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Abstract

Deformation Monitoring is a common practice used by engineers to monitor and track
the development of civil engineering objects by means of geodetic measurements in order
to prevent hazardous behaviour that can happen during their construction. Measured
objects are most commonly residential buildings, dams, bridges, tunnels, but also areas
that are affected by earthquakes and landslide movements. In all cases, the geodetic
engineers are applying different methodologies that have been developed several decades
ago, e.g. Finite Element Method (FEM). With the emergence of information technology,
the usage of such methodologies has become more accurate and easier to implement.

The work in this thesis will try to further investigate the applications of computer
science and artificial intelligence in engineering geodesy, where the objects of interest
will be residential buildings. The thesis consists of two major parts. In the first part,
various tools and methods for videometric analysis will be implemented and tested using
a benchmark of images taken from the Vienna and Zürich public domain, which contain
snapshots of facades of buildings. The images will be used to create a series of simulated
images using a warping tool to represent possible deformations. The image processing
techniques described in this thesis will be used to isolate the Regions of Interest (ROI),
which are small enclosed areas with homogenous deformations using a proposed object
segmentation algorithm. The outlier points which are left after the matching process
between different epochs of the observed deformation will be identified using a variation
of the Randomized Sample Consensus Algorithm (RANSAC) algorithm that does not use
a fundamental matrix. Finally, the observed points will then be processed by a simple
rule-based expert system, and classified either as a potentially hazardous deformation, or
a normal (stagnant) deformation (by comparing the translation, and or rotation vectors
along the x, y, and z axes).

The second part is concerned with forecasting future behavior of deformations using
Artificial Neural Networks (ANN). Two different architectures are used, the Finite Impulse
Response (FIR) ANN which are well known in the field of time series prediction, and
the recurrent version of this ANN, the Recurrent FIR (RFIR). The data set that will be
used to train the networks has been gathered from a tunneling project Prokop by civil
engineering company Energoprojekt in Belgrade, which has had an impact on several
buildings in the vicinity of the construction site. The deformation analysis has been
performed using the Modified Karlsruhe Method (MKM), where the main points of focus
were around the abutment diaphragms around the tunnel, but also dozens of points per
residential building. Furthermore, the statistical analysis of the measurements using the
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MKM will identify the points which do not deviate from the allowed lack-of-fit, as well as
points which were destroyed during the construction. The neural networks will be trained
using the data provided from ’Prokop’ to predict future values of horizontal and vertical
coordinates. The points which will be forecasted are all found in residential buildings,
which have been measured from various stations at the construction site. The results
show that both the FIR and RFIR networks can be used as a viable tool for predicting
deformation measurements.



Kurzfassung

Deformation Monitoring ist eine gewöhnliche Praxis von Ingenieuren, um die Entwicklung
von Tiefbau-Objekten durch geodätische Messungen zu überwachen und verfolgen. Damit
soll verhindert werden, dass während der Errichtung ein gefährliches Verhalten auftreten
kann. Die gemessenen Objekte sind am häufigsten Wohngebäude, Dämme, Brücken,
Tunnel, aber auch Bereiche, die durch Erdbeben und Erdrutschbewegungen betroffen
sind. In allen Fällen wenden die Geodäten unterschiedliche Methodologien an, die vor
einigen Jahrzehnten entwickelt worden sind, zum Beispiel die Finite-Elemente-Methode
(FEM). Mit dem Einzug der Informationstechnologie wurde die Verwendung von solchen
Methodologien genauer und einfacher zu implementieren.

Die Arbeit in dieser Dissertation wird versuchen, die Anwendungen der Computer-
wissenschaft und Methoden der künstlichen Intelligenz in der Ingenieurgeodäsie weiter
zu beleuchten, wobei im Fokus des Interesses Wohngebäude stehen. Die Dissertation
besteht aus zwei Hauptteilen. In ersten Teil werden unterschiedliche videometrische
Analysentechniken unter Verwendung einer Benchmarkserie von Bildern implementiert
und getestet, die aus den Wien- und Zürich-Datenbanken stammen, welche Moment-
aufnahmen von Gebäudefassaden im öffentlichen Bereich enthalten. Die Bilder werden
auch verwendet, um mit einem speziellen Tool eine Serie von Bildern mit künstlichen
Deformationen zu erzeugen. Die Techniken zur Bildverarbeitung, die in dieser Dissertation
beschrieben werden, dienen dazu, sogenannte Regionen von Interesse (regions of interest,
ROI), die kleine geschlossene Räume mit homogenen Deformationen sind, mit einem
vorgeschlagenen Objekt-Segmentierungsalgorithmus zu isolieren. Die Ausreisserpunkte,
die nach dem Anpassungsprozess zwischen unterschiedlichen Epochen der beobachteten
Deformation gelassen werden, werden durch eine Variante des Randomisierten Probe
Consensus-Algorithmus (RANSAC) identifiziert, die im Gegensatz zum traditionellen
Algorithmus keine fundamentale Matrix nutzt. Schlussendlich werden dann die beob-
achteten Punkte mithilfe eines einfachen regelbasierten Expertensystems verarbeitet
und sodann entweder als eine möglich gefährliche Deformation oder als eine normale
(stehende) Deformation (durch Vergleich der Übersetzung, und/oder der Drehvektoren
entlang der X-, Y- und Z-Achse) klassifiziert.

Der zweite Teil der Dissertation beschäftigt sich mit der Vorhersage des zukünftigen
Verhaltens der Deformationen durch künstliche neuronale Netze (artificial neural net-
works, ANN). Zwei unterschiedliche Architekturen werden dabei genutzt: das Endliche
Impulsantwort (FIR) ANN, das im Bereich von Zeitreihenvorhersagen sehr bekannt ist,
und dessen rekurrente Version, das Endliche Impulsantwort (RFIR) ANN. Um konkrete
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Netze zu trainieren, wird ein Datenbestand verwendet, der im Rahmen des Tunnel-
Projekts “Prokop“ durch das Tiefbauunternehmen Energoprojekt in Belgrad gesammelt
worden ist; dieses Projekt hat eine Auswirkung auf einige Gebäude in der Umgebung
der Ausgrabungsstätte gehabt. Die Deformationsanalyse wird durch die Modifizierte
Karlsruher Methode (MKM) ausgeführt, wobei die Hauptpunkte entlang der Angren-
zungsdiaphragmen um den Tunnel, aber auch Dutzende von Punkten pro Wohngebäude
vorlagen. Weiters wird die statistische Analyse der Messungen durch die MKM Punkte
identifizieren, die von der erlaubten Toleranz nicht abweichen, genauso wie Punkte, die
während des Baues zerstört wurden. Die neuronalen Netze werden unter Verwendung der
Prokop-Daten trainiert, um die zukünftigen Werte der horizontalen und der vertikalen
Koordinaten vorherzusagen. Die Prognosepunkte sind alle in den Wohngebäuden, die
von verschiedenen Stationen auf der Baustelle aus vermessen worden sind. Die Resultate
zeigen, dass sowohl das FIR als auch das RFIR als Tool zur Vorhersage von Deformationen
brauchbar ist.
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CHAPTER 1
Introduction

A great deal of effort has been put into eliciting knowledge and reasoning strategies from
structural engineering experts for the purpose of developing a computer model of their
expertise in order to assist engineers in their decision-making processes. Historically this
has been done by the means of artificial targets, where the entire work has been done
manually. But with the emergence of information technology, engineers were able to
implement the processes they have been mapping throughout the years. In the process
of residential building construction, different degrees of deformation will be present.
Deformation within limits is normal, but if it exceeds the prescribed limit may cause
deformation disasters.

In this dissertation, a technique used to monitor structural movements present in
residential buildings and to forecast the behaviour of the deformations is described. There
are currently several deformation monitoring systems [63] [11] [6], but very few deal with
monitoring deformations in residential buildings, and even few try to apply artificial
intelligence methods to improve the results. Most common structures that are of interest
to the engineers and that are being measured by geodesists for the purpose of deformation
monitoring include power plants, bridges, and residential buildings.

Residential buildings are always undergoing a deformation, either due to traffic, rise
in temperature, or high precipitation for example, but these are negligable. The most
common reason for deformation present in residential buildings is induced by applied
force from tunelling [16]. Tunelling in cities is either done because of the construction
of an underground subway station, parking lots, or even by installing basements. The
deformation that will be assessed in this thesis will be based on the data gathered from
a tunelling project in Belgrade which resulted in the construction of a subway station
’Prokop’. These types of deformations are known in advance that they will occur, which
is why geodetic engineers are being hired to monitor the deformation, and make sure
that no hazard occurs to the surrounding environment, especially to the tenants in the
buildings. The deformation movements should not exceed several mm in order to avoid
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any lawsuits. On the other hand, deformations present in high rise buildings can exceed
several cm [57], mainly due to the different materials that are used to construct them.

The method will attempt to utilise image processing techniques, knowledge based
systems, and Artificial Neural Networks (ANN) to the problem of deformation monitoring.
Residential buildings in this sense are regarded as objects that are moving through time,
and even though the movements that are being tracked are not noticeable by the human
eye, but are by the usage of sensors, lasers, and cameras [55]. In order to track objects
through time, specific points called interest operators must be chosen whose position is
well defined in image space and preserved over time. The interest operators [29] [25] are
points in the image taken by the camera, and are due to their nature typically around
corners of windows, which make them useful for allocating the coordinates of windows
present in facades. The glazing percentage, or the ratio of windows to the overall facade
is of particular use in urban energy modelling [38].

Another deformation that will be observed in this thesis will be simulated, and tracked
in time by an algorithm that will take as input a set of images, and output the ’structural’
movement for the purpose of tracking, and monitoring, and no attempt will be made to
predict future movements. The work here will entail trying to estimate the coordinates
of windows based on the interest operators, followed by elimination of all outliers found
in different epochs, and using a knowledge base to form regions of interest (ROI) based
on the remaining points.

The forecasting of deformation movements will be accomplished by the usage of Finite
Impulse Response (FIR) ANN, which uses temporal backpropagation as the training
algorithm. The data used to train them will be based on real actual scenario, gathered
from a tunelling project.

1.1 Motivation and Problem
In an interdisciplinary research project entitled: ’Multi-Sensor Deformation Measurement
System Supported by Knowledge-Based and Cognitive Vision Techniques’, a new kind
of image-based measuring framework was developed that combines the usage of Image-
Assisted Total Stations (IATS) and Terrestrial Laser Scanning Techniques (TLS) [56].
The system comprises of several sub-systems, covering the fields of image processing,
deformation analysis/interpretation, and measurement of points in 3D. The techniques
employed by the system are all covered by artificial intelligence, and the main purpose of
the project was to see to what extent they can improve the results.

The work presented in this thesis further tries to investigate what other kind of
methods in this area can help solve the problem of deformation monitoring, in particular
videometric analysis of information gathered from a series of images of facades in order
to track the structural behaviour of the observed object, and forecasting future values of
deformation measurements using artificial neural networks trained to predict future values
of time series. Traditionally the geodetic measurements are monitored and predicted
using the FEM which entails creating a model of the deformation, and having expert
knowledge in structural engineering. Thus, it would be interesting to see whether the
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ANN approach, which requires very little knowledge in the expert area, can be used as a
forecasting tool for the problem of deformation monitoring.

In the research project, the system was never tested on a real life scenario, due to the
lack of data. It is particularly difficult to gather videometric data of deformations, as
well as any historical data. In this thesis, the historical data from ’Prokop’ has been used
to train ANN to predict future measurement values, which was monitored by geodetic
engineers using the Modified Karlsruhe Method (MKM).

1.2 State of the Art
GOCA software is well known and used in the field of deformation monitoring. The
software package includes different mathematical models used in deformation analysis. It
is being used extensively, among others by the Austrian company Vermessung Angst for
deformation monitoring of historical buildings, Vienna and worldwide. Users are able
to access live data online at any point, and their systems also alarm the user when a
potentially hazardous movement is occurring. Forecasting of future values of horizontal
and vertical movements is achieved with Kalman Filtering. Measurements are performed
using the theodolites from Leica systems, which are also deployed by the company
Energoprojekt. The GOCA system consists of GPS sensors and communication units
set up in the monitoring area as well as software for communication and deformation
analysis. [33]

Global Positioning Systems (GPS) is currently the only functional Global Satellite
Navigation System (GSNS). GPS consists of 24 satellites orbiting around Earth, that
are sending radio signals on Earth’s surface. The GPS receivers based on these signals
can determine their correct location (ellipsoid height, geodetic width and height) at any
given time or place, under any weather conditions. GPS satellites cover the entire Earth,
and measuring the distance between satellites it is possible to determine the position of
any point on Earth with an accuracy of 10m.

There are many other deformation monitoring systems, but most are used for assessing
the conditions of hydro plants, mines, or bridges. Other fields of interest include
monitoring landslide movements [6] and effects of earthquakes. Landslide movements may
cause considerable damage on the engineering constructions such as buildings, roads, or
dams. The buildings affected by landslides are mostly located in rural areas however, and
not in the city. In this paper, a knowledge base for the causes of landslides is described,
where influence factors are identified together with the consequences which they have on
the surrounding environment. The influencing factors in landslide movements include
vegetation, granual material, soil saturation, leaning trees are then further being analyzed
and assessed as risk factors by interviewing experts in the field. The resulting knowledge
base is a questionnaire which users can query for potential hazardous landslide movements,
and falls into the category of deformation interpretation, as no actual measurement is
being done on the site. Also, the knowledge base cannot be applied to residential buildings
because the risk factors are different, as well as the surrounding environment.
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Additional works include monitoring of tunelling works, which is the most common
(and hazardous) cause for deformations present in buildings [16]. The monitoring is
done by assessing numerical values of Certainty Factors, allowing representation of and
reasoning from the uncertain expert knowledge or domain. Automated monitoring of
tunelling works has been applied in real practice on projects in Budapest, Thesalloniki,
and Athens [17]. The paper focuses on the use of IT infrastructure to accurately and
efficiently measure the deformations, as well as to alarm the user when a potentially
hazardous event can occur. This entails installing thousands of geological sensors in
the project area, including borehole inclinometers, extensometers, and tilt meters. The
advancement of the tunnel, building data, geological and hydrogeological data are being
imported into the database in a controlled manner. The system itself serves as an
automated reporting device for engineers, which are also required to acknolwedge that
they have received the data, and that the measurements are correct, i.e. that the
measurements errors are close to minimum.

The Hough transform [18] is used to identify rectangular shaped objects found in
image, but it has not been applied to the problem of identifying coordinates of windows
in images. Ali et al [5] devises a machine learning approach that utilizes Haar feature
model in conjunction with a Gentle Adaboost driven cascaded decision tree by using the
set of images from Vienna [2] and Zürich [1] domain to output respective coordinates of
windows located within the picture. Cech et al [14] use a segmentation technique that
offers a structure model similar to the traditional Markov Random Fields.

Artificial Neural Networks are being accepted as an alternative method in forecasting,
because of their advantage in the ability of approximating any linear on non-linear
function. In [26], a comparative analysis between a Generalized Regression Neural
Network (GRNN), Radial Basis Function (RBF) and Backpropagation Network (BP) is
given, for the purpose of predicting different degrees of deformation present in high-rise
buildings. Other advantage is that ANNs are a completely data driven method with few
assumptions about underlying methods, and instead have the capability to identify the
underlying functional relationship among the data. Neural networks simulate a highly
interconnected parallel compuational structure with simple individual units that modify
the signals that pass through the network.

The GRNN is based on non-linear regression theory, and consists of four layers: input
layer, pattern layer, summation layer and the output layer. Let X denote the input
vector, Y the output, P the transfer function of the pattern layer, namely:

P = exp[−(X −Xi)T (X −Xi)
2σ2 ], i = 1, .., n (1.1)

Where σ is the smoothing parameter. The summation neurons include two kinds of
neurons which can be expressed as SD = ∑n

i=1 Pi and SN = ∑
i=1 nyijPi, the expected

input Ŷ = SN
SD

. Both the number of neurons of hidden layer and output layer are identical
with the number of the input sample vectors. When the neurons of hidden layer are
enough, the network can approach a smooth function by optional precision. The GRNN
had significantly outperformed the BP and RBF function in the problem of prediction
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deformation values, because of their simple network structure, faster learning speed and
function approximation capability. The disadvantage of the other methods are their
complex structure, and the necessity to experience trial methods.

In [21], another model of a GRNN network is used to predict the mine slope surface
deformations by considering various meteorological factors. The network outperformed
BP, and Multiple Layer Regression (MLR) models.

1.3 Contributions
There are several primary contributions in this thesis:

• Histogram Mean Filtering (HMF) - is an image processing algorithm which
takes images with facades in them as input, and outputs coordinates of windows, i.e.
a bounding box. The main advantage of this algorithm is that it uses lightweight
methodology and requires little constraints for optimal performance. Additionally,
while [5] and [14] both provide good results, the same can be achieved with HMF
which has faster completion time.

• Method for outlier elimination - After the interest points have been identified
by the object segmentation algorithm, the points identified need to be checked for
consistency and all outliers need to be removed. A variation of the RANSAC [44]
and the SIFT [64] algorithm is described, which does not use a fundamental matrix
to find the outliers. The method fully exploits the information gathered from
random sampling to eliminate the outliers.

• Algorithm for merging an ensemble of points A simplistic algorithm used to
merge the interest points into Regions of Interest (ROI) after the consistency checks
have been applied, and outliers had been removed is described and implemented.
The ROIs can be used by a Knowledge Based System to give further analysis of
the deformation measurement process.

• Application of FIR Neural Networks to the monitoring problem FIR
Neural networks are well known for their application in time series prediction.
Artificial Neural Networks are successfully used by the geodetic engineers to min-
imize measurement errors [62]. Deformation monitoring is a field in engineering
geodesy which is almost exclusively done using the Finite Element Method (FEM),
or its variations. The FEM method requires the engineers to track the object that
is being monitored from the start of its life-cycle, whereas the Artificial Neural
Networks take a series of measurements, or epochs and simply output the forecasted
or predicted values.

The videometric analysis of the deformations in this thesis represents a novel way
of tracking and interpeting the behaviour of the deformations, and the ANNs deployed
show that the artificial intelligence techniques can be used as a viable tool for forecasting
deformation measurements.
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1.4 Thesis Outline
In this chapter, the problem of deformation monitoring is briefly described.

Figure 1.1: Example of Thresholded Image (left) and Final Segmentation (right)

Chapter 2 Different image processing techniques are described, and focus is given to
the Histogram Mean Filtering, an algorithm specifically developed for the purpose of
identifying coordinates of windows in facades, bounding them in a box. Interest operators,
such as Harris and Foerstner are used to first identify the corners of windows, and the
algorithm is then applied to fit the bounding box around the window. These coordinates
are of special interest to geodetic engineers when they are performing measurement
analysis of points in residential buildings, because the points are very robust and easy to
measure. An example of the image containing a facade, being processed by the HMF
algorithm can be found in Figure 1.1.

Chapter 3 Objects of interest (in this case windows in facade pictures) are observed
over time, and the identified points by the algorithm described in Chapter 2 may become
misaligned. A variation of the RANdomized SAmple Concensus (RANSAC) algorithm
is used to identify these outliers, and perform consistency checks to ensure that only
the interest points are being monitored throughout this process. The advantage of this
algorithm is that it does not use the fundamental matrix like the RANSAC algorithm,
and just like the HMF Algorithm uses lightweight methodology. The method works by
comparing vectors within a group, calculating their median and comparing each vector
within the selected group.

Chapter 4 After the outliers have been identified, and only the interest points remain
throughout the process of monitoring, the next step is to merge the points into Regions
of Interest (ROI). A specific algorithm for this problem is described, which takes the
(x, y) coordinates of the points of interest, together with the direction of the movement
and find the local movement of the cluster of points. The merging algorithm can be
used to forward this information to a knowledge based system which identifies potential
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hazardous movements. Due to the lack of real raw data, artificial examples had been
used to conduct the experiments.

Chapter 5 This part of the thesis deals with the structural engineering aspect of
deformation monitoring. Every residential building, or structural engineering object for
that matter is always under influence of some sort of deformation. There are numerous
factors which influence a building to deform, starting from sudden changes in temperature,
the mechanics of soil underneath the building, vibrations from the traffic, or tunneling
works. The most known reasons for deformation are described, together with the
enforcement methods are described which can be used to implement a knowledge based
system for deformation interpretation.

Figure 1.2: Snippet of the Geodetic Control Network, residential buildings included

Chapter 6 The only real data which has been available for study has been gathered
from an engineering project which involved tunneling works in Belgrade, and had lasted
for several years. A special purpose geodetic network, a variation of the Karlsruhe Method
is described in this chapter, together with the measurement findings of the project. A
Geodetic Control Network (preview of the network with points from residential buildings
can be seen in Figure 1.2) has been reconstructed, and the measurements had been
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exported into a database which served as training data for the artificial neural networks
used in this thesis.

Chapter 7 Different methods used for the problem of time series prediction are being
described in this chapter, together with the artificial neural networks. The data gathered
from the Prokop project has been used to train a FIR ANN. The network is then used
to predict future horizontal and vertical movements. An example of a predicted value
of a point in residential building can be seen in Figure 1.3. Horizontal and vertical
measurements of the points found in residential buildings can be found in Section 7.12.3,
the predictions done by the FIR network can be found in 7.12.4.

Chapter 8 summarises the results achieved in this thesis.

Figure 1.3: Predicted (x,y) values of point 112a, red actual/blue predicted

Appendices A full image of the geodetic control network can be found in Appendix
A.1.

1.5 Programming Languages Used
The image processing techniques described in Chapter 2 have been implemented using
MATLAB, and can be found in Appendix B. The algorithm for merging interest points
into Regions of Interest has been written in CLIPS and can be found in Appendix C.
Finally the FIR and RFIR has been implemented using the C++ programming language,
and the source code can be found in Appendix E.
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1.6 Published Work
The majority of the work presented in this thesis has been previously published in
various journals, and proceedings. The idea and concepts behind the thesis have been
researched as part of a FWF project, and findings were published in Journal of Applied
Geodesy [56] [55]. Computer vision and image processing techniques together with the
ANNs described in the thesis have been published in the Indian Journal of Computer
Science and Engineering [48] [49].
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CHAPTER 2
Object Segmentation

The windows of a building are considered as objects of great interest, since they provide
information on the texture of the building to the user. In this work, focus will be given on
the facades of buildings. The goal is a method which gives us accurate window coordinates
in the image of a facade. We develop such a method which uses an engineering approach
rather than a machine learning approach. The argument is that such a method is more
reliable and efficient than the machine learning approach. Furthermore, the method we
develop may also provide the user with a more general description of objects which can
be found in the image.

Motivation Detection of windows in facades and buildings can be of great use in
monitoring deformations and rigid body movements. Traditionally, the deformations
have been monitored by measuring reflectors attached to the buildings. However, novel
measurement setups avoid such reflectors (e.g., for esthetical reasons), and measurement
has to be done on image-based data alone, as possible with modern video-theodolite.
As for deformation monitoring, the coordinates of windows in a time series of images
are identified as reference points for assessing whether, and which, deformations are
happening. Currently, the engineer has to determine the window coordinates at each
epoch manually. The idea is an automated detection using interest operators (IOPs),
most notably Harris [29], and Förstner [25], which single out points with special properties
from the image. In order to effectively apply this approach, one needs an implemented
method for automatic detection of windows from an image respectively a series of images.

Problem Description We consider the basic problem where the method is given a
single image of a facade. The outcome of the method should be the (exact) coordinates of
windows found in the image. The windows in the image are not necessarily rectangular,
but also might have other shapes due to the perspective or different shape of windows.
The method should be robust with respect to different lightning conditions, and also
with respect to shadows as met in practice.
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Figure 2.1: Examples of images containing windows

Figure 2.2: Examples of Förstner and Harris interest operators

Current Methods In a paper by Haider et al [5], an algorithm for window detection
is presented. The algorithm uses machine learning techniques, to find the coordinates of
the window. Other than this method, algorithms have been designed which try to capture
rectangular-shaped objects in an image, using the Hough Transform [18]. Although this
method is very effective, it is not suitable for window detection, since it captures all
objects in an image which resemble to rectangles. Applied to the image of a facade,
far too many objects will be classified as windows. The method can be used to find
other objects of interest in the image besides windows (like balconies, bars, etc). Still,
an algorithm which can filter windows from other objects is needed, and which is also
applicable under the conditions mentioned above.

Contribution Our main contribution is a method which takes, as input, an image of
a facade, and provides, as output, for each of the windows in the image a bounding box.
The method combines several image preprocessing algorithms, but also employs two new
algorithms, which have been specifically developed. The first performs thresholding of
a facade image, and the second segmentation of objects in a facade image and window
separation from other objects. Furthermore, we present two numeric measures for the
quality of windows detection, which are motivated by the application, and evaluate an
implementation of our method against these measures.
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2.1 Preliminaries
The images which we use here are gathered from the Vienna [2] and Zürich [1] public
domain databases, which are available on the web and provide us with a very diverse set
of images for testing. The pictures in the database give a clear view of the facade, but
not of the building.

2.1.1 Assumptions

One of the assumptions is that the picture should not be taken at a small angle (less than
30◦). Another important aspect is that the user should use a high quality instrument,
such as a video-theodolite, in order to deal with the problems encountered with depth
of focus, saturation, motion blur, and lens distortion. Images which are not taken in
this manner do not provide the user with good information. However, these assumption
apply in practice, even with the traditional methods, and thus are no limitation.

2.1.2 Problem Constraints

The main constraint which is set in this paper is that facades should be clearly visible, and
not covered with excessive objects. In particular, the images do not contain additional
objects, such as cars or trees (which are also hindering manual measurement). The
performance of our method depends on the quality of the image. If additional objects
are present, manual (as currently done) or (semi-)automated segmentation has to be
done. On the other hand, shadows do not cause problems, because of the thresholding
algorithm incorporated in our method.

2.2 Method
This section describes our method, and the image processing techniques which are used by
it. The method works in four steps. In the first step, the facade in the image is classified
into one of several types. After that, appropriate image preprocessing algorithms, are
applied. In the third step, thresholding techniques are applied, and in the fourth and
final step the image is segmented using Histogram Median Filtering (HMF).

2.2.1 Classification

In image processing, it is quite common to use simple statistical descriptions of images
and subimages. The notion of a statistics is connected to the concept of probability
distribution, generally the distribution of signal amplitudes. For a given region which
could conceivably be a window, the probability distribution function of the brightness in
that image is defined.

The algorithms need to have prior knowledge as to what kind of facade they are
segmenting. There are three different types of images in the database: classical, modern,
and ordinary. The probability distribution function of the brightness has been used to
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differentiate between three types of facades. This function behaves differently when
dealing with different types of facades (modern facades have a very low value, classical
have a high value due to the texture, and the rest are classified as ordinary facades).

2.2.2 Preprocessing

Before the image of a facade can be segmented, it needs to be preprocessed, so that the
noise can be discarded. The choice of preprocessing algorithms depends on the type of
facade. For example, normal buildings need very few preprocessing algorithms to be
applied, such as normalization and equalization, whereas classical buildings need contrast
stretching. The description of these algorithms can be found below. Modern buildings
require unsharp masking, because the windows are too bright.

Contrast Stretching Frequently an image is scanned in such a way that the resulting
brightness values do not make full use of the available dynamic range [52]. By stretching
the histogram over the available dynamic range we attempt to correct this situation. If
the image is intended to go from brightness 0 to brightness 2B − 1 then one generally
maps the 0 percent value to the value 0 and the maximum to the value 2B − 1. The
appropriate transformation is given by:

b[m,n] = (2B − 1)a[m,n]−min
max−min

(2.1)

This formula can be sensitive to outliers and a less sensitive and more general version
is given by:

b[m,n] =


0, a[m,n] ≤ plow
(2B − 1)a[m,n]−plow

phigh−plow
, plow < a[m,n] < phigh

(2B − 1), phigh ≤ a[m,n]
(2.2)

where plow and phigh are dynamic ranges of the percentages in which the contrast of
the picture is to be stretched, usually set to 10% and 90% respectively.

Unsharp Masking A well-known technique from photography to improve the visual
quality of an image is unsharp masking, i.e., to enhance the edges of the image. This
means isolating the edges of an image, amplifying them, and then adding them back into
the image. This leads immediately to the technique:

a′[m,n] = a[m,n]− (k ×∆2a[m,n]) (2.3)

where the term k is the amplifying term, and k > 0.
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Figure 2.3: Selection of a threshold

2.2.3 Thresholding

Once the image has been preprocessed, thresholding can begin. In order to separate
an object from the background, in this case, a window from the facade, an appropriate
threshold needs to be chosen. When this is done, bimodal distribution is exploited.
Distributions are broad, and may overlap. Possible problems include shadows because
they are dark and may be classified as an object. Figure 3 shows an example of how
the threshold should be chosen, it is located between the object and the background. In
order to get rid of the shadows, which are sometimes included as part of the object, the
histogram has to be smoothed.

The process of thresholding is the most important because the windows need to be
preserved, and excessive objects have to be removed. Several thresholding algorithms from
the literature have been tried (such as isodata, and background symmetry algorithms [52]),
but the results have not been robust. Therefore, we have developed a special algorithm
for thresholding, described below.

Local Adaptive Thresholding 4 (LAT-4) This algorithm has been specifically
designed for window detection. First, the horizontal and vertical histograms are calculated.
The 1D Convolution [52] is applied to smooth the histogram. After that, the image is
partitioned according to the position of local minima. These partitions are then used
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Figure 2.4: Image before and after applying LAT-4 (white lines in the first image represent
local minima)

as sub-images, which are later on divided into four parts. Therefore, four different
thresholds are used for each subimage, or in total 4×Nmin, where Nmin is the number
of minima. This algorithm has been chosen, as it gives also good results when the light
is not uniformly distributed in the image.

2.2.4 Segmentation

Once the image has been thresholded, the analysis of the histograms comes into place.
The main core of the method for window detection is Histogram Mean Filtering (HMF)
developed specifically for the detection of windows in facades.

2.2.5 Histogram Median Filtering

Windows in facades follow a particular pattern, and they have similar pixel values (due
to their similarity). After thresholding, the user is left with a black and white image
(0, 1) which holds the information on the objects present in the building. The next step
is to calculate horizontal and vertical histograms Hh and Hv, [55] respectively, given by

Hh =
W∑
i=1

It(h, i), h = 1, . . . ,H (2.4)

Hv =
H∑
i=1

It(i, v), v = 1, . . . ,W (2.5)

where W,H are the width and height of an image, respectively, and It is the thresholded
image. Windows are the most numerous objects to be found in the facade (depicted as
white pixels in It(x, y)) and are aligned in rows and columns i.e., they form a pattern.
The values of the two histograms will have high volume when processing an area with
windows in them. Therefore, after the calculation of the two histograms, the values which
are greater than the medians Mh and Mv will hold the position of the window along the
horizontal and vertical axes. After filtering the histogram values, the user is left with a
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series of numbers in the range of 1, . . . ,W and 1, . . . ,H which actually represent values
along the h and v axes that hold window coordinates.

2.2.6 Histograms at an Angle

The limitation of Histogram Median Filtering (HMF) is that it can only work when the
windows are aligned at a near 90◦ angle. To overcome this limitation, histograms are
taken at an angle α, and new histograms Hh(α) and Hv(α) are calculated respectively.
The new algorithm HMF(α) works exactly the same as HMF, except that it does not
know the exact value of α. The algorithm starts by trying with an angle 10◦, finishing at
100◦, with a step of 10◦. The results obtained in this way are suitable in many cases (see
results for a further discussion). The quality can be improved by iterating with a step of
1◦, which incurs high computation time, or by dynamic step adjustment, which decreases
the step if the matching gets close.

Figure 2.5 (right) shows lines that actually represent the histograms which were taken
at an angle. The algorithm [56] stores this information and finds the best fitting line
which will capture the window by comparing histogram values (the best one is minimal
in this case). The final segmentation can be seen in Figure 2.6 (right).

The idea behind angled histograms is that they will capture much more information
than the "regular", histograms, because they can capture more information in the
thresholded image. HMF works first by calculating regular histograms. If the results are
poor, then the histograms will be taken at an angle. The values are stored, and then
later on compared to see which one has captured most information.

2.3 Evaluation
In order to measure the quality of an algorithm for window detection numerically, different
criteria may be considered, depending on a particular application. Three natural criteria
for assessing the similarity between the captured window W and the target window T
(i.e., the manually determined ground truth) are structure (i.e., shape), the area extent,
and the location in the image. The desire is to have the captured window include the
real window, in particular when doing the segmentation of the image.

2.3.1 Structure Similarity

There are various ways to measure similarity between two structures [64], but there is
no precise methodology for determining similarity between two rectangles (windows).
Rectangles can be observed as polygons, but this is not the most reliable way. Only a
degree of similarity is possible to measure using existing methods, which are in fact only
classification algorithms as they can tell the user whether two structures are either very
similar or completely different.

A naive approach for measuring structure similarity would be to use the width/height
ratio of the target and real window. In order to measure a degree of similarity of two
windows, it is appropriate to use distances between corners. For the purposes of our
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Figure 2.5: Thresholded image (left) and histogram “candidates” for capturing the
window (right)

Figure 2.6: Original image (left) and final segmentation (right)

application, the similarity of shapes is measured by comparing the distances between the
coordinates of windows, i.e. their corners.

2.3.2 Area Extent

A natural measure for the similarity of the area extents of the captured and the target
window is the ratio between their common and total extents, i.e., the fraction of overlap.
We refer to this as Area Coverage (AC), which is formally given by

AC = 1
n
×

n∑
i=1

A(Ti) ∩A(Wi)
A(Ti) ∪A(Wi)

(2.6)

where n is the number of windows, and A(Wi) respectively A(Ti) is the area of the
captured window Wi respectively the target window Ti.

In particular if it holds that Ti ⊆Wi, i.e. the ground truth is always contained in the
captured window, for all i = 1, . . . , n (as it occurred in our experiments), then the above

18



expression simplifies to

AC = 1
n
×

n∑
i=1

A(Ti)
A(Wi)

(2.7)

which measure coverage. The quality of the result AC is actually the mean of the
ratios between the bounding box and the window size. It represents a good quality
measurement for the detection of windows, as it provides the user with information on
how well the windows have been bounded by the given coordinates from the output.
The goal is to have AC as close to 100% as possible. Indeed, when applying the Harris
[29] or Förstner [25] operator on the image to single out the window corners precisely,
the captured windows Wi (which are used to filter the results of the Harris or Förstner
operator), should cover only the target windows Ti. If AC is close to 100%, no other
objects will fit into the captured windows Wi.

2.3.3 Location in the image

For measuring the similarity of location between the captured and the target windows,
we use Center of Mass (CoM). For each captured window Wi and target window Ti, the
center of mass CoM(Wi) resp. CoM(Ti) is evaluated. Then, in order to assess how much
Wi resembles Ti, the vector from CoM(Ti) to CoM(Wi) is calculated to see in which
cardinal direction the captured window Wi is moving. This CoM vector is calculated
for all windows Wi and Ti in all images, in order to produce results that can provide
information on how well the location of the captured window fits with reality.

2.3.4 Distance between Corners

For measuring shape similarity, distance between corners (dc) is used, which is another
way to measure similarity between two structures. This measurement indicates how the
target and the real window are aligned, and it can cover structure similarity very well.
The desire is to minimise the distance. Formally, dc is calculated by averaging distances
between corners in one picture. This measurement methodology is used to determine by
what margin the real window fits into the captured. The results of dc should correlate
with the results of AC under the assumption that there is a bounding box present, and
can also be used as an alternative to area extent, by normalizing this value with the real
height and weight of the window. However, the same method does not correlate with the
center of mass, because the distances cannot provide the information on the alignment of
the center of masses of the real and target window. Nevertheless, this method represents
a good addition when doing the evaluation, as not only does it cover shape similarity,
but also area extent.

2.4 Results
We have tested an implementation of our method on a database containing 500 images
in total selected from the Vienna and Zürich public domain. The database is full of a
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Figure 2.7: Performance of the algorithm

diverse set of images, with classical, modern, and ordinary facades, taken from different
perspectives. The images used for the experiments had a resolution of 640× 480 pixels,
and the windows had an average of 50× 100 pixels.

On visual inspection, the method yields good results. In all cases it singles out reliably
bounding boxes for the windows in the images. These bounding boxes properly contain
the windows. When determining the coordinates of the bounding box, the desire is to
have a small margin of three pixels present, for the purposes of our application. The
small margin has to be present in order to properly calculate the Foerstner and Harris
operators.

Area Coverage (AC) The performance results of our algorithm with respect to area
coverage (AC) are displayed in Figure 2.7. As mentioned above, in total 500 images have
been used for testing, and the algorithm always returned true bounding boxes of the
target windows.

Out of the 500 images, the algorithm classified 127 images with an AC value for
target and captured windows of at least 90% (mean of 92.67%), 197 with a ratio between
80% and 90% (mean of 84.8%), and 138 images with a ratio between 70% and 80% (mean
77.4%). The remaining 78 images had a ratio between 60% and 70%.
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Center of Mass (CoM) The dislocation of the CoM had been evaluated with respect
to the window width. Out of 500 images, 107 images had the CoM displaced for 5% of
the window width, 218 images had the center of mass displaced for 10%, and 88 images
had the CoM displaced for 15%, and finally 87 images had a displacement of 20%.

The results have shown that the algorithm can find the exact coordinates of the
windows with high accuracy with respect to AC, dc and CoM . The algorithm will always
capture every window in an image. Furthermore, 31% of the images have been segmented
with very high accuracy AC > 90%, whereas the images with 70% < AC < 90% have
given very good segmentations of the facade.

With respect to subsequent detection of window corners by using Harris and Förstner
operators, an AC quality of less than 70% for an image in the example database did not
lead to good results. Even if the windows were captured, the corners of the bounding
boxes were too far away from the window corners since the bounding boxes were too big.
For the remaining images (87.85%), the result was good.

The experimental results for CoM have shown that in worst case scenarios, the center
of mass of the target window is moving upwards, or north. This occurs in particular in
facades of classic style. In such facades, other objects are found just above a window.
When the algorithm is trying to fit a box around the window, the extra objects intervene
in the calculation of the target coordinates. The results were less satisfactory in images
where the windows were at an angle.

Distance between Corners The results have shown that in 158 images, dc was
between 5 and 15 pixels, whereas in 257 images, the distance was between 15 and 25.
The remaining 85 images had the distance over 25 pixels. Furthermore, if one was to
measure shape similarity for each rectangular side, that is, to average distances between
each of the two corners, and to exclude the images with classical windows, the results
would improve greatly, as this distance would never be above 20 pixels. Thus, the results
have shown that there is high similarity between the captured and real window in most
pictures. For the purposes of our application, the extra distance between the corners of
actual and real window is negligable, as in a lot of cases, it is desired to have some extra
coverage of the real window, when calculating the Foerstner and Harris operators, in
order to get the maximum number of interest points. The results of this methodology
have shown that this extra coverage does not produce a lot of unnecessary points, and
that all interest points are covered.

2.4.1 Comparison Study

Haider et al [5] describes an algorithm for window detection which uses machine learning
techniques. The algorithm uses images from Vienna and ZuBud public domains. Eval-
uation is carried out using positive true and false based samples, in the frame of the
pattern based detector. Furthermore, the algorithm is evaluated using Single Window
(SW), and Window Region of Interest (WROI). For SW evaluation, positive true samples
are counted if one detection rectangle would be found inside a mask rectangle or at the
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maximum, would overlap it only by a few pixels in each direction. For WROI evaluation,
positive true samples are counted whenever the mask rectangle is covered by a certain
percentage. The algorithm has performed well using these testing methodologies, but it
is notable to say that our algorithm would yield 100 % on WROI and SW if applied, due
to the nature of our algorithm. However, the algorithm from Haider et al works better
when there are additional objects present in the picture. The Hough transform can be
used to detect rectangular shapes in an image, but these rectangles would have to be
filtered to locate the real coordinates of the window. This method can be used as an
addition to our algorithm, but the results would not improve significantly.

2.5 Single Point Detection
The feature points are detected at sub-pixel accuracy using a corner detector. Using
the detected object structure and the assigned ROIs, individual interest points (IPs)
need to be detected. For the task of highest precision point detection both sensor units
can be used (IATS and TLS). In the following we will focus our description on the
point detection by the means of IATS. The internal camera of the IATS captures images
covering the extracted ROIs (the internal camera is used instead of the WA-camera
due to the larger image scale and in consequence the higher accuracy of image point
detection). The internal camera of the IATS captures images covering the extracted
ROIs (the internal camera is used instead of the WA-camera due to the larger image scale
and in consequence the higher accuracy of image point detection). As a first step image
pre-processing can be performed to transfer the image into a form which is better suited
for the subsequent automated image point detection. On such processed images, single
interest points (IPs) can be detected by interest operators (IOPs). Among the large set
of available IOPs (e.g. Forstner 1987, Harris 1988, Moravec 1997) none is suitable for all
IP types.

2.6 Correspondence Analysis
The points can be matched from one image to the next by choosing matches which have
the highest cross-correlation of image intensity for regions surrounding the points. This is
currently supported by a robust matching technique, we are using the HFVM algorithms.
Matching the points in image space and transforming them into object space enables the
measurement of corresponding points in different epochs.
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CHAPTER 3
Outlier Elimination

Due to misalignments or moving object in the scene, some of the correspondences may
be incorrect. A RAndomized SAmple Concensus (RANSAC) [24] approach is used: take
small groups of feature points each time and see if others move consistently with them;
if not the others may be outliers. RANSAC is a simple, yet powerful technique that
is commonly applied to the task of estimating the parameters of a model, using data
which may be contaminated by outliers. RANSAC estimates a global relation to that fits
the data, while simultaneously classifying the data into inliers (points consistent with
the relation) and outlier (points not consistent with the relation). RANSAC operates
in a hypothesize-and-verify framework: a minimal subset of the input data points is
randomly selected and model parameters are estimated from the subset. The model
is then evaluated on the entire dataset and its support (the number of data points
consistent with the model) is determined. This hypothesize-and-verify loop is repeated
until the probability of finding a model with better support than the current best model
falls below a predefined threshold (typically between 1 and 5 percent). RANSAC can
often correct solution even for higher levels of contamination; however, the number of
samplers required to do so increases exponentially, and the associated computational
cost is substantial. Another alternative to this problem would be to use the sequential
correspondence algorithm, as an alternative for the RANSAC algorithm. Both algorithms
are described below.

3.1 From Feature-Points to Motion Parameters
Once the set of corresponding points between two images is obtained, the information
can be used to determine the motion parameters. Since each point-correspondence gives
us two equations of constraints âĂŤ one for the horizontal component, and one for
the vertical âĂŤ four point-correspondences to solve for the eight parameters of the
perspective motion model are required. Inserting any four correspondences pi ↔ p̂i with
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pi = (xi, yi, 1) and p̂i = (x̂i, ŷi, 1) into the inhomogeneous formulation and multiplying
with the denominator results in a linear equation system.

x1 y1 1 0 0 0 −x1x̂1 −y1ŷ1
0 0 0 x1 y1 1 −x1x̂1 −y1ŷ1
x2 y2 1 0 0 0 −x2x̂2 −y2ŷ2
0 0 0 x2 y2 1 −x2x̂2 −y2ŷ2
x3 y3 1 0 0 0 −x3x̂3 −y3ŷ3
0 0 0 x3 y3 1 −x3x̂3 −y3ŷ3
x4 y4 1 0 0 0 −x1x̂4 −y1ŷ4
0 0 0 x4 y4 1 −x1x̂4 −y1ŷ4





h00
h01
h02
h10
h11
h12
h20
h21


=



x̂1
ŷ1
x̂2
ŷ2
x̂3
ŷ3
x̂4
ŷ4


(3.1)

which can be easily solved for the model parameters hik. While four cor- respondences
are enough to solve for the motion parameters, although many more correspondences
are available. However, these are contami- nated with outliers and inaccuracies in the
feature positions. Apart from errors in the computation of the point-correspondences,
correspondences that are part of foreground object motion as outliers are considered.

3.2 RANSAC Algorithm
In this section, the RANSAC algorithm for the special case of estimating the parameters
of a two-dimensional perspective motion model is described. The set of correspondences,
which are used as algorithm input are denoted by C = pi ↔ pi, whereas the Euclidean
distance between two points pi and p̂k as d(pi, p̂k). The RANSAC algorithm can then be
described with the following steps.

1. Draw a subset S of size |S| = 4 from C. Four correspondences are required to solve
for the eight free parameters of the motion model.

2. Compute the parameters hjk of the motion model H from the correspondences in
S using the linear system in Equation 3.1.

3. Determine the set of inliers I = pi ↔ p̂i ∈ C|d(p̂i, Hpi) < ε which is the set of
correspondences that comply with the motion model. In other words, this means
that we use the current set of parameters to transform the features from the first
image into the second and compare this with the measured positions. If the distance
is low, then the pair of points is assumed to comply with the motion model, and it
is selected as an inlier.

4. Repeat Steps 1–3 several times (N) and choose the set of inliers for which |I| is
largest.

5. Perform a least-squares approximation of the motion parameters with the set of
inliers. The solution is the result of the RANSAC algorithm.
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The RANSAC algorithm has two parameters that have to be chosen initially: the
number of draws N and the inlier threshold ε. A good value for the inlier threshold can
be obtained from the evaluation of the feature-point detector. The more accurate it can
locate the features, the smaller can be chosen. [59] The number of found correspondences
by increasing ε saturates very quickly. Hence, we have chosen a small value around
1.5 for ε, but the right selection of is not critical. If it is chosen too low, some correct
correspondences will be sorted out as outliers, but usually the set of inliers is still large
enough to estimate accurate model parameters. If it is chosen too high, some outlier
data will be included, but since these outliers cannot differ much from the inliers (their
error is below ε), their influence in the least-squares approximation will be limited.

3.3 Consistency Checking and Outlier Removal
A new method has been developed for the elimination of outliers found within the
matching process of two or more images. The method does not use the fundamental
matrix like in RANSAC, or SIFT, and requires little calculation. The algorithm works
by comparing vectors within a group, calculating their median, and comparing it with
each vector within the selected group.

The idea is to remove the outliers using a recurrent filter. For each group of the
vectors, which lie at the assigned area (a specified window), the average length of vector
and slope angle is calculated. All of vectors, whose length and angle differ more than to
the assigned magnitude of deviation from the average - are moved away, and the entire
procedure is repeated with the more rigid values of the maximum permissible deviation
from the average. This procedure works with at least three vectors being present in the
group. But if the group contains only one vector, then the algorithm finds the nearest
and adds it to this group. If the group contains two vectors, then the angle and the length
of difference from one to another is calculated and if it does not exceed the threshold
value, then those two vectors are considered to be consistent with the rest. Otherwise
the nearest vector is added to the group, and the calculation is performed as for the rest
of the vectors, where there are three and more present.

The advantage of this algorithm is that it does not use the fundamental matrix like
the RANSAC, or SIFT algorithms. RANSAC and SIFT algorithms are mostly applied in
tracking of objects, because the search space is too big. In this problem however, the
vectors that are being compared have limited movements as opposed to objects that can
be tracked by RANSAC that can go in all sorts of directions.
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3.4 Performance of the Outlier Algorithm
The following three examples were created using a warping tool from TU Graz which
deforms an image based on the inputed vector. The outlier algorithm has then been
applied to identify the outliers. Figures below depict the process of matching points
between different epochs, from identifying the interest operators, identifying their matches,
and matching feature points. Figures 3.1 3.2 3.3 depict the interest operators between
both epochs, Figures 3.4- 3.6 their matches together with their feature points, and
Figures 3.7- 3.9 show the matches on both epochs marked with circles in different color,
where the image on the left is a the image of the current epoch merged on top of the
image of the next, together with their respective matches.

Figure 3.1: Example 1: Interest Operators between two epochs

Figure 3.2: Example 2: Interest Operators between two epochs
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Figure 3.3: Example 3: Interest Operators between two epochs

Figure 3.4: Example 1: Matches between two epochs (left), Inlied matched feature points
(right)

Figure 3.5: Example 2: Matches between two epochs (left), Inlied matched feature points
(right)
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Figure 3.6: Example 3: Matches between two epochs (left), Inlied matched feature points
(right)

Figure 3.7: Example 1: Matches displayed on both epochs

Figure 3.8: Example 2: Matches displayed on both epochs
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Figure 3.9: Example 3: Matches displayed on both epochs

The blue lines on the left depict the actual movement that takes place within the
image which was generated using the warping tool, so in fact it is the vector that has
been used to distort the image. In all three examples listed above, the image is distorted
by a translation vector, except for the second example which also uses a rotation vector.
The results showed that when the translation vector is used as an example of a potential
deformation, the algorithm had no problem matching the interest operators between
the two epochs (see Figure 3.4 and Figure 3.6. On the other hand when the vector
containing a rotation is used, the algorithm performed slightly worse, making it a more
difficult ’deformation’ to track. The second example has been chosen as a worst case
scenario, because it depicts a classical residential building, which has been affected by a
’deformation’ with a vector representing a rotation.

Outliers can easily be detected before they are passed on to the knowledge base for
interpretation, and the algorithm performs as well as the RANSAC method except for
the fact that it does not use a fundamental matrix, making it more cost-effective in terms
of computational power. In the listed examples, one can see that there are not that
many outliers present between epochs, and that most of the interest operators are easily
matched.

This can be explained by the nature of the warping tool, even though it can transform
an image over time, it cannot simulate the behaviour of noise between the epochs. Even
though the tool can simulate structural movements, it is not able to simulate different
levels of lighting that may affect the quality of the image, which have a big impact on
the matching success rate between the two epochs.

Had the algorithm been used on a real life scenario, the RANSAC algorithm probably
would have yielded better results, but because it was tested on simulated data, both of
them detected the outliers efficiently, except that the method described in this section
did so with very little effort, which made it a good choice for this particular type of
problem. From the results, it can be seen that the algorithm did not perform well in
Figure 3.5 (left), where the observed facade falls into the category of more classical
(historical) buildings. These particular type of facades have also been a problem for the
object segmentation algorithm used in this thesis, because the interest operators tend
not to be so focused around the window, but rather on the triangular shapes below the
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window, as seen in Figure 3.2. Additionally, the rotation vector used in this example
made the matching more difficult for the algorithm.
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CHAPTER 4
Merging an Ensemble of Points

Once all the outliers have been detected, the user is left with a dataset of points together
with their corresponding description of a movement. RANSAC has pruned the data set
considerably, and only the points which are consistently moving with each other remain.
The next step is to merge this point into a Region of Interest (ROI), and to find the local
movement of that particular cluster of points.

This can be done by incorporating a simple merging algorithm. Assuming that we
are left with an array of points L, then each point is represented as (x, y,m) where x
and y are the coordinates of the point, and m is the direction (movement) of that point,
i.e. translation, or rotation. Then we proceed as following:

1. Compare two points (x1, y1,m1) and (x2, y2,m2), and check if they are moving
together. Next, check if they are close to each other, by calculating their equidistance
from one another. If that is the case, then merge the two points together as
(x1, y1, x2, y2,m) where m = m1 = m2. Remove the both points from the list, and
insert the newly formed into the list.

2. Compare the remaining points left in the list, together with the ones which
were formed in (1) as well. For example, if (x3, y3,m) is moving the same as
(x1, y1, x2, y2,m) and (x3, y3) is a point which lies close either to (x1, y1) or (x2, y2),
then it should be included in this subset, and the designated points from that
subset should be removed. Consequently, similarly as in (1) remove the point which
has been compared, and classified.

3. Repeat steps 1–2 until there are no more neighbouring points.

The user is then left with a list L of Regions of Interest which describes in what way
a particular ROI is moving, which is then later used for deformation assessment, and
consequently interpretation.
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Figure 4.1: Structure of an expert system [46]

4.1 Rule-based Systems
Conventional problem-solving algorithms make use of data structures, and reasoning
strategies to find solutions. For the difficult problems which are addressed by the expert
systems, it may be more useful to employ heuristics, or strategies that often lead to a
viable strategy, but that also sometimes fail. Conventional rule-based expert systems
use human expert knowledge to solve problems that normally would require human
intelligence. Expert knowledge is represented in the form of rules, or as data structure
within the computer.

The basic components of an expert system can be found in 4.1. The knowledge
base stores all data, rules, and cases used by the expert system. A rule is a conditional
statement that links to actions or outcomes. A frame is an alternate approach used to
capture and store knowledge, which relates an object or item to various facts or values.
Expert systems that are using frames are often referred to as frame-based expert systems.
The purpose of the inference engine is to retrieve information and relationship from the
knowledge base, and to provide the user with answers, or suggestions.

A rule-based system consists of if-then statements, a bunch of facts, and an interpreter
controlling the usage of the rules, given the facts. These statements are then used to
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Figure 4.2: Suggested ROIs to be observed by the KBS

formulate the conditional statements that form the entire knowledge base. A single
if-then rule is in the form of ’if x is A then y is B’, where the if-part of the rule is called
the antecedent, or premise, while the then-part is called the consequent or conclusion.
There are two kinds of inference engines used in rule-based systems: forward chaining,
and backward chaining. In a forward chaining system, the initial facts are processed
first and are kept being used until a conclusion has been reached, whereas in a backward
chaining system the conclusion, or the hypothesis is being processed first along with the
related rules that would allow to conclude the hypothesis.

Most expert systems are developed using tools called shells, which are much like
the terminal shells found in UNIX distributions, except that they are equipped with an
inference mechanism that supports both forward and backward chaining, and require
knowledge to be entered according to a specified syntax. CLIPS [3] is an expert system
tool that provides the environment for the development of rule, object oriented, or
procedural expert systems. CLIPS is written in C for portability and speed and is
available on different operating systems.

4.2 Knowledge Base for Regions of Interest
Once the ROIs have been identified and classified, it is time to detect the patterns that
may appear in building deformation. There are many deformation patterns possible, and
the expert system should be able to detect them all and provide the user with some
feedback, such as whether the deformation is plausible, or whether the deformation is
potentially hazardous.

Typical deformation patterns may include settlements which can be present either
at the center of the building, or at both ends of the building, or at the whole building
itself. To detect these deformations, the expert system must take several deformation
measurements into account. Table 5.1 in Chapter 5 shows the typical deformation
patterns that may appear during the lifecycle of a building.

In geodetic measurements, there are a couple of vulnerable points of the building
which are measured. Figure 4.2 suggests which measurements are to be taken into account
to provide a general assessment of the deformation. In order to provide the user with
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Figure 4.3: Number of factors that influence deformations to take place

the description of the deformation, five different measurements are to take place, two at
the top of the building (on both sides), two at the bottom, and one in the middle of the
building. The ROIs have been chosen just like in Figure 6.6, Chapter 6, as it is common
practice for engineers to perform measurements on three different levels of the observed
object.

The middle measurement is to investigate whether there is a settlement present in the
center of the building. This may indicate either that the building itself is entirely under
settlement, or that only the middle part of the building is sliding down. If however, the
other four measurements show any signs of deformation, then the diagnosis will change
with respect to the other measurements - i.e. if the left part of the building is sliding
together with the central, but the right part of the building does not seem to show any
movements whatsoever it means that the building is under settlement at the left side.

However, any building is a subject to a deformation regardless of the different factors
which may influence it to lead it to a deformation (see Figure 4.3). These may include
vibrations from the traffic, or change in weather which do not really lead to any serious
deformations. Also, in some rural areas in the United Kingdom, the building may even
have upwards movements due to the condition of the soil and the climate change. So,
if there have been slight movements detected in the building, they may not necessarily
mean that the deformation has reached critical state. To completely verify and classify a
deformation, the expert system must combine the results of measurements from multiple
epochs into one accurate diagnosis.
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4.3 Consistency Checks
The system is fed by a series of ROI [3], which hold the information such as the (x, y)
coordinates of the ROI, together with their 3D equivalents (two vectors describing the
translation (tx, ty, tz) and rotation (α, β, γ):

(deftemplate ROI
(slot id (type NUMBER))
(slot WA_x (type NUMBER)) (slot WA_y (type NUMBER))
(slot tx) (slot ty) (slot tz)
(slot alpha) (slot beta) (slot gamma))

Before any interpretation can be done, the system needs to check whether the ROIs
differ from one another. Some of the consistency checks are rather simple, for example,
if one region of interest is moving in one direction, then the adjacent ROIs need to be
moving in the same direction, and at the same magnitude. If this is not the case, the
system will inform the user about that ROI, so that it can be re-calculated (or ignored).

The only type of translation allowed is the translation along the z-axis. This is
because the object being observed cannot move to the left, right, or to and away from
the camera. Thus, the main concern for the KBS is to observe the values of the tz
parameter. If there is a translation along the z-axis, then it is possible that there is
also a translation at the x or y axis as well (which would mean that the ROI is moving
diagonally). However, a lonely translation at the x and y axis is not possible.

As for the rotations, a negative rotation cannot be adjacent next to a positive, and
vice-versa. A combination of a couple of rotations is possible, but again, if such a rotation
is present, then all the adjacent ROIs need to be rotating in the same direction, at a
similar magnitude. In total, 40 consistency checks are performed before the interpretation.

4.3.1 Representing Deformations

The KBS deals with a simple, yet important deformation, which is present in building
construction. A settlement can occur, if for example, one of the underground stations is
being built, or if the soil underneath the building is moist. When this happens, one of
the columns will have a negative tz parameter, and the adjacent columns will be rotating
left, and right. The first thing the KBS needs to do is locate the position of the ROI
which has a negative parameter tz and then check that all the ROIs which are located
on the left have a positive rotation, whereas those which are on the right have a negative
rotation. The rotations must be of the same origin, rotating along the same axis. If that
is the case, then the system will notify the user that a settlement has occured. Needless
to say, to detect a settlement the system needs to perform additional consistency checks,
such as the compatibility of the rotations with respect to the negative translation along
the z-axis. For example, if there is only a negative translation along the z-axis present
(without the x and y), then the adjacent columns need to have a rotation along the
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(defrule check-tz-magnitude
(adjacent (id1 ?id1) (id2 ?id2))
(or (and (or (ROI (id ?id1) (tz "sg")) (ROI (id ?id2) (tz "g")))

(or (ROI (id ?id1) (tz "k")) (ROI (id ?id2) (tz "sk"))))
(and (or (ROI (id ?id1) (tz "nsg")) (ROI (id ?id2) (tz "ng")))

(or (ROI (id ?id1) (tz "nk")) (ROI (id ?id2) (tz "nsk")))))
=>
(printout t "Magnitude of translation along the
z-axis changed drastically from " ?id1 " to " ?id2 crlf)
)

Figure 4.4: Rule used for consistency checks

z-axis(γ parameter needs to be posive or negative). On the other hand, a z/x translation
(diagonal movement) will have γ/α rotation present. Any other combination will result
in a warning.

The system will also locate cracks in the wall, and notify the user. A crack occurs, if
there is a column of ROIs with all parameters set to zero, but with deformations present
at the adjacent columns. Similar to the settlement problem, the system has to make sure
that the adjacent columns have the same type of deformation present on each side.

Another possible deformation is a diagonal settlement, that is, one half of the object
(split diagonally) is moving to the left, or right. This is the only case, where translation
along the x-axis is allowed. Such a settlement can happen if there is something wrong
with the soil near the corner of the building. In such a case, the upper part of the building
will move slightly left, or right.

Once the system has performed consistency checks, and located possible settlements,
or cracks, it will do a final check on the parameter values. If there has been a considerate
change in the magnitude of the translation/rotation parameters, the system will alert
the user about a potential hazard which could happen in the near future. An example of
such a rule is in 4.4:

4.4 Experiments
The experiments were carried out using a benchmark of 50 images from the Vienna public
domain database [2]. Deformations have been generated artificially, due to the lack of
real data by using a warping tool which takes as input a list of vectors and outputs
a distorted version of the image to simulate a deformation. Examples can be seen in
Section 3.4. The vectors, or movements have been chosen randomly from the large set of
data gathered from the project ’Prokop’, described in Chapter 6 to simulate potential
settlements.

Once the ROIs have been calculated, together with their appropriate translation
and rotation parameters, the KBS was tested with a series of images. 10 settlements
have been simulated using an image processing warping tool from TU Graz, which
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transforms an image using a vector as an input. The images have been transformed
over 10 epochs additionally, by using a vectors representing diagonal and or complete
settlement (no translation along the x-axis). Some randomness has also been introduced
over the 10 epochs, in order not to simulate a deformation that is completely linear
(i.e. a small random percentage is added, or deducted from the actual vector value per
epoch). A successful deformation interpretation would entail identifying the direction
of the settlement, and the system was able to identify the ’randomized’ movements.
Additionally, a series of images depicting deformations that would never be possible
in real life have been presented to the system, such as rapid movements (in particular
negative translations along the x-axis, meaning that the building has risen up to 10m
in the air) which rejected them with the consistency checks in place. The system has
not been tested in real life, mainly due to the fact that it is hard to keep track of a
building with potential deformations by using only digital cameras. Proper setup would
include continuous snapshots of the observed building taken periodically over time, from
an exact same location. It would have been really interesting to see whether the correct
movements have been identified, or to find a threshold for rapid movements so that the
consistency checks can filter any measurement errors.
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4.4.1 Representing Deformations

Since the warping tool takes as input vectors of movement (in our simulated environment -
deformation) to modify the image along the axes, assuming that all the outliers have been
isolated, then all movements in ROIs are actually just the same vector movements used
by the warping tool to deform the image it takes as the input. The CLIPS representation
of a translation along the z-axis, can be found in Figure 4.5, and in this case represents a
complete settlement (all ROIs are moving in one direction).
(assert (ROI (id 1) (WA_x 100.00) (WA_y 100.00) (tx O) (ty O) (tz ng) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 2) (WA_x 300.00) (WA_y 100.00) (tx O) (ty O) (tz ng) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 3) (WA_x 500.00) (WA_y 100.00) (tx O) (ty O) (tz ng) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 4) (WA_x 700.00) (WA_y 100.00) (tx O) (ty O) (tz ng) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 5) (WA_x 100.00) (WA_y 300.00) (tx O) (ty O) (tz ng) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 6) (WA_x 300.00) (WA_y 300.00) (tx O) (ty O) (tz ng) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 7) (WA_x 500.00) (WA_y 300.00) (tx O) (ty O) (tz ng) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 8) (WA_x 700.00) (WA_y 300.00) (tx O) (ty O) (tz ng) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 9) (WA_x 100.00) (WA_y 500.00) (tx O) (ty O) (tz ng) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 10) (WA_x 300.00) (WA_y 500.00) (tx O) (ty O) (tz ng) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 11) (WA_x 500.00) (WA_y 500.00) (tx O) (ty O) (tz ng) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 12) (WA_x 700.00) (WA_y 500.00) (tx O) (ty O) (tz ng) (alpha O) (beta O) (gamma O)))

Figure 4.5: Settlement Along the Z-Axis (Negative Translation)

Diagonal Cracking, or a positive translation along the X-axis can be found in Figure 4.6,
where only the ROIs located in one part of the image.
(assert (ROI (id 1) (WA_x 100.00) (WA_y 100.00) (tx m) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 2) (WA_x 300.00) (WA_y 100.00) (tx m) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 3) (WA_x 500.00) (WA_y 100.00) (tx m) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 4) (WA_x 700.00) (WA_y 100.00) (tx m) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 5) (WA_x 100.00) (WA_y 300.00) (tx O) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 6) (WA_x 300.00) (WA_y 300.00) (tx O) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 7) (WA_x 500.00) (WA_y 300.00) (tx m) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 8) (WA_x 700.00) (WA_y 300.00) (tx m) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 9) (WA_x 100.00) (WA_y 500.00) (tx O) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 10) (WA_x 300.00) (WA_y 500.00) (tx O) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 11) (WA_x 500.00) (WA_y 500.00) (tx O) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 12) (WA_x 700.00) (WA_y 500.00) (tx m) (ty O) (tz O) (alpha O) (beta O) (gamma O)))

Figure 4.6: Diagonal Cracking (Positive Translation along the X-axis)
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The knowledge base should also discard any corrupt data which may be a result of
any mismatch between epochs. These may include Figure 4.7, where two ROIs (with ids
[7, 8]) are the only ones affected, or Figure 4.8 where only the upper part of the image is
moving.
(assert (ROI (id 1) (WA_x 100.00) (WA_y 100.00) (tx m) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 2) (WA_x 300.00) (WA_y 100.00) (tx m) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 3) (WA_x 500.00) (WA_y 100.00) (tx m) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 4) (WA_x 700.00) (WA_y 100.00) (tx m) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 5) (WA_x 100.00) (WA_y 300.00) (tx O) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 6) (WA_x 300.00) (WA_y 300.00) (tx O) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 7) (WA_x 500.00) (WA_y 300.00) (tx m) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 8) (WA_x 700.00) (WA_y 300.00) (tx m) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 9) (WA_x 100.00) (WA_y 500.00) (tx O) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 10) (WA_x 300.00) (WA_y 500.00) (tx O) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 11) (WA_x 500.00) (WA_y 500.00) (tx O) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 12) (WA_x 700.00) (WA_y 500.00) (tx m) (ty O) (tz O) (alpha O) (beta O) (gamma O)))

Figure 4.7: Example 1: Deformation incompatible with the rules in place

(assert (ROI (id 1) (WA_x 100.00) (WA_y 100.00) (tx m) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 2) (WA_x 300.00) (WA_y 100.00) (tx m) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 3) (WA_x 500.00) (WA_y 100.00) (tx m) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 4) (WA_x 700.00) (WA_y 100.00) (tx m) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 5) (WA_x 100.00) (WA_y 300.00) (tx O) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 6) (WA_x 300.00) (WA_y 300.00) (tx O) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 7) (WA_x 500.00) (WA_y 300.00) (tx O) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 8) (WA_x 700.00) (WA_y 300.00) (tx O) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 9) (WA_x 100.00) (WA_y 500.00) (tx O) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 10) (WA_x 300.00) (WA_y 500.00) (tx O) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 11) (WA_x 500.00) (WA_y 500.00) (tx O) (ty O) (tz O) (alpha O) (beta O) (gamma O)))
(assert (ROI (id 12) (WA_x 700.00) (WA_y 500.00) (tx O) (ty O) (tz O) (alpha O) (beta O) (gamma O)))

Figure 4.8: Example 2: Deformation incompatible with the rules in place

Other examples would include roations along the axes, which would indicate bulging,
or tilting. In each of the scenarios that were presented to the knowledge base, the pattern
has been detected. Any sudden increments in the translations, or rotations would also
trigger an alarm which would indicate any potentially hazardous behaviour. However,
due to the nature of the experiments, to make any assumptions would require live data
from construction sites (images of facades of residential buildings over time while any
deformations are present).

4.5 Comparison to Other Related Work
Chmelina et al. [16] monitored deformations induced by tunneling works. The method
entails the usage of Certainty Factors which represent quantitative uncertain reasoning.
The factors are used to express the certainty of statements (about the existence of errors
in monitoring data) and to further process them to an output certainty (possible error
cause). The knowledge based system has been based on certainty logic which uses two
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operations, a Conjunction U(x, y) = min(x, y) and disjunction O(x, y):

O(x, y) =


x+ y − x ∗ y x, y ≥ 0
x+ y + x ∗ y x, y < 0

x+y
1−min(|x|,|y|) x ∗ y < 0

(4.1)

In the paper several rules have been described which are being deployed by the expert
system to express the certainty of statements, as well as for the possible error cause.
The data that has been used in this paper is from a tunneling project ’Brauherr ARGE’
with data gathered over a two month period (from September to November) and the
settlement that took place can be seen in Figure 4.9. The results could not be compared
to the one found in ’Prokop’ as the focus is more on the structure of the tunnel, and not
residential buildings. Furthermore, the paper discusses on potential applications for the
error analysis of displacement data in tunelling, whereas the focus of this thesis is on
predicting the behaviour of deformations found in residential buildings.

Figure 4.9: Results of the tunneling done in Project Brauherr ARGE [16]
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CHAPTER 5
Deformation Interpretation

This chapter deals with the interpretation of deformation found in building construction.
In order to find out why the deformation occurred, several other parameters are taken
into account, in particular the material used in construction, or the soil underneath the
building. Combining this knowledge together with the monitoring of the deformation
which has been described in previous chapters, the system is finally able to provide the
user with the appropriate description of what has happened with the structure over time.

5.1 Movement types
Every building undergoes a series of movements throughout its lifecycle. Most of the
movements are negligable, and are of not much interest to engineers, others however
require intervention. In such cases, conservation principles need to be applied, some
which will be described in this chapter.

The movements which occur in buildings may be instantaneous, or may happen
gradually over time. Normally, instantaneous movements occur in steel or iron beams
when loaded [23], whereas gradual movements occur in buildings made out of timber,
or masonry materials. Materials made out of timber may be a subject to shrinkage
or swelling, whereas masonry materials may be a subject to drying or wetting. The
temperature of the surrounding also plays a role, as it can induce thermal movements.
Typically, when engineers are performing geodetic measurements, they will pick out a
day in the month when the temperature is constant, so that thermal movements would
not interfere with the measurements.

The most common types of movements, or deformations found in buildings are:

• Cracking

• Tilt

• Bowing and Bulging
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5.1.1 Cracking

Most cracks that occur are not a sign of a serious structural distress, or deformation.
They can occur naturally, e.g. cracks found in timber structures are a result of drying
shrinkages, and the only remedy is to paint over them. Other cracks require plasterboard
to fill in the cracks which is used in modern ceilings, made out of masonry meterials.
In these cases, cracks are not a sign of structural deformations, but are a nuisance to
the dwellers and residents who are even sometimes requesting a professional opinion to
make sure that they are living in a safe environment. Cracking also typically occurs
where the cross section is weaker, such as line of windows in a wall. In such cases, the
height of the crack does not indicate a serious deformation, it is rather in the case of
a crack with high width that an expert opinion is required. Formally, cracking occurs
when the total imposed tensile applied strain on a material exceeds its tensile capacity.
Every material is subject to strain, and once this strain exceeds the allowed threshold is
when the cracks in walls appear. Variations in temperature, and the moisture content of
the ground beneath the building also play a role, and typically they are the reason for
innoccuous deformations (but still damaging to the aesthetics however). Buildings made
out of steel, and reinforced concrete have much higher tensile strain capacities, so they
can withstand larger movements without being subject to cracking.

The pattern in which cracking forms can be used to determine what kind of deformation
is present in a building [23]. Table 5.1 shows typical patterns found in masonry buildings,
and the causes for such deformations. It also classifies these patterns, as potentialy
dangerous, or insignificant. A neural network from Haider et al [5] could be trained to
detect cracking patterns in masonry buildings, and then an expert system could then
classify these patterns as dangerous or negligable. The main challenge would be to gather
images of buildings in which cracking has occurred. In addition, services from structural
engineers would also be required, as their opinion is needed to identify and give exact
information as to what kind of deformation is taking place.

5.1.2 Tilt

Tilt represents all movements which involve rotation of the whole building, or parts of
it, such as walls, or columns. This type of movement is present in a lot of buildings, as
it is impossible to build a truly vertical building. Best known example is the Leaning
Tower of Pisa, and the deformation found in this historical building is present because
of the ground strata underneath it, as the variations had caused the building to tilt.
Serious tilting is prevented by on-site planning by the engineers who do some thorough
examinations of the ground at which the building will be constructed. Tall and narrow
buildings are also affected by tilting.

5.1.3 Bowing and Bulging

Typically when tilting occurs, the building as a whole is affected without any so-called
out-of-plane [12] movements. The other rotation movement types (as observable by
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Typical elevation with cracking patterns
Probable
cause(s)

Cracking essentially
vertical and of
reasonably constant
width

Temperature changes
and/or during
shrinkage; often not
significant

Expansion, then
essentially vertical
cracking

Irreversible expansion of
bricks; followed by
expansion in warmer
weather and then
cracking in cooler
weather as wall tries to
contract but is
restrained from weight
of wall resting on its
thermally more stable
base; often not
significant. Can also
occur in parapets.

Progressive outward
movement towards ends
of terrace, with
associated
vertical/diagonal
cracking

Progressive outward
‘shunting’ effect, which
has been described as
the ‘bookend’ effect;
could be or become
significant, e.g.
requiring stabilization
work to ends of terrace

Diagonal cracking as
right end of building
settles or subsides (or
as remainder heaven
upwards)

Ground movements
such as differential
settlement, or
subsidence, could be or
become significant

Cracking (vertical and
diagonal) wider at top
of building, can result
in ‘lozening’ of openings

Ground movements
such as subsidence,
differential settlement –
building on edge of
sinking area; could be
or become significant

Cracking (vertical and
diagonal) wider at base
of building, can result
in ‘lozening’ of openings

Ground movements
such as differential
settlement, subsidence –
building within sinking
area; could be or
become significant

Cracking and
disturbance of masonry
suggests corrosion of
embedded steel frame
(shown in broken lines)

Corrosion of embedded
steel column, beam, etc;
could be or become
significant

Cracking of mortar
joints (and staining of
surface) suggests
corrosion of wall tie or
other embedded iron or
steel (also occurs in
stonework and terra
cota)

Corrosion of wall ties,
cramps or other
embedded metal; could
reduce lateral restraint
to structural members,
and also increasing
physical damage to
masonry units, and
staining over time

Table 5.1: Typical crack patterns in masonry walls [23]
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Figure 5.1: Bowing and bulging of a wall: (a) bowing (b) bulging

theodolites, or other instruments) and that do not involve tilting are called bulging and
bowing (see Figure 5.1). These movements are present in parts of the building, such as
columns or walls, but not the entire structure, and can be potentially threatening.

Typical causes for bowing included material decay (for timber), sulphate attacks on
masonry, or excessive loading on the foundation of the structure. Bulging occurs normally
because of the absence of binding mortar, or cavities in walls, and corrosion failure.

5.2 Movement causes
The most common causes of movement in buildings are:

• change of temperature

• change in moisture content

• applied loading

• material decay or deterioration

5.2.1 Change of temperature

Thermal movements can be estimated using the following formula [12]:

e = α× L× δt (5.1)

where e is the linear extension (or contraction) of a component of dimension L owing
to a rise (or fall) in temperature of δt degrees, and α is the coefficient of linear thermal
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expansion of the material from which the component is made. Changes in temperature
can cause small movements, however they can be a problem for engineers when they are
performing on site geodetic measurements, as sudden temperate changes can have an
impact on the results of their measurements. Typically temperature changes are not of
great concern, and can be classified in the same group as vibrations coming from the
traffic. They are of concern however for historical buildings, which require much greater
care than regular residential buildings.

5.2.2 Change in moisture content

Some building materials increase in volume when wetted, and return to their original size
when dry again. Metals, glass, and certain minerals are dimensionally stable. Timber is
the material which is greatly affected by change in moisture. When not properly treated,
this can lead to huge structural damage. Masonry materials are not greatly affected by
this, and in worst case scenarios can lead to formation of small wall cracks.

5.2.3 Applied loading

Every building consists of structural elements which carry loads that affect the gravitional
force. Apart from the foundation of the building these may include joists, beams, girders
(that are used to carry loads by bending), columns and walls (carry loads in a downward
fashion), hangers and tie rods (tension). In addition, the load from a building is affected
every day by its occupants, furniture, or water in tanks. All these movements are occuring
every day throughout the life cycle of a building, and do not cause significant damage.
A more significant problem in loading would be an addition of an extra wall, or even a
cellar in which case monitoring is required.

5.2.4 Material decay

All materials suffer from decay, in particular timber which can have serious impact on
the structure, often causing it to collapse. The only remedy for buildings made of timber
which suffer from decay is to cut out the parts which have been affected and replace them
with supporting bricks. Brick mortar, and masonry materials suffer from sulphate attacks
which can cause increase in volume size when rainwater leaches into cement constituents.
Sulphate attacks will not lead to the collapse of the building, but require the affected
bricks to be replaced with new ones. Changes in sulphate content are monitored for
historical building in great extent due to their importance. Concrete materials can also
increase in volume size when alkali-aggregate reactions form an expansive gel that can
lead to cracking. Alternating changes in temperature that can cause wetting or drying can
also create more serious damage, in which case sometimes reconstruction of certain parts
of the building is required. Structures made from iron and steel suffer from corrosion
which is triggered when water gets in contact with unprotected metal. Normally it occurs
in buildings on seaside, and in cities it can be present on roof structures when a lot of

45



precipitation occurs. Corrosion can completely be avoided when stainless steel is used as
building materials which is very common nowadays.

5.3 Enforcement methods
In the previous sections, most common deformation patterns and the reasons why they
occur have been described. Implementation of a small knowledge base, written in CLIPS
can be found in Appendix D, which prompts the users with questions regarding the
structural behaviour of the building, including extra questions in case there is any
tunneling present, and gives answers to the possible causes of the deformation, based on
the information from the previous sections.

The deformation patterns discussed in the previous section can be diagnosed using
the measurements that have been acquired by the system. However, in order to complete
the diagnosis, the expert system needs to have additional information on the building.

There can be many reasons to a deformation, which may include outer and inner
factors, as seen previously in Table 5.1.

A survey has been taken using 300 case reports from the Serbian company Energo-
projekt. The typical defects included cracks, spallings, and damages to the layers of
concrete caused either by settlements or yielding of the foundation. Table 5.2 shows
the enforcement methods that have been taken by the company, together with the
type of construction, and the defect that has been detected. The parts of the building
which have been investigated include brick walls, columns, panels, monolithic plates
and overlapping beams, ribbed slabs and hollow-core plates. In cases of potentially
hazardous deformations, these parts have always been involved in remedial works. The
main causes of deformations included load bearing, aggressive environment or changes in
the soil surrounding the buildings, and in rare cases improper course of action during
construction.

It should be noted that the enforcement methods described below only apply to a
certain type of buildings, the ones which have been constructed using the same materials,
and which have the same structure. A more sophisticated table would include the common
causes of deformation in historical buildings, modern, as well as the ones which have
been constructed using timber.
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Construction Type Defect Enforcement Method
Type Cause

Brick wall facing Damage to the plastered
layer

Retting of the plastered
layer

Restoration of the facing
by grid plastering

Brick wall Cracks Settlement Grid plastering using
concrete

Brick wall Cracks Settlement Installation of double-
sided metal straps

Brick pier Cracks Settlement, increase in
load, mechanical damage

Applying ferroconcrete,
grid plastering

Brick pier Cracks Settlement, increase in
load, mechanical damage

Steel Caging

Wall panels Cracks and spallings Mechanical damage dur-
ing construction

Applying concrete on the
panels

Columns Damage to the protec-
tive layer of concrete

Increase in load, mechan-
ical damage

Applying metal straps

Monolithic overlapping
beams

Damage to the protec-
tive layer of concrete

Aggressive environment Installation of combined
joining beams using rein-
forced steel

Overlapping beams Cracks, damage to the
protective layer of con-
crete

Aggressive environment,
mechanical damage

Restoration of the pro-
tective layer of concrete
and armature

Ribbed slabs Damage to the protec-
tive layer of concrete

Aggressive environment,
mechanical damage

Restoration of the pro-
tective layer of concrete
and armature

Monolithic plate Damage to the protec-
tive layer of concrete

Aggressive environment Restoration of the pro-
tective layer of concrete
and armature

Hollow-core plate Damage to the construc-
tion

Improper course of ac-
tion during construction

Installation of the pilot
hole

Table 5.2: Enforcement methods for different construction types
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CHAPTER 6
’Prokop’ Train Station

Train station “Center” is located in the vicinity of “Prokop” next to the northeastern
part of Topcider hill in Belgrade, Serbia. Continuation of civil engineering works at
the construction of train station “Center” has had negative impact on the stability of
abutment diafragms. This has led to the necessity of geodetic measurements of abutment
diafragms and residential buildings in the street “Stevan Filipovic”. The buildings have
been monitored in horizontal and vertical axis, and in total around forty measurements
have been performed. However, this number may vary as some points had been destroyed
over period of time. In order to perform the geodetic measurements, the company needs
to undergo a series of judicial processes to be able to properly monitor the deformations
that are taking place. This has also been the case with the local company, Energoprojekt
who had to undergo such procedures.

Figure 6.1: ’Prokop’ Station

6.1 Geodetic Control Network
Geodetic works are permanently present in all phases of space changes which include idea,
realization and evaluation. These works are applied for measuring the area for groundwork,
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transportation of objects to the field, tracking of their construction, measurement of
objects for the purpose of managing records, tracking of the behaviour of the object
during exploitation, etc.

Designers in the field are securing a permanent stability of the object, however during
the construction of complex buildings, some unplanned changes can occur, which can lead
to catastrophic damage to the object and its surrounding. For the purpose of preventing
negative consequences, it is necessary in certain time intervals to monitor civil engineering
works using one of geodetic methods, with a network which can meet the demands of
designer documentation and technical specification as per project requirements.

During the process of projecting geodetic control networks, for the purpose of retrieving
numerical values and assessing previous accuracy of the network, it is necessary to
determine the design of the network and to plan measurements in it. Temporary values
of unknown coordinates or the height of points are determined mostly from exsisting
maps or from known methods. When planning the measurements, different choices are
taken into consideration together with their measurement accuracy methods. When the
temporary values of coordinates and/or the height of the points are determined together
with the defined plan of measured lengths, as well as their accurate measurement in the
network, the matrix of design A and a covariation matrix of measured lengths K1 = σoQ1
is given. This way, a functional and stochastic model of indirect equalization of free or
closed networks is provided.

The covariation matrix of unknown parameters for closed networks is represented as:

KX̂ = σ2
o ·QX̂ = σ2

o ·N−1 = σ2
o · (ATQ−1

1 A)−1 (6.1)

where X̂ is a vector of differential increments, σo is the standard a priori lack-of-fit, or a
priori accuracy given during the process of leveling, N is the matrix of normal equations,
Q1 is the cofactor matrix of measured lengths, and QX̂ is the cofactor matrix of unknown
parameters (in this case coordinates). And for free networks:

KX̂ = σ2
o ·QX̂ = σ2

o ·N+ = σ2
o · (ATQ−1

1 A)+ (6.2)

where N+ is the notation for pseudoinversion. In the case of object ’Prokop’, the
previous value of accuracy was processed with minimal traces of covariation matrix on the
stability points of geodetic control network, which have been placed outside the zone of
expected deformations. Standard of horizontal and vertical directions, lengths and height
differentials in the geodetic networks, as well as measurement plan have secured the
targeted projected value of unknown parameters. Average values of standard coordinates
and heights as well as elements of standard confidence ellipse (with probability p = 0.95)
is shown in Table 6.1.

Figure A.1 depicts previous analysis of free geodetic control network on object ’Prokop’
with planned measurement directions (σα = 1′′) and lengths (σD = 1mm+ 1ppm), where
after the analysis a homogeneous accuracy of points is preserved.
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Accuracy assessment of the
geodetic control network

[mm] Accuracy assessment of
observation points

[mm]

Coordinate standards for
control network points

σY = 0.69 Coordinate standards for
observation points

σY = 1.23
σX = 0.67 σX = 1.30
σH = 0.70 σH = 0.95

Absolute confidence ellipses
for control network points

A = 1.77 Absolute confidence ellipses
for observation points

A = 3.97
B = 1.55 B = 1.97

Table 6.1: Previous accuracy assessment of geodetic control network points and points
for observation on object ’Prokop’

6.1.1 Hypothesis

Tracking of movements and deformation on every complex object, including object
’Prokop’ because of its specificity, is a procedure which demands the realization of a
series of very complex processes and rules, as well as unavoidable cooperation from
various areas of science. The quality of procedures depends not only on the quality
of geodetic measurements, data processing and equalization of data, but also from the
universal approach in solving engineering demands. Universality entails the knowledge of:
outer and inner influences on the deformation processes, compatibility of methodologies
and instruments for analysing the geo-mechanical behaviour of the observed object,
procedure of projecting and establishing a special purpose geodetic network, expected
accuracy upon realizing control measurements, periodic control measurements, the type
of model and methods used in deformation monitoring, as well as methods for analysis
and interpretation of measurement results.

Based on the knowledge of the procedure, characteristics of the object and all previous
geodetic works (from projecting and establishing a geodetic network to the realization of
control measurements that took several years), it is necessary to show in a universal way
the procedure of projecting the control network, the measurement plan, and acquisition
and processing of data with conventional and modern instruments. Analysis of the results
of unknown parameters from these measurements together with the basic and other
control measurements will contribute to the findings as well assessment of all future
geodetic auscultations of similar objects, and to the improve the approach to deformation
monitoring in all civil engineering objects.

Recommendations, based on the analysis and investigations will be used in establishing
geodetic network of specific uses, methodology of acquiring data and the choice of
deformation model. The results of the previous assessment value, measurement zero
or M0 and realized control measurements will be used for the purpose of predicting
movements using artificial neural networks.

6.1.2 Research of conventional methods

With the advances in science and technology different areas of science are showing the
need for geodetic networks, which have horizontal and vertical coordinates that enable
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monitoring of movements and deformations.
Despite enormous literature about measurement techniques and methods, the real

measurement analysis becomes feasible only until the emergence of modern computers
which are capable of processing large quantity of data. Moreso, the development of the
improvement of existing instruments have significantly increased measurement accuracy
even creating new applications. Geodetic deformation measurements include all measure-
ments that have the goal of determining elastic, plastic, and elasto-plastic changes in
object or parts of Earth surface under the influence of inner or outer forces that result in
movements.

The facts that points in the object are moving or the ground between two or more
series of measurements, and that the deformation changes are incurred mostly because
of uneven movements of points, the object that is being observed is monitored using a
series of points, which is encompassed by the measurements performed in object ’Prokop’.
Points are interconnected and forming a geodetic control network that is for the purposes
of assessing shifts and deformations. The network consists of a basic referenced network of
points outside the border of expected deformations and network points at the object [13].
If the movement is correct, the object has moved but has not deformed. The main
problem during measurements of movements in a network or deformation analysis is
to ensure which points remain stable between multiple series of measurements. That
is, conventional deformation analysis is dealing with the problem of determining stable
points in the network, or localization of unstable points in the network that is modelled
using statistical tests, and testing of certain hypotheses.

6.1.3 Deformation model design

Design, measurements in deformation models have been a topic of many discussions [13] [37].
Based on many years of experience in deformation measurements, Eger (1997, 1993) has
given important advices regarding terrestrial deformation measurements. The deforma-
tion model needs to be designed in such a way so that it can be used for a long period of
time which can range up to 50 years. The network must be complete, undamaged and
flexible in case it is required to be expanded in the case of an abnormal behaviour of the
object, or in the case of additional construction works. Cooperation between the civil
engineer at the field, and the geodetic engineer is crucial and should start as soon as
possible.

Geodetic network needs to be designed in such a way to allow application of new
technologies in later stages, and are usually designed for long-term. Reference points
need to be close to the object, outside the zone of deformation influences, and need to
be observed mutually, as well as be available during the whole year. Experiences have
shown that, when there are more than two damaged geodetic points in the deformation
model, then they are a consequence of settlements or additional works.

According to Eger’s [36] observation, four reference points are an absolute minimum.
Reference points are usually concrete columns consisting of double walls, with a forced
centering system placed on top protected from natural disasters and outer influences
that could cause the damaging or even destruction of the point. It is desirable that the
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concrete columns be supported by fixed umbrellas. At the points where the reference
points are exposed to the increased risk from landslides, or avalanches the columns need
to be placed in a concrete shelter to protect them. Four dislocated points that are nearby
are useful in making sure that the movements in columns are with accordance to the
nearby field observations. Unless GPS measurements are planned, it is necessary to
ensure that the points are on such a place that the elevation angle is at least 15-20
degrees, and that there is no reflecting surface nearby.

Points at the object need to be distributed in such a way that they represent real
information on how the object behaves over time, as well as its surrounding. Object
points need to be available for conventional geodetic measurements. This may include
length measurements with electro-optic devices, so that points are stabilized and that a
suitable reflector or benchmark is placed.

Measurements with motorized total stations, with automated recognition of signals
enables that the measurements of reference points and object points equipped with EDM
reflectors are processed with computer aided control. If the instrument is permanently
placed on objects that protect it from outer influences of weather and from movements,
continued measurements are possible. If the communication link is established, remote
control is possible. These systems are very expensive because they require sophisticated
equipment and maintenance. In some cases however, the usage of such equipment is
completely justified.

During one epoch of measurements in the network, it is necessary to stick according
to the previously agreed observation plan. It is of great significance for the accuracy of
measurements. The procedure itself needs to be designed in such a way that obvious
errors could be spotted easily and dealt with quickly. This leads to a demand where
some data is processed as early as possible so that errors can be removed efficiently. It
is common to use the same gear at the same orientation, reference points, and object
points in order to eliminate system errors. Daily backup of all data is a must.

Some aspects are always important, regardless on the type of equipment:

• Length of the instrument, target, reflectors

• Atmospheric parameters (temperature, pressure, humidity)

• Inconsistency of volume errors, eccentricity of instruments

• Avoidance or elimination of other system errors that may contain measurements

6.2 Special purpose geodetic networks
Basic national geodetic networks had been designed using the method of triangulation
in 19th century and improved during 20th they were the foundation for geodesy and
topographic measurements, but in most cases today they do not meet the demands
in terms of accuracy, in particular marking and monitoring the stability of complex
objects, as well as monitoring movements and deformations on the surface of Earth.
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Because of these reasons, new independent geodetic networks have been developed:
special purpose geodetic networks, local geodetic networks, control networks, independent
geodetic networks and geodetic networks for objects.

A special purpose geodetic network consists of geodetic points outside the object
(basic network) and points on the object (geometric control and deformation analysis)
that are connected with terrestrial measurements (direction, angle, azimuth, spatial
lengths, height differentials, etc.), satellite, astronomical measurements or a combination
of both.

There are three types of networks, based on the dimensions of the coordinate system
in which the position of points is defined:

• Vertical networks - one-dimensional model (1D)

• Horizontal networks - two-dimensional model (2D)

• Spatial networks - three-dimensional model (3D)

According to the type of measured lengths that are used for positioning of the points
inside the network, the following methods are used for projecting geodetic networks:

• Terrestrial (triangulation, trilateration, triangle trilateration, precise polygonometry,
precise elevation)

• Satellite (GPS, GLONASS, GALILEO)

• Combination of the aforementioned methods.

6.2.1 Special purpose geodetic control network models

The main purposes of a special purpose geodetic network are as follows:

• Define mathematical background for spatial location of the object.

• Enable markings of characteristic points, lines and surfaces of civil engineering
objects

• Enable geometry control during construction

• Enable monitoring of the object (network is expanded with points outside the
range of expected deformations and with points on the object whose movements is
characterized by the soil underneath the building)

The main characteristic of these networks is:
Timeliness - network is projected in the phase of construction of preliminary design

based on the schedule of of projected objects, durability - projecting the network needs
to encompass the whole construction field and serve until the very end of construction.
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Length adaptability - according to the object that is built or the part of surface of
the Earth whose movements are being monitored (network in most objects is developed
according levels, and at tall objects by floors)

Accuracy - standard lack-of-fit of the position of points of basic networks needs to
be negligible with respect to the targeted accuracy, or other geometric demands of the
object, by the principle of negligibility 1/5 < σ < 1/3 where σ is the standard lack-of-fit
accuracy.

Shape adaptability - according to the object that is being constructed by: possibility of
stabilization of points, type of planned measurements, standard projections, observation
plan and accuracy of measurements, and with regard to the characteristics of the object,
configuration of the field and targeted accuracy.

Independence - characteristic points, lines, and surfaces of the object and a group of
points in geodetic network positioned on a small area where high accuracy is wanted are
required to be in the same local coordination system.

Adaptability - included in the basic network (horizontal and vertical), mainly with
objects that are on higher ground where it is necessary to connect a series of smaller
objects (hydroenergy systems, water flow regulation, etc.)

Homogeneity - all points of the same order are in the process of leveling simultaneously.
The choice of the model of the network depends on the demands of the object

that is being built, satisfying certain constraints such as for marking benchmarks,
determining with high accuracy the movements and deformations of built objects and
natural phenomena. Based on these criterion, applications of geodesy include:

• civil engineering (industrial buildings, pillars, sylos, stadiums, tall buildings)

• traffic (railways, highways, bridges, tunnels, airports, and underground stations)

• energy (dams, pipelines, transmission lines, mines)

Other applications even include natural objects, that is natural forms of the surface
of the Earth such as volcanoes, landslides, or faulting.

Special purpose geodetic networks consists of a series of points of same order that
are mutually connected in figures, at which their shape, or model is adapting to the
object and configuration of the field at which it was placed. The type of network and
measurement also influences the model, which can lead to the choice between horizontal,
vertical, or GPS special purpose geodetic networks.

Geodetic control measurement needs to be adapted to the object itself, for the purpose
of efficient monitoring.

Angles and lengths of slopes in special purpose geodetic networks depend on the size of
the object and the space which is necessary for the construction, configuration of the field,
and the methods of measurement. At trilateration and triangulation networks, special
attention needs to be given to the value of closed angles which need to be approximately
equal.

GPS geodetic network of points is not dependent on shape and geometry, so the
positioning instability is minimal. The points are positioned where they are needed, that
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Figure 6.2: Vertical geodetic network model

Figure 6.3: a) twofold geodetic tetragon b) chain of geodetic tetragons

Figure 6.4: Chain of triangles

is close to the object. The shape of the network is determined mainly by the desired
accuracy, number of available receivers, and the shape of the GPS network determines
the measurement plan.

For the purposes of determining movements on the object ’Prokop’, the deformation
analysis ’Modified Karlsruhe Method’ is used [31] [50].

Method consists of independent leveling of previous and current epoch and their
mutual leveling. Deformation analysis is conducted using statistical testing of linear
hypothesis. All epochs of geodetic measurements are leveled with the method of indirect
leveling based on the method of Least Squares.

Linear functional model to be used is:

V = A · X̂ + f (6.3)

where x̂ is the vector of differential increments, and f is the vector of free members.
Whereas the stochastic model is:

K1 = σ2
0 ·Q1 (6.4)

Mutual leveling is performed under the assumption:
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• basic points are matched, or stable in both epochs.

• same ratio is present in both epochs.

Before the second phase, that is before mutual leveling it is necessary to determine
whether the mentioned demands are met. In order to check the stability, geological
and geophysical research is conducted. The ratio is determined by transforming the
coordination points in the current to the next epoch. Because stable points are defined
in this process, the whole group of stable points is adapted. Further research requires
verification of their stability and to exclude from the group the points that have been
confirmed unstable so that consistency is preserved.

Homogeneous accuracy of observation in both epochs is determined just like in the
Pelzer method [53] - using Fisher test. If it is concluded that both observations are
not of homogeneous accuracy, then after mutual leveling special attention is given to
the weight at certain observations. Numerical procedures in the Karlsruhe method are
applied in multiple phases that enable identification of stable points and according to
them movements of unstable points.

The ’Modified Karlsruhe’ method consists of leveling of M0 using the least squares
method by minimizing the part of the trace which corresponds to the assumed stable
points. Equalization of control measurement series with the least squares method by
minimizing the parts of traces corresponding to stable points of the deformation model
entails that coordinates in M0 are being used as approximate coordinates of the control
series.

Control of stability points is performed using a Helmert transformation. When
unstable points are discovered, it is necessary to perform new equalization using the
same method described above. Afterwards, relative error ellipses are calculated using
coordinates from the M0 and control series of measurement.

Increments of approximate (leveled) coordinates from the process of equalization of
spatial movements are calculated as:

dy = Yk − Y0,

dx = Xk −X0
(6.5)

Standard components of spatial movements are approximately equal to the square
root of the sum of squares of the coordinates in the M0 and control series of measurement.

The hypothesis of statistical testing can be geometrically interpreted as:

d̂i ·Q−1
d̂i
· d̂i ≤ 2σ̂2F1−α,2,f (6.6)

where F represents the value of Fischer distribution using probability 1− α at 2 and f
degrees of freedom.

If 6.6, by substituting ≤ with = then the expression represents the equation for the
ellipse which is identical to the relative ellipse error between points T1i and T2i, increased
by a factor of

√
2 · F1−α,2,f . Semi-major axis is determined by:
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Aj = σ̂o
2 · 2 · F1−α,2,f · λj , j = 1, 2 (6.7)

where λj are the values given by the matrix Qd̂2
.

λ1 = 1
2(qxxd + qyyd+ k),

λ2 = 1
2(qxxd + qyyd− k),

k =
√

(qxxd − qyyd)2 + 4q2
yxd

(6.8)

The direction θ of semi-major axis A according to the positive coordinate axis is:

tg2θ = 2qxyd
qxxd − qyyd

(6.9)

Relative semi-axis ellipses are multiplied by a factor of
√

2 · F1−α,2,f , so that the
surface of the ellipse error corresponds to the confidence area with a probability of 1− α.

Deformation analysis using relative error ellipses can be easily represented graphically.
The direction vectors of points are drawn on the same sketch together with the enlarged
relative error ellipse. The vector of movement di goes from point T1i to T2i, and in point
T2i locates the center of the ellipse. If the point T1i is outside the surface of the ellipse
then the zero hypothesis is excluded, that is with certain probability deformations in
point T1i are being defined.

Figure 6.5: Deformation analysis using relative error ellipses; a) unstable point b) stable
point
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6.3 Measurements
When the measurements took place, the temperature was between +4 ◦C and +16 ◦C,
which is considered good as the thermal movements are minimal at these temperatures.

The following objects have been taken into consideration during field investigations:

1. Abutment diaphragms A-B, C-D, and E-F have all been observed in vertical and
horizontal axis in order to monitor the deformations that are taking place. These
objects are considered the best source of information in deformation monitoring in
the case of underground construction works.

2. Residential building in street “Stevan Filipovic 28” has been observed in horizontal
and vertical axis, but not using the same points. Horizontal deformations have been
observed on three horizontal levels, whereas vertical on two levels, see Figure 6.6.

3. The other residential buildings in the same street listed above are only observed on
vertical axis.

4. Overpass in the street “Oktobarska revolucija” - deformations are only monitored
on vertical axis, same like in the case of residential buildings.

The data to be used for forecasting deformation movements will be focused on
the residential building in “Stevan Filipovic 28”, because it has undergone extensive
geodetic measurements. The main reason is that the tunnel which is connecting the two
underground stations is located exactly underneath this building.

Over the course of time, point 13 had been damaged, but was still a valuable source
of information as it was used as the centre point. Point 2a and 5a were not observed in
horizontal axis because they were obstructed by the construction materials and huts.

Horizontal measurements have been performed using the elevation network which
has been designed by the engineers and experts in geodesy. Angled measurements have
been conducted by observing the 4 gyres in the elevation network and 3 gyres for the
points on objects using the instrument WILD T20005 with forced centralization of the
instrument and traverse tables for visualization.

Length measurements have been performed with distomat DI-20 and GPS where the
statistical method of differential positioning has been used. Two GPS receivers of type
Dimension from company Ashtec have been used, which are single-frequency with 12
channel and enable the user to receive signals from 12 NAVSTAR GPS satellites from 28
satellites launched at the height of 20200 km. 24 are active and are circling in 6 orbital
planes with the inclination of 55 ◦, and time of rotation of 12h. The remaining 4 satellites
are in reserve.

The best time intervals for measurements have been determined with the module
’Multi-site Mission planning’ [68] from Prism software package of the company Ashtec,
that provides full support for all activities related to GPS measurements. This module
based on the geographic coordinates of the network and the date of the observation
provides the user with the number of available satellites in form of a diagram. The time
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Figure 6.6: Observed points in residential buildings

of observation of one vector was 1.5h, at which point 20 seconds were registered from all
satellites. When measuring the lengths meteorological parameters were used, along with
temperature and pressure.

For the purpose of determining total vertical movements, an elevation network was
used with the method of precise leveling. Measurements were conducted with level WILD
NA-2 with an optical plate and WILD invar rods. At the field site, control measurements
were conducted in order to minimize errors and provide accurate measurements targeted
by the project of geodetic measurements.

For controlling angled measurements, triangle closure in the elevation network has
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been tested. Permitted, or targeted lack-of-fit was ±5in, directions between gyres 4in,
and between minus and plus sight ±5in. For level measurement control, polygon closure
under criteria for precise leveling was used. Permitted lack-of-fit for one level of the
network is

δs = ±0.4
√

2n mm (6.10)

where n is the number of stations in one direction. Permitted lack-of-fit for polygon
closure is:

δp = ±0.2
√

2np mm (6.11)

where np is the nubmer of polygon stations in one direction. All field measurements that
entered the numerical processing have satisfied the conditions above in terms of accuracy.

6.4 Data processing
After field investigation control measurements, in vertical and horizontal plane, calcu-
lation of definite directions and lengths from all observed gyres has been performed.
When processing conventional length measurements, appropriate adjustments based on
atmospheric influence, and altitude have been applied (the project was done at the
altitude of 97m). For GPS measurements, simultaneous registered data in receivers at the
final points of the measured vector were grouped in three files. The data was transferred
and processed using the software package PROCESS for each individual vector. For
measured vectors the same adjustments like in length measurements need to be applied.

As a result of GPS measurements, based on the least squares method, length of the
vector was calculated, including average squared error, spatial components of the vector
together with the least squared errors.

When the errors were not in the allowed threshold, the vectors were re-processed
interactively by the system. In this variant the software enables the user to omit the
results from certain satellites and time intervals that are not aligned with the others, as
well as the possibility of changing the referred satellite. The built-in software comes with
the modules necessary modules to deal with the result variance.

When the results have been processed, they are then used by the software to perform
the leveling of the elevation network, which is done by the method of group leveling with
the condition that the least squared errors are minimal.

The necessary steps needed to perform the leveling are: error equations, inversion and
control of inverted matrices for accuracy measurements, calculation of definite coordinates,
calculation of mean error unit as well as the mean errors of units which are respectively:

mo = ±0.72,
mymax = ±1.00mm,
mxmax = ±1.20mm

(6.12)

Point XX has been taken from polar coordinates because barracks of construction
workers had been built nearby.
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With the processed coordinates, the stability of the elevation network has been
determined using the Helmert transformation. For stable points, elevation network has
been leveled together with the points for observation on abutment diaphragms and
residential buildings. Leveling has been performed based on the groups the points belong
to. The exact information that is being fed to the software is:

• id and name of stability points

• id and name of points that determine movements

• measured values, directions, and lengths

• spatial coordinates of the points in elevation network together with the approximate
coordinates of the observed points

Mean error unit that characterizes accuracy of the performed measures is:

mo = ±1.0 sec (6.13)

Mean error for determining coordinates for most observed points have the value around
±1mm. Maximum value by T axis is ±2.3mm, and by R ±2.8mm, excluding points 1
and 1a whose mean error can go up to 3.6mm. The description of axes T and R can be
found in the below paragraph.

Because of the works being done at the construction site, deposition of materials etc.
it is not always possible at any given time to get an accurate reading of any point. This
is especially reflected at the diaphragm under the residential building for observed points
that in their index have an ’a’. This has lead the engineers to create additional points for
observation (1E to 4E), in order to provide more accuracy.

Elevation network with the observed points has been leveled in the local coordination
system which uses radial axis R(x) that matches the axis of the metro line (973 and 989),
with positive mark towards the metro platform, and tangent axis T (Y ) perpendicular to
R, with a positive mark towards the tunnel ’Dedinje’.

The leveling of the elevation network and the calculations of height differences has
been done using a benchmark (GN 236) placed on the portal of the ’Dedinje’ tunnel.
Processing of this data using the software has been done using:

• id and name of stability benchmark with value

• id and name of the stability points that determine movements with their approximate
values

• measured height differences

• weight p = 1/n where n is the number of stations in one direction
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In this case, the elevation networks has also been leveled by grouping all the points
and using the least squares method. Mean error unit which characterized the accuracy of
performed measures in this case is mo = ±0.1mm per point. With the averaging method
(which is in fact Helmert transformation by vertical axis) stable benchmarks are being
identified. The movements for these benchmark points have been marked as 0mm, as
they were identified as stable points. The mean error for all vertical movements for all
observed points has value of 0.3mm.

Movements in horizontal and vertical plane for abutment diaphragms and residen-
tial buildings have been determined based on measurement zero, or the first recorded
measurement M0. When analysing total movements of observed points for these objects
including the overpass with pillars, movements in horizontal planes R and T and vertical
plane are being taken into consideration. The accuracy of the movements played an
important role in the final report of the measurements, as the ones that are deviating
from the allowed threshold had been marked as errors.

6.5 Horizontal plane measurement results
(a) Abutment diaphragms C-D Total radial movements at the final elevation (114.5m) are

relatively of small magnitude direction towards platforms, maximum was +6.5mm
(point 14). Benchmark 1 has movement of +7.4, but slightly higher determination
error (±3.6mm). Total radial movements for benchmarks of diaphragms with index
’a’ with elevations of 106.60 to 110.7m, as well as observed points at the final elevation
of diaphragms have the same movement direction and similar values, and maximum
is at point 12a at +7.2mm. Points from 1a to 6a have average determination errors of
+3.4mm, and that their movements are around +7.2mm. Tangent movements for all
observed points are mostly in the range of the double average determination error and
are around +2.0mm. A few points are outside the range (1a and 18) but their mean
error is slightly higher. At this diaphragm point 17 had been destroyed, and point
13 damaged. Increment of horizontal radial movements with respect to the previous
measurements were relatively low. For points on elevation 114.5m the highest was
point 14 with value (3.3m). For points with index ’a’ the highest was point 9a with
value +4.6mm. Increment of tangent movements (towards the platform) are of low
value and were in the range of −2.5mm (point 1) to +2.3mm.

(b) Abutment diaphragm E-F Main characteristic of horizontal movements for this
diaphragm was that the movements were rather equal and in the range of 1.9mm
(point 24) to 6.8 (point 22). Tangent movements for all observed points are of low
and equal values of negative direction of up to −1.4mm (point 26). Two points 22
and 29 have slightly higher movement of up to −3.0mm. Point 21 was destroyed
in the process. Increment of horizontal radial movements with respect to previous
movements have the direction towards the rails, and maximum was at +3.0mm
(point 25), excluding the final points of the diaphragm 19 and 29 where the increment
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was sligthly higher, up to +5.9mm. Increment of tangent movements in the same
period were of low values (up to −1.3mm excluding point 29 (-3.3mm).

(c) Abutment diaphragms A-B Movements at this diaphragm had been approximated
using point 32 whose movements were in the range of accuracy of their determination
and two points 31 and 32a that had movements on both axes −3.0mm and +2.8mm.

(d) Residential building 28 As mentioned before, this object was observed at three
different levels (fourth, ninth, and fourteenth floor). The main characteristic of radial
movements was that all observed points had a positive direction, that is movements
towards the abutment diaphragms of varying intensity:

• for observed points on 14th floor, movements are up to 5.2mm (point 105)
• for observed points on 9th floor, movements are up to 4.5mm (point 112a)
• for observed points on 4th floor movements are up to 4.4mm (point 111b)

Movements of all other observed points are of equal value and are of decreasing value
from 14th to 4th floor. Tangent movements are also of equal values and of negative
direction, opposite of ’Dedinje’ tunnel, and maximum was at −6.2mm (point 107).
The value of tangent movements is decreasing from 14th to 4th floor. Increment
of horizontal radial movements with respect to previous measurements were in the
interval of −2.8mm (point 113) to +3.2mm (point 108). Most increments are in
the range of determination accuracy or double mean error. Increment of horizontal
tangent movements with respect to previous measurements are in the direction of
the Dedinje tunnel, and are equally distributed for all observed points in the range of
−4.0mm. A few points have slightly worse mean determination error and are outside
the range of these values (106-109) and their increments are up to −8.4mm.

6.6 Vertical plane measurement results
(a) Abutment diaphragm C-D This diaphragm is observed on two levels and the final

elevation at 114.0m, and the second group of benchmarks is installed depending
on the site conditions at elevations of 110.7 and 106.6m. The observed points at
this diaphragm indicate settlement, and maximum value has point 15 of −5.0mm.
For points in the second level that have an index ’a’ highest movement has point
15a in the range of −4.7mm. It is evident that the movements are increasing
from point 1 to point 15 where they reach peak. The same ascertainment can be
made for the benchmarks at the diaphragm, points 1a-16a, that are positioned at
elevation 106.6 to 110.7m, except that the movements are relatively low. Increment
of vertical movements with respect to previous measurements are in the direction of
the settlement and the maximum is present at point 15a and in the range of −2.6mm.
The beginning of diaphragm from street ’Oktobarska revolucija’ has very low heaving
of up to +1.2mm.
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(b) Abutment diaphragm E-F For all observed points the measurements are in the range
of double determination error and in the direction of heaving, and maximum is at
1.1mm (point 27). Increment of vertical observation comparing with previous values
are in the range of allowed threshold.

(c) Abutment diaphragm A-B For observed points the measurements are in the border
of the accuracy threshold. Increments of vertical movements with respect to previous
measurements have a trend of low heaving +1.1mm (point 32a).

(d) Residential objects in the street ’Stevan Filipovic’ In this street, buildings 28-39 are
being observed. For all of these buildings the movements for observed points are
in the range of −0.8mm (point 28) to +1.2mm (points 29 and 33). Increments of
vertical movements when comparing them to previous have the direction of heaving
which is in the range of 1.0mm.

(e) Overpass with pillars in ’Bulevar mira’ All observations are in the range of −0.3mm
(point 41) to +1.5mm (point 35). Increments of vertical movements have very slight
heaving of up to (1.0mm).

6.7 Conclusion
Several points have been destroyed (17, 21, 13, 30). Points 3a and 4a have not been
observed in horizontal plane because of stocking of building materials in the viccinity.
Points 1a, 2a, 6a, and 7a had not been measured in vertical plane because of the same
reason. Point 39 (located at the pillar of overpass) had been mechanically damaged. New
points have been added to the elevation network, because a fence and barracks had been
built and hence obstructed the sight of points (direction XVI-VI). New points (1E-4E) of
temporary character (used in some measurements) have been added so that the cohesion
of the network would remain intact. In these measurements, columns I and VI had been
left out but this has not had an impact on the permanence of the coordinated system. In
the elevation network there were no changes compared to the projected state. The main
characteristic of total horizontal movements for observed points of diaphragm was that
the movements on radial component were slightly higher than of the previous and that
their direction stayed the same towards railway station ’Centar’. Tangent movement for
observed points have usually been in the range of allowed threshold, or smaller than the
double mean error. For building in street ’Stevan Filipovic’ radial movements are in the
value of +5.2mm towards the railway station ’Centar’. Tangent movements are of equal
values, and maximum was at −6.2mm opposite of ’Dedinje’ tunnel. Vertical movements
in the direction of the settlement shows that the diaphragm C-D is of maximum peak at
−5.0 at the final elevation. For all other observed objects, movements are at the border
of determination accuracy. When interpreting the results, one has to take into account
the difficulty of observing certain points due to works at the construction site, or even
degree of realization of the project at that point in time.
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CHAPTER 7
Time Series Prediction

7.1 The Task
Let Xt denote time series, or a sequence of data x1, x2, ..., xN which are successive points
measured in time intervals. The objective is to forecast future values of xN+h. The integer
h is called the horizon, or lead time. A forecasting method is a procedure for computing
forecasts from present and past values. As such it may simply be an algorithmic rule and
need not depend on an underlying probability model. Alternatively it may arise from
identifying a particular model for the given data and finding optimal forecasts conditional
on that model. Forecasting methods can be classified into three types: [15]

• Judgemental forecasts based on subjective judgement, intuition, and any other
relevant information. Most famous is the Delphi technique [41] which aims to find
a consensus of opinion for a group of experts, based on a series of questionnaires.

• Univariate methods where forecasts depend only on present and past values of
the single series being forecasted, possibly augmented by a function of time such as
a linear trend.

• Multivariate methods where forecasts of a given variable depend, at least partly,
on values of one or more additional time series variables, called predictor or ex-
planatory variables. Multivariate forecasts may depend on a multivariate model
involving more than one equation if the variables are jointly dependent.

A forecasting method could also combine more than one of the above approaches. For
example, when univariate or multivariate forecasts are adjusted subjectively to account
for external information which is difficult to express formally in a mathematical model.
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7.2 Existing models for time series prediction
There are three types of linear models:

• Box-Jenkins [61], also known as ARIMA (Autoregressive Integrated Moving Aver-
age) and its variations, such as moving average (MA), autoregression (AR), and
autoregressive moving average (ARMA) describe future data as linear combination
of historical data and some random processes.

• State-space models [58] represent inputs as a linear combination of a set of space
vectors that evolve over time according to some linear equations. The phrase “state
space” derives from a class of models developed by control engineers for systems
that vary through time.

• Exponential smoothening [9] models smoothed data S(t) as a function of raw data
R(t) by S(t+ 1) = AR(t) + (1−A)S(t)

7.2.1 Autoregression

A time series Xt is said to be an autoregressive process of order p, if it is a weighted
linear sum of the past p values plus a random shock such that:

Xt = φ1Xt−1 + φ2Xt−2 + ...+ φpXt−p + Zt (7.1)

where Zt is a purely random process, and φ(B) = 1− φ1B − φ2B
2 − ...− φpBp is a

polynomial in B of order p.

7.2.2 Moving Average

A time series Xt is said to be an moving average process of order q if it is a weighted
linear sum of the last q random shocks such that:

Xt = Zt + θ1Zt−1 + ...+ θqZt−q (7.2)

where Zt is a purely random process, and θ(B) = 1 + θ1B + ...+ θqB
q is a polynomial of

order q.

7.2.3 Nonlinear Models

The time series literature has traditionally concentrated on linear methods and models,
because of mathematical and practical convenience. Despite their simplicity, linear
methods often work well and may well provide an adequate approximation for the task
at hand, even when attention is restricted to univariate methods.

There are, however many time series which exhibit features that cannot be explained
by a linear model. For example, the famous time series showing average monthly sunspot
numbers exhibits cyclic behaviour with a period of approximately 11 years, but in such a
way that the series increases at a faster rate than it decreases. Another example are the
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economic time series, which tend to behave differently when the economy is moving into
recession rather than when coming out of recession. Many financial time series however,
show periods of stability, followed by unstable periods with high volatility. Sometimes
financial data series will look stationary in the mean, but non-stationary in variance.
Behavior like this cannot be explained with a linear model, and so non-linear models are
usually needed to describe data where variance changes over time.

Nonlinear Models can be classified into models with predefined nonlinearity assump-
tions and general models. Pre-defined nonlinearity methods are not effective for modelling
time series with unknown nonlinear behaviour. Machine learning [10] can handle non-
linear time series because it learns a model without nonlinearity assumptions. Specific
methods include static learning (such as k-nearest neighbours), reinforcement learning
(Q-learning), and supervised learning (decision trees, ANNs).

7.3 Artificial Neural Networks
A neural network (NN) can be thought of as a system connecting a set of inputs to a set
of outputs in a nonlinear way. In a time series context the output could be the value of
a time series to be forecasted and the inputs could be lagged values of the series. The
connections between inputs and outputs are typically made via one or more hidden layers
of neurons or nodes. The structure of an NN is called architecture usually. Choosing the
architecture includes determining the number of layers, the number of neurons in each
layer, and how the inputs, hidden layers and output(s) are connected.

The strength of each connection between neurons is measured by a parameter called
weight. There may be a large number of parameters to estimate. A numerical value is
calculated for each neuron at each time period t, as follows. Let yi,t denote the value of the
ith input at time t. For each neuron, a weighted linear sum of inputs vi(t) = ∑

j wijyij(t)
is calculated. Next, an activation function is selected, for transforming the values of
the weighted linear sum of inputs into a final value for the neuron. A commonly used
function is the logistic function, z = 1

1+e(−v) which gives values in range 0, 1. The logistic
function should not be used at the output stage in time series forecasting unless the data
are suitably scaled to lie in the interval (0, 1). Otherwise, forecasts will be of the wrong
order of magnitude.

A constant input unit is connected to every neuron in hidden layer and also to
the output. This is known as the bias in NN terminology, or an intercept term in
statistics. Essentially the biases are replaced by weights which measure the strength of
each connection from the unit input and so become part of the overall set of weights.

7.4 Computing the forecast
For an ANN model with one hidden level of H neurons, the general prediction equation
for computing a forecast of xt (output) using past observations xt−j1 , ..., xt−jk as inputs
may be written in the form [15]:
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x̂t = φo(wco +
H∑
h=1

whoφh(wch +
k∑
i=1

wihxt−ji)) (7.3)

where wch denotes weights for the connections between the constant input and the
hidden neurons, for h = 1..H and wco denotes the weight of the direct connection between
the constant input and the output. The weights wih and who denote the weights for the
other connections between the inputs and the hidden neurons and between the neurons
and the output, respectively. The two functions φh and φo denote the activation functions
used at the hidden layer and at the output.

The weights to be used in the ANN model are estimated from the data by minimizing
the sum of squares of the within sample one step ahead forecast errors, namely S =∑
t( ˆxt−1(1)− xt)2, over a suitable portion of the data.
In practice, the data is divided into three sections, to fit the ANN model by the first

section, called the training set which is used to adjust the weights of the network, a
validation set used to minimize overfitting, and the test set to hold back the part of the
data, so as to get an independent check on predictions. The test set is kept in reserve
so that genuine out-of sample forecasts can be made and compared with the actual
observations.

The number of parameters in an ANNmodel is typically much larger than in traditional
time series models. For a single layer ANN model, it is given by p = H × (k + 2) + 1
where k is the number of input variables, and H is the number of hidden neurons. The
large number of parameters means there is a possibility that model-fitting will overtrain
the data and produce a spuriously good fit which does not lead to better forecasts. This
motivates the use of regularization where the error function is modified to include a
penalty term which prefers small parameter values.

7.5 Architectures used
Neural network must contain memory in order to process temporal information. There
are two basic ways to build memory into neural networks [45]. The first is to introduce
time delays in the network and to adjust their parameters during the learning phase.
The second way is to introduce positive feedback, that is making the network recurrent.
This project will concentrate on two architectures: finite impulse response (FIR) and
recurrent neural networks.

FIR neural network uses the unfold-in-time static approach, and is a functional
equivalent of the time delay neural network (TDNN). They do not have feedback con-
nections between units. TDNN provide simple forms of dynamics by buffering lagged
input variables at the input layer and/or lagged hidden unit outputs at the hidden layer.
FIR network is a feedforward network whose static connection weights between units
are replaced by an FIR linear filter that can be modeled with tapped delay lines. After
applying the unfold-in-time technique to a FIR, all delays will be removed by expanding
the network into a large equivalent static structure. The standard backpropagation

70



algorithm [60] is then applied for training. Formally, time delays are identical to time
windows and can thus be viewed as autoregressive models.

Recurrent Neural Networks (RNN) have feedback connections. They address the
temporal relationship of inputs by maintaining internal states that have memory. Real
time recurrent back-propagation and backpropagation through time are two popular
algorithms for training RNNs [40], which can be difficult due to the feedback connections.

7.5.1 Finite Impulse Response (FIR) Neural Networks

This chapter introduces the first network architecture that will be used for forecasting
future values of nonlinear dynamic systems described in Section 7.2. Section 7.5.2
describes the linear systems (filters) which are used as a substitution to normal feedforward
network’s weights. Sections 7.5.3 and 7.5.4 describe the training algorithm used by this
network, called temporal backpropagation.

7.5.2 Linear Systems

It is possible that P, the process whose output is trying to get predicted is governed
by linear dynamics [30]. The study of linear systems is the domain of Digital Signal
Processing (DSP).

DSP is concerned with linear, translation-invariant (LTI) operations on data systems.
Those operations are implemented by filters. The analysis and design of filters effectively
forms the core of this field.

Filters operate on an input sequence ut, producing an output sequence xt. They are
typically described in terms of their frequency response, i.e. low pass, high-pass, and
band-stop.

There are two basic filter architectures, known as the Finite Impulse Response (FIR)
filter and the Infinite Impulse Response (IIR) filter.

FIR filters are characterized by q + 1 coefficients:

x[t] =
q∑
i=0

βiu[t− i] (7.4)

These filters implement the convolution of the input signal [7] with a given coefficient
vector βi. The input in these filters u[i] is the impulse function, and the output of the
filter is inherently stable, as it is a sum of a finite number finite multiples of the input
values.

IIR filters are characterized by p coefficients.

x[t] =
p∑
i=1

αix[t− i] + u[t] (7.5)

The input u[i] contributes directly to x[i] at time t, but, crucially, x[t] is otherwise a
weighted sum of its own past samples [34]. Because both the input signal and vector αi
are finite in duration, the response asymptotically decays to zero. Once on of the x[i] is
non-zero, it will make non-zero contributions to future values of x[t] infinitely often.
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Figure 7.1: Finite Impulse Response Filter

Figure 7.2: Multilayer feedforward network equivalent

7.5.3 FIR filters in ANNs

In Finite impulse response (FIR) Neural networks, each neuron is extended to be able
to process temporal features by replacing synapse weights by finite impulse response
filters. A general structure of this filter is shown in Figure 7.1. A multilayer feedforward
network [42] is then built using these neurons as shown in Figure 7.2. The network input
layer consists of FIR filters feeding the data into the neurons in hidden layer. Output of
a layer may only connect to the first tap of a node in next layer. The network may have
one or several hidden layers. Output layer consists of neurons which receive their inputs
from the preceding hidden layer.

At each time increment, one new value is fed to input filters, and output neuron
produces one scalar value. In effect this structure has the same functional properties

72



as the Time Delayed Neural Networks (TDNN). However, the FIR neural network is
interpreted as a vectoral and temporal extension of the Multilayer Perceptron (MLP).
This interpretation leads to the temporal backpropagation algorithm.

7.5.4 Temporal Backpropagation

The basic backpropagation algorithm assumes that the neural network is a combinational
circuit, providing an output for a given input. However, many applications suitable for
adaptive learning have inherently temporal structures. Every time-delay neural network
can be represented as a standard static network simply by duplicating nodes and removing
delays. The resultant net is much larger, contains a large number of weight duplications
(or triplications), and is not fully interconnected. The process of creating the static
equivalent can be thought of as ’unfolding’ the network. Once the network is unfolded,
the backpropagation algorithm can be applied directly to solve the static network.

Creating a static equivalent of a finite impulse response neural network consists of two
stages. In the first stage, all the nodes in the static network are counted. [20] Portions of
the static equivalent network are a ’virtual’ network of nodes and weights representing
past states of the physical network. Counting the total number of virtual nodes is a
simple procedure, starting at the last (output) layer and working backwards to the input
layer. The output layer of the static network contains the same number of nodes as the
output layer of the temporal network. Because this layer has no delay taps, the next layer
has no non-physical nodes, and the number of virtual nodes of the static equivalent is
equal to the number of filters in that layer times the number of placeholders in each filter.
For each layer back to the input, the number of total virtual nodes is a cumulative sum
of the number of virtual nodes in that layer plus the number of virtual nodes calculated
for the previous layer minus one (because the first placeholder in each filter accepts and
propagates its input without delay to the next layer). Mathematically, the notation for
total virtual nodes at a layer is:

Tl =
{

1 l = L

Tl+1 + Tl − 1, 1 ≤ l ≤ L
(7.6)

where Tl is the physical number of taps per filter, and l denotes the number of layers.
The next stage is to actually unfold the network. The first step is to copy down the
output nodes, then to copy down all the placeholders of the next layer back, and make
each one into a node by prepending a processing element to it [28]. The result is a
partial network shown in Figure 7.3. So far, the training algorithm is simply a standard
backpropagation without modifications, except that the hidden-layer nodes are referenced
with three, instead of two variables. Therefore the corresponding weights are calculated
as:

∆wLyt = −ηδLi1y(L− 1)jt, 1 ≤ j ≤ I(L−1), 1 ≤ t ≤ T(L−1), 1 ≤ i ≤ Ii (7.7)
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Figure 7.3: Partial static neural network in the unfolding process

δLi1 = −2(di − yLi1) d
dx

(yLi1), 1 ≤ i ≤ IL (7.8)

where 1 is used as a subscript to denote that there is only one tap s = 1 associated
with the output layer L. The network still has the exact physical layout of the temporal
net, but without the delay units.The next step is to copy the first layer and second layer
weights downward, overlapping placeholders when necessary, until the number of inputs
in the first layer equals the number of accumulated inputs calculated.

The final step involves refolding the network by interpreting its elements in the
temporal notation. For any weight w2ijt the hidden layer elements to which it connects
are Y2in, 1 ≤ n ≤ T2, where T2 is the number of filter taps in the hidden layer [28]. A
single weight is attached to multiple elements because the weight has been copied several
times, and this formula keeps track of all copies. Even though the weight connects only to
the x summation element physically in the temporal network, it connects to each of the
taps virtually, acting through the summation process. Each one of the hidden-layer nodes
in the virtual network is shown as having its own summation element. The resulting
network is illustrated in Figure 7.4.

The inputs to which the same weight connects are defined by:

y1j(t+m−1), 1 ≤ m ≤ T2 (7.9)

For a given node ylis, the associated weights attached to it in the direction of output
are given by:

ylis → w(l+1)kim, max(1, s− Tl+1) ≤ m ≤ min(s, Tl) (7.10)

where → means that y and w are connected.
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Figure 7.4: Static equivalent of neural network from figure

Finally, for a given ylis and a given weight attached to it w(l+1)kim, the associated
node on the other end of weight is given by:

ylis, w(l+1)kim → y(l + 1)k(s−m+ 1) (7.11)

These equations define relationship between the connectivity of a temporal network
and its static equivalent regardless of the training algorithm used.

At this point, we make some changes in the standard backpropagation algorithm.
The change in weight between the current and next iteration is given by:

∆wlijt = −H
Tj∑
n=1

∆liny(l−1)j(i+n−1) (7.12)

where 1 ≤ l ≤ L, 1 ≤ i ≤ Ij , 1 ≤ j ≤ Ij−1, 1 ≤ t ≤ Tj−1 and the backpropagated error
term needed to complete this equation is:

∆lin =

−2(di − yLi1) d
dxyLi1 (1)

d
dxylin

∑Ij+1
k=1

∑min(n,Tj)
m=max(1,n−Tj+1+1) ∆(l+1)k(n−m+1)w(j+1)kim (2)

(7.13)

where l = L, n = 1, 1 ≤ i ≤ Ij in (1), and 1 < l < L, 1 ≤ i ≤ Ij , 1 ≤ n ≤ Tl in (2).
In these equations, L represents the total number of network layers, Ij the number

of filters per layer, Tl the number of taps per filter in a given layer, the value yLi1 is
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the output per output node, and di is the desired output per output node. The basic
feedforward relationship is given by

ylis = f(xlis), 1 < l ≤ L, 1 ≤ i ≤ Il, 1 ≤ s ≤ Tl (7.14)

where f() is a limited function, such as sigmoid, or tanh.

7.6 Implementation
The unfortunate point about temporal propagation algorithm is that components of the
virtual network appear in the training algorithm. Fortunately, it is possible to remove
virtual weights from the algorithm but the virtual placeholders remain and must be
accounted for in every network realization. Each virtual placeholder is a time-dependent
value and so must have an associated delay element. For the temporal propagation
algorithm, each δ is associated with a node in the virtual network, and also requires
memory for storage, but that is a small price to pay for the benefit of compression of the
entire network. The total amount of computation performed is slightly less than standard
backpropagation algorithm, because the static equivalent of the temporal network is not
fully interconnected.

Given the original static network, it is difficult to make a guess as to a number of
hidden layers and hidden layer units needed to optimally solve the problem [32]. The
number of layers in the network is equal to the hierarchy of features we wish to detect (for
example stock market trends). The number of filters is equal to the number of features,
and the number of taps per filter is equal to the time span of the feature divided by the
delay time of the tap delays. The total number of virtual taps at the input should the
total time length of an input pattern group, even though the actual number of physical
input taps is quite small.

The FIR network designed in this project has 2 hidden layers. The training algorithm
is given in pseudocode and can be found in 7.1. The other two algorithms are procedures
which are called within TrainFIR.

Algorithm 7.1: FIR Training Algorithm
Input: NumberofVectors, NumberOfEpochs, Input
Output: Target

1 for Epoch← 0 to NumberOfEpochs do
2 for i← 0 to NumberOfV ectors do
3 Layer1pass[i] Layer2pass[i] Layer2backprop[i] Layer1backprop[i]

Update[i]
4 end
5 MSE[Epoch] ResetDelta
6 end
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Algorithm 7.2: Calculate the output using weights and taps
Input: NumHidden,NumInput,BiasVectors
Output: Future values of the time series

1 for i← 0 to NumHidden do
2 Out+ = BiasV ectors[0][i]; for j ← 0 to Taps[0] do
3 temp = index− j for k ← 0 to NumInput do
4 Out = Input[Weightk] ∗Weights[0][Tapsk,j ]
5 end
6 HiddenOutput[i][temp] = tanh(Out)
7 end
8 end

Passing values to the second layer is similar to 7.2. The only difference between
Layer2pass and Layer1pass is that indexing of matrices will change (when addressing
taps, and delays). The same applies to Layer2backprop, and Layer1 backprop.

Algorithm 7.3: Forwarding the values to the first tap layer
Input: NumOutput,Taps,Weights
Output: HiddenDelta

1 for i← 0 to NumHidden do
2 Delta = 0; for j ← 0 to Taps[1] do
3 temp = index− j for k ← 0 to NumOutput do
4 Delta+ = NetDelta[k][temp] ∗Weights[1][Tapsk,i]
5 end
6 temp = index− Taps[1] + 1

HiddenDelta[i] = Delta ∗ tanh(HiddenOutput[i][temp])
7 end
8 end

7.7 Recurrent Neural Networks
A recurrent net is a neural network with feedback (closed loop connections) [67]. The
examples include Bidirectional Associative Memory (BAM) [43], Hopfield, Boltzmann
machine [4], and recurrent backpropagation nets. The architectures range from fully
interconnected to partially connected nets, including multilayer feedfoward networks with
distinct input and output layers. Fully connected networks do not have distinct input
layers of nodes, and each node has input from all other nodes. Feedback to the node
itself is impossible.

Two fundamental ways can be used to add feedback into feedforward multilayer neural
networks. Elman introduced feedback from the hidden layer to the context portion of the
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input layer [27]. This approach pays more attention to the sequence of input variables.
Jordan recurrent neural networks [35] use feedback from the output layer to the context
nodes of the input layer and give more emphasis to the sequence of output values.

Another popular architecture of these type of ANNs are Dynamic Recurrent Neural
Networks (DRNN) [19], which are a class of fully recurrent neural networks obtained
by modelling synapses as autoregressive filters. These networks approximate underlying
law governing the time series by a system of nonlinear differential equations of internal
variables [39]. Therefore, they provide a history-sensitive forecasts without having to be
explicitly fed with external memory. The model is trained by a local and recursive error
backpropagation algorithm called temporal-recurrent backpropagation. The efficiency
of the procedure benefits from the exponential decay of gradient-terms backpropagated
through the adjoint network.

7.7.1 Learning in Recurrent Neural Networks

Hebbian learning and gradient ascent learning are key concepts upon which neural
network techniques have been based. While backpropagation is relatively simple to
implement, several problem can occur in its use in practical applications [47], including
the difficulty of avoiding entrapment in local minima. The added complexity of the
dynamical processing in recurrent neural networks from the time delayed updating of the
input data requires more complex algorithms for representing learning.

Neural networks with recurrent connections and dynamical processing elements are
finding increasing applications in diverse areas [69]. While feedforward networks have
been recognized to perform excellent pattern recognition even with complex nonlinear
decision surfaces, they are limited to processing stationary patterns (invariant with time).

7.8 RNN Architectures
There are two ways to include feedback connections in neural networks[49]: activation
feedback, and output feedback. These schemes are related to state space representation
of neural networks. The output of a neuron in a network using activation feedback is:

v(k) =
M∑
i=0

wuj(k)u(k − i) +
N∑
j=1

wv,j(k)v(k − j),

y(k) = Φ(v(k))
(7.15)

The transfer function of a neuron in a network using the output feedback scheme can
be expressed as:

v(k) =
M∑
i=0

wuj(k)u(k − i) +
N∑
j=1

wy,j(k)v(k − j),

y(k) = Φ(v(k))
(7.16)
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Figure 7.5: Example of an Elman recurrent network

7.8.1 The Elman Network

The Elman network was introduced by Elman in 1990 [22]. In this network a set of
context units are introduced which are extra input values whose activation values are fed
back from the hidden units. This network architecture is similar to the Jordan network
except that inputs are fed back from hidden units, instead of output units, and the values
are fed back to context units instead of state units. Figure 7.5 shows an example of an
Elman recurrent network.

A three-layer network is used, with the addition of a set of "context units" in the
input layer. There are connections from the middle (hidden) layer to these context units
fixed with a weight of one. At each time step, the input is propagated in a standard
feed-forward fashion [39], and then a learning rule (usually back-propagation) is applied.
The fixed back connections result in the context units always maintaining a copy of the
previous values of the hidden units (since they propagate over the connections before
the learning rule is applied). Thus the network can maintain a sort of state, allowing it
to perform such tasks as sequence-prediction that are beyond the power of a standard
multi-layer perceptron.

7.8.2 Fully recurrent networks

Fully recurrent networks, as their name suggests, provide two-way connections between
all processors in the neural network. A subset of the units is designated as the input
processors, and they are assigned or clamped to the specified input values [8]. The
data then flows to all adjacent connected units and circulates back and forth until the
activation of the units stabilizes. Figure 7.6 shows the input units feeding into both the
hidden units (if any) and the output units. The activations of the hidden and output
units then are recomputed until the neural network stabilizes. At this point, the output
values can be read from the output layer of processing units.

Fully recurrent networks are complex, dynamical systems, and they exhibit all of the
power and instability associated with limit cycles and chaotic behavior of such systems. [8]
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Figure 7.6: Structure of fully recurrent neural networks

Unlike feed-forward network variants, which have a deterministic time to produce an
output value (based on the time for the data to flow through the network), fully recurrent
networks can take an in-determinate amount of time.

By placing some constraints on the connection weights, we can ensure that the
network will enter a stable state. The connections between units must be symmetrical.
Fully recurrent networks are used primarily for optimization problems and as associative
memories. A nice attribute with optimization problems is that depending on the time
available, one can choose to get the recurrent network’s current answer or wait a longer
time for it to settle into a better one [8]. This behavior is similar to the performance of
people in certain tasks. The training algorithm which will be used to train these networks
for this project is backpropagation through time, which will be described in the next
section.

7.9 Backpropagation through time
The backpropagation through time algorithm for training recurrent neural networks can
be derived the temporal operation of the network into a multilayer feedforward network,
which will grow at every time step t. All recurrent weights can be duplicated spatially
for an arbitrary number of time steps τ . Consequently, each node which sends activation
along a recurrent connection has at least τ number of copies as well.

These networks may contain any number of feedback loops in their connectivity graph.
The only restriction in this implementation is that there may be no connections between
input units. The gradients of the weights in the recurrent network [66] are approximated
using an feedforward network with a fixed number of layers. By unfolding the network at
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Figure 7.7: Unfolding the network using BPTT

time steps 1, .., T the recurrent network gets transformed to a feedforward neural network
with T stages of computation. At each time step t an external output x(t) is fed into the
network and the outputs of all computing units are recorded. Initial values of output
units are assumed to be zero at t = 0 but the external input can be different than zero.
Figure 7.7 shows a diagram of the unfolded network.

At each time step, vectors consisted of units outputs, and derivatives of the activation
function are stored. The error of the network can be measured after each time step if a
sequence of values is to be produced, or just after the final step T if only the final input
is of importance. In the unfolding process, the transformed network is indistinguishable
from the original network from the viewpoint of the result it produces. [49]

There are three versions of backpropagation through time:

• BPTT: Backpropagation through time with online-update. The gradient for each
weight is summed over backstep copies between successive layers and the weights
are adapted using the formula for backpropagation with momentum term after each
pattern. The momentum term uses the weight change during the previous pattern.

• BBPTT: Batch backpropagation through time. The gradient for each weight is
calculated for each pattern as in BPTT and then averaged over the whole training
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set. The momentum term uses update information closer to the true gradient than
in BPTT.

• QPTT: Quickprop through time. The gradient in quickprop through time is
calculated as in BBPTT, but the weights are adapted using the substantially more
efficient quickprop-update rule.

A recurrent network has to start processing a sequence of patterns with defined
activations. All activities in the network may be set to zero by applying an input pattern
containing only zero values. If such all-zero patterns are part of normal input patterns,
an extra input unit has to be added for reset control. If this reset unit is set to 1, the
network is in the free running mode. If the reset unit and all normal input units are set
to 0, all activations in the network are set to 0 and all stored activations are cleared as
well.

Gradient δ is calculated as follows [30]:

δk(k) =
{

Φ′(vj(k))ej(k), k = k1

Φ′(vj(k))[ej(k) + ∑
i∈Awi,jδi(k − 1)], k0 < k < k1

(7.17)

Weight changes are computed as in standard BP:

δE(t)
δwij

=
t∑

τ=t0+1
δi(τ)xj(τ − 1) (7.18)

7.10 Recurrent FIR Neural Networks
Although variety of ANNs are used for time series prediction, there was no consensus on
the best architecture to use. Horne and Giles [65] concluded that "recurrent networks
usually did better than TDNNs except on the finite memory machine problem". On the
other hand Hallas and Dorffner [28] stated that "recurrent networks do not seem to be
able to do prediction under the given conditions" and a "simple feedforward network
significantly performs best for most nonlinear time series". However, many agree that
the best architecture is problem dependent and that efficiency of the learning algorithm
is more important than the network model used.

Not a lot of research has been done in time series modelling using RFIRNN [49]. In
RFIR, each feedback link has a non-zero delay, and the link between any two nodes has
an explicit memory modelled by a multi-tap FIR filter for storing history information,
example is shown in Figure 7.8. The advantage of this architecture is that it can store
more historical information than both RNN and FIR. The concept of RFIR can be
generalized easily to existing recurrent ANN, and nonlinear autoregressive networks.
These networks use a violation-guided backpropagation algorithm.
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Figure 7.8: Example of a three layer Recurrent FIR neural network

7.11 Generalized Epochwise Backpropagation Through
Time

Generalized Epochwise Backpropagation Through Time is used to train RFIR net-
works [54], as the errors propagate back in time domain. Standard epochwise backpropa-
gation through time is used to train normal recurrent neural networks [67]. For a L-layer
RFIR, a bias node is included in each layer except the output layer. The bias node
is indexed as Node 1, N(l) as regular nodes from 2 to N(l) + 1, with recurrent nodes
starting from N(l) + 2. The number of taps for an FIR filter connecting nodes between
layer l and layer l + 1 is denoted by T (l) with T (l) + 1 coefficients. wli,j(m) denotes the
weight for the mth coefficient of the FIR filter that connects the ith node in layer l + 1
and the jth node in layer l. The activation function for layer l is denoted by φl(x). The
derivative for y = φl(x) is given by:

ψl(y) =
{
φ′l(x) = α(1− y2) if φ(x) is hyperbolic
φ′l(x) = 1 if φ(x) is linear

(7.19)

The output value of a node indexed as i in layer l at time t is denoted by sli(t) and
sli(t) = ψ(ali(t)) for l ≥ 2 with ali(t) being the input to the ith node in the lth layer:
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ali(t) = wl−1
i,1 +

N(l−1)+1∑
j=2

T (l−1)+1∑
m=1

wl−1
i,j (m)sl−1

j (t+ 1−m)+

N(l−1)+N(k)+1∑
j=N(l−1)+2

T (k)+1∑
m=1

wl−1
i,j w

l−1
i,j (m)sl−1

j (t−m)

(7.20)

where k is the layer feeding back to layer l − 1. When there is no recurrent node in layer
l − 1 the last part in 7.20 is omitted. In the Generalized epochwise Back-propagation
through time, the output error for node k at time t is given by:

ek(t) = ok(t)− dk(t) (7.21)

The energy function over interval [t0, t1] is:

εav(t0, t1) = 1
t1 − t0 + 1

t1∑
t=t0

N(L)∑
k=1

ek(t) (7.22)

The gradient of the energy function 7.22 over wti,j(m) can be expressed as follows,
which represents the ’cost’ function over state space (as opposed to weight space):

∂εav(t0, t1)
∂wli,j(m)

= 1
n

t1∑
t=t0

ϑli(t)slj(t−m) (7.23)

where n = t1 − t0 + 1. The local gradient δli(t) is computed through backpropagation
based on the values of t and L as follows:

δli(t) = 2ei(t)φl+1(sl+1
i+1(t)) (7.24)

for t = t1 and l = L− 1,

δli(t) = (2ei(t) +
N∑
k=1

(l + 1)
T (l′)+1∑

m≤t1,m=1
wlk,i+1+N(l)(m)δl′k (t+m+ 1))φl+1(sl+1

i+1(t)) (7.25)

for t < t1 and l = L− 1,

δli(t) = (
N(l+2)∑
k=1

T (l+1)=1∑
m≤t1,m=1

wl+1
k,i+1(m)δl+1

k (t+m))φl+1(sl+1
i+1(t)) (7.26)

for t = t1 and l < L− 1, and
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δli(t) = (
N(l+2)∑
k=1

∑
m ≤ t1,m = 1T (l+1)+1wl+1

k,i+1(m)δl+1
k (t+m)+

= +
N(l+1)∑
k=1

T (l′)+1∑
m≤t1,m=1

wlk,i+1+N(l)(m)δl′k (t+m+ 1))φl+1(sl+1
i+1(t))

(7.27)

for t < t1 and l < L − 1. In all cases, 1 ≤ l ≤ L − 1, and index l′ is related to the
recurrent node in a way that the recurrent node in layer l is fed by the regular node in
layer l′ + 1. When there is no recurrent node in layer l then the term involving δl′k is
discarded.

The weights can now be updated along the negative gradient direction by means of:

∆wli,j(m) = −η∂εav(t0, t1)
∂wli,j(m)

(7.28)

where η is the learning rate.

7.12 Forecasting Horizontal and Vertical Movements
using FIR and RFIR

As an alternative to empirical prediction methods, methods based on influential functions
and methods based on mechanical model, artificial neural networks can be used for the
surface subsidence prediction.

The training and testing of neural network is based on available data from the project
’Prokop’. Input variables represent extraction parameters and coordinates from the
local coordination system of the points of interest, while the output variables represent
future values. After the neural network has been successfully trained, its performance
is tested on a separate testing set. Finally, the surface subsidence trough above the
projected excavation is predicted by the trained neural network. The applicability of
artificial neural networks for the prediction of surface subsidence was verified in different
subsidence models and proved on actual excavated levels and in leveled data on surface
profile points on several buildings near the ’Prokop’ train station in Belgrade, which was
under influence of tunelling due to the construction of an underground station.

The number of output neurons is set to 10, as the desired outcome is to predict the
last ten values in the time series. The number of input neurons depends on the length of
the time series, which is always L− 10, where L is the length. In both architectures used,
FIR and RFIR, three layers had been used with hidden neurons depending again on the
length of the series. For the FIR ANN, the number of hidden neurons per layer was
usually the quarter of the size of L, whereas in the RFIR nearly as half. The number of
taps per layer were chosen as (4, 2) for FIR and (7, 3) for RFIR network. The optimum
value for the learning rate was η = 0.1.
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7.12.1 Prediction of Points in the Local Coordination System

The local coordination system mapped a couple of kilometers around the vicinity of the
station, and thus the values of (x, y) were projected in meters. In order to get the best
results, these values had to be leveled, and preprocessed. To do this, only the movements
in millimeters were predicted, i.e. (x − bxc) for horizontal, and (y − byc) for vertical
movements, due to the fact that deformations never exceed one full meter. Measured
values for all points found in residential buildings can be found in Appendix 7.12.3.

The time series consist of a total of up to 50 measurements. Some points have been
measured less often because normally the measurements occur on the day after the
construction work is being done. The points which have undergone most measurements
involved the ones around the abutment diaphragms, which are actually the main reason
why the company was hired to perform geodetic measurements.

The points used to measure the behaviour of deformations in residential buildings
have the index between 100 and 120. The points with the index value less than or equal to
32 were used to measure the deformation found in a small building where the equipment
was stored, which was also very close to the entrance of the tunnel.

7.12.2 Comparative analysis of FIR and RFIR Neural Networks

FIR and RFIR have been used for deformation prediction based on the previously used
data set ’Prokop’. Previously, the data was tested by using a rule-based expert system
and results obtained were promising and useful. As the basic focus of this research is to
predict the behaviour of deformations in buildings, so machine learning based approaches
have been explored and tested.

FIR and RFIR Neural Networks have been used for the prediction of deformation from
the available data. The input variables represent extraction parameters and coordinates
from the local coordination system of the points of interest. The output variables represent
future values. After the successful training of neural network, its performance has been
tested on a separate testing data.

There are three types of data sets for neural networks: the validation data, training
data and the testing data. The validation data is for the validation of the neural network
architecture, the training data is for learning the patterns and testing data is for the
testing accuracy of the classification. The trained neural network successfully predicted
the surface subsidence trough above the projected excavation. The results have been
validated and proved to be better as compared to the empirical prediction methods.
The measured values for all points found in residential buildings are presented in Tables
7.3- 7.16.

The predicted values of the horizontal and vertical points are given in Tables 7.21-
7.48. The results show that even though the forecasted values could not match the actual
values at all times, the trend of movement had been successfully predicted in most cases,
using both the FIR and RFIR.

The results of the measurements show that the movements are typically of lowest
value at the base of the building and highest at the top of the building as proved by the
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Tables 7.3- 7.16. When comparing the performance of FIR and RFIR, the proposed
RFIR outperformed FIR in forecasting the actual values in different experiments. The
mean absolute percentage error for the predicted horizontal measured points using the
RFIR was 3.1%, and vertical 5.3%, whereas for the FIR, this was 5.4%, and 7.7%.
In some instances, the mean error was less than 1%, specifically for points where no
vertical or horizontal movement was recorded (there was no deformation present, either
because the point was too far from the construction site or because of the nature of the
settlement). In order to increase the accuracy of these two networks, more data gathered
from deformation monitoring is required in order to increase the size of the training data
set and make more accurate assessments. Both ANNs would yield better results when
used on long term engineering projects where measurements are taken in frequent time
intervals.

The predicted results obtained from both the FIR and RFIR ANN for the horizontal
and vertical measurements can be found in Tables 7.21- 7.48, for all points from (x14,y14)–
(x114b,y114b) (20 total). The predicted deformations are the same as that obtained
from the empirical methods. The plots depicting the mean and standard deviation for
horizontal and vertical points can be found in Figures 7.9 and 7.10 respectively, and
for (X,Y ) in 7.11. The plots of absolute and relative errors can be found in Figures
7.12- 7.15.

The deformations in high rise building are caused by many external factors and
cannot be compared to residential medium size buildings. In the data from ’Prokop’
station, the deformation was entirely induced by man, and the geodetic engineers had
to make sure that the structural movements were reduced to a minimum, making them
much tougher to predict, as one cannot easily predict the engineer’s mistake during the
process of tunneling.

Figure 7.9: Mean and standard deviation for horizontal points (X) for FIR (left) and
RFIR (right)
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Figure 7.10: Mean and standard deviation for vertical points (Y) for FIR (left) and RFIR
(right)

Figure 7.11: Mean and standard deviation for (X,Y) for FIR (left) and RFIR (right)

Figure 7.12: Absolute error for horizontal points FIR (left) and RFIR (right)
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Figure 7.13: Relative error for horizontal points FIR (left) and RFIR (right)

Figure 7.14: Absolute error for vertical points FIR (left) and RFIR (right)

Figure 7.15: Relative error for vertical points FIR (left) and RFIR (right)
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7.12.3 Actual Values of Measured Points

PointID/Epoch 1 2 3 4 5
x14 0.789224 0.729091 0.729064 0.729040 0.729024
x22 0.377875 0.380933 0.380889 0.380841 0.380793
x24 0.686123 0.688992 0.688963 0.688941 0.688924
x29 0.074574 0.075533 0.075488 0.075442 0.075393
x32 0.586475 0.586534 0.586489 0.586441 0.586392

Table 7.1: x14-x32 actual values, epochs 1-5

PointID/Epoch 6 7 8 9 10
x14 0.729011 0.729005 0.729003 0.729005 0.729011
x22 0.380742 0.380694 0.380646 0.380602 0.380560
x24 0.688911 0.688904 0.688903 0.688906 0.688911
x29 0.075343 0.075294 0.075246 0.075201 0.075160
x32 0.586342 0.586293 0.586247 0.586202 0.586161

Table 7.2: x14-x32 actual values, epochs 6-10

PointID/Epoch 1 2 3 4 5
x105 0.778524 0.777492 0.777463 0.777441 0.777423
x110 0.933923 0.934191 0.934164 0.934140 0.934124
x110a 0.340924 0.342491 0.342464 0.342440 0.342424
x110b 0.945824 0.946092 0.946063 0.946041 0.946023

Table 7.3: x105-x110b actual values, epochs 1-5

PointID/Epoch 6 7 8 9 10
x105 0.777412 0.777404 0.777403 0.777406 0.777412
x110 0.934111 0.934105 0.934102 0.934105 0.934111
x110a 0.342411 0.342405 0.342402 0.342405 0.342411
x110b 0.946012 0.946004 0.946003 0.946006 0.946012

Table 7.4: x105-x110b actual values, epochs 6-10
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PointID/Epoch 1 2 3 4 5
x111 0.901923 0.900692 0.900663 0.900641 0.900623
x111a 0.862124 0.862492 0.862463 0.862441 0.862423
x111b 0.890575 0.893791 0.893764 0.893740 0.893723
x112a 0.315024 0.318092 0.318064 0.318041 0.318024
x112b 0.268723 0.269291 0.269263 0.269240 0.269223

Table 7.5: x111-x112b actual values, epochs 1-5

PointID/Epoch 6 7 8 9 10
x111 0.900612 0.900604 0.900603 0.900606 0.900612
x111a 0.862412 0.862404 0.862403 0.862406 0.862412
x111b 0.893712 0.893705 0.893702 0.893705 0.893712
x112a 0.318011 0.318005 0.318003 0.318006 0.318011
x112b 0.269212 0.269204 0.269202 0.269205 0.269212

Table 7.6: x111-x112b actual values, epochs 6-10

PointID/Epoch 1 2 3 4 5
x113 0.696124 0.696692 0.696664 0.696641 0.696624
x113a 0.651324 0.652992 0.652963 0.652941 0.652923
x113b 0.699324 0.678291 0.678264 0.678240 0.678224
x114a 0.261024 0.260892 0.260863 0.260841 0.260823
x114b 0.201624 0.200292 0.200264 0.200240 0.200224

Table 7.7: x113-x114b actual values, epochs 1-5

PointID/Epoch 6 7 8 9 10
x113 0.696611 0.696605 0.696603 0.696606 0.696611
x113a 0.652911 0.652904 0.652903 0.652906 0.652911
x113b 0.678211 0.678205 0.678203 0.678205 0.678211
x114a 0.260812 0.260804 0.260803 0.260806 0.260812
x114b 0.200211 0.200205 0.200203 0.200206 0.200211

Table 7.8: x113-x114b actual values, epochs 6-10

PointID/Epoch 1 2 3 4 5
y14 0.914936 0.917513 0.917494 0.917482 0.917476
y22 0.730648 0.788496 0.788448 0.788402 0.788355
y24 0.567936 0.569513 0.569494 0.569482 0.569476
y29 0.543448 0.536297 0.536249 0.536201 0.536156
y32 0.971948 0.976097 0.976049 0.976001 0.975956

Table 7.9: y14-y32 actual values, epochs 1-5
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PointID/Epoch 6 7 8 9 10
y14 0.917478 0.917491 0.917513 0.917546 0.917589
y22 0.788312 0.788271 0.788233 0.788198 0.788166
y24 0.569478 0.569491 0.569513 0.569546 0.569589
y29 0.536113 0.536072 0.536034 0.535997 0.535965
y32 0.975913 0.975872 0.975834 0.975797 0.975765

Table 7.10: y14-y32 actual values, epochs 6-10

PointID/Epoch 1 2 3 4 5
y105 0.606937 0.603913 0.603895 0.603881 0.603875
y110 0.177336 0.172913 0.172894 0.172882 0.172876
y110a 0.947036 0.943312 0.943294 0.943282 0.943275
y110b 0.183436 0.189813 0.189795 0.189781 0.189775

Table 7.11: y105-y110b actual values, epochs 1-5

PointID/Epoch 6 7 8 9 10
y105 0.603879 0.603891 0.603913 0.603945 0.603989
y110 0.172878 0.172891 0.172913 0.172946 0.172989
y110a 0.943278 0.943290 0.943312 0.943346 0.943390
y110b 0.189779 0.189791 0.189813 0.189845 0.189889

Table 7.12: y105-y110b actual values, epochs 6-10
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PointID/Epoch 1 2 3 4 5
y111 0.918637 0.914213 0.914194 0.914182 0.914176
y111a 0.852436 0.849613 0.849594 0.849582 0.849576
y111b 0.867847 0.866412 0.866394 0.866382 0.866375
y112a 0.696737 0.699012 0.698995 0.698981 0.698975
y112b 0.785036 0.785912 0.785895 0.785882 0.785875

Table 7.13: y111-y112b actual values, epochs 1-5

PointID/Epoch 6 7 8 9 10
y111 0.914178 0.914190 0.914213 0.914246 0.914290
y111a 0.849578 0.849591 0.849613 0.849646 0.849689
y111b 0.866378 0.866390 0.866412 0.866446 0.866490
y112a 0.698979 0.698990 0.699012 0.699045 0.699090
y112b 0.785878 0.785890 0.785912 0.785945 0.785990

Table 7.14: y111-y112b actual values, epochs 6-10

PointID/Epoch 1 2 3 4 5
y113 0.614236 0.616513 0.616495 0.616481 0.616475
y113a 0.704737 0.707212 0.707195 0.707182 0.707175
y113b 0.600336 0.599813 0.599795 0.599781 0.599775
y114a 0.252636 0.254612 0.254595 0.254581 0.254575
y114b 0.252636 0.252913 0.252894 0.252882 0.252876

Table 7.15: y113-y114b actual values, epochs 1-5

PointID/Epoch 6 7 8 9 10
y113 0.616479 0.616491 0.616513 0.616545 0.616589
y113a 0.707179 0.707190 0.707212 0.707245 0.707290
y113b 0.599779 0.599791 0.599813 0.599845 0.599889
y114a 0.254579 0.254591 0.254612 0.254645 0.254689
y114b 0.252878 0.252891 0.252913 0.252946 0.252990

Table 7.16: y113-y114b actual values, epochs 6-10
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7.12.4 FIR and RFIR Prediction Results

PointID/Epoch 1 2 3 4 5
x14 0.753445 0.746285 0.741321 0.740431 0.739763
x22 0.379035 0.379134 0.379721 0.379922 0.380190
x24 0.687665 0.687572 0.687660 0.687844 0.687973
x29 0.070349 0.071795 0.073257 0.074600 0.075343
x32 0.586432 0.586423 0.586383 0.586376 0.586372

Table 7.17: FIR: x14-x32 predicted values, epochs 1-5

PointID/Epoch 6 7 8 9 10
x14 0.739759 0.739756 0.743565 0.743761 0.743834
x22 0.380546 0.380522 0.380498 0.380211 0.380288
x24 0.687970 0.687968 0.687853 0.687877 0.687893
x29 0.075475 0.075107 0.074741 0.072474 0.070913
x32 0.586349 0.586312 0.586274 0.586277 0.586269

Table 7.18: FIR: x14-x32 predicted values, epochs 6-10

PointID/Epoch 1 2 3 4 5
x14 0.742009 0.740726 0.740884 0.740845 0.741629
x22 0.382738 0.382986 0.383157 0.383252 0.383431
x24 0.688098 0.688088 0.688075 0.688068 0.688055
x29 0.073207 0.073433 0.073840 0.074143 0.074329
x32 0.586385 0.586382 0.586376 0.586373 0.586370

Table 7.19: RFIR: x14-x32 predicted values, epochs 1-5

PointID/Epoch 6 7 8 9 10
x14 0.741824 0.743560 0.742788 0.743874 0.745495
x22 0.383850 0.384164 0.384551 0.384892 0.385214
x24 0.688043 0.688029 0.688010 0.687997 0.687991
x29 0.074782 0.074831 0.074940 0.075279 0.072430
x32 0.586366 0.586361 0.586352 0.586341 0.586341

Table 7.20: RFIR: x14-x32 predicted values, epochs 6-10
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PointID/Epoch 1 2 3 4 5
x105 0.777962 0.777702 0.777474 0.777435 0.777382
x110 0.933963 0.933979 0.934024 0.934048 0.934050
x110a 0.341509 0.342817 0.343274 0.343269 0.343142
x110b 0.946100 0.946085 0.946101 0.946114 0.946114

Table 7.21: FIR: x105-x110b predicted values, epochs 1-5

PointID/Epoch 6 7 8 9 10
x105 0.777493 0.777490 0.777491 0.777544 0.777560
x110 0.934040 0.934034 0.933991 0.933995 0.933993
x110a 0.343121 0.343111 0.344938 0.345566 0.347413
x110b 0.946112 0.946110 0.946118 0.946119 0.946119

Table 7.22: FIR: x105-x110b predicted values, epochs 6-10

PointID/Epoch 1 2 3 4 5
x105 0.777746 0.777741 0.777725 0.777727 0.777719
x110 0.934022 0.934021 0.934021 0.934022 0.934024
x110a 0.339766 0.340096 0.341084 0.342041 0.342590
x110b 0.946031 0.946030 0.946029 0.946027 0.946026

Table 7.23: RFIR: x105-x110b predicted values, epochs 1-5

PointID/Epoch 6 7 8 9 10
x105 0.777706 0.777704 0.777690 0.777686 0.777702
x110 0.934024 0.934023 0.934026 0.934028 0.934028
x110a 0.342654 0.343122 0.343484 0.343754 0.344479
x110b 0.946024 0.946026 0.946026 0.946028 0.946029

Table 7.24: RFIR: x105-x110b predicted values, epochs 6-10
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PointID/Epoch 1 2 3 4 5
x111 0.897133 0.897123 0.897134 0.897214 0.897156
x111a 0.862320 0.862344 0.862378 0.862381 0.862366
x111b 0.888298 0.888178 0.888508 0.888579 0.888642
x112a 0.316305 0.317372 0.317932 0.318092 0.318017
x112b 0.269407 0.269491 0.269428 0.269379 0.269383

Table 7.25: FIR: x111-x112b predicted values, epochs 1-5

PointID/Epoch 6 7 8 9 10
x111 0.897157 0.897157 0.897260 0.897254 0.897263
x111a 0.862363 0.862362 0.862355 0.862352 0.862351
x111b 0.888915 0.888911 0.888907 0.887663 0.887617
x112a 0.318007 0.318001 0.318029 0.318010 0.318005
x112b 0.269383 0.269384 0.269433 0.269440 0.269451

Table 7.26: FIR: x111-x112b predicted values, epochs 6-10

PointID/Epoch 1 2 3 4 5
x111 0.900812 0.900807 0.900799 0.900790 0.900787
x111a 0.862338 0.862339 0.862340 0.862339 0.862341
x111b 0.890175 0.890215 0.890290 0.890313 0.890353
x112a 0.315521 0.316017 0.316426 0.316863 0.317353
x112b 0.268337 0.268093 0.267791 0.267867 0.267596

Table 7.27: RFIR: x111-x112b predicted values, epochs 1-5

PointID/Epoch 6 7 8 9 10
x111 0.900783 0.900778 0.900770 0.900763 0.900768
x111a 0.862340 0.862341 0.862342 0.862340 0.862340
x111b 0.890399 0.890453 0.890568 0.890510 0.890167
x112a 0.317804 0.318372 0.318617 0.318413 0.318249
x112b 0.267759 0.267830 0.268236 0.268824 0.264928

Table 7.28: RFIR: x111-x112b predicted values, epochs 6-10
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PointID/Epoch 1 2 3 4 5
x113 0.696556 0.696694 0.696650 0.696625 0.696644
x113a 0.652362 0.652464 0.652400 0.652523 0.652467
x113b 0.686277 0.683150 0.681556 0.676848 0.673705
x114a 0.260907 0.260818 0.260734 0.260672 0.260637
x114b 0.203007 0.201688 0.199035 0.197377 0.196608

Table 7.29: FIR: x113-x114b predicted values, epochs 1-5

PointID/Epoch 6 7 8 9 10
x113 0.696642 0.696641 0.696650 0.696648 0.696646
x113a 0.652478 0.652478 0.652477 0.652449 0.652453
x113b 0.673691 0.673682 0.672299 0.670434 0.668270
x114a 0.260609 0.260594 0.260586 0.260314 0.260228
x114b 0.196518 0.196457 0.184122 0.178825 0.166587

Table 7.30: FIR: x113-x114b predicted values, epochs 6-10

PointID/Epoch 1 2 3 4 5
x113 0.696520 0.696519 0.696535 0.696547 0.696551
x113a 0.652594 0.652591 0.652592 0.652594 0.652594
x113b 0.685157 0.685149 0.685044 0.684717 0.684515
x114a 0.261142 0.261035 0.260915 0.260792 0.260667
x114b 0.208490 0.207432 0.205874 0.203526 0.201243

Table 7.31: RFIR: x113-x114b predicted values, epochs 1-5

PointID/Epoch 6 7 8 9 10
x113 0.696550 0.696551 0.696549 0.696546 0.696540
x113a 0.652593 0.652595 0.652594 0.652594 0.652594
x113b 0.684270 0.683561 0.683525 0.683406 0.683953
x114a 0.260565 0.260435 0.260307 0.260186 0.260169
x114b 0.198971 0.196620 0.195317 0.193700 0.204378

Table 7.32: RFIR: x113-x114b predicted values, epochs 6-10
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PointID/Epoch 1 2 3 4 5
y14 0.917043 0.916964 0.916559 0.916278 0.916229
y22 0.757800 0.760840 0.758149 0.755645 0.767567
y24 0.569074 0.569096 0.568932 0.568939 0.568976
y29 0.538858 0.539048 0.538749 0.539099 0.538661
y32 0.974393 0.974360 0.974641 0.974668 0.974745

Table 7.33: FIR: y14-y32 predicted values, epochs 1-5

PointID/Epoch 6 7 8 9 10
y14 0.916231 0.916232 0.916536 0.916572 0.916603
y22 0.779604 0.779587 0.779570 0.767572 0.769018
y24 0.568976 0.568975 0.569021 0.569015 0.569013
y29 0.539060 0.539063 0.539066 0.538905 0.538846
y32 0.974758 0.974753 0.974749 0.974629 0.974629

Table 7.34: FIR: y14-y32 predicted values, epochs 6-10

PointID/Epoch 1 2 3 4 5
y14 0.916874 0.916868 0.916873 0.916871 0.916875
y22 0.773121 0.772798 0.772194 0.772993 0.772995
y24 0.569057 0.569113 0.569150 0.569143 0.569174
y29 0.537631 0.537715 0.537796 0.537800 0.537887
y32 0.974962 0.974964 0.974965 0.974969 0.974967

Table 7.35: RFIR: y14-y32 predicted values, epochs 1-5

PointID/Epoch 6 7 8 9 10
y14 0.916875 0.916874 0.916868 0.916873 0.916869
y22 0.774116 0.774626 0.774065 0.775766 0.775587
y24 0.569180 0.569184 0.569234 0.569258 0.569207
y29 0.537852 0.537872 0.538548 0.538790 0.538346
y32 0.974971 0.974967 0.974968 0.974974 0.974969

Table 7.36: RFIR: y14-y32 predicted values, epochs 6-10
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PointID/Epoch 1 2 3 4 5
y105 0.605369 0.605413 0.605202 0.605098 0.604869
y110 0.182871 0.176617 0.172301 0.169931 0.169092
y110a 0.944556 0.944517 0.944515 0.944452 0.944388
y110b 0.185031 0.186466 0.187756 0.188202 0.188840

Table 7.37: FIR: y105-y110b predicted values, epochs 1-5

PointID/Epoch 6 7 8 9 10
y105 0.604623 0.604621 0.604620 0.604896 0.604866
y110 0.169092 0.169124 0.158549 0.153316 0.146046
y110a 0.944388 0.944388 0.944456 0.944455 0.944454
y110b 0.188837 0.188838 0.187875 0.188111 0.188316

Table 7.38: FIR: y105-y110b predicted values, epochs 6-10

PointID/Epoch 1 2 3 4 5
y105 0.604805 0.604817 0.604776 0.604722 0.604696
y110 0.182655 0.182138 0.181590 0.179789 0.178263
y110a 0.944258 0.944253 0.944243 0.944241 0.944230
y110b 0.178709 0.180469 0.183350 0.186616 0.189301

Table 7.39: RFIR: y105-y110b predicted values, epochs 1-5

PointID/Epoch 6 7 8 9 10
y105 0.604644 0.604606 0.604611 0.604584 0.604647
y110 0.175618 0.172858 0.170388 0.169782 0.184834
y110a 0.944214 0.944206 0.944195 0.944182 0.944198
y110b 0.192079 0.197378 0.201930 0.207221 0.206082

Table 7.40: RFIR: y105-y110b predicted values, epochs 6-10
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PointID/Epoch 1 2 3 4 5
y111 0.915823 0.915844 0.915680 0.915471 0.915379
y111a 0.799528 0.799564 0.799290 0.799196 0.799374
y111b 0.866994 0.866938 0.866786 0.866734 0.866721
y112a 0.697977 0.698243 0.698830 0.698347 0.698325
y112b 0.786308 0.786090 0.785818 0.785677 0.785610

Table 7.41: FIR: y111-y112b predicted values, epochs 1-5

PointID/Epoch 6 7 8 9 10
y111 0.915378 0.915377 0.915495 0.915478 0.915467
y111a 0.799376 0.799381 0.789094 0.788661 0.787387
y111b 0.866706 0.866707 0.866710 0.866779 0.866781
y112a 0.698327 0.698331 0.698118 0.698209 0.698215
y112b 0.785611 0.785602 0.785822 0.785878 0.785856

Table 7.42: FIR: y111-y112b predicted values, epochs 6-10

PointID/Epoch 1 2 3 4 5
y111 0.915279 0.915281 0.915272 0.915259 0.915249
y111a 0.823680 0.823014 0.822970 0.822852 0.822897
y111b 0.866773 0.866774 0.866772 0.866771 0.866771
y112a 0.698501 0.698482 0.698489 0.698488 0.698464
y112b 0.785810 0.785813 0.785809 0.785816 0.785818

Table 7.43: RFIR: y111-y112b predicted values, epochs 1-5

PointID/Epoch 6 7 8 9 10
y111 0.915255 0.915251 0.915246 0.915239 0.915248
y111a 0.822922 0.822927 0.823037 0.823110 0.820170
y111b 0.866773 0.866776 0.866780 0.866783 0.866783
y112a 0.698465 0.698501 0.698498 0.698518 0.698514
y112b 0.785829 0.785821 0.785820 0.785817 0.785822

Table 7.44: RFIR: y111-y112b predicted values, epochs 6-10
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PointID/Epoch 1 2 3 4 5
y113 0.615920 0.615961 0.615654 0.615498 0.615607
y113a 0.705838 0.705929 0.705615 0.706196 0.707000
y113b 0.600332 0.600270 0.600129 0.600036 0.600031
y114a 0.253340 0.253675 0.253993 0.254029 0.254449
y114b 0.252665 0.252876 0.253037 0.253204 0.253263

Table 7.45: FIR: y113-y114b predicted values, epochs 1-5

PointID/Epoch 6 7 8 9 10
y113 0.615614 0.615622 0.615527 0.615483 0.615456
y113a 0.706897 0.706892 0.706892 0.706603 0.706810
y113b 0.600026 0.600025 0.600156 0.600133 0.600129
y114a 0.254243 0.254242 0.254245 0.254106 0.254202
y114b 0.253267 0.253307 0.254477 0.255568 0.256986

Table 7.46: FIR: y113-y114b predicted values, epochs 6-10

PointID/Epoch 1 2 3 4 5
y113 0.615936 0.615967 0.615988 0.615943 0.615861
y113a 0.706707 0.706711 0.706711 0.706666 0.706675
y113b 0.600130 0.600115 0.600112 0.600092 0.600094
y114a 0.250702 0.250516 0.250583 0.251923 0.252283
y114b 0.252770 0.252738 0.252795 0.252778 0.252771

Table 7.47: RFIR: y113-y114b predicted values, epochs 1-5

PointID/Epoch 6 7 8 9 10
y113 0.615812 0.615805 0.615884 0.615827 0.615857
y113a 0.706605 0.706597 0.706601 0.706562 0.706600
y113b 0.600101 0.600124 0.600142 0.600152 0.600151
y114a 0.252799 0.254430 0.255793 0.256319 0.248967
y114b 0.252780 0.252928 0.253041 0.253043 0.252978

Table 7.48: RFIR: y113-y114b predicted values, epochs 6-10

7.13 Comparison to Related Results
In [26], a GNRR network outperformed all other networks in deformation monitoring of
high-rise buildings. The network was trained using both the Gradient Descent (GD), and
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the Levenberg-Marquardt algorithms (LM) and the results can be seen in Figure 7.16.
In another paper [51], a simple Multi-Layer Perceptron (MLP) network was trained
using a variety of algorithms including Levenberg-Marquardt backpropagation, resilient
backpropagation, scaled conjugate gradient backpropagation, and GD with adaptive
learning rate backpropagation. The resilient backgropagation algorithm outperformed
all the others with a mean absolute error of just 1%, just like the GNRR network
in [26]. In both papers, the historical data covered measurements which took part over
7 years or more where the points were measured more frequently, particularly in [51]
where the object of interest was a Byzantine Church “Magalie Panagia”, which has
been characterised as a heritage site by UNESCO. The church is undergoing settlements
because of unfavourable ground, composed mainly of clay, silt, and peat, and is most
likely continued to be monitored due to its historical significance.

Figure 7.16: Comparison deformation cure between BP(LM) and BP(GD) [26]

102



CHAPTER 8
Conclusions and Future Work

8.1 Summary
In this thesis, methods and techniques for monitoring of deformations present in residential
buildings are proposed. The methods consist of image processing, computer vision,
knowledge based systems, and artificial neural networks, which differ from conventional
methods such as the Finite Element Method. The computer vision techniques described
in this thesis were not able to be fully tested in real life, due to the lack of data. The
image processing techniques perform well under certain conditions, and assumptions, such
as the lighting and the angle at which the picture had been taken. The merging algorithm
together with the variation of the RANSAC algorithm deal well with inconsistent points.
And finally the predictions made by the FIR neural networks represent a novel way of
monitoring deformations. The results could have been better, if more historical data had
been gathered. The method also presents a new use for neural networks in geodesy, other
than their ability to minimize measurement errors and perform quality checks.

8.2 Results
Image processing technique used to locate windows in facades and fit a bounding box
has been developed and implemented in Chapter 2. A variant of RANSAC together with
a merging algorithm which represents deformations in a rule based system had also been
developed in Chapters 3, and 4. All implementations have been done using lightweight
methodology. FIR ANN which are widely known for their forecasting power, had been
used for the purpose of predicting data gathered from geodetic measurements in project
’Prokop’ in Chapter 7. Forecasted values have shown that the FIR neural networks were
able to predict the trend of the movement with a high success rate. The results have
shown that the movements are of highest value at the top of the building, and lowest at
the base.
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8.3 Future Work
The techniques for videometric analysis described in this thesis had never been put to
use in real life, due to the fact that it was hard finding a database of images of facades
which had been taken on a monthly or daily basis. And even if such images could have
been collected, due to the fact that the movements are measured in millimeters, their
application and usage would have been minimal. Because the movements are of highest
value at the top of the residential building, the best case scenario to test the algorithm
would involve a high-rise residential building. Results found in [57] show that the Burj
Khalifa tower is undergoing highest recorded deformations (measured in cm, and not
mm). For experimental use, the easiest way to gather the data would be by gathering
them from twin towers, by placing two separate cameras on both objects thus covering
most regions of interest from each side. The results from these experiments would then be
passed on to the FIR or RFIR neural network to measure the behaviour of deformations
that are being present. Other usage would include monitoring of historical buildings, like
the “Magalie Panagia” [51] that are of great historical significance and that will always
have the need for deformation monitoring.
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APPENDIX A
Geodetic Control Network

Figure A.1 shows the full geodetic controll network, with all the measured points in
the local coordination system including ones found in residential buildings, around the
tunnel, as well as abutment diaphragms which were the main points of interest in this
project.
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Figure A.1: Geodetic Control Network used in “Prokop”112



APPENDIX B
Histogram Mean Filtering

function newimage = bwconv(name)
[Hh, Vv] = hist_hv(name);
[HL_min, HL_max, VL_min, VL_max] = convol1d(Hh,Vv);

theimage = imread(name);
orig = theimage;

gaussianFilter = fspecial('gaussian', [10,10], 1);
theimage = imfilter(theimage, gaussianFilter, 'symmetric', 'conv');

newimage = zeros(size(theimage,1),size(theimage,2));

HL_n = HL_min(:,2);
HL_x = HL_max(:,2);
HL = [];
for i = 1 : length(HL_n)

HL = [HL, round((HL_n(i)+HL_x(i))./2)];
end
HL = [HL, HL_x(length(HL_x))];

HL = HL_n;
HL = [1;HL];

VL_n = VL_min(:,2);
VL_x = VL_max(:,2);
VL = [];
for i = 1 : length(VL_n)

VL = [VL, round((VL_n(i)+VL_x(i))./2)];
end
VL = [VL, VL_x(length(VL_x))];

HL = HL_n;
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VL = [1,VL];

%Filter out small local minimums
HL_temp = HL(1);
for i = 2 : length(HL)

if (HL(i)-HL(i-1)>50) HL_temp = [HL_temp, HL(i)]; end
end
HL = [1,HL_temp, size(theimage,1)];

VL_temp = VL(1);
for i = 2 : length(VL)

if (VL(i)-VL(i-1)>50) VL_temp = [VL_temp, VL(i)]; end
end
VL = [1,VL_temp, size(theimage,2)];

MeanSq = [];
for i = 1 : length(VL)-1

for j = 1 : length(HL)-1

subimage = theimage(HL(j):HL(j+1),VL(i):VL(i+1));

j_mid = round((HL(j)+HL(j+1))./2);
i_mid = round((VL(i)+VL(i+1))./2);
subimage1 = theimage(HL(j):j_mid, VL(i):i_mid);
subimage2 = theimage(HL(j):j_mid, i_mid:VL(i+1));
subimage3 = theimage(j_mid:HL(j+1), VL(i):i_mid);
subimage4 = theimage(j_mid:HL(j+1), i_mid:VL(i+1));
M = mean(mean(subimage));

M1 = (mean(mean(subimage1))+M)./2-12;
M2 = (mean(mean(subimage2))+M)./2-12;
M3 = (mean(mean(subimage3))+M)./2-12;
M4 = (mean(mean(subimage4))+M)./2-12;

for x = VL(i) : VL(i+1)
for y = HL(j) : HL(j+1)

if (x<i_mid && y<j_mid && theimage(y,x)<M1)
newimage(y,x)=1; end
if (x<i_mid && y<j_mid && theimage(y,x)>=M1)
newimage(y,x)=0; end
if (x>=i_mid && y<j_mid && theimage(y,x)<M2)
newimage(y,x)=1; end
if (x>=i_mid && y<j_mid && theimage(y,x)>=M2)
newimage(y,x)=0; end
if (x<i_mid && y>=j_mid && theimage(y,x)<M3)
newimage(y,x)=1; end
if (x<i_mid && y>=j_mid && theimage(y,x)>=M3)
newimage(y,x)=0; end
if (x>=i_mid && y>=j_mid && theimage(y,x)<M4)
newimage(y,x)=1; end
if (x>=i_mid && y>=j_mid && theimage(y,x)>=M4)
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newimage(y,x)=0; end

end
end

end
end

SE = strel('square',30); % structuring element
SE1 = strel('disk',15);
newimage = imdilate(newimage,SE1);
newimage = imerode(newimage,SE); % remove spurs

function [Hh, Vv] = hist_hv(name)

%loaded = importdata(name,'jpg');
%theimage = myrgb2gray(loaded);

theimage = imread(name);

%gaussianFilter = fspecial('gaussian', [3,3], 1);
%theimage = imfilter(theimage, gaussianFilter, 'symmetric', 'conv');

%theimage = myim2bw(theimage,0.4);
%imshow(theimage);
%calculate horizontal histogram
[W,H] = size(theimage);
Hh = []; Vv = [];
for i = 1 : W

Hh = [Hh, sum(theimage(i,:))];
end
%calculate vertical histogram
for i = 1 : H

Vv = [Vv, sum(theimage(:, i))];
end

%%% Histogram Mean Filtering
%%% Algorithm for window detection
%%% developed by Milos Miljanovic

function ROI = HMF(name)

origimage = imread(name);
theimage = bwconv(name);

[W,H] = size(theimage);
Hh = [];
Vv = [];
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%calculate horizontal histogram
for i = 1 : W

Hh = [Hh, sum(theimage(i,:))];
end
%calculate vertical histogram
for i = 1 : H

Vv = [Vv, sum(theimage(:, i))];
end

Ph = [];
Kh = [];
meanVv = mean(Vv);
for i = 1 : length(Vv)

if (Vv(i)<meanVv) Ph = [Ph, i]; end
end

meanHh = mean(Hh);
for j = 1 : length(Hh)

if (Hh(j)<meanHh) Kh = [Kh, j]; end
end

ROI = winplot(Ph,Kh,origimage);

function newimage = imnorm(theimage)

%loaded = importdata(name,'jpg');
%theimage = myrgb2gray(loaded);

hist_im = sum(theimage);
hist_peak = hist_im./size(theimage,1);

%a = 100;
%b = 110;
a = 0;
b = 255;
c = 0.05*max(hist_peak);
d = 0.95*max(hist_peak);
newimage = theimage;
for i = 1 : size(theimage,1)

for j = 1 : size(theimage,2)
newimage(i,j) = (theimage(i,j)-c) * ((b-a)/(d-c))+a;

end
end

%imshow(newimage);

function y = unsharp(name)

imrgb = imread(name);
im = im2double(imrgb);
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g = fspecial('gaussian',25,4);
%g = fspecial('log',25,4);
imblur = conv2(im,g,'same');
%imagesc([im imblur])
%imagesc([im im+.4*(im-imblur)])
y = im+.4*(im-imblur);

imshow(y);

function ROI = winplot(Ph,Kh,theimage)
if (Ph(1)==1) Ph_x = [1];
else Ph_x = [1, Ph(1)]; end

if (Kh(1)==1) Kh_y = [1];
else Kh_y = [1, Kh(1)]; end

for i = 2 : length(Ph)
if (Ph(i)-Ph(i-1)>5) Ph_x = [Ph_x, Ph(i), Ph(i-1)]; end

end
for j = 2 : length(Kh)

if (Kh(j)-Kh(j-1)>5) Kh_y = [Kh_y, Kh(j), Kh(j-1)]; end
end

Ph_x = sort([Ph_x, Ph(length(Ph)),size(theimage,2)]);
Kh_y = sort([Kh_y, Kh(length(Kh)),size(theimage,1)]);

newimg = theimage;
for i = 1 : length(Ph_x)

for j = 1 : size(newimg,1)
%if (i>1 & Ph_x(i)-Ph(i-1)>10)

newimg(j,Ph_x(i))=255;
%end

end
end
for i = 1 : length(Kh_y)

for j = 1 : size(newimg,2)
% if (i>1 & Kh(i)-Kh(i-1)>10)

newimg(Kh_y(i),j)=255;
% end

end
end

ROI = [];
for i = 2 : length(Ph_x)-1

for j = 2 : length(Kh_y)-1
ROI = [ROI; Ph_x(i)-10, Kh_y(j)-10, Ph_x(i)+10, Kh_y(j)+10];

end
end

%%%%% VISUALISATION
% imshow(newimg);
% hold on;
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%
% ROI = [];
% for i = 2 : length(Ph_x)-1
% for j = 2 : length(Kh_y)-1
% plot(Ph_x(i)-10,Kh_y(j)-10,'--rs');
% plot(Ph_x(i)+10,Kh_y(j)+10,'--rs');
%
% hold on;
% ROI = [ROI; Ph_x(i)-10, Kh_y(j)-10, Ph_x(i)+10, Kh_y(j)+10];
% end
% end
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APPENDIX C
Merging Points of Interest into

ROI

; ROI Variable is defined by the following parameters:
; id: id number of the ROI
; WA_x: Wide Angle x coordinate of the ROI
; WA_y: Wide Angle y coordinate of the ROI
; tx: translation around the x-axis
; ty: translation around the y-axis
; tz: translation around the z-axis
; alpha: rotation around the x-axis
; beta: rotation around the y-axis
; gamma: rotation around the z-axis

(deftemplate ROI
(slot id (type NUMBER))
(slot WA_x (type NUMBER))
(slot WA_y (type NUMBER))
(slot tx)
(slot ty)
(slot tz)
(slot alpha)
(slot beta)
(slot gamma)

)

; This is a template used to describe which ROIs are adjacent
; to each other: id1 represents the ROI to the left, whereas id2
; represents ROI to the right
(deftemplate adjacent

(slot id1)
(slot id2)

)
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; This template is used to signify whether there is a deformation
; present at ROI with an id ?id. The field slot is used to store the
; appropriate deformation
(deftemplate present

(slot id)
(slot field)

)

; This template is used to signify whether there is no deformation at
; ROI with an id ?id. The field slot is used to store the appropriate
; deformation
(deftemplate absent

(slot id)
(slot field)

)

; This template is used to signify whether a deformation at ROI with
; an id ?id is positive. The field slot is used to store the
; appropriate deformation
(deftemplate positive

(slot id)
(slot field)

)

; This template is used to signify whether a deformation at ROI with an
; id ?id is negative. The field slot is used to store the appropriate
; deformation
(deftemplate negative

(slot id)
(slot field)

)

; This function will return TRUE if the coordinates of ROI id1 (x1,y1)
; and ROI id2 (x2,y2) are close to each other
(deffunction adj (?id1 ?id2 ?x1 ?y1 ?x2 ?y2)
(and (!= ?id1 ?id2)
(<= (- ?x2 ?x1) 100)
(>= (- ?x2 ?x1) 0)
(<= (- ?y2 ?y1) 100)
(>= (- ?y2 ?y1) 0))
)

; This function will return true, if the fuzzy value which is forwarded
; to the KBS by the system is negative
(deffunction neg (?a)
(or (= (str-compare ?a "nsg") 0)

(= (str-compare ?a "ng") 0)
(= (str-compare ?a "nm") 0)
(= (str-compare ?a "nk") 0)
(= (str-compare ?a "nsk") 0))

)
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; This function will return true, if the fuzzy value which is forwarded
; to the KBS by the system is positive
(deffunction pos (?a)
(or (= (str-compare ?a "sk") 0)

(= (str-compare ?a "k") 0)
(= (str-compare ?a "m") 0)
(= (str-compare ?a "g") 0)
(= (str-compare ?a "sg") 0))

)

; -----------------------------------------------------------------------
; The following rules will generate instances of facts which will be later
; used by the consistency check rules. These facts are used to simplify
; constant checks such as whether to see there is a deformation present,
; or if two ROIs are adjacent to each other. These facts are crucial when
; determing if there are discrepancies in the calculation of the
; deformation parameters tx, ty, tz, alpha, beta, gamma
; -----------------------------------------------------------------------

; This rule will generate instances of facts which describe which ROIs
; are adjacent to each other
(defrule find-adjacent
(ROI (id ?id1) (WA_x ?WA_x1) (WA_y ?WA_y1))
(ROI (id ?id2) (WA_x ?WA_x2) (WA_y ?WA_y2))
=>
(if (adj ?id1 ?id2 ?WA_x1 ?WA_y1 ?WA_x2 ?WA_y2)

then
(assert (adjacent (id1 ?id1) (id2 ?id2))))

)

; The following rules will generate instances of facts which tell the user
; which deformations are present or absent in the ROIs
(defrule present-tx
(ROI (id ?id) (tx ?tx))
=>
(if (!= (str-compare ?tx "null") 0)

then
(assert (present (id ?id) (field "tx")))
else
(assert (absent (id ?id) (field "tx"))))

)

(defrule present-ty
(ROI (id ?id) (ty ?ty))
=>
(if (!= (str-compare ?ty "null") 0)

then
(assert (present (id ?id) (field "ty")))
else
(assert (absent (id ?id) (field "ty"))))

)
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(defrule present-tz
(ROI (id ?id) (tz ?tz))
=>
(if (!= (str-compare ?tz "null") 0)

then
(assert (present (id ?id) (field "tz")))
else
(assert (absent (id ?id) (field "tz"))))

)

(defrule present-alpha
(ROI (id ?id) (alpha ?alpha))
=>
(if (!= (str-compare ?alpha "null") 0)

then
(assert (present (id ?id) (field "alpha")))
else
(assert (absent (id ?id) (field "alpha"))))

)

(defrule present-beta
(ROI (id ?id) (tx ?beta))
=>
(if (!= (str-compare ?beta "null") 0)

then
(assert (present (id ?id) (field "beta")))
else
(assert (absent (id ?id) (field "beta"))))

)

(defrule present-gamma
(ROI (id ?id) (gamma ?gamma))
=>
(if (!= (str-compare ?gamma "null") 0)

then
(assert (present (id ?id) (field "gamma")))
else
(assert (absent (id ?id) (field "gamma"))))

)

; The following rules will generate instances of facts which tell the
; user which deformation parameters are positive or negative
(defrule sign-tx
(ROI (id ?id) (tx ?tx))
=>
(if (and (pos ?tx) (!= (str-compare ?tx "null") 0))

then
(assert (positive (id ?id) (field "tx")))
else
(assert (positive (id ?id) (field "tx"))))

)

(defrule sign-ty
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(ROI (id ?id) (ty ?ty))
=>
(if (and (pos ?ty) (!= (str-compare ?ty "null") 0))

then
(assert (positive (id ?id) (field "ty")))
else
(assert (positive (id ?id) (field "ty"))))

)

(defrule sign-tz
(ROI (id ?id) (tz ?tz))
=>
(if (and (pos ?tz) (!= (str-compare ?tz "null") 0))

then
(assert (positive (id ?id) (field "tz")))
else
(assert (positive (id ?id) (field "tz"))))

)

(defrule sign-alpha
(ROI (id ?id) (alpha ?alpha))
=>
(if (and (pos ?alpha) (!= (str-compare ?alpha "null") 0))

then
(assert (positive (id ?id) (field "alpha")))
else
(assert (positive (id ?id) (field "alpha"))))

)

(defrule sign-beta
(ROI (id ?id) (beta ?beta))
=>
(if (and (pos ?beta) (!= (str-compare ?beta "null") 0))

then
(assert (positive (id ?id) (field "beta")))
else
(assert (positive (id ?id) (field "beta"))))

)

(defrule sign-gamma
(ROI (id ?id) (gamma ?gamma))
=>
(if (and (pos ?gamma) (!= (str-compare ?gamma "null") 0))

then
(assert (positive (id ?id) (field "gamma")))
else
(assert (positive (id ?id) (field "gamma"))))

)

; ---------------------------------------------------------------------
; ACTUAL RULES used by the consistency checks
; ---------------------------------------------------------------------
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; This rule will warn the user if there is ONLY a translation along
; the y-axis The reason why this deformation is not allowed is because
; we assume that the object we are observing is not moving forward or
; backward. Therefore, this rule will be executed only if ty is present,
; and tz is absent
(defrule incompatible-ty
(absent (id ?id) (field "tz"))
(present (id ?id) (field "ty"))
=>
(printout t "Translation along the y-axis present at " ?id crlf)
)

; This rule will warn the user if there is ONLY a translation along the
; x-axis The reason why this deformation is not allowed is because we
; assume that the object we are observing is not moving left or right.
; Therefore, this rule will be executed only if tx is present, and tz
; is absent
(defrule incompatible-tx
(absent (id ?id) (field "tx"))
(present (id ?id) (field "tx"))
=>
(printout t "Translation along the y-axis present at " ?id crlf)
)

; This rule warns the user if there is a lonely translation (tz) at the
; corner of the building. The ROI in the corner is bordered with three
; other ROIs. If these three ROIs are adjacent to the first ROI, and if
; the first ROI has a translation, whereas the others do not, this rule
; will be executed.
(defrule alone-translation-corner
(adjacent (id1 ?id1) (id2 ?id2))
(adjacent (id1 ?id1) (id2 ?id3))
(present (id ?id1) (field "tz"))
(absent (id ?id2) (field "tz"))
(absent (id ?id3) (field "tz"))
=>
(assert (alone-tz-corner ?id1))
)

; This rule works if there is a lonely rotation (alpha) at the corner of the
; building. Works similarly as the previous rule
(defrule alone-alpha-rotation-corner
(adjacent (id1 ?id1) (id2 ?id2))
(adjacent (id1 ?id1) (id2 ?id3))
(present (id ?id1) (field "alpha"))
(absent (id ?id2) (field "alpha"))
(absent (id ?id3) (field "alpha"))
=>
(assert (alone-alpha-corner ?id1))
)

; This rule works if there is a lonely rotation (beta) at the corner of the
; building. Works similarly as the previous rule

124



(defrule alone-beta-rotation-corner
(adjacent (id1 ?id1) (id2 ?id2))
(adjacent (id1 ?id1) (id2 ?id3))
(present (id ?id1) (field "beta"))
(absent (id ?id2) (field "beta"))
(absent (id ?id3) (field "beta"))
=>
(assert (alone-beta-corner ?id1))
)

; This rule works if there is a lonely rotation (gamma) at the corner
; of the building. Works similarly as the previous rule

(defrule alone-gamma-rotation-corner
(adjacent (id1 ?id1) (id2 ?id2))
(adjacent (id1 ?id1) (id2 ?id3))
(present (id ?id1) (field "gamma"))
(absent (id ?id2) (field "gamma"))
(absent (id ?id3) (field "gamma"))
=>
(assert (alone-gamma-corner ?id1))
)

; This rule warns the user if there is a lonely translation (tz) in a
; ROI which is located either in the middle of the image, or at the
; edge of the picture (but not corner) Necessary because this rule is
; different than the corner-rule, as there are more possible
; combinations of ROIs that are adjacent to the observed ROI with a
; tz deformation

(defrule alone-translation
(adjacent (id1 ?id1) (id2 ?id2))
(adjacent (id1 ?id1) (id2 ?id3))
(adjacent (id1 ?id1) (id2 ?id4))
(adjacent (id1 ?id1) (id2 ?id5))
(adjacent (id1 ?id1) (id2 ?id6))
(present (id ?id1) (field "tz"))
(absent (id ?id2) (field "tz"))
(absent (id ?id3) (field "tz"))
(absent (id ?id4) (field "tz"))
(absent (id ?id5) (field "tz"))
(absent (id ?id6) (field "tz"))
=>
(assert (alone-translation ?id1))
)

; This rule warns the user if there is a lonelz rotation (alpha) in a ROI
; located either in the middle of the image, or at the edge of the picture.
; Works similarly as the previous rule

(defrule alone-x-rotation
(adjacent (id1 ?id1) (id2 ?id2))
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(adjacent (id1 ?id1) (id2 ?id3))
(adjacent (id1 ?id1) (id2 ?id4))
(adjacent (id1 ?id1) (id2 ?id5))
(adjacent (id1 ?id1) (id2 ?id6))
(present (id ?id1) (field "alpha"))
(absent (id ?id2) (field "alpha"))
(absent (id ?id3) (field "alpha"))
(absent (id ?id4) (field "alpha"))
(absent (id ?id5) (field "alpha"))
(absent (id ?id6) (field "alpha"))
=>
(assert (alone-alpha ?id1))
)

; This rule warns the user if there is a lonelz rotation (beta) in a ROI
; located either in the middle of the image, or at the edge of the picture.
; Works similarly as the previous rule

(defrule alone-y-rotation
(adjacent (id1 ?id1) (id2 ?id2))
(adjacent (id1 ?id1) (id2 ?id3))
(adjacent (id1 ?id1) (id2 ?id4))
(adjacent (id1 ?id1) (id2 ?id5))
(adjacent (id1 ?id1) (id2 ?id6))
(present (id ?id1) (field "beta"))
(absent (id ?id2) (field "beta"))
(absent (id ?id3) (field "beta"))
(absent (id ?id4) (field "beta"))
(absent (id ?id5) (field "beta"))
(absent (id ?id6) (field "beta"))
=>
(assert (alone-beta ?id1))
)

; This rule warns the user if there is a lonely rotation (gamma) in a ROI
; located either in the middle of the image, or at the edge of the picture.
; Works similarly as the previous rule

(defrule alone-z-rotation
(adjacent (id1 ?id1) (id2 ?id2))
(adjacent (id1 ?id1) (id2 ?id3))
(adjacent (id1 ?id1) (id2 ?id4))
(adjacent (id1 ?id1) (id2 ?id5))
(adjacent (id1 ?id1) (id2 ?id6))
(present (id ?id1) (field "gamma"))
(absent (id ?id2) (field "gamma"))
(absent (id ?id3) (field "gamma"))
(absent (id ?id4) (field "gamma"))
(absent (id ?id5) (field "gamma"))
(absent (id ?id6) (field "gamma"))
=>
(assert (alone-beta ?id1))
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)

; The following rules are consistency checks for the tz parameters
; Translation along the z-axis is the only allowed translation in the system.
; If tz is present in ROI #1, then the only other deformations which are
; allowed are rotations. However, these rotations need to be compatible by
; the negative tz deformation (sliding down, or settlement). The ROI located
; to the left of the tz deformation has to be a positive rotation (to the
; right, whereas the ROI located to the right has to be a negative rotation.
; Therefore in the following rules, we check whether these consistency checks
; have been violated.

(defrule incompatible-gammatz
(adjacent (id1 ?id1) (id2 ?id2))
(negative (id ?id1) (field "gamma"))
(negative (id ?id2) (field "tz"))
=>
(printout t "Incompatible deformations found (gamma, tz) at " ?id1 " and "
?id2 crlf)
)

(defrule incompatible-betatzty
(adjacent (id1 ?id1) (id2 ?id2))
(negative (id ?id1) (field "beta"))
(negative (id ?id2) (field "tz"))
(negative (id ?id2) (field "ty"))
=>
(printout t "Incompatible deformations found (beta,tz,ty) at " ?id1 " and "
?id2 crlf)
)

(defrule incompatible-alphatztx
(adjacent (id1 ?id1) (id2 ?id2))
(negative (id ?id1) (field "alpha"))
(negative (id ?id2) (field "tz"))
(negative (id ?id2) (field "tx"))
=>
(printout t "Incompatible deformations found (alpha,tz,tx) at " ?id1 " and "
?id2 crlf))

(defrule incompatible-tzgamma
(adjacent (id1 ?id1) (id2 ?id2))
(negative (id ?id1) (field "tz"))
(positive (id ?id2) (field "gamma"))
=>
(printout t "Incompatible deformations found (tz,gamma) at " ?id1 " and "
?id2 crlf))

(defrule incompatible-tzbetaty
(adjacent (id1 ?id1) (id2 ?id2))
(negative (id ?id1) (field "tz"))
(positive (id ?id2) (field "beta"))
(negative (id ?id2) (field "ty"))
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=>
(printout t "Incompatible deformations found (tz,beta,ty) at " ?id1 " and "
?id2 crlf))

(defrule incompatible-tzalphatx
(adjacent (id1 ?id1) (id2 ?id2))
(negative (id ?id1) (field "alpha"))
(negative (id ?id2) (field "tz"))
(negative (id ?id2) (field "tx"))
=>
(printout t "Incompatible deformations found (alpha,tz,tx) at " ?id1 " and "
?id2 crlf))

; The following rules will check whether two adjacent ROIs have the
; exact same rotations, which are however rotation in different directions.
; i.e. Rotation to the left is never allowed to be next to a Rotation to the
; right, and vice-versa. This is done for all rotations (alpha, beta, gamma).

(defrule different-alpha
(adjacent (id1 ?id1) (id2 ?id2))
(or (and (positive (id ?id1) (field "alpha")) (negative (id ?id1)

(field "alpha")))
(and (negative (id ?id1) (field "alpha")) (positive (id ?id1)
(field "alpha"))))

=>
(printout t "Two different rotations found along the x-axis at " ?id1 " and "
?id2 crlf))

(defrule different-beta
(adjacent (id1 ?id1) (id2 ?id2))
(or (and (positive (id ?id1) (field "beta")) (negative (id ?id1)

(field "beta")))
(and (negative (id ?id1) (field "beta")) (positive (id ?id1)
(field "beta"))))

=>
(printout t "Two different rotations found along the y-axis at " ?id1 " and "
?id2 crlf))

(defrule different-gamma
(adjacent (id1 ?id1) (id2 ?id2))
(or (and (positive (id ?id1) (field "gamma")) (negative (id ?id1)

(field "gamma")))
(and (negative (id ?id1) (field "gamma")) (positive (id ?id1)
(field "gamma"))))

=>
(printout t "Two different rotations found along the z-axis at " ?id1 " and "
?id2 crlf)
)

; The following rules will check whether the magnitude of a particular
; deformation is growing, or shrinking at a reasonable level. For example, if
; a deformation is very big, or big in one ROI, and then very small, or small
; in a ROI which is next to this one, then a warning should be issued.
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(defrule check-tx-magnitude
(adjacent (id1 ?id1) (id2 ?id2))
(or (and (or (ROI (id ?id1) (tx "sg")) (ROI (id ?id2) (tx "g")))

(or (ROI (id ?id1) (tx "k")) (ROI (id ?id2) (tx "sk"))))
(and (or (ROI (id ?id1) (tx "nsg")) (ROI (id ?id2) (tx "ng")))

(or (ROI (id ?id1) (tx "nk")) (ROI (id ?id2) (tx "nsk")))))
=>
(printout t "Magnitude of translation along the x-axis changed drastically
from " ?id1 " to " ?id2 crlf))

(defrule check-ty-magnitude
(adjacent (id1 ?id1) (id2 ?id2))
(or (and (or (ROI (id ?id1) (ty "sg")) (ROI (id ?id2) (ty "g")))

(or (ROI (id ?id1) (ty "k")) (ROI (id ?id2) (ty "sk"))))
(and (or (ROI (id ?id1) (ty "nsg")) (ROI (id ?id2) (ty "ng")))

(or (ROI (id ?id1) (ty "nk")) (ROI (id ?id2) (ty "nsk")))))
=>
(printout t "Magnitude of translation along the y-axis changed drastically
from " ?id1 " to " ?id2 crlf))

(defrule check-tz-magnitude
(adjacent (id1 ?id1) (id2 ?id2))
(or (and (or (ROI (id ?id1) (tz "sg")) (ROI (id ?id2) (tz "g")))

(or (ROI (id ?id1) (tz "k")) (ROI (id ?id2) (tz "sk"))))
(and (or (ROI (id ?id1) (tz "nsg")) (ROI (id ?id2) (tz "ng")))

(or (ROI (id ?id1) (tz "nk")) (ROI (id ?id2) (tz "nsk")))))
=>
(printout t "Magnitude of translation along the z-axis changed drastically
from " ?id1 " to " ?id2 crlf))

(defrule check-alpha-magnitude
(adjacent (id1 ?id1) (id2 ?id2))
(or (and (or (ROI (id ?id1) (alpha "sg")) (ROI (id ?id2) (alpha "g")))

(or (ROI (id ?id1) (alpha "k")) (ROI (id ?id2) (alpha "sk"))))
(and (or (ROI (id ?id1) (alpha "nsg")) (ROI (id ?id2) (alpha "ng")))

(or (ROI (id ?id1) (alpha "nk")) (ROI (id ?id2) (alpha "nsk")))))
=>
(printout t "Magnitude of rotation along the x-axis changed drastically from
" ?id1 " to " ?id2 crlf))

(defrule check-beta-magnitude
(adjacent (id1 ?id1) (id2 ?id2))
(or (and (or (ROI (id ?id1) (beta "sg")) (ROI (id ?id2) (beta "g")))

(or (ROI (id ?id1) (beta "k")) (ROI (id ?id2) (beta "sk"))))
(and (or (ROI (id ?id1) (beta "nsg")) (ROI (id ?id2) (beta "ng")))

(or (ROI (id ?id1) (beta "nk")) (ROI (id ?id2) (beta "nsk")))))
=>
(printout t "Magnitude of rotation along the y-axis changed drastically from
" ?id1 " to " ?id2 crlf))

(defrule check-gamma-magnitude
(adjacent (id1 ?id1) (id2 ?id2))
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(or (and (or (ROI (id ?id1) (gamma "sg")) (ROI (id ?id2) (gamma "g")))
(or (ROI (id ?id1) (gamma "k")) (ROI (id ?id2) (gamma "sk"))))

(and (or (ROI (id ?id1) (gamma "nsg")) (ROI (id ?id2) (gamma "ng")))
(or (ROI (id ?id1) (gamma "nk")) (ROI (id ?id2) (gamma "nsk")))))

=>
(printout t "Magnitude of rotation along the z-axis changed drastically from
" ?id1 " to " ?id2 crlf))
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APPENDIX D
Deformation Interpretation

(defglobal ?*VI* = 0)
(defglobal ?*St_VI* = 0)
(defglobal ?*Lt_VI* = 0)
(defglobal ?*L1* = 0)
(defglobal ?*L2* = 0)
(defglobal ?*x* = 0)
(defglobal ?*D* = 0)

(deffunction ask-question (?allowed-values)
(bind ?answer (read))
(if (lexemep ?answer)

then (bind ?answer (lowcase ?answer)))
(while (not (member ?answer ?allowed-values)) do

(bind ?answer (read))
(if (lexemep ?answer)

then (bind ?answer (lowcase ?answer))))
?answer)

; Structural Behaviour of the Building

;Analysis of the horizontal elements
(defrule horizontal-structural-elements

(declare (salience 10))
=>
(printout t "What is the material used in the horizontal
structural elements?" crlf)
(printout t "a) Wood Structure" crlf)
(printout t "b) Reinforced structure" crlf)
(printout t "c) Mixed Structure" crlf)
(bind ?response (ask-question a b c))
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(if (eq ?response a)
then (bind ?*VI* (+ ?*VI* 6)))
(if (eq ?response c)
then (bind ?*VI* (+ ?*VI* 3)))

)

;Analysis of the vertical elements
(defrule vertical-structural-elements

(declare (salience 20))
=>
(printout t "What is the material used in the vertical
structural elements?" crlf)
(printout t "a) Masonry elements" crlf)
(printout t "b) Steel elements" crlf)
(printout t "c) Reinforced concrete elements" crlf)
(printout t "d) Mixed elements" crlf)
(bind ?response (ask-question a b c d))

(if (eq ?response a)
then (bind ?*VI* (+ ?*VI* 6)))
(if (eq ?response c)
then (bind ?*VI* (+ ?*VI* 3)))
(if (eq ?response d)
then (bind ?*VI* (+ ?*VI* 4)))

)

;Foundations - source of information
(defrule foundations-info

(declare (salience 30))
=>
(printout t "What is the source of information on the
foundation of the building like?" crlf)
(printout t "a) Direct (drawings, contractor)" crlf)
(printout t "b) Indirect (property owner, inhabitants, for
similarity with known structures, assessed)" crlf)
(bind ?response (ask-question a b))
(if (eq ?response b)
then (bind ?*VI* (+ ?*VI* 4)))

)

;Refurbishments
(defrule refurbishments-type

(declare (salience 40))
=>
(printout t "Is there any type of refurbishment present?" crlf)
(printout t "a) Unknown" crlf)
(printout t "b) Increasing opening in the facade
(or bearing walls)" crlf)
(printout t "c) Modifications maintaining the
construction method" crlf)
(printout t "d) Modifications improving the
construction method" crlf)
(printout t "e) Consolidation (bearing structure or
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foundations)" crlf)
(printout t "f) Adding floors" crlf)
(printout t "g) Small interior works" crlf)
(bind ?response (ask-question a b c d e f g))
(if (eq ?response a)
then (bind ?*VI* (+ ?*VI* 2)))
(if (eq ?response b)
then (bind ?*VI* (+ ?*VI* 6)))
(if (eq ?response d)
then (bind ?*VI* (+ ?*VI* 3)))
(if (eq ?response e)
then (bind ?*VI* (+ ?*VI* 5)))
(if (eq ?response f)
then (bind ?*VI* (+ ?*VI* 4)))
(if (neq ?response a)
then (printout t "What is the state of refurbishment works" crlf)

(printout t "a) Done or in progress" crlf)
(printout t "b) Designed" crlf)
(bind ?response2 (ask-question a b))
(if (eq ?response2 a) then (bind ?*St_VI* (+ ?*St_VI* 1)))
(if (eq ?response2 b) then (bind ?*Lt_VI* (+ ?*Lt_VI* 1))))

)

;Basement
(defrule basement-presence

(declare (salience 50))
=>
(printout t "Are there any basement levels present?" crlf)
(printout t "No" crlf)
(printout t "Yes" crlf)
(bind ?response (ask-question a b))
(if (eq ?response b)
then (bind ?*VI* (+ ?*VI* 3)))

)

;Orientation and position of the building
(defrule orientation-position

(declare (salience 60))
=>
(printout t "Enter the average dimension in the direction
parallel to the tunnel alignment (L1): ")
(bind ?*L1* read)
(printout t crlf)
(printout t "Enter the average dimension in the direction
perpendicular to the tunnel alignment (L2): ")
(bind ?*L2* read)
(printout t crlf)
(printout t "Enter the distance of the building from the tunnel
axis (x): ")
(bind ?*x* read)
(printout t crlf)
(printout t "Enter the dimensions of the tunnel diameter (D): ")
(bind ?*D* read)
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(printout t crlf)

; Orientation
(if (< (/ ?*L1* ?*L2*) 0.5)
then (bind ?*St_VI* (+ ?*St_VI* 5))

(bind ?*Lt_VI* (+ ?*Lt_VI* 10)))
(if (and (< (/ ?*L1* ?*L2*) 2) (> (/ ?*L1* ?*L2*) 0.5))
then (bind ?*St_VI* (+ ?*St_VI* 6))

(bind ?*Lt_VI* (+ ?*Lt_VI* 6)))
(if (> (/ ?*L1* ?*L2*) 2)
then (bind ?*St_VI* (+ ?*St_VI* 10))

(bind ?*Lt_VI* (+ ?*Lt_VI* 5)))

; Group effect of buildings
(printout t "Is the building isolated or a part of a group?" crlf)
(printout t "a) Isolated building" crlf)
(printout t "b) Grouped buildings parallel to the tunnel axis" crlf)
(printout t "c) Group buildings perpendicular to the tunnel axis" crlf)
(bind ?response (ask-question a b c))
(if (eq ?response a)
then (if (and (< ?*L1* (* 2 ?*D*)) (< ?*L2* (* 2 ?*D*)))

then (bind ?*VI* (+ ?*VI* 15)))
(if (and (> ?*L1* (* 2 ?*D*)) (> ?*L2* (* 2 ?*D*)))
then (bind ?*VI* (+ ?*VI* 5)))
(if (and (< ?*L1* (* 2 ?*D*)) (> ?*L2* (* 2 ?*D*)))
then (bind ?*VI* (+ ?*VI* 10)))
(if (and (> ?*L1* (* 2 ?*D*)) (< ?*L2* (* 2 ?*D*)))
then (bind ?*VI* (+ ?*VI* 10))))

(if (eq ?response b)
then (bind ?*Lt_VI* (+ ?*Lt_VI* 7)))
(if (eq ?response c)
then (bind ?*St_VI* (+ ?*St_VI* 7)))

;Position (relative to tunnel) factor
(if (< (/ ?*x* ?*D*) 1)
then (bind ?*Lt_VI* (* ?*Lt_VI* 1))

(bind ?*Lt_VI* (* ?*St_VI* 1)))
(if (and (> (/ ?*x* ?*D*) 1) (< (/ ?*x* ?*D*) 3))
then (bind ?*Lt_VI* (* ?*Lt_VI* 0.5))

(bind ?*Lt_VI* (* ?*St_VI* 0.5)))
(if (> (/ ?*x* ?*D*) 3)
then (bind ?*Lt_VI* (* ?*Lt_VI* 0))

(bind ?*Lt_VI* (* ?*St_VI* 0)))

)

;Use of the building
(defrule building-usage

(declare (salience 70))
=>
(printout t "What kind of building is it?" crlf)
(printout t "a) Highly sensitive building (hospital,
historical/classical building)" crlf)
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(printout t "b) Medium sensitive building (modern, newly built)" crlf)
(printout t "c) Low sensitive building (abandonded building)" crlf)
(bind ?response (ask-question a b c))
(if (eq ?response a)
then (bind ?*VI* (+ ?*VI* 10)))
(if (eq ?response b)
then (bind ?*VI* (+ ?*VI* 5)))

)

;Aesthetic features of the building
(defrule aesthetic-features

(declare (salience 80))
=>
;Historic/artistic heritage
(printout t "Does the building have historic/artistic heritage?" crlf)
(printout t "a) No" crlf)
(printout t "b) Yes" crlf)
(bind ?response (ask-question a b))
(if (eq ?response b)
then (bind ?*VI* (+ ?*VI* 12)))

;Internal not bearing walls
(printout t "What kind of material is used in the internal walls?" crlf)
(printout t "a) Wood" crlf)
(printout t "b) Bricks" crlf)
(printout t "c) Cartongesso" crlf)
(printout t "d) Alluminium and glass" crlf)
(bind ?response (ask-question a b c d))
(if (eq ?response a)
then (bind ?*VI* (+ ?*VI* 1)))
(if (eq ?response b)
then (bind ?*VI* (+ ?*VI* 4)))
(if (eq ?response c)
then (bind ?*VI* (+ ?*VI* 3)))
(if (eq ?response d)
then (bind ?*VI* (+ ?*VI* 2)))

;External finishes
(printout t "What kind of external finishes does the
building have?" crlf)
(printout t "a) Artistic tailing" crlf)
(printout t "b) Ordinary tailing" crlf)
(printout t "c) Plaster" crlf)
(printout t "d) Other" crlf)
(bind ?response (ask-question a b c d))
(if (eq ?response a)
then (bind ?*VI* (+ ?*VI* 4)))
(if (eq ?response b)
then (bind ?*VI* (+ ?*VI* 3)))
(if (eq ?response c)
then (bind ?*VI* (+ ?*VI* 2)))
(if (eq ?response d)
then (bind ?*VI* (+ ?*VI* 1)))
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)

;State of the building
(defrule building-state

(declare (salience 90))
=>
;Visual conditions
(printout t "General visual conditions" crlf)
(printout t "a) Good" crlf)
(printout t "b) Medium" crlf)
(printout t "c) Bad" crlf)
(bind ?response (ask-question a b c))
(if (eq ?response b)
then (bind ?*VI* (+ ?*VI* 4)))
(if (eq ?response c)
then (bind ?*VI* (+ ?*VI* 8)))

;Settlement signals
(printout t "Are there any signals of settlements in the
surrounding area" crlf)
(printout t "a) Yes" crlf)
(printout t "b) No" crlf)
(bind ?response (ask-question a b))
(if (eq ?response a)
then (bind ?*VI* (+ ?*VI* 4)))

;Cracks
(printout t "Are there any visible cracks on the building?" crlf)
(printout t "a) Major cracks and extensive patterns" crlf)
(printout t "b) Cracks and some patterns" crlf)
(printout t "c) Isolated minor cracks" crlf)
(printout t "d) None" crlf)
(bind ?response (ask-question a b c d))
(if (eq ?response a)
then (bind ?*VI* (+ ?*VI* 8)))
(if (eq ?response b)
then (bind ?*VI* (+ ?*VI* 5)))
(if (eq ?response c)
then (bind ?*VI* (+ ?*VI* 3)))

)
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APPENDIX E
FIR Artificial Neural Network

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "fireng.h"

#define NUM_IN (m_Nodes[0])
#define NUM_OUT (m_Nodes[2])
#define NUM_HID (m_Nodes[1])

void fir2layer::RandomizeWeights()
{

Deallocate();

m_WeightSize[0] = m_Nodes[0] * m_Nodes[1] * m_Taps[0];
m_Weights[0] = new double[m_WeightSize[0]];
m_LastWeights[0] = new double[m_WeightSize[0]];

m_WeightSize[1] = m_Nodes[1] * m_Nodes[2] * m_Taps[1];
m_Weights[1] = new double[m_WeightSize[1]];
m_LastWeights[1] = new double[m_WeightSize[1]];

m_Biases[0] = new double[m_Nodes[1]];
m_LastBiases[0] = new double[m_Nodes[1]];
m_Biases[1] = new double[m_Nodes[2]];
m_LastBiases[1] = new double[m_Nodes[2]];

assert(m_Weights[0] != NULL);
assert(m_LastWeights[0] != NULL);
assert(m_Weights[1] != NULL);
assert(m_LastWeights[1] != NULL);
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assert(m_Biases[0] != NULL);
assert(m_LastBiases[0] != NULL);
assert(m_Biases[1] != NULL);
assert(m_LastBiases[1] != NULL);

RandomizeArray(m_Weights[0], m_WeightSize[0]);
RandomizeArray(m_Weights[1], m_WeightSize[1]);
RandomizeArray(m_Biases[0], m_Nodes[1]);
RandomizeArray(m_Biases[1], m_Nodes[2]);

ZeroArray(m_LastWeights[0], m_WeightSize[0]);
ZeroArray(m_LastWeights[1], m_WeightSize[1]);
ZeroArray(m_LastBiases[0], m_Nodes[1]);
ZeroArray(m_LastBiases[1], m_Nodes[2]);

}

void fir2layer::Train(int NumVectors, double* Input, double* Target)
{

int Epoch;
int i, j, tmp;
double RateDecrease;

m_NumInputVectors = NumVectors;
m_InputVectors = Input;
m_TargetVectors = Target;

if (m_Taps[1] > 1)
m_Mask = (1 << ((int)(log((double)(m_Taps[1] - 1)) /
0.69314718) + 1)) - 1;

else m_Mask = 0;

m_HiddenOutput = new double*[NUM_HID]; assert(m_HiddenOutput != NULL);
for (i = 0; i < NUM_HID; i++)

m_HiddenOutput[i] = new double[m_Mask + 1];
m_NetOutput = new double[NUM_OUT]; assert(m_NetOutput != NULL);
m_HiddenDelta = new double[NUM_HID]; assert(m_HiddenDelta != NULL);
m_NetDelta = new double*[NUM_OUT]; assert(m_NetDelta != NULL);
for (i = 0; i < NUM_OUT; i++)

m_NetDelta[i] = new double[m_Mask + 1];
m_MSE = new double[NUM_OUT * m_NumEpochs]; assert(m_MSE != NULL);
m_CSE = new double[NUM_OUT]; assert(m_CSE != NULL);

RateDecrease = m_LearningRate * 0.90 / (double)m_NumEpochs;

for (Epoch = 0; Epoch < m_NumEpochs; Epoch++)
{

for (i = m_Taps[0]-1; i<m_Taps[0]+m_Taps[1]-2; i++) FwdPassLayer1(i);

for (; i < m_Taps[0] + 2 * m_Taps[1] - 3; i++)
{

FwdPassLayer1(i);
FwdPassLayer2(i);
BackPropLayer2(i);
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UpdateWeights(i);
}

for (; i < m_NumInputVectors; i++)
{

FwdPassLayer1(i);
FwdPassLayer2(i);
BackPropLayer2(i);
BackPropLayer1(i);
UpdateWeights(i);

}

for (; i < m_NumInputVectors + m_Taps[1] - 1; i++)
{

for (tmp = i & m_Mask, j = 0; j < NUM_OUT; j++)
m_NetDelta[j][tmp] = 0.0;

BackPropLayer1(i);
UpdateWeights(i);

}

CalcMSE(Epoch);
ResetDeltas();
m_EpochsTrained++;

if (m_Decrease)
m_LearningRate -= RateDecrease;

}

for (i = 0; i < NUM_HID; i++)
delete [] m_HiddenOutput[i];

for (i = 0; i < NUM_OUT; i++)
delete [] m_NetDelta[i];

delete [] m_HiddenOutput;
delete [] m_NetOutput;
delete [] m_HiddenDelta;
delete [] m_NetDelta;
delete [] m_MSE;
delete [] m_CSE;

}

void fir2layer::FwdPassLayer1(int Ind)
{

int i, j, k, temp, temp1;
int MatrixSize = NUM_HID * NUM_IN;
double Out;
temp1 = Ind & m_Mask;
for (i = 0; i < NUM_HID; i++)
{

Out = m_Biases[0][i];
for (j = 0; j < m_Taps[0]; j++)
{

temp = Ind - j;
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for (k = 0; k < NUM_IN; k++)
Out += m_InputVectors[MATRIX_WEIGHT(k, temp, NUM_IN)] *

m_Weights[0][MATRIX_TAP(i, k, j, NUM_HID, MatrixSize)];
}
m_HiddenOutput[i][temp1] = HID_FN(Out);

}
}

void fir2layer::FwdPassLayer2(int Ind)
{

int i,j,k, temp;
double Out;
int MatrixSize = NUM_OUT * NUM_HID;
for (i = 0; i < NUM_OUT; i++)
{

Out = m_Biases[1][i];
for (j = 0; j < m_Taps[1]; j++)
{

temp = (Ind - j) & m_Mask;
for (k = 0; k < NUM_HID; k++)

Out += m_HiddenOutput[k][temp] *
m_Weights[1][MATRIX_TAP(i, k, j, NUM_OUT, MatrixSize)];

}
m_NetOutput[i] = OUT_FN(Out);

}
}

void fir2layer::BackPropLayer1(int Ind)
{

int i, j, k, temp;
int MatrixSize = NUM_OUT * NUM_HID;
double Delta;

for (i = 0; i < NUM_HID; i++)
{

Delta = 0.0;
for (j = 0; j < m_Taps[1]; j++)
{

temp = (Ind - j) & m_Mask;
for (k = 0; k < NUM_OUT; k++)

Delta += m_NetDelta[k][temp] *
m_Weights[1][MATRIX_TAP(k, i, m_Taps[1] - j - 1,
NUM_OUT, MatrixSize)];

}
temp = (Ind - m_Taps[1] + 1) & m_Mask;
m_HiddenDelta[i] = Delta * D_HID_FN(m_HiddenOutput[i][temp]);

}
}

void fir2layer::BackPropLayer2(int Ind)
{

int i, temp;
double Error;
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temp = Ind & m_Mask;

for (i = 0; i < NUM_OUT; i++)
{

Error = m_TargetVectors[MATRIX_WEIGHT(i, Ind, NUM_OUT)] -
m_NetOutput[i];
m_CSE[i] += Error * Error;
m_NetDelta[i][temp] = Error;

}
}

void fir2layer::UpdateWeights(int Ind)
{

int i, j, k, temp;
int Matrix = NUM_OUT * NUM_HID;
double Delta, Evol;

for (i = 0; i < NUM_OUT; i++)
{

Delta = m_LearningRate * m_NetDelta[i][Ind & m_Mask];
for (j = 0; j < m_Taps[1]; j++)
{

temp = (Ind - j) & m_Mask;
for (k = 0; k < NUM_HID; k++)
{

Evol = Delta * m_HiddenOutput[k][temp] + m_Momentum *
m_LastWeights[1][MATRIX_TAP(i, k, j, NUM_OUT, Matrix)];

m_Weights[1][MATRIX_TAP(i, k, j, NUM_OUT, Matrix)] += Evol;
m_LastWeights[1][MATRIX_TAP(i, k, j, NUM_OUT, Matrix)] = Evol;

}
}
Evol = Delta + m_Momentum * m_LastBiases[1][i];
m_Biases[1][i] += Evol;
m_LastBiases[1][i] = Evol;

}

Matrix = NUM_IN * NUM_HID;

for (i = 0; i < NUM_HID; i++)
{

Delta = m_LearningRate * m_HiddenDelta[i];
for (j = 0; j < m_Taps[0]; j++)
{

temp = Ind - j - m_Taps[1] + 1;
for (k = 0; k < NUM_IN; k++)
{

Evol = Delta * m_InputVectors[MATRIX_WEIGHT(k, temp, NUM_IN)]
+ m_Momentum * m_LastWeights[0][MATRIX_TAP(i, k, j, NUM_HID,

Matrix)];
m_Weights[0][MATRIX_TAP(i, k, j, NUM_HID, Matrix)] += Evol;
m_LastWeights[0][MATRIX_TAP(i, k, j, NUM_HID, Matrix)] = Evol;

}
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}
Evol = Delta + m_Momentum * m_LastBiases[0][i];
m_Biases[0][i] += Evol;
m_LastBiases[0][i] = Evol;

}
}

void fir2layer::CalcMSE(int Epoch)
{

int i;

for (i = 0; i < NUM_OUT; i++)
{

m_MSE[MATRIX_WEIGHT(i, Epoch, NUM_OUT)] =
m_CSE[i] / (double)(m_NumInputVectors - m_Taps[1] - m_Taps[0] + 2);

m_CSE[i] = 0.0;
}

}

void fir2layer::ResetDeltas()
{

int i, t;

for (i = 0; i < NUM_OUT; i++)
{

for (t = m_Taps[1]; t < m_Mask + 1; t++)
m_NetDelta[i][t] = 0.0;

}
}

void fir2layer::ForwardPass()
{

int i;
double* OrigOutput;

if (m_Taps[1] > 1)
m_Mask = (1 << ((int)(log((double)(m_Taps[1] - 1)) / 0.69314718)
+ 1)) - 1;

else
m_Mask = 0;

m_HiddenOutput = new double*[NUM_HID];
assert(m_HiddenOutput != NULL);
for (i = 0; i < NUM_HID; i++)

m_HiddenOutput[i] = new double[m_Mask + 1];

for (i = m_Taps[0] - 1; i < m_Taps[0] + m_Taps[1] - 2; i++)
FwdPassLayer1(i); // Prime the second layer of taps

OrigOutput = m_NetOutput;
m_NetOutput += i * NUM_OUT; // Skip past primer values
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// Go over all remaining input vectors
for (; i < m_NumInputVectors; i++)
{

FwdPassLayer1(i);
FwdPassLayer2(i); // Output goes into m_NetOutput
m_NetOutput += NUM_OUT;

}

// There should be (NumInputVectors - WindowSize) output points

m_NetOutput = OrigOutput;

for (i = 0; i < NUM_HID; i++)
delete [] m_HiddenOutput[i];

delete [] m_HiddenOutput;
}

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <assert.h>
#include "fireng.h"

fir::fir()
{

m_Weights[0] = m_Weights[1] = m_Weights[2] = NULL;
m_Biases[0] = m_Biases[1] = m_Biases[2] = NULL;
m_LastWeights[0] = m_LastWeights[1] = m_LastWeights[2] = NULL;
m_LastBiases[0] = m_LastBiases[1] = m_LastBiases[2] = NULL;
m_EpochsTrained = 0;

}

fir& fir::operator=(fir& network)
{

int i;

for (i = 0; i < 4; i++)
m_Nodes[i] = network.m_Nodes[i];

for (i = 0; i < 3; i++)
m_Taps[i] = network.m_Taps[i];

return *this;
}

void fir::Deallocate()
{

// Massive memory deallocation
for (int i = 0; i <= 2; i++)

{
if (m_Weights[i] != NULL) delete [] m_Weights[i];
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if (m_Biases[i] != NULL) delete [] m_Biases[i];
if (m_LastWeights[i] != NULL) delete [] m_LastWeights[i];
if (m_LastBiases[i] != NULL) delete [] m_LastBiases[i];

}
}

void RandomizeArray(double* Array, int n) // n = length of the array
{

while (n-- > 0)
Array[n] = (double)rand() / (double)RAND_MAX;

}

void ZeroArray(double* Array, int n) // n = length of the array
{

while (n-- > 0) Array[n] = 0.0;
}

void fir::Predict(int Start, int End, int NumVectors,
double* Input, double* Output)

{
double* Prediction;
double* PredEnd;
int i, MaxEnd, Dim = m_Nodes[0];

assert(NumVectors > WindowSize());

printf("Prediction for time interval [%i, %i]\n", Start, End);

if (End < Start)
{
i = Start;
Start = End;
End = i;

}

assert(End >= 0); assert(Start >= 0);

if (End >= NumVectors) MaxEnd = End;
else MaxEnd = NumVectors - 1;

Prediction = new double[(MaxEnd + 1 + WindowSize()) * Dim];
// Temporary memory allocation to hold the prediction

for (i = 0; i <= MaxEnd * Dim; i++) Prediction[i] = 0.0;

m_NumInputVectors = NumVectors;
m_InputVectors = Input; // recreation of original input series
m_NetOutput = &Prediction[Dim]; // skip first vector

ForwardPass();
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// ***** Iterative Prediction ***** //

PredEnd = &Prediction[NumVectors * Dim];

for (i = 0; i < MaxEnd - NumVectors + 1; i++)
{

m_InputVectors = &PredEnd[(i - WindowSize()-1) * Dim];
m_NumInputVectors = WindowSize() + 1;
m_NetOutput = &PredEnd[(i - WindowSize()) * Dim];
ForwardPass();

}

PredEnd = &Prediction[Start * Dim];
for (i = 0; i < (End - Start + 1) * Dim; i++)
Output[i] = PredEnd[i];

delete [] Prediction;

return;
}

int fir::Load(FILE* InFile)
{

int i, j;
fscanf(InFile, "%i ", &m_EpochsTrained);
for (i = 0; i < 4; i++) fscanf(InFile, "%i ", &m_Nodes[i]);
for (i = 0; i < 3; i++) fscanf(InFile, "%i ", &m_Taps[i]);
for (i = 0; i < 3; i++)
{

fscanf(InFile, "%i", &m_WeightSize[i]);
if (m_WeightSize[i] == 0)
{

m_Weights[i] = NULL;
m_LastWeights[i] = NULL;

} else
{

m_Weights[i] = new double[m_WeightSize[i]];
m_LastWeights[i] = new double[m_WeightSize[i]];
assert(m_Weights[i] != NULL);
assert(m_LastWeights[i] != NULL);
for (j = 0; j < m_WeightSize[i]; j++)

fscanf(InFile, "%lf ", &m_Weights[i][j]);
ZeroArray(m_LastWeights[i], m_WeightSize[i]);
m_Biases[i] = new double[m_Nodes[i + 1]];
m_LastBiases[i] = new double[m_Nodes[i + 1]];
assert(m_Biases[i] != NULL);
assert(m_LastBiases[i] != NULL);
for (j = 0; j < m_Nodes[i + 1]; j++)

fscanf(InFile, "%lf ", &m_Biases[i][j]);
ZeroArray(m_LastBiases[i], m_Nodes[i + 1]);

}
}
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return 0;
}

int fir::Save(FILE* OutFile)
{

int i, j;
fprintf(OutFile, "%i\n", m_EpochsTrained);
for (i = 0; i < 4; i++) fprintf(OutFile, "%i ", m_Nodes[i]);
fprintf(OutFile, "\n");
for (i = 0; i < 3; i++) fprintf(OutFile, "%i ", m_Taps[i]);
fprintf(OutFile, "\n");
for (i = 0; i < 3; i++)
{

if (i == 2 && m_Weights[i] == NULL) fprintf(OutFile, "0\n");
else
{

fprintf(OutFile, "%i\n", m_WeightSize[i]);
for (j = 0; j < m_WeightSize[i]; j++)

fprintf(OutFile, "%g ", m_Weights[i][j]);
fprintf(OutFile, "\n");

for (j = 0; j < m_Nodes[i + 1]; j++)
fprintf(OutFile, "%g ", m_Biases[i][j]);

fprintf(OutFile, "\n");
}

}

return 0;
}

#ifndef __FIR_H__

#include <stdio.h>

// Transfer function macros
#define HID_FN(x) (tanh(x)) // Hidden layer transfer function
#define OUT_FN(x) (x) // Output layer transfer function
#define D_HID_FN(x) (1.0 - (x*x)) // Derivative of HID_FN w.r.t. x

// Macros for indexing into weight matrices
#define COL_ROW(i, j, ROWS) (i + (j) * (ROWS))
#define COL_ROW_TAP(i, j, tap, ROWS, ROWSXCOLS) (i + (j) * (ROWS)
+ (tap) * (ROWSXCOLS))

class fir // A Finite Impulse Response neural network
{
public:

fir();
~fir() { Deallocate(); }
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fir& operator=(fir& net);

int Load(FILE* InFile);
int Save(FILE* OutFile);

void SetNodes(int Layer, int NumNodes) {
m_Nodes[Layer] = NumNodes; // # of nodes in a layer

}

void SetTaps(int Layer, int NumTaps) {
m_Taps[Layer] = NumTaps; // # of time taps in a layer

}

void SetTrainingParams(int Epochs, double Rate, int Freq, double
Momentum, int Decrease) {

m_NumEpochs = Epochs;
m_LearningRate = Rate;
m_DisplayFreq = Freq; // Display status every X epochs
m_MomentumRate = Momentum;
m_DecreaseRate = Decrease; // Linearly decrease learning rate?

}

virtual void RandomizeWeights() {}
virtual int WindowSize() { return 0; } // Size of "primer" window
virtual void Train(int NumVectors, double* InputVectors, double*
TargetVectors) {}

void Predict(int StartTime, int EndTime, int NumVectors, double*
InputVectors, double* OutputVectors);

protected:

void Deallocate();

//
// State
//

int m_Nodes[4]; // # of nodes in input/hidden/output layers
int m_Taps[3]; // # of taps in input/hidden layers

double* m_Weights[3]; // Intra-layer weight matrices
int m_WeightSize[3]; // # elements in each weight matrix
double* m_Biases[3]; // Bias vectors for each layer

double* m_LastWeights[3]; // Last weight matrix for momentum learning
double* m_LastBiases[3]; // Last bias matrix for momentum learning

//
// Training
//

int m_NumEpochs; // # of epochs to train for
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int m_EpochsTrained; // Total epochs this net has trained
double m_LearningRate; // Weight adjustment learning rate
int m_DisplayFreq; // Display status every X epochs
double m_MomentumRate; // Momentum weighting constant
int m_DecreaseRate; // Flag to decrease rate during training

double* m_InputVectors; // Input vectors to train on
double* m_TargetVectors; // Desired output vectors
int m_NumInputVectors; // Total # of input vectors

int m_Mask; // Circular index
double* m_MSE; // Mean squared error per epoch
double* m_CSE; // Cumulative squared error
double* m_NetOutput; // Network outputs
double** m_NetDelta; // Network error
double** m_HiddenOutput; // Hidden layer outputs
double* m_HiddenDelta; // Hidden layer error

virtual void ForwardPass() {} // Implemented by specific FIR classes
};

class fir2layer : public fir // Special case: 2-layer FIR
{
public:

virtual void RandomizeWeights();

virtual int WindowSize() {
return (m_Taps[0] + m_Taps[1] - 2);

}

virtual void Train(int NumVectors, double* InputVectors, double*
TargetVectors);

protected:

void FwdPassLayer1(int Index);
void FwdPassLayer2(int Index);
void BackPropLayer1(int Index);
void BackPropLayer2(int Index);
void UpdateWeights(int Index);
void CalcMSE(int Epoch);
void ResetDeltas();

virtual void ForwardPass();
};

void RandomizeArray(double* Array, int Length);
void ZeroArray(double* Array, int Length);

#define __FIR_H__
#endif

148



#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
#include <ctype.h>
#include "timeseries.h"
#include "fireng.h"

const char* Usage =
"Usage: firnet -f filename [switches...]\n"
"\n"
"Switches:\n"
" -l layers # of layers in the FIR network: 2 (default) or 3\n"
" -n n1 [n2] # of nodes in each hidden layer\n"
" -t n1 n2 [n3] # of taps in each layer\n"
" -p start end Range of time series values to predict\n"
" -e epochs # of epochs to train for\n"
" -c Force training (if disabled by loading state)\n"
" -r rate Learning rate\n"
" -m alpha Use momentum with parameter alpha in [0, 1]\n"
" -d Linearly decrease learning rate";

int main(int argc, char** argv)
{

TimeSeries T, P;
char* FileName = NULL;
int Layers = 2;
int StartTime = 0;
int EndTime = -1;
int Epochs = 75;
int DispFreq = 5;
double Rate = 0.005;
double Alpha = 0.0;
int i, j;
int ForceTrain = 0;
int WeightsLoaded = 0;
int DecreaseRate = 0;

srand(time(NULL)); // Seed random number generator

// Convert all switches to lower case
for (i = 1; i < argc; i++)
{

if (argv[i][0] == '-')
for (j = 0; j < strlen(argv[i]); j++)

argv[i][j] = tolower(argv[i][j]);
}

// Seek out the -layers switch on the command line First
for (i = 1; i < argc; i++)
{

if (strcmp(argv[i], "-l") == 0)
{

149



if (i + 1 >= argc)
{

printf("Expected parameter after %s\n", argv[i]);
return 1;

}
Layers = atoi(argv[++i]);

}
}

assert(Layers == 2 || Layers == 3);

// Some default network parameters
T.SetNetworkSize(Layers);
T.SetHiddenNodes(0, 5);
T.SetHiddenNodes(1, 4);
T.SetLayerTaps(0, 4);
T.SetLayerTaps(1, 3);
T.SetLayerTaps(2, 2);

// Parse the command line to change program parameters
for (i = 1; i < argc; i++)
{

// Command line help
if (strcmp(argv[i], "-h") == 0)
{

printf("%s\n", Usage);
return 1;

} else
// # of epochs to train for
if (strcmp(argv[i], "-e") == 0)
{

if (i + 1 >= argc)
{

printf("Expected parameter after %s\n", argv[i]);
return 1;

}
Epochs = atoi(argv[++i]);

} else
// # of layers in network (2 or 3)
if (strcmp(argv[i], "-l") == 0)

Layers = atoi(argv[++i]);
else
// # of nodes in each layer -- sequence of ints follows
if (strcmp(argv[i], "-n") == 0)
{

if (i + 1 >= argc)
{

printf("Expected parameter after %s\n", argv[i]);
return 1;

}
T.SetHiddenNodes(0, atoi(argv[++i]));
if (i + 1 < argc && atoi(argv[i + 1]) > 0)

T.SetHiddenNodes(1, atoi(argv[++i]));
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} else
// # of taps in each layer -- sequence of ints follows
if (strcmp(argv[i], "-t") == 0)
{

if (i + 2 >= argc)
{

printf("Expected parameters after %s\n", argv[i]);
return 1;

}
T.SetLayerTaps(0, atoi(argv[++i]));
if (i + 1 < argc && atoi(argv[i + 1]) > 0)
{

T.SetLayerTaps(1, atoi(argv[++i]));
if (i + 1 < argc && atoi(argv[i + 1]) > 0)

T.SetLayerTaps(2, atoi(argv[++i]));
}

} else
// Range of time values to predict
if (strcmp(argv[i], "-p") == 0)
{

if (i + 2 >= argc)
{

printf("Expected parameters after %s\n", argv[i]);
return 1;

}
StartTime = atoi(argv[++i]);
EndTime = atoi(argv[++i]);

} else
// Input series file name
if (strcmp(argv[i], "-f") == 0)
{

if (i + 1 >= argc)
{

printf("Expected parameter after %s\n", argv[i]);
return 1;

}
FileName = argv[++i];

} else
// Force training
if (strcmp(argv[i], "-c") == 0)

ForceTrain = 1;
else
// Learning rate
if (strcmp(argv[i], "-r") == 0)
{

if (i + 1 >= argc)
{

printf("Expected parameter after %s\n", argv[i]);
return 1;

}
Rate = atof(argv[++i]);

} else
// Use momentum
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if (strcmp(argv[i], "-m") == 0)
{

if (i + 1 >= argc)
{

printf("Expected parameter after %s\n", argv[i]);
return 1;

}
Alpha = atof(argv[++i]);

} else
// Decrease learning rate during training
if (strcmp(argv[i], "-d") == 0)

DecreaseRate = 1;
else
// Unknown switch
{

printf("Unknown switch %s\n", argv[i]);
return 1;

}
}

if (FileName == NULL)
{

printf("%s\n", Usage);
return 1;

}

if (T.LoadSeries(FileName) != 0)
{

printf("There was an error reading the input file.\n");
return 1;

}

if (T.LoadNetwork(FileName) == 0)
WeightsLoaded = 1;

else
T.RandomizeNetwork();

T.SetTrainingParams(Epochs, Rate, DispFreq, Alpha, DecreaseRate);

if (!WeightsLoaded || ForceTrain)
T.TrainNetwork();

// If the prediction range was not set by the user, just do 10%
if (EndTime == -1)

EndTime = T.Length() - 1 + T.Length()/10;

T.Predict(StartTime, EndTime, P);

P.SaveSeries(FileName);
T.SaveNetwork(FileName);

return 0;
}
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APPENDIX F
RFIR Artificial Neural Network

#include "rfir.h"
#include "rfir_util.h"

void rfir(const matrix *Wmask, matrix *W, const
matrix *DI, const matrix *DT, const matrix *
EO, double alpha, matrix *CO, matrix *Wd,
matrix *Z, double *rel_mean_sq, matrix *COL)

{
int I;
int N;
double P;
matrix *OM;
boolean_T guard2 = false;
int cr;
int k;
int iv2[2];
int m;
int i0;
int ia;
int ic;
int br;
int ar;
int ib;
int i1;
matrix *Wd_m;
matrix *dW;
double SE;
int l;
matrix *ET;
matrix *a;
matrix *b_DT;
double d0;
double t;
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int c;
double S;
double b_i1;
double b;
boolean_T guard1 = false;
double E;
I = DI->size[0];
N = W->size[0];
P = (double)W->size[1] / ((double)W->size[0] + (double)DI->size[0]);
c_matrix_init(&OM, 1);
guard2 = false;
if (EO->size[1] == 1) {
guard2 = true;

} else {
cr = DT->size[0];
if (cr == 1) {
guard2 = true;

} else {
k = EO->size[1];
iv2[0] = EO->size[0];
m = EO->size[0];
i0 = OM->size[0];
OM->size[0] = iv2[0];
matrix_cap((matrix__common *)OM, i0, (int)sizeof(double));
ia = iv2[0];
for (i0 = 0; i0 < ia; i0++) {
OM->data[i0] = 0.0;

}

if (EO->size[0] == 0) {
} else {
cr = 0;
while ((m > 0) && (cr <= 0)) {
for (ic = 1; ic <= m; ic++) {
OM->data[ic - 1] = 0.0;

}

cr = m;
}

br = 0;
cr = 0;
while ((m > 0) && (cr <= 0)) {
ar = 0;
i0 = br + k;
for (ib = br + 1; ib <= i0; ib++) {
ia = ar;
for (ic = 0; ic + 1 <= m; ic++) {
ia++;
OM->data[ic] += EO->data[ia - 1];

}

ar += m;
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}

br += k;
cr = m;

}
}

}
}

if (guard2) {
i0 = OM->size[0];
OM->size[0] = EO->size[0];
matrix_cap((matrix__common *)OM, i0, (int)sizeof(double));
ia = EO->size[0];
for (i0 = 0; i0 < ia; i0++) {

OM->data[i0] = 0.0;
cr = EO->size[1];
for (i1 = 0; i1 < cr; i1++) {

OM->data[i0] += EO->data[i0 + EO->size[0] * i1];
}

}
}

matrix_init(&Wd_m, 2);
i0 = Wd_m->size[0] * Wd_m->size[1];
Wd_m->size[0] = 1;
matrix_cap((matrix__common *)Wd_m, i0, (int)sizeof(double));
cr = (int)((double)W->size[0] * (double)W->size[0] * P *
((double)W->size[0] + (double)DI->size[0]));
i0 = Wd_m->size[0] * Wd_m->size[1];
Wd_m->size[1] = cr;
matrix_cap((matrix__common *)Wd_m, i0, (int)sizeof(double));
ia = (int)((double)W->size[0] * (double)W->size[0] * P *
((double)W->size[0] + (double)DI->size[0]));
for (i0 = 0; i0 < ia; i0++) {
Wd_m->data[i0] = 0.0;

}

cr = W->size[0];
i0 = COL->size[0] * COL->size[1];
COL->size[0] = cr;
matrix_cap((matrix__common *)COL, i0, (int)sizeof(double));
i0 = COL->size[0] * COL->size[1];
COL->size[1] = 1;
matrix_cap((matrix__common *)COL, i0, (int)sizeof(double));
cr = W->size[0];
for (i0 = 0; i0 < cr; i0++) {
COL->data[i0] = 0.0;

}

// CO=Z(1:P:P*N,1);
for (i0 = 0; i0 < 2; i0++) {
iv2[i0] = W->size[i0];
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}

matrix_init(&dW, 2);
i0 = dW->size[0] * dW->size[1];
dW->size[0] = iv2[0];
matrix_cap((matrix__common *)dW, i0, (int)sizeof(double));
i0 = dW->size[0] * dW->size[1];
dW->size[1] = iv2[1];
matrix_cap((matrix__common *)dW, i0, (int)sizeof(double));
ia = iv2[0] * iv2[1];
for (i0 = 0; i0 < ia; i0++) {
dW->data[i0] = 0.0;

}

SE = 0.0;
l = 0;
c_matrix_init(&ET, 1);
matrix_init(&a, 2);
c_matrix_init(&b_DT, 1);
while (l <= DT->size[1] - 1) {
d0 = P * ((double)N + (double)I);
for (cr = 0; cr < (int)-(2.0 + (-1.0 - d0)); cr++) {
t = d0 + -(double)cr;
Z->data[(int)t - 1] = Z->data[(int)(t - 1.0) - 1];

}

d0 = P * ((double)N + (double)I);
if ((P == 0.0) || (((P > 0.0) && (1.0 > d0)) || ((0.0 >
P) && (d0 > 1.0))))

{
i0 = 1;

} else {
i0 = (int)P;

}

ia = DI->size[0] - 1;
cr = CO->size[1];
for (i1 = 0; i1 < cr; i1++) {
br = CO->size[0];
for (ar = 0; ar < br; ar++) {
Z->data[i0 * ar] = CO->data[ar + CO->size[0] * i1];

}
}

for (i1 = 0; i1 <= ia; i1++) {
Z->data[i0 * (i1 + CO->size[0])] = DI->data[i1 + DI->size[0] * l];

}

// Pass inputs through sigmoid (logistic) function
i0 = a->size[0] * a->size[1];
a->size[0] = Wmask->size[0];
a->size[1] = Wmask->size[1];
matrix_cap((matrix__common *)a, i0, (int)sizeof(double));
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ia = Wmask->size[0] * Wmask->size[1];
for (i0 = 0; i0 < ia; i0++) {

a->data[i0] = -(Wmask->data[i0] * W->data[i0]);
}

if ((a->size[1] == 1) || (Z->size[0] == 1)) {
i0 = COL->size[0] * COL->size[1];
COL->size[0] = a->size[0];
COL->size[1] = Z->size[1];
matrix_cap((matrix__common *)COL, i0, (int)sizeof(double));
ia = a->size[0];
for (i0 = 0; i0 < ia; i0++) {

cr = Z->size[1];
for (i1 = 0; i1 < cr; i1++) {

COL->data[i0 + COL->size[0] * i1] = 0.0;
br = a->size[1];
for (ar = 0; ar < br; ar++) {
COL->data[i0 + COL->size[0] * i1] += a->data[i0 +
a->size[0] * ar] * Z->data[ar + Z->size[0] * i1];

}
}

}
} else {

k = a->size[1];
iv2[0] = a->size[0];
iv2[1] = Z->size[1];
m = a->size[0];
i0 = COL->size[0] * COL->size[1];
COL->size[0] = iv2[0];
matrix_cap((matrix__common *)COL, i0, (int)sizeof(double));
i0 = COL->size[0] * COL->size[1];
COL->size[1] = iv2[1];
matrix_cap((matrix__common *)COL, i0, (int)sizeof(double));
ia = iv2[0] * iv2[1];
for (i0 = 0; i0 < ia; i0++) {

COL->data[i0] = 0.0;
}

if ((a->size[0] == 0) || (Z->size[1] == 0)) {
} else {

c = a->size[0] * (Z->size[1] - 1);
cr = 0;
while ((m > 0) && (cr <= c)) {

i0 = cr + m;
for (ic = cr; ic + 1 <= i0; ic++) {
COL->data[ic] = 0.0;

}

cr += m;
}

br = 0;
cr = 0;
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while ((m > 0) && (cr <= c)) {
ar = 0;
i0 = br + k;
for (ib = br; ib + 1 <= i0; ib++) {
if (Z->data[ib] != 0.0) {
ia = ar;
i1 = cr + m;
for (ic = cr; ic + 1 <= i1; ic++) {
ia++;
COL->data[ic] += Z->data[ib] * a->data[ia - 1];

}
}

ar += m;
}

br += k;
cr += m;

}
}

}

i0 = COL->size[0] * COL->size[1];
for (k = 0; k < i0; k++) {
COL->data[k] = exp(COL->data[k]);

}

i0 = COL->size[0] * COL->size[1];
matrix_cap((matrix__common *)COL, i0, (int)sizeof(double));
cr = COL->size[0];
br = COL->size[1];
ia = cr * br;
for (i0 = 0; i0 < ia; i0++) {
COL->data[i0] = 1.0 / (1.0 + COL->data[i0]);

}

// COL is output at t+1
// Update for partial derivatives at k-th output ij-th position
for (k = 0; k < N; k++) {
for (br = 0; br < N; br++) {
d0 = (double)N + (double)I;
for (ar = 0; ar < (int)d0; ar++) {
for (cr = 0; cr < (int)P; cr++) {
// update of all derivatives
if (Wmask->data[br + Wmask->size[0] * ((int)(((1.0 +

(double)ar) - 1.0) * P + (1.0 + (double)cr)) - 1)]
== 0.0) {
} else {
S = 0.0;
for (ia = 0; ia < N; ia++) {
// formula for calculation
b_i1 = ((((1.0 + (double)ia) - 1.0) * ((double)N * P *
((double) N + (double)I)) + ((1.0 + (double)br) - 1.0)*
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P*((double)N + (double)I)) + ((1.0 + (double)ar) - 1.0)*
P) + (1.0 + (double)cr);

for (ib = 0; ib < (int)P; ib++) {
if (Wmask->data[k + Wmask->size[0] * ((int)(((1.0 +

(double)ia) - 1.0) * P + (1.0 + (double)ib)) -
1)] == 0.0) {

} else {
S += W->data[k + W->size[0] * ((int)(((1.0 +
(double)ia) - 1.0) * P + (1.0 + (double)ib)) - 1)]

* Wd->data [Wd->size[0] * ((int)b_i1 - 1)];
}

}
}

b = Z->data[(int)(((1.0 + (double)cr) - 1.0) * ((double)N +
(double)I) + (1.0 + (double)ar)) - 1];

Wd_m->data[Wd_m->size[0] * ((int)(((((1.0 + (double)k) -
1.0) * ((double)N * P * ((double)N + (double)I)) + ((1.0 +

(double)br) - 1.0) * P * ((double)N + (double)I)) + ((1.0 +
(double)ar) - 1.0) * P) + (1.0 + (double)cr)) - 1)] =
COL->data[k] * (1.0 - COL->data[k]) * (S + (double)(1.0 +
(double)br == 1.0 + (double) k) * b);

}
}

}
}

}

// Update for delta W: dW for point t+1
guard1 = false;
if (EO->size[1] == 1) {

guard1 = true;
} else {

i0 = DT->size[0];
if (i0 == 1) {

guard1 = true;
} else {

k = EO->size[1];
iv2[0] = EO->size[0];
m = EO->size[0];
i0 = ET->size[0];
ET->size[0] = iv2[0];
matrix_cap((matrix__common *)ET, i0, (int)sizeof(double));
ia = iv2[0];
for (i0 = 0; i0 < ia; i0++) {

ET->data[i0] = 0.0;
}

if (EO->size[0] == 0) {
} else {

cr = 0;
while ((m > 0) && (cr <= 0)) {

for (ic = 1; ic <= m; ic++) {
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ET->data[ic - 1] = 0.0;
}

cr = m;
}

br = 0;
cr = 0;
while ((m > 0) && (cr <= 0)) {
ar = 0;
i0 = br + k;
for (ib = br; ib + 1 <= i0; ib++) {
if (DT->data[ib + DT->size[0] * l] != 0.0) {

ia = ar;
for (ic = 0; ic + 1 <= m; ic++) {
ia++;
ET->data[ic] += DT->data[ib + DT->size[0] * l] *
EO->data[ia - 1];

}
}

ar += m;
}

br += k;
cr = m;

}
}

}
}

if (guard1) {
ia = DT->size[0];
i0 = b_DT->size[0];
b_DT->size[0] = ia;
matrix_cap((matrix__common *)b_DT, i0, (int)sizeof(double));
for (i0 = 0; i0 < ia; i0++) {
b_DT->data[i0] = DT->data[i0 + DT->size[0] * l];

}

i0 = ET->size[0];
ET->size[0] = EO->size[0];
matrix_cap((matrix__common *)ET, i0, (int)sizeof(double));
ia = EO->size[0];
for (i0 = 0; i0 < ia; i0++) {
ET->data[i0] = 0.0;
cr = EO->size[1];
for (i1 = 0; i1 < cr; i1++) {
ET->data[i0] += EO->data[i0 + EO->size[0] * i1] * b_DT->data[i1];

}
}

}
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// this is mapping for target data
for (k = 0; k < N; k++) {

if (OM->data[k] > 0.0) {
E = ET->data[k] - CO->data[k];
SE += E * E;

}
}

for (br = 0; br < N; br++) {
d0 = (double)N + (double)I;
for (ar = 0; ar < (int)d0; ar++) {

for (cr = 0; cr < (int)P; cr++) {
S = 0.0;
if (Wmask->data[br + Wmask->size[0] * ((int)(((1.0 + (double)ar)

- 1.0) * P + (1.0 + (double)cr)) - 1)] == 0.0) {
dW->data[br + dW->size[0] * ((int)(((1.0 + (double)ar) - 1.0)

* P + (1.0 + (double)cr)) - 1)] = 0.0;
} else {
for (k = 0; k < N; k++) {
if (OM->data[k] == 0.0) {
} else {
S += (ET->data[k] - CO->data[k]) * Wd->data[Wd->size[0] *
((int)(((((1.0 + (double)k) - 1.0) * ((double)N * P *
((double) N + (double)I)) + ((1.0 + (double)br) - 1.0) *
P * ((double)N + (double)I)) + ((1.0 + (double)ar) - 1.0)

* P) + (1.0 + (double)cr)) - 1)];
}

}
}

dW->data[br + dW->size[0] * ((int)(((1.0 + (double)ar) - 1.0) * P +
(1.0 + (double)cr)) - 1)] = alpha * S;

}
}

}

// Updating weights and outputs before going to next time sample
i0 = W->size[0] * W->size[1];
matrix_cap((matrix__common *)W, i0, (int)sizeof(double));
ia = W->size[1];
for (i0 = 0; i0 < ia; i0++) {

cr = W->size[0];
for (i1 = 0; i1 < cr; i1++) {

W->data[i1 + W->size[0] * i0] += dW->data[i1 + dW->size[0] * i0];
}

}

i0 = CO->size[0] * CO->size[1];
CO->size[0] = COL->size[0];
CO->size[1] = COL->size[1];
matrix_cap((matrix__common *)CO, i0, (int)sizeof(double));
ia = COL->size[0] * COL->size[1];
for (i0 = 0; i0 < ia; i0++) {
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CO->data[i0] = COL->data[i0];
}

ia = Wd_m->size[1] - 1;
for (i0 = 0; i0 <= ia; i0++) {
Wd->data[Wd->size[0] * i0] = Wd_m->data[Wd_m->size[0] * i0];

}

l++;
}

matrix_free(&b_DT);
matrix_free(&a);
matrix_free(&ET);
matrix_free(&dW);
matrix_free(&Wd_m);
matrix_free(&OM);

*rel_mean_sq = sqrt(SE / ((double)DT->size[0] * (double)DT->size[1]));
}
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