

Teaching JavaScript to
Expert Java Developers

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Mag.rer.soc.oec.

im Rahmen des Studiums

Informatikmanagement

eingereicht von

Dipl.Ing. Dr.techn. Hannes Obweger
Matrikelnummer 0425962

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Mag.rer.soc.oec. Dr.rer.soc.oec. Christian Huemer

Sydney, 10.11.2015

(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A1040 Wien ▪ Karlsplatz 13 ▪ Tel. +431588010 ▪ www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der Arbeit

Hannes Obweger

74/2-4 East Crescent Street
2060 McMahons Point
New South Wales, Australia

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich
die verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass
ich die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen
–, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach
entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung
kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

Abstract

In recent years, Single Page Applications (SPAs) emerged as a de-facto stan-
dard for modern, user-friendly web sites. While their advantages are manifold,
SPAs massively impact the distribution of code and responsibility among an
application: Where before, the web front-end of a Java application was essen-
tially an orchestration of servlets and JavaServer Pages – driven from, and
developed as part of the server – it is now an independent application in its
own right. As a result of these developments, more and more developers are
required to implement features to run in the browser, written in JavaScript.

For companies as well as for individuals, the shift towards browser-centred
engineering raises issues of developer education. Despite of their similar name
and syntax, JavaScript and Java are highly different languages that require
specific patterns and engineering practises. For a developer with many years
of experience in Java or similar languages, learning JavaScript means more
than just learning a new language: It requires a fundamental change in how
to think about and approach programming problems – a so-called mind shift.

The issue of knowledge transfer across programming paradigms and languages
has been intensely researched in the field’s transition from procedural to object-
oriented programming, and diverse strategies have been proposed. The goal of
this thesis is to show if, and how, existing strategies and experiences reflect
in today’s expert developer education, in the context of teaching JavaScript
to expert Java developers. For this purpose, we conduct a qualitative content
analysis of three real-world examples, each representing a popular format of
eduction: (i) talks at developer-centred tech conferences, (ii) non-academic
professional literature, and (iii) company-internal trainings.

The on-hand thesis provides a detailed discussion of the phenomenon of (skill)
transfer, which serves as the theoretical framework of our work. We present
our research strategy based on Krippendorff’s [78] standard model for content
analysis and discuss the results of our study on the level of individual cases as
well as on an aggregate level.

Kurzfassung der Arbeit

Single-Page Applications bieten zahlreiche Vorteile gegenüber klassischen
Web-Architekturen, erfordern jedoch eine technische Aufwertung der client-
seitigen Logik einer Webanwendung: Aspekte, die traditionell über Serverkom-
ponenten gelöst wurden, müssen nun direkt im Browser, in JavaScript, imple-
mentiert werden. Als Folge dieser Entwicklung verschiebt sich der Schwerpunkt
vieler EntwicklerInnen von server- hin zu client-seitiger Programmierung.

Die beschriebene Entwicklung stellt Firmen wie EntwicklerInnen vor große
Herausforderungen. Trotz ähnlicher Namensgebung und Syntax handelt es sich
bei JavaScript und Java um völlig eigenständige Sprachen, die auf höchst un-
terschiedlichen, teils konträren Prinzipien und Ideen beruhen. Für langjährige
Java-EntwicklerInnen ist JavaScript daher mehr als nur eine weitere Sprache,
sondern erfordert völlig neuartige Strategien und Denkweisen.

Wissenstransfer über Programmiersprachen und -paradigmen hinweg stellt ein
wohlbekanntes Problem der Software-Entwicklung dar und wurde insbesondere
im Zuge des Übergangs von strukturierter hin zu objekt-orientierter Entwick-
lung ausführlich diskutiert. Ziel der vorliegenden Arbeit ist es nun, die Verwen-
dung bestehender Strategien und Erfahrungen im Kontext der gegenwärtigen
Entwicklung hin zu JavaScript und browser-basierter Entwicklung zu untersu-
chen. Zu diesem Zweck wird eine Qualitative Inhaltsanalyse an drei konkre-
ten Lehreinheiten aus dem Bereich der EntwicklerInnernweiterbildung durch-
geführt. Jede dieser Fallstudien repräsentiert dabei eine bestimmte Form der
Weiterbildung: (i) Vorträge bei Developer-Konferenzen, (ii) nicht-akademische
Fachliteratur, sowie (iii) Firmen-interne Trainings.

Den theoretischen Teil der vorliegenden Arbeit bildet eine ausführliche Dis-
kussion des allgemeinen Phänomens des Wissenstransfers, welches als theore-
tische Grundlage der dargelegten Studie dient. Wir begründen die gewählte
Forschungsstrategie auf Basis des von Krippendorf [78] vorgestellten Modells
und besprechen die Resultate unserer Studie auf der Ebene einzelner Fallstu-
dien wie auch aus einer gesamtheitlichen Perspektive.

Contents

1 Introduction . 13
1.1 Motivation . 13

1.1.1 Another web revolution . 14
1.1.2 In search of the full-stack developer 16
1.1.3 The challenges of developer education 16
1.1.4 From Java to JavaScript . 17

1.2 Contributions . 17
1.3 Research Method . 18
1.4 Relevance for the program . 21
1.5 Structure of this thesis . 21

2 JavaScript Background . 23
2.1 Overview . 23

2.1.1 Interpreted . 24
2.1.2 Dynamic . 24
2.1.3 Prototype-based . 26
2.1.4 First-class functions . 26

2.2 The rise of scripting languages . 26
2.3 JavaScript in computer science education 27

3 Theoretical Background . 29
3.1 Skill transfer: An overview . 30

3.1.1 Definitions . 30
3.1.2 Dimensions of transfer . 31
3.1.3 Transfer vs. learning . 33

3.2 Skill transfer in historical context . 34
3.2.1 The doctrine of formal discipline . 34
3.2.2 Thorndike’s theory of identical elements 34
3.2.3 Meaningful learning vs. sole repetition 35
3.2.4 The Gestalters and analogical transfer 35
3.2.5 Production system theories . 36

10 Contents

3.3 Negative Transfer . 37
3.3.1 Classic studies . 37
3.3.2 Theories of negative transfer . 39
3.3.3 Types of negative transfer . 40

3.4 Transfer in programming . 41
3.4.1 Programming skills as schema-based knowledge 41
3.4.2 Positive transfer . 42
3.4.3 Negative transfer . 43

3.5 From procedural to object-oriented programming 45
3.6 Models and theories . 48

3.6.1 Osgood’s transfer surface in software engineering 48
3.6.2 Mindshift Learning Theory . 49

3.7 Reducing negative transfer in programming 50
3.7.1 Heterogenous backgrounds . 50
3.7.2 Explication of mind shifts and in-depth courses 50
3.7.3 Guided analogies . 51
3.7.4 Cognitive dissonance . 52

4 Research Strategy . 55
4.1 Overview . 55

4.1.1 Paradigm-level and concept-level analysis 57
4.1.2 Concept mappings . 57
4.1.3 A qualitative approach . 59
4.1.4 A case-based approach . 59

4.2 Conceptual Foundations . 60
4.2.1 Texts . 61
4.2.2 Research Questions . 61
4.2.3 Context . 61
4.2.4 Inference and analytical constructs 62
4.2.5 Validating evidence . 63

4.3 Units . 63
4.3.1 Sampling units . 63
4.3.2 Coding units . 64
4.3.3 Context units . 65

4.4 System of categories . 65

5 Example 1: JavaScript for Java Developers
(Conference Talk) . 75
5.1 Overview . 75
5.2 Paradigm-Level Analysis . 76
5.3 Concept-Level Analysis . 78
5.4 Discussion . 83

6 Example 2: A Software Engineer learns HTML5,
JavaScript, and jQuery (Professional Literature) 87

Contents 11

6.1 Overview . 88
6.2 Paradigm-Level Analysis . 89
6.3 Concept-Level Analysis . 91
6.4 Discussion . 94

7 Example 3: JavaScript Course – Types (Internal Training) . 97
7.1 Overview . 97
7.2 Paradigm-Level Analysis . 98
7.3 Concept-Level Analysis . 100
7.4 Discussion . 101

8 Summary . 105

9 Conclusion . 109

List of Figures . 113

List of Tables . 115

Listings . 117

References . 119

Appendices . 131

A Transcription: JavaScript for Java Developers 133

B Transcription: JavaScript Course – Types 153

1

Introduction

1.1 Motivation

There are some things which cannot be learned quickly, and time, which
is all we have, must be paid heavily for their acquiring. They are the
very simplest things and because it takes a man’s life to know them
the little new that each man gets from life is very costly and the only
heritage he has to leave.

When Hemingway [64] wrote this, he was talking about nothing less than
writing itself – writing “true sentences”, as he would put it elsewhere [65] –
and one can imagine him thinking of love, war, friendship, or hunting kudus
in the hills of northern Tanzania. For professional software engineers, learning
a new programming language or paradigm is typically less glamorous: It may
take a while, but certainly not a life time, and only few of us are lucky enough
to find things in, say, PHP that are worth being kept as a heritage. Adapting
to new technologies and techniques may not always be the most pleasurable
experience, but in a field that went from 3.5-inch floppy disks to the Internet
of Things in less than 30 years, it sure is necessary.

Following Thomas Kuhn’s [79] popular theory, development in a field is an
alternation of phases of continuous development and phases of revolutionary
changes – so-called paradigm shifts. Historically, the software business has
gone through such shifts on the level of general programming styles (or pro-
gramming paradigms), like the transition from procedural to object-oriented
programming, as well as on the level of software architectures, like the transi-
tion from mainframe to client/server setups. Today, ever-increasing demands
to web-application development drive shifts in both these areas: On the level
of programming styles, dynamic languages like JavaScript, Ruby, and Python,

0 This thesis is formatted based on a LATEX template provided by Gockel [55].

14 1 Introduction

establish as a lightweight, flexible, yet “professionally accepted” alternative
to C++, Java, and C#. On an architectural level, we experience that Single
Page Applications (SPAs) gradually replace the traditional web-application
architecture.

For software companies as well as for individuals, paradigm shifts impose ma-
jor challenges. Not only must programmers acquire new skills; they must do
so in the light of their existing knowledge and well-internalised patterns. Evi-
dently, developers will almost always be able to integrate some of their existing
skills into the new context and build up expertise incrementally. Other skills,
however, may just become suboptimal, if not plainly wrong, in a new context:
What has been applied successfully for years and years of professional soft-
ware development may suddenly have to be abandoned, forgotten, unlearned.
Ironically, the deeper the expertise of a developer, the more internalised and
automated certain development patterns and strategies are, the harder it may
be for the developer to adapt to new paradigms and technologies.

Psychological and pedagogical research describes the concepts of positive and
negative skill transfer. Positive transfer occurs when concepts from a previ-
ous context can be directly mapped into the new context. Negative transfer,
by contrast, occurs when the learner mistakenly attempts to map existing
knowledge into the new context, even though it is misleading to do so. Effi-
cient expert developer education must be aware of these effects and strive to
maximise positive transfer while keeping the risk for negative transfer low.

The issue of knowledge transfer across programming paradigms has been in-
tensely researched in the context of the field’s transition from procedural to
object-oriented programming, and diverse strategies have been proposed to
streamline the process. In the present work, we investigate the use of selected
strategies in the context of teaching JavaScript to expert Java developers. For
this purpose, we conducted a qualitative content analysis (Mayring [98]) of
three real-world examples from expert development education, each represent-
ing a popular format of education.

1.1.1 Another web revolution

The World Wide Web we see today – the web of Gmail, Dropbox, and Insta-
gram – is very different from the web we used to know few years ago, also and
especially from a technical perspective. The rise of SOA, the establishment of
REST services as a lightweight alternative to the “big” SOAP/WSDL/UDDI
web-service stack (e.g., Pautasso [122]), the development of JavaScript into
a well-established language with excellent tool and framework support, the
transformation of web browsers into high-performance rendering engines, the
mobile revolution; it all lead the way to a new, client-driven architecture for
web applications. The new approach goes by many names: AJAX, Web 2.0,
Rich Internet Applications (RIAs), or Single Page Applications (SPAs).

1.1 Motivation 15

Figure 1.1 compares the SPA architecture with the traditional, page-sequence
based approach. In the traditional architecture, the client synchronously loads
a new page from the server with each interaction step. This is in line with how
the World Wide Web used to work, however, strongly limits possible interac-
tion patterns and leaves the user waiting for a full page load with every step. In
the SPA approach, the client first performs synchronous requests just as with
the traditional approach, loading the various HTML, CSS, and JavaScript re-
sources of the application. For every user action, instead of loading a new page,
the application then sends the submitted data as an asynchronous HTTP re-
quest, which hits a (typically view-independent) REST endpoint. As this call
does not block the client, the page can be updated at any point in time by ma-
nipulating the DOM tree; to show new data when the response of the HTTP
call is received, but also to display a loading indicator, or to immediately pro-
ceed with the next interaction step. All this – sending and receiving data,
updating the HTML structure – is no longer based on static patterns like form
elements and page loads, but driven from JavaScript.

t

t

t

t

{ … } { … } { … }

Page-sequence architecture

Single-page application architecture

Client is blocked Synchronous request Asynchronous request

Figure 1.1. Page-sequence architecture vs. single-page application architecture

The advantages of SPAs are manifold. For users, they bring faster response
times and desktop-like interaction patterns. For companies, they bring the ul-
timate decoupling of an application’s back-end layer and front-end layer: In a
radically REST-based architecture, the back-end provides nothing but a col-
lection of view-independent endpoints – an API – for which the application’s
native front-end is just one of many possible consumers. This is a great thing.
Yet it massively changes the distribution of code, complexity and responsibility
among an application: Where before, the web front-end of a Java application
was essentially an orchestration of servlets and JavaServer Pages – driven from
the server, developed as part of the server – it is now an independent appli-
cation in its own right, demanding its own architectural choices and tailored
engineering practices.

16 1 Introduction

1.1.2 In search of the full-stack developer

First introduced by flagship web applications like Gmail and Flickr in the
mid-2000s (cf. Cameron [15]), SPAs became the de-facto standard for mod-
ern, user-friendly web sites with the rise of social media at the very latest.
Today, traditional media, private and public service providers, and business
application providers are busy keeping up.

As a result of these developments, the industry started demanding a new type
of IT professional – the full-stack developer (e.g., Bueno [14]). The term does
not have a commonly accepted definition and scope, and as such is contro-
versial: Does the industry’s hunt for full-stack developers indicate that true,
specialised expertise, e.g. in database systems, is no longer desirable? Does it
mean that such knowledge is now expected in every possible aspect of profes-
sional application development? As Loukides [88] puts it, “Is full-stack devel-
oper just a code name for some mythical person who can do everything, from
writing assembly code to sweet-talking the banks?”

Despite all the criticism (and despite the plain nonsense that can be found
in some job descriptions), it is evident that companies today are looking for
employees who have, or are able to gain, a functional understanding of how the
different parts and components of an application work and play together. These
engineers won’t have top expertise in all layers; in the most extreme cases,
they may be top experts in none of them. But they are able to connect the
different tiers and to interact intelligently with other professionals – including
specialised top experts – who work on them.1 Being “Java-only” may have
been perfectly legit in 2010; today, you better be a genius in your domain, or
willing to think – and learn – outside the JVM box.

1.1.3 The challenges of developer education

How can companies satisfy their demand for full-stack developers? They could
just hire fresh blood, one might argue. Software engineers who enter the job
market today grew up in the “Web 2.0”, in a world where the most popular
programming language on GitHub is JavaScript (cf. Zapponi [172]), and at
the same time received a solid education in Java, C#, or C++ in school and
university.

Of course, it’s not all that simple: Established software companies sit on mas-
sive, highly complex code bases and development infrastructures, and it can

1 As Yared [169] suggests, this kind of engineer could be called a full-stack integrator
rather than a full-stack developer. Similarly, game-industry leader Valve [158],
among others, pursues the concept of the T -shaped developer : A person who is
skilled in a broad range of things (the top of the T) and a top expert in one
narrower discipline (the vertical leg of the T).

1.2 Contributions 17

take years for a newly hired engineer to understand only certain parts of them
(cf. Lee [81]). But being able to utilise, grow and improve existing achieve-
ments is vital to the future success of an organisation. A massive drop in an
R&D department’s overall experience and domain-knowledge level – absolute,
or even only relative – can put a company’s business into real danger; as Peter
Drucker [35] famously said in 1999, “the most valuable asset of a 21st-century
institution, whether business or non-business, will be its knowledge workers
and their productivity”. Plus, in a world where head hunters just wait for au-
tomated alerts from professional social networks, letting go experienced staff
can turn into a double-win for a company’s hardest competitors within hours.

In order to retain existing knowledge and, at the same time, adapt to changing
technologies, companies are obliged to continuously develop and extend the
skill sets of their existing R&D resources. This can be a fairly straightforward
– if not often implicit – process for smaller, incremental changes and shifts
like the release of a new version of the Java SDK. It turns, however, into
a substantial challenge when it comes to what has been called a mind shift
(Armstrong and Hardgrave [3]) in the literature: A fundamental change in the
way how professionals conceptualise and approach problems; a new way of not
only doing, but thinking about software development.

1.1.4 From Java to JavaScript

Learning JavaScript after years of Java development is such a mind shift.
Despite of their similar name and syntax, the two languages are based on highly
different principles and ideas. The static type system of Java vs. JavaScript’s
ever-present flexibility, block scoping in Java vs. JavaScript’s function scoping
and its emphasis on closures, the rich multi-threading capabilities of Java vs.
JavaScript’s strictly single-threaded approach – the list of differences is a long
one. In the words of John Resig [131], the father of jQuery:

JavaScript is to Java as hamburger is to ham; both are delicious, but
they don’t have much in common except a name.2

1.2 Contributions

In a field as fast and dynamic as the software business, developer education
is crucial for a company’s long-term success. This is especially true in times
of technological revolutions and paradigm shifts. Historically, programmers

2 Other versions of this famous analogy compare Java and JavaScript to ham and
hamsters (e.g., Colbow [20]), cars and carpets (e.g., Heilmann [62]), or, for the
less JavaScript enthusiastic, cars and carcinogens (e.g., Lay [80]).

18 1 Introduction

had to switch from procedural to object-oriented development and from main
frame to client-server architectures, just to name a few. Today, the manifold ad-
vantages of Single Page Applications (SPAs) over traditional web architectures
require more and more developers to implement features to run in the browser,
written in JavaScript. For developers with many years of Java experience, this
means more than just learning a new language; it means a fundamental change
in how to think about and approach programming problems.

Knowledge transfer across programming languages and paradigms, in partic-
ular the reduction of negative transfer effects, is a challenge that requires
tailored decisions and strategies. Various such strategies have been proposed
in the context of the field’s transition from procedural to object-oriented pro-
gramming. Yet, to the best of our knowledge, no research efforts were made so
far to explore the use of these strategies in teaching JavaScript to expert Java
developers.

This thesis contributes to the field of expert developer education an analy-
sis of knowledge transfer strategies in professional, state-of-the-art developer
education, in the context of teaching JavaScript to expert Java developers.
Despite of its qualitative and generally open-ended character, this investiga-
tion shall especially focus on the application of four selected strategies, all of
which were identified to be particularly well-elaborated and relevant to the
given context: Heterogenous backgrounds, explication of mind shifts, the use
of cognitive dissonance, and guided analogies. These strategies, briefly sum-
marised in Table 1.1 below, will be further elaborated in the theoretical part
of this thesis.

The presented study will indicate if, and how, previous research efforts as
well as practical experiences from the recent shift towards object-oriented
thinking impact contemporary educational practice in the context of teaching
JavaScript to expert Java developers. It will show if further, context-specific
efforts are required, and indicate whether academic insights have been success-
fully transferred back into real-world teaching situations as of now.

1.3 Research Method

The present work seeks to answer the given research question through a qualita-
tive content analysis of educational units. In his standard reference on content
analysis, Krippendorff [78] defines the research method as follows:

Content analysis is a research technique for making replicable and valid
inferences from texts (or other meaningful matter) to the contexts of
their use.

Our content analysis seeks to infer applications of the above-named knowledge
transfer strategies from the so-called concept mappings of an educational unit.

1.3 Research Method 19

Heterogenous backgrounds

Narrow, single-paradigm expertise was shown to impede learning in new contexts.
While existing knowledge of a learner must, to some degree, be accepted as a fact,
concepts should be examined thoroughly and from different angles before being
re-introduced in a new context.

Explication of mind shifts

If a transition requires a radical change in perspective, it is recommended to
clearly explicate this shift as well as its role as a requirement for successful learn-
ing. This explication encourages active self-monitoring, which is considered a
general supporting condition for positive transfer.

Cognitive dissonance

When introducing a new paradigm, educators should first try to establish a cog-
nitive dissonance about the existing approaches. This is done by questioning the
current, deeply internalised models, together with (and, ideally, driven by) the
learners; only after the drawbacks of a current concept are understood, a new
concept can be introduced.

Guided analogies

Analogies are a key facilitator of transfer, in positive as well as in negative di-
rection. Educators must therefore use analogies consciously and only if they are
thoroughly elaborated and qualified. Educators must explicate the possibility (or
risk) of transfer and clearly discourage learners from using analogies that are
potentially misleading.

Table 1.1. Selected knowledge transfer strategies

Generally speaking, a concept mapping associates a concept from a domain
that is new to the learner (the target domain; e.g., JavaScript) with a concept
from a domain that is known to the learner (the source domain; e.g., Java),
and is created whenever two such concept are put into any kind of relation
as part of an education unit. We argue that certain characteristics of such an
association – e.g., if the two concepts are described as similar or dissimilar, or
if their commonalities and differences are elaborated – provide indications for
the conscious or unconscious use of certain knowledge transfer strategies.

Facing the versatile and often subtle character of so-defined concept mappings,
our content analysis aims to be qualitative in that it shall respect “the con-
text of text components, latent structures of sense, distinctive individual cases,
[and] things that do not appear in the text” (Ritsert [133] acc. to [75]). A re-
spective variant of the classical content analysis has been proposed by Mayring
(e.g., [98, 100]) as qualitative content analysis.

Following ideas from case-study research (e.g., Yin [170]), our content analysis
adopts a conceptual (or purposive) sampling strategy (cf. Patton [120]). Un-
like probability sampling, the goal of conceptual sampling is not to create a

20 1 Introduction

random sample of the overall population, but to select units based on partic-
ular characteristics of the population that are of interest to the study (Lund
Research Ltd. [91]). The present work thereby aims to include examples from
different, popular formats of education: (i) talks at developer-centred tech con-
ferences, (ii) non-academic professional literature, and (iii) company-internal
trainings. The selection of the individual cases is based on theoretical as well as
pragmatic considerations: First and foremost, examples were selected that, as
explicit as possible, target expert Java developers. The selection of a company-
internal training was also a question of accessibility; only in the selected case
it was possible for the author of this work to join the class as a regular trainee
and thus experience the training under real-world conditions.

The selected cases are shown in Table 1.2 below.

JavaScript for Java Developers

by Yakov Fain [44], presented at Devoxx 2012 in Antwerpen, Belgium

The presentation provides an introduction to the fundamental concepts of
JavaScript. It explicitly acknowledges the difficulties in transitioning from Java
to JavaScript and aims to highlight differences between the languages (Fain [45]).
The talk is available as a recording from Parleys.com, a video streaming service
focusing on tech conferences.

A Software Engineer learns HTML5, JavaScript, and jQuery

by Dane Cameron [15], 1st edition, 2013, ISBN 1493692615, 256 pages

Listed as the seventh most popular book on JavaScript on Amazon.com3, the
book provides an introduction to HTML5, JavaScript, and jQuery based on an
exemplary web application that is developed throughout the book. As the title
indicates, it starts from the assumption that the reader has “some training as a
software engineer or computer programmer” (ibid.). In the present work, chapters
on HTML5, jQuery, and enhanced JavaScript concepts like WebWorkers are not
considered.

JavaScript Course: Types

Internal training, presented at a leading provider for team collaboration software
in June 2015

Provided periodically as a voluntary internal training, the course is presented by
a senior JavaScript developer with 10 years of experience in JavaScript develop-
ment. The training is targeted to developers with a strong background in Java
and a basic understanding of JavaScript. Recordings of the training are available
to the author and can be provided upon request.

Table 1.2. Selected cases

1.5 Structure of this thesis 21

1.4 Relevance for the program

According to the curriculum for Computer Science Management [152], “[the
program] intends to qualify graduates for the private education sector, for
example, to work a coach for informatics in companies” [translation ours]. The
on-hand thesis contributes to the field of expert developer education, one of
the central applications of company-internal or third-party-provided coaching
in IT. Expert developer education aims to enable experienced staff to apply
new paradigms and technologies and is of highest practical relevance for any
company that plans for long-term knowledge leadership in its field.

1.5 Structure of this thesis

The remainder of this thesis is structured as follows:

Chapter 2 gives a brief introduction to JavaScript. We outline the core charac-
teristics of the language, discuss the rise of scripting languages in recent years,
and look at the role of JavaScript in computer science education.

Chapter 3 presents the theoretical background of this work. We discuss the
phenomenon of skill transfer in general as well as in the context of software
engineering and elaborate on the concept of negative transfer. Following a de-
tailed introduction to existing research in the context of object-oriented pro-
gramming, we present relevant theories and discuss selected knowledge transfer
strategies as shown in Table 1.1 in greater detail.

Chapter 4 discusses the ideas and methods that underlie our research effort.
We outline the conceptual foundations of content analysis research and present
our study’s approach to unitising as well as the used system of categories.

Chapter 5, Chapter 6, and Chapter 7 present the investigated cases. We outline
the content of each educational unit and discuss the unit’s concept mappings
on a general level of as well as on the level of individual concepts. Findings
across the investigated cases are summarised in Chapter 8.

Chapter 9 concludes this thesis and gives an outlook to future research issues.

The appendix of this work provides transcriptions of Yakov Fain’s JavaScript
for Java Developers [44] and the presented internal training on types in
JavaScript.

Apart from a short introduction to JavaScript in Chapter 2, the present work
does not further elaborate on concepts of Java or JavaScript. Interested readers
are referred to the works of Bloch [12] and Flanagan [51], respectively.

2

JavaScript Background

The present work contributes to the field of expert developer education in
the context of teaching JavaScript to expert Java developers. In the following,
we discuss related work in the areas of JavaScript and scripting languages.
Existing work related to the phenomenon of skill transfer, both generally and
in the specific context of software engineering, is presented in great detail in
Chapter 3 of this thesis, “Theoretical Background”.

Outlook

The remainder of this chapter is structured as follows: Section 2.1 provides a
first introduction JavaScript and its central characteristics. The rise of script-
ing languages in general is discussed in Section 2.2. Section 2.3 discusses efforts
to use JavaScript in computer science education.

2.1 Overview

The Mozilla Foundation [111] describes JavaScript as follows (emphasis
added):

JavaScript (often shortened to JS) is a lightweight, interpreted,
object-oriented language with first-class functions, most known as
the scripting language for Web pages, but used in many non-browser
environments as well such as node.js or Apache CouchDB. It is a
prototype-based, multi-paradigm scripting language that is dy-
namic, and supports object-oriented, imperative, and functional pro-
gramming styles.

24 2 JavaScript Background

In the following, the highlighted characteristics of JavaScript are discussed in
greater detail. For further information on JavaScript and its characteristics,
the interested reader is referred to Flanagan [51], Crockford [24], and Resig and
Bibeault [131]. The eventful history of JavaScript has recently been sketched
by Severance [143].

2.1.1 Interpreted

JavaScript is interpreted and executed by virtual machines, so-called Java-
Script engines. The most prominent implementations of JavaScript engines
are Google’s V8 (used, for example, in Chrome and node.js), Mozilla’s Spider-
Monkey (used, for example, in Firefox and Adobe Acrobat), and Microsoft’s
Chakra (used in Internet Explorer 11).

As opposed to interpreted languages, compiled languages are transformed into
native machine code or an intermediate representation close to it. When in-
termediate representations are used, the distinction between interpreted and
compiled languages is naturally vague; according to Scott [142], a language
should be referred to as compiled if the compilation is “complex” – i.e., if it
analyses the code thoroughly and the output does not bear a strong resem-
blance to the source – and interpreted otherwise. Moreover, many languages
can be interpreted or compiled, so the distinction refers to the typical mode
of execution rather than an inherent characteristic of a language.

In practice, a language must be interpreted to allow certain dynamic features.1

2.1.2 Dynamic

JavaScript is dynamic as it (i) uses dynamic typing, (ii) allows dynamic object
modifications, and (iii) provides means for dynamic code evaluation.

Dynamic typing. JavasScript is dynamically typed as it does “not enforce or
check type-safety at compile-time, deferring such checks until run-time.” [155]
In other words, types are associated with values, not with variables; any vari-
able can be bound, and later be re-bound, to values of any type. In the below
example, a variable x is declared, then bound to a value of type Number, then
bound to a value of type String, and then bound to a value of type Object.

Dynamic object modification. Put simply, objects in JavaScript are es-
sentially key/value pairs, where the key of a property is always a string and
the value can be any primitive or JavaScript object. So-defined objects are not

1 The discussion whether dynamic languages like JavaScript could in theory be
compiled into native machine code is an almost philosophical one and well beyond
the scope of this work.

2.1 Overview 25

var x;

x = 42;

x = "foo";

x = { foo : "bar" };

Listing 2.1. Dynamic typing in JavaScript

based on a defined class and can be freely modified at any point in time. In the
below example, an object customer is created with two properties name and
address. The property address is then replaced by a property phoneNumber.

var customer = {

name : "Hatzenbichler , General",

address : "I ain’t got no home I’m just a-ramblin ’round"

};

delete customer.address;

customer.phoneNumber = 0635189768757;

Listing 2.2. Dynamic object modification in JavaScript

Dynamic code evaluation. As many dynamic languages, JavaScript pro-
vides means to evaluate statements that are provided as a string. This string
will usually be created dynamically, i.e., ultimately based on program input.
In the below example, a variable x is incremented if a user-provided expres-
sion evaluates to true. Offering security risks and being slower than the normal
execution of statements, JavaScript’s eval function is typically considered an
anti-pattern2 that should be avoided [24].

var x = 0;

if (eval(input)) {

x++;

}

Listing 2.3. Dynamic code evaluation in JavaScript

2 Eval is evil. – Douglas Crockford [24]

26 2 JavaScript Background

2.1.3 Prototype-based

JavaScript uses prototypal inheritance, in contrast to classical inheritance as
known from Java or C#. As noted above, objects in JavaScript are essentially
sets of key/value pairs, so-called object properties. In addition to an object’s
regular, “own” properties, each JavaScript object furthermore contains a link
to another object, it’s so-called prototype. This link is typically established on
object creation, but can be changed at any point. When accessing a property
on an object, the JavaScript engine first tests an object’s own properties for
the given key, and returns the respective value if the property is found. If the
key is not found in an object, the engine proceeds to look for the key in the
object’s prototype. This process is continued until (a) a property for the given
key is found, or (b) a prototype reference points to null, indicating the end
of the prototype chain.

First introduced in Self (Ungar and Smith [157]), prototypes provide a
lightweight and flexible alternative to classical inheritance. Further informa-
tion is provided by Dony et al. [33] and Taivalsaari [150], among others.

2.1.4 First-class functions

First-class functions refers to functions that “can be passed as a parameter,
returned from a subroutine, or [...] assigned into a variable” (Scott [142]). In
JavaScript, every function is also an object, meaning that the above definition
applies. In the following example, a function is first assigned to a variable x,
which is then passed as an argument into another function f.

var x = function(y) { return y * y; };

f(x);

Listing 2.4. First-class functions in JavaScript

2.2 The rise of scripting languages

We have already sketched the vital role of JavaScript for modern web develop-
ment. But also apart from browser-based programming, a trend towards more
lightweight, flexible, typically interpreted and dynamically-typed languages is
visible. This category, often referred to as scripting languages, includes lan-
guages such as PHP, Python, and Ruby, just to name a few. If and under

2.3 JavaScript in computer science education 27

which conditions these languages are equivalent or even superior to classic
languages such as Java, C#, or C++ is subject to intense debate.

In his seminal article, Ousterhout [119] predicted the rise of scripting lan-
guages as early as 1998, stating that existing trends “will continue over the
next decade, with more and more new applications written entirely in scripting
languages and system programming languages used primarily for writing com-
ponents”. According to the author, system languages and scripting languages
are complementary in that system languages are designed to build algorithms
and data structures from scratch and scripting languages are intended to glue
these elements together. The rise of scripting languages is then the result of a
general shift towards glueing: Both GUIs and the Web are, essentially, assem-
blies of components that need to be connected. Further explanations include
improved hardware power, allowing scripts to be run with acceptable perfor-
mance, as well as an increasingly “casual” developer community that wants to
solve problems quickly without formal introductions to all language details.

Ousterhout’s prediction was bold, and supporters as well as opponents com-
mented on his article even years after it has been published. Spittelis [147]
argues that with the ongoing evolution of Java and .NET “the niche occupied
by scripting language is rapidly shrinking”, but acknowledges certain advan-
tages of scripting languages such as a more flexible syntax or shorter build
cycles. In a rememberable response to Spittelis (and academia in general),
Loui [86] praises scripting as “the mark of autodidacts, prodigies, and Third
World programmers, the inspired class, the people how had never had to think
outside the box because they had never been stuck inside it” and suggests
scripting languages to be taught as a first programming language. Further
opinions for and against a long-term trend towards scripting languages are
provided by Paulson [121].

An objective statement about the success of scripting languages can only come
from their popularity in real-world projects. For obvious reasons, this popular-
ity can only be estimated, and different metrics exist. IEEE Spectrum (Cass
et al. [16]) lists Java, C, and C++ as the most popular languages overall in
2014, closely followed by Python. PHP, JavaScript, and Ruby are listed as 6th,
7th, and 8th. On GitHub, JavaScript is listed as the most popular language,
followed by Java and Python (Zapponi [172]).3

2.3 JavaScript in computer science education

Ever since software development became part of standard high school curric-
ula, practitioners as well as academics discuss and evaluate the programming

3 Ranked by the number of active repositories.

28 2 JavaScript Background

languages, paradigms, and teaching techniques that are best suited to intro-
duce students to programming. With the rise of the World Wide Web, scripting
languages and JavaScript in particular have received increased attention also
in this context. The following main advantages over traditional languages like
Java and C++ or pure educational languages have been identified.

Less tool and compilation overhead. Mahmoud et al. [92] point out that
students often struggle with the tools, environments and processes associated
with conventional languages rather than the languages themselves. The au-
thors therefore suggest a JavaScript-based Edit and Browse approach for teach-
ing purposes, avoiding the complexity of compilation steps and the sometimes
cryptic error messages produced therein.4 Similarly, Mercuri et al. [104] argue
that JavaScript requires little preliminary work before coding can start.

Motivation and sense of achievement. When developing for the browser,
students can publish their JavaScript applications immediately as web sites
(cf. Reed [130], Wu [167]). It is easy (and almost always an integral part of
the described courses; see [92, 104, 130, 161, 167]) to create powerful, visually
compelling UIs, which can further increase students’ motivation. Gurwitz [57]
here refers to the Web as a “motivating theme” for computer science education.

Practical value. In contrast to educational languages such as Scheme [149],
JavaScript is perceived as useful beyond the scope of the immediate learning
experience due to its widespread use in the industry and its crucial role in
the World Wide Web (cf. Mercuri et al. [104], Reed [130]). JavaScript enables
computer science education to keep students “abreast of the state-of-the-art
web development technologies” (Lim [83]).

4 As correctly pointed out by Reed [130], error messages of a weakly-typed scripting
language are not necessarily more pleasurable than those produced by a compiler.

3

Theoretical Background

The acquisition of a new skill or expertise – be it writing another letter of
the alphabet, riding a motorbike, or using a new programming language or
paradigm – is always also a product of previous knowledge and experiences.
This phenomenon, referred to as transfer in the academic discourse, is funda-
mental to human cognition, and countless studies, theories and models have
been proposed. In the words of Salomon and Perkins [141], “questions of trans-
fer simmer beneath the surface in numerous areas of psychological and educa-
tional inquiry”. The concept of transfer also serves as a theoretical framework
for the present work. Following the majority of research in the field, we under-
stand many of difficulties in transitioning from one programming paradigm to
the other as a result of negative transfer, i.e., as a result of negative impact of
existing knowledge and skills.

In the following, we provide a detailed discussion of transfer in general and
in the context of software engineering. We elaborate on the concept of neg-
ative transfer, transfer in the context of object-oriented programming, and
knowledge transfer strategies.

Outlook

The remainder of this chapter is structured as follows: Section 3.1 provides
basic definitions and taxonomies of transfer, and discusses the differences be-
tween transfer and learning. Section 3.2 provides a discussion of transfer in
historical context. Negative transfer is discussed in Section 3.3. Section 3.4
elaborates on the issue of transfer in the specific context of programming. The
industry’s transition from procedural to object-oriented programming, along
with research on the impact of transfer, is discussed in Section 3.5. Section 3.6
presents relevant models and theories of transfer in the software engineering
domain. Finally, strategies to reduce negative transfer are discussed in Sec-
tion 3.7.

30 3 Theoretical Background

3.1 Skill transfer: An overview

Broadly speaking, transfer occurs whenever knowledge and experience in one
context impacts performance in another (cf. Perkins and Salomon [125]). Like
many other aspects of human cognition, the issue of transfer is often experi-
enced as an all-natural, everyday event. Imagine renting a car in your summer
holidays, and imagine this car to be a bit more “sporty” than your usual one:
Even though the car will behave quite differently from all the cars you had be-
fore, you will very likely be able to drive it off the parking lot without any kind
of instruction, and almost certainly without having to read the car’s manual.
At the gas station, it may take you a while to figure out how to open the gas
cap – but how tedious would it be to re-learn every single aspect of driving?

As natural and straightforward most occurrences of transfer may pass by in an
person’s day-to-day life, as crucially important is the phenomenon for many
fields, professions, and situations. The seamless transition to a new car is, in
fact, the result of roughly 150 years of engineering work on cars that are easy
to drive, and about 100 years of development in driver’s education. As another
example, you were probably less laid-back about a successful transfer when,
at your very first day at work, it was time to put your knowledge from school
or university into real-world practise. This, of course, is the ultimate goal of
any form of education. In the words of Haskell [61]:

The aim of all education, from elementary, secondary, vocational, and
industrial training, to higher education, is to apply what we learn
in different contexts, and to recognise and extend that learning to
completely new situations.

Clearly, questions of transfer are of fundamental practical importance for mod-
ern information societies, and, in fact, must have been so ever since mankind
evolved beyond the purely instinct-driven behaviour of our ancestors. Little
surprisingly, transfer was “among the first issues to be addressed by early
psychologists” [141], and today, numerous books, articles, and studies on the
subject matter exist (see, e.g., Barnett and Ceci [5] for a review).

In the remainder of this section, we present common definitions of transfer in
Section 3.1.1, and discuss the main dimensions in transfer in existing theories
– specific vs. general, reproductive vs. productive, and high-road vs. low-road
transfer – in Section 3.1.2. The relationship between learning and transfer is
discussed in Section 3.1.3.

3.1.1 Definitions

As a topic of substantial research interest for more than 100 years, the extent,
frequency, and supporting conditions of transfer remain subject to academic

3.1 Skill transfer: An overview 31

debate until today. Basic agreement exists, however, on the general character-
istics of transfer. A commonly used definition is provided by Helfenstein [63],
who refers to Woodworth [166] and Ellis [41] as original sources:

Transfer is the process and the effective extend to which past experi-
ences (also referred to as transfer source) affect learning and perfor-
mance in a present novel situation (transfer target).

Haskell [61] emphasises the active role of the human mind in transforming
existing knowledge to new situations:

Transfer refers to how previous learning influences current and future
learning, and how past or current learning is applied or adapted to
similar or novel situation.

In the respective entry of the International Encyclopedia of Education, Perkins
and Salomon [125] define transfer as follows:

Transfer of learning occurs when learning in one context enhances (pos-
itive transfer) or undermines (negative transfer) a related performance
in another context.

In contrast to the previous definitions, Perkins and Salomon’s definition draws
an important distinction between (a) situations where existing knowledge fa-
cilitates later acquisition or performance, and (b) situations where existing
knowledge impedes later acquisition or performance – positive transfer vs.
negative transfer. This is a crucial point: Back in our previous example, let’s
assume that you learned to drive in a country with right-hand traffic, and rent
a car in, say, Sydney, Australia. Very likely, you will sometimes operate the
windshield wipers when you actually wanted to indicate a turn, and vice versa
– in fact, this mistake may happen to you even more frequently than to a
student driver who just finished his or her first lesson (cf. Mayer [96]).

Negative transfer, being of central relevance for the on-hand thesis, is discussed
in greater detail in Section 3.3 below.

3.1.2 Dimensions of transfer

In his review of transfer literature, Helfenstein [63] identified three partly in-
terrelated dimensions of transfer among existing theories. Put simply, these
dimensions can be understood as general vs. specific transfer, productive vs.
reproductive transfer, and high-road vs. low-road transfer.

General vs. specific transfer

The first dimension identified by Helfenstein denotes “the hypothesised rela-
tion between transfer source and target” [63] – for example, whether or not

32 3 Theoretical Background

one is particularly similar to the other, or one represents the principle where
the other represents an example. Most commonly this dimension manifests
in distinctions between general transfer and specific transfer. General transfer
theories suggest that transfer is based on high-level, abstract knowledge, which
can then be applied across very heterogenous domains and tasks. For example,
one could argue that skills acquired in playing chess also make one a better
strategic thinker in politics or business (cf. Perkins and Salomon [125]). By
contrast, theories of specific transfer suggest that skills are transferred only in
a relatively narrow form, and only across tasks and domains that are very sim-
ilar. Perkins and Salomon [125] coined the terminology of far vs. near transfer
for the described categorisation.

Productive vs. reproductive transfer

Helfenstein’s second dimension concerns how knowledge is applied and adapted
as part of a transfer process. Roberson’s [134] (acc. to [63]) theories of pro-
ductive and reproductive transfer are described as exemplary opposite poles
of this dimension. Productive transfer denotes the simple adaptation of exist-
ing knowledge to a novel task. Reproductive transfer, by contrast, implies the
mutation and enhancement of existing knowledge for it to be usable in the
new context. Similarly, Mayer and Wittrock [97] distinguish between knowl-
edge transfer and problem-solving transfer. Knowledge transfer occurs if knowl-
edge acquired in learning one task facilities or impedes learning another task.
Problem-solving transfer, on the other hand, takes place if experience in one
problem helps solving another problem, not because they have a lot of things in
common, but because they call for similar abstract problem solving strategies.

High-road vs. low-road transfer

A third dimension among existing transfer theories concerns the question of
conscious effort. Most prominently, Salomon and Perkins [141] introduced the
distinction between high-road and low-road transfer. The latter involves the
“spontaneous, automatic transfer of highly practised skills, with little need of
reflective thinking”. For example, “just” being able to drive a rental car may be
understood as a form of low-road transfer. High-road transfer, by contrast, is
“effortful and conscious; it occurs when a problem solver actively thinks about
the connections between the current problem and previous experience” [97].
As an example, a person could infer how to calculate the volume of a frustum
of a pyramid from calculating the volume of a full pyramid (cf. ibid.).

3.1 Skill transfer: An overview 33

3.1.3 Transfer vs. learning

A common point of discussion among researchers in the field is the relationship
between transfer and learning, and whether or not transfer and learning are,
in the end, just two names of one and the same concept.

Traditionally, the distinction between learning and transfer is drawn based on
the relationship between the context of the previous experience (i.e., the source
context) and the current context (i.e., the target context). If the source context
is identical to the target context, we talk about learning; if they are different,
we talk about transfer. While somewhat intuitive, a so-defined distinction is
highly problematic from a taxonomical perspective. Strictly speaking, no situa-
tion, no matter how trivial, will ever be exactly identical to another situation.1

Understanding “identity” more from a human perception perspective (rather
than a purely physical one) raises the problem of subjectivity: How can we
distinct transfer from learning if the perception of identify differs from person
to person, from situation to situation?

Today, it seems widely accepted that any kind of learning involves transfer “in
least a trivial sense” (Salomon and Perkins [141]): “A person cannot be said
to have learned something unless the person displays that learning on some
other occasion, however similar” (ibid.). Any distinction between learning and
transfer must then be accepted to be inherently vague, and dependent on what
is commonly understood as “different” from the given learning situation.

Some researchers go as far as to conceptualise learning as a special case of
transfer. As Haskell [61] puts it:

The traditional view of transfer is that it’s a special case of learning.
There are many researchers, including myself, however, who for some
time now have seen learning as a special case of transfer. One early
researcher, George Ferguson [[49]; H.O.], noted that “it has long been
apparent [...] to myself and to others that transfer is the more general
phenomenon and learning a particular case”. This is important because
it means that any discussion learning assumes transfer.

For the purposes of this thesis, the question of transfer versus learning is a
merely philosophical one. Following the vast majority of literature especially

1 In the slightly scornful words of Meiklejohn [103] (acc. to [145]): “Think of learning
to drive a nail with a yellow hammer, and the realise your helplessness if, in time
of need, you should borrow your neighbour’s hammer and find it painted red. Nay,
further think of learning to use a hammer at all if at each other stroke the nail
has gone further into the wood, and the sun has gone lower in the sky, and the
temperature of the body has risen from the exercise, and in fact, everything on
earth and under the earth has changed so far as to give each new stroke a new
particularity all of its own.”

34 3 Theoretical Background

in the field of computer science, we will refer to the described phenomenon as
transfer in the remainder of this thesis.

3.2 Skill transfer in historical context

As noted earlier, questions of transfer are an equally central and controversial
topic in the history of psychology and education science. “Issues of transfer
have fallen in and out of the main focus of psychology at several times in
the past. Each school has had its own interest and approaches” [145]. In the
following, we outline the main theoretical positions among these schools. Our
discussion draws mainly from Singley and Anderson’s standard work on the
subject matter, The Transfer of Cognitive Skill [145].

3.2.1 The doctrine of formal discipline

The dominant theory of education around the end of the 19th century was the
doctrine of formal discipline, originally credited to Locke (cf. Higginson [66]
acc. to [145]). Its main idea is that studying abstract subjects like Latin and
geometry is valuable, less because of their everyday value, but because it dis-
ciplines the mind. This point of view roots back to the faculty view of mind,
which itself roots back to Aristotle. The faculty view says that, much like the
muscles of the human body, the human mind can be imagined as a set of
faculties, each of which represents a certain general cognitive skill and must
be trained regularly. Exemplar faculties are attention, observation, discrimi-
nation, and reasoning.

In the doctrine of formal discipline, skill transfer is conceived on a very general
level, spanning domains that have little to nothing in common. For example,
training in chess could transfer to computer programming as both rely on the
reasoning faculty.

3.2.2 Thorndike’s theory of identical elements

Thorndike, who studied transfer over a period of 30 years in the early 20th
century, advocated for a much narrower understanding of transfer. In his the-
ory, the mind is composed of specific habits and associations, each providing
a person with a certain response to a very specific stimulus. Transfer between
different activities can now only take place if the activities share common (iden-
tical) stimulus-response elements: “Addition improves multiplication because
multiplication is largely addition” [154] (acc. to. [145]).

3.2 Skill transfer in historical context 35

Thorndike’s model was soon criticised for being too mechanistic. On the one
hand, it denies the ability to adapt existing knowledge in transfer situations:
In a sense, transfer is simply doing more of the same. On the other hand,
Thorndike was vague about the concept of identical elements. As discussed be-
fore, two situations can never be entirely identical – they may just be perceived
as such psychologically. Yet, “predating the cognitive revolution, Thorndike’s
theory was tied to the physical world and made no use of abstract mental
representations” (Singley and Anderson [145]).

3.2.3 Meaningful learning vs. sole repetition

Despite its criticism, Thorndike’s theory successfully dethroned the doctrine of
formal discipline, and countless theories could evolve along the now-established
continuum. Many of these theories emphasised the importance of deep, mean-
ingful learning over sole repetition.

Early critics of Thorndike argued that skill transfer is not necessarily limited
in scope – it may just be so in the absence of effective training. Their studies
showed that the degree and breadth of transfer largely depends on how well
subjects understand a problem and organise the respective skill. The more
complete a mental representation of a problem, the greater the chances that
commonalities are identified and skills can be transferred. For example, in
a classic study conducted by Judd [71] (acc. to [145]), kids were asked to
throw darts at an underwater target. One half of the subjects retrieved an
introduction to the theory of the refraction, the other half did not. It was
shown that while all kids performed equally well in an initial training, those
who retrieved an introduction adapted significantly better when the target was
moved to a different depth.

3.2.4 The Gestalters and analogical transfer

Building upon studies like Judd’s, the Gestalters (e.g., Wertheimer [162], acc.
to [145]) argued that meaningful learning enables subjects to construct internal
representations of concepts “in which elements [are] integrated in an overarch-
ing relational structure” (Holyoak and Barnden [67]). This allows identifying
structural relationships between concepts, even if they share no common el-
ements in Thorndike’s sense. Very naturally conceived as structures are, for
example, sequences of musical tones: A melody played in different keys is con-
ceived as virtually the same piece of music, even if each single note is different.

The Gestalter’s basic ideas were further elaborated in studies on analogical
transfer. To solve a problem by analogy, a subject is first informed about a
problem whose solution is known. This solution then needs to be applied to a
problem that is structurally equivalent, but may differ more or less radically

36 3 Theoretical Background

in terms of superficial features (a so-called isomorph). It was shown that in
a two-stage model that distinguishes between (i) noticing analogies and (ii)
transferring the solution, the initial identification step is often more difficult
and, in a sense, less reliable then the application of a solution. Again, a deep,
expert understanding of concepts supports finding structural analogies behind
often more obvious, but potentially misleading superficial features.

3.2.5 Production system theories

In the 1980s, theories emerged that use production rule systems to model
human cognition (e.g, [115, 153] acc. to [145]). Production rule systems, as
known from Business Rule Management (e.g., [56, 107, 137]), consist of (i) a
set of condition-action-rules (so-called productions), (ii) a declarative memory,
containing general facts like “John is married”, and (iii) a working memory,
representing the current state and input of the system. If the condition of a
production applies to the working and declarative memory, the rule fires and
its action is executed. An exemplary production rule shown is in Figure 3.1;
here, char represents a variable that matches every possible character.

if
and
and

then

the goal is to insert a character char
the editor is EMACS
the desired character position is marked by the cursor

type char

Figure 3.1. Exemplary product rule for inserting characters in EMACS [145]

In a production rule system as defined above, skill transfers can be imagined to
happen across all possible combinations of a system’s procedural and declar-
ative parts, i.e., procedural to procedural, declarative to procedural, declarative
to declarative, and procedural to declarative. Procedural-to-procedural transfer,
for example, happens if productions that were formed for a training task can
directly be applied for a different task, too. This kind of transfer is similar to
Thorndike’s identical elements, but also allows for the impact of proper in-
structions: Only if productions are established at a proper level of abstraction
they make sense in a broader set of scenarios. Declarative-to-procedural trans-
fer, as another example, occurs when existing declarative structure support
the construction of new productions. This process is largely based on struc-
tural analogies, where the declarative representation of an existing solution is
modified to be used for a new problem.

3.3 Negative Transfer 37

3.3 Negative Transfer

As noted earlier, the effects of existing knowledge on current or future learning
situations are not necessarily positive. In a general sense, negative transfer
occurs whenever previous knowledge or experience in one context impacts
negatively on performance in another. A so-defined negative transfer must not
be mistaken for the simple absence of positive transfer: Negative transfer is
not just no transfer – it actually “hurts” (Mayer [96]).

While negative transfer is “a real and often problematic phenomenon of learn-
ing” (Perkins and Salomon [125]), educational science traditionally focused on
maximising positive transfer effects rather than reducing negative ones. On the
one hand, it is argued that negative transfer is often limited to early stages
of learning; with experience, it is said, learners are able to correct the effects
of negative transfer (cf. ibid.). On the other hand, as pointed out by Singley
and Anderson [145], negative transfer effects are often dominated by positive
learning effects and thus hard to observe and measure on an aggregate level.

In the existing literature, difficulties in a developer’s transition between pro-
gramming languages, domains, and paradigms are typically attributed to the
phenomenon of negative transfer; we will review existing work in greater detail
in Section 3.4 and Section 3.5 below. While we agree that negative transfer is
difficult to observe and measure, we will argue later on that negative trans-
fer can indeed have a long-term impact if the transferred knowledge is not
completely inappropriate, but merely non-optimal in the new context.

3.3.1 Classic studies

Facing the above-mentioned problem of measurability especially on aggregate
level, so-called “analytical” studies of transfer have tried to simplify the exper-
imental setup as far as possible (cf. Singley and Anderson [145]). A common
toolkit hereto was paired-associate learning. In paired-associate learning, sub-
jects are presented sets of pairs of items, e.g., PEN-42, HAT-17, PIT-99, and
so on. After a learning period, subjects are provided the first item of a pair,
the so-called stimulus term, and must recall the matching second item, the
so-called response term. Transfer is investigated by learning multiple sets of
pairs, one after the other: In a so-called A-B, A-D setup, for example, both
sets have the same stimulus items (A), but different response items (B vs. D).
In an A-B, C-B setup, by contrast, the same response items are associated
with different stimuli (cf. Crowder [25]).

In an equally influential and controversial2 effort, Osgood [118] summarised
much of the existing data on paired-associate transfer in his transfer and

2 According to Singley and Anderson [145], criticisms concerns both the correct
placement and the exclusion of data; for example, sets that are simply re-paired, so-

38 3 Theoretical Background

retroaction surface from 1949. In Osgood’s surface, one horizontal dimension
shows the similarity between two stimuli, ranging from identical (Si), through
similar (Ss), to neutral (Sn). The other horizontal dimension depicts similarity
on response level, ranging from identical (Ri), through similar (Rs), neutral
(Rn), partially opposite (Ro), to antagonistic (Ra) responses. The vertical di-
mension shows the expected transfer, ranging from largely negative to largely
positive. Figure 3.2a., 3.2b., and 3.2c. show the chart’s extreme anchors. At
3.2a., both stimuli and responses are identical and transfer is at its maximum.
Moving towards Ss and Rs, transfer decreases but remains positive. At 3.2b.,
stimuli are identical but responses are antagonistic; transfer is at its negative
extreme. At 3.2c., along the back edge, stimuli are unrelated, and no transfer
is expected independent from the response.

S i

S s

S n

R i

R s

R n

R o

R a

+

-

0

Figure 3.2. Osgood’s transfer and retroaction surface

Another classic documentation of negative transfer is Luchins’ [89] (acc.
to [145]) 1942 study on solving so-called waterjug problems. In waterjug prob-
lems, subjects are given jugs of different, known sizes and told to extract a
certain quantity of water using these jugs in combination. For example, given
three jugs A, B and C, a certain quantity could be achieved by pouring water
into the target bucket using B and C, and removing water from the target
bucket using A. Luchins structured his experiment into five training tasks, all
of which could only be solved using a B −A− 2C approach, and five transfer
tasks, of which four could be solved either using B−A− 2C or, more directly,
A + C, and one could could be solved using A + C only. With that, Luchins
encouraged learning a method that is either partly or completely inappropriate

called A-B, A-Br setups, show the most negative transfer but are not represented
at all. As pointed out by Crowder, Osgood’s surface does furthermore not consider
the relative impact of diverse sub-components of paired-associate learning, namely
stimulus learning, response integration, and hookup.

3.3 Negative Transfer 39

for the given transfer tasks. It was shown that subjects overlook the direct so-
lution almost completely if the trained, yet non-optimal solution is applicable.
If the trained solution was not applicable, only 39% of all subjects could even
find a solution, compared with 100% of a control group.

3.3.2 Theories of negative transfer

Theories of negative transfer largely depend on the conceptualisation of trans-
fer in general.

In theories based on classic paired-associate studies, negative transfer is typ-
ically located in the retrieval phase of human cognition. It is suggested that
inference between tasks “is not a loss in retention or availability but is a block-
age of retrieval (accessibility) caused by competing information” [25]. In this
context, cognitive inference and proactive inference are more commonly used
terms. While providing important insights into the essential qualities of the
human mind, it is unclear whether interferences on this level of granularity
play a noteworthy role in the transfer of skills as complex as programming.3

When transfer is viewed as a more high-level, yet predominantly reproductive
and low-road process (rather than a productive and high-road one), negative
transfer is sometimes conceptualised as the result of habitation (e.g., Liu et
al. [85]). Very generally, habits can be understood as behavioural patterns
that are routined to an extend where they are performed nearly of completely
unconsciously. Wood and Neil [165] describe habits as follows:

Habits are learned dispositions to repeat past responses. They are trig-
gered by features of the context that have covaried frequently with past
performance, including performance locations, preceding actions in a
sequence, and particular people. Contexts activate habitual responses
directly, without the mediation of goal states.

As Jagger [70] pointed out, “old habits die hard”: If a behaviour was au-
tomatised for a certain context, it is very likely that a subject will show this
behaviour also in contexts that are very similar to the source context, e.g.,
after the original context underwent a change. As an example, most subjects
that are used to a QWERTY keyboard layout will experience an annoying
over-automation of certain key strokes when switching to a QWERTZ layout
(e.g., Koedijker [74]).

When transfer is viewed as a predominantly productive and high-road process,
negative transfer is often conceptualised as the result of failed analogies (e.g.,
Amstrong and Hardgrave [3], Novick [116])). Studies showed that subjects tend

3 Singley and Anderson [145], for example, ask whether at all “the recall of a list of
paired associates constitutes cognitive skill”.

40 3 Theoretical Background

to associate source and target contexts based on obvious, yet ultimately irrel-
evant aspects (e.g., Chi et al. [17]). The solution to a previously experienced,
yet only seemingly similar problem may then be irrelevant (no transfer), or
even misleading (negative transfer). Novick [116], among others, distinguishes
between so-called surface features and structure features. Surface features in-
clude information such as the specific objects, quantities, and terminologies
that occurred in a particular instance of a problem. Structure features, by
contrast, are “abstract [and] solution-relevant”, and “determined primarily by
how the quantities in the problem are related to each other rather than by
what the quantities are” (ibid.). It was shown that experts establish analogies
based on structural features, while novices rely on superficial surface features.

3.3.3 Types of negative transfer

Singley and Anderson [145] distinguish between three general kinds of nega-
tive transfer: transfer of inappropriate methods, transfer of non-optimal meth-
ods, and procedural interference. Of these transfers, only non-optimal method
transfer is assumed to have a significant and lasting impact on a subject’s
performance.

A transfer of inappropriate methods occurs if an existing solution is applied to
a new problem – e.g., because of an mistaken analogy – but shows to be com-
pletely inappropriate and does not ever lead to solving the problem. Failing
entirely, transfers of this kind can typically be identified within few applica-
tions, if not immediately, and discarded in favour of alternative strategies.

Transfers of non-optimal methods are similar, with the difference that trans-
ferred strategies – eventually, and in the long run – allow solving the given
problems. They do, however, perform worse than the ideal solutions, which
may or may not have been found if the problems would have been approached
from scratch. Yielding seemingly successful results, transfers of non-optimal
solutions are much harder to identify by subjects and can have a lasting im-
pact on performance. In the context of their production-system-based ACT*
theory, Singley and Anderson describe the difference between inappropriate
and non-optimal method transfers as follows:

Productions which produce clearly inappropriate actions contribute to
poor initial performance on a transfer task but are quickly weeded
out. Productions which produce actions which are merely nonoptimal,
however, are more difficult to detect and persist for longer periods.
Our claim is that these nonoptimal methods constitute the sole source
of negative procedural transfer in the limit.

The third kind of negative transfer, here called procedural interference, is sub-
stantially different from the above in that it affects the performance of a skill
rather than its acquisition. Thinking of the mind as a production system,

3.4 Transfer in programming 41

it can be understood as the increased effort for resolving conflicts between
productions with very similar, partly overlapping conditions. Experimentally,
such interference was shown in the famous Stroop effect [148], where subjects
have difficulties reading the name of a colour if that text itself is printed in a
different colour. Yet, in real-world situations, it is questionable if procedural
interference has a notable impact on a subject’s performance.

3.4 Transfer in programming

Ever since software started its first, still laughable attempts to “eat the world”
(Andreessen [1]), the issue of knowledge transfer – both positive and negative
– is a topic of main interest in the field of software engineering. How can
knowledge best be transferred between different dialects of a language, different
languages, and different paradigms, different problem domains? What are the
main obstacles? In a profession that, perhaps more than any other sector,
is confronted with a practically infinite variety of project goals and an even
greater number of ways to reach them, finding answers to these questions is
substantial for individuals as well as corporations.

3.4.1 Programming skills as schema-based knowledge

As many other forms of expertise, expertise in programming is often thought of
using schema-based theoretical frameworks (cf. Armstrong and Hardgrave [3]).
The exact definitions and terminologies within these frameworks differ between
authors (cf. Rist [132]); for the purpose of this discussion, we follow Dorsey et
al.’s [34] definition of a schema as a “representation of a person’s knowledge
that includes both a set of domain-specific concepts and the relations among
those concepts”. As an example, Robins et al. [135] argue that most developers
will have a schema for finding the average of values in a single-dimensional ar-
ray. Instead of having to think through individual instructions again and again,
this schema can serve as a higher level “building block” for reading, discussing,
or writing code, as well as a “conceptual framework that facilitates solving new
problems” (Dorsey et al. [34]). The higher the expertise of a programmer, the
better is he or she able to organising and retrieve these knowledge schemas
(a) on proper levels of abstraction, and (b) based on functional characteristics
rather than superficial details (cf. von Mayrhauser and Vans [160]).

Schema-based theoretical frameworks typically conceptualise transfer as an
analogical process as discussed in Section 3.2 (cf. Armstrong and Hard-
grave [3]): As a subject is exposed to a new concept, schemas that are per-
ceived to relate to this new concept are activated, used to interpret the new
concept, and adapted if necessary. Positive transfer occurs if the new concept

42 3 Theoretical Background

is successfully and correctly integrated into existing schemas. For example, if
a programmer experienced in Visual Basic encounters the concept of combo
boxes, he or she may activate and extend a schema for graphical input com-
ponents as was created based on text fields and buttons before. By contrast,
negative transfer occurs if schemas are activated that are not, or only partly,
appropriate to interpret and incorporate the new concept.

3.4.2 Positive transfer

For anyone only passingly familiar with software engineering, a certain amount
of positive transfer between different programming languages and problem
domains is self-evident. Clearly, one may argue, it is easier for a professional
software engineer to solve a problem in a new language or domain than it is
for an absolute beginner. Singley and Anderson [145] describe their experience
at switching between different dialects of LISP as follows:

We are often confused, for instance, about the names of certain func-
tions and the order of arguments. However, [...] by any aggregate mea-
sure, we perform much better in one dialect of LISP as a consequence
of learning another, as measured against a naive control.

This common, yet ultimately subjective experience of transfer was experimen-
tally confirmed on different levels of abstraction.

On the level of basic, cross-language and cross-problem principles of program-
ming, positive transfer was reported by Whitelaw and Weckert [163] (acc.
to [136]) and Dalbey and Linn [28] (acc. to [4]) for concepts such as variables,
assignments to variables, expression construction, and function evaluations.
Similarly, Liu et al. [84] described positive transfer for concepts ranging from
variables and flow of control to things as fundamental as the von Neumann
architecture.

On the level of problem-specific solutions and algorithms, Wu and Ander-
son [168] reported positive transfer from LISP to Pascal and from LISP to
Prolog. In their study, subjects that solved an exercise in the first language per-
formed significantly better in solving the same exercise in the second language,
compared to a control group. Even though implementation details had to differ
due to characteristics of the language, the subjects were able to transform and
apply their general solution in the new environment. Transfer between Pascal
and LISP was also reported by Katz [72] (acc. to [168]).

On the level of high-level design choices and architectural decisions, Sonnen-
tag [146] showed that experienced software engineers do very little explicit
planning when working on a design task, but can rely on already existing and
routinised strategies.

3.4 Transfer in programming 43

3.4.3 Negative transfer

Positive transfer effects, although obvious, must not not conceal the possibil-
ity of negative transfer, also and especially beyond the trivialities of everyday
coding. Not only applies the risk of negative transfer to programming as to
any other field of expertise; we believe that certain characteristics make pro-
gramming even more prone to misleading analogies and long-lasting negative
effects. This claim is based on three theoretical propositions, all of which were
elaborated in the previous sections.

First, following the above theories of analogical reasoning, transfer is more
likely to occur between contexts that share many surface features and cer-
tain structure features, i.e., are perceived as “similar” (cf. Halpern et al. [58]).
Second, it is more likely that transfer is negative if the two contexts show sig-
nificant differences in their structure features. Third, negative transfer is more
likely to have a lasting impact if the transferred methods are not completely
inappropriate, but merely non-optimal.

Surface-level similarities

Many of today’s programming languages look similar, even though they may
rely on very different principles altogether. On the one hand, this is due to
the machine environment that is, at some level, common to all programming
languages. On the other hand, almost any modern language can be consid-
ered as a descendant of one or more other, older languages (e.g., Boutin et
al. [13], Lévénez [82]). As noted earlier, these commonalities in syntax, ter-
minology, and low-level language constructs are an important facilitator of
positive transfer on the level of reading and writing the instructions of a pro-
gram. Yet, expert developer education must go beyond plain “coding”. For
questions of technical design, architectural styles, and software quality in gen-
eral, surface-level similarities between languages and paradigms then become
irrelevant, if not potentially misleading.

Structure-level differences

Transfer effects are more likely to have a negative impact if so-called struc-
ture features differ between the source and the target context, i.e., if a pattern
that proved useful and effective in the one context becomes generally counter-
productive in the other. For example, in one of the first studies on negative
transfer in programming, Kessler and Anderson [73] showed a significant neg-
ative transfer from recursive to iterative programming.

44 3 Theoretical Background

In engineering, major structural differences often come as part of so-called
paradigm shifts. Originally introduced by Kuhn [79] in the context of sci-
ence history, a paradigm is understood as a framework of “shared theoreti-
cal beliefs, values, instruments and techniques, and even metaphysics” [11].
A paradigm shift occurs when a new framework is proposed and accepted,
and support for the previous one collapses. Historically, the software busi-
ness went from mainframe to client/server architectures, and from procedural
to object-oriented programming. Today, the transition from traditional web
architectures to single-page applications, and from server-driven to browser-
based programming, is seen as another major shift in thinking and doing.

Switching from one paradigm to another means more than learning another
language or using another tool. It requires a change in an individual’s mind
set; a shift in how professionals “conceptualise and approach problems and
solutions” [3]. This is hard work. In the words of Jacobson and Seidewitz [69],
“those steeped in the old paradigm have trouble even understanding what the
new paradigm is all about”. Eckel [40] describes the impact of an existing
mindset on programmers as follows:

Programmers work out a model in their heads of how things work and
have some trouble dislodging that model once they’ve tested it and
come to believe in it. This prevents them from making big mistakes,
such as switching to a language that’s too limited for their needs, but
it also significantly slows down the shift to a more powerful way of
thinking.

Some authors argued that the costs of a described “shift in thinking” could out-
weigh positive transfer effects between paradigms. In the words of Luker [90]:

Typically, it will take longer for a person experienced in some other
paradigm than it will the novice, although the novice’s lack of experi-
ence in general may be a hindrance.

Transfer of non-optimal methods

Generally speaking, the more freedom in problem solving a discipline permits
to its professionals, the more prone it is to transfer of non-optimal methods
as discussed in Section 3.3. Programming is an extreme case of such freedom.
After all, almost any practical programming problem can be solved in a merely
infinite number of ways, of which only some are “good” and “correct” according
to common software quality attributes. Nothing prevents a programmer from
writing a complex program in Java but in a strictly procedural fashion – as
for Lunchins’ waterjug experiment discussed in Section 3.3, doing so may even
be the most efficient strategy. Yet, the resulting solution will very likely lack
the readability, testability, maintainability, and reusability of a proper, object-
oriented implementation.

3.5 From procedural to object-oriented programming 45

As easy it is for a programmer to adopt non-optimal patterns, as hard can it be
for others to identify these patterns. Large business applications are the work
of hundreds of engineers and can easily exceed a million lines of code. Only
recently, structured approaches to code review became popular (e.g., Dabbish
et al. [26]). Even after a non-optimal pattern was found, it may be non-trivial
to correct the original programmer. On the one hand, programming style is
always also a question of taste, and it can be hard to argue why something
is not just different to what oneself would do, but wrong. On the other hand,
explicit or implicit power structures within a team can make it hard to provide
clear feedback to a colleague.

3.5 From procedural to object-oriented programming

The issue of transfer was intensively studied in the context of the field’s
transition from procedural to object-oriented programming. Although object-
orientated languages had been around since the late 1960s (e.g., Dahl and
Nygaard [27]), it wasn’t until the early 1990s that object orientation became
widely accepted as a possible solution to the industry’s long-lasting crisis.
According to a study from that time (Pei and Cutone [123] acc. to [59]),
only 30% of all software businesses used object-oriented technologies in 1992,
but 70% were expected to use them in 1994. Spanning across programming,
analysis, and design, and touching practically every area of software devel-
opment, this “object revolution” raised fundamental issues of adoption on
individual, project (e.g., Fayad et al. [48]), as well as organisational levels
(e.g., [10, 39, 59]).

For developers, the transition from procedural to object-oriented programming
represented one of the most radical paradigm shifts in the field’s recent history.
Not only did it bring new languages and tools; it required a completely different
way of conceptualising and structuring software – a new engineering “mind set”
(e.g., [54, 151, 164]). Whereas before, programs had essentially been seen as
sequences of actions on openly accessible data, they now had to be viewed as
orchestrations of self-contained, interacting entities. In his standard work on
OOP, Object-Oriented Software Construction, Bertrand Meyer [105] went as far
as to compare the object-oriented mind shift with the Copernican Revolution:

For many programmers, this change in viewpoint is as much of a shock
as may have been for some people, in another time, the idea of the earth
orbiting around the sun rather than the reverse.

As a consequence, although many organisations committed to object-oriented
development principles and programming languages, they long failed to put
object orientation into implementation practise. As Yourdon [171] (acc. to [90])
put it in 1994:

46 3 Theoretical Background

Thus, the claim about object orientation usually means only that their
latest release was coded in C++. Big bloody deal.

The most common explanation for the often difficult and lengthy transition
process was that of a negative transfer between procedural programming and
object-oriented development. A large number of reports – both personal and
from educational or experimental practise – account that also after in-depth
training in object-oriented development, expert procedural programmers tend
to apply – or “fall back” to – well internalised, yet now inappropriate meth-
ods. Introducing C++ to the readers of September 1991’s PC Magazine, Dun-
can [38] puts it as follows:

[...] you build up a repertoire of algorithms, strategies, and coding
practises that make the solution of each successive problem a little
easier and the occurrence of bugs a little less likely. With time, this
knowledge soaks in so deep it becomes almost reflexive. The trouble
is, the reflexes you’ve acquired using procedural languages don’t serve
you well in object-oriented languages.

In their study on the design activities of expert procedural programmers, ex-
pert object-oriented programmers, and expert procedural programmers who
are currently transitioning to object-orient methodologies, Pennington et
al. [124] describe the effect as follows:

The object-oriented novices [who were experts in procedural program-
ming, H.O] were trying very hard to follow the “lessons” they had
been taught. Where the lessons provided guidelines that were clearly
different from procedural practices, it was not difficult for the novices
to apply them. However, certain procedural practices crept in, such as
their attempts to retain an obvious input-process-output structure.

Similarly, Beck [6] remembers his first steps in object-oriented programming:

I had been reimmersing myself in issues familiar to me from my days as
a procedural programmer. I focused on the non-object-oriented aspects
of my object-oriented language to avoid the uncomfortable feeling that
I didn’t know what was going on. By clinging to my old ways of think-
ing, like a nervous swimmer to the side of the pool, I was preventing
myself from reinventing my perspective.

Further anecdotal reports were given by Bellin [7], who shares his experi-
ences from a seminar for graduate and undergraduate students, Vessey and
Conger [159], who studied the performance of object, process, and data-
driven requirements specification methodologies in aiding novice system an-
alysts, and Eaton and Gatian [39], who discuss organisational implications
of object-oriented technology. For Rosson and Alpert [138], the difficult tran-
sition from procedural programming is one of the “cognitive consequences”
of object-oriented design. Rosson and Carroll [139] argue that programmers

3.5 From procedural to object-oriented programming 47

often refuse to accept the high initial costs of learning OOP, and present a
slimmed-down version of Smalltalk that is supposed to make the transition
easier. Pitsatorn [127] proposes a bottom-up approach for teaching object-
oriented programming, where developers start with concrete pieces of code
and use debugging tools to try and, ideally, comprehend object-oriented prin-
ciples. Oesterreich [117] (acc. to [52]) reports that while “computer rookies
can light-heartedly get acquainted with object-orientation”, professionals are
often reluctant to abandon existing thinking patterns when learning UML.

Empirical evidence for negative transfer was, most prominently, provided by
Détienne [30]. In her study, the author analysed the design strategies and
knowledge deployed by professional programmers experienced in procedural
programming, and either experienced or unexperienced in object-oriented soft-
ware development. It was shown that, for beginners of OOP, methods where
more often grouped by functional similarity and execution order rather than
based on real-world objects, and more revisions and errors occurred in the de-
composition of classes. As expected by the author, these effects were stronger
for procedural problems than for declarative problems.

Comparable results were reported by Pennington et al. [124] in their afore-
mentioned study on the design activities of expert procedural programmers,
expert object-oriented programmers, and programmers who are currently tran-
sitioning. In the analysed designs, the novice OO programmers retained certain
procedural features such as the use of heavily interconnected I/O objects.

Nelson et al. [112] observed 24 attendees of a course on object-oriented sys-
tems and categorised these subjects into five groups based on prior experience
and learning behaviour. It showed that the “single-paradigm programmers” –
experienced programmers who have worked exclusively in a non-OO paradigm
– had the most difficulty with finishing the class, even compared to groups
with much less experience.

Manns and Nelson [95] analysed mappings and analogies between procedural
and object-oriented concepts as were made by expert procedural developers
in the course of a retraining. Using “think aloud” and retrospective protocols,
the authors identified a significant number of such associations, many of them
being inaccurate and potentially misleading.

Siau and Loo [144] identified prior knowledge from procedural and functional
programming as one of five main difficulties when learning UML. In their
study, the authors collected and categorised statements from 79 students after
a semester course on the subject matter.

48 3 Theoretical Background

3.6 Models and theories

As shown in the previous sections, skill transfer in the field of software devel-
opment is a well-documented phenomenon. Yet, only few models and theories
exist about when and where to expect transfer effects of a certain strength
and direction. In the following, two of these theories are discussed in greater
detail, along with their implications for the on-hand study: Armstrong and
Nelson’s [4] application of Osgood’s transfer surface to the software engineer-
ing domain, and Armstrong and Hardgrave’s [3] Mindshift Learning Theory.

3.6.1 Osgood’s transfer surface in software engineering

In an attempt to incorporate a programmer’s problem domain into the predic-
tion of skill transfers, Armstrong and Nelson [4] applied Osgood’s transfer sur-
face to the software engineering world. Where in Osgood’s original model [118]
as discussed in Section 3.3, the direction and amount of transfer is a function
of the similarity between two stimuli and the similarity between two responses,
it is now a function of the similarity between the present and future domain
and the similarity between the present and future programming paradigm. The
authors provide anecdotal evidences for critical points in the model, many of
which are also discussed in Section 3.4 and Section 3.5.

Figure 3.3 shows the adapted chart. The first horizontal axis represents the
developer’s domain, e.g., transaction systems, operating systems, or CAD sys-
tems, ranging from a domain that is well known to the developer (identical)
to a completely new domain (neutral). The second horizontal axis represents
the developer’s programming paradigm, e.g., procedural, object-oriented, or
functional programming, again ranging from known (identical) to unknown
and conceptually different (antagonist). The vertical axis shows the direction
and amount of knowledge transfer that is to be expected when a developer
faces a given paradigm and domain.

As an example, the model predicts a positive transfer when a programmer
is using a known, or similar, paradigm in a known or similar domain. By
contrast, it predicts a negative transfer when using a completely new paradigm
in a known domain: Previous knowledge for that domain interferes with the
new paradigm and impedes skill acquisition. In another, unknown domain this
effect is expected to be less dramatic or even non-existent.

The on-hand work does not consider possible domain changes when learning
JavaScript. However, given the industry’s shift to SPA architectures that orig-
inally motivated our research, it seems fair to assume that a Java developer
who learns JavaScript will typically do so in his or her current job, or at least
current domain. All the more important is a properly guided transition from
Java to JavaScript.

3.6 Models and theories 49

How do we break the cycle of negative interfer-
ence as experts in one programming paradigm learn
a new, and very different, paradigm? The traditional
method begins with the concrete parts of the pro-
gramming language. The student is taught OO defi-
nitions, concepts, and programming constructs. The
student then moves out of the classroom and begins
to use the new skill on the job. Through practice,
experience, and hard work, the student gradually

gains the expert thinking neces-
sary to use the new techniques
more or less automatically.

This traditional training model works well if the
student has no prior programming experience or is
simply learning a new technique or language within a
familiar programming paradigm. The product pro-
duced may not be as efficient or as clean as one pro-
duced by an expert, but the system will generally
follow the rules of the particular programming para-
digm. The learning curve will generally be smooth,
but nowhere near as quick as the desired curve.

Unfortunately the traditional training model breaks
down when the student is an expert in one paradigm
and attempts to learn skills in a new paradigm. The
transitioning expert will learn the definitions and basic
skills fairly easily. However, on the job the developer
will discover new problems unlike those in the book.
Under deadline pressures, the developer will fall back
upon the more familiar procedural programming solu-
tions rather than try to figure out how to operate
within the new, unfamiliar OO world (see Figure 2).

This result is the basis for suggestions [6] that pro-
grammers transitioning from procedural program-
ming languages such as C should move to a very
dissimilar programming language such as Smalltalk or
Eiffel before learning a hybrid OO language such as
C++. The dissimilar language may be enough to
break the cognitive interference and allow learning to
progress normally. Unfortunately, there isn’t enough
time to become expert in a transitional language

before learning a target language.

Quantum Shift Learning
If the expert procedural program-
mer were to think like an expert in
the OO paradigm, then the pro-
cedural programming knowledge
would not surface in response to a
problem. The student would
remain in the OO paradigm, cog-
nitive interference would be
avoided, and the expert would
learn at worst as a novice would.
The problem, then, is to get the
student thinking as an expert
before learning any of the theory
or constructs of the language.

In order to create this expert
OO thinking in an expert proce-
dural programmer, we used
Senge’s “systems thinking” tech-
niques [9, 10] and Johnson’s inter-

vention techniques [3]. This involves surfacing and
challenging the student’s mental models, building a
shared vision of the new paradigm, and then engag-
ing in systems thinking to solidify the abstract con-
cepts with concrete examples. We designed the two
half-day OO Thinking course to serve as an entry to
any other OO training. A general outline of the
course is shown in Figure 3.

The students in the course are all experts in proce-
dural programming. They perform their program-
ming tasks naturally and easily, with about as much
thought as one would use when riding a bicycle. The
problem is to move them to performing OO pro-
gramming just as easily and without falling back on
their natural procedural knowledge.

The first half-day session is dedicated to making
the students aware of what they are doing as they per-
form procedural programming. The students must be
cognizant of the mental models they use. This session
is tedious, frustrating, repetitive, and very necessary.
The process involves asking the students questions,
and through these questions leading them to under-
stand what they had been performing naturally. The

134 October 2002/Vol. 45, No. 10 COMMUNICATIONS OF THE ACM

Identical Paradigm

Antagonist
Paradigm

Neutral
Domain

Identical
Domain

N
eg

at
iv

e
or

 P
os

iti
ve

 T
ra

ns
fe

r

Figure 1. Knowledge
transfer surface [7].

Figure 3.3. The transfer surface in software engineering [114]

3.6.2 Mindshift Learning Theory

The Mindshift Learning Theory (MLT), proposed by Armstrong and Hard-
grave [3], suggests that the amount of skill transfer from previous knowledge
to a new approach or paradigm depends on the perceived novelty of that
approach or paradigm.4 In an adaptation of Luis and Sutton’s [87] work on
cognitive processing, the authors differentiate between concepts that are per-
ceived as novel, changed, or carryover. Novel concepts are concepts that are
completely new to the learner, i.e., have no representation in a known con-
text. Changed concepts are concepts that have a cognitively close, or similar,
counterpart in a known context, but have a new and different meaning in the
new context. Carryover concepts are concepts that have a representation in a
known context and an equal or similar meaning in the new context. The theory
now says that a developer’s knowledge score for a certain concept – i.e., the
amount of positive transfer – will have a U -shaped (curvilinear) relationship
with the degree of perceived novelty, with the score being high for new and
carryover concepts and low for chanced concepts.

Figure 3.4 sketches MLT’s categorisation of concepts into novel, changed, and
carryover.

The implications of MLT are particularly relevant in the context of teaching
JavaScript to expert Java developers. Given JavaScript’s Java-esque syntax,

4 An extension of the Mindshift Learning Theory, combining the original proposal
with ideas from innovation literature, was presented by Ciganek and Wills [18].

50 3 Theoretical Background

Novel

Changed

Carryover

Known context New Context

Figure 3.4. Novel, changed, and carryover concepts in Mindshift Learning Theory

keywords and concept names on the one hand, and the many conceptual dif-
ferences between the languages on the other hand, it is well thinkable that a
large number of concepts will be perceived as changed by learners.

3.7 Reducing negative transfer in programming

There is no lack in discussions on the issue of skill transfer in programming,
and the same holds for recommendations of how the negative aspects of these
transfers can be reduced. However, only few of these recommendations go
beyond the equally obvious and pointless call for “unlearning” internalised
strategies from previously-used paradigms. In the following, selected strategies
from existing literature are presented and discussed in greater detail.

3.7.1 Heterogenous backgrounds

There is general agreement in the literature that a very specific, single-
paradigm expertise in programming hinders the acquisition of skills from a
new programming paradigm. Liu et al. [84] refer to this as the “dogma ef-
fect”. Empirical evidence was furthermore provided by Nelson et al. [112], who
showed that students with a broad, multi-paradigm background – so-called
“well-rounded programmers” – performed significantly better in a course on
object-oriented programming than their strictly single-paradigm counterparts.

Primarily important for school and university level computer science educa-
tion, the discussed findings may also be utilisable in the context of expert
developer eduction. While the personal history of an expert developer needs,
to some degree, be accepted as a fact, it could be helpful to discuss a known
aspect of programming from different angles and enable a more general per-
spective before introducing it in the context of a new paradigm.

3.7.2 Explication of mind shifts and in-depth courses

It is evident that a transition to a new programming paradigm comes with
a new way of conceptualising and approaching problems – a so-called “mind

3.7 Reducing negative transfer in programming 51

shift”. In the context of transitioning from traditional to object-oriented pro-
gramming, Ross and Zhang [136] recommend to clearly explicate this mind
shift as well as its role as a requirement for a successful transition.

First, expert structured programmers should be explicitly told that
they are not learning just another programming method. Instead, OOP
requires a new orientation and a changed programmers mindset.

Such explication may be understood as a form of engaging active self-
monitoring, as described as a general “condition of transfer” by Perkins and
Salomon [125]. It is well thinkable that being aware of a far reaching paradigm
change engages “metacognitive reflection of one’s thinking processes”, which
was shown to promote positive transfer (e.g., Belmont et al. [8] acc. to [125]).

Confronting highly-skilled and experienced programmers with a new way of
thinking about their day-to-day work, expert developer education must then
provide a comprehensive, in-depth introduction in the core foundations and
ideas behind a new paradigm. Only after these foundations of a paradigm are
established, focus should be put on implementation details and syntactical
subtleties of a language. In the context of the traditional-to-OOP transition,
D’Souza [36] puts it as follows:

A good object-oriented education program tries to instill in its recipi-
ents, first and foremost, those foundations and principles that will best
help them become effective users of the technology. [...] Still, under the
pressure of development schedules many organisations make the mis-
take of sacrificing analysis and design foundations in favour of a simple
language course.

3.7.3 Guided analogies

Analogies were identified before as one of the main facilitators of positive
as well as negative transfer. Given analogies as a powerful educational tool,
educators must not only provide “elaboration and qualification” [125], but
also explicitly discourage learners from using analogies that are obvious but
misleading.

In their study of different categories of students learning object-oriented pro-
gramming, Nelson et al. [112] propose a guided analogies approach especially
for the group of so-called single-paradigm programmers (i.e., programmers
with experience in only one paradigm):

In a guided analogy approach, the instructor would explicitly encour-
age certain parallels which exist between OO and procedural program-
ming and explicitly discourage to use some of their existing knowledge
to gain an initial understanding of OO concepts, but points out areas

52 3 Theoretical Background

which are truly different and where mapping to procedural concepts is
problematic.

Similarly, Gibson [54] recommends a clear explication of potential positive
transfers just as well as of associations that bear the risk of inappropriate
analogies:

In teaching object-oriented software development, an educator has the
responsibility of pointing out to the students (1) what they can transfer
from their previous software experiences to object-oriented software
engineering and (2) what pitfalls to watch out for, where assumptions
from the previous technology may interfere with understanding the
new technology.

As correctly pointed out by D’Souza [36], a conscious handling of analogies also
means that educators must resist the temptation to have a few “quick wins”
and boost their learners’ motivation level by (over-)emphasising commonalities
between a known and a new paradigm.

For languages like C++, there is admittedly a certain temptation to
begin with its syntactical differences and semantic improvements over
C as an “easy” transition from C. In reality, this will usually make
the transition to effective object-oriented development more prolonged
and painful than it needs to be, as the required change in mindset is
significantly delayed.

A guided analogies approach was furthermore proposed by Manns and Carl-
son [94] and Manns and Nelson [95], who present potential mappings from
procedural programming concepts to object-oriented concepts. The authors
suggest that instructors should explicitly offer correct analogies, rather than
forcing students into establishing potentially wrong ones by themselves. Ac-
cording to Manns and Nelson [95], educators must ensure to explicate dif-
ferences and similarities between concepts that are potentially associated by
learners:

The instructor who believes that his or her students are also likely to
make this analogy can describe the differences and similarities in these
two concepts. This has the potential to eliminate any confusion in the
students’ minds, thereby reducing the time it takes to understand that
concept.

3.7.4 Cognitive dissonance

In their Quantum Shift Learning approach, Nelson et al. [113, 114] try to
reduce negative transfers to object-oriented programming by first creating a

3.7 Reducing negative transfer in programming 53

cognitive dissonance5 about procedural programming; in other words, pro-
grammers should realise the flaws and drawbacks of their current approach
before switching to a new one.

In the first stage of the proposed course, programmers identify and discuss
the abstract mental models they use in their daily routine. At the end of this
process, students are encouraged to question these models and identify concep-
tual weaknesses behind procedural programming. In the second stage of the
course, instructors guide students to come up with alternative, object-oriented
ideas and strategies, and to apply them to solve a given programming problem.
Only after the students created object-oriented thinking by themselves, they
are introduced to terms, definitions and language constructs.

5 Proposed by Festinger [50] in 1957, the cognitive dissonance theory states that
people seek consistency in their beliefs, attitudes, and behaviours, and that dis-
sonance – e.g., smoking while knowing that smoking damages health – provides a
powerful motive for changing one’s behaviour or thinking (cf. McLeod [102]).

4

Research Strategy

In a field as young and dynamic as software engineering, questions of transfer
across programming languages and paradigms are of great practical impor-
tance. The goal of this work is to analyse if, and how, existing strategies
reflect in today’s expert developer education, in the context of the field’s tran-
sition towards browser-based computing and JavaScript. In the course of our
study, we investigated three real-world examples from contemporary educa-
tional practise, by means of a qualitative content analysis (Mayring [98]).

In the following, we discuss the research strategies and methods that underlie
these efforts. The individual cases and their results are presented in Chapter 5,
Chapter 7, and Chapter 6 below.

Outlook

The remainder of this chapter is structured as follows: Section 4.1 outlines
our general research strategy and the considerations behind these choices. Sec-
tion 4.2 discusses the conceptual foundations of content analysis research based
on Klaus Krippendorff’s [78] popular model. Our study’s approach to unitising
and the used system of categories are discussed in Section 4.3 and Section 4.4,
respectively.

4.1 Overview

The transfer of cognitive skills is a well-studied topic, and various strategies
have been proposed to reduce the negative impact of existing knowledge and
experiences. In Section 3.7, four strategies have been identified to be par-
ticularly well-elaborated and relevant in the context of learning new pro-
gramming languages and paradigms: Heterogenous backgrounds, explication

56 4 Research Strategy

of mind shifts, the use of cognitive dissonance, and guided analogies. Table 4.1
provides a brief summary of these approaches.

Heterogenous backgrounds

Narrow, single-paradigm expertise was shown to impede learning in new contexts.
While existing knowledge of a learner must, to some degree, be accepted as a fact,
concepts should be examined thoroughly and from different angles before being
re-introduced in a new context.

Explication of mind shifts

If a transition requires a radical change in perspective, it is recommended to
clearly explicate this shift as well as its role as a requirement for successful learn-
ing. This explication encourages active self-monitoring, which is considered a
general supporting condition for positive transfer.

Cognitive dissonance

When introducing a new paradigm, educators should first try to establish a cog-
nitive dissonance about the existing approaches. This is done by questioning the
current, deeply internalised models, together with (and, ideally, driven by) the
learners; only after the drawbacks of a current concept are understood, a new
concept can be introduced.

Guided analogies

Analogies are a key facilitator of transfer, in positive as well as in negative di-
rection. Educators must therefore use analogies consciously and only if they are
thoroughly elaborated and qualified. Educators must explicate the possibility (or
risk) of transfer and clearly discourage learners from using analogies that are
potentially misleading.

Table 4.1. Selected knowledge transfer strategies

The goal of the present work is to show if, and how, these strategies reflect in
expert developer education in the context of the software industry’s transition
from Java to JavaScript. For this purpose, we conducted a qualitative content
analysis of three concrete examples from contemporary developer education
practise, each representing a popular format of eduction: (i) talks at developer-
centred tech conferences, (ii) non-academic professional literature, and (iii)
company-internal trainings.

In the following, we outline the central characteristics of our study.

4.1 Overview 57

4.1.1 Paradigm-level and concept-level analysis

We believe that any content analysis focusing on transfer across programming
paradigms must operate on two general levels of granularity: on paradigm level
and on concept level.

On paradigm level, an analysis must cover all knowledge transfer strategies
that are applied generally and across the various sub-topics of an educational
unit. Such applications would typically be expected at the very beginning or
end of a unit. As an example, it would be perfectly conceivable for a book on
JavaScript to talk about a required “change in perspective” (and thus explicate
a mind shift) in it’s introductory chapter on, say, browser-based programming.
On concept level, an analysis must cover applications on the level of individ-
ual approaches and ideas. An educator could, for example, discuss the differ-
ences between function scoping and block scoping in great detail, but describe
JavaScript objects as “practically equivalent” to their Java counterparts, or not
establish this connection at all. We believe that such concept-level applications
(or their absences) are even more relevant to learners: Any paradigm-level or
language-level discussion will, to some extend, remain abstract and theoretical
until concrete concepts are introduced.

The present work will cover paradigm-level as well as concept-level applications
for all investigated units. Although a clear distinction between these levels is
required for the correct interpretation of our analysis, the theoretical construct
of concept mappings as discussed in the following section will allow us to apply
a consistent unitising strategy and system of categories across both levels.

4.1.2 Concept mappings

Transfer, positive or negative, is always a transfer from one context to another:
From learning multiplication to buying apples, from driving a Toyota to driving
a VW, from objects in Java to objects in JavaScript. This association of a
source domain and its concepts (expected to be known to the learner) and a
target domain and its concepts (expected to be new to the learner) applies to
transfer just as it applies to knowledge transfer strategies. This is obvious for
the guided analogy approach: An educator can not just discourage an analogy
“about” the concept of closures in JavaScript – he or she must discourage a
analogy between closures and, for example, private variables in Java. Similarly,
the heterogenous backgrounds strategy implies that a certain source concept
is generally known to the learner, but needs to be presented in a more general
way before being re-introduced in the target context. The explication of mind
shifts always explicates mind shifts from a known concept to a new one, and
cognitive dissonance is always created about a known idea before introducing
a new one.

58 4 Research Strategy

In the present work, these pairs of source and target concepts serve as the
central unit of analysis on both the paradigm level and the concept level of our
study. We define a concept mapping as a tuple (cs, ct, r), where cs is a concept
from the source domain, ct is a concept from the target domain, and r is a
relation between these concepts. A so-defined concept mapping is established
whenever two concepts are put into any kind of relation with each other in the
course of an educational unit, in a way that can be assumed to be noticeable
and understandable to the expected audience. For example, concept mappings
would be created when an educator describes JavaScript as “similar” to Java,
when a student publicly comments on prototype-based inheritance as being
“fundamentally different” from class-based inheritance, or when a slide is titled
“objects vs. classes”.

Although the combination of concepts is generally unlimited, we assume that
cs and ct are always on a consistent level of abstraction. That is, concept map-
pings may exist between JavaScript and Java in general, between JavaScript
objects and Java objects, but not between JavaScript objects and Java in gen-
eral. This consistency may not necessarily reflect in the “manifest content”
(Berelson [9]) of an educational unit, but be implicit and only visible in the
given context. For example, if a JavaScript concept ct is described as “differ-
ent to Java”, it is, in fact, described to be different from a certain unnamed
counterpart of ct in Java that is expected to be clear to the learner. In this
respect, the notion of concept mappings follows the common understanding
of analogies, which Clark [19] defines as “horizontal connections between two
similar chunks of information at the same level of abstraction”. Concept map-
pings are, however, more general in that they neither prescribe a certain kind
of relation between two concepts nor imply a particular cognitive process to
be triggered or supported by them.

Figure 4.1 shows possible concept mappings between JavaScript and Java.
The unitising strategy for concept mappings as well as the applied system of
categories are discussed in greater detail in Section 4.3 and Section 4.4 below.

Strings

Classes

Method
Overriding

Strings

Constructor
Functions

Property
Shadowing

Java JavaScript

Figure 4.1. Exemplary concept mappings

4.1 Overview 59

4.1.3 A qualitative approach

Concept mappings can come in a variety of forms: Created by the instructor
or by a student commenting on a topic; discussed in great detail or left un-
commented in the corner of a slide; handled in a chapter or evolving over the
course of a book. Facing the versatile and often subtle character of concept
mappings, a successful analysis must be qualitative in that it must respect “the
context of text components, latent structures of sense, distinctive individual
cases, [and] things that do not appear in the text” (Ritsert [133] acc. to [75]).
It must furthermore avoid oversimplifying quantifications (cf. Kracauer [76]):
For example, it would be illicit to define an exact number of “guided analogies”
that would qualify an educational unit as “skill-transfer aware”. Instead, each
educational unit has to be discussed thoroughly and independently.

A respective variant of the classical content analysis has been proposed by
Mayring (e.g., [98, 100]) as qualitative content analysis. In contrast to classi-
cal/quantitative content analysis that is focused on the “manifest content” of
a text (e.g., the frequency of a certain word or grammatical characteristics),
Mayring’s approach allows classifications of coding units also based on char-
acteristics that require the active valuation of a researcher and may not be
identifiable using a static text analysis.

4.1.4 A case-based approach

A consequence of our study’s qualitative character is its limited sample size
of only three units. In this respect, the presented research design adopts ideas
from case study research. Case study research, as discussed in great detail e.g.
by Yin [170] and Hartley [60], focuses on a detailed, holistic, and context-aware
investigation of complex phenomena – so-called cases. These cases serve as
conceptual representatives of the set of all possible units rather than statistical
ones (cf. Krippendorff [78]), and generalisations drawn from them must always
be analytical, not statistical (cf. Yin [170]).1

Another limiting factor to the number of investigated cases is the extent of our
study. Though preferable, the involvement of coders other than the author lies
beyond the scope of this thesis. In default of measurable inter-code reliability
we will provide relevant quotes from the investigated texts and discuss our
categorisations so far as is necessary.

1 The interplay of qualitative content analysis and case study research is discussed
by Kohlbacher [75].

60 4 Research Strategy

4.2 Conceptual Foundations

In his widely cited work on the subject matter, Krippendorff [78] presents a
conceptual framework for content analyses. Successfully applied in countless
research efforts, his framework is intended to serve prescriptive, analytical, as
well as methodological purposes. Its prescriptive purpose to “guide the con-
ceptualisation and design of practical content analysis research” (ibid.). Used
analytically, it supports the critical discussion of existing content analyses. Its
methodological purpose is in setting precautionary standards and performance
criteria for evaluating ongoing analyses.

In the presented work, Krippendorff’s framework was applied prescriptively
and methodologically to guide and structure the analysis of selected case stud-
ies from practical expert developer education. In the following, we discuss the
components of Krippendorff’s framework along with their relations to each
other and discuss the components’ concrete implementations in the context of
the on-hand study.

Figure 4.2 shows Krippendorff’s framework for content analyses. It’s compo-
nents are (i) a body of text ; the base material of an analysis, (ii) a research
question to be answered through the analysis of this text, (iii) a context of the
analyst’s choice in which texts gain meaning, (iv) an analytical construct that
operationalises what the analyst knows about the context, (v) inferences that
are drawn based on this analytical construct, and (vi) validating evidence.

Context
as conceived by content analysts

Answer

Analytical
Construct

Content Analysis

Texts

Inferences

The many worlds of others

Research Question

Texts

Stable
Correlation

Contributing
Conditions

Meanings,
References,

Uses

Validating Evidence

Figure 4.2. A framework for content analysis [78]

4.2 Conceptual Foundations 61

4.2.1 Texts

The body of text is the base material of any content analysis. Krippendorff
attributes textuality to data that are meant to be read, interpreted, and under-
stood by people other than the analyst, and can be rearticulated by readers.
Texts in this sense can include writing, but also images, gestures, musical
compositions, or behavioural sequences.

The presented study is based on three real-world examples, each representing a
certain format of teaching JavaScript to expert Java developers. Following the
ideas of qualitative content analysis and case-study research, the investigation
of selected cases shall allow us to iteratively refine our research design. The
emerging findings could, in further consequence, be tested against a broader
range of texts.

4.2.2 Research Questions

The ultimate goal of analysing the given body of text is to answer one or
more research questions. Research questions are similar to hypotheses; how-
ever, while hypotheses are pitted against direct observational evidence, re-
search questions relate to phenomena that are essentially extratextual and
need to be answered indirectly through inferences to be drawn from the anal-
ysed texts. These inferences remain hypothetical until they are confirmed by
validating incidents. Research questions must therefore allow for validation
or invalidation by acknowledging alternative ways to investigate the observed
phenomena.

The research question of the present study is if, and how, existing strategies
for reducing negative skill transfer across programming paradigms reflect in
today’s expert developer education, in the context of the industry’s transition
from Java to JavaScript. This question is indeed extratextual; it is not about
the exact wording of selected education units, but about educational practise
in general and the quality of teacher education and training. An alternative
research approach could therefore be to interview educators on their perspec-
tive on transfer in general, the risk of negative transfer effects, and knowledge
transfer strategies.

4.2.3 Context

Texts of any kind only gain meaning, and therefore can be related to research
questions, in a certain context. The context can be understood as “the analyst’s
best hypothesis for how the texts came to be, what they mean, and what they
can tell or do”. As the context of an analysis is essentially the analyst’s choice

62 4 Research Strategy

and often one of many possible, it must be clearly specified in order to allow
unambiguous interpretations of a study’s results.

The presented study is conducted in the very specific context of expert devel-
oper education. It can therefore be accepted as certain that both the producers
and the consumers of a text have a deep understanding of software engineering
in general. While Java is explicitly or implicitly defined as required prior knowl-
edge in all investigated cases, we can assume that the intended consumers – the
learners in the teaching situation – have no or only a very limited knowledge
of JavaScript.

4.2.4 Inference and analytical constructs

In the course of a content analysis, researchers select from the set of possible
answers to the given research questions through inferences from the given body
of text. These inferences are abductive in nature – i.e., they proceed across
logically distinct domains. For example, one could try to infer the identify of
a text’s author from textual qualities such as the average length of sentences.
Even more than inductive or deductive inferences, abductive inferences need
to be warranted by knowledge of the given context. In the previous example,
in order to perform the named inference, we must show, or at least plausibly
argue, that authors tend to use sentences of similar length across their works.

Analytical constructs operationalise the available knowledge to make it useable
in a defined and reproducible manner in the course of a context analysis.
Often specified in the form of if-then statements, an analytical construct can
be understood as a function that, when applied to a body of texts, guides
the analyst to answers to the given research question. As an example, an
analytical construct from communication science could equate the area devoted
to an article with the topic’s relative importance to the editorial team of a
newspaper. This equation is a “mini-theory” in itself, and must be justified,
e.g., though existing theories, expert knowledge, or previous analyses in the
same context.

The present study is centred around the occurrence of four selected knowledge
transfer strategies: heterogenous backgrounds, explication of mind shifts, cog-
nitive dissonance, and guided analogies. Clearly, applications of these strategies
may not necessarily be explicated as part of an educational unit – as a matter
of fact, they may not even happen consciously. We must therefore infer their
occurrence from how a pair of source and target concepts, along with the re-
lationship between these concepts, is depicted as part of an education unit.
As an example, we consider the critical elaboration of a source concept as a
possible indication of a (conscious or unconscious) application of a cognitive
dissonance strategy. Further analytical constructs are discussed as part of our

4.3 Units 63

analysis’ system of categories in Section 4.4 below. Notwithstanding these gen-
eral guidelines, we commit ourselves to a holistic research approach that seeks
to take overall educational strategies and patterns into account.

4.2.5 Validating evidence

Any content analysis should be “validatable in principle”. For example, if
an analysis infers which topics a political campaign manages to raise at a
certain group of voters, this inference could be validated by conducting a survey
among a representative sample of this group. In many cases, content analysis is
chosen as a research technique precisely because direct observational evidence
is difficult, if not impossible, in practise. Still, requiring that an analysis can
be validated in principle aims to prevent studies that are backed by nothing
but the authority of their authors.

As noted earlier, the results of our analysis could be validated by interviewing
practitioners in the area of expert developer education. Such interview would
have been possible for at least one of the investigated cases. Yet, the design,
conduction, and analysis of one or more interviews lies outside the scope of
this thesis and is left for future work.

4.3 Units

The first step of any content analysis – in fact, of any form of empirical research
– is to identify and clearly define those parts of the observable reality that shall
be considered and recorded in the course of a study. Depending on the nature
and progress of a study, the process of defining and selecting such parts –
the process of unitising – needs to fulfil specific requirements. For example,
in order to identify statistical properties or repeating patterns across a body
of text, the units that show these characteristics need to be logically distinct
and independent of each other: “We can count pennies but not water; we can
count words or sentences, but not text” (Krippendorff [78]).

Krippendorff [78] distinguishes between three general kinds of units: Sampling
units, coding units, and context units. In the following, we discuss these con-
cepts and show their application in the present study.

4.3.1 Sampling units

Sampling units are units that are “distinguished for selective inclusion in an
analysis” (ibid.). In other words, given an overall body of texts that would

64 4 Research Strategy

be infeasible to analyse in its entirety, this body must be unitised in order
to include defined parts of it into an analysis. For example, if the goal is to
understand a certain phenomena through the analysis of stories in the New
York Times, an analyst may decide about the inclusion of articles on the level
of issues or on the level of individual articles.2 The process of selecting sampling
units is typically based on statistical considerations; e.g., when analysing open-
ended interviews with New York residents, one would usually try to represent
the city’s overall population as evenly as possible. As an alternative strategy,
qualitative research sometimes focuses on conceptual representatives rather
than statistical ones – examples rather than samples.

The present study follows latter approach in that it investigates three exam-
ples from expert developer education, each representing a popular format of
education. The selection of these representatives was based on theoretical as
well as pragmatic considerations: On the one hand, we tried to select exam-
ples that, as explicitly as possible, were geared towards expert Java developers.
The selection of the investigated company-internal training, on the other hand,
was merely a question of accessibility; only in the selected case it was possible
for the author to join the class as a regular trainee and thus experience the
training under real-world conditions.

4.3.2 Coding units

Coding units (or recording units) are units that are “distinguished for sepa-
rate description, transcription, recording, or coding” (ibid.). Returning to the
previous example, the goal of an analysis of the New York Times could be to
categorise the articles of the selected issues into, say, critical or in support of
the government. The study’s sampling units would now be issues, whereas the
coding units would be articles. Coding units can be equal to sampling units,
but never exceed them.

The present study seeks to answer the research question through the analysis
and categorisation of concept mappings as discussed in Section 4.1. Concept
mappings can be established in a myriad of ways, and it may be difficult
to clearly define their boundaries. Moreover, concept mappings can evolve
over large amounts of text, and there is no reason why two concept mappings
should not intersect with each other: For example, a concept mapping could
be introduced in the preface of a book and further elaborated in the book’s
later chapters, whereas the book’s early chapters could discuss other concept
mappings just because it makes sense didactically.3

2 In the latter case, the included sampling units may also be the study’s coding units
(see Section 4.3.2).

3 Krippendorff [78] refers to such coding units as non-contiguous.

4.4 System of categories 65

In the present study, associations between a JavaScript concept ct and a Java
concept cs will be considered as part of one and the same concept mapping as
long as they allow a consistent categorisation of that concept mapping given the
used system of categories as presented in Section 4.4. An inconsistency would,
for example, exist if a concept mapping depicted a pair of concepts as similar
up to a certain point, and following associations would describe the same pair
of concepts as dissimilar. Other categories, like the source of a concept mapping
(speech vs. slides vs. handouts, etc.), may allow multiple choices and therefore
not cause inconsistencies. If an association between two concepts does not
consistently extent an existing concept mapping it constitutes a new one.

Provided the above set of general rules, it is clear that describing and splitting
up concept mappings may, to some degree, rely on the individual decisions of
the coder. We will therefore point out and thoroughly discuss any situation
that may appear ambiguous to readers.

The proposed unitising strategy for coding units can be understood as a cate-
gorial distinction as defined by Krippendorff (ibid.). Other kinds of distinction
identified by Krippendorff include physical distinctions (e.g., analysing news-
reel film foot by foot, see Dalex [29]), or syntactical distinctions (e.g., analysing
words, sentences, or paragraphs).

4.3.3 Context units

Context units define the amount of contextual information that needs to be
considered in the description and categorisation of coding units. For example,
in order to understand and categorise the nouns of a text as possible coding
units, one must at least interpret them in the context of the sentence in which
they occur – otherwise, it would be impossible to say whether port refers to a
facility for loading and unloading ships, a computer interface, or a Portuguese
wine. As reading and understanding context is potentially time consuming,
the general rule for context units is to make them as large as necessary, as
small as possible.

Owing to its qualitative character, the proposed study performs all categori-
sations in the context of the full educational unit. In this sense, the study’s
context units are equal to it sampling units.

4.4 System of categories

Given unitising and sampling strategies as discussed in the previous section,
the essential (and often most time consuming) part of an analysis’ “data mak-
ing” is to reduce the many syntactic or semantic qualities of coding units to a

66 4 Research Strategy

set of clearly defined variables. This step, referred to as recording or coding by
Krippendorff [78], is typically based on a comprehensive system of categories,
along with details instructions of when a category applies to a coding unit.

According to Mayring, the base concept of qualitative content analysis is to
analyse texts systematically, “by processing the given material incrementally
and in a theory-driven manner using a system of categories that is derived from
the given material” [99] (acc. to [128]) [translation ours]. However, despite their
importance for content analyses, it is often unclear where categories come from.
In the words of Krippendorff [77] (acc. to [98]), “how categories are defined
[...] is an art. Little is written about it”.

In his work on qualitative content analysis, Mayring (e.g., [98, 100]) distin-
guishes between inductive and deductive category definitions. Deductive strate-
gies use pre-defined, theoretically derived categories. When applied to the body
of text, they are expected to provide answers to the given research questions.
Inductive strategies, by contrast, derive categories from the given body of text.
For example, a researcher could go through a subset of the overall texts and
analyse it for characteristics that may, in further consequence, contribute to
a theory about the investigated phenomena. In a next step, the respective
categories can then be applied to the full body of texts. In both strategies,
categories are ought to be revised in an iterative process if they show to be
unsuitable.

In the present study, both deductive and inductive strategies were applied
to set up a valuable system of categories. Certain characteristics of concept
mappings (like the general kind of relation between the source and the target
concept, or the explication of possible skill transfers) could be derived a priori
from the given research question and the analytical construct, respectively.
Following the idea of a more open-ended, case-study-like investigation of the
selected examples, other categories (like the source of a content mapping)
were defined inductively based on an initial, in-depth study of Yakov Fain’s
JavaScript for Java developers [44].

Source

The source of a concept mapping describes in which part or element of an
educational unit a mapping is established. Depending on the general format
of education, we distinguish between speech, slides, handouts, and questions
or comments from the audience (in talks and coachings), as well as text and
figures (in literature) as listed in Table 4.2. Multiple categories are possible.

4.4 System of categories 67

Source concept definition

As noted earlier, concept mappings connect source and target concepts only on
consistent levels of granularity: A concept mapping may associate JavaScript
in general and Java in general, or JavaScript objects and Java objects, but not
JavaScript objects and Java in general. This does, however, not necessarily
reflect in the manifest content of the text, but may be visible only implicitly
and in the given context. In our analysis, the source concept definition spec-
ifies how clearly the source concept of a concept mapping is identified. We
distinguish between concept level, domain level, and implicit associations as
depicted in Figure 4.3 and listed in Table 4.3. In case of multiple associations
the most specific is considered.

Supposed existing
knowledge of learner

Domain

Concept

implicit

domain-level

concept-level

Source Target

Figure 4.3. Source concept definition

Relationship type

The relationship type of a concept mapping describes the general kind of re-
lation that is established between the source and the target concept of a map-
ping; e.g., if the two concepts are described as equal, similar, or different to
each other. For the purpose of this study we distinguish between identical,
limited identical, similar, and unspecific positive, mainly negative, negative,
opposite, and unspecified associations as listed in Table 4.4.

Elaboration of source concepts

The main idea of the heterogenous backgrounds strategy is to establish a
broader, more abstract understanding of a source concept before re-introducing
it in the target context. Likewise, the cognitive dissonance strategy seeks to

68 4 Research Strategy

uncover possible weaknesses and disadvantages of well-internalised source con-
cept before introducing an alternative counterpart in the target context.

The present study aims to identify applications of these strategies by categoris-
ing concept mappings based on if, and how, a source concept is elaborated in
the course of a concept mapping. We distinguish between positive, neutral,
critical, and no elaboration as listed in Table 4.5.

Explication of mind shifts

For transitions requiring a radical change in perspective it has been recom-
mended to clearly explicate this shift as well as its role as a requirement for
successful learning. We differentiate concept mappings depending on whether
such explication takes place or not as listed in Table 4.6.

Elaboration of differences and commonalities

A key point of the guided analysis strategy is to use analogies consciously and
only if they are thoroughly elaborated and qualified. Apart from the general
type of relation between source and target concept – identity, similarity, dif-
ference, etc. – such qualification largely depends of whether or not the specific
differences and commonalities between the source and the target concept are
elaborated. We distinguish a discussion and no discussion of possible differ-
ences and commonalities as listed in Table 4.7 and Table 4.8, respectively.

Explication of possible skill transfers

The guided analysis strategy furthermore suggests to make possible skill trans-
fers explicit and conscious to the learner. We thus differentiate between con-
cept mappings with explicated and non-explicated skill transfers as listed in
Table 4.9.

Explication of knowledge transfer strategies

As a final distinction, we categorise concept mappings based on whether or not
a knowledge transfer strategy itself is explicated. The respective categories are
listed in Table 4.10.

The below, tabular representation of categories loosely follows Mayring and
Brunner [101].

4.4 System of categories 69

Category name Speech

Short name S1

Description The mapping is established in the presentation’s speech ele-
ments. This includes the lecturer’s responses to questions or
comments from the audience, if such are present.

Category name Slides

Short name S2

Description The mapping is established on the presentation’s slides.

Category name Handouts

Short name S3

Description The mapping is established on the presentation’s handouts.

Category name Questions or comments from the audience

Short name S4

Description The mapping is established in questions or comments from
the audience.

Category name Text

Short name S5

Description The mapping is established in the book’s text.

Category name Figures

Short name S6

Description The mapping is established in the book’s figures.

Table 4.2. Source

70 4 Research Strategy

Category name Concept level

Short name SD1

Description The target concept is associated with a specific concept from
the source domain.

Examples “prototypal inheritance, as opposed to classical inheritance”

Category name Domain level

Short name SD2

Description The target concept is associated with an unspecified counter-
part in the source domain. It is implied that the particular
concept of the source domain is clear to the learner from the
context.

Examples “you can instantiate [an array] without even knowing how
many elements it’s gonna have, not like in Java”

Category name Implicit

Short name SD3

Description The target concept is qualified in terms of how new or common
it is to the learner, relative to general ideas or concepts that
are assumed to be known but not further specified. Neither
the source domain nor its concepts are discussed.

Examples “you can store text of the function inside of the array as well
- something unusual”

Table 4.3. Source concept definition

4.4 System of categories 71

Category name Identical

Short name RT1

Description The source concept is described as identical to the target
concept.

Typical wording “the same as”, “equal to”, “just like”

Category name Limited identical

Short name RT1

Description The source concept is described as widely identical to the
target concept. Certain minor differences are implied.

Typical wording “technically the same as”, “widely identical”

Category name Similar

Short name RT2

Description The source concept is described as similar to the target con-
cept.

Typical wording “similar to”, “close to”

Category name Unspecific positive

Short name RT3

Description The source concept is described as related to the target con-
cept. The quality is of this relation is not further elaborated.

Typical wording “related to”, “comparable to”

Category name Mainly negative

Short name RT4

Description The source concept is described as mainly different from the
target concept. Certain commonalities are implied.

Typical wording “quite different from”, “some gaps between”

Category name Negative

Short name RT5

Description The source concept is described as different from the target
concept.

Typical wording “unlike”, “different from”

Category name Opposite

Short name RT6

Description The source concept is described as the exact opposite of the
target concept.

Typical wording “opposite to”, “to the contrary of”

Category name Unspecified

Short name RT7

Description The target concept is associated with the source concept; the
quality of this association is not elaborated.

Examples “Objects vs. classes” (on slide)

Table 4.4. Relationship type

72 4 Research Strategy

Category name Positive elaboration

Short name ES1

Description The source concept is further elaborated. It is described
largely positively in the course of this elaboration.

Category name Neutral elaboration

Short name ES2

Description The source concept is further elaborated. No assessment in
terms of quality is made.

Category name Negative elaboration

Short name ES3

Description The source concept is further elaborated. It is described
largely negatively in the course of this elaboration.

Category name No elaboration

Short name ES4

Description The source concept is not further elaborated.

Table 4.5. Elaboration of source concepts

Category name Explicated

Short name EM1

Description A “mind shift”, “change in perspective”, or similar, is de-
scribed to be required for a successful transition from the
source concept to the target concept.

Category name Non-explicated

Short name EM2

Description No “mind shift”, “change in perspective”, or similar, is men-
tioned as part of a concept mapping.

Table 4.6. Explication of mind shifts

Category name Discussion

Short name ED1

Description Differences between the target concept and the source concept
are discussed.

Category name No discussion

Short name ED2

Description No differences between the target concept and the source con-
cept are discussed.

Table 4.7. Elaboration of differences

4.4 System of categories 73

Category name Discussion

Short name EC1

Description Commonalities between the target concept and the source con-
cept are discussed.

Category name No discussion

Short name EC2

Description No commonalities between the target concept and the source
concept are discussed.

Table 4.8. Elaboration of commonalities

Category name Explicated

Short name ET1

Description A possible positive or negative skill transfer between the
source and the target concept is discussed.

Category name Non-explicated

Short name ET2

Description A possible positive or negative skill transfer between the
source and the target concept is not discussed.

Table 4.9. Explication of possible skill transfers

74 4 Research Strategy

Category name Heterogenous backgrounds

Short name ER1

Description The application of a heterogenous backgrounds strategy is ex-
plicated.

Category name Explication of mind shifts

Short name ER2

Description The application of a mind shift strategy is explicated.

Category name Cognitive dissonance

Short name ER3

Description The application of a cognitive dissonance strategy is expli-
cated.

Category name Guided analogies

Short name ER4

Description The application of a guided analogies strategy is explicated.

Category name Other

Short name ER4

Description The application of a knowledge transfer strategy other than
the named ones is explicated. The explicated knowledge trans-
fer strategy is to be described as part of the analysis.

Category name No explication

Short name ER5

Description No knowledge transfer strategy is explicated.

Table 4.10. Explication of knowledge transfer strategies

5

Example 1: JavaScript for Java Developers
(Conference Talk)

The goal of this work is to explore the use of selected knowledge transfer
strategies in teaching JavaScript to expert Java developers. For this purpose
we conducted a qualitative content analysis of three real-world examples, each
representing a popular format of education. In the following, we present the
first of these case studies: JavaScript for Java Developers, presented by Yakov
Fain [44] at Devoxx 2012, in Antwerpen, Belgium. Devoxx, formerly known
as JavaPolis, is the biggest Java Community conference in the world (De-
voxx [31]). Its focus areas are Java, Android, and HTML5.

The investigated talk is available at Parleys.com, a fee-based video streaming
service focusing on tech conferences. The slide deck (Fain [46]) is available for
download. A similar, yet not identical presentation from Fain is available for
free on YouTube [43]. A transcription of the talk is attached in Appendix A.
Time information is based on the recording available at Parleys.com.

Outlook

The remainder of this chapter is structured as follows: Section 5.1 provides
a brief overview to the presentation, its structure, and covered topics. Sec-
tion 5.2 and Section 5.3 show the outcome of our analysis on paradigm-level
and concept-level, respectively. We summarise and discuss the results of our
analysis in Section 5.4.

5.1 Overview

JavaScript for Java Developers was presented as part of regular conference
track of Devoxx, on day three of the conference, and was scheduled for 60
minutes.

76 5 Example 1: JavaScript for Java Developers

The presentation starts with a brief introduction to the presenter, the company
he is working for, and the general purpose of this talk. Notably, this introduc-
tion contains a very explicit “warning” that JavaScript is “not Java” and “a
different world”. The presenter then outlines general aspects of JavaScript; its
use on both the client and the server side, its characteristics as an interpreted
language, execution speed compared to Java, IDEs and debugging tools, and
how JavaScript files are linked in HTML documents.

The main part of the presentation covers a broad range of basic JavaScript
concepts. Following a brief introduction to variables and the impact of the
var keyword on global vs. function scoping, the presenter elaborates on the
declaration and invocation of functions, the definition of objects, and the use
of object properties. The presentation goes on to discuss the general topic
of prototypal inheritance, covering constructor functions, property shadowing
(referred to as method overriding), and optional function arguments (referred
to as overloading). Informally, the presenter also touches on the concept of
closures, which is further elaborated later in the presentation.

As another main theme of the presentation (and the beginning of what the
presenter calls the “advanced introduction” to JavaScript), the presenter then
discusses the issue of context, i.e., the possible values of the this parameter, in
function invocations. Following an introduction to call and apply, Fain elab-
orates on the role of these functions especially in callback-based programming
scenarios and discusses advantages of JavaScript over Java in this regard. Fain
proceeds walking through a number of concrete coding examples, all of which
are solved together with the audience. The presentation ends with an introduc-
tion to closures – following Ullman [156] (acc. to [47]), they are conceptualised
as “function calls with memory” – and mixins. Slides on the window object,
DOM, and browser events are skipped due to time constraints.

5.2 Paradigm-Level Analysis

Negative mapping in speech and slides. Explication of mind shift. See Table 5.1
for full categorisation.

As noted earlier, the presentation starts with a very explicit warning, stating
that JavaScript is “not Java” and “a different world”. The presenter further-
more points out that things developer are used to in Java are not available in
JavaScript; we understand this as an explicated mind shift. Figure 5.1 below
shows the respective slide, which is shown as the first slide after the title slide.

I want you to read this warning, basically, it’s a different world,
JavaScript is not Java, and what we are used to, what we are custom
to in Java is not available in JavaScript, but these people somehow
survive. [00:54]

 Target C
oncept

Source C
oncept

R
elationship Type

Source
Src. C

onc. D
ef.

El.S.C
.

Ex.M
.S.

El.D
.

El.C
.

El.S.T.
Ex.T.S.

N
egative

S
peech, S

lides

×

Table 5.1. P

aradigm
level m

appings
 Target C

oncept
Source C

oncept
R
elationship Type

Source
Src. C

onc. D
ef.

El.S.C
.

Ex.M
.S.

El.D
.

El.C
.

Ex.S.T.
Ex.T.S.

Functions
M
ethods in Java

N
egative

S
peech, S

lides
C
onceptlevel

×

×

O
bject creation

Java classes
U
nspecified

S
peech, S

lides
C
onceptlevel

× 1

O
bject hierarchy

Java class hierarchy
S
im
ilar

S
peech

C
onceptlevel

C
onstructor functions

C
onstructors in Java

U
nspecific positive

S
peech, S

lides
C
onceptlevel

×

A
rrays

A
rrays in Java

U
nspecified

S
peech

D
om

ainlevel

×

P
rototypal inheritance

C
lassical inheritance

N
egative

S
peech, S

lides
C
onceptlevel

N
eutral 1

× 1

C
losures

P
rivate m

em
bers in Java

U
nspecified

S
peech, S

lides
C
onceptlevel

P
roperty shadow

ing
M
ethod overriding

Lim
ited identical

S
peech

C
onceptlevel

×

O
ptional function argum

ents
Function overloading in Java

U
nspecified

S
peech, S

lides
C
onceptlevel

N
eutral

×

Functions as callbacks
A
nonym

ous classes in Java
U
nspecified

S
peech, S

lides
C
onceptlevel

N
egative

×

Function properties
S
tatic variables

S
im
ilar

S
peech, S

lides
C
onceptlevel

C
losures

C
losures in Java 8

Identical
S
peech

C
onceptlevel

M
ixins

Inheritance in Java
N
egative

S
peech, S

lides
C
onceptlevel

N
eutral

×

Table 5.2. C
onceptlevel m

appings

S
rc. C

onc. D
ef. S

ource concept definition
E
l.S
.C
. E

laboration of source concept
E
x.M

.S
. E

xplication of m
ind shifts

E
l.D

. E
laboration of differences

E
l.C

. E
laboration of com

m
onalities

E
x.S

.T. E
xplication of skill transfer

E
x.T.S

. E
xplication of transfer strategies

1 E
laborated on slides only

78 5 Example 1: JavaScript for Java Developers

Simple things that Java developers take for
granted (a VM version or names of the class

methods) aren’t available in a tribe called
JavaScript Developers. 	

Figure 5.1. Slide 2: Warning [46]

5.3 Concept-Level Analysis

Table 5.2 lists the concept-level mappings of the investigated case. In the
following, the individual mappings are discussed in greater detail.

Functions

Negative, concept-level mapping in speech and slides to Java methods. Elabo-
ration of differences, explication of mind shift.

At the beginning of a larger block focusing on JavaScript functions, objects,
and their interplay, the presenter elaborates on the concept of methods in
Java and the role of Java classes in defining them. Specifically, the presenter
points out that classes don’t have an immediate counterpart in JavaScript.
Mind shifts are explicated (“you think objects”, “we live in a classical world
[...]”).

So Java classes can have methods, and JavaScript – different story,
there’s no classes in there. You think objects. You still can create
objects based on other objects, but in general there’s no such thing as
classes at least for now.1 [08:22]

So it’s difficult to understand, we live in a classical world where every-
thing is clearly defined. [ibid.]

1 A class keyword will be introduced as syntactic sugar in ECMAScript 6; the
language will, however, remain entirely prototype-based (see Mozilla Founda-
tion [109]).

5.3 Concept-Level Analysis 79

Object creation

Unspecified, concept-level mapping in speech and slides to Java classes. Elab-
oration of differences on slides only.

How do you create objects in JavaScript? There are several places,
again, as I said in Java you have classes in JavaScript you have objects.
[11:06]

Differences between JavaScript and Java are explicated on slide #16 as follows:

In Java, you define a class and then create its instance(s). In JavaScript,
you create objects with one of these methods: [...]

Object hierarchy

Similar, concept-level mapping in speech to Java’s class hierarchy.

Mentioned only as a side note to object creation, the presenter briefly discusses
the role of Object as root of the object/class hierarchy in JavaScript and Java.

Then you can also say new Object, by the way, Object is the top of
the hierarchy of everything that exists in JavaScript similar to Java,
right? [11:18]

Constructor functions

Unspecific positive, concept-level mapping in speech and slides to constructors
in Java. Elaboration of differences.

So of course Java has classes and classes have constructors and other
methods like in this case [an example on the slide; H.O.]. But in
JavaScript [...] imagine that you can have just a constructor. No class
of course. [17:28]

Similar information is provided on slide #25:

In Java, classes have constructors. In JavaScript, a function can play
a role of a constructor.

Arrays

Unspecified, domain-level mapping in speech to Java arrays. Elaboration of
differences.

80 5 Example 1: JavaScript for Java Developers

In a brief excursus on arrays the presenter underlines the data structure’s
general flexibility in JavaScript, stating that JavaScript arrays have dynamic
lengths and that this is not the case in Java.2

Array can store anything, array can store objects, can store strings;
you can instantiate it without even knowing how many elements it’s
gonna have, not like in Java. [18:11]

A second, implicit association is unclear: The presentation says that function
can be stored “as text” in arrays, which is described as “unusual”. However, in
the following example, a function is in fact evaluated and the result is stored
to the array. Both scenarios would be possible in Java (with functions being
implemented as inline classes).

And you can store text of the function inside of the array as well –
something unusual. [ibid.]

Inheritance

Negative, concept-level mapping in speech and slides to classical inheritance.
Elaboration of source concept (neutral) and differences, both on slides only.

The presentation’s discussion of prototypal inheritance starts with a prelimi-
nary dissociation to classical inheritance.

Something [that] is called prototypal inheritance, as opposed to classi-
cal inheritance. Whatever we know as inheritance, in Java or in C# or
in C++, now is referred to as classical inheritance, which Java [means
JavaScript; H.O.] doesn’t support. [19:00]

Java’s classical inheritance is briefly described and compared to JavaScript’s
prototypal inheritance on slide #27:

In Java, you define a blueprint first: class A, and another blueprint
based on the first one: class B extends A. After that you can create
instances of A and/or B. In JavaScript, an object can inherit from
other object via a property called prototype.

Notably, the speaker refers to prototypal hierarchies as “super” and “sub-
classes” in the course of the discussion, correcting himself as follows:

I create an instance of object Person and I say now Person is your
super-class, again, not super-class, but it’s hard to explain, “super-
object”. Your daddy, basically. [21:37]

2 Unlike other resources (e.g, Mozilla Foundation [108]), the course does not asso-
ciate JavaScript arrays with other collection types, especially lists.

5.3 Concept-Level Analysis 81

Closures (as private members)

Unspecified, concept-level mapping in speech and slides to private members.

As part of the presentation’s focus on object creation, the presenter briefly
touches on the concept of closures, which are here introduced as “private vari-
ables” in JavaScript.3

Next example: private variables. How do you do something like this,
private? As I said, if you define a variable inside the function with the
keyword var this variable becomes private to this scope. [...] [24:40]

Property shadowing (using function properties)

Limited identical, concept-level mapping to method overriding in speech. Elab-
oration of differences.

Property shadowing using function properties is referred to as method over-
riding by the presenter.4

Method overriding. Is it there? Yes it is there. If you have a method
defined on the prototype level [...] and then you create an instance of
an object, and if you will define a method on this instance with exactly
the same signature as in prototype, you are technically overriding. The
difference is, in Java overriding applies to classes, right? [...] In here
you do everything dynamically on the instances. [27:12]

Optional function arguments

Unspecified, concept-level mapping to function overloading in Java in speech
and slides. Elaboration of source concept (neutral) and differences.

Overloading. Overloading is just natural and simple in JavaScript. [...]
In Java we want to create more than one version of a method with dif-
ferent parameters, right? [...] In JavaScript you don’t have to pass ex-
actly the same number of parameters when you call a method. [28:32]

3 While JavaScript does not have native support for private object properties, the
use of closures is a common technique to implement the desired behaviour (e.g.,
Crockford [23]).

4 The Mozilla Foundation [109] describes the concept as “a form of method over-
riding”, but does not generally use the terminology.

82 5 Example 1: JavaScript for Java Developers

Functions as callbacks

Unspecified, concept-level mapping to anonymous classes in Java in speech and
slides. Elaboration of source concept (negative) and differences.

Even though I’m a Java developer I’m not too happy with the syntax
of all this lamdas, closures, and everything that is coming in Java 8. I
still think that it’s a little bit more complicated for an average person
to understand. But in JavaScript it’s so easy. [...] [35:18]

Anonymous classes in Java versus callbacks in JavaScript. [...] You
have to create an inner class. A wrapper, right? [...] But in JavaScript
there is no problem like this. So if you have an object you want to add
a listener you just pass the function. [...] So see the difference? I see
the difference. [43:12]

Function properties

Similar, concept-level mapping to static variables in speech and slides.

So I’m creating this property default and I’m using object literal
notation. [...] Maybe default values for the object. If they are not given
they could be taken because I attached properties to them. In my
opinion it is very close to what’s a static variable in Java. It doesn’t
belong to any class but it can be reused by multiple classes. [42:02]

Closures

Identical, concept-level mapping to closures in Java 8 in speech.

So JDK 8 will support closures of course, and you will need to get used
to this weird world. [51:11]

Notably, the presented repeatedly refers to closures as “weird”.

So it’s a bit weird but this is closure. So it’s a strange situation, right?
[58:11]

Mixins

Negative, concept-level mapping to inheritance in Java in speech and slides.
Elaboration of source concept (neutral) and differences.

5.4 Discussion 83

In Java you can extend one class, right? There is no multiple inher-
itance, we know. So if you extend class A you cannot take a piece of
code from the side and just stuck it in. But in here you can and it’s
called mixins. [59:42]

Differences between JavaScript and Java are further elaborated on slide #57.

In Java, subclasses vertically inherit functionality from their super-
classes. Multiple inheritance is not supported. JavaScript supports
mixins – pieces of functionality that can be reused by any objects.

5.4 Discussion

A tight schedule

The presentation’s overall goal according to Fain [45] is to give a general in-
troduction to JavaScript. This is a courageous goal, and even more so for a 60
minutes presentation. Indeed, Fain’s talk covers a great range of topics: Be-
ginning with JavaScript engines and ending with closures, pointing out many
aspects of ECMAScript 6, and walking through several complex examples.
Further sections on the browser environment and the DOM are dropped only
due to strict time constraints.

As a possible result of the presentation’s scope and pace, Fain does not touch
on all basic language features that one would expect to find in an introductory
talk. This includes loose equality vs. strict equality, typeof, as well as the
distinction between null and undefined. Other topics are mentioned only as
side notes (e.g., the naming convention for constructor functions or the concept
of global scope) or elaborated on slides only. Yet, many of these basic aspects
could later become a major source of confusion especially for experienced Java
developers. Learning them thoroughly could thus be more valuable than a
glimpse into sophisticated patterns such as mixins.

Classes vs. prototypes

A dedicated focus area of Fain’s talk is the distinction between Java’s class-
based object orientation and JavaScript’s prototype-based approach. This fo-
cus also reflects in the used wording: In contrast to the other cases discussed
below, Fain is very clear and explicit about classes not existing in JavaScript.

So Java classes can have methods, and JavaScript – different story,
there’s no classes in there. You think objects. You still can create
objects based on other objects, but in general there’s no such thing as
classes, at least for now. [08:22]

84 5 Example 1: JavaScript for Java Developers

So of course Java has classes and classes have constructors and other
methods like in this case. But in JavaScript [...] imagine that you can
have just a constructor. No class of course. [17:28]

Throughout the presentation, Fain mentions classes in a JavaScript context
only in a short summary of the ext.js framework (around 06:20) and when
discussing inheritance, immediately correcting himself as follows:

And what if we want to make an employee a subclass of a construc-
tor? You are saying Employee.prototype = new Person(). I create
an instance of object Person and I say now Person is your super-class,
again, not super-class, but it’s hard to explain, “super-object”. Your
daddy, basically. [21:25]

Whether or not JavaScript supports classes is controversial. Douglas Crock-
ford [21] calls JavaScript “class-free”, but acknowledges that classical inheri-
tance can be implemented (ibid.). The Mozilla Foundation [110] is less clear
about the subject, stating that JavaScript “uses functions as classes”. While
a more detailed discussion is beyond the scope of this work, it seems evident
that JavaScript’s object model is (i) key to mastering the language, and (ii)
distinct enough from classical object-orientation to require a significant mind
shift from expert developers. A clear, explicit, and consistent differentiation
hence seems preferable, even though certain commonalities may be utilised for
educational purposes.

A Java-based terminology

As can be seen from the above quotes, the talk’s introduction to prototypal
inheritance is largely based on the language’s differences to Java. This clear
distinction transforms into a more conjunctive approach in the second half of
the presentation, where several concepts are introduced by the name of associ-
ated concepts in Java. This concerns closures (introduced as private variables),
property shadowing (introduced as method overriding), and optional function
parameters (introduced as overloading). Function properties are not explicitly
referred to as static variables but described as “close” to them.

All of the named associations are debatable, as all of them involve certain,
more or less relevant differences that are not elaborated as part of their concept
mapping.

Property shadowing using functions, for example, does not ultimately hide the
base function and requires explicitly invoking the base function on the proto-
type to perform a super call. Method overloading in Java allows semantically
independent parameters across the different method signatures, an aspect that
is not covered in the discussed JavaScript logic. Function properties are not
accessible from within an instance without an explicit reference to the con-
structor function.

5.4 Discussion 85

As a bottom line, it is beyond question that certain JavaScript concepts allow
implementing behaviours that closely resemble functionality in Java or other
classical object-oriented languages. They are, however, not identical to these
concepts – a fact that seems worth pointing out given the target audience.
That said, the named associations are frequently found in relevant material
and seem commonly accepted at least in informal developer exchange.

JavaScript – a weird world?

A striking aspect of the talk is its distant, if not dismissive, perspective
on JavaScript, frequently implying that the language is inherently confus-
ing and extremely difficult to learn. This is especially remarkable as many
of JavaScript’s undeniable design errors and quirks (like loose equality and
the sometimes unexpected outcome of typeof) are not even covered by the
presentation. As an example, JavaScript and especially closures are repeatedly
described as “not logical” or “weird”. Similarly, the slide deck’s artwork fea-
tures visibly confused and desperate characters (slide #12 and #30, Fain [46]).

JavaScript has some features which are not logical, which are not easy
to understand, but you tell me. [44:37]

This impression is strengthened by the use of examples, which often seem to
further underline the language’s complexity. For instance, examples on variable
scoping feature unnecessarily complex code and are presented in the form
of a guessing game, revealing seemingly illogical results much to everyone’s
amusement. The speaker’s distant perspective also becomes evident when clear
distinctions are drawn between the group (or “world”) or of Java developers
(referred to in first person) and the group of JavaScript developers (referred
to in third person):

It’s something unheard-of, right? In our world. [23:35]

Imagine as if you’d be writing a program in Java and nobody would
tell you what is the JVM and what is the version of JVM, and it still
has to work somehow. So that’s the world of JavaScript developers.
They don’t know where there program will run.5 [03:22]

[...] what we are custom to in Java is not available in JavaScript, but
these people somehow survive. [01:02]

Only in one case, JavaScript is explicitly described as more elegant than it’s
counterpart in Java.

5 It is worth pointing out that only the fewest Java developers know the exact version
of their customers’ JVMs, although cross-browser support may be a greater issue
in practise.

86 5 Example 1: JavaScript for Java Developers

But in JavaScript there is no problem like this. So if you have an object
you want to add a listener you just pass the function. [...] So see the
difference? I see the difference. [...] In JavaScript it’s so easy. [43:54]

The speaker’s educational intentions behind this distant attitude are unclear.
As a possible interpretation, it could be seen as an attempt to connect with
the (implied or actual) audience; for reasons that lie beyond the scope of
this work, developers have the reputation to strongly dislike JavaScript (e.g.,
Dickens [32], Ravi et al. [129]). As pointed out by Ryan [140] (see also, e.g.,
Dumas and Parsons [37], Pinson [126]), motivational aspects play an important
role in developer education. It would hence appear more advisable to actively
contradict JavaScript’s negative image.

6

Example 2: A Software Engineer learns
HTML5, JavaScript, and jQuery
(Professional Literature)

The second case of our study is A Software Engineer learns HTML5,
JavaScript, and jQuery, by Dane Cameron [15], 1st edition, published in 2013.
Listed as the seventh most popular book on JavaScript on Amazon.com,1 the
book provides an introduction to HTML5, JavaScript, and jQuery based on an
exemplary web application that is developed throughout the book. As the title
indicates, it starts from the assumption that the reader has “some training as
a software engineer or computer programmer” (ibid.). The present work con-
siders the book’s preface, Chapter 1, Introduction, Chapter 2, About this book,
Chapter 3, A Brief Overview of Web Applications, and Chapter 5, JavaScript
Fundamentals; chapters on HTML5, jQuery, and enhanced JavaScript con-
cepts like Web Workers are not considered.

The investigated book is available as paperback and digitally from specialist
dealers (ISBN 1493692615). Page numbers refer to the Kindle edition of the
book (ASIN B00GAMTRI8).

Outlook

The remainder of this chapter is structured as follows: Section 6.1 provides a
brief overview to the training, its structure, and covered topics. Section 6.2 and
Section 6.3 show the outcome of our analysis on paradigm-level and concept-
level, respectively. We summarise and discuss the results of our analysis in
Section 6.4.

1 Retrieved on September 11, 2015.

88 6 Example 2: A Software Engineer learns HTML5, JavaScript, and jQuery

6.1 Overview

A Software Engineer learns ... starts with a brief preface, describing the strug-
gles that many software developers have when transitioning from other lan-
guages to JavaScript. It points out the importance of learning JavaScript (vs.
just using it) and summarises the book’s overall strategy of focusing on se-
lected aspects that help understanding the language’s core principles.

The introduction provides a short outline of the author’s professional history
and how he came to learn JavaScript. It goes on to discuss recent browser de-
velopments (“browser wars part 2”, p.10), the rise of (single-page) web appli-
cations and AJAX, as well as the current state and future of cloud computing.

Chapter 2, About this book, discusses required previous knowledge – i.e., ex-
perience in developing software and a basic understanding of HTML – and
describes how to execute JavaScript on the local environment.

Chapter 3, A Brief Overview of Web Applications, provides a rough definition
of web applications and describes the interplay of HTML5, JavaScript, jQuery,
and CSS in creating such. Each of these languages or tools is described briefly.

Following a chapter on HTML5, Chapter 5 introduces the reader to the “fun-
damentals” of JavaScript. The chapter starts with a discussion of JavaScript’s
primitive types – strings, numbers, booleans, null, and undefined – along
with selected methods provided by their non-primitive counterparts where
such are available. It discusses JavaScript’s strictly floating-point-based ap-
proach and outlines the purpose and outcomes of the typeof operator. The
chapter goes on to discuss truthy and falsy values and the differences between
strict and loose equality. It touches on JavaScript’s dynamic typing approach
before turning towards objects.

The chapter’s section of objects starts with a discussion of class-based objects
in Java and C# and how this approach differs from JavaScript’s notion of
objects. It discusses object literals and how to add and access object properties.
Following a first glimpse on functions and the invocation context, the author
introduces a simple clone function for creating multiple objects with identical
properties. After a brief excursus on JSON, this clone function leads the way
to a discussion of prototypal inheritance and constructor functions.

The third main part of JavaScript Fundamentals covers functional program-
ming in JavaScript. It discusses functions as first class entities and describes
JavaScript’s handling of additional or missing function arguments. The sec-
tion then elaborates on closures, function scoping, and the function invocation
context, as well as the interplay of these concepts. The chapter ends with
a brief introduction to exception handling and “threading”, i.e., the use of
setTimeout and setInterval.

6.2 Paradigm-Level Analysis 89

The book goes on to discuss jQuery, various practical aspects of building and
running a web application, and enhanced JavaScript concepts like Web Work-
ers; these chapters are not considered in the present analysis.

6.2 Paradigm-Level Analysis

Negative mapping in text. Elaboration of differences, explication of mind shifts
and possible skill transfers. See Table 6.1 for full categorisation.

Similar to Fain’s presentation discussed in Chapter 5, Cameron points out
differences between Java and JavaScript early in the educational unit.

JavaScript may bear a superficial similarity to Java, but in actuality
it has more in common with functional languages such as LISP and
Scheme. [p.10]

As also can be seen above, Cameron especially emphasises the superficial sim-
ilarity between Java and JavaScript. This aspect is frequently found in the lit-
erature (e.g., Crockford [22], Resig and Bibeault [131]), but was not explicated
in the previous cases. In the following, the author elaborates on the differences
between Java and JavaScript based on a list of distinguishing features.

JavaScript was named after the programming language Java, but this
was primarily to allow JavaScript to piggyback off the name recognition
of Java rather than any intrinsic similarity between the languages.
JavaScript is in fact a very different language from Java, specifically:
[...] [p.20f.]

Even before discussing these differences in detail, the author addresses prob-
lems in using JavaScript based on Java-based assumptions. While provided
as a personal account, it is clear that readers are intended to relate to, and
avoid, the described scenario. We classify the following as an explication of
mind shifts as well as an explication of skill transfer in general.

I had written simple HTML pages and simple JavaScript over the
years but was often frustrated by it. JavaScript was particularly frus-
trating; it resembled Java (which I knew well), but it seemed to have
got many things wrong. The more I tried to apply my Java thinking
to JavaScript, the worse things seemed to get. [...] I had made many
assumptions about what JavaScript was, and how it worked, but I had
never taken the time to verify these assumptions. [p.9]

In addition, many software engineers have used these languages with-
out ever learning them. JavaScript and HTML have low barriers to en-
try, and this, along with their similarity to other languages, led many
software engineers to conclude that there really was nothing much to
learn. [p.8]

 Target C
oncept

Source C
oncept

R
elationship Type

Source
Src. C

onc. D
ef.

El.S.C
.

Ex.M
.S.

El.D
.

El.C
.

El.S.T.
Ex.T.S.

N
egative

Text

×

×

×

Table 6.1. P

aradigm
level m

appings
 Target C

oncept
Source C

oncept
R
elationship Type

Source
Src. C

onc. D
ef.

El.S.C
.

Ex.M
.S.

El.D
.

El.C
.

Ex.S.T.
Ex.T.S.

S
trings

S
trings in Java

Lim
ited identical

Text
C
onceptlevel

N
um

bers
N
um

bers in Java and other
languages

N
egative

Text
D
om

ainlevel

×

D
ynam

ic typing
S
tatic typing

U
nspecified

Text
C
onceptlevel

N
eutral

×

O
bjects and prototypes

O
bjects in classical

objectoriented languages
N
egative

Text
C
onceptlevel

N
eutral

×
×

×

O
bjects as associative arrays

H
ash m

aps in other languages
Identical

Text
C
onceptlevel

C
onstructor functions

C
lasses in classical

objectoriented languages
S
im
ilar

Text
C
onceptlevel

×

Functions
Functions in stronglytyped
languages

N
egative

Text
C
onceptlevel

×

H
andling of function argum

ents
Function overloading

N
egative

Text
C
onceptlevel

V
ariable scoping

B
lock scoping

N
egative

Text
C
onceptlevel

E
xception handling

E
xception handling in Java

Identical
Text

C
onceptlevel

×

Table 6.2. C

onceptlevel m
appings

S
rc. C

onc. D
ef. S

ource concept definition
E
l.S
.C
. E

laboration of source concept
E
x.M

.S
. E

xplication of m
ind shifts

E
l.D

. E
laboration of differences

E
l.C

. E
laboration of com

m
onalities

E
x.S

.T. E
xplication of skill transfer

E
x.T.S

. E
xplication of transfer strategies

6.3 Concept-Level Analysis 91

6.3 Concept-Level Analysis

Table 6.2 lists the concept mappings of the investigated case. In the following,
the individual mappings are discussed in greater detail.

Strings

Limited identical, concept-level mapping in text to strings in Java.

JavaScript strings are largely equivalent to strings in Java. One conse-
quence of this is that strings are immutable. [p.43]

Numbers

Negative, domain-level mapping in text to numbers in Java and other program-
ming languages. Elaboration of differences.

Due to the fact that all numbers are floating-point, operations between
integers can return floating-point results (unlike in Java). [p.45]

Again, most programming languages would generate errors in these
scenarios if confronted with the integer value of 0, but since all numbers
are floating point in JavaScript, it follows the IEEE convention for
floating point numbers and returns infinity. [p.46]

Dynamic typing

Unspecified, concept-level mapping in text to static typing. Elaboration of
source concept (neutral), elaboration of differences.

Languages such as Java and C++ are statically typed languages. In
statically typed languages, all variables are assigned a type at compile
time, and this type cannot be changed. [...] As we have seen, JavaScript
variables define their types based on the values they are assigned at
run-time, and variables can change their type if they are assigned a
new value. [p.51]

Objects and prototypes

Negative, concept-level mapping in text to objects in classical object-oriented
languages. Elaboration of source concept (neutral) and differences, explication
of mind shifts and possible skill transfers.

92 6 Example 2: A Software Engineer learns HTML5, JavaScript, and jQuery

Cameron’s discussion of objects in JavaScript again touches on the risk of a
negative skill transfer from classical object-oriented languages. Notably, the
author does not deny the general existence of classes in JavaScript at this
point of the book.

JavaScript also supports objects; [...]. JavaScript also supports syntax
for defining classes that objects can be instantiated from. This may lead
you to think JavaScript is a conventional object orientated language –
this would be a mistake. [p.52]

JavaScript is a type of object orientated language called a “prototype-
based language”. [...] The fact that JavaScript also supports syntax for
creating Class-like structures sometimes obscures this fact. [p.66]

JavaScript has a far more flexible attitude to classes and objects, in
fact classes are not essential to JavaScript programming at all. [p.53]

We understand the following as an explication of mind shifts.

Prototype-based object orientated languages are relatively rare, which
is why they are so unfamiliar. [...] In order to succeed with JavaScript
it is important to be aware of its fundamental nature however, and
embrace it rather than fight it. [p.66]

Objects as associative arrays

Identical, concept-level mapping in text to hash maps in other languages.

The reason this is possible is because objects in JavaScript are really
just associative arrays (also known as hash maps in other languages).
Associative arrays are supported natively in most programming lan-
guages, and comprise a collection of name/value pairs. [p.55]

Constructor functions

Similar, concept-level mapping in text to classes in classical object-oriented
languages. Explication of possible skill transfers.

In contrast to earlier sections, Cameron implicitly denies the existence of
classes in his discussion on constructor functions, stating that:

Constructor functions are the closest JavaScript has to classes. [p.64]

The author explicates possible skill transfer effects on programmers experi-
enced in other languages. Limitations of constructor functions are suggested
but not further elaborated.

6.3 Concept-Level Analysis 93

Programmers who have experience with other object orientated lan-
guages are always initially drawn to constructor functions. They pro-
vide a certain familiarity, and appear to provide a class based typing
system. Programmers are then invariably annoyed when these classes
do not provide the same features they are used to with classes in other
languages. [p.65]

Functions

Negative, concept-level mapping in text to functions in strongly-typed lan-
guages. Elaboration of differences.

In many strongly typed Object Orientated languages, such as Java,
functions are not first class language constructs. In order to write a
function (or method), you first construct a class to contain it, and then
an object from that class. Although Java allows anonymous classes, the
syntax for performing the examples above would be nowhere near as
concise. [p.70f]

Handling of function arguments

Negative, concept-level mapping in text to function overloading.

A side effect of this is that it is not possible to overload functions
or methods in JavaScript. In many languages it is possible to define
multiple versions of the same function, but with different parameter
lists (or signatures). [p.71]

Variables scoping

Negative, concept-level mapping in text to block scoping.

In most programming languages the two variables named a would
be different, because they are defined in different blocks of code.
JavaScript does not support block level scoping: it only supports func-
tion level scoping [...]. [p.83]

Exception handling

Identical, concept-level mapping in text to exception handling in Java. Elabo-
ration of differences.

94 6 Example 2: A Software Engineer learns HTML5, JavaScript, and jQuery

For now, it is worth emphasising that JavaScript does support “Java-
style” exception handling, but without the benefits provided by static
typing. Any code can throw an exception without declaring that it will
throw that exception. Any data type can be thrown as an exception,
although it is common practice to throw an object with a code and a
message. [p.84]

Unlike Java, only a single catch block can be provided, and this block
must the determine the cause of the exception. If required the catch

block can throw another exception [p.85]

Single-threaded execution

Negative, concept-level mapping in text to threads.

Unlike most languages, JavaScript does not offer programmers an ap-
proach for utilizing multiple threads. Within the browser environment,
all JavaScript code executes on a single thread, and this is also the
thread that the browser utilizes to update the window. [p.85]

6.4 Discussion

A meta perspective on teaching JavaScript

A Software Engineer learns ... takes a strong meta perspective on teaching
JavaScript, meaning that it not only presents JavaScript concepts, but also
addresses the process of learning and transitioning itself. What are the typical
assumptions developers make? What are the personal experiences of the au-
thor? This meta perspective is a recurring theme in the common introduction
sections as discussed in Section 5.2, but also becomes evident when fundamen-
tal concepts are introduced; here, concept mappings like the following (between
constructor functions and classes) explicate the risk of a potential negative skill
transfer:

Programmers who have experience with other object orientated lan-
guages are always initially drawn to constructor functions. They pro-
vide a certain familiarity, and appear to provide a class based typing
system. Programmers are then invariably annoyed when these classes
do not provide the same features they are used to with classes in other
languages. [p.65]

As noted earlier, offering a meta perspective on the learning process may be
interpreted as a form of engaging active self-monitoring and the “metacog-
nitive reflection of one’s thinking processes” (Perkins and Salomon [125]). In

6.4 Discussion 95

Section 3.7, we have associated this strategy with the explication of mind shifts
approach. Indeed, it is notable that an explication of potential (negative) skill
transfer almost always implies a mind shift, and it has often been difficult to
clearly separate this implication from explicated mind shifts in the presented
analysis.

In conclusion, it is worth pointing out that the book’s meta perspective is
never particularly lengthy or in any other way bound to written text. Instead,
a meta perspective as shown here seems perfectly applicable, if not even better
suited, to other formats of education allowing a more personal and direct two-
way communication.

Focusing on the differences

Despite of its many references to Java and other languages, the book only
occasionally describes concepts as similar or identical to respective counter-
parts; specifically, this concerns strings, objects as associative arrays, construc-
tor functions, and exception handling. This association seems risky only for
constructor functions; here, as for the general topic of classes in JavaScript, a
more sophisticated discussion seems necessary. In contrast to the previous case,
the term class is used imprecisely and somewhat inconsistently (“JavaScript
also supports syntax for defining classes”, p.52, vs. “constructor functions are
the closest JavaScript has to classes”, p.64). What is understandable in live
presentations and trainings could be handled more carefully in written text.

Apart from the above, the author clearly emphasises differences between
JavaScript and Java. These differences are well elaborated unless they are
obvious and trivial for the intended readership.

A positive spin on JavaScript

A Software Engineer learns ... conveys a very positive view of JavaScript, much
in contrast to the work of Fain discussed above.

In addition, the more I learned about JavaScript the more impressed
I became. [p.10]

If you have never taken the time to learn JavaScript before, and espe-
cially if you have only used statically typed languages, you will likely
be impressed with the elegance and flexibility JavaScript syntax lends
to its users. [p.21]

Cameron’s positive attitude is clearly based on educational considerations: As
noted earlier, developers are often believed to dislike JavaScript and to be

96 6 Example 2: A Software Engineer learns HTML5, JavaScript, and jQuery

reluctant to use it. This reluctance is explicitly addressed by Cameron,2 who
describes the book’s overall goal as follows:

I hope this book helps you discover the elegance and beauty of
JavaScript and HTML, and makes you think differently about what
can be achieved with these languages. [p.8]

The good parts

Notwithstanding the book’s optimistic overall tone, Cameron does not deny
JavaScript’s weaknesses and design errors:

Finally, JavaScript has more than its fair share of quirks and design
bugs. The key to circumventing these is to understand they exist These
quirks can be easily worked around by those who understand them, but
can cause annoying bugs those who don’t. [p.87]

As can be seen from the above quote, it is part of Cameron’s educational strat-
egy to emphasise the often limited practical impact of these weaknesses for ex-
perienced JavaScript developers: Even though the result of, say, loose equality
is often unexpected, there is hardly any reason why one should actually use
loose equality if the much more intuitive strict equality test is available. This
strategy follows Douglas Crockford’s standard work from 2008, JavaScript:
The good parts [24], and is explicated at the beginning of “JavaScript funda-
mentals” as follows:

The intention of this chapter is [...] to focus on how the language should
be used, rather than how it can be used. [p.42]

2 E.g., “Despite their success, many software engineers are apprehensive about
JavaScript and HTML”, p.8.

7

Example 3: JavaScript Course – Types
(Internal Training)

The third and final case of our study is an internal training on JavaScript, pre-
sented at a leading provider for team collaboration software in June 2015. Pro-
vided periodically as a voluntary internal training, the course is presented by
a senior JavaScript developer with 10 years of experience in JavaScript devel-
opment. Its declared target audience are developers with basic understanding
of JavaScript; given the company’s strong focus on Java for all non-front-end
engineering, this will almost always imply a reasonable expertise in Java.

Recordings of the training are available to the author and can be provided upon
request. A transcription of the talk is attached to this thesis in Appendix B.
Time information is based on the author’s recordings.

Outlook

The remainder of this chapter is structured as follows: Section 7.1 provides a
brief overview to the training, its structure, and covered topics. Section 7.2 and
Section 7.3 show the outcome of our analysis on paradigm-level and concept-
level, respectively. We summarise and discuss the results of our analysis in
Section 7.4.

7.1 Overview

JavaScript Course: Types is provided as part of the so-called JavaScript Labs,
a series of training session covering selected aspects of JavaScript in greater de-
tail. Other lessons are on functions, inheritance, and the DOM API. Each unit
is scheduled for roughly one hour of lecture and one hour of practical coding
exercises. The number of participants is limited to 8. The investigated lecture
on types is classified as “Medium”, meaning that all participants have “a good

98 7 Example 3: JavaScript Course – Types

knowledge of programming techniques and a basic knowledge of JavaScript”
(Anon. [2]).

The investigated lecture is separated into two parts, divided by a 30 minutes
programming exercise; a second exercise is conducted at the end of of the train-
ing. Starting with a short welcome and the introduction of participants, the
first part of the lecture focuses on JavaScript’s native types: string, boolean,
number, undefined, and null. Following an introduction to the use of typeof
and instanceof for determining the type of a variable, the presenter walks
through these types one after the other.

Strings are covered only briefly. Booleans are discussed along with the con-
cept of falsy values and language-specific characteristics of the AND and OR
operators. The lecture’s part on numbers covers the special values NaN (not
a number) and Infinity and elaborates on the transformation of strings to
numbers (using parseInt/parseFloat and the Number function). It further-
more focuses on the effects of floating-point arithmetic, e.g., to the handling
of very large numbers. Ending the first half of the lecture, the presenter briefly
discusses undefined and null and describes potential pitfalls if the undefined
global variable is overridden.

The focus of the second half of the presentation is on object types. Objects are
thereby considered mainly as sets of key/value pairs; inheritance is covered in
a separate training unit. The lecture starts with the creation of objects, adding
and removing properties, and potential pitfalls when using non-string property
keys. It proceeds discussing the in operator and the for in loop and touches
on the topic of inheritance when introducing the hasOwnProperty method.
Having covered the object basics, the presenter then walks through the built-in
object types, starting with a brief introduction to String, Number, Boolean,
and autoboxing. Arrays are discussed in greater detail, covering the special
role of the length property, the concat method, as well as the diverse ways of
adding and removing array elements. Following short introductions to Date,
RegExp, Error, and Math, the lecture is concluded by a detailed discussion of
strict equality and loose equality.

7.2 Paradigm-Level Analysis

Focusing on the specific topic of types in JavaScript, the lecture does not
establish any explicit paradigm-level mappings between JavaScript and other
languages. Only as a side note to the evaluation of values in a Boolean context,
and in response to the audience, the presenter indicates that JavaScript is
generally different from other languages.

JavaScript has a lot of [surprised sound] points. [04:18]

 Target C
oncept

Source C
oncept

R
elationship Type

Source
Src. C

onc. D
ef.

El.S.C
.

Ex.M
.S.

El.D
.

El.C
.

Ex.S.T.
Ex.T.S.

Types
Types in other languages

M
ainly negative

S
peech

C
onceptlevel

Logical operators
Logical operators in other
languages

M
ainly negative

S
peech

D
om

ainlevel

×

N
um

bers
N
um

bers in Java
U
nspecified

S
peech

D
om

ainlevel

×

Infinity
D
ivisions by zero in C

 and Java
U
nspecified

S
peech

D
om

ainlevel

×

A
rrays

A
rrays in Java

N
egative

S
peech

D
om

ainlevel

×

D
ates

D
ates in Java

U
nspecified

S
peech

D
om

ainlevel

×

Table 7.1. C
onceptlevel m

appings

S
rc. C

onc. D
ef. S

ource concept definition
E
l.S
.C
. E

laboration of source concept
E
x.M

.S
. E

xplication of m
ind shifts

E
l.D

. E
laboration of differences

E
l.C

. E
laboration of com

m
onalities

E
x.S

.T. E
xplication of skill transfer

E
x.T.S

. E
xplication of transfer strategies

100 7 Example 3: JavaScript Course – Types

7.3 Concept-Level Analysis

Table 7.1 lists the concept mappings of the investigated case. In the following,
the individual mappings are discussed in greater detail.

Types

Mainly negative, concept-level mapping in speech to types in other languages.

Starting almost immediately with a discussion of JavaScript’s native types,
the lecture only briefly mentions general differences between JavaScript and
“other languages” as part of its introduction.

Okay, so today we’re going to talk about JavaScript types. Types in
JavaScript are maybe a little bit different to other languages. [00:57]

Logical operators

Mainly negative, domain-level mapping in speech to other languages’ logical
operators. Elaboration of differences.

Talking about booleans we need to talk about the AND operator and
the OR operator because they are quite different from other languages.
In JavaScript, the AND operator does not return a boolean. The AND
operator returns one of the values that you pass. [04:23]

Numbers

Unspecified, domain-level mapping in speech to numbers in Java. Elaboration
of commonalities.

It uses the same standard as in Java, IEEE 754, and everything is
stored as a float. [07:02]

Infinity

Unspecified, domain-level mapping in speech to divisions by zero in Java and
C. Elaboration of differences.

Infinity and −Infinity, are valid numbers, and they’re the result
of this operation, so if you do this, in other languages, I don’t know
about Java but C you break pretty much the computer, in JavaScript
you get the Infinity value and you can continue operating with it.
[07:30]

7.4 Discussion 101

Arrays

Negative, domain-level mapping in speech to arrays in Java. Elaboration of
differences.

Okay, arrays. Arrays are a bit different, [not understandable]. [...] This
is not like in Java, you can create an array and add elements later, it
doesn’t matter, the length is not fixed. [23:43]

Notably, the speaker refers to arrays as “magic”.

Arrays are quite magic because the have a magic property called
length. [24:21]

Dates

Unspecified, domain-level mapping in speech to dates in Java. Elaboration of
commonalities.

The thing is, we have the Year-2000 bug, [not understandable], but we
still have this bug in JavaScript. So when you create a new date, and
you ask for getYear, in this case it would return 115, [not understand-
able], you need to call getFullYear. Welcome to the class. The other
weird thing that I think is the same in Java is the days start with 1,
but the months start with zero. So the first day of the year is day 1,
month 0. I think it’s the same in Java, isn’t it? [29:43]

7.4 Discussion

Focusing on JavaScript

JavaScript Course: Types has been identified as a special case due to its spe-
cific scope and the experience level of it’s target audience. These differences
have two immediate implications. First, references to Java occur far less fre-
quently than in the other investigated cases. On paradigm-level, the course
goes without any general “warnings” or elaborations on the history or core
characteristics of JavaScript. On concept-level, we identified only 6 concept
mappings, of which at least two refer to very specific implementation details
(IEEE standard of numbers, numbering scheme for days and months in Date)
and can be expected to have limited educational impact.

This low number of references is in line with the named characteristics of the
talk: As was shown by Novick [116], the higher the expertise in a field, the

102 7 Example 3: JavaScript Course – Types

less likely are misleading analogies based on superficial similarities. It may
thus- be favourable for an advanced course to focus on JavaScript itself rather
than it’s relationship to other languages. It is furthermore arguable that the
course’s scope just does not demand for concept mappings: Many of the aspects
that provoked references to Java in the previous cases – most prominently,
prototype-based vs. class-based inheritance – are not part of the course.

A deep dive

As another consequence of the course’s specific scope and target audience, the
speaker is able to go into a much greater detail than for example Fain; many of
the addressed topics are indeed covered exhaustively. The speaker does also not
refrain from details that have a limited practical relevance: For example, it is
theoretically possible, yet almost unthinkable in practise, that the undefined

variable is assigned a different value (around 15:30). As can be seen from the
following quote, this exhaustive approach is consciously taken by the speaker.

So pretty much everyone would say, avoid double-equals, but I don’t
think that’s good, because we are engineers, we went for labs, I want
to understand the rules and decide myself if its a good thing or bad
thing. [43:05]

Although in-depth discussions have been identified as an enabler for success-
ful transitions between languages and paradigms, it seems debatable whether
topics need to be covered in all possible detail especially in the course of a
time-constrained lecture. Inevitably, one might argue, the learner would reach
a point where the sheer overload of information outweighs the benefits of
discussing a detail. In the concrete case, this overload may be cushioned by
the course’s practical coding exercises, enabling participants to walk through
examples in their own pace and informally discuss open questions with the
speaker.

A professional view on JavaScript

The presented case may be exceptional in terms of scope and target audience,
yet it lies well between the works of Cameron and Fain in terms of how pos-
itively or negatively JavaScript is depicted. As a highly-skilled professional
talking to highly-skilled professionals, the speaker clearly doesn’t feel the need
to justify the language or emphasise its advantageous aspects. It is equally
clear, though, that he considers JavaScript as a full-value programming lan-
guage that requires sound software-engineering practice, and that he expects
the participants to share this professional perspective. This reflects in the con-
sequent use of the first-person plural.

7.4 Discussion 103

In JavaScript, when we talk about undefined there are two things.
There is the type undefined, that is the value that is used when a
variable has not a value, and the variable called undefined [..] [14:37]

In accordance with the described, professional view on JavaScript, the speaker
thoroughly points out the language’s weak spots while largely avoiding polem-
ical generalisations. This is especially notable considering the lecture’s scope
and level of detail, touching on all the low-level quirks that are not just different
from other languages, but unquestionably wrong. Only at the very end of the
lecture and as part of a discussion with the audience, the speaker summarises
the origin of JavaScript as follows:

All this crappiness comes from the fact that JavaScript was literally
defined in 10 days. Literally. They said to some guy we need a new
language, finally implemented in 10 days. Yes, you can do these weird
things. [49:03]

8

Summary

In the previous chapters, we have discussed and analysed the three cases of our
study as independent examples of contemporary expert developer education.
In the following, we summarise our findings across these individual cases. We
discuss the considered knowledge transfer strategies in the general context of
teaching JavaScript to expert Java developers and present insights that lie
beyond the immediate scope of these strategies.

Heterogenous backgrounds

It is both common sense and scientifically proven (e.g., Nelson et al. [112])
that a broad knowledge supports the acquisition of new programming skills,
as opposed to specific, single-paradigm expertise. Expert developer education
could utilise this fact by discussing a known programming aspect from different
angles and enabling a more general perspective before introducing it in the
context of a new paradigm.

The investigated cases provided only few indications for the application of a
heterogeneous backgrounds strategy. While source concepts were occasionally
elaborated as part of a concept mapping, these elaborations typically seemed
to support the discussion of differences rather than a more general, broader
perspective on the source concept. The heterogenous background strategy may
also be underrepresented in our analysis due to the selected formats of edu-
cation. Both conference talks and (single-lesson) internal trainings have strict
time constraints, and it may often be difficult to fit in the somewhat work-
intensive strategy. Books are almost unlimited in scope, but even more than
talks or trainings they are forced to keep the learner gripped; after all, few
things are easier than downloading another JavaScript book on your e-reader.
Authors will thus avoid spending too many words on concepts that readers
(believe to) already know.

106 8 Summary

Explication of mind shifts

Transitions to new programming paradigms come with new ways of conceptu-
alising and approaching problems – so-called “mind shifts”. It has been recom-
mended for expert developer education to clearly explicate these mind shifts
as well as their role as a requirement for successful transitions. In the context
of the transition from procedural to object-oriented programming, Ross and
Zhang [136] described the strategy as follows:

First, expert structured programmers should be explicitly told that
they are not learning just another programming method. Instead, OOP
requires a new orientation and a changed programmers mindset.

Our analysis provided clear indications for the use of the explication of mind
shifts strategy on paradigm level. JavaScript for Java Developers [44], the
investigated conference talk, opens with an explicit “warning”, stating that
JavaScript is “not Java” and “a different world”. A Software Engineer learns
... [15], the investigated example of non-academic literature, discusses in de-
tail the discrepancy between superficial similarities and structural differences
and illustrates the need for a mind shift based on the author’s own transi-
tion process. A concept-level application was not shown in the investigated
company-internal training; here, the very specific scope of the lecture (focus-
ing on types only) and the more advanced target audience provided possible
explanations for the absence of the strategy.

Paradigm-level explications of mind shifts are, without a doubt, a natural
educational strategy for the given context. The discrepancy between JavaScript
and Java’s superficial similarities and their structural differences is almost
too serious, and too obvious, to not be addressed in some form. Respective
explications can also be found in introductory chapters of JavaScript: The
Definitive Guide (Flanagan [51]) and Secrets of the JavaScript Ninja (Resig
and Bibeault [131]), two of the most important references on JavaScript.

Applications of the discussed strategy were also found on the level of individual
concepts and ideas, although mind shifts on this level were often more implied
than explicated. A conscious educational strategy can only be suspected for
A Software Engineer learns; following the book’s general meta perspective on
teaching JavaScript, necessary mind shifts are here illustrated by the example
of “other developers” running into negative transfer situations.

Cognitive dissonance

Cognitive dissonance as defined by Festinger [50] describes a state in which a
person’s believes, attitudes, and behaviours are conflicting. These inconsisten-
cies in a person’s cognitive system are a powerful driver for change. Introduced

8 Summary 107

to the software-engineering context by Nelson et al.’s [113, 114] Quantum Shift
Learning theory, cognitive dissonance can be utilised for educational purposes
by first questioning the current, well-internalised models and identifying their
drawbacks. Only after the downsides of the current approach are understood,
the new approach should be introduced.

Just like the heterogenous backgrounds approach, cognitive dissonance strate-
gies could hardly ever be identified in the investigated cases. They seem, in
fact, not directly applicable to the context of teaching JavaScript to expert
Java developers: In contrast to the procedural-to-object-oriented transition,
JavaScript is not usually intended to replace Java, and few would argue that
JavaScript is inherently superior to Java – it’s just different. The situation
could possibly be different for the transition from traditional web-application
architectures to SPAs. This investigation is left for future work.

Guided analogies

Analogies have been identified in the literature as one of the main facilita-
tors of positive as well as negative transfer. Educators must therefore not only
provide “elaboration and qualification” [125], but also prevent learners from
using analogies that are obvious but misleading. In a guided analogies approach
(Nelson et al. [112]), instructors explicitly encourage certain parallels between
source concepts and target concepts, but explicitly discourage knowledge trans-
fer for pairs of concepts that are only seemingly related. The presented system
of categories aims to signify applications of the strategy through the attribu-
tion of concept mappings (i.e., the description of associated concepts as, e.g.,
similar or different from each other), the discussion of differences and com-
monalities between the source and the target concept, and the explication of
potential skill transfers.

Our analysis found the majority of concept mappings to be reasonably at-
tributed and elaborated in terms of their differences and commonalities; only in
exceptional cases a more differentiated discussion seemed necessary. Our anal-
ysis furthermore revealed that the provided concept mappings are highly con-
sistent in themselves. For example, their attribution typically remains steady
over the course of an educational unit and is compatible with the further de-
scription of the association. It is also worth pointing out that none of the
investigated units showed a clear tendency towards more conjunctive (i.e., em-
phasising similarities) or more disjunctive (i.e., emphasising differences) con-
nections to Java or other, supposedly known languages. The general “nature”
of an association thus seems to be a matter of the individual concept under
discussion rather than of an overall, educational strategy.

A crucial dimension of the guided analysis approach is, however, the explic-
itness of this guiding. As has been pointed out by several authors, it is the

108 8 Summary

responsibility of the educator to explicitly encourage or discourage associations
between concepts and point out potentials and risks for positive or negative
skill transfer (see Gibson [54], Nelson et al. [112]). This explicitness could only
rarely be found in the analysed units: Only three out of 31 identified concept
mappings explicated the possibility of a positive or negative skill transfer.

Other findings

Despite of their similar scope and target audience, the investigated cases
strongly differ in the way that JavaScript itself is depicted throughout the
educational unit, i.e., if it is depicted in a generally positive or generally neg-
ative way. This aspect has not been considered in the presented system of
categories, but was intensively covered in the discussion part of our analysis.
From an educational perspective, a positive or negative depiction of JavaScript
raises questions of developer motivation. As was pointed out by Ryan [140],
among others, developers are often reluctant to change, and JavaScript in par-
ticular already suffers from its reputation as a toy language (e.g., Mikkonen
and Taivalsaari [106]). A negative attitude, especially when exhibited by an
educational authority like a presenter or author, can easily confirm prejudices
and further complicate the transition process. At the same time, educators
must not make the error to deny JavaScript’s unquestionable weaknesses and
design errors. They can, however, clearly define these weaknesses, clarify their
practical relevance, and offer alternative solutions where necessary.

Another interesting aspect that remained unconsidered in the presented sys-
tem of categories is that of the used terminology. Several times, the target
concept of a concept mapping was referred to by the name of the source con-
cept; as an example, Fain [44] referred to the handling of additional function
parameters as method overloading. It can be argued that this use of the same
term implies a strong similarity, if not equality, between the associated con-
cepts. The issue of terminology was particularly present in mappings between
classes and class-based inheritance in Java and objects and prototype-based
inheritance in JavaScript: In all of the investigated cases, the presenter/author
referred to respective JavaScript concepts as classes, at least occasionally and
by accident. Classes are, indeed, a surprisingly difficult case, perhaps due to
the rich semantics of the term. In professional discourse, class can legitimately
refer to a category of objects in the general, Aristotelian sense, as well as to
the concrete programming concept; the former is available in JavaScript, the
latter is not.

9

Conclusion

Perhaps more than any other discipline of universal relevance, the IT business
is subject to revolutionary changes – so-called paradigm shifts. Historically,
programmers had to switch from procedural to object-oriented development
and from main frame to client-server architectures, just to name a few. Today,
the manifold advantages of Single Page Applications (SPAs) over traditional
web architectures require more and more developers to implement features to
run in the browser, written in JavaScript. For developers with many years of
experience in Java or similar languages, this means more than just learning
a new language. It requires a fundamental change in how to think about and
approach programming problems – a so-called mind shift.

Successful mind shifts are essential for individual developers as well as for
corporations. Professionals who refuse, or simply fail, to adapt will sooner or
later become obsolete within their teams; what Kuhn ([79] acc. to [53]) said
about the proponents of an outdated scientific view can easily be applied to
engineers who stubbornly adhere to an outdated programming technique:

The older schools gradually disappear. In part their disappearance is
caused by their members’ conversion to the new paradigm. But there
are always some men who cling to one or another of the older views,
and they are simply read out of the profession, which thereafter ignores
their work.

Companies, on the other hand, must find a middle ground between hiring
fresh blood and developing and educating existing staff. Software engineers
who enter the job market today grew up in a world where the most popular
programming language on GitHub is JavaScript (cf. Zapponi [172]). Yet, it
can take years for a newly hired engineer to understand the existing code base
and infrastructures of a large corporation (cf. Lee [81]), and it is crucial for
any tech business’ long-term success to maintain a proper level of seniority in
R&D (cf., e.g., Mak and Sockel [93], Huckman et al. [68]).

110 9 Conclusion

In the existing literature, transitions from one programming language and
paradigm to another are typically considered as instances of the more general
phenomenon of (skill) transfer. Transfer, according to Helfenstein [63], “is the
process and the effective extend to which past experiences (also referred to
as transfer source) affect learning and performance in a present novel situa-
tion (transfer target)”. In many situations, these effects are primarily positive:
Learning to ride a motorbike, for example, should be considerably easier for
anyone who learned to ride a bicycle, and/or to drive a car, before. Likewise,
software developers will almost always be able to integrate some of their ex-
isting skills into a new context and build up expertise incrementally. There
are, however, situations in which existing knowledge has a negative impact
on later skill acquisition or performance. In the software business, it has been
shown that engineers who developed a deep expertise in a certain context tend
to (a) establish misleading analogies between known and newly-learned con-
cepts, and (b) fall back to old, well-internalised strategies, even though these
strategies may be suboptimal, if not plainly wrong, in a new context. Efficient
expert developer education must therefore be aware of these effects and strive
to maximise positive transfer while keeping the risk for negative transfer low.

The issue of knowledge transfer across programming paradigms has been in-
tensely researched in the context of the field’s transition from procedural to
object-oriented programming, and diverse strategies have been proposed. To
the best of our knowledge, no research efforts were made so far to explore the
use of these strategies in teaching JavaScript to expert Java developers.

This thesis contributes to the field of expert developer education an analysis
of knowledge transfer strategies in professional, state-of-the-art developer ed-
ucation, in the context of teaching JavaScript to expert Java developers. Our
investigation especially focuses on the application of four selected strategies,
all of which were identified to be particularly well-elaborated and relevant to
the given context: Heterogenous backgrounds, explication of mind shifts, the
use of cognitive dissonance, and guided analogies.

The presented study is based on a qualitative content analysis of three real-
world examples from expert developer education, each representing a popular
format of education: (i) talks at developer-centred tech conferences, (ii) non-
academic professional literature, and (iii) company-internal trainings. Our
analysis aimed to infer applications of the above-named knowledge transfer
strategies from the so-called concept mappings of these educational units. Gen-
erally speaking, a concept mapping associates a concept from a domain that
is new to the learner (the target domain; e.g., JavaScript) with a concept from
a domain that is known to the learner (the source domain; e.g., Java), and is
created whenever two such concept are put into any kind of relation as part
of an education unit. We argue that certain characteristics of such an asso-
ciation – e.g., if the two concepts are described as similar or dissimilar, or if
their commonalities and differences are elaborated – provide indications for

9 Conclusion 111

the conscious or unconscious use of certain knowledge transfer strategies. Fac-
ing the versatile and often subtle character of so-defined concept mappings,
all educational units were discussed thoroughly and independently in order to
take possible underlying educational patterns and strategies into account.

Our analysis revealed that from the selected knowledge transfer strategies,
only the explication of mind shifts strategy and the guided analogies approach
are applied systematically and across all investigated cases. The explication
of mind shifts is particularly present on what we called the paradigm-level
of our analysis. Here, applications of the strategy include explicit “warnings”
that JavaScript and Java are highly different languages as well as personal
accounts, illustrating the need for a mind shift based on the educator’s own
experiences. We argued that the discrepancies between JavaScript and Java’s
superficial similarities and their structural differences are so far reaching that
it is practically mandatory for educators to address them as part of an in-
troductory course. The guided analogies strategy reflects in concept mappings
being widely consistent, reasonably attributed, and well-elaborated throughout
the investigated units; only in exceptional cases a more differentiated discus-
sion deemed necessary. Notably, our analysis did not reveal a clear tendency
towards more conjunctive (i.e., emphasising similarities) or more disjunctive
(i.e., emphasising differences) connections to Java or other languages. This in-
dicates that the general “nature” of a connection relies on the specific concept
under discussion rather than on a strict educational pattern.

A recurring issue among both strategies is that of a limited explicitness. On
various occasions, concept mappings could only be assigned to respective cate-
gories as a result of the very detailed, context-sensitive reading of a qualitative
content analysis. We can only speculate about the reasons for this: It may be
a matter of personal style, but it could also indicate that knowledge transfer
strategies are applied unwittingly. It is, in any case, unclear if these very subtle
applications generate optimal results as compared to a more explicit approach.

Only few indications could be found for applications of the heterogenous back-
grounds and the cognitive dissonance strategy. For heterogenous backgrounds,
we found a possible explanation in the investigated formats of education: Pro-
viding a broader understanding of a concept is time intensive and potentially
repetitive for some learners, two aspects that could impede the use of the strat-
egy in time-constrained formats and formats that strongly rely on the learner’s
own initiative. The cognitive dissonance strategy may just not be applicable
in the given context: JavaScript will almost always be learned to co-exist with
Java rather than to replace it, and only few would argue that JavaScript is
inherently superior to Java. It would therefore be irrational to discourage con-
cepts that are perfectly suitable in Java or comparable languages.

Other findings of our analysis include issues of developer motivation and used
terminologies. Educators in the given context will often face developers who
are reluctant to learn an alleged “toy language” like JavaScript. It is therefore

112 9 Conclusion

crucial that JavaScript is presented in a inspiring, positive manner, while at the
same time the language’s unquestionable weaknesses and design errors must
not be denied. Educators must furthermore be clear and explicit about the used
terminologies. As an example, using the same term for two concepts implies
a strong similarity, if not equality, between these concepts. Such association
may not necessarily be intended and could be misleading to learners.

Future work

The present work gave useful insights to the use of selected knowledge transfer
strategies in teaching JavaScript to expert Java developers. We had hoped that
these insights would also provide indications if, and how, existing research and
experiences impacted contemporary teaching practise. Such indications could
not reliably be found. A possible future research direction could thus be to anal-
yse educational units from earlier phases of the procedural-to-object-oriented
transition and to compare these units with the results of the present work. Sig-
nificant, paradigm and language-independent differences between educational
units from these periods would reveal developments – and potential advance-
ments – in practical developer education. Another research direction would be
to continue on the ideas of case study research and to combine the results of
our content analysis with other, complementary data such as interviews with
the authors or presenters of the investigated educational units.

List of Figures

1.1 Page-sequence architecture vs. single-page application
architecture . 15

3.1 Exemplary product rule for inserting characters in EMACS [145] 36
3.2 Osgood’s transfer and retroaction surface . 38
3.3 The transfer surface in software engineering [114] 49
3.4 Novel, changed, and carryover concepts in Mindshift Learning

Theory . 50

4.1 Exemplary concept mappings . 58
4.2 A framework for content analysis [78] . 60
4.3 Source concept definition . 67

5.1 Slide 2: Warning [46] . 78

List of Tables

1.1 Selected knowledge transfer strategies . 19
1.2 Selected cases . 20

4.1 Selected knowledge transfer strategies . 56
4.2 Source . 69
4.3 Source concept definition . 70
4.4 Relationship type . 71
4.5 Elaboration of source concepts . 72
4.6 Explication of mind shifts . 72
4.7 Elaboration of differences . 72
4.8 Elaboration of commonalities . 73
4.9 Explication of possible skill transfers . 73
4.10 Explication of knowledge transfer strategies 74

5.1 Paradigm-level mappings . 77
5.2 Concept-level mappings . 77

6.1 Paradigm-level mappings . 90
6.2 Concept-level mappings . 90

7.1 Concept-level mappings . 99

Listings

2.1 Dynamic typing in JavaScript . 25
2.2 Dynamic object modification in JavaScript 25
2.3 Dynamic code evaluation in JavaScript . 25
2.4 First-class functions in JavaScript . 26

References

[1] M. Andreessen, “Why software is eating the world,” The Wall Street
Journal, Aug. 2011.

[2] Anon., “JavaScript Course 2.0,” Internal course announcement, available
upon request.

[3] D. J. Armstrong and B. C. Hardgrave, “Understanding Mindshift Learn-
ing: The transition to object-oriented development,” MIS Quarterly,
vol. 31, no. 3, pp. 453–474, 2007.

[4] D. J. Armstrong and H. J. Nelson, “Knowledge transfer between lan-
guages and paradigms,” in Americas Conference on Information Systems
2000, 2000.

[5] S. M. Barnett and S. J. Ceci, “When and where do we apply what
we learn? a taxonomy for far transfer,” Psychological Bulletin, vol. 128,
no. 4, p. 612, 2002.

[6] K. Beck, “Think like an object,” in Kent Beck’s Guide to Better
Smalltalk: A Sorted Collection, K. Beck, Ed. Cambridge, UK: Cam-
bridge University Press, 1999, pp. 61–72.

[7] D. Bellin, “A seminar course in object oriented programming,” SIGCSE
Bulletin, vol. 24, no. 1, pp. 134–137, 1992.

[8] J. M. Belmont, E. C. Butterfield, and R. P. Ferretti, “How and how much
can intelligence be increased?” D. K. Detterman and R. J. Sternberg,
Eds. Norwood, NJ, USA: Ablex Publishing Company, 1982, ch. To
secure transfer of training instruct self-management skills.

[9] B. Berelson, Content analysis in communication research. New York,
NY, USA: Free Press, 1952.

[10] A. Bhattacherjee and J. Gerlach, “Understanding and managing OOT
adoption,” IEEE Software, vol. 15, no. 3, pp. 91–96, 1998.

120 References

[11] A. Bird, “Thomas Kuhn,” in The Stanford Encyclopedia of Philosophy,
Fall 2013 ed., E. N. Zalta, Ed., 2013.

[12] J. Bloch, Effective Java, 2nd ed. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2008.

[13] P. Boutin, B. Hailpern, T. Proebsting, and G. Wiederhold, “Mother
tongues: Tracing the roots of computer languages through the ages,”
Wired Magazine, no. 7, 2002.

[14] C. Bueno, “The full stack,” Facebook Engineering, Dec. 2010.

[15] D. Cameron, A Software Engineer Learns HTML5, JavaScript and
jQuery, 2013.

[16] S. Cass, N. Diakopoulos, and J. J. Romero, “Interactive: The top pro-
gramming languages,” IEEE Spectrum, July 2015.

[17] M. Chi, P. Feltovich, and R. Glaser, “Categorization and representation
of physics problems by experts and novices,” Cognitive science, vol. 5,
no. 2, pp. 121–152, 1981.

[18] A. P. Ciganek and B. Wills, “Expanding Mindshift Learning,” in Pro-
ceedings of the Southern Association for Information Systems Confer-
ence, 2008.

[19] R. E. Clark, Learning from media: Arguments, analysis, and evidence.
Charlotte, NC, USA: Information Age Publishing, 2001.

[20] B. Colbow, “Misunderstanding markup: XHTML 2/HTML 5 Comic
strip,” Smashing Magazine, July 2009.

[21] D. Crockford, “Classical inheritance in JavaScript,” http://www.
crockford.com/javascript/inheritance.html (retr. on 20/09/2015).

[22] ——, “JavaScript: The world’s most misunderstood programming lan-
guage,” http://www.crockford.com/javascript/javascript.html (retr. on
13/09/2015), 2001.

[23] ——, “Private members in JavaScript,” http://javascript.crockford.
com/private.html (retr. on 26/09/2015), 2001.

[24] ——, JavaScript: The Good Parts. Sebastopol, CA, USA: O’Reilly
Media, Inc., 2008.

[25] R. G. Crowder, Principles of Learning and Memory: Classic Edition.
New York, NY, USA: Psychology Press, 2014.

[26] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in
GitHub: Transparency and collaboration in an open software repository,”
in Proceedings of the ACM 2012 Conference on Computer Supported Co-
operative Work. New York, NY, USA: ACM, 2012, pp. 1277–1286.

http://www.crockford.com/javascript/inheritance.html
http://www.crockford.com/javascript/inheritance.html
http://www.crockford.com/javascript/javascript.html
http://javascript.crockford.com/private.html
http://javascript.crockford.com/private.html

References 121

[27] O.-J. Dahl and K. Nygaard, “Simula: An ALGOL-based simulation lan-
guage,” Communications of the ACM, vol. 9, no. 9, pp. 671–678, 1966.

[28] J. Dalbey and M. C. Linn, “Cognitive consequences of programming:
Augmentations to basic instruction,” Journal of Educational Computing
Research, vol. 2, no. 1, pp. 75–93, 1986.

[29] E. Dale, “Need for study of the newsreel,” Public Opinion Quarterly,
vol. 1, no. 3, pp. 122–125, 1937.

[30] F. Détienne, “Design strategies and knowledge in object-oriented pro-
gramming: Effects of experience,” Human-Computer Interaction, vol. 10,
no. 2, pp. 129–169, 1995.

[31] Devoxx, “About Devoxx,” https://www.facebook.com/devoxxcom/info
(retr. on 23/08/2015).

[32] G. Dickens, “Why Java developers hate JavaScript,” DZone, Jan. 2012.

[33] C. Dony, J. Malenfant, and P. Cointe, “Prototype-based languages: From
a new taxonomy to constructive proposals and their validation,” in SIG-
PLAN Notices, vol. 27, no. 10. New York, NY, USA: ACM, 1992, pp.
201–217.

[34] D. W. Dorsey, G. E. Campbell, L. L. Foster, and D. E. Miles, “Assess-
ing knowledge structures: Relations with experience and post-training
performance,” Human Performance, vol. 12, no. 1, pp. 31–57, 1999.

[35] P. F. Drucker, Management challenges for the 21st century. Amsterdam,
NL: Elsevier, 1999.

[36] D. D’Souza, “An educated look at education,” Journal of Object-
Oriented Programming, vol. 6, no. 1, pp. 40–46, 1993.

[37] J. Dumas and P. Parsons, “Discovering the way programmers think
about new programming environments,” Communications of the ACM,
vol. 38, no. 6, pp. 45–56, 1995.

[38] R. Duncan, “Power programming: C++, an OOPL only a C programmer
could love,” PC Magazine, vol. 10, no. 15, pp. 441–445, 1991.

[39] T. V. Eaton and A. W. Gatian, “Organizational impacts of moving to
object-oriented technology,” Journal of Systems Management, vol. 47,
no. 2, pp. 18–24, 1996.

[40] B. Eckel, “Introduction,” in The Tao of Objects: A Beginner’s Guide to
Object-Oriented Programming, 2nd ed., G. Entsminger, Ed.

[41] H. C. Ellis, The transfer of learning. New York, NY, USA: The Macmil-
lan Company, 1965.

https://www.facebook.com/devoxxcom/info

122 References

[42] Elmo, Gum, Heather, Holly, Mistletoe, and Rowan, Notes Towards the
Complete Works of Shakespeare. Kahve-Society & Liquid Press, 2002.

[43] Y. Fain, “Advanced introduction to JavaScript,” Screencast, www.
youtube.com/watch?v=X1J0oMayvC0 (retr. on 10/11/2015), 2012.

[44] ——, “JavaScript for Java developers,” in Devoxx 2012, Antwerpen, Bel-
gium, 2012.

[45] ——, “JavaScript for Java developers,” Screencast, www.parleys.com/
tutorial/javascript-java-developers (retr. on 11/09/2015), 2012.

[46] ——, “JavaScript for Java developers at Devoxx 2012,” http://yakovfain.
com/2012/11/20/javascript-for-java-developers-at-devoxx-2012/ (retr.
on 20/09/2015), 2012.

[47] Y. Fain, V. Rasputnis, A. Tartakovsky, and V. Gamov, Enterprise Web
Development: Building HTML5 Applications – From Desktop to Mobile.
Sebastopol, CA, USA: O’Reilly Media, Inc., 2014.

[48] M. E. Fayad, W.-T. Tsai, and M. L. Fulghum, “Transition to object-
oriented software development,” Communications of the ACM, vol. 39,
no. 2, pp. 108–121, 1996.

[49] G. A. Ferguson, “On transfer and the abilities of man,” Canadian Jour-
nal of Psychology/Revue canadienne de psychologie, vol. 10, no. 3, p.
121, 1956.

[50] L. Festinger, A theory of cognitive dissonance. Standford, CA, USA:
Stanford University Press, 1957.

[51] D. Flanagan, JavaScript: The Definitive Guide. Sebastopol, CA, USA:
O’Reilly Media, Inc., 2006.

[52] U. Flemming, H. Erhan, and I. Özkaya, “Object-oriented application
development in cad: a graduate course,” Automation in construction,
vol. 13, no. 2, pp. 147–158, 2004.

[53] R. W. Floyd, “The paradigms of programming,” Communications of the
ACM, vol. 22, no. 8, pp. 455–460, 1979.

[54] E. Gibson, “Flattening the learning curve: Educating object-oriented
developers,” Journal of Object-Oriented Programming, vol. 3, no. 6, pp.
24–29, 1991.

[55] T. Gockel, Form der wissenschaftlichen Ausarbeitung: Studienarbeit,
Diplomarbeit, Dissertation, Konferenzbeitrag. Springer-Verlag Gmbh,
2008.

[56] I. Graham, Business Rules Management and Service Oriented Architec-
ture: A Pattern Language. New York, NY, USA: John Wiley & Sons,
Inc., 2007.

www.youtube.com/watch?v=X1J0oMayvC0
www.youtube.com/watch?v=X1J0oMayvC0
www.parleys.com/tutorial/javascript-java-developers
www.parleys.com/tutorial/javascript-java-developers
http://yakovfain.com/2012/11/20/javascript-for-java-developers-at-devoxx-2012/
http://yakovfain.com/2012/11/20/javascript-for-java-developers-at-devoxx-2012/

References 123

[57] C. Gurwitz, “The internet as a motivating theme in a math/computer
core course for nonmajors,” SIGCSE Bulletin, vol. 30, no. 1, pp. 68–72,
1998.

[58] D. F. Halpern, C. Hansen, and D. Riefer, “Analogies as an aid to un-
derstanding and memory,” Journal of Educational Psychology, vol. 82,
no. 2, p. 298, 1990.

[59] B. C. Hardgrave, “Adopting object-oriented technology: Evolution or
revolution?” Journal of Systems and Software, vol. 37, no. 1, pp. 19–25,
1997.

[60] J. Hartley, “Case study research,” in Essential Guide to Qualitative
Methods in Organizational Research, C. Cassell and G. Symon, Eds.
Sage Publications, 2004.

[61] R. E. Haskell, Transfer of learning: Cognition and instruction. Academic
Press, 2000.

[62] C. Heilmann, “Do HR people even read their job ads when
they get published?” http://christianheilmann.com/2005/11/08/
do-hr-people-even-read-their-job-ads-when-they-get-published/ (retr.
on 10/11/2015), November 2005.

[63] S. Helfenstein, “Transfer: Review, reconstruction, and resolution,” Ph.D.
dissertation, Jyväskylä, Finland, 2005.

[64] E. Hemingway, Death in the Afternoon. New York, NY, USA: Charles
Scribner’s Sons, 1932.

[65] ——, A Moveable Feast. New York, NY, USA: Charles Scribner’s Sons,
1964.

[66] G. Higginson, Fields of psychology: A study of man and his environment.
New York, NY, USA: Holt, 1931.

[67] K. Holyoak and J. Barnden, “Introduction,” in Analogy, Metaphor, and
Reminding, J. Barnden and K. Holyoak, Eds. Ablex Pub., 1994.

[68] R. S. Huckman, B. R. Staats, and D. M. Upton, “Team familiarity, role
experience, and performance: Evidence from indian software services,”
Management science, vol. 55, no. 1, pp. 85–100, 2009.

[69] I. Jacobson and E. Seidewitz, “A new software engineering,” Communi-
cations of the ACM, vol. 57, no. 12, pp. 49–54, 2014.

[70] M. Jagger and D. Steward, “Old habits die hard,” 2004.

[71] C. H. Judd, “The relation of special training and general intelligence,”
Educational Review, vol. 36, pp. 28–42, 1908.

http://christianheilmann.com/2005/11/08/do-hr-people-even-read-their-job-ads-when-they-get-published/
http://christianheilmann.com/2005/11/08/do-hr-people-even-read-their-job-ads-when-they-get-published/

124 References

[72] I. R. Katz, “Transfer of knowledge in programming,” Ph.D. dissertation,
Pittsburgh, PA, USA, 1988.

[73] C. M. Kessler and J. R. Anderson, “Learning flow of control: Recursive
and iterative procedures,” Human-Computer Interaction, vol. 2, no. 2,
pp. 135–166, 1986.

[74] J. M. Koedijker, “Automatization and deautomatization of perceptual-
motor skills,” Ph.D. dissertation, Amsterdam, NL, 2010.

[75] F. Kohlbacher, “The use of qualitative content analysis in case study
research,” Forum: Qualitative social research, vol. 7, no. 1, 2005.

[76] S. Kracauer, “The challenge of qualitative content analysis,” Public
Opinion Quarterly, vol. 16, no. 4, pp. 631–642, 1952.

[77] K. H. Krippendorff, Content Analysis: An Introduction to its Methodol-
ogy, 1st ed. SAGE Publications, Inc., 1980.

[78] ——, Content Analysis: An Introduction to its Methodology, 3rd ed.
SAGE Publications, Inc., 2012.

[79] T. S. Kuhn, The structure of scientific revolutions. University of Chicago
Press, 1962.

[80] D. A. Lay, “@RachelAppel as car is to a carcinogen.” https://twitter.
com/DouglasALay1/status/304293913001357313 (retr. on 10/11/2015),
February 2013.

[81] D. M. S. Lee and T. J. Allen, “Integrating new technical staff: Implica-
tions for acquiring new technology,” Management Science, vol. 28, no. 12,
pp. 1405–1420, 1982.

[82] É. Lévénez, “History of programming languages,” oreilly.com, 2004.

[83] B. B. L. Lim, “Teaching web development technologies in cs/is curric-
ula,” SIGCSE Bulletin, vol. 30, no. 1, pp. 107–111, Mar. 1998.

[84] C. Liu, S. Goetze, and B. Glynn, “What contributes to successful object-
oriented learning?” SIGPLAN Notices, vol. 27, no. 10, pp. 77–86, 1992.

[85] D. Liu, E. L. Blickensderfer, N. D. Macchiarella, and D. A. Vincenzi,
“Human factors in simulation and training,” P. A. Hancock, D. A. Vin-
cenzi, J. A. Wise, and M. Mouloua, Eds. CRC Press, 2008, ch. Transfer
of training.

[86] R. P. Loui, “In praise of scripting: Real programming pragmatism,”
Computer, vol. 41, no. 7, pp. 22–26, 2008.

[87] M. R. Louis and R. I. Sutton, “Switching cognitive gears: From habits
of mind to active thinking,” Human Relations, vol. 44, no. 1, pp. 55–76,
1991.

https://twitter.com/DouglasALay1/status/304293913001357313
https://twitter.com/DouglasALay1/status/304293913001357313

References 125

[88] M. Loukides, “Full-stack developers,” O’Reilly Radar, April 2014.

[89] A. S. Luchins, “Mechanization in problem solving: the effect of Einstel-
lung,” Psychological Monographs, vol. 54, no. 6, p. i, 1942.

[90] P. A. Luker, “There’s more to OOP than syntax!” SIGCSE Bulletin,
vol. 26, no. 1, pp. 56–60, 1994.

[91] Lund Research Ltd., “Lærd Dissertation: Purposive sampling,” http://
dissertation.laerd.com/purposive-sampling.php (retr. on 22/08/2015).

[92] Q. H. Mahmoud, W. Dobosiewicz, and D. Swayne, “Redesigning in-
troductory computer programming with html, JavaScript, and java,”
SIGCSE Bull., vol. 36, no. 1, pp. 120–124, Mar. 2004.

[93] B. L. Mak and H. Sockel, “A confirmatory factor analysis of is employee
motivation and retention,” Information & Management, vol. 38, no. 5,
pp. 265–276, 2001.

[94] M. L. Manns and D. A. Carlson, “Retraining procedural programmers:
A case against Unlearning,” in Addendum to the Proceedings on Object-
oriented Programming Systems, Languages, and Applications (Adden-
dum), ser. OOPSLA ’92. New York, NY, USA: ACM, 1992, pp. 131–
133.

[95] M. L. Manns and H. J. Nelson, “Retraining procedure-oriented develop-
ers: An issue of skill transfer,” Journal of Object-Oriented Programming,
vol. 9, no. 7, pp. 6–10, 1996.

[96] R. E. Mayer, “Learning and cognition,” V. G. Aukrust, Ed. Amsterdam,
NL: Elsevier, 2011, ch. Problem solving and reasoning.

[97] R. E. Mayer and M. C. Wittrock, “Handbook of educational psychology,”
D. C. Berliner and R. C. Calfee, Eds., 1996, ch. Problem-solving transfer,
pp. 47–62.

[98] P. Mayring, “Qualitative content analysis,” Forum: Qualitative Social
Research, vol. 1, no. 2, June 2000.

[99] ——, Einführung in die qualitative Sozialforschung, 5th ed. Beltz, 2002.

[100] ——, Qualitative Inhaltsanalyse: Grundlagen und Techniken, 12nd ed.
Beltz, 2015.

[101] P. Mayring and E. Brunner, “Qualitative Textanalyse — Qualitative
Inhaltsanalyse,” in ”Von der Idee zur Forschungsarbeit: Forschen in
Sozialarbeit und Sozialwissenschaft”, V. Flaker and T. Schmid, Eds. Vi-
enna, Austria, and Collogne, Germany: Böhlau, 2006.

[102] S. A. McLeod, “Cognitive dissonance,” Simply Psychology, 2014.

http://dissertation.laerd.com/purposive-sampling.php
http://dissertation.laerd.com/purposive-sampling.php

126 References

[103] A. Meiklejohn, “Is mental training a myth?” Educational Review, vol. 37,
pp. 126–141, 1908.

[104] R. Mercuri, N. Herrmann, and J. Popyack, “Using HTML and JavaScript
in introductory programming courses,” SIGCSE Bulletin, vol. 30, no. 1,
pp. 176–180, Mar. 1998.

[105] B. Meyer, Object-Oriented Software Construction, 1st ed. Upper Saddle
River, NJ, USA: Prentice Hall, Inc., 1988.

[106] T. Mikkonen and A. Taivalsaari, “Using JavaScript as a real program-
ming language,” Sun Microsystems, Inc., Tech. Rep., 2007.

[107] T. Morgan, Business Rules and Information Systems: Aligning IT with
Business Goals. Boston, MA, USA: Addison-Wesley Longman Publish-
ing Co., Inc., 2002.

[108] Mozilla Foundation, “Array,” https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Reference/Global Objects/Array (retr. on
02/11/2015).

[109] ——, “Inheritance and the prototype chain,” https://developer.mozilla.
org/en-US/docs/Web/JavaScript/Inheritance and the prototype chain
(retr. on 26/09/2015).

[110] ——, “Introduction to object-oriented JavaScript,” https:
//developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction
to Object-Oriented JavaScript (retr. on 20/09/2015).

[111] ——, “JavaScript,” https://developer.mozilla.org/en-US/docs/Web/
JavaScript (retr. on 01/11/2015).

[112] H. J. Nelson, G. Irwin, and D. E. Monarchi, “Journeys up the mountain:
Different paths to learning object-oriented programming,” Accounting,
Management and Information Technology, vol. 7, no. 1, pp. 53–85, Jan.
1997.

[113] H. J. Nelson and D. J. Armstrong, “Enabling quantum shift learning: A
preliminary study in transforming object oriented learning,” in Americas
Conference on Information Systems 1999, 1999.

[114] H. J. Nelson, D. J. Armstrong, and M. Ghods, “Old dogs and new tricks,”
Commun. ACM, vol. 45, no. 10, pp. 132–137, Oct. 2002.

[115] A. Newell and H. Simon, Human problem solving. Englewood Cliffs,
NJ, USA: Prentice-Hall, 1972.

[116] L. R. Novick, “Analogical transfer, problem similarity, and expertise.”
Journal of Experimental Psychology: Learning, Memory, and Cognition,
vol. 14, no. 3, p. 510, 1988.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript

References 127

[117] B. Oestereich, Developing Software with UML: Object-oriented analysis
and design in practice. Pearson Education, 2002.

[118] C. E. Osgood, “The similarity paradox in human learning: a resolution,”
Psychological Review, no. 3, pp. 132–143, 1949.

[119] J. K. Ousterhout, “Scripting: Higher level programming for the 21st
century,” Computer, vol. 31, no. 3, pp. 23–30, 1998.

[120] M. Q. Patton, Qualitative evaluation and research methods, 3rd ed.
SAGE Publications, 2002.

[121] L. D. Paulson, “Developers shift to dynamic programming languages,”
Computer, vol. 40, no. 2, pp. 12–15, 2007.

[122] C. Pautasso, O. Zimmermann, and F. Leymann, “Restful web services
vs. ’big’ web services: Making the right architectural decision,” in Pro-
ceedings of the 17th International Conference on World Wide Web. New
York, NY, USA: ACM, 2008, pp. 805–814.

[123] D. Pei and C. Cutone, “Object-oriented analysis and design: Realism
or impressionism?” Information System Management, vol. 12, no. 1, pp.
54–60, 1995.

[124] N. Pennington, A. Y. Lee, and B. Rehder, “Cognitive activities and
levels of abstraction in procedural and object-oriented design,” Human-
Computer Interaction, vol. 10, no. 2, pp. 171–226, Sept. 1995.

[125] D. N. Perkins and G. Salomon, “International encyclopedia of educa-
tion,” T. N. Postlethwaite and T. Husen, Eds. Oxford, UK: Pergamon
Press, 1992, ch. Transfer of learning.

[126] L. J. Pinson, “Moving from COBOL to C and C++: OOP’s biggest
challenge,” Journal of Object-Oriented Programming, vol. 7, no. 6, pp.
54–56, 1994.

[127] P. P. Pitsatorn, “Object-oriented programming training: Bottom-up ver-
sus top-down approach,” Ph.D. dissertation, Claremont, CA, USA, 2003.

[128] C. Ramsenthaler, “Was ist Qualitative Inhaltsanalyse?” in Der Patient
am Lebensende: Eine Qualitative Inhaltsanalyse, M. Schnell, C. Schulz,
H. Kolbe, and C. Dunger, Eds. Springer-Verlag Gmbh, 2013.

[129] A. Ravi, “Why do so many people seem to hate
JavaScript?” Discussion, https://www.quora.com/
Why-do-so-many-people-seem-to-hate-JavaScript (retr. on
17/09/2015), 2010.

[130] D. Reed, “Rethinking CS0 with JavaScript,” in Proceedings of the Thirty-
second SIGCSE Technical Symposium on Computer Science Education.
New York, NY, USA: ACM, 2001, pp. 100–104.

https://www.quora.com/Why-do-so-many-people-seem-to-hate-JavaScript
https://www.quora.com/Why-do-so-many-people-seem-to-hate-JavaScript

128 References

[131] J. Resig and B. Bibeault, Secrets of the JavaScript Ninja. Manning,
2013.

[132] R. S. Rist, “Programming structure and design,” Cognitive Science,
vol. 19, pp. 507–562, 1995.

[133] J. Ritsert, Inhaltsanalyse und Ideologiekritik: Ein Versuch über Kritische
Sozialforschung. Athenaum Fisher, 1972.

[134] S. I. Robertson, Problem Solving. New York, NY, USA: Psychology
Press, 2001.

[135] A. Robins, J. Rountree, and N. Rountree, “Learning and teaching pro-
gramming: A review and discussion,” Computer Science Education,
vol. 13, no. 2, pp. 137–172, 2003.

[136] J. M. Ross and H. Zhang, “Structured programmers learning object-
oriented programming: Cognitive considerations,” SIGCHI Bull., vol. 29,
no. 4, pp. 93–99, Oct. 1997.

[137] R. G. Ross, Principles of the Business Rule Approach. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 2003.

[138] M. B. Rosson and S. R. Alpert, “The cognitive consequences of object-
oriented design,” Human-Computer Interaction, vol. 5, pp. 345–379,
1990.

[139] M. B. Rosson and J. M. Carroll, “Climbing the Smalltalk mountain,”
SIGCHI Bulletin, vol. 21, no. 3, pp. 77–79, 1990.

[140] S. D. Ryan, “A model of the motivation for IT retraining,” Information
Resources Management Journal, vol. 12, no. 4, pp. 24–32, Dec. 1999.

[141] G. Salomon and D. N. Perkins, “Rocky roads to transfer: Rethink-
ing mechanism of a neglected phenomenon,” Educational Psychologist,
vol. 24, no. 2, pp. 113–142, 1989.

[142] M. L. Scott, Programming language pragmatics, 3rd ed. Morgan Kauf-
mann, 2009.

[143] C. Severance, “JavaScript: Designing a language in 10 days,” Computer,
no. 2, pp. 7–8, 2012.

[144] K. Siau and P.-P. Loo, “Identifying difficulties in learning UML,” Infor-
mation Systems Management, vol. 23, no. 3, pp. 43–51, 2006.

[145] M. K. Singley and J. R. Anderson, The Transfer of Cognitive Skill. Cam-
bridge, MA, USA: Harvard University Press, 1989.

[146] S. Sonnentag, “Planning and knowledge about strategies: Their relation-
ship to work characteristics in software design,” Behaviour & Informa-
tion Technology, vol. 15, no. 4, pp. 213–225, 1996.

References 129

[147] D. Spinellis, “Java makes scripting languages irrelevant?” IEEE Soft-
ware, vol. 22, no. 3, pp. 70–71, 2005.

[148] J. R. Stroop, “Studies of interference in serial verbal reactions,” Journal
of Experimental Psychology, vol. 18, no. 6, pp. 643—-662, 1935.

[149] G. J. Sussman and G. L. Steele, Jr., “Scheme: An interpreter for extended
lambda calculus,” Higher-Order and Symbolic Computation, vol. 11,
no. 4, pp. 405–439, Dec. 1998.

[150] A. Taivalsaari, “Classes vs. prototypes-some philosophical and historical
observations,” Journal of Object-Oriented Programming, vol. 10, no. 7,
pp. 44–50, 1996.

[151] D. Tasker, “Object lesson,” Computerworld, vol. 25, no. 16, pp. 79–81,
1991.

[152] Technische Universität Wien, Studienplan Bakkalaureats- und Magister-
studien Informatikmanagement, 2003.

[153] R. Thibadeau, M. A. Just, and P. A. Carpenter, “A model of the time
course and content of reading,” Cognitive Science, vol. 6, pp. 157–203,
1982.

[154] E. L. Thorndike, Principles of teaching, New York, NY, USA, 1906.

[155] L. Tratt, “Dynamically typed languages,” Advances in Computers,
vol. 77, pp. 149–184, July 2009.

[156] L. Ullman, Modern JavaScript: Develop and Design. Peachpit Press,
2012.

[157] D. Ungar and R. B. Smith, “Self: The power of simplicity,” SIGPLAN
Notices, vol. 22, no. 12, pp. 227–242, 1987.

[158] Valve Corporation, Handbook for new employees. Valve Press, 2012.

[159] I. Vessey and S. A. Conger, “Requirements specification: Learning ob-
ject, process, and data methodologies,” Communications of the ACM,
vol. 37, no. 5, pp. 102–113, 1994.

[160] A. von Mayrhauser and A. M. Vans, “Program understanding - a survey,”
Colorado State University, Tech. Rep., 1994.

[161] X. Wang, “A practical way to teach web programming in computer sci-
ence,” Journal of Computing Sciences in Colleges, vol. 22, no. 1, pp.
211–220, Oct. 2006.

[162] M. Wertheimer, Productive thinking, New York, NY, USA, 1945.

[163] M. Whitelaw and J. Weckert, “The humanness of object-oriented pro-
gramming,” in Proceedings of the First International Cognitive Technol-
ogy Conference, 1995, pp. 115–129.

130 References

[164] R. Wiener and L. Pinson, “OOP: an academic perspective,” Journal of
Object-Oriented Programming, vol. 6, no. 3, pp. 13–13, 1993.

[165] W. Wood and D. T. Neal, “A new look at habits and the habit-goal
interface.” Psychological Review, vol. 114, no. 4, p. 843, 2007.

[166] R. S. Woodworth, Experimental Psychology. New York, NY, USA: Holt,
1938.

[167] P. Wu, “Teaching basic game programming using JavaScript,” Journal
of Computing Sciences in Colleges, vol. 24, no. 4, pp. 211–220, Apr. 2009.

[168] Q. Wu and J. R. Anderson, “Problem-solving transfer among program-
ming languages,” Carnegie Mellon University, Tech. Rep., 1990.

[169] P. Yared, “The rise and fall of the full stack developer,” TechCrunch,
November 2014.

[170] R. K. Yin, Applications of Case Study Research, 3rd ed. Sage Publica-
tions, 2011.

[171] E. Yourdon, Decline and Fall of the American Programmer, 1st ed. Up-
per Saddle River, NJ, USA: Prentice Hall, Inc., 1994.

[172] C. Zapponi, “githut.info,” Web site, http://githut.info/ (retr. on
17/01/2015), 2014.

http://githut.info/

Appendices

131

A

Transcription: JavaScript for Java Developers

Slide 1: Introduction

Hello everybody, my name is Yakov Fain, I work for this company, Farana
systems, and today I will be talking about JavaScript. I’ve been doing Java for
years, I still do Java; as a front-end, these days it’s HTML5. HTML5 is nothing
else but JavaScript, plus CSS, plus HTML. So we will talk about the syntax
of the language, the constructs, ’cause I’ve seen several presentations today
on JavaScript-based frameworks, and people seem to understand already the
syntax, I was surprised, so I would make sure everybody really understands
all these [not understandable], or curly braces, functions, function [not under-
standable] into a function, what is a closure, so this is what this presentation
is about.

Slide 2: Warning

I want you to read this warning, basically, it’s a different world, JavaScript
is not Java, and what we are used to, what we are custom to in Java is not
available in JavaScript, but these people somehow survive.

Slide 3: About myself

So about myself, I work for the consultancy as I said, and I was awarded with
the title Java champion, I wrote several technical books and currently I’m
working on this book, Enterprise Web Development for O’Reilly, and nicely
enough, they allowed us to publish the text as we write it. It’s under Creative
Commons so if you go to Enterprise-, EnterpriseWebBook.com you can read
it as we write it for free. I don’t know how O’Reilly will make money on it,
but they said okay.

134 A Transcription: JavaScript for Java Developers

Slide 4

Okay, so, what happens with JavaScript, how comes this 17 year old language
is hot again? I guess there’s hope – I guess you’re familiar with this phrase,
right? – “Write once, run everywhere.” Now we hope that JavaScript will fulfil
this dream. And where do you run JavaScript?

Slide 5: Where to run JavaScript?

You can run it on the client, most of the time of course, but not only, you
can run it on the client, you can run it on the server as well. Web browser
is the natural place to be, of course, but I’m sure most of you know there
is a framework called node.js, and this framework runs on any JavaScript
engine, in particular V8 from Google can run anywhere and there are plenty
of implementations on the server side written in Java. And the main selling
point is you just need to learn one language. Java [means JavaScript; H.O.] on
the front-end talking to Java [means JavaScript; H.O.] service on the back-end.
It’s pretty fast, it’s not as fast as Java of course, but maybe Java is 6 times
faster; 10 times faster, but this is-, it’s not like a tremendous difference. JDK
SE will include JavaScript engine called Nashorn, apparently you’ve heard it,
and they show pretty descent results in performance as well comparing to V8
from Google.

Slide 6

So, JavaScript arrives to the place of execution as text. Nothing else but text,
and there’s no compiler that helps you will all your mistakes you can possibly
make. Users may have different runtime environments, right? Imagine as if
you’d be writing a program in Java and nobody would tell you what is the
JVM and what is the version of JVM, and it still has to work somehow.
So that’s the world of JavaScript developers. They don’t know where there
program will run.

Slide 7: Selected IDEs supporting JavaScript

There are a bunch of IDEs, if anybody attended any presentation for frame-
works you probably saw a bunch. Of course Eclipse for Java EE supports
JavaScript, not the best support but it is there. IntelliJ IDEA fans know Jet-
Brains, the company, and they have support inside IntelliJ IDEA or they have
a separate product called WebStorm. It’s also an IDE from the but it’s specif-
ically for JavaScript. There are some other free IDEs, and Netbeans, by the

A Transcription: JavaScript for Java Developers 135

way, Version 7.3 from Oracle, they also support JavaScript and debugging
JavaScript and debugging without leaving JavaScript. I’m not sure if it’s that
useful, but it is there. So there is a pretty descent support in terms of IDEs.

Slide 8: Debugging JavaScript

Debugging, where do you do debugging? There are plenty of add-ons, every
browser technically has a debugger. You can debug, you can see what’s going
on in terms of accessing your HTML elements, you can see what’s the CSS,
you can run pieces of JavaScript in the console, and all these major browsers
have these tools. Firebug from Firefox, excellent tool. Google has this menu,
Developer Tools, you can go there and say view, bottom portion of the screen,
or in separate window, you can run any website and it will show you all it’s
internals, and you can put breakpoints and debug it and everything. So it’s
pretty decent support; it’s not even close to what we’ve seen like 7 years ago.

Slide 9: JavaScript in the web page

Where do you put JavaScript inside of HTML, if you are having a web page?
You have script tag. script tag can-, of course script and /script, in the
script section you can put either inline code, which is not recommended,
or you can put a link to a file, with extension .js, which has a piece of your
JavaScript. Some JavaScript frameworks tell you, put it on top, but the general
rule, if you are not using JavaScript frameworks, and if you are accessing DOM
objects – DOM is the place where all these HTML object are – then you have
to put JavaScript at the end. Just to make sure that by the time you need to
access these elements the script is already loaded.

Some frameworks like this one, for example, there is a pretty popular frame-
work called ext.js from Sencha; they completely rewrote-, they don’t use
HTML, technically; they allow you to say something like class, and they al-
low you to extend one class from the other class so you live inside JavaScript,
and they say-, look at this main page, easiest HTML, there is-, in the body
section, at the bottom, there is nothing there, everything is written using their
different rules.

Slide 10: Variables

So now I start with the syntax a little bit. Variables. You don’t have to declare
variables, at least until the next version of ECMAScript. By the way, EC-
MAScript, when you see ECMAScript, is standard for JavaScript. Not only;
ActionScript is also based on ECMAScript. Currently, ECMAScript 5 is widely

136 A Transcription: JavaScript for Java Developers

used, in most major browsers, and they are working on ECMAScript 6. In
ECMAScript 6 they are planning to introduce classes as you know them, they
introduce modules, and in the particular the strict mode will be a must, and
you have to declare your variables. So, up on top, girlfriendName = "Mary".
You the assign the variable [not understandable], without saying who is your
girlfriend, what is the type of your girlfriend. It becomes a part of the global
space if you don’t use the keyword var. If you use the keyword var and if the
variable is declared inside a function, then of course this variable is scoped to
the function. In this case, the variable married, it lives inside the function. Or
variable address is defined and scoped inside the function. But variable age,
even though it is declared inside the function is global, because we didn’t put
the word var in there.

Slide 11: Objects and functions

Objects vs. functions. I don’t know where to start with, either objects or
functions. It’s difficult, [not understandable]. Unless you know objects you
cannot learn functions, so I will do like a mix, a little bit about objects, a little
bit about functions.

Slide 12: Functions, briefly

So Java classes can have methods, and JavaScript – different story, there’s
no classes in there. You think objects. You still can create objects based on
other objects, but in general there’s no such thing as classes, at least for now.
You can declare a function which is an object or becomes an object itself, and
then you invoke a function. Also, you can even take a function and assign it
to a property of a another object – think about it. And then you call that
function on that object, it’s something unheard-of. And also, functions can be
objects, and the weirdest thing is that functions can have memory. Actually
not function, but function call can remember something. So it’s difficult to
understand, we live in a classical world where everything is clearly defined.

Slide 13: Declaring and invoking a function

So, declaring a function, pretty simple, function and give it a name. Or they
have anonymous functions as well. And you do stuff in there. Pay attention,
parameters, no types – take a guess, and especially if you are not the pro-
grammer who wrote this call you have to just pray that the previous guy used
some meaningful names as parameters, so you can guess what the data type
of this object is. So on top you declared it at the bottom you invoked it. So

A Transcription: JavaScript for Java Developers 137

you invoked it and you give some parameters. And at the very bottom you can
see how you can declare and immediately invoke it. Pay attention, there is a
couple of parenthesises at the very end. So you not only declared the function
but you immediately invoked it. So self invoked function we call it.

Slide 14: Function expressions

So here is another example. You have a variable doTax. The whole presentation
will be using examples from calculating taxes. You declare a variable doTax

and you assign to it a function. Then to call this function you will be calling
doTax. The function itself is anonymous, it doesn’t have a name, right? So you
assign the text of the function to a variable doTax and then you call doTax.

Slide 15: Assigning a function to an object property

Of course this variable can be a property of an object. So myCustomer.doTax

is equal text of the function. Then you invoke a function by using the property
name.

Slide 16: Objects vs. classes

How do you create objects in JavaScript? There are several places, again, as I
said in Java you have classes in JavaScript you have objects. The easiest part
is using object literals notation. Then you can also say new Object, by the
way object is the top of the hierarchy of everything that exists in JavaScript
similar to Java, right? Now you can create an object based on another ob-
ject. So, in this example I am using Object.create, a function that-, sorry,
Object.create is supported by most of the browsers today, but if it doesn’t
you can create your own function that will take one object and, based on that
one, will create another one. And you can use so called constructor functions.

Slide 17: Object literals

So object literals. The easiest way to create an object is you say object, equal,
and curly braces, empty curly braces. JavaScript is a dynamic language. So
if you have an instance of an object you can say myObject.mary is equal
something. Even though you never had a declaration of the property mary

inside. On the fly, a JavaScript engine will see, do I have such a property as
mary? If not it will create it immediately and assign a value to it. So the second
line is variable a creates an object with a property someValue and assign a

138 A Transcription: JavaScript for Java Developers

value to it. The last example is again the literal notation, person, last name
"Roberts", first name "Julia", age 42. Please pay attention: Not equal signs
but colons; if you are using object literal notation you’ll define a property
name, colon, and a value.

Slide 18: Accessing object properties

Or this example shows you, pay attention to the last name property. I took it
as surrounded by quotes on purpose because it has a space in there. See that?
"last name" – it is allowed. And in JavaScript you will be able to access
this variable but you will need to use different notation, not dot, but square
brackets. See this herName, second version of herName, herName = person and
in square brackets you specify the property name. So the property has a space
in there but the syntax is valid.

Slide 19 and 20: Object methods in literals

Next example. We want to add a method. If a function is defined inside the
object we call it not a function anymore but a method. Using object literal
notation you can see it over here, the name of the function is makeAppointment.
makeAppointment is the name of the function and then the function body. So
if somebody want to use this code or code of the function, you will say person

for example .makeAppointment. Yakov wants to see this.firstName which
is, in this case, Julia Roberts. Or Julia actually.

And here she is. Of course, ’cause the syntax is correct.

Slide 21: Nested objects

Next: Nested objects. An object can have objects inside, right? So in this case
I am using object person which has phones inside. Every person may have
another object inside such as phones, one or more. Here is an example: Again,
comma-separated properties one, the other one, the other one, the function;
and nested object – the same thing: comma, phones, and curled braces, and
this is a new object inside.

Slide 22: JavaScript Object Notation

And as you can see if you look at JSON, JSON is really popular and everybody
is using JSON in exchange between the server side and the client side or
between the servers. The syntax is very similar to JavaScript objects. That’s

A Transcription: JavaScript for Java Developers 139

why it’s pretty popular. In JavaScript, technically, parsing of JSON is a natural
thing. And, again, current browser have this object JSON to parse. So, Java also
is making changes and the Java EE 7 will include specification for standards,
for generating and consuming JSON objects.

Slide 23: Separating JavaScript and Java

In general many of you probably are using some kind of, like, JSP or JSF
or server technology to generate a front-end. And most likely many of you
are using pieces of HTML prepared on the server side and maybe this HTML
is mixed with JavaScript, and you send it over to the client, to display the
client. And this practice is not exactly right and ideally you should get rid of
it. So presentations should be done in JavaScript and HTML and CSS on the
front-end. Your servlets or JSPs should generate data and send them over, for
example in forms of JSON.

Slide 24: Google’s GSON

Currently while the Java EE 7 is not ready yet in terms of JSON standards,
most of the people are using specific frameworks to generate JSON or to con-
sume JSON. For example, probably the most popular is Google’s GSON. If
you have, on the server side, if you have a class Customer or object customer
and if you want to generate a string-, a JSON string to send over to the client
its just a one-liner.

So basically what you do, you create a new GSON object and you say-, actually
this example is consuming JSON, if it comes from the client. From JSON, it
takes JSON and it instantiates the Java object. Or similarly you can send
your Java classes to the client and JavaScript on the left would do parse and
whatever string came from the server will be turned into JavaScript objects.
So it’s pretty easy to use.

Slide 25: Constructor functions

Next way of creating objects is so-called constructor functions. So of course
Java has classes and classes have constructors and other methods like in this
case. But in JavaScript you can just-, imagine that you can have just a con-
structor. No class of course. And so you define function Tax, in this case on
the right hand side, and we usually use T, capital T, no, usually use capital
letters, to create new instances of the function. And on the bottom as you
can see I create two instances of the object Tax. This is a notation so-called
constructor function. ’cause that’s why we say function an object in JavaScript.

140 A Transcription: JavaScript for Java Developers

Slide 26: Arrays

Array can store anything, array can store objects, can store strings, you can
instantiate it without even knowing how many elements it’s gonna have, not
like in Java. And you can store text of the function inside of the array as well –
something unusual. So in this example, mixedArray at the bottom, it has a first
element, a string "Hello", and the second element will be evaluated during
initialisation, and the result of this function, actually prompt, will display
a message box saying “enter your name” or something. You will enter your
name, so after that this array will store two strings, "Hello" and the name
you entered. So functions are evaluated on the fly.

Slide 27: Prototypal inheritance

Inheritance. Something is called prototypal inheritance, as opposed to classical
inheritance. Whatever we know as inheritance, in Java or in C# or in C++,
now is referred to as classical inheritance, which Java [means JavaScript; H.O.]
doesn’t support. They promise that starting from ECMAScript 6 they will
support classes, and people are fighting is it good or is it bad. As of now it’s
not supported. So there is something called prototypal inheritance. And on this
slide you can see that you can create an object based on another object. Every
object has this special secret property called prototype. Initially it doesn’t
point to anything, or it can point to Object, to the root, and if you will say
to-, like in this example B.prototype = A. You have two independent objects,
already created, instantiated, and now you want to say that my object B is
supposed to have everything that have object A has, plus whatever object B

has. So to do that, you just create so-called prototypal chain. You are saying
B.prototype = A. Now object B has everything that object A has. And of
course object A, in its own prototype property may be pointing to another
object. So the whole chain is working like this. So, if you will be trying to
access a property in object B, JavaScript engine will try to find it and if it’s not
found it’ll try to traverse up to the prototype chain. Maybe it’s in object A and
if not it’ll go all the way up. So that’s the prototypal inheritance. But again,
the point is it’s based on objects, and everything is happening dynamically.
During the run time you can change the inheritance of the objects.

Slide 28: Who’s your daddy?

And now let’s take go to this example. We have Person, function again. Let’s
get used to the terminology: constructor function Person. And we have con-
structor function Employee. Each of these will be instantiated using the new

keyword. At this point they are not dependent on each other in any way. They

A Transcription: JavaScript for Java Developers 141

don’t know about each other. And what if we want to make an employee a sub-
class of a constructor? You are saying Employee.prototype = new Person().
I create an instance of object Person and I say now Person is your super-class,
again, not super-class, but it’s hard to explain, “super-object”. Your daddy,
basically.

And if you will create a new instance of Employee which is inherited from
Person this instance will have all properties that we have in Employee and
all properties that we have in Person. I created properties, similar properties
on purpose; title and name defined in both, in Person and in Employee. But
the Person also has subordinates, array of subordinates. But if I define
these objects like this and if I will create inheritance chain on the fly like in
my example we will have a reduntant definition of two properties. So name and
title will be defined in the Person object and in the Employee object.

Slide 29: Watching Employee and Person in Firebug

If you will run into, if you’ll run to one of the debugging tools or developer’s
tools, let me put it this way, into the browser, like in this case I was using
Firebug. So if you look at this picture on the right-hand side you can see
duplication, you can see object of course, on the-left hand side you can run
through the debugger, you can put break points, so tools are there. And on
the right hand side you can see duplications, the name and subordinates are
defined in the Employee as well as in Person.

Slide 30

So now let’s think together. So object can have properties or/and methods,
right? A function is an object. Hence functions can have properties and meth-
ods. It’s something unheard-of, right? In our world. A function can have prop-
erties. A function is an object, an object can have properties.

Slide 31: Methods in function objects

So why a function can’t have a property? So it is allowed. Let’s look at the
methods in function objects. So function Tax. This word function is kind of
confusing, right? So I say function Tax and then I refer to it as an object.
Constructor function Tax. Inside I defined a function and assigned it to a
property doTaxes. So from now on my object Tax has a method called doTaxes.
So then I instantiate it, new Tax, and then I call the methods doTaxes. So on
the fly I create a property which contains a function body, the text of the
function.

142 A Transcription: JavaScript for Java Developers

Slide 32: Private variables in function objects

Next example: private variables. How do you do something like this, private?
As I said, if you define a variable inside the function with the keyword var

this variable becomes private to this scope. In this example I have a function
Tax which takes a couple of parameters, income, dependents, and then I have
the secret deduction from mafia. If somebody belongs to mafia I want to give
them an extra credit of 300$. And then I define the new method doTaxes.

See this, minus mafiaDeduction. So I created an instance again as usual and
I call the function doTaxes. The variable mafiaDeduction, though, is private.
The very last line, console.log, is instead of doing these alert message bugs
as you can output everything on the console of these developer’s tools, Firebug
or any other browser. So you cannot access to the property mafiaDeduction,
on the right hand side you’ll see an error, not an error, it will tell you that it
has a value of undefined. I don’t know what it is, I don’t see it from outside.

Slide 33: Where not to declare methods

Next: When-, where not to declare methods. Let’s see. There is a function
Person which has a couple of parameters and then it has a method declaration
right inside the function. If I will do it like this, creating every instance of this
object Person, at the bottom, var p1 and var p2, will cause duplication of
declaration of the function addSubordinates. Every instance will have com-,
full declaration, which is wrong, we don’t want this to happen. So, what do
we do?

Slide 34: Where to declare methods

Remember I told you every object has a special property called prototype.
So if you will define methods on the prototype level then they will not be
duplicated when you instantiate them. So in this example the only difference
is I did this addSubordinates not inside the object person but I attached
it, sort of, to its prototype. Now it’s available to every instance without any
duplication.

Slide 35: Method overriding

Method overriding. Is it there? Yes it is there. If you have a method defined
on the prototype level as I just told you, and then you create an instance of
an object, and if you will define a method on this instance with exactly the
same signature as in prototype, you are technically overriding. The difference

A Transcription: JavaScript for Java Developers 143

is, in Java overriding applies to classes, right? You can create a class which is a
blue print of whatever you want to instantiate and in that blue print you can
override functions. In here you do everything dynamically on the instances.
So, this is how we do this. Or, by the way, they have the method toString in
every object, and if you will just try to print an object, [not understandable]
an object somehow, it’ll give you this, at the bottom, in square brakes it’ll
give you "[object Object]". What does it mean? It means that you’ve never
overwritten an toString so JavaScript engine has no clue what to print, it’ll
be applying toString similar to Java. So if you want to print something legible
you need to override a function-, a method toString.

Slide 36: Function overloading made easy

Overloading. Overloading is just natural and simple in JavaScript. Why it’s so
natural and so simple? What is overloading in Java? In Java we want to create
more than one version of a method with different parameters, right? So it’ll give
you an impression, like as if I’m calling, if I wanna call with two arguments, if I
wanna call with three arguments a method, right? But we know that technical
there are two methods behind the scenes defined. In JavaScript you don’t have
to pass exactly the same number of parameters when you call a method. You
gave more, fine, it’ll ignore extra parameters, you gave less, fine, it’ll assume
that the whatever were not given, or undefined. So it’s very forgiving. So look
at this. I create a function calcTax which has three parameters, but I call it
just two parameters, no there, and what I do inside, let’s say I’m calculating
this tax for people from New York. So I would assume that if they didn’t give
me the state I would assume it’s for New York. Similar thing that you would
have done in Java but there is nothing special to do. It is already there. Do
you have any questions so far, no? Alright. You do, ok.

[Comment from the audience; not understandable.]

It’s similar, it’s the same thing basically. The question was if I could have
compared with undefined instead of putting this not, negation, exclamation
point in front.

Now, that was the easy part by the way. No we’ll start talking.

[Comment from the audience; not understandable.]

Wrong. If somebody would give you what?

[Comment from the audience; not understandable.]

If-, of course! I will need to write an else statement and I would use it but
this first if is just to test the case when they didn’t give. By the way they
could give me some wrong data type, it is all kind of testing in this code.
Now some-, it was 1-on-1, JavaScript 1-on-1. Now we start 2-on-1, so it’s

144 A Transcription: JavaScript for Java Developers

advanced introduction, and we only have like 30 minutes left until you become
a JavaScript programmer.

Slide 37: call and apply

I was teaching a class for NASA in the United States and I was really impressed
what these people do over there, it’s unbelievable. And they showed us a movie
and that movie was showing this space station, it’s a huge space station, and
the shuttle goes in and it does something and then it goes back to the earth.
I was surprised to learn that the suite of these astronauts who go out to
space costs like 12 million dollars, I think. Why? Because the difference in
temperature. When they are in space and the are in the shadow it’s like minus
200 degrees and if they are under the sun it’s plus 200 degrees. So, it has
nothing to do with JavaScript, by the way. So, but every object in JavaScript
has two secret-, – I say secret, everybody knows; I mean advanced developers
– about these methods: apply and call. When I was learning what they are
about this analogy came to my mind with a shuttle that is coming to an object,
performs some actions, and leaves. And then the shuttle may come to another
object, right, and do the same. So basically we are talking about the context.
Even though a function can be a free standing – which is not allowed in Java,
at least not yet – this free standing function can attach itself to an object
and perform or execute in the context of this object. Assuming that this,
they have this keyword, is representing that function. So we want to call the
function not just in general but in the context of a specific object.

Slide 38

And the difference between apply and call is that in case of apply-, actually
in both cases, you specify the first parameter, you specify the object. You give
a context for this function execution. The difference is that parameters to the
function in case of apply you give them as an array, in case of call you just
comma-separated list them. And now I show you an example.

But the point is the same. You have a chance to give them an object. The
function is this example xyz. There is some function xyz, it was defined not
for any specific object, it was not defined as a method. And if we want to pass
myTaxObject, let’s say we create an instance of this object beforehand and
now I want my function xyz to operate on this object myTax. This function
requires two parameters, xyz function, 50000 and 3, two parameters. So both
of these notations, two last lines on the slide, will do this. They would call the
function, a stand-alone function, kind of, xyz, inside the context of the myTax.
The difference is only how you I pass the parameters. In the first case I pass
parameters using comma as a separation list, in the second case I’m passing

A Transcription: JavaScript for Java Developers 145

parameters using array. See these square brackets around 50000 and 3. That’s
the only difference.

Slide 39: Passing a callback to a function

And we’ll see a couple of more examples for that. This syntax allows you
to write callbacks nice and easy. Even though I’m a Java developer I’m not
too happy with the syntax of all this lamdas, closures, and everything that
is coming in Java 8. I still think that it’s a little bit more complicated for
an average person to understand. But in JavaScript it’s so easy. What is a
callback? We are using callbacks everywhere, right? Say, Java Swing. If you
need a listener, when the person will press the button, you will implement a
listener, you would-, and an action perform will be called on it. Who’s gonna
call this action perform? I don’t know. Environment, JVM, right? When, I
don’t know. Whenever. And it’ll pass something to me. In general callback
is a piece of code that is given to another function, or to some function, for
execution. Again, a callback is a piece of code given to some method or function
for execution. It comes as a parameter and that function internal executes it.
That’s a callback, the idea of the callback. So it’s a very powerful mechanism.
And, of course, again, it exists everywhere, in case of events, processes, on
click event, do this and you give a function. What happens actually? You give
a text of the function as a parameter to something else for execution, right?
When you do-, say click handler. But let’s take a look at this example. I want
to write my own callback, I also want to use this mechanism of callbacks but
for my code, and for my purposes. So what will I do? Say I want to create a
function that will take from me an array of some object and it will take from
me a code to apply to this array. Again, think about it. I give an object as the
first parameter to a function, and as the second parameter I give the code to
apply to this object. Of course I can do it dynamically, I can change my mind,
I can give this code or that code and so on. So let’s take a look how this works.
Up on top I declare a function applyHandlersToArray. So first argument is
expected to be an array and the second argument should be some function. A
name of the function will be given as the second parameter. Just the name.
We are not calling the function, we are giving a name, and in the code, in
this loop, I loop through this array and I say someCallBackFunction; think
about it, it’s a text of the function that is given as the second parameter, call,
I’m using this call, a method that I was talking about a minute about. I’m
saying take this function, call it for me in the context of this object. The first
argument is this and the second argument is someArray. So basically I have
no idea what kind of function they gonna give me. Everything is dynamic. But
I am saying whenever they will give me a piece of code I will apply it to-, and
I will pass to it this as a context and someArray which came to me as the
first parameter. That’s a declaration. And the second portion at the bottom
I’m actually invoking it. So the first portion I just declared it but didn’t use

146 A Transcription: JavaScript for Java Developers

it yet. At the bottom I say, alright, I have an array which has 1, 2, 3 – three
elements – so I want to do something with it. So I’m giving this array as a
first argument, now I’m invoking the function, right? So I’m saying take this
array, and now I’m giving a function, in this case it’s an anonymous function.
Second argument function with parameter data. And I output something on
the console. "Hello from a callback. Processing the value." And the
data element.

So in this example, if you will run it-, this is a snapshot from the screen and
I ran it through Firebug. So take a look. It’ll print three times "Hello from

callback", and the value. You had a question?

[Comment from the audience; not understandable.]

Yeah, I have this question on every presentation. Every time I do this, I teach
the class the same exact thing. And that’s a good question, it’s a very good
question. Why not just call the function, why go through all this? Think about
this: it is an asynchronous execution of everything. The moment when the code
is defined on top and the moment when the code is being called are different
in time. It’s asynchronous. So I need to have a mechanism to say: I don’t know
when the function will need to be called. I have no idea. I cannot call it now. I
maybe want to use a timer. JavaScript has setTimer, setInterval. Call this
function in five seconds. Or maybe I’m making a server-site call and then it
came back and some event happen which causes me to invoke this function. So
that’s why I’m not calling it. I’m just giving it a name on the top. I’m saying
when something will happen, in my case I’m just calling it for an example,
but in real life it could be a timer, it could be some other external event, then,
and only then, the function, the red one, function(data) and so on, will be
passed to the handler of this important event and then it’ll be executed.

Slide 40: Function properties as static variables

Okay, let’s move on. Function properties. As I said a function is an object, ob-
ject can have properties, and it’s pretty easy to do. You define a function Tax

and you can define-, to Tax, you attach properties on the fly. Tax.default.
What is default? I don’t know. I decided to call the property default. I
could have called it Mary. So, dynamic language, right? I never defined it on
Tax before. This is when I want to use it. JavaScript engine will see: do I
have something called default in the Tax instance. No? Alright, no problem,
I’ll create it now. So I’m creating this property default and I’m using ob-
ject literal notation, object curly braces, right? state colon, language colon.
So these two values-, it become-, I’m attaching an object, little object, with
Florida and Spanish, right? Maybe default values for the object. If they are
not given they could be taken because I attached properties to them. In my
opinion it is very close to what’s a static variable in Java it doesn’t belong to
any class but it can be reused by multiple classes.

A Transcription: JavaScript for Java Developers 147

If you’d be using-, manually accessing DOM objects – DOM is a tree of all
HTML objects that exist in the browser when you have page arrived – then
maybe you could have saved some time by-, say you accessed some DOM
properties and you don’t want to repeat it again, so you can store them as
properties of the function and can even reuse them. Even though most of the
people will tell you, and rightly so, that you should minimise the direct access
to DOM. Its slow, not any other reason.

Slide 41: Anonymous classes vs. callbacks

Anonymous classes in Java versus callbacks in JavaScript. On top you see
on the left, you see a couple of examples, one from Swing and the other one
from JavaFX, but they are pretty much the same. You have to create an
inner class. A wrapper, right? You create a new ActionListener to a button,
and we know to create an action listener you have to implement an interface
and that interface defines just one method: actionPerformed, right? So you
have to wrap the whole thing inside the inner class. Similar thing happens
in JavaFX. But in JavaScript there is no problem like this. So if you have
an object you want to add a listener you just pass the function. There is no
need to create anything external around it. So see the difference? I see the
difference. Again, hopefully with closures in Java 8 it’ll be similar but not as
simple. In JavaScript it’s so easy. I mean it’s natural to understand that I’m
giving a function if click will happen.

Slide 42

Now, even more complex stuff. It’s not complex, you just need to learn it.
JavaScript has some features which are not logical, which are not easy to un-
derstand, but you tell me. Let’s look at the code and you tell me what will be
the value of taxDeduction that this code will print. First of all take a look. At
the very top I declare a variable taxDeduction and I assign the value 300 to it.
Then I define a-, what do I have? I have a literal, right? myTaxObject which has
a property taxDeduction – again, I do it on purpose, right? – 400. And then I
have a method doTaxes and inside of that doTaxes I have also mafiaSpecial

which is also-, I assign it a function. And I call this function mafiaSpecial,
right? So what do you think the console.log, that red one, will print? It’s sup-
posed to print "Will deduct " + this.taxDeduction. What do you think
it’s gonna print? What value? How many? 100? Not exactly. Any? 400, 500?
Anybody knows the right answer beside me? It’ll print 300. It’s not logical
at all. But it’s-, I believe it’s a mistake inside the language itself. If you call
mafiaSpecial, check this out how I call mafiaSpecial. I didn’t specify the
context in which to call it. So it assumes a global context. Global variable
taxDeduction is equal 300. So it uses it. Not logical but it is what it is.

148 A Transcription: JavaScript for Java Developers

Slide 43

And what about this case? This case actually is a trick that you can do. So the
object was instantiated, it has its own this pointing at something – sometimes
I call it this and that – so I create a variable like that, in my case I created
a variable thisOfMyTaxObject and I remember it, and then in the console I
use it as a prefix for the taxDeduction. So this guy will print 500. Now it’ll be
using 400. I mean 400 was incremented by 100, right? So the taxDeduction

of the this object is 500, so it’s gonna print it now.

Slide 44

What about this? What value, again, I’m using call notation. Look at this
mafiaSpecial.call and I am passing this as a context. So what value will
be printed in this example? What? 500? Yes, you are absolutely right. Now we
said I’m calling my special. But it has to be inside the object which is this.

Slide 45 and 46

How about this? What will be printed. this.mySpecial. What it’ll print?
What? How many hundreds? Close, but not exactly. It’ll print you an er-
ror. Saying that mafiaSpecial is not a function, which is basically correct.
this object points at the object that was created by object literal. Object
literal; look at the curly brace, var myTaxObject is equal curly brace. What
it has? It has two properties. One of them is called taxDeduction and the
other one is called doTaxes. This object literal has nothing else. So using
this.mafiaSpecial is illegal, it’s wrong ’cause this object doesn’t have such
a function or method.

Slide 47 to 50

Unusual, everything is unusual but you can get used to it. So what this code
will this display? Looks simple, right? So what is it gonna display? undefined?
Why undefined? Because I defined inside the curly braces you are saying.
The answer is wrong. It’ll print nothing ’cause I didn’t call this code. I just
declared a method, I never called it. It’s not funny, guys. It’s important. I did
it on purpose, of course. But I never called a code.

Alright, so now, ok. Now, now I called a code. Now the life is easier. But what
is it gonna print? 5. ’cause there is something called hoisting. There is no
blocks coping JavaScript. Even thought I declared variable b inside the in the
curly braces doesn’t mean that it has the blocks code. All variable declaration

A Transcription: JavaScript for Java Developers 149

are going all the way up as if I declare them on the function level. So just
remember, there is no block scoping there.

Slide 51 and 52: Closures

Closures. Larry Ullman he wrote a bunch of books. And when I was learning
closures I couldn’t find any decent definition of what it is. And the first decent
one I found was Larry’s: “Closure is a function call with memory.” It doesn’t
mean that you understand what it is, yet. But you will in five minutes. So
a function, think about it, not a function with memory. A function call with
memory. A function call that remembers something. This is my definition.
Closure is a function call with strings attached. And this is a picture. So it’s
a function but it remembers about the gas station, right, it came out of. So
JDK 8 will support closures of course, and you will need to get used to this
weird world.

Slide 53: Controlling exposure with closures

Now I’ll give you a couple of examples so you understand what it is. Function
call with memory. All when the function was declared there was some variable.
Like, when I was born in this neighbourhood I remember my neighbour Mary,
a nice girl, right? Remember the song “Living next door to Alice”? I remember
her. I’m somewhere else but I remember her. When I was born Mary was next
to me. So that’s what closures do. When the function is defined it remembers
the variables that exist in the context. Closure is typically a situation-, it is
a situation when you have a function inside the function. And the function
that is inside the function can also see some variables that were defined in
the function. And let’s take a look at this examples. First of all a syntax.
The very first line up on top, it starts not with the keyword function, but
it starts with a parenthesis. If it starts with a parenthesis it’s an expression,
it’s where you know a function definition [not understandable], and apparently
you’ve seen some examples today in the frameworks presentations, like they
want to create a module, right? So you enclose it and also, please take a look,
when I put a comment in, down there, self-invoked function. Take a look at
the couple of extra parenthesises, see that? So not only I declare this function,
I put it inside the expression and I instantiate it immediately, this extra pair
of parenthesises. And what happens when JavaScript engine tries to-, it sees
that somebody wants to instantiate a self-invoked function in the code. And
let’s go through the code. So, let’s see what the JavaScript engine sees. It sees,
alright, I have a taxDeduction variable which has a value of 500, right? It’s
a private context to remember. It’s that, Alice, my neighbour Alice, who was
there when I was born for example. Then, who was born? this.doTaxes. I
am exposing the closure to the outside world. Why? Why I know that I’m

150 A Transcription: JavaScript for Java Developers

exposing? Because I assign it to this. If I assign it to this object which is
an expression in parenthesises – self-instantiated somewhere up in the sky –
if I assigned it to this it means the rest of the world will see it. So what
the rest of the world will see from this code? Only doTaxes. See this cloud
on the right? They can’t see anything else. Why? Variable taxDeduction is
private, it’s inside of that function defined. Now inside doTax, doTaxes is
what? doTaxes is an anonymous function, it used to be anonymous function
which has its own code in red which does something and returns a value. And
there is a private function. It’s inside, was defined inside our function, that’s
our function. So the red code is using the private function, it can see that’s
fine. But the outside world can’t see anything other than doTaxes. So if at the
bottom, now take a look, I’m starting invoking the method, the function, the
closure. I say doTaxes. doTaxes was exposed, right, to the rest of the world. So
it called it fine. But doTaxes, internal inside, it uses a variable taxDeduction.
See that? taxDeduction. I don’t pass it as a parameter, but it remembers that
internal method, internal function, remembers when I was created there was
something called taxDeduction. So it remembers the context and it can use
it, it’s allowed to use it. By the way, here is an example, the second from the
bottom line, setTimeout. An example of asynchronous call of the function.
In this example, I’m saying call the function doTaxes for me with parameter
of 5000 or 50000, "Mary Lou", and 2 means call in two seconds. If it tried
to call mafiaSpecial it’ll give you an error ’cause the outside world doesn’t
see mafiaSpecial. mafiaSpecial is a private function that is available only
internal. The other code works fine.

Slide 54: Returning closures 1

Another example. Again, closure, but if in the previous slide I-, at least I
defined a variable taxDeduction. In this case I don’t even do this. Let’s
look, again, slowly I was running it in the debugger, in Firebug, and I put
a break point in there but I made this snapshot, but I want to explain you
step by step. It’s only three lines. Function returns a function. So I have a
function prepareTaxes which takes one argument. Stay focused, if you can.
studentDeductionAmount. So the first call, red bullet down there line 11, we
are calling prepareTaxes and we give 300 as studentDeduction. Please note
that the variable doTaxes after the line 11 will have the function which is
written in line from 3 to 7. So the function in line 11 will make a variable
doTaxes that will store the text of the function. But not only it’ll store the
text of the function. It’ll remember the context, it will remember the first
call was 300. This 300 is that Alice, that neighbour. And the next call on
line number 12, now it’s a different story, now you are calling doTaxes. And
what is doTaxes? doTaxes is the function that is declared from line 3 to 7.
This function is supposed to take a parameter income. In my case it’s 10000,
multiplied by 5% and do minus studentDeductionAmount. Line number 12:

A Transcription: JavaScript for Java Developers 151

Where this studentDeductionAmount came from? It’s a closure, right, it’s an
internal function that remembers that when it was created studentDeduction

was 300. So I can use it and apply it over here. So it’s a bit weird but this is
closure. So it’s a strange situation, right? Somebody remembers something.

Slide 55 and 56: Returning closures 2

And, again, another example. Returning a closure. The previous example was
exposing the closure and now returning a closure. I have an object Person and
to the prototype of this Person I want to assign a method doTaxes. And I
start writing function, curly braces, and I [not understandable] and there is
a line return. So when JavaScript engine will read this code it’ll hit the line
with return, with a red arrow, right? It’ll see, oh, I need to return something.

I don’t know what happened. Apparently my presentation is over, I guess.
Even though it has two minutes. But the point is, that example, that code is
returning a function. Not a value but a piece of code, the blue code. And then
when you call it, you say p1, you create an instance, a new person and you do
p1.doTaxes, so you call a closure, you call a piece of code that was returned
to you. But this piece of code will remember taxDeduction as well, because
it’s a closure.

Slide 57 to 59: Mixins

So I have only two minutes left so let’s do it quick. Mixin. I’ll be able to show
you only mixin and we gonna be done. In Java you can extend one class, right?
There is no multiple inheritance, we know. So if you extend class A you cannot
take a piece of code from the side and just stuck it in. But in here you can
and it’s called mixins. So mixins is basically a piece of functionality that you
want to attach to any object that you want. Like in this example. We have an
object Tax on the green. Variable Tax, it has a couple of parameters. On the
left, I created a piece of code, like, kind of copy/paste piece, and I believe that
this code-, I want to attach it to a different object as needed. mafiaSpecial
and drugCartelSpecial, two functions. These two are separate, technically
separate files. But I want to make sure that the Tax objects will have this
functionality mafiaSpecial. So I need to copy it somehow from the left to the
right. And this is done pretty simple. I write just one for loop. An object, in
JavaScript it’s unordered collection of properties. Properties could be values,
they could be functions or methods. So I’m looping through the object, through
every property and I, in a [not understandable] fashion I just copy it from one
object to the other. Now the object B has these functions or properties that
were never there before.

152 A Transcription: JavaScript for Java Developers

Slide 60 to 71

[skipped]

Slide 72: Q&A

Alright, so basically I’m running out of time. In the web browser there are
some examples but they are pretty simple. Like events, you do the properties
of the window object, how the browser works. This part is pretty simple. The
most difficult part I think I delivered in terms of the language. And finally, so,
why it’s important to learn JavaScript? You’ve seen a bunch of presentations
that showed you nice frameworks that will hide from you everything, that will
hide from you the need to figure out if this browser supports the feature, if
this browser doesn’t. But in the end of the day you have to use-, and all these
examples that I have seen, the excellent presentations for example just now
from Google, they are using JavaScript. You need to understand, what are
these curly braces, what are the functions, how you can pass a function to a
function, how it’s gonna work. So that’s why knowing JavaScript is important.
And we are done. Up on top there is the URL if you want to download this
slide show before it’ll be published on Parleys you can write it down.

B

Transcription: JavaScript Course – Types

Slide 1: Introduction

Okay, welcome to the JavaScript labs, I’m sorry for taking that long in organ-
ising this, [not understandable]. Okay, we should just introducing ourselves,
because we are people from different teams, I see new faces in here.

[Participants introducing themselves.]

Slide 2: Native types

Okay, so today we’re going to talk about JavaScript types. Types in JavaScript
are maybe a little bit different to other languages. We’re going to start looking
at the native types. There are six native types in JavaScript, that are the
ones backed in blue. We have string, boolean, number, null, undefined and
Object. The first weird thing that you may notice is that arrays, or functions
are not native types, are sub-types of Object. So this-, in blue are the six basic
types of JavaScript, everything in green is a sub-type of Object.

Slide 3 to 5: Identifying types

To know what type a variable, or data, is, you use the typeof operator, so
you go like typeof something, [not understandable]. So this one will return
"string", this one will return "number", and this one will return "object".

For all the types, typeof returns [not understandable]. For string it returns
"string", boolean "boolean", number "number", the first weird thing is null,
for null, it doesn’t return "null", it returns "object". For undefined it
returns "undefined", for Object, and all the objects, typeof always returns

154 B Transcription: JavaScript Course – Types

"object", except for Function, it returns "function". So in red I marked the
weird things.

To know what of type of object we have we need to use the instanceof

operator. It’s kind of the same thing, you pass the object, instanceof, the
class, and it will return true or false. So you have an object like this, and you
have, “is this an instance of Object”, it returns true. You have an array, you
can ask, is an instance of Array, yes, and it’s also an instance of an object,
because Array is a type, [not understandable]. Yeah, same for functions, you
can check, is instanceof Function, and it will return true. So by using these
two keywords, typeof and instanceof, you can check the type of any variable
in JavaScript.

Slide 6 and 7: string

So now we’re going to see all the types, one by one, the different things you
can do with them.

Let’s start with string, nothing special here, we have UTF 8 support, you
can use double or single quotes, and use can use the + operator to concatenate
strings. [Not understandable.]

Slide 8 to 10: boolean

boolean; we have two keywords for false and true, that are false and true,
and also, all these sort of values, like null, undefined, NaN, 0, empty string,
are considered false. When you look-, sometimes, a comparison, you can check
that zero is evaluated as false. For true, pretty much everything that is not
false is true. Any number that is not zero is true. Any string that is not empty
is true, and all the objects are always true. That includes the empty object is
true, the empty array is true, even the Boolean object that encapsulates the
false value is true, because by definition all the objects are true.

[Surprised comments and sounds from the audience; not understandable.]

JavaScript has a lot of [surprised sound] points.

Slide 11 and 12: AND and OR

Talking about booleans we need to talk about the AND operator and the OR
operator because they are quite different from other languages. In JavaScript,
the AND operator does not return a boolean. The AND operator returns one
of the values that you pass. So, more specifically, it returns the first value that

B Transcription: JavaScript Course – Types 155

is false, or the last value. So, when you do this, 3 && 0 && 1, it returns 0,
because it is the first one that is false. And if you do this ["" && 0; H.O.], it
returns the empty string because it is the first one that is false. If no value is
false it returns the last one, so in this case [1 && 2 && 3; H.O.], it returns 3, in
this case ["test" && 42; H.O.], it returns 42, and finally in this case [true &&

false; H.O.] it returns false because it’s the last value [not understandable],
okay?

You can use this as a-, it’s like the shorthand for if. Instead of doing, “if
this, than that”, you can do “this and that”, and it would do the same thing.
Because it is [not understandable], so it will only evaluate this part if this part
is actually true.

The OR operator is kind of the same thing but opposite so it returns the first
value that is true or the last value. In this example, in these three examples,
it returns the first value that is true so it is the first one, in this case it is
"test", 2, and true. In these two examples it returns the last value, because
0 is not true, and because null is not true, so it will return the empty string.
You can use the OR operator to provide default values to your variables. This
is quite common in JavaScript. Your assigning to name the result of applying
|| to name and another string. So if name is defined, I mean if name is not
false, than you’re assigning name into name, which is no operation, but if name
is not defined, because the guy who is calling this function didn’t pass a name

value, that you are assigning this default string. Okay, does it make sense? If
you have questions at any time just interrupt me, I will explain it again.

Slide 13 to 17: number

So this is pretty much everything about the boolean. Now, number. Numbers
in-, one thing you might notice here is that we don’t have integer, float, double
and stuff, we just have number, everything in JavaScript is a number. It uses
the same standard as in Java, IEEE 754, and everything is stored as a float.
53 bits for integers, [not understandable], the biggest integer range that you
can use is this one.

Because everything is-, in this standard, there is some special numbers defined,
for example Infinity. Infinity and −Infinity, are valid numbers, and
they’re the result of this operation, so if you do this, in other languages, I don’t
know about Java but C you break pretty much the computer, in JavaScript
you get the Infinity value and you can continue operating with it.

We also have this special number, which is called “not a number” [NaN; H.O.],
that is the result of any operation where any of the operands is not a number,
so if you try to multiply, 3 * "string", this call is valid but it becomes NaN.
It doesn’t break, [not understandable], it just becomes this value.

156 B Transcription: JavaScript Course – Types

NaN is quite weird because by definition nothing is equal to NaN, not even itself.
So if you try to find out if an operation returns NaN, you-, I don’t know, if you
do a mathematical operation, just store that value in a, you want to do that,
it always returns false. You cannot check if something is NaN using the ===

operator. Everything that you check with NaN is always false by definition. So
if you want to check if something is NaN, the official way is that, you can check
if the value is a number and the function isNaN returns true for that variable.
Or more fancy you can do this, if this returns false, it’s because a is NaN, it’s
the only case, [not understandable].

But yeah, this is like, too pretty, don’t do that because people might not
understand, always do that.

Slide 18 to 20: Transforming strings into numbers

Now, parsing a string to numbers, there is two ways to convert a string to
a number in JavaScript, one is parsing, the other one is converting one can
say. So, you use the parseInt function to-, we have two functions, parseInt
and parseFloat, one is for integers, one is for float. So parseInt will start
going character by character, until it finds something that is not a number.
So, in this case, "432" is a valid number, so 432. So in this case, 3 is a number,
dot is not a number, so it stops here, so it returns 3. If you pass this one to
parseFloat it will return 3.2. You can pass things like this in it, like "4ever",
it will return 4, and it will not complain about, hey, there is some stuff in
here that is not a number, it will just ignore it. If the first character is not a
number, it will return the value NaN. And if you pass a special number like
"Infinity", it will not give you the Infinity number, it will give you the
NaN value. Okay?

With parseInt, especially with older browsers, [not understandable], you need
to pass a second parameter that is the base of the number, because if not if
the string to start with zero it thinks that you are converting a octal value,
which is pretty much not what you want, it’s pretty bad to work with octals
in JavaScript, so always pass the 10 at the end, because it’s base-10.

Okay, and there the other way to convert a string to a number that in my
opinion is easier to understand than the parseInt, and it’s to use the Number

in uppercase as a function. This would try to convert the whole thing. So in
this case it would convert the input string to number, this would be a float, and
this would fail because the whole thing is not a number, this would transform-,
you can use the scientific notation, a you will get a three with ten zeros, and
if you pass "Infinity" it will return the actual Infinity value. There is a
shorthand for this, instead of doing the Number function, you can put + at the
beginning of any string, and it will use this method to convert a string into a
number. A lot of people use this, I prefer to use this because it’s much more
clear what’s going on.

B Transcription: JavaScript Course – Types 157

[Question/comment from the audience; not understandable.]

Yes, it always works with English.

[Question/comment from the audience; not understandable.]

Slide 21: Weirdness with numbers

Now, as I said that all the numbers are floats we need to get careful when
working with this, because in JavaScript you can [not understandable] that this
is false. 0.1+0.2 is not equal to 0.3, because there can be errors with floats and
other stuff, in fact, 0.1+0.2 is equal to this value [0.30000000000000004; H.O.].
So when you’re working with floats always be very careful about this kind.
Also, when you get to max value, you don’t get a buffer overflow error, [not
understandable], you can add 1 and it will say, okay, it’s the same value because
it doesn’t change the value. So if you have very big numbers in JavaScript
always be careful about this. Also with big numbers you start to lose precision,
like if you have a lot of 111111..., times 2, is not equal to 22222..., at the end,
you start to get some zeros.

[Question from the audience] Why is that?

Because it’s bigger than the, how you call that, you start to lose precision,
because the bit string to represent that number-

[Comment from the audience] [not understandable] are stored in two parts,
right, there is the amount that does the precision, and there is the amount
that does the-, base, to the power of, right, the magnitude, and so, like, the
magnitude is getting higher, which will add zeros, but the precision can’t get
any higher, [not understandable].

Actually, we get an error, very very many times [not understandable] we get
an error working with this, because we have a timestamp, we concatenate
that timestamp with a user ID or some other stuff and than with some other
ID, and somehow we convert that to a number, a very big, long number, and
suddenly our database was filled with the same values for everything because
we started losing precision at the end, [not understandable].

So yeah, when working with big numbers in JavaScript always be very careful,
there’s libraries for this that won’t lose any precision but with the native
numbers be very careful.

Slide 22 to 28: undefined and null

Now, this is everything about numbers, we are going to explain undefined

first and then null. In JavaScript, when we talk about undefined there are

158 B Transcription: JavaScript Course – Types

two things. There is the type undefined, that is the value that is used when a
variable has not a value, and the variable called undefined, there’s both things
in JavaScript. So if you want to check if a value is undefined, in theory you can
do that, I mean, most of the time it would work. But [not understandable] is
compare if a variable is equal to this undefined global variable that is already
defined. This can fail because this variable can be written by anybody, can
be stored another value in there, someone can do undefined = 3. That thing
will start to fail. So if you want to check if something is undefined, always
use the typeof operator.

Yeah, exactly like this case, we have this weird overriding of the value of
undefined, and then we can set this, and it would return true. Even if
variable is not undefined. So if you read this code, you’re going to say I
don’t expect this to pass and it would pass, [not understandable].

Now for null. null is a value that represents the intentional absence of any
object value. There is no variable called null so it’s safe to do this. Actually
this is the only case where you should not use the typeof operator, if you re-
member, for the typeof null becomes "object", that’s [not understandable],
so it’s better just to check this, and this is safe, it would only pass if variable
is actually null.

[Lesson is interrupted for a 30 minutes practical coding exercise.]

Slide 29 to 31: Objects

Okay, let’s continue with objects, we have seen all the native types so far, I
mean, this coloured types, let’s talk about objects. Objects in JavaScript have
two different aspects, one is, an object is a collection of key/value pairs, and
the other thing that we can’t talk about is that an object has a prototype, but
that’s for another class, the inheritance class, so today we want to focus on
the key/value thing.

There’s two ways of creating an object in JavaScript, one is using the new

operator with the Object function like this, the other one is using the object
literal like this. Always use this, one because it’s way more common, second
because it’s faster than this way for some reason. So use just this.

Slide 32 to 40: Properties

To add properties to an object you can define the properties when you are
creating the object, like in this case we’re creating an object with the property
called name and the value "Charlie", or you can just add properties after
that. So you can create a property and don’t need to define all properties
beforehand, you can just add properties when you need it.

B Transcription: JavaScript Course – Types 159

To delete a property, you can use the delete keyword. In this case we
have an object with three properties, name, age, and gender, we can delete
person.name, so we are deleting this property, and the resulting object only
has these properties.

To access properties there’s two ways, one is using the dot notation, this is
very common and you should already know that. You go object., name of
the property, and you have the value. The other way is using brackets. In this
case, you pass the name of the property as a string, so in this case, we have the
object, and using brackets we are accessing the property name. This is useful
in case that this thing here, the name of the property, is not a valid keyword,
like you have-, at some point you have spaces, you need to use the bracket
way. If you have the name of the property stored in a variable you can just
use that to get to the property.

All the keys are always strings, any kind of strings, you can have like single
words, you can have full phrases, you have unicode things, and even the empty
string is a valid key. In fact if you pass something that is not a string, like a
number, a boolean, or even a function, this works. Internally, is going to convert
all these things to strings. So, this person object will have three properties,
namely "3" as a string, "true" as a string, and "function" also as a string.
[Not understandable.] Doing this is exactly the same as doing this. This is true
for arrays as well, so every time you go array, and you pass some number of
some index, you have actually passed some string, if you want. Internally it’s
actually converted into a string.

Yeah so, [not understandable], everything I’m saying about objects is true for
all the types of objects, so everything I have said so far is also true for these
sorts of types. So everything I have said is true for arrays as well, is true for
functions, is true for dates, is true for numbers.

[Question from the audience] So, strings can have properties?

Yes, we have the string scalar and the String object, that contains some
string, and yeah, it can have properties.

[Not understandable.] The default value is undefined, so you can have an
empty object, and you try to get a property that is not defined, the value is
undefined. Now, that is a property, so how do you check if this object has
the property age? You cannot just check the value because it’s going to return
undefined. So to check if an object has a property we use the in keyword. You
pass the name of the property, in person, and this will evaluate to true or
false depending on if this property’s in person or not. It’s kind of useful, if you
have a properties with the value undefined, you can use this to differentiate
if the property is there or not. Other way, just don’t use undefined, use null,
[not understandable].

This is not important. [Skipping a slide on hasOwnProperty.]

160 B Transcription: JavaScript Course – Types

Slide 41 and 42: for/in

Now, to iterate through all the properties in an object, you can you the for

in operator, the for in loop. And this is the syntax, you pass for, the name
of the variable, and the object, and this will iterate through all the keys. So
if you want to get the actual value you need to do this. This is the most
important thing of this class: The order is not guaranteed, you run this one
hundred times, and you get this order, then you run this again, and you get
a different order. So if you need order, use an array. If you use this operator
the order can change at any time. So never [not understandable] on the order,
when you are doing this.

[Question from the audience about inherited properties showing up in the for

in loop; not understandable.]

[Not understandable], in JavaScript you can have an object that inherits from
a another object. In for in, you would get the keys from the self object, and
from the parent object. If you want to check if the property is actually in the
current object and not in the parent one, use can use this method, so-, this is
wrong, I’m sorry, this should be object.hasOwnProperty and the name of the
property in here. So you will get like, if person.hasOwnProperty(key), it
will return true or false depending on if the property is defined in this object,
or in the parent one. But this is generally considered a bad practise, people
don’t add properties to the parent object anymore in JavaScript, that was
common 6, 7 years ago but now it’s a bad practise, people don’t do that in
[name of the company], nobody should do that ever, so it is not needed to use
this.

[Question from the audience] So there are no default properties in object?

No, the default properties are not enumerable. The default property doesn’t
appear in a for loop. In JavaScript, the more advanced, you can define a
property and you can say, I want this property to appear in the for in loops
or not. By default, all the properties doesn’t appear in a for in loop.

Slide 43 and 44: Property values

This is about keys. About values, object can contain any value, you can store
a string, number, boolean, array, functions, null, other objects, that’s totally
okay. You can even pass circular references, that’s totally okay in JavaScript.
So you can have an object test, with a property that refers to itself. In node.js,
when you try to print this object you get a nice circular thing, in browsers,
like in Chrome, you get a tree that you can expand forever. Of course you can
do that in JavaScript but in some cases this will fail, so if you try convert this
to a JSON it will fail. [Not understandable.]

B Transcription: JavaScript Course – Types 161

Slide 45 to 50: String, Number, Boolean

[Not understandable]; now we want to see these three, String, Boolean, and
Number. They are objects that encapsulate scalar values. So a String object
encapsulates a string, a Boolean object encapsulates a boolean, and a Number

object encapsulates a number. These three are pretty much never used, so
there is no point using these in JavaScript at all. So we are going to go through
these very fast. So these three things are functions as well, you when you call
String something, it will convert this something into a string, and the same for
number and boolean. We saw that for number when we talked about numbers
to convert strings into numbers.

And when you use new String, you would return an object that encapsulates
that string. Same thing for new new Number and new Boolean. All strings get a
few methods, to extract parts of a string, check if the value contains something,
to convert to lower case, upper case, bla bla bla. Boolean, there’s nothing
useful here, you can just convert the boolean into a string, and Number, you
can convert this number into fixed notation, exponential notation, or change
the precision. Not very useful.

Slide 51: Autoboxing

[Not understandable.] That means that on a scalar string you can call a method
and it will work because it will automatically convert this into a String object,
and call this method in that object. So when you write this, internally it is
creating a new String object and calling contains on that String object. This
is very common but you need to be careful because if you store a property here,
variable a is a string, and you store a property name, and you try to retrieve
that property later it is undefined. Because, the object that is created for
passing this statement, this one, is a different object than the object that is
created [not understandable]. So this instance will not contain this property.
[Not understandable.] Same thing for numbers and booleans.

Slide 52 to 59: Arrays

Okay, arrays. Arrays are a bit different, [not understandable]. There is two
ways to create an array, as an object, you can use the new operator and pass
the number and it will create an array with three elements that are undefined.
So this is the length of the array. Or you can use the literal annotation, using
square brackets, this will create an empty array, and this will create an array
with three elements, 1, 2, 3. This is not like in Java, you can create an array
and add elements later, it doesn’t matter, the length is not fixed.

162 B Transcription: JavaScript Course – Types

Arrays are quite magic because the have a magic property called length. It’s
magic for two reasons. One reason is, it’s a property, but every time you call it
computed in real-time. It returns the biggest integer key plus 1. So you have
an array with one item at the position 100, the length is 101. Every time you
add items to that array the length is computed in the background. So, for
the empty array, length is zero, if there’s no integer key the length is always
zero. You can have gaps, so in this case where I’m setting an element to the
position 1, the length is going to be 2, even though the position zero has not
been filled. As I said before, all properties are actually converted into strings,
so you can do this and it works. This is a bit tricky, arrays are objects, that
means that you can store any property in there. If you store a property, say
myProperty, it doesn’t change the length, because the length looks for keys
that are integers, and this is not. When you store a property in there, check
the length, the length hasn’t changed, the length is still three, three items, but
you can still retrieve that property later. Okay, so length only works with keys
that are integers.

The other magic part of length is that you can write a value in length and
it would change the array, it’s like calling a function let’s say. So we have an
array, we check the length, the length is 4, because the last index is 3, plus
1 is 4. When you set the value of the length, you remove values of the array
until it matches the length. In this case, it will remove c and d, and you have
an array with just 2 items, because it’s the length that we have specified. If
you put a bigger number, it will fill all the holes with undefined values.

[Question from the audience] So it won’t bring back anything that was there
before?

No, it was lost. Actually, the way to reset an array is doing array.length =

0. It would remove all the items.

Methods for arrays, [not understandable], you can use that as a queue or as
a stack, and concatenate arrays, pretty much. join is quite useful, join will
transform an array into a string using a separator, by default it’s comma, so
if you have an array with 5 numbers, you call join, you would return a string
with all the items, separated by a comma. You can pass any string, and it will
return an array with all items.

[Comment from the audience; not understandable.]

We use this a lot this little trick to create strings of any random length, be-
cause you can create an array with 20 elements that are undefined, join them
using them x, and it will-. [Not understandable] the string representation of
an undefined value is empty, so you just get 19 x characters.

[Comment from the audience] So we use this trick to create-, let’s create a
string with [not understandable], you can use this. [Not understandable.]

B Transcription: JavaScript Course – Types 163

concat. concat returns a new array, it doesn’t modify the existing array with
all the elements. If you pass another array, it will concatenate them, instead
of having nested arrays, it will just flatten the whole thing, but if you pass a
list of elements it will just append these elements. Thing is, concat returns a
new array, it doesn’t modify the original one.

Now we have the pop, push, shift, unshift methods to remove items from
the beginning and the end of the array. Those four methods modify the array,
okay? concat doesn’t modify, these four modify the array.

Slide 60 to 65: Dates

That’s about arrays. Let’s walk through this very fast, because they are not
very important: Dates. [Not understandable.] When you call Date as a function
you get a string with the current date. You can also use Date.now() to get
the Unix time, using milliseconds. In JavaScript, we always use milliseconds,
never seconds, [not understandable]. You can use parse to format a valid date
in a string to milliseconds. You can create a new date, which is basically an
object with the current date and it has a lot of methods to select the month,
select the year, change the week day, [not understandable], nothing very fancy.

The thing is, we have the Year-2000 bug, [not understandable], but we still
have this bug in JavaScript. So when you create a new date, and you ask for
getYear, in this case it would return 115, [not understandable], you need to
call getFullYear. Welcome to the class. The other weird thing that I think is
the same in Java is the days start with 1, but the months start with zero. So
the first day of the year is day 1, month 0. I think it’s the same in Java, isn’t
it?

Slide 66 to 74: RegExp, Error, Math

Regular expressions, in JavaScript we have an object to create that, there are
three ways for get a regular expression, one is [not understandable], pass the
regular expressions as a string and than the flags, or you can use the slashes.
Slash, regular expression, slash, your flags.

[Not understandable] flags; g for global match, i for ignore case, and m for
multiline. Pretty much like always. We have methods, [not understandable;
diverse methods on regular expressions].

Error is pretty much an extra class for all the errors that you can have in
JavaScript. You can extend these classes to create your own stuff. There are
six types of errors, this not that important, like EvalError, RangeError,
ReferenceError, SyntaxError, TypeError, URIError. I don’t know why we
need a specific error for this, but [not understandable].

164 B Transcription: JavaScript Course – Types

For throwing errors, you can use-, this is the most common thing, you can
just throw new Error and your message. In fact in JavaScript you can throw
anything, you throw object, you can throw [not understandable], booleans, you
can throw a string, but pretty much everybody [not understandable].

Math is a static object with lots of mathematical methods, like we can get
the max number, minimal number, round numbers, lots of constants to do
mathematical operations in JavaScript, but as JavaScript is using floats math-
ematical is not very reliable, mathematical operations, so we don’t use these
a lot.

Slide 75: Strict equality

That’s it about types, now the thing we want to talk about, how to compare
types? [Not understandable], double-equal vs. triple-equal. When you compare
types, you can use triple-equal, and the negative version of that, !==, and it
would say, if they are scalars, it checks that the values and the types are the
same, so if you compare boolean === number it would always return false, and
if they are objects, it checks if they are actually the same instance in memory.

Slide 76 to 84: Loose equality

[Not understandable] the double-equal. The double-equals would check that
the values are the same, and if they are different types, they would try to
cast them to a common type. [Not understandable.] So pretty much everyone
would say, avoid double-equals, but I don’t think that’s good, because we are
engineers, we went for labs, I want to understand the rules and decide myself
if its a good thing or bad thing. So the rules for double-equal, that kind of
make sense when you think them one by one but [not understandable].

So if you are comparing the same types, this behaves exactly like triple-equals,
so you’re comparing a string == a string is like having triple-equals, okay?

Now, undefined and null are equal to each other and nothing else. So
undefined == null is true, but undefined == false is false. So only this
returns true.

[Short discussion with audience; not understandable.]

[Not understandable], I mean, you can do undefined == undefined, or
undefined == null. Both cases would have been true. Any other combination
would return false. When you compare numbers and booleans-, let’s say it this
way, when you do <number> == true, this evaluations to true only if number
is 1. So, 3 == true is false, 1 == true is true. When you compare strings to
booleans, if the string is the number "1", that’s true, if not, it’s false. Like the

B Transcription: JavaScript Course – Types 165

string "true" is not true. When you compare strings to number it converts
the string into a number.

[Question from the audience; not understandable.]

Very good question, wait a couple of slides for that.

When you compare an object and a string, you would call the method
toString in that object. So if you have an object that a toString method that
returns "test", you can do this, and it would be true. [Not understandable],
as pretty much nobody overrides toString. If you compare an object with
something that is not a string it would call valueOf, [not understandable].

[Not understandable] diagram, but you can see all the possible values and com-
binations, you can see when you’re comparing, let’s say, string "1" with string
"1", [not understandable], this chunk here is comparing null / undefined,
don’t know if you can see that, null / undefined. You can see that later if
you want.

Slide 85 to 88: Comparing types – Conditionals

Now, this thing, if something, is not the same as checking something ==

true, and is not the same as checking something === true. This what people
don’t seem to understand, because a lot of people will complain about this,
like, oh this is difficult to understand, bla bla bla bla bla, but they happily
will do this. And it also has a different set of rules that are not very obvious.
These are all the falsy values, actually.

When doing this, undefined and null are false, number is false for the values
zero and NaN, all other values are true, and the string is false for empty string,
and all objects are true, that’s what I said at the beginning.

Now the difference: These, for example, if ("2") is true, but this, if ("2"

== true) evaluates to false, because we have said when we are comparing
strings and booleans it’s only true if this is "1". When doing objects, this one
evaluates to true because we have said that all the object are true always, in
this case, but if you compare this with the actual value of true it would call
valueOf of this guy, and the valueOf of this guy is false.

More weird things about JavaScript types. By the definition I have used, empty
string, but this is not the only definition of empty string. Any string with
spaces, tabs, carriage returns, is also considered empty. So this will always
evaluate to true, sorry, this will evaluate to false, even this thing is not empty
[not understandable]. This evaluates to true, as well, because, how things work.
It will first try to convert the internal array into a string, so [[1]] is ["1"],
then ["1"] is converted to a string, [not understandable], and then compares
the string on the number. They are the same thing, so it evaluates to true.

166 B Transcription: JavaScript Course – Types

[Short discussion with audience; not understandable.]

All this crappiness comes from the fact that JavaScript was literally defined
in 10 days. Literally. They said to some guy we to have a new language, he
finally implemented it in 10 days. Yes, you can do these weird things.

[Not understandable; on ’[object Object]’ == {}.]

Resume

Dipl.-Ing. Dr. techn.

Hannes Obweger

74/2-4 East Crescent Street

2060 McMahons Point

New South Wales, Australia

+43 650 6293437

ho@obweger.org

Personal Data

Date of Birth September 05, 1985

Nationality Austrian

Educational Background

2009 – 2012 Doctoral Programme in Computer Sciences

Vienna University of Technology

Pass with distinction

Dissertation: User-Oriented Rule Management for Complex Event Processing Applications

2007 – 2009 Master’s Programme in Software Engineering and Internet Computing (Dipl.-Ing.)

Vienna University of Technology

Pass with distinction

Master Thesis: Similarity Searching in Complex Business Events and Sequences thereof

Awarded the INiTS-Award 2009

2004 – 2009 Bachelor’s Programme in Journalism and Communication Studies (Bakk.phil.)

University of Vienna

Pass with distinction

2004 – 2007 Bachelor’s Programme in Media and Computer Science (Bakk.techn.)

Vienna University of Technology

Pass with distinction

1999 – 2004 College of Electronics specializing in Technical Computer Science (Matura)

Höhere Technische Bundeslehranstalt Mössingerstraße, Klagenfurt

Pass with distinction

1995 – 1999 Gymnasium

Bundesrealgymnasium Porcia, Spittal a.d. Drau

Professional Experience

092014 to now Atlassian

092013 to 092014 Radiant Minds Software GmbH (Founder and CTO)

Creation of Roadmaps for JIRA (now Portfolio for JIRA), a novel project management

solution for Atlassian JIRA. Radiant Minds joined Atlassian in September 2014.

072009 to 092013 UC4 Software GmbH

Software engineering and research in the fields of workload automation, Complex Event

Processing, and web application development; Architect and supervisor for UC4 Enterprise

Control Center, an extendible web platform that serves as the central interface for UC4's

cloud offering.

072006 to 072009 Senactive IT-Dienstleistungs GmbH

Software engineering and research in the fields of Complex Event Processing and

Information Visualization; Architect and lead developer of SENACTIVE EventAnalyzer and

UC4 ClearView (on behalf of UC4 Software)

2007

Internship

SEZ AG

Development and maintenance of the company’s Sharepoint-based Intranet application.

2006

Internship

SEZ AG

Development and maintenance of the company’s Sharepoint-based Intranet application.

2005

Project-based

ALRO Control Systems AG (Switzerland)

Design, implementation and rollout of a Java-based document administration tool.

Development of an interactive web atlas of Swiss water plants.

2004

Project-based

ALRO Control Systems AG (Switzerland)

Design, implementation and rollout of a Java-based document administration tool.

2003

Internship

KELAG

Internship in electrical engineering

2002

Internship

KELAG

Internship in electrical engineering

2001

Internship

KELAG

Internship in electrical engineering

Additional Qualifications

Business English

Certificate (BEC)

Vantage

The BEC Vantage is an intermediate-level Cambridge ESOL exam, at Level B2 of the Council

of Europe's Common European Framework of Reference for Languages.
1

Language Skills

German Mother tongue

English Business fluent

1
 http://www.candidates.cambridgeesol.org

http://www.candidates.cambridgeesol.org/

Publications

Journal Articles

2011 Model-Driven Rule Composition for Event-Based Systems

with Josef Schiefer, Martin Suntinger, and Peter Kepplinger

International Journal for Business Processing Integration and Management (IJBPIM)

Volume 5, Number 4

2008 Event Tunnel: Exploring Event-Driven Business Processes

with Martin Suntinger, Josef Schiefer, and M. Eduard Gröller

Computer Graphics and Applications

Volume 28, Number 5

Conference and Workshop Papers

2011 Complex Event Processing "off the Shelf":

Rapid Development of Event-Driven Applications with Solution Templates

with Josef Schiefer, Martin Suntinger, Florian Breier, and Robert Thullner

19
th
 Mediterranean Conference on Control and Automation

2011 Entity-Driven State Management for Complex Event Processing Applications

with Josef Schiefer, Martin Suntinger, and Robert Thullner

5
th
 International Conference on Rule-based Reasoning, Programming, and Applications

2011 User-Oriented Rule Management for Event-Based Applications

with Josef Schiefer, Martin Suntinger, Peter Kepplinger, and Szabolcs Rozsnyai

5
th
 ACM International Conference on Distributed Event-Based Systems

2011 Proactive Business Process Compliance Monitoring with Event-Based Systems

with Robert Thullner, Szabolcs Rozsnyai, Josef Schiefer, and Martin Suntinger

6
th
 International Workshop on Vocabularies, Ontologies and Rules for The Enterprise

2011 Event Access Expressions - A Business User Language for Analyzing Event Streams

with Szabolcs Rozsnyai and Josef Schiefer

25
th
 IEEE International Conference on Advanced Information Networking and Applications

2010 Web-Based Decision Making for Complex Event Processing Systems

with Albert Kavelar, Josef Schiefer, and Martin Suntinger

6
th
 World Congress on Services

2010 Discovering Hierarchical Patterns in Event-Based Systems

with Josef Schiefer, Peter Kepplinger, and Martin Suntinger

2010 IEEE International Conference on Services Computing

2010 Event Data Warehousing for Complex Event Processing

with Heinz Roth, Josef Schiefer, and Szabolcs Rozsnyai

4
th
 International Conference on Research Challenges in Information Science

2010 Similarity Searching in Sequences of Complex Events

with Martin Suntinger, Josef Schiefer, and Günther Raidl

4
th
 International Conference on Research Challenges in Information Science

2010 Trend-Based Similarity Search in Time-Series Data

with Martin Suntinger, Josef Schiefer, and Günther Raidl

2
nd

 International Conference on Advances in Databases, Knowledge and Data Applications

2009 Correlating Business Events for Event-Triggered Rules

with Josef Schiefer and Martin Suntinger

International Symposium on Rule Interchange and Applications (RuleML'09)

2008 Data Warehousing versus Event-Driven BI:

Data Management and Knowledge Discovery in Fraud Analysis

with Martin Suntinger, Josef Schiefer, and Heinz Roth

International Conference on Software, Knowledge, Information Management and Applications

2008 The Event Tunnel: Interactive Visualization of Complex Event Streams for Business Process Pattern Analysis

with Martin Suntinger, Josef Schiefer, and M. Eduard Gröller

IEEE Pacific Visualization Symposium

Patents

2009 Method Of Visualizing Sets Of Correlated Events On A Display

with Josef Schiefer and Martin Suntinger

2009 Method Of Detecting A Reference Sequence Of Events In A Sample Sequence Of Events

with Josef Schiefer, Martin Suntinger, and Christian Rauscher

