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Abstract

Architectural styles are phases of development that classify architecture in the sense of historic
periods, regions and cultural influences. The objective of the dissertation is to build a com-
puter vision software tool, which classifies the architectural style of a Romanesque, Gothic or
Baroque building facade, given its image. The work presents the first fundamental algorithm for
constructing an image-based architectural style classification software system. The algorithm
proposed is general enough to target the classification of a building facade of any visually dis-
tinguishable architectural style or displaying a mixture of architectural styles. The universality
of the algorithm is also based on its capability to classify images of full facades, partly occluded
facades or facade parts. The architectural style of a building is formed by a combination of
style typical component parts, called architectural elements. The algorithm for building facade
architectural style classification is a style voting scheme of separate architectural elements, such
as windows, domes, towers, etc. It is structured as subsequent principle steps of segmentation,
classification and voting of architectural elements. The first approaches addressing the segmen-
tation of prominent architectural elements dome and tower are introduced within the bounds of
the segmentation step. Each segmentation algorithm is a pipeline unifying bilateral symmetry
detection, graph-based segmentation approaches and image analysis and processing techniques,
taking into account the visual specificities of the element segmented. The system embeds the
knowledge about architectural styles by learning style typical architectural elements in the clas-
sification stage. Taking into consideration the grand scale of the work amount, required for the
realization of the algorithm for any architectural style, the software implementation is limited to
three pan-European architectural styles of major significance, each spanning a few centuries and
covering large geographical areas, namely Romanesque, Gothic or Baroque.

For testing and performance evaluation of each module of the project, image databases of
building facades belonging to the corresponding architectural styles and featuring the explored
architectural elements were gathered. The experiments report high segmentation and classifi-
cation precision, as well as prove the algorithm of the voting of architectural elements to be
effective and promising in regard to the further expansion of the project by new architectural
styles.
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Kurzfassung

Architekturstile sind Entwicklungsphasen, welche Architektur nach geschichtlichen Epochen,
Regionen und kulturellen Einflüssen klassifizieren. Das Ziel der Dissertation liegt im Aufbau
eines Computer Vision Software Werkzeugs, welches basierend auf Bildern Fassaden romani-
schen, gotischen und barocken Stilen klassifizieren kann. Die Arbeit beschreibt den ersten funda-
mentalen Algorithmus für die Schaffung eines Software Systems zur bildbasierten Klassifizie-
rung von Architekturstilen. Durch seine Allgemeinheit kann der vorgeschlagene Algorithmus
eine Klassifizierung jeder Fassade mit optisch erkennbarem architektonischen Stil oder einer
Mischung von verschiedenen architektonischen Stilen vornehmen. Die allgemeine Verwendbar-
keit dieses Algorithmus basiert auch auf der Fähigkeit, Bilder von ganzen Fassaden, teilweise
verdeckten Fassaden oder gar Fassadenteilen vorzunehmen. Der architektonische Stil eines Ge-
bäudes wird durch eine Kombination von typischen Einzelteilen, so genannten architektonischen
Elementen, definiert. Der Algorithmus zur Klassifizierung von architektonischen Stilen von Ge-
bäudefassaden ist ein Abstimmungsschema einzelner architektonischer Elemente wie Fenster,
Kuppeln, Türmen, usw. Er ist strukturiert als eine Folge von Hauptphasen: Segmentierung, Klas-
sifizierung und Abstimmung von Architekturelementen. Im Rahmen der Segmentierungsphase
werden erste Ansätze für die Segmentierung der hervorstechenden Architekturelemente Kup-
pel und Turm präsentiert. Jeder Segmentierungsalgorithmus ist eine Arbeitsabfolge, welche bi-
laterale Symmetrieerkennung, graphbasierende Segmentierungsansätze sowie Bildanalyse und
Bildverarbeitungstechniken vereint, und dabei die visuellen Eigenheiten des zu segmentieren-
den Elementes berücksichtigt. Das System bindet Wissen um Architekturstile durch Erlernen
typischer Architekturelemente im Rahmen der Klassifizierungsphase ein. In Anbetracht des be-
trächtlichen Arbeitsaufwandes zur Implementierung des Algorithmus für jede Architekturstile
beschränkt sich die Software auf drei bedeutende paneuropäische Stile, von denen sich jeder
über Jahrhunderte hinweg über große Teile des Kontinents erstreckt: Romanik, Gotik und Ba-
rock.

Zum Testen und Beurteilen der Leistungsfähigkeit jedes Projektmoduls wurde eine Bild-
datenbank mit zu den unterschiedlichen architektonischen Stilen dazugehörenden und die cha-
rakteristischen architektonischen Elemente beinhaltenden Gebäudefassaden geschaffen. Expe-
rimente belegen eine hohe Präzision in der Segmentierung und Klassifizierung und beweisen,
dass der Algorithmus der Abstimmung der Architekturelemente effektiv und vielversprechend
bezüglich der künftigen Erweiterbarkeit des Projekts mit neuen Architektekturstilen ist.
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CHAPTER 1
Introduction

1.1 Motivation

The history of architecture reflects the history of mankind. The evolution of architectural styles,
stretching from prehistoric times to our days, starting from habitations in caves and reaching
today’s impressive skyscrapers, displays the evolution of the human mind. Each architectural
style defines certain forms, design rules, techniques and materials for building construction.

Images of building facades from online image databases usually do not have any labels re-
lated to architectural styles. To know the style of an observed building, one can search for the
building name. Whereas this is a solution for famous buildings with well-known names, it is not
applicable to buildings lacking names. In this case the visual information of the facade holds
the only key to its style. Here an alternative to an architectural style visual classification tool
could be the visual search engines like Google visual search 1 or landmark recognition engines
like [48]. The results of a Google visual search performance observation for the landmark build-
ing St.Stephen’s Basilica in Budapest (Figure 1.1a) and an ordinary neo-Baroque building in
Vienna (Figure 1.1b) are depicted in Figure 1.2 and Figure 1.3 respectively, demonstrating
successful image mining for the landmark building and failure on the non-landmark. This ex-
ample shows that those visual engines work well for world famous landmarks succeeding in
mining not only related images, but also links, from which one can obtain all the information
about the building of interest, including its name and architectural style. Nevertheless they fail
for ordinary buildings, not even delivering facades belonging to the same architectural style. An
automatic tool for image-based classification of architectural styles will solve this problem, not
depending on building popularity or its importance as a cultural heritage object. It will also
allow indexing of building databases into categories belonging to certain historic periods. This
kind of a semantic categorization limits the search of building image databases to certain cate-
gory portions for the purposes of building recognition [47, 48], Content Based Image Retrieval
(CBIR) [21], 3D image-based city-modeling [7, 42] and virtual tourism [41]. An architectural

1Google Visual Search Engine http://images.google.com

1



a) The landmark building St. Stephen’s Basilica b) An ordinary neo-baroque building

Figure 1.1: Examples of a landmark and an ordinary neo-baroque building

style classification system may also find its application in real tourism if provided with smart
phones. Another motivation to automate the recognition of architectural style of building fa-
cades, as stated in [27], is that such a recognition is required for building reconstruction by the
means of inverse procedural modeling.

The segmentation of building facades, which is one of the three main stages of the method-
ology proposed by this work, is an active research field in computer vision itself [42]. It is vital
for image-based modeling and urban scene undertanding [42].

1.2 Problem Statement

Despite the considerable amount of publications related to facade visual analysis, the image-
based architectural style classification of facades remains an open problem. The dissertation
addresses the problem stated. To accomplish the desired generalization one should begin with
exploring the architectural styles and the principles of distinguishing them from one another.
This is a challenging task for the following reasons:

• There are decades of architectural styles.

• Historic architectural styles contain principle phases, e.g. Gothic architecture counts his-
toric phases of Early Gothic and High Gothic.

• Each architectural style displays regional signature of building design and materials.

• A mixture of architectural styles in a single building is a common phenomenon, since
the sequence of historic periods, reigns and cultural influences of the observed region

2



Figure 1.2: Successful Google visual search results for the landmark building St. Stephen’s
Basilica

Figure 1.3: Unsuccessful Google visual search results for a non-landmark building

3



Figure 1.4: St. Charles church - a mixture of architectural styles

led to the evolution of styles from one another. The monumental and unique church of
St. Charles Borromeus in Vienna (Karlskirche), as a building instance representing the
phenomenon of the mixture of architectural styles, is depicted in Figure 1.4. Though the
church is considered Baroque, it also features a Roman portico and double Roman Trajan
columns (Figure 1.4). With an altogether unconventional plan, of which an oval forms the
central space, and with similar freedom in design of dome and towers, it combines not
only a pure Roman portico, but actually a pair of tall Doric columns standing away from
the building and recording on spiral basreliefs the various doings of the titular saint of the
church after the manner of Trajan’s famous column [5].

The image acquisition in its turn introduces additional problems:

• Perspective distortions

• Illumination variations

• Unlimited number of possible 2D projections of 3D facades

4



The algorithm should succeed in incorporating the definitions of architectural styles in the
context of a computer vision system. A ’smart’ algorithm, differing from standard learning
algorithms solving classification problems, must embed architectural knowledge in its core. The
requirements to the algorithm also include the ability to classify:

• Planar and non-planar facades

The analysis of non-planar facades is more challenging, since the detection of dominating
horizontal and vertical partitions and rectification are not applicable to them.

• Landmark and ordinary buildings

As observed in Section 1.1, it is possible to find out the architectural style of a land-
mark building via image mining. The ordinary buildings, which lack names, are not pho-
tographed frequently and posted online present the issue.

• Images of full facades, partly occluded facades and facade parts

Facades may be partly occluded in images due to scaffolding, advertisements or objects
present in the field of view of the camera. The algorithm should ignore these occlusions
as irrelevant visual features. The classification of facade parts must also be possible, if
they represent style-typical visual information.

For the evaluation of the algorithm and the designed software tool the challenge of collecting an
image database of the examined architectural styles should be overcome, as such a dataset does
not exist so far. The image database must contain a sufficient number of buildings from diverse
geographical regions to prove the claimed general character of the algorithm.

1.3 Aim of the Work

The goal of the work is to build a software system classifying the architectural style of building
facades based on their visual information contained in images. The algorithm for solving the
problem stated is intended to be general enough to cover the classification of any architectural
style with distinguishable visual features. The software implementation of the algorithm will be
realized on selected influential architectural styles. The general character of the algorithm and
the modularity of the software permit further expansion of the system with new architectural
styles.

1.4 Challenges

Image-based architectural style classification of facades is challenging for the following reasons:

• This is a classification problem of numerous classes, as there are decades of architectural
styles.

5



• Big intra-class diversity is an unwanted factor for any classification problem. The intra-
class variety is immense, because of the following factors:

1) Historic architectural styles contain principle phases.

2) Regional differences of historic architectural styles.

3) Almost no buildings repeat each other.

4) The unlimited number of possible 2D projections (images) of 3D facades.

5) The visual intricacy of historic architectural styles.

• Since the mixture of architectural styles is a common phenomenon, the classification out-
put can be not only a single class, but a combination of classes.

• Not everything on a facade presents architectural style relevant visual information. As
an example, building first floors, hosting stores, cafes, restaurants, hotel lobbies, etc., are
a well-known issue in facade visual processing problems, as stated in [27]. Images of
partly occluded facades also carry architectural style irrelevant visual features. Here the
challenge lies in the selection of the relevant visual features and ignoring the irrelevant
ones.

1.5 Methodological Approach

The presented architectural style classification project is called STYLE. The work is a unique
attempt to bridge science and art, combining computer vision technologies and programming
skills with architecture and photography.

The method of the STYLE project for architectural style classification consists of three major
steps (Figure 1.5):

• Facade segmentation by architectural structural elements

• Classification of the segmented elements by architectural styles

• Style voting of the classified elements

The approach models the human logic for architectural style classification, that is the search
of style typical components on a facade. The method, owing its modular character, is possible to
extend by adding new architectural elements and architectural styles. It has the advantages of be-
ing capable to classify facade parts or partially occluded facades by a single typical architectural
element, as well as facades of mixed architectural styles.

Architectural knowledge is embedded in all three stages of the method:

• The developed segmentation approaches in the first stage employ the visual architectural
features of the segmented elements. Each segmentation method is a pipeline of symmetry
detection and segmentation approaches, image analysis and processing techniques.

6



Figure 1.5: The diagram of the STYLE project method

• Learning of the style-typical architectural elements takes place in the classification step.
The classification approaches are based on learning of local features, as well as analysis
of the dimensions and color of the architectural element when appropriate.

• The architectural style winning in the voting stage by maximum of votes is chosen as
the style of the query facade. The voting scheme permits the classification of only those
combinations of architectural styles, which are probable in the history of architecture due
to multiple examples.

Among different architectural styles there are such that have influenced large regions and
dominated a few centuries. The software implementation of the algorithm addresses the classifi-
cation of building facade images of such influential European architectural styles - Romanesque,
Gothic, Baroque, as well as contains some comparative analysis of Renaissance, Russian and Is-
lamic styles. Though the main focus are the buildings, which are representatives of cultural
heritage, such as churches, cathedrals, palaces, museums and city halls, the approach is not lim-
ited to such buildings. The algorithm’s capability to classify buildings of mixed architectural
styles is realized by classifying the frequently met mixture of Romanesque and Gothic styles.

7



1.6 Contributions of the Work

The presented work makes the following contributions:

• The first general algorithm of image-based architectural style classification of building
facades and its justification from the architectural analysis (Section 3.1, Section 4.1).

• The first algorithm addressing the segmentation of domes of Renaissance, Baroque, Neo-
classical and Islamic architectural styles (Section 4.2, [39]).

• The first algorithm addressing the segmentation of towers of Romanesque, Gothic and
Baroque architectural styles (Section 4.3).

• The first approach, classifying Romanesque, Gothic and Baroque windows (Section 4.4,
[36]).

• The first approach, classifying Gothic traceries and Baroque pediments and balustrades
(Section 4.5, [38]).

• The first approach, classifying Renaissance, Russian and Islamic domes (Section 4.6,
[37]).

• The first approach, classifying Romanesque, Gothic and Baroque towers (Section 4.7).

• Integration of all above mentioned segmentation and classification approaches within one
framework (Section 4.8).

• The realization of the voting mechanism of architectural elements for the classification
of Romanesque, Gothic and Baroque architectural styles, as well as the combination of
Romanesque and Gothic styles, demonstrating the algorithm’s ability to classify mixture
of architectural styles (Section 4.8).

1.7 Structure of the Work

The dissertation is organized as follows: Chapter 2 familiarizes with the state of the art literature
related to the image-based architectural style classification. Chapter 3 examines the stated prob-
lem and the proposed algorithm for its solution from the architectural aspect, as well as gives an
introduction to the classified architectural styles and definitions of the used architectural terms.
Chapter 4 presents the innovation of the work - the first general methodology of architectural
style classification of facades. The experimental setup, performance evaluation and results are
reported in Chapter 5. Chapter 6 contains the comparison of the presented methodology with
the related work and discussion. And finally Chapter 7 summerizes and concludes the work.
A detailed description of the image databases used for the evaluation of the methodology and
source code modules executing significant functions are brought in Appendix A.
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CHAPTER 2
State of the Art / Analysis of Existing

Approaches

2.1 Literature Studies

The research related to architectural style classification of building facades is new in computer
vision community, since to the best knowledge of the author the only approach in literature
targeting the problem of automatic image-based architectural style classification of facades in
presented in [27]. The architectural styles classified are Flemish Renaissance, Haussmannian
and Neoclassical. The motivation of the work is to automate the recognition of the architec-
tural style of building facades, required for the building reconstruction by the means of inverse
procedural modeling.

Procedural modeling has proven to be a very valuable tool in the field of architecture [27]. It
describes a building as a series of rules. Starting from a mere footprint or polyhedral approxima-
tion, finer detail is added when going from rule to rule. Procedural modeling is quite different
from the traditional production of textured meshes. Procedural models are compact, semanti-
cally structured and can be easily altered and used to generate photorealistic renderings. Further-
more, they support a wide range of applications, from detailed landmark or building modeling
to full-size megalopolis simulations. Whereas meshes or point clouds can be generated through
dedicated mobile mapping campaigns, more precise and visually pleasing models were so far
made manually. It takes several man years to model accurately an existing city, such as New
York or Paris (e.g. 15 man years for the NY model in the King Kong movie) [27]. An alternative
comes from inverse procedural modeling. This process aims to reconstruct a detailed procedural
model of a building from a set of images, or even from a single image. Buildings are modeled
as an instantiation of a more generic grammar. Considering the vast diversity of buildings and
their appearances in images, the underlying optimization problem easily becomes intractable,
if the search space of all possible building styles had to be explored. Thus, all currently avail-
able inverse procedural modeling algorithms narrow down their search by implicitly assuming
an architectural style. The authors in [27] propose a four-stage method for automatic building

9



Figure 2.1: System overview of the architectural style classification approach by [27]

classification based on the architectural style. The style information can then be used to select
the appropriate procedural grammar for the task of building reconstruction. The clarification of
the method follows below.

2.2 Architectural Style Recognition of Flemish Renaissance,
Haussmannian and Neoclassical Building Facades

The main goal of the work in [27] is to model cities from images, taken with cameras on a
mobile mapping van. Therefore the authors look at the broader problem of selecting images that
are useful for the modeling of buildings. It is to be expected that a significant number of photos
taken from a mobile mapping van will not even contain buildings, but trees or only building parts.
Figure 2.1 gives the system overview of the approach by [27]. The four successive stages of the
method are scene classification, image rectification, facade splitting and style classification [27].
The first step in the approach is to determine if the image contains building facades. If this
condition is met, the image will pass to the rectification stage, as the images of buildings taken
from the street usually contain significant projective distortions. After the image is rectified,
identification of individual buildings in the image takes place. In long, unbroken building blocks
the architectural styles may vary from facade to facade [27]. Edge information is employed to
find individual building separators. Finally features are extracted from the individual facades
and a Naive-Bayes Nearest-Neighbor (NBNN) classifier is used to determine the architectural
style of the facade.

Scene Classification

Mobile mapping images display different content and quality [27]. There are typically several
cameras mounted on a van, with different viewing directions. Therefore, the first step in the
process of building classification is the step of selecting from all the collected images a set of

10



images that contain objects of interest. It is desirable this step to be as fast as possible, due to
the fact that it will have to deal with all images taken. On the other hand the algorithm should
have good generalization to deal robustly with novel scenes.

It has been shown by [32] that humans have the capability of determine scene type in less
than 200ms. This abstract representation of the scene is called gist and has served as a starting
point for the development of numerous holistic algorithms for fast scene classification, which
attempt to capture the global scene properties through various low-level image features. The suit-
ability of different gist-based approaches for scene categorization is discussed in [40]. Therefore,
the authors in [27] opt for a gist-based scene classification.

The classification is performed among the four most common scene types in street-side
imagery (Figure 2.1).

• No buildings - images not containing any buildings. Typical examples in urban scenarios
are parks, gardens and waterfronts.

• Street - images containing facades captured at a high angle to the facade planes, occurring
when camera orientation coincides with street direction.

• Facades - images containing one or more whole facades.

• Building part - images containing only a small part of a facade, not enough for a complete
reconstruction.

Among the scene classes listed, only the “Facades” class is suitable for complete facade
reconstruction. The appearance of the “No building” class in collected images means there is
a gap in the building block, and that no buildings should be reconstructed. Similarly, if the
image is classified as “Street”, it displays a street crossing. Finally, the “Building part” class
represents the images, in which the building is too large (or the street is too narrow) to be
captured in a single image. The approach uses a steerable pyramid of Gabor filters, tuned to
4 scales and 8 orientations. Filter outputs are then averaged on the 4x4 grid. This produces a
feature vector comprising of 512 features. Classification is performed using a Support Vector
Machine (SVM) with a Gaussian radial basis kernel function. The SVM is trained using a one-
versus-all approach.

Image Rectification

Sideways looking cameras in streets have a low chance of capturing most of a facade, as opposed
to cameras looking forward, upward or backward. The images taken by these cameras are pro-
jectively distorted. The prior rectification of the images to a fronto-parallel view is a prerequisite
to not only facade splitting algorithm in [27] but also further processing steps. The rectification
is implemented by following the approach from [22]. After the scene classification step it is
assumeed that the image contains a planar surface with two dominant perpendicular directions.

The relation between points of the image plane x and points in the world plane x′ can be
expressed by the projective transformation matrix H as x′ = Hx, where x and x′ are homoge-
neous 3-vectors. The rectification follows a step-wise process (see Figure 2.2) by estimating the
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Figure 2.2: Rectification process: (a) input image with dominant lines, (b) projective distortion
removal, (c) affine distortion removal, (d) similarity transformation [27]

parameters of the projective P, affine A and similarity S part of the transformation H, which can
be (uniquely) decomposed into:

H = SAP (2.1)

The projective transformation matrix has the form

P =

1 0 0
0 1 0
l1 l2 l3

 (2.2)

where l∞ = (l1, l2, l3)
T denotes the vanishing line of the plane. Parallel lines in the world plane

intersect in the distorted image at vanishing points. All vanishing points lie on l∞. A state of
the art line detector is used to find these vanishing points. Then the two vanishing points of the
image are detected by RANSAC (RANdom SAmple Consensus) [12].

The affine transformation:

A =

 1
β −α

β 0

0 1 0
0 0 1

 (2.3)

has two degrees of freedom represented by the parameters α and β. The knowledge of the
perpendicular intersection of the dominant lines la and lb is the only constraint to impose, as
there is no knowledge about other angles or length ratios in the image. Therefore the affine part
of the rectification process can only restore angles, but not length ratios. α and β lie on the circle
with center and radius:

(cα, cβ) =

(
a+ b

2
, 0

)
, r = |(a− b)| (2.4)

where a = −la2/la1 and b = −lb2/lb1. If the image does not contain any affine distortions, the
parameters would have the value (0; 1)T , so the closest point on the circle to that point is chosen
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for the correction. Finally the image gets rotated by the rotation matrix R to align the dominant
lines with the axes, scaled by s and translated by t:

A =

(
sR t
0T 1

)
(2.5)

Facade Splitting

Continuous building blocks with little or no space between individual buildings are common for
urban environments [27]. Each building in the block may have a different architectural style.
If the style recognition system takes as an input building blocks, like in [27], it should be able
to separate different facades in order to classify them properly. As man-made structures are
characterized by strong horizontal and vertical lines, the auhors in [27] choose to exploit them
as the main cue for building separation. They assume that the individual facades can be separated
using vertical lines. The following heuristic is used: horizontal line segments on the building
usually span only one facade. Vertical lines, which cross a large number of horizontal lines, have
less chance of being a valid facade separator.

After the rectification step, it is known that the vertical lines in the image correspond to the
global direction of gravity. A line segment detector is used to find salient edges. Then line
segments are grouped in three clusters. The first cluster contains horizontal line segments (with
a tolerance of +/- 10 degrees in orientation). Similarly, the second cluster contains vertical line
segments, while the third one - all other detected line segments. The last cluster will typically
have a smaller number of elements, due to the predominance of two perpendicular orientations
in urban scenery.

Next, a vertical line is swept over the image. At each position of the line, two values are
calculated: support and penalty. Support is defined as the number of vertical line segments that
coincide with the sweeping line (or reside in its close vicinity). Every vertical line segment is
additionally weighted with its length: longer vertical line segments provide more support for
the line. The support from neighboring vertical lines is reduced linearly with the distance to the
line. Penalty is calculated through the number of horizontal lines that the sweeping line crosses.
Every horizontal line segment is weighted with its length: the longer the crossed segment is, the
more penalty it generates. Relative position of the crossing point to the center of the horizontal
line segment is also evaluated. Vertical lines that cross horizontal segments near the edges will
receive less penalty than those that cut the segments through the middle.

After the line sweeping process there are two vectors of the same size, equal to the image
width: support vector and penalty vector. The aim is to find the positions of the vertical line,
which correspond to local minima in the penalty vector and local maxima in the support vector.
In order to calculate this, the authors in [27] first use the penalty vector to threshold the support
vector. All of the line positions which have more than 3% of the maximum penalty value are
discarded. After positions having less then 20% of the maximum support value are eliminated
as well. The appropriate values in the support vector are set to zero. Finally, local non-maxima
suppression is performed on the support vector by a sliding window (9% of the image width).
The resulting local maxima then coincide with the desired separator positions. These values
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Figure 2.3: The facade splitting algorithm [27]

are used to cut the building block into individual facades. The process of estimating facade
separators from line segments is illustrated in Figure 2.3.

Style Classification

The style classification is an important step in order to select an appropriate grammar for the
given building. To differentiate between “Flemish renaissance”, “Haussmann”, “Neoclassical”
and “Unknown” styles, the NBNN classifier, proposed by [30], is employed. First all descrip-
tors for the training images are calculated and sorted into the different classes. Then for every
descriptor di of the query image the nearest neighbor distances to each class is approximated
using the FLANN library [29]. The sum over the Euclidean distances of each query descriptor
di denotes the image-to-class distance. The class with the least distance is chosen as the winner
class. The mean detection rate of the Scale Invariant Feature Transform (SIFT) [23] features
was 84%.
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2.3 Literature Studies Related to Building Facade Analysis

Whereas the approach presented to the scientific community in [27] is found to be the only
work so far addressing the problem of building facade automatic architectural style classification
based on images, extensive research has been carried out in the broader field of building facade
analysis. Facade analysis is attractive in the applications of 3D urban environment modeling
and facade reconstruction. The extraction and reconstruction of windows, doors and ornaments
provides rich information of the buildings and adds visual realism [18].

The previous research, relevant to the current work by addressing the problem of facade
segmentation by an architectural element, performs segmentation of windows [1, 4, 17, 18, 20,
33, 34, 42], doors [4, 42], balconies [42], walls [4, 42], roofs [4, 42] and chimneys [42]. Though
none of the approaches referred targets the segmentation of the window types classified in the
current work, namely Romanesque single, double or triple round arch windows, Gothic style
pointed arch and rose windows and Baroque windows with triangular, segmental pediments and
balustrades as decorations. The example images display simple rectangular windows, which are
visually very different from the ones listed above and featuring complex ornamentation.

The purpose of the building facade segmentation is to discover different regions of a facade
image and assign each of them a particular semantic label (walls, windows, roofs, etc) [42]. The
main difficulty rests on the significant variations that may exist beween buildings, even for ones
corresponding to the same architecural style [42]. Furthermore, their visual appearance spans an
infinite space, due to either their internal characteristics (walls, windows, roof) or their external
ones (occlusions, lighting, reflectance properties, etc.) [42].

Traditionally, segmentation problems are divided into model-based and model-free meth-
ods [42]. Model-free approaches make no assumption on the geometry and the appearance of
facade components and aim at grouping pixels according to feature similarties. These methods
are prone to failure, because pixels belonging to the same facade element do not necessarily
share common visual characteristics. Model-based methods provide segmentation, which is a
compromise between the available image support and a prior knowledge. The main assumption
of these methods is that the space of solutions can be parameterized in a convenient way. This is
far from being sufficient when dealing with building facades, simply because no static parame-
triation is generic enough to encompass different facade layouts. A third class of methods was
introduced to cope with the aforementioned limitations. Procedural models like shape grammars
offer a flexible and powerful tool to account for such variability while being compact and pro-
viding a semantic representation of the obtained results. The idea is to represent buildings using
a set of replacement rules and a dictionary of basic shapes. These methods have been extensively
used in computer graphics.

The main contribution of [42] is to combine a powerful machine learning approach with
procedural modeling as a shape prior so as to fit the purpose of multi-class facade segmenta-
tion. Generic shape grammars are constrained to express buildings only. The classes segmented
are “window”, “wall”, “balcony”, “door”, “roof”, “chimney”, “sky”, “shop” and “other”. The
promising results are demonstrated on an image dataset of Parisian architectural styles - Hauss-
mannian, Restauration and Louis XIV.

The authors in [18] propose an automatic method for segmentation of building facade im-
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ages. Firstly individual facades are isolated from general city block images. This step is realized
via accumulation of directional color gradients, assuming that facade structures are aligned.
Then the sky region is detected based on segmentation approach and color marker extraction.
Finally the images are split in floors also employing directional color gradient accumulation.
The approach introduced several morphological filters to augment the robustness to problems,
like textured balconies, reflections on the bright windows and small obstacles in images [18].

The approach in [4] introduces a double-stage, i.e. course and fine, parsing of architectural
scene images. At the first stage the image is parsed into five visual categories - “sky”, “build-
ing”, “foliage”, “street” and “sky-mixed”. The “sky-mixed” class represents image parts, which
contain pixels of sky, building and foliage, but do not look like either one alone. At the second
stage parsing at a finer level is realized, identifying the positions of windows, doors, rooflines,
building and roof boundaries, the colors of walls and the spatial extent of particular buildings.
Features are computed in a fixed window around each pixel, avoiding segmentation as a pre-
processing step. The approach is built as a probabilistic model, where “course” and “detail”
labels are assigned to each image pixel. The labeling models are trained using a set of hand
labeled samples. The objective in the learning stage is to count the number of times a certain
label co-occurs with a certain feature value combination as an empirical estimate p(li|fm). The
prior distribution over visual categories is assumed to be uniform and the features are modeled
as independent. The features observed are color histogram in L.a.b color space, contour, tex-
turesness, position and their combinations. Experiments prove that the combinations of features
perform better than any individual feature.

The approach introduced by [34] performs window detection on facades, located in the Aus-
trian city Graz and its surroundings. It is a modified gradient projection method, robust enough
to process complex facades of historic buildings in diferent weather and lighting conditions,
under high perspective distortions. The window detection is realized in three subsequent steps:

1) Identification of facade borders in the input image and its rectification.
This first step is achieved by using the method of [19], where the aerial model of the scene

with untextured building frames is available and the rectified facades are obtained by projecting
a digital image into that model.

2) Extraction of facade levels.
Firstly horizontal division of the facade is performed employing the vertical projection. Af-

terwards the horizontal projection of gradient is computed for each level. The thresholding of
the horizontal projection separates the blocks within the levels.

3) Detection of windows.
In this step the objective is to find out if the blocks are windows or facade parts. The labeling

into “windows” or “facade” categories is determined iteratively by k-means clustering of the
color histogram in CIE-Lab color space, the size of the block and the gradient content of the
block. Selection of the CIE-Lab color space is advantageous for the following reasons:

i) The Euclidean distance of two colors in CIE-Lab space is directly proportional to the
visual similarity of the colors, which provides a simple metric for clustering.

ii) The clustering can be performed only in “a” and “b” channels, which represent the color
value component. The “L” component represents the luminosity. A single value of “L”, com-
puted as a mean of each color in the cluster can be used as representative for each cluster to cope
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with shadows and illumination problems.

The experiments were carried out on an image database of 19 facades with 392 manually
labeled windows, 369 of which (94.13%) were detected by the algorithm.

The approach introduced by [33] differs from the algorithm in [34] by exploring the HSV
color space instead of the CIE-Lab. In HSV color space the “H” channel represents the hue,
the “S” channel - saturation and the “V” channel - value. The approach in [34] considers win-
dow detection in a single image scenario, when only a single image of a building is examined.
Whereas in [33] also multi-view scenario window detection is performed on multiple images of
the same facade by comparing two approaches:

1) merging the images into a single, rectified facade and performing the window detection
on the merged data,

2) applying window detection on each image separately and merging the results in a world
coordinate system.

The second method described outperforms the first one while increasing the number of im-
ages. The multi-view experiment also shows that at a certain number (around 20) of images
the precision of the window detection does not increase for both methods. The experiments are
carried out on multiple images of five facades. The average probability of detecting a window is
reported to be 91.4%.

The authors in [1] introduce a learning classifier system that provides substantial single win-
dow detection and localization and also a Window Region Of Interest (WROI) operator, as a
basis for further processing. The main application for this window detection system is consid-
ered the facade classification from mobile imagery. For this purpose it suffices to detect only
a fraction of all windows on a facade, assuming that either the complete set of windows would
belong to a single window class or that the detected windows are sufficiently discriminative for
identification of the corresponding facade, so that the remaining undetected windows provide
only redundant information. The problem of window detection is viewed as a simple pattern
recognition problem, while being aware that the visual content of window patterns may repre-
sent considerable variations of appearance and the variation of the viewpoint can lead to projec-
tive distortions and scale variance, singnificantly impacting the quality of the pattern matching
as a result. The authors employ the work presented by [44] for detection of the objects of in-
terest. Firsly the evaluation is performed on the detection of single windows, reporting 57%
true positive rate as the best result. Since the definition for true positives is less strict for the
WROI evaluation case, higher detection rate is achieved in that scenario (60% in the best case).
It is observed that window detection worsens for contemporary buildings, buildings with few
informative features, as well as for windows exposed to high perspective distortions.

The approach introduced in [45] performs detection of repeated structures in facade images.
Since no explicit notion of a window is used in the approach, besides windows other manmade
structures are also being identified. Here the methodology of [24] for detection of dominant
symmetries is adapted for detection of multiple repeated structures. The methods, addressing
the segmentation of architectural elements dome and tower and introduced in the current work in
Section 4.2 and Section 4.3 respectively, also employ the methodology of [24] with the purpose
of bilateral symmetry detection on building facades.
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2.4 Summary

Building facade visual analysis is an active research field. However, to the best knowledge of
the author the only approach in the literature, targeting the problem of the image-based architec-
tural style classification of facades is introduced by [27] (Section 2.2). The approach classifies
facades of Flemish Renaissance, Haussmannian and Neoclassical architectural styles in four suc-
cessive steps (Section 2.2) - scene classification, image rectification, facade splitting and style
classification. The work motive is the recognition of the architectural style of building facades
in order to reconstruct buildings by the means of inverse procedural modeling. Images taken
with cameras on a mobile mapping van are the input for the method.

Section 2.3 studies the literature in the broader domain of building facade visual analysis.
The problem of facade segmentation by an architectural element is tackled in the approaches
segmenting windows [1, 4, 17, 18, 20, 33, 34, 42], doors [4, 42], balconies [42], walls [4, 42],
roofs [4, 42] and chimneys [42]. The method proposed in [45] detects repeated structures on
building facades.
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CHAPTER 3
The Architectural Aspect of the

STYLE Project

3.1 How to Distinguish Architectural Styles

Geographical, geological, climate, religion, social, political and historical factors influenced the
formation of architectural styles [13]. In fact, a definition of an architectural period cannot be
absolute, but it generally applies to ninety examples out of every hundred [5]. Every style of
architecture is regarded as the solution of certain fundamental problems, i.e. each building must
have all or most of the parts A. to G. (listed below) and consequently there is both interest and
instruction to be gained in learning and comparing how each style has solved these points of the
problem [13].

A. Plan or general distribution of the building

B. Walls, their construction and treatment

C. Openings, their character and shape

D. Roofs, their treatment and development

E. Columns, their position, structure and decoration

F. Mouldings, their form and decoration

G. Ornament, as applied in general to any building

The current methodology of building facade architectural style classification is built on the
above stated definition of architectural styles, developing it further to fit in the scope of a com-
puter vision system. Architectural elements are the unique details and component parts that
together form the architectural style of buildings. While some of the points A. to G., like walls
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and columns, are architectural elements, others assume to include multiple architectural ele-
ments: i.e. in C. openings refer to doors, windows, etc, in D. roof also includes a convex roof,
called dome, whereas in G. ornament refers to a variety of architectural elements. So to recog-
nize the style of the building, typical architectural elements of the style should be looked for. The
methodology classifies architectural elements window, dome, tower, as well as tracery, pediment
and balustrade.

The work focus is on historic architectural styles, which combine style-typical architectural
elements and obey to certain design rules for building construction. Unlike historic architecture,
contemporary architecture is not confined by any rules and is difficult to categorize. In addition
to that today’s construction technologies let bring into life the most extraordinary ideas of archi-
tects, thus creating one of a kind buildings, which carry the style signature of the architect rather
than of a widely spread general style.

3.2 Romanesque, Gothic and Baroque Architectural Styles

The dissertation explores and classifies building facades of the following pan-European archi-
tectural styles:

Romanesque (8th - 12th centuries)

Gothic (12th - 16th centuries)

Baroque (17th - mid 18th centuries)

Architectural revivalism, which is a phenomenon of imitation of past architectural styles,
should be noted while reviewing the problem of architectural style classification. The singularity
of 19th century revivalism, as compared with earlier revivals, was that it revived several kinds
of architecture at the same time [6]. These revived styles are also referred to as neo-styles, e.g.
Gothic Revival is also referred to as neo-Gothic. The work does not intend to differ between
original and revival architectural styles, as only visual information is not enough for such a
discrimination. If there be a need to differ original styles from the revived ones, the building
date should be provided as an additional feature together with the image. Thus while saying the
project addresses the classification of Romanesque, Gothic and Baroque styles, the revivals of
those should be also understood by default.

The term Romanesque may be said to include all those phases of Western European archi-
tecture, which were based on Roman art, and which were being carried out, in a rough and ready
way, in Europe, from the departure of the Romans up to the introduction of the pointed arch
in the thirteenth century [13]. The general architectural character is sober and dignified, while
picturesqueness is obtained by grouping of the towers [13]. Local influences of taste, climate,
geography and geological formations were instrumental in producing different characteristics of
each country [13]. The most oustanding feature of the style is the round arch [13]. The current
work classifies windows with single, double or triple round arches in Romenesque class (Sec-
tion 4.4). The architectural element tower, extensively used in Romenesque architecture, is also
classified (Section 4.3, Section 4.7).
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The principles and characteristics of Gothic architecture were similar throughout Western
Europe [13]. The fully developed Gothic art of the thirteenth century was the style which
had been slowly developing itself throughout Europe as a necessary sequence of Romanesque
art [13]. One style evolved from another so gradually that it is impossible to say exactly where
the one ended and the next began [13]. As a consequence of this evolution buildings display-
ing both Romanesque and Gothic architectural elements are frequently met. Thus the proposed
method also performs classification of buildings, which are a mixture of Romanesque and Gothic
styles. Gothic style is also refered to as Pointed style [13]. The most essential part of the Pointed
style - the part wheron its whole structure and organisation depend, is the pointed arch itself [35].
In Gothic style the current method classifies pointed arch and rose windows (Section 4.4), trac-
eries (Section 4.5) and towers (Section 4.3, Section 4.7).

Baroque is a European style of architecture and decoration, which developed in the 17th
century in Italy from late Renaissance and Mannerist forms, and culminated in the churches,
monasteries, and palaces of southern Germany and Austria in the early 18th century 1. This
style originated in Rome and is associated with the Catholic Counter-Reformation, its salient
characteristics – overt rhetoric and dynamic movement 2. Baroque Architecture may be limited
to a historical period, varying in date in different countries and cities, but in general beginning
as the Renaissance spirit declined to pedantry and ending with the return to pedantry in the
eighteenth century [5]. The architectural details of the various buildings vary so much, as to
make generalizing almost impossible [5]. Constructional difficulties were so few that the dome -
to take one feature - was varied in almost every instance, and was sometimes elliptical instead of
circular [5]. The classified elements in Baroque style are windows , featuring as ornamentation
balustrades, triangular and segmental pediments (Section 4.4). Balustrades and a bigger variety
of pediments, such as triangular, segmental, triangular and segmental brocken on the base or top,
swans’ necks are the classified ornamentations (Section 4.5). The list in Baroque style finalize
the prominent elements tower (Section 4.3, Section 4.7) and dome (Section 4.2, Section 4.6).

3.3 Typical Windows of Romanesque, Gothic and Baroque
Architectural Styles

Window is an architectural element, the functionality of which is to let natural light into the
building. For architectural style classification of windows typical window examples of Ro-
manesque, Gothic, Baroque architectural periods are chosen. The characteristic feature of Ro-
manesque windows is the single, double or triple round arch (Figure 3.1a, Figure 3.3b and Fig-
ure 3.3c respectively), whereas Gothic style is very distinct with pointed arches (Figure 3.2a) and
rose windows (Figure 3.2b). The pedimented and decorated window-opening is a favourite motif
in the Baroque facade [5]. In Baroque style the examined window types feature as decorations
triangular (Figure 3.3a) and segmental (Figure 3.3b) pediments and balustrades (Figure 3.3c).

The window classification approach (Section 4.4) overall catigorizes three window classes
- Romanesque, Gothic, Baroque and 8 intra-class types - Romanesque single, double and triple

1Illustrated Architecture Dictionary http://buffaloah.com/a/DCTNRY/vocab.html
2Baroque / Baroque Revival Architecture http://buffaloah.com/a/DCTNRY/b/baroque.html
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a) Single arch b) Double arch c) Triple arch

Figure 3.1: Romanesque windows.

a) Gothic pointed arch b) Gothic rose

Figure 3.2: Gothic windows.

round arch windows, Gothic pointed arch and rose windows, Baroque windows with triangular,
segmental pediments and balustrades. There is no discrimination among 8 intra-class types, as
the objective of the current work is the architectural style classification.

3.4 Traceries, Pediments and Balustrades

Tracery (Figure 3.4a) is a pattern of interlacing lines. This architectural element is characteristic
for Gothic and Gothic Revival architecture. Though its common function is to support stained
glass windows, it appears also on walls and other parts of Gothic/Gothic Revival facades. Trac-
ery, adorning a wall or panel but not pierced through, is called blind tracery (Figure 3.4b). It
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a) Triangular pediment b) Segmental pediment c) Balustrade

Figure 3.3: Baroque windows.

is used only as a decorative element, unlike when supporting stained glass windows. Patterns
in tracery form ornaments called trefoil (Figure 3.5a), quatrefoil (Figure 3.5b), cinquefoil (Fig-
ure 3.5c), sexfoil (Figure 3.5d), multifoil. Foil is the french word for leaf, while the ornament
prefixes indicate the number of leaves. Figure 3.5a and Figure 3.5b show pointed foils, whereas
Figure 3.5c and Figure 3.5d - round foils.

Pediment is an architectural element, which stands across a portico, door or window. While
it covers porticos in Greek, Greek Revival, Neoclassical architecture, here the focus is on ped-
iments, serving as window decorations on Baroque/Baroque Revival facades. The wide variety
of pediment types and designs is one of the factors making Baroque buildings so ornate and rich.
Here are listed the main types of pediments. Triangular and segmental pediments are shown in
Figure 3.6a and Figure 3.6b respectively. The space inside the pediment is called tympanum and

a) Tracery with stained glass b) Blind tracery

Figure 3.4: Gothic tracery samples.
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a) Trefoil b) Quatrefoil c) Cinquefoil d) Sexfoil

Figure 3.5: Gothic tracery patterns.

a) Triangular pediment b) Segmental pediment

c) Broken segmental pediment d) Broken triangular pediment

e) Swan’s neck pediment f) Balustrade with vase-shaped balusters

Figure 3.6: Examples of the classified Baroque architectural elements

is ideal for filling with sculptures. A pediment broken at the top, base or both is called broken
pediment. Figure 3.6c displays an example of a segmental pediment broken on the top, whereas
Figure 3.6d shows a triangular pediment broken on the base. Broken pediments provide more
space for complex sculptures typical for Baroque architecture. A type of broken pediment with
S-shaped curves is called swan’s neck pediment (Figure 3.6e), as it resembles two swans’ necks
facing each other.

A series of uprights, called balusters and supporting a railing, is called balustrade. They
appear as window decorations on Baroque/Baroque Revival facades. A balustrade with vase-
shaped balusters is shown in Figure 3.6f. All architectural definitions of the current section are
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taken from the Illustrated Architecture Dictionary.
The goal is to classify tracery in Gothic class and pediments, balustrates - in Baroque class

(Section 4.5). Though this is a binary classification problem, the classification complexity is
high due to unlimited variations of the forms, decorations and ornamentations of the classified
elements.

3.5 Renaissance, Russian and Islamic Domes

A dome is a convex roof. Domes are categorized according to the base shape and the section
through the dome center. Hemispherical domes have a circular base with a semicircular section.
This dome type (Figure 3.7a) is characteristic for grand buildings of Renaissance architecture.
The domes of Baroque, Neo-Baroque, Neo-Renaissance and Neoclassical buildings imitate the
visual forms of Renaissance domes, thus the dome classification approach classifies them as
Renaissance style. The mentioned imitation is displayed on the examples of the domes of St.
Charles’s Baroque church in Vienna (Figure 3.7b), St. Stephan’s Neo-Renaissance Basilica in
Budapest (Figure 3.7c) and Neoclassical city hall of San-Francisco (Figure 3.7d).

In the design of domes and belfries, but especially the former, the genius of Baroque ar-
chitects is seen at its best [5]. In fact, with a few exceptions, the art of dome design, initiated
in the earlier days of the Renaissance by Brunelleschi, attained its highest level in the seven-
teenth century [5]. The most copied Renaissance domes belong to St. Peter’s Basilica in Vatican
(Figure 3.7a) and St. Paul’s Cathedral in London.

Saucer domes have a circular base and a segmental, less than a semicircle section. This dome
type is typical for Islamic Ottoman mosques, some of which are former Byzantine churches. The
saucer dome of Vienna Islamic center is displayed in Figure 3.7e. Onion domes have a circular
or polygonal base and an onion-shaped section and are a typical feature of Russian Orthodox
churches and Islamic mosques. Russian and Islamic onion domes are shown respectively on
the examples of one of the domes of St. Nicholas’s Basilica in Vienna (Figure 3.8a) and the
Blue Mosque dome in Yerevan (Figure 3.8b). Russian architecture displays its most peculiar
feature in the shape and number of the domes [35]. Russian domes are gilded or brightly painted
in blue or multiple colors. Architectural definitions are taken from the Illustrated Architecture
Dictionary.

The dome classification module (Section 4.6) categorizes three architectural styles - Re-
naissance, Russian, Islamic, which comprise eight intra-class types - hemispherical domes of
Renaissance, Neo-Renaissance, Baroque, Neo-Baroque, Neoclassical buildings in Renaissance
class, Russian onion domes, Islamic onion and saucer domes. Here, to avoid misunderstanding,
it is worth to remind, that the project at its current state targets the classification of Romanesque,
Gothic and Baroque styles. And since domes are not common for Romanesque and Gothic ar-
chitecture, onion and saucer domes stand as a classification alternative to hemisperical domes,
typical for Baroque grand buildings. Though Russian and Islamic domes are introduced only
as comparative analysis at this point, the voting algorithm leaves free room for the extension of
the project by Russian and Islamic styles by adding other typical architectural elements of these
styles. Domes and towers are featured on buildings of religious and secular great significance,
as a display of power.
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a) St. Peter’s Basilica b) St. Charles’s church

c) St. Stephan’s Basilica d) San-Francisco city hall

e) The saucer dome of Vienna Islamic center

Figure 3.7: Hemispherical and saucer domes.
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a) St. Nicholas’s Basilica dome b) Yerevan Blue mosque dome

Figure 3.8: Onion domes.

3.6 Romanesque, Gothic and Baroque Towers

A tower is a building or part of a building that is exceptionally high in proportion to its width and
length 3. The tower segmentation module (Section 4.3) addresses buildings featuring single and
double towers. Towers, that are detached from the main building, like the leaning Pisa bell-tower,
are out of the scope of the approach, since they are stand-alone buildings themselves. Buildings
featuring more than two towers are also not considered, as multiple towers have high chances
of occluding one another. The tower segmentation and classification approaches (Section 4.3,
Section 4.6) process towers of Romanesque, Gothic and Baroque styles, examples of which are
shown in Figure 3.9. Figure 3.9a displays the left tower of Breitenfelder Romanesque church
situated in Vienna, Figure 3.9b - the tower of Brussels Gothic city hall and Figure 3.9c - the
tower of Loreta Baroque church in Prague.

3.7 Summary

The current chapter illustrated the architectural aspect of the STYLE project. Firstly, Section 3.1
illustrated the human cognitive process of architectural style classification, that is the identifi-
cation of style typical architectural elements on a building facade. Afterwards it justified the
methodology of the STYLE project - the voting of architectural elements, from the architectural
point of view, since the method imitates the human logic for solving the problem stated.

Secondly, Section 3.2 introduced the three historic pan-European architectural styles classi-
fied within the project - Romanesque, Gothic and Baroque. The styles have general character,
being temporally long-lived and geographically widely spread in Europe.

Thirdly, the definitions and examples of the architectural elements classified were delivered
in Section 3.3, Section 3.4, Section 3.5 and Section 3.6.

3Tower http://www.buffaloah.com/a/DCTNRY/t/tower.html
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a) Romanesque Tower b) Gothic Tower c) Baroque Tower

Figure 3.9: Examples of Towers.
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CHAPTER 4
Methodology: The Voting of

Architectural Elements

4.1 The Algorithm of the Voting of Architectural Elements

The ultimate goal of a computer vision tool for architectural style classification is to possess the
intelligence to classify any visually distinguishable architectural style automatically. The first
milestone of the work is the introduction of an algorithm, which imitates the logic of a human
expert during architectural style classification process. Following sufficient research related to
architectural styles [5, 6, 13, 35] and based on the definition of architectural styles, brought in
Section 3.1, the general algorithm of image-based architectural style classification is constructed
as a succession of the three principle phases, listed below:

1) The query building facade is segmented by architectural elements.
2) Each segmented element is passed to the corresponding module for classification. The

classification is accomplished using the corresponding visual codebook, obtained beforehand by
training of the same type of elements.

3) Each classified element votes for an architectural style. The architectural style, having
received the majority of votes, is chosen as the building style.

The algorithm is general enough to classify any visually distinguishable architectural style.
The algorithm’s ability to classify facade parts, partially occluded facades or facades of mixed
architectural styles also speaks well for its universality. Furthermore, the algorithm is efficient,
since the votes of the misclassified architectural elements can be suppressed by the votes of
numerous elements at the voting phase. Repeated architectural elements (e.g. windows and
traceries), presenting redundancy, also promote the suppression of falsely classified votes. The
more architectural elements classified, the more robust against misclassifications the algorithm
is in the voting phase. The algorithm is innovative, being the first general algorithm for solving
the problem stated.

The choice of coming up with a special ‘smart‘ algorithm, imitating the human architectural
style classification process, but not trying any of the standard image classification algorithms,
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such as the general BoW method, is based on extensive research related to architectural styles
[5, 6, 13, 35] and relies on the following strong arguments for the voting algorithm and against
general image classification ones:

• Not every visual feature on a facade, speaks about its architectural style. A vivid example
of that and a well-known problem, as mentioned in [27], is the first floor phenomenon.
Building first floors may host stores, cafes, restaurants, hotel lobbies, etc., the appearance
of which does not present architectural style relevant visual information. Advertising
boards and signs may additionally stretch beyond the first floor. Figure 4.1 depicts exam-
ples of such neo-Baroque facades, which display plenty of architectural style irrelevant
visual features, but may well be classified by the proposed algorithm owing multiple win-
dows adorned with triangular pediments.

• Partly occluded facades cannot be classified by a general image classification algorithm,
whereas achieve successful classification by the proposed method, analyzing the visible
style typical architectural elements.

• The method is designed so that to permit the classification of a mixture of architectural
styles, by having the mixture of Romanesque and Gothic implemented so far. Furthermore
at this stage it also embeds architectural knowledge in the system by letting only the
combinations of styles, which are probable due to evolution of styles from one another,
as well as historic periods and reigns, influencing architecture heavily. Classification of a
mixture of styles seems quite a challenge for a general classification algorithm.

• The intra-class variety of the classification problem posed is immense, taking into account
the unlimited variety of buildings, the infinite number of possible 2D projections (images)
and the visual complexity of historic architectural styles. This is another severe nega-
tive factor for a general classification algorithm, a major challenge, which the STYLE
algorithm aims to overcome by facade decomposition into architectural elements and bal-
ancing the complexity of the problem on several modules, each solving a specific simpler
task successfully.

While brainstorming about the problem of architectural style classification, analysis of the
whole building facades shapes also may occur as a possible solution. Whereas some facade
shapes may appear visually distinctive, generally architectural style discrimination is not possi-
ble by facade shapes. The arguments supporting this claim are: 1) Historic building facades are
not planar, thus they are 3D objects with unlimited number of possible 2D projections (images).
2) The essense of architectural styles is not in the shapes of the whole buildings, but in the shapes
of style-typical architectural elements. Facades with the simplest rectangular shape may belong
to any architectural style, proving the idea of facade shape analysis pointless.

The second milestone is the implementation of the proposed algorithm, its embodiment from
the theoretical idea to a functional software tool. Here the issue is lying in the fact that there are
decades of architectural styles and it is obvious, that the realization of the classification of all of
them is not achievable due to the requirement of immense resources, as well as technical chal-
lenges. Therefore the software implementation of the algorithm is limited to three pan-European
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a) A building hosting a hotel

b) A building hosting an ice-cream saloon

Figure 4.1: Neo-Baroque facades featuring architectural style irrelevant visual features.

architectural styles of major importance – Romanesque, Gothic and Baroque. The classified ar-
chitectural elements are window, dome, tower, tracery, pediment and balustrade, illustrated in
detail in Chapter 3. The diagram of the algorithm with its three major steps is presented in Fig-
ure 4.2. Whereas the segmentation of windows, traceries, pediments and balustrades is manual,
the segmentation of domes and towers is automated at the first step. Section 4.2 and Section 4.3
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Figure 4.2: The Algorithm of the Voting of Architectural Elements
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illustrate the approaches performing segmentation of domes and towers respectively. The clas-
sification approaches at the second step categorize windows (Section 4.4), traceries, pediments,
balustrades (Section 4.5), domes (Section 4.6) and towers (Section 4.7). The voting mechanism,
making the third step of the algorithm, is detailed in (Section 4.8). The dashed module in Fig-
ure 4.2 shows that it is possible to extend the project with new architectural elements and styles
by taking the same three steps for the newly incorporated elements.

The software tool is semiautomatic, requiring minimum user interaction only by indicating
the architectural elements present on the query facade and manual segmentation of the elements
besides domes and towers. The chapter continues with presenting the segmentation and clas-
sification approaches of the architectural elements and is concluded by the illustration of the
STYLE project GUI and the voting scheme on a sample facade image.

4.2 Segmentation of Domes

The current approach was introduced to the scientific community in [39].
Facade dome segmentation is a highly complex task, being a high-level semantic segmenta-

tion by an architectural element. Color-based segmentation approaches are not applicable, since
color is not a distinctive feature and a single dome contains multiple color segments. Though
domes have certain geometric forms, defined as hemispherical, onion, etc, shape analysis is also
not suitable for segmentation, as these shapes may not be modeled owing unlimited variety.

The block-scheme of the dome segmentation algorithm is depicted in Figure 4.3. The
detailed illustration of the algorithm is following below on a sample facade image.

Using symmetry as a feature is logical, since facades, like any artefacts, are highly symmet-
rical. Facades have symmetry specificities. Firstly, dominant symmetry axes are vertical. Sec-
ondly, whereas bilateral symmetry is common for historic facades, translational and rotational
symmetries also take place. Bilateral symmetry is of interest for dome segmentation purpose,
because domes are 3D objects preserving bilateral symmetry related to the vertical axis passing
through their center in 2D projections. Thus at the first step the image bilateral symmetry axes
are detected using the method proposed by Loy et al. [24]. In [24] matches of symmetric points
are found using modern feature-based methods, such as [23], from which bilateral symmetry
axes or centers of rotational symmetry are determined. The method is independent of the feature
detector and descriptor used, requiring only robust, rotation-invariant matching and an orienta-
tion measure for each feature [24]. This method is sucessfully used also for detecting repeated
structures on facades [45].

Figure 4.4a shows an example image with a tilted dome. Image bilateral symmetry axes
and supporting symmetric points are displayed in Figure 4.4b. In case multiple symmetry axes
are found, the axis with the strongest symmetry magnitude (supported by the biggest number of
symmetry points) is chosen. Here the false positive symmetry descriptors are ignored, as they
never succeed in building the strongest symmetry axis. As the dominant symmetry axis passes
through the dome center and is vertical, the image is rectified by rotation, making the strongest
symmetry axis vertical (Figure 4.4c). Images, whose strongest symmetry axis is vertical, skip
this step. Bilateral symmetry detection [24] is performed once more on the rotated image to find
the position (column) of the strongest symmetry axis.
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Original image 
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Figure 4.3: The block-scheme of the dome segmentation algorithm.
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a) Original image b) Symmetry axes and symmetric points [24]

c) Rotated image d) Segmented image [11]

e) Image mask f) Figure e) cut from the main symmetry axis

g) (Half) Facade contour h) Dome: final segment

Figure 4.4: Dome segmentation algorithm steps.
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At the second step segmentation of the original image background and foreground is per-
formed. As domes are situated high above the buildings, the sky and clouds form their back-
ground. The author segments the original image using the methodology introduced by Felzen-
szwalb et al. [11] (Figure 4.4d). The pairwise comparison of neighboring vertices, i.e. partitions
is used to check for similarities [11, 14]. In [11] a definition of a pairwise group comparison
function Comp(·, ·) is given, judging if there is evidence for a boundary between two image
segments or not. Comp(·, ·) contains a scale parameter k, where bigger k prefers larger seg-
mented regions. The function measures the difference along the boundary of two components
relative to a measure of differences of components’ internal differences. This definition tries to
encapsulate the intuitive notion of contrast. Images are preprocessed by Gaussian blurring with
σ before the segmentation, as well as postprocessed by merging small regions with the biggest
neighboring one [11]. After the segmented image is also rotated to make the strongest symmetry
axis vertical.

As the image is already justified so that the sky is on the top of it, the segment (color) of the
sky is found by looking for the first non-black pixel starting from the first upper row, which is
located on the strongest symmetry axis. Then the image foreground mask is obtained by setting
all sky pixels to background color and non-sky pixels - to foreground color (Figure 4.4e).

Having found the image foreground mask, the next task is to analyze its shape in order to
crop the dome. As domes are symmetric, for optimization only the image part cropped to the
right from the strongest symmetry axis (Figure 4.4f) is analyzed. The strongest symmetry axis
is expected to pass through the center of the dome, i.e. through the highest point of the dome.
For images, whose symmetry axis position is shifted left or right from the dome center due to
perspective distortions, the symmetry axis position is corrected by looking on the image mask for
the foreground maxima in the symmetry axis local neighborhood. This step of the methodology
means, if the initially detected vertical symmetry axis lies on the dome, it justifies itself to the
correct position, making the approach robust to high perspective distortions.

Now the purpose is to find the bottom row of the segmented dome. Here the author uses a
visual feature of domes: domes raise out of the main building. This means that the facade con-
tour, formed by the foreground pixel followed by a backgroud pixel in each row (Figure 4.4g),
has a leap on the row where the dome meets the main building. The observed leap is found by
scanning down row by row the facade contour in Figure 4.4g until the condition in Equation 4.1
is satisfied:

Leap(k) / (Row(k)− Row(1)) > 0.15 && Leap(k) > minLeapThreshold (4.1)

where Leap(k) is the column difference of contour pixels on kth and (k − 1)th sequential rows:
Leap(k) = Col(k)− Col(k − 1)

Row(k) − Row(1) is a normalization factor and is the difference of the kth and first rows
of the contour. minLeapThreshold excludes too small leaps between two subsequent rows. It is
set to the empirically found value of 18 pixels for images with resolution lower than 1 million
pixels and to 26 pixels otherwise. After the image mask is cropped from the found row to
discard the image part below, which does not contain the segment of interest. In order to obtain
the final dome segment, the blob through which the main symmetry axis passes is picked up
and all the other blobs, formed by clouds, trees and any other objects present in the image, are
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discarded. Multiplication of the blob mask with the same segment of the original image delivers
the segmented dome (Figure 4.4h).

Still a further step is taken by incorporating the feature roundness for domes, to address the
following types of complex images:

1) the strongest symmetry axis does not pass through the dome center, due to too high per-
spective distortions or other symmetric objects present in the image,

2) the strongest symmetry axis is located on the dome, but is horizontal,
3) the facade is reflected in water, thus the strongest symmetry axis is horizontal.
The feature roundness is calculated by Equation 4.2.

Roundness = 4 ∗ Area /(π ∗MajorAxisLength2) (4.2)

Roundness > 0.37 && DomeBoundingBox > 1500 (4.3)

If the dome blob roundness and bounding box resolution pass the experimentally found thresh-
olds in Equation 4.3, the dome segmentation is considered successful. The thresholds in Equa-
tion 4.1 and Equation 4.3 were found by experimenting on multiple images. Setting a threshold
for dome bounding box resolution excludes too small blobs. In case the condition in Equation 4.3
is not met, the whole segmentation algorithm is rerun by taking the 2nd strongest symmetry axis
in the initial step. After the condition in Equation 4.3 is checked again and if not satisfied, the
algorithm is rerun by the 3rd strongest symmetry axis and so on. The author limits the dome
segment search by the 5th strongest symmetry axis (if such exists), since empirically was found
(Section 5.2) that further search was useless.

4.3 Segmentation of Towers

Segmentation of towers, like domes, is a high-level semantic segmentation by an architectural
element. Like the dome segmentation problem, in this case also color-based segmentation ap-
proaches are not applicable, since color is not a distinctive feature and a single tower may contain
multiple color segments. Shape analysis is also not suitable for segmentation, as tower shapes
cannot be modeled due to unlimited variety.

The tower segmentation approach is based on the dome segmentation approach, illustrated
in Section 4.2 and published in [39], modifying and extending it taking into account the architec-
tural specificities of towers. Such a choice is justified by the following common characteristics
of towers and domes:

• Both elements display vertical bilateral symmetry

• Both elements are situated high above the building and have the sky and clouds as back-
ground

The tower segmentation approach has two branches, aiming to handle buildings, featuring a
single tower and double towers respectively. The block-scheme of the tower segmentation algo-
rithm is depicted in Figure 4.5. The detailed illustration of the algorithm is following below on
sample images of single and double tower facades.
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Figure 4.5: The block-scheme of the tower segmentation algorithm with branches for facades
featuring a single tower and double towers.
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a) Original image b) Symmetry axes detection

c) Rotated image d) Segmented image

e) Image mask f) Figure e) left cut g) Figure e) right cut

h) Left contour i) Right contour j) Image mask horizontal cut k) The tower

Figure 4.6: Algorithm steps for segmentation of a single tower.
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The branch of single tower segmentation is illustrated on the example of Vienna City Hall
(Figure 4.6a), of double tower segmentation – Vienna Church of Mariahilf (Figure 4.7a). At
the first step the image bilateral symmetry axes are detected, using the method proposed by [24].
The bilateral symmetry axes and the supporting symmetric points of images in Figure 4.6a
and Figure 4.7a are displayed in Figure 4.6b and Figure 4.7b respectively. In case multiple
symmetry axes are found, the axis with the strongest symmetry magnitude (supported by the
biggest number of symmetry points) is chosen. There is priori knowledge that the dominant
symmetry axis is vertical for historic facades, so the algorithm proceeds with rectifying the
images by rotation, to make the strongest symmetry axis vertical (Figure 4.6c, Figure 4.7c).
Images, whose strongest symmetry axis is vertical, skip this step. Bilateral symmetry detection
[24] is performed once more on the rotated image to find the position (column) of the strongest
symmetry axis.

The purpose of the next step is the segmentation of the original image background and
foreground. Since towers like domes are situated high above the buildings, the sky and clouds
form their background. The original image is segmented using the methodology introduced by
[11] (Figure 4.6d, Figure 4.7d). Afterwards the segmented image is also rotated to make the
strongest symmetry axis vertical. As the example images are already justified so that the sky
is on the top of them, the segment (color) of the sky is found by tracing down the strongest
symmetry axis starting from the first upper row until the first non-black pixel is found. Then the
image foreground mask is obtained by setting all sky pixels to background color and non-sky
pixels - to foreground color (Figure 4.6e, Figure 4.7e).

In case of domes the strongest symmetry axis is expected to pass through the center of the
dome, i.e. through the highest point of the dome. That is why for images, whose symmetry axis
position is shifted left or right from the dome center due to perspective distortions, the symmetry
axis position was corrected by looking on the image mask for the foreground maxima in the
symmetry axis local neighborhood (Section 4.2) [39]. For the tower segmentation purpose the
symmetry axis position correction step mentioned is omitted, because there are image instances
with double towers, where the towers lie very close to the symmetry axis and the symmetry axis
justification shifts the symmetry axis to a false position. Having the image foreground mask
found, the next step is to analyze its shape in order to crop the tower(s). Now the purpose is to
find the bottom row of the tower(s). The image masks are cut from the main symmetry axis into
left (Figure 4.6f, Figure 4.7f) and right (Figure 4.6g, Figure 4.7g) parts.

To this point the author followed the dome segmentation algorithm (Section 4.2) [39], except
for the correction of the initial position of the strongest symmetry axis. Here a new step specific
for tower segmentation is introduced: a condition is analyzed to find out, if the building features
a single or double towers. If the local neighborhood both on the right and left sides of the main
symmetry axis have higher situated foreground pixels than that on the main symmetry axis, the
building features double towers. More precisely, the neighborhood on the right and left sides
from the main symmetry axis is defined as the adjacent 1/8th parts of the right and left images.

The single tower segmentation branch proceeds as follows. As domes are symmetric in
all 2D projections, for optimization only the right image mask is analyzed in Section 4.2 [39].
Whereas towers are more sensitive to camera viewpoint, that is why analysis of both left and
right image masks is needed. Domes and towers possess a common visual property: they raise
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out of the main building. This means that the facade left and right contours, formed by the
foreground pixel adjacent to a background pixel in each row (Figure 4.6h and Figure 4.6i),
have leaps on the rows, where the tower meets the main building. The observed leaps are found
by tracing down row by row the facade left and right contours in Figure 4.6h and Figure 4.6i
until the condition in Equation 4.4 is satisfied:

Leap(k) / (Row(k)− Row(1)) > LeapThreshold && Leap(k) > minLeapThreshold (4.4)

where Leap(k) is the column difference of contour pixels on kth and (k − 1)th sequential rows:
Leap(k) = Col(k)− Col(k − 1)

Row(k) − Row(1) is a normalization factor and is the difference of the kth and first rows
of the contour. minLeapThreshold excludes too small leaps between two subsequent rows and
is set to 18 pixels for images with resolution lower than 1 million pixels and to 26 pixels oth-
erwise. LeapThreshold was found empirically and was equal to 0.15 for dome segmentation
(Section 4.2) [39] and to 0.24 for tower segmentation. Note that the facade contours in Fig-
ure 4.6h and Figure 4.6i are thickened from 1 pixel to 10 pixel width for visibility purpose only.
As the final row, containing the leap, is chosen the one of right and left leap rows, which lies
higher. After the image mask is cropped from the found leap row (Figure 4.6j) to discard the im-
age part below, which does not include the segment of interest. In order to obtain the final tower
segment, the blob through which the main symmetry axis passes is picked up and all the other
blobs formed by clouds, trees and any other objects present in the image are discarded. Multi-
plication of the blob mask with the same segment of the original image delivers the segmented
tower (Figure 4.6k).

The branch, addressing the segmentation of double towers, is also a novel introduction of
this chapter and performs the following processing. The image left and right masks (Figure 4.7f
and Figure 4.7g) are cut horizontally from the row of the lowest background pixel. Then the
blobs, which are not connected with the strongest symmetry axis, are removed (Figure 4.7h and
Figure 4.7i). Note that the strongest symmetry axis is located on the last column of the left mask
(Figure 4.6f) and on the first one – of the right (Figure 4.6g). The removal of the disconnected
blobs aims to eliminate the objects (trees, clouds, etc), which can be situated higher than the
towers. Afterwards the columns of the global foreground minimums are located on the left and
right image masks. Then the global background maximum rows are found between the strongest
symmetry axis and the columns mentioned. The image is cut horizontally from the row situated
higher (Figure 4.6j). And finally the left (Figure 4.6k) and right (Figure 4.6l) towers are detected
by picking up the blobs, containing the highest foreground pixels on the left and right masks.

To address the images, in which the first strongest symmetry axis is not placed on the tower
(single tower case) or between towers (double tower case) due to too high perspective distor-
tions or other symmetric objects present in the image, an additional feature, called solidity, is
introduced. Solidity is a region property, specifying the proportion of the pixels in the convex
hull that are also in the region and is computed by Equation 4.5. If the tower blob solidity and
bounding box resolution pass the thresholds in Equation 4.6, the tower segmentation is consid-
ered successful.

Solidity = Area / ConvexArea (4.5)

Solidity > 0.72 && TowerBoundingBox > 5000 (4.6)
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a) Original image b) Symmetry axes detection

c) Rotated image d) Segmented image

e) Image mask f) Figure e) left cut g) Figure e) right cut

h) Left cut i) Right cut j) Image mask horizontal cut k) Left tower l) Right tower

Figure 4.7: Algorithm steps for segmentation of double towers.
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The thresholds in Equation 4.4 and Equation 4.6 were found empirically, exercising multiple
images. Setting a threshold for tower bounding box resolution excludes too small blobs. In case
the condition in Equation 4.6 is not met, the whole segmentation algorithm pipeline is rerun by
taking the 2nd strongest symmetry axis in the initial step. The tower segment search is limited by
the 2nd strongest symmetry axis (if such exists), since the evaluation database lacks images, for
which further search would lead to segmentation success (Section 5.3). Note for comparison,
that the dome segmentation approach in Section 4.2 [39] judges the segmentation success by
feature roundness, instead of solodity and seeks for the dome segment in the vicinity of up to
the 5th strongest symmetry axis, instead of the 2nd, as in the current method.

4.4 Architectural Style Classification of Building Facade Windows

The current approach, addressing the classification of Romanesque (Figure 3.1), Gothic (Fig-
ure 3.2) and Baroque (Figure 3.3) windows, was published in [36].

The task of classification of windows by architectural styles is highly complex, because
of the high intra-class diversity as well as reflections present in window images. One can use
different texture features [15,31] as well as established shape descriptors [3,46]. A local feature-
based approach is employed, since it incorporates texture and gradients into an image descriptor.
It is shown in [8] that shapes can be represented by local features (peaks and ridges). Since on
window shapes of each class certain gradient directions are dominating, local features are used to
describe shapes. One can use different local features, like Harris-Laplacian corner detectors [16,
28], difference of Gaussians corner detectors [23] or detectors based on regions [26,43] and local
image descriptors [23,26,43]. The goal is to extract characteristic gradient directions, like those
describing the pointed arch or triangular pediment and to minimize the influence of non-relevant
features, like those from reflections and curtains.

The standard bag of words approach presented by Csurka et al [9] (Figure 4.8) is chosen. In
the learning phase the SIFT [23] is used to extract the information of gradient directions. After
performing the difference of Gaussians on different octaves and finding minimas/maximas, i.e.
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Figure 4.8: Learning visual words and classification scheme.
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Figure 4.9: Histograms of visual words of the images of different window styles.

finding interest points, rejection of interest points is performed with low contrast by setting a low
threshold. All interest points that lie on window edges are kept. Note that the original work [23]
is not followed in this step, i.e. the response of the filter along the edges is not suppressed. After
finding the interest points the algorithm proceeds with finding local image descriptors (SIFT
image descriptors) and normalizing them. The number of local features is large, thus clustering
is applied to learn a visual vocabulary (codebook). The codebook of separate classes is made by
searching for the visual cluster centers using unsupervised k-means algorithm. The codebook
is learnt on a training set. Since the visual codebook plays a central role in all classification
approaches, intruduced in the current work, the source code responsible for its generation is
brought in Appendix A.4.

The classification of a query image begins likewise with the extraction and normalization
of SIFT descriptors. The next step is to classify the SIFT descriptors using the codebook of
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visual cluster centers, generated during the training stage. For this purpose the author employs
the simple, yet efficient nearest neighbor (NN) classifier, which is a special case of the KNN
classifier, when K 1=1. The Eucleadian distances of the query SIFT descriptor to all visual
cluster centers are calculated. The nearest cluster center is determined as the class of the SIFT
descriptor. After all image descriptors are classified, the image histogram is made, showing the
classification distribution of the descriptors among visual cluster centers. The histograms shown
in Figure 4.9 are built using a codebook of 30 cluster centers for each class and are normalized
in the interval [0, 1]. Note that for Romanesque class histogram high responses are located
on the bins from 61 to 90, for Gothic class - from 1 to 30 and for Baroque class - from 31 to
60. The class, to which the majority of image descriptors belong, is chosen as the image class,
i.e. the image class is decided by finding the maxima of integrated responses of the 3 classes.
For example, for the histogram representation shown Figure 4.9a, the sum of all responses of
Romanesque class is 5.6038, Gothic class – 1.8868 and Baroque class – 2.3019. Thus the image
is correctly classified as Romanesque. Determining the window class by the integrated class
responses proves to be effective, as it makes the vote for the right class strong by integration
of the high responses and suppresses the false class peaks, which may occur due to irrelevant
descriptors located on architectural details, reflections and curtains.

4.5 Architectural Style Classification of Traceries, Pediments and
Balustrades

The approach, addressing the problem of architectural style classification of traceries (Fig-
ure 3.4, Figure 3.5), pediments (Figure 3.6a-e) and balustrades (Figure 3.6f), was published
in [38]. It employs the method, introduced in Section 4.4 [36] for classification of windows,

1Observe that KNN classifier parameter is noted K (upper case), not to confuse with k parameter of k-means
clustering during codebook generation.

a) Tracery (Figure 3.4a) b) Pediment (Figure 3.6d)

Figure 4.10: Histograms of visual words of Gothic and Baroque elements.
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and finds empirically (Section 5.5) the codebook best fitting the database of the architectural
elements explored. A histogram instance of the tracery in Figure 3.4a is shown in Figure 4.10a,
whereas Figure 4.10b displays an example histogram of the pediment in Figure 3.6d. For the
histogram in Figure 4.10b, the sum of all responses of Gothic class makes 2.78, and of Baroque
class – 8.35, so the image is correctly classified as Baroque. The histograms shown in Fig-
ure 4.10 are built using a codebook of 30 cluster centers for both classes. Observe that for
Gothic class histogram high responses are located on the bins from 1 to 30 and for Baroque
class - from 31 to 60.

4.6 Architectural Style Classification of Domes

The dome classification module classifies Islamic (Figure 3.7e, Figure 3.8b), Russian (Fig-
ure 3.8a) and Renaissanse (Figure 3.7a-d) domes and was published in [37]. Classification
of dome images by architectural styles is a highly complex task, since dome images are pro-
jections of 3D domes in 2D and due to high variability of architectural details and ornaments.
The proposed methodology for solving the task is a three-step approach. At the first step, the
dimensions of the query image are analyzed. The Islamic saucer dome is the only dome type for
which the width is always greater than the height, because of its shallow geometry. Also Islamic
onion domes may have their width greater than the height. In either case the query image is
classified as Islamic, when the mentioned condition is true.

At the second step color as a feature is used to identify Russian golden onion domes. Though
gilded domes are typical for Russian Orthodox churches, they are not the only option. Russian
churches also have examples of blue and colorful domes. So by golden color detection at this
step the classification rate among Russian gilded onion domes is raised.

For golden color detection the author chooses YCbCr color space, where Y color channel
represents luminance, Cb and Cr channels - chrominance. The advantage of YCbCr color space

Figure 4.11: Cb and Cr mean values of 97 golden dome patches.
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a) Renaissance (Figure 3.7b) b) Russian (Figure 3.8a)

c) Islamic (Figure 3.8b)

Figure 4.12: Histograms of visual words of the images of different dome styles.

is that it represents luminance (Y) in a single channel and is thus luma-independent. YCbCr
color space is widely used for different color detection purposes, including skin detection [2] and
facial feature detection [25]. The goal is to find experimentally the ranges in Cb and Cr channels
corresponding to golden color, while discarding Y channel. Thus, the mean pixel values of Cb
and Cr components of 97 golden patches are counted, which were cut manually from Russian
gilded dome images. The reason for considering the mean Cb, Cr values of all image pixels,
but not Cb, Cr values of individual pixels is that golden color due to its high reflectivity tends to
appear from white to dark brown. So while determining the initial Cb and Cr ranges for golden
color the individual pixel values may be false. From each patch a pair of mean Cb and mean
Cr components is extracted. Each mean Cb value on Cb line corresponds to a mean Cr value
located above it on Cr line (Figure 4.11). The author sorts the mean Cb values in ascending order
to find out if there is a relation between Cb and Cr components. As seen in Figure 4.11, with
ascending of Cb values the Cr values tend to decrease. Low Cb and high Cr values correspond to
highly saturated golden color. The full range of Cb and Cr values is between 16 and 240. In the
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mentioned range the initial Cb, Cr ranges found corresponding to golden color are as follows:
58 < Cb < 118; 126 < Cr < 181. The final Cb, Cr ranges are determined iteratively, maximizing
the true positives and minimizing the false positives while golden color image detection on the
training set (Section 5.6).

At the final third step classification of domes is done based on their shapes, employing the
approach introduced in Section 4.4 [36] for classification of windows. The codebook, best
fitting the database of the dome types explored, is found empirically (Section 5.6). Histograms
instances of the 3 classes classified, built using a codebook of 40 cluster centers for each class,
are shown in Figure 4.12. Observe that for Russian class histogram high responses are located
on the bins from 1 to 40, for Islamic class - from 41 to 80 and for Renaissance class - from 81
to 120. For example, for the histogram representation shown in Figure 4.12c, the sum of all
responses of Russian class is 5.72, Islamic class – 10.76 and Renaissance class – 6.03. Thus the
image is corectly classified as Islamic.

Islamic saucer domes are not included in the training stage, as query saucer dome images
pass accurate classification at the first step and do not need a codebook for classification. The
steps of the approach are counted by their priority. If the image is identified as Islamic at the
first step, it does not pass to the further steps for analysis. Otherwise, it is passed to the second
step for golden color detection. If the response at this step is positive, the dome is classified as
Russian, otherwise it is passed to the third step for shape analysis.

4.7 Architectural Style Classification of Towers

The tower classification module classifies Romanesque, Gothic and Baroque towers. It also
employs the method, introduced in Section 4.4 [36] for classification of windows and finds
empirically (Section 5.7) the codebook best fitting the database of towers. Romanesque, Gothic
and Baroque tower samples are displayed respectively in Figure 4.13d, Figure 4.13e and Fig-
ure 4.13f. The towers are segmented by the approach illustraded in Section 4.3 [39] from the
corresponding facade images located above the towers - Figure 4.13a (St. Anton church in Vi-
enna), Figure 4.13b (Vienna City Hall) and Figure 4.13c (Mariahilf church in Vienna). The
histogram representations of the segmented towers in Figure 4.13d are shown in Figure 4.13g
and Figure 4.13h. Similarly Figure 4.13i exhibits the histogram of the tower in Figure 4.13e
and Figure 4.13j, Figure 4.13k – of the towers in Figure 4.13f. The histograms are built using a
codebook of 40 cluster centers for each class and are normalized in the interval [0, 1].

Note that for Baroque class histogram high responses are located on the bins from 1 to 40,
for Gothic class - from 41 to 80 and for Romanesque class - from 81 to 120. The class, to which
the majority of image descriptors belong, is chosen as the image class, i.e. the image class is
decided by finding the maxima of integrated responses of the 3 classes. For example, for the
histogram presented in Figure 4.13i, the sum of all responses of Baroque class is 8.51, Gothic
class – 19.58 and Romanesque class – 8.86. Thus the image is correctly classified as Gothic.

Besides using the KNN classifier with K=1, as in Section 4.4 [36], an additional experi-
ment is conducted to see, if the classification accuracy may increase on the training dataset by
applying K>1 values. But simply using the KNN classifier with equal weights to all K near-
est neighbors in this 3-class clasification scheme may lead to classification ambiguity, when
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a) Romanesque b) Gothic c) Baroque

d) The towers of Figure 4.13a e) The tower of Figure 4.13b f) The towers of Figure 4.13c

g) Figure 4.13d left h) Figure 4.13d right i) Figure 4.13e

j) Figure 4.13f left k) Figure 4.13f right

Figure 4.13: Facades of Romanesque, Gothic, Baroque styles, the segmented towers and the
histograms of visual words.
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the classes have equal number of nearest neighbors. To exclude the ambiguous cases and to
weigh the closer neighbors more heavily than the farther ones, the author chooses the distance-
weighted KNN rule (WKNN) proposed by [10]. According to the rule the votes of the different
members among K nearest neighbors are weighed by a function of their distances to the query
object (Equation 4.7).

wi =

{
(dNNK − dNNi )/(dNNK − dNN1 ) ; dNNK 6= dNN1

1 ; dNNK = dNN1
(4.7)

where dNNi is the distance of the i-th nearest neighbor to the query object, dNN1 is the distance of
the nearest neighbor, dNNK is the distance of the K-farthest neighbor. In Equation 4.7 the nearest
neighbor’s weight is equal to 1, the farthest neighbor’s – to 0, the rest of the neighbors get their
weights in the interval (0,1), so that a neighbor with smaller distance scores a heavier weight
than one with greater distance.

Nevertheless the experiment (Section 5.7) shows that with the increase of K, the classifica-
tion precision on the training set decreases, thus the classification of the testing dataset will be
led by NN classifer, i.e. K=1 value.

4.8 The STYLE GUI and the Scheme of the Voting of
Architectural Elements

Running the STYLE program initializes a simple Graphical User Interface (GUI) (Figure 4.14a),
where the user should check the architectural elements, present on the query facade image. The
path of the query image to be classified can be provided in the field topped with “Building path”
label, if other than by default displayed path. Whereas towers and domes will be segmented
automatically, user interaction is required to deliver the bounding boxes of windows, traceries,
pediments and balustrades, if such exist. The manually segmented windows should be placed in
“SegmentedWindows” subdirectory of building path directory, traceries, pediments, balustrades
– in “SegmentedElements” subdirectory .

The program is demonstrateed on the example of a query image, displaying the neo-Gothic
facade of Votiv church in Vienna (Figure 4.15). The facade contains typical Gothic elements
– pointed arch windows (Figure 4.16a, Figure 4.16b, Figure 4.16c), towers (Figure 4.16d, Fig-
ure 4.16e) and traceries (Figure 4.16f, Figure 4.16g, Figure 4.16h, Figure 4.16i). After the
checkboxes “Tower”, “Window”, “Tracery, pediment or balustrade” are checked and the bound-
ing boxes of windows and traceries are cropped and put in the corresponding folders, “Classify”
button should be pressed to classify the architectural style of the building. The style of the build-
ing will be displayed in the field, labeled “Building style” (Figure 4.14b). The style of the query
image is classified as Gothic, since all 9 architectural elements, depicted in Figure 4.16, have
voted for the Gothic style. Figure 4.15 is a good example, as it shows that though the facade is
partly occluded, it is correctly classified by the visible typical elements of Gothic style.

As declared before, the architectural style of the building is determined as the class, having
received maximum votes. In the following cases the building style will be classified as a mixture
of Romanesque and Gothic, which is more probable:
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a) The STYLE GUI with checked elements b) Building style classified as Gothic

Figure 4.14: GUI demonstration of the STYLE project.

1. All the 3 classes have equal number of votes.
2. The Romanesque and Gothic classes have equal number of votes, which is greater than

the votes for Baroque class.
3. The Romanesque class has maximum votes and there are 2 and more Gothic votes. Here

the Gothic votes are thresholded by 2, since 1 vote could be the outcome of misclassification.
4. The Gothic class has maximum votes and there are 2 and more Romanesque votes.
The source code of the function, executing the algorithm of the voting of architectural ele-

ments, is presented in Section A.4.

4.9 Summary

The current chapter presented the main contribution of the work - the methodology of the
STYLE project, addressing the problem of image-based classification of building facades by
architectural styles. The imitation of the human cognitive process of architectural style classi-
fication makes the basis of the method proposed. The architectural style of a facade is formed
by style-typical architectural elements. The method comprises three major steps - segmentation,
classification and voting of architectural elements (Section 4.1). Whereas the algorithm is gen-
eral enough to classify any visually recognizable architectural style, its software implementation
is carried out on pan-European architectural styles Romanesque, Gothic and Baroque.

In the scope of the segmentation step are presented the first approaches, segmenting the out-
standing architectural elements dome and tower. The dome segmentation approach (Section 4.2)
is a pipeline employing the visual features of this prominent architectural element - vertical bi-
lateral symmetry, raising out of the main building and roundness. The algorithm successfully
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incorporates bilateral symmetry detection and segmentation approaches with image analysis and
processing technics to achieve very high segmentation rate (Section 5.2). The tower segmenta-
tion approach (Section 4.3) is based on the dome segmentation method, since these architectural
elements share common visual features - vertical bilateral symmetry and raising out of the main
building. The approach is divided into two branches targeting the segmentation of single tower
and double tower facades respectively. The validation of the segmented tower is checked by the
feature solidity, instead of roundness as for the dome case.

The visual information about architectural styles is learned in the classification stage. The
first approach classifies the architectural style of windows (Section 4.4) by the means of clus-
tering and learning of local features. The same approach is employed for the classification of
architectural elements tracery, pediment and balustrade (Section 4.5) and tower (Section 4.7),
tuning the parameters of the clustering and feature extraction to fit best to the experimental im-
age dataset. The classification of domes (Section 4.6) is a three step approach, which at the first
step analyzes the width and hight proportion of the dome for the identification of the Islamic
domes, at the second step performs golden color detection in YCbCr color space to detect Rus-
sian gilded domes and at the third step, likewise the previous classification approaches, clusters
and learns local features. Here as an alternative to Renaissance/Baroque domes are classified
Russian and Islamic domes, since the dome is not typical for Romanesque and Gothic architec-
tural styles.

In the third stage the voting of the classified architectural elements takes place (Section 4.8).
The architectural style, having received the maximum of votes, is chosen as the style of the
building. The voting mechanism also permits the classification of mixtures of architectural styles
which are probable. In the current state only the mixture of Romanesque and Gothic styles is
allowed.
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Figure 4.15: Query image for classification – Votiv church in Vienna
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a) Pointed window b) Pointed window c) Pointed window

d) The left tower e) The right tower

f) Tracery pattern g) Tracery pattern

h) Tracery pattern i) Tracery pattern

Figure 4.16: Segmented architectural elements from Figure 4.15
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CHAPTER 5
Experiments, Performance Evaluation

and Results

5.1 The Experimental Setup and Creation of Image Databases

An extensive study was conducted to test and evaluate each module of the STYLE classification
system. One of the challenges for testing the system is the lack of databases labeled by archi-
tectural styles. To test each module the author collected an image database of the corresponding
architectural styles and featuring the corresponding architecural elements. The database includes
the author’s own photographs, as well as images from Flickr 1 image database, overall 2315 im-
ages. Though the segmentation modules are not sensitive to the resolution of the input images,
the modules classifying architectural elements – are. The reason for this is that the lower image
resolution, the less descriptors are extracted and the sparser and less discriminative image his-
tograms become. The classification modules receive as an input segments of the original image,
picturing the architectural elements, which are a few times lower in resolution than the original
image. Thus the original input image of the complete building facade should have high resolu-
tion. The author’s share of images in the database was taken by SONY DSC-W320 camera with
14.1 megapixel resolution.

There are building facade image databases publicly available to the scientific community,
such as:

1. TSG-20: Tourist Sights Graz Image Database 2,

2. TSG-20: Tourist Sights Graz Image Database 3,

3. Zurich Building Image Database 4,
1http://www.flickr.com
2http://dib.joanneum.at/cape/TSG-20/
3http://dib.joanneum.at/cape/TSG-60/
4http://www.vision.ee.ethz.ch/showroom/zubud/index.en.html
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However they are not suitable for the experimental evaluation of the presented work for the
following reasons:

1) The number of buildings and the number of images in the image datasets is not sufficient
to achieve the generalization addressed in the current work. The first image dataset comprises
only 60 images of 20 buildings, the second database - 80 images of 20 buildings, whereas the
third one contains 1005 images of 201 buildings.

2) Only a tiny fraction of the images, namely only 2− 3 images in each of above mentioned
datasets, contains the types of building facades, examined in the current work.

3) Again for the purpose of the desired sufficient generalization, the current work needs
evaluation on image datasets, containing building facades, located in a vast geographical area,
i.e. in numerous European countries. The first and second image datasets display buildings
located in the Austrian city Graz, whereas the third one - in Zurich.

4) The classification modules of the architectural elements of the current project require
high-resolution images as an input. All the three image databases observed do not meet this
condition: in the fist database the resolution of the images equals 768 ∗ 1024 pixels, in the
second one - 240 ∗ 320 pixels and in te third one - 480 ∗ 640 pixels.

The software of the STYLE project is implemented by Matlab.

5.2 Experiments and Evaluation of Dome Segmentation

To test for robustness and evaluate the dome segmentation approach (Section 4.2, [39]) an
image database of buildings featuring domes was created. The database exhibits Renaissanse,
Neo-Renaissance, Baroque, Neo-Baroque, Neoclassical and Islamic buildings. It includes 550
images of 77 buildings, among those the most famous world landmarks, like St. Peter’s Basil-
ica in Vatican, Florence Cathedral, St. Paul’s Cathedral in London, Pantheon in Paris, United
States Capitol in Washington, capitol buildings of 24 US states and Taj Mahal in India. The
full list of the buildings, used in the experiments, can be found in Appendix A.1. The reso-
lution of the images ranges from 108 × 82 to 3681 × 5522 pixels, proving the algorithm to
be resolution-independent. The approach can handle both day and night images due to being
color-independent. The only limitations of the method are:

1) segmentation of occluded domes is not supported,
2) the rare cases when the dome background is formed by cityscape, not the sky, as a result

of shooting from a level higher than the ground (building roofs, helicopter, etc) are also not
handled.

The allowed tilt of the dome is (-90 to 90) degrees related to the vertical axis. This is not
considered a limitation, since the search showed that building images taken upside down or tilted
more than 90 degrees related to vertical axis are very rare.

The value by default for both parameters of graph-based segmentation algorithm [11] σ
and k is 2000. The chosen big value is explained by the fact that the objective is a coarse
segmentation of sky and non-sky segments. For images taken by night illumination, foggy
weather condition or having low resolution the values of σ and k should be tuned down to obtain
the non-sky segment with the precise dome edge. Whereas for images with strong cloud edges
in the dome vicinity the values of σ and k should be tuned up to blur the cloud edges. Clouds
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a) St. Charles’s Church b) The dome of Figure 5.1a

c) California Capitol d) The dome of Figure 5.1c

e) San-Francisco City Hall f) The dome of Figure 5.1e

g) Taj Mahal h) The dome of Figure 5.1g

Figure 5.1: Examples of buildings with domes and the segmentation of domes.

57



Table 5.1: Dome segmentation rate vs. symmetry axis magnitude.

1st 2nd 3rd 4th 5th Segmented domes All
Seg. rate 504 11 7 5 1 528 (96% of All) 550

% of segmented 95.45% 2.08% 1.33% 0.95% 0.19% 100%

not touching the dome do not affect the segmentation output, as they are discarded segments.
For the current evaluation image database both σ and k are in the range from 50 to 16000.

The segmentation results are demonstrated on building examples in complex scenes - St.
Charles’s Church (Figure 5.1a), California Capitol (Figure 5.1b), San-Francisco City Hall (Fig-
ure 5.1c) and Taj Mahal (Figure 5.1d) and the respective segmented domes located next to each
image in Figure 5.1. The accurately segmented dome was obtained on 528 out of the 550 tested
images, which yields an average 96% rate for the approach (Table 5.1). On 504 out of 528 im-
ages, i.e. on 95.45% of the correctly segmented images, the segmentation was accomplished by
looking for the dome in the vicinity of the 1st strongest symmetry axis (Table 5.1). And it is
only on 4.55% of the correctly segmented images that the dome is segmented by trying symme-
try axis weaker in magnitude than the 1st strongest symmetry axis, i.e. on 11 images the dome
segment was found in the neigbourhood of the 2nd strongest symmetry axis, on 7 images - 3rd,
on 5 images - 4th and on 1 image - 5th (Table 5.1).

The author also analyzed the reasons of unsuccessful segmentation for all 22 images. On 18
images the symmetry axis passing through the dome was not detected or was weakly detected,
due to too high perspective distortions, other dominant symmetries present in the image vast
panorama or building reflection in water. Images, where the dome top touches the image top
fail, since the segmentation algorithm [11] fails to deliver 1 sky segment, but ends up with 2
sky segments on each side of the dome. This leads to attachment of one of sky segments to the
foreground mask, further resulting in either delivering the dome segment with having one sky
segment on the background or failing to obtain the dome due to not overcoming the roundness
threshold. The current database happened to contain two such images. One image failed because
of clouds touching the dome, the strong edges of which segmentation method [11] failed to
ignore. As a result they appeared as a part of the foreground mask, leading to analysis of a false
facade contour. And on one image finding the leap row between the dome and the main building
was unsuccessful owing high perspective distortions.

5.3 Experiments and Evaluation of Tower Segmentation Approach

The portion of the image database, collected to evaluate the performance of the tower segmen-
tation and classificaiton modules (Section 4.3, Section 4.7), consists of images of cathedrals,
churches and city halls. Since tower is a prominent architectural element, constructed as a dis-
play of power and might, its presence is logical among buildings of religious and secular great
importance. The database includes 325 images of 35 buildings, among those famous world
landmarks, like Notre Dame Cathedral in Paris, city halls of Vienna and Brussels. Original and
revived Romanesque, Gothic and Baroque architectural styles are represented in the database.

58



a) Original image b) Symmetry axes detection c) The segmented left tower

Figure 5.2: Segmentation of one of double towers

The complete list of the buildings, used in the experiments, can be found in Appendix A.2. The
share of the author’s tower image database is available for free for scientific research 5.

The tower segmenation method has the same advantages and limitations as the dome seg-
mentation method (Section 5.2, [39]). The approach is capable to handle both day and night
images due to being color-independent. It also achieves success on buildings in complex scenes
and exposed to high perspective destortions. The only limitations of the method are:

1) the segmentation of occluded towers is not supported,
2) the rare cases when the tower background is formed by cityscape, not the sky, as a result

of shooting from a level higher than the ground (building roofs, helicopter, etc) are also not
handled.

3) the images, in which the tower(s) touch the top of the image, are also excluded, since on
such images the background segmentation by [11] algorithm fails to deliver a single background
(sky) segment.

The allowed tilt of the towers is (-90 to 90) degrees related to the vertical axis. This should
not be considered a limitation, as the search showed that building images taken upside down or
tilted more than 90 degrees related to the vertical axis rarely meet.

The values by default for both parameters of graph-based segmentation algorithm [11] σ and
k are 1000. Here also, likewise the dome segmentation, the goal of obtaining coarse segmen-
tation of sky and non-sky segments is the ground for the chosen big values. For images taken
by night illumination, foggy weather condition or having low resolution the values of σ and k
should be tuned down to obtain the non-sky segment with the precise tower edge. Whereas for
images with strong cloud edges in the tower vicinity the values of σ and k should be tuned up to
blur the cloud edges. Only the rare cases, when cloud-sky edges are stronger than cloud-tower
edges fail. Here the cloud gets attached to the tower(s) in the foreground segment, leading to

5https://www.flickr.com/photos/lady_photographer/sets/72157636149550844/
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Table 5.2: Tower segmentation rate.

Image seg. rate (%) Tower seg. rate (%)
1st symmetry axis 303 (93.23%) 539 (91.20%)

2nd symmetry axis 5 (1.54%) 5 (0.85%)
1 tower of 2 18 (5.54%) 18 (3.05%)

1 tower as if 1 of 2 6 (1.85%) 6 (1.02%)
Success 308 (94.77%) 544 (92.05%)

Fail 17 (5.23%) 47 (7.95%)
Total 325 591

failure in the final step of solidity thresholding. Clouds not touching the tower do not affect the
segmentation output, as they are discarded segments. For the current evaluation image database
the empirically found values of σ and k are in the range from 200 to 5000.

Interesting cases to study are images, where facades are exposed to high perspective dis-
tortions. Here the challenge is in the very first step of symmetry detection. The experiments
revealed 2 curious ways of behaviour of symmetry detection, deciding the segmentation output:

1. On facade images, featuring double towers (Figure 5.2a), the strongest symmetry axis is
located on one of the towers (Figure 5.2b), instead of passing through them. As a consequence
the algorithm follows the single tower segmentation branch, ending up with the delivery of one
of double towers (Figure 5.2c). Nevertheless, we assume the segmentation successful, since the
single tower will pass to further classification.

2. On facade images, featuring single towers, the strongest symmetry axis is located on
another vertical axis, than the one passing through the tower. This makes the segmentation
algorithm follow the double tower branch. However the segmentation output is successful, since
the objects that could be falsely segmented as the second tower fail to pass the solidity and
bounding box size thresholds at the final step.

Table 5.2 summerizes the results of the tower segmentation approach performance. The
second column in Table 5.2 presents the segmentation rate in terms of images. Here the segmen-
tation is assumed successful in the case, when one of double towers is segmented (case 1. in the
paragraph above), since the single tower will pass to further classification and voting. 308 out of
325 images achieved successful segmentation, indicating an average 94.77% segmentation rate.
On 303 out of 308 successfully segmented images the position of tower(s) was found by the 1st
strongest symmetry axis and only on 5 images - by the 2nd strongest symmetry axis. On 18 im-
ages one of the double towers was segmented. 6 images passed successful segmentation, though
the single tower was segmented as if it were one of the double towers. A closer observation re-
vealed that in 5 out of these 6 images was depicted Brussels city hall, which is not an absolutely
symmetrical building and thus symmetry detection is more challenging in images exposed to
high perspective distortions. The segmentation was unsuccessful only on 17 images (5.23%).
15 images owe the failure to the semmetry detector and the remaining 2 images failed, because
the cloud-sky edges were stronger than the cloud-tower edges. The third column in Table 5.2
evaluates the segmentation rate in terms of towers. 47 out of 591 towers failed the segmentation,
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Figure 5.3: Window classification accuracy. Finding the best size of codebook (k) and SIFT
peak threshold (p – horizontal axes).

18 of them being one of the towers on a double tower facade. The average segmentation rate in
terms of towers yielded 92.05%.

5.4 Experiments and Results of Window Classification Approach

For testing and evaluation of the window classification approach (Section 4.4, [36]) a database
of 400 images was assembled, 351 of which belong to the own and the rest - to Flickr image
datasets. 90 images of the database make the training set (1/3 of each class). The resolution
range of the images is from 138× 93 to 4320× 3240 pixels.

To evaluate the issue of the codebook size (vocabulary size) an experiment with different
codebook sizes (k) is perfomed (Table 5.3 and Figure 5.3). The value of peak threshold for SIFT
feature extraction and the value of k for k-means clustering algorithm are searched so that the
final classification rate is maximised on the training set. As it is obvious from Figure 5.3, SIFT
peak threshold values bigger than 0.03 decrease the classification rate. The reason for this is that

Table 5.3: Window classification accuracy on the training set with different codebook sizes.

Peak Threshold (p) k = 25 k = 30 k = 35 k = 40 k = 45
0,01 85,56 91,11 94,44 92,22 90,00
0,02 88,89 93,33 93,33 95,56 97,78
0,03 92,22 96,67 96,67 97,78 98,89
0,04 87,78 88,89 96,67 93,33 94,44
0,05 84,44 92,22 93,33 93,33 91,11
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Table 5.4: Confusion matrix and the accuracy rate in parenthesis.

Gothic Baroque Romanesque Sum
Gothic 100 (98.1%) 1 1 102

Baroque 3 111 (92.5%) 6 120
Romanesque 1 3 84 (95.4%) 88

Sum 104 115 91 310

the extraction of a smaller number of SIFT descriptors than that with peak threshold value equal
to 0.03 decrease the number of extracted SIFT descriptors describing the dominating gradients
characteristic for each window class. Whereas peak threshold values smaller than 0.03 tend to
extract descriptors located on window reflections and backgound construction material textures,
i.e. overfitting takes place. Figure 5.3 also shows that the best choice for k-means algorithm
k parameter is in the range 25 − 45. The k parameter values smaller than 25 decrease the
classification rate, as the number of cluster centers is not enough for the discrimination of visual
words of different classes. Whereas values higher than 45 make the image histograms sparser,
i.e. non-representative visual words are got. The final codebook choice for testing the approach
is the one with k = 30 and peak threshold equal to 0.03. Running the classification with the
mentioned codebook on a testing dataset of 310 images results in 15 false classified images,
which yields an average classification rate of 95.16%. A confusion matrix, with true positives,
is given in Table 5.4. As the approach uses SIFT features for classification, it is rotation and
scale invariant [23]. The experiments also prove the approach camera viewpoint invariant, as the
classification of windows is accurate under high perspective distortions.

5.5 Experiments and Results of Classification of Traceries,
Pediments and Balustrades

For testing and evaluation of the module, classifying traceries, pediments and balustrades (Sec-
tion 4.5, [38]), a database of 520 images was created, consisting of images from own and Flickr
datasets. 100 images of the database make the training set (50 for each class).

Here also a similar experiment, illustrated in Section 5.4 for window classification, is car-
ried out to find the SIFT peak threshold (p), which allows to extract enough SIFT descriptors
describing image dominant gradient directions. On the other hand, the number of the extracted
SIFT descriptors should not be so big, as to include descriptors located on construction mate-
rial textures, i.e. not to overfit. The optimal value found for SIFT peak threshold is equal to
0.03. Figure 5.4 and Table 5.3 show that the best choice for k-means algorithm k parameter is
in the range 25 − 50. The k parameter values smaller than 25 decrease the classification rate,
as the number of cluster centers is not enough for the discrimination of visual words of differ-
ent classes. Whereas values higher than 50 make the image histograms sparser, i.e. one gets
non-representative visual words. The parameters of the final codebook for testing the system
are k = 30 and peak threshold equal to 0.03. Running the classification with the mentioned
codebook on a testing dataset of 420 images results in 14 false classified images, which yields
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Table 5.5: Classification accuracy on the training set with different codebook sizes.

(p) k = 25 k = 30 k = 35 k = 40 k = 45 k = 50
0,02 94 95 95 98 98 97
0,03 95 97 97 97 98 99
0,04 93 98 95 97 96 97

Table 5.6: Confusion matrix and the accuracy rate in parenthesis.

Gothic Baroque Sum
Gothic 190 (97.44%) 5 195

Baroque 9 216 (96%) 225
Sum 199 221 420

an average classification rate of 96.67%. A confusion matrix, with true positives, is given in the
Table 5.6.

5.6 Experiments and Results of Dome Classification

To test and evaluate the module of dome classification (Section 4.6, [37]) a database of 520
images was created, also consisting of images from own and Flickr image datasets. 100 images
of the database make the training dataset, annotated with labels of golden color and architectural
styles. Golden labels are needed for identification of Cb and Cr ranges corresponding to golden
color, whereas architectural style labels are used for codebook generation. 20 images out of 100
are labeled as golden. 30 images belong to Russian, 30 - to Islamic and 40 - to Renaissance
styles. The resolution range of the images is from 127 × 191 to 3753 × 4314 pixels. The
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Figure 5.4: Classification accuracy vs. k and p for finding the optimal k and p.
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database includes the most famous domes of the world, like those of St. Peter’s Basilica in
Vatican, Florence Cathedral, St. Paul’s Cathedral in London, Pantheon in Paris, United States
capitol in Washington, capitol buildings of 24 US states, Taj Mahal in Agra, St. Basil’s Cathedral
in Moscow, Hagia Sophia in Istanbul.

In order to find the final Cb and Cr ranges corresponding to golden color, the author uses the
fact that with the ascending of Cb values Cr values tend to decrease (Figure 4.11). Thus instead
of having one Cb and Cr range pair, the final Cb range is devideed into Cb subranges and cor-
responding Cr ranges, so that the number of golden true positives is maximized, while keeping
the number of golden false positives minimum. The final Cb subranges and their corresponding
Cr ranges are found experimentally and are as follows:

Cb (31-100]; Cr (134-202] Cb (100-110]; Cr (131-142]
Cb (110-115]; Cr (126-137] Cb (115-120]; Cr (124-130]

Golden color detection with the above mentioned subranges on the training dataset of 100
images results in 14 true positives out of 20 golden images and only 1 false positive.

To determine the codebook size (vocabulary size) best fitting to the database of domes here
also an experiment with different codebook sizes (k) was performed (Figure 5.5 and Table 5.7).
The value of peak threshold for SIFT feature extraction and the value of k for k-means clustering
algorithm are searched so that the final classification rate is maximized on the training dataset.

Raising the SIFT peak threshold leads to the decrease of the extracted SIFT descriptors. As
shown in Figure 5.5, experiments with SIFT peak threshold value 0.04 have lower classification
rate, since the number of extracted SIFT descriptors, describing the dominating gradients of
each dome class, is decreased. Extraction of a bigger number of SIFT descriptors than that
with peak threshold value equal to 0.03 tends to extract descriptors located on construction
material textures leading to overfitting. Figure 5.5 also shows that the best choice for k-means
algorithm k parameter is in the range 25−45. k values smaller than 25 decrease the classification
rate, as the number of cluster centers is not enough for the discrimination of visual words of
different classes. Whereas values greater than 45 make the image histograms sparser, i.e. non-
representative visual words take place. The final codebook choice for testing the system is the
one generated with the values of k = 40 and peak threshold equal to 0.03.

At first the classification is performed using only the first and the third steps, i.e. without
golden color detection. The result is 54 false classified images out of 420 testing images, which
yields an average classification rate of 87.14%. The confusion matrix, with true positives, is
given in Table 5.8. After the classification is run switching on the second step of the approach
for Russian golden onion dome detection. To detect Russian golden domes the lower 1/3 of the

Table 5.7: Dome classification accuracy on the training set with different codebook sizes.

Peak Threshold (p) k = 25 k = 30 k = 35 k = 40 k = 45
0,02 88 92 92 92 90
0,03 82 86 91 91 93
0,04 80 82 81 87 86
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Figure 5.5: Dome classification accuracy. Finding the best size of codebook (k – horizontal
axis) and SIFT peak threshold (p).

Table 5.8: Confusion matrix and the accuracy rate excluding the classification step 2.

Russian Islamic Renaissance Σ

Russian 84 (73.04%) 6 25 115
Islamic 7 115 (92.74%) 2 124

Renaissance 5 9 167 (92.27%) 181
Σ 96 130 194 420

Table 5.9: Confusion matrix and the accuracy rate including the classification step 2.

Russian Islamic Renaissance Σ

Russian 98 (85.22%) 4 13 115
Islamic 7 115 (92.74%) 2 124

Renaissance 6 9 166 (91.71%) 181
Σ 111 128 181 420

query image is cropped, since it is assumed that dome basement is on the bottom of the image
(Figure 3.8a). The image patch to be analyzed is further trimmed from right, left and bottom by
1/8 size of the initial image. The cropping of the query image is done to avoid the segmentation
of the sky and clouds and to exclude false positives among Renaissance domes, which have
examples with golden decorations on the dome upper part. Recall that the segmentation of
russian domes is not automatic, because the approach presented in Section 4.2 [36] targets the
segmentation of hemispherical and islamic onion domes. The approach is not applicable to
russian domes, since from one hand multiple russian domes have high probability of occluding
one another, from another hand symmetry detection is not robust to perspective distortions due
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to small dome sizes. The query image is considered golden, if more than 70% of pixels of
the analyzed patch passes the golden condition, i.e. the pixel Cb and Cr values fall within the
defined range of golden color in Cb and Cr channels. The confusion matrix in Table 5.9 shows
that the classification rate of Russian domes is raised by 14 true positives, while resulting in 1
false positive. 60 out of 80 golden domes were detected, which yields 75% rate for the golden
color detection module and raises the rate of classification for Russian class from 73.04% to
85.22%. Golden color detection raises the final classification rate of the whole testing database
from 87.14% to 90.24%.

5.7 The Evaluation and Results of Tower Classification

Running tower segmentation algorithm (Section 4.3) on 325 input images delivered 544 seg-
mented towers (Section 5.3). As a training set for codebook generation are used 102 of the
segmented towers and the testing set is formed from the remaining 442 images. Both training
and testing image datasets are labelled by architectural styles, the training dataset – for build-
ing the visual codebook, the testing set – as ground truth for the evaluation of the classification
rate. An experiment, exercising the values of k for k-means clustering algorithm and SIFT
peak threshold (p), is carried out to choose the codebook best fitting the tower image database.
Table 5.10 and Figure 5.6a display the results of the experiment, pointing how NN classifier
classification rate on the training set depends on k and p. On one hand the value of k should
big enough, so that the number of clusters is sufficient to discriminate the visual words of the
3 classes. On the other hand raising the value of k too much tends to make image histograms
sparse, i.e. non-representative visual words take place. The experiment shows that the optimal
value of k lies in the range 25 – 45 (Table 5.10 and Figure 5.6a). Now coming to the analysis of
the p parameter: the bigger p value, the less SIFT descriptors are extracted. So while choosing
the optimal value of p it should be kept in mind, that a value too big will not extract enough
discriminative descriptors, whereas a value too small will overdo by extracting descriptors lo-
cated on tower construction material textures. The sought value of p is in the range 0.01 – 0.03
(Table 5.10 and Figure 5.6a). The chosen values to generate the final codebook are k=40 and
p=0.02. Here the preference not in the favor of the pair k=45 and p=0.03, yielding the highest
classification rate, is justified by the fact, that the codebook best performing on the training set
may be not general enough to succeed the classification on the testing set.

The goal of the second experiment is to find out, whether the classification precision on
the training set may increase with application of K>1 values on KNN classifier. K=2 and K=3
values will apparently repeat the result of K=1, since according to Equation 4.7 in Section 4.7

Table 5.10: Tower classification accuracy on the training set with different codebook sizes.

Peak Threshold (p) k = 25 k = 30 k = 35 k = 40 k = 45
0,01 88,24 92,16 85,29 82,35 88,24
0,02 86,27 84,31 88,24 91,18 88,24
0,03 88,24 82,35 88,24 92,16 94,12
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a) Accuracy vs k and p b) Accuracy vs K (p = 0.02, k = 40)

Figure 5.6: Classification accuracy on the training set. Finding the best codebook size (k), SIFT
peak threshold (p) and KNN classifier K.

Table 5.11: Tower classificaion. Confusion matrix and the accuracy rate.

Baroque Gothic Romanesque Sum
Baroque 84 (73.0%) 24 7 115

Gothic 8 171 (87.69%) 16 195
Romanesque 0 31 101 (76.52%) 132

Sum 92 226 124 442

w1=1 and wK=0. Figure 5.6b shows that whereas K=4 value provides the same classification
rate as K=1, with further raise of K the classification rate descends. Thus the classification on
the testing database will be performed by NN classifier (K=1), like in (Section 5.4) [36].

Running the classification with the mentioned codebook on the testing dataset of 442 images
results in 86 false classified images, which yields an average classification rate of 80.54%. A
confusion matrix, with true positives, is given in the Table 5.11. As the approach uses SIFT
features for classification, it is rotation and scale invariant [23].

5.8 Summary

The chapter presented the experimental setup, evaluation and results of the STYLE project
methodology. The first challenge, that is the absence of image datasets labeled by architectural
styles, was overcome by creation and ground truth labeling of an image database, consisting
of 2315 images belonging to the author and Flickr users. The image dataset includes buildings
geographically widely spread, proving that the method proposed is general (Section 5.1).

The segmentation approaches have reported extremely high segmentation rates, that is 96%
in the case of the dome segmentation (Section 5.2) and 94.77% for the tower segmentation
(Section 5.3). The window classification approach (Section 5.4) reached 95.16% average clas-
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sification precision, whereas the classification of traceries, pediments and balustrades - 96.67%
(Section 5.5). The approaches, classifying the architectural elements dome (Section 5.6) and
tower (Section 5.7), reported 90.24% and 80.54% average classification rates respectively.
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CHAPTER 6
Critical Reflection

6.1 Comparison with Related Work

As remarked before, to the best knowledge of the author the only image-based building facade
architectural style classification approach so far is introduced by [27]. The approach is clarified
in detail in Chapter 2. While comparing the architectural style classification approach repre-
sented in the current work to the one, proposed by [27], the following attributes and differences
should be pointed out:

• The current algorithm incapsulates the definition of an architectural style as a combination
of style typical elements and is thus general enough to target the classification of any
distiguishable style.

• Due to its generality the current method possesses the capability to be expanded with new
architectural styles by addition of typical elements of the new styles.

• The current method is not assumed to be used only in facade reconstruction context, like
in [27], and is also able to classify partially occluded facades or facade parts by style
typical elements.

• The algorithm presented in this work and in [27] classify different architectural styles,
Romanesque, Baroque, Gothic and Flemish Renaissance, Haussmannian and Neoclassical
respectively.

• By the problem statement the current system receives images of individual facades as
input, whereas in [27] mobile mapping images make the image database. Thus the scene
classification and facade splitting tasks, making the first and third steps of [27] algorithm,
are out of the scope of the current work.

• In the second step authors in [27] perform facade rectification, assuming the facades to
be planar surfaces, containing two dominant perpendicular directions. Whereas facade
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rectification is a good idea for the type of buildings considered in [27], it is not applicable
for the image database of the current method, since most of the buildings do not have
planar surfaces. Vivid examples of such are Baroque facades with dramatic 3D sculptures
or hemispherical domes and Gothic facades with emphasized vertical accents instead of
two dominant perpendicular directions.

• In [27] NBNN classifier is used in the classification step, whereas the current approach
uses the NN classifer.

• Both aproaches use SIFT descriptors as features in the classification stage, though in one
of the modules of the current work, that is in the approach of classification of domes [37],
additionally dome dimentions and color are used.

• Besides classification approaches published in [36], [38], [37], the current work is the
first to propose segmentation approaches of prominent architectural elements dome [39]
and tower.

6.2 Discussion of the Achievements and Open Issues

Development of a computer vision tool for architectural style classification of building facades is
a broad problem. Its first milestone is the invention of a general algorithm, solving the problem,
which was successfully achieved by introducing the algorithm of the voting of architectural
elements. The algorithm was implemented for three influential pan-European architectural styles
- Romanesque, Gothic and Baroque. The classified architectural elements were window, dome,
tower, tracery, pediment and balustrade. Surely the list of the typical architecural elements of
Romanesque, Gothic and Baroque styles is not completed by the elements mentioned, but the
proposed algorithm left free room for the future expansion of the project with new architectural
elements and architectural styles.

Whereas the ultimate goal is the achievement of complete automation, the developed tool is
semiautomatic, requiring minimum user interaction for the indication of the presence of archi-
tectural elements on the query facade and the manual segmentation of the architectural elements
besides domes and towers. The segmentation of domes and towers was possible to automate by
employing their common visual features - bilateral symmetry and raising out of the building.
The latter visual property allowed whereabouts detection and segmentation of the dome/tower
background - the sky. Though windows, traceries, pediments and balustrades also possess bi-
lateral symmetry, the detection of their whereabouts on facade and background segmentation
remain open issues. The segmentation automation of the windows in the context of the current
project is a broad problem of its own, since it leads to the segmentation of windows of multiple
shapes together with their visually intricate ornamentaion. The complexity of the issue becomes
obvious by recalling the window types classified within the project - Romanesque single, double,
triple round arch windows, Gothic pointed arch and rose windows, Baroque windows with trian-
gular, segmental pediments and balustrades. Though the approaches in [1,4,17,18,20,33,34,42]
address the detection of windows, the experimental datasets display facades with simple rectan-
gular windows, which are visually very diverse from the ones listed above and featuring intricate
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ornaments. If pursuing the aim of the automation of window segmentation in the future, one
should start with performing experiments to see how the available window detection algorithms
perform on the visually complex window types mentioned.

The work also gave the clue for widening the project with new architectural styles by the
following steps, identical to those performed for Romanesque, Gothic and Baroque styles so far:

1. Research of the new architectural style to find out its typical architectural elements.
2. Segmentation of the chosen typical architectural elements (manual or automatic).
3. Classification of the segmented architectural elements by an approach employing the

visual features of the elements.
4. Integration of the votes of the new architectural elements and the new architectural style

in the style voting mechanism, also by taking into account if the newly added architectural style
could possibly be mixed with the existing architectural styles on a single facade.
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CHAPTER 7
Summary and Future Work

The current work presented the first general methodology, addressing the problem of image-
based architectural style classification of building facades. On the basis of the method lies the
concept of discriminating architectural styles by style typical component parts - architectural
elements. Thus the method imitates the human cognitive process of architectural style classifi-
cation. As the architectural style of the building is claimed the style, to which the majority of
architectural elements belong. The proposed algorithm is general enough to cover the classifi-
cation of any arcitectural style with the precondition that the style to be classified has clearly
defined visual characteristics. It is also advantaged by bearing the capability to classify facade
portions, as well as facades, which are partially occluded or display a mixture of architectural
styles. The algorithm was realized for three influential pan-European architectural styles – Ro-
manesque, Gothic and Baroque.

The methodology was constructed as successive phases of segmentation, classification and
voting of style typical architectural elements. At the segmentation phase two novel approaches,
targeting the segmentation of outstanding architectural elements dome and tower respectively,
were introduced. The approach for segmentation of domes was a pipeline uniting bilateral sym-
metry detection, graph-based segmentation approaches and image analysis and processing tech-
nics. The approach of tower segmentation modified and advanced the approach of dome segmen-
tation to two branches, targeting the tower segmentation of facades featuring single and double
towers individually. The first approach, introduced at the classification stage, was aiming at the
classification of windows. It was based on clustering and learning of local features. The next
classification module categorized the architectural elements tracery, pediment and balustrade. It
employed the approach of window classification, by tuning its parameters to suit best to the im-
age database of the examined elements. The algorithm, classifying the prominent element dome,
was an extention of the window classification approach. It comprised three steps, detecting Is-
lamic saucer domes at the first step by the proportion of the dome width and hight, identifying
Russian golden domes at the second step by golden color detection in YCbCr color space and
performing classification by shapes only at the third step. The list of classification moduls fi-
nalized the tower classification approach, also originating from window classification approach.
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The third and final step of the architectural style classification system was the integration of all
segmentation and classification approaches into a single frame and the implementation of the
voting mechanism of architectural elements.

To test each module of the system image databases displaying buildings of the explored
architectural styles and featuring the corresponding architectural elements were created. Ex-
tensive experiments, carried out to evaluate each module separately, reported high segmentation
and classification precision. The list of the typical architectural elements of Romanesque, Gothic
and Baroque architectural styles is not completed by the elements examined so far. But the pro-
posed algorithm left free room for the future expansion of the project with new elements. By
increasing the number of architectural elements, the system will be able to classify a broader
variety of facades.

Future work will be in the direction of extending the system with new architectural elements
and styles. In addition to that future research will pursue the aim of automating the segmentation
of all architectural elements.
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APPENDIX A
Databases, source code

A.1 The List of the Buildings Featuring Domes

The database of buildings collected for the evaluation of the dome segmentation approach [39]
has a wide geography, including buildings situated in Europe, North and South America and
Asia. Since dome is an outstanding architectural element, it is featured on buildings of religious
and secular great importance. The database comprises the author’s own photographs and images
from Flickr image database. Below are listed the buildings of the database, among those the
capitols of 24 US states:

1. Arkansas Capitol, USA

2. California Capitol, Sacramento, USA

3. Colorado Capitol, USA

4. Idaho Capitol, USA

5. Illinois Capitol, USA

6. Indiana Capitol, USA

7. Iowa Capitol, USA

8. Georgia Capitol, USA

9. Kansas Capitol, USA

10. Kentucky Capitol, USA

11. Maine Capitol, USA

12. Michigan Capitol, USA
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13. Minnesota Capitol, USA

14. Missouri Capitol, USA

15. New Hampshire Capitol, USA

16. Oklahoma Capitol, USA

17. Pennsylvania Capitol, USA

18. Rhode Island Capitol, USA

19. Texas Capitol, USA

20. US Capitol, USA

21. Utah Capitol, USA

22. Washington Capitol, USA

23. West Virginia Capitol, USA

24. Wisconsin Capitol, USA

25. Wyoming Capitol, USA

26. San-Francisco City Hall, USA

27. Pasadena City Hall, USA

28. Baltimore City Hall, USA

29. St. Paul Cathedral, Minnesota, USA

30. St Charles’s Church Vienna, Austria

31. Hofburg Palace, Vienna, Austria

32. Art History Museum, Vienna, Austria

33. Maria von Siege, Vienna, Austria

34. Vienna central cemetary church, Austria

35. Salzburg Cathedral, Austria

36. Barlin Cathedral, Germany

37. Charlottenburg Palace, Berlin, Germany

38. St. Peter’s Cathedral, Vatican

39. Florence Cathedral, Italy
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40. Basilica di Superga, Turin, Italy

41. Blue Mosque, Yerevan, Armenia

42. St. Stefan’s Cathedral, Budapest, Hungary

43. Budapest Parliament, Hungary

44. Budapest Royal Palace, Hungary

45. Marble church, Denmark

46. Dublin Custom House, Ireland

47. Helsinki Cathedral, Finland

48. Dome Church, Paris, France

49. Paris Pantheon, France

50. Les Invalides church, Paris, France

51. Old College Edinburgh, Scotland

52. St. Georges Church Edinburgh, Scotland

53. The Bank Of Scotland

54. Mitchell Library, Glasgow, Scotland

55. St. Isaac Cathedral, Saint Petersburg, Russia

56. St. Nicolas church, Prague, Chech Republic

57. St. Paul Cathedral, London, England

58. Argentina Congress Building, Buenos Aires

59. Capitolio Havana, Cuba

60. Taj Mahal, India

61. Sheikh Lotfollah Mosque, Isfahan, Iran

62. Imam Mosque, Isfahan, Iran

63. Bibi Khanoum Mosque, Samarkand, Uzbekistan

64. Khast Imam Mosque, Uzbekistan

65. Kalon Mosque, Bukhara, Uzbekistan

66. A church in Athens, Greece (The name not annotated with the image)

67. Some other mosques in Iran, etc (The names not annotated with the images)

77



A.2 The List of the Buildings Featuring Towers

The section of the image database, gathered to evaluate the performance of the tower segmen-
tation and classificaiton approaches, includes images of 35 cathedrals, churches, basilicas and
city halls spread in Austria, Germany, Sweden, Czech Republic, Hungary, France, Spain, Lux-
emburg, England, Belgium, Switzerland and China. This database was also gathered from the
author’s own photographs and images from Flickr image database. The buildings are listed
below:

1. Vienna City Hall, Austria

2. Votiv church, Vienna, Austria

3. Maria Treu church, Vienna, Austria

4. Jesuit Church, Vienna, Austria

5. Mariahilf church, Vienna, Austria

6. Maria of Siege church, Vienna, Austria

7. St. Anton church, Vienna, Austria

8. Breitenfelder church, Vienna, Austria

9. Franz of Assisi church, Vienna, Austria

10. Altlerchenfelder church, Vienna, Austria

11. Salzburg Cathedral, Austria

12. Cologne Cathedral, Germany

13. St. Pantaleon Church, Cologne, Germany

14. Bremen Cathedral, Germany

15. Fulda Cathedral, Germany

16. Basilica St. Castor, Koblenz, Germany

17. St. Gall Abbey, Switzerland

18. Notre Dame Cathedral, Paris, France

19. Reims Cathedral, France

20. Abbaye Aux Hommes Caen, France

21. York Minster, England
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22. Westminster Abbey, London, England

23. Barcelona Cathedral, Spain

24. Burgos Cathedral, Spain

25. St. Michael and St. Gudula Cathedral, Brussels, Belgium

26. Brussels City Hall, Belgium

27. Church of Our Lady of Laeken, Brussels, Belgium

28. St. Petrus And St. Paulus Church, Ostend, Belgium

29. Loreta church, Prague, Czech Republic

30. St.Peter and St.Paul Church Vysehrad, Prague, Czech Republic

31. St. Mary Magdalene church, Karlovy Vary, Czech Republic

32. St. Stefan’s Cathedral, Budapest, Hungary

33. Church Saints Cosmas and Damian, Luxemburg

34. Lund Cathedral, Sweden

35. St. Michael’s Cathedral, Qingdao, China

Figure A.1: The logo of the STYLE project.
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A.3 The Logo of the STYLE Project

The logo of the STYLE project (Figure A.1) depicts one of the monumental buildings of the
famous contemporary architect Santiago Calatrava - Reina Sofia Palace of the Arts, located in
Valencia, Spain. The choice of the building conveys the idea, that contemporary buildings are
unique examples, carrying the style signature of the architect and, unlike historic buildings, are
not possible to categorize into certain classes of architectural styles.

A.4 Source Code

The Function Performing the Voting of Architectural Elements

The function, carrying out the main idea of the work, that is the architectral style classification
of the building facade by the voting of arthitechtural elements, is the backbone of the presented
software tool. The function pushbuttonOK_Callback is executed on pressing the “Clas-
sify” button of the GUI shown in Figure A.2, after the user marks the architectural elements
present on the observed facade. The function first checks for the presence of the architectural
elements and after proceeds to the processing of the existing ones. Here is also, where the
modular structure of the software lies, i.e. the segmentation/classification of each architectural
elements is implemented in a separate module, which makes the software easy to extend by new
architectural elements. The extension by new architectural styles may be likewise accomplished
by adding new styles to the voteVector vector. After the segmentation/classification of all
the architectural elements, voting of the architectural elements is achieved by the algorithm, ex-
plained in detail in Section 4.8. The code of the pushbuttonOK_Callback is presented
below.

Figure A.2: GUI demonstration of STYLE project.
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% --- Executes on button press in pushbuttonOK.
function pushbuttonOK_Callback(hObject, eventdata, handles)
% hObject handle to pushbuttonOK (see GCBO)
% handles structure with handles and user data (see GUIDATA)

global voteVector
global imagePath
voteVector = struct( ’Romanesque’, {0}, ’Gothic’, {0}, ...
’Baroque’, {0}, ’Russian’, {0}, ’Islamic’, {0} );

isTower = get(handles.checkboxTower, ’Value’);
isDome = get(handles.checkboxDome, ’Value’);
isWindow = get(handles.checkboxWindow, ’Value’);
isElement = get(handles.checkboxElement, ’Value’);
imagePath = get(handles.path,’String’);

if (isTower)
SegmentTowers();
ClassifyTowers();

end

if (isDome)
SegmentDome();
ClassifyDome();

end

if (isWindow)
ClassifyWindows();

end

if (isElement)
ClassifyElements();

end

voteVector

% THE VOTING OF ARCHITECTURAL STYLES !!!

% Romanesque, Gothic and Baroque votes are equal or
% Romanesque and Gothic votes are >= than Baroque vote
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if ( voteVector.Romanesque == voteVector.Gothic )
if ( voteVector.Romanesque >= voteVector.Baroque )

fprintf(’THE FACADE STYLE IS Romanesque and Gothic mix!’);
set(handles.arcStyle, ’String’, ’Romanesque and Gothic’);
return;

end
end

maxVote = 0;
styles = fieldnames(voteVector);
for i = 1:length(fieldnames(voteVector))

currentVote = voteVector.(char(styles(i)));
if (currentVote > maxVote)

maxVote = currentVote;
winnerIndex = i;

end
end

% Gothic(Romanesque) has the maximum vote and the votes of
% Romanesque(Gothic) >= 2
if ( (strcmp(char(styles(winnerIndex)), ’Romanesque’) && ...
voteVector.Gothic >= 2) || ...
(strcmp(char(styles(winnerIndex)), ’Gothic’) && ...
voteVector.Romanesque >= 2) )

fprintf(’THE FACADE STYLE IS Romanesque and Gothic mix!’);
set(handles.arcStyle, ’String’, ’Romanesque and Gothic’);
return;

end

set(handles.arcStyle, ’String’, char(styles(winnerIndex)));
fprintf(’THE FACADE STYLE IS %s !’, char(styles(winnerIndex)));

The Generation and Saving of SIFT descriptors from Training Datasets

SIFT descriptors are extracted from the training dataset of each classification module, namely
the modules for classification of windows (Section 4.4), traceries, pediments, balustrades (Sec-
tion 4.5), domes (Section 4.6) and towers (Section 4.7). Multiple sets of SIFT descriptors are
generated and saved by exercising the peak threshold parameter. The saved SIFT decriptor sets
will be loaded in the next step with the purpose of generating the corresponding codebooks. For
each SIFT descriptor set, corresponding to one value of the peak threshold, multiple codebooks
will be generated by exercising the k parameter of the k-means algorithm further. The optimal
codebook, obtained as a result of tuning the parameters peak threshold and k, will be chosen
for style prediction on the testing dataset. The source code below extracts and saves the SIFT
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descriptor set for the tower training dataset wih the peak threshold value set to 0.02. The ex-
traction and saving of the SIFT descriptors for any other classification module is done easily by
changing the vector of the architectural styles to be classified, the traning dataset directory path
and the value of SIFT peak threshold.

styleVector = struct(’style’,{’Baroque’,’Gothic’,’Romanesque’});

fprintf(’\n GENERATION OF TOWER SIFT DESCRIPTORS ! \n’);

% Training set directory
fileDir = fullfile(’D:\MYMATLAB\Tower_code’, ’TOWER_TRAINING_SET’);
files = dir(fileDir);

for i = 1:size(files,1)
filename = files(i).name;

if (files(i).bytes < 1 || files(i).isdir)
continue;

end

% To skip non-image files
[filenameraw ext] = delimgext(filename);
if (isempty(ext))

continue;
end

info = imfinfo([fileDir,’/’,filename]);
disp([’Loading Image: ’, filename]);
imgRGB = imread([fileDir,’/’,filename], info.Format);

% Labeling the training set images from their filenames
for ind = 1:length(styleVector)

if (strfind(filename, styleVector(ind).style))
label = ind;

end
end

imgGray = myRgb2Gray(imgRGB);

% Peak threshold parameter value
peakTh = 0.02;
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[ftmp,dtmp] = vl_sift(imgGray, ’PeakThresh’, peakTh);

if exist(’f’,’var’)
f = [f’; ftmp’]’;
d = [d’; dtmp’]’;
labels(end:end+size(ftmp,2)) = label;

else
f = ftmp;
d = dtmp;
labels(1:size(ftmp,2)) = label;

end

end

% Saving SIFT frames, descriptors and labels for peakTh value
siftFileName = sprintf(’TowerSifts_peakTh%f.mat’, peakTh);
save(siftFileName, ’f’, ’d’, ’labels’);

The Generation of a Codebook from SIFT descriptors

Visual codebook generation has a principal role is all classification approaches of the current
work. Its aim is to obtain via k-means clustering a visual codebook from the SIFT descrip-
tors, which have been extracted from the training image dataset of the observed architectural
element(s) (Section A.4). A codebook of the corresponding element(s) is generated for each
classification module. The source code, realizing the codebook generation with the parameters
adjusted for the optimal tower codebook, follows below.

fprintf(’\n\n\n CODEBOOK GENERATION START ! \n\n’);
numberOfStyles = 3;
peakTh = 0.02;

% Loading SIFT frames, descriptors and labels
siftFileName = sprintf(’TowerSifts_peakTh%f.mat’, peakTh);
sifts = load(siftFileName);
d = sifts.d;
labels = sifts.labels;

% k-means clustering
k = 40;

[m1 p1] = size(d);
[m2 p2] = size(labels);
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C = [];
% Finding dictionary words - codebook - cluster centers
for lIndex = 1:numberOfStyles
% To use m-binary labels for m-category labels
%(e.g. 3 labels - 100, 010, 001)
labelsBinary = (labels == lIndex);
indFirst = find(labelsBinary, 1, ’first’);
indLast = find(labelsBinary, 1, ’last’);

currentClassDiscriptors = d(:, indFirst:indLast);
currentClassDiscriptorsScaled=ScaleMatrix(currentClassDiscriptors);

[Ctmp, A] = vl_kmeans(currentClassDiscriptorsScaled’, k);
C = [C; Ctmp’];

end

% Saving the codebook
save(’Codebook_Tower.mat’, ’C’);
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