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Kurzfassung

Die Lehre algorithmischen Denkens, einer der grundlegenden Fähigkeiten der Informatik,
ist eine herausfordernde Aufgabe. Das Propädeutikum für angehende Studierende der
Informatik an der Technischen Universität Wien nutzt dazu ein Computerprogramm na-
mens Theseus das die Ausführung von Algorithmen zur Lösung von Labyrinthen darstellt
um so die Diskussion von Algorithmen greifbarer zu machen. Theseus beschreibt die
ausgeführten Algorithmen allerdings nicht explizit, sodass die Studenten nicht einsehen
können was “in” diesen passiert während am Bildschirm die Suche nach dem Zielpunkt
eines Labyrinths veranschaulicht wird.

Diese Diplomarbeit untersucht wie eine interaktive Lernumgebung nicht nur die Ausfüh-
rung sondern auch die Formulierung von Algorithmen ermöglichen kann um so die Lehre
algorithmischen Denkens zu unterstützen und den Lerneffekt für Studierende zu erhöhen.

Nach Analyse des didaktischen Handlungsspielraums und der Auswahl eines geeigneten,
an der konstruktionistischen Lerntheorie ausgerichteten Vorgehens beschreibt diese Arbeit
die konkrete Implementierung einer neuen, online verfügbaren Lernumgebung namens
Ariadne welche eine visuelle Programmiersprache zur Beschreibung von Algorithmen
integriert. Studenten und Lehrer können damit die von Ariadne vordefinierten Algorith-
men zur Lösungssuche in Labyrinthen verstehen, sie verändern und sogar völlig neue
Algorithmen entwerfen.

ix





Abstract

Teaching algorithmic thinking, which is one of the fundamental skills in computer science,
is a challenging task. Preparatory courses for budding students of computer science at
the Vienna University of Technology use a computer program called Theseus to visualise
the execution of maze solving algorithms, thus making the discussion of algorithms more
tangible. However, Theseus does not explicitly describe the executed algorithms and
students are left to wonder what is happening “inside” them while the search for a maze’s
finish is visualised on screen.

This thesis investigates how an interactive learning environment can not only execute but
also formulate maze algorithms in order to support the teaching of algorithmic thinking
and increase the learning effect for students.

After performing an analysis of various didactic options and selecting a suitable ap-
proach that is aligned with the constructionist learning theory, the actual implementation
of a new online learning environment called Ariadne is described, which integrates a visual
programming language for describing algorithms. This allows students and teachers to
understand Ariadne’s pre-defined maze solving algorithms, to modify them and to even
create new algorithms from scratch.
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CHAPTER 1
Introduction

This chapter introduces the preparatory course held for budding students of computer
science at the Vienna University of Technology and the software used to support teaching
algorithmic thinking in these lectures. The research question on which this thesis is based
is then presented along with a a description of the methodology used to discuss and
answer that question. Finaly, a short overview of the structure of this thesis is given.

1.1 Teaching Algorithmic Thinking at the Vienna
University of Technology

It is challenging to teach algorithmic thinking to students of computer science of whom
“around 70% are intimidated when they take a basic algorithms course” [Kin12]. While all
curricula of bachelor programmes of computer science include lectures about algorithms
and data structures, the Faculty of Informatics at the Vienna University of Technology
has also introduced optional preparatory courses under the name PROLOG1. This series
of lectures, which not only deals with algorithmic thinking but also with, for example,
computer hardware and mathematics, is intended to ease the transition into university
life for budding students and to convey to them the basic fundamentals of computer
science.

The lectures on algorithmic thinking are held by Professor Gerald Futschek who
discusses the thought process of solving problems and introduces the semi-formal for-
mulation of algorithms in pseudocode. To illustrate his points and to make the subject
matter more tangible, he explores different ways of finding a given point within a maze
and uses a program called Theseus to visualise mazes and the execution of maze solving
algorithms.

1Propädeutikum für Informatik, see http://www.informatik.tuwien.ac.at/studium/
studierende/prolog
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1.2 Research Question
While Theseus visualises the execution of maze solving algorithms, it does not show the
algorithms themselves and students are left to wonder what exactly is happening “inside”
the algorithm while the maze cells are being highlighted on screen during the algorithm’s
search for the finish point.

The thesis at hand wants to analyse such shortcomings of Theseus and improve
the situation, increasing the learning effect for students and creating new ways for the
PROLOG lectures to be supported by software. Thus, the following chapters try to
answer the question how an interactive learning environment can describe and execute
maze algorithms in order to support the teaching of algorithmic thinking to budding
students of computer science.

The proof of concept implementation resulting from this research is called Ariadne.

1.3 Methodology
This thesis presents constructionism as a fundamental learning theory that is well suited
for selecting a didactic approach guiding the concrete implementation that is also part of
this work. After introducing the theory and closely related fields of research (learning
environments, visual block programming languages and algorithm animations), an analysis
of the didactic options is performed and an approach is selected and justified. The main
chapters then give an in-depth description of the implementation of a web application as
a high-quality proof of concept.

1.4 Structure of This Thesis
Chapter 2 gives an overview of existing work and research on which the implementation
of Ariadne will set up. Vision and requirements for the program are detailed in Chapter 3.
Because Ariadne’s vision could be implemented in a number of ways, Chapter 4 presents
a didactic analysis of the implementation options and selects the most suitable approach.

Preparing the actual implementation, Chapter 5 introduces the basic concepts of maze
structures and maze algorithms. Chapter 6 then explains on which level of abstraction
these concepts shall be taught and describes the maze solving algorithms that will be
pre-defined by Ariadne.

The concrete implementation of Ariadne, including its basic design decisions and
relevant details, is presented in Chapter 7. The result of this implementation and whether
it fulfils the requirements stated before is then discussed in Chapter 8. This chapter also
mentions potential future development options for Ariadne.

Finally, Chapter 9 gives a summary of this thesis.
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CHAPTER 2
Related Work

This thesis builds upon decades of research on learning environments and visual program-
ming environments which have often been closely related to each other. This chapter
will highlight some of the major advancements of constructionist learning environments
and how visual programming relates to them.

Section 2.1 gives a concise introduction to constructionism. As described in Section
2.2, this learning theory is the foundation of many learning environments. Section
2.3 describes how learning environments, especially in the context of computer science
education, often integrate visual block programming languages. Execution of algorithms
formulated with these languages is then usually visualised and animated, as explained in
Section 2.4. Finally, Section 2.5 shows that educational requirements will often lead to
the need for creating a custom learning environment using appropriate frameworks.

2.1 Constructionist Learning Theory
Constructionism is a learning theory which states that “human beings come to learn
most effectively [by] building a model, reflecting on it, debugging and sharing” [NC15].
It is based on the constructivist theory which states that “learning is an active process
of constructing rather than acquiring knowledge” and that “instruction is a process of
supporting that construction rather than communicating knowledge” [CD96]. In an ideal
constructionist environment, “teachers [. . . ] are called to function as facilitators who
coach learners as they blaze their own paths toward personally meaningful goals” [AL02].

The constructionist learning theory was conceived by Seymour Papert in the 1980’s
in the context of teaching children about mathematics and programming. Papert
described his vision in his visionary bookMindstorms: Children, Computers, and Powerful
Ideas [Pap80]:

“Sesame Street” might offer better and more engaging explanations than a
child can get from some parents or nursery school teachers, but the child

3



is still in the position of listening to explanations. By contrast, when a
child learns to program, the process of learning is transformed. It becomes
more active and self-directed. In particular, the knowledge is acquired for a
recognizable personal purpose. The child does something with it. The new
knowledge is a source of power and is experienced as such from the moment
it begins to form in the child’s mind.

2.2 Learning Environments

Seymour Papert’s research in the 1980’s led to the development of the first learning
environment, Logo, which “uses computer[s] to teach some really profound concepts of
Math to young children”. “Instead of proposing a classical curriculum, [Papert] proposed
a micro-world with its rules, in this case basic math rules, that made possible for a child
the exploration of well known real world concepts in math with the help of a physical and
graphical aid called Turtle, that a child can identify himself with.” [Giu12]. A screenshot
of Logo is shown in Figure 2.1.

Figure 2.1: The Logo learning environment

Since then, a number of learning environments have been created based on the
constructionist approach to learning. These environments typically combine some sort of
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algorithm descriptions (e.g. a textual or visual programming language) and algorithm
execution visualisation, framed within a “world” whose objects’ and operations’ form
and action align with things and behaviours in the real world [SS11]. Modelling familiar
environments aids learning because “what an individual can learn, and how he learns it,
depends on what models he has available” [Giu12].

These environments promote a step-by-step approach to learning programming by in-
tentionally reducing the amount of impressions simultaneously affecting the student [SS11],
thus applying a form of didactic reduction. The user has the feeling that he “sees what
he is doing” and that “something is happening” [Fru06] – this is because visualisa-
tion of algorithm execution allows immediate feedback regarding the correctness of a
solution [SK09].

Psychological research shows that learning environments boost the learning effect
because they facilitate anchored instruction by providing narrative anchors (i.e. problem
situations) around which learning and teaching activities can be designed. This allows stu-
dents’ brains to interconnect episodic (i.e. personal) and semantic (i.e. general, abstract)
memories and knowledge, thus increasing the learning effect significantly [Hub13]1.

The most prominent example of learning environments is Scratch2 which was released
as a public online platform in 2007. It was originally “motivated by the needs and
interests of young people (ages 8 to 16) at after-school computer centers such as the Intel
Computer Clubhouses” [MRR+10] but quickly became popular with a broader audience,
resulting in “more than 500,000 projects [that] were shared on the Scratch Web site” in
a little more than two years after launch [RMMH+09]. As seen in Figure 2.2, it uses a
visual programming language that interacts with a micro-world that appears on screen,
thereby “[turning] variables into concrete objects that the user can see and manipulate,
making them easier to understand through tinkering and observation” [MRR+10].

2.3 Block Languages

Learning to program typically requires students to acquire general knowledge about a
programming paradigm, its control structures and other fundamentals, as well as specific
knowledge about a certain programming language’s syntax [FT03]. [Fra15a] puts it this
way: “Novice programmers are fighting two battles at once: the fight to translate their
ideas into logical statements, and the fight to keep the syntax legal.”

Clearly, teaching algorithmic thinking should not focus on syntactic details of a
concrete implementation but rather convey the idea on which the algorithm is founded.
Visual programming languages facilitate this in an elegant and visually appealing way. A
subset of those, namely block languages, appear to be best suited for beginners. In such
languages, “the programmer assembles scripts from a menu of block-shaped command
templates that are dragged onto a canvas”. These blocks “contain placeholders for
variables and sub-clauses of the commands and can express scope of program-segment

1For more information on the organization of human memory, see [TD72]
2See https://scratch.mit.edu
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Figure 2.2: The Scratch learning environment

containment, relying on the notation of a block containing physically other blocks, with
possible nesting” [MWW12].

The huge advantage for beginners is that advanced block language environments
will make it “completely impossible to make a syntax error. There are no unbalanced
parentheses, no unescaped strings, no missing semicolons” [Fra15a].

Evidence of the suitability of block languages for teaching and learning programming
is the “popularity of the Scratch language [which] suggests that this style of coding is
more accessible to children than standard programming languages” [MWW12]. [ML07]
elaborates the advantages of block languages:

[L]anguages like Java challenge students to master programmatic overhead
before programming itself: students must become masters of syntax before
solvers of problems. [. . . ]
[S]o accustomed are students today to graphical interfaces, “hello, world,”
whether written by student or teacher, cannot help but underwhelm. And,
yet, in courses designed to recruit and retain budding computer scientists, it
is perhaps just as important to excite as it is to instruct.

In order to “excite” students, block languages resemble puzzles and pose puzzle-like
problems, which, as analysed in [LP02], “usually attract more interest on the part of
students” while forcing them to “think about algorithms on a more abstract level, divorced

6



from programming and computer language minutiae”. This might even prove to students
that “algorithm design strategies can be looked upon as general problem-solving tools
that might be useful in areas far removed from computer science”.

2.4 Algorithm Animation

A primary requirement for learning environments is to visualise processes that may
otherwise be hidden from students.

[HDS02] suggests that researchers should “abandon the passive viewer paradigm in
favor of paradigms that view a visualization as a resource for engaging students in an
active process of discovery, reflection, and explanation.” This is why instructors have long
been “looking toward algorithm animation as a tool to help their students learn” [KST01],
especially within learning environments.

Algorithm animation is a form of program visualisation that uses “the technology
of interactive graphics and the crafts of graphic design, typography, animation, and
cinematography to enhance the presentation and understanding of computer programs”.
It is “related to but distinct from the discipline of visual programming which is the use of
various two-dimensional or diagrammatic notations in the programming process” [Bae86].

[KST01] illustrates that “[the] dynamic, symbolic images in an algorithm animation
help provide a concrete appearance to the abstract notions of algorithm methodologies,
thus making them more explicit and clear”. Visualisation thereby “serves as a form of
external memory, reducing the cognitive complexity of the programming task” [HDS02]
and is an essential part of most modern learning environments.

2.5 Creating Custom Learning Environments

The previous sections presented advantages of learning environments that incorporate
block languages. However, existing learning environments are usually hard to adapt
to specific needs. Scratch, for example, excels at providing an online platform with a
restricted command set but is difficult to adapt to custom requirements such as those
presented by this thesis: While it “is possible to extend the environment to new languages
by using the Scratch Extension Protocol” [FG11], this requires a lot of effort and does
not allow hiding unnecessary features from the user.

This realisation has led to the creation of visual programming frameworks that can be
used to build custom learning environments. The most popular and flexible one is Blockly3,
“a library for building visual programming editors” [Fra15b] that was first released in 2011
by Google. Its author aims at achieving the following characteristics [Fra12]: Blockly
shall be. . .

• . . . inviting:

3See https://developers.google.com/blockly
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“Blockly is free, has no downloads, no plugins, and no installation. It is literally a
click away.”

• . . . appealing:
Blockly features a “highly polished UI; Gaussian blurs, rounded corners, and
auditory feedback”.

• . . . unlimited:
Blockly lets users “seamlessly migrate to a ’real’ language”.

• . . . relevant:
“Domain-specific programming languages are always more suitable for that domain
than general-purpose programming languages – especially when one lacks prior
experience.”

Within less than two years after launch, Blockly has been translated to 43 languages.
Its use in the online learning environment code.org has even led to videos of Mark
Zuckerberg “explaining how to create loops in Blockly” and “Bill Gates explaining how
to create conditionals in Blockly” [Fra13].

It is important to note that Blockly itself is targeted at developers. In order to
make use of Blockly, it first needs to be adapted to a project’s needs and can then be
“integrated into any application”, with “most of the high-level features [residing] in the
domain-specific API blocks provided to Blockly by [the] host [application]” [Fra15a].
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CHAPTER 3
Requirements for a Learning

Environment for Teaching Maze
Algorithms

This chapter gives a short overview of the Theseus program in Section 3.1. It has proven a
valuable tool in teaching algorithmic thinking at Vienna University of Technology but lacks
several aspects that could improve both learning effect and user experience. Analysing
these shortcomings motivates the creation of Ariadne, as described in Section 3.2. Finally,
a complete list of requirements for Ariadne is presented in Section 3.3.

3.1 Overview of Theseus
Theseus is a Windows program written by Marian Kogler in 2005. It is used for
demonstration purposes in the PROLOG lectures on algorithmic thinking (see Chapter 1)
and is available for students to download onto their personal computers1. Its start screen
is shown in Figure 3.1.

The two main features of Theseus are the generation of mazes and the execution
of maze solving algorithms, which will be described in Section 3.1.1 and Section 3.1.2,
respectively.

3.1.1 Maze Generation

Theseus is able to generate mazes at any horizontal and vertical extent between 11 cells
and 29 cells. Due to the maze visualisation implemented by Theseus, walls between cells
always occupy the same space as a whole cell and the left-most, right-most, top and

1At the time of writing, the download was available from within the TUWEL e-learning platform
under https://tuwel.tuwien.ac.at/course/view.php?idnumber=188482-2015W.
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Figure 3.1: Theseus start screen
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bottom cells of the maze are always walls. The user can choose to generate a maze with
cycles or without cycles. Figure 3.2 shows a 13x13 maze with cycles in Theseus.

Start and finish can be selected automatically as well as manually and are indicated
by the orange and red cell, respectively.

3.1.2 Execution and Visualisation of Maze Solving Algorithms

After a maze has been generated, the user can select one of several maze solving algorithms
and have Theseus execute it. Algorithm execution is visualised “live” by highlighting the
cell under examination and marking visited cells turquoise, as seen in Figure 3.3.

It is during algorithm execution that Theseus’ primary shortcoming becomes apparent:
Theseus does not describe the algorithms it executes and thus forces users to derive
the algorithm’s steps by themselves2. This makes it difficult for users to understand
algorithmic decisions during execution.

Figure 3.2: A maze generated by Theseus
(“cycles, no spaces”)

Figure 3.3: Execution of a maze solving
algorithm

3.2 Vision for Ariadne
Recognizing the positive experiences made with Theseus, Ariadne will adopt the two
main features of Theseus, namely maze generation and maze solving algorithm execution.
However, an equally important third aspect will be added: The explicit visual description
of the maze solving algorithms themselves, including the possibility to interactively
modify these algorithms and to even create them from scratch.

2Even if the algorithm is formulated explicitly outside of Theseus, e.g. on slides, the learner is
required to correlate the description on the slides with the execution visualisation in Theseus, having a
negative impact on the learning experience and effect
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Given this general vision for Ariadne, Chapter 4 will discuss what approach the new
application will take in regard to the learning and teaching of algorithmic thinking, how
the formulation of algorithms shall be implemented and how their execution shall be
visualised.

3.3 Detailed List of Requirements
In-depth analysis of Theseus’ current features has shown that some features are essential
and need to be integrated into Ariadne, while others are “nice to have” or even unnecessary.

At the same time, other features (like the aforementioned ability to describe and
modify maze generation algorithms) are highly relevant for the PROLOG lectures on
algorithmic thinking and need to be added as new requirements for Ariadne. The following
tables present a detailed list of Theseus’ current features and requirements for the new
Ariadne application.

3.3.1 Maze Generation

Feature Theseus Ariadne Comment
Mazes with cycles 3 3
Mazes without cycles 3 3

Mazes with cycles and
spaces 3 7

This option makes Theseus
generate “rooms” which make it
hard to think of the maze and its
solution(s) in distinct passages.

Selection of map sizes 3 3
Ariadne will provide a number of
pre-defined map sizes.

Selection of style of
passages 7 3

Ariadne will allow choosing
between “normal” and “long”
passages.

Random selection of
start and finish 3 3

Ariadne will randomly place start
and finish during maze
generation.

Manual selection of
start and finish 3 3

Manual editing of
maze 3 7

This feature might be added to
Ariadne at a later point in time,
see Chapter 8.

Display of line of sight 7 3

Theseus does not give any
information about the direction
into which the algorithm is
currently “looking”.

Selection of initial line
of sight 7 3
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3.3.2 Algorithm Formulation

Feature Theseus Ariadne Comment
Description of
algorithms 7 3

Creation and
modification of
algorithms

7 3

3.3.3 Pre-Defined Maze Solving Algorithms

Feature Theseus Ariadne Comment
Random Walk 3 3

Left Wall 3 3
Simple Ariadne
Thread 3 3

In Theseus: “Depth-first” +
“Ariadne’s thread”

Optimised Ariadne
Thread 3 3

In Theseus: “Depth-first” +
“Ariadne’s thread” +
“Optimization”

Bullet 3 7
This algorithm is not well
documented.

Breadth-First 3 3

Kruskal 3 7
In Theseus: Only available in
graph view.

Prim 3 7
In Theseus: Only available in
graph view.

Please note that algorithms which will not be available pre-defined in Ariadne
can potentially be built by users themselves, due to the new possibility to “program”
algorithms from scratch.

3.3.4 Algorithm Execution

Feature Theseus Ariadne Comment
Start 3 3
Stop 3 3

13



Single step 3 3

Reset 3 3
Selection of execution
speed 3 3

Display of all shortest
solutions

∼ 3
In Theseus: Only after execution
of Breadth-First Search.

Visualisation of
execution in the maze 3 3

Both Theseus and Ariadne show
an actor moving through the
maze during algorithm execution.

Visualisation of
execution in algorithm 7 3

Ariadne will highlight the
individual steps of the algorithm
during execution.

3.3.5 Accessibility

Feature Theseus Ariadne Comment
Accessible locally 3 3
Accessible remotely 7 3
Operating system
independent 7 3

Ease of use 7 3

Controls that can be clicked at
any time but require the
application to be in a certain
state in order to work and the
complete lack of documentation
make Theseus rather difficult to
handle for first time users.

Help dialog 7 3

3.3.6 Display Options

Feature Theseus Ariadne Comment
Colour graphics 3 3
Black & white
graphics 3 7

English texts 3 3

German texts 3 7

Maze view 3 3

14



Graph view 3 7

Experience with Theseus has
shown that the graph view
feature does not improve the
learning experience of budding
students of computer science but
rather confuses them when the
familiar maze visualisation is
replaced by plain nodes and
edges.

3.3.7 File Operations

Feature Theseus Ariadne Comment
Open maze 3 3

Save maze 3 3
Open algorithm 7 3
Save algorithm 7 3

15





CHAPTER 4
Didactic Analysis

After defining what algorithms are and explaining why they should be taught in Section 4.1,
a didactic analysis will be performed to determine the didactic approach that the
implementation of Ariadne will be based upon.

According to [Bau96], didactic analysis happens in two steps. First, a range of didactic
options is identified – these are alternatives out of which the most suitable one shall be
determined. The second step is to define learning targets and content of the curriculum
and assess the didactic options in the context of this subject matter. This analysis allows
making an informed selection of one of the alternatives.

Didactic options will be presented and selected for three important aspects of Ariadne:

• For the general approach to teaching algorithmic thinking (Section 4.2).

• For the way of formulating algorithms (Section 4.3).

• For the way of visualising algorithm execution (Section 4.4).

4.1 Algorithms

This thesis is about teaching algorithmic thinking. In order to be able to present and
evaluate didactic options for this endeavour, this section will define what algorithms are
and establish why they should be taught to students of computer science.

4.1.1 Definition

Algorithms can be thought of as “simple extensions of our daily rational thinking process”
detailing “step-by-step procedures to achieve [. . . ] rational objectives” [Kin12]. Such
“descriptions of processes” [BC15] could be precise machine language instructions as well
as plain text cooking recipes. In the context of computer science algorithms it is therefore
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important to state that algorithmic work instructions for solving a problem or a task
must be formulated precisely enough in order for a computer to execute them [Bol06].

Algorithms may display certain properties as listed by [Bol06]. These properties are
either static (relating to the description of the algorithm) or dynamic (relating to the
execution of the algorithm):

• Static properties

– Unambiguousness: Algorithms should unambiguously describe a process
for solving a given problem.

– Parameterability: Algorithms should solve a class of problems which follow
the same schema, rather than solving one particular problem only.

– Finiteness: Algorithm descriptions should possess a finite length.

• Dynamic properties

– Executability: Algorithms should not contain steps that cannot be executed.

– Termination: Algorithms should terminate after a finite number of steps.

– Determination: Determined algorithms will always produce the same results
given the same inputs.

– Determinism: During the execution of deterministic algorithms there are
exactly zero or one possibilities to continue execution at any given moment.

The maze solving algorithms discussed in Chapter 6 possess most of these character-
istics.

4.1.2 Motivation for Teaching Algorithms

There is an abundance of programming libraries, cloud services and APIs that can be
re-used for the large majority of challenges a programmer might face each day. Thus, it
is understandable if one questions the use of teaching algorithms (such as sorting, search
or graph algorithms) and their derivation to students. However, similar to calculations in
Mathematics, programming (and therefore algorithmic thinking) is a primary experience
in computer science [SK09] and remains one of the most important subjects to teach.
Understanding the foundations of algorithmic thinking is essential for being able to
formulate new algorithms when faced with unfamiliar problem descriptions or tasks.
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4.2 Teaching Algorithmic Thinking

4.2.1 Didactic Options

There are a various approaches to learning how to program [SS11]1. Relevant approaches,
i.e. didactic options, are listed below:

Through Programming Languages

In this approach, a programming language is learned by acquiring more and more
complex language constructs. This is very similar to learning a foreign language, starting
bottom-up [Fru06].

Through System Analysis

Following this approach, a complex system, its modules and their interaction are analysed
top-down [Fru06].

Through Learning Environments

Learning environments facilitate easily accessible programming education for beginners
because they combine descriptions of algorithms and their execution.

4.2.2 Selection of a Didactic Approach

The constructionist learning theory that was presented in Chapter 2 seems to be especially
well suited as a basis for deciding on a didactic approach for teaching algorithmic
thinking. It has been developed within the context of mathematics and computer science
education and has led to the widespread use of learning environments. Comparing
learning environments to the other didactic options given in Section 4.2.1 shows that
they are better suited for teaching beginners:

• Unlike the approach through programming languages, they lay focus on algorithmic
thinking rather than specific programming languages.

• Unlike the approach through system analysis, they are easily understood even
without previous knowledge of programming and system design.

Following advice given in [SS11], elementary computer science education should
convey a reduced, yet distortion-free, image of computer science. Learning environments
clearly focus on this task. Therefore, Ariadne will be designed as a learning environment
for students.

1It is valid to analyse approaches to learning how to program when it comes to learning how to
understand, modify and create algorithms because algorithmic thinking is a subset of the skills required
for programming whole systems (which typically contain a number of separate algorithms).
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4.3 Formulating Algorithms

4.3.1 Didactic Options

There are endless ways of describing algorithms, differing in vocabulary, preciseness, level
of abstraction, way of representation and other dimensions.

To illustrate different ways of describing algorithms, this section follows an example
given in [Bol06] and formulates algorithms that calculate the sum of all natural numbers
up to a given number n.

Colloquial Notation

Tasks for human beings will usually be described in a colloquial way. While such algorithm
descriptions may not be unambiguous enough for programmatic execution, they can
be interpreted correctly by humans because they are able to take context and personal
experience into consideration. A colloquial description for an algorithm solving the given
problem could be:

Given a natural number n, calculate the sum of all natural numbers from 1
to n. This sum is the result.

Flowchart Notation

Figure 4.1 shows how the algorithm could be described using the flowchart notation. It
is a graphical representation which clearly separates inputs and outputs from actionable
statements and decision points.

Nassi-Shneiderman Diagrams

Nassi-Shneiderman diagrams, also known as structograms, assist in formulating highly
structured representations of algorithms [NS73]. They do not allow GOTO statements
and therefore encourage structured programming which results in better readability and
easier understanding. An example is given in Figure 4.1.

Block Languages

Block languages support a way of visual programming that is especially easy to learn
and understand, since students neither need to memorize available commands nor their
specific syntax. An example is given in Figure 4.2.

Programming Languages

The most common way of describing algorithms in computer science is the exact speci-
fication using a programming language. Listing 4.1 shows the example algorithm in a
programming language with syntax similar to that of the C programming language.
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Figure 4.1: Flowchart notation (left) and Nassi-Shneiderman diagram (right)
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Figure 4.2: Block language

1 int n = readInt();
2 int result = 0;
3 int i = 0;
4
5 while (i <= n) {
6 result = result + i;
7 i = i + 1;
8 }
9

10 printInt(result);

Listing 4.1: Algorithm formulation resembling the C programming language

4.3.2 Selection of a Didactic Approach

When teaching algorithmic thinking, the focus should not lie on the specific way algorithms
are described; any kind of formulation may be used. However, certain kinds of formulation
may be better suited for beginners than others.

As presented in Chapter 2, constructionist learning theory advocates immediate
graphical feedback in learning situations in order to ease understanding of the problem
domain and the solution for the given problem. Continuing this thought, the learning
effect could improve even more when not only the problem domain is visualised but also
the algorithm operating on this domain. This is one of the reasons why block languages
seem to be well suited to support the formulation of algorithms. Comparison to the other
didactic options given in Section 4.3.1 reinforces this assumption:

• Colloquial notation may be easy to understand but does not allow programmatic
execution of the described algorithm due to the formulation’s ambiguity.
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• Flowchart notation may result in confusing structures, given its ability to depict
GOTO statements, i.e. arrows between any nodes.

• Nassi-Shneiderman diagrams are similar to the structured approach to programming
used in block languages, but do not allow students to intuitively recognise how the
"pieces of the puzzle" fit together.

• Programming languages require students to understand syntax expressed by key-
words and identifiers specific to a programming language and to distinguish between
this syntax and its semantics [FT03]. Also, program code might be formatted in
an endless number of ways, while block languages will always present an algorithm
in exactly the same way.

Ariadne will therefore integrate a block language into its learning environment.

4.4 Visualising Algorithm Execution
Executing an algorithm means feeding it any required input data and then sequentially
executing its specific steps until there are no more steps to execute. Unless any kind of
interaction with the user or the environment is required, this process may run by itself,
hidden from any insight, and only output the calculation result once the algorithm has
finished.

However, especially when it comes to teaching algorithmic thinking and trying to
foster understanding for an algorithm’s steps and decision points, it may be desirable to
give insight into the algorithm by visualising its execution. While there is an arbitrary
number of ways to do this, notable examples are given below:

4.4.1 Didactic Options

Log Messages

An algorithm may emit log messages when significant steps have been reached, outputting
information about the algorithm execution’s internal state at that point in time.

Stepping Through Source Code

Programmers have long relied on debuggers allowing them to step through source
code while watching variable values and being able to intervene in order to change
the algorithm execution outcome. In IDEs2, “[s]tatic displays of program code can be
animated automatically by highlighting the appropriate parts as the code runs” [Bro88].

Highlighting Blocks in a Block Language Environment

Similarly to stepping through source code, block languages may offer the possibility to
highlight the block that is about to be executed.

2Integrated Development Environments
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Algorithm Animation

Immediately visualising the results of algorithmic calculations during execution may
constitute the best way to foster deep understanding of an algorithm’s fundamental ideas.
This can be seen impressively, for example, in the various ways that sort algorithms can
be visualised by depicting the data that is being processed and the way it changes over
time during algorithm execution [Bos14]. An example is shown in Figure 4.3.

Figure 4.3: Visualisation of a sorting algorithm [Bos14]

A similar method which naturally fits learning environments is the graphical repre-
sentation of actors within a micro-world displayed on screen who are then animated,
following commands given to them from within the algorithm.

4.4.2 Selection of a Didactic Approach

As stated in Chapter 2, the constructionist learning theory advocates immediate graphical
feedback in learning situations in order to ease understanding of the problem domain.
After all, “[c]omputer programs in execution are complex objects whose properties can be
difficult to fathom” [BS84]. Computer science education is “one obvious application” for
algorithm animation [BS84] and since “students using animations report that they feel
the animations assist them in understanding an algorithm” [KST01], Ariadne will make
use of algorithm animation within its maze display and by block execution indication.

Furthermore, Ariadne will allow users to execute algorithms at varying speeds, pause
their execution at any time and step through the algorithm block by block, as already
suggested by [BS84].

4.5 Conclusion
Constructionist learning theory, as presented in Chapter 2, seems to be especially well
suited as a basis for selecting didactic options for the purpose of this thesis. Analysis of
the options shows that learning environments are an excellent way of supporting computer
science education targeted at beginners (see Section 4.2) and are ideally complemented
by block languages as a means of formulating algorithms (see Section 4.3) and algorithm
animation as a means of visualising algorithm execution (see Section 4.4). Therefore,
Ariadne will implement these approaches.
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CHAPTER 5
Maze Structures and Maze

Algorithms

[Fle14] gives the following brief introduction to mazes:

The history of mazes and labyrinths, respectively, and the development of
the first escape algorithms are at least as old as Greek mythology itself. For,
as the story goes, Theseus used a thread given to him by Ariadne to track
down the Minotaur in a maze and – after killing the creature – to find his
way out again.

This chapter describes the technical aspects behind the myths and presents maze
structures and ways to classify them in Section 5.1, methods for generating mazes in
Section 5.2 and methods for solving mazes in Section 5.3.

5.1 Maze Structures
A maze “is a tour puzzle through which a solver must find a solution. It is a network
of paths and hedges designed as a puzzle through which one has to find a way” [GS14].
Typically, a starting point and a finish point are given.

5.1.1 “Mazes” vs. “Labyrinths”

While “both maze and labyrinth depict a complex and confusing series of pathways” [Fol11],
most sources distinguish between those two terms. This thesis aligns with the following
consensus:

• A maze is multicursal (contains branching passages), and thus requires choices of
path and direction. It may include dead ends. [med14]
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• Labyrinths form a subset of mazes. They are unicursal, i.e. they contain “a
single passage that never branches but winds in a convoluted path from start
to finish” [BC15]. While they “[slow] down the solver from reaching the end
point” [Fol11], they are not difficult to solve.

This thesis deals with (multicursal) mazes, since only they require effort in order to
be solved.

5.1.2 Classification of Mazes

Mazes can be described along categories given by [Pul15]1:

• Dimension: The number of dimensions in space a maze covers. This thesis focuses
on two-dimensional mazes, while higher orders would be possible. For example,
one can “imagine a three-dimensional maze as a group of two-dimensional mazes
placed ‘on each other’ with an option to move upwards or downwards between
them” [Fol11].

• Topology: A maze can either be “normal” (a standard maze in Euclidian space
as examined in this thesis, see Figure 5.1) or “planair” (a maze with any kind of
abnormal topology, e.g. on a cube or on a Moebius strip, see Figure 5.2).

Figure 5.1: Normal topology

Figure 5.2: Planair topology

• Tessellation describes “the geometry of the individual cells that compose the maze”.
This thesis focuses on orthogonal mazes represented by a “rectangular grid where
cells have passages intersecting at right angles” [Pul15]. Other forms of tessellation

1The categories hyperdimension and focus are left out because they are not relevant for this chapter.
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are, for example, the “delta” tessellation (interlocking triangles, see Figure 5.3) or
the “theta” tessellation (concentric circles of passages, see Figure 5.4).

Figure 5.3: Delta tessellation
Figure 5.4: Theta tessellation

• Routing:

– A perfect maze does not contain any cycles, so that there is exactly one path
between any two cells (i.e. exactly one solution). It is “the simplest type of
maze for a computer to generate and solve” [Kir15].

– A braid maze does not contain any dead ends and will therefore usually contain
cycles.

– A partial braid maze contains both loops and dead ends.
– A unicursal maze (also known as a “labyrinth”, see Section 5.1.1) “consists

of just one snake-like passage without any choices for the solver to be taken
[. . . ]. Solving such a maze is generally easy. All it can cause is delaying the
solver from reaching the end point.” [Fol11].

Ariadne allows generating perfect mazes as well as partial braid mazes.

• Texture describes “the style of the passages of a maze, such as how long they tend
to be and which direction they tend to go” [BC15], how many dead-ends there are
and what the crossroad frequency is. As stated by [Fol11], “identifying a maze’s
texture can be done either by just observing the maze or by expressing it using
mathematical evaluation”. An algorithm’s “tendency to produce mazes of certain
textures” [BC15] is referred to as its bias.
For example, “[a] horizontally biased maze has (relatively) long horizontal passages
and (relatively) short vertical passages” [Fol11]. A cut-out of a maze with a bias
for horizontal passages is shown in Figure 5.5.

27



Figure 5.5: Horizontal bias

5.1.3 Mathematical Representation

Mathematically, a maze can be described as a simple, undirected, connected graph. This
means that it possesses the following properties:

• It contains neither loops nor multiple edges.

• Its edges can be traversed in either direction.

• Any two vertices are connected by a path.

If an implementation chooses to model each single cell within a maze as a node, no
weights need to be associated to the edges. However, if only junctions, dead ends and the
start and finish position within the maze are modelled as nodes, the graph needs to be
weighted so that the distances between the nodes can be taken into consideration when
solving the maze.2

The mathematical representation can be used to describe any kind of maze, e.g. 3D
mazes. Embedding their graphs on a two-dimensional surface even allows executing
the regular plane algorithms on them. However, for reasons of simplicity, Ariadne will
implement maze structures as an array of cells with links to neighbouring cells, as
described in Chapter 7.

5.2 Maze Generation Algorithms
There is a multitude of maze generation algorithms to choose from. They differ in several
dimensions, such as:

• Complexity of algorithm.

• Speed of algorithm execution.
2For an in-depth discussion of mazes in graph representation, see [Fle14] and [Fol11].
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• Texture of the generated mazes.

Since “[t]here is no universally ideal algorithm for generating mazes” [BC15], an
algorithm needs to be chosen depending of the requirements posed by the project, such
as memory usage, speed or aesthetics.

5.2.1 Introduction to Maze Generation Algorithms

Maze generation algorithms can be classified by their so-called focus [Pul15] into “passage
carvers” and “wall adders” [Fol11]. While passage carvers work on the precondition that
“all the walls of the maze are up” in order to “selectively knock down walls” [Kir15] (also
known as linking cells to each other), wall adders start on a blank grid and then build
up walls between cells.

Both types of algorithm need to perform a process of examining and manipulating
single cells, called “visiting” these cells [BC15]. Some algorithms can do so in any
arbitrary order, while others depend heavily on the order in which they visit cells (e.g.
when they are carving a passage from end to end before backtracking and starting to
work on a second passage).

Most maze generation algorithms create a perfect maze (see Section 5.1.2) by “‘growing’
the Maze while ensuring the no loops and no isolations restriction is kept” [Pul15]. While
doing so, “[i]n order to create a randomly [. . . ] structured maze, at least one or more
steps need to be randomized (i.e. the decision making within the step has to use a
function returning a random result)“ [Fol11].

Since the resulting maze does not contain any cycles and is easy to solve, many
situations will require braiding the maze, i.e. adding cycles, usually by removing dead
ends. In the end, “[m]azes may be heavily braided (with all or most dead ends removed),
or lightly braided (with only a few dead ends removed), or anything in-between” [BC15].
Ariadne will make use of an algorithm called dead-end culling, as presented in Chapter 7.

5.2.2 Requirements for Ariadne’s Maze Generation Algorithm

In order to comply with the requirements stated in Chapter 3, Ariadne needs to be able
to produce mazes without cycles as well as mazes with cycles. Following the definitions
given in Section 5.1, this means perfect mazes and partial braid mazes3.

While beauty is in the eye of the beholder, Ariadne should try to produce mazes that
are a good mix of long and short passages without any significant bias towards unusual
textures.

Other algorithm properties like speed or efficiency do not need to be taken into
consideration since the generated mazes are small enough to be calculated within a
matter of milliseconds, regardless of the specific algorithm.

3Ariadne will not generate complete braid mazes, that is mazes without any dead-ends, because
dead-ends pose their own challenges when designing maze solving algorithms.
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5.2.3 Selection of Maze Generation Algorithm

The Growing Tree Algorithm

[BC15] presents the so-called Growing Tree Algorithm which belongs to the family of
passage carving algorithms and generalises two simple variations of Prim’s Algorithm.
The resulting algorithm can easily be configured to behave differently and act like a
Recursive Backtracker Algorithm, for example. More interestingly even, the algorithm
can be “configured to mimic attributes of different algorithms, simultaneously” [BC15].
Ariadne will implement this algorithm because of its flexibility and convincing results
which are exempt of any bias. Other algorithms may be easier to implement (e.g. the
Binary Tree Algorithm which only needs to iterate over all cells in any order and only
keep the current cell in memory) but produce less appealing mazes4.

Ariadne will make use of the algorithm’s flexibility and allow the user to choose
between “normal passages” and “long passages”, further referred to as the mode of maze
generation.

Algorithm 5.1 shows the Growing Tree Algorithm in pseudocode. Please note that
the maze structure is represented as a rectangular grid of cells, as it will be used by the
implementation of Ariadne.
Algorithm 5.1: The Growing Tree Algorithm as implemented in Ariadne
Data: a grid of cells with walls between each cell and its neighbours, a mode of

maze generation (either ’normal passages’ or ’long passages’)
Result: the same grid with passages carved through the cells in order for them to

form a perfect maze
1 active ← a list containing a random cell of the grid as its only element
2 while active is not empty do
3 if mode is ’long passages’ or coin toss shows heads then
4 cell ← the last cell that was added to active
5 else
6 cell ← a random cell out of active
7 end
8 unvisitedNeighbours ← cell’s neighbours with intact surrounding walls
9 if unvisitedNeighbours is not empty then

10 randomUnvisitedNeighbour ← a random cell out of unvisitedNeighbours
11 link cell to randomUnvisitedNeighbour
12 add randomUnvisitedNeighbour to active

13 else
14 remove cell from active
15 end
16 end

4For a detailed explanation and comparison of maze generation algorithm, please refer to [BC15]
and [Pul15].
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This algorithm builds a set of active cells out of which it repeatedly selects one in
lines 3–7. This is where the algorithm mixes different styles together. If the mode was
chosen to produce long passages, line 4 will always be used as a cell selection mechanism.
If mode was chosen to produce normal passages, however, the coin toss function in line
3 mixes the cell selection criteria in line 4 and those in line 6. While line 4 resembles
the depth-first Recursive Backtracker Algorithm, line 6 resembles the Simplified Prim’s
Algorithm.

Therefore, if long passages are requested, the algorithm will always behave exactly
like the Recursive Backtracker Algorithm (thus carving passages until there is nowhere
else to go, then backtracking one step and trying to carve new passages from there). On
the other hand, if normal passages are requested, the algorithm will sometimes choose
to function like the Recursive Backtracker and other times choose to function like a
Simplified (unweighted) Prim’s Algorithm which leads to earlier branching and more
junctions.

Experimentation has shown that this mix of maze generation styles results in well-
balanced mazes with passages that are neither too short nor too long.

Line 8 finds all unvisited neighbours of the selected cell. If there are any, lines 10–12
randomly choose one of those neighbours and carve a passage to it, adding it to the list of
active cells. If there are no unvisited neighbour cells, however, the current cell is removed
from the list of active cells because it will never be used for carving passages out of again.

Generating Braid Mazes

The Growing Tree Algorithm generates a perfect maze, i.e. one without cycles. However,
since Ariadne will allow the user to generate mazes with cycles as well, there needs to
be a way to generate (partial) braid mazes. The solution is to run the Growing Tree
Algorithm and afterwards manipulate the resulting maze in order to add cycles. There
are a number of ways to do this, one is dead-end culling as proposed by [BC15] and listed
in Algorithm 5.2.

This algorithm iterates over all dead-end cells in the grid. Lines 3–5 check whether
the cell is still a dead-end – it could have already been linked to another cell in a previous
iteration. Unless that is the case, the algorithm goes on to calculate a random number
between 0 (inclusive) and 1 (exclusive) and compares it to the value of the input parameter
p. If it is greater or equal, execution continues with the next dead-end cell without
manipulating the current one. This lets the user specify the probability of removing
dead-ends, thus allowing fine-tuning the algorithm according to personal taste.

Next, all neighbouring cells are determined that are not currently linked to the dead-
end cell under inspection. Out of those, the algorithm prefers cells which are dead-ends
themselves in order to “kill two birds with one stone” (line 10). If such cells do not exist,
all unlinked neighbours remain valid candidates (lines 11–13).

Finally, one cell out of the candidates is chosen randomly and the dead-end cell under
inspection is linked to it, i.e. a passage between the two is carved. By doing this, a cycle
is generated within the maze (which, therefore, becomes harder to solve).
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Algorithm 5.2: Dead-end culling
Data: a grid with passages carved through its cells, p = probability of removing

dead-ends
Result: the same grid with some of its dead-ends removed in favour of cycles

1 deadendCells ← all dead-end cells in the grid, in random order
2 foreach cell in deadendCells do
3 if cell is not a dead-end then
4 continue to next iteration
5 end
6 if random number in range [0, 1) >= p then
7 continue to next iteration
8 end
9 unlinkedNeighbours ← cells currently not linked to cell

10 candidates ← all dead-end cells out of unlinkedNeighbours

11 if candidates is empty then
12 candidates ← unlinkedNeighbours
13 end
14 link cell to a random cell out of candidates

15 end

5.3 Maze Solving Algorithms
The question of how to find a path from point A to point B within a maze is well
researched but remains fascinating to this day. A formal definition of the underlying
“maze search problem” is given by [Fle14]:

Describe a general algorithm which constructs a closed covering walk W in a
connected graph G such that, in the course of constructing W, this algorithm
can only handle local information available at any vertex reached by W.

The last part of the quote is significant: The algorithm shall only be able to “see”
the immediate surroundings of its current path. It shall not know anything about the
finish and its location within the maze, or the current cell’s location within the maze.
The situation resembles then a person led into a maze while being blind-folded. After
having the blindfold removed, the person is free to walk through the maze on his or her
search for the finish.

The person may, however, have certain accessories which might help on the journey:

• The person may attach an infinitely long piece of thread at the starting point and
then lay out the thread as he or she walks through the maze. This allows the
person to trace back his or her way without having to remember all previous turns

32



by heart. While tracing back, the thread would be rolled up again. After finding
the finish, the thread can be used to trace the path from the finish point back to
the starting point.

• The person may somehow leave marks on the parts of the maze that are being
visited, e.g. by painting a sign onto the floor. Coming across a marked cell reveals
that this part has already been visited (and that it may not be worth going that
way again because of a cycle within the maze).

As discussed in Chapter 3, Ariadne will provide a number of pre-defined algorithms
which will be further discussed in this section. However, as stated before, the user is free
to experiment with Ariadne in order to create new or modified algorithms.

Please note that the pseudocode in this chapter will discuss algorithms for use by
human beings. The actual implementation of these algorithms within the context of
Ariadne and its block language will be presented in Chapter 7. For a detailed discussion
of maze solving algorithms, please refer to [Pul15].

5.3.1 The Random Walk Algorithm

The Random Walk Algorithm as listed in Algorithm 5.3 is the simplest one pre-defined
by Ariadne in terms of “having to think”. The person in the maze simply takes random
paths from junction to junction until the finish is found. (Upon reaching a dead-end, the
person walks back to the previous junction since this would be the only available path.)
Algorithm 5.3: The Random Walk Algorithm
Data: a person on a given starting point within a maze, a finish point within the

same maze
Result: the person standing on the finish point

1 start laying out thread
2 while person has not found finish do
3 choose a random path and walk along until the finish or a junction is reached
4 end
The person does not “remember” anything about its previous paths, therefore po-

tentially making “stupid” decision like walking along a cycle several times in succession.
Given enough time, the algorithm will find the finish but is obviously not efficient in
doing so. Still, the thread could then be used to describe the exact path taken from start
to finish.

5.3.2 The Left Wall Algorithm

The Left Wall Algorithm5, as listed in Algorithm 5.4, is very simple to understand for a
human person: “Always walk along the left wall”. In a dead-end, this would make the

5The Left Wall Algorithm is also known as the Wall Follower Algorithm [BC15].
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person go back the way he or she came from.

Algorithm 5.4: The Left Wall Algorithm
Data: a person on a given starting point within a maze, a finish point within the

same maze
Result: the person standing on the finish point

1 start laying out thread
2 while person has not found finish do
3 follow the left wall until the finish or a junction is reached
4 end

While it is easy to grasp, The Left Wall Algorithm has one big disadvantage: The
algorithm is only guaranteed to find the finish within mazes that do not have cycles. For
mazes that do have cycles, depending on the start and finish positions, the algorithm
may find the target or may get caught up in an endless loop along a cycle.

5.3.3 The Simple Ariadne Thread Algorithm

The Simple Ariadne Thread Algorithm as shown in Algorithm 5.5 is a variant of the
depth-first traversal of a graph. The person is told to lay out thread along the way while
always following the left wall. In a dead-end the person would need to walk back for a
bit and roll up the thread laid out before.

The person is also told to never walk across thread that has been rolled out before,
because this situation would mean that a cycle has been reached. The thread thus allows
making the informed decision that walking along would mean entering a cycle and that
it is better to treat the current cell as a dead-end, turn back and roll up thread along the
way.

Algorithm 5.5: The Simple Ariadne Thread Algorithm
Data: a person on a given starting point within a maze, a finish point within the

same maze
Result: the person standing on the finish point

1 start laying out thread
2 while person has not found finish do
3 follow the left wall until the finish or a junction is reached, without crossing

previously laid out thread
4 end

This algorithm is guaranteed to find the finish in both mazes with and mazes without
cycles. However, it is clearly not very efficient because it does not remember which cells
have been visited before, therefore potentially visiting cells several times without gaining
anything from these extra steps. The Optimised Ariadne Thread Algorithm realises this
potential for improvement.
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5.3.4 The Optimised Ariadne Thread Algorithm

Improving on the previous algorithm, the Optimised Ariadne Thread Algorithm as shown
in Algorithm 5.6 instructs the person in the maze to mark cells that are being visited.
This allows recognizing previously visited cells.
Algorithm 5.6: The Optimised Ariadne Thread Algorithm
Data: a person on a given starting point within a maze, a finish point within the

same maze
Result: the person standing on the finish point

1 start laying out thread
2 start marking visited cells
3 while person has not found finish do
4 if person sees unvisited paths then
5 follow the left wall until the finish or a junction is reached, without

walking onto previously visited cells
6 else
7 backtrace to the previous junction
8 end
9 end
Line 4 tells the person to evaluate whether any unvisited paths can be seen, i.e. paths

that have not been marked as visited yet. If such paths exist, the person is told to follow
the left-most one until the finish or another junction is reached, or until a previously
visited cell lies ahead. Once a dead-end is reached or there is no unvisited path to take,
line 6 instructs the person to roll up the thread laid out before until the previous junction.

This algorithm is guaranteed to find a path from start to finish and does so in
an efficient manner – no cell is visited more often than twice. However, just like the
algorithms before, this algorithm is not guaranteed to find the shortest path. This is
what the next algorithm is designed for.

5.3.5 The Breadth-First Search Algorithm

The Breadth-First Search Algorithm as implemented by Ariadne and listed in Algo-
rithm 5.7 allows finding a shortest path from the start to the finish. Note that there
may be other equally short paths which are not found, however, because the algorithm
terminates after finding one shortest path.

The algorithm resembles a breadth-first search on a graph. Each iteration extends the
already found paths by one single step. When a junction is encountered, the algorithm
clones the person at the junction into several persons who then each follow one of the
paths on their own. As soon as one of the persons in the maze has found the finish, this
path is known to be a shortest path.

One person alone could not reasonably execute this algorithm, which is why the
metaphor of “splitting up into clones” has been introduced in the pseudocode. The reason
for not using more common programming terms (e.g. by using an array of paths) is that
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Algorithm 5.7: The Breadth-First Search Algorithm
Data: a person on a given starting point within a maze, a finish point within the

same maze
Result: one clone of the person standing on the finish point

1 start laying out thread
2 start marking visited cells
3 finished ← false
4 while not finished do
5 foreach person in maze do
6 pathCount ← number of unvisited paths seen by person
7 switch pathCount do
8 case 0 tell person to give up
9 case 2 or more tell person to split up into pathCount clones

10 endsw
11 end
12 foreach person in maze do
13 tell person to step onto a random unvisited neighbour cell
14 if person found finish then
15 finished ← true
16 break;
17 end
18 end
19 end

the block implementation shown in Chapter 7 will be using the very similar notion of
“cloning avatars”.
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CHAPTER 6
Preparation of Teaching Material

While Chapter 5 has specified the algorithms that will be pre-defined as block language
constructs in Ariadne, the level of abstraction that these algorithms will be formulated on
still needs to be defined. Section 6.1 discusses why this decision is important. Individual
blocks for describing maze solving algorithms are then presented in Section 6.2.

6.1 Selection of a Level of Abstraction

[Win08] states that “[t]he essence of computational thinking is abstraction” and goes on
to define the underlying process as follows:

The abstraction process introduces layers. In computing, we work simultane-
ously with at least two, usually more, layers of abstraction: the layer of interest
and the layer below; or the layer of interest and the layer above. Well-defined
interfaces between layers enable us to build large, complex systems. Given
the application programming interface (API) of a software component, a user
need not know the details of the component’s implementation to know how to
interact with it, and an implementer need not know who all the component’s
potential users might be in order to implement it correctly.

When it comes to the way that algorithms are formulated, this means that Ariadne
could present its maze solving algorithms on any level of abstraction that can be thought
of, providing coarse, generic block constructs that are useful for solving a certain task
but can hardly be re-used in another context, or very fine-grained blocks that can be
used in a number of contexts but would require its users to have deeper understanding of
the “lower layers”, i.e. the way that mazes and the objects acting on it are implemented.
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As one simple example, consider the Random Walk Algorithm which was presented
in Chapter 5, re-printed here as Algorithm 6.1:

Algorithm 6.1: The Random Walk Algorithm
Data: a person on a given starting point within a maze, a finish point within the

same maze
Result: the person standing on the finish point

1 start laying out thread
2 while person has not found finish do
3 choose a random path and walk along until the finish or a junction is reached
4 end

This pseudocode could be rewritten on a higher level of abstraction as listed in
Algorithm 6.2.

Algorithm 6.2: The Random Walk Algorithm – higher level of abstraction
Data: a person on a given starting point within a maze, a finish point within the

same maze
Result: the person standing on the finish point

1 start laying out thread
2 find finish by following random paths

Taking the other direction, the algorithm could of course also be rewritten on a lower
level of abstraction as in Algorithm 6.3, revealing more implementation details than the
versions before.
Algorithm 6.3: The Random Walk Algorithm – lower level of abstraction
Data: a person on a given starting point within a maze, a finish point within the

same maze
Result: the person standing on the finish point

1 start laying out thread
2 while person has not found finish do
3 neighbours ← the cells linked to the cell on which person is standing
4 if count of neighbours > 1 then
5 neighbours ← neighbours without the last cell that thread was laid out on
6 end
7 nextCell ← a random element out of neighbours
8 move person to nextCell

9 end

The initial design of block language constructs, their iterative re-design and the
diligent observation of how they work together in Ariadne’s maze solving algorithms have
led to a level of abstraction which aims at finding the balance between didactic reduction
(i.e. the simplified depiction of complex issues, see Chapter 4) and the requirement for
learning environments to convey a distortion-free image of computer science [SS11].
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The outcome aligns with the opinion of the developer of Blockly [Fra15c], a framework
for visual programming that will be used for implementing Ariadne (see Chapter 7):

Wherever possible a higher-level approach should be taken, even if it reduces
execution performance or flexibility. Consider this Apps Script expression:
SpreadsheetApp.getActiveSheet().getDataRange().getValues()

Under a 1:1 mapping which preserves all potential capabilities, the above
expression would be built using four blocks. But Blockly aims for a higher-
level and would provide one block that encapsulates the entire expression.
The goal is to optimize for the 95% case, even if it makes the remaining 5%
more difficult. Blockly is not intended to be a replacement for text-based
languages, it is intended to help users get over the initial learning curve so
that they can use text-based languages.

The individual blocks which have been designed based on the principles laid out
above are presented in Section 6.2.

6.2 Visual Programming Blocks

This section presents the individual blocks that are necessary to implement the pre-defined
maze solving algorithms presented in Chapter 51.

The Breadth-First Search Algorithm needs to be able to deal with multiple avatars,
hence requiring more sophisticated blocks. In order to keep the other algorithms as
simple as possible, Ariadne will include two sets of blocks – one set that deals with “single
avatar” situations and one set that deals with “multiple avatar” situations.

The internal structure of each block shows the text that the user will see on the block.
Items within square brackets (“[” and “]”), separated from each other by the “|” sign,
denote drop-down fields out of which the user needs to select one choice. Items within
angled brackets (“<” and “>”) denote places where other blocks need to be attached.

6.2.1 “Single Avatar” Blocks

These blocks are used by the algorithms which feature one single avatar moving through
the maze, i.e. the Random Walk Algorithm, the Left Wall Algorithm, the Simple Ariadne
Thread Algorithm and the Optimised Ariadne Thread Algorithm.

1Note that additionally to the custom maze-related blocks shown in this chapter, a number of blocks
are required that are not related to mazes at all, for example variable assignment, if/then/else and loop
structures. These blocks will not be presented in this chapter because the reader is most likely familiar
with their semantics. The implementation, as described in Chapter 7, will set up on the Blockly library
which has already built in the mentioned blocks for immediate use. For more information, please see the
Blockly Homepage [Fra15b] and the Blockly Wiki [Fra14a].
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• backtrace

This block instructs the avatar to roll up thread. If the avatar has not even started
laying out thread before, nothing happens. Otherwise, the thread is traced back
until. . .

– . . . the finish is reached.
– . . . a junction is reached.
– . . . there is no more thread to roll up.

• follow [random path |
1st path from left |
1st path from right]

without [any condition |
crossing previously laid out thread |
walking onto previously visited cells]

This blocks tells the avatar to follow either a random path, the first path from the
left or the first path from the right (depending on the avatar’s place in the maze
and its line of sight) out of a set of eligible paths.
The second drop-down allows for constraining which paths are seen as eligible:

– Without any condition means that all paths leading away from the avatar’s
current position are eligible.

– Without crossing previously laid out thread means that the avatar must not
step onto a cell on which thread has already been laid out before – except for
the single cell on which the last piece of thread was laid out.

– Without walking onto previously visited cells means that the avatar must not
step onto a cell which has already been marked as visited.

If there is no eligible path, nothing happens. Otherwise, the avatar chooses one of
the eligible paths:

– To choose a random path, the avatar uses a randomising function to select one.
Note, however, that unless it has not moved yet at all, the avatar chooses the
way “backwards” only if there are no other cells available. Without this logic,
the avatar might walk from junction A to junction B and then right back from
junction B to junction A – this would seem unnatural to the observer.

– To choose the first path from the left, the avatar determines whether the
path to its left is eligible. If not, the paths straight ahead, to the right and
backwards are evaluated in this order.

– To choose the first path from the right, the avatar determines whether the
path to its right is eligible. If not, the paths straight ahead, to the left and
backwards are evaluated in this order.
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Having chosen a path, the avatar follows it until. . .

– . . . the finish is reached.
– . . . a junction is reached.

If walking along the chosen path means that the avatar is walking backwards along
the most recently laid out thread, the avatar rolls up the thread while walking.

• found finish?

This block returns true if the avatar is standing on the finish cell and false otherwise.

• number of unvisited paths

This block returns the number of paths leading away from the avatar’s current
position that have not been marked as visited yet.

• say <MESSAGE>

This block instructs the avatar to print a message to the screen. The message is
shown for 3 seconds.

• start laying out thread

This block tells the avatar to start laying out thread. One can imagine the
avatar ramming a plug into the floor, attaching an infinitely long thread to it and
subsequently laying out the thread along the chosen paths.

• start marking visited cells

This block tells the avatar to mark cells as visited once it walks onto them. One
can imagine the avatar painting a sign onto the floor of the cells it is visiting.

• thread length

This block returns the length of the thread that the avatar has laid out. Having
walked from the first cell to a neighbouring cell, for example, 1 would be returned.
Without having laid out any thread, 0 is returned.

6.2.2 “Multiple Avatar” Blocks

These blocks are used by the Breadth-First Search Algorithm which requires the initial
avatar (that is already placed into the maze before the algorithm is executed) to split up
into multiple avatars in order to find the shortest path to the finish. Most blocks require
the user to specify which exact avatar instance shall receive a command.
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• all avatars

This block returns a list containing all active avatars (i.e. avatars which have not
given up their search) that are currently in the maze.

• avatar <AVATAR> found finish?

This block behaves like its single avatar version but allows the user to specify a
specific avatar instance.

• avatar <AVATAR>’s thread length

This block behaves like its single avatar version but allows the user to specify a
specific avatar instance.

• initial avatar

This block returns the initial avatar instance, i.e. the avatar that has been placed
into the maze already before algorithm execution.

• make <COUNT> avatars out of avatar <AVATAR>

This block is used for cloning avatars. Results differ depending on count:

– If count is 0, the avatar gives up its search for the finish and becomes inactive.
(See the description of the equivalent “tell avatar <AVATAR> to give up”
block below.)

– If count is 1, nothing happens.
– If count is 2 or higher, the avatar splits up into count avatars. Each new avatar

inherits the original avatar’s position and line of sight, as well as its preference
to lay out thread and to mark visited cells. Additionally, the original avatar’s
whole thread is cloned from beginning to end.

• number of unvisited paths seen by avatar <AVATAR>

This block behaves like its single avatar version but allows the user to specify a
specific avatar instance.

• tell avatar <AVATAR> to give up

This block instructs the specified avatar to give up its search for the finish and
become inactive. Afterwards, the avatar will not react to commands anymore and
the list returned by all avatars will not include this avatar.
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• tell avatar <AVATAR> to say <MESSAGE>

This block behaves like its single avatar version but allows the user to specify a
specific avatar instance.

• tell avatar <AVATAR> to start laying out thread

This block behaves like its single avatar version but allows the user to specify a
specific avatar instance.

• tell avatar <AVATAR> to start marking visited cells

This block behaves like its single avatar version but allows the user to specify a
specific avatar instance.

• tell avatar <AVATAR> to step onto a random unvisited cell

This block tells the specified avatar to step onto a neighbouring cell that has not
been visited yet. Note that the avatar does not follow the path for a number of
steps but takes exactly one single step. If there is no unvisited cell next to the
avatar, nothing happens.
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CHAPTER 7
Implementation

After the previous chapters have defined what requirements Ariadne needs to fulfil as
a learning environment and what contents it shall pre-define in order to allow students
an easy start, this chapter will give details about how its features have actually been
implemented in a “proof of concept” available at http://ariadne.melbinger.org.

Section 7.1 explains the main design decisions behind Ariadne and what the underlying
rationales have been. Section 7.2 shows what graphical user interface is presented to
the user and what its main components are. Going into details, Section 7.3 describes
the implementation of mazes and avatars, Section 7.4 explains how the required visual
programming capability has been implemented and Section 7.5 illustrates how algorithm
execution is performed and visualised.

7.1 Design Decisions

Ariadne is intended to be easily accessible to students in order to minimise the required
effort and keep learning motivation up. This can be translated into the following functional
requirements (see also Chapter 3):

• Ariadne needs to be accessible locally.

• Ariadne needs to be accessible remotely.

• Ariadne needs to be operating system independent.

• Ariadne needs to run on modern computers without requiring additional installation
of libraries or drivers.
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7.1.1 Technical Approach

Ariadne is designed as a Web application, i.e. a set of scripts executed within a Web
browser. It can be accessed remotely whenever an Internet connection is available or
locally after an archive of source files has been downloaded and extracted. Since all
required technology is included within Ariadne, no additional installations are needed as
long as a modern Web browser is used which supports HTML5 and JavaScript.

This approach follows today’s trend to provide online environments. As [FG11]
notes, they are “lightweight, just building upon the standard features of regular internet
browsers” and “ready to be used”. This is beneficial especially for online programming
environments which “offer an unprecedented opportunity to make available to students
powerful environments that do not require going through complex installation procedures
that may go well beyond their skills”.

7.1.2 High-Level Architecture

The application uses the React framework1 to organise its user interface into potentially
re-usable components and relies on JavaScript ECMAScript 6 language features2 to
modularise the source code. Ariadne’s code is “transpiled” to standard JavaScript code
using Babel3.

Figure 7.1 illustrates the high-level architecture of Ariadne’s source code and the
main interactions between its components.

Figure 7.1: High-level architecture of Ariadne

The main entry point for loading Ariadne is the App React component which renders
the primary (and currently only) page, namely SandboxPage.

1See http://facebook.github.io/react
2See http://es6-features.org.
3See https://babeljs.io.
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SandboxPage is a high-level component that encapsulates the following user interface
components:

• BlocklyComponent shows the block language editor and generates JavaScript
code for live execution of the user-provided block language algorithm.

• ControlsComponent shows the code execution control panel.

• MazeComponent shows the maze and the avatars that are placed within.

• NavigationBarComponent shows the navigation bar menu on top of the screen.

• SandboxDialogsComponent is used for displaying various dialogs to the user
(e.g. “New maze”, “Load maze” and “Save maze”).

Furthermore, SandboxPage instantiates several classes containing Ariadne’s business
logic:

• AriadneBlocks contains descriptions of the custom maze programming blocks
which are available in BlocklyComponent.

• AriadneRuntimeLibrary provides the actual implementation of the custom
maze programming blocks described by AriadneBlocks.

• EnhancedInterpreter provides a sandbox for safely executing JavaScript code.

• MazeController controls MazeComponent and holds meta information about
the maze, e.g. position of the avatars placed within and positions of visited cells.

7.2 Graphical User Interface Design

Ariadne’s graphical user interface follows the well-known pattern to have a menu bar
on top and the main content below it, in this case in two main panels that are aligned
side-by-side as shown in Figure 7.2.

A guiding principle for this very simple design was the insight that the presentation of
educational content should be reduced to the essential parts and that the less information
is presented, the better it can be processed by the learner [FT03]. This helps an
environment to prevent crossing the so-called “Deutsch limit” which roughly states “that
you can’t have more than 50 visual primitives on the screen at the same time” [Beg96]
– a practical barrier for programming highly complex systems in visual programming
languages.

The following two subsections describe NavigationBarComponent and Sandbox-
Dialogs which are embedded within the SandboxPage wrapper.
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Figure 7.2: Ariadne’s graphical user interface and its main components

7.2.1 Navigation Bar

The navigation bar on top of the screen is rendered by NavigationBarComponent
and designed to appear familiar to virtually all students. It can be used to execute
commands from various categories.

The first navigation bar menu is called “Maze” (see Figure 7.3) and offers the following
commands:

• New opens the “New maze” dialog.

• Load opens the “Load maze” dialog.

• Save opens the “Save maze” dialog.

• Show solutions toggles the graphical display of all shortest solutions within the
maze. See Section 7.3 for information on the implementation of this feature. Note
that the toggle state is displayed graphically. If the solutions are currently shown,
a checkmark is displayed within the navigation bar menu:
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Figure 7.3: The “Maze” navigation bar menu

The second navigation bar menu is called “Algorithm” (see Figure 7.4) and offers the
following commands:

• Clear removes all block language code from the visual programming editor.

• Load opens the “Load algorithm” dialog.

• Save opens the “Save algorithm” dialog.

• Load Random Walk Algorithm, Load Left Wall Algorithm, Load Simple
Ariadne Thread Algorithm, Load Optimised Ariadne Thread Algorithm
and Load Breadth-First Algorithm remove all current block language code
and replace it with the requested pre-defined algorithm. The block language
implementations of Ariadne’s maze solving algorithms are specified in Section 7.4.3.

The last navigation bar menu is called “Help” (see Figure 7.5) and offers the following
commands:

• Help opens the “Help” dialog.

• About opens the “About“ dialog.
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Figure 7.4: The “Algorithm” navigation bar menu

Figure 7.5: The “Help” navigation bar menu
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7.2.2 Dialogs

The component SandboxDialogs was not shown in Figure 7.2 because it spans the
whole screen and is invisible by default. When the user has selected an entry from
NavigationBarComponent that triggers a dialog, SandboxDialogs becomes active,
greying out the whole screen and displaying the requested dialog in the centre. As an
example, see Figure 7.6 which shows the About dialog.

Figure 7.6: The About dialog

The following dialogs can be shown:

• The New maze dialog as seen in Figure 7.7 lets the user create a new maze
according to the specified settings:

– The size of the maze may be chosen from the following values:
∗ X-Small (6 × 6)
∗ Small (9 × 9)
∗ Medium (12 × 12)
∗ Large (15 × 15)
∗ X-Large (21 × 21)

– The style of the passages determines whether the generated maze will have
“normal passages” or “long passages”.
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– The cycles field determines whether the generated maze will be a perfect maze
(option “no cycles”) or a partial braid maze (option “cycles”).

The initial avatar, its direction and the finish position are chosen randomly. For
more information about the maze generation and braiding algorithm used by
Ariadne please refer to Chapter 5.

Figure 7.7: The New maze dialog

• The Load maze dialog as seen in Figure 7.8 allows the user to restore a previously
saved maze (including its avatar and finish) by pasting an encoded maze into the
textbox. The maze must be encoded using JSON4 (as returned by the Save maze
dialog).

• The Save maze dialog as seen in Figure 7.9 encodes the maze, its avatar and finish
into the JSON format. The user may save this description to a local file and later
restore the maze using the Load maze dialog.

• The Load algorithm dialog as seen in Figure 7.10 lets the student restore a
previously saved algorithm (i.e. its visual programming blocks) by pasting an
XML-encoded algorithm (as generated by the Save Algorithm dialog) into the
textbox.

• The Save algorithm dialog as seen in Figure 7.11 returns an XML description
of the algorithm including the used blocks and their exact placement within the
visual programming component BlocklyComponent.

• The Help dialog as seen in Figure 7.12 hints students at the very first steps that
need to be taken in order to get an example algorithm loaded and running.

4JavaScript Object Notation, see http://www.json.org
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Figure 7.8: The Load maze dialog

Figure 7.9: The Save maze dialog

Figure 7.10: The Load algorithm dialog
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Figure 7.11: The Save algorithm dialog

Figure 7.12: The Help dialog
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• The About dialog has already been show in Figure 7.6 at the beginning of this
section. It displays information about the Ariadne project including links to the
license agreements of various re-used external libraries and resources.

7.3 Mazes and Avatars
Ariadne implements mazes and avatars as a set of JavaScript classes which include
business logic (e.g. on how to generate mazes) as well as information on how they need
to be rendered by MazeComponent.

7.3.1 Data Structures

Mazes can be defined in many ways:

• As “a system of catacombs (in ‘real life’)” [Fle14].

• As “a set of unit squares in the Euclidean plane” [Fle14], i.e. a grid.

• As a graph, especially because “a grid can be viewed as a special case of a
graph” [Pat13]. Graphs may be used to define perfect as well as (partial) braid mazes
(see Chapter 5). A perfect maze could even be defined as a specialisation of graphs,
namely as a tree, because “it is connected and contains no cycles” [Jár09] which
implicates that “there is exactly one path between each pair of vertices” [Fol11].

Ariadne’s implementation follows the “[i]ntuitive and wide spread understanding
and graphical representation of a maze grid” as a “rectangular shape with orthogonal
tessellation”, as formulated by [Fol11]. (As the author notes, however, “it is important
to keep in mind that this is just one of the potential representations.”).

Grid

Ariadne models a maze as cells (instances of class Cell) of a grid (instance of class
Grid). [Kir15] and [BC15] suggest alternative representations, e.g. bitfields and sets of
edges and nodes, but Ariadne’s implementation appears to be far easier to understand
and delivers a performance that is more than sufficient for the project’s needs. Listing 7.1
shows the most relevant parts of the implementation of Grid.

Please note this listing, just like the following ones, has been slightly simplified in
order to increase readability and that the external library lodash5 (referred to in the
source code as the underscore symbol ‘_’) is used when native JavaScript does not offer
the required functionality.

1 import _ from ’lodash’;
2 import Cell from ’./Cell’;
3

5See https://lodash.com
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4 export default class Grid {
5
6 // [...]
7
8 /**
9 * Instantiates a new Grid.

10 *
11 * @param {number} cols
12 * @param {number} rows
13 */
14 constructor(cols, rows) {
15 this._cols = cols;
16 this._rows = rows;
17 this.clear();
18 }
19
20 /**
21 * Clears a grid by setting up a new array of unlinked cells.
22 */
23 clear() {
24 this._cells = [];
25
26 let x, y;
27 for (y = 0; y < this._rows; y++) {
28 for (x = 0; x < this._cols; x++) {
29 this._cells.push(new Cell(x, y));
30 }
31 }
32
33 for (y = 0; y < this._rows; y++) {
34 for (x = 0; x < this._cols; x++) {
35 let cell = this.getCell(x, y);
36
37 if (y > 0)
38 cell.setNeighbour(’N’, this.getCell(x , y - 1));
39
40 if (x < this._cols - 1)
41 cell.setNeighbour(’E’, this.getCell(x + 1, y ));
42
43 if (y < this._rows - 1)
44 cell.setNeighbour(’S’, this.getCell(x , y + 1));
45
46 if (x > 0)
47 cell.setNeighbour(’W’, this.getCell(x - 1, y ));
48 }
49 }
50 }
51
52 /**
53 * Returns the cell on the given location.
54 *
55 * @param {number} x
56 * @param {number} y
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57 * @returns {Cell}
58 */
59 getCell(x, y) {
60 return this._cells[y * this._cols + x];
61 }
62
63 /**
64 * Returns a cell’s array index.
65 *
66 * @param {Cell} cell
67 * @returns {number}
68 */
69 getCellIndex(cell) {
70 return cell.getY() * this._cols + cell.getX();
71 }
72
73 /**
74 * Returns all cells.
75 *
76 * @returns {Cell[]}
77 */
78 getCells() {
79 return this._cells;
80 }
81
82 /**
83 * Returns the width of the grid.
84 *
85 * @returns {number}
86 */
87 getColumnCount() {
88 return this._cols;
89 }
90
91 /**
92 * Returns the height of the grid.
93 *
94 * @returns {number}
95 */
96 getRowCount() {
97 return this._rows;
98 }
99

100 /**
101 * Returns a random cell out of the grid.
102 *
103 * @returns {Grid}
104 */
105 getRandomCell() {
106 return _.sample(this._cells);
107 }
108
109 // [...]
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110
111 }

Listing 7.1: Grid.js

Note how constructor() and clear() work together to create an empty grid
of cells which are stored in a flat array. Each cell knows its immediate neighbours to
the north, east, south and west. A grid, its cells and their cell indices are illustrated in
Figure 7.13.

Figure 7.13: A 6 × 6 Grid and its array of Cell instances

Cell

As explained above, a grid is made out of many cells. When there is a path between two
neighbouring cells, they are said to be “linked”. Listing 7.2 shows the most relevant parts
of the implementation of Cell.

1 import _ from ’lodash’;
2
3 export default class Cell {
4
5 // [...]
6
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7 /**
8 * Instantiates a new Cell.
9 *

10 * @param {number} x
11 * @param {number} y
12 */
13 constructor(x, y) {
14 this._x = x;
15 this._y = y;
16
17 this._north = null;
18 this._east = null;
19 this._south = null;
20 this._west = null;
21
22 this._links = [];
23 }
24
25 /**
26 * Returns the direction to a neighbouring cell.
27 *
28 * @param {Cell} cell
29 * @returns {number} The direction in degrees.
30 */
31 getDirectionTo(cell) {
32 if (cell == this._north) return 0;
33 if (cell == this._east) return 90;
34 if (cell == this._south) return 180;
35 if (cell == this._west) return 270;
36 }
37
38 /**
39 * Returns the neighbouring cell in the specified direction,
40 * or null if there is no neighbour there.
41 *
42 * @param {number} direction The direction in degrees.
43 * @returns {Cell|null}
44 */
45 getLinkedNeighbourInDirection(direction) {
46 switch (direction) {
47 case 0:
48 if (this._north && this.isLinkedTo(this._north))
49 return this._north;
50 break;
51
52 case 90:
53 if (this._east && this.isLinkedTo(this._east))
54 return this._east;
55 break;
56
57 case 180:
58 if (this._south && this.isLinkedTo(this._south))
59 return this._south;
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60 break;
61
62 case 270:
63 if (this._west && this.isLinkedTo(this._west))
64 return this._west;
65 break;
66 }
67
68 return null;
69 }
70
71 /**
72 * Returns all linked neighbours.
73 *
74 * @returns {Cell[]}
75 */
76 getLinkedNeighbours() {
77 let linkedNeighbours = [];
78
79 if (this._north && this.isLinkedTo(this._north))
80 linkedNeighbours.push(this._north);
81
82 if (this._east && this.isLinkedTo(this._east))
83 linkedNeighbours.push(this._east);
84
85 if (this._south && this.isLinkedTo(this._south))
86 linkedNeighbours.push(this._south);
87
88 if (this._west && this.isLinkedTo(this._west))
89 linkedNeighbours.push(this._west);
90
91 return linkedNeighbours;
92 }
93
94 /**
95 * Returns all neighbours.
96 *
97 * @returns {Cell[]}
98 */
99 getNeighbours() {

100 let neighbours = [];
101 if (this._north) neighbours.push(this._north);
102 if (this._east) neighbours.push(this._east);
103 if (this._south) neighbours.push(this._south);
104 if (this._west) neighbours.push(this._west);
105 return neighbours;
106 }
107
108 /**
109 * Returns the orientation towards a neighbouring cell.
110 *
111 * @param {Cell} cell
112 * @returns {string}
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113 */
114 getOrientationTo(cell) {
115 if (cell == this._north) return ’N’;
116 if (cell == this._east) return ’E’;
117 if (cell == this._south) return ’S’;
118 if (cell == this._west) return ’W’;
119 }
120
121 /**
122 * Encodes the cell’s passages to its neighbour cells.
123 *
124 * @returns {string}
125 */
126 getTileIndex() {
127 return (
128 (this._north && this.isLinkedTo(this._north) ? ’1’ : ’0’) +
129 (this._east && this.isLinkedTo(this._east) ? ’1’ : ’0’) +
130 (this._south && this.isLinkedTo(this._south) ? ’1’ : ’0’) +
131 (this._west && this.isLinkedTo(this._west) ? ’1’ : ’0’)
132 );
133 }
134
135 /**
136 * Returns all neighbours that are not linked to this cell.
137 *
138 * @returns {Cell[]}
139 */
140 getUnlinkedNeighbours() {
141 let unlinkedNeighbours = [];
142
143 if (this._north && !this.isLinkedTo(this._north))
144 unlinkedNeighbours.push(this._north);
145
146 if (this._east && !this.isLinkedTo(this._east))
147 unlinkedNeighbours.push(this._east);
148
149 if (this._south && !this.isLinkedTo(this._south))
150 unlinkedNeighbours.push(this._south);
151
152 if (this._west && !this.isLinkedTo(this._west))
153 unlinkedNeighbours.push(this._west);
154
155 return unlinkedNeighbours;
156 }
157
158 /**
159 * Returns the x coordinate within the grid.
160 *
161 * @returns {number}
162 */
163 getX() {
164 return this._x;
165 }
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166
167 /**
168 * Returns the y coordinate within the grid.
169 *
170 * @returns {number}
171 */
172 getY() {
173 return this._y;
174 }
175
176 /**
177 * Returns true if the cell has only one linked neighbour.
178 *
179 * @returns {boolean}
180 */
181 isDeadend() {
182 return this._links.length == 1;
183 }
184
185 /**
186 * Returns true if the cell has any linked neighbours.
187 *
188 * @returns {boolean}
189 */
190 isLinked() {
191 return this._links.length > 0;
192 }
193
194 /**
195 * Returns true if the cell is linked to the specified other cell.
196 *
197 * @param {Cell} cell
198 * @returns {boolean}
199 */
200 isLinkedTo(cell) {
201 return _.contains(this._links, cell);
202 }
203
204 /**
205 * Links this cell to the specified other cell and vice versa.
206 *
207 * @param {Cell} cell
208 */
209 linkTo(cell) {
210 if (!_.contains(this._links, cell)) this._links.push(cell);
211 if (!_.contains(cell._links, this)) cell._links.push(this);
212 }
213
214 /**
215 * Informs this cell about its neighbour in the specified orientation.
216 *
217 * @param {string} orientation
218 * @param {Cell} cell
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219 */
220 setNeighbour(orientation, cell) {
221 switch (orientation) {
222 case ’N’:
223 this._north = cell;
224 break;
225
226 case ’E’:
227 this._east = cell;
228 break;
229
230 case ’S’:
231 this._south = cell;
232 break;
233
234 case ’W’:
235 this._west = cell;
236 break;
237 }
238 }
239
240 // [...]
241
242 }

Listing 7.2: Cell.js

The list below presents a few insights on the Cell source code:

• The constructor() instantiates a cell which is not yet aware of its neighbours
and has no links to other cells. Grid::clear() uses setNeighbour() to
correctly set up a grid of cells.

• getDirectionTo() and getOrientationTo() determine a cell’s position in
relation to a given neighbouring cell’s position, returning either an angle of 0◦,
90◦, 180◦ or 270◦ or one of the values ‘N’, ‘E’, ‘S’ or ‘W’, respectively. Each
method is best suited for a specific context – working with angles allows easily
calculating rotations, while the orientations north, east, south and west ensure
unambiguousness and improved understandability of the source code.

• getLinkedNeighbours() returns an array of all of a cell’s linked neighbours,
while getUnlinkedNeighbours() returns an array of all of a cell’s neighbours
that cannot be reached directly. getNeighbours() returns all neighbouring cells
without any further condition.

• getTileIndex() encodes information about a cell and the passages to its neigh-
bours. The result is used to determine which kind of passage or junction needs to
be displayed when rendering the cell.

• isDeadend() determines whether the cell only has one linked neighbour, which
would make it a dead-end. isLinked() checks whether the cell is linked to any
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other cell at all. isLinkedTo() determines whether the cell is linked to another
specific cell.

Overlay

Avatars, the starting and the finish point are all modelled as classes that all derive from
the base class Overlay which contains fields like x and y position, as well as shape
width and shape height. These attributes are required for rendering the entities on top
of the maze.

7.3.2 Maze Generation

Listing 7.3 shows the source code responsible for generating mazes.
1 import _ from ’lodash’;
2
3 export default class Grid {
4
5 // [...]
6
7 /**
8 * Generates a maze.
9 *

10 * @param {number} cols
11 * @param {number} rows
12 * @param {boolean} braid
13 * @returns {Grid}
14 */
15 static generate(cols, rows, mode, braid) {
16 let grid = new Grid(cols, rows);
17
18 let active = [grid.getRandomCell()];
19
20 while (active.length > 0) {
21 let cell;
22
23 switch (mode) {
24 case ’LAST’:
25 // Always select the most recently added member.
26 cell = _.last(active);
27 break;
28
29 case ’MIX’:
30 // Select the most recently added cell half the time
31 // and a random member the other times.
32 cell = Math.floor(Math.random() * 2) == 0 ?
33 _.sample(active) :
34 _.last(active);
35 break;
36 }
37
38 // Select all neighbours that have no links yet,
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39 // i.e. that have not been visited yet.
40 let unvisitedNeighbours = _.filter(
41 cell.getNeighbours(),
42 (neighbourCell) => !neighbourCell.isLinked()
43 );
44
45 if (unvisitedNeighbours.length > 0) {
46 // Select a random neighbour to link to
47 // and add it to the list of active cells.
48 let randomUnvisitedNeighbour = _.sample(unvisitedNeighbours);
49 cell.linkTo(randomUnvisitedNeighbour);
50 active.push(randomUnvisitedNeighbour);
51 } else {
52 // Nothing more to do with this cell.
53 _.pull(active, cell);
54 }
55 }
56
57 if (braid) grid.braid(0.8);
58 return grid;
59 }
60
61 /**
62 * Performs dead-end culling on a grid.
63 *
64 * @param {number} p The braiding intensity between 0.0 and 1.0.
65 * @returns {Grid}
66 */
67 braid(p = 1.0) {
68 let deadendCells = _.shuffle(
69 _.filter(
70 this._cells,
71 (cell) => cell.isDeadend()
72 )
73 );
74
75 for (let cell of deadendCells) {
76 // Might have been linked in a previous iteration.
77 if (!cell.isDeadend()) continue;
78
79 // Take the specified braiding intensity into consideration.
80 if (Math.random() > p) continue;
81
82 // Select all neighbours that cell is not already linked to.
83 let unlinkedNeighbours = cell.getUnlinkedNeighbours();
84
85 // Prefer to link two dead-end cells together.
86 let candidates = _.filter(
87 unlinkedNeighbours,
88 (cell) => cell.isDeadend()
89 );
90
91 // If there is no chance to link two dead-end cells together,
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92 // fall back to all possible neighbour cells again.
93 if (candidates.length == 0) candidates = unlinkedNeighbours;
94
95 // Randomly choose one of the potential neighbours to link to.
96 cell.linkTo(_.sample(candidates));
97 }
98
99 return this;

100 }
101
102 // [...]
103
104 }

Listing 7.3: Maze generation logic in Grid.js

While Ariadne’s maze generation algorithm has already been introduced formally in
Chapter 5, the following notes add some insight to the concrete JavaScript implementation:

• generate() is a static method that generates a maze and returns an instance of
Grid. It accepts the following parameters:

– cols: The requested maze width.
– rows: The requested maze height.
– mode: Determines the order in which the cells are visited. ‘LAST’ means

that the most recently added member of the active cells will be selected for
inspection while ‘MIX’ only selects the most recent cell half the time and a
random member of the active set the rest of the time.
Different selection criteria result in different maze textures: ‘LAST’ is used
when the user requests “long passages” and ‘MIX’ is used when the user
requests “normal passages”.

– braid: Determines whether the resulting maze will be a perfect maze (“no
cycles”) or a partial braid maze (“cycles”). If a partial braid maze is requested,
the algorithm calls braid() on the generated (perfect) maze with a braiding
intensity value of 0.8 that has proven to produce good looking mazes.

• braid() can be called on a grid to perform dead-end culling as described in
Section 5.2.3. The parameter p allows specifying the braiding intensity with a value
of 0.0 resulting in no changes to the maze and a value of 1.0 resulting in a maze
without any dead-ends.

7.3.3 Visualisation

Canvas Layers

The MazeComponent module is responsible for rendering the maze and everything on
top of it onto the screen. The following details need to be considered, starting with the
bottom layer to the top layer:
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• The grid’s individual cells need to be rendered with paths in between them.

• The solution paths need to be rendered.

• The avatars’ threads need to be rendered.

• The starting point and finish point need to be rendered.

• The avatars need to be rendered.

• The avatar speech bubbles need to be rendered.

The “most widely supported standard for 2D immediate mode graphics on the
web” [Smu11] is the canvas element that was introduced with HTML5. It allows
rendering graphics fast enough to support animations which are “critical to a fun
experience” [Lon13].

[Lon13] suggests putting all required images into one image called a “sprite map”.
This is how Ariadne stores, for example, avatar animation graphics as seen in Figure 7.14.
Note that Ariadne’s maze graphics have been largely been taken from Blockly Games,
“a series of games that teach programming concepts and provides playgrounds to do
open-ended programming” [Fra14b].

Figure 7.14: The avatar sprite map

Since some parts of the maze are static and only need to be drawn once while other
parts require constant updating (e.g. moving avatars), the implementation of Ariadne
follows the advice given by [Smu11] to layer canvases on top of one another: “By using
transparency in the foreground canvas, we can rely on the GPU to composite the [alpha
transparency values] together at render time.” Sprites are therefore drawn onto either
the “grid canvas” (used for the underlying grid), the “overlay canvas” (used for avatars,
starting and finish point, threads and solution paths) or the “speech canvas” (used for
avatar speech bubbles).

Maze Display

On start-up, Ariadne does not automatically generate a maze but presents the user with
a quick way to get started as shown in Figure 7.15. The button labelled “Generate a
maze” lets the user quickly generate a maze using the default options for a 12 × 12
partial braid maze with normal passages.

Once a maze is loaded, the navigation bar allows the user to toggle the display of all
shortest paths (see Section 7.2.1). Figure 7.16 shows how the solution paths are rendered.

In order to find the shortest solution paths, Ariadne performs a breadth-first traversal
of the maze as shown in Listing 7.4.
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Figure 7.15: Ariadne’s maze panel after starting the application

Figure 7.16: A maze with its solutions rendered as green paths
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1 import _ from ’lodash’;
2
3 export default class Grid {
4
5 // [...]
6
7 /**
8 * Finds all shortest path from a starting point to a finish point.
9 *

10 * @param {Cell} start
11 * @param {Cell} finish
12 * @returns {[[Cell]]} an array of paths
13 */
14 findShortestPaths(start, finish) {
15 if (!start || !finish) return [];
16
17 let distance = 0;
18 let distances = _.fill(new Array(this._cells.length), null);
19 let visitedCells = [start];
20 let frontier = [start];
21
22 // Keep "flooding" the maze, starting from one point and increasing
23 // the radius one by one, until there are no more unvisited cells to
24 // examine. The result is an array with each cell’s distance to the
25 // starting point.
26 while (frontier.length > 0) {
27 let newFrontier = [];
28
29 for (let cell of frontier) {
30 distances[this.getCellIndex(cell)] = distance;
31
32 let neighbourCells = cell.getLinkedNeighbours();
33 for (let unvisitedNeighbourCell of _.difference(
34 neighbourCells,
35 visitedCells
36 )) {
37 visitedCells.push(unvisitedNeighbourCell);
38 newFrontier.push(unvisitedNeighbourCell);
39 }
40 }
41
42 distance++;
43 frontier = newFrontier;
44 }
45
46 let paths = [[finish]];
47 let pathsGrew;
48
49 // Start at the finish and walk backwards onto cells of lower

distance
50 // towards the starting point. At junctions, clone the current path

and
51 // follow each path individually.
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52 do {
53 let newPaths = [];
54
55 pathsGrew = false;
56 for (let path of paths) {
57 let cell = _.last(path);
58 let neighbourCells = cell.getLinkedNeighbours();
59
60 let lowerNeighboursCells = [];
61 for (let neighbourCell of neighbourCells) {
62 if (distances[this.getCellIndex(neighbourCell)] <
63 distances[this.getCellIndex(cell)]) {
64 lowerNeighboursCells.push(neighbourCell);
65 }
66 }
67
68 if (lowerNeighboursCells.length > 0) {
69 pathsGrew = true;
70
71 // Take the first one.
72 let firstLowerNeighbourCell =
73 lowerNeighboursCells.shift();
74
75 // Make new paths for the other lower neighbours cells,
76 // if there are any.
77 for (let lowerNeighbourCell of lowerNeighboursCells) {
78 let newPath = _.clone(path);
79 newPath.push(lowerNeighbourCell);
80 newPaths.push(newPath);
81 }
82
83 // Append the first lower neighbour cell to the current
84 // path array.
85 path.push(firstLowerNeighbourCell);
86 }
87 }
88
89 for (let newPath of newPaths) {
90 paths.push(newPath);
91 }
92 } while (pathsGrew);
93
94 return paths;
95 }
96
97 }

Listing 7.4: Determining all shortest solutions in Grid.js

Animations

Lots of care has been put into making the avatar animations as fluently as possible.
[Smu11] explains the state of the art when it comes to animations on the Web:

70



The relatively new requestAnimationFrame API is the recommended
way of implementing interactive applications in the browser. Rather than
command the browser to render at a particular fixed tick rate, you politely
ask the browser to call your rendering routine and get called when the browser
is available.

Please note that since Ariadne relies on this modern feature to move and rotate the
overlays pixel by pixel, it is not compliant with older Internet browsers.

7.4 Algorithm Descriptions
This section describes what framework Ariadne uses to provide a visual programming
editor for the user, how the custom blocks are designed and how the maze solving
algorithms pre-defined by Ariadne are implemented using these blocks.

7.4.1 Selection and Setup of a Visual Programming Framework

The didactic analysis presented in Chapter 4 suggests that teaching algorithmic thinking
profits massively from employing a visual programming language for students to “tinker
with”. Since Ariadne as a whole shall act as a learning environment, one reasonable ap-
proach could be to implement maze algorithms on top of an existing learning environment
that includes a visual programming language, such as Scratch.

However, this approach does not appear to be best suited for Ariadne. Scratch
scripts “are anchored on game characters called sprites which are perceived as the
behaving entities” [MWW12] and are therefore not ideal for describing algorithms which
usually are not part of a single sprite’s implementation but rather a more general part
of the implementation – especially when a number of sprites (i.e. avatars) need to be
coordinated.

Also, Scratch would require tedious preparation of the environment to be able to
display mazes and then require the implementation of custom functions (e.g. “follow
path”) in order to provide the right level of abstraction and didactic reduction suitable
for beginners.

Analysis of Scratch and similar learning environments has quickly shown that forcefully
trying to use these systems in a way they were not supposed to be used is not worth
the effort and that creating a new learning environment would be necessary. However,
re-creating visual programming capabilities is not required. There are a number of
frameworks available which allow creation of custom visual programming languages. The
best suited candidate proved to be the Blockly library, which has already been presented
in Chapter 2. It is. . .

• . . . based on client-side Web technology (HTML5 and JavaScript).

• . . . able to start locally without Internet access.

• . . . able to generate JavaScript code that can be run within the browser.
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• . . . easy to extend with custom blocks.

Ariadne uses BlocklyComponent as a wrapper for Blockly-related functionality.
However, displaying blocks, managing their interaction and generating code are built-in
features of Blockly and little enhancements are necessary.

7.4.2 Design of Custom Blocks

The individual blocks that are required by Ariadne have been determined in Chapter 6.
Modelling them for Blockly in the Block Factory6 is an easy task since this tool auto-
generates most block layout code for the programmer. Listing 7.5 shows the layout code
for the multiple-avatar “found finish?” block as one example.

1 export default class AriadneBlocks {
2
3 // [...]
4
5 /**
6 * Loads custom blocks into a Blockly instance.
7 *
8 * @param {Blockly} blockly
9 */

10 loadBlocksIntoBlockly(blockly) {
11
12 // [...]
13
14 blockly.Blocks[’multi_found_finish’] = {
15 init: function () {
16 this.appendDummyInput()
17 .appendField("avatar");
18 this.appendValueInput("AVATAR")
19 .setCheck("TYPE_AVATAR");
20 this.appendDummyInput()
21 .appendField("found finish?");
22 this.setInputsInline(true);
23 this.setOutput(true, "Boolean");
24 this.setColour(20);
25 }
26 };
27
28 // [...]
29
30 }
31
32 // [...]
33
34 }

Listing 7.5: Multiple-avatar “found finish?” block layout in AriadneBlocks.js

6See https://blockly-demo.appspot.com/static/demos/blockfactory/index.html
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Loading this programmatic description into Blockly results in a concrete block
language construct that is rendered as shown in Figure 7.17.

Figure 7.17: Multiple-avatar “found finish?” block display

AriadneBlocks.js goes on to define all blocks that are eventually shown to the
user. The two categories of blocks (“Single avatar” and “Multiple avatar”) are shown in
Figure 7.18.

Figure 7.18: Single avatar and multiple avatar blocks

Note that the text inside blocks is written in lower case in order to prepare students
for text-based programming languages which usually define keywords in lower case as
well. The colours were chosen to allow easy distinction between blocks that execute
commands and blocks that return values. Furthermore, the short block descriptions as
given in Chapter 6 are shown as tooltips when the user moves the mouse pointer over
blocks.

7.4.3 Implementation of Maze Solving Algorithms

Figures 7.19, 7.20, 7.21, 7.22 and 7.23 show how the pre-defined maze solving algorithms
in Ariadne are implemented in block language. For the formal description of these
algorithms, please refer to Chapter 5.
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Figure 7.19: Block language implementation of the Random Walk Algorithm

Figure 7.20: Block language implementation of the Left Wall Algorithm
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Figure 7.21: Block language implementation of the Simple Ariadne Thread Algorithm

Figure 7.22: Block language implementation of the Optimised Ariadne Thread Algorithm
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Figure 7.23: Block language implementation of the Breadth-First Algorithm
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7.5 Algorithm Execution

This section describes Ariadne’s code generation rules, how the generated code is executed
and how that execution is visualised.

7.5.1 Code Generation Rules

AriadneBlocks contains block design descriptions (as seen before in Section 7.4) as
well as code generation rules for Blockly. In order to improve modularisation of the
source code and therefore facilitate separation of concerns, these code generation rules
do not include the actual business logic that has to be executed once the block itself is
executed within an algorithm. Instead, the blocks generate code that calls a runtime
library, as seen in Listing 7.6 using the “found finish” block as an example once more.

1 export default class AriadneBlocks {
2
3 // [...]
4
5 /**
6 * Loads custom blocks into a Blockly instance.
7 *
8 * @param {Blockly} blockly
9 */

10 loadBlocksIntoBlockly(blockly) {
11
12 // [...]
13
14 blockly.JavaScript[’multi_found_finish’] = function (block) {
15 let value_avatar = blockly.JavaScript.valueToCode(
16 block,
17 ’AVATAR’,
18 blockly.JavaScript.ORDER_ATOMIC
19 );
20
21 return [
22 ’__multi_foundFinish(’ + value_avatar + ’)’,
23 blockly.JavaScript.ORDER_NONE
24 ];
25 };
26
27 // [...]
28
29 }
30
31 // [...]
32
33 }

Listing 7.6: Multiple-avatar “found finish?” code generation rules in
AriadneBlocks.js
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This means that on execution, the “found finish?” block will run __multi_found-
Finish().

7.5.2 Sandboxed JavaScript Execution

Code generated by Blockly is not executed within the normal browser runtime context
because of potential security and performance risks. Instead, JS-Interpreter7 is used to
parse the generated JavaScript code and execute it within a sandbox that cannot access
browser data directly. Accessing the “real world” is only possible through explicitly
defined “external API’s”8.

Continuing with the example of the “found finish?” block, lines 15–23 of List-
ing 7.7 shows how such an external API is defined for the previously mentioned
__multi_foundFinish() interface.

1 export default class AriadneRuntimeLibrary {
2
3 // [...]
4
5 constructor(blocklyComponent, mazeController) {
6 this._blocklyComponent = blocklyComponent;
7 this._mazeController = mazeController;
8 }
9

10 initializeInterpreter(enhancedInterpreter, jsInterpreter, scope) {
11 this._enhancedInterpreter = enhancedInterpreter;
12
13 // [...]
14
15 jsInterpreter.setProperty(
16 scope,
17 ’__multi_foundFinish’,
18 jsInterpreter.createNativeFunction(
19 (avatar) => jsInterpreter.createPrimitive(
20 this.multi_foundFinish(avatar.data)
21 )
22 )
23 );
24
25 // [...]
26 }
27
28 multi_foundFinish(avatar) {
29 return
30 this._mazeController.locateOverlayCell(avatar) ==
31 this._mazeController.getFinishCell();
32 }
33
34 // [...]

7See https://neil.fraser.name/software/JS-Interpreter/
8Application Programming Interfaces
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35
36 }

Listing 7.7: Multiple-avatar “found finish?” external API definition and business logic in
AriadneRuntimeLibrary.js

Finally, the external API delegates the call to the actual business logic implementation
of the “found finish?” block in lines 28–32. This is where maze and avatar data is analysed
and manipulated according to the executed block’s semantics.

7.5.3 Execution Control

JS-Interpreter allows continuously running code at varying speeds, pausing it as well as
stepping through it. Ariadne makes use of all these features by providing an execution
control panel to the user as shown in Figure 7.24.

Figure 7.24: The Ariadne execution control panel after start-up

The following bullet points describe the execution control behaviour:

• The plus and minus signs allow adjusting the execution speed.

• The play button starts continuous execution, while the step button executes exactly
one block before pausing execution.

• During continuous execution, the step button is replaced with a pause button.

• Pressing the stop button stops algorithm execution and resets the maze to its
original state (which includes moving the avatar back to its starting position).
As soon as the algorithm has terminated, the three bottom control buttons are
replaced by a restart button which also resets the maze.

Execution controls are imitating media player controls that are familiar to most
people and are intuitive to use.

7.5.4 Execution Visualisation

When a visual programming block’s business logic requests movement of an avatar,
MazeController receives the command and animates the micro steps necessary to
move or rotate an avatar on top of the maze.
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While moving, if the avatar has received the “start marking visited cells” command,
visited paths are “painted” gray. If the avatar has received the “start laying out thread”
command, laid out thread is painted along the path in red colour. Figure 7.25 shows a
maze during algorithm execution with both options activated. Note also that the total
number of steps taken by the avatar(s) in the maze is printed below the maze grid.

Speech bubbles can be shown with the “say” block and are rendered on top of all
other graphics for 3 seconds, as shown in Figure 7.26.

Figure 7.25: Marking visited cells and laying out thread during algorithm execution

Additionally to the immediate feedback within the maze, the user of Ariadne also
sees the currently executing block highlighted within the Blockly editor, as shown in
Figure 7.27. This allows students to immediately connect algorithm formulation and
algorithm execution visualisation, as suggested by the didactic analysis in Chapter 4.
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Figure 7.26: Rendering of a speech bubble

Figure 7.27: Highlighting of the currently executed block
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CHAPTER 8
Evaluation of Results

This chapter evaluates whether the original requirements for Ariadne have been fulfilled
(Section 8.1) and hints at possible future development options that have not been realised
in the current implementation (Section 8.2).

8.1 Fulfilment of Requirements
The presented “proof of concept” implementation of Ariadne fulfils all requirements that
were stated in Chapter 3 and is ready to be used by students and teachers under the
URL http://ariadne.melbinger.org as shown in Figure 8.1. It can be accessed
online or downloaded for off-line use as a ZIP archive.

Note, however, that the implementation makes use of several modern Internet browser
features (e.g. HTML5, CSS3 and requestAnimationFrame) and therefore requires an
up-to-date client. Ariadne has been successfully tested with Firefox 42, Google Chrome
46 and Internet Explorer 11.

8.2 Future Development
There are a number of improvements that could be made to Ariadne in the future. The
following paragraph lists several suggestions for future development in no particular
order:

• There might be a need for new custom blocks in order to allow further maze solving
algorithms to be developed.

• Ariadne could support a new mode for describing and executing maze generation
algorithms. Since these algorithms can be either “passage carvers” or “wall adders”
(see Chapter 5), Ariadne would need to be able to provide grids that are either
cells without any passages between them or cells that are each connected to all of
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Figure 8.1: The Ariadne Web page

their neighbours. Clearly, a new set of custom blocks would be required as well
and the notion of “avatars” might become obsolete in that setting.

• If not only algorithmic thinking but also programming in specific languages is in
scope, displaying generated code might be required. The generate code would not
need to be the exact code that is executed within the browser but could emulate
any programming language desired.

• Sound effects could be added, since they have proven to be very useful “for reinforcing
visual views, conveying patterns, replacing visual views, and signaling exceptional
conditions” [BH92].

• The possibility to manually edit mazes (i.e. adding and removing passages) by the
user could be implemented.

• A tutorial mode might help to introduce the custom blocks one by one.
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• Loading and saving mazes and algorithms could make use of more advanced file
APIs in modern browsers.

It will be important to use Ariadne in real-world teaching situations and gather
feedback from the students. After all, they need to enjoy their learning experience and
make actual use of the provided tools.
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CHAPTER 9
Conclusion

This thesis has built upon the existing Theseus program which is currently used to
support the teaching of algorithmic thinking to budding students of computer science at
the Vienna University of Technology. Analysis of its shortcomings has led to a vision
for a new online learning environment called Ariadne. Using constructionist learning
theory as a foundation to analyse and select didactic options has resulted in the concrete
implementation of Ariadne as a web application that can be used online as well as off-line.

Like Theseus, Ariadne features algorithm animation to visualise algorithm execution,
i.e. the search for paths within a maze. However, Ariadne adds another important aspect
by integrating a visual block programming language for formulating maze solving algo-
rithms, thus allowing students to gain deep understanding of the pre-defined algorithms,
to modify them and to even to create new ones from scratch.
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