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Abstract

In general, a railway system consists of several trains which use a large infrastructure. In such
complex systems it is very difficult for the train driver and the dispatcher to find a solution where
each train will arrive at its destination in time and the energy consumption is minimal. To ensure
the requirement of a safe system, few operations are done by automated systems. Often there is
less consideration on the energy consumption resulting in a high potential for saving traction en-
ergy. This potential can be divided into two parts. On one hand each single trip can be optimized
by using an optimal driving strategy, where the demand of traction energy is minimal. On the
other hand, the complete railway system is analyzed. In the latter case the schedule, delays, and
restriction on the tracks are taken into account for the calculation of an optimal solution. The
optimization of such a system must satisfy important criteria, such as safety, punctuality and
passenger comfort. Based on these restrictions, the optimization algorithm determines an over-
all solution where the energy consumption is as small as possible. The results of the algorithm
can be used to support train drivers and dispatchers.

The first part of the algorithm consists of finding an optimal solution for a single journey,
which consists of four driving types, namely acceleration-phase, speed-hold-phase, coasting-
phase, and braking-phase. The second part of the algorithm is the optimization of the complete
system by applying the so-called Kronecker Algebra and the single-trip optimization.

Kronecker Algebra consists of Kronecker Sum and Kronecker Product and is used to create
a matrix, which contains all possible movements of the trains within the system. Each train has
a route for its journey which consists of a sequence of track sections. This information is given
as matrix and used as input for the algorithm. Each track section is modeled by a semaphore
and given as a matrix, too. Kronecker Sum calculates all possible interleavings of the trains, but
only if they do not use the same track sections. If several trains use a common track section,
Kronecker Product is used to ensure that the access on each section is done sequentially. In
particular a train can enter a section only if it has been released by another train. The result of
the application of Kronecker Algebra is again a matrix, which can be represented by a graph.
The optimal driving strategy for each train is given as a distance-speed-diagram.

This model is used to determine and to avoid conflicts (e.g. deadlocks or headway-conflicts).
All conflict-free solutions are calculated and as a result, the best solution in terms of energy
consumption is given.
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Kurzfassung

Ein Eisenbahnnetz besteht im Allgemeinen aus einer umfangreichen Infrastruktur, auf der eine
Vielzahl an Zügen verkehrt. In einem derart komplexen System ist es für den einzelnen Trieb-
fahrzeugführer oder Disponenten schwierig, die jeweils richtige Entscheidung für den optimalen
Betriebsablauf zu treffen. Zur Gewährleistung der Sicherheit wird ein Großteil des Betriebs auto-
matisiert durchgeführt. Allerdings wird in Dispositionsentscheidungen der Energiebedarf nicht
oder nur am Rande berücksichtigt, wodurch sich ein großes Potential zur Einsparung ergibt, das
auf zwei Ebenen aufgeteilt werden kann. Zum Einen kann jede einzelne Zugfahrt optimiert wer-
den, um das Fahrziel mit möglichst wenig Energiebedarf zu erreichen. Zum Anderen muss das
Gesamtsystem betrachtet werden und aufgrund des aktuellen Fahrplans, etwaiger Verspätungen
oder auch aufgrund von gesperrten oder nur eingeschränkt nutzbaren Abschnitten eine opti-
male Strategie zur Minimierung des Energiebedarfs entwickelt werden. Diese beiden Ebenen
zur Optimierung müssen sich allerdings wichtigen Kriterien, wie zum Beispiel der Sicherheit,
der Pünktlichkeit und auch dem Fahrkomfort unterordnen. Basierend auf diesen Anforderun-
gen berechnet der Optimierungsalgorithmus eine Gesamtlösung mit möglichst geringem Ener-
giebedarf. Dem Disponenten bzw. dem Triebfahrzeugführer können somit Informationen zum
optimierten Gesamtsystem bzw. zur optimalen Einzelfahrt zur Verfügung gestellt werden.

Der erste Teil des Algorithmus besteht aus der Optimierung der Einzelfahrten, dessen Ergeb-
nis sich aus den Fahrtypen Beschleunigung, Halten der Geschwindigkeit, Ausrollen und Bremsen
zusammensetzt. Der zweite Teil optimiert das Gesamtsystem, bei der die sogenannte Kronecker-
Algebra und die Einzelfahrt-Optimierung zur Anwendung kommen.

Die Kronecker-Algebra besteht aus der Kronecker-Summe und dem Kronecker-Produkt und
dient dazu, eine Matrix zu erzeugen, die alle Zugbewegungen im System beinhaltet. Für die
Berechnung werden die Routen der Züge als Abfolge von Streckenabschnitten in einer quadrati-
schen Matrix dargestellt. Die Abschnitte selbst werden als Semaphore modelliert und ebenfalls
in Matrizen bereitgestellt. Die Kronecker-Summe berechnet alle möglichen Verschachtelungen
der beteiligten Züge, sofern diese keinen Streckenabschnitt gemeinsam nutzen. Andernfalls kön-
nen über das Kronecker-Produkt alle Varianten berechnet werden, in denen mehrere Züge einen
gemeinsamen Abschnitt befahren. In diesem Fall wird sichergestellt, dass der Zugriff sequen-
tiell erfolgt. Das bedeutet, dass ein Zug einen Abschnitt erst dann befahren darf, wenn er von
einem anderen Zug freigegeben wurde. Die Anwendung dieser mathematischen Operationen
erzeugt als Ergebnis wiederum Matrizen, die zur Visualisierung der Ergebnisse in Form von
Graphen dargestellt werden können. Die optimale Fahrkurve der einzelnen Züge wird als Weg-
Geschwindigkeit-Diagramm zur Verfügung gestellt.
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Die Verwendung dieses mathematischen Modells erlaubt es, Konflikte (z.B. Deadlocks, Auf-
laufen) zu erkennen und diese nicht mehr als potentielle Lösungen zur Verfügung zu stellen. Für
die verbleibenden Zugbewegungen wird mittels der zuvor erwähnten Einzelfahrtoptimierung der
Energiebedarf errechnet und anschließend die optimale Strategie zur Verfügung gestellt.
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CHAPTER 1
Introduction

For each railway company it is a formidable challenge to provide a well-performing railway
network in several aspects like punctuality, passenger comfort or energy demand. Due to the
great amount of trains, track sections, railway station, and so on, humans cannot overview and
handle such complex systems. Therefore automation systems may adopt some tasks and help
the user to find good strategies and act in a safe way. One of such challenges is to find optimal
driving strategies for each train within the railway system. If the train driver knows the track
exactly, he might find a good driving strategy in terms of energy demand, but it may not be the
best one. Algorithms on fast computers can calculate an optimal driving strategy very fast and
this information can be given to the train driver or to an automated driving system. For large
systems, where several trains use the same track sections, the problem is more complex, because
there must be a synchronization between the trains to guarantee that a train enters a track section
only, if it is not occupied by another train. The sequence of entering and leaving track sections
depends on the planned travel time and the energy consumption when finding a solution with
minimal energy consumption. Finding the best solution is a complex task and needs a lot of
computing power. Thus it is impossible for humans to find the best strategy in real-time without
the support of automation systems.

1.1 Prerequisites to the algorithm

This thesis describes an algorithm to calculate the optimal driving strategy in terms of energy
demand for several trains within a railway network. The development of the algorithm was done
within the so called EcoRailNet-project, an Austrian research project. The project partners were
Österreichische Bundesbahnen (ÖBB), THALES Austria, and Vienna University of Technology
(Institute of Computer Aided Automation). Based on several practical restrictions from ÖBB,
an algorithm was designed and implemented to optimize a railway system. These restrictions
are:
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• Safety: The algorithm must be safe in a way that not more than one train can be within
a track section. Further track restrictions (e.g. maximum allowed track speed) and train
restrictions (e.g. maximum train speed) must be taken into account.

• Punctuality: The trains must leave and arrive in time.

• Driving comfort: The calculated speed profile must be easy to follow by the train driver
and the passenger comfort must not be affected in an unpleasant way (e.g. lots of accel-
erating and braking phases within one trip). In addition, it must be possible to define a
speed-step-size (e.g. 5-km/h-steps) due to the restrictions of the cruise control.

• Energy efficient driving: The overall energy consumption of all trains must be as small as
possible in strict accordance of the previous restrictions.

1.2 Outline and state-of-the-art

Based on these restrictions an algorithm was developed. Basically, it is divided into two parts:

1. Single trip optimization: This part of the algorithm calculates the optimal driving strategy
for a single train on a track with no influence on other trains. Several train and track
parameters are included in the calculation of the driving strategy.

Brüger et al. [6] give an overview of the physical train model and running time estima-
tion, including methods for solving the corresponding equations. The model presented in
Chapter 3 does not solve differential equation in this way – the optimal driving strategy is
determined by a meta model to find the optimal driving speed and types.

Albrecht [2] introduces methods for finding the optimal driving strategies for a train, con-
sisting of an acceleration phase, a cruising phase, coasting and a braking phase but only
for tracks with constant inclination. Chapter 3 will show methods for arbitrary track incli-
nation.

Howlett et al. explain techniques for finding optimal driving strategies in several scientific
papers (cf. [1,13,32–35]). These methods will create speed profiles with several variations
of driving types (cf. Chapter 3) within a single trip and thus, they are not feasible for the
demand of a comfortable driving strategy for the driver and the passengers.

In [29] and [49] an algorithm for determining the optimal driving strategy is presented,
too, again with several variations of driving types. In addition, the demand of the speed-
step-size (cf. Section 3.2) cannot be satisfied.

The same is valid for [23], [24], and [41] which present algorithms under the assumption
that the train is handled as a mathematical point with unit mass.

In [59], three different methods for finding energy-efficient driving strategies are pre-
sented. Summing up it can be said that each method has at least one disadvantage (e.g.
calculation time, ease of implementation).
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Desprez and Djellab [18] present an algorithm which is similar to the algorithm in Chapter
3 but not practical due to the lack of the possibility to choose the speed-step-size and the
minimum travel time for each driving type (cf. Sections 3.2 and 3.4).

Schöbel et al. [72] present a method for reducing the energy consumption by optimizing
the station dwell time. Due to the reduced hold speed the energy consumption can be
reduced by approximately 1 %. This method does not consider a coasting phase which
brings another potential for energy savings.

Summing up it can be said that several optimization algorithms do not consider a number
of practical aspects like speed-step-size, minimal travel time for each driving type, track
inclination, real train length and mass, or the computation time (cf. [4,8,14,21,47,48,82,
84]). Thus, the algorithm presented in Chapter 3 is the first for practical applications due
to its low computation time and the number of parameters for practical usage.

2. System optimization: The second part of the algorithm is based on the so-called Kro-
necker Algebra. The application of the mathematical model calculates all possible move-
ments of all trains within the railway system and creates matrices as results which can be
represented by graphs. This graph can be reduced to the relevant nodes, so called synchro-
nizing nodes which are used to guarantee that trains can enter a track section only if it is
not occupied by another train. Based on the physical train model, the energy consumption
of all possible movements of the trains is calculated and the best result is determined.

In [53,60,61,70,71] the potential for energy savings by using computer-based train control
is shown. The presented methods try to avoid conflicts and thus, additional stops within
the trip (cf. [51]). In addition, the potential energy savings in the Lötschberg Base Tunnel
are given. A similar approach is used in the system optimization (Chapter 5).

In [39] some methods for conflict resolutions (Dispatching Based on Asynchronous Sim-
ulation and Dispatching Based on Synchronous Simulation) are explained, which may be
possible for small railway networks but they do not scale up. In addition, extended stops,
extra stops, and increasing running time are mentioned. The optimization algorithm in
Chapter 5 does not consider these possibilities, because it tries to find a solution without
changing the dispatching parameters.

The method in [69] uses graph theory to model the railway infrastructure on a microscopic
and macroscopic level. A similar model is used in Chapter 4.

Siefer [73] gives an overview of simulations and explains the advantages of this method
in railway systems. In contrast to common simulation tools, the model in this thesis
calculates all possible routes and chooses the best one in terms of safety, punctuality,
and energy consumption.

In [16] Banker’s algorithm [20] has been modified such that it can be used for deadlock
analysis in railway systems. Due to the fact that the native algorithm was designed for
computer systems, it is not well-suited for the application in railway systems. It might
be the case that the usage of a track section is prohibited although it can be used without
the danger of deadlocks. In contrast to the model in Chapter 4, [16] models both track
sections and switches as resources.
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Zarnay [83] uses a colored Petri net model and Banker’s algorithm to avoid deadlocks.
Due to the previously mentioned restrictions of Banker’s algorithm, it turned out that it
cannot handle a large number of trains and track sections.

In [22] a colored Petri net model is explained to guarantee safeness and deadlock-freedom
but it is not clear how this approach can be extended to find optimal solutions.

In [52] an operations research approach is presented to determine deadlocks in railway
systems.

Pachl [63,65] shows two methods for deadlock analysis which deliver false positives. The
same restriction applies to the approach presented in [50], [55], and [66].

Fuchsberger [25] presents the train routing problem and the pulsed train scheduling prob-
lem in a main station area but it is unclear how the model performs for regions with less
tracks and switches or if the model is scalable for larger areas.

Several scientific papers from Switzerland (cf. [9–12]) present new approaches to generate
conflict-free train schedules. The basic idea is that the railway network is divided into so-
called compensation zones and condensation zones. This segmentation is done due to
the assumption that there is a high traffic density at railway stations and a low traffic
density between them. Around the railway stations, predefined speed profiles are used
to ensure punctuality. Between these nodes optimized speed profiles are generated to
reduce the energy consumption. As a result the complexity of the system could be reduced
and the driving strategy must not be calculated for the complete railway system. Major
disadvantages of the model are that the calculated speed profiles could be more realistic,
and that some travel time might be lost due to the predefined profiles. The model was not
tested for larger railway networks. Other approaches use conflict-graphs, precomputed
blocking-stairways, or a framework to generate periodic timetables respectively.

Jaekel and Albrecht [40] present a model based on non-linear programming for train path
envelope determination, including a case study from Sweden. The optimization was done
in MATLAB with a predefined toolbox but the calculation time was too high for the usage
in real-time systems on online-calculations within train operation.

1.3 Contents of this thesis

The thesis is divided into the following parts:

• Chapter 2 describes the train model. In particular, several formulas and a description of
the traction force, the braking force, and the resistance values are given. At the end of the
chapter, some important details about the implementation of the train model are shown.
The model is used for the optimization strategies, presented in the succeeding chapters.

• Chapter 3 describes the single trip optimization. The driving strategy of a single train
is calculated, based on the schedule of the train, the given track, and the physical train
model, including several configuration parameters.
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• Chapter 4 gives an overview and some theoretical background on Kronecker Algebra,
a mathematical model using matrices to calculate all possible movements of the trains
within a railway network, including feasible deadlocks.

• Chapter 5 describes the Kronecker Algebra based system optimization, including the re-
duction of the resulting graph, the calculation of all possible routes of the trains and the
determination of the optimal driving strategy of each involved train.

• Chapter 6 shows some extensions of the model.

• Chapter 7 contains the conclusion of the work and a prospect.

To illustrate the theoretical elaboration, several examples are given in the following chapters.

The implementation of the train model, the operations of Kronecker Algebra, and the algo-
rithms to calculate the optimal driving strategy for a single train and to determine the optimal
solution for the overall system is done in Ada. This programming language offers a number of
features for complex implementations and real-time systems, e.g. object-oriented programming,
protected objects, generics, and a good support for the implementation of concurrent tasks and
thus, the parallelism of several computation steps of the whole system which can reduce the
computation time.
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CHAPTER 2
Train model

This chapter describes the physical model of the train in detail. In particular, on one hand
formulas to calculate the behavior of the train on the track, and on the other hand formulas to
calculate the energy demand are given. A similar physical model is implemented in several
simulation tools, but for integrity it is explained here in detail. Most of the given formulas are
based on [6] and [15] and modified as they are used in OpenTrack [36, 37].

The algorithms in Chapter 3 and 5 use this model to calculate the movements of the trains
and to calculate the energy consumption.

As it is know from fundamental laws of dynamics, the movement of a train is influenced by
three forces, namely:

• The traction force F (v) acts in the trains forward motion (Section 2.1).

• The braking force B(v) acts against the forward motion (Section 2.2).

• In general, the resistance force R(v, s) acts against the forward motion of a train. Several
types of resistance forces are explained in Section 2.3.

Based on these types of forces, there are three different situations which influence the motion of
a train. They depend on the current train speed v and on the position s of the train on the track.

• F (v)−B(v)−R(v) > 0 . . . The train will increase its speed.

• F (v)−B(v)−R(v) = 0 . . . The train will hold the current speed.

• F (v)−B(v)−R(v) < 0 . . . The train will decrease its speed until it stops.

The algorithms to determine the optimal driving strategy for a train (Chapter 3) and for the
optimization of a railway system (Chapter 5) calculate the forces at each position by using the
current train speed.
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2.1 Traction force

The traction force of a traction vehicle is given as a table with two columns – the first one is the
speed v in km/h and the second one the corresponding force on the wheels F (v) in kN. Thus,
for each speed value v a corresponding traction force value F (v) is defined.

Example 2.1. Figure 2.1 shows the velocity–traction-force diagram of the ÖBB 4124 (Bom-
bardier Talent) [27]. The maximum traction effort of the train is located between 0 km/h and
47 km/h and is 110.00 kN.

Between 47 km/h and the maximum speed of the train (v = 140 km/h, F (v) = 32.37 kN),
there is a nearly continuous traction effort which is inversely proportional to the corresponding
speed value. Thus, the traction force decreases with higher speed values and as a consequence
the acceleration will decrease, too. This effect will be increased by several resistance values
which will be explained in section 2.3.
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Figure 2.1: vF -Diagram of ÖBB 4124 (Bombardier Talent, Example 2.1) [27]
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2.2 Braking force

Similarly to the traction force, the braking force is also given as a table with the speed value v in
km/h in the first column and the braking force B(v) in kN in the second one. Again, for each
speed value v a corresponding braking force B(v) is defined.

Example 2.2. The velocity–braking-force diagram of ÖBB 4124 (Bombardier Talent) [26] is
shown in Figure 2.2. The maximum braking force is located between 0 km/h and 80 km/h and
is 80 kN.

Between 80 km/h and the maximum speed of the train (v = 140 km/h, B(v) = 45 kN),
there is a decreasing braking power, again inversely proportional to the corresponding speed
value.
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Figure 2.2: vB-Diagram of ÖBB 4124 (Bombardier Talent, Example 2.2) [26]
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2.3 Resistance

This section describes the calculation of the resistance which acts in general against the motion
of the train. The given formulas are based on [6], [15], [37], and [36].

As already mentioned, if the resistance is greater than the traction force, the train will de-
crease its speed. The complete resistance of a train is given in Equation 2.1 and is calculated
by the sum of its traction resistance and its acceleration resistance. The used parameters are
explained in Table 2.1.

R(v, s) = RTr(v, s) +RA(v, s) (2.1)

Symbol Description Physical Unit

R(v, s) Resistance [R(v, s)] = N
RTr(v, s) Traction resistance [RTr(v, s)] = N
RA(v, s) Acceleration resistance [RA(v, s)] = N

v Train velocity [v] = m/s
s Train position [s] = m

Table 2.1: Resistance

Traction Resistance

The calculation of the traction resistance is given in Equation 2.2. It is calculated by summing
up the rolling resistance and the distance resistance. An overview of the parameters is given in
Table 2.2.

RTr(v, s) = RR(v, s) +RD(s) (2.2)

Symbol Description Physical Unit

RTr(v, s) Traction resistance [RTr(v, s)] = N
RR(v, s) Rolling resistance [RR(v, s)] = N
RD(s) Distance resistance [RD(s)] = N
v Train velocity [v] = m/s
s Train position [s] = m

Table 2.2: Traction resistance
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Rolling resistance

The rolling resistance contains the train resistance, the wagon resistance, and the tunnel resis-
tance. Equation 2.3 shows the formula to calculate the rolling resistance for passenger trains,
Table 2.3 gives an overview of the parameters.

RR(v, s) = RRT (v) +RRP (v) +RT (v, s) (2.3)

Symbol Description Physical Unit

RR(v, s) Rolling resistance [RR(v, s)] = N
RRT (v) Train resistance [RRT (v)] = N
RRP (v) Wagon resistance for passenger

trains
[RRP (v)] = N

RT (v, s) Tunnel resistance [RT (v, s)] = N
v Train velocity [v] = m/s
s Train position [s] = m

Table 2.3: Rolling resistance

Instead of RRP (v), RRF (v) can be used for freight trains. In general, the rolling resistance
of a train and its wagons is given by the Formula of Davis [15]:

R(v) = A · v2 +B · v + C. (2.4)

To configure the parameters in a fine grained level, Equation 2.4 is often given in some more
detail, e.g. by using the following formulas:

• Strahl-formula to calculate the resistance of the traction vehicle (RRT (v)).

• Sauthoff-formula to calculate the resistance of the person-wagons (RRP (v)).

• Improved Strahl-formula to calculate the resistance of the freight-wagons (RRF (v)).

Rolling resistance of traction vehicles. Equation 2.5 shows the Strahl-formula to calculate
the resistance of a traction vehicle. Table 2.4 gives an overview of the parameters and their
units.

RRT (v) = g ·
{[
fL ·

mT

1000

]
+
[
kSt1 · ((v + ∆v) · 3.6)2

]}
(2.5)

Rolling resistance of person-wagons. Equation 2.6 shows the formula for calculating the
rolling resistance of person wagons. Table 2.5 gives an overview of the parameters and their
units.
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Symbol Description Physical Unit

RRT (v) Rolling resistance of the traction
vehicle

[RRT (v)] = N

g Constant of gravitation (9.81 m/s2) [g] = m/s2

mT Mass of the traction vehicle [mT ] = kg
v Train velocity [v] = m/s

∆v Supplement wind speed [∆v] = m/s
fL Resistance factor [fL] = 1
kSt1 Resistance coefficient [kSt1] = kg ·s2/m2

Table 2.4: Rolling resistance of the traction vehicle

RRP (v) = g ·
{[

1.9 · mW

1000

]
+
[
kSa1 · v · 3.6 ·

mW

1000

]
+
[
kSa2 · (n+ 2.7) · ((v + ∆v) · 3.6)2

]} (2.6)

Symbol Description Physical Unit

RRP (v) Rolling resistance of the
person-wagons

[RRP (v)] = N

g Constant of gravitation [g] = m/s2

mW Mass of the wagons [mW ] = kg
n Number of wagons [n] = 1
v Train velocity [v] = m/s

∆v Supplement wind speed [∆v] = m/s
kSa1 Resistance coefficient [kSa1] = s/m
kSa2 Resistance coefficient [kSa2] = kg·s2/m2

Table 2.5: Rolling resistance of person-wagons.

Rolling resistance of freight-wagons. Equation 2.7 shows the formula for calculating the
rolling resistance of freight wagons. Table 2.6 gives an overview of the parameters and their
units.

RRF (v) = g · m

1000
·
[
2.2− kSt2

v · 3.6 + kSt3
+ kSt4 · (v · 3.6)2

]
(2.7)

As already mentioned (Equation 2.4), the resistance of the traction vehicle and the wagons
is often given by the Formula of Davis. Based on Equation 2.4, by summing up all terms of
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Symbol Description Physical Unit

RRF (v) Rolling resistance of the
freight-wagons

[RRF (v)] = N

g Constant of gravitation (9.81 m/s2) [g] = m/s2

mW Mass of the wagons [mW ] = kg
v Train velocity [v] = m/s
kSt2 Resistance coefficient [kSt2] = m/s
kSt3 Resistance coefficient [kSt3] = m/s
kSt4 Resistance coefficient [kSt4] = s2/m2

Table 2.6: Rolling resistance of freight-wagons.

Equations 2.5, 2.6, and 2.7, the coefficients A, B, and C can be calculated by

A = g ·
[
fL ·

mT

1000
+ kSt1 · 12.96 ·∆v2 + 1.9 · mW

1000
+ kSa2 · (n+ 2.7) · 12.96 ·∆v2

]
(2.8)

B = g ·
[
kSt1 · 25.92 ·∆v + kSa1 · 3.6 ·

mW

1000
+ kSa2 · (n+ 2.7) · 25.92 ·∆v

]
(2.9)

C = g · [kSt1 · 12.96 + kSa2 · (n+ 2.7) · 12.96] (2.10)

Tunnel resistance. The third term of the sum for calculating the rolling resistance (Equation
2.3) contains the tunnel resistance. It is calculated by using Equation 2.11, the parameters, the
description and the units are given in Table 2.7.

RT (v, s) = ft(s) · v2 (2.11)

Symbol Description Physical Unit

RT (v, s) Tunnel resistance [RT (v,s)] = N

fT (s) Tunnel factor [fT (s)] = kg/m
v Train velocity [v] = m/s
s Train position [s] = m

Table 2.7: Tunnel resistance

Distance resistance

The distance resistance consist of the gradient resistance, the curve resistance, and the switch
resistance. Due to the minimum impact of the switch resistance in big railway systems, it is
ignored in the calculation of the distance resistance. The formula is given in Equation 2.12, the
parameters are explained in Table 2.8.
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RD(s) = RG(s) +RC(s) +RS(s) (2.12)

Symbol Description Physical Unit

RD(s) Distance resistance [RD(s)] = N
RG(s) Gradient resistance [RG(s)] = N
RC(s) Curve resistance [RC(s)] = N
RS(s) Switch resistance [RS(s)] = N
s Train position [s] = m

Table 2.8: Distance resistance

Gradient resistance. The gradient resistance is calculated by

RG(s) = m · g · sin (α(s)) (2.13)

For small inclination α(s), sinα(s) can be substituted by tan (α(s)):

RG(s) = m · g · tan (α(s)) = m · g · I(s)

1000
(2.14)

The used parameters are explained in Table 2.9.

Symbol Description Physical Unit

RG(s) Gradient resistance [RG(s)] = N
α(s) Inclination at position s [α(s)] =◦

g Constant of gravitation (9.81 m/s2) [g] = m/s2

m Complete mass of the train
(mT +mW )

[m] = kg

I(s) Track Gradient at position s [I(s)] = h
s Train position [s] = m

Table 2.9: Gradient resistance

Curve resistance. The curve resistance for a curve radius r ≥ 300 m is calculated by

RC(s) =
6.3

r(s)− 55
·m (2.15)

and for r(s) < 300 m by

RC(s) =
4.91

r(s)− 30
·m. (2.16)

The parameters are explained in Table 2.10.
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Symbol Description Physical Unit

RC(s) Curve resistance [RC(s)] = N
r(s) Curve radius [r(s)] = m
m Complete mass of the train

(mT +mW )
[m] = kg

s Train position [s] = m

Table 2.10: Curve resistance

Acceleration Resistance

While the train is accelerating or decelerating, the so called acceleration resistance acts on the
train (Equation 2.17).

RA(v, s) = m · a(v, s) · (1 + 0.01 · ρ) (2.17)

The parameters of Equation 2.17 are explained in Table 2.11.

Symbol Description Physical Unit

RA(v, s) Acceleration resistance [RA(v, s)] = N
m Complete mass of the train

(mT +mW )
[m] = kg

a(v, s) Acceleration [a(v, s)] = m/s2

ρ Rotating mass factor [ρ] = 1
v Train velocity [v] = m/s
s Train position [s] = m

Table 2.11: Acceleration resistance

As a result, the complete resistance for a person train is calculated by

R(v, s) = RRT (v) +RRP (v) +RT (v, s) +RG(s) +RC(s) +RS(s) +RA(v, s) (2.18)

and for a freight train by

R(v, s) = RRT (v) +RRF (v) +RT (v, s) +RG(s) +RC(s) +RS(s) +RA(v, s) (2.19)

and by using the Formula of Davis

R(v, s) = A · v2 +B · v + C +RT (v, s) +RG(s) +RC(s) +RS(s) +RA(v, s) (2.20)

whereby A, B, and C depends on the train type (passenger or freight train) and its charac-
teristics.

15



2.4 Train Dynamics

This section describes the calculation of the acceleration value a(v, s) for a train accelerating,
braking, and coasting. Additionally, formulas for speed-holding and the calculation of the cur-
rent speed value and the travel time of a train are given. The formulas are based on the equations
of the previous section (Equations 2.1 - 2.20). To calculate the motion of a train, it is neces-
sary to know the traction force F (v), the braking force B(v) and the resistance values R(v, s).
Based on these parameters, it can be determined if the train accelerates, holds its speed, or de-
celerates. In the following, it is assumed that for both, traction force and braking force, the
maximum force will be used. This approach is used typically in the field and has mathematical
and physical reasons.

Acceleration

Assuming that the driver will use maximum traction force (F (v) > 0 N) – and thus no braking
force (B(v) = 0 N) – the acceleration value for passenger trains is be calculated by:

a(v, s) =
F (v)− (RRT (v) +RRP (v) +RT (v, s))− (RG(s) +RC(s) +RS(s))

m · (1 + 0.01 · ρ)
(2.21)

As already mentioned, the resistance parameters depend on various factors, e.g. the train
mass, the current speed, or the inclination of the track. Based on Equation 2.21, the following
three different kinds of situations can happen:

• The train will increase its speed if

F (v) > RRT (v) +RRP (v) +RRP (v) +RG(s) +RC(s) +RS(s).

• The train will hold its speed if

F (v) = RRT (v) +RRP (v) +RRP (v) +RG(s) +RC(s) +RS(s).

• The train will decrease its speed if

F (v) < RRT (v) +RRP (v) +RRP (v) +RG(s) +RC(s) +RS(s).

Deceleration

Assuming that the driver will use the maximum braking power (B(v) > 0 N) – and thus no
traction force is available (F (v) = 0 N) – the deceleration value for passenger trains is calculated
by:

a(v, s) = −
[
B(v) +RRT (v) +RRP (v) +RT (v) +RG(s) +RC(s) +RS(s)

m · (1 + 0.01 · ρ)

]
(2.22)

Similar to the acceleration, again three different kinds of situation can occur:
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• The train will decrease its speed if

B(v) > RRT (v) +RRP (v) +RRP (v) +RG(s) +RC(s) +RS(s).

• The train will hold its speed if

B(v) = RRT (v) +RRP (v) +RRP (v) +RG(s) +RC(s) +RS(s).

• The train will increase its speed if

B(v) < RRT (v) +RRP (v) +RRP (v) +RG(s) +RC(s) +RS(s).

Coasting

Assuming that the train driver neither uses its traction force nor its acceleration force. As a
consequence, the train is in its so-called coasting phase. In that case only the resistance values
influence the motion of the train. Equation 2.23 shows the formula for calculating the accelera-
tion value of a passenger train.

a(v, s) = −
[
RRT (v) +RRP (v) +RT (v) +RG(s) +RC(s) +RS(s)

m · (1 + 0.01 · ρ)

]
(2.23)

Again, three different situation can happen, based on the resistance parameters:

• The train will decrease its speed

−RG(s) < RRT (v) +RRP (v) +RT (v) +RC(s) +RS(s)

• The train will hold its speed

−RG(s) = RRT (v) +RRP (v) +RT (v) +RC(s) +RS(s)

• The train will increase its speed if

−RG(s) > RRT (v) +RRP (v) +RT (v) +RC(s) +RS(s)

Speed-holding

To hold the current speed value the parameters acting in the direction of the trains motion and
the parameters against the motion must be in equality:

F (v)−B(v)− (RRT (v) +RRP (v) +RRP (v))− (RG(s) +RC(s) +RS(s)) = 0. (2.24)
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Symbol Description Physical Unit

s Travel distance [s] = m
s0 Starting position [s0] = m
t Travel time [t] = s

a(v0, s0) Acceleration value [a(v0, s0)] = m/s2

v0 Starting speed value [v0] = m/s

Table 2.12: Calculation of the speed value

Calculation of the speed value

After the calculation of the acceleration value for a given speed and a given position, the speed
value of the next position can be determined by

s = s0 + v0 · t+
1

2
· a(v0, s0) · t2. (2.25)

where v0 is the current speed and ans s0 the current position. The parameters of Equation 2.25
are explained in Table 2.12.

Calculation of the travel time

If a starting position s0, the driving distance d, the initial speed v0, and the acceleration value
a are known, the required travel time t and the speed value v for a driving distance d can be
calculated by

v = v0 + ∆v = v0 + a(v0, s0) · t. (2.26)

These formulas can be used for a train accelerating (a(v0, s0) > 0 m/s2), decelerating
(a(v0, s0) < 0 m/s2), and speed holding (a(v0, s0) = 0 m/s2). By using the numerical in-
tegration with a step size of s = 1 m, the resulting speed v and travel time t after distance d can
be calculated.

2.5 Energy consumption

As it is know from fundamental physical laws (cf. [2]) the overall energy consumption can be
calculated by integrating the resulting force F̂ (v, s) = F (v)−B(v)−R(v, s) over the covered
distance s:

E(s) =

∫
F̂ (v, s)ds (2.27)

Parameters of Equation 2.27 are explained in Table 2.13.
By using numerical integration with a step size of 1 m the following three kinds of situations

are possible:
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Symbol Description Physical Unit

E(s) Energy consumption [E(s)] = kWh
ˆF (v, s) Force [ ˆF (v, s)] = N
v Train velocity [v] = m/s
s Travel distance [s] = m

Table 2.13: Energy consumption

• Energy demand (e.g. while accelerating): F̂ (v, s) > 0: E(s) =
∑s

i=0 F̂i(v, s) · 1 m.

• No energy demand or recovery (e.g. while coasting): F̂ (v, s) = 0: E(s) = 0.

• Energy recovery (e.g. while braking, if energy recuperation is used): F̂ (v, s) < 0: E(s) =
r ·
∑s

i=0 F̂i(v, s) · 1 m.

The resulting unit for an energy value is J. In the field, kWh is typically used and thus the
result has to be transformed by

EkWh(s) = EJ(s) · 3 600 000 (2.28)

2.6 Implementation of the train model

This section gives an overview of the most important functions which are used in the algorithm
to determine the optimal driving strategy for a train.

Motion of the train

In general, the following situations must be distinguished while determining the motion of a
train:

• When the train driver wants to accelerate, F (v0) is taken from the speed–traction-force
diagram (Section 2.1) and B(v0) = 0 because no braking force is acting against the
motion of the train.

• When the train driver uses the brakes, B(v0) is taken from the speed–braking-force dia-
gram (Section 2.2) and F (v0) = 0 because no traction force is action on the train.

• Assuming that the train driver uses the cruise control of a train and wants to hold the
current speed, the following cases must be distinguished, depending on the resistance
values of the train, especially the inclination.

– The train must use a particular traction force (F (v0) > 0, B(v0) = 0) to hold the
current speed value. Otherwise the speed of the train will be decreased.

– The train must use a particular braking force (B(v0) > 0, F (v0) = 0) to hold the
current speed value. Otherwise the train will accelerate.
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– No additional force will be applied to the motion of the train (F (v0) = 0, B(v0) =
0).

Algorithm 2.1: trainMotion (Calculate the motion of a train)
input : v0,s0,t0,e0
output: v, s, t, e

1 a← getAcceleration(v0, s0);
2 (v, t, s)← calcSpeed(v0, t0, s0, a);
3 e← e0 + calcEnergy(v, s);
4 return (v, t, s, e);

Depending on the above restrictions Algorithm 2.1 calculates the motion of the train. In
particular, the resulting speed value v, the resulting travel time t and the new position s are
determined by assuming that the train starts at position s0 with a given speed value v0 at a given
instant of time t0 and drives exactly 1 m. Based on the current speed value, the position, the
applied traction force F (v0) and braking force B(v0) the acceleration value a and the energy
consumption e for the trip are calculated.

Example 2.3. Assume that a train starts at a railway station at position s0 = 1 000 m with
v0 = 0 km/h and accelerates until position s1 = 1 400 m is reached. The train starts its
journey at t0 = 0 s. Now Algorithm 2.1 is used in a loop.

Algorithm 2.2: Algorithm of Example 2.3
1 v0 ← 0 km/h;
2 s0 ← 1 000 m;
3 s1 ← 1 400 m;
4 t0 ← 0 s;
5 e0 ← 0 kWh;

6 s← s0;
7 v ← v0;
8 t← t0;
9 e← e0;

10 while s < s1 do
11 (v, s, t, e)← trainMotion(v, s, t, e);
12 end

By applying Algorithm 2.2 the train finally reaches position s = s1. The speed value v holds
the speed at this position, t contains the travel time and e the energy consumption.

Determining the speed change of a train

As already mentioned the acceleration of deceleration and thus the train speed depends on sev-
eral parameters, in particular on the traction force F (v0), the braking force B(v0) and the resis-
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tance valuesR(v0, s0). To calculate the acceleration value a for a given train speed v0 at position
s0, Algorithm 2.3 is used.

Algorithm 2.3: getAcceleration (Determining the acceleration value)
input : v0, s0
output: a

1 a← F (v0)−B(v0)−R(v0,s0)
m·(1.0+0.01·ρ) ;

2 return a;

Now, a can have the following values:

• a > 0: The train will accelerate because the applied traction force is bigger than the
sum of the braking force B(v0) and the resistance values R(v0, s0). It might be possible
that the train increases its speed although no traction force is applied because of a high
negative inclination of the track.

• a < 0: The train will decelerate because the sum of the resistance values and the applied
braking force is bigger than the traction force. If there is a high positive inclination on the
track, the train might lose some speed although the maximum traction force is applied.

• a = 0: The train will hold the current speed because the used forces balance each other.

Algorithm 2.4 shows the algorithm to calculate the the resulting speed value v, the travel time
t, and the next position s for a given input speed v0, an initial travel time t0, a given position s0,
and an acceleration value a.

Algorithm 2.4: calcSpeed (Calculating the speed and travel time)
input : v0, t0, s0, a
output: v, t, s

1 if a > 0 then
2 p← 2·v0

a ;
3 q ← − 2

a ;
4 else
5 p← − 2·v0

a ;
6 q ← 2

a ;
7 end
8 D =

(
p
2

)2 − q;
9 ∆t← −p2 +

√
D;

10 ∆v ← a ·∆t;
11 v ← v0 + ∆v;
12 t← t0 + ∆t;
13 s← s0 + 1 m;
14 return (v, t, s);
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Calculating the energy consumption

Equation 2.27 from Section 2.5 is used to calculate the energy consumption of a train. Algo-
rithm 2.5 describes the algorithm for the calculation, where getResistance(v, a, s) calculates
the complete resistance as described in Section 2.3.

Algorithm 2.5: calcEnergy (Calculate the energy consumption of a train)
input : v, s
output: e

1 r ← getResistance(v, s);
2 e← e+ r · 3 000 000;
3 return e;

Now, the train model is explained in detail and an overview about the implementation is
given. The next chapter explains the algorithm to find the optimal driving strategy of a train,
based on the restrictions of this chapter.

Further examples showing the impact of the train parameters and the track parameters are
given in Section 3.6.
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CHAPTER 3
Single trip optimization

3.1 Introduction

As already discussed in several scientific publications, there exist a lot of algorithms to find the
optimal driving strategy for the journey of a single train, which cannot be used for real-time-
applications, because of practical restrictions (e.g. Chapter 1) like computation time, passenger
comfort or drive-ability.

In general, the optimal driving strategy depends on various factors of influence, e.g.

• the gradient of the track and speed restrictions,

• the length and weight of the train,

• the scheduled travel time,

• traction power and braking capability,

• recuperation behavior, and

• various resistance parameters.

It is know from several publications (cf. [2, 46]) that the optimal driving strategy for a train,
which starts at a given position ss and drives within a given travel time t on a specified track to
reach its destination (final position) sf , may contain the following driving modes in exactly this
order:

1. Acceleration-phase. The train starts its acceleration-phase with maximum traction force
at the start position ss with a given starting speed vs (e.g. 0 km/h at a railway station)
and accelerates until the hold speed vh and the hold position sh are reached. The resulting
travel time for this phase is ta.
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2. Speed-hold-phase. The train starts its speed-hold-phase at the hold position sh with hold
speed vh and drives with constant speed until the coasting position sc is reached. The
speed value at this position is called coasting speed vc and is equal to vh. The travel time
for the hold phase is th.

3. Coasting-phase. The coasting-phase starts at the coasting position sc and ends at the
braking position sb. During this phase, the train will not use its traction or braking force.
It will just roll until the braking position is reached. The travel time of this phase is tc.

4. Braking-phase. The braking-phase starts at the braking position sb and ends at the final
position sf . The speed decreases from vb to vf (e.g. to 0 km/h at a commercial stop
which can be station or stop). The required travel time for the braking-phase is tb.

The speed values above are limited by the maximum train speed and the track speed limit.
Usually, the start position ss, the corresponding speed vs, the final position sf , and the final
speed value vf of a trip are known. Thus the challenge is to determine the other three tuples
(sh, vh), (sc, vc), (sb, vb) with respect to the following restriction:

• A train Tk must reach its destination within the planned travel time tk
�

.

• The driving-comfort for passengers (e.g. there should be a minimum of transitions be-
tween the driving types) and the driver (e.g. each driving type should last at least a given
duration in seconds) must be ensured .

• The energy consumption must be minimal. It is calculated by e = ed − er where e is the
energy consumption, ed is the energy demand, and er is the energy recovery of the trip.

• The result must be available as fast as possible to use the algorithm for online-systems.

Definition 3.1 (Maximum train speed). The maximum speed of train k, based on the train char-
acteristics (Chapter 2), is denoted by vk.

Definition 3.2 (Maximum allowed track speed). The maximum allowed speed on track section
i is denoted by vi.

Definition 3.3 (Maximum speed). The maximum allowed speed v is defined as v = min
(
vk, vi

)
.

Definition 3.4 (Regime). A part of the track with constant maximum speed is called a regime.

As a consequence, a track with constant track speed consists of exactly one regime. The
definition of regime can be extended:

Definition 3.5 (Regime (extended)). A part of the track with constant maximum and no (signif-
icant) gradient changes is called a regime.

The following sections describe the algorithm to find the optimal driving strategy for a single
train with no interaction to other trains. The explanation starts with a track, consisting of a single
regime and will be extended to a multi-regime optimization.
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3.2 Simple Algorithm

This section describes the algorithm to find the optimal driving strategy for a train with a given
maximum speed along the complete track and thus, with only one regime, based on the previ-
ously mentioned restrictions. A train k starts at a railway station with vs = 0 km/h and should
arrive at another railway station after the planned travel time tk

�
. Thus, vf = 0 km/h.

The following algorithm is very efficient in terms of calculation time and can be adjusted by
several parameters. The first part of the algorithm consists of finding a driving strategy consisting
of

• acceleration-phase,

• speed-hold-phase, and

• braking-phase.

To get a valid driving strategy the following equation must be fulfilled:

tk
�
≈ tka + tkh + tkb (3.1)

In general, it is hard to find a driving strategy where the left side of Equation 3.1 conforms
exactly the planned travel time. Thus, a result is valid, if it is within a slight time interval around
tk
�

and for this reason the ≈-operator is used.
Due to the fact that the speed values at the beginning vs and at the end vf of the journey

are known and assuming that the maximum force is used for the acceleration and braking-phase,
only the hold speed vh must be determined. This is done by using a binary search algorithm.

Algorithm

Algorithm 3.1 determines the driving strategy and works as follows:

• If the planned travel time tk
�

for train k is less than the shortest travel time (maybe also
running time), no solution can be found.

• Otherwise, the algorithm loops until an appropriate solution (tk
�
≈ tka + tkh + tkb ) is found:

– Calculate a new hold speed vh = v+v
2 , where v is the lower boundary speed value1

and v is the upper boundary speed value.

– The train starts at sh and accelerates until the hold speed vh is reached.

– Calculate the braking position for vh2.

– Hold the current speed, starting at the hold position sh until the braking position sb
is reached.

1v is set to a value slightly greater than 0 km/h initially.
2When the train starts braking at the braking position (with maximum braking force), it will decrease its speed

until it stops at the final position.

25



– Brake until the final position sf is reached.

– Calculate the complete travel time t.

– If an appropriate solution (tk
�
≈ tka + tkh + tkb ) is found, calculate the energy con-

sumption for this driving strategy.

– If no solution is found, the upper boundary speed value or the lower boundary speed
value is changed:

∗ v = vh, if t < tk
�

∗ v = vh, if t > tk
�

Algorithm 3.1: calcHoldSpeed (Algorithm to calculate the hold speed)
input : ss, sf , tk

�
, v

output: sh, sb, vh, vb, e

1 not_finished← true;
2 v← 0;

3 while not_finished do
4 vh ← (v + v) / 2;

5 (sh,ta,ea)← Accelerate(ss,vh);
6 (sb,tb)← GetBrakingPosition(sf vh);
7 (th,eh)← SpeedHold(sh,sb,vh);
8 (tb,eb)← Brake(sb,sf);

9 t← ta +th +tb;

10 if t ≈ tk
�

then
11 not_finished← false;
12 e← ea +eh +eb;
13 vb← vh;
14 else
15 if t < tk

�
then

16 v← vh;
17 else
18 v← vh;
19 end
20 end

21 return (sh,sb,vh,vb,e);
22 end

Example 3.1. In the following example, the hold-strategy for a single train is calculated. Its
journey starts at ss = 19 584 m and ends at sf = 26 955 m. The planned travel time is
tk
�

= 270 s. The train-specific parameters can be found in Table 3.1 and the track gradient
is illustrated in Figure 3.1.
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Parameter Value Parameter Value

mT 55 000 t mW 82 000 t
n 2 r 0

F (v) see Ex. 2.1 B(v) see Ex. 2.2
l 67 m fL 3.3

kSt1 0.03 kg · s2/m2 kSa1 0.0025 s/m
kSa2 0.00696 kg · s2/m2 ∆v 4.17m/s
ρ 6.0

Table 3.1: Example

The resulting driving strategy consisting of an acceleration-phase, a speed-hold-phase, and
a braking-phase is illustrated in Figure 3.2. The train will reach its destination after t = 269.9 s.
The calculated positions and speed values are given in Table 3.2. Figure 3.3 shows the distance-
time diagram and Figure 3.4 the accumulated energy consumption.

Figure 3.1: Gradient (Example 3.1)
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Position Value Parameter Value

ss 19 583 m vs 0 km/h
sh 21 252 m vh 125.3 km/h
sb 25 862 m vb 125.3 km/h
sf 26 955 m vf 0 km/h

Table 3.2: Resulting positions of Example 3.1

Figure 3.2: Driving strategy (Example 3.1)

Obviously, the energy demand has the strongest growth while accelerating. Within the speed-
hold-phase it grows less and while braking, the energy demand will not change in this example
because the recovery factor was set to 0. In general, the optimal driving strategy depends on the
recovery factor.

Now a driving strategy without a coasting phase was found, which forms the base for the
optimization. In general, the optimal driving strategy with minimum energy consumption will
have a higher hold speed than the hold strategy and the speed-hold-phase will be divided into a
speed-hold-phase and a coasting-phase and thus, the following values must be determined:

• v′h: The hold-speed of the optimal driving strategy is bounded by the hold-speed of the
hold-strategy and the maximum allowed speed:

vh ≤ v′h ≤ v (3.2)

• s′c: A coasting position must be found for the optimal driving strategy. It is bounded by
the hold position and the braking position of the previously calculated hold-strategy:

sh ≤ s′c ≤ sb (3.3)
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Figure 3.3: Distance-time diagram (Example 3.1)

Figure 3.4: Energy consumption (Example 3.1)

• Based on these two values, the other speed values and positions will be determined.

As a result, the challenge is to find the hold-speed v′h and the coasting position s′c in a way that the
energy consumption is as small as possible. Assuming that vh = 80 km/h and v = 140 km/h,
the hold-speed for the optimal driving strategy will be 80 km/h ≤ v′h ≤ 140 km/h. Due to the
gradient values, it is not possible to use a binary search algorithm to find the best speed value and
thus, every value in this range might be the best solution. Due to restrictions on the calculation
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time, a parameter to the algorithm is introduced to adjust the step size within the range: v+. As a
result, the following hold-speed values will be used for the determination of the optimal driving
strategy:

vh, vh + v+, vh + 2 · v+, vh + 3 · v+ . . . v

When using v+ = 5 km/h, the following hold-speed values will be used for further calcu-
lations:

80 km/h, 85 km/h, 90 km/h, 95 km/h, 100 km/h, 105 km/h, 110 km/h,
115 km/h, 120 km/h, 125 km/h, 130 km/h, 135 km/h, 140 km/h

Due to the fact that some cruise control systems of the trains can be adjusted only in 5-
km/h-steps, this parameter can be used to set-up the algorithm in a way that the computed
results can be used in practice. Based on this parameter, the hold speed must be adjusted in a
way that it is a whole-number multiple of the v+ and less or equal to the calculated value from
the hold-strategy:

vh ≤ x · v+ (3.4)

with

x =

⌊
vh
v+

⌋
(3.5)

and thus, the following speed-values will be used for the determination of the optimal driving
strategy:

vh, vh + v+, vh + 2 · v+, vh + 3 · v+, . . . , v

Assuming that the previously calculated hold speed is vh = 63.56 km/h and v+ = 10 km/h,
the modified hold-speed is set to vh = 60 km/h.

Similar to this parameter, a second parameter is available to set-up the granularity for finding
the optimal coasting position: s+. Here, too, the position cannot be found by a binary search
algorithm because of the track gradient. Assume a hold position sh = 1 000 m and a braking
position sb = 5 000 m. As a consequence, there is a range of 4 000 m to find the coasting
position. By using s+, designated positions are used for the calculation of the driving strategy:

sh, sh + s+, sh + 2 · s+, sh + 3 · s+, . . . , sb

With decreasing v+ and decreasing s+ the algorithm will find better results in terms of
energy consumption, but the execution time will increase. For online-systems, it is important to
find a good trade-off between a good result, the execution time, and the practical feasibility.

Algorithm

As already mentioned the hold-strategy forms the basis for the optimization. Initially the mini-
mum energy consumption is set to e = ∞. The algorithm starts by calculating the acceleration
curve, starting with the initial speed vs until vh is reached (see Equation 3.4). Next, the braking
curve for this speed value is calculated in a way that the train arrives at its final position with
its final speed vf . If the final position is a stop (e.g. at a railway station), the final speed is set
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to vf = 0 km/h. The coasting position is set to the braking position and the train will hold its
speed value until the coasting position is reached. As a result the first calculated driving strat-
egy contains the acceleration phase, the speed-hold phase and the braking phase. Based on the
following equations, the travel time t and energy consumption e are calculated.

t = ta + th + tc + tb (3.6)

e = ea + eh + ec + eb (3.7)

If the following equations are valid, a new driving strategy with a minimum in terms of energy
consumption has been found:

t ≈ tk
�

(3.8)

e < e (3.9)

If a new solution is found, the so far minimum energy consumption will be set to e = e. Next,
the coasting position will be decreased by s+ and thus the new driving strategy starts with the
acceleration-phase until the maximum speed value is reached, then there is the speed-hold-phase
until the coasting position is reached, followed by a coasting-phase until the braking curve is
reached. Finally the train will brake until it reaches its the final position. Again, if Equations 3.8
and 3.9 are valid, a new minimum is found.

The coasting position is again decreased by s+ and the calculated values are checked. This
procedure is repeated until at least one of the following termination conditions are valid:

• The coasting position is equal to the hold position (Equation 3.10) and thus the driving
strategy contains the acceleration-phase, the coasting-phase, and the braking-phase. No
further decrease of the coasting position is possible.

sc = sh (3.10)

• The calculated travel time for the driving strategy is greater than the planned travel time
(Equation 3.11). All further driving strategies with the same maximum speed value will
have a higher travel time, because the hold phase decreases and the coasting phase in-
creases. This assumption is valid only if the train decelerates or holds its speed while
coasting.

tk > tk
�

(3.11)

• The speed value after the coasting phase is smaller than the final speed (Equation 3.12).
This means that the train will not be able to reach its destination with the defined final
speed value. For instance, a train would stop at the track before it reaches the railway
station.

vc ≤ vf (3.12)

When there are no further valid solutions for the given hold speed, it is increased by v+, the
braking curve for the new speed is calculated and the braking position is determined. Then the
procedure to find a new solution for the coasting positions starts. The algorithm is finished, if
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Figure 3.5: Interim result after the first step (Example 3.1)

• the maximum allowed speed is reached (vh = v) and the coasting position cannot be
further decreased (sc = sh) or

• the maximum allowed speed is not reached (vh < v), but the calculated travel time is
greater than the planned travel time (tk > tk

�
) and the coasting position cannot be further

decreased (sc = sh).

An optimal driving strategy is found if appropriate speed values and positions are found by
the algorithm. Otherwise, either the planned travel time tk

�
cannot be achieved or the algorithm

parameters must be adjusted to a finer grain (e.g. v+ = 5 km/h instead of v+ = 20 km/h or
s+ = 10 m instead of s+ = 1000 m).

To avoid several calculations of the acceleration curve and the braking curve, the calculation
is done only once and stored in an array, including the energy consumption and the travel time
for each positions. Thus, the required travel time and energy consumption can be reused for
different driving strategies. A similar approach is employed for the speed-hold-phase, with the
restriction that the calculation must be done for each hold speed, but only once. As a result,
the travel time and the energy consumption, again, can be reused for each combination of the
speed-hold-phase and the coasting phase.

Figures 3.5–3.8 show the interim result for Example 3.1 after the first, the second, the third,
and the thirtieth step of the algorithm, when using s+ = 100 m. Figures 3.9, 3.10, and 3.11
show the results of the optimal driving strategy, where the red line illustrates the hold strategy
and the blue one the optimal driving strategy. The results show the distance-speed diagram, the
accumulated energy consumption, and the distance-time diagram.
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Algorithm 3.2 describes the algorithm to find the optimal driving strategy.

Figure 3.6: Interim result after the second step (Example 3.1)

Figure 3.7: Interim result after the third step (Example 3.1)

Example 3.2. In this example, a train using the hold-strategy consumes 42.386 kWh and when
using the optimal driving strategy, it consumes 37.908 kWh. In comparison to the hold strategy,
the optimal driving strategy will save 4.478 kWh, which is about 11.8 %.
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Figure 3.8: Interim result after the 30th step (Example 3.1)

Figure 3.9: Optimal driving strategy (Example 3.1)

3.3 Multi-regime algorithm

In the previous section, the algorithm to determine the optimal driving strategy for a track with
only one regime was introduced. This section explains how the algorithm is extended to handle
tracks with several regimes.
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Figure 3.10: Energy demand for the optimal driving strategy (Example 3.1)

Figure 3.11: Distance-time diagram for the optimal driving strategy (Example 3.1)

Algorithm

The first step of the algorithm is the same as in the previous section for the simple algorithm:
A hold-strategy must be found. Due to speed restrictions on the track, the train may not drive
with constant speed along the whole track. Assuming a hold-strategy with vh = 80 km/h and a
planned travel time. Now assume a temporary speed restriction of v = 40 km/h in the middle
of the track section. As a consequence, the train has to adapt its driving strategy, to ensure that
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Algorithm 3.2: OptimalDrivingStrategy (Algorithm to find the optimal driving strat-
egy)

input : ss, sf , tk
�

, v
output: sh, sc, sb, vh, vc, vb, ec

1 not_finished← true;
2 vh ← v;
3 e←∞;

4 while not_finished do
5 (sh,ta,ea)← Accelerate(ss,vh);
6 (sb,tb)← GetBrakingPosition(sf vh);
7 sc ←sh;

8 not_finished_coast← true;

9 while not_finished_coast do
10 (th,eh)← SpeedHold(sh,sc,vh);
11 (tc)← Coast(sc,sb,vc);

12 if t >tk
�

and sc =sb then
13 not_finished← false;
14 not_finished_coast← false;
15 else
16 if sc = sh or vc = 0 or t >tk

�
then

17 not_finished_coast← false;
18 else
19 t← ta +th +tc +tb;
20 e← ea +eh +eb;
21 if t ≈ tk

�
and e <e then

22 e← e;
23 end
24 sc ←sc-s+;
25 if sc < sh then
26 sc ←sh;
27 end
28 end
29 end
30 end
31 vh ←vh-v+;
32 if vh =0 then
33 not_finished←false;
34 end
35 end

the maximum speed of 40 km/h would not be exceeded.
In general, for each change of the maximum allowed track speed, a new regime is introduced.

The algorithm to determine the hold-strategy is based on the algorithm of Section 3.2, with some
slight modifications:

36



• The maximum allowed speed must be determined for each regime.

• The overall travel time is the sum of the travel time values of each regime.

As a consequence, each regime may consist of acceleration-phase, speed-hold-phase, coasting-
phase, and braking-phase and consists of the following values, which will be used for determin-
ing of the optimal driving strategy and for determining of the overall result (Chapter 5).

Definition 3.6 (Planned travel time). The planned travel time for regime i is denoted by t
i�

.

Definition 3.7 (Output speed). The speed value when leaving track section i is called output
speed, denoted by v i→. The highest and lowest possible output speed values (with respect to the
planned travel time t

i�
) when leaving a track section i are v i→ and v i→, respectively.

Definition 3.8 (Input speed). The speed value when entering track section i is called input speed,
denoted by v→ i . The highest and lowest possible input speed values (with respect to the planned
travel time t

i�
) when entering a track section i are denoted by v→ i and v→ i , respectively.

Obviously v→ i = v i-1→ for all 1 < i ≤ n, where n is the number of track sections3. The first
track section of a track or sub-track, starting at a railway station has an input speed value of
0 km/h and the last section of a journey, ending at a station has an output speed of 0 km/h.

After the hold-strategy is calculated, the optimal driving strategy is determined for each
regime based on the values defined above. In particular, the optimal driving strategy for the
first regime will be calculated by using v→1 as input speed, v1→ as output speed, and t

1�
as

planned travel time. The driving strategy of each regime may be optimized separately, when the
hold speed vh of a regime is greater than the input speed of the subsequent regime.

Example 3.3. In this example, the train data from the previous section are used (Table 3.1). The
planned travel time is modified to guarantee that the train can arrive at its destination in time.
The track data are nearly the same, except a temporary speed restriction of 90 km/h, starting at
position 23 000 m and ending at 23 500 m. As a result, the train cannot drive along the whole
track with constant speed. Due to the speed restriction the track is divided into three regimes.
The resulting driving strategy for this example is illustrated in Figure 3.12.

Speed restrictions, which don’t have an effect on the hold-strategy are ignored. In particular,
the regimes will be merged. The maximum allowed speed for the new regime is the minimum
of the maximum allowed speed values of the merged regimes:

vi...j = min (vi, vi+1, . . . , vj) (3.13)

3Track section i is the successor of section i− 1 on the route.
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Figure 3.12: Optimal driving strategy with multiple regimes (Example 3.3)

The planned travel time of the new regime is calculated by summing up the travel times of
the involved regimes. The input and output speed values of the new regime are defined as:

v→ i. . . j = v→ i (3.14)

v i. . . j→ = v j→ (3.15)

Example 3.4. The resulting driving strategy for another example is illustrated in Figure 3.13,
where the temporary speed restriction at the beginning of the track has no effect on the hold-
strategy. The first regime (19 583 m–20 000 m) with maximum speed 130 km/h and the second
regime (20 000 m–23 000 m) with maximum speed 140 km/h are merged to a new regime with
a maximum speed value of 130 km/h, which starts at position 19 583 m and ends at position
23 000 m.

Example 3.5. This example uses a track with five regimes and a planned travel time of tk
�

=

330 s. The resulting driving strategy is illustrated in Figure 3.14. About 10 % of the energy
consumption can be saved due to the optimization of the third, the fourth, and the fifth regime.
If a recovery factor of r = 0.85 is used, the driving strategy stays the same and the potential
savings are about 2.8 %. In general, the recovery factor may have an effect on the calculated
driving strategy.
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Figure 3.13: Optimal driving strategy with merged regimes (Example 3.4)

Figure 3.14: Optimal driving strategy with multiple regimes (Example 3.5)

3.4 Algorithm-Parameters

As already mentioned, there are several parameters to configure the algorithm:

• Accuracy vs. computation time: There exist two parameters v+ and s+ which can be used
to configure the accuracy of the results. As a consequence, the computation time depends
on these parameters.
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• Driving comfort: The algorithm might calculate a driving strategy which consists of a very
short phase, e.g. only a few seconds. To avoid such short phases, which are not feasible
for the train driver, four parameters exist to configure the minimum time of each phase:

– ta: Minimum time of the acceleration phase.

– th: Minimum time of the speed-hold phase.

– tc: Minimum time of the coasting phase.

– tb: Minimum time of the braking phase:

As a consequence, only results are taken into account if

ta >= ta (3.16)

th >= th (3.17)

tc >= tc (3.18)

tb >= tb (3.19)

but only if the corresponding minimum time is set to a value greater than 0. Some examples
which use different algorithm parameters can be found in Section 3.6.

3.5 Optimal Driving Strategy

The algorithm in the previous sections calculate a driving strategy for a number of regimes,
depending on the maximum allowed speed on the track. In general, there might exist a driving
strategy which is better in terms of energy consumption but might not be feasible for practical
purposes. Now, the driving strategy is calculated in another way as previously described. The
algorithm tries to find a solution by varying the hold-position sh, the coasting position sc, and
the braking position sb. To illustrate the potential savings and an optimal driving strategy with
several regimes, the following example is used.

Example 3.6. This example uses a very short track with a length of 32 m to illustrate several
solutions with different numbers of regimes. It starts at position ss = 1 000 m and ends at
position sf = 1 032 m. The inclination on the complete track is 0 h. The planned travel time
is set to t

�
= 14 s. The train and algorithm parameters can be found in Table 3.3.

First, the driving strategy is calculated as described in the previous chapters. In particular,
only one regime is used. The resulting driving strategy is shown in Figure 3.15. The train starts
its journey at position ss = 1 000 m and accelerates until sh = 1 008 m is reached. Then there is
a speed-hold-phase until sc = 1 019 m, followed by the braking phase until the final position is
reached. The complete energy consumption for this driving strategy is e = 0.2536469400 kWh,
calculated within 10 ms.

Next, the track is divided into two regimes, where each regime has a length of 16 m. As a
result, it might be possible to have each driving type twice within the track. The now created
driving strategy consists of the following parts:

• Regime 1 (1 000 m−−1 016 m:
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Parameter Value Parameter Value

mT 46 000 t mW 74 000 t
n 2 r 0.00

F (v) see Ex. 2.1 B(v) see Ex. 2.2
l 67 m fL 3.3

kSt1 0.03 kg · s2/m2 kSa1 0.0025 s/m
kSa2 0.00696 kg · s2/m2 ∆v 4.17 m/s
ρ 6 s+ 1 m

Table 3.3: Train and algorithm parameters (Example 3.6)
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Figure 3.15: Resulting driving strategy with one regime (Example 3.6)

– Accelerating to 1 007 m.

– Coasting to 1 016 m.

• Regime 2 (1 016 m−−1 032 m:

– Hold the current speed to 1 018 m.

– Coasting to 1 021 m.

– Braking to 1 032 m.

As a consequence, the speed-hold-phase and the coasting phase from the driving strategy
in Figure 3.15 is divided into a coasting phase, followed by a speed-hold phase and again a
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coasting-phase. The energy consumption for this driving strategy is e = 0.2155773640 kWh,
calculated within 13 ms.

Again the number of regimes can be increased. As the algorithm is designed to calculate
the positions in m and thus, the maximum number of regimes is equal to the track-length in m.
Table 3.4 gives an overview of the results, using different numbers of regimes.

Number of
Regimes

Energy
consumption

[kWh]

Execution time [s]

1 0.2536469400 0.010
2 0.2155773640 0.013
4 0.2155773640 0.030
8 0.2155770212 0.180
16 0.2155767977 0.800

Table 3.4: Resulting values (Example 3.8)
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Figure 3.16: Resulting driving strategy with 16 regimes (Example 3.6)

It can be seen that the energy saving slowly decreases when the number of regimes increases
but the execution time increases exponentially. The resulting driving strategy for 16 regimes is
illustrated in Figure 3.16 and consists of the following parts:

• Acceleration-phase from 1000 m to 1008 m
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• Coasting-phase from 1008 m to 1019 m

• Speed-hold-phase from 1019 m to 1020 m

• Coasting-phase from 1020 m to 1021 m

• Speed-hold-phase from 1021 m to 1022 m

• Braking-phase from 1022 m to 1032 m

Example 3.7. To illustrate the behavior of the algorithm and the potential of saving trac-
tion energy this example will use several changes of the track inclination, given in Table 3.5.
The resulting driving strategy for 1 regime and for 16 regimes are illustrated in Figure 3.17
and 3.18, respectively. The traction energy can be decreased from 0.1686721295 kWh to
0.1487099230 kWh, which conforms a saving of about 11.8 %.

From [m] To [m] Grad. [h] From [m] To [m] Grad. [h]

1 000 1 002 4 1 002 1 004 8
1 004 1 006 −6 1 006 1 008 7
1 008 1 010 6 1 010 1 012 −8
1 012 1 014 10 1 014 1 016 6
1 016 1 018 0 1 018 1 020 −4
1 020 1 022 −3 1 022 1 024 3
1 024 1 026 7 1 026 1 028 −4
1 028 1 030 2 1 030 032 −5

Table 3.5: Track inclination (Example 3.7)

A driving strategy like that in the previous examples is definitely not feasible in the field due
to the high number of changes of the driving type. In general, for tracks with much inclination
changes, a driving strategy with several regimes can save more traction energy than on a track
with constant gradient.

Due to the computation time and the driving and passenger comfort, the algorithm from
the previous sections will be used further on. The algorithm of this section is given only for
theoretical reasons.
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Figure 3.17: Resulting driving strategy with one regime (Example 3.7)
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Figure 3.18: Resulting driving strategy with 16 regimes (Example 3.7)
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3.6 Further Examples

This section contains some examples to illustrate the operating principle of the algorithm and
the effects when changing train parameters, track parameters, and algorithm parameters.

From [m] To [m] Grad. [h] From [m] To [m] Grad. [h]

400 500 2 500 700 0
700 900 −16 900 1 100 −5

1 100 1 500 −16 1 500 1 600 −13
1 600 1 800 −15 1 800 2 100 0
2 100 2 500 −2 2 500 2 600 −6
2 600 2 900 −2 2 900 3 000 17
3 000 3 200 16 3 200 3 300 1
3 300 3 700 0 3 700 3 800 1
3 800 4 300 0 4 300 4 500 9
4 500 4 800 10 4 800 4 900 3
4 900 5 100 0 5 100 5 300 1
5 300 5 600 0 5 600 5 800 16
5 800 6 000 17 6 000 6 500 16
6 500 6 700 11 6 700 6 800 13
6 800 7 100 15 7 100 7 500 11
7 500 7 900 15 7 900 8 200 18
8 200 8 400 16 8 400 8 500 5
8 500 8 700 10 8 700 8 900 1
8 900 9 100 15 9 100 9 300 12
9 300 9 700 0

Table 3.6: Track inclination (Example 3.8)

Example 3.8. This example uses the train, track, and algorithm parameters shown Table 3.7.
The track gradient is given in Table 3.6 and the planned travel time is defined as t

�
= 150 s.

The resulting driving strategy is illustrated in Figure 3.19 and the resulting values for travel
time, energy consumption, and the positions for changing the driving type are given in Table
3.8.
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Parameter Value Parameter Value

mT 51 000 t mW 79 000 t
n 2 r 0.85

F (v) see Ex. 2.1 B(v) see Ex. 2.2
l 67 m fL 3.3

kSt1 0.03 kg · s2/m2 kSa1 0.0025 s/m
kSa2 0.00696 kg · s2/m2 ∆v 4.17 m/s
ρ 9.0
ss 2 500 m sf 3 850 m
vs 0 km/h vf 0 km/h
v+ 5 km/h s+ 10 m

Table 3.7: Train, track, and algorithm parameters (Example 3.8)
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Figure 3.19: Resulting driving strategy (Example 3.8)

Parameter Value Parameter Value

ss 2 500 m sh 2 579 m
sc 3 141 m sc 3 792 m
sf 3 850 m
t 149.3 s e 3.279 kWh

Table 3.8: Resulting values (Example 3.8)
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Example 3.9. Now, the same values as in Example 3.8 are used, except the rotating mass factor
ρ = 6.0 and the wind speed ∆v = 0.0 m/s. The resulting driving strategy is illustrated in
Figure 3.20 and the resulting values are given in Table 3.9. It can be seen that changing the two
parameters results in a new driving strategy and thus, in a lower energy consumption. Due to
the reduced rotating mass factor and the reduced wind speed the complete resistance is lower
than in the previous example which results in a longer coasting phase.
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Figure 3.20: Resulting driving strategy (Example 3.9)

Parameter Value Parameter Value

ss 2 500 m sh 2 596 m
sc 3 016 m sc 3 799 m
sf 3 850 m
t 148.3 s e 2.984 kWh

Table 3.9: Resulting values (Example 3.9)

Example 3.10. This example uses the same parameters as the previous one except the weight of
the train (mT = 46 000 kg) and the wagons (mW = 74 000 kg). The optimal driving strategy
is illustrated in Figure 3.21 and the resulting values are given in Table 3.10. It can be seen that
the reduced weight has an effect on the driving strategy. On one hand, the train will arrive at its
hold position earlier due to a steeper acceleration curve and the other hand, the hold phase is
longer than in the previous example.
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Figure 3.21: Resulting driving strategy (Example 3.10)

Parameter Value Parameter Value

ss 2 500 m sh 2 571 m
sc 3 120 m sc 3 799 m
sf 3 850 m
t 149.0 s e 2.762 kWh

Table 3.10: Resulting values (Example 3.10)

Example 3.11. For this example, the same train and track parameters as in Example 3.10 are
used. Only the algorithm parameter s+ is changed from 10 m to 1 m. The resulting driving
strategy is illustrated in Figure 3.22 and the resulting positions are given in Table 3.11. It can
be seen that there is only a small saving in energy consumption but the driving strategy is quite
different, compared to Example 3.10.
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Figure 3.22: Resulting driving strategy (Example 3.11)

Parameter Value Parameter Value

ss 2 500 m sh 2 589 m
sc 3 008 m sc 3 805 m
sf 3 850 m
t 148.6 s e 2.712 kWh

Table 3.11: Resulting values (Example 3.11)

Example 3.12. The next example uses the same parameters as Example 3.10 but now the recov-
ery factor is set to r = 0.0. As a result the energy consumption is much higher and the driving
strategy is quite different (Figure 3.23, Table 3.12).

49



2.6 2.8 3.0 3.2 3.4 3.6 3.8
0

20

40

60

80

Position [km]

S
pe

ed
 [k

m
/h

]

Figure 3.23: Resulting driving strategy (Example 3.12)

Parameter Value Parameter Value

ss 2 500 m sh 2 610 m
sc 2 898 m sc 3 809 m
sf 3 850 m
t 148.9 s e 3.525 kWh

Table 3.12: Resulting values (Example 3.12)

Example 3.13. This example shows the impact of changing the minimum time of the speed-hold
phase to th = 30 s. As a consequence, the speed-hold phase will be longer (th ≈ 33 s) than in
the previous example (th ≈ 20 s) and as a consequence, the energy consumption is increased
(Figure 3.24, Table 3.13).
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Figure 3.24: Resulting driving strategy (Example 3.13)

Parameter Value Parameter Value

ss 2 500 m sh 2 589 m
sc 2 3006 m sc 3 806 m
sf 3 850 m
t 148.5 s e 3.587 kWh

Table 3.13: Resulting values (Example 3.13)

Table 3.14 gives an overview of the results of the previous examples where all of them use
the same track, but different train or algorithm parameters. The impacts can be seen in different
values of the overall energy consumption of each example.

Example Energy
consumption

[kWh]

Example Energy
consumption

[kWh]

Example 3.8 3.279 Example 3.9 2.984
Example 3.10 2.762 Example 3.11 2.712
Example 3.12 3.525 Example 3.13 3.587

Table 3.14: Resulting energy consumption (Example 3.8 – 3.13)
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Example 3.14. This example shows the results of calculating the optimal driving strategy for the
ÖBB S45 from Wien Breitensee to Wien Heiligenstadt. For the maximum allowed track speed
and for the inclination, data from [28] are used. The train characteristics and the algorithm
parameters can be found in Table 3.15. The schedule is given in Table 3.16.

Parameter Value Parameter Value

mT 51 000 t mW 79 000 t
n 2 r 0.85

F (v) see Ex. 2.1 B(v) see Ex. 2.2
l 67 m fL 3.3

kSt1 0.03 kg · s2/m2 kSa1 0.0025 s/m
kSa2 0.00696 kg · s2/m2 ∆v 0.00 m/s
ρ 6.0
v+ 5 km/h s+ 1 m

Table 3.15: Train and algorithm parameters (Example 3.14)

Railway station Arrival Departure Travel time

Wien Breitensee 12:05:30
Wien Ottakring 12:07:30 12:08:00 00:02:00
Wien Hernals 12:10:00 12:10:30 00:02:00
Wien Gersthof 12:12:30 12:13:00 00:02:00

Wien Krottenbachstrasse 12:15:30 12:16:00 00:02:30
Wien Oberdöbling 12:17:00 12:17:30 00:01:00
Wien Heiligenstadt 12:20:30 00:03:00

Table 3.16: Schedule of Example 3.14

The complete journey has an overall energy consumption of e = 1.175 kWh, due to low
driving speeds and the track inclination. Figure 3.25 shows the resulting driving strategy. Table
3.17 gives an overview about the results, consisting of the following columns:

• Driving type (Acceleration phase, speed-Hold phase, Coasting phase, Braking phase)

• Start position [m] of the current driving type.

• Final position [m] of the current driving type.

• Speed [km/h] at the start position of the current driving type.

• Speed [km/h] at the final position of the current driving type.

• Accumulated energy consumption [kWh] at the end of the current driving type.
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Wien Breitensee – Wien Ottakring (t = 119 s)

A 860 1 066 0 60 6.076
H 1 066 1 132 60 60 6.418
A 1 132 1 252 60 70 9.216
H 1 252 1 652 70 70 12.055
C 1 652 2 274 70 60 12.055
B 2 276 2 500 60 0 7.805

Wien Ottakring – Wien Hernals (t = 119 s)

A 2 500 2 635 0 50 4.115
H 2 635 3 588 50 50 3.996
C 3 588 3 689 50 49 3.996
B 3 689 3 850 49 0 0.973

Wien Hernals – Wien Gersthof (t = 118 s)

A 3 820 4 038 0 60 5.542
H 4 038 4 800 60 60 5.137
C 4 800 5 185 60 57 5.137
B 5 185 5 400 57 0 1.094

Wien Gersthof – Wien Krottenbachstraße (t = 148 s)

A 5 400 5 483 0 40 2.536
H 5 483 6 711 40 40 −1.320
B 6 711 6 850 40 0 −3.908

Wien Krottenbachstraße – Wien Oberdöbling (t = 62 s)

A 6 850 7 008 0 60 4.662
H 7 008 7 173 60 60 4.217
B 7 173 7 450 60 0 −0.997

Wien Oberdöbling – Wien Heiligenstadt (t = 170 s)

A 7 450 7 560 0 50 3.352
H 7 560 8 691 50 50 −0.222
C 8 691 9 394 50 54 −0.222
B 9 437 9 584 54 0 −3.792

Table 3.17: Results of Example 3.14
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CHAPTER 4
Kronecker Algebra

Kronecker Algebra consists of Kronecker Sum and Kronecker Product [56]. This chapter de-
scribes the mathematical background, the application of Kronecker Algebra in railway opera-
tion, and the representation of routes, track sections, and the behavior of the complete system.

4.1 Introduction to Kronecker Algebra

Kronecker Algebra was introduced to model concurrent systems (cf. [56]), in particular for com-
puter systems consisting of several threads which access shared memory. The model was modi-
fied for the usage in railway systems (cf. [58, 76–81]). A short overview of several applications
like travel time analysis or energy awareness are given at the end of this chapter.

Kronecker Sum and Kronecker Product are simple matrix operations, which can be used to
model synchronization of shared resources and generate interleavings. In the following, both
operations will be defined. The used matrices will be out of M = {M = (mi,j)|mi,j ∈ L}
and only matrices M ∈ M will be used furthermore. Let o(M) refer to the order of matrix
M ∈M1. Further on n-by-n zero matrices Zn = (zi,j), where ∀i, j : zi,j = 0 will be used.

In computer science, the access to a shared memory by several threads must be synchronized
and for this reason Kronecker Algebra is applied. In contrast to computer science, trains are
used instead of threads and track sections instead of shared memory for railway systems. The
access to the resource is modeled by semaphores in the sense of computer science (cf. [19]). As
a result, a train can enter a track section only if it is not occupied by another train.

The application of Kronecker Algebra allows finding conflicts (e.g. headway-conflicts, dead-
locks). The resulting graph shows all possible movements of the trains and based on this graph,
a conflict-free situation can be found (if it is possible, due to the given timetable). Further details

1A k-by-k matrix is known as square matrix of order k.
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can be found in the description of the optimization algorithm in Chapter 5. Other approaches try
to find a conflict-free situation by adding the trains successively into the time-distance diagram
(cf. [39], Introduction in Chapter 1). That will be possible only for small railway systems with a
small amount of trains.

Representation

As already mentioned, Kronecker Algebra is a mathematical model which can be used to cal-
culate a matrix describing a complete railway system. Directed graphs are used to represent the
movements of the trains and the operations on track sections. Each train is assigned at least one
route consisting of at least one track section. A track section can be part of several routes. As a
result the routes describe the movement of the trains and can be represented as graphs, too. Each
graph can be represented by its adjacency matrix which will be used as input for the calculations.

Assume that the edges in the graphs are labeled by elements of a semiring. Definitions and
properties can be found in [44, 56]. The semiring consists of a set of labels L containing the
following semaphore calls (cf. [19]):

• pi denotes entering or reserving track section i, in particular Tj .pi means that train j wants
to enter track section i.

• vi denotes leaving or releasing track section i, in particular Tj .vi means that train j will
leave track section i.

A railroad system consists of several trains and track sections which are represented by graphs
and their adjacency matrices. In general, binary semaphores are used to represent the operations
on track sections, whereas each track section is modeled by its own semaphore. If an operational
standard allows entry into an occupied block (permissive driving), this approach can deal with
this issue as well by fine-scaling the track section or by using counting semaphores instead of
binary semaphores. Each edge in the graphs is labeled by l ∈ L. If there exists an edge labeled a
from node i to node j, then the corresponding adjacency matrix M has mi,j = a. If there exists
no edge between two nodes, then mi,j = 0.

Definition 4.1 (System model). The system model consists of the tuple 〈T ,S,L〉, where T and
S refer to the set of graph adjacency matrices describing the train routes and the track sections,
respectively. The labels in T ∈ T and S ∈ S are elements of L.

A directed labeled graphG = 〈V,E, ne〉 consists of a set of labeled nodes V , a set of labeled
directed edges E ⊆ V × V , and an entry node ne. The previously mentioned set V and E are
out of 〈T ,S,L〉. A detailed description of the representation can be found in [56].

4.2 Modeling synchronization

Definition 4.2 (Kronecker Product [56]). Given am-by-nmatrixA and a p-by-q matrixB, their
Kronecker Product denoted by A⊗B is a mp-by-nq block matrix defined by
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A⊗B =

a1,1 ·B · · · a1,n ·B
...

. . . . . .
am,1 ·B · · · am,n ·B


As already mentioned in [7, 56, 67] Kronecker Product allows to model synchronization.

Kronecker Product is also known as Zehfuss product, direct product of matrices, or matrix direct
product [54]. Knuth notes in [43] that Kronecker never published anything about it. Zehfuss
was actually the first publishing it in the 19th century [85].

Example 4.1. Let A =

(
a1,1 a1,2
a2,1 a2,2

)
and B =

b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

.

The Kronecker Product is given by

C = A⊗B =



a1,1b1,1 a1,1b1,2 a1,1b1,3 a1,2b1,1 a1,2b1,2 a1,2b1,3
a1,1b2,1 a1,1b2,2 a1,1b2,3 a1,2b2,1 a1,2b2,2 a1,2b2,3
a1,1b3,1 a1,1b3,2 a1,1b3,3 a1,2b3,1 a1,2b3,2 a1,2b3,3
a2,1b1,1 a2,1b1,2 a2,1b1,3 a2,2b1,1 a2,2b1,2 a2,2b1,3
a2,1b1,1 a2,1b1,2 a2,1b1,3 a2,2b1,1 a2,2b1,2 a2,2b1,3
a2,1b1,1 a2,1b1,2 a2,1b1,3 a2,2b1,1 a2,2b1,2 a2,2b1,3


Due to readability 0 will be replaced by · in die following matrices. In the following some

basic properties are given. The proofs can be found in [3, 17, 30, 56, 74]. Let A, B, C, and D be
matrices.

• Associativity of the Kronecker Product

A⊗ (B ⊗ C) = (A⊗B)⊗ C

• Distributivity of the Kronecker Product with respect to the addition of matrices

A⊗ (B + C) = (A⊗B) + (A⊗ C)

(A⊗B) + C = (A⊗ C) + (B ⊗ C)

• The Kronecker Product is non-commutative because in general

A⊗B 6= B ⊗A

• Relationship between the ordinary and Kronecker Product of matrices

(A⊗B)(C ⊗D) = (AC)⊗ (BD)

• If T denotes transposition
(A×B)T = AT ⊗BT

• If A and B are invertible square matrices having the inverses A−1 and B−1

(A⊗B)−1 = A−1 ⊗B−1
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4.3 Generating interleavings

Definition 4.3 (Kronecker Sum [30, 45, 56, 68]). Given a matrix A of order m and a matrix B
of order n, their Kronecker sum denoted by A⊕B is a matrix of order mn defined by

A⊕B = A⊗ In + Im ⊗B (4.1)

where Im and In denote the identity matrices2 of order m and n, respectively.

In general, Kronecker Sum calculates the Cartesian product graph of two graphs adjacency
matrices (cf. [38, 43, 56]).

Example 4.2. Let A =

(
a1,1 a1,2
a2,1 a2,2

)
and B =

b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

.

The Kronecker Sum is given by

C = A⊕B
= A⊗ I3 + I2 ⊗B

=

(
a1,1 a1,2
a2,1 a2,2

)
⊗

1 · ·
· 1 ·
· · 1

+

(
1 ·
· 1

)
⊗

b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3



=



a1,1 · · a1,2 · ·
· a1,1 · · a1,2 ·
· · a1,1 · · a1,2
a2,1 · · a2,2 · ·
· a2,1 · · a2,2 ·
· · a2,1 · · a2,2

+



b1,1 b1,2 b1,3 · · ·
b2,1 b2,2 b2,3 · · ·
b3,1 b3,2 b3,3 · · ·
· · · b1,1 b1,2 b1,3
· · · b2,1 b2,2 b2,3
· · · b3,1 b3,2 b3,3



=



a1,1 + b1,1 b1,2 b1,3 a1,2 · ·
b2,1 a1,1 + b2,2 b2,3 · a1,2 ·
b3,1 b3,2 a1,1 + b3,3 · · a1,2
a2,1 · · a2,2 + b1,1 b1,2 b1,3
· a2,1 · b2,1 a2,2 + b2,2 b2,3
· · a2,1 b3,1 b3,2 a2,2 + b3,3


In the following some basic properties of Kronecker Sum are given. Their proofs can be

found in [45, 56, 68].

• Let the matrices A and C have order m and B and D have order n. Then

(A⊕B) + (C ⊕D) = (A+ C)⊕ (B +D)

is called Mixed Sum Rule.

2The identity matrix In is a n-by-n square-matrix with ones on the main diagonal and zeros elsewhere
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Figure 4.1: C, D, C ⊕D (Example 4.3)

• Associativity of the Kronecker Sum

A⊕ (B ⊕ C) = (A⊕B)⊕ C

• Due to the fact, that the associativity property is valid for both operations, ⊗ and ⊕, the
k-fold operations

k⊗
i=1

Ai and
k⊕

i=1

Ai

are well defined, too.

• Kronecker Sum calculates all possible interleavings.

Example 4.3. Let the matrices C =

· a ·
· · b
· · ·

 and D =

· c ·
· · d
· · ·

. The corresponding

graphs are depicted in Figure 4.1(a) and 4.1(b), respectively. All possible interleavings by exe-
cuting C and D are given in Table 4.1. The corresponding graph is depicted in Figure 4.1(c).

Now assume that two trains want to use the same track section. Thus, the occupancy needs
to be synchronized. An additional matrix will be used to model the track section:

S =

(
· p
v ·

)
As already mentioned, p denotes entering the track section and v means leaving the section [19].
The correct system behavior can be described by a matrix, generated by

R = (C ⊕D)⊗ S. (4.2)
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Interleavings

a · b · c · d
a · c · b · d
a · c · d · b
c · a · b · d
c · a · d · b
c · d · a · d

Table 4.1: Interleavings of C and D (Example 4.3)

Example 4.4. Now, let C =

· p ·
· · v
· · ·

, D =

· p ·
· · v
· · ·

, and S =

(
· p
v ·

)
. Based on

Equation 4.2, the resulting matrix is calculated. The corresponding graph is depicted in Figure
4.2. It can be seen, that there are several parts not reachable from the start node and thus, these
parts are not relevant for further analysis.
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C.p
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D.v

15

C.v

7

D.p

6 9 14 18

Figure 4.2: (C ⊕D)⊗ S (Example 4.4)
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4.4 System Model

In general, a railway system consists of a set of trains L = {Lj |1 ≤ j ≤ t}. Each train Lj has a
routeRj , which is a sequence of track sections, whereas each track section is modeled by matrix

Ti =

(
· pi
vi ·

)
. (4.3)

The set of routes is denoted by R = {Rj |1 ≤ j ≤ t}. The complete system can be described by

S =

 t⊕
j=1

Rj

⊗( r⊕
i=1

Ti

)
. (4.4)

Example 4.5. Assuming the same system as in Example 4.4, but now with the railway specific
notation. It contains two trains, namely L1 and L2. Both trains want to enter track section 1.
Thus, the routes will be as follows.

R1 =

· p1 ·
· · v1
· · ·


R2 =

· p1 ·
· · v1
· · ·


Track section 1 is modeled by

S1 =

(
· p1
v1 ·

)
Based on Equation 4.4,

⊕t
j=1Rj and

⊕r
i=1 Ti are calculated:

t⊕
j=1

Rj = R1 ⊕R2

= R1 ⊗ I3 + I3 ⊗R2

=



· · · R1.p1 · · · · ·
· · · · R1.p1 · · · ·
· · · · · R1.p1 · · ·
· · · · · · R1.v1 · ·
· · · · · · · R1.v1 ·
· · · · · · · · R1.v1
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
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+



· R2.p1 · · · · · · ·
· · R2.v1 · · · · · ·
· · · · · · · · ·
· · · · R2.p1 · · · ·
· · · · · R2.v1 · · ·
· · · · · · · · ·
· · · · · · · R2.p1 ·
· · · · · · · · R2.v1
· · · · · · · · ·



=



· R2.p1 · R1.p1 · · · · ·
· · R2.v1 · R1.p1 · · · ·
· · · · · R1.p1 · · ·
· · · · R2.p1 · R1.v1 · ·
· · · · · R2.v1 · R1.v1 ·
· · · · · · · · R1.v1
· · · · · · · R2.p1 ·
· · · · · · · · R2.v1
· · · · · · · · ·


r⊕

i=1

Ti = T1 =

(
· p1
v1 ·

)
The complete system is now calculated by

· R2.p1 · R1.p1 · · · · ·
· · R2.v1 · R1.p1 · · · ·
· · · · · R1.p1 · · ·
· · · · R2.p1 · R1.v1 · ·
· · · · · R2.v1 · R1.v1 ·
· · · · · · · · R1.v1
· · · · · · · R2.p1 ·
· · · · · · · · R2.v1
· · · · · · · · ·


⊗
(
· p1
v1 ·

)

which results in a matrix of size 18. For further illustration, only nodes reachable from the entry
node are depicted in the corresponding graphs. The resulting graph of the example is illustrated
in Figure 4.3, already colored as described in the next section (Section 4.5). It can be seen that
there are two possible paths within the graph:

• R1.p1, R1.v1, R2.p1, R2.v2: Train 1 (using route R1) enters track section 1 and releases
section 1. Then train 2 (using route R2) can enter and release section 1.

• R2.p1, R2.v1, R1.p1, R1.v1: Train 2 (using route R2) enters track section 1 and releases
section 1. Then train 1 (using route R1) can enter and release section 1.
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Figure 4.3:
(⊕t

j=1Rj

)
⊗ (
⊕r

i=1 Ti) (Example 4.5)

4.5 Node types

After applying Kronecker Algebra, the resulting graph may contain various types of nodes which
are defined as follows.

Definition 4.4 (Deadlock). If the final node cannot be reached from a certain node d, then node
d denotes a deadlock situation or a situation which will definitely result in a deadlock.

Definition 4.5 (Safe state). A state is safe if all trains can perform their actions without having
to take into account the movements of others trains within the system. From safe states only safe
states can be reached.

Definition 4.6 (Critical state). A state is critical if both, a deadlock and a safe state can be
reached.

Definition 4.7 (Synchronizing nodes). A synchronizing node is a node s such that

• there exists an edge ein = (i, s) with label vk and

• there exists an edge eout = (s, j) with label pk,

where k denotes the same track section and ein and eout are mapped to different trains.

Example 4.6. Regarding node 5 of the resulting graph of Example 4.5 (Figure 4.3). It has an
incoming edge labeled by R2.v1 and an outgoing edge R1.p1. Thus the node is a synchronizing
node.

The following two definitions will be used to indicate trains entering or leaving a track
section.
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Definition 4.8 (Leaving trains). A train j, which is about to leave track section i is denoted by
T j

i→.

Definition 4.9 (Entering trains). A train k, which is about to enter a track section i is denoted
by T k

→ i .

Definition 4.10 (Synchronizing condition). Each synchronizing node has assigned at least one
synchronizing condition. Each synchronizing condition contains a train leaving a track section
(T j

i→), a train entering the track section (T k
→ i ), and the track section (i) itself. The notation of

a synchronizing condition is as follows.

T j

i→ → T k
→ i : i

Example 4.7. Again, regarding node 5 of Example 4.5 (Figure 4.3), the synchronizing condition
follows as

2→ 1 : 1

as train 2 leaves track section 1 and train 1 enters it.

Definition 4.11 (Multi-synchronizing nodes). A multi-synchronizing node is similar to the syn-
chronizing node, but with more than one synchronizing conditions.

Example 4.8. A multi-synchronizing node can be found in the resulting graph of Example 4.10
(Figure 4.5). Node 4627 has two synchronizing conditions:

1→ 2 : 3

1→ 3 : 3

Definition 4.12 (Stop-node). A stop node is a node where a train has a stop at a railway station
for departure or arrival.

Example 4.9. Stop nodes will be available in the resulting graph of Example 5.1 (Figure 5.5).

Table 4.2 gives an overview of the different node types and their graph-illustration.

Node type Illustration

Deadlocks Red
Safe states Green

Critical states Orange
Synchronizing nodes Filled

Multi-synchronizing nodes Filled, double border
Stop nodes Rectangular

Table 4.2: Node types and their illustration
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Figure 4.4: Railway system (Example 4.10)

Example 4.10. This example was introduced in previous publications (eg. [58, 81]) and shows
a railway system (Figure 4.4) with five track sections and three trains. The routes of the trains
are as follows:

R1 =



· p3 · · · ·
· · v1 · · ·
· · · p4 · ·
· · · · v3 ·
· · · · · v4
· · · · · ·

 ,

R2 =



· p3 · · · ·
· · v2 · · ·
· · · p5 · ·
· · · · v3 ·
· · · · · v5
· · · · · ·

 , and

R1 =



· p3 · · · ·
· · v5 · · ·
· · · p1 · ·
· · · · v3 ·
· · · · · v1
· · · · · ·

 .

The five track sections are modeled by Ti =

(
· pi
vi ·

)
for 1 ≤ i ≤ 5. The resulting matrix will

have order 6 ·6 ·6 ·25 = 6912 but only a small part (42 nodes) is reachable from the entry node.
The resulting graph is shown in Figure 4.5. It contains safe states, critical states, deadlocks and
various types of synchronizing nodes.
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Figure 4.5: Resulting graph (Example 4.10)
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4.6 Alternative routes

In general, each train has a well defined route within the railway system. In some special situa-
tions it is necessary that a train leaves the main track, for instance while overtaking or due to a
blocked track section. Therefore alternative routes can be defined (cf. [39]).

Example 4.11. Again, the same railway system as in Example 4.10 is used, but now, each train
has an alternative route:

• T1: 1→ 3→ 4 or 1→ 3→ 5.

• T2: 2→ 3→ 5 or 2→ 3→ 4.

• T3: 5→ 3→ 1 or 5→ 3→ 2.

As a consequence, the resulting graph (Figure 4.6) is much wider than in the previous exam-
ple, but now it is possible that the trains can use a different route, if the preferred route cannot
be used.

1

37

Z3.p3

2053

Z1.p3

261

Z2.p3

70

Z3.v5

4117

Z1.v1

525

Z2.v2

6167

Z1.p4

10259

Z1.v3

10295

Z3.p3

10519

Z2.p3

14353

Z1.v4

14389

Z1.v4

10328

Z3.v5

10783

Z2.v2

14613

Z1.v4Z3.p3 Z2.p3

14422

Z3.v5Z1.v4

10344

Z3.p1

14877

Z1.v4Z2.v2

15391

Z2.p4

14438

Z3.p1

14498

Z3.v3

14578

Z3.v1

14758

Z2.p3

14838

Z2.p3Z3.v1

15022

Z2.v2

15102

Z2.v2

15536

Z2.p4

15277

Z2.p5 Z3.v1

15616

Z3.v1

16044

Z2.v3

15357

Z3.v1

15785

Z2.v3 Z2.p4Z2.p5

16124

Z2.v3 Z3.v1

16298

Z2.v4

15865

Z2.v3Z2.v5Z3.v1

16378

Z2.v4

15899

Z2.v3

16153

Z2.v4

15935

Z3.p3

Z3.v1Z2.v5

Z1.v4

10404

Z3.v3

Z1.v4

10664

Z2.p3

10484

Z3.v1

Z1.v4

10928

Z2.v2

10744

Z3.v1 Z1.v4Z2.p3

Z1.v4

11183

Z2.p5

11008

Z3.v1 Z1.v4Z2.v2

Z1.v4

11263

Z3.v1

11691

Z2.v3 Z1.v4Z2.p5

Z1.v4

11771

Z2.v3 Z1.v4Z3.v1

12204

Z2.v5

Z1.v4

12284

Z2.v5

Z1.v4

Z1.v4 Z3.v1

1039

Z2.p4

1547

Z2.v3

1583

Z3.p3

3599

Z1.p3

1801

Z2.v4

1616

Z3.v5

1837

Z2.v4

3853

Z2.v4

5663

Z1.v1 Z3.p3Z1.p3

1870

Z2.v4

1672

Z3.p2Z3.v5

1926

Z3.p2 Z2.v4

1732

Z3.v3

1986

Z3.v3

4038

Z1.p3

2026

Z3.v2

6102

Z1.v1

4078

Z3.v2Z1.p3

10197

Z1.p5

8152

Z1.p4

6142

Z3.v2Z1.v1

10237

Z3.v2

14289

Z1.v3

12244

Z1.v3

8192

Z3.v2 Z1.p5Z1.p4

14329

Z1.v3 Z3.v2

16338

Z1.v5

Z1.v5

Z2.v4

3784

Z1.p3

1772

Z3.v2

Z3.v2

Z2.v4

3824

Z3.v2

5848

Z1.v1Z2.v4 Z1.p3

Z2.v4

5888

Z1.v1Z2.v4 Z3.v2

9943

Z1.p5

Z2.v4

9983

Z1.p5

Z2.v4

14075

Z1.v3

Z2.v4 Z3.v2

14035

Z1.v3

Z1.v5 Z2.v4

Z2.v4 Z3.v2

16084

Z1.v5

Z3.v2 Z1.v4Z1.v3Z3.v2 Z2.v4

5917

Z1.v1Z2.v4

7967

Z1.p4

12059

Z1.v3

12095

Z3.p3 Z1.v4

16189

Z1.v4

12128

Z3.v5 Z3.p3

16222

Z3.v5Z1.v4

12144

Z3.p1

12184

Z3.p2

16278

Z3.p2

16238

Z3.p1

Z3.v3Z3.v3

Z3.v3 Z1.v4 Z3.v3Z1.v4

Z2.v4

15968

Z3.v5

Z2.v4

16024

Z3.p2

15984

Z3.p1

Z3.v3Z2.v4Z3.v3 Z2.v4

Figure 4.6: Resulting graph (Example 4.11)
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4.7 Properties of the resulting matrix

As already proved in [56], the number of edges after the application of Kronecker Sum is
O(mn)3. Thus, the number of edges is linear in the order of the resulting adjacency matrix.
The number of nodes is bounded from above by nk, where k is the number of trains within the
railway system and the route of each train consists of n nodes. Based on Lemma 7 of [56], the
resulting matrix, describing the complete railway system, is sparse. This enables the application
of memory saving data structures and efficient algorithms (e.g. by using adjacency lists, which
are linear in the number of nodes). In the worst case, however, the number of nodes increases
exponentially in the number of trains [56].

Further information about the efficient implementation of the matrix operations and the lazy
implementation of Kronecker Algebra are given in [56] and are not further explained here.

4.8 Lazy Implementation of Kronecker Algebra

The resulting graph after applying Kronecker Algebra contains unreachable parts due to syn-
chronization (cf. [56]). For railway systems with lots of synchronizations, the reachable parts
may be very small. This observations motivates the lazy implementation (cf. [31]) described
in [56].

Choosing a lazy implementation for the matrix operations ensures that, when extracting the
reachable parts of the underlying graph, the overall effort is reduced to exactly these parts. By
starting from the graph’s start node and calculating all reachable successors the lazy implemen-
tation exactly does this. Thus, for example, if the resulting graph’s size is linear in terms of the
involved trains, only linear effort will be necessary to generate the graph. Further information
of the implementation can be found in [56].

4.9 Extensions of the model

Travel time analysis

As introduced in [81] the model can be extended to calculate the travel time for each train within
the railway system. This is based on [57], which is concerned with the Timing Analysis of
Concurrent Programs.

For the travel time analysis each node is assigned a variable and an equation is setup based on
the predecessor. The variable contains a vector where each component of the vector corresponds
to a train. The equations are used to calculate the travel time. Additionally, each edge is assigned
a travel time value which is used in the equations to calculate the complete travel time for each
train. Definitions and examples can be found in [57, 76–78, 80, 81].

3Assuming the corresponding matrices have order m and n, respectively
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Energy awareness

The model can be extended to use shared resources which can be used by more than one train
simultaneously. Counting semaphores [19] can be used to model discrete power resources. In
particular, the available energy is quantized into standardized packages, e.g. 1 MWh. A power
station or substation produces an amount of energy packages. Trains can reserve a well defined
amount of these packages when entering a track section. After leaving a track section, the
packages are released and thus, available for other trains. This model was introduced in [76]
and can be used to find deadlocks and to minimize energy demand. Examples can be found
in [76, 77, 79, 80].

Extra-long trains

In the previous examples it was assumed that the length of a train is less than the length of
a track section and thus, the train reserves only two track sections simultaneously. For extra-
long trains which are much longer than a track section, several track sections must be reserved
simultaneously. An example for handling such trains can be found in [79] and [76].
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CHAPTER 5
System optimization

Chapter 3 describes the optimization of the driving strategy of a single train. If there are more
trains within a railway network, each train might influence other trains. For instance, a train
wants to enter a track section, which is occupied by another train. In this case, the train has to
wait until the track section is released.

This chapter describes the optimization of the complete railway system, based on Kronecker
Algebra (Chapter 4) and the single trip optimization (Chapter 3). The algorithm to get the opti-
mized behavior in term of energy consumption of all trains within a railway system is explained
in the following sections and consists of several parts:

• Kronecker Algebra based system analysis

• Graph reduction

• Determine all possible routes

• Finding the optimal driving strategy

The explanation of the algorithm will be supported by the following example.

Example 5.1. The railway system is illustrated in Figure 5.1. Each track of the railway system
is divided into track sections and each section has a unique number 1. The example in Figure
5.1 consists of seven track sections. The unique number, the start position, and the end position
of each track section are given in Table 5.1.

1The red numbers in Figure 5.1 denote the unique number of the track section. The borders of each track section
are marked by blue lines.
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Figure 5.1: Railway System

Track
Section

Start Position
[m]

End Position
[m]

1 1 000 5 000
2 5 000 9 000
3 9 000 14 000
4 9 000 14 000
5 9 000 12 000
6 12 000 14 000
7 14 000 18 000

Table 5.1: Track sections of railway system (Figure 5.1)

There are three trains within the railway system with the following routes2:

• Train 1 (T1): 1 → 2 → 5 → 6 → 7. Train T1 starts at position 1 000 m at track section
1, has a stop at position 12 000 m at the end of section 5 and will finish its journey at
position 18 000 m at track section 7.

• Train 2 (T2): 1→ 2→ 3→ 7. Train T2 starts at position 1 000 m at track section 1 and
finishes its journey at position 18 000 m at section 7 without any further stop.

• Train 3 (T3): 7→ 4→ 2→ 1. The third train (T3) starts its journey at position 18 000 m
(section 7) and stops at position 1 000 m at track section 1.

Obviously, the three trains have to use some common track sections (1, 2, and 7). For the
railway application it has to be ensured that a track section is occupied by one train only and
thus the allocation of the track sections must be analyzed and their access synchronized, to
guarantee that there is no overlapping of their blocking-time. This approach will be explained
in the following subsections.

2A route of a train consists of several track sections. A track section can be part of several routes.
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Figure 5.2: Routes of train T1, T2, and T3

5.1 Kronecker Algebra based system analysis

In a railway system with several trains there might occur a deadlock situation. For instance it
might happen that train T3 reaches track section 2 before T1 has left track section 1. Train T1
wants to enter section 2 which is occupied by T3.

The first part of the optimization algorithm is to apply Kronecker Algebra, which was already
introduced in Chapter 4, to get all movements of the trains within the railway network. For this
reason each route must be given by using the p and v operations (cf. [19]) of the track sections.
Assuming that the length of the train is less than the length of each track section, a train does
not need to reserve more than two track sections at once. The routes of the trains now read as
follows:

R1 = p1, p2, v1, p5, v2, p6, v5, p7, v6, v7

R2 = p1, p2, v1, p3, v2, p7, v3, v7

R3 = p7, p4, v4, p2, v4, p1, v2, v1
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Each route can be illustrated as a graph, where the edges are labeled by the p and v op-
erations. The corresponding graphs of the three routes are depicted in Figure 5.2. As already
explained in Chapter 4, each graph can be represented by its adjacency matrix, which are the
following for the three routes:

R1 =



· p1 · · · · · · · · ·
· · p2 · · · · · · · ·
· · · v1 · · · · · · ·
· · · · p5 · · · · · ·
· · · · · v2 · · · · ·
· · · · · · p6 · · · ·
· · · · · · · v5 · · ·
· · · · · · · · p7 · ·
· · · · · · · · · v6 ·
· · · · · · · · · · v7
· · · · · · · · · · ·



,

R2 =



· p1 · · · · · · ·
· · p2 · · · · · ·
· · · v1 · · · · ·
· · · · p3 · · · ·
· · · · · v2 · · ·
· · · · · · p7 · ·
· · · · · · · v3 ·
· · · · · · · · v7
· · · · · · · · ·


, and

R3 =



· p7 · · · · · · ·
· · p4 · · · · · ·
· · · v7 · · · · ·
· · · · p2 · · · ·
· · · · · v4 · · ·
· · · · · · p1 · ·
· · · · · · · v2 ·
· · · · · · · · v1
· · · · · · · · ·


.

In addition, the track sections must be modeled by semaphores in the sense of computer
science (cf. [19]). The matrix of track section i will be the following (1 ≤ i ≤ n, where n is the
number of track sections, in particular n = 7 for the example):

Si =

(
· pi
vi ·

)
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By applying Kronecker Algebra, a matrix of size 19 200 is created and thus there exist 19 200
states. The resulting matrix consists of all possible train movements, including deadlocks. It will
be reduced to the relevant nodes in the following section.

5.2 Graph reduction

The resulting graph after the application of Kronecker Algebra can be reduced to the relevant
synchronizing nodes. The algorithm is designed to run on multi-core CPUs. There are several
running tasks, where each task has a unique id, which is a positive integer. The maximum
number of tasks can be adjusted in the algorithm settings. The graph reduction consists of the
following four steps, which are described afterwards:

1. Determine the graph nodes.

2. Find the synchronizing nodes.

3. Check the synchronizing nodes.

4. Find a path between the synchronizing nodes.

Each part is designed to run on multi-core CPUs. Most of the operations are done solely
within the task. If access to shared memory is unavoidable, it is guarded by protected objects
(cf. [5, 75]), which are part of the Ada programming language. After the execution of the tasks,
relevant data is copied from the local memory of the tasks to the global program memory.

Part I: Determine the graph nodes

As already mentioned the resulting graph is represented by a matrix. The first step of the graph
reduction is to find all nodes, which are reachable from the entry node3. This is done by a
breadth-first search, where each reachable node is added to a task-local set of nodes. After
all nodes are examined, each task copies its data to a global set of nodes. As a result, a graph
consisting of nodes reachable from the entry node remains. In this resulting graph, there might be
all types of nodes available, including deadlocks which will be eliminated in the next step. There
might exist nodes within the resulting graph which are not reachable from the entry node. These
nodes do not show up because of this reduction procedure. As a consequence, all remaining
nodes represent possible states in the railway system and all edges represent train movements,
respectively.

The resulting matrix after the application of Kronecker Algebra for the example has size
19 200 and thus 19 200 possible states. Due to the reduction the resulting graph is scaled down
to 499 nodes which is illustrated in Figure 5.3. It contains red nodes (deadlocks), green nodes
(save states), and orange nodes. The entry node has node id 1 and the final node 113 921.

3A node uj is reachable from ui, if there exists a path from ui to uj
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Figure 5.3: Resulting graph (Part I)
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Algorithm

The algorithm starts by adding the start node to the node-queue of a particular task. Based
on the node-id (nid), a hash-function calculates the id of the task, where the computations are
done. The hash-function is used to guarantee the optimal distribution of the nodes to the running
tasks. Immediately afterwards all tasks will start their execution and run until all task queues are
empty. The tasks will use so called Barriers (cf. [5, 75]) from the Ada programming language
to guarantee that all tasks simultaneously check their queues. If the tasks are not synchronized
it might happen that a task checks its queue before another task will enqueue a new node. As
a result, the task will stop its execution although its queue is not empty. To avoid that a node
is examined several times, it is added to a set of nodes after its first examination. When a
task takes a new node from its queue, it only examines the node, if it was not examined yet.
Lock-free queues are used in each task to avoid additional synchronization and thus, to increase
performance. Each task will execute the following until the termination condition is valid:

• Fetch the next node from the queue, if it is not empty.

• If the node was not examined yet, it is added to the set of nodes and its successors will be
added to the corresponding node-queues, calculated by the hash-function.

φ

Ti Tj

node-id task-id

Figure 5.4: Hash-function

The node-ids are evenly distributed over all available tasks by the hash-function (cf. [42]).
Another advantage using the hash-function is that a particular node-id is assigned to the same
task every time. Thus all information of this node can be stored at the tasks internal memory
and does not need to be shared with other tasks, which eliminates the risk of race conditions and
additional blocking time due to further synchronization. Figure 5.4 illustrates the functionality
of the hash-function φ. Equation 5.1 shows the calculation of the task-id based on a given node-
id, where tid is the calculated id of the task, nid is the given node-id, and ntask contains the
number of available tasks. The description of the algorithm can be found in Algorithm 5.1.

tid = nid ·

[
nid ·

√
5− 1

2
− bnid ·

√
5− 1

2
c

]
mod (ntask + 1) (5.1)

Part II: Find the synchronizing nodes

The goal of the second part of the graph reduction is to eliminate all deadlock-nodes. There
exists no path from the deadlock-nodes to the final node (cf. [56, 57]). Therefore, the graph
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Algorithm 5.1: Determine the graph nodes
1 not_finished:= true;

2 while not_finished do

3 while task_queue.Not_Empty do

4 node:= task_queue.Dequeue;

5 if node 6∈ task_nodes then

6 task_nodes:= task_nodes ∪ node;

7 foreach successor of node.Successors do
8 task_queue.Enqueue(successor);
9 end

10 end
11 end

12 if AllQueuesEmpty then
13 not_finished:=false;
14 end
15 end

is traversed bottom-up from the final node to the entry node. Similar to the first part of the
algorithm, each reachable node is added to a set of nodes and its predecessors are added to the
queues of the running tasks, whereby the task-id is again calculated by the hash-function. As
a consequence, the deadlock-nodes are not reachable from the final node and thus not added to
the set of nodes. In addition, all synchronizing nodes and stop nodes are determined and saved
in separate maps.

Algorithm

Initially, the final node is added to the corresponding task-queue (calculated by the hash-function).
Afterwards all available tasks will start their execution, which consists of the following steps.

• Fetch the next node from the queue, if it is not empty.

• If the node was not examined yet, it is added to the set of nodes and its predecessors will
be added to the corresponding node-queues, calculated by the hash-function.

Additionally each node is examined if it is a stop-node or a synchronizing-node:

• If the node was found in the previous part of the algorithm and it was not examined yet, it
is added to the set of visited nodes.

• If the node is a synchronizing node, it is added to the set of synchronizing nodes and to
the queue of synchronizing nodes, which is used in the next part of the algorithm

• If the node is a stop node, it is added to the set of stop nodes and to the queue of synchro-
nizing nodes.
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Figure 5.5: Resulting graph (Part II)
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Similar to the previous part of the algorithm, the task terminates, if all task queues are empty.
Synchronization is again done by Barriers. Figure 5.5 shows the resulting graph of part II of the
example. In comparison to Figure 5.3 the red nodes have been eliminated and the size has
shrunken from 499 nodes to 475 nodes. All remaining nodes are colored green because each
state in the resulting graph is safe now. The filled nodes represent synchronizing nodes, the
rectangular nodes denote stop nodes, and some of them represent both, synchronizing and stop
nodes. For instance node 31 266 has an input label T1.v1 and an output label T2.p1. These two
trains must be synchronized in their access on track section 1, which is released by train T1 and
reserved by train T2, which additionally has track section 1 as start of its journey.

Table 5.2 gives an overview of the number of nodes, the number of synchronizing nodes and
stop nodes, and the number of normal nodes.

Node type Amount

All nodes 475
Normal nodes 234

Stop nodes 222
Synchronizing nodes 40

Synchronizing/Stop nodes 21

Table 5.2: Number of nodes after part II of the reduction algorithm

Algorithms 5.2 and 5.3 describe the functionality of this part of the graph reduction algo-
rithm.

Part III: Check the synchronizing nodes

The third part of the graph reduction algorithm checks, if the synchronizing nodes found in
part two are so-called leader synchronizing nodes or leaders for short. Only leader synchroniz-
ing nodes are required for synchronizations between trains and the calculation of their optimal
driving strategy.

Definition 5.1 (Leader Synchronizing Node, Leaders). If there exists a chain of synchronizing
nodes with exactly the same synchronization conditions, the last node of the chain is called
leader synchronizing node. Isolated synchronizing nodes (with no direct connection to other
synchronizing nodes) are leader synchronizing nodes, too.

Assume a graph consisting of several nodes, but without synchronizing nodes. There may
exist several paths between the entry and the final node. As there are no synchronizing nodes
between the entry node and the final node, the movements of the involved trains are independent
(no common track section used). As a result, all paths between the entry node and the final node
are equal in a way that each train has the same movements (in the same order) on each path,
without any influence on other trains.

Now assume that there exists exactly one synchronization node within the graph. In such
a situation, all paths between the entry node and the synchronizing node and on the other hand
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Algorithm 5.2: Find the synchronizing nodes
1 not_finished← true;

2 while not_finished do

3 node← task_queue.Dequeue;

4 if node 6∈ task_nodes_up then

5 task_nodes_up← task_nodes_up ∪ node;
6 end

7 if node ∈ task_nodes and node 6∈ visited_nodes then

8 visited_nodes← visited_nodes ∪ node;
9 node_type← isSynchronizingNode(node);

10 if node_type 6= NODE_NORMAL and node 6∈ task_synchronizing_nodes then

11 task_synchronizing_nodes← task_synchronizing_nodes ∪ node;
12 task_synchronizing_queue.Enqueue(node);

13 if node_type = NODE_STOP or node_type = NODE_SYNCH_STOP then

14 if node 6∈ task_stop_nodes then
15 task_stop_nodes← task_stop_nodes ∪ node;
16 end
17 end
18 end

19 foreach predecessor in node.Predecessors do

20 if predecessor ∈ global_nodes then
21 task_queue.Enqueue(predecessor);
22 end
23 end
24 end

25 if AllQueuesEmpty then
26 not_finished:=false;
27 end
28 end

all paths between the synchronizing node and the final node are the same. These idea can be
extended to a graph containing several synchronizing nodes.

If there exists a chain of synchronizing nodes, where each of them has the same synchro-
nization condition(s), only the last synchronizing node is relevant, because each path which ends
at the last synchronizing node of the chain, will have the same movements of the trains and the
last synchronization will be done definitely. If a path contains several synchronizing nodes with
the same synchronization conditions and each synchronization is done, the last one will have
an effect on the resulting driving strategy, independently from other synchronizing nodes in the
chain. Thus, all synchronizing nodes, except the last one of the chain, can be handled as normal
nodes. As a consequence, all isolated synchronizing nodes and the last synchronizing nodes
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Algorithm 5.3: Check the synchronizing nodes: isSynchronizingNode
1 result← NODE_NORMAL;

2 foreach predecessor in node.Predecessors do

3 if node ∈ global_nodes then

4 if node.t_departure > 0 then
5 result← NODE_STOP;
6 end
7 end
8 end

9 foreach successor in node.Successors do

10 if successor ∈ global_nodes then

11 label_successor← EdgeLabelSection(node,successor);

12 if label_successor = p then

13 foreach predecessor in node.Predecessors do

14 if predecessor ∈ global_nodes then

15 label_predecessor← EdgeLabelSection(predecessor,node);

16 if label_predecessor = v then

17 if label_successor = label_predecessor then

18 if result = NODE_STOP then
19 result← NODE_SYNCH_STOP;
20 else
21 result← NODE_SYNCH;
22 end

23 CreateSynchronizationCondition;
24 end
25 end
26 end
27 end
28 end
29 end
30 end

of a chain will be handled as leaders, the others will be handled as non-synchronizing nodes.
The entry node and the final node are generally handled as synchronizing nodes, in particular as
leader synchronizing nodes. As stop nodes are a special kind of synchronizing nodes, this part
of the algorithm is applied in the same way for both synchronizing nodes and stop nodes. Due
to simplification only the term synchronizing nodes will be used in the explanation.

Example 5.2. Figure 5.6 shows an example with three synchronizing nodes, namely node 5, 8,
and 11. Train n and train m are involved in the synchronization on track section k. The three
mentioned synchronizing nodes form a chain, where each node of them has the same synchro-
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nization condition (m → n : k). For future calculations, only the last node of the chain is
relevant and remains as leader, whereas node 6 and 8 will further be handled as normal nodes.
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Figure 5.6: Synchronizing nodes (Example 5.2)

Figure 5.7 shows the modified graph of Figure 5.6, where the entry node, the final node, and
node 11, which is the last node of the chain of synchronizing nodes remain as synchronizing
nodes.
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Figure 5.7: Leader synchronizing nodes (Example 5.2)
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Figure 5.8: Resulting graph (Part III)
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After executing this part of the algorithm, the relevant nodes for further calculations are
determined, which consist of the start node, the leader synchronizing nodes, and the final node.
The description of the algorithm can be found in Algorithms 5.4 and 5.5.

The resulting graph of the example (Figure 5.1) after determining the leader synchronizing
nodes is illustrated in Figure 5.8.

Node type Amount
(II)

Amount
(III)

All nodes 475 475
Normal nodes 234 407

Stop nodes 222 49
Synchronizing nodes 40 40

Synchronizing/Stop nodes 21 21

Table 5.3: Number of nodes after part III of the reduction algorithm

The number of nodes has been changed and a comparison to the previous part of the algo-
rithm is shown in Table 5.3. It can be seen that the number of stop nodes has decreased from
222 to 49 nodes. In this example the number of synchronizing nodes remains the same but in
general, it might shrink enormously. Due to the fact that only the synchronizing nodes and the
stop nodes are of interest for further computations, this step reduces the complexity for the last
part of the reduction algorithm.

Algorithm 5.4: Check the synchronizing nodes
1 while task_synchronizing_queue.Not_Empty do
2 node← task_synchronizing_queue.Enqueue;
3 if isRealSynchronizingNode(node) then
4 real_synchronizing_nodes← real_synchronizing_nodes ∪ node;
5 end
6 end

Part IV: Find a path between the synchronizing nodes

In the previous parts of the algorithm, the graph was reduced and the leader synchronizing nodes
were computed. The last step is to find paths between these nodes with the restriction that each
incoming and outgoing edge, being part of the synchronization, must be used. The algorithm
works as follows:

• The graph is traversed bottom-up from the final node to the entry node by taking nodes
from the task-local queue. At each node, the node itself, the last visited leader synchro-
nizing node, and the visited track sections in between the nodes are added to a task-local
queue. The id of the task is again calculated by the hash function.
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Algorithm 5.5: Check the synchronizing nodes: isRealSynchronizingNode
1 if node = entry_node or node = final_node then
2 return true;
3 end
4 contain_condition_all← false;
5 foreach successor of node.Successors do
6 if successor ∈ global_synchronizing_nodes then
7 if successor ∈ global_nodes or successor in global_stop_nodes then
8 contain_condition← true;
9 foreach synch of node.Synchronizing_Condition do

10 if synch 6∈ successor.Synchronizing_Condition then
11 contain_condition← false;
12 end
13 end
14 if contain_condition = true then
15 contain_condition_all← true;
16 end
17 end
18 end
19 end
20 return not contain_condition_all;

• Each node is checked if it is a synchronizing node or a normal node.

• If the node is a synchronizing node, the additional information is updated (last visited
synchronizing node and visited track sections). Thus the information of the leader syn-
chronizing nodes contains the node itself and at least one synchronizing node, which can
be reached from this node, including the track sections between them.

• If the node is a normal node, its predecessors must be examined. If a predecessor is not in
the set of nodes from the first part, then it is not reachable from the entry node and thus not
relevant for the deadlock-free situation and the reduced graph. On the other hand, if the
node is in the set of nodes form the first part, the following situations must be considered:

– If the predecessor is a real synchronizing node, then this path is not relevant.

– If the predecessor is a normal node, then the path is relevant.

– If the previously visited synchronizing node is the final node, then the path is rele-
vant.

– All the other paths are not relevant for calculating the optimal driving strategy.

• If a relevant path is found, the information from the last node (previously visited leader
synchronizing node, the used track sections, and the current edge-label) is extended by
the current track section i, if the edge label indicates entering or reserving a track section,
indicated by pi. If the entry node is reached, then the starting track section of the corre-
sponding train is added to the node information, because this section is reserved initially
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and thus has no p-operation in the graph. Finally, the node itself and its node information
are added to the queue.
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T2: 
T3: 

113921

T1: 
T2: 
T3: 

 93188
1/1/18000

T1: 7
T2: 
T3: 

T1: 
T2: 

T3: 4,2,1

 110481
1->2:7/14000/18000

T1: 
T2: 
T3: 

 111634
2/1/18000

T1: 
T2: 7
T3: 

T1: 7
T2: 
T3: 

 81924
3/2/18000

T1: 
T2: 
T3: 7

T1: 
T2: 

T3: 4

T1: 
T2: 

T3: 2,1

 110610
2/1/18000

T1: 
T2: 
T3: 

 110321
1->2:7/14000/18000

3/2/1000

T1: 
T2: 7
T3: 

T1: 
T2: 
T3: 

T1: 
T2: 
T3: 

T1: 
T2: 7
T3: 

 109586
3/2/18000

T1: 
T2: 

T3: 7

 109849
2->3:2/5000/9000

3->2:7/14000/18000
1->2:7/14000/18000

T1: 
T2: 2,3

T3: 

T1: 
T2: 
T3: 4

T1: 
T2: 
T3: 

T1: 
T2: 1
T3: 

T1: 
T2: 2,3

T3: 

T1: 
T2: 

T3: 2,1

T1: 
T2: 
T3: 

T1: 6
T2: 
T3: 

T1: 6
T2: 
T3: 

T1: 
T2: 

T3: 7,4

T1: 
T2: 1
T3: 

T1: 1
T2: 
T3: 

T1: 
T2: 
T3: 

T1: 
T2: 

T3: 2,1

T1: 
T2: 
T3: 

T1: 
T2: 
T3: 

Figure 5.9: Resulting graph (Part IV)
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When the resulting graph is created, it contains only the entry node, the leader synchronizing
nodes, and the final node. Algorithm 5.6 shows the functionality of the fourth part of the graph
reduction algorithm.

The reduced graph of the example is illustrated in Figure 5.9 and contains 70 nodes (49 stop
nodes, 40 synchronizing nodes, 21 synchronizing/stop nodes, start node and final node). Nodes
are labeled with their node-id and the synchronization conditions. Edges are labeled by the used
track sections between two nodes.

Example 5.3. Node 109849 in Figure 5.9 is a multi-synchronizing node with the following
synchronization conditions:

• 2 → 3 : 2. Additionally, the start position and the final position of track section 2 are
given:

– Track section 2 starts at position 5 000 m for train T2.

– Track section 2 ends at position 9 000 m for train T2.

– Train T3 is driving in the opposite direction and thus, the start and end position of
the track section are inverted.

• 3→ 2 : 7 with boundaries of track section 7: 14 000 m and 18 000 m.

• 1→ 2 : 7 with the same boundaries of the track section as before.

Example 5.4. Node 89116 in Figure 5.9 is a stop-node for train T1 and a synchronizing node,
too:

• 1/1/18000 indicates that train T1 has a stop at position 18 000 m which is the end of its
journey.

• Additionally, there is a synchronization at track section 2 between train T2 and T3.

Example 5.5. The label between node 74187 and 78747 contains the following:

• T1 :. No track section is passed by train T1 between these two nodes of the graph.

• T2 : 2, 3. Train T2 passes track section 2 and 3.

• T3 :. No track section is passed by train T3.

Due to the reduction algorithm, only synchronizing nodes remain in the graph. For a better
readability, the remaining nodes are not filled in Figure 5.9 as defined in Section 4.5.
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Algorithm 5.6: Find a path between synchronizing nodes
1 not_finished←true;
2 task_queue.Enqueue(final_node,final_node,∅,null);

3 while not_finished do

4 (node,prev,track_sections,edge_label)← task_queue.Dequeue;

5 if node ∈ task_nodes and (node,prev,edge_label) 6∈ visited_nodes then

6 visited_nodes← visited_nodes ∪ (node,prev,edge_label);

7 if node 6∈ real_synchronizing_nodes then
8 real_synchronizing_nodes.Update(node,prev,track_sections);
9 task_nodes.Enqueue(node,node,∅,null);

10 else

11 foreach predecessor in node.Predecessors do

12 path_allowed← false;

13 if predecessor ∈ global_nodes then

14 if predecessor ∈ real_synchronizing_nodes then
15 path_allowed← true;
16 else

17 if predecessor 6∈ global_synchronizing_nodes then
18 path_allowed← true;
19 else

20 if prev = final_node then
21 path_allowed← true;
22 end
23 end
24 end

25 if path_allowed then
26 edge_label← GetEdgeLabel(node,predecessor);

27 if ’p’ in edge_label then
28 track_sections← track_sections ∪ GetTrackSection(edge_label);
29 end

30 if predecessor = entry_node then
31 track_sections← track_sections ∪ GetInitialSections;
32 end
33 task_nodes.Enqueue(predecessor,prev,track_sections,edge_label);
34 end
35 end
36 end
37 end
38 end
39 end
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5.3 Determine all possible routes

After the graph is reduced as described in Section 5.2, it remains to calculate all possible routes
for each train. If trains have more than one possible route on their journey there exists several
combinations of the routes:

R =

n∏
i=0

ri (5.2)

where R is the number of combinations, n is the number of trains, and ri is the number of
routes for train i. There may exist some combinations which lead to deadlock situations. These
combinations of routes must not be considered for the overall result. In the previous section
the graph was created, deadlocks were eliminated, and the graph was reduced to the relevant
nodes. So the resulting graph is the basis for further calculations without deadlocks. To find all
possible combinations of the routes of all trains within the railway system, the reduced graph
is traversed top-down, using a depth-first search algorithm. When the final node is reached, a
route is found and the passed track sections of each train are added to a set of routes. Each route
contains at least the entry node and the final node. Between these two nodes, there might be stop
nodes, if the train has stops at railway stations or synchronizing nodes, if there is the demand of
a synchronization on track sections between trains.

Due to the result of the application of Kronecker Algebra, there might be several paths
between two synchronizing nodes with the same track sections. To ensure that each synchro-
nization is done, all synchronizing and stop nodes, which are found while traversing the graph
must be saved in a set for a particular route. Each combination of routes has its own set with a
unique id, which is created by the track sections of the involved routes.

Assume that there is a railway system, including two trains Tn and Tm and the track sections
a, b, c, and d. Each train can use two routes to reach their destination:

• Tn: a→ b→ d and a→ c→ d

• Tm: d→ b→ a and d→ c→ a

Based on equation 5.2, there exist four combinations of the routes.

• a→ b→ d and d→ b→ a

• a→ b→ d and d→ c→ a

• a→ c→ d and d→ b→ a

• a→ c→ d and d→ c→ a

Obviously, the first and the fourth item above will result in a deadlock and thus only the
second and third train will be available for the calculation of the optimal driving strategies.
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5.4 Finding the optimal driving strategy

In the previous section all possible routes were determined. The last step of the algorithm con-
sists of finding the optimal solution in terms of energy. It is necessary to calculate the energy
consumption for each route. A route might be partitioned into sub-tracks by stop nodes. Two
types of sub-tracks can be distinguished:

• Sub-tracks without synchronization

• Sub-tracks with synchronization

Sub-tracks without synchronization

A sub-track of a particular route of a train does not contain the demand of a synchronization
if there exists no synchronization node between two stop nodes. As a result the train can drive
undisturbed along its route and its driving strategy can be calculated as described in Chapter 3
(single trip optimization).

Sub-tracks with synchronization

If there exists at least one synchronization node within a sub-track, the calculation of the optimal
driving strategy is more complex than the single trip optimization. The following restrictions
will be used in this chapter:

• Trains are denoted by T and a particular train j by T j .

• In general, travel time values are denoted by t and for a particular train j by tj . If the
time value is related to a track section i, a subscript is used: ti and tji for train j on track
section i, respectively. To indicate the minimum travel time an underline is used, e.g. the
minimum travel time for train j on track section i is denoted by tji . For the maximum
travel time an overline is used, e.g. the maximum travel time for train j on track section i
is denoted by tji .

• In general, the entering of track sections (e.g. section i) is denoted by→ i (as subscript)
and the leaving of section i by i →, respectively.

By using the notions above, the following definitions for trains are given:

Definition 5.2 (Leaving trains). A train j, which is about to leave track section i is denoted by
T j

i→.

Definition 5.3 (Entering trains). A train k, which is about to enter a track section i is denoted
by T k

→ i .

In addition, some instants of time, which are used in the synchronization between trains must
be defined:
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(only used at railroads where it is required by the rules)

Figure 5.10: Blocking Time of a Block Section [62, 64]

Definition 5.4 (Planned travel time (Extension of Definition 3.6)). The planned travel time tk
�

for train k on a particular journey is given by the schedule. A journey of a train consists of n
track sections. The planned travel time for train k on a track section i is given by tk

i�
. That

implies the overall travel time for train k on its journey as

tk
�

=
n∑

i=1

tk
i�

(5.3)

Example 5.6. Assume that the departure time is given as 03:00:00 o’clock and the arrival time
is given as 03:05:30. The planned travel time is the difference between the departure and the
arrival time and will be 00:05:30. All calculations will be done in seconds and thus the planned
travel time is tk

�
= 330 seconds.

There exist some additional system behavior in railway systems, which must be considered
in the calculations. Figures 5.10 and 5.11 show the blocking time of a block section and an
example of a blocking stairway, respectively and will be used as base to determine the blocking
time of each track section. It can be seen that the blocking time of a track section is longer than
its occupation time and consists of the following parts [64]:

• Time for clearing the signal.

• The Sighting distance is illustrated at the left side on top of in Figure 5.10. It starts at the
point of view (when the driver can see the distant signal) and ends at the position of the

92



Time

Distance

Figure 5.11: Blocking Time Stairway [62, 64]

distant signal. The time from seeing the signal until the train passes it, is called Signal
watching time.

• The Approach Time gives the complete time while the train is between the distant signal
and the beginning of the section.

• The time while the train is within the track section is called Time between block signals.

• The time between leaving a track section and completely passing a clearing point (e.g. all
axis passed an axle counter) is called Clearing time.

• In the end an additional offset is needed for releasing the track section (Release time).

As a result a track section will be blocked some given time for clearing the signal before the
train arrives the point of view and released some additional release time after the complete train
has passed the clearing point (e.g. an axle counter). The following definitions are based on these
assumptions and will be used for synchronization of trains using a common track section.

Definition 5.5 (Blocking and releasing a track section). A track section i is blocked by a train k
at tk
→ i and released at tki→. It follows that the complete blocking time tki of a track section i by

train k is
tki = tki→ − t

k
→ i (5.4)

Definition 5.6 (Earliest release time). The earliest instant of time for train j to release a track
section i is denoted by tji→. This value is calculated in accordance to the schedule and indicates
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the earliest instant of time when a train releases a track section, assuming that it arrives at its
destination within the planned travel time.

Definition 5.7 (Latest release time). The latest instant of time for train j to release a track
section i is denoted by tji→. This value is calculated in accordance to the schedule and indicates
the latest instant of time when a train releases a track section, assuming that it arrives at its
destination within the planned travel time.

Definition 5.8 (Earliest reservation time). The earliest instant of time for train k to reserve a
track section i is denoted by tk

→ i . This value is calculated in accordance to the schedule and
indicates the earliest instant of time when a train reserves a track section, assuming that it
arrives at its destination within the planned travel time.

Definition 5.9 (Latest reservation time). The latest instant of time for train k to reserve a track
section i is denoted by tk→ i . This values is calculated in accordance to the schedule and indicates
the latest instant of time when a train reserves a track section, assuming that it arrives at its
destination within the planned travel time.

In contrast to the release and reservation time values which are calculated at the point of
view or at the axle counter, regarding the time for clearing the signal and the release time, the
following definition for the input and output speed values, which are needed for the calculation
of the driving strategy, are defined at the beginning and the end of a track section, respectively.

Definition 5.10 (Output speed (Extension of Definition 3.7)). The speed value of train j when
leaving track section i is called output speed, denoted by vij→. The highest and lowest output

speed values of train j when leaving a track section i while satisfying the schedule are vij→ and

vij→, respectively.

Definition 5.11 (Input speed (Extension of Definition 3.8)). The speed value of train j when
entering track section i is called input speed, denoted by vi

→ j . The highest and lowest input

speed values of train j when entering a track section i while satisfying the schedule are denoted
by vi

→ j and vi
→ j , respectively.

Obviously, vj
→ i = vji-1→ for all 1 < i ≤ n, where n is the number of track sections4. The

first track section of a track or sub-track, starting at a railway station has an input speed value
of 0 km/h and the last section of a journey, ending at a station has an output speed of 0 km/h.
If the calculation starts while the train is driving along its journey, its current speed is used as
input parameter of the calculation.

Definition 5.12 (Track section start and end position). A track section is bounded by its start
position s|i and its end position si|.

4Track section i is the successor of section i− 1 on the route.
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Based on the definitions 5.5–5.9, the following equations must be valid to ensure that the
train will arrive at its destination in time:

tji→ ≤ t
j

i→ ≤ t
j

i→ (5.5)

tk
→ i ≤ t

k

→ i ≤ t
k

→ i (5.6)

Synchronizing of trains

As already mentioned, trains must be synchronized if they want to use the same track section.
In particular, a train can enter a track section only if it was already released by the other train.

Example 5.7. Assume that there are two trains, namely Tj and Tk, which want to use track
section i. Based on the schedule the time values (in seconds) in Table 5.4 are calculated.

Tj Tk Tk′

tj
→ i = 100 tk

→ i = 400 tk
′

→ i = 320

t
j

→ i = 150 t
k

→ i = 450 t
k′

→ i = 330

tji→ = 300 tki→ = 600 tk
′

i→ = 520

t
j

i→ = 350 t
k

i→ = 650 t
k′

i→ = 530

Table 5.4: Time values for synchronization

Track section i is blocked by train Tj in the worst case from 100 s to 350 s. As train Tk will
enter track section i at the earliest after 400 s, no synchronization is needed between these two
trains. Now, assume train Tk′ is used instead of Tk. Now, there is an overlap between the two
instants of time of train Tj for leaving the section and Tk′ entering the track section. As a result
Tj must have left track section i at the latest after 330 s. Otherwise train Tk′ will not be in time
at its destination.

The algorithm is designed to find all solutions where all conflicts are avoided and the trains
arrive at their destination within the planned travel time. Now assume that train Tk wants to enter
a track section, which is blocked by Tj . Based on these assumptions the following equation must
be valid for Tk

tk
→ i > tji→ (5.7)

and on the other hand for Tj
t
j

i→ < t
k

→ i (5.8)

The set S contains all trains which are part of the synchronization. Based on the above
restrictions, the previously defined instants of time must be slightly modified:

tk∗
→ i = max

j∈S, j 6=k

(
tk
→ i , t

j

i→

)
(5.9)

t
j∗
i→ = max

j∈S, j 6=k

(
t
k

→ i , t
j

i→

)
(5.10)
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t
k

→ i and tji→ remain unchanged:

t
k∗
→ i = t

k

→ i (5.11)

tj∗i→ = tji→ (5.12)

For each synchronization between train j and k on track section i, these four time values
(tk∗
→ i , tk∗→ i , tj∗i→, tj∗i→) are relevant. Only solutions where no overlap between the instants of

time for entering and leaving a track section are allowed to be taken into account for finding the
optimal solution in terms of minimal energy consumption. Before analyzing the synchronizing
nodes, these time values are computed for every pair of trains involved in a synchronization
condition.

Analysis of synchronizing nodes

The next step is to analyze the synchronizing nodes of each route. Three types of routes can be
distinguished:

• No synchronization between trains is needed.

• No synchronization between trains is possible.

• Synchronization between trains is needed.

No synchronization needed. There are several situations where no synchronization between
trains is needed:

• A track section is used by a single train.

• A track section i is used by more than one train, but there is no overlap of the blocking
time of a leaving train j and an entering train k, written as

tk∗
→ i > t

j∗
i→ (5.13)

If no synchronization is needed, the corresponding synchronization condition is removed
from the synchronizing node. If all synchronization conditions are removed from a node, the
node itself is removed from the route. Due to the schedule it might be possible that all syn-
chronizing nodes are removed from a route and thus, only the entry node and the final node
will remain and the optimal driving strategy is calculated by the single trip optimization from
Chapter 3.

No synchronization possible. A synchronization between two trains on a particular track sec-
tion i is not possible if the following equation is valid:

tj∗i→ > t
k∗
→ i (5.14)
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If a synchronization is not possible, then at least one train would not be able to reach its des-
tination within the planned travel time. As the algorithm considers only results with a punctual
arrival at each destination for the calculation of the driving strategies, the route is not taken into
account for the overall result.

Synchronization is needed. If the following conditions are valid, a synchronization on track
section i between the leaving train j and the entering train k is possible and the node and its
synchronization condition will remain unchanged:

tk∗
→ i ≤ t

k∗
→ i (5.15)

tj∗i→ ≤ t
j∗
i→ (5.16)

tk∗
→ i ≤ t

j∗
i→ (5.17)

There are several situations, which may occur after the instants of time are calculated and
their relations are analyzed:

• If all routes are removed, it is not possible that the trains will reach their destinations in
time. Possible solutions are adaptation of the time table or reassignment of the routes (e.g.
a train might use an alternative route).

• If all routes consist of the entry node and the final node only, there will be no influence
between all trains within the railway network and thus the optimal driving strategy for
each train can be calculated independently from each other.

• For all routes consisting of at least one synchronizing node, the optimal driving strategy
is calculated as described in the following section.

Determining the optimal driving strategy

Each node within the resulting routes must be analyzed. For this reason the nodes put in as-
cending order by their node ids. As a result, the positions which are part of the synchronization
conditions are also ordered correctly. The stop nodes divide the complete complete track into
sub-tracks. Due to the synchronization nodes, the sub-tracks are divided into several parts.

If a train is involved in a synchronization condition, the node, in particular the track section
from the synchronization condition is relevant for the train. Based on the Definitions 5.6–5.11,
the relevant time and speed values for the corresponding track section are calculated and saved
in a vector together with the synchronization position. For a train entering a track section the
start position of the track is used as synchronization position and for a leaving train, the end
position is used, respectively. For each route and within the route for each train a separate vector
is used to save the data. This procedure is repeated for each node of the route until the final node
is reached. If available, the next route is analyzed in the same way. If all routes and their nodes
are analyzed, the optimal driving strategies can be calculated.
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The determination of the optimal driving strategy is done for each route and in each route
for each train. So the calculation starts with the first train of the first route. Due to the fact that
the complete track is split up into several parts and each part can have several output speed val-
ues, in combination with several travel time values, a recursive algorithm will calculate several
driving strategies for the overall result. The algorithm calculates the optimal driving strategy
between two positions, taken from the vector. The input speed of the current calculation is based
on the previous calculation, in other words, the input speed is the output speed of the previous
calculation. The output speed can vary between the minimum and maximum output speed value
(see Definitions 5.10). The travel time is again based on the previous calculation and can vary
between the minimum and maximum travel time values (see Definition 5.6–5.9). The algorithm
from Chapter 3 calculates the optimal driving strategy for the given input parameters. If a solu-
tion is found, the calculated output values are taken as input parameters for the next part. This
procedure is repeated until the last element of the vector is reached. Then the calculation for the
next train within the system starts and when all computations of all trains are finished, the same
procedure is done for the next route.

The instant of time for entering a track section is the sum of the travel time of each previously
passed track section

∑i−1
j=1 ∆tkj , the instant of time for leaving the section is bounded by tj∗i→

and tj∗i→. As a consequence, the following equation must be valid for the travel time on track
section i:

tk∗i→ −
i−1∑
j=1

∆tkj ≤ tki ≤ t
k∗
i→ −

i−1∑
j=1

∆tkj (5.18)

and thus

∆tki = tk∗i→ −
i−1∑
j=1

∆tkj (5.19)

∆t
k
i = t

k∗
i→ −

i−1∑
j=1

∆tkj (5.20)

The travel time of a train k on track section i is bounded by ∆tki and ∆t
k
i .

Assuming ∆tki = 180 s and ∆t
k
i = 210 s, the best result in terms of energy consumption

may be between these two values. Due to restrictions on the calculation time, it might not be
possible or efficient to calculate the optimal driving strategy for each travel time value between
these values, e.g. for 180 s, 181 s, 182 s and so on. There exits an algorithm parameter to adjust
the time offset between two travel time values ∆t+ in seconds. Thus the algorithm will calculate
the optimal driving strategy for

∆tki ,∆t
k
i + ∆t+,∆t

k
i + 2 ·∆t+,∆tki + 3 ·∆t+ . . .∆tki .

As already mentioned, an input and output speed exists for each track section. The input
speed is fixed, as it is equal to the output speed of the previous section (vj

→ i = vji-1→). To
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find the optimal driving strategy, the output speed of each part of the track may be between the
minimum and maximum output speed value. Thus the algorithm will use several speed values
between these borders. The step size of these speed values can be adjusted by the algorithm
parameter ∆v+ in km/h. As a result, the output speed for the calculation of the driving strategy
for train j on track section i is

vij→, v
i

j→ + ∆v+, v
i

j→ + 2 ·∆v+, vij→ + 3 ·∆v+ . . . vij→.

To sum up the functionality of the algorithm, the calculation of the overall result works as
follows:

• Start at the first route.

– Start at the first train with the following recursive algorithm.

∗ Start at the first part of the track with a given input speed (e.g. 0 km/h, when
starting at a railway station).

∗ Calculate the driving strategies for all combinations of possible travel times and
output speed values and use the calculated values as input for the next part.

∗ Repeat until the last position of the route is reached.

– Repeat until the driving strategies for all trains have been calculated.

• Repeat until all routes have been analyzed.

Thus, the algorithm calculates various driving strategies for each train. The last step of
the optimization algorithm is to find the best solution in terms of energy consumption. For
this reason all combinations of the results of the involved trains must be analyzed. As there
are several instants of time for entering and leaving a track section, an overlap between a train
entering and another one leaving a track section may occur. Such results are not valid and must
be discarded from the set of results. Consequently, the results must be checked, if they fulfill the
following restrictions:

• Each train is within its schedule.

• A track section can be used only if it is not occupied by another train. In other words, train
k can enter a track section i only, after it was released by another train j: tk∗

→ i ≥ tj∗i→ for
each track section i, where train j and k are involved in the synchronization.

• E → min, where E is the complete energy consumption of all trains.

The algorithm to determine the optimal driving strategy is designed to run on multi-core
CPUs. The calculation of the energy demand for each driving strategy (with different travel time
and output speed values) can be easily parallelized, as the calculations are independent from
each other.

It can be easily seen, that the execution time of the algorithm grows exponentially in the
number of track sections. However, the model behaves well for practical situations, e.g. a small
number of trains (two in almost all cases) and a small number of track sections or for systems
with less synchronizations between trains.
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Example 5.8. Assume the schedule from Table 5.5 for three trains in the given railway system
(Figure 5.1, Example 5.1).

Train Position [m] Arrival Departure Traveltime [s]

T1 1 000 09:23:00
12 000 09:31:30 09:41:30 510
18 000 09:48:30 420

T2 1 000 09:01:00
18 000 09:14:00 780

T3 18 000 09:27:30
1 000 09:40:30 780

Table 5.5: Schedule for T1, T2, and T3 (Example 5.8)

The routes of the trains read as follows:

• Train 1 (T1): 1 → 2 → 5 → 6 → 7. Train T1 starts at position 1 000 m at track section
1, has a stop at position 12 000 m at the end of section 5 and will finish its journey at
position 18 000 m at track section 7.

• Train 2 (T2): 1→ 2→ 3→ 7. Train T2 starts at position 1 000 m at track section 1 and
finishes its journey at position 18 000 m at section 7 without any further stop.

• Train 3 (T3): 7 → 4 → 2 → 1. Train T3 starts its journey at position 18 000 m (track
section 4) and arrives at its destination at position 1 000 m at track section 1.

Train T1 is driving on the main track and the allowed track speed is v = 140 km/h for the
complete track. The other trains are driving over switches and thus, there is a reduced maximum
speed. The speed restrictions for train T2 and T3 can be found in Tables 5.6 and 5.7. The track
inclination is given in Table 5.8 and is the same for each route. The three trains are identical in
their train parameters which are given in Table 5.9.

As this example uses the same routes and track section for the involved trains, the result-
ing graph is the same as in Example 5.1 (Figure 5.3). The reduced graphs are illustrated in
Figures 5.5, 5.8, and 5.9. Based on the departure and arrival times of the trains, obviously no
synchronization on the track sections is needed (Figure 5.13) and thus, each train can perform
its optimal driving strategy. The resulting energy consumption for each train is given in Table
5.13 and the driving strategies are illustrated in Figure 5.12.
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From [m] To [m] v [km/h]

1 000 8 500 140
8 500 9 000 40
9 000 14 500 140

14 500 15 000 40
15 000 18 500 140

Table 5.6: v for R2 (Example 5.8)

From [m] To [m] v [km/h]

1 000 8 000 140
8 000 8 500 40
8 500 14 000 140

14 000 14 500 40
14 500 18 500 140

Table 5.7: v for R3 (Example 5.8)

From [m] To [m] Grad. [h] From [m] To [m] Grad. [h]

1 000 1 480 1 1 480 1 770 −3
1 770 1 921 −1 1 921 2 100 0
2 100 2 500 5 2 500 2 700 4
2 700 3 300 5 3 300 3 800 4
3 800 4 500 5 4 500 5 000 4
5 000 5 200 2 5 200 5 900 5
5 900 6 200 8 6 200 6 300 4
6 300 6 500 7 6 500 6 900 3
6 900 7 700 2 7 700 7 900 0
7 900 8 100 5 8 100 8 200 4
8 200 8 300 5 8 300 8 400 3
8 400 8 500 1 8 500 9 200 0
9 200 9 500 5 9 500 9 700 3
9 700 9 800 5 9 800 9 900 4
9 900 10 000 3 10 000 10 100 6

10 100 10 200 1 10 200 10 600 0
10 600 10 900 −3 10 900 11 000 0
11 000 11 300 3 11 300 11 500 0
11 500 11 800 −4 11 800 12 300 −5
12 300 12 378 −6 12 378 13 300 −9
13 300 13 500 −6 13 500 14 000 −3
14 000 14 100 0 14 100 14 200 −2
14 200 14 300 −3 14 300 14 602 −2
14 602 17 800 −2 17 800 18 000 −1

Table 5.8: Track inclination (Example 5.8)
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Parameter Value Parameter Value

mT 42 000 t mW 72 000 t
n 2 r 0.85

F (v) see Ex. 2.1 B(v) see Ex. 2.2
l 67 m fL 3.3

kSt1 0.03 kg · s2/m2 kSa1 0.0025 s/m
kSa2 0.00696 kg · s2/m2 ∆v 4.17 m/s
ρ 6.0
v+ 5 km/h s+ 100 m

Table 5.9: Train and algorithm parameters (Example 5.8)

Example 5.9. Now, assume that there is a new schedule with changed arrival and departure
times for trains T2 and T3 (Table 5.10).

Train Position [m] Arrival Departure Traveltime [s]

T1 1 000 09:23:00
12 000 09:31:30 09:41:30 510
18 000 09:48:30 420

T2 1 000 09:27:30
18 000 09:40:30 780

T3 18 000 09:29:30
1 000 09:42:30 780

Table 5.10: Schedule for T1, T2, and T3 (Example 5.9)

Due to the new schedule, train T1 and T2 have to synchronize their access on track section
2 (5 000 m–9 000 m) which means that train T2 has to wait until T1 has left track section 2.
In particular, train T2 is allowed to pass position 3 600 m5 after the complete train has passed
position 9 167 m. The driving strategy of these two trains must be adopted which can be easily
seen in Figure 5.14. As a result, the energy consumption of the two trains is increased (Table
5.13). The driving strategy for train T3 is not influenced by the new schedule. Figure 5.15
illustrates the modified distance-time diagram for this example.

5The explanation can be found in Section 5.4, Figure 5.10.
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Figure 5.12: Optimal driving strategy (Example 5.8)
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Figure 5.13: Distance-Time diagram (Example 5.8)
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Figure 5.14: Optimal driving strategy (Example 5.9)
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Figure 5.15: Distance-Time diagram (Example 5.9)

Example 5.10. This example, again, will use the same infrastructure. The schedule is modified
as shown in Table 5.11.
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Train Position [m] Arrival Departure Traveltime [s]

T1 1 000 09:23:00
12 000 09:31:30 09:41:30 510
18 000 09:48:30 420

T2 1 000 09:26:30
18 000 09:39:30 780

T3 18 000 09:27:30
1 000 09:40:30 780

Table 5.11: Schedule for T1, T2, and T3 (Example 5.9)

The resulting driving strategies and the distance-time diagram are illustrated in Figure 5.16
and Figure 5.17, respectively. Obviously, the three trains have to do a synchronization on track
section 2 as follows:

• Similar to the previous example, train T2 has to wait until train T1 has left track section 2.

• Train T3 has to wait until train T2 has left the track section.

As a consequence, train T1 starts its journey with a higher hold speed within the first two track
sections which results in a decreased travel time for these two section. Thus, the train has to
be slower in the third track section to arrive at the railway station (position 14 000 m) at the
planned arrival time (09:31:30). Train T2 starts with a lower hold speed at the first track section
and increases its speed in the second one to leave the section that train T3 can use it in a way
to be in time at the destination. As a result, both, train T2 and T3 have be drive faster within
track section 7 and 2 and 1, respectively, to be punctually at their destination. Nevertheless, an
optimal driving strategy is determined for each train, based on these restrictions. The resulting
energy consumption for the trains is given in Table 5.13.

Example 5.11. Now, the schedule of train T3 is modified as given in Table 5.12. As a conse-
quence, it is not possible that the will arrive at its destination in time because the release of track
section 2 is too late, even when train T2 will drive with maximum speed.

Train Position [m] Arrival Departure Traveltime [s]

T1 1 000 09:23:00
12 000 09:31:30 09:41:30 510
18 000 09:48:30 420

T2 1 000 09:26:30
18 000 09:39:30 780

T3 18 000 09:25:30
1 000 09:38:30 780

Table 5.12: Schedule for T1, T2, and T3 (Example 5.9)
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Figure 5.16: Optimal driving strategy (Example 5.10)
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Figure 5.17: Distance-Time diagram (Example 5.10)

Table 5.13 gives an overview about the resulting energy consumption of the previous exam-
ples. Obviously, the energy consumption increases, depending on the degree of synchronization.
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Train e [kWh]
(Example 5.8)

e [kWh]
(Example 5.9)

e [kWh]
(Example 5.10)

T1 32.983 33.204 35.117
T2 41.157 41.241 44.666
T3 41.961 41.961 43.163∑

116.101 116.406 122.946

Table 5.13: Energy consumption (Examples 5.8 – 5.10)
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CHAPTER 6
Extensions of the model

The presented model can act as base for further development in automation systems for railway
systems. Some ideas for extending the model are introduced in this section.

6.1 Extension of the schedule

As already mentioned, the algorithm only calculates driving strategies for the trains, if they are
all within the planned travel time. A possible extension could be to calculate driving strategies
for unpunctual trains, too, assuming that the trains will be in time at another railway station. In
particular, the schedule could be extended for intermediate stops to the end that the train can be
in time at a defined final stop (cf. [39]).

Another approach to avoid conflicts on the track could be the modification of the departure
time of the trains. Therefore, the arrival time of the trains will be fixed, but the departure time
can be varied (e.g. the train must leave the railway station between 10:00:00 and 10:00:10). This
may lead to a new driving strategy with less energy consumption because the train need not
break and accelerate on the track, due to a blocked track section.

6.2 Train-priorities

The model can be extended by assigning priorities to trains. As a consequence, a train with a
higher priority may be handled in a different way than trains with low priority, e.g. when entering
track sections. The introduction of train-priorities may lead to unpunctuality for trains with low
priority and thus the previous extension may be introduced together with the implementation of
train-priorities.
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6.3 Hard- and software-coupling

The algorithm may be coupled with some hardware parts and some dispatching or monitoring
software. The advantage would be that some important characteristics of the network can be
considered in the calculations. In particular:

• The current schedule can be considered. It might be possible that the schedule may be
changed while operating due to delays, new train within the system or other factors that
may have an influence on the dispatching.

• As the algorithm uses some track information (e.g. maximum allowed speed), it would be
an advantage if this information can be updated online.

• If there is an energy bottleneck, some routes within the resulting graph may not be possible
due to a high energy demand. Such routes can be eliminated if the current state of the
power plants can be taken into account.

• Assume that the algorithm is implemented on a central computation unit and calculates
the driving strategy for each train within the system. If the position of each train is know
exactly at each instant of time in the system, it can be compared with the calculated driving
strategy. If there is a deviation between these two values, the algorithm must be restarted
with the new position (of each train). As a result, new driving strategies can be found for
trains within the system, depending on the influence of the deviant train.

6.4 Automated train control

Due to the fact that each train driver has a reaction time longer than the reaction time of any
machine, the best results can be achieved when the train control is done automatically, based on
the results of the algorithm. As a result, deviations and thus, new calculations can be avoided.

In general, each coupling to hardware or software modules can improve the correctness and
the performance of the algorithm and its results due to actuality of the used information.
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CHAPTER 7
Conclusion and prospect

This thesis is concerned with the development of an algorithm to determine the optimal driving
strategy for each train within a railway network which is feasible in the field. Therefore the
dependencies between the trains (e.g. for entering and leaving a track section) are analyzed and
the results are used in the calculations for the driving strategies. Due to the fact that there are
several restrictions regarding the feasibility in the field, the calculated driving strategy is optimal
under these restrictions, but could theoretically be better. There exists a number of parameters
to adjust the accuracy and the calculation time of the algorithm.

The algorithm is divided into two parts. The first one uses so-called Kronecker Algebra
to determine all possible movements of the trains within the railway network. Conflicts (e.g.
deadlocks or headway-conflicts) are found due to this mathematical model using matrices and
operations on them. Based on the results of these operations an optimal driving strategy is calcu-
lated in the second part of the algorithm for each involved train under the assumption that each
train should arrive at its destination within the schedule and safety aspects are guaranteed. The
best solution in terms of energy consumption is presented as overall result.

The algorithm uses an implementation of the train model and the track with a comprehensive
number of adjustable parameters (e.g. train mass, number of wagons, various resistance values)
to be near-term to reality. The better the mapping of the real world to the parameters the better
the calculated result is.

As the algorithm is designed to determine only driving strategies where the trains will arrive
at their destination in time, there might exist several situations (e.g. due to delays) where no
result is available. A useful extension of the algorithm might be to calculate driving strategies
for unpunctual trains, too, as well as the usage of train priorities which could be considered in
the sequence of entering and leaving common used track sections.
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As already mentioned in previous parts of this thesis, the algorithm is designed to run on
multi-core CPUs. As a result, the calculation time will decrease with a higher number of avail-
able CPUs. Due to simplicity of the mathematical operations, the algorithm could be ported
to graphic cards with a very high number of processing units which would result in a dramatic
reduction of calculation time.

The development of the algorithm was part of the EcoRailNet project in the frame of the
program New Energy 2020 (Project-ID: 834586). Several parts of the algorithm were tested in
the field with good results and valuable perceptions. Other parts were discussed within meetings
and presented on conferences and appear to be a good base for further development.
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trains. In 22th International Symposium on Electronics in Transport ISEP 2014, Ljubljana,
Sovenija, Mar 2014.

[5] Randall L. Brukardt. Ada 2012 Annotated Reference Manual, 2012.

[6] Olaf Brünger and Elias Dahlhaus. Running Time Estimation. In Ingo A. Hansen, Jörn
Pachl, and Thomas Albrecht, editors, Railway, Timetable & Traffic: Analysis, Modelling,
Simulation, pages 58–82. Eurailpress, Hamburg,Germany, 1 edition, 2008.

[7] Peter Buchholz and Peter Kemper. Efficient Computation and Representation of Large
Reachability Sets for Composed Automata. Discrete Event Dyn. Systems, 12(3):265–286,
2002.

[8] Ginautas Bureika, Rimantas Subacius, and Mika Kumara. Research on Energy Efficient of
Rolling-Stock Operation. In The 6th International Scientific Conference “TRANSBALTICA
2009”, pages 28–32, Apr 2009.

[9] Gabrio Caimi, Fabián A. Chudak, Martin Fuchsberger, Marco Laumanns, and Rico Zen-
klusen. A new resource-constrained multicommodity flow model for conflict-free train
routing and scheduling. Transportation Science, 45(2):212–227, May 2011.

[10] Gabrio Caimi, Martin Fuchsberger, Dan Burkolter, Thomas Herrmann, Raimond Wüst,
and Samuel Roos. Conflict-free train scheduling in a compensation zone exploiting the
speed profile. In 3rd International Seminar on Railway Operations Modelling and Analysis
(ISROR), Zürich, Switzerland, Feb 2009.

113



[11] Gabrio Caimi, Martin Fuchsberger, Marco Laumanns, and Marco Lüthi. A model pre-
dictive control approach for discrete-time rescheduling in complex central railway station
areas. Computers & Operations Research, 39(11):2578–2593, 2012.

[12] Gabrio Caimi, Marco Laumanns, Kaspar Schüpbach, Stefan Wörner, and Martin Fuchs-
berger. The periodic service intention as a conceptual frame for generating timetables with
partial periodicity. In Transportation Planning and Technology 34(4), pages 323–339,
2011.

[13] Jiaxing Cheng, Yelena Davydova, Phil Howlett, and Peter Pudney. Optimal driving strate-
gies for a train journey with non-zero track gradient and speed limits. IMA Journal of
Mathematics Applied in Business & Industry, 10(0199921504):89–115, 1999.

[14] Rémy Chevrier, Grégory Marlière, Bogdan Vulturescu, and Joaquin Rodriguez. Multi-
objective Evolutionary Algorithm for Speed Tuning Optimization with Energy Saving in
Railway: Application and Case Study. In RailRome 2011, Rome, Italy, 2011.

[15] Colin Cole. Longitudinal Train Dynamics. In Simon Iwnicki, editor, Handbook of Railway
Vehicle Dynamics, pages 239–278. Taylor & Francis Group, Boca Raton, USA, 2006.

[16] Yong Cui. Simulation-Based Hybrid Model for a Partially-Automatic Dispatching of Rail-
way Operation. PhD thesis, Universität Stuttgart, 2010.

[17] Marc Davio. Kronecker Products and Shuffle Algebra. IEEE Trans. Computers, 30(2):116–
125, 1981.

[18] Caroline Desprez and Housni Djellab. Traction energy saving by speed profile optimiza-
tion. In Compendium of Papers for the Euro Working Group of Transportation, Paris,
France, 2012.

[19] Edsger W. Dijkstra. Over Seinpalen. 1965.

[20] Edsger W. Dijkstra. Een algorithme ter voorkoming van de dodelijke omarming. n.d.

[21] Markus Ellinger. Energiesparende Fahrweise unter Berücksichtigung betrieblicher und
technischer Parameter. Master thesis, Fachhochschule St. Pölten, 2013.

[22] Maria Pia Fanti, Alessandro Giua, and Carla. Seatzu. A deadlock prevention method for
railway networks using monitors for colored petri nets. In Systems, Man and Cybernetics,
2003. IEEE International Conference on, volume 2, pages 1866–1873, Oct 2003.

[23] Rüdiger Franke, Markus Meyer, and Peter Terwiesch. Optimal Control of the Driving of
Trains. Automatisierungstechnik Methoden und Anwendungen der Steuerungs-, Regelungs-
und Informationstechnik, 50(12):606–613, Dec 2002.

[24] Rüdiger Franke, Peter Terwiesch, and Markus Meyer. An algorithm for the optimal control
of the driving of trains. In Decision and Control, 2000. Proceedings of the 39th IEEE
Conference on, volume 3, pages 2123–2128, Dec 2000.

114



[25] Martin Fuchsberger. Solving the train scheduling problem in a main station area via a
resource constrained space-time integer multi-commodity flow. Master thesis, ETH Zurich,
2007.

[26] ÖBB-Produktion GmbH. Velocity-braking-force-diagram, 2014.

[27] ÖBB-Produktion GmbH. Velocity-traction-force-diagram, 2014.

[28] ÖBB-Produktion GmbH. Verzeichnis zulässiger Geschwindigkeiten, 2014.

[29] Iakov M. Golovitcher. Energy efficient control of rail vehicles. In Systems, Man, and
Cybernetics, 2001 IEEE International Conference on, volume 10, pages 658–663, Tuc-
son,USA, 2001.

[30] Alexander Graham. Kronecker Products and Matrix Calculus with Applications. Ellis
Horwood Ltd., New York, USA, 1981.

[31] Peter Henderson and James H. Morris, Jr. A Lazy Evaluator. In 3rd ACM Symposium on
Principles of Programming Languages, POPL ’76, pages 95–103, January 1976.

[32] Phil Howlett. Optimal strategies for the control of a train. Automatica, 32(4):519–532, Apr
1996.

[33] Phil Howlett. The Optimal Control of a Train. Annals of Operations Research, 98(1-4):65–
87, 2000.

[34] Phil Howlett and Peter Pudney. Energy-Efficient Train Control. Advances in Industrial
Control. Springer London, 1995.

[35] Phil Howlett, Peter Pudney, and Xuan Vu. Local energy minimization in optimal train
control. Automatica, 45(11):2692–2698, Sep 2009.

[36] Daniel Hürlimann. Opentrack railway technology. Website http://www.
opentrack.at. Visited: 2014-11-25.

[37] Daniel Hürlimann. OpenTrack Manual, 2013.

[38] Wilfried Imrich, Sandi Klavzar, and Douglas F. Rall. Topics in Graph Theory: Graphs and
Their Cartesian Product. A K Peters Ltd, 2008.

[39] Jürgen Jacobs. Rescheduling. In Ingo A. Hansen, Jörn Pachl, and Thomas Albrecht,
editors, Railway, Timetable & Traffic: Analysis, Modelling, Simulation, pages 182–191.
Eurailpress, Hamburg,Germany, 1 edition, 2008.

[40] Birgit Jaekel and Thomas Albrecht. Interfacing conflict resolution and driver advisory sys-
tems in railway operation. In Proceedings of the 3rd International Conference on Models
and Technologies for Intelligent Transportation Systems (MT-ITS), pages 333–343, Dres-
den, Germany, Dec 2013.

115

http://www.opentrack.at
http://www.opentrack.at


[41] Eugene Khmelnitsky. On an Optimal Control Problem of Train Operation. IEEE TRANS-
ACTIONS ON AUTOMATIC CONTROL, 45(7):1257–1266, July 2000.

[42] Donald E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching.
Pearson Education, 1998.

[43] Donald E. Knuth. Combinatorial Algorithms, volume 4A of The Art of Computer Pro-
gramming. Addison-Wesley, 2011.

[44] Werner Kuich and Arto K. Salomaa. Semirings, Automata, Languages. EATCS Mono-
graphs on Theoretical Computer Science. Springer-Verlag GmbH, 1986.

[45] Gerhard Küster. On the Hurwitz Product of Formal Power Series and Automata. Theor.
Comput. Sci., 83(2):261–273, 1991.

[46] D.H. Lee, Ian P. Milroy, and K. Tyler. Application of Pontryagin’s Maximum Principle to
the Semi-automatic Control of Rail Vehicles. In Proceedings of the Second Conference on
Control Engineering, pages 233–236, Newcastle, Australia, 1982. Institution of Engineers
Australia.

[47] Liang Li, Wei Dong, Yindong Ji, and Zengke Zhang. A minimal-energy driving strategy
for high-speed electric train. Journal of Control Theory and Applications, 10(3):280–286,
Aug 2012.

[48] Ulrich Linder. Optimierung von Fahrweisen im spurgeführten Verkehr und deren Umset-
zung. PhD thesis, Technische Universität Berlin, 2004.

[49] Rongfang (Rachel) Liu and Iakov M. Golovitcher. Energy-efficient operation of rail vehi-
cles. Transportation Research Part A: Policy and Practice, 37(10):917–932, Jul 2003.

[50] Quan Lu, Maged Dessouky, and Robert C. Leachman. Modeling train movements through
complex rail networks. ACM Trans. Model. Comput. Simul., 14(1):48–75, Jan 2004.

[51] Marco Lüthi. Evaluation of energy saving strategies in heavily used rail networks by im-
plementing an integrated real-time rescheduling system. In Eduardo Pilo, editor, Power
Supply, Energy Management, and Catenary Problems, pages 75–86. WIT Press, 2010.

[52] Ullrich Martin. Verfahren zur Bewertung von Zug- und Rangierfahrten bei der Disposition.
Schriftenreihe. Inst. für Eisenbahnwesen und Verkehrssicherung, 1995.

[53] Farhad Mehta, Farhad Rößiger, and Markus Montigel. Latent energy savings due to the
innovative use of advisory speeds to avoid occupation conflicts. In B. Ning and C.A Breb-
bia, editors, Computers in Railways XII: Computer System Design and Operation in Rail-
ways and Other Transit Systems (WIT Transactions on the Built Environment), volume 114,
pages 99–108. WIT Press, 2010.

[54] Jeff Miller. Earliest Known Uses of Some of the Words of Mathematics, Rev. Aug. 1, 2011.
Website: http://jeff560.tripod.com/k.html, 2012. Visited: 2014-11-25.

116

http://jeff560.tripod.com/k.html


[55] Graham Mills and Peter J Pudney. The effects of deadlock avoidance on rail network ca-
pacity and performance. In Proceedings of the 2003 mathematics-in-industry study group,
pages 49–63. Australian Mathematical Society, 2008.

[56] Robert Mittermayr and Johann Blieberger. Shared Memory Concurrent System Verifica-
tion using Kronecker Algebra. Technical report, Insitute of Computer-Aided Automation,
TU Vienna, Austria, Vienna, Austria, Sep 2011.

[57] Robert Mittermayr and Johann Blieberger. Timing Analysis of Concurrent Programs.
In Tullio Vardanega, editor, 12th International Workshop on Worst-Case Execution
Time Analysis, volume 23 of OpenAccess Series in Informatics (OASIcs), pages 59–68,
Dagstuhl, Germany, 2012. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[58] Robert Mittermayr, Johann Blieberger, and Andreas Schöbel. Kronecker Algebra based
Deadlock Analysis for Railway Systems. PROMET-TRAFFIC & TRANSPORTATION,
24(5):359–369, 2012.

[59] Masafumi Miyatake and Hideyoshi Ko. Optimization of train speed profile for mini-
mum energy consumption. IEEJ Transactions on Electrical and Electronic Engineering,
5(3):263–269, Apr 2010.

[60] Markus Montigel. Innovatives Bahnleitsystem optimiert den Zugverkehr im Lötschberg-
Basistunnel. Signal + Draht, 6, 2008.

[61] Markus Montigel. Operations control system in the Lötschberg Base Tunnel. European
Rail Technology Review, 49:42–44, 2009.

[62] Joern Pachl and Thomas White. Analytical capacity management with blocking times. In
Transportation Research Board. 83rd Annual Meeting, Jan 2004.

[63] Jörn Pachl. Steuerlogik für Zuglenkanlagen zum Einsatz unter stochastischen Betriebsbe-
dingungen. PhD thesis, TU Braunschweig, 1993.

[64] Jörn Pachl. Timetable Design Principles. In Ingo A. Hansen, Jörn Pachl, and Thomas
Albrecht, editors, Railway, Timetable & Traffic: Analysis, Modelling, Simulation, pages
9–42. Eurailpress, Hamburg,Germany, 1 edition, 2008.

[65] Jörn Pachl. Deadlock avoidance in railroad operations simulations. In Textfassung eines
Vortrages auf dem 90th Annual Meeting des Transportation Research Board in Washington
DC, pages 23–27, 2011.

[66] E. Petersen and A Taylor. Line block prevention in rail line dispatch. In INFOR Journal,
volume 21, pages 46–51, 1983.

[67] Brigitte Plateau. On the Stochastic Structure of Parallelism and Synchronization Models
for Distributed Algorithms. In ACM SIGMETRICS, volume 13, pages 147–154, 1985.

117



[68] Brigitte Plateau and Karim Atif. Stochastic Automata Network For Modeling Parallel
Systems. IEEE Trans. Software Eng., 17(10):1093–1108, 1991.

[69] Alfons Radtke. Infrastructure Modelling. In Ingo A. Hansen, Jörn Pachl, and Thomas
Albrecht, editors, Railway, Timetable & Traffic: Analysis, Modelling, Simulation, pages
43–57. Eurailpress, Hamburg,Germany, 1 edition, 2008.

[70] Xiaolu Rao, Markus Montigel, and Weidmann Ulrich. Railway capacity optimization by
integration of real-time rescheduling and automatic train operation. In IT13.RAIL, Zürich,
Switzerland, 2013.

[71] Xiaolu Rao, Markus Montigel, and Ulrich Weidmann. Holistic optimization of train traffic
by integration of automatic train operation with centralized train management. In C.A.
Brebbia, N. Tomii, J.M. Mera, B Ning, and P. Tzieropoulos, editors, Computers in Rail-
ways XIII: Computer System Design and Operation in the Railway and Other Transit Sys-
tems (Wit Transactions on the Built Environment), volume 127, pages 39–50. WIT Press,
2012.

[72] Andreas Schöbel, Bernhard Rüger, Andrew Nash, Jürgen Zajicek, Martin Turk, and Hart-
mut Dannenberg. The potential for saving energy by more precisely calculating station
dwell times on commuter rail service. In 3rd International Seminar on Railway Opera-
tions Modelling and Analysis: RailZurich2009 Conference, Zürich, Switzerland, 2009.

[73] Thomas Siefer. Simulation. In Ingo A. Hansen, Jörn Pachl, and Thomas Albrecht, editors,
Railway, Timetable & Traffic: Analysis, Modelling, Simulation, pages 155–169. Eurail-
press, Hamburg,Germany, 1 edition, 2008.

[74] N.S. Szabó and R.I. Tanaka. Residue arithmetic and its applications to computer technol-
ogy. McGraw-Hill series in information processing and computers. McGraw-Hill, 1967.

[75] S. Tucker Taft, Pascal Leroy, Robert A. Duff, Randall L. Brukardt, and Erhard Ploedereder,
editors. Ada 2005 Reference Manual. Springer-Verlag, 2006.

[76] Mark Volcic, Johann Blieberger, and Andreas Schöbel. Kronecker algebra and its broad
applications in railway systems. In EURO-ŽEL 2013: Recent Challenges for European
Railways, pages 275–282, Žilina, Slovak Republic, June 2013.

[77] Mark Volcic, Johann Blieberger, and Andreas Schöbel. Kronecker algebra as a frame for
optimisation of railway operation. In 21st International Scientific Conference – TRANS-
PORT 2013; Mechanics Transport Communications, volume 11/3, pages 57–63, Sofia,
Bulgaria, October 2013.

[78] Mark Volcic, Johann Blieberger, and Andreas Schöbel. Kronecker algebra based modelling
of railway operation. In Proceedings of the 3rd International Conference on Models and
Technologies for Intelligent Transportation Systems (MT-ITS), pages 345–356, Dresden,
Germany, December 2013.

118



[79] Mark Volcic, Johann Blieberger, and Andreas Schöbel. Kronecker-Algebra und ihre breit
gefächerten Anwendungen im Eisenbahnbereich. Signal + Draht, 7+8:15–18, 2014.

[80] Mark Volcic, Johann Blieberger, and Andreas Schöbel. Optimisation of railway operation
by application of kronecker algebra. In CETRA 2014, pages 37–42, Split, Croatia, April
2014.

[81] Mark Volcic, Johann Blieberger, and Andreas Schoebel. Kronecker Algebra based Travel
Time Analysis for Railway Systems. In FORMS/FORMAT 2012 – 9th Symposium on
Formal Methods for Automation and Safety in Railway and Automotive Systems, pages
273–281, Braunschweig, Germany, Dec 2012.

[82] Xuan Vu. Analysis of necessary conditions for the optimal control of a train. PhD thesis,
University of South Australia, Nov 2006.

[83] Michal Žarnay. Solving deadlock states in model of railway station operation using
coloured petri nets. In Proceedings of Symposium FORMS/FORMAT - Formal Methods
for Automation and Safety in Railway and Automotive Systems, pages 205–213, Budapest,
Hungary, 2008.

[84] Yihui Wang, Bing Ning, Fang Cao, B. De Schutter, and T.J.J. van den Boom. A survey on
optimal trajectory planning for train operations. In Service Operations, Logistics, and In-
formatics (SOLI), 2011 IEEE International Conference on, pages 589–594, Beijing,China,
Jul 2011.

[85] Johann Georg Zehfuss. Ueber eine gewisse Determinante. Zeitschrift für Mathematik und
Physik, 3:298–301, 1858.

119


	Introduction
	Prerequisites to the algorithm
	Outline and state-of-the-art
	Contents of this thesis

	Train model
	Traction force
	Braking force
	Resistance
	Train Dynamics
	Energy consumption
	Implementation of the train model

	Single trip optimization
	Introduction
	Simple Algorithm
	Multi-regime algorithm
	Algorithm-Parameters
	Optimal Driving Strategy
	Further Examples

	Kronecker Algebra
	Introduction to Kronecker Algebra
	Modeling synchronization
	Generating interleavings
	System Model
	Node types
	Alternative routes
	Properties of the resulting matrix
	Lazy Implementation of Kronecker Algebra
	Extensions of the model

	System optimization
	Kronecker Algebra based system analysis
	Graph reduction
	Determine all possible routes
	Finding the optimal driving strategy

	Extensions of the model
	Extension of the schedule
	Train-priorities
	Hard- and software-coupling
	Automated train control

	Conclusion and prospect
	Bibliography

