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ABSTRACT. The estimation of the re-identification risk of individuals in survey microdata

is in main focus of this master thesis. For released confidential data it is mandatory that

individuals have very low risk of identification, otherwise laws on data privacy are violated.

Many different anonymisation methods exist and their aim is both, to reduce the disclosure

risk and to minimize information loss at the same time. The disclosure risk itself is described

mathematically and the corresponding methods are implemented in software. One approach

for estimating disclosure risk measures of categorical variables is based on log-linear models,

which are used for modeling frequency counts. Knowing the truth by using synthetic population

data and sampling from it, four log-linear models are tested on four different sampling designs

and three different categorical variable scenarios in order to evaluate the performance of the

methods. Within a simulation study the influence of different sampling designs on the disclosure

risk methods is under consideration.
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1 Introduction

A microdata file is defined as a data set consisting of observations on individual units. A

disclosure occurs when a person or organisation can learn something that they did not know

already about an organisation or person via released data [Hundepool et al., 2010]. In today’s

world, information is available from a lot of sources and it is in doubt that there is non-existent

or very low disclosure risk for data sets to release.

Outline:

In Sections 1.1 and 1.2 a general overview of protecting microdata and categorical variables

is given. The focus is on the anonymisation of categorical key variables using methods like

recoding, data supression or post-randomisation. Section 1.3 gives a brief insight about sampling

techniques, which are applied in Section 4. Simple random sampling, proportional stratified

sampling, equal stratified sampling and oversampling are considered. The problem of missing

values is discussed and an imputation method based on a variation of the Gower distance is

introduced. Section 2 includes the estimation of population frequency counts, whereby Section

2.1 gives general remarks on frequency counts. Section 2.2 describes the concept of k-anonymity,

which is also a protecting method of categorical data. As discussed by Willenborg and de Waal

[2001] the simplest approach to estimate population frequencies is pointed out in Section 2.3.

The standard log-linear model is introduced as dicussed by Agresti [2002] and also two adapted

models (Clogg-Eliason [Clogg and Eliason, 1987] and pseudo maximum likelihood method) are

discussed, as discussed by Skinner and Vallet [2010]. Additional the weighted log-linear model

is introduced. The focus is on the performance of this four models in different scenarios. Section

3 deals with risk estimation methods as considered by Templ et al. [2014a] and Shlomo and

Skinner [2008]. For the numerical study two disclosure risk measures are for interest:

1. number of sample uniques that are population unique.

2. number of correct matches for sample uniques.

These two measures are described in Section 3.1.

The programming language R [R Core Team, 2014] is used for all examples and mainly for

Section 4. Many R packages are used like sdcMicro, simFrame, simPopulation, MASS, VIM,

ggplot2 and reshape2. The most important package for this work is sdcMicro [Templ et al.,

2014a], whereby this work complements the package with a function that estimates the above

described risk measures using log-linear models. sdcMicro includes all methods of the popular
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software µ-Argus plus several new methods and improvements on data handling, computational

speed and user-friendlyness. Section 4 describes the empirical results of a simulation study.

An European Union Statistics on Income and Living Conditions sample data set is used to

simulate a whole population. Four different sampling designs are used to draw samples from

the population. Knowing the population the real disclosure risk can be calculated. Figure 6

shows the structure of Section 4. In Section 4.2 and 4.2.4 the results of the empirical study are

reported. Some concluding remarks and directions for future research are given in Section 5.

1.1 General approach for the anonymisation of microdata

Sensitive data are collected in a lot of different fields. The disclosure problem relates to the

possibility of identifiying records in released data sets. The aim of anonymisation methods is

both, re-identification should be roughly impossible and the data utility of the released data set

should be still high. Therefore this is an optimization problem, which depends on many factors,

e.g. national laws or importance of deception. The R package sdcMicro [Templ et al., 2014b]

offers a variaty of anonymisation methods.

Considering a data set U with a variety of variables dj with j ∈ {1, 2, ..., l}, it is possible to

classify every variable into one of at least three disjunct groups (see Figure 1) [Templ et al.,

2014a].

Variables

Direct identifiers Non-confidential variables

Key variables

Figure 1: Three disjunct groups of variables.
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Definition 1.1 (Direct identifiers)

Direct identifiers are variables that surely identify statistical units.

Definition 1.2 (Key variables)

Key variables are a set of variables that - if considered together - can be used to identify some

individual units.

Key variables are often termed as implicit identifiers or quasi identifiers. In this study only

methods for categorical key variables are discussed. Which means that a subset Z from the data

set U is considered, with dj ∈ Z and dj is the j-th categorical variable.

Definition 1.3 (Non-confidential variables)

Non-confidential variables are finally all variables that are not classified in Definitions 1.1 and

1.2.

Example 1.1 (Direct identifiers)

Direct identifiers are, for example, persons, addresses, social insurances, DNA, finger prints,

account numbers, names of companies and value added tax identification numbers.

Example 1.2 (Key variables)

It might be possible to identify some individuals by using following combinations of variables:

1. Gender, citizenship and occupation.

2. Establishment, revenue class and number of employees.

These are two examples for key variables see Definition 1.2.

Remark (Sensitive variables)

Another group of variables is defined for specific protection methods, called sensitive variables,

e.g. the income of a person or the health status of a person.

1.2 Protection of categorical variables

In this section some methods for protecting categorical variables are discussed. These methods

are generally applied when the estimated re-identification risk (see Section 3) is too high.

Definition 1.4 (Categorical variable)

A categorical variable is a variable which can take only a finite number of values or character-

istics.

Definition 1.5 (Categorical key variables)

Categorical key variables are both, categorical and key variables (see Definitions 1.2 and 1.4).
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Definition 1.6 (Keys)

A key is a given combination of categories of categorical key variables. All possible combinations

are defined as keys.

Example 1.3 (Keys)

Gender and occupation are the categorical key variables with the characteristics male and female

for gender as well as Aut, EU and Other for occupation. Then a key is hereby assigned with e.g.

male and Aut. There exist 6 possible keys.

1. female, Aut

2. female, EU

3. female, Other

4. male, Aut

5. male, EU

6. male, Other

Three protecting methods are mentioned below, which gives a short overview about masking

methods. The application of protection methods yields a decrease of data utility. One goal is

to release a safe microdata set and the other goal is to release a data set with high data utility.

This leads to an optimization problem where data anonymization specialists have to make some

decisions. This considerations should be mentioned, but they are not part of this study.

1.2.1 Recoding

The categories of selected key variables are assigned to broader categories. Global recoding leads

to less keys and population uniques. The sdcMicro package [Templ et al., 2014b] contains the

function globalRecode() to apply global recoding.

Example 1.4

The variable age with one year breaks is recoded into 10 intervals/age groups.

R > age <- sample(1:99, size = 25, replace = TRUE)

R > summary(factor(age))

14 15 23 28 32 33 39 42 52 58 59 63 70 71 80 82 84 86 94 96 97 99

1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1
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R > agerec1 <- cut(age, breaks = 10) #or

R > agerec2 <- globalRecode(age, breaks = 10,

+ labels = paste("Int",1:10,sep=""))

R > summary(agerec2)

Int1 Int2 Int3 Int4 Int5 Int6 Int7 Int8 Int9 Int10

2 2 4 1 1 4 2 2 3 4

Remark

Recoding can also be applied to continous key variables, which means to discretize the continous

variable. This concept is used in Section 4, where the continous variable netIncome (personal

net income) is recoded into specific intervals.

1.2.2 Data suppression

The idea is to suppress certain values in one or more categorical variables by replacing them by

missing values. In practice data suppression is often used in combination with global recoding.

For more details see Willenborg and de Waal [2001]. To apply data suppression the function

localSupp() (univariate) or localSuppression() (multivariate), available in sdcMicro, can

be used.

Example 1.5

In this example the simulated data set eusilcS (see Section 4 for detailed data describtion) is

used to create an sdcMicro object. Values of the categorical key variable pb220a are suppressed

in the second assingment. pb220a describes the persons’s citizenship with levels AT, EU and

Other.

R > sdcObj <- createSdcObj(eusilcS,

+ keyVars=c("db040","hsize","rb090", "pb220a"), w= "rb050")

R > sdcObj <- localSupp(sdcObj, keyVar="pb220a")

More advanced features based on the concept of k-anonymity (see Section 2.2) to supress a min-

imum amount of values is available in function localSupression(). See ?localSuppression

in R for more details.

1.2.3 Post randomisation

The Post RAndomisation Method (PRAM) is a probabilistic, perturbative method for disclosure

control of categorical variables. As described in de Wolf et al. [1998] this method changes the
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scores on some categorical variables for certain records according to a prescribed probability

mechanism. In the sdcMicro [Templ et al., 2014b] package the function pram() is implemented

to apply post randomisation. This function randomly changes the values of variables on selected

records according to an invariant probability transition matrix [Gross et al., 2004].

Example 1.6

Again the eusilcS data set is used to create a sdcMicro object. Values of the categorical key

variables rb090 (person’s gender) and pb220a (citizenship) are randomly changed.

R > res_pram <- pram(eusilcS, variables = c("rb090","pb220a"))

R > print(res_pram)

Number of changed observations:

- - - - - - - - - - -

rb090 != rb090_pram : 520 (4.43%)

pb220a != pb220a_pram : 732 (6.24%)

Further functionality is available, see ?pram in R.

1.3 Sampling techniques

In this Section all considered sampling methods of Section 4 are briefly described. For further

information of this techniques, see Cochran [1977] and Lemeshow and Levy [2008].

1.3.1 Simple random sampling

Simple Random Sampling (SRS) without replacement is a method of selecting n units out of a

population with N units such that every distinct sample has an equal chance of being drawn

N !
n!(N−n)! . For sampling without replacement, a particular element can appear only once in a

given sample. The probability of any unit being selected is equal to n
N = πi, which concludes

that the inclusion probabilities are equal for every unit.

Remark (SRS)

5 units are drawn from a data set of 100 records. So there are 100!
5!(100−5)! = 75287520 possible

samples with equal selection probability. Using R, the possible combinations can be computed

with the function choose(100,5) and the units can be drawn with the function sample(x=dataset,

size=5,replace=FALSE).

Example 1.7 (SRS in R)

The function srs() from the package simFrame [Alfons et al., 2010] is used to draw a sample

with size 10 of the eusilcS data set, which is shown in Table 1.
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R > set.seed(23)

R > srs_R <- srs(length(eusilcS[,1]), 10, replace = FALSE)

R > print(xtable(eusilcS[srs_R, c("db040","hsize","rb090", "pb220a")],

+ caption = "A simple random sample of the data set eusilcS.", label="tab:srs11"))

db040 hsize rb090 pb220a

10510 Tyrol 3 female Other
8792 Upper Austria 5 male AT
2615 Vienna 1 male AT
8246 Upper Austria 4 male AT
4715 Carinthia 3 male AT
6671 Styria 5 female AT
3499 Vienna 3 female Other
2728 Vienna 1 female Other
9638 Salzburg 4 male Other
601 Lower Austria 1 male AT

Table 1: A simple random sample of the data set eusilcS.

1.3.2 Stratified random sampling

In stratified sampling the population of N units is divided into L disjoint subpopulations of

N1, N2, ..., NL units [Cochran, 1977], with N1 + N2 + ... + NL = N . The subpopulations are

called strata. The sample drawings of each stratum are made independently and if a simple

random sample is taken in each stratum the procedure is called stratified random sampling. This

sampling method has many advantages over SRS described in Cochran [1977] and Lemeshow

and Levy [2008]. Table 2 shows the notations.

Variable Description

Nj total number of units in stratum j ∈ 1, ..., L
nj number of units in sample stratum j ∈ 1, ..., L

wj = N
Nj

stratum weight

πj =
Nj
N inclusion probability

fj =
nj
Nj

sampling fraction in the stratum

Table 2: Stratified random sampling notations

Definition 1.7 (Proportional stratified sampling)

In proportional stratified sampling the amount of drawn records is proportional to the strata size,

i.e. the inclusion probability of stratum j is given by πj =
Nj
N , where Nj is the number of units

in stratum j and N is the population size.
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Example 1.8 (Proportional stratified sampling)

This example shows the proportional stratified sampling method from Section 4. Variable tabr

shows how many households (grouping variable ”db030”) should be drawn from each federal state

(design variable - specifying variables to be used for stratified sampling ”db040”). In this demon-

stration 1000 households are randomly drawn. For further information see ?SampleControl in

R.

R > (tabr <- round(tab <- (table(eusilcS$db040)/length(eusilcS$db040))*1000))

Burgenland Carinthia Lower Austria Salzburg Styria

37 79 177 66 159

Tyrol Upper Austria Vienna Vorarlberg

95 181 153 53

R > #db030: household ID; db040: federal state (Austria)

R > sc <- SampleControl(design = "db040", grouping = "db030",

+ size = c(tabr), k = 1)

Definition 1.8 (Stratified sampling with equal size of each strata)

In equal stratified sampling the amount of drawn records from each stratum are equal, i.e. the

inclusion probability of stratum j is given by πj = n
N , where n is the number of drawn units in

each stratum and N is the population size.

Example 1.9 (Stratified sampling with equal size of each strata)

The following code shows the equal stratified sampling method from Section 4. In this example

110 households are randomly drawn from each federal state.

R > draw <- rep(110, times = 9)

R > (names(draw) <- levels(eusilcS$db040))

[1] "Burgenland" "Carinthia" "Lower Austria" "Salzburg"

[5] "Styria" "Tyrol" "Upper Austria" "Vienna"

[9] "Vorarlberg"

R > sc <- SampleControl(design = "db040", grouping = "db030",

+ size = draw, k = 1)

Definition 1.9 (Unequal probability sampling)

The inclusion probability of individuals in the sampling frame depends on covariates, e.g. the

household size.
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Example 1.10 (Unequal probability sampling)

In this example the R function midzuno() is used to draw a sample. Households with four

or more persons are preferred. For further information see Alfons et al. [2010] and Midzuno

[1952]. The midzuno method is a sampling technique for unequal probability sampling without

replacement and fixed sample size. Especially, households of size 3 and more are oversampled in

this example while small households are under-represented.

R > (n <- nrow(eusilcS))

[1] 11725

R > prob <- inclusionProb(eusilcP$hsize, n)

R > summary(factor(prob))

0.0636432719969603 0.127286543993921 0.190929815990881 0.254573087987841

8602 14128 12429 13180

0.318216359984802 0.381859631981762 0.445502903978722 0.509146175975683

6745 2094 840 528

0.572789447972643

108

R > mdraw <- midzuno(prob)

R > sample_o <- eusilcP[mdraw,]

R > summary(factor(sample_o$hsize))

1 2 3 4 5 6 7 8 9

524 1760 2413 3386 2137 812 388 250 55

R > #in comparison

R > summary(factor(eusilcS$hsize))

1 2 3 4 5 6 7 8 9

1313 2770 2391 2752 1560 588 245 88 18

1.4 Missing values

Virtually all sample surveys include missing values. These can cause a significant effect on the

conclusions that can be drawn from the data. To avoid measurement errors in Section 4, a

population is considered which is simulated from imputed sample survey data. This implies
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that all samples drawn from this population don’t have missing values. The assumption that

there are no missing values makes it easier for an intruder, because there are no additional

uncertainties. There are a lot of techniques to deal with missing data. In Section 4 the function

kNN() of the R package VIM is used for imputation of missing values of the survey data, which

is used to simulate a population (see Section 4.1.2).

1.4.1 Gower distance

The function kNN() is based on a variation of the Gower distance for numerical, categorical,

ordered and semi-continous variables. The Gower distance is a very general distance measure

that allows to measure the distance between objects of different types (categorical and continous).

In order to handle different types of variables, the Gower’s dissimilarity coefficient is used [Gower,

1971]. The extension of the Gower’s dissimilarity coefficient by Kaufman and Rousseeuw [2005]

is described in the following formula. Let U be a data set then the following distances are

calculated:

d(i, j) =
∑
k

(δijk · dijk)/
∑
k

δijk .

Where dijk represents the distance between the i-th and j-th unit of the k-th variable, which

depends on the nature of the variable. If the variable is logical or nominal the columns are

considered as binary variables, for such cases dijk = 0 if uij = ujk, otherwise dijk = 1. if

the variables are continous the columns are considered as interval-scaled variables and dijk =
|uik−ujk|

rk
, whereby rk is the range of the k-th variable. The weight δijk is determined as follows:

1. δijk = 0, if uij = NA or if ujk = NA;

2. δijk = 1, in all other cases.
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2 Frequency counts

2.1 General remarks on frequency counts

Consider a finite population U of size N . Every record x ∈ U consists of observed values

(e.g. name, year of birth, address, gender, citizenship, occupation, income, weight,...). After

deleting direct identifiers and defining q key variables, the population frequency counts can

be computed for this combinations. The key variables Z1, ...,Zq have to be categorical, with

C1, ..., Cq characteristics respectively, i.e. Cj = |Zj | is the amount of categories from one key

variable.

Definition 2.1 (Contingency table)

A contingency table is a type of table that displays the frequency distribution of the categorical

variables.

Remark

The elements of a contingency table are denoted as cells. Every cell shows the frequency of one

key see Definition 1.6.

Remark

In R the functions table() and tableWt() are used to compute contingency tables. The second

function also takes sample weights into account.

Definition 2.2 (Cross tabulation)

Cross tabulation is a statistical process that summarizes categorical data to create a contingency

table.

All combinations of categories in the key variables can be calculated by cross tabulation of

these variables. Each combination of values defines a cell in the table. The maximum number

of all possible cells is given by
q∏
i=1

Ci = C.

Let X be the table of all combinations, which is for simplicity labeled as 1, 2, ..., C. The different

categories C of X divide the population into C subpopulations Uj ⊆ U with j ∈ {1, ..., C}.

Remark (Key)

A key is one combination of categorical key variables.

Example 2.1

There are two categorical key variables Z1 (gender) and Z2 (eye-color) given, with C1 = |Z1| = 2

(”man”, ”woman”) and C2 = |Z2| = 3 (”blue”, ”brown”, ”green”) characteristics. Then there exist

6 keys, e.g. (”man”, ”blue”) or (”woman”, ”green”).
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Remark

Subpopulation Uj ⊆ U contains all records belonging to the j-th key, with j ∈ {1, 2, ..., C}. E.g.

there are exactly five records in a subpopulation Uj with the key: woman, student, blue. This

key yields subpopulation Uwoman,student,blue ⊆ U with |Uwoman,student,blue| = 5.

Definition 2.3 (Frequency counts)

The population frequency counts Fj with j ∈ {1, ..., C} are the numbers of records belonging to

subpopulation Uj, i.e. Fj = |Uj |.

Remark

The sdcMicro package provides the function freqCalc() or measure_risk() which can be used

to compute the (sample) frequency counts.

Consider a random sample S ⊆ U of size n ≤ N drawn from a finite population U of size N .

Let πj with j ∈ {1, 2, ..., N} be the inclusion probabilities, which is the probability that a record

xj ∈ U is chosen in the sample. The sample frequency counts are analogously defined as the

population frequency counts Fj and denoted by fj .

Definition 2.4 (Cell size indices)

Tj is the number of cells of size j, i.e.

Tj =

C∑
i=1

1(Fi = j), j = 0, 1, ..., N , (1)

The sample counterpart tj is given by

tj =

C∑
i=1

1(fi = j), j = 0, 1, ..., n , (2)

where 1A denotes the characteristic function of a subset A of a set X, with 1A : X → {0, 1}

and

1A(x) :=

1 if x ∈ A

0 if x /∈ A
.

The above definitions of Tj and tj with j ∈ 1, 2, ...C determines cell size indices of the population

and sample. It is clear that there is a relation between Tj and Fi as well as for tj and fi.

Example 2.2 (Cell size indices)

The following R code shows the frequency counts calculation with three categorical key variables

(federal state, household size and citizenship) of data set eusilcS with the function freqCalc().
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There are 160 possible keys with this three categorical key variables and three unique combina-

tions. Function head() shows the first 10 keys of the eusilcS data set with its corresponding

frequency counts. In Figure 2 the cell size indices are visualised from the eusilcS data set re-

lated to three categorical key variables. There are many cells with less frequency counts and only

a few with more than 200 observations (see Figure 2).

R > counts <- freqCalc(eusilcS, c("db040","hsize", "pb220a"))$fk

R > x <- cbind(eusilcS, counts)

R > u_c <- aggregate(counts ~ db040 + hsize + pb220a, x, mean)

R > nrow(u_c)

[1] 160

R > sum(u_c$counts==1)

[1] 3

R > head(u_c[,c("db040","hsize", "pb220a", "counts")],10)

db040 hsize pb220a counts

1 Burgenland 1 AT 41

2 Carinthia 1 AT 93

3 Lower Austria 1 AT 241

4 Salzburg 1 AT 80

5 Styria 1 AT 192

6 Tyrol 1 AT 84

7 Upper Austria 1 AT 188

8 Vienna 1 AT 281

9 Vorarlberg 1 AT 50

10 Burgenland 2 AT 117

Remark

Relation between Tj and Fi:

N∑
j=1

jTj = N =
C∑
i=1

Fi

n∑
j=1

jtj = n =

C∑
i=1

fi .
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Figure 2: Cell size indices of Example 2.2.
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Proof 2.1

of aboves equations, see Definition 2.3.

C⋃
i=1

Ui = U and Ui ∩Uj = ∅, ∀i 6= j

⇐⇒ |
C⋃
i=1

Ui| = |U|

⇐⇒
C⋃
i=1

|Ui| = |U|

⇐⇒
C∑
i=1

Fi = N

�

Remark

There exists also a relation between the number of combinations and the cell size indices Ti and

ti:

N∑
j=0

Tj =
n∑
j=0

tj = C .

Proof 2.2

of aboves equation, see also Definition 2.4.

N∑
j=0

Tj =
N∑
j=0

C∑
i=1

1(Fi = j)

=

C∑
i=1

N∑
j=0

1(Fi = j)
(1)
=

C∑
i=1

1 = C

n∑
j=0

tj =

n∑
j=0

C∑
i=1

1(fi = j)

=

C∑
i=1

n∑
j=0

1(fi = j)
(1)
=

C∑
i=1

1 = C

(1) because 0 ≤ Fi ≤ N and 0 ≤ fi ≤ N, ∀i ∈ 1, ..., C. �

Example 2.3

A very simple data set of 14 records is used to explain this section. Table 3 shows the whole data.

First the direct identifiers are deleted. In this demonstration only the variable name is a direct
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identifier. Gender and Occupation are defined as categorical key variables. Figure 3 shows

the factor level counts of the variable Gender on the left and Occupation on the right-hand

side. Function table() is used to get a contingency table of the counts at each combination
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Figure 3: Barplots of variables Gender and Occupation of the example data set.

of factor levels from the variables Gender and Occupation. tableWt() from the R package

simPopulation [Alfons et al., 2011] computes the contingency table taking into account sample

weights, which are given in column Weight of Table 3.

R > table(daten[,c("Gender","Occupation")])

Occupation

Gender Employee Pensioner Student Worker

m 2 3 0 3

w 1 2 3 0
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R > tableWt(daten[,c("Gender","Occupation")], weights=daten[,"Weight"])

Occupation

Gender Employee Pensioner Student Worker

m 210 370 0 330

w 140 230 330 0

The toy data set in Table 3 is used in the following sections to get a brief overview about the

theoretic explanations.

Name Year of birth Gender Citizenship Occupation Income Weight

1 Max Mustermann 1978 m AUT Worker 35000 110.00
2 Josef Meier 1945 m AUT Pensioner 23500 70.00
3 Sabine Schnuller 1991 w AUT Student 7000 80.00
4 John Doe 1966 m US Employee 41200 120.00
5 Susan Rose 1989 w AUT Student 0 130.00
6 Markus Roller 1972 m AUT Employee 31100 90.00
7 Christoph Valon 1944 m AUT Pensioner 21400 150.00
8 Ulrike Mayer 1932 w D Pensioner 17600 150.00
9 Stefan Fuchs 1992 m AUT Worker 27500 130.00

10 Rainer Thomas 1950 m AUT Pensioner 25700 150.00
11 Julia Gross 1976 w AUT Employee 37000 140.00
12 Nadine Glatz 1987 w AUT Student 0 120.00
13 Makro Dilic 1990 m AUT Worker 21050 90.00
14 Sandra Stadler 1941 w AUT Pensioner 28500 80.00

Table 3: Toy data set of Example 2.3.

2.2 Concept of k-anonymity

In Section 1.2 three methods of protecting categorical data are described. After explaining the

concept of frequency counts the k -anonymity method can be introduced. Let Z1, ..., Zq the

categorical key variables of a data set with n records. Then k -anonymity is achieved if each

possible combination of key variables contains at least k units in the microdata set, i.e. fj ≥ k

and ∀j ∈ {1, ..., n}.

One method for achieving k -anonymity is to recode (see Section 1.2.1) categorical key variables

into broader classes. Another common method is data suppression (see Section 1.2.2). In the R

package sdcMicro the function localSuppression() can be used to achieve k -anonymity. The

algorithm of this function tries to find an optimal solution to suppress as few values as possible

as described in Templ et al. [2014b]. Table 4 shows a data set of 12 individuals with three
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categorical variables. The forth column shows the calculated frequencies, which are computed

with the function freqCalc(). Four observations violate 2-anonymity (see Table 4 and particular

at rows 4, 6, 8 and 11) and six observations violate 3-anonymity.

R > library(sdcMicro)

R > set.seed(23)

R > data <- read.csv2(file="EasyExampleData.csv", header=TRUE)

R > (fk <- freqCalc(data[1:12,], keyVars=c("Gender","Citizenship","Occupation")))

--------------------------

4 obs. violate 2-anonymity

6 obs. violate 3-anonymity

--------------------------

Gender Citizenship Occupation fk

1 m AUT Worker 2
2 m AUT Pensioner 3
3 w AUT Student 3
4 m US Employee 1
5 w AUT Student 3
6 m AUT Employee 1
7 m AUT Pensioner 3
8 w D Pensioner 1
9 m AUT Worker 2

10 m AUT Pensioner 3
11 w AUT Employee 1
12 w AUT Student 3

Table 4: Example of sample frequency counts.

50 percent of the observations in the data set of Table 4 violate 3-anonymity. The aim of this

example is to gain 3-anonymity, i.e. fj ≥ 3 with j ∈ {1, ..., 12}. The above mentioned function

localSuppression() is used to achieve 3-anonymity. The same example data as in Table 4

is used to reach 3-anonymity. Table 5 shows the new frequency counts, which are calculated

with freqCalc(). It is clear to see that there are six suppressed values, whereby four values are

suppressed in the variable ”Occupation” and two values in ”Citizenship”. Note that a missing

value (denoted as NA, see Table 5) can stand for any possible value, therefore the frequency

count for observation 4 is 7.

R > (kanonymity <- localSuppression(data[1:12,4:6], k=3,

+ keyVars=c("Gender","Citizenship","Occupation")))
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-----------------------

[1] "Total Suppressions in the key variables -6"

[1] "Number of suppressions in the key variables "

0 2 4

------------

[1] "3-anonymity == TRUE"

-----------------------

Gender Citizenship Occupation fk

1 m AUT Worker 4
2 m AUT Pensioner 5
3 w AUT Student 5
4 m <NA> <NA> 7
5 w AUT Student 5
6 m AUT <NA> 7
7 m AUT Pensioner 5
8 w <NA> <NA> 5
9 m AUT Worker 4

10 m AUT Pensioner 5
11 w AUT <NA> 5
12 w AUT Student 5

Table 5: Example of achieving 3-anonymity using localSuppression().

2.3 Approach to estimate population frequency counts

As discussed by Willenborg and de Waal [2001] the simplest approach to estimate Fj under the

assumption of simple random sampling without replacement is given by F̂j =
fj
f , where f = n

N

is the sampling fraction.

In practice this estimator will not provide workable solutions, see discussion Willenborg and

de Waal [2001], e.g. n is small and N is much higher then fj = 0 implies F̂j = 0 and fj = 1

implies F̂j = w, where w is the weight of every drawn record. If the sampling scheme is not

simple random sampling and the weights are known for every record in the sample data set, then

the population frequencies F̂j are the sum of the weights of each record which has the same key

combination, i.e. F̂j =
∑

i∈|Uj |wi, where |Uj | is a subpopulation of U and wi are the weights

of record i in subpopulation Uj .
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Example 2.4

A given data set with 14 observations (see Table 3) and two categorical key variables (Gender

and Occupation) is considered. The underlying R code shows the calculation of random weights

and frequencies with the function freqCalc(). fk_ex1 is an object of class freqCalc and fk is

the frequency of equal observations in the two key variables (Gender and Occupation) (see R

package description Templ et al. [2014b]). Fk is the estimated frequency in the population with

the above described method. Table 6 shows the variable data_ex1 with the calculated fk’s and

estimated Fk’s. The table was created with the R package xtable und the function xtable()

[Dahl, 2014].

R > data_ex1 <- data[,c("Name","Gender","Occupation")]

R > set.seed(23)

R > weights <- round(sample(50:150, size=length(data_ex1[,1]), replace=T),

+ digits=-1)

R > data_ex1 <- data.frame(data_ex1,weights)

R > fk_ex1 <- freqCalc(data_ex1, keyVars=c("Gender","Occupation"),w="weights")

R > data_ex1 <- data.frame(data_ex1,fk_ex1$fk,fk_ex1$Fk)

R > levels(data_ex1$Occupation)

[1] "Employee" "Pensioner" "Student" "Worker"

R > (levels(data_ex1$Occupation) <- c("E", "P", "S", "W"))

[1] "E" "P" "S" "W"

Figure 4 is a mosaic visualisation of the two key variables, with the new factor levels E, P, S

and W. This figur illustrates the relative amount of the sample frequency counts.

2.3.1 Standard log-linear model

Log-linear models are used for modeling cell counts in contingency tables, see Definitions 2.1

and 2.3. These models declare how the expected cell count depends on levels of the categorical

(key) variables. Let µ = (µ1, ..., µC)′ denote the expected counts for the number of C cells of a

contingency table. As in Agresti [2002] multidimensional log-linear models for positive Poisson

means have the following form:

log(µ) = Xλ , (3)
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Figure 4: Mosaic plot of the sample frequency counts of data ex1[,c(”Gender”,”Occupation”)].

Name Gender Occupation Weights fk F̂k
1 Max Mustermann m Worker 110.00 3 330.00
2 Josef Meier m Pensioner 70.00 3 370.00
3 Sabine Schnuller w Student 80.00 3 330.00
4 John Doe m Employee 120.00 2 210.00
5 Susan Rose w Student 130.00 3 330.00
6 Markus Roller m Employee 90.00 2 210.00
7 Christoph Valon m Pensioner 150.00 3 370.00
8 Ulrike Mayer w Pensioner 150.00 2 230.00
9 Stefan Fuchs m Worker 130.00 3 330.00

10 Rainer Thomas m Pensioner 150.00 3 370.00
11 Julia Gross w Employee 140.00 1 140.00
12 Nadine Glatz w Student 120.00 3 330.00
13 Makro Dilic m Worker 90.00 3 330.00
14 Sandra Stadler w Pensioner 80.00 2 230.00

Table 6: Example of the simplest approach to estimate population frequencies.
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where log(µ) is a C × 1 vector containing the logarithms of the expected frequencies, X is a

C × p model matrix and λ is a p× 1 vector of model parameters.

Function glm() is used to fit log-linear models in R. The main arguments are formula, family

and data, whereby the family is set to poisson.

Example 2.5 (Standard log-linear model)

In dependence on Section 4 the eusilcS data set is used as a sample of Austria’s population. For

every key the frequency counts and weights are calculated. The frequency counts are also calcu-

lated for the population (see variable keysPop). Variable dataS includes all possible population

keys and the frequency counts of the sample eusilcS. Table 7 shows 15 keys of the table dataS

and the corresponding frequency counts and weights. Table 8 shows the summary of the glm()

output with the standard log-linear model. It is clear to see that the intercept is significantly

non-zero. The p-value of the federal states is in most cases not significant, which means that the

variable db040 has not a significant contribution. The same holds for the variable rb090.The

contribution of the variables hsize, age and pb220a is statistically significant at α = 0.05.

R > keyVars <- c("db040","hsize","rb090", "age", "pb220a")

R > fk <- freqCalc(eusilcS, keyVars)$fk #sum(Fk==1)

R > eusilc <- cbind(eusilcS, fk)

db040 hsize rb090 age pb220a fk weights

2430 Upper Austria 4 male 42.00 AT 9.00 30.70
10251 Lower Austria 6 female 20.00 Other 0.00 0.00
3455 Upper Austria 3 male 41.00 EU 1.00 6.86

11280 Vienna 3 female 40.00 Other 0.00 0.00
11901 Styria 4 male 52.00 Other 0.00 0.00

385 Carinthia 1 male 51.00 AT 4.00 77.57
4459 Carinthia 5 male 8.00 AT 0.00 0.00

11376 Salzburg 3 male 42.00 Other 0.00 0.00
4655 Salzburg 6 male 12.00 AT 0.00 0.00
3854 Upper Austria 4 female 45.00 Other 1.00 8.19

12062 Styria 5 female 55.00 Other 0.00 0.00
3825 Upper Austria 1 female 32.00 Other 1.00 7.16
9160 Vienna 1 male 44.00 EU 0.00 0.00
4831 Lower Austria 6 male 15.00 AT 0.00 0.00
869 Lower Austria 2 female 58.00 AT 7.00 8.33

Table 7: 15 random keys of table dataS.

R > form_keys <- as.formula(paste(" ~ ", "db040 + hsize + rb090 + age + pb220a"))

R > (form_standard <- as.formula(paste(c("fk", as.character(form_keys)), collapse = "")))
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fk ~ db040 + hsize + rb090 + age + pb220a

R > mod_standard <- glm(form_standard, data = dataS, family = poisson())

R > mu_standard <- fitted(mod_standard)

R > summary(mu_standard)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.058 0.187 0.920 1.130 1.920 5.030

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.2405 0.0636 3.78 0.0002

db040Carinthia 0.0471 0.0624 0.75 0.4504
db040Lower Austria 0.3942 0.0559 7.05 0.0000

db040Salzburg -0.0425 0.0642 -0.66 0.5081
db040Styria 0.2247 0.0567 3.96 0.0001
db040Tyrol 0.0318 0.0606 0.53 0.5995

db040Upper Austria 0.3486 0.0561 6.22 0.0000
db040Vienna 0.3698 0.0569 6.49 0.0000

db040Vorarlberg -0.1010 0.0686 -1.47 0.1408
hsize -0.0618 0.0068 -9.11 0.0000

rb090female 0.0067 0.0206 0.33 0.7431
age 0.0108 0.0005 22.01 0.0000

pb220aEU -2.8937 0.0700 -41.35 0.0000
pb220aOther -2.1246 0.0415 -51.16 0.0000

Table 8: Output of the standard log-linear model.

2.3.2 Clogg and Eliason method

As described in Clogg and Eliason [1987], Agresti [2002], Shlomo and Skinner [2008] the Clogg

and Eliason approach additional considers the survey weights towards Equation (3). They

extend the log-linear model from Equation 3 with an offset term z = (z1, ..., zC)′ and zk = fk
F̂k

(see Definition 2.1), where F̂k is the sum of survey weights across sample units in cell k. This

consideration leads to the following adaption of the log-linear model:

log(µ) = log(z) + Xλ . (4)

Example 2.6 (Clogg and Eliason model)

To fit the Clogg and Eliason model the formula of the standard log-linear model is used. The

glm() argument offset is set to zk = fk
F̂k

. To handle keys with zero the zk = fk
F̂k

are linear
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transformed, which only affects the intercept term. Table 9 yields the summary of the Clogg

and Eliason example. The estimates of the Clogg and Eliason model yields the same significant

variables, whereby the z-values differ in comparison to the standard method (see Table 8).

R > z_k <- dataS$fk/dataS$weights

R > z_k[z_k=="NaN"] <- 0

R > z_k <- log(z_k + 0.1)

R > form_standard

fk ~ db040 + hsize + rb090 + age + pb220a

R > mod_EC <- glm(form_standard, data = dataS, family = poisson(), offset = z_k)

R > mu_EC <- fitted(mod_EC)

R > summary(mu_EC)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.075 0.173 0.529 1.130 1.460 22.100

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.7056 0.0664 25.67 0.0000

db040Carinthia -0.0155 0.0623 -0.25 0.8040
db040Lower Austria 0.1280 0.0559 2.29 0.0220

db040Salzburg 0.0234 0.0642 0.36 0.7162
db040Styria 0.1396 0.0567 2.46 0.0138
db040Tyrol 0.0262 0.0606 0.43 0.6651

db040Upper Austria 0.2406 0.0560 4.30 0.0000
db040Vienna 0.1985 0.0571 3.48 0.0005

db040Vorarlberg -0.0753 0.0685 -1.10 0.2716
hsize -0.0178 0.0072 -2.49 0.0129

rb090female -0.0071 0.0205 -0.34 0.7304
age 0.0049 0.0006 8.78 0.0000

pb220aEU -1.9242 0.0700 -27.49 0.0000
pb220aOther -1.3399 0.0416 -32.19 0.0000

Table 9: Output of the Clogg and Eliason model.

2.3.3 Pseudo maximum likelihood method

The fitted values for a linear model are solutions to the likelihood equations. We derive likelihood

equations using Equation (3) for a log-linear model. For a vector of frequency counts f with
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µ = E(f), the model is given by log(µ) = Xλ, for which log(µi) =
∑

j xij ·λj for ∀i ∈ {1, ..., C}.

The log likelihood for Poisson sampling is:

L(µ) =
∑
i

fi · log(µi)−
∑
i

log(µi) . (5)

Through Equations (3) and (5) the pseudo maximum likelihood approach yields the following

equation:

log(F̂) = Xλ . (6)

F̂k is the sum of survey weights across sample units in cell k and F̂ = (F̂1, F̂2, ..., F̂C)′.

Example 2.7 (Pseudo maximum likelihood model)

The F̂k are scaled by a constant to avoid numerical problems. Scaling by variable sf do not

affect the estimated counts with sf =
∑
k fk∑
k F̂k

. Variable form_pse shows the formula for the

glm() function. Table 10 shows the summary of the pseudo maximum likelihood example. The

results differ to the above mentioned models in the variables Lower Austria, Vienna and hsize

(see Tables 8 and 9).

R > sf <- sum(dataS$fk)/sum(dataS$weights)

R > eF_k <- round(dataS$weights*sf)

R > dataS_pse <- data.frame(dataS, eF_k)

R > (form_pse <- as.formula(paste(c("eF_k", as.character(form_keys)), collapse = "")))

eF_k ~ db040 + hsize + rb090 + age + pb220a

R > mod_pse <- glm(form_pse, data = dataS, family = poisson())

R > mu_pse <- fitted(mod_pse)

R > summary(mu_pse)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.076 0.205 1.050 1.140 1.950 4.270

2.3.4 Weighted log-linear model

The weighted log-linear model is an extension of the standard log-linear model, that also con-

siders the weights of each cell, i.e. the linear predictor for µ also contains the weights as an
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Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.1962 0.0604 3.25 0.0012

db040Carinthia -0.0306 0.0585 -0.52 0.6010
db040Lower Austria 0.0151 0.0540 0.28 0.7802

db040Salzburg 0.0172 0.0588 0.29 0.7696
db040Styria 0.1291 0.0531 2.43 0.0150
db040Tyrol 0.0629 0.0559 1.13 0.2604

db040Upper Austria 0.2085 0.0527 3.96 0.0001
db040Vienna 0.0779 0.0548 1.42 0.1554

db040Vorarlberg -0.2015 0.0650 -3.10 0.0019
hsize -0.0112 0.0065 -1.71 0.0871

rb090female -0.0185 0.0204 -0.91 0.3652
age 0.0120 0.0005 24.63 0.0000

pb220aEU -2.8180 0.0681 -41.36 0.0000
pb220aOther -2.0953 0.0412 -50.84 0.0000

Table 10: Output of the pseudo maximum likelihood model.

explanatory variable. The weighted log-linear model is given by:

log(µ) = X̃λ , (7)

where log(µ) is a C × 1 vector containing the logarithms of the expected frequencies, X̃ is a

C × q model matrix and λ is a q × 1 vector of model parameters.

Example 2.8 (Weighted log-linear model)

The predictor variable form_keys is extended with the variable weights. Formula form_w spec-

ifies the response and predictors for the glm() function. Table 11 shows the summary of the

weighted log-linear example. The intercept is not singificantly non-zero, whereby the other re-

sults conform with the standard and EC model.

R > form_zw <- as.formula(paste(c(form_keys,"weights"),collapse="+"))

R > (form_w <- as.formula(paste(c("fk", as.character(form_zw)), collapse = "")))

fk ~ db040 + hsize + rb090 + age + pb220a + weights

R > mod_w <- glm(form_w, data = dataS, family = poisson())

R > mu_w <- fitted(mod_w)

R > summary(mu_w)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.062 0.189 0.832 1.130 1.890 9.210
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Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.1145 0.0639 1.79 0.0730

db040Carinthia 0.0422 0.0624 0.68 0.4988
db040Lower Austria 0.3780 0.0559 6.76 0.0000

db040Salzburg -0.0495 0.0642 -0.77 0.4410
db040Styria 0.1824 0.0568 3.21 0.0013
db040Tyrol 0.0092 0.0606 0.15 0.8793

db040Upper Austria 0.2896 0.0561 5.16 0.0000
db040Vienna 0.3578 0.0570 6.28 0.0000

db040Vorarlberg -0.0719 0.0686 -1.05 0.2943
hsize -0.0581 0.0067 -8.62 0.0000

rb090female 0.0084 0.0206 0.41 0.6824
age 0.0091 0.0005 18.02 0.0000

pb220aEU -2.6856 0.0708 -37.91 0.0000
pb220aOther -1.9348 0.0427 -45.26 0.0000

weights 0.0123 0.0006 20.64 0.0000

Table 11: Output of the weighted log-linear model.

This study considers model based methods to estimate population frequency counts, as de-

scribed by Carlson [2002a,b], Shlomo and Skinner [2008]. It is assumed that the cell fre-

quencies are generated independently from Poisson distributions with individual rates λj , i.e.

Fj ∼ Poisson(λj), j ∈ {1, ..., C}. This assumption holds if the sampling design is simple random

sampling without replacement, then the distribution is hypergeometric with given N , C and πj .

If the number of cells is large enough each cell frequency may be approximated by a binomial

distribution with parameters N and inclusion probability πj . Since the population size is quite

large and πj small due to large C the Poisson distribution is used to approximate the binomial

with λj = Nπj .

Surveys almost always will not drawn with simple random sampling. Complex sampling

schemes are employed especially stratification methods, which are mentioned in Section 1.3 and

also considered for the numerical study in Section 4. In Section 3 the effect of complex sampling

schemes to the considered risk measures is discussed. As described by Shlomo and Skinner [2008]

the assumption that Fj ∼ Poisson(λj), with j ∈ {1, ..., C} and that the λj obey the log-linear

models are unaffected by stratified sampling.



3 DISCLOSURE RISK 28

3 Disclosure risk

A considerable amount of research has been done in the area of statistical disclosure risk. This

section is based on Carlson [2002a,b], Hundepool et al. [2010], Willenborg and de Waal [2001],

Templ et al. [2014a] and Shlomo and Skinner [2008].

Definition 3.1 (Disclosure Risk)

Disclosure risk is the risk that disclosure will arise if a given data set is released.

It will be assumed that the risk r takes a non-negative real value and a risk of zero indicates no

risk, i.e. r ≥ 0 and r = 0 ⇒ no risk. Measuring the disclosure risk in a microdata set is a key

task and is applied in Section 4. Risk measures are essential to be able to decide, if the data set

is protected enough to be released. If the data set is not protected enough certain protection

methods have to be used, see Section 1.2.

3.1 Measuring the disclosure risk of categorical variables

In this study the main focus concerns on measuring the disclosure risk of categorical key variables

(see Definition 1.5 in Section 1.2) from a random sample of a finite population. The aim is to

define a local and global probability measure for given records that expresses the re-identification

risk. A further assumption is that there is no measurement error, meaning that the recorded

microdata and the prior information of the intruder are the same. A sample S is randomly

drawn with a given sampling design from a finite population U . See discussion Shlomo and

Skinner [2008] following assumptions have to hold:

� no measurement error

� random sampling design

� all records of subpopulation Ui have the same inclusion probability

Let Fj be the population frequency count (see Definition 2.3) in cell j ∈ {1, ..., C} of the

contingency table and C the amount of all cells. Under the assumptions that Fj and one record

are known to the intruder, the probability that the record x ∈ U may be identified is 1
Fj

, where

j is the cell to which the record belongs, i.e. x ∈ Uj ⊆ U. The identification risk is maximum

when the record is population unique, i.e. Fj = 1. In practice rare population combinations

should be avoided (see Section 1.2, e.g. k-anonymity).

Fj is usually not known since in statistics in most cases information is on samples collected

and only few information about the population is known. Therefore population parameters have
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to be estimated. The goal is to model and estimate the population frequency structure, i.e. Fj ,

Tj and especially T1 [Carlson, 2002a], which is defined as the number of unique records in the

population, based on sample information (see Definitions 2.3 and 2.4).

At this point we consider Fj as a stochastic variable without specific distribution assumptions.

A measure of identification risk is given by

E(1/Fj) =
∑
i∈N

1

i
P(Fj = i) , (8)

where P(Fj = i) denotes the probability that Fj = i, with i = {1, 2, ..., N}. If i = 1, we receive

the probability of population uniqueness P(Fj = 1), which is the first term in the sum in (8).

As mentioned above we consider a random sample S of a finite population U of size N . The

sample data is available to the intruder. Let fj be the sample frequency counts (see Definition

2.3). This leads to two measures of interest:

m1 = E(1/Fj |fj) , (9)

m2 = P(Fj = 1|fj) . (10)

Under random sampling the pairs (Fj , fj) are independent and the first measure (9) is the

conditional expactation of 1/Fj and second (10) the conditional probability that Fj = 1 given

fj . When fj = 1, (9) is highest, which is the worst case. Additionally the following holds for

(10) as described in Shlomo and Skinner [2008]:

P(Fj = 1|fj = i) =

∈ [0, 1] , if i = 1

0, if i ≥ 2

Consideration of the worst cases leads to the focus on the following measures:

m1j = P(Fj = 1|fj = 1) , (11)

m2j = E(1/Fj |fj = 1) . (12)

The measures given in Equation (11) and (12) are per observation measures and their values

can vary between observations.
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Observation-level measures are discussed above. In the following, a measure for the global

risk is described. This leads to consideration of aggregating observation-level measures given by

τ̂1 =
∑

{j:fj=1}

m1j =
∑

{j:fj=1}

P(Fj = 1|fj = 1) , (13)

τ̂2 =
∑

{j:fj=1}

m2j =
∑

{j:fj=1}

E(1/Fj |fj = 1) . (14)

The global risk measure τ̂1 is the expected number of sample uniques that are population unique

and τ̂2 is the expected number of correct matches for sample uniques [Shlomo and Skinner, 2008].

If the count of combinations C is large, τ̂1 will closely approximate τ1,

τ̂1
C→∞−→ τ1 =

∑
j≥1

1(fj = 1, Fj = 1) , (15)

The same holds for τ̂2 with:

τ̂2
C→∞−→ τ2 =

∑
j≥1

1(fj = 1)

Fj
. (16)

The Population consists of N entities and the key divides the population into C cells. Each

cell j is assigned a parameter λj > 0 satisfying
∑C

j=1 λj = 1 and a random independent variable

Fj which is the population frequency in the cell j. With the assumption that Fj ∼ Poisson(λj),

j ∈ {1, ..., C}, the following probability is given

P(Fj = i) =
λije
−λj

i!
, i ∈ {0, 1, 2, 3, ...} . (17)

The mean and variance of the random variables Fj is both equal to λj . It is also assumed that

fj |Fj ∼ Binomial(Fj , πj), whereby πj is the inclusion probability.

Remark

Note that a sample drawn using Bernoulli sampling on a Poisson distributed population will

remain Poisson.

For the sample frequency counts holds fj = Poisson(λjπj). To estimate the number of sample

uniques that are population unique the following probability has to be calculated

P(Fj = 1|fj = 1) = e−λj(1−πj) . (18)
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For the estimated risk measures τ̂1 and τ̂2 the following holds under the assumption of Poisson

distribution

τ̂1 =
∑
j

1(fj = 1)P(Fj = 1|fj = 1) =
∑

{j:fj=1}

e−λj(1−πj) , (19)

τ̂2 =
∑
j

E(
1

Fj
|fj = 1) =

∑
{j:fj=1}

1− e−λj(1−πj)

λj(1− πj)
. (20)

The assumptions at the end of Section 2 that Fj ∼ Poisson(λj) and that the λj fit the log-

linear model are unaffected by a complex sampling scheme [Shlomo and Skinner, 2008]. If the

sampling scheme is not SRS the risk measures m1j = e−λj(1−πj) and m2j = 1−e−λj(1−πj)
λj(1−πj) may

be affected. But these expressions still hold if P(fj = 1|Fj) = Fjπj(1 − πj)Fj−1. In generall an

useable approximation P(fj = 1|Fj) ≈ Fjπj(1− πj)Fj−1 sufficies good results. The next Section

shows the affect of stratified sampling on the estimated risk measures τ̂1 and τ̂2.
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4 Numerical study

4.1 Data

The European Union Statistics on Income and Living Conditions (EU-SILC) is a panel survey,

where information about living conditions of private households is collected yearly. Since 2003,

Austria is one of 31 countries, which are represented in this survey. In this study a EU-SILC

population data is simulated using the R package simPopulation [Alfons et al., 2011]. The

simulated data follows a close-to-reality approach and therefore a real-world situation can be

assumed. For simulation details, see Alfons et al. [2011]. In this approach a data set with about

8 million records is created, which is nearly the total population amount of Austria.

4.1.1 Synthetic survey data: eusilcS

Variable Description

db030 houshold ID
hsize number of persons in the household
db040 federal state in which the household is located
age person’s age
rb090 person’s gender
pl030 person’s economic status
pb220a person’s citizenship
netIncome personal net income
db090 household sample weights
rb050 personal sample weights

Table 12: Considered variables of the data frame eusilcS.

The R data set eusilcS is synthetically generated from real Austrian EU-SILC data [Alfons

et al., 2011] from 2006. eusilcS is a data frame with 11725 observations, 18 variables and

4641 households and it is included in the R package simPopulation. Table 12 shows the ten

considered variables of this study and Figure 5 shows six barplots of the variables db040 (a),

hsize (b), age (c), pl030 (d), pb220a (e) and netIncome (f), whereby the unweighted values

are shown. The particular factor levels of the variables are shown as well in Figure 5. Table

13 shows the first 12 observations of the eusilcS data set. The last three observations include

missing values.

Remark

The sample weights rb050 in the data set eusilcS are 100 times smaller than the real population

size, just because of the reason for computational speed within the examples of the package.
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(a) Barplot of the federal states in which the
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(f) Histogram of the personal net income.

Figure 5: Visualisation of the distribution of certain variables of the data set eusilcS.
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hsize db040 rb090 age pl030 pb220a netIncome rb050

9292 2 Salzburg male 72 5 AT 22675.48 7.82
9293 2 Salzburg female 66 5 AT 16999.29 7.82
7227 1 Upper Austria female 56 2 AT 19274.21 8.79
5275 1 Styria female 67 5 AT 13319.13 8.11
7866 3 Upper Austria female 70 5 AT 14365.57 7.51
7867 3 Upper Austria male 46 3 AT 0.00 7.51
7868 3 Upper Austria male 37 1 Other 21911.24 7.51
9860 5 Salzburg male 41 1 AT 11682.22 6.75
9861 5 Salzburg female 35 3 AT 5481.40 6.75
9862 5 Salzburg female 9 6.75
9863 5 Salzburg male 6 6.75
9864 5 Salzburg female 3 6.75

Table 13: The first 12 persons of eusilcS.

4.1.2 Simulation of Austrian EU-SILC data

The above mentioned R package simPopulation contains the function simEUSILC() to simulate

EU-SILC population data. The simEUSILC() function needs the eusilcS synthetic survey data

set for simulation that is available in the package too.

It is assumed that there are no missing values in the population and also in the sample. If

there are missing values in the sample the risk is almost always overestimated, because the

measurement error biased the risk estimation. To avoid measurement errors, the missing values

are replaced by estimated values. In this study the R function kNN() from the package VIM

[Templ et al., 2013] is used, which is described in Section 1.4. After the imputation of the

estimated values for all missing values in eusilcS, Austria’s population is simulated, with the

function simEUSILC() and the eusilcS data set. The whole population is simulated to compare

the real disclosure risk with the estimated risks, which is the main idea of this numerical study,

i.e. to see if the estimates of different simulation designs are useful. The simulated population

has no missing values, which implies that there are no missing values in the samples, because

there are not any protection methods applied.

4.2 Results

The empirical approach is described in Figure 6. First function kNN() is applied on the data set

eusilcS. After the k-nearest neighbour imputation the population is simulated with the function

simEUSILC(). Three different kinds of disclosure risk scenarios are used and closer described

in Table 14. This table shows which categorical variable is assumed to be a categorical key

variable. If the cell in column scenario is indexed with 1, the variable is considered as categorical
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eusilcS

eusilc

eusilcAUT

Scenario 2 Scenario 1 Scenario 3

SampleStandard LL-Model τ̂S1, τ̂S2 Weighted LL-Model τ̂W1, τ̂W2

EC LL-Model τ̂EC1, τ̂EC2 PSE LL-Model τ̂PSE1, τ̂PSE2

kNN(eusilcS)

simEUSILC(eusilc)

Categorical
key variables

Sampling
Design: SRS,

PSS, ESS,
POV and τ1, τ2

Figure 6: Diagram describing the workflow of the numerical study.
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key variable. Each scenario has a different amount of keys. Four different sampling methods

(SRS, proportional & equal stratified sampling, oversampling; see Section 1.3) are tested for each

scenario. For every sampling method and disclosure risk scenario a few measures are estimated

to compare the real disclosure risk with the estimated risk of the different log-linear models. 19

measures are described in Table 15. There are mainly two risk measures of interest:

� number of sample uniques that are population unique τ1 (see Equation (13));

� number of correct matches for sample uniques τ2 (see Equation (14)).

These two risk measures are estimated for each log-linear model. The difference between the

estimated and real risk measures shows if the risk is well estimated or not. If τ̂model1 − τ1 = 0

or τ̂model2 − τ2 = 0, then the risk is perfectly estimated. If the difference is smaller then zero,

the risk is underestimated and if it’s higher, the risk is overestimated. Per simulation run 100

samples are drawn from the population with the R function runSimulation() [Alfons et al.,

2010]. Each sample includes 4641 housholds.

Variable Description Scenario 1 Scenario 2 Scenario 3

hsize number of persons in the household 1 1 1
db040 federal state in which the household is located 1 1 0
age person’s age 1 1 1
rb090 person’s gender 1 1 1
pl030 person’s economic status 0 1 1
pb220a person’s citizenship 1 1 0
netIncomeCat personal net income divided into 15 intervals 0 1 1

Table 14: Categorical key variables of the three different disclosure risk scenarios.
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Name Description

1 τ1 real number of sample uniques that are population unique
2 τ2 real number of correct matches for sample uniques
3 τ̂S1 estimated number of sample uniques that are population unique using

the standard log-linear method
4 τ̂S2 estimated number of correct matches for sample uniques using the stan-

dard log-linear method
5 τ̂EC1 estimated number of sample uniques that are population unique using

the EC approach
6 τ̂EC2 estimated number of correct matches for sample uniques using the EC

approach
7 τ̂PSE1 estimated number of sample uniques that are population unique using

the PSE approach
8 τ̂PSE2 estimated number of correct matches for sample uniques using the PSE

approach
9 τ̂W1 estimated number of sample uniques that are population unique using

the weighted log-linear method
10 τ̂W2 estimated number of correct matches for sample uniques with using

weighted log-linear method
11 ηS1 difference between τ̂S1 − τ1
12 ηS2 difference between τ̂S2 − τ2
13 ηEC1 difference between τ̂EC1 − τ1
14 ηEC2 difference between τ̂EC2 − τ2
15 ηPSE1 difference between τ̂PSE1 − τ1
16 ηPSE2 difference between τ̂PSE2 − τ2
17 ηW1 difference between τ̂W1 − τ1
18 ηW2 difference between τ̂W2 − τ2
19 fk1 amount of sample frequency counts with characteristic 1, i.e.

sum(fk == 1)

Table 15: List of all measures for each sampling method.
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4.2.1 Disclosure risk scenario 1

Disclosure risk scenario 1 calculates the risk for five categorical key variables, see Table

14. These key variables divide the population into 8448 keys and for every key the population

frequency counts are calculated. The population frequency counts are shown in Figure 7. There

are 33 unique persons in the population and 149 cells with less than 6 records. Figure 7 and

8 show the distribution of the population frequency counts with five categorical key variables.

Figure 8 shows that there are less keys with with less counts. So the re-identification risk will

be low. The distribution in Figure 8 must not disagree with the Poisson assumption, because

there are C distribution parameters λj , j ∈ {1, 2, ..., C}.

To fit the log-linear models (standard, EC, PSE, weighted) the R function glm() of the

standard package stats is used. The first and most important function argument of glm() is

a formula specifing the response, predictors and possible interactions. In other words, from this

formula, glm() builds a model (design) matrix and applies the (chosen family of) regression

method on it. The following formulas are applied:

R > keyVars_S1 <- c("db040","hsize","rb090", "age", "pb220a")

R > f <- as.formula(paste(" ~ ", "db040 + hsize + rb090 + age + pb220a +

+ age:rb090 + age:hsize + hsize:rb090"))

R > (f_standard_llm <- as.formula(paste(c("counts", as.character(f)),

+ collapse = "")))

counts ~ db040 + hsize + rb090 + age + pb220a + age:rb090 + age:hsize +

hsize:rb090

R > (f_pse_llm <- as.formula(paste(c("estimated_Fk", as.character(f)),

+ collapse = "")))

estimated_Fk ~ db040 + hsize + rb090 + age + pb220a + age:rb090 +

age:hsize + hsize:rb090

R > (f_weighted_llm <- as.formula(paste(c("counts",

+ as.character(as.formula(paste(c(f,"weights"),collapse="+")))),

+ collapse = "")))

counts ~ db040 + hsize + rb090 + age + pb220a + age:rb090 + age:hsize +

hsize:rb090 + weights
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Variable keyVars_S1 includes the considered categorical key variables of scenario 1. f_stan-

dard_llm, f_pse_llm and f_weighted_llm describe the model to be fitted. The predictor

has the form response ~ predictors. For example, a specification of the form age:rb090

indicates the interaction for all categories of the predictors age and rb090. This 2-way interca-

tion model performs best for disclosure risk scenario 1. For the EC approach the formula

f_standard_llm is used and the offset term in function glm() is set to offset = fk
F̂k

. F̂k are

the estimated population frequency counts. They are calculated as the sum of weights across

sample units in cell k. F̂k is the response for the PSE model.

1 2 3 4 5

Run 1.00 2.00 3.00 4.00 5.00
Sample 1.00 2.00 3.00 4.00 5.00
fk1 1564.00 1582.00 1544.00 1480.00 1582.00
τ1 0.00 0.00 0.00 0.00 0.00
τ̂S1 0.00 0.00 0.00 0.00 0.00
τ̂EC1 0.00 0.00 0.00 0.00 0.00
τ̂PSE1 0.00 0.00 0.00 0.00 0.00
τ̂W1 0.00 0.00 0.00 0.00 0.00
τ2 5.46 5.86 5.87 5.35 6.22
τ̂S2 4.48 4.51 4.51 4.69 4.46
τ̂EC2 4.44 4.47 4.46 4.64 4.42
τ̂PSE2 4.48 4.51 4.51 4.69 4.46
τ̂W2 3.95 4.01 3.98 4.08 4.02
ηS1 0.00 0.00 0.00 0.00 0.00
ηEC1 0.00 0.00 0.00 0.00 0.00
ηPSE1 0.00 0.00 0.00 0.00 0.00
ηW1 0.00 0.00 0.00 0.00 0.00
ηS2 -0.98 -1.35 -1.36 -0.66 -1.75
ηEC2 -1.03 -1.39 -1.41 -0.71 -1.80
ηPSE2 -0.98 -1.35 -1.36 -0.66 -1.75
ηW2 -1.51 -1.84 -1.88 -1.27 -2.20

Table 16: The first five simulation results of scenario 1.

For each method like SRS, proportional stratified sampling, equal stratified sampling and

oversampling, a simulation function for scenario 1 is used to calculate the risk measures, given

in Table 15. Table 16 shows the first five simulation run results of SRS and disclosure risk

scenario 1. There are about 10 per cent sample uniques in each sample, but the number of

sample uniques that are population unique is zero within the first 5 runs, see τ1 in Table 16.

The number of correct matches for sample uniques is also very low, see τ2. Four Figures 9, 10,
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Figure 7: Histogram of population frequency counts of disclosure risk scenario 1.
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Figure 8: Histogram of population frequency counts of disclosure risk scenario 1, with Fk < 11.
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11 and 12 describe the results of disclosure risk scenario 1.

Results for τ1:

First the real (τ1) and estimated number of sample uniques that are population unique

(τ̂S1, τ̂EC1, τ̂PSE1, τ̂W1) are considered, see Figure 9 and 11. There are nearly the same re-

sults for SRS, ESS and PSS. The real risk τ1 is almost in every drawn sample zero with a few

exceptions, where τ1 = 1 respectively τ1 = 2. For these three sampling designs (SRS, ESS, PSS)

the estimated risk measures of all considered models (standard, EC, PSE and weighted log-linear

model) are close to 0. Figure 11 shows that the estimates with ESS, PSS and SRS underestimate

the risk if τ1 > 0. If τ1 = 0 then τ̂S1, τ̂EC1, τ̂PSE1 and τ̂W1 are well estimated. Disclosure risk

scenario 1 yields for SRS, ESS and PSS workable solutions, but the models are not resistant

for samples with one or more sample uniques that are population unique. The POV design

yields different results, see Figure 9. τ1 is mostly overestimated, whereby the standard, EC and

weighted log-linear model yields good results, except for outliers (i.e. τ1 = 1). The PSE model

τ̂PSE1 overestimates τ1 between zero and seven. Thus the PSE model yields the worst results,

because the overestimation is higher and a few risks are underestimated, too. The difference

between the estimates and the real risk looks equal to the number of sample uniques that are

population unique, but the underestimated outliers are clear to see (ηmodel < 0), as shown in

Figure 11.

Results for τ2:

The real τ2 and estimated number of correct matches for sample uniques τ̂S2, τ̂EC2, τ̂PSE2 and

τ̂W2 of disclosure risk scenario 1 yields other results than risk measure τ1 and its assiociated

estimates, see Figure 10 and 12. It’s clear by definition that τ2 > τ1, whereby the number is not

high as well. Because the disclosure risk scenario 1 has less keys and population uniques. PSS

and SRS have nearly the same results for all estimates, see Figure 10. The estimated numbers

of correct matches for sample uniques is underestimated with sampling designs PSS and SRS in

all models, whereby the weighted log-linear model is sligthly worse, see Figure 12. ESS yields

nearly the same results for the standard, EC and weighted log-linear model, but the PSE model

gets other results. τ̂PSE2 yields very good estimates for ESS, whereby the risk is a little bit

overestimated. It is clear to see that τ̂PSE2 is the best estimate with ESS, see Figure 12. The

sampling design POV yields other results, too. Every model overestimates the risk, whereby the

estimates of the standard, EC and weighted log-linear model are usable. The PSE model τ̂PSE2
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Figure 11: Difference between the real and estimated number of sample uniques that are population
unique of disclosure risk scenario 1.

completely overestimates the risk (τ2). PSE yields the best estimate with ESS and the worst

with POV.



4 NUMERICAL STUDY 44

ESS POV PSS SRS

−5

0

5

10

15

η̂S2 η̂EC2 η̂PSE2 η̂W2 η̂S2 η̂EC2 η̂PSE2 η̂W2 η̂S2 η̂EC2 η̂PSE2 η̂W2 η̂S2 η̂EC2 η̂PSE2 η̂W2

re
al

 −
 e

st
im

at
e

variable
η̂(S2)
η̂EC2

η̂PSE2
η̂W2

Figure 12: Difference between the real and estimated number of correct matches for sample uniques of
disclosure risk scenario 1.
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4.2.2 Disclosure risk scenario 2

The disclosure risk is estimated for seven categorical key variables, see Table 14. These seven

variables divide the population into 138158 keys, which is a much higher amount than in sce-

nario 1 (8448 keys). Figure 13 shows a histogram of the population frequency counts. Most

of the keys have few counts and only a few keys have high frequency counts. There are 24819

unique persons in the population and 60326 cells with less than 6 records. The population con-

sists of 8182010 persons, which means that 0.30334 % of the persons are population unique. It

is clear to see that there are much more keys with few counts than with disclosure scenario

1, compare Figure 14 and 8. To fit the log-linear models (standard, EC, PSE, weighted) the

following formulas are applied:

R > keyVars_S2 <- c("db040","hsize","rb090", "age","pl030", "pb220a", "netIncomeCat")

R > f <- as.formula(paste(" ~ ", "netIncomeCat:rb090 + netIncomeCat:age + age:pl030 +

+ db040 + hsize + rb090 + age + pl030 + pb220a + netIncomeCat"))

R > (f_standard_llm <- as.formula(paste(c("counts", as.character(f)),

+ collapse = "")))

counts ~ netIncomeCat:rb090 + netIncomeCat:age + age:pl030 +

db040 + hsize + rb090 + age + pl030 + pb220a + netIncomeCat

R > (f_pse_llm <- as.formula(paste(c("estimated_Fk", as.character(f)),

+ collapse = "")))

estimated_Fk ~ netIncomeCat:rb090 + netIncomeCat:age + age:pl030 +

db040 + hsize + rb090 + age + pl030 + pb220a + netIncomeCat

R > (f_weighted_llm <- as.formula(paste(c("counts",

+ as.character(as.formula(paste(c(f,"weights"),collapse="+")))),

+ collapse = "")))

counts ~ netIncomeCat:rb090 + netIncomeCat:age + age:pl030 +

db040 + hsize + rb090 + age + pl030 + pb220a + netIncomeCat +

weights

Variable keyVars_S2 consists of the seven categorical key variables as decribed in Table 14. It

might exist a better interaction model, because the glm() function cannot solve a more complex

model. For more keys or complex models another function has to be implemented that handles
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such problems. But the predictors are quite good for this scenario. f_standard_llm, f_pse_-

llm and f_weighted_llm describe the model to be fitted. For the EC approach the formula

f_standard_llm is used and the offset term in function glm() is set to offset = fk
F̂k

, which is

also described in scenario 1. These four log-linear models are calculated for 100 sample runs.

There are about 50 per cent unique records in each sample via srs, pss and ess as well as 30 per

cent with proportinal oversampling. A high risk for τ1 and τ2 is expected, because the amount

of sample uniques is very high. Figures 15, 16, 17 and 18 describe the results of disclosure

risk scenario 2.
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Figure 13: Histogram of population frequency counts of disclosure risk scenario 2.

Results for τ1:

First the results of the real (τ1) and estimated number of sample uniques that are population

unique (τ̂S1, τ̂EC1, τ̂PSE1, τ̂W1) are considered, see Figure 15 and 17. There are nearly the same

results for SRS and PSS. The arithmetic mean of τ1 is 32.39 with SRS and 33.11 with PSS.

The standard, EC and PSE log-linear models yield nearly the same results for SRS and PSS,

whereby the risk is ligthly underestimated. The weighted log-linear approach yields a worse

estimate in this case, because τ1 is completly underestimated. Equal stratified sampling yields

very good results with the PSE log-linear model. Whereby the standard, EC and weighted

log-linear model underestimates the risk. It is clear to see that the weighted log-linear model
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Figure 14: Histogram of population frequency counts of disclosure risk scenario 2, with Fk < 11.

performs worst with ESS. The POV design yields other results in comparison to SRS, ESS and

PSS, see Figure 15. τ1 is overestimated in each model. The standard, EC and weighted log-linear

model yield good results, except for some samples in the weigthed log-linear model. The PSE

approach yields massive overestimated results, because the estimated number of correct matches

for sample uniques that are population unique is about six times higher than the real number.

Figure 17 shows that the difference between the real and estimated risk is in eleven cases very

close to zero and the worse models are clear to see, like the weighted log-linear model in three

cases and the PSE model with POV.

Results for τ2:

The real τ2 and estimated number of correct matches for sample uniques τ̂S2, τ̂EC2, τ̂PSE2

and τ̂W2 of disclosure risk scenario 2 yields some other results than risk measure τ1 and its

assiociated estimates, see Figure 16 and 18. The amount of the real and expected number of

correct matches for sample uniques is very high in all sampling designs, because the amount of

sample uniques is very high in every sample. PSS and SRS yields nearly the same results for

all estimates. The standard, EC and PSE model overestimates the risk τ2, but the results are

quite good. The weighted log-linear model underestimates the risk and the estimates are worse.

The ESS design yields very good results for the standard and EC model. But not useful results
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Figure 15: Boxplot of real and expected number of sample uniques that are population unique.
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Figure 16: Boxplot of real and expected number of correct matches for sample uniques.
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with the PSE and weighted log-linear approach, whereby PSE overestimates the risk and the

weighted underestimates it. The sampling design POV yields other results again. Every model

overestimates the risk, whereby the estimates of the standard, EC and weighted log-linear model

are usable. The PSE model τ̂PSE2 completely overestimates the risk (τ2), which is clear to see

in Figure 16. The standard and EC log-linear model yield workable results in every sampling

design.
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Figure 17: Boxplot of the difference between real and expected number of sample uniques that are pop-
ulation unique.
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Figure 18: Boxplot of the difference between real and expected number of correct matches for sample
uniques.
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4.2.3 Disclosure risk scenario 3

Disclosure risk scenario 3 estimates the risk for five categorical key variables, see Table 14.

These seven variables divide the population into 32414 keys, which is more than in scenario 1

(8448 keys). However, the amount of keys is lower as within scenario 3 (138158 keys). Figure

19 shows a histogram of the population frequency counts, which looks similar to the population

frequency counts of scenario 2, see Figure 13. Many keys with only few counts and only a few

keys with large frequency counts exists. There are 2607 unique persons in the population and

7598 keys with less than 6 records. Since the population consists of 8182010 persons, 0.03186

% of persons are population unique. The population frequncy count structure of Scenario 3

is somehow between scenario 1 and scenario 2, compare Figures 20, 14 and 8. To fit the

standard, EC, PSE and weighted log-linear models the following formulas are applied:

R > keyVars_S3 <- c("hsize","rb090", "age", "pl030", "netIncomeCat")

R > f <- as.formula(paste(" ~ ", "hsize + rb090 + age +

+ pl030 + netIncomeCat + age:rb090 +

+ age:hsize + netIncomeCat:age + rb090:age"))

R > (f_standard_llm <- as.formula(paste(c("counts", as.character(f)),

+ collapse = "")))

counts ~ hsize + rb090 + age + pl030 + netIncomeCat + age:rb090 +

age:hsize + netIncomeCat:age + rb090:age

R > (f_pse_llm <- as.formula(paste(c("estimated_Fk", as.character(f)),

+ collapse = "")))

estimated_Fk ~ hsize + rb090 + age + pl030 + netIncomeCat + age:rb090 +

age:hsize + netIncomeCat:age + rb090:age

R > (f_weighted_llm <- as.formula(paste(c("counts",

+ as.character(as.formula(paste(c(f,"weights"),

+ collapse="+")))), collapse = "")))

counts ~ hsize + rb090 + age + pl030 + netIncomeCat + age:rb090 +

age:hsize + netIncomeCat:age + rb090:age + weights

Variable keyVars_S3 consists of the five categorical key variables as decribed in Table 14. This

2-way intercation model performs very good for disclosure risk scenario 3. f_standard_-

llm, f_pse_llm and f_weighted_llm describe the model to be fitted. For the EC approach
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the formula f_standard_llm is used and the offset term in function glm() equals fk
F̂k

, which is

also described in scenario 1. For every of the 100 drawn samples for each sampling design the

standard, EC, PSE and weighted log-linear model is estimated. There are about 25 per cent

unique records in each sample with SRS, PSS and ESS as well as 12 per cent with proportinal

oversampling. The risk measures (τ1 and τ2) should be between the measures of scenario 1

and scenario 2, because the amount of sample uniques is between these two scenarios. Figures

21, 22, 23 and 24 describe the results of disclosure risk scenario 3.
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Figure 19: Histogram of population frequency counts of disclosure risk scenario 3.

Results for τ1:

The estimated number of sample uniques that are population unique (τ̂S1, τ̂EC1, τ̂PSE1, τ̂W1) is

considered, see Figure 21. Figure 23 shows the difference between the real and estimated number

of sample uniques. If the difference between τ̂model1 − τ1 < 0 then the risk is underestimated.

If the difference is close to zero the estimates are good. Figure 21 shows that there are nearly

the same results for ESS, PSS and SRS. Depending on the sample drawn from the population,

the risk (= amount of sample uniques that are population unique) is between [0, 8], but the

estimates of all four log-linear models are about 1, with small variances. Every log-linear model

underestimates the risk with ESS, PSS and SRS. All models yield nearly the same results, see

Figure 23. The proportional oversampling (POV) design yields different results, which is also
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Figure 20: Histogram of population frequency counts of disclosure risk scenario 3, with Fk < 11.

the case in scenario 1 and 2, see Figures 9, 15 and 21. τ1 is overestimated, whereby the

standard, EC and weighted log-linear model yield workable results. The weighted log-linear

model performs better than the standard and EC approach. The PSE model τ̂PSE1 completely

overestimates τ1. Thus the PSE model yields the worst results with POV.

Results for τ2:

The real τ2 and estimated number of correct matches for sample uniques τ̂S2, τ̂EC2, τ̂PSE2 and

τ̂W2 of disclosure risk scenario 3 shows other results than the above described estimates.

Whereby PSS and SRS yield almost the same results for all models and the risk measure τ2

is underestimated. The weighted log-linear model is worse than the standard, EC and PSE

model, see Figure 22 and 24. The estimates with equal stratified sampling are very good and

much better than with PSS and SRS. The standard, EC and PSE log-linear model slightly

overestimate the risk and the weighted log-linear model yields a light underestimation. There

are complete other results with POV. Every model overestimates the risk and none of the models

yields useful results. The PSE model τ̂PSE2 performs worst.
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Figure 21: Boxplot of real and expected number of sample uniques that are population unique using
scenario 3.
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Figure 22: Boxplot of real and expected number of correct matches for sample uniques using scenario 3.
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Figure 23: Boxplot of the difference between real and expected number of sample uniques that are pop-
ulation unique of scenario 3.
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Figure 24: Boxplot of the difference between real and expected number of correct matches for sample
uniques of scenario 3.
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4.2.4 Scenario comparison

The following figures compare the three scenarios for each sampling design (equal stratified

sampling, proportional oversampling, proportional stratified sampling, simple random sampling)

and risk measures τ1 and τ2 (see Section 3.1).

Simple random Sampling (SRS):

Figure 25 shows the real and estimated number of sample uniques that are population unique.

It is clear to see that the risk is higher if the amount of keys is higher. τ1 is underestimated

with each kind of log-linear models, whereby the weighted log-linear model performs worst (see

Figure 25 and scenario 2). Figure 26 shows the estimation of the number of correct matches for

sample uniques τ2. It is clear to see that the weighted log-linear model performs worst in every

scenario. The other models yield nearly the same results, whereby the risk is underestimated in

scenario 1 and 3 and overestimated in scenario 2, which has the most keys and population

uniques.
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Figure 25: Scenario comparison of τ1 with SRS.
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Figure 26: Scenario comparison of τ2 with SRS.

Equal stratified sampling (ESS):

Figure 27 describes the estimation of τ1. The risk is underestimated except the PSE estimator

in scenario 2, whereby the weighted log-linear model performs worst. The boxplots in Figure

28 show nearly perfect estimates for scenario 1 and 3. Scenario 2 yields very good estimates

with the standard and EC model. The weighted log-linear model underestimates the risk measure

and the PSE model overestimates it.

Proportional stratified sampling (PSS):

The number of sample uniques that are population unique (τ1) is underestimated in all cases,

whereby the estimates in scenario 1 are only underestimated if τ1 = 1, see Figure 29. Scenario

2 shows that the weighted log-linear model performs worst, which is also the case with ESS and

SRS. All the other models yield nearly the same estimates with proportional stratified sampling.

Figure 30 shows the real and estimated numbers of correct matches for sample uniques. The

estimates in scenario 1 and 3 are a bit underestimated. τ2 is overestimated via the standard,

EC and PSE model in scenario 2. The weighted log-linear model yields the worst results, as
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Figure 27: Scenario comparison of τ1 with ESS.
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Figure 28: Scenario comparison of τ2 with ESS.
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also can be seen with SRS and ESS in Figures 26 and 28.
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Figure 29: Scenario comparison of τ1 with PSS.

Proportional oversampling (POV):

Proportional oversampling yields quite other results. Figure 31 shows that τ1 is overestimated

in nearly all cases, whereby the pseudo maximum likelihood (PSE) method performs worst. The

other models yield usable results in each scenario. The estimated numbers of correct matches

for sample uniques is overestimated, whereby the PSE model completly overestimates the risk.
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Figure 30: Scenario comparison of τ2 with PSS.
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Figure 31: Scenario comparison of τ1 with POV.
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Figure 32: Scenario comparison of τ2 with POV.
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5 Conclusion

The use of Poisson log-linear models to estimate the number of sample uniques that are popu-

lation unique (τ1) and the number of correct matches for sample uniques (τ2) of microdata are

considered based on synthetic population data from Austria. The models are tested with four

different sampling designs (equal stratified sampling, proportional oversampling, proportional

stratified sampling, simple random sampling) and three disclosure risk scenarios with different

amounts of keys (see Table 14). Two global risk measures of interest are considered (τ1 and τ2,

see Section 3.1). Skinner and Vallet [2010] and Carlson [2002b] investigated lower population

sizes (N = 40000 till N = 268000) and higher sample fractions (includes low values of the

sampling weights), which results in simplified investigations of the disclosure risk. This master

thesis goes beyond the empirical comparisons of the mentioned articles. The risk measures are

estimated with realistic sizes of a population (N = 8182010) and a sample (n ≈ 12000) by using

different designs to draw the samples.

First the estimates of the number of sample uniques that are population unique (τ1) are

considered. All models underestimate the real value of τ1 in each scenario with respect to three

sampling designs (simple random sampling, equal stratified sampling and proportional stratified

sampling). The estimates are underestimated because the fitted values of the Poisson log-linear

models are too small. One reason can be that the interaction models are not perfectly chosen

and the other reason can be that the number of keys are too less. It should be mentioned that

scenario 1 indicates a very low disclosure risk and it is therefore difficult to make statements

about the quality of the estimates. There is only one exception with equal stratified sampling

and the pseudo maximum likelihood model in scenario 2, which yields good estimates and

no significant underestimation. All in all, the pseudo maximum likelihood method seems to

perform best with simple random, equal stratified and proportional stratified sampling, because

the response variable log(F̂k) yields better estimates, where F̂k is the sum of survey weights

across sample units in key k ∈ {1, 2, ...C}. τ1 is underestimated because the λj , {j : fj = 1} are

overestimated and τ1 is estimated by τ̂1model =
∑
{j:fj=1} e

−λj(1−πj). The weighted log-linear

model performs worst with simple random sampling (SRS), equal stratified sampling (ESS) and

proportional stratified sampling (PSS), because the weights are not correlated with the response

variable in every sampling design and so the interaction model is wrongly chosen. Proportional

oversampling (POV) yields other results, because the terms e−λj(1−πj) are overestimated, which

depends on the inclusion probabilities. The pseudo maximum likelihood method completly
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overestimates the risk, because the model cannot handle the specific inclusion probabilities.

For the number of correct matches of sample uniques (τ2), which is estimated by τ̂2model =∑
{j:fj=1}

1−e−λj(1−πj)
λj(1−πj) , the estimates with simple random sampling (SRS) and proportional strat-

ified sampling (PSS) are similar, whereby the risk is underestimated with scenario 1 and 3 and

overestimated with scenario 2. One reason is that the interaction models are not perfectly

chosen. The underestimation can result of a too low number of keys (C) in scenario 1 and 3,

because the risk measures are consistent. The equal stratified sampling design (ESS) yields a

good performance with the standard and Eliason-Clogg method. The pseudo maximum likeli-

hood method (PSE) overestimates the risk in scenario 2, because the model underestimates

the frequency counts λj , with {j : fj = 1}. The opposite is true for the weighted log-linear

model in scenario 2. With proportional oversampling (POV) the risk estimates of all models

are overestimated, whereby the pseudo maximum likelihood method performs worst, the high

inclusion probabilities intensify the underestimation of λj , with {j : fj = 1}, which leads to an

overestimation of τ2.

One important point for good model performances is to choose a well-defined good interaction

model (see also Shlomo and Skinner [2008]). If there are too less predictors the model is underes-

timated. Another criterium is the amount of keys, whereby a high amount of keys will generally

give better results. All in all the standard method, the Eliason-Clogg and the pseudo maximum

likelihood approach perform best and yield nearly the same results with simple random sampling

(SRS), equal stratified sampling (ESS) and proportional stratified sampling (PSS). The weighted

log-linear model performs worst.

For future tasks the consideration of missing values may lead to another choice of models. In

this work only samples without missing values are considered. Another consideration could be

the estimation of variances to investigate about the quality and uncertainty of point estimates

(see discussion by Skinner and Vallet [2010]). It is also reasonable to test the models with other

survey data and by using other sampling designs.
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