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Abstract

The present thesis deals with a modelling technique for the efficient finite element

simulation of structures that exhibit a periodic arrangement of substructures along

one axis. This uniaxial periodically recurring small scale substructure is modelled

as a unit cell with periodic boundary conditions and thus provides a representative

model for the large scale structure. On one hand, this model enables the determi-

nation of effective structural properties in the sense of a homogenisation approach.

On the other hand, the unit cell model provides a highly resolved representation

of the large scale structure, which allows the examination of small scale effects in

the sense of a localisation approach.

The periodic boundary conditions are derived for the uniaxial case and extended

regarding the use of shell elements and the application to unit cells with uneven

boundary faces. Furthermore, an algorithm is developed in the framework of

the finite element software package ABAQUS and its scripting interface. This

algorithm is able to automatically generate periodic boundary conditions for a

wide range of unit cells.

The verification of the theoretical assumptions as well as their programmed

implementation is conducted with the help of three example models of increasing

complexity which are assessed with multiple reference solutions. The simulation re-

sults of the example models show that the presented unit cell approach is correctly

representing the structure and thus suited for the determination of the effective

structural properties as well as for the examination of small scale effects.

Keywords: finite element method, uniaxial periodicity, homogenisation, localisa-

tion, periodic boundary conditions, shell elements, uneven boundary faces, periodic

unit cell.
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Kurzfassung

Die vorliegende Arbeit befasst sich mit einem modellierungstechnischen Ansatz

für die effiziente Finite Elemente Simulation von Strukturen, welche entlang einer

Achse eine periodische Anordnung von Substrukturen aufweisen. Diese uniaxial

periodisch wiederkehrende Substruktur kleiner Größenordnung liefert als Einheits-

zelle unter der Anwendung von periodischen Randbedingungen ein repräsentatives

Modell der Struktur höherer Größenordnung. Im Sinne einer Homogenisierung

dient dieses Modell zum einen zur Bestimmung der effektiven strukturellen Eigen-

schaften. Zum anderen stellt die Einheitszelle im Sinne einer Lokalisierung eine

hochaufgelöste Repräsentation der Struktur höherer Größenordnung dar, an der

Effekte kleiner Größenordnung untersucht werden können.

Die periodischen Randbedingungen werden für den uniaxialen Fall hergeleitet

und hinsichtlich der Verwendung von Schalenelementen und der Anwendung auf

Einheitszellen mit unebenen Randflächen erweitert. Des Weiteren wird im Rahmen

des Finite Elemente Softwarepakets ABAQUS und dessen Programmierschnittstelle

ein Algorithmus entwickelt, der eine automatische Erzeugung der periodischen

Randbedingungen für eine Vielzahl von Einheitszellen realisieren kann.

Die Beurteilung der Gültigkeit der theoretischen Annahmen und deren program-

mierte Umsetzung erfolgt anhand dreier Beispielmodelle ansteigender Komplexität

unter Heranziehung verschiedener Referenzlösungen. Die Simulationsergebnisse

der Beispielmodelle zeigen, dass der präsentierte Einheitszellenansatz die Struktur

korrekt repräsentiert und damit, sowohl die effektiven Eigenschaften ableiten als

auch eine hochaufgelösten Darstellung von lokalen Effekten liefern kann.

Schlagwörter : Finite Elemente Methode, Uniaxiale Periodizität, Homogenisierung,

Lokalisierung, Periodische Randbedingungen, Schalenelemente, Unebene Rand-

flächen, Periodische Einheitszelle.
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1. Introduction

1.1. Background

1.1.1. Overview

Computer aided engineering has become increasingly important in the modern

product development process. Nearly every aspect of the product life cycle from

the manufacturing process to the actual service conditions can be described by a

numerical model. A simulation with the help of these models enables the engineer

to gain important beforehand knowledge of a part’s behaviour and how to improve

its response most efficiently. The Finite Element Method (FEM) is one of the most

powerful numerical methods to gain an approximate solution to several complex

physical problems from thermal, electromagnetic, fluid and structural applications.

The present work is dealing with the structural application, meaning the prediction

and optimisation of a structure’s mechanical response under load. Especially in

lightweight design, where components are designed at the limit of their structural

integrity, a reliable method that allows for time efficient modelling is key for a cost

efficient product development process.

The FEM is based on the discretisation of a continuum with the respective

element size determining the level of geometrical detail and the resolution of fields.

The higher the level of detail is in a model, the better the actual structure is

usually represented by the model. A high level of detail implies a high number of

unknowns which has a direct influence on the computational demands. Despite the

1



1. Introduction

drastic increase in computational power over the last decades, the use of modelling

techniques that reduce the number of unknowns and thus the calculation time has

remained very important.

Homogenisation and Localisation

Many complex structures consist of different levels of smaller substructures which

in some cases have to be modelled in detail to obtain a reliable solution of the over-

all response. The levels of smaller substructures are best described by introducing

the term of different length scales, meaning e.g. for a composite wing that small

scale effects may relate to the ply level whereas large scale effects are associated

to the global behaviour of the wing. Deducing effective properties from a small

scale where the effect of local heterogeneities becomes apparent is known under the

term of homogenisation. These effective properties regarding e.g. the structural

stiffness can be applied to a large scale model in the next step and thus reduce

modelling and computation time significantly. The term localisation, on the other

hand, describes a method where the global response is adequately applied to the

small scale yielding a highly resolved representation of the small scale effects due

to inhomogeneities. Several methods have been developed to link the substruc-

tural behaviour to the global structure without losing the context of the global

structure. These mathematical methods are termed multiscale methods and share

the concept of linking different length scales which can be applied to a wide set of

problems far beyond the presented use in computational mechanics.

Periodicity

One of these methods makes use of an internal periodicity of a structure in the

sense that the structure is composed of a periodically recurring substructure, see

Fig. 1.1. This recurring small scale structure is modelled as a Repeating Unit Cell

2



1. Introduction

Repeating Unit Cell

(RUC) (small scale)Global structure (large scale)

Figure 1.1.: Exemplary definition of a plane periodic RUC (Image taken from [15]).

(RUC) serving as a representation for the global structure. The boundaries of

this unit cell are subjected to Periodic Boundary Conditions (PBC), so that the

RUC provides a correct representation. Regarding the concept of homogenisation,

the structural behaviour of this RUC with PBC serves as the basis to obtain the

homogenised mechanical properties of the large scale structure.

Adapting the terminology used by Pahr [17], a general periodic structure can

be categorised based on the number of axes of periodicity :

• one direction: uniaxial periodic

• two directions: plane periodic

• three directions: spatially periodic

The present work is confined to the consideration of uniaxial periodic structures.

Examples of practical relevance for uniaxial periodicity in lightweight design are

e.g. beam-like structures with a periodic arrangement along their main axis such

as rotor blades, carbon nano tubes ([14]) or an aircraft fuselage. Figure 1.2 shows

two examples with complex cross sections. Simulating e.g. the whole length of

the rotor blade with the necessary level of detail will result in a time-consuming

3
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woven glass
carbon

balance tube
carbon fibre

foam
carbon fibre

adhesive layer
honeycomb

carbon

erosion
shield

fibre
fibre

a) b)
Figure 1.2.: a) Cross section of a composite rotor blade (Image based on [1]). b)

Carbon nano tube (image taken from [2]).

modelling and high computational demands. By taking the periodicity along the

main axis into account, the simulation of a single RUC representing one period is

sufficient for the determination of the effective properties of the whole structure.

1.1.2. Literature review

An overview of where to find further information on the previously presented

concepts as well as a short review of research related to the present work is given

in the following section.

Most literature on the topic is found in relation to composite materials as these

materials offer several length scales of heterogenous composition. Applications

from the micromechanical consideration of the composites constituents or the de-

termination of the effective behaviour of textile composites up to the homogenised

properties of a complex laminated structure show the advantage of multiscale ho-

mogenisation techniques for this class of materials.

Referring to modelling strategies in micromechanics, Böhm [3] presents an over-

view of the concept of using periodic arrangements to obtain homogenised proper-

ties. Namely, a review of the current periodic microfield approaches and possible

4



1. Introduction

unit cell definitions is given as well as an explanation of the basic concept of PBC

by means of some examples. Pahr and Rammerstorfer [18] introduced plane pe-

riodic boundary conditions implicating a plane stress assumption and the use of

volume elements. Gager et al. [10] as well as Hohe et al.[12] extended this approach

for models based on shell elements.

Dizy et al. [8] used uniaxial periodic boundary conditions to obtain the effective

properties of slender beam-like structures using volume elements which is closely

related to the present work. In the work of Dizy et al. [8] a review of different

techniques to gain effective properties for beam-like structures is given, see e.g. the

work of Kolpakov [13] or Cesnik and Hodges [6], who applied the variational min-

imisation of the deformation energy to gain effective beam properties. Parts of

the research of Dizy et al. [8] are replicated for the verification of the technical

methods develop during the present thesis. Cartraud et al. [5] offer an extensive

mathematical derivation of uniaxial periodic boundary conditions based on the

asymptotic expansion method. Cartaud et al. [5] verify their approach with the

determination of the effective properties of a stranded cable. The approaches of

Dizy et al. [8] and Cartraud et al. [5] were both limited to the use of volume

elements and even boundary faces.

Regarding the application of periodic boundary conditions to a finite element

mesh, most approaches require a conformal mesh on the corresponding faces. Wip-

pler et al. [24] bypassed this requirement by using projected periodic boundary

conditions. A node triangle relating to a single corresponding node is used to

set up the necessary equations instead of the common node-to-node relationship.

Nguyen et al. [16] imposed periodic boundary conditions by the polynomial in-

terpolation of the displacement field at the boundaries of the unit cell in order to

circumvent the requirement of mesh conformity. Nevertheless the present work is

limited to conformal meshes and further research could aim at implementing one

5



1. Introduction

of the presented approaches for non-conformal meshes.

As for the technical realisation of the presented approach Wu et al. [25] show

how PBC are implemented in a commercial FEM-Package for the spatial periodic

case.

1.2. The present work

1.2.1. Motivation

The homogenisation of complex uniaxial periodic structures can be of great value,

see e.g. Fig. 1.2. Accordingly, the previous section shows that research has already

been conducted on this topic. However, the technical implementation of the ho-

mogenisation is a sophisticated task and not part of a commercial FEM package.

It involves the following steps: (1) The choice and modelling of the representative

periodic unit cell, (2) the application of PBC to the unit cell and (3) the simulation

and evaluation of results to gain effective properties or the general response in case

of path dependent small scale effects. Especially the application of the PBC and

the evaluation of the results present a very time consuming task when conducted

manually. This leads to the need for an automation of step (2) and (3). Besides

that, the presented research reveals some limitations regarding step (1), i.e. the

choice and modelling of the unit cell. So far, to the knowledge of the author, the

use of shell elements for the modelling of uniaxial periodic unit cells has not been

reported in the open literature. The use of shell elements is of particular interest

for the modelling of stacked ply arrangements because they offer a considerable

advantage in computational effort compared to a continuum element model (see

e.g. the work of Davila et al. [7]). Furthermore only trivial boundary faces of the

unit cell that are plane and perpendicular to the axis of periodicity are mainly

considered in related research.

6



1. Introduction

1.2.2. Objectives

The abovementioned limitations result in two main objectives for the present work.

The first objective is to extend the theory of uniaxial PBC regarding nontrivial

boundaries and the use of shell elements.

Secondly, an automated generator of periodic boundary conditions is to be cre-

ated that is able to process a wide range of geometrically possible uniaxial periodic

unit cells. This automated generator is to work in the environment of a commercial

FEM-Package.

In the present work the FEM-package ABAQUS/Standard 6.14-3 (Dassault Sys-

tèmes Simulia Corp., Providence, RI, USA) is utilised for all FEM-computations.

The automation of different tasks is achieved with the Abaqus Scripting Inter-

face which is an extension of the object-oriented programming language python

(version 2.7.3, Python Software Foundation, Delaware, USA).

1.2.3. Scope

Based on the abovementioned objectives, this section aims to give a chapter wise

outline of what is done to accomplish the defined goals.

The following chapter 2.1.Theory first gives a more detailed introduction to

PBC followed by the derivation of the uniaxial PBC and their extension to a more

general application with shell elements and nontrivial boundaries. Thereafter, the

theoretical framework for the evaluation of the results is given by laying out the

concept of how the effective properties are determined. Subsequently, a short

consideration of the applicability of nonlinear effects to the presented method is

provided. In addition to that, a short digression regarding the limitations of the

torsional load case is given.

The chapter 3. Implementation is divided into the sections Programming and

Verification. The section Programming presents how the theoretical groundwork is

7



1. Introduction

put into practice with an automated generator of PBC. Selected methods and parts

of the Python algorithm are presented in more detail and important information

for the user of the generator are given regarding admissible and recommended

input. Next, in the section 3.2. Verification, the example models are introduced

which serve as verification for the developed method. The validity of the presented

approach is assessed with analytical solutions, solutions of the literature as well as

with related FEM-analyses.

In chapter 4. Results and discussion the results of the different verification sim-

ulations will be presented and discussed in detail.

The last chapter, 5. Summary, provides a short summary of the presented work

leading to a conclusion of what has been achieved and an outlook on further

relevant research.

The appendix consists of a manual for the automated generator including a step

by step guide for the general user.

8



2. Theory

2.1. Uniaxial periodic boundary conditions

Basic requirements

In the following, periodic boundary conditions (PBC) for the uniaxial periodic

case are derived. In the case of uniaxial periodicity, a segment of a large scale

beam-like structure represents a periodically repeating unit cell (RUC) which is

subjected to uniaxial PBC in order to provide a correct basis for the determination

of the effective properties. Fig. 2.1 schematically shows how a RUC is taken out

of the context of the larger uniaxial periodic structure. The resulting pair of free

surfaces f+ and f− has to be coupled by the PBC. The superscripts ′−′ and ′+′

indicate which face the respective variable or term is attributed to. For the unit

cell a orthonormal basis u, v, p is introduced with p representing the direction

parallel to the direction of periodicity.

According to Böhm [3] the boundary conditions have to accomplish a behaviour

of the faces f+ and f− so that the following requirements are met:

• Geometric compatibility: For both undeformed and deformed state the pair-

wise boundaries coupled by PBC have to be geometrically compatible. This

means that no gaps, overlaps or unphysical constraints are allowed to occur

with their fictitiously neighbouring unit cells.

• Continuity: A continuous field of all field variables must be given between

corresponding boundaries. This implicates that the stress and strain field is

9
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Figure 2.1.: Definition of the uniaxial periodic unit cell with control points 0+ and

0− and boundary faces f+ and f−

continuous on boundaries associated to each other. This requirement does

not hold true for a discontinuity in the constitutive law relating strain and

stress field as e.g. for boundaries that exhibit a material jump.

Furthermore the deformation energy has to be preserved over the scales, meaning

that the deformation energy of the unit cell per unit length equals the one of the

large scale structure.

The requirement of geometrical compatibility implies that coupled faces are

equal up to a rigid body displacement (Pahr [17]). Enforcing this equality plus a

rigid body displacement during the deformed configuration is essentially the job

of the PBC.
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undeformed deformed

bP1 E11x1x1 bP1

1

2

σ11 σ11

Figure 2.2.: Basic concept of homogenisation at the example of uniaxial tension.

Image based on [17].

Derivation of the PBC

Pahr [17] stated for the spatial periodic case that a displacement field bi(x̄) at a

position defined by the position vector x̄ can be split into a constant displacement

and a periodic displacement bPi (xi), see Fig. 2.2. The constant displacement is

governed by the overall strain tensor E leading in index notation to,

bi(x̄) = Eijxj + bPi (x̄) . (2.1)

For plane periodicity and uniaxial periodicity the relationship between bPi (x̄)and

bi(x̄) is also influenced by the curvature χi of unit cell. Thus it is important to

examine the valid load cases for uniaxial periodicity.

Following Gager [9] and a more detailed derivation from Cartraud et al. [5] or

Buannic and Cartraud [4], respectively, the present work is limited to the first-order

theory due to reasons of simplification. In consequence, this requirement results

in the four load cases depicted in Fig. 2.3, namely Tension and Saint Venant’s

Torsion (see section 2.4) about the axis of periodicity as well as bending about

11



2. Theory

tension along

pu
v

pu
v

pu
v

bending about torsion about
p-axis u-axis(and v-axis) p-axis

Figure 2.3.: Possible uniaxial periodic load cases: tension, bending about two di-

rections and torsion

the u- and v-axis. These load cases represent the classical Euler-Bernoulli-Saint-

Venant beam load cases, meaning that shear deformations in the cross section

(cf. Timoshenko beam theory) are not discussed in the present work. In return

this means that the present approach is especially well-suited for slender beam-like

structures. Forging a bridge to the plane periodic case, the plane stress assumption

of Pahr and Rammerstorfer [18] is transferred to the uniaxial periodic case, as it

requires traction free faces on all directions but the one normal to the direction of

periodicity. With the law of complementary shear stress it becomes apparent why

a shear load other than an in-plane shear load e.g. due to torsion would result in

the need for a traction exerted on faces other than the one normal to the direction

of periodicity. In other words, a shear stress exerted on these faces would lead to

a non periodic load scenario.

According to Dizy et al. [8] this leads for Eq. (2.1) to the following terms for

12
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uniaxial periodicity,

bu(ξ, u, v) = −〈χp〉vξ + bPu (ξ, u, v) , (2.2)

bv(ξ, u, v) = −〈χp〉uξ + bPv (ξ, u, v) , (2.3)

bp(ξ, u, v) = Eξξξ − 〈χv〉uξ + 〈χu〉vξ + bPp (ξ, u, v) . (2.4)

Instead of a vector x̄ in the case of spatial periodicity the uniaxial periodicity

requires a single large scale coordinate ξ in the direction of periodicity (see Fig. 2.1)

and the small scale coordinates u and v. For a unit cell with the length l the rigid

body displacement between the boundaries is calculated in the deformed state as,

∆bi(u, v) = bi(ξ + l, u, v)− bi(ξ, u, v) . (2.5)

Furthermore, it can be shown that (cf. [3], [17]),

Eξξ = 〈εξξ〉 = ∆bp
l

, (2.6)

〈χi〉 = ∆φi
l

, (2.7)

hold for the averaged strain 〈εξξ〉 over the local unit cell, that can be expressed via

the difference in translational displacement ∆bp of the corresponding faces divided

by l. Accordingly, the mean curvatures 〈χi〉 are expressed via the differences in

rotational displacement ∆φi of the corresponding faces divided by l. With the

notation,

bi(ξ + l, u, v) = b+
i (u, v) , bi(ξ, u, v) = b−i (u, v) , (2.8)

the general concept for periodic boundary conditions in the i-direction is described

with,

b+
i = b−i + ∆bi . (2.9)

In other words, the displacement field on one boundary is a function of the dis-

placement field of the corresponding boundary and the deformation state. In this

13
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notation, Eqs. (2.2)-(2.4) with Eqs. (2.6)-(2.7) lead to the following uniaxial

periodic boundary conditions,

b+
u (u, v) = b−u (u, v)−∆φpv + ∆φvp , (2.10)

b+
v (u, v) = b−v (u, v) + ∆φpu−∆φup , (2.11)

b+
p (u, v) = b−p (u, v) + ∆bp + ∆φuv −∆φvu , (2.12)

φ+
u (u, v) = φ−u (u, v) + ∆φu , (2.13)

φ+
v (u, v) = φ−v (u, v) + ∆φv , (2.14)

φ+
p (u, v) = φ−p (u, v) + ∆φp . (2.15)

The coordinates of the respective nodes on each face f+ and f− are u, v and p.

Equations (2.13)-(2.15) refer solely to the application with shell elements providing

a PBC coupling of the rotational degrees of freedom (DOF) of the respective shell

elements at the corresponding boundaries. The terms ∆φvp and ∆φup refer to

nontrivial boundaries and are explained below. With respect to the load cases the

terms in Eqs. (2.10)-(2.15) can be attributed as follows:

• ∆bp : tensile loading in p

• ∆φu : bending about u

• ∆φv : bending about v

• ∆φp : torsion about p

Figure 2.4 shows exemplary for a bending about the u-axis how the curvature

or the rotation of the boundaries, respectively, contribute to the difference in

displacement between corresponding nodes on f− and f+. To achieve the desired

deformation state according to the four load cases or any superposition of them, a

displacement controlled approach is chosen. The differences between the faces f+

and f− in displacement ∆bi and rotation ∆φi are introduced via the control points

14
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φ0+
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Figure 2.4.: Exemplary depiction of the contribution of a curvature to the displace-

ment in p-direction due to bending about the u-axis.

(CP) 0+ and 0− (see Fig. 2.1). The choice of location of these CPs in relation to

each other and to the unit cell underlies certain requirements and cannot be made

arbitrarily. For a more detailed consideration of the choice of control points and

its consequences for the unit cell behaviour see chapter 3 and appendix A. Other

known names for these points in related research aremacroscopic degrees of freedom

or master nodes. In the case of a RUC based on shell elements the difference in

rotational displacement is taken from the difference of the corresponding DOFs of

the CPs,

∆φu = φ0+
u − φ0−

u , (2.16)

∆φv = φ0+
v − φ0−

v , (2.17)

∆φp = φ0+
p − φ0−

p , (2.18)

∆bp = b0+
p − b0−

p . (2.19)

Regarding the applicability of the boundary conditions from Eqs. (2.10)-(2.15) it

is important to note that the equations are based on the small-angle approximation

for trigonometric functions. An angle difference of ∆φi < 6◦ is recommended for

the error not to exceed 1%. This equals a rotation of the cell faces of |φi| < 3◦.
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Figure 2.5.: a) Additional Control Points for a model based on continuum elements

b) Exemplary depiction of a rotation about the u-axis

Application to Volume Elements

When applying PBC to a model based on continuum elements the rotational DOFs

of the CPs are not available. Hence, an alternative approach with two additional

control points per face 1+/− and 2+/− is necessary to represent a rotation via

a translational displacement (see e.g. Gager et al. [10]). Fig. 2.5 shows that the

additional CPs are placed alongside the axes u and v with a distance of d1 = d2 = 1

for a simplified implementation later on. The calculation of the angle differences

that are involved in Eqs. (2.10) to (2.15) is adjusted as,

∆φu = 1
d2

((b2+
p − b0+

p )− (b2−
p − b0−

p )) , (2.20)

∆φv = 1
d1

((b0+
p − b1+

p )− (b0−
p − b1−

p )) , (2.21)

∆φp = 1
d1

((b1+
v − b0+

v )− (b1−
v − b0−

v )) , (2.22)

∆bp = b0+
p − b0−

p , (2.23)

merely using the translational DOFs of the control points to express a rotation.

16



2. Theory

0− 0+

p
u

periodicity direction
unit cell

p
u

0− 0+

p
u

p
u

0−
p p

u

0−
p

u
p

u

0+ 0+

u

unit cell

a) b)
Figure 2.6.: Two scenarios for boundaries that differ from the control points in

p-direction. Green (dotted line): no PBC , red (solid line): PBC

Nontrivial boundaries

Special care has to be taken in the case of boundaries that are not perpendicular

to the direction of periodicity and/or uneven in the undeformed state. In the

following, these boundaries that can also be specified by a non-constant local p-

coordinate are termed nontrivial boundaries. For these nontrivial boundaries two

possible types can be identified as depicted in Fig. 2.6 a) and b). In the case

of Fig. 2.6 a) a void is modelled, meaning that a periodic arrangement is given

but the requirement of parallelism between the corresponding boundaries is not

met for all regions of the boundary. Due to the requirement of compatibility,

only the parallel regions of the boundaries are subjected to PBC. Accordingly the

boundaries in case of Fig. 2.6 b) are subjected to PBC without exception. For
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Figure 2.7.: Exemplary for bending about the u-axis: The contribution to the

cross sectional displacement due to a difference in p-direction of the

undeformed boundaries.

the bending load cases a difference in the p-coordinate of the boundaries results

in a difference in the displacements bu and bv, see Fig 2.7. In consequence the

kinematic coupling conditions, i.e. the PBC, cf. Eqs. (2.10)-(2.15), account for

this behaviour by introducing the terms ∆φvp and ∆φup in the equations for the

displacement bu and bv Eqs. (2.10) and (2.11).

2.2. Variables in Postprocessing

Stiffness and strain energy

One of the main objectives of the presented uniaxial periodic unit cell approach

is to gain the effective stiffness properties for the application to a larger scale.

With the stiffness matrix, S, the homogenised constitutive equation for the Euler-
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Bernoulli-St-Venant beam can be put in the form,

Fp

Mu

Mv

M t
p


=



S11 S12 S13 S14

S22 S23 S24

S33 S34

symm S44





〈εp〉

〈χu〉

〈χv〉

〈χp〉


= S〈ε̄〉 , (2.24)

where Fp andMi denote the reaction force and reaction moments due to a displace-

ment controlled loading. In correspondence to the four load cases, the vector 〈ε̄〉

is composed of the averaged extensional strain component 〈εp〉 and the averaged

curvature components 〈χi〉 as,

〈ε̄〉 =



〈εp〉

〈χu〉

〈χv〉

〈χp〉


= 1
l



∆bp
∆φu
∆φv
∆φp


, (2.25)

which can be expressed via the translational and rotational differences of the

boundary faces with Eqs. (2.6)-(2.7). Cartraud et al. [5] and Dizy et al. [8]

suggest a determination of the coefficients Sij of the stiffness matrix on the ba-

sis of the strain energy per unit length. This scalar value is more comfortable

to extract from the results file than the components of the reaction force or the

reaction moment. The strain energy per unit length or the stiffness, respectively,

constitute a suitable parameter for the verification of a unit cell simulation versus

the simulation of the global structure as the energy has to be preserved over the

scales (see section 2.1). The strain energy per unit length U lc is calculated for

every load case (superscript lc) as follows ([8]),

U lc = 1
2〈ε̄

T 〉S〈ε̄〉 = 1
2l

∫
Ω
CijklεijεkldΩ , (2.26)

with Cijkl denoting the material elasticity tensor and εij denoting the small scale

strain tensor for an integration over the volume of the unit cell Ω. The strain
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energy per unit length U lc resulting from each of the load cases is used to calculate

the terms of the stiffness matrix in Eq. (2.24). In order to determine S, ten load

cases are needed, cf. appendix A:

• four displacement controlled load cases that represent pure tension, bending

and torsion. These correspond to a single non-zero entry in the 〈ε̄〉 vector.

• six displacement controlled load cases that represent the possible pairwise

superpositions of the abovementioned four.

For the diagonal terms,holds

Sii = 2U lc

ε2i
, (2.27)

whereas the off diagonal terms are calculated as,

Sij =
2U lc − (Siiε2i + Sjjε

2
j)

2εiεj
. (2.28)

2.3. Nonlinear Effects

The presented approach is of elevated importance for computationally expensive

simulations. FEM-Models incorporating nonlinear effects typically exhibit high

computational demands due to their incremental solution technique. Thus it is

important to know the potentials and limitations of the presented method with

respect to nonlinear effects. In general, nonlinear behaviour is allowed to occur in

the local model but has to result in an admissible solution meaning that the non-

linearity must occur periodically in the global structure. Dizy et al. [8] presented

panel buckling in the cells of a ribbed beam as a relevant example. However, care

should be exercised when examining unstable behaviour because the unit cell can-

not represent instability modes on a larger scale than the unit cell such as e.g. the

global column buckling in the case of the ribbed beam. In addition to periodic
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nonlinear effects on the local scale, Dizy et al. [8] stated that geometrically non-

linear behaviour in the global model due to large deformations can still lead to

sufficiently small deformations on the local scale and thus to the assumption of

linear behaviour in the unit cell.

Furthermore nonlinearities in the constitutive law, relating strains and stresses,

can be modelled with the help of a periodic unit cell. This nonlinearities manifest

itself in e.g. plasticity or damage behaviour. Correspondingly, caution is advised

because the assumption of periodicity has to be valid for every result. This means

that e.g. in the case of delamination only the onset of damage can be simulated

with the help of a periodic unit cell because considering damage propagation would

lead to unphysical results as a periodic crack pattern is implied.

2.4. Torsion

This section aims to present the particularities of the torsional load case and

the resulting limitations with respect to the presented method. As stated above,

the presented approach assumes that Saint Venant’s Torsion (SVT) governs the

behaviour under a torsional load. SVT implicates that warping of the cross section

is unconstrained and results in pure shear stress. Warping describes the existence

of a displacement field of the cross section in direction of the beam axis. In contrast

to the SVT, Warping Torsion describes a behaviour where warping is constrained

e.g. by an encastered end resulting in shear stress plus normal stress.

This means that for the general case of constrained warping the presented ho-

mogenisation method is not applicable, as the effective properties cannot be rep-

resented accurately. However, Stegmair [22] denotes two exceptions for which the

assumption of SVT holds regardless of constrained warping:

• SVT is a valid assumption for warp free cross-sections that are twisted

21



2. Theory

around its shear centre. A warp free cross-section is e.g. a closed circu-

lar section or a polygon section tangential to a circle. For more detailed

consideration see e.g. [22].

• The warping deformation can be neglected for thin walled closed profiles

and solid sections in most cases and the SVT is predominant. However,

this assumption has to be verified for every case where the additional stress

components due to warping torsion or the torsional stiffness, respectively,

might play a decisive role.
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3.1. Programming of the PBC Generator

3.1.1. General remarks

The application of the PBC to an arbitrary model is realised by means of an

automated modelling process, as the six Eqs. (2.10)-(2.15), cf. section 2.1, have

to be implemented for every pair of corresponding nodes. This means that on

the basis of the FEM-model of the unit cell, the PBC-generator has to generate

a FEM model of the unit cell with PBC that can be analysed in a further step.

Using Abaqus, there are two approaches:

• Abaqus input file string manipulation: The Abaqus input file contains the

model information in text form and is designated to be solved by the Abaqus

Solver. In this first approach the input file is read, evaluated and extended

automatically regarding the PBCs by means of a Python algorithm. This

method has the advantage that it can be applied independently from Abaqus

CAE1 to Abaqus input files generated in an arbitrary preprocessor.

• Abaqus CAE model manipulation with the help of the scripting interface: The

Abaqus scripting interface for Python is an extension of the programming

language Python, enabling the user to execute Abaqus commands in combi-

nation with a python algorithm to build or enhance a model. This advantage
1Abaqus CAE (Complete Abaqus Environment) is the 3-D interactive environment used to pre

and post process FEM-model data.
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of using the Abaqus object library (i.e. the command toolset) entails an easy

combination of the PBC generator with an automated model generator lead-

ing to the efficient modelling of parametric unit cell studies. Furthermore,

the changes to the model can be verified visually in Abaqus CAE and a

graphical user interface to input the necessary data is easy to realise.(Abaqus

Scripting User’s Manual and Abaqus Scripting Reference Manual [21])

In the present case the scripting interface method is used to realise the automated

generation of PBC although the core algorithm is based on general python com-

mands, meaning that the approach of using the input file can be implemented with

some minor changes. Fig. 3.1 presents the concept of the PBC-Generator showing

the basic sequence of operations, some of which are explained in more detail in the

following sections.
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Required input:
Names of model, part and instance.
Coordinates for CP on both boundaries and u-axis
Rounding precision and element type

Check input: write error messages when input incorrect

Input

List all coordinates of the part’s nodes
Transformation from xyz to uvp system via rotational
matrix
Find all possible u,v coordinates
Determine coordinate pairs with maximum and minimum
p-coordinates for each u,v coordinate.

the maximum distance
Retransformation of found coordinates to xyz system

Find nodes at corresponding boundary faces

Assign set to every node at bounds
Link corresponding master and slave nodes via equations

Create Periodic Boundary Conditions

Tension, bending about u,v axis, torsion about p-axis

Create load cases

Exclude coordinate pairs with a p-distance different from

Figure 3.1.: Structure of algorithm that assigns PBC to an arbitrary uniaxial RUC

model.
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3.1.2. Model requirements and input

For an easy and intuitive input of the required data a RSG2 was designed. A

more detailed consideration of this RSG regarding its appearance and application

is given in appendix A. By specifying the names of model, part and instance the

generator is able to access the previously defined model information.

Nevertheless, the model of the unit cell has to possess the following properties

for the generation of the PBC to work as designated:

• The geometry of the unit cell has to be suitable for a periodic arrangement

(see section 2.1: requirement of compatibility). However, boundary faces

f+ and f− with edges or faces parallel to the p-direction as well boundaries

exhibiting undercuts (that are not due to an intersected void) are not suited

for processing with the algorithm for boundary node determination.

• The mesh has to be defined in the part domain.

• The mesh must be conformal on the corresponding boundaries meaning the

mesh on one face represents a projection along the direction of periodicity of

the mesh on the other face.

• An instance for the part must be created.

Additionally, the axis of periodicity and the reference axis of the bending load

cases have to be defined by specifying the control points on f+ and f− and the

direction vector of the u-axis, respectively. The definition of the rounding precision

denotes the decimal place after which the coordinate values are rounded. Rounding

is important because especially for curved boundary shapes the nodes might not be

completely coincident due to a numerical imprecision in the mesh generation. Care
2The Really Simple GUI (Graphic User Interface) is designed with a modular building tool in

Abaqus-CAE
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should be exercised as well when the model geometry is defined with decimal values

smaller than 10−3. A poorly chosen rounding precision might result in the omitting

of a node pair for the generation of the PBC, that was conceived to be coincident.

Deviating from the default value of six decimal places is only recommended if a

visual check has shown that nodes have been omitted from the PBC generation and

it is clear that the mesh is conformal to a sufficient degree. A selection between

shell and volume elements refers to the element class the model boundaries are

based on. In addition to that, the displacement values at the control points can be

altered manually for example for a localisation approach. The rotations should not

be chosen too large because geometrically nonlinear behaviour is not accounted for

by the PBC (see section 2.1). The input is also submitted to a check and wrong

or missing input is reported by an error message providing information how to

correct the input error. See appendix A for a more detailed consideration of the

model requirements and how the automated generator is operated correctly.

3.1.3. Algorithm to determine boundary nodes

The core aspect of the script is an algorithm that determines corresponding bound-

ary nodes. The base data for this algorithm is a list of triples representing the

coordinates of all nodes of the part given in the standard Abaqus coordinate sys-

tem x, y, z. The basic idea is to find the nodes with minimum and maximum

coordinate components in the direction of periodicity in order to determine the

nodes that are part of the boundary faces. For this procedure to work, the nodal

coordinates of an arbitrary model are transformed to the local u, v, p system where

the direction of periodicity coincides with the p-direction. Thus, the lowest and

the highest values in the p-direction represent the boundary faces. The change

of base is realised by a three by three rotation matrix, R, whose coefficients are

calculated from three systems of linear equations linking the base vectors of the
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x, y, z system to the ones of the u, v, p system. Hence, the position vector of every

node, n̄uvp, is calculated from the original system as,

n̄uvp = Rn̄xyz . (3.1)

Having determined the minimum and maximum values leads to a list of corre-

sponding node pair coordinates. From this list all pairs are excluded that do not

exhibit the maximum distance between each other. This maximum distance equals

the distance between the parallel faces f+ and f−. Without this elimination, node

pairs from interior boundaries from e.g. a periodic perforation (see e.g. Fig. 2.6a))

are wrongly considered for the generation of PBC. Eventually, the node pair co-

ordinates are retransformed to the original base via the inverted rotation matrix

R−1.

3.1.4. Creating Periodic Boundary Conditions

The previous steps have determined the coordinates of all coincident node pairs

on f+ and f−. The PBCs are now implemented with the help of the Abaqus

Equation object (equivalent to the Abaqus *EQUATION-card in the input file) that

defines a linear multipoint constraint between a set of degree of freedoms (see [21])

as,

A1λ
P
i + A2λ

Q
j + ...+ ANλ

R
k = 0 , (3.2)

where λPi is the nodal variable at node P in DOF i and An are the coefficients

that define the linear relation. Applied exemplarily to the present case for a node

pair N+ and N− this leads for Eq. (2.10) to,

(−1)λN+

u + (+1)λN−

u + (−v)λ0+

φp + (+v)λ0−

φp + (+p)λ0+

φv + (−p)λ0−

φv = 0 , (3.3)

where e.g. (−v)λ0+
φp denotes the rotation φp of the control point 0+ multiplied with

the negative v-coordinate of the corresponding nodes N+ and N−.
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In a last step the necessary load steps for the calculation of the effective prop-

erties (cf. section 2.2) are generated and the related displacements of the CPs are

assigned. Ten general linear static load steps with automatic incrementation and

a direct solving method are defined per default. See appendix A for a detailed

listing of the ten load steps.

3.1.5. Automated Postprocessing

In addition to the automated generation of the PBC and the load cases a script has

been conceived to evaluate the effective properties in the form of the stiffness ma-

trix of model subjected to the presented uniaxial periodic loadcases, cf. Eq. (2.24).

The script operates on the basis of the Abaqus output database and calculates

the matrix entries as presented in section 2.2. See appendix A for a more de-

tailed consideration of the required model configuration and information to run

the script.

3.1.6. Performance of the algorithm

With regard to future applications of the presented method on large, highly re-

solved unit cell models, a time-efficient automated generator is essential. The

computationally most demanding part of the algorithm is the determination of the

boundary nodes, with the number of operations governing the calculation time.

The number of operations is predominantly influenced by a number of comparisons

between node coordinates where each node from a list l1 of nodes is compared to

each member of a node list l2. The length of the lists length(l1) = f1(n) and

length(l2) = f2(n) are functions of the total number of nodes n. Hence, the total

number of comparisons C = length(l1) ∗ length(l2) = f1(n) ∗ f2(n) shows a depen-

dency of C ∼ n2. This can be roughly translated to a T ∼ n2 dependency for the

total run time T of the generator. A first version of the algorithm showed satisfy-
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Figure 3.2.: Total run time of the algorithm over number of nodes: a comparison

of the original algorithm (version 1 - solid line ) and the optimised

algorithm (version 2 - dashed line). The lines result from a quadratic

regression.

ing performance for smaller models and models with entirely structured meshes,

see Version 1 in Fig. 3.2. For a higher number of nodes the time for determin-

ing the boundary nodes turned out to question the practicability of the presented

approach as it exerted the solving time for a long beam model.

In a second version of the algorithm the previously presented types of operations

are optimised by reducing the length of lists l1 and l2 to a necessary minimum, see

Version 2 in Fig. 3.2. This results in a significant improvement in total run time

T . For a larger model with n = 30000 nodes, that are merely conformal at the

periodic boundaries, the optimised algorithm takes about T = 1000s to determine

the boundary nodes and set up the PBC as well as the load cases.
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Figure 3.3.: Cross section of the prismatic box beam in accordance with Dizy et

al. [8].

3.2. Examples for verification

In this section examples with different features are presented to verify the theoret-

ical derivations and the resulting automated PBC generator. Reference solutions

are given as well as a description of all model features that are not generated by the

PBC generator. Thus, the definition of the unit cell according to the abovemen-

tioned requirements is described. In addition, rigid body modes must be prevented

because in the present method the control points (CPs) are not part of the mesh

and they merely express the difference in translational and rotational displacement

of the corresponding faces. In order to prevent rigid body modes, mesh nodes of

the respective unit cell model are constrained appropriately.

3.2.1. Example 1: Prismatic box beam

Dizy et al. [8] proposed a thin walled structure with a rectangular cross section

(see Fig. 3.3) as a first reference for verification. Using isotropic, homogeneous

material with a modulus, E = 70.000N/mm2, and a poisson ratio, ν = 0.3, this

example is fairly basic. The length of the unit cell is L = 1000mm. Dizy et al.

31



3. Implementation

[8] provide the following solution strategies for the diagonal components of the

stiffness matrix:

• (I) the analytical solution from the thin walled beam theory,

• (II) the solution based on the periodic homogenisation approach presented

in [8] modelled with volume elements,

• (III) the solution based on an alternative homogenisation approach using a

variational asymptotic formulation, which was developed by Palacios et al.

[19] and

• (IV) the solution of the long beam model based on volume elements.

In addition to these four reference solutions, the present work provides further

solutions that are compared to the ones obtained in [8] in section 4.1.2. In total,

four configurations (see Fig. 3.4) of the structure are modelled to verify different

aspects of the presented approach:

• a) RUC with PBC based on volume elements (see Fig. 3.4 a)): This unit cell

corresponds to the work of Dizy et al. [8] and aims to show the capability

of the automated PBC generator to process volume elements. Four element

layers represent the wall thickness.

• b) RUC with PBC based on shell elements (see Fig. 3.4 b)): The mesh

fineness is equivalent to configuration a).

• c) RUC with PBC based on shell elements with nontrivial boundaries (see

Fig. 3.4 c)): The boundaries exhibit two convex and two concave circular fea-

tures of R = 250mm. The fine mesh accounts for an accurate representation

of the circular shape.
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a) b)

c) d)

v
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v
up

v
up

Figure 3.4.: Four configurations of the prismatic box beam depicting the mesh:

a) RUC with PBC based on Volume Elements b) RUC with PBC

based on shell elements c) RUC with PBC based on shell elements

with nontrivial boundaries d) Long beam without PBC based on shell

elements

• d) Long beam without PBC based on shell elements (see Fig. 3.4 d)): For

the long beam the twentyfold length is chosen and the affine displacement

values are applied via node-edge coupling on both ends. For the torsional

load cases the coupling in p-direction is omitted to ensure warp free torsion.

The element size is equivalent to configuration b).

Fully integrated elements with linear trial functions were used for both volume

element model and shell element model. Rigid body movements were prevented

by imposing appropriate boundary conditions on two nodes, centrally located on

the side walls.
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Figure 3.5.: Cross section of the thin walled open tube.

3.2.2. Example 2: Open circular cross section

This example aims to verify the free warping response of a RUC under PBC due to

a torsional load. The cut circle was chosen as cross section (see Fig. 3.5) because it

often serves as a typical example for open thin walled structures and an analytical

solution for the torsional stiffness exists. An isotropic material with a modulus,

E = 210.000N/mm2, and a poisson ratio, ν = 0.3, is modelled. The length of the

unit cell is L = 10mm. In addition to the RUC model with PBC (see Fig. 3.6a)), a

long tube with the ten-fold length and the same cross section serves as a reference

model (see Fig. 3.6b)). In the case of the long model, affine displacement values

are applied to the reference points that are coupled to the mesh edge. Again,

the coupling in p-direction is omitted for the purely torsional load case. A mesh

of fully integrated four-noded standard shell elements is employed exhibiting the

same element size for both model configurations. The rigid body movement of

the unit cell is prevented by subjecting 3 mesh nodes to the respective boundary

conditions.
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v

up a) b)

Figure 3.6.: The two shell model configurations of the thin walled open tube de-

picting the mesh: a) The RUC with PBC and b) the long tube with

coupling constraints.

Analytical solution

As an additional reference, an analytical solution is provided. The diagonal ele-

ments of the stiffness matrix in Eq. (2.24) are calculated as:

• tensile stiffness: S11 = EA

• bending stiffness: S22/33 = EIi

• torsional stiffness: S44 = GIt

A defines the cross-sectional area; E and G denote the Young’s modulus and the

shear modulus, respectively. While the second moments of area Ii for the bending

load cases are calculated straight forward according to the formula for a closed

annulus, the torsional constant It for the open thin walled cross section is different

from the torsional constant of a closed cross section. The theory for the torsion

of a thin walled open cross section is based on the assumption that the open

cross section can be treated as a plane plate under torsional load (see Fig. 3.7).

35



3. Implementation

a

t

x3|τmax12 |

x1

Figure 3.7.: Anti-metric shear stress distribution due to torsion of a plane plate as

representation for an open thin walled cross section.

The coordinate system x1, x2, x3 depicted in Fig. 3.7 represents a local coordinate

system of a thin walled structure where the x1 − x2 plane equals a shear free neutral

reference plane. According to Wiedmann [23] an anti-metric in-plane shear stress

distribution τ12(x3) over the thickness of the plate t accounts for the torsional

moment about the x2-axis. This results in maximum negative and positive values

of |τmax12 | at the surfaces of the plate at x3 = +t/2, x3 = −t/2 and a zone of sign

change at the edges x1 = +a/2 and x1 = −a/2. Neglecting these small zones

of sign change leads to an approximated solution for the torsion of an open thin

walled cross section (see e.g.[11]).

The torsional constant for an open thin walled cross section It is calculated with

the wall thickness t and an integration over the accumulated length of the cross

section a as,

It = 1
3

∫
a
t3ds . (3.4)

However, this solution is based on the assumption of an non-curved neutral refer-

ence plane and represents an approximation for curved plates ([23]) which is the

case for the present open circular cross section embodying a thin plate curved to
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Figure 3.8.: Depiction of s-coordinate and distance definition according to [20].

a full circle. With the mean radius Rm, this leads for the present cross section to,

It ≈
2
3πRmt

3 . (3.5)

An approximation for the maximum absolute value of the shear stress is calculated

analogously to the closed profile with the shear modulus G, the angle of twist

Φp = ∆φp and the length l as,

|τmax12 | =
Gt

l
Φp . (3.6)

Priebe [20] provides an analytical solution for the axial warping deformation uw
due to torsion about the centroid C of an arbitrary non warping free thin walled

cross section as,

uw = ζ(s) dθ
dx2

, (3.7)

where dθ
dx2

denotes the twisting in the abovementioned local coordinate system for

a torsion with an angle of θ about the x2-axis. With the distance dC(s) to the

centroid the C, see Fig. 3.8, the unit warping ζ(s) is,

ζ(s) = −
∫ s

0
dC(s)ds , (3.8)

for the torsion of symmetric profiles ([20]). For the present case the reference

system of the warping deformation is chosen in the centre of the total circumference
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so that the integration constant is zero. Hence, the axial warping deformation uw
of the open circular cross section for the case of the RUC is,

uw = Rm
∆φp
l
s with − πRm ≤ s ≤ +πRm , (3.9)

which corresponds to a linear function uw(s).

3.2.3. Example 3: Perforated tube

This example represents a class of problems where the benefit of the presented

approach is revealed. With the perforation constituting a periodic inhomogeneity

the analytical solution is nontrivial and a highly resolved model of a long beam

accounting for the induced strain and stress fields is computationally expensive.

Thus, the effective properties gained from a periodic unit cell lead to an efficient

modelling approach when applied to a large scale model. Regarding nonlinear be-

haviour this example is suited for the demonstration of periodically elastoplastic

behaviour. With respect to the automated PBC generation and especially the

algorithm determining the boundary nodes the chosen unit cell constitutes a good

example to verify the correct implementation of PBC in case of nontrivial bound-

aries of the type depicted in Fig. 2.6 a). Figure 3.9 shows the periodic pattern of

holes depicted on the flattened semicircle and how the smallest possible, strictly

periodic unit cell is defined with a length of LRUC = 100mm. The periodic pat-

tern is applied to a steel (E = 210.000N/mm2; ν = 0.3) tube with a mean radius

of Rm = 100mm and wall thickness of t = 5mm. Analogously to the previously

presented examples, a long tube with the tenfold length is modelled in order to

verify the unit cell approach. Figs. 3.10 a) and b) show the resulting FE-Models.

The size of the fully integrated four noded elements with linear trial functions

is approximately the same for both models. The mesh of the RUC depicted in

Fig. 3.10 consists of 2319 linearly elements. In addition to that, a second version
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Figure 3.9.: Perforated tube: a) Flattened depiction of semicircle showing pattern

and unit cell definition b) Cross section of the tube.

of the RUC with a mesh of 36293 elements was modelled in order to examine

element size effects.

u

v

p
a) b)

Figure 3.10.: FE Model of perforated tube: a) Long tube with coupling boundary

conditions b) RUC with PBC.
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Plasticity

In a second version of the model a nonlinear material law is applied in order to ac-

count for elasto-plastic material behaviour. For reasons of simplification isotropic

linear elastic ideal plastic behaviour is modelled. The non-hardening behaviour

is defined by a von Mises (J2) plasticity with a yield point at σY = 500N/mm2.

This yield point is chosen arbitrarily with the only requirement being that plastic

behaviour occurs for the load case under consideration. In order verify the results

the RUC model and long tube model are simulated with the elastic ideal plastic

material behaviour. The results exemplarily show the elasto-plastic behaviour of

the perforated tube under tensile load.
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4. Results and discussion

The results of all examples for verification are presented according to the following

methodology: First, a component-wise consideration of the nodal displacements

aims at verifying the geometric compatibility in the deformed state, cf. section

2.1. Secondly, the effective stiffness values of the unit cell model are compared to

the ones of the large scale structure model and other reference solutions to assess

the accuracy of the presented homogenisation approach. Thirdly, a comparison

of the stress field of the unit cell and the corresponding large scale structure is

given to evaluate the accuracy of stress field representation which is one of the

basic requirements essential for both, localisation approach and homogenisation

approach. The stress field is also analysed for continuity between the corresponding

boundaries in the case of the unit cell model, cf. section 2.1. All results are

discussed subsequent to their presentation in the respective sections. In addition

to that, a specific conclusion regarding the abovementioned methodological steps

is given.

4.1. Example 1: Prismatic box beam

4.1.1. Displacement

Using the example of the bending load case Fig. 4.1 shows a component-wise com-

parison of the displacement at the corresponding boundaries of the RUC faces, f+

and f−, as well as along a corresponding path of the long beam model. The path

of the long beam model runs along the boundary of a segment in the centre of the
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Figure 4.1.: Component-wise nodal displacements along the boundaries f+ and

f− due to bending about the u-axis for the RUC based on shell ele-

ments (case b)). The plot paths and the coordinate system are defined

according to Fig. 4.2. Values in mm.

long beam model which corresponds to the unit cell in dimension and loading, see

Fig. 4.2. On one hand, the good agreement of the plots along the paths f+ and

f− suggests that the unit cell is geometrically compatible to its fictitiously neigh-

bouring unit cells in the deformed state. On the other hand, the good agreement

of the RUC displacement with respect to the long beam displacement shows that

the RUC with PBC gives a correct representation of the deformation state of a

segment in the long structure. The v-displacement plot as well as the deformation

of the different model configurations in Fig. 4.2 show that the PBC allow for an

anticlastic curvature. This secondary deformation phenomenon is caused by the

poisson effect and describes an additional curvature of the box walls about the

p-axis due to bending about the u-axis.
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4.1.2. Stiffness

The stiffness matrix,

S =



1.032 ∗ 1010 0 0 0

0 1.913 ∗ 1015 −6.25 ∗ 107 0

0 −6.25 ∗ 107 5.575 ∗ 1015 6.25 ∗ 107

0 0 6.25 ∗ 107 1.693 ∗ 1015


, (4.1)

exemplarily shows for the standard RUC with shell elements (case b)) how the

stiffness matrix is composed of values in the N-mm unit system. All off-diagonal

terms are either zero or negligible due to their relative order of magnitude. This

holds true for all model configurations a) b) c) and d). Thus, Tab. 4.1 compares

the diagonal stiffness terms resulting from the four model configurations of the

present work to the results presented by Dizy et al. [8]. The results in Tab. 4.1

show good agreement among one another as well as compared to the results of

Dizy et al. [8]. It is noteworthy that the standard RUC stiffness values (case

b)) agree very well with the ones of the RUC with nontrivial boundaries (n.t.b.)

(case c)). The diagonal terms are equal at least up to the fourth significant digit.

This indicates, that the supplementary terms ∆φvp and ∆φup in the PBC account

correctly for nontrivial boundaries (see section 2.1). The slightly higher deviation

of the volume element RUC (case a)) for the bending load cases (relative deviation

< 0.5%) in comparison to the results of Dizy et al. [8] can be attributed to a

different strategy for the application of the boundary conditions responsible for

the unit cell curvature, see section 2.1. Hence, the presented method yields a

reliable tool for the determination of the effective properties of a prismatic box

beam. All in all, considering the first four significant digits of the results of the four

model configurations in the present work, the relative deviation does not exceed

0.25 percent.
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Table 4.1.: Diagonal elements of stiffness matrix for the prismatic box beam

Present work Dizy et al. [8]

case (Fig.3.4) a) b) c) d) I II III IV

elements Vol. Shell Shell Shell - Vol. - Vol.

configuration RUC RUC RUC

n.t.b.

Long

beam

Analyt.

sol.

RUC UM /

VABS

Long

beam

S11(109N) 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3

S22(1015Nmm2) 1.91 1.91 1.91 1.92 1.91 1.91 1.91 1.91

S33(1015Nmm2) 5.56 5.58 5.58 5.58 5.58 5.58 5.58 5.58

S44(1015Nmm2) 1.71 1.69 1.69 1.70 1.79 1.71 1.71 1.71

4.1.3. Stress

The averaged stress results of the FE simulation suggest that the stress field is

continuous at the periodic boundary faces and nearly identical in distribution and

magnitude for the different model configurations and for all load cases under con-

sideration. Since the box beam does not exhibit any inhomogeneities the strains

and stresses are constant in p-direction. Exemplary for the load case of pure bend-

ing about the u-axis Fig. 4.2 shows a comparison of the maximum principal stress

contours. The consideration of the maximum principal stress allows a compari-

son of the tensile stress due to bending of the four model configurations where

the reference systems for the stress components is different for volume and shell

elements as well as on the different faces of the shell element model. Figure 4.3

shows a linear stress progression over the length of the side faces in all four cases.

This is in accordance with the well known linear tensile-compressive stress distri-
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a) b)

c) d)

v

up

plot path f−

plot path f+plot path long beam

Figure 4.2.: Contour plot of maximum principle stress for bending about the u-

axis: a) RUC based on volume elements b) RUC based on shell ele-

ments c) RUC with nontrivial boundaries d) Segment depiction from

the long beam model. The deformation is depicted 200-fold magnified

and stress values are in N/mm2.

bution due to bending. In addition to that, the constant maximum values at the

top face show very good agreement, cf. Tab. 4.2. Tab. 4.2 lists a comparison of

characteristic stress values rounded to four significant digits for the four model

configurations. The stress values for the shell element models are evaluated at the

respective outer section point and for the volume elements at the outer integration

points of the outer element. The slightly lower stress for the bending load cases of

the volume element model (case a)) is attributed to this difference of evaluation

position, meaning that the volume element’s integration point is not exactly on the

face of the respective wall. The slight deviation of the maximum principle stress

45



4. Results and discussion

600 800 1000 1200 1400

Distance along path (mm)

0

10

20

30

40

50

60

70

80

M
a
x
. 
P
ri

n
ci

p
a
l 
st

re
ss

 σ
p
p
 (

M
P
a
)

case a)

case  b)

case  c)

case  d)

Figure 4.3.: Maximum principle stress over a segment of the path for all configu-

rations presented in Fig. 4.2. The depicted segment of the plot path

equals a path from the centre of the side wall to the centre of the top

wall.

in case of the volume element model at the centre of the side wall as well as on

the edge of side and top wall may be attributed to a shear locking effect, see solid

line in Fig. 4.3. Since the shear stress due to torsion underlies small fluctuations

because of a discontinuous jump from τt to −τt at the edges between two faces,

Tab. 4.2 shows the averaged value as an approximation for the nearly constant

absolute value of the shear stress on the faces. According to the coordinate system

depicted in Fig. 4.2 the absolute value of the shear stress |τ | in Tab. 4.2 corre-

sponds to the shear stress |τup| on the top and bottom wall and to the shear stress

|τvp| on the side walls, respectively.
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Table 4.2.: Stress components of specific load cases in comparison for different

modelling approaches.

Present work. All results in N/mm2

case a) b) c) d)

elements Vol. Shell Shell Shell

configuration RUC RUC RUC n.t.b. Long beam

Tension: const. σpp 14.00 14.00 14.00 14.03

Bend u: max. σpp 69.56 70.00 70.00 70.17

Bend v: max. σpp 139.6 140.0 140.0 140.2

Torsion: const.|τ | ≈36.5 ≈36.5 ≈36.5 ≈36.5

4.2. Example 2: Open circular cross section

4.2.1. Displacement

Fig. 4.4 exemplarily shows for the torsional load case a component-wise comparison

of the displacement at the corresponding boundaries of the RUC, f+ and f−, as

well as along a corresponding path of the long beam model. The components are

expressed with reference to a cylindrical r, θ, z coordinate system as depicted in

Fig. 4.5. A good agreement of the displacement field at the corresponding bound-

aries as well as with a corresponding path of the long tube model is shown. This

leads to the conclusion that the deformed unit cell is compatible to its fictitiously

neighbouring unit cells and that the RUC correctly represents the deformation

of a segment of the long tube model. The constant difference in θ-displacement

between the corresponding faces f+ and f− is in accordance with the difference in

displacement introduced via the control points. The displacement in z-direction

47



4. Results and discussion

0.002

0.001

0.000

0.001

0.002

r-
d
is

p
. path f+

path f−

path long tube +

0.002

0.001

0.000

0.001

0.002

θ-
d
is

p
.

path f+

path f−

path long tube +

0 10 20 30 40 50 60

Distance along path (mm)

0.08

0.04

0.00

0.04

0.08

z-
d
is

p
.

f+

f−
path long tube +

Figure 4.4.: Component-wise displacement due to torsional load along the corre-

sponding boundaries f+ and f− as well as along a respective path of

the long tube model. The plot paths and the cylindrical r, θ, z refer-

ence system are defined according to Fig. 4.2 and the displacement is

given in mm.

(direction of periodicity) exhibits for both RUC model and long tube model a linear

behaviour which is in accordance with the analytical results in section 3.2.2. The

analytical solution suggests a linear dependency of the warping deformation uw to

the circumferential coordinate s with a slope of manalyt = Rm
∆φp

l
= 2 ∗ 10−3mm.

The curve of the axial warping deformation gained from the FEM-results (see

Fig. 4.4) exhibits a slope of mFEM = 1.96 ∗ 10−3mm, showing good agreement to

the analytical results.
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4.2.2. Stiffness

The stiffness matrix,

S =



1.319 ∗ 107 −3.790 ∗ 104 −2.529 ∗ 102 1.184 ∗ 101

−3.790 ∗ 104 6.580 ∗ 108 −2.441 ∗ 103 −1.743 ∗ 101

−2.529 ∗ 102 −2.441 ∗ 103 6.584 ∗ 108 2.071 ∗ 101

1.184 ∗ 101 −1.743 ∗ 101 2.071 ∗ 101 1.657 ∗ 106


, (4.2)

exemplarily shows for the standard RUC with shell elements (case a)) how the

stiffness matrix is composed of values in the N-mm unit system. Most of the off-

diagonal terms are negligible due to their relative order of magnitude. Solely, the

matrix entries S12 and S21, respectively, show relatively high values that cannot

completely be neglected, suggesting a coupling of tensile and bending stiffness

about the u-axis. This is attributed to the fact that the small incision causes a

small shift of the centroid of the cross sectional area away from the u-axis which

is defined by the position of the control points. Thus, the position of the control

points is essential for the evaluation of the structural stiffness. In other words,

a consideration of the whole stiffness matrix is necessary for a homogenisation

approach when non-negligible off-diagonal terms suggest a coupling between the

four principle stiffnesses.

A comparison of the RUC model, the long tube model and the analytical solution

is presented in Tab. 4.3, showing four significant digits of the stiffness constants.

The tensile stiffness values as well as the bending stiffness values show good agree-

ment among the three solution strategies, meaning that a relative deviation of

under one percent between the maximum and the minimum value is observed.

The slight difference in bending stiffness about u and v axis is accredited to the

non-zero thickness of the longitudinal cut which is not taken into account for the

analytical solution of the bending stiffness. Solely the torsional stiffness values

show a slightly higher relative deviation of approximately two percent which is
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Table 4.3.: Diagonal entries of the stiffness matrix for the open circular cross sec-

tion

Present work

case a) b) c)

elements Shell Shell -

configuration RUC Long tube Analyt. solution

S11(106N) 13.19 13.24 13.19

S22(106Nmm2) 658.0 660.2 659.7

S33(106Nmm2) 658.4 661.0 659.7

S44(106Nmm2) 1.657 1.661 1.692

attributed to the fact that the analytical solution represents an approximation,

see section 3.2.2.

Consequently, the RUC approach with the presented PBC is seen as an adequate

method for the determination of the effective stiffness properties of the open circu-

lar cross section. In the case of the torsional stiffness of an open thin walled cross

section, the correct kinematic modelling of the free warping deformation mode is

essential (see Fig. 4.3). Thus, the good agreement of the torsional stiffness values

leads to the conclusion that the PBC provide a correct kinematic coupling of the

corresponding boundaries regarding free warping deformation.

4.2.3. Stress

Fig. 4.5 shows a contour plot of the shear stress and a magnified depiction of the

deformation due to a torsional load. The depicted paths serve as the basis for a

detailed comparison of the RUC model and the long tube model regarding stress
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Figure 4.5.: Contour plot of torsional shear stress |τmaxθz | of the RUC with 20-fold

magnified depiction of the deformation. The dashed lines represent

the paths for the plots in Fig. 4.4 and Fig. 4.6. Values in the legend

are in N/mm2.

and deformation, see Fig. 4.4 and Fig. 4.6. The FEM-stress results in Tab. 4.4

regarding tension and bending are evaluated at the outer section points of the

shell element models. The results show good agreement with the analytical stress

results for the tension and bending load cases for both model configurations.

The maximum shear stress |τmaxθz | corresponds to σ12 at the outer section point

in the shell element reference system. According to the theory presented in section

3.2.2 the values of maximum shear stress are evaluated far from the zones of

sign change in the area where a constant shear stress over the circumference is

expected. In this area the RUC model exhibits a constant shear stress value along

the circumference of the cross section, see Fig. 4.6. The long tube model, however,

shows a small, wavelike fluctuation of the shear stress with an amplitude of approx

0.3 N/mm2. In order to compare this value to the other results, an averaged value

is determined for the area of this wavelike fluctuation (represented by the blue
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Table 4.4.: Stress components for specific load cases in comparison for different

modelling approaches. * averaged value.

Present work. All results in N/mm2

code a) b) c)

elements Vol. Shell -

configuration RUC Long tube analyt. sol.

Tension: const. σpp 4200 4215 4200

Bend u: max. σpp 439.9 441.0 441.0

Bend v: max. σpp 439.7 441.5 441.0

Torsion: const. |τmax
θz | 16.20 16.53* 16.15

dotted line in Fig. 4.6). The relative deviation of this averaged value regarding the

result of the RUC model is approximately two percent. This deviation as well as

the wavelike fluctuation may be ascribed to load application effects that are not

completely faded away.

The graph of the shear stress in Fig. 4.6 exhibits a discontinuous jump in the

abovementioned zones of sign change at the edges of the longitudinal cut and a

minimum value at the edges of approximately 10.5 N/mm2. This is attributed

to the inability of a shell element model to adequately represent the shear stress

distribution in these zones which leads to unphysical results. Consequently, an

alternative local mesh size may yield significantly different results.
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Figure 4.6.: Plot of the maximum shear stress τmaxθz for the RUC (solid line) and

the long tube model (dashed line). The blue dotted line represents

the averaged value of the wavelike fluctuation of the long tube shear

stress. The curves are plotted along the path f+ as defined in Fig. 4.5.

4.3. Example 3: Perforated tube

4.3.1. Displacement

Fig. 4.7 exemplarily shows for the torsional load case a component-wise compar-

ison of the nodal displacements at the corresponding boundaries of the RUC, f+

and f−. The components are expressed with reference to a cylindrical r, θ, z coor-

dinate system as depicted in Fig. 4.8. A good agreement between the displacement

of the corresponding boundaries can be observed in the case of the r-displacement.

The same holds true for the θ-displacement which shows a constant difference

corresponding to the rotational difference at the control points providing the dis-
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Figure 4.7.: Component-wise nodal displacements due to torsional load in cylin-

drical r-θ-z system at the corresponding boundaries f+ and f−. The

plot paths are defined according to Fig. 4.8.

placement controlled torsional load application. The plot of the z-displacement

shows two parallel curves suggesting the presence of a periodic strain microfield

in periodic direction. The congruence and the constant difference of the curves,

respectively, lead to the conclusion that the deformed unit cell is geometrically

compatible to its fictitiously neighbouring unit cells.

4.3.2. Stiffness

The stiffness matrix,

S =



2.232 ∗ 1008 −3.730 ∗ 1005 1.043 ∗ 1006 1.449 ∗ 1009

−3.730 ∗ 1005 1.113 ∗ 1012 5.355 ∗ 1008 4.905 ∗ 1007

1.043 ∗ 1006 5.355 ∗ 1008 1.100 ∗ 1012 1.269 ∗ 1008

1.449 ∗ 1009 4.905 ∗ 1007 1.269 ∗ 1008 5.249 ∗ 1011


, (4.3)
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Table 4.5.: Diagonal elements of the stiffness matrix of the perforated tube

Present work

case a) b)

elements Shell Shell

configuration RUC Long tube

S11(106N) 223.2 224.4

S22(1012Nmm2) 1.113 1.111

S33(1012Nmm2) 1.100 1.109

S44(1012Nmm2) 0.5249 0.5109

exemplarily shows for the standard RUC with shell elements how the stiffness

matrix is composed of values in the N-mm unit system. Again, some of the off-

diagonal terms show a slight coupling of the principal stiffnesses.

A comparison of the RUC model and the long tube model is presented in

Tab. 4.5, showing the first four significant digits of the relevant stiffness constants.

The results for the tensile and bending load cases show good agreement with a

relative deviation among the model configurations of under one percent. A relative

deviation of under two percent for the torsional load case is rated as acceptable.

The good agreement of the RUC model and the long tube model suggests that

the presented method provides an adequate solution for a homogenisation ap-

proach.

4.3.3. Stress

The stress field is exemplarily examined for the torsional load case. Fig. 4.8 depicts

a contour plot of the in-plane shear stress as a key stress component for this load
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Figure 4.8.: Contour plot of the in-plane shear stress σθz due to torsional load: a)

RUC model and b) segment of the long tube model. Values in the

legend are in N/mm2.

case. Furthermore Fig. 4.8 shows how various paths are defined that serve as the

basis for the following curve charts. In order to examine the shear stress field

Fig. 4.9 shows a comparison of a periodic arrangement of unit cells (Fig. 4.9 a))

and a segment of the long tube model (Fig. 4.9 b)). The stress field of the RUC

shows good agreement to the one of the long tube model. However, a close look

at the boundaries of the RUC in Fig. 4.9 a) reveals that the averaged stress field

shows a slight discontinuity. This discontinuity can also be observed for the other

stress components as e.g. σzz (=σpp) in Fig. 4.10. Fig. 4.10 represents a curve plot

along the paths f+ and f− (see Fig. 4.8) and the corresponding path of the long

tube model. In particular the boundary regions close to the hole edges show a

difference for the stress extrapolated to the nodes when comparing the different
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Figure 4.9.: Shear stress σθz due to torsion for a) twofold depiction of the RUC b)

a depicted segment of the long tube model. The detail is depicted in

Fig. 4.11 for different mesh sizes.

paths.

This discontinuity of the averaged stress field is attributed to the missing aver-

aging link between the integration points at the corresponding boundaries which

is particularly influential in regions with a high stress gradient close to the bound-

ary. An alternate, non-standard post-processing could provide an averaging link

for the stress results at the integration points. In addition to that, the inade-

quately sharp element angles at the sharp hole edges cause poor results. In order

to demonstrate how these peculiarities of the displacement based FEM and its

standard post-processing cause this discontinuity, a model with a refined mesh is

simulated, which reduces the nominal distance between the integration points at

the corresponding boundaries and improves the mesh quality at the sharp edges.

This refined model (see Fig. 4.11 b)) yields better results in terms of quasi
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Figure 4.10.: Stress component σzz (σpp) along circumferential paths of the RUC

with a coarse mesh and the long tube model, see Fig. 4.8 for the

definition of the hole paths.

continuity between the corresponding boundaries and in comparison to the long

tube model. Fig. 4.11 depicts a comparison of the shear stress field for the coarse

mesh model and the model with refined mesh. The averaged stress field in this

detailed view of the boundary region between two neighbouring unit cells RUCi

and RUCi+1 (see Fig. 4.9) exhibits a significant improvement for the refined mesh

regarding its stress continuity at the boundaries. Additionally, Fig. 4.12 shows all

relevant stress components for the RUC model with refined mesh. The improved

agreement of the corresponding curves gives evidence of the described effects. How-

ever, in the boundary regions of the intersected hole edges, the curves of the stress

components still show a slight deviation for the different paths. This local devi-

ation is rated as acceptable and attributed to the described peculiarities of the

displacement based FEM and its standard post-processing, respectively.
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a) b)

RUCi+1

RUCi

Figure 4.11.: Consideration of local shear stress field continuity at corresponding

boundaries for a) a coarse mesh RUC arrangement and b) a fine mesh

RUC arrangement. The view detail is defined corresponding to the

dashed box in Fig. 4.9.

0 50 100 150
300

200

100

0

100

200

300

S
tr

e
ss

(M
P
a
)

σθθ

0 50 100 150

Distance along path (mm)

σzz

0 50 100 150

σθz

path f+ (fine)

path f− (fine)

path long tube

Figure 4.12.: Stress components σθθ, σzz, σθz along the first half of the paths de-

fined in Fig. 4.8 for the RUC model with refined mesh.
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A more detailed consideration of the stress field at the hole edges is obtained by

comparing the three different types of hole intersections in the RUC to each other

and to a hole of the long tube model. As the holes are arranged periodically along

the circumference of the tube, an identical stress field is expected for all holes (see

e.g. Fig. 4.9 b)). Since the unit cell intersects this periodic arrangement Fig. 4.8

shows three possible hole types A (eccentric intersection), B (no intersection) and

C (centric intersection). Fig. 4.13 shows nearly congruent plot curves for the von

Mises equivalent stress along the hole edges of the unit cell and the long tube model.

The von Mises equivalent stress at the hole edges corresponds approximately to the

circumferential stress component of the respective hole as the traction or the radial

stress component, respectively, is approximately zero at these inner hole edges.

The slightly lower peak stress in the case of the long tube model is attributed to

the difference in mesh size.
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Figure 4.13.: Von Mises equivalent stress along the hole edges of different types of

hole intersections in the RUC with refined mesh and one hole of the

long tube model. See Fig. 4.8 for the definition of the hole paths.
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This consideration of the local element size effects leads to the conclusion, that

in the case of high requirements on the accuracy of the stress field representation

the mesh quality on the boundaries of the RUC has to be taken into account,

especially when the boundaries exhibit complex contours and high stress gradients

are expected.

4.3.4. Plasticity

First, analogously to the previous sections, the structural response is examined by

considering the load displacement curve, see left plot in Fig. 4.14. The dashed line

represents the structural tensile tangent stiffness corresponding to the S11 entry

in the stiffness matrix S. In accordance with the values in Tab. 4.5 the tangent

stiffness curve exhibits a constant part at a value of approximately 224 ∗ 106N

for a load factor lower than LF = 0.6. A load factor of LF = 1.0 equals a

maximum difference in displacement of the corresponding faces, f+ and f−, of

∆bmaxp = 0.2mm. For a load factor higher than 0.6 the effect of the nonlinear

material behaviour is perceptible and the tangent structural stiffness drops to a

value of approximately 190 ∗ 106N for a load factor of LF = 1.0.

The right plot in Fig. 4.14 shows the curve of the recoverable strain energy

per unit length and the plastic dissipation energy per unit length. These energy

curves also manifest a representation of the effective properties and have to be

preserved over the scales, meaning that long model and RUC have to exhibit

the same energy values per unit length, cf. section 2.2. Corresponding to the

load displacement curve the influence of plasticity becomes apparent in case for a

displacement factor LF > 0.6 as the plastic dissipation energy exhibits nonzero

values and the recoverable strain energy curve exhibits an inflection point. The

good agreement of the curves resulting from the RUC model with the ones resulting

from the long tube model suggest that the presented RUC approach is suited to
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Figure 4.14.: Plots for the tensile displacement controlled loading with a elastic

ideal plastic material behaviour for the RUC and the long tube model.

Left: The reaction force at the control points and the resulting ten-

sile tangent stiffness S11. Right: Recoverable strain energy per unit

length and plastic dissipation energy per unit length. The load factor

represents a normalised measure defined as LF = ∆bip/∆bmaxp with

∆bip being the displacement for the increment i.

examine the degradation of the effective structural properties due to non-localising

nonlinearities such as plastic behaviour. However, care should be exercised as, in

general, these effective properties cannot be applied to e.g. a beam element model

in a homogenisation approach because an arbitrary load collective can no longer be

seen as a linear combination of the four Euler-Bernoulli-St-Venant load cases. More

precisely, non-localising nonlinearities can only be considered in a homogenisation

approach when they result in stress and strain states that change in a consistent

way for every point within a structure with an increase or decrease of the load

factor.
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4. Results and discussion

In a second step, the stress field is examined. Fig. 4.15 shows a contour plot of

the von Mises equivalent stress due to tensile loading comparing the unit cell with

PBC (Fig. 4.15 a)) and a depicted segment of the long tube model (Fig. 4.15 b)).

The von Mises equivalent stress field, which serves as reference for the yield stress

in case of the present J2 plasticity, shows good agreement for the long tube model

and the RUC model. Furthermore, Fig. 4.16 shows that the averaged stress field

exhibits continuity at the corresponding boundaries, f+ and f−. Again, the slight

deviations are interpreted as peculiarities of the displacement based FEM and its

standard post-processing, cf. section 4.3.3.

a) b)

u

v

p

θ

rz

Figure 4.15.: Contour plot of von Mises equivalent stress due to tensile loading

(LF = 1.0) with a linear-elastic ideal plastic material behaviour for

a) the RUC model and b) a depicted segment of the long tube model.

Values in the legend are in N/mm2.
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Figure 4.16.: Comparison of von Mises equivalent stress on corresponding bound-

aries due to tensile (LF = 1.0) loading of the coarse mesh unit cell

and elastic ideal plastic material behaviour.

4.4. Further Applications

One possible application is to conduct fast parametric studies by combining an

automated model generator with the automated PBC generator. This combination

creates a series of alternative uniaxial RUCs in order to examine the effects of one or

more parameters as e.g. the hole diameter in the case of the verification example

of the perforated tube. Hence, better knowledge about the effects of different

parameters or even an optimised structure is gained, without having to simulate

the whole structure. Another useful application is the determination of the effective

stiffness properties that are then applied to a large scale structure. Thus, a simple

beam element model with the effective properties gained from a RUC can serve as

a valid representation for complex frameworks that consist of multiple beam-like

structures exhibiting a periodic arrangement of substructures along their axes.
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In return, the results of this beam element model, i.e. the local difference in

nodal displacements between two beam element nodes corresponding to the control

points of the unit cell, can be reapplied to the unit cell in order examine small

scale effects as e.g. local stress concentrations that may lead the onset of damage.

A composite bike frame represents an example where the benefit of the described

procedure comes to light. The consideration of a detailed composite tube segment

as a RUC model yields accurate effective properties for the application to a beam

element model of the bike frame. Thus, the structural response of the whole frame

can be examined. In return, local effects as e.g. the onset of interlaminar damage

can be investigated at different critical locations of the frame by reapplying the

local deformation of the beam element model to the RUC. Another approach, for

which no knowledge of the critical location is needed, uses the linear superposition

of the basic unit cell responses as additional post-processing feature to determine

the local margin of safety for the whole frame.
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5. Summary

In light weight design, the simulation of uniaxial periodic structures represents an

important class of product development methods that are needed to gain a detailed

knowledge of complex structures under load. Making use of an internal periodic

arrangement of substructures leads to an efficient modelling approach. A unit cell

model of a single period is used to represent the large scale structure. The present

work deals with the necessary theoretical concepts involved in such a link between

the single period and the large scale structure for the uniaxial periodic case and how

these concepts can be implemented for the practical use. More precisely, periodic

boundary conditions (PBCs) are used to couple corresponding boundaries of the

single period in order to gain a unit cell behaviour that accurately represents the

large scale structure.

The first goal of this work is reached by deriving the theory for uniaxial periodic

boundary conditions and to extend this theory for shell elements and nontrivial

boundaries. Secondly, an automated generator of these periodic boundary con-

ditions is programmed which enables the processing of a wide range of uniaxial

repeating unit cells (RUCs). A graphical user interface is designed in order to fa-

cilitate the required input, which is needed to run the automated generator. The

theory as well as the automated generator are tested by means of three example

models of increasing complexity. The results are evaluated methodologically by

examining the nodal displacements as well as the stiffnesses and stress fields. Mul-

tiple reference solutions from related research, analytical solutions or related FEM

models are considered to verify the presented unit cell approach in combination
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with the automated generator.

The nodal displacement components at the corresponding boundaries of the

RUC subjected to PBC are compared for all verification examples. This compari-

son leads to the conclusion that geometric compatibility is given in the deformed

state, meaning that no gaps or overlaps occur between fictitiously neighbouring

unit cells.

The stiffness results represent the effective properties that are applied to a large

scale structure in a homogenisation approach. The effective properties gained from

the unit cell approach are consistent with those of the different reference solutions

and in particular with the stiffness results of the large scale model. This leads to the

conclusion that the presented periodic unit cell approach and its implementation

present a valid homogenisation concept.

Additionally, the stress fields of the unit cell models exhibit good quality regard-

ing the continuity at the corresponding boundaries as well as a good agreement

in magnitude and distribution compared to the stress fields of the large scale ref-

erence model. This is not only an additional mean of verification of the correct

representation by the unit cell but also shows how the presented method enables

a localisation approach that allows a highly resolved consideration of small scale

effects without having to simulate a highly detailed large scale model.

With respect to the computational expense, the run time of the FEM analysis

of e.g. the long perforated tube model was approximately ten times higher for the

linear elastic material and approximately 16 times higher for elastic ideal plastic

material, when compared to the respective RUC model. This emphasises the

importance of the presented method for models with a high number of unknowns

and/or nonlinear behaviour.

All in all, a reliable tool is developed facilitating the simulation of complex beam

like structures. A wide range of possible applications underlines the usefulness of
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the presented approach and its numerical implementation.

5.1. Outlook

Despite the fact that the present work extended the theory and implementation for

a wide a range of applications, the field still offers a number of unsolved problems or

related theoretical concepts that can be applied to the case of uniaxial periodicity.

With respect to the torsional load case further research is needed to implement a

periodic unit cell to represent correctly the case of warping torsion, where warping

deformation is constrained.

In some cases the requirement of conformal meshes on the corresponding bound-

aries cannot be fulfilled or non conformal meshes are beneficial in some way. In

order to circumvent this requirement, some concepts (see section 1.1.2) have been

developed for the case of spatial periodicity. Applying these concepts to the class

of uniaxial periodic problems would further extend the range of problems that can

be handled with an automated generator.

Another extension with respect to the choice of unit cells that can be handled

with the presented automated generator is finding a suitable algorithm for the

processing of boundary contours with undercuts and edges parallel to the direction

of periodicity.

Regarding the performance of the algorithm determining the nodes on the cor-

responding boundary faces, further optimisation or an alternative approach is re-

quired to establish a more efficient method for models with a high number of

unknowns.

To sum up, a wide range of uniaxial periodic problems can be handled with

the presented approach, although a number of possible problem types still require

further research.
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A. Manual - Uniaxial PBC Generator

Figure A.1.: Input of data via RSG dialog for PBC generation

Prerequisites

The automated generator can be operated as a python script (File -> Run Script)

or via the Graphical User Interface ( Plug-Ins -> UNIAXIAL PBC). Both ap-

69



A. Manual - Uniaxial PBC Generator

proaches require the same model prerequisites:

• The mesh needs to be defined in the part domain.

• The mesh needs to be conformal on the corresponding boundaries, i.e. the

nodes on one face are in fact a projection of the nodes of the other face along

the axis of periodicity.

• The respective material properties have to be defined and assigned to the

mesh of shell elements or volume elements, respectively.

• The use of higher order elements, i.e. elements with a nonlinear trial function

should work without any further adaptions. However, this has yet to be

verified at an example.

• The model has to represent a valid uniaxial periodic unit cell. Geometric

compatibility with fictitiously neighbouring unit cells has to be given for the

undeformed state.

• The boundary contour must not exhibit edges or faces that are parallel to

the direction of periodicity.

• Undercut contours can only be processed when occurring due to the inter-

section of a void resulting from the unit cell definition.

• An instance for the part has to be created.

Step by Step Guide

If the abovementioned requirements are fulfilled the following steps lead to the

automated generation of the PBC and the ten load cases needed for the determi-

nation of the stiffness matrix S (at the example of graphical user interface plug

in):
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• Fill out the names for part, model and instance. (It is recommended to copy

the respective name from the Rename context menu. When considering

multiple models it is recommended to already name according to the default

names.)

• Choose the element type modelling the corresponding boundaries. (It is

possible to use a mixed element model. On the boundaries, however, it is

necessary to use either shell or volume elements) For the shell element model

only the standard shell element with 6 DOF per node is admissible for the

generator.

• The displacement of the Control Points can be altered if desired. The value

represents the absolute displacement of one control point leading to the dif-

ference in displacement of twice the value that is entered here. In other

words, the displacement on the f+ face corresponds to the negative displace-

ment on f−. The rotational displacement is given in radiants and should not

exceed 0.05 for the small angle approximation to be valid which is the basis

for the PBC.

• The Control Points are defined for both of the corresponding faces by giving

the x,y,z coordinates. The vector connecting the control points defines the

axis of periodicity. The distance of the control points has to coincide with

the distance of the parallel faces of corresponding boundary faces.

• The u-axis is defined by giving its direction vector in x,y,z coordinates.

• The definition of the control points in combination with definition of the

u-axis defines the reference coordinate system u,v,p of the unit cell which

serves as the basis for the 4 basic load cases that eventually lead to effective

properties according to these load cases. Hence, care should be exercised
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when defining these parameters, as they are of particular importance for the

correct behaviour of the unit cell.

• In a last step the decimal rounding precision can be altered from the default

value of 6. This is only recommended when a first run of the generator

showed that no boundary conditions have been generated or single node

pairs have been omitted from the generation. This might be the case for

models where the meshes on the boundaries are not conformal up to the

defined rounding precision. Then the rounding precision needs to be lowered

so that the algorithm is able to detect the conformal node pairs.

• Press Ok for the automated generator to start running. However, before

the actual algorithm starts running an input check is performed. This input

check examines whether values are missing or the input is inconclusive and

provides an error message containing information on how to correct the error.

• The automated generator has now generated the periodic boundary con-

ditions as well as all steps and the corresponding displacement controlled

boundary conditions at the control points.

• For a correct representation of the displacement results all rigid body modes

must be constrained by subjecting one or more mesh nodes to boundary

conditions. Nodes that are part of the corresponding boundaries and thus

coupled with an equation cannot be used for this rigid body movement con-

straint. Furthermore, these boundary conditions have to be chosen in way

that no unphysical constraints occur, meaning that the results show no or

negligible reaction forces at the respective nodes.

• According to a standard abaqus analysis, a job needs to be defined and

submitted for analysis.
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• If a determination of the effective properties is desired the script poststiff.py

can to be run, see following section.

Postprocessing Script - Stiffness Matrix

The python script poststiff.py allows an automated post processing. This script

basically reads out the strain energy at the end of every step and calculates the

entries of the stiffness matrix according to section 2.2. The following model con-

figurations and input is required :

• model configuration: The history output for the variable Strain energy:

ALLSE for Whole Model has to be requested.

• model configuration: The load cases have to be defined in the following order

corresponding to the matrix entries as it is done when utilising the PBC

Generator:

– Initial

– Step-S11 - tension in p

– Step-S12 - tension in p coupled with bending about u

– Step-S13 - tension in p coupled with bending about v

– Step-S14 - tension in p coupled with torsion about p

– Step-S22 - bending about u

– Step-S23 - bending about u coupled with bending about v

– Step-S24 - bending about u coupled with torsion about p

– Step-S33 - bending about v

– Step-S34 - bending about u coupled with torsion about p

– Step-S44 - torsion about p
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• input: The path of the output database (.odb file) needs to be defined

• input: The length of the unit cell needs to be defined

• input: The displacements of bp, φi of the unit cell sides need to be defined,

when altered from the default values from the PBC Generator.

The stiffness matrix is calculated according to the unit system defined in the

model (e.g. (N-mm) or (N-m)) and is written to the message area of Abaqus-CAE.
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