0.05 0.00 0.05 0.14 2000 1.00<br>r[1] -0.05 0.00 0.07 -0.19 -0.10 -0.05 0.10 0.20 1525 1.00<br>e[4] 0.00 0.00 0.07 -0.19 -0.10 -0.05 1.10 0.20 1525 1.00<br>r[2] -0.14 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r[2] -0.14 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r[3] 0.12 0.00 0.07 -0.09 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.09 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.09 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.06 0.03 0.07 0.12 0.21 2000 1.00<br>samples were drawn using NUTS(diag_e) at Mon May 11 11:41:42 2015.<br>For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |         |          |        |        |         |         |         |         |          |      |
| a[10] -0.17 0.00 0.12 -0.40 -0.25 -0.17 -0.09 0.06 844 1.00<br>a[11] -0.36 0.01 0.42 -1.19 -0.63 -0.36 -0.10 0.45 2000 1.00<br>a[12] -0.27 0.01 0.23 -0.74 -0.43 -0.26 -0.11 0.18 1263 1.00<br>a[13] -1.27 0.01 0.28 -1.83 -1.46 -1.26 -1.08 -0.73 2000 1.00<br>a[14] -1.64 0.01 0.25 -2.13 -1.82 -1.63 -1.46 -1.16 1747 1.00<br>a[15] -3.20 0.01 0.49 -4.31 -3.50 -3.18 -2.85 -2.33 1740 1.00<br>a[16] -0.84 0.00 0.14 -1.13 -0.93 -0.83 -0.75 -0.56 2000 1.00<br>a[17] -1.74 0.01 0.25 -2.25 -1.91 -1.74 -1.58 -1.27 2000 1.00<br>a[18] -1.50 0.00 0.12 -1.73 -1.58 -1.50 -1.42 -1.27 833 1.00<br>b_age -0.07 0.00 0.08 -0.23 -0.13 -0.07 -0.02 0.08 1763 1.00<br>b_age2 0.06 0.01 0.17 -0.26 -0.05 0.06 0.18 0.38 660 1.01<br>b_mar 0.38 0.00 0.08 0.22 0.33 0.38 0.44 0.55 842 1.00<br>e[1] 0.01 0.00 0.06 -0.11 -0.03 0.01 0.05 0.13 1398 1.00<br>e[2] -0.06 0.00 0.07 -0.19 -0.10 -0.06 -0.01 0.07 2000 1.00<br>e[3] 0.05 0.00 0.88 -0.15 -0.05 0.00 0.05 0.14 2000 1.00<br>r[1] -0.05 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r[2] -0.14 0.00 0.07 -0.19 -0.10 -0.05 0.01 0.08 1257 1.00<br>r[3] 0.12 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.00 0.03 0.07 0.12 0.21 2000 1.00<br>samples were drawn using NUTS(diag_e) at Mon May 11 11:41:42 2015.<br>For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at                                                                                                                                                                                                                                                                                                                                                                                  |        |         |          |        |        |         |         |         |         |          |      |
| a[11] -0.36 0.01 0.42 -1.19 -0.63 -0.36 -0.10 0.45 2000 1.00<br>a[12] -0.27 0.01 0.23 -0.74 -0.43 -0.26 -0.11 0.18 1263 1.00<br>a[13] -1.27 0.01 0.28 -1.83 -1.46 -1.26 -1.08 -0.73 2000 1.00<br>a[14] -1.64 0.01 0.25 -2.13 -1.82 -1.63 -1.46 -1.16 1747 1.00<br>a[15] -3.20 0.01 0.49 -4.31 -3.50 -3.18 -2.85 -2.33 1740 1.00<br>a[16] -0.84 0.00 0.14 -1.13 -0.93 -0.83 -0.75 -0.56 2000 1.00<br>a[17] -1.74 0.01 0.25 -2.25 -1.91 -1.74 -1.58 -1.27 2000 1.00<br>a[18] -1.50 0.00 0.12 -1.73 -1.58 -1.50 -1.42 -1.27 833 1.00<br>b_age -0.07 0.00 0.08 -0.23 -0.13 -0.07 -0.02 0.08 1763 1.00<br>b_age2 0.06 0.01 0.17 -0.26 -0.05 0.06 0.18 0.38 660 1.01<br>b_mar 0.38 0.00 0.08 0.22 0.33 0.38 0.44 0.55 842 1.00<br>e[1] 0.01 0.00 0.06 -0.11 -0.03 0.01 0.05 0.13 1398 1.00<br>e[2] -0.06 0.00 0.7 -0.19 -0.10 -0.06 -0.01 0.07 2000 1.00<br>e[3] 0.05 0.00 0.08 -0.15 -0.05 0.00 0.05 0.14 2000 1.00<br>r[1] -0.05 0.00 0.07 -0.19 -0.10 -0.05 0.10 0.20 1525 1.00<br>e[4] 0.00 0.00 0.07 -0.19 -0.10 -0.05 0.10 0.20 1525 1.00<br>r[2] -0.14 0.00 0.07 -0.19 -0.14 -0.10 0.00 1473 1.00<br>r[3] 0.12 0.00 0.07 -0.19 -0.14 -0.10 0.00 1473 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.06 0.03 0.07 0.12 0.21 2000 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |         |          |        |        |         |         |         |         |          |      |
| a [12] -0.27 0.01 0.23 -0.74 -0.43 -0.26 -0.11 0.18 1263 1.00<br>a [13] -1.27 0.01 0.28 -1.83 -1.46 -1.26 -1.08 -0.73 2000 1.00<br>a [14] -1.64 0.01 0.25 -2.13 -1.82 -1.63 -1.46 -1.16 1747 1.00<br>a [15] -3.20 0.01 0.49 -4.31 -3.50 -3.18 -2.85 -2.33 1740 1.00<br>a [16] -0.84 0.00 0.14 -1.13 -0.93 -0.83 -0.75 -0.56 2000 1.00<br>a [17] -1.74 0.01 0.25 -2.25 -1.91 -1.74 -1.58 -1.27 2000 1.00<br>a [18] -1.50 0.00 0.12 -1.73 -1.58 -1.50 -1.42 -1.27 833 1.00<br>b_age -0.07 0.00 0.08 -0.23 -0.13 -0.07 -0.02 0.08 1763 1.00<br>b_age2 0.06 0.01 0.17 -0.26 -0.05 0.06 0.18 0.38 660 1.01<br>b_mar 0.38 0.00 0.08 0.22 0.33 0.38 0.44 0.55 842 1.00<br>e [1] 0.01 0.00 0.06 -0.11 -0.03 0.01 0.05 0.13 1398 1.00<br>e [2] -0.06 0.00 0.07 -0.19 -0.10 -0.06 -0.01 0.07 2000 1.00<br>e [3] 0.05 0.00 0.08 -0.15 -0.05 0.00 0.05 0.14 2000 1.00<br>r [1] -0.05 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.20 1525 1.00<br>e [4] 0.00 0.00 0.07 -0.19 -0.10 -0.05 0.10 0.20 1525 1.00<br>r [1] -0.05 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r [1] -0.05 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r [2] -0.14 0.00 0.07 -0.19 -0.14 -0.10 0.00 1473 1.00<br>r [3] 0.12 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r [4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r [4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r [4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r [4] 0.07 0.00 0.07 -0.06 0.03 0.07 0.19 0.14 -0.10 0.01 1.00<br>Samples were drawn using NUTS(diag_e) at Mon May 11 11:41:42 2015.<br>For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |          |        |        |         |         |         |         |          |      |
| a[13] -1.27 0.01 0.28 -1.83 -1.46 -1.26 -1.08 -0.73 2000 1.00<br>a[14] -1.64 0.01 0.25 -2.13 -1.82 -1.63 -1.46 -1.16 1747 1.00<br>a[15] -3.20 0.01 0.49 -4.31 -3.50 -3.18 -2.85 -2.33 1740 1.00<br>a[16] -0.84 0.00 0.14 -1.13 -0.93 -0.83 -0.75 -0.56 2000 1.00<br>a[17] -1.74 0.01 0.25 -2.25 -1.91 -1.74 -1.58 -1.27 2000 1.00<br>a[18] -1.50 0.00 0.12 -1.73 -1.58 -1.50 -1.42 -1.27 833 1.00<br>b_age -0.07 0.00 0.08 -0.23 -0.13 -0.07 -0.02 0.08 1763 1.00<br>b_age2 0.06 0.01 0.17 -0.26 -0.05 0.06 0.18 0.38 660 1.01<br>b_mar 0.38 0.00 0.08 0.22 0.33 0.38 0.44 0.55 842 1.00<br>e[1] 0.01 0.00 0.06 -0.11 -0.03 0.01 0.05 0.13 1398 1.00<br>e[2] -0.06 0.00 0.07 -0.19 -0.10 -0.06 -0.01 0.07 2000 1.00<br>e[3] 0.05 0.00 0.08 -0.15 -0.05 0.00 0.05 0.14 2000 1.00<br>r[1] -0.05 0.00 0.08 -0.15 -0.05 0.00 0.05 0.14 2000 1.00<br>r[1] -0.05 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.8 1257 1.00<br>r[2] -0.14 0.00 0.07 -0.19 -0.10 -0.05 1.00<br>r[3] 0.12 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.12 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.12 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.10 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.06 0.03 0.07 0.12 0.21 2000 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |         |          |        |        |         |         |         |         |          |      |
| a[14] -1.64 0.01 0.25 -2.13 -1.82 -1.63 -1.46 -1.16 1747 1.00<br>a[15] -3.20 0.01 0.49 -4.31 -3.50 -3.18 -2.85 -2.33 1740 1.00<br>a[16] -0.84 0.00 0.14 -1.13 -0.93 -0.83 -0.75 -0.56 2000 1.00<br>a[17] -1.74 0.01 0.25 -2.25 -1.91 -1.74 -1.58 -1.27 2000 1.00<br>a[18] -1.50 0.00 0.12 -1.73 -1.58 -1.50 -1.42 -1.27 833 1.00<br>b_age -0.07 0.00 0.08 -0.23 -0.13 -0.07 -0.02 0.08 1763 1.00<br>b_age2 0.06 0.01 0.17 -0.26 -0.05 0.06 0.18 0.38 660 1.01<br>b_mar 0.38 0.00 0.08 0.22 0.33 0.38 0.44 0.55 842 1.00<br>e[1] 0.01 0.00 0.06 -0.11 -0.03 0.01 0.05 0.13 1398 1.00<br>e[2] -0.06 0.00 0.07 -0.19 -0.10 -0.06 -0.01 0.07 2000 1.00<br>e[3] 0.05 0.00 0.08 -0.15 -0.05 0.00 0.05 0.10 0.20 1525 1.00<br>e[4] 0.00 0.00 8 -0.15 -0.05 0.00 0.05 0.14 2000 1.00<br>r[1] -0.05 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r[2] -0.14 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r[3] 0.12 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.06 0.03 0.07 0.12 0.21 2000 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |         |          |        |        |         |         |         |         |          |      |
| a[15] -3.20 0.01 0.49 -4.31 -3.50 -3.18 -2.85 -2.33 1740 1.00<br>a[16] -0.84 0.00 0.14 -1.13 -0.93 -0.83 -0.75 -0.56 2000 1.00<br>a[17] -1.74 0.01 0.25 -2.25 -1.91 -1.74 -1.58 -1.27 2000 1.00<br>a[18] -1.50 0.00 0.12 -1.73 -1.58 -1.50 -1.42 -1.27 833 1.00<br>b_age -0.07 0.00 0.08 -0.23 -0.13 -0.07 -0.02 0.08 1763 1.00<br>b_age2 0.06 0.01 0.17 -0.26 -0.05 0.06 0.18 0.38 660 1.01<br>b_mar 0.38 0.00 0.08 0.22 0.33 0.38 0.44 0.55 842 1.00<br>e[1] 0.01 0.00 0.06 -0.11 -0.03 0.01 0.05 0.13 1398 1.00<br>e[2] -0.06 0.00 0.07 -0.19 -0.10 -0.06 -0.01 0.07 2000 1.00<br>e[3] 0.05 0.00 0.08 -0.15 -0.05 0.00 0.05 0.14 2000 1.00<br>e[4] 0.00 0.00 8 -0.15 -0.05 0.00 0.05 0.14 2000 1.00<br>r[1] -0.05 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r[2] -0.14 0.00 0.07 -0.19 -0.14 -0.10 0.00 1473 1.00<br>r[3] 0.12 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.12 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.12 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.12 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.06 0.03 0.07 0.12 0.21 2000 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |         |          |        |        |         |         |         |         |          |      |
| a[16] -0.84 0.00 0.14 -1.13 -0.93 -0.83 -0.75 -0.56 2000 1.00<br>a[17] -1.74 0.01 0.25 -2.25 -1.91 -1.74 -1.58 -1.27 2000 1.00<br>a[18] -1.50 0.00 0.12 -1.73 -1.58 -1.50 -1.42 -1.27 833 1.00<br>b_age -0.07 0.00 0.08 -0.23 -0.13 -0.07 -0.02 0.08 1763 1.00<br>b_age2 0.06 0.01 0.17 -0.26 -0.05 0.06 0.18 0.38 660 1.01<br>b_mar 0.38 0.00 0.08 0.22 0.33 0.38 0.44 0.55 842 1.00<br>e[1] 0.01 0.00 0.06 -0.11 -0.03 0.01 0.05 0.13 1398 1.00<br>e[2] -0.06 0.00 0.07 -0.19 -0.10 -0.06 -0.01 0.07 2000 1.00<br>e[3] 0.05 0.00 0.08 -0.15 -0.05 0.00 0.05 0.14 2000 1.00<br>e[4] 0.00 0.00 8 -0.15 -0.05 0.00 0.05 0.14 2000 1.00<br>r[1] -0.05 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r[2] -0.14 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r[3] 0.12 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>samples were drawn using NUTS(diag_e) at Mon May 11 11:41:42 2015.<br>For each parameter, n_eff is a crude measure of effective sample size,<br>and Rhat is the potential scale reduction factor on split chains (at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |         |          |        |        |         |         |         |         |          |      |
| a[17] -1.74 0.01 0.25 -2.25 -1.91 -1.74 -1.58 -1.27 2000 1.00<br>a[18] -1.50 0.00 0.12 -1.73 -1.58 -1.50 -1.42 -1.27 833 1.00<br>b_age -0.07 0.00 0.08 -0.23 -0.13 -0.07 -0.02 0.08 1763 1.00<br>b_age2 0.06 0.01 0.17 -0.26 -0.05 0.06 0.18 0.38 660 1.01<br>b_mar 0.38 0.00 0.08 0.22 0.33 0.38 0.44 0.55 842 1.00<br>e[1] 0.01 0.00 0.06 -0.11 -0.03 0.01 0.05 0.13 1398 1.00<br>e[2] -0.06 0.00 0.07 -0.19 -0.10 -0.06 -0.01 0.07 2000 1.00<br>e[3] 0.05 0.00 0.08 -0.15 -0.05 0.00 0.05 0.14 2000 1.00<br>e[4] 0.00 0.00 8 -0.15 -0.05 0.00 0.05 0.14 2000 1.00<br>r[1] -0.05 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r[2] -0.14 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r[2] -0.14 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>samples were drawn using NUTS(diag_e) at Mon May 11 11:41:42 2015.<br>For each parameter, n_eff is a crude measure of effective sample size,<br>and Rhat is the potential scale reduction factor on split chains (at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |         |          |        |        |         |         |         |         |          |      |
| a [18] -1.50 0.00 0.12 -1.73 -1.58 -1.50 -1.42 -1.27 833 1.00<br>b_age -0.07 0.00 0.08 -0.23 -0.13 -0.07 -0.02 0.08 1763 1.00<br>b_age2 0.06 0.01 0.17 -0.26 -0.05 0.06 0.18 0.38 660 1.01<br>b_mar 0.38 0.00 0.08 0.22 0.33 0.38 0.44 0.55 842 1.00<br>e[1] 0.01 0.00 0.06 -0.11 -0.03 0.01 0.05 0.13 1398 1.00<br>e[2] -0.06 0.00 0.07 -0.19 -0.10 -0.06 -0.01 0.07 2000 1.00<br>e[3] 0.05 0.00 0.08 -0.10 0.00 0.05 0.10 0.20 1525 1.00<br>e[4] 0.00 0.00 8 -0.15 -0.05 0.00 0.05 0.14 2000 1.00<br>r[1] -0.05 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r[2] -0.14 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r[3] 0.12 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.06 0.03 0.07 0.12 0.21 2000 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |         |          |        |        |         |         |         |         |          |      |
| b_age -0.07 0.00 0.08 -0.23 -0.13 -0.07 -0.02 0.08 1763 1.00<br>b_age2 0.06 0.01 0.17 -0.26 -0.05 0.06 0.18 0.38 660 1.01<br>b_mar 0.38 0.00 0.08 0.22 0.33 0.38 0.44 0.55 842 1.00<br>e[1] 0.01 0.00 0.06 -0.11 -0.03 0.01 0.05 0.13 1398 1.00<br>e[2] -0.06 0.00 0.07 -0.19 -0.10 -0.06 -0.01 0.07 2000 1.00<br>e[3] 0.05 0.00 0.08 -0.10 0.00 0.05 0.10 0.20 1525 1.00<br>e[4] 0.00 0.00 0.08 -0.15 -0.05 0.00 0.05 0.14 2000 1.00<br>r[1] -0.05 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r[2] -0.14 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r[3] 0.12 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.06 0.03 0.07 0.12 0.21 2000 1.00<br>Samples were drawn using NUTS(diag_e) at Mon May 11 11:41:42 2015.<br>For each parameter, n_eff is a crude measure of effective sample size,<br>and Rhat is the potential scale reduction factor on split chains (at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |         |          |        |        |         |         |         |         |          |      |
| b_age2 0.06 0.01 0.17 -0.26 -0.05 0.06 0.18 0.38 660 1.01<br>b_mar 0.38 0.00 0.08 0.22 0.33 0.38 0.44 0.55 842 1.00<br>e[1] 0.01 0.00 0.06 -0.11 -0.03 0.01 0.05 0.13 1398 1.00<br>e[2] -0.06 0.00 0.07 -0.19 -0.10 -0.06 -0.01 0.07 2000 1.00<br>e[3] 0.05 0.00 0.08 -0.10 0.00 0.05 0.10 0.20 1525 1.00<br>e[4] 0.00 0.00 0.08 -0.15 -0.05 0.00 0.05 0.14 2000 1.00<br>r[1] -0.05 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r[2] -0.14 0.00 0.07 -0.30 -0.19 -0.14 -0.10 0.00 1473 1.00<br>r[3] 0.12 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.06 0.03 0.07 0.12 0.21 2000 1.00<br>Samples were drawn using NUTS(diag_e) at Mon May 11 11:41:42 2015.<br>For each parameter, n_eff is a crude measure of effective sample size,<br>and Rhat is the potential scale reduction factor on split chains (at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a[18]  | -1.50   |          |        |        |         |         |         |         |          |      |
| b_mar 0.38 0.00 0.08 0.22 0.33 0.38 0.44 0.55 842 1.00<br>e[1] 0.01 0.00 0.06 -0.11 -0.03 0.01 0.05 0.13 1398 1.00<br>e[2] -0.06 0.00 0.07 -0.19 -0.10 -0.06 -0.01 0.07 2000 1.00<br>e[3] 0.05 0.00 0.08 -0.10 0.00 0.05 0.10 0.20 1525 1.00<br>e[4] 0.00 0.00 0.08 -0.15 -0.05 0.00 0.05 0.14 2000 1.00<br>r[1] -0.05 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br>r[2] -0.14 0.00 0.07 -0.30 -0.19 -0.14 -0.10 0.00 1473 1.00<br>r[3] 0.12 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br>r[4] 0.07 0.00 0.07 -0.06 0.03 0.07 0.12 0.21 2000 1.00<br>Samples were drawn using NUTS(diag_e) at Mon May 11 11:41:42 2015.<br>For each parameter, n_eff is a crude measure of effective sample size,<br>and Rhat is the potential scale reduction factor on split chains (at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 0    |         |          |        |        |         |         |         |         |          |      |
| $ \begin{array}{c} e[1] & 0.01 & 0.00 & 0.06 & -0.11 & -0.03 & 0.01 & 0.05 & 0.13 & 1398 & 1.00 \\ e[2] & -0.06 & 0.00 & 0.07 & -0.19 & -0.10 & -0.06 & -0.01 & 0.07 & 2000 & 1.00 \\ e[3] & 0.05 & 0.00 & 0.08 & -0.10 & 0.00 & 0.05 & 0.10 & 0.20 & 1525 & 1.00 \\ e[4] & 0.00 & 0.00 & 0.08 & -0.15 & -0.05 & 0.00 & 0.05 & 0.14 & 2000 & 1.00 \\ r[1] & -0.05 & 0.00 & 0.07 & -0.19 & -0.10 & -0.05 & -0.01 & 0.08 & 1257 & 1.00 \\ r[2] & -0.14 & 0.00 & 0.07 & -0.30 & -0.19 & -0.14 & -0.10 & 0.00 & 1473 & 1.00 \\ r[3] & 0.12 & 0.00 & 0.07 & -0.01 & 0.08 & 0.12 & 0.17 & 0.25 & 1878 & 1.00 \\ r[4] & 0.07 & 0.00 & 0.07 & -0.06 & 0.03 & 0.07 & 0.12 & 0.21 & 2000 & 1.00 \\ \end{array}  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |         |          |        |        |         |         |         |         |          |      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |         |          |        |        |         |         |         |         |          |      |
| <pre>e[3] 0.05 0.00 0.08 -0.10 0.00 0.05 0.10 0.20 1525 1.00<br/>e[4] 0.00 0.00 0.08 -0.15 -0.05 0.00 0.05 0.14 2000 1.00<br/>r[1] -0.05 0.00 0.07 -0.19 -0.10 -0.05 -0.01 0.08 1257 1.00<br/>r[2] -0.14 0.00 0.07 -0.30 -0.19 -0.14 -0.10 0.00 1473 1.00<br/>r[3] 0.12 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00<br/>r[4] 0.07 0.00 0.07 -0.06 0.03 0.07 0.12 0.21 2000 1.00<br/>Samples were drawn using NUTS(diag_e) at Mon May 11 11:41:42 2015.<br/>For each parameter, n_eff is a crude measure of effective sample size,<br/>and Rhat is the potential scale reduction factor on split chains (at</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e[1]   | 0.01    | 0.00     | 0.06   | -0.11  | -0.03   | 0.01    | 0.05    | 0.13    | 1398     | 1.00 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | -0.06   |          |        |        |         |         |         |         | 2000     | 1.00 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 0.05    |          |        |        |         |         |         |         | 1525     | 1.00 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 0.00    |          |        |        |         |         |         |         |          |      |
| <pre>r[3] 0.12 0.00 0.07 -0.01 0.08 0.12 0.17 0.25 1878 1.00 r[4] 0.07 0.00 0.07 -0.06 0.03 0.07 0.12 0.21 2000 1.00 Samples were drawn using NUTS(diag_e) at Mon May 11 11:41:42 2015. For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r[1]   | -0.05   | 0.00     | 0.07   | -0.19  | -0.10   | -0.05   | -0.01   | 0.08    | 1257     | 1.00 |
| <pre>r[4] 0.07 0.00 0.07 -0.06 0.03 0.07 0.12 0.21 2000 1.00 Samples were drawn using NUTS(diag_e) at Mon May 11 11:41:42 2015. For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |         |          |        |        |         |         |         |         |          |      |
| Samples were drawn using NUTS(diag_e) at Mon May 11 11:41:42 2015.<br>For each parameter, n_eff is a crude measure of effective sample size,<br>and Rhat is the potential scale reduction factor on split chains (at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r[3]   | 0.12    | 0.00     | 0.07   | -0.01  | 0.08    | 0.12    | 0.17    | 0.25    | 1878     | 1.00 |
| For each parameter, $n_{eff}$ is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | r[4]   | 0.07    | 0.00     | 0.07   | -0.06  | 0.03    | 0.07    | 0.12    | 0.21    | 2000     | 1.00 |
| For each parameter, $n_{eff}$ is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample | s were  | drawn us | sing 1 | NUTS(a | iag e)  | at Mor  | ı Mav   | 11 11.4 | 11.42 '  | 2015 |
| and Rhat is the potential scale reduction factor on split chains (at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -      |         |          | -      |        | -       |         | •       |         |          |      |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | -       |          |        |        |         |         |         |         | -        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |         | -        |        | Deare  | Loudo   |         | LOUDI ( | on obr  |          |      |

|         | nce for<br>ns, each |          |        |        |        |        | hin=1   |         |         |           |
|---------|---------------------|----------|--------|--------|--------|--------|---------|---------|---------|-----------|
|         | armup di            |          |        |        | -      |        |         |         | s=2000. |           |
| -       |                     | -        |        |        |        | -      | -       |         |         |           |
|         | mean :              | se_mean  | sd     | 2.5%   | 25%    | 50%    | 75%     | 97.5%   | n_eff   | Rhat      |
| a[1]    | -0.12               | 0.00     | 0.12   | -0.35  | -0.20  | -0.13  | -0.05   | 0.11    | 1056    | 1         |
| a[2]    | -1.23               | 0.01     | 0.32   | -1.90  | -1.44  | -1.22  | -1.00   | -0.62   | 1752    | 1         |
| a[3]    | -0.74               | 0.01     | 0.30   | -1.35  | -0.94  | -0.73  | -0.53   | -0.14   | 2000    | 1         |
| a[4]    | -1.62               | 0.01     | 0.22   | -2.06  | -1.76  | -1.61  | -1.48   | -1.20   | 1314    | 1         |
| a[5]    | -2.97               | 0.00     | 0.14   | -3.24  | -3.06  | -2.96  | -2.87   | -2.71   | 1235    | 1         |
| a[6]    | -2.74               | 0.01     | 0.30   | -3.33  | -2.94  | -2.73  | -2.53   | -2.20   | 1457    | 1         |
| a[7]    | -0.77               | 0.01     | 0.22   | -1.22  | -0.92  | -0.76  | -0.61   | -0.35   | 2000    | 1         |
| a[8]    | -2.19               | 0.01     | 0.32   | -2.88  | -2.39  | -2.18  | -1.96   | -1.63   | 2000    | 1         |
| a[9]    | -1.77               | 0.00     | 0.17   | -2.10  | -1.88  | -1.77  | -1.66   | -1.45   | 2000    | 1         |
| a[10]   | -0.54               | 0.00     | 0.09   | -0.72  | -0.60  | -0.54  | -0.48   | -0.36   | 773     | 1         |
| a[11]   | -1.15               | 0.01     | 0.50   | -2.17  | -1.47  | -1.13  | -0.81   | -0.20   | 2000    | 1         |
| a[12]   | -0.77               | 0.00     | 0.19   | -1.14  | -0.89  | -0.77  | -0.64   | -0.40   | 2000    | 1         |
| a[13]   | -1.37               | 0.01     | 0.27   | -1.95  | -1.55  | -1.37  | -1.19   | -0.86   | 2000    | 1         |
| a[14]   | -2.61               | 0.01     | 0.29   | -3.19  | -2.80  | -2.59  | -2.41   | -2.07   | 1815    | 1         |
| a[15]   | -2.00               | 0.00     | 0.20   | -2.40  | -2.12  | -1.98  | -1.86   | -1.64   | 1583    | 1         |
| a[16]   | -1.24               | 0.00     | 0.11   | -1.47  | -1.31  | -1.24  | -1.17   | -1.03   | 1003    | 1         |
| a[17]   | -2.27               | 0.00     | 0.20   | -2.66  | -2.41  | -2.27  | -2.13   | -1.87   | 1743    | 1         |
| a[18]   | -2.03               | 0.00     | 0.08   | -2.21  | -2.09  | -2.03  | -1.98   | -1.88   | 723     | 1         |
| b_age   | -0.09               | 0.00     | 0.07   | -0.22  | -0.14  | -0.09  | -0.05   | 0.04    | 1680    | 1         |
| b_age2  | -0.08               | 0.00     | 0.14   | -0.35  | -0.17  | -0.08  | 0.02    | 0.21    | 850     | 1         |
| b_mar   | 0.33                | 0.00     | 0.07   | 0.19   | 0.28   | 0.33   | 0.38    | 0.46    | 897     | 1         |
| e[1]    | -0.05               | 0.00     | 0.05   | -0.15  | -0.08  | -0.05  | -0.01   | 0.05    | 1699    | 1         |
| e[2]    | -0.10               | 0.00     | 0.06   | -0.21  | -0.14  | -0.10  | -0.06   | 0.01    | 1612    | 1         |
| e[3]    | 0.11                | 0.00     | 0.06   | -0.01  | 0.07   | 0.11   | 0.15    | 0.24    | 1504    | 1         |
| e[4]    | 0.03                | 0.00     | 0.06   | -0.08  | -0.01  | 0.03   | 0.08    | 0.15    | 2000    |           |
| r[1]    | 0.01                | 0.00     | 0.06   | -0.09  | -0.02  | 0.01   | 0.05    | 0.12    | 1763    | 1         |
| r[2]    | -0.02               | 0.00     | 0.06   | -0.15  | -0.07  | -0.02  | 0.02    | 0.10    | 1748    | 1         |
| r[3]    | 0.02                | 0.00     | 0.05   | -0.09  | -0.02  | 0.02   | 0.05    | 0.12    | 1472    | 1         |
| r[4]    | -0.01               | 0.00     | 0.05   | -0.12  | -0.04  | 0.00   | 0.03    | 0.10    | 2000    | 1         |
| Samples | s were (            | drawn us | sing ] | NUTS(d | iag e) | at Mor | n Mav 1 | 11 12:3 | 24:41   | 2015.     |
| -       |                     |          | -      |        | -      |        | •       |         |         | ple size, |
|         | at is th            |          |        |        |        |        |         |         | -       |           |
|         | gence, H            | -        |        |        |        |        |         | 1 -     |         | •         |

| Listing 5: Model (3) wi | ith Fixed Effects |
|-------------------------|-------------------|
|-------------------------|-------------------|

| 4 chains <sub>:</sub><br>post-warn | , each w<br>nup draw | with ite     | r=1000<br>hain=5 | ; warmu<br>00. tot | p=500;<br>al post | thin=1;<br>-warmup | draws:  | =2000. |       |      |
|------------------------------------|----------------------|--------------|------------------|--------------------|-------------------|--------------------|---------|--------|-------|------|
| pobo warn                          | up uru.              | b por c      | nuin o           | ,                  | ar pobo           | warmap             | ur uw b | 2000.  |       |      |
|                                    |                      | se_mean      | sd               | 2.5%               | 25%               | 50%                |         |        | n_eff | Rhat |
| mu_1                               | -1.29                | 0.02         | 0.49             | -2.12              | -1.46             | -1.27              | -1.08   | 0.42   | 403   | 1.00 |
| mu_2[1]                            | -0.90                | 0.03         | 0.30             | -1.50              | -1.12             | -0.91              | -0.68   | 0.30   | 145   | 1.03 |
| mu_2[2]                            | -1.48                | 0.01         | 0.25             | -2.00              | -1.64             | -1.47              | -1.31   | 1.01   | 959   | 1.00 |
| mu_2[3]                            | -1.24                | 0.01         | 0.25             | -1.71              | -1.41             | -1.26              | -1.09   | 0.74   | 763   | 1.00 |
| mu_2[4]                            | -1.41                | 0.01         | 0.25             | -1.89              | -1.57             | -1.41              | -1.24   | 0.92   | 1204  | 1.00 |
| mu_3[1]                            | -0.16                | 0.01         | 0.26             | -0.66              | -0.34             | -0.17              | 0.00    | 0.37   | 538   | 1.00 |
| mu_3[2]                            | -0.69                | 0.01         | 0.23             | -1.13              | -0.84             | -0.69              | -0.53   | 0.22   | 604   | 1.01 |
| mu_3[3]                            | -0.92                | 0.01         | 0.33             | -1.56              | -1.14             | -0.91              | -0.71   | 0.22   | 746   | 1.01 |
| mu_3[4]                            | -0.91                | 0.02         | 0.27             | -1.43              | -1.09             | -0.90              | -0.73   | 0.38   | 289   | 1.01 |
| mu_3[5]                            | -0.99                | 0.02         | 0.32             | -1.57              | -1.20             | -0.99              | -0.78   | 0.38   | 234   | 1.01 |
|                                    |                      |              |                  |                    |                   |                    |         |        |       |      |
| mu_3[6]                            | -0.67                | 0.02         | 0.27             | -1.26              | -0.83             | -0.66              | -0.49   | 0.16   | 239   | 1.02 |
| mu_3[7]                            | -1.50                | 0.02         | 0.34             | -2.25              | -1.71             | -1.49              | -1.25   | 0.87   | 296   | 1.01 |
| mu_3[8]                            | -2.13                | 0.01         | 0.24             | -2.58              | -2.28             | -2.13              | -1.97   | 1.65   | 863   | 1.00 |
| mu_3[9]                            | -1.57                | 0.01         | 0.25             | -2.06              | -1.73             | -1.57              | -1.41   | 1.06   | 477   | 1.01 |
| mu_3[10]                           | -1.95                | 0.01         | 0.26             | -2.48              | -2.12             | -1.95              | -1.78   | 1.47   | 572   | 1.00 |
| mu_3[11]                           | -0.66                | 0.01         | 0.24             | -1.14              | -0.81             | -0.66              | -0.51   | 0.21   | 592   | 1.01 |
| mu_3[12]                           | -0.98                | 0.01         | 0.26             | -1.49              | -1.15             | -0.98              | -0.82   | 0.46   | 820   | 1.00 |
| mu_3[13]                           | -1.39                | 0.01         | 0.24             | -1.85              | -1.55             | -1.38              | -1.22   | 0.92   | 486   | 1.01 |
| mu_3[14]                           |                      | 0.01         | 0.23             | -1.97              | -1.65             | -1.50              | -1.36   | 1.08   | 1299  | 1.00 |
| mu_3[15]                           |                      | 0.01         | 0.25             | -2.05              | -1.74             | -1.57              | -1.41   | 1.08   | 693   | 1.01 |
| mu_3[16]                           |                      | 0.01         | 0.24             | -1.04              | -0.71             | -0.56              | -0.40   | 0.09   | 1100  | 1.00 |
| mu_3[17]                           |                      | 0.01         | 0.29             | -1.89              | -1.53             | -1.34              | -1.14   | 0.74   | 516   | 1.00 |
| mu_3[17]                           |                      |              | 0.29             |                    |                   |                    |         |        |       |      |
|                                    |                      | 0.01         |                  | -2.20              | -1.83             | -1.66              | -1.48   | 1.16   | 461   | 1.01 |
| mu_3[19]                           |                      | 0.01         | 0.24             | -2.29              | -1.97             | -1.81              | -1.64   | 1.36   | 598   | 1.00 |
| mu_3[20]                           |                      | 0.01         | 0.24             | -2.48              | -2.17             | -2.02              | -1.86   | 1.56   | 783   | 1.00 |
| a[1]                               | 0.17                 | 0.00         | 0.07             | 0.04               | 0.13              | 0.17               | 0.22    | 0.30   | 1046  | 1.00 |
| a[2]                               | 0.03                 | 0.01         | 0.19             | -0.39              | -0.10             | 0.03               | 0.16    | 0.41   | 459   | 1.01 |
| a[3]                               | -0.31                | 0.02         | 0.40             | -1.09              | -0.57             | -0.30              | -0.05   | 0.49   | 671   | 1.00 |
| a[4]                               | -0.07                | 0.01         | 0.27             | -0.59              | -0.25             | -0.06              | 0.12    | 0.45   | 1369  | 1.00 |
| a[5]                               | -0.04                | 0.02         | 0.41             | -0.93              | -0.31             | -0.03              | 0.24    | 0.74   | 464   | 1.00 |
| a[6]                               | -0.51                | 0.00         | 0.10             | -0.71              | -0.58             | -0.50              | -0.43   | 0.31   | 1168  | 1.00 |
| a[7]                               | -0.57                | 0.00         | 0.10             | -0.77              | -0.65             | -0.57              | -0.50   | 0.38   | 946   | 1.00 |
| a [8]                              | -1.03                | 0.01         | 0.42             | -1.86              | -1.32             | -1.02              | -0.74   | 0.22   | 1256  | 1.00 |
| a[9]                               | -0.45                | 0.01         | 0.26             | -0.97              | -0.62             | -0.44              | -0.27   | 0.04   | 1728  | 1.00 |
| a[10]                              | -0.73                | 0.01         | 0.30             | -1.35              | -0.91             | -0.72              | -0.52   | 0.15   | 1334  | 1.00 |
| a[10]<br>a[11]                     |                      | 0.01         | 0.39             | -1.63              |                   | -0.86              |         |        |       |      |
|                                    | -0.88                |              |                  |                    | -1.13             |                    | -0.62   | 0.13   | 446   | 1.01 |
| a[12]                              | -0.63                | 0.01         | 0.41             | -1.44              | -0.92             | -0.61              | -0.33   | 0.13   | 1001  | 1.01 |
| a[13]                              | -1.31                | 0.01         | 0.47             | -2.25              | -1.64             | -1.29              | -0.97   |        |       | 1.00 |
| a[14]                              | -1.10                | 0.02         | 0.51             | -2.04              | -1.45             | -1.10              | -0.74   | 0.12   | 719   | 1.01 |
| a[15]                              | -0.72                | 0.01         | 0.47             | -1.66              | -1.01             | -0.71              | -0.41   | 0.17   | 1263  | 1.00 |
| a[16]                              | -0.64                | 0.01         | 0.21             | -1.03              | -0.78             | -0.65              | -0.50   | 0.24   | 652   | 1.01 |
| a[17]                              | -0.59                | 0.01         | 0.30             | -1.19              | -0.80             | -0.59              | -0.40   | 0.02   | 1173  | 1.00 |
| a[18]                              | -1.23                | 0.03         | 0.50             | -2.29              | -1.54             | -1.20              | -0.90   | 0.32   | 274   | 1.01 |
| a[19]                              | -0.98                | 0.01         | 0.22             | -1.40              | -1.13             | -0.98              | -0.83   | 0.55   | 489   | 1.01 |
| a [20]                             | -1.15                | 0.01         | 0.38             | -1.90              | -1.42             | -1.15              | -0.88   | 0.46   | 888   | 1.00 |
| a[21]                              | -0.67                | 0.01         | 0.34             | -1.34              | -0.89             | -0.66              | -0.44   | 0.01   | 750   | 1.00 |
| a [22]                             | -1.23                | 0.01         | 0.38             | -1.94              | -1.49             | -1.25              | -0.98   | 0.47   | 675   | 1.00 |
| a [23]                             | -1.06                | 0.01         | 0.48             | -1.94              | -1.38             | -1.06              | -0.71   | 0.10   | 779   | 1.00 |
|                                    |                      |              |                  |                    |                   |                    |         |        |       |      |
| a[24]                              | -0.97                | 0.02         | 0.47             | -1.91              | -1.27             | -0.98              | -0.66   | 0.07   | 673   | 1.00 |
| a [25]                             | -1.09                | 0.02         | 0.42             | -1.91              | -1.38             | -1.08              | -0.80   | 0.28   | 439   | 1.00 |
| a[26]                              | 0.26                 | 0.00         | 0.07             | 0.13               | 0.21              | 0.25               | 0.30    | 0.39   | 825   | 1.00 |
| a[27]                              | -0.66                | 0.02         | 0.43             | -1.51              | -0.94             | -0.66              | -0.37   | 0.15   | 499   | 1.01 |
| a [28]                             | -0.62                | 0.01         | 0.16             | -0.92              | -0.73             | -0.62              | -0.51   | 0.29   | 766   | 1.00 |
| a [29]                             | -0.91                | 0.01         | 0.26             | -1.44              | -1.08             | -0.92              | -0.73   | 0.39   | 2000  | 1.00 |
| a[30]                              | -0.72                | 0.01         | 0.26             | -1.28              | -0.89             | -0.71              | -0.55   | 0.23   | 1480  | 1.00 |
| a[31]                              | -0.70                | 0.01         | 0.31             | -1.33              | -0.90             | -0.70              | -0.49   | 0.09   | 762   | 1.00 |
| a [32]                             | -1.74                | 0.02         | 0.45             | -2.66              | -2.06             | -1.73              | -1.43   | 0.89   | 401   | 1.01 |
| a [33]                             | -1.67                | 0.02         | 0.49             | -2.64              | -1.99             | -1.67              | -1.34   | 0.69   | 703   | 1.00 |
| a[34]                              | -1.75                | 0.02         | 0.50             | -2.78              | -2.09             | -1.72              | -1.40   | 0.79   | 486   | 1.00 |
| a [35]                             | -1.66                | 0.02         | 0.58             | -2.91              | -2.01             | -1.63              | -1.28   | 0.57   | 345   | 1.00 |
|                                    |                      |              |                  |                    |                   |                    | -1.28   |        |       |      |
| a[36]                              | -1.24                | 0.00         | 0.10             | -1.45              | -1.31             | -1.24              |         | 1.04   | 2000  | 1.00 |
| a[37]                              | -1.75                | 0.01         | 0.39             | -2.54              | -2.01             | -1.74              | -1.48   | 1.00   | 1481  | 1.00 |
| F067                               |                      | 0 00         | 0.08             | -3.10              | -3.00             | -2.95              | -2.89   | 2.79   | 1294  | 1.00 |
| a [38]<br>a [39]                   | -2.95<br>-2.35       | 0.00<br>0.01 | 0.00             | -2.74              | -2.48             | -2.35              | -2.22   | 1.98   | 1302  | 1.00 |

| a[40]                                                                                                                                                                                                                         | -2.84                                                                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -3.23                                                                                                                                                                                                                      | -2.97                                                                                                                                                                                                                             | -2.84                                                                                                                                                                                                                                          | -2.71                                                                                                                                                                                                                           | 2.47                                                                                                                                                                                         | 1645                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a[41]                                                                                                                                                                                                                         |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |                                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                               | -0.86                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.27                                                                                                                                                                                                                      | -1.00                                                                                                                                                                                                                             | -0.85                                                                                                                                                                                                                                          | -0.73                                                                                                                                                                                                                           | 0.47                                                                                                                                                                                         | 1096                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[42]                                                                                                                                                                                                                         | -1.37                                                                                                                                                                                                                    | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.41                                                                                                                                                                                                                      | -1.66                                                                                                                                                                                                                             | -1.37                                                                                                                                                                                                                                          | -1.03                                                                                                                                                                                                                           | 0.41                                                                                                                                                                                         | 523                                                                                                                                                               | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[43]                                                                                                                                                                                                                         | -2.22                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.80                                                                                                                                                                                                                      | -2.40                                                                                                                                                                                                                             | -2.20                                                                                                                                                                                                                                          | -2.02                                                                                                                                                                                                                           | 1.69                                                                                                                                                                                         | 742                                                                                                                                                               | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[44]                                                                                                                                                                                                                         | -1.75                                                                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.08                                                                                                                                                                                                                      | -1.86                                                                                                                                                                                                                             | -1.75                                                                                                                                                                                                                                          | -1.64                                                                                                                                                                                                                           | 1.44                                                                                                                                                                                         | 1513                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                               |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |                                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a[45]                                                                                                                                                                                                                         | -1.66                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.16                                                                                                                                                                                                                      | -1.82                                                                                                                                                                                                                             | -1.67                                                                                                                                                                                                                                          | -1.50                                                                                                                                                                                                                           | 1.20                                                                                                                                                                                         | 2000                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[46]                                                                                                                                                                                                                         | -1.10                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.49                                                                                                                                                                                                                      | -1.24                                                                                                                                                                                                                             | -1.10                                                                                                                                                                                                                                          | -0.96                                                                                                                                                                                                                           | 0.68                                                                                                                                                                                         | 433                                                                                                                                                               | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[47]                                                                                                                                                                                                                         | -2.22                                                                                                                                                                                                                    | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -3.28                                                                                                                                                                                                                      | -2.54                                                                                                                                                                                                                             | -2.20                                                                                                                                                                                                                                          | -1.85                                                                                                                                                                                                                           | 1.25                                                                                                                                                                                         | 862                                                                                                                                                               | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                               |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |                                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a[48]                                                                                                                                                                                                                         | -2.42                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.87                                                                                                                                                                                                                      | -2.54                                                                                                                                                                                                                             | -2.41                                                                                                                                                                                                                                          | -2.27                                                                                                                                                                                                                           | 2.02                                                                                                                                                                                         | 1020                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a [49]                                                                                                                                                                                                                        | -1.80                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.23                                                                                                                                                                                                                      | -1.96                                                                                                                                                                                                                             | -1.80                                                                                                                                                                                                                                          | -1.64                                                                                                                                                                                                                           | 1.36                                                                                                                                                                                         | 2000                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[50]                                                                                                                                                                                                                         | -2.65                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -3.15                                                                                                                                                                                                                      | -2.81                                                                                                                                                                                                                             | -2.64                                                                                                                                                                                                                                          | -2.49                                                                                                                                                                                                                           | 2.18                                                                                                                                                                                         | 2000                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a [51]                                                                                                                                                                                                                        | -0.51                                                                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.62                                                                                                                                                                                                                      | -0.55                                                                                                                                                                                                                             | -0.51                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                 | 0.40                                                                                                                                                                                         | 822                                                                                                                                                               | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                               |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                | -0.47                                                                                                                                                                                                                           |                                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a[52]                                                                                                                                                                                                                         | -0.50                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.01                                                                                                                                                                                                                      | -0.69                                                                                                                                                                                                                             | -0.50                                                                                                                                                                                                                                          | -0.33                                                                                                                                                                                                                           | 0.02                                                                                                                                                                                         | 1682                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[53]                                                                                                                                                                                                                         | -0.62                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.18                                                                                                                                                                                                                      | -0.80                                                                                                                                                                                                                             | -0.62                                                                                                                                                                                                                                          | -0.42                                                                                                                                                                                                                           | 0.05                                                                                                                                                                                         | 1705                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[54]                                                                                                                                                                                                                         | -0.66                                                                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.89                                                                                                                                                                                                                      | -0.74                                                                                                                                                                                                                             | -0.66                                                                                                                                                                                                                                          | -0.58                                                                                                                                                                                                                           | 0.43                                                                                                                                                                                         | 1000                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                               |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |                                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a [55]                                                                                                                                                                                                                        | -0.50                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.00                                                                                                                                                                                                                      | -0.66                                                                                                                                                                                                                             | -0.50                                                                                                                                                                                                                                          | -0.34                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                         | 2000                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[56]                                                                                                                                                                                                                         | -0.84                                                                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.20                                                                                                                                                                                                                      | -0.97                                                                                                                                                                                                                             | -0.84                                                                                                                                                                                                                                          | -0.72                                                                                                                                                                                                                           | 0.50                                                                                                                                                                                         | 1290                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[57]                                                                                                                                                                                                                         | -0.88                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.29                                                                                                                                                                                                                      | -1.02                                                                                                                                                                                                                             | -0.88                                                                                                                                                                                                                                          | -0.74                                                                                                                                                                                                                           | 0.47                                                                                                                                                                                         | 1058                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                               |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |                                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a [58]                                                                                                                                                                                                                        | -0.84                                                                                                                                                                                                                    | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.87                                                                                                                                                                                                                      | -1.15                                                                                                                                                                                                                             | -0.83                                                                                                                                                                                                                                          | -0.54                                                                                                                                                                                                                           | 0.10                                                                                                                                                                                         | 829                                                                                                                                                               | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[59]                                                                                                                                                                                                                         | -1.27                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.76                                                                                                                                                                                                                      | -1.43                                                                                                                                                                                                                             | -1.27                                                                                                                                                                                                                                          | -1.10                                                                                                                                                                                                                           | 0.82                                                                                                                                                                                         | 2000                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[60]                                                                                                                                                                                                                         | -0.87                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.60                                                                                                                                                                                                                      | -1.11                                                                                                                                                                                                                             | -0.87                                                                                                                                                                                                                                          | -0.62                                                                                                                                                                                                                           | 0.17                                                                                                                                                                                         | 1209                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[61]                                                                                                                                                                                                                         | -1.15                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.58                                                                                                                                                                                                                      | -1.30                                                                                                                                                                                                                             | -1.15                                                                                                                                                                                                                                          | -1.00                                                                                                                                                                                                                           | 0.71                                                                                                                                                                                         | 898                                                                                                                                                               | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                               |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |                                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a[62]                                                                                                                                                                                                                         | -0.92                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.68                                                                                                                                                                                                                      | -1.19                                                                                                                                                                                                                             | -0.94                                                                                                                                                                                                                                          | -0.66                                                                                                                                                                                                                           | 0.13                                                                                                                                                                                         | 1228                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[63]                                                                                                                                                                                                                         | -1.80                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.27                                                                                                                                                                                                                      | -1.95                                                                                                                                                                                                                             | -1.80                                                                                                                                                                                                                                          | -1.65                                                                                                                                                                                                                           | 1.36                                                                                                                                                                                         | 1124                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[64]                                                                                                                                                                                                                         | -1.72                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.18                                                                                                                                                                                                                      | -1.85                                                                                                                                                                                                                             | -1.72                                                                                                                                                                                                                                          | -1.57                                                                                                                                                                                                                           | 1.31                                                                                                                                                                                         | 287                                                                                                                                                               | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                               |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |                                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a [65]                                                                                                                                                                                                                        | -1.48                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.97                                                                                                                                                                                                                      | -1.64                                                                                                                                                                                                                             | -1.48                                                                                                                                                                                                                                          | -1.30                                                                                                                                                                                                                           | 0.99                                                                                                                                                                                         | 542                                                                                                                                                               | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[66]                                                                                                                                                                                                                         | -1.15                                                                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.31                                                                                                                                                                                                                      | -1.20                                                                                                                                                                                                                             | -1.15                                                                                                                                                                                                                                          | -1.10                                                                                                                                                                                                                           | 1.01                                                                                                                                                                                         | 634                                                                                                                                                               | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[67]                                                                                                                                                                                                                         | -1.29                                                                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.63                                                                                                                                                                                                                      | -1.40                                                                                                                                                                                                                             | -1.29                                                                                                                                                                                                                                          | -1.19                                                                                                                                                                                                                           | 0.96                                                                                                                                                                                         | 1768                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[68]                                                                                                                                                                                                                         | -1.84                                                                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.22                                                                                                                                                                                                                      | -1.96                                                                                                                                                                                                                             | -1.83                                                                                                                                                                                                                                          | -1.71                                                                                                                                                                                                                           | 1.45                                                                                                                                                                                         | 2000                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                               |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |                                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a[69]                                                                                                                                                                                                                         | -1.75                                                                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.85                                                                                                                                                                                                                      | -1.78                                                                                                                                                                                                                             | -1.75                                                                                                                                                                                                                                          | -1.71                                                                                                                                                                                                                           | 1.66                                                                                                                                                                                         | 914                                                                                                                                                               | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[70]                                                                                                                                                                                                                         | -1.77                                                                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.01                                                                                                                                                                                                                      | -1.85                                                                                                                                                                                                                             | -1.76                                                                                                                                                                                                                                          | -1.68                                                                                                                                                                                                                           | 1.55                                                                                                                                                                                         | 717                                                                                                                                                               | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[71]                                                                                                                                                                                                                         | -1.02                                                                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.30                                                                                                                                                                                                                      | -1.12                                                                                                                                                                                                                             | -1.02                                                                                                                                                                                                                                          | -0.92                                                                                                                                                                                                                           | 0.73                                                                                                                                                                                         | 2000                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                               |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |                                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a[72]                                                                                                                                                                                                                         | -1.74                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.52                                                                                                                                                                                                                      | -1.99                                                                                                                                                                                                                             | -1.73                                                                                                                                                                                                                                          | -1.47                                                                                                                                                                                                                           | 1.03                                                                                                                                                                                         | 1235                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[73]                                                                                                                                                                                                                         | -1.54                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.07                                                                                                                                                                                                                      | -1.72                                                                                                                                                                                                                             | -1.53                                                                                                                                                                                                                                          | -1.36                                                                                                                                                                                                                           | 1.04                                                                                                                                                                                         | 589                                                                                                                                                               | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[74]                                                                                                                                                                                                                         | -1.80                                                                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.09                                                                                                                                                                                                                      | -1.91                                                                                                                                                                                                                             | -1.80                                                                                                                                                                                                                                          | -1.70                                                                                                                                                                                                                           | 1.52                                                                                                                                                                                         | 2000                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[75]                                                                                                                                                                                                                         | -2.11                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.51                                                                                                                                                                                                                      | -2.24                                                                                                                                                                                                                             | -2.11                                                                                                                                                                                                                                          | -1.97                                                                                                                                                                                                                           | 1.73                                                                                                                                                                                         | 946                                                                                                                                                               | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                               |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |                                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a[76]                                                                                                                                                                                                                         | -0.15                                                                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.29                                                                                                                                                                                                                      | -0.20                                                                                                                                                                                                                             | -0.15                                                                                                                                                                                                                                          | -0.10                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                         | 2000                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[77]                                                                                                                                                                                                                         | -0.03                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.66                                                                                                                                                                                                                      | -0.24                                                                                                                                                                                                                             | -0.03                                                                                                                                                                                                                                          | 0.19                                                                                                                                                                                                                            | 0.58                                                                                                                                                                                         | 1639                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[78]                                                                                                                                                                                                                         | -0.21                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.77                                                                                                                                                                                                                      | -0.39                                                                                                                                                                                                                             | -0.22                                                                                                                                                                                                                                          | -0.03                                                                                                                                                                                                                           | 0.40                                                                                                                                                                                         | 1538                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                               |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |                                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a[79]                                                                                                                                                                                                                         | -0.69                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.13                                                                                                                                                                                                                      | -0.85                                                                                                                                                                                                                             | -0.68                                                                                                                                                                                                                                          | -0.53                                                                                                                                                                                                                           | 0.28                                                                                                                                                                                         | 933                                                                                                                                                               | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[80]                                                                                                                                                                                                                         | -1.04                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.53                                                                                                                                                                                                                      | -1.20                                                                                                                                                                                                                             | -1.04                                                                                                                                                                                                                                          | -0.87                                                                                                                                                                                                                           | 0.55                                                                                                                                                                                         | 2000                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[81]                                                                                                                                                                                                                         | -0.96                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.50                                                                                                                                                                                                                      | -1.16                                                                                                                                                                                                                             | -0.96                                                                                                                                                                                                                                          | -0.77                                                                                                                                                                                                                           | 0.40                                                                                                                                                                                         | 666                                                                                                                                                               | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a [82]                                                                                                                                                                                                                        |                                                                                                                                                                                                                          | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   | -1.13                                                                                                                                                                                                                                          | -0.91                                                                                                                                                                                                                           | 0.52                                                                                                                                                                                         | 1258                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                               | -1.13                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.81                                                                                                                                                                                                                      | -1.34                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |                                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a[83]                                                                                                                                                                                                                         | -1.71                                                                                                                                                                                                                    | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.78                                                                                                                                                                                                                      | -2.01                                                                                                                                                                                                                             | -1.68                                                                                                                                                                                                                                          | -1.37                                                                                                                                                                                                                           | 0.80                                                                                                                                                                                         | 427                                                                                                                                                               | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a [84]                                                                                                                                                                                                                        | -1.28                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.14                                                                                                                                                                                                                      | -1.56                                                                                                                                                                                                                             | -1.29                                                                                                                                                                                                                                          | -0.98                                                                                                                                                                                                                           | 0.40                                                                                                                                                                                         | 1239                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[85]                                                                                                                                                                                                                         | -1.52                                                                                                                                                                                                                    | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.52                                                                                                                                                                                                                      | -1.82                                                                                                                                                                                                                             | _1 51                                                                                                                                                                                                                                          | -1.18                                                                                                                                                                                                                           |                                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                               |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 | 0.66                                                                                                                                                                                         | 978                                                                                                                                                               | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[86]                                                                                                                                                                                                                         |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   | -1.51                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                 | 0.66                                                                                                                                                                                         | 978                                                                                                                                                               | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                               | -1.34                                                                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.78                                                                                                                                                                                                                      | -1.49                                                                                                                                                                                                                             | -1.34                                                                                                                                                                                                                                          | -1.18                                                                                                                                                                                                                           | 0.90                                                                                                                                                                                         | 2000                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[87]                                                                                                                                                                                                                         | -1.34<br>-1.30                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   | -1.34                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                 |                                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a[88]                                                                                                                                                                                                                         |                                                                                                                                                                                                                          | 0.00<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.78<br>-2.22                                                                                                                                                                                                             | -1.49<br>-1.61                                                                                                                                                                                                                    | -1.34<br>-1.33                                                                                                                                                                                                                                 | -1.18                                                                                                                                                                                                                           | 0.90                                                                                                                                                                                         | 2000<br>556                                                                                                                                                       | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[88]                                                                                                                                                                                                                         | -1.30<br>-1.95                                                                                                                                                                                                           | 0.00<br>0.02<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.22<br>0.49<br>0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.78<br>-2.22<br>-2.26                                                                                                                                                                                                    | -1.49<br>-1.61<br>-2.06                                                                                                                                                                                                           | -1.34<br>-1.33<br>-1.95                                                                                                                                                                                                                        | -1.18<br>-1.00<br>-1.83                                                                                                                                                                                                         | 0.90<br>0.29<br>1.63                                                                                                                                                                         | 2000<br>556<br>951                                                                                                                                                | 1.00<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[88]<br>a[89]                                                                                                                                                                                                                | -1.30<br>-1.95<br>-1.95                                                                                                                                                                                                  | 0.00<br>0.02<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.22<br>0.49<br>0.16<br>0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.78<br>-2.22<br>-2.26<br>-2.50                                                                                                                                                                                           | -1.49<br>-1.61<br>-2.06<br>-2.13                                                                                                                                                                                                  | -1.34<br>-1.33<br>-1.95<br>-1.93                                                                                                                                                                                                               | -1.18<br>-1.00<br>-1.83<br>-1.75                                                                                                                                                                                                | 0.90<br>0.29<br>1.63<br>1.40                                                                                                                                                                 | 2000<br>556<br>951<br>637                                                                                                                                         | 1.00<br>1.00<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| a [88]<br>a [89]<br>a [90]                                                                                                                                                                                                    | -1.30<br>-1.95<br>-1.95<br>-1.88                                                                                                                                                                                         | 0.00<br>0.02<br>0.01<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.22<br>0.49<br>0.16<br>0.29<br>0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.78<br>-2.22<br>-2.26<br>-2.50<br>-2.30                                                                                                                                                                                  | -1.49<br>-1.61<br>-2.06<br>-2.13<br>-2.01                                                                                                                                                                                         | -1.34<br>-1.33<br>-1.95<br>-1.93<br>-1.88                                                                                                                                                                                                      | -1.18<br>-1.00<br>-1.83<br>-1.75<br>-1.73                                                                                                                                                                                       | 0.90<br>0.29<br>1.63<br>1.40<br>1.50                                                                                                                                                         | 2000<br>556<br>951<br>637<br>607                                                                                                                                  | 1.00<br>1.00<br>1.00<br>1.00<br>1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a[88]<br>a[89]                                                                                                                                                                                                                | -1.30<br>-1.95<br>-1.95                                                                                                                                                                                                  | 0.00<br>0.02<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.22<br>0.49<br>0.16<br>0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.78<br>-2.22<br>-2.26<br>-2.50                                                                                                                                                                                           | -1.49<br>-1.61<br>-2.06<br>-2.13<br>-2.01<br>-1.35                                                                                                                                                                                | -1.34<br>-1.33<br>-1.95<br>-1.93                                                                                                                                                                                                               | -1.18<br>-1.00<br>-1.83<br>-1.75                                                                                                                                                                                                | 0.90<br>0.29<br>1.63<br>1.40                                                                                                                                                                 | 2000<br>556<br>951<br>637                                                                                                                                         | 1.00<br>1.00<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| a [88]<br>a [89]<br>a [90]                                                                                                                                                                                                    | -1.30<br>-1.95<br>-1.95<br>-1.88                                                                                                                                                                                         | 0.00<br>0.02<br>0.01<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.22<br>0.49<br>0.16<br>0.29<br>0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.78<br>-2.22<br>-2.26<br>-2.50<br>-2.30                                                                                                                                                                                  | -1.49<br>-1.61<br>-2.06<br>-2.13<br>-2.01<br>-1.35                                                                                                                                                                                | -1.34<br>-1.33<br>-1.95<br>-1.93<br>-1.88                                                                                                                                                                                                      | -1.18<br>-1.00<br>-1.83<br>-1.75<br>-1.73                                                                                                                                                                                       | 0.90<br>0.29<br>1.63<br>1.40<br>1.50                                                                                                                                                         | 2000<br>556<br>951<br>637<br>607                                                                                                                                  | 1.00<br>1.00<br>1.00<br>1.00<br>1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a [88]<br>a [89]<br>a [90]<br>a [91]<br>a [92]                                                                                                                                                                                | -1.30<br>-1.95<br>-1.95<br>-1.88<br>-1.22<br>-1.97                                                                                                                                                                       | 0.00<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.22<br>0.49<br>0.16<br>0.29<br>0.21<br>0.19<br>0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.78<br>-2.22<br>-2.26<br>-2.50<br>-2.30<br>-1.57<br>-2.78                                                                                                                                                                | -1.49<br>-1.61<br>-2.06<br>-2.13<br>-2.01<br>-1.35<br>-2.23                                                                                                                                                                       | -1.34<br>-1.33<br>-1.95<br>-1.93<br>-1.88<br>-1.21<br>-1.95                                                                                                                                                                                    | -1.18<br>-1.00<br>-1.83<br>-1.75<br>-1.73<br>-1.09<br>-1.70                                                                                                                                                                     | 0.90<br>0.29<br>1.63<br>1.40<br>1.50<br>0.86<br>1.22                                                                                                                                         | 2000<br>556<br>951<br>637<br>607<br>675<br>2000                                                                                                                   | 1.00<br>1.00<br>1.00<br>1.00<br>1.01<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a [88]<br>a [89]<br>a [90]<br>a [91]<br>a [92]<br>a [93]                                                                                                                                                                      | -1.30<br>-1.95<br>-1.95<br>-1.88<br>-1.22<br>-1.97<br>-2.01                                                                                                                                                              | 0.00<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.22<br>0.49<br>0.16<br>0.29<br>0.21<br>0.19<br>0.39<br>0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.78<br>-2.22<br>-2.26<br>-2.50<br>-2.30<br>-1.57<br>-2.78<br>-2.69                                                                                                                                                       | -1.49<br>-1.61<br>-2.06<br>-2.13<br>-2.01<br>-1.35<br>-2.23<br>-2.23                                                                                                                                                              | -1.34<br>-1.33<br>-1.95<br>-1.93<br>-1.88<br>-1.21<br>-1.95<br>-2.00                                                                                                                                                                           | -1.18<br>-1.00<br>-1.83<br>-1.75<br>-1.73<br>-1.09<br>-1.70<br>-1.78                                                                                                                                                            | 0.90<br>0.29<br>1.63<br>1.40<br>1.50<br>0.86<br>1.22<br>1.40                                                                                                                                 | 2000<br>556<br>951<br>637<br>607<br>675<br>2000<br>1112                                                                                                           | 1.00<br>1.00<br>1.00<br>1.01<br>1.01<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a [88]<br>a [89]<br>a [90]<br>a [91]<br>a [92]<br>a [93]<br>a [94]                                                                                                                                                            | -1.30<br>-1.95<br>-1.95<br>-1.88<br>-1.22<br>-1.97<br>-2.01<br>-2.17                                                                                                                                                     | 0.00<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.22<br>0.49<br>0.16<br>0.29<br>0.21<br>0.19<br>0.39<br>0.33<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.78<br>-2.22<br>-2.26<br>-2.50<br>-2.30<br>-1.57<br>-2.78<br>-2.69<br>-2.48                                                                                                                                              | -1.49<br>-1.61<br>-2.06<br>-2.13<br>-2.01<br>-1.35<br>-2.23<br>-2.23<br>-2.28                                                                                                                                                     | -1.34<br>-1.33<br>-1.95<br>-1.93<br>-1.88<br>-1.21<br>-1.95<br>-2.00<br>-2.17                                                                                                                                                                  | -1.18<br>-1.00<br>-1.83<br>-1.75<br>-1.73<br>-1.09<br>-1.70<br>-1.78<br>-2.07                                                                                                                                                   | 0.90<br>0.29<br>1.63<br>1.40<br>1.50<br>0.86<br>1.22<br>1.40<br>1.88                                                                                                                         | 2000<br>556<br>951<br>637<br>607<br>675<br>2000<br>1112<br>2000                                                                                                   | 1.00<br>1.00<br>1.00<br>1.00<br>1.01<br>1.00<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| a [88]<br>a [89]<br>a [90]<br>a [91]<br>a [92]<br>a [93]                                                                                                                                                                      | -1.30<br>-1.95<br>-1.95<br>-1.88<br>-1.22<br>-1.97<br>-2.01                                                                                                                                                              | 0.00<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.22<br>0.49<br>0.16<br>0.29<br>0.21<br>0.19<br>0.39<br>0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.78<br>-2.22<br>-2.26<br>-2.50<br>-2.30<br>-1.57<br>-2.78<br>-2.69                                                                                                                                                       | -1.49<br>-1.61<br>-2.06<br>-2.13<br>-2.01<br>-1.35<br>-2.23<br>-2.23<br>-2.28                                                                                                                                                     | -1.34<br>-1.33<br>-1.95<br>-1.93<br>-1.88<br>-1.21<br>-1.95<br>-2.00                                                                                                                                                                           | -1.18<br>-1.00<br>-1.83<br>-1.75<br>-1.73<br>-1.09<br>-1.70<br>-1.78                                                                                                                                                            | 0.90<br>0.29<br>1.63<br>1.40<br>1.50<br>0.86<br>1.22<br>1.40                                                                                                                                 | 2000<br>556<br>951<br>637<br>607<br>675<br>2000<br>1112                                                                                                           | 1.00<br>1.00<br>1.00<br>1.01<br>1.01<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a [88]<br>a [89]<br>a [90]<br>a [91]<br>a [92]<br>a [93]<br>a [94]                                                                                                                                                            | -1.30<br>-1.95<br>-1.95<br>-1.88<br>-1.22<br>-1.97<br>-2.01<br>-2.17<br>-1.98                                                                                                                                            | 0.00<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.22<br>0.49<br>0.16<br>0.29<br>0.21<br>0.19<br>0.39<br>0.33<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{r} -1.78\\ -2.22\\ -2.26\\ -2.50\\ -2.30\\ -1.57\\ -2.78\\ -2.69\\ -2.48\\ -2.42\end{array}$                                                                                                                | $\begin{array}{c} -1.49 \\ -1.61 \\ -2.06 \\ -2.13 \\ -2.01 \\ -1.35 \\ -2.23 \\ -2.23 \\ -2.28 \\ -2.12 \end{array}$                                                                                                             | -1.34<br>-1.33<br>-1.95<br>-1.93<br>-1.88<br>-1.21<br>-1.95<br>-2.00<br>-2.17<br>-1.98                                                                                                                                                         | -1.18<br>-1.00<br>-1.83<br>-1.75<br>-1.73<br>-1.09<br>-1.70<br>-1.78<br>-2.07                                                                                                                                                   | 0.90<br>0.29<br>1.63<br>1.40<br>1.50<br>0.86<br>1.22<br>1.40<br>1.88                                                                                                                         | 2000<br>556<br>951<br>637<br>607<br>675<br>2000<br>1112<br>2000                                                                                                   | 1.00<br>1.00<br>1.00<br>1.00<br>1.01<br>1.00<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| a [88]<br>a [89]<br>a [90]<br>a [91]<br>a [92]<br>a [93]<br>a [94]<br>a [95]<br>a [96]                                                                                                                                        | $\begin{array}{c} -1.30\\ -1.95\\ -1.95\\ -1.88\\ -1.22\\ -1.97\\ -2.01\\ -2.17\\ -1.98\\ -1.13\end{array}$                                                                                                              | 0.00<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.22<br>0.49<br>0.16<br>0.29<br>0.21<br>0.19<br>0.39<br>0.33<br>0.15<br>0.21<br>0.19                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} -1.78\\ -2.22\\ -2.26\\ -2.50\\ -2.30\\ -1.57\\ -2.78\\ -2.69\\ -2.48\\ -2.42\\ -1.50\end{array}$                                                                                                        | $\begin{array}{c} -1.49 \\ -1.61 \\ -2.06 \\ -2.13 \\ -2.01 \\ -1.35 \\ -2.23 \\ -2.23 \\ -2.28 \\ -2.12 \\ -1.25 \end{array}$                                                                                                    | -1.34<br>-1.33<br>-1.95<br>-1.93<br>-1.88<br>-1.21<br>-1.95<br>-2.00<br>-2.17<br>-1.98<br>-1.13                                                                                                                                                | $\begin{array}{c} -1.18\\ -1.00\\ -1.83\\ -1.75\\ -1.73\\ -1.09\\ -1.70\\ -1.78\\ -2.07\\ -1.84\\ -1.00\end{array}$                                                                                                             | 0.90<br>0.29<br>1.63<br>1.40<br>1.50<br>0.86<br>1.22<br>1.40<br>1.88<br>1.60<br>0.76                                                                                                         | 2000<br>556<br>951<br>637<br>607<br>675<br>2000<br>1112<br>2000<br>413<br>2000                                                                                    | 1.00<br>1.00<br>1.00<br>1.01<br>1.00<br>1.00<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| a [88]<br>a [89]<br>a [90]<br>a [91]<br>a [92]<br>a [93]<br>a [94]<br>a [95]<br>a [96]<br>a [97]                                                                                                                              | $\begin{array}{c} -1.30\\ -1.95\\ -1.95\\ -1.88\\ -1.22\\ -1.97\\ -2.01\\ -2.17\\ -1.98\\ -1.13\\ -2.28\end{array}$                                                                                                      | 0.00<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.00<br>0.01<br>0.00<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 0.22 \\ 0.49 \\ 0.16 \\ 0.29 \\ 0.21 \\ 0.39 \\ 0.33 \\ 0.15 \\ 0.21 \\ 0.19 \\ 0.46 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} -1.78\\ -2.22\\ -2.26\\ -2.50\\ -2.30\\ -1.57\\ -2.78\\ -2.69\\ -2.48\\ -2.42\\ -1.50\\ -3.22\end{array}$                                                                                                | $\begin{array}{c} -1.49 \\ -1.61 \\ -2.06 \\ -2.13 \\ -2.01 \\ -1.35 \\ -2.23 \\ -2.23 \\ -2.28 \\ -2.12 \\ -1.25 \\ -2.57 \end{array}$                                                                                           | $\begin{array}{c} -1.34\\ -1.33\\ -1.95\\ -1.93\\ -1.88\\ -1.21\\ -1.95\\ -2.00\\ -2.17\\ -1.98\\ -1.13\\ -2.26\end{array}$                                                                                                                    | $\begin{array}{c} -1.18\\ -1.00\\ -1.83\\ -1.75\\ -1.73\\ -1.09\\ -1.70\\ -1.78\\ -2.07\\ -1.84\\ -1.00\\ -1.96\end{array}$                                                                                                     | $\begin{array}{c} 0.90\\ 0.29\\ 1.63\\ 1.40\\ 1.50\\ 0.86\\ 1.22\\ 1.40\\ 1.88\\ 1.60\\ 0.76\\ 1.44 \end{array}$                                                                             | 2000<br>556<br>951<br>637<br>607<br>675<br>2000<br>1112<br>2000<br>413<br>2000<br>1632                                                                            | 1.00<br>1.00<br>1.00<br>1.01<br>1.00<br>1.00<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| a [88]<br>a [89]<br>a [90]<br>a [91]<br>a [92]<br>a [93]<br>a [94]<br>a [95]<br>a [96]<br>a [97]<br>a [98]                                                                                                                    | $\begin{array}{c} -1.30\\ -1.95\\ -1.95\\ -1.88\\ -1.22\\ -1.97\\ -2.01\\ -2.17\\ -1.98\\ -1.13\\ -2.28\\ -2.57\end{array}$                                                                                              | 0.00<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 0.22\\ 0.49\\ 0.16\\ 0.29\\ 0.21\\ 0.39\\ 0.33\\ 0.15\\ 0.21\\ 0.19\\ 0.46\\ 0.25\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} -1.78\\ -2.22\\ -2.26\\ -2.50\\ -2.30\\ -1.57\\ -2.78\\ -2.69\\ -2.48\\ -2.42\\ -1.50\\ -3.22\\ -3.05\end{array}$                                                                                        | $\begin{array}{c} -1.49\\ -1.61\\ -2.06\\ -2.13\\ -2.01\\ -1.35\\ -2.23\\ -2.23\\ -2.28\\ -2.12\\ -1.25\\ -2.57\\ -2.74\end{array}$                                                                                               | -1.34<br>-1.33<br>-1.95<br>-1.93<br>-1.88<br>-1.21<br>-1.95<br>-2.00<br>-2.17<br>-1.98<br>-1.13<br>-2.26<br>-2.57                                                                                                                              | $\begin{array}{c} -1.18\\ -1.00\\ -1.83\\ -1.75\\ -1.73\\ -1.09\\ -1.70\\ -1.78\\ -2.07\\ -1.84\\ -1.00\\ -1.96\\ -2.41\end{array}$                                                                                             | 0.90<br>0.29<br>1.63<br>1.40<br>1.50<br>0.86<br>1.22<br>1.40<br>1.88<br>1.60<br>0.76<br>1.44<br>2.09                                                                                         | 2000<br>556<br>951<br>637<br>607<br>675<br>2000<br>1112<br>2000<br>413<br>2000<br>1632<br>573                                                                     | 1.00<br>1.00<br>1.00<br>1.01<br>1.00<br>1.00<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| a [88]<br>a [89]<br>a [90]<br>a [91]<br>a [92]<br>a [93]<br>a [94]<br>a [95]<br>a [96]<br>a [97]                                                                                                                              | $\begin{array}{c} -1.30\\ -1.95\\ -1.95\\ -1.88\\ -1.22\\ -1.97\\ -2.01\\ -2.17\\ -1.98\\ -1.13\\ -2.28\end{array}$                                                                                                      | 0.00<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.00<br>0.01<br>0.00<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 0.22 \\ 0.49 \\ 0.16 \\ 0.29 \\ 0.21 \\ 0.39 \\ 0.33 \\ 0.15 \\ 0.21 \\ 0.19 \\ 0.46 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} -1.78\\ -2.22\\ -2.26\\ -2.50\\ -2.30\\ -1.57\\ -2.78\\ -2.69\\ -2.48\\ -2.42\\ -1.50\\ -3.22\end{array}$                                                                                                | $\begin{array}{c} -1.49\\ -1.61\\ -2.06\\ -2.13\\ -2.01\\ -1.35\\ -2.23\\ -2.23\\ -2.28\\ -2.12\\ -1.25\\ -2.57\\ -2.74\end{array}$                                                                                               | -1.34<br>-1.33<br>-1.95<br>-1.93<br>-1.88<br>-1.21<br>-1.95<br>-2.00<br>-2.17<br>-1.98<br>-1.13<br>-2.26<br>-2.57                                                                                                                              | $\begin{array}{c} -1.18\\ -1.00\\ -1.83\\ -1.75\\ -1.73\\ -1.09\\ -1.70\\ -1.78\\ -2.07\\ -1.84\\ -1.00\\ -1.96\end{array}$                                                                                                     | 0.90<br>0.29<br>1.63<br>1.40<br>1.50<br>0.86<br>1.22<br>1.40<br>1.88<br>1.60<br>0.76<br>1.44<br>2.09                                                                                         | 2000<br>556<br>951<br>637<br>607<br>675<br>2000<br>1112<br>2000<br>413<br>2000<br>1632                                                                            | 1.00<br>1.00<br>1.00<br>1.01<br>1.00<br>1.00<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| a [88]<br>a [90]<br>a [91]<br>a [92]<br>a [93]<br>a [94]<br>a [95]<br>a [96]<br>a [97]<br>a [98]<br>a [99]                                                                                                                    | -1.30<br>-1.95<br>-1.95<br>-1.88<br>-1.22<br>-1.97<br>-2.01<br>-2.17<br>-1.98<br>-1.13<br>-2.28<br>-2.57<br>-2.18                                                                                                        | $\begin{array}{c} 0.00\\ 0.02\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.00\\ 0.01\\ 0.00\\ 0.01\\ 0.01\\ 0.01\\ 0.00\\ 0.01\\ 0.00\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0.22\\ 0.49\\ 0.16\\ 0.29\\ 0.21\\ 0.19\\ 0.39\\ 0.33\\ 0.15\\ 0.21\\ 0.19\\ 0.46\\ 0.25\\ 0.20\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} -1.78\\ -2.22\\ -2.26\\ -2.50\\ -2.30\\ -1.57\\ -2.78\\ -2.69\\ -2.48\\ -2.42\\ -1.50\\ -3.22\\ -3.05\\ -2.57\end{array}$                                                                                | $\begin{array}{c} -1.49\\ -1.61\\ -2.06\\ -2.13\\ -2.01\\ -1.35\\ -2.23\\ -2.23\\ -2.28\\ -2.12\\ -1.25\\ -2.57\\ -2.74\\ -2.31\end{array}$                                                                                       | $\begin{array}{c} -1.34\\ -1.33\\ -1.95\\ -1.93\\ -1.88\\ -1.21\\ -1.95\\ -2.00\\ -2.17\\ -1.98\\ -1.13\\ -2.26\\ -2.57\\ -2.17\end{array}$                                                                                                    | $\begin{array}{c} -1.18\\ -1.00\\ -1.83\\ -1.75\\ -1.73\\ -1.09\\ -1.70\\ -1.78\\ -2.07\\ -1.84\\ -1.00\\ -1.96\\ -2.41\\ -2.04 \end{array}$                                                                                    | 0.90<br>0.29<br>1.63<br>1.40<br>1.50<br>0.86<br>1.22<br>1.40<br>1.88<br>1.60<br>0.76<br>1.44<br>2.09<br>1.83                                                                                 | 2000<br>556<br>951<br>637<br>607<br>675<br>2000<br>1112<br>2000<br>413<br>2000<br>1632<br>573<br>2000                                                             | 1.00<br>1.00<br>1.00<br>1.01<br>1.00<br>1.00<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| a [88]<br>a [89]<br>a [90]<br>a [91]<br>a [92]<br>a [93]<br>a [94]<br>a [95]<br>a [96]<br>a [97]<br>a [98]<br>a [99]<br>a [100]                                                                                               | -1.30<br>-1.95<br>-1.95<br>-1.88<br>-1.22<br>-1.97<br>-2.01<br>-2.17<br>-1.98<br>-1.13<br>-2.28<br>-2.57<br>-2.18<br>-2.41                                                                                               | $\begin{array}{c} 0.00\\ 0.02\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.00\\ 0.01\\ 0.00\\ 0.01\\ 0.01\\ 0.00\\ 0.01\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.22<br>0.49<br>0.16<br>0.29<br>0.21<br>0.19<br>0.39<br>0.33<br>0.15<br>0.21<br>0.19<br>0.46<br>0.25<br>0.20<br>0.16                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} -1.78\\ -2.22\\ -2.26\\ -2.50\\ -2.30\\ -1.57\\ -2.78\\ -2.69\\ -2.48\\ -2.42\\ -1.50\\ -3.22\\ -3.05\\ -2.57\\ -2.74\end{array}$                                                                        | $\begin{array}{c} -1.49\\ -1.61\\ -2.06\\ -2.13\\ -2.01\\ -1.35\\ -2.23\\ -2.23\\ -2.28\\ -2.12\\ -1.25\\ -2.57\\ -2.74\\ -2.31\\ -2.52\end{array}$                                                                               | $\begin{array}{c} -1.34\\ -1.33\\ -1.95\\ -1.93\\ -1.88\\ -1.21\\ -1.95\\ -2.00\\ -2.17\\ -1.98\\ -1.13\\ -2.26\\ -2.57\\ -2.17\\ -2.41\end{array}$                                                                                            | $\begin{array}{c} -1.18\\ -1.00\\ -1.83\\ -1.75\\ -1.73\\ -1.09\\ -1.70\\ -1.78\\ -2.07\\ -1.84\\ -1.00\\ -1.96\\ -2.41\\ -2.04\\ -2.29\end{array}$                                                                             | 0.90<br>0.29<br>1.63<br>1.40<br>1.50<br>0.86<br>1.22<br>1.40<br>1.88<br>1.60<br>0.76<br>1.44<br>2.09<br>1.83<br>2.10                                                                         | 2000<br>556<br>951<br>637<br>607<br>675<br>2000<br>1112<br>2000<br>1632<br>573<br>2000<br>1492                                                                    | $\begin{array}{c} 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.01\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.01\\ 1.01\\ 1.01\\ 1.00 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| a [88]<br>a [89]<br>a [90]<br>a [91]<br>a [92]<br>a [93]<br>a [94]<br>a [95]<br>a [96]<br>a [97]<br>a [98]<br>a [99]<br>a [100]<br>b_age                                                                                      | -1.30<br>-1.95<br>-1.95<br>-1.88<br>-1.22<br>-1.97<br>-2.01<br>-2.17<br>-1.98<br>-1.13<br>-2.28<br>-2.57<br>-2.18<br>-2.41<br>-0.12                                                                                      | $\begin{array}{c} 0.00\\ 0.02\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.00\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.00\\ 0.01\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.22<br>0.49<br>0.16<br>0.29<br>0.21<br>0.39<br>0.33<br>0.15<br>0.21<br>0.19<br>0.46<br>0.25<br>0.20<br>0.16<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} -1.78\\ -2.22\\ -2.26\\ -2.50\\ -2.30\\ -1.57\\ -2.78\\ -2.69\\ -2.48\\ -2.42\\ -1.50\\ -3.22\\ -3.05\\ -2.57\\ -2.74\\ -0.18\end{array}$                                                                | $\begin{array}{c} -1.49\\ -1.61\\ -2.06\\ -2.13\\ -2.01\\ -1.35\\ -2.23\\ -2.23\\ -2.28\\ -2.12\\ -1.25\\ -2.57\\ -2.74\\ -2.31\\ -2.52\\ -0.14\end{array}$                                                                       | $\begin{array}{c} -1.34\\ -1.33\\ -1.95\\ -1.93\\ -1.88\\ -1.21\\ -1.95\\ -2.00\\ -2.17\\ -1.98\\ -1.13\\ -2.26\\ -2.57\\ -2.17\\ -2.41\\ -0.12\end{array}$                                                                                    | $\begin{array}{c} -1.18\\ -1.00\\ -1.83\\ -1.75\\ -1.73\\ -1.09\\ -1.70\\ -1.78\\ -2.07\\ -1.84\\ -1.00\\ -1.96\\ -2.41\\ -2.04\\ -2.29\\ -0.10\end{array}$                                                                     | 0.90<br>0.29<br>1.63<br>1.40<br>1.50<br>0.86<br>1.22<br>1.40<br>1.88<br>1.60<br>0.76<br>1.44<br>2.09<br>1.83<br>2.10<br>0.06                                                                 | 2000<br>556<br>951<br>637<br>607<br>675<br>2000<br>1112<br>2000<br>413<br>2000<br>1632<br>573<br>2000<br>1492<br>2000                                             | $\begin{array}{c} 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.01\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.01\\ 1.01\\ 1.01\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\$ |
| a [88]<br>a [89]<br>a [90]<br>a [91]<br>a [92]<br>a [93]<br>a [94]<br>a [95]<br>a [96]<br>a [97]<br>a [98]<br>a [99]<br>a [100]<br>b_age<br>b_age2                                                                            | -1.30<br>-1.95<br>-1.95<br>-1.88<br>-1.22<br>-1.97<br>-2.01<br>-2.17<br>-1.98<br>-1.13<br>-2.28<br>-2.57<br>-2.18<br>-2.41<br>-0.12<br>-0.02                                                                             | 0.00<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.00<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.22<br>0.49<br>0.16<br>0.29<br>0.21<br>0.39<br>0.33<br>0.15<br>0.21<br>0.19<br>0.46<br>0.25<br>0.20<br>0.16<br>0.25<br>0.20<br>0.16<br>0.03<br>0.07                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} -1.78\\ -2.22\\ -2.26\\ -2.50\\ -2.30\\ -1.57\\ -2.78\\ -2.69\\ -2.48\\ -2.42\\ -1.50\\ -3.22\\ -3.05\\ -2.57\\ -2.74\\ -0.18\\ -0.16\end{array}$                                                        | $\begin{array}{c} -1.49\\ -1.61\\ -2.06\\ -2.13\\ -2.01\\ -1.35\\ -2.23\\ -2.23\\ -2.28\\ -2.12\\ -1.25\\ -2.57\\ -2.74\\ -2.31\\ -2.52\\ -0.14\\ -0.07\end{array}$                                                               | $\begin{array}{c} -1.34\\ -1.33\\ -1.95\\ -1.93\\ -1.88\\ -1.21\\ -1.95\\ -2.00\\ -2.17\\ -1.98\\ -1.13\\ -2.26\\ -2.57\\ -2.17\\ -2.41\\ -0.12\\ -0.02\end{array}$                                                                            | $\begin{array}{c} -1.18\\ -1.00\\ -1.83\\ -1.75\\ -1.73\\ -1.09\\ -1.70\\ -1.78\\ -2.07\\ -1.84\\ -1.00\\ -1.96\\ -2.41\\ -2.04\\ -2.29\\ -0.10\\ 0.02 \end{array}$                                                             | 0.90<br>0.29<br>1.63<br>1.40<br>1.50<br>0.86<br>1.22<br>1.40<br>1.88<br>1.60<br>0.76<br>1.44<br>2.09<br>1.83<br>2.10<br>0.06<br>0.11                                                         | 2000<br>556<br>951<br>637<br>607<br>675<br>2000<br>1112<br>2000<br>1632<br>573<br>2000<br>1492<br>2000<br>631                                                     | $\begin{array}{c} 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.01\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.01\\ 1.01\\ 1.01\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\$ |
| a [88]<br>a [89]<br>a [90]<br>a [91]<br>a [92]<br>a [93]<br>a [94]<br>a [95]<br>a [96]<br>a [97]<br>a [98]<br>a [99]<br>a [100]<br>b_age                                                                                      | -1.30<br>-1.95<br>-1.95<br>-1.88<br>-1.22<br>-1.97<br>-2.01<br>-2.17<br>-1.98<br>-1.13<br>-2.28<br>-2.57<br>-2.18<br>-2.41<br>-0.12                                                                                      | $\begin{array}{c} 0.00\\ 0.02\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.00\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.00\\ 0.01\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.22<br>0.49<br>0.16<br>0.29<br>0.21<br>0.39<br>0.33<br>0.15<br>0.21<br>0.19<br>0.46<br>0.25<br>0.20<br>0.16<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} -1.78\\ -2.22\\ -2.26\\ -2.50\\ -2.30\\ -1.57\\ -2.78\\ -2.69\\ -2.48\\ -2.42\\ -1.50\\ -3.22\\ -3.05\\ -2.57\\ -2.74\\ -0.18\end{array}$                                                                | $\begin{array}{c} -1.49\\ -1.61\\ -2.06\\ -2.13\\ -2.01\\ -1.35\\ -2.23\\ -2.23\\ -2.28\\ -2.12\\ -1.25\\ -2.57\\ -2.74\\ -2.31\\ -2.52\\ -0.14\end{array}$                                                                       | $\begin{array}{c} -1.34\\ -1.33\\ -1.95\\ -1.93\\ -1.88\\ -1.21\\ -1.95\\ -2.00\\ -2.17\\ -1.98\\ -1.13\\ -2.26\\ -2.57\\ -2.17\\ -2.41\\ -0.12\end{array}$                                                                                    | $\begin{array}{c} -1.18\\ -1.00\\ -1.83\\ -1.75\\ -1.73\\ -1.09\\ -1.70\\ -1.78\\ -2.07\\ -1.84\\ -1.00\\ -1.96\\ -2.41\\ -2.04\\ -2.29\\ -0.10\end{array}$                                                                     | 0.90<br>0.29<br>1.63<br>1.40<br>1.50<br>0.86<br>1.22<br>1.40<br>1.88<br>1.60<br>0.76<br>1.44<br>2.09<br>1.83<br>2.10<br>0.06                                                                 | 2000<br>556<br>951<br>637<br>607<br>675<br>2000<br>1112<br>2000<br>413<br>2000<br>1632<br>573<br>2000<br>1492<br>2000                                             | $\begin{array}{c} 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.01\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.01\\ 1.01\\ 1.01\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\$ |
| a [88]<br>a [89]<br>a [90]<br>a [91]<br>a [92]<br>a [93]<br>a [94]<br>a [95]<br>a [96]<br>a [97]<br>a [98]<br>a [99]<br>a [100]<br>b_age<br>b_age2<br>b_mar                                                                   | -1.30<br>-1.95<br>-1.95<br>-1.88<br>-1.22<br>-1.97<br>-2.01<br>-2.17<br>-1.98<br>-1.13<br>-2.28<br>-2.57<br>-2.18<br>-2.41<br>-0.12<br>-0.02<br>0.26                                                                     | 0.00<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.00<br>0.01<br>0.01<br>0.01<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.22<br>0.49<br>0.16<br>0.29<br>0.21<br>0.39<br>0.33<br>0.15<br>0.21<br>0.19<br>0.46<br>0.25<br>0.20<br>0.16<br>0.20<br>0.16<br>0.20<br>0.16<br>0.20<br>0.16<br>0.20<br>0.16<br>0.20<br>0.16<br>0.20<br>0.16<br>0.20<br>0.16<br>0.20<br>0.16<br>0.20<br>0.16<br>0.20<br>0.16<br>0.20<br>0.16<br>0.20<br>0.16<br>0.20<br>0.16<br>0.20<br>0.16<br>0.20<br>0.16<br>0.20<br>0.16<br>0.20<br>0.16<br>0.20<br>0.16<br>0.20<br>0.16<br>0.20<br>0.16<br>0.20<br>0.16<br>0.20<br>0.16<br>0.20<br>0.16<br>0.03<br>0.07<br>0.03 | $\begin{array}{c} -1.78\\ -2.22\\ -2.26\\ -2.50\\ -2.30\\ -1.57\\ -2.78\\ -2.69\\ -2.48\\ -2.42\\ -1.50\\ -3.22\\ -3.05\\ -2.57\\ -2.74\\ -0.18\\ -0.16\\ 0.20\\ \end{array}$                                              | $\begin{array}{c} -1.49\\ -1.61\\ -2.06\\ -2.13\\ -2.01\\ -1.35\\ -2.23\\ -2.23\\ -2.28\\ -2.12\\ -1.25\\ -2.57\\ -2.74\\ -2.31\\ -2.52\\ -0.14\\ -0.07\\ 0.24 \end{array}$                                                       | $\begin{array}{c} -1.34\\ -1.33\\ -1.95\\ -1.93\\ -1.88\\ -1.21\\ -1.95\\ -2.00\\ -2.17\\ -1.98\\ -1.13\\ -2.26\\ -2.57\\ -2.17\\ -2.41\\ -0.12\\ -0.02\\ 0.26\end{array}$                                                                     | $\begin{array}{c} -1.18\\ -1.00\\ -1.83\\ -1.75\\ -1.73\\ -1.09\\ -1.70\\ -1.78\\ -2.07\\ -1.84\\ -1.00\\ -1.96\\ -2.41\\ -2.04\\ -2.29\\ -0.10\\ 0.02\\ 0.28\end{array}$                                                       | 0.90<br>0.29<br>1.63<br>1.40<br>1.50<br>0.86<br>1.22<br>1.40<br>1.88<br>1.60<br>0.76<br>1.44<br>2.09<br>1.83<br>2.10<br>0.06<br>0.11<br>0.33                                                 | 2000<br>556<br>951<br>637<br>607<br>675<br>2000<br>1112<br>2000<br>1413<br>2000<br>1632<br>573<br>2000<br>1492<br>2000<br>631<br>688                              | $\begin{array}{c} 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.01\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.01\\ 1.01\\ 1.01\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\$ |
| <pre>a[88]<br/>a[89]<br/>a[90]<br/>a[91]<br/>a[92]<br/>a[93]<br/>a[94]<br/>a[95]<br/>a[96]<br/>a[97]<br/>a[98]<br/>a[99]<br/>a[100]<br/>b_age<br/>b_age2<br/>b_mar<br/>sigma_1</pre>                                          | -1.30<br>-1.95<br>-1.95<br>-1.88<br>-1.22<br>-1.97<br>-2.01<br>-2.17<br>-1.98<br>-1.13<br>-2.28<br>-2.57<br>-2.18<br>-2.41<br>-0.12<br>-0.02<br>0.26<br>0.65                                                             | 0.00<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.00<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.22<br>0.49<br>0.16<br>0.29<br>0.21<br>0.39<br>0.33<br>0.15<br>0.21<br>0.19<br>0.46<br>0.25<br>0.20<br>0.16<br>0.03<br>0.07<br>0.03<br>0.69                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} -1.78\\ -2.22\\ -2.26\\ -2.50\\ -2.30\\ -1.57\\ -2.78\\ -2.69\\ -2.48\\ -2.42\\ -1.50\\ -3.22\\ -3.05\\ -2.57\\ -2.74\\ -0.18\\ -0.16\\ 0.20\\ 0.07\\ \end{array}$                                       | $\begin{array}{c} -1.49\\ -1.61\\ -2.06\\ -2.13\\ -2.01\\ -1.35\\ -2.23\\ -2.23\\ -2.28\\ -2.12\\ -1.25\\ -2.57\\ -2.74\\ -2.31\\ -2.52\\ -0.14\\ -0.07\\ 0.24\\ 0.26\end{array}$                                                 | $\begin{array}{c} -1.34\\ -1.33\\ -1.95\\ -1.93\\ -1.88\\ -1.21\\ -1.95\\ -2.00\\ -2.17\\ -1.98\\ -1.13\\ -2.26\\ -2.57\\ -2.17\\ -2.41\\ -0.12\\ -0.02\\ 0.26\\ 0.46\end{array}$                                                              | $\begin{array}{c} -1.18\\ -1.00\\ -1.83\\ -1.75\\ -1.73\\ -1.09\\ -1.70\\ -1.78\\ -2.07\\ -1.84\\ -1.00\\ -1.96\\ -2.41\\ -2.04\\ -2.29\\ -0.10\\ 0.02\\ 0.28\\ 0.78\end{array}$                                                | 0.90<br>0.29<br>1.63<br>1.40<br>1.50<br>0.86<br>1.22<br>1.40<br>1.88<br>1.60<br>0.76<br>1.44<br>2.09<br>1.83<br>2.10<br>0.06<br>0.11<br>0.33<br>2.52                                         | 2000<br>556<br>951<br>637<br>607<br>675<br>2000<br>1112<br>2000<br>1413<br>2000<br>1492<br>2000<br>1492<br>2000<br>631<br>688<br>337                              | $\begin{array}{c} 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.01\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.02\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <pre>a[88]<br/>a[89]<br/>a[90]<br/>a[91]<br/>a[92]<br/>a[93]<br/>a[94]<br/>a[95]<br/>a[96]<br/>a[97]<br/>a[98]<br/>a[99]<br/>a[100]<br/>b_age<br/>b_age2<br/>b_mar<br/>sigma_1<br/>sigma_2</pre>                              | $\begin{array}{c} -1.30\\ -1.95\\ -1.95\\ -1.88\\ -1.22\\ -1.97\\ -2.01\\ -2.17\\ -1.98\\ -1.13\\ -2.28\\ -2.57\\ -2.18\\ -2.41\\ -0.12\\ -0.02\\ 0.26\\ 0.65\\ 0.58\end{array}$                                         | 0.00<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.00<br>0.01<br>0.01<br>0.01<br>0.01<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.001<br>0.01<br>0.01<br>0.01<br>0.01<br>0.001<br>0.01<br>0.01<br>0.001<br>0.01<br>0.01<br>0.001<br>0.01<br>0.01<br>0.001<br>0.01<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.001<br>0.000<br>0.000<br>0.000<br>0.001<br>0.000<br>0.000<br>0.000<br>0.001<br>0.001<br>0.000<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001  | 0.22<br>0.49<br>0.16<br>0.29<br>0.21<br>0.39<br>0.33<br>0.15<br>0.21<br>0.19<br>0.46<br>0.25<br>0.20<br>0.16<br>0.03<br>0.07<br>0.03<br>0.69<br>0.13                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} -1.78\\ -2.22\\ -2.26\\ -2.50\\ -2.30\\ -1.57\\ -2.78\\ -2.69\\ -2.48\\ -2.42\\ -1.50\\ -3.22\\ -3.05\\ -2.57\\ -2.74\\ -0.18\\ -0.16\\ 0.20\\ 0.07\\ 0.37\end{array}$                                   | $\begin{array}{c} -1.49\\ -1.61\\ -2.06\\ -2.13\\ -2.01\\ -1.35\\ -2.23\\ -2.23\\ -2.28\\ -2.12\\ -1.25\\ -2.57\\ -2.74\\ -2.31\\ -2.52\\ -0.14\\ -0.07\\ 0.24\\ 0.26\\ 0.49\end{array}$                                          | $\begin{array}{c} -1.34\\ -1.33\\ -1.95\\ -1.93\\ -1.88\\ -1.21\\ -1.95\\ -2.00\\ -2.17\\ -1.98\\ -1.13\\ -2.26\\ -2.57\\ -2.17\\ -2.41\\ -0.12\\ -0.02\\ 0.26\\ 0.46\\ 0.56\end{array}$                                                       | $\begin{array}{c} -1.18\\ -1.00\\ -1.83\\ -1.75\\ -1.73\\ -1.09\\ -1.70\\ -1.78\\ -2.07\\ -1.84\\ -1.00\\ -1.96\\ -2.41\\ -2.04\\ -2.29\\ -0.10\\ 0.02\\ 0.28\\ 0.78\\ 0.66\end{array}$                                         | 0.90<br>0.29<br>1.63<br>1.40<br>1.50<br>0.86<br>1.22<br>1.40<br>1.88<br>1.60<br>0.76<br>1.44<br>2.09<br>1.83<br>2.10<br>0.06<br>0.11<br>0.33<br>2.52<br>0.90                                 | 2000<br>556<br>951<br>637<br>607<br>675<br>2000<br>1112<br>2000<br>413<br>2000<br>1492<br>2000<br>631<br>688<br>337<br>626                                        | $\begin{array}{c} 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.01\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.01\\ 1.01\\ 1.01\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\$ |
| <pre>a[88]<br/>a[89]<br/>a[90]<br/>a[91]<br/>a[92]<br/>a[93]<br/>a[94]<br/>a[95]<br/>a[96]<br/>a[97]<br/>a[98]<br/>a[99]<br/>a[100]<br/>b_age<br/>b_age2<br/>b_mar<br/>sigma_1</pre>                                          | -1.30<br>-1.95<br>-1.95<br>-1.88<br>-1.22<br>-1.97<br>-2.01<br>-2.17<br>-1.98<br>-1.13<br>-2.28<br>-2.57<br>-2.18<br>-2.41<br>-0.12<br>-0.02<br>0.26<br>0.65                                                             | 0.00<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.00<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.22<br>0.49<br>0.16<br>0.29<br>0.21<br>0.39<br>0.33<br>0.15<br>0.21<br>0.19<br>0.46<br>0.25<br>0.20<br>0.16<br>0.03<br>0.07<br>0.03<br>0.69                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} -1.78\\ -2.22\\ -2.26\\ -2.50\\ -2.30\\ -1.57\\ -2.78\\ -2.69\\ -2.48\\ -2.42\\ -1.50\\ -3.22\\ -3.05\\ -2.57\\ -2.74\\ -0.18\\ -0.16\\ 0.20\\ 0.07\\ \end{array}$                                       | $\begin{array}{c} -1.49\\ -1.61\\ -2.06\\ -2.13\\ -2.01\\ -1.35\\ -2.23\\ -2.23\\ -2.28\\ -2.12\\ -1.25\\ -2.57\\ -2.74\\ -2.31\\ -2.52\\ -0.14\\ -0.07\\ 0.24\\ 0.26\end{array}$                                                 | $\begin{array}{c} -1.34\\ -1.33\\ -1.95\\ -1.93\\ -1.88\\ -1.21\\ -1.95\\ -2.00\\ -2.17\\ -1.98\\ -1.13\\ -2.26\\ -2.57\\ -2.17\\ -2.41\\ -0.12\\ -0.02\\ 0.26\\ 0.46\end{array}$                                                              | $\begin{array}{c} -1.18\\ -1.00\\ -1.83\\ -1.75\\ -1.73\\ -1.09\\ -1.70\\ -1.78\\ -2.07\\ -1.84\\ -1.00\\ -1.96\\ -2.41\\ -2.04\\ -2.29\\ -0.10\\ 0.02\\ 0.28\\ 0.78\end{array}$                                                | 0.90<br>0.29<br>1.63<br>1.40<br>1.50<br>0.86<br>1.22<br>1.40<br>1.88<br>1.60<br>0.76<br>1.44<br>2.09<br>1.83<br>2.10<br>0.06<br>0.11<br>0.33<br>2.52                                         | 2000<br>556<br>951<br>637<br>607<br>675<br>2000<br>1112<br>2000<br>1413<br>2000<br>1492<br>2000<br>1492<br>2000<br>631<br>688<br>337                              | $\begin{array}{c} 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.01\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.02\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <pre>a[88]<br/>a[89]<br/>a[90]<br/>a[91]<br/>a[92]<br/>a[93]<br/>a[94]<br/>a[95]<br/>a[96]<br/>a[97]<br/>a[98]<br/>a[99]<br/>a[100]<br/>b_age<br/>b_age2<br/>b_mar<br/>sigma_1<br/>sigma_2<br/>sigma_3</pre>                  | $\begin{array}{c} -1.30\\ -1.95\\ -1.95\\ -1.88\\ -1.22\\ -1.97\\ -2.01\\ -2.17\\ -1.98\\ -1.13\\ -2.28\\ -2.57\\ -2.18\\ -2.41\\ -0.12\\ -0.02\\ 0.26\\ 0.65\\ 0.58\\ 0.50\end{array}$                                  | 0.00<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.00<br>0.01<br>0.01<br>0.01<br>0.01<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.001<br>0.01<br>0.01<br>0.01<br>0.01<br>0.001<br>0.01<br>0.01<br>0.001<br>0.01<br>0.01<br>0.001<br>0.01<br>0.01<br>0.001<br>0.01<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.001<br>0.000<br>0.000<br>0.000<br>0.001<br>0.000<br>0.000<br>0.000<br>0.001<br>0.001<br>0.000<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001  | 0.22<br>0.49<br>0.16<br>0.29<br>0.21<br>0.39<br>0.33<br>0.15<br>0.21<br>0.19<br>0.46<br>0.25<br>0.20<br>0.16<br>0.03<br>0.07<br>0.03<br>0.69<br>0.13                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} -1.78\\ -2.22\\ -2.26\\ -2.50\\ -2.30\\ -1.57\\ -2.78\\ -2.69\\ -2.48\\ -2.42\\ -1.50\\ -3.22\\ -3.05\\ -2.57\\ -2.57\\ -2.57\\ -2.74\\ -0.18\\ -0.16\\ 0.20\\ 0.07\\ 0.37\\ 0.40\end{array}$            | $\begin{array}{c} -1.49\\ -1.61\\ -2.06\\ -2.13\\ -2.01\\ -1.35\\ -2.23\\ -2.23\\ -2.28\\ -2.28\\ -2.12\\ -1.25\\ -2.57\\ -2.74\\ -2.31\\ -2.52\\ -0.14\\ -0.07\\ 0.24\\ 0.26\\ 0.49\\ 0.46\end{array}$                           | $\begin{array}{c} -1.34\\ -1.33\\ -1.95\\ -1.93\\ -1.88\\ -1.21\\ -1.95\\ -2.00\\ -2.17\\ -1.98\\ -1.13\\ -2.26\\ -2.57\\ -2.17\\ -2.41\\ -0.12\\ -0.02\\ 0.26\\ 0.46\\ 0.56\\ 0.49\end{array}$                                                | $\begin{array}{c} -1.18\\ -1.00\\ -1.83\\ -1.75\\ -1.73\\ -1.09\\ -1.70\\ -1.78\\ -2.07\\ -1.84\\ -1.00\\ -1.96\\ -2.41\\ -2.04\\ -2.29\\ -0.10\\ 0.02\\ 0.28\\ 0.78\\ 0.66\\ 0.54 \end{array}$                                 | 0.90<br>0.29<br>1.63<br>1.40<br>1.50<br>0.86<br>1.22<br>1.40<br>1.88<br>1.60<br>0.76<br>1.44<br>2.09<br>1.83<br>2.10<br>0.06<br>0.11<br>0.33<br>2.52<br>0.90                                 | 2000<br>556<br>951<br>637<br>607<br>675<br>2000<br>1112<br>2000<br>413<br>2000<br>1492<br>2000<br>631<br>688<br>337<br>626                                        | $\begin{array}{c} 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.01\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.01\\ 1.01\\ 1.01\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.01\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\$ |
| <pre>a[88]<br/>a[89]<br/>a[90]<br/>a[91]<br/>a[92]<br/>a[93]<br/>a[94]<br/>a[95]<br/>a[96]<br/>a[97]<br/>a[98]<br/>a[99]<br/>a[100]<br/>b_age<br/>b_age2<br/>b_mar<br/>sigma_1<br/>sigma_2<br/>sigma_3<br/>e[1]</pre>         | -1.30<br>-1.95<br>-1.95<br>-1.88<br>-1.22<br>-1.97<br>-2.01<br>-2.17<br>-1.98<br>-1.13<br>-2.28<br>-2.57<br>-2.18<br>-2.41<br>-0.12<br>-0.02<br>0.26<br>0.65<br>0.58<br>0.50<br>-0.03                                    | 0.00<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.00<br>0.01<br>0.00<br>0.01<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.22<br>0.49<br>0.16<br>0.29<br>0.21<br>0.39<br>0.33<br>0.15<br>0.21<br>0.19<br>0.46<br>0.25<br>0.20<br>0.16<br>0.03<br>0.07<br>0.03<br>0.69<br>0.13<br>0.06<br>0.03                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} -1.78\\ -2.22\\ -2.26\\ -2.50\\ -2.30\\ -1.57\\ -2.78\\ -2.69\\ -2.48\\ -2.42\\ -1.50\\ -3.22\\ -3.05\\ -2.57\\ -2.57\\ -2.57\\ -2.74\\ -0.18\\ -0.16\\ 0.20\\ 0.07\\ 0.37\\ 0.40\\ -0.08\end{array}$    | $\begin{array}{c} -1.49\\ -1.61\\ -2.06\\ -2.13\\ -2.01\\ -1.35\\ -2.23\\ -2.23\\ -2.28\\ -2.28\\ -2.12\\ -1.25\\ -2.57\\ -2.74\\ -2.31\\ -2.52\\ -0.14\\ -0.07\\ 0.24\\ 0.26\\ 0.49\\ 0.46\\ -0.04 \end{array}$                  | $\begin{array}{c} -1.34\\ -1.33\\ -1.95\\ -1.93\\ -1.88\\ -1.21\\ -1.95\\ -2.00\\ -2.17\\ -1.98\\ -1.13\\ -2.26\\ -2.57\\ -2.17\\ -2.41\\ -0.12\\ -0.02\\ 0.26\\ 0.46\\ 0.56\\ 0.49\\ -0.02\end{array}$                                        | $\begin{array}{c} -1.18\\ -1.00\\ -1.83\\ -1.75\\ -1.73\\ -1.09\\ -1.70\\ -1.78\\ -2.07\\ -1.84\\ -1.00\\ -1.96\\ -2.41\\ -2.04\\ -2.29\\ -0.10\\ 0.02\\ 0.28\\ 0.78\\ 0.66\\ 0.54\\ -0.01 \end{array}$                         | 0.90<br>0.29<br>1.63<br>1.40<br>1.50<br>0.86<br>1.22<br>1.40<br>1.88<br>1.60<br>0.76<br>1.44<br>2.09<br>1.83<br>2.10<br>0.06<br>0.11<br>0.33<br>2.52<br>0.90<br>0.62<br>0.02                 | 2000<br>556<br>951<br>637<br>607<br>52000<br>1112<br>2000<br>413<br>2000<br>1492<br>2000<br>631<br>688<br>337<br>626<br>284<br>843                                | 1.00<br>1.00<br>1.00<br>1.01<br>1.00<br>1.00<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <pre>a[88]<br/>a[89]<br/>a[90]<br/>a[91]<br/>a[92]<br/>a[93]<br/>a[94]<br/>a[96]<br/>a[97]<br/>a[98]<br/>a[99]<br/>a[100]<br/>b_age<br/>b_age2<br/>b_mar<br/>sigma_1<br/>sigma_2<br/>sigma_3<br/>e[1]<br/>e[2]</pre>          | -1.30<br>-1.95<br>-1.95<br>-1.88<br>-1.22<br>-1.97<br>-2.01<br>-2.17<br>-1.98<br>-1.13<br>-2.28<br>-2.57<br>-2.18<br>-2.41<br>-0.12<br>-0.02<br>0.26<br>0.65<br>0.58<br>0.50<br>-0.03<br>-0.02                           | 0.00<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.00<br>0.01<br>0.00<br>0.01<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.22<br>0.49<br>0.16<br>0.29<br>0.21<br>0.33<br>0.15<br>0.21<br>0.19<br>0.46<br>0.25<br>0.20<br>0.16<br>0.03<br>0.07<br>0.03<br>0.69<br>0.03<br>0.06<br>0.03<br>0.03                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} -1.78\\ -2.22\\ -2.26\\ -2.50\\ -2.30\\ -1.57\\ -2.78\\ -2.69\\ -2.48\\ -2.42\\ -1.50\\ -3.22\\ -3.05\\ -2.57\\ -2.74\\ -0.18\\ -0.16\\ 0.20\\ 0.07\\ 0.37\\ 0.40\\ -0.08\\ -0.07\\ \end{array}$         | $\begin{array}{c} -1.49\\ -1.61\\ -2.06\\ -2.13\\ -2.01\\ -1.35\\ -2.23\\ -2.23\\ -2.23\\ -2.28\\ -2.12\\ -1.25\\ -2.57\\ -2.74\\ -2.31\\ -2.52\\ -0.14\\ -0.07\\ 0.24\\ 0.26\\ 0.49\\ 0.46\\ -0.04\\ -0.03\end{array}$           | $\begin{array}{c} -1.34\\ -1.33\\ -1.95\\ -1.93\\ -1.88\\ -1.21\\ -1.95\\ -2.00\\ -2.17\\ -1.98\\ -1.13\\ -2.26\\ -2.57\\ -2.17\\ -2.41\\ -0.12\\ -0.02\\ 0.26\\ 0.46\\ 0.56\\ 0.49\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ \end{array}$             | $\begin{array}{c} -1.18\\ -1.00\\ -1.83\\ -1.75\\ -1.73\\ -1.09\\ -1.70\\ -1.70\\ -1.78\\ -2.07\\ -1.84\\ -1.00\\ -1.96\\ -2.41\\ -2.04\\ -2.29\\ -0.10\\ 0.02\\ 0.28\\ 0.78\\ 0.78\\ 0.66\\ 0.54\\ -0.01\\ 0.00\\ \end{array}$ | 0.90<br>0.29<br>1.63<br>1.40<br>1.50<br>0.86<br>1.22<br>1.40<br>1.88<br>1.60<br>0.76<br>1.44<br>2.09<br>1.83<br>2.10<br>0.06<br>0.11<br>0.33<br>2.52<br>0.90<br>0.62<br>0.02<br>0.04         | 2000<br>556<br>951<br>637<br>607<br>675<br>2000<br>1112<br>2000<br>1413<br>2000<br>1432<br>2000<br>1492<br>2000<br>631<br>688<br>337<br>626<br>284<br>843<br>1390 | 1.00<br>1.00<br>1.00<br>1.00<br>1.01<br>1.00<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <pre>a[88]<br/>a[89]<br/>a[90]<br/>a[91]<br/>a[92]<br/>a[93]<br/>a[94]<br/>a[96]<br/>a[96]<br/>a[97]<br/>a[98]<br/>a[100]<br/>b_age<br/>b_age2<br/>b_mar<br/>sigma_1<br/>sigma_2<br/>sigma_3<br/>e[1]<br/>e[2]<br/>e[3]</pre> | -1.30<br>-1.95<br>-1.95<br>-1.88<br>-1.22<br>-1.97<br>-2.01<br>-2.17<br>-1.98<br>-1.13<br>-2.28<br>-2.57<br>-2.18<br>-2.57<br>-2.18<br>-2.41<br>-0.12<br>-0.02<br>0.26<br>0.65<br>0.58<br>0.50<br>-0.03<br>-0.02<br>0.02 | 0.00<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.00<br>0.00<br>0.01<br>0.00<br>0.01<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.22<br>0.49<br>0.16<br>0.29<br>0.21<br>0.39<br>0.33<br>0.15<br>0.21<br>0.19<br>0.46<br>0.25<br>0.20<br>0.16<br>0.03<br>0.07<br>0.03<br>0.06<br>0.03<br>0.03<br>0.03<br>0.03                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} -1.78\\ -2.22\\ -2.26\\ -2.50\\ -2.30\\ -1.57\\ -2.78\\ -2.69\\ -2.42\\ -1.50\\ -3.22\\ -3.05\\ -2.57\\ -2.74\\ -0.18\\ -0.16\\ 0.20\\ 0.07\\ 0.37\\ 0.40\\ -0.08\\ -0.07\\ -0.04\\ \end{array}$         | $\begin{array}{c} -1.49\\ -1.61\\ -2.06\\ -2.13\\ -2.01\\ -1.35\\ -2.23\\ -2.23\\ -2.23\\ -2.28\\ -2.12\\ -1.25\\ -2.57\\ -2.74\\ -2.31\\ -2.52\\ -0.14\\ -0.07\\ 0.24\\ 0.26\\ 0.49\\ 0.46\\ -0.04\\ -0.03\\ 0.00\\ \end{array}$ | $\begin{array}{c} -1.34\\ -1.33\\ -1.95\\ -1.93\\ -1.88\\ -1.21\\ -1.95\\ -2.00\\ -2.17\\ -1.98\\ -1.13\\ -2.26\\ -2.57\\ -2.17\\ -2.41\\ -0.12\\ -0.02\\ 0.26\\ 0.46\\ 0.49\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ 0.02\\ \end{array}$             | $\begin{array}{c} -1.18\\ -1.00\\ -1.83\\ -1.75\\ -1.73\\ -1.09\\ -1.70\\ -1.78\\ -2.07\\ -1.84\\ -1.00\\ -1.96\\ -2.41\\ -2.04\\ -2.29\\ -0.10\\ 0.02\\ 0.28\\ 0.78\\ 0.66\\ 0.54\\ -0.01\\ 0.00\\ 0.04 \end{array}$           | 0.90<br>0.29<br>1.63<br>1.40<br>1.50<br>0.86<br>1.22<br>1.40<br>1.88<br>1.60<br>0.76<br>1.44<br>2.09<br>1.83<br>2.10<br>0.06<br>0.11<br>0.33<br>2.52<br>0.90<br>0.62<br>0.02<br>0.04<br>0.08 | 2000<br>556<br>951<br>637<br>607<br>2000<br>1112<br>2000<br>1632<br>573<br>2000<br>1492<br>2000<br>631<br>688<br>337<br>626<br>284<br>843<br>1390<br>966          | 1.00<br>1.00<br>1.00<br>1.01<br>1.00<br>1.00<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <pre>a[88]<br/>a[89]<br/>a[90]<br/>a[91]<br/>a[92]<br/>a[93]<br/>a[94]<br/>a[96]<br/>a[97]<br/>a[98]<br/>a[99]<br/>a[100]<br/>b_age<br/>b_age2<br/>b_mar<br/>sigma_1<br/>sigma_2<br/>sigma_3<br/>e[1]<br/>e[2]</pre>          | -1.30<br>-1.95<br>-1.95<br>-1.88<br>-1.22<br>-1.97<br>-2.01<br>-2.17<br>-1.98<br>-1.13<br>-2.28<br>-2.57<br>-2.18<br>-2.41<br>-0.12<br>-0.02<br>0.26<br>0.65<br>0.58<br>0.50<br>-0.03<br>-0.02                           | 0.00<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.00<br>0.01<br>0.00<br>0.01<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.22<br>0.49<br>0.16<br>0.29<br>0.21<br>0.33<br>0.15<br>0.21<br>0.19<br>0.46<br>0.25<br>0.20<br>0.16<br>0.03<br>0.07<br>0.03<br>0.69<br>0.03<br>0.06<br>0.03<br>0.03                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} -1.78\\ -2.22\\ -2.26\\ -2.50\\ -2.30\\ -1.57\\ -2.78\\ -2.69\\ -2.48\\ -2.42\\ -1.50\\ -3.22\\ -3.05\\ -2.57\\ -2.74\\ -0.18\\ -0.16\\ 0.20\\ 0.07\\ 0.37\\ 0.40\\ -0.08\\ -0.07\\ \end{array}$         | $\begin{array}{c} -1.49\\ -1.61\\ -2.06\\ -2.13\\ -2.01\\ -1.35\\ -2.23\\ -2.23\\ -2.23\\ -2.28\\ -2.12\\ -1.25\\ -2.57\\ -2.74\\ -2.31\\ -2.52\\ -0.14\\ -0.07\\ 0.24\\ 0.26\\ 0.49\\ 0.46\\ -0.04\\ -0.03\\ 0.00\\ \end{array}$ | $\begin{array}{c} -1.34\\ -1.33\\ -1.95\\ -1.93\\ -1.88\\ -1.21\\ -1.95\\ -2.00\\ -2.17\\ -1.98\\ -1.13\\ -2.26\\ -2.57\\ -2.17\\ -2.41\\ -0.12\\ -0.02\\ 0.26\\ 0.46\\ 0.56\\ 0.49\\ -0.02\\ -0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ \end{array}$ | $\begin{array}{c} -1.18\\ -1.00\\ -1.83\\ -1.75\\ -1.73\\ -1.09\\ -1.70\\ -1.70\\ -1.78\\ -2.07\\ -1.84\\ -1.00\\ -1.96\\ -2.41\\ -2.04\\ -2.29\\ -0.10\\ 0.02\\ 0.28\\ 0.78\\ 0.78\\ 0.66\\ 0.54\\ -0.01\\ 0.00\\ \end{array}$ | 0.90<br>0.29<br>1.63<br>1.40<br>1.50<br>0.86<br>1.22<br>1.40<br>1.88<br>1.60<br>0.76<br>1.44<br>2.09<br>1.83<br>2.10<br>0.06<br>0.11<br>0.33<br>2.52<br>0.90<br>0.62<br>0.02<br>0.04         | 2000<br>556<br>951<br>637<br>607<br>675<br>2000<br>1112<br>2000<br>1413<br>2000<br>1432<br>2000<br>1492<br>2000<br>631<br>688<br>337<br>626<br>284<br>843<br>1390 | 1.00<br>1.00<br>1.00<br>1.00<br>1.01<br>1.00<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <pre>a[88]<br/>a[89]<br/>a[90]<br/>a[91]<br/>a[92]<br/>a[93]<br/>a[94]<br/>a[96]<br/>a[96]<br/>a[97]<br/>a[98]<br/>a[100]<br/>b_age<br/>b_age2<br/>b_mar<br/>sigma_1<br/>sigma_2<br/>sigma_3<br/>e[1]<br/>e[2]<br/>e[3]</pre> | -1.30<br>-1.95<br>-1.95<br>-1.88<br>-1.22<br>-1.97<br>-2.01<br>-2.17<br>-1.98<br>-1.13<br>-2.28<br>-2.57<br>-2.18<br>-2.57<br>-2.18<br>-2.41<br>-0.12<br>-0.02<br>0.26<br>0.65<br>0.58<br>0.50<br>-0.03<br>-0.02<br>0.02 | 0.00<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.00<br>0.00<br>0.01<br>0.00<br>0.01<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.22<br>0.49<br>0.16<br>0.29<br>0.21<br>0.39<br>0.33<br>0.15<br>0.21<br>0.19<br>0.46<br>0.25<br>0.20<br>0.16<br>0.03<br>0.07<br>0.03<br>0.06<br>0.03<br>0.03<br>0.03<br>0.03                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} -1.78\\ -2.22\\ -2.26\\ -2.50\\ -2.30\\ -1.57\\ -2.78\\ -2.69\\ -2.42\\ -1.50\\ -3.22\\ -3.05\\ -2.57\\ -2.74\\ -0.18\\ -0.16\\ 0.20\\ 0.07\\ 0.37\\ 0.40\\ -0.08\\ -0.07\\ -0.04\\ -0.04\\ \end{array}$ | $\begin{array}{c} -1.49\\ -1.61\\ -2.06\\ -2.13\\ -2.01\\ -1.35\\ -2.23\\ -2.23\\ -2.23\\ -2.28\\ -2.12\\ -1.25\\ -2.57\\ -2.74\\ -2.31\\ -2.52\\ -0.14\\ -0.07\\ 0.24\\ 0.26\\ 0.49\\ 0.46\\ -0.04\\ -0.03\\ 0.00\\ \end{array}$ | $\begin{array}{c} -1.34\\ -1.33\\ -1.95\\ -1.93\\ -1.88\\ -1.21\\ -1.95\\ -2.00\\ -2.17\\ -1.98\\ -1.13\\ -2.26\\ -2.57\\ -2.17\\ -2.41\\ -0.12\\ -0.02\\ 0.26\\ 0.46\\ 0.49\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ 0.02\\ \end{array}$             | $\begin{array}{c} -1.18\\ -1.00\\ -1.83\\ -1.75\\ -1.73\\ -1.09\\ -1.70\\ -1.78\\ -2.07\\ -1.84\\ -1.00\\ -1.96\\ -2.41\\ -2.04\\ -2.29\\ -0.10\\ 0.02\\ 0.28\\ 0.78\\ 0.66\\ 0.54\\ -0.01\\ 0.00\\ 0.04 \end{array}$           | 0.90<br>0.29<br>1.63<br>1.40<br>1.50<br>0.86<br>1.22<br>1.40<br>1.88<br>1.60<br>0.76<br>1.44<br>2.09<br>1.83<br>2.10<br>0.06<br>0.11<br>0.33<br>2.52<br>0.90<br>0.62<br>0.02<br>0.04<br>0.08 | 2000<br>556<br>951<br>637<br>607<br>2000<br>1112<br>2000<br>1632<br>573<br>2000<br>1492<br>2000<br>631<br>688<br>337<br>626<br>284<br>843<br>1390<br>966          | 1.00<br>1.00<br>1.00<br>1.01<br>1.00<br>1.00<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| r[2]     | -0.08                 | 0.00    | 0.03 | -0.14 | -0.10 | -0.08 | -0.06 | 0.02 | 582  | 1.0 |
|----------|-----------------------|---------|------|-------|-------|-------|-------|------|------|-----|
| r[3]     | 0.05                  | 0.00    | 0.03 | 0.00  | 0.03  | 0.05  | 0.07  | 0.10 | 1533 | 1.0 |
| r[4]     | 0.09                  | 0.00    | 0.03 | 0.04  | 0.07  | 0.09  | 0.11  | 0.15 | 2000 | 1.0 |
| tau[1]   | -0.05                 | 0.00    | 0.03 | -0.12 | -0.07 | -0.05 | -0.03 | 0.01 | 1191 | 1.0 |
| tau[2]   | -0.04                 | 0.00    | 0.03 | -0.10 | -0.07 | -0.04 | -0.02 | 0.02 | 604  | 1.0 |
| tau[3]   | -0.03                 | 0.00    | 0.03 | -0.10 | -0.06 | -0.03 | -0.01 | 0.03 | 838  | 1.0 |
| tau[4]   | 0.05                  | 0.00    | 0.03 | -0.02 | 0.02  | 0.05  | 0.07  | 0.11 | 1482 | 1.0 |
| tau [5]  | 0.08                  | 0.00    | 0.03 | 0.02  | 0.06  | 0.08  | 0.11  | 0.15 | 2000 | 1.0 |
| Samples  | were dra<br>h paramet |         | 0    | 0     |       | 0     |       |      |      |     |
| and Rhat | t is the<br>ence, Rha | potenti |      |       |       |       |       | -    |      | ,   |