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Abstract

The present work investigates local bucking in layered structures comprising a thin elastic
layer (lamella) embedded in a comparatively thick matrix under in-layer-plane loading.
The matrix is considered to be in an elastoplastic state at the initiation of the lamella-
buckling. As an application, this setup can be thought to represent the microstructure of
certain alloys at the level of an individual metal-grain, although the presented results are
not limited to such a setup.
The presence of inelastic deformations in the matrix requires that stability of the load-

ing process is investigated rather then the stability of isolated equilibrium states. For
irreversible deformations these two concepts of stability do not coincide. A deforma-
tion process following an equilibrium path involving inelastic deformations may become
nonunique and can bifurcate even while the individual states that comprise the path are in
stable equilibrium when considered isolated. The theory that allows for the treatment of
inelastic bifurcations is reviewed from the literature and the present problem is formulated
in its context.
The implications resulting from the theory of inelastic instabilities, with particular

regard for the post buckling behaviour, are demonstrated using a simplified model that
allows for analytical treatment of the problem. Taking advantage of the homogeneous
prebuckling stress distribution the governing equations for plane strain J2-plasticity are
solved in a simplified manner for more refined models, and approximate analytical results
for the bifurcation load where obtained.
Analytical considerations are complemented by numerical simulations to validate the

results. For the simulations a suitable unit cell-model was developed and verified by
independent simulations. Comparison of analytical predictions and numerical results are
in good accordance for the case of ideal plasticity in the matrix and provide some insight
in the underlying mechanisms for the case of a hardening matrix. For both cases an
analytical interpretation of the obtained buckling mode is given.
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Kurzfassung

Ziel der vorliegenden Arbeit ist die Untersuchung lokaler Beulmodi in geschichteten Struk-
turen aus dünnen, elastischen Lamellen eingebettet in eine vergleichsweise dickwandige
Matrixschicht unter Belastung in Richtung der Lamellenebene. Dabei wird von elastoplas-
tischemMaterialverhalten in der Matrixschicht ausgegangen. Die in der Arbeit gewonnenen
Erkenntnisse lassen sich unter gewissen Annahmen auf die mikrostrukturierte Metall-
legierungen anwenden, sind jedoch nicht auf diese beschränkt.
Die Lösung des Stabilitätsproblems in Gegenwart pfadabhängigen Materialverhaltens

bildet das Kernthema der Arbeit wobei ein weiter gefasster Stabilitätsbegriff aus der Lit-
eratur Anwendung findet. Unter anderem ist eine Unterscheidung zwischen der Stabilität
von Gleichgewichtslagen und der physischen Realisierbarkeit von Belastungspfaden die
aus diesen Gleichgewichtszuständen gebildet sind zu treffen. Die entsprechende Theorie
wird überblicksartig dargestellt und auf das vorliegende Problem angewandt.
Zur Beschreibung des Problems wurden mehrere analytische Modelle mit unterschied-

lichen Abstraktionsgraden entwickelt. Ein stark vereinfachtes, einführendes Modell dient
zur ersten Annäherung an das Problem und erlaubt die Demonstration der gegenüber
dem rein elastisch gebetteten Beulproblem substanziell unterschiedlichen Systemverhal-
ten, insbesondere im Nachbeulbereich. Ein weiteres Modell für den Sonderfall der idealen
Von Mises-Plastizität erlaubt die Angabe eines analytischen Ausdrucks für die Beullast.
Allgemeinere Fälle werden ebenfalls in stark vereinfachter Weise behandelt.
Die analytischen Betrachtungen werden zur Validierung durch numerische Untersuchen

ergänzt. Dazu wurden geeignete Einheitszellenmodelle entwickelt. Durch Vergleich von
analytischen Vorhersagen mit numerischen Ergebnissen wird gezeigt, dass für den ide-
alplastischen Sonderfall eine gute quantitative Übereinstimmung gegeben ist, und im
allgemeineren Fall die analytische Methoden eine Interpretation des Systemverhaltens
ermöglichen.
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1 Introduction

Microscopic material testing is a common method in modern material research [Kiener
et al., 2009] as it allows the determination of local mechanical properties at a very high
spatial resolution. These test are commonly performed as compression tests, due to the
more complicated sample preparation and test setup for micro-tensile testing. Samples for
compressive testing are typically prepared by using the focused ion beam milling technique
to remove surrounding material so that a rather short and stocky ‘micropillar’ remains.
This micropillar can be tested by compressing it with an microscopic loading device. These
tests frequently extend deep into the elastoplastic regime and the compressive loading may
give rise to several instability phenomena, for instance, beam-like buckling of the pillar
was reported in [Zhang et al., 2006,Rester et al., 2011] in spite of the relatively low aspect
ratio, i.e. pillar height to the sample diameter. It is of interest for the experimenter
in how far buckling as a phenomenon inherent to the structure of the sample rather
than its pure material stiffness affect the test-results, and to which degree test results
reflect actual material properties. The author investigated the effect of beam-like global
buckling of micropillar compression samples in [Daum et al., 2013]. The circumstance that
the material is in whole or partially in an yielding state is crucial for this purpose as it
requires treatment of the problem by the theory of stability for path-dependent processes,
first developed by Hill [Hill, 1958]. In the presence of plasticity even structures that are
not susceptible to instability in the elastic range might buckle, as is the case for the low
aspect ratio pillar.
At the microscopic scale material properties are often inhomogeneous, either due to the

presence of different material phases or because they comprise multiple grains. In case
of small grains the Hall-Petch size-effects might also contribute to inhomogeneity. This
inhomogeneous stiffness distribution can trigger additional buckling modes which are local
to the microstructure as opposed to the global beam-like buckling mode. It is these local
forms of instabilities that the present work is concerned with, and the author strifes to
investigate the effect of microstructural inhomogeneity on the apparent stiffness. The local
buckling due local inhomogeneities is of course not limited to micropillar compression tests
and can occur in bulk material as well. For the actual microstructure, however, only a
particular scenario is considered here which is a lamellar compound of hard and thin elastic
lamellae embedded in a rather soft, yielding matrix. Such lamellar structures appear, for
instance, in certain kinds of Titanium-Aluminide alloys that have their manufacturing
conditions controlled in a way that generates thin and hard α2-Ti3Al-lamella embedded
in a matrix of the γ-TiAl phase by crystal-twinning, cf. Fig. 1.1(a). The yield-stress in
the individual phases differs, and is affected by the crystal-orientation, possibly a Hall-
Petch size effect in the thin lamellae [Maruyama et al., 2004, Edalati et al., 2012] and
other mechanisms. This usually leads to a much higher yield-stress in the lamella. So for
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1 Introduction

the example of the lamellar Titanium-Aluminide alloy or for any other generic lamellar
compound where there is a strong disparity of yield strength between the lamella and the
matrix material in conjunction with a greatly reduced material stiffness in the elastoplastic
regime, buckling of the lamella might occur when the matrix is in an yielding state. The
study of the effects lamella buckling in an elastoplastic matrix on the apparent stiffness-
properties of the matrix-lamella-compound is the principal interest of the present work.
The present work is mainly concerned with lamellar structures on a microscopic level.

Even though, no length scale is involved and the results apply to macroscopic bodies as
well as microscopic ones, it is shown by the investigations that ep-instabilities in lamellar
structures often require very high stresses. In a macroscopic structures, like e.g. a sandwich
structure, this stress is likely exceed the lamella yield stress before any ep-instabilities
become relevant. On a microscopic level, however, size effects might be present and cause
strengthening for very thin lamella to such an extend that they remain elastic even at
very high levels of stress.
For microscopic samples, the matrix might constitute few crystals or even a single

crystal. In that case crystal plasticity usually must be applied to accurately capture the
behaviour of the matrix. The present work uses J2-plasticity, however, and, therefore,
additional considerations are required to check the applicability of this simplification. In
some cases the application of J2-plasticity can give sufficiently accurate results even for
single crystals. For instance, if the deformation mechanism is dominated by twinning
For instance, when the actual irreversible deformation mechanism is dominated by

twinning, cf. e.g. [Rester et al., 2011] for details regarding the case of Titanium Aluminides,
several twin systems are may be activated simultaneously, and the resulting behaviour
can be expected to be nearly isotropic. A further reason for using von Mises plasticity is
the fact that crystal plasticity requires material data for the critical resolved shear stress,
critical resolved twin stress and hardening parameters for the respective slip systems that
are difficult to obtain or choose in a meaningful way. This data set is compacted by a
global yield stress and the hardening parameter(s) in the case of von Mises plasticity.
It is the foremost intend of this work to point out the underlying mechanisms behind

the phenomena, and for this reason analytical considerations seem to be indispensable.
However, due to to the involved nature of the present problem, an exact and general
description is out of reach and analytical solutions are limited to certain assumptions and
simplifications. Nevertheless, even approximations can help to give an interpretation to
more precise results obtained by numerical methods e.g. by finite element analysis. The
structure of the present work follows this philosophy by starting off with a presentation of
the plasticity formulation used and a literature-review on the subject of inelastic stability
and uniqueness. This provides the foundation for a highly simplified model with incom-
patible deformation modes. The simplicity allows for an in-depth examination that is
inaccessible for a more faithful model. Throughout the work the expressions ‘horizontal’,
‘vertical’ are used to refer to the 1 and 2-direction respectively, while ‘left’/‘right’ and
‘top’/‘bottom’ are used along the same line. Numerical results are given in generic units
such as force units [F] or length units [L]. Where possible material parameters are chosen
so that that they are of a similar magnitude as some real materials for Newtons and
Millimeters as base units, however, no effort is made to represent a particular material.
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1 Introduction

(a) Crystallographic section (b) Schematic cross-section

Figure 1.1: Microscope image of an array of Ti3Al-lamella in a TiAl-matrix [Clemens
et al., 2006] and it idealized representation. The lamella spacing is assumed
constant and the hypothetical buckling mode is shown in the right picture

The analytical calculations where aided by the computer algebra program ‘Mathemat-
ica’ in the version 9 by Wolfram Research, Inc. For the numerical simulations the commer-
cial finite element program ‘Abaqus’ by Dassault Systmes Simulia Corp. was used. Plots
where either created directly in Mathematica or using the Python-library ‘matplotlib’.
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2 Plasticity formulation for
bifurcation and stability analysis

The present chapter serves to discuss the plasticity formulation used in the subsequent con-
siderations. The plasticity model used is a standard phenomenological isotropic-hardening
Von-Mises model and the resulting equations are well known. It is necessary, however, to
embed this model in a formulation that allows for the treatment of problems involving
bifurcation and stability phenomena. Some complication arises from the need to account
for the effect of stress in a preloaded state on the stiffness and for this purpose a finite
strain formulation is required. Nevertheless, the state that is checked for either stability
or bifurcation is supposed to be known, and only infinitesimal close neighbour states need
to be considered. Initial and current state can thus be identified with each other and this
results in some simplification over the fully nonlinear case.

It is well known that elastoplastic materials are path dependent and the constitutive
law can not relate stress and strain directly, but rather only rates thereof. This path-
dependence is the cause of some remarkable effects and require that a distinction between
the concepts of bifurcation and instability is made. This is a prominent feature of elasto-
plasticity without equivalent in a purely elastic structure, cf. chapter 3.

In the present work only quasi-static deformation processes are considered. Loading
is controlled by a common proportionality factor, changing only indefinitely slow with
respect to actual time. The rate of some quantity taken with respect to the load propor-
tionality factor is indicated by a solid dot over the symbol.

An other important aspect is that for elastic metal structures the stresses are usually low
in comparison to the elastic moduli, and their destabilizing effect are essentially connected
to rotations. When plasticity is present, however, the stresses can reach the same order
of magnitude as the incremental moduli, and deformation modes without rotations can
be relevant as well.

The notation used prefers capital letters for Lagrangian or mixed, i.e. two-point, quan-
tities, while lower case letters are used for Eulerian quantities, where feasible. The same
applies to the capitalization of indices.

4



2 Plasticity formulation for bifurcation and stability analysis

2.1 Strain rate decomposition

For the purpose of formulating the flow rule it is necessary to refer to the finite strain
equivalent of the plastic strain rate. The approach used by [McMeeking and Rice, 1975] in
the context of bifurcation analysis is based on a straightforward adaptation of the Prandtl-
Reuss equations to Eulerian strain rates. Starting with the additive decomposition of the
velocity and its gradient, l˜, into elastic and plastic contributions the symmetric part of
the velocity gradient, the rate of deformation tensor d˜, can be split additively as well.
The symbol w˜ refers to the spin tensor and superscript e or p indicate the elastic and
plastic part, respectively.

l˜ = grad v = l˜e + l˜p
d˜ = sym( l˜e) + sym( l˜p) = d˜e + d˜p (2.11)
w˜ = skw( l˜e) + skw( l˜p) = w˜ e +w˜ p (2.12)

This decomposition is, however, not the only one possible and the proper separation
of elastic and plastic deformation is a subject of research in finite strain plasticity. As
a counter example suppose a multiplicative decomposition of the deformation gradient
F˜ = F˜eF˜p, as introduced by Lee [Lee, 1981], with F˜e = v˜eR˜e as the deformation gradi-
ent between an unloaded intermediate configuration and the spatial configuration. The
rotation R˜e is ambiguous in this decomposition and is set to 1˜ by definition. The symbol
v˜e stands for the elastic part of the Eulerian stretch tensor. This gives the following
expressions for the rate of deformation- and spin-tensors [Wu, 2004]:

d˜ =d˜e + sym(v˜ed˜pv˜e−1) + sym(v˜ew˜ pv˜e−1) (2.21)
w˜ =w˜ e + skw(v˜ed˜pv˜e−1) + skw(v˜ew˜ pv˜e−1) (2.22)

For (2.2) and (2.1) to coincide the elastic strain has to be assumed small, i.e. v˜e → 1˜.Nevertheless, for the purpose of analysing bifurcation and stability the current configura-
tion will be identified with the material configuration, and (2.1) holds without additional
assumptions.
The additive strain rate decomposition, together with the restriction to small elastic

stretch, is also used in the finite element simulation software Abaqus, which was used for
the simulations presented in this work [Hibbitt et al., 1997].

2.2 Eulerian tangent material stiffness

The material properties relate to the Cauchy stress, the constitutive law is, thus, given
in terms of Eulerian quantities in the first place. Again following [McMeeking and Rice,
1975] a straightforward method to obtain the Eulerian tangent material stiffness for an
additive decomposition scheme is to use a finite strain analogon to the classical Prandtl-
Reuss equations. The equations are adapted by replacing the rates of small strain by the
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2 Plasticity formulation for bifurcation and stability analysis

rate of deformation tensor. With the elastic response taken to be the same as in linear
elasticity the rate of Cauchy stress is:

.
σ˜ = E˜̃ : (d˜ − d˜p) (2.3)

With E˜̃ as the small strain elasticity tensor:

E˜̃ = (λδijδkl + µδikδjl + µδilδjk)ei ⊗ ej ⊗ ek ⊗ el (2.4)

The usual Lamé parameters are alternatively used as parameters for elasticity:

λ =
νE

(1 − 2ν)(1 + ν)

µ =
νE

2(1 + ν)

The Prandtl-Reuss equations in index notation:
.
σij = λδijdkk + 2µdij − 2µdpij i, j,k = 1, 2, 3 (2.5)

The inverse relation is:

dij =
1

2µ

[.
σij −

λ

3λ+ 2µ

.
σkkδij

]
+ dpij i, j,k = 1, 2, 3 (2.6)

In the present work only classical Von Mises-plasticity with an associated plastic flow
potential is considered. Together with an appropriate objective stress rate this allows for
the existence of a rate potential which, as will be discussed below, is crucial for the theory
invoked to investigate bifurcation and stability. The deviatoric stress tensor needed to
formulate the yield function is indicated by an overscript chevron.

σ̂˜ = σ˜ −
1

3
1˜ tr(σ˜) (2.7)

With the positive quantity κ, equal to
√

2/3 of the uniaxial yield stress, the Von Mises
yield function is given as:

F = σ̂˜ : σ̂˜ − κ2 = 0 (2.8)

Using a associated flow rule gives an expression that relates the plastic part of the rate of
deformation tensor and the plastic consistency parameter, φ:

d˜p =
1

2
φ
∂F
∂σ˜ = φσ̂˜ (2.9)

6



2 Plasticity formulation for bifurcation and stability analysis

The consistency condition is given below, with the last equality due to the vanishing trace
of σ̂˜: .

F = 2σ̂˜ :
.̂
σ˜ − 2κ

.
κ = 2σ̂˜ :

.
σ˜ − 2κ

.
κ = 0 (2.10)

As hardening law only isotropic hardening is considered. Thus the rate of κ, propor-
tional to the rate of the increase in uniaxial yield stress by the factor of

√
2/3 , can be

expressed by the product of a positive hardening factor θ and the magnitude of the rate
of deformation tensor. Via normality and the yield condition F = 0 this becomes:

.
κ = θ||d˜p|| = θφ||σ̂˜ || = θφ√σ̂˜ : σ̂˜ = θφκ (2.11)

The factor θ is related to the tangent modulus, Et, by (2.12), both are in the following
assumed constant. It can be related to the tangent modulus by considering the uniaxial
case:

||d˜p|| =√3/2 dp11
.
κ =

√
2/3
.
σy dp11 =

.
σy

( 1

Et
−

1

E

)
θ =

2

3

EtE

E− Et
(2.12)

Using the consistency condition (2.10), the elastic response (2.3) and the evolution equa-
tion for the isotropic hardening (2.11) the consistency parameter is obtained:

σ̂˜ : E˜̃ : d˜ − σ̂˜ : E˜̃ : σ̂˜φ− κ2θφ = 0

φ =
σ̂˜ : E˜̃ : d˜

σ̂˜ : E˜̃ : σ̂˜ + κ2θ
(2.13)

The Eulerian elastoplastic tangent material stiffness tensor L˜̃p is thus:

.
σ˜ = E˜̃ : d˜ − E˜̃ : σ̂˜φ.
σ˜ =

[
E˜̃ −

E˜̃ : σ̂˜ ⊗ σ̂˜ : E˜̃
σ̂˜ : E˜̃ : σ̂˜ + κ2θ

]
: d˜

L˜̃p = E˜̃ −
E˜̃ : σ̂˜ ⊗ σ̂˜ : E˜̃
σ̂˜ : E˜̃ : σ̂˜ + κ2θ

(2.14)

The elastic tangent material stiffness tensor is, of course, symmetric. The elastoplastic
tangent modulus for an associated flow rule is symmetric as well. The symmetry property
will be of fundamental importance in chapter 3, since it allows for the introduction of a
rate potential.

L˜̃ =

{
E˜̃ : φ = 0
L˜̃p : φ > 0

(2.15)

7



2 Plasticity formulation for bifurcation and stability analysis

2.3 Mixed tangent material stiffness

[Hill, 1958, Lubliner, 2008]; In the previous section the Eulerian tangent material stiff-
ness was formulated. To obtain the Lagrangian form, customary in solid mechanics, a
transformation is required. The Cauchy, Kirchhoff and first Piola-Kirchhoff (PK1) stress
tensors are related according to (2.16) below. The symbol J stands for det(F˜), τ˜ and P˜ are
the Kirchhoff and the PK1-stress, respectively. It is advantageous to continue with the
Kirchhoff stress, rather than the Cauchy stress, for reasons that become apparent further
below.

Jσ˜ = τ˜ = P˜F˜T (2.16)

The quasi-static rates required for the formulation of the tangent are obtained by taking
the material time derivative of (2.16).

.
τ˜ =

.
P˜F˜T + P˜.F˜T =

.
P˜F˜T + τ˜F˜−T

.
F˜T =

.
P˜F˜T + τ˜ l˜T.

P˜F˜T =
.
τ˜ − τ˜ l˜T (2.17)

The material time derivate of Kirchhoff-stress
.
τ˜ is a nonobjective quantity, i.e. it does

not obey the standard tensor-transformation rule for a rigid body rotation superimposed
on the spatial configuration. Therefore, it can not be used to formulate a constitutive
relation. A remedy is provided by performing a pull back operation on τ˜ which yields
the second Piola-Kirchhoff (PK2) stress tensor S˜. The PK2-stress tensor is intrinsically
independent of any rigid body rotations, since it is a total Lagrangian quantity and,
therefore, its material time derivative (S˜). is unaffected by any rigid body rotations on
the spatial configuration. Performing the derivation on S˜ and a subsequent push forward
completes the operation and yields the objective Oldroyd-rate of Kirchhoff-stress,

△

τ˜. Thepull back-derive-push forward process is called a Lie derivative.

△

τ˜ = F˜(F˜−1τ˜F˜−T)
.
F˜T =

.
τ˜ − l˜τ˜ − τ˜ l˜T (2.18)

Other objective, but approximate, stress rates can be defined by using kinematic sim-
plifications, e.g. by substituting the velocity gradient l˜ in (2.18) by the spin tensor w˜the corotational Zaremba Jaumann-rate (ZJ-rate,

◦
τ˜) is obtained. For plasticity-problems

the ZJ-rate is popular for some advantageous mathematical properties. It is important,
however, to take the ZJ-rate of Kirchhoff stress, rather than Cauchy stress.

◦
τ˜ =

.
τ˜ −w˜ τ˜ + τ˜w˜ (2.19)

Since an objective stress rate has been established, the constitutive relation can be formed
by relating it to the rate of deformation tensor d˜ via the Eulerian tangent material stiffness
tensor L˜̃.

◦
τ˜ = L˜̃ : d˜ (2.20)

8



2 Plasticity formulation for bifurcation and stability analysis

Equations (2.19) and (2.20) can be combined to eliminate
.
τ˜ from (2.17):

.
P˜F˜T = L˜̃ : d˜ +w˜ τ˜ − τ˜w˜ − τ˜ l˜T = L˜̃ : d˜ +w˜ τ˜ − τ˜w˜ − τ˜(d˜T +w˜ T).
P˜F˜T = L˜̃ : d˜ +w˜ τ˜ − τ˜d˜ (2.21)

The rate of the PK1-stress is related to the rate of the deformation gradient by the mixed
Eulerian-Lagrangian fourth-order tangent material stiffness tensor C˜̃ (Eq. (2.22)). It can
be determined by eliminating (P˜). from Eq. (2.21)

.
P˜ = C˜̃ :

.
F˜ (2.22).

P˜F˜T = (C˜̃ :
.
F˜)F˜T =

(
C˜̃ : (

.
F˜F˜−1F˜))F˜T =

(
C˜̃ : ( l˜F˜))F˜T(

C˜̃ : ( l˜F˜))F˜T = L˜̃ : d˜ +w˜ τ˜ − τ˜d˜ (2.23)

Assuming minor symmetry Lijkl = Lijlk on the Eulerian tangent material stiffness allows
for the following substitution:

Lijkldkl =
1
2
Lijkl(lkl + llk) =

1
2
Lijkllkl +

1
2
Lijlkllk = Lijlkllk(

C˜̃ : ( l˜F˜))F˜T = L˜̃ : l˜ +w˜ τ˜ − τ˜d˜ (2.24)

Translating Eq. (2.24) to index-notation:

CiJkLlkmFmLFjJ = Lijkllkl +wimτmj − τimdmj

Inserting the definition of l˜, d˜ and w˜ into the last expression allows v to be eliminated.
After some algebra (2.25) is obtained:

CiJkLFjJFlL = Lijkl +
1
2
(τjlδik − τjkδil − τikδjl − τilδjk) (2.25)

By choosing the reference state to be instantaneously coincident with the current state
the deformation gradient and the Jacobian assume identity.

F˜ → 1˜ J→ 1

Cijkl = Lijkl +
1
2
(σjlδik − σjkδil − σikδjl − σilδjk) (2.26)

Because of this identification x and X, l˜ and
.
F˜, etc. coincide. The symbols X and

.
F˜ are

generally used in the remainder of the thesis. It is apparent from (2.26) that the mixed
tangent material stiffness C˜̃ consists of two contributions: A stiffness arising directly from
the material properties, represented by L˜̃, and extra terms dependent on current stress.
For the case of elasticity the material stiffness usually exceeds the absolute value of the
stress components by orders of magnitude, and they predominantly effect stability via
rotations. In the elastoplastic regime, however the moduli are much reduced and possibly
of the same order of magnitude as the stresses. All contribution from the stress terms
should, therefore, be taken into account [Hill, 1958].

9



2 Plasticity formulation for bifurcation and stability analysis

With respect to symmetry of the mixed material stiffness tensor it can be noted that
the transformation (2.26) maintains the major symmetry property, provided that Lijkl =
Lijlk. If, however, in (2.20) the ZJ-rate of Kirchhoff stress is replaced by the ZJ-rate of
Cauchy stress an additional term σijδkl is introduced on the right hand side of (2.25) and
major symmetry is lost.

2.4 Specialization for assumed initial loading

Suppose a macroscopic body with a laminated microstructure under possibly very general
loading. Areas of the body where the loading direction coincides with the lamella plane are
candidates for lamella buckling. Further assuming that the characteristic lamella spacing
is sufficiently small compared to the overall dimensions of the body, the lamella can be
considered on a separate micro scale on which the macroscopic stress/strain gradients
can be neglected. By neglecting the Poisson-effect of the lamella the body is assumed
to be subject to plane strain conditions in transverse-in-plane direction. Expansion in
out-of-plane direction is thought to be unobstructed. These assumptions are appropriate
only for certain macroscopic configurations, but facilitates both analytical and numerical
treatment of the problem and seems necessary to limit the scope of the present work. The

Figure 2.1: Loading on the micro-level

constitutive equations can then be evaluated further for a biaxially preloaded reference
state in an unbuckled configuration. This reference state will be tested for uniqueness
and stability in the following chapters. Thus the Cauchy-stress tensor and the deviatoric
Cauchy-stress tensor evaluated at the reference state are given by Eq. (2.27) and Eq. (2.28)
respectively.

10



2 Plasticity formulation for bifurcation and stability analysis

σ˜ =

 0 0 0
0 σ22 0
0 0 σ33

 (2.27)

σ̂˜ =

 1
3
(−σ22 − σ33) 0 0

0 σ22 +
1
3
(−σ22 − σ33) 0

0 0 1
3
(−σ22 − σ33) + σ33

 (2.28)

The Eulerian tangent material stiffness tensor generally depends on the current stress,
cf. (2.14). However, introducing the simplification that the plastic part of the strain
rate in transverse in-plane direction vanishes separately, i.e. the elastic contribution to
the transverse in-plane strain is negligible small, in addition to the overall strain, the
Eulerian tangent material stiffness becomes constant. This simplification provides an
approximate relation of σ22 and σ33 directly from the flow rule.

∂F
∂σ33

=
1

3
(−2σ22 + 4σ33)

.
= 0

σ33
.
=

1

2
σ22

Substituting this relation into the yield function gives the current stress state in terms of
κ, proportional to the yield-stress.

F =
1

3

(
2σ222 − 2σ22σ33 + 2σ233

)
− κ2 = 0

σ22 = −
√

2 κ

σ33 = −
1√
2
κ

This approximation holds well for monotonous loading sufficiently far beyond the point
of initial yielding, cf. numerical results in Fig. 2.2. It is shown when discussing numerical
results in later chapters that elastoplastic buckling usually requires high levels of stresses
and strains that usually exceed the yield-stress by far. Therefore, this approximation
seems justified at least for the numerical examples included in this work. Thus the stresses
in a plate loaded homogeneously in direction-2, freely expanding in direction-1, with zero
strain in direction-3 are approximately given by Eq. (2.27) and (2.30), provided, the
current stress state is sufficiently far beyond the initial yielding point. The Cauchy-stress
tensor and its deviator are thus:

σ˜ =
κ√
2

 0 0 0
0 −2 0
0 0 −1

 (2.29)
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2 Plasticity formulation for bifurcation and stability analysis
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Figure 2.2: Plastic strains, plastic strain rates and stresses obtained from FEM-analysis
for monotonic loading of an element constrained to plane strain, E =
200 GPa,σy = 100 MPa
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2 Plasticity formulation for bifurcation and stability analysis

σ̂˜ =
κ√
2

 1 0 0
0 −1 0
0 0 0

 (2.30)

The consistency parameter can be evaluated via Eq. (2.13) and the plastic part of the
rate of deformation tensor becomes:

φ =

√
2 µ(d11 − d22)

κ(2µ+ θ)
(2.31)

d˜p =
µ(d11 − d22)

2µ+ θ

 1 0 0
0 −1 0
0 0 0

 (2.32)

The so obtained relations between total and plastic strain rate are referenced in the
following. From Eq (2.33) it can be seen that no plastic shear occurs at the instance of
buckling and before. No restriction on the total shear is in place, though.

dp11 =
µ(d11 − d22)

2µ+ θ
= −dp22 (2.331)

dp12 = 0 (2.332)

From Eq. (2.14) the plane strain tangent material stiffness of the matrix for the current
simplifications can be assembled. The variable κ cancels out and the only remaining
constants are the Lamé-parameters and the hardening factor θ.

L˜̃p = (λδijδkl + µδikδjl + µδilδjk)ei ⊗ ej ⊗ ek ⊗ el

−
2µ2

2µ+ θ
(e1 ⊗ e1 − e2 ⊗ e2)⊗ (e1 ⊗ e1 − e2 ⊗ e2) (2.34)

The following abbreviations are introduced, where ξ stand for a switch function assuming
0 when φ = 0 and 1 when φ > 0:

F1 = L˜̃1111 = L˜̃2222 = λ+ 2µ−
2µ2

θ+ 2µ
ξ (2.351)

F2 = L˜̃1122 = L˜̃2211 = λ+ 2µ2

θ+ 2µ
ξ (2.352)

The full 3-axial material tangent for the assumed plane strain condition is written out in
Eq. (2.36) using a matrix containing matrices as elements. The first two indices denoting
the row, respectively column, in the outer matrix, and the last two indices denoting row
and column in the inner matrix. The first and the last pair of indices can be interchanged
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2 Plasticity formulation for bifurcation and stability analysis

because of the major symmetry of L˜̃. The sub-matrices are symmetric as well.

L˜̃ =



 F1 0 0
0 F2 0
0 0 λ

  0 µ 0
µ 0 0
0 0 0

  0 0 µ

0 0 0
µ 0 0


 0 µ 0
µ 0 0
0 0 0

  F2 0 0
0 F1 0
0 0 λ

  0 0 0
0 0 µ

0 µ 0


 0 0 µ

0 0 0
µ 0 0

  0 0 0
0 0 µ

0 µ 0

  λ 0 0
0 λ 0
0 0 λ+ 2µ




(2.36)

In (2.36) all indices run from 1 to 3. However, due to the plane strain assumption all
third elements can be dropped to obtain (2.37).

L˜̃ =


[
F1 0
0 F2

] [
0 µ

µ 0

]
[

0 µ

µ 0

] [
F2 0
0 F1

]
 (2.37)
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3 Stability and uniqueness of
elastoplastic structures

Conflicting theories about the nature of instability phenomena in elastoplastic structures
had been put forward in the first half of the 20th century [Johnston, 1983, Bažant and
Cedolin, 2010]. A source of confusion arose from the circumstance that some researchers
considered stability of an equilibrium at constant loading while others allowed for vari-
able load in their theories. On account of the activation of different constitutive branches
they arrived at different results. The problem has been finally resolved by R. Hill [Hill,
1958, Hill, 1959, Hill, 1978], who showed that the key aspect of the problem lies in the
fact that the concepts of stability and uniqueness do not coincide for path-dependent
problems as they do for elasticity. Perturbation of a given equilibrium state, at constant
loading, typically causes unloading in some parts of the previously plastic structure and
thus stiffness and the critical load depend on some combination of the elastic and plastic
modulus. Bifurcation from the primary loading path usually starts much earlier, how-
ever. The variable loading allows for compensation of any unloading taking place and
typically results in a much lower stiffness and, therefore, critical load. Nevertheless, care-
ful investigation of the equilibrium state at the bifurcation point reveals it to be stable.
Consequently, an elastoplastic structure can bifurcate without becoming unstable, and a
distinction between those two concepts needs to be made.
The present chapter strives to give an overview of the definitions and criteria for both

stability and uniqueness that have been established in the literature adequate for the
problem at hand. Even though the theory available in the literature allows treatment
of elastoplastic uniqueness and stability problems in a very general manner, only those
aspects that apply to the present problem of buckling of lamellae embedded in an elasto-
plastic matrix are taken into account, i.e. follower loads are excluded. The limitations are
stated in detail in section 3.1 below. The present work is concerned with the buckling
behaviour of elastic lamellae embedded in an elastoplastic matrix. Term ‘buckling’ is
used to denote the transition from a previously homogeneous deformation mode to a new
inhomogeneous one, i.e. by this definition buckling essentially means bifurcation.

3.1 Rate boundary value problem
Before the question of stability and bifurcation can be posed, the problem under consider-
ation has to be defined. The starting point is given by the classical local static equilibrium
conditions formulated for a body occupying the Volume V in the material configuration
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3 Stability and uniqueness of elastoplastic structures

and bounded by the surface S, (3.1). The unit normal vector, the traction per surface
area and the body forces, all with respect to the material configuration, are denoted by
N, T and B respectively.

in V : Div(P˜) + B = 0

on S: P˜.N = T
(3.1)

Due to the incremental nonlinearity of the constitutive law the problem must be for-
mulated in rate form. Rates are denoted by an overscript dot in the likeness of a time
derivative, however, all deformations are thought to occur in a quasi static manner. Tak-
ing the time derivate of (3.1) immediately yields a condition of continuing equilibrium:

in V : Div(
.
P˜) + .B = 0

on S:
.
P˜.N =

.
T

(3.2)

Thus, the weak form of the local continuing equilibrium for a proper test function η is
obtained as:∫

V

(
Div(

.
P˜) + .B).ηdV = 0 (3.3)

The scalar product of the divergence with the test function in the previous equation
adheres to an identity similar to the product rule.

Div(
.
P˜).η = −

.
P˜ : Grad(η) + Div(

.
P˜Tη) (3.4)

Using the identity to transform the weak form in the usual way allows a reference to the
boundary conditions (BCs) being made.

−

∫
V

.
P˜ : GradηdV +

∫
S

.
T.ηdS+

∫
V

.
B.ηdV = 0 (3.5)

The BCs are given in the form of prescribed Surface tractions,
.
T , on some part of the

surface of the body ST and prescribed velocities, i.e. displacement rates, v̄, on the comple-
mentary surface Su = S \ ST as a function of the loading parameter λ. Only conservative
loading controlled independently of the deformation of the body is considered. Prescribed
quantities are furnished with an overbar. The body load is generally assumed to be a con-
trolled quantity. To exclude rigid body displacements from the following considerations
it will be generally assumed that: Su 6= {∅}. The loading is thought to be governed by
a load proportionality factor λ which uniformly controls the quasi static development of
the BCs.

From here on let the symbol v be reserved for kinematically admissible velocity fields
during the deformation process and it is assumed to be continuously differentiable. Pre-
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3 Stability and uniqueness of elastoplastic structures

scribed velocities are denoted by v̄ and any v conforms to the kinematic BCs on Su by
assuming the prescribed values there.

v = v̄ on Su (3.6)

A second class of velocity fields will be indicated by the symbol w. It is defined as the
infinitesimal variation of the velocity field v at some frozen state of the load proportionality
factor and, hence, vanishes on Su.

w = δv

w = 0 on Su (3.7)

The rate form of the virtual work principle is obtained for η = w. In equation (3.8) the
virtual work δA vanishes if v is a solution to the boundary value problem. Here (T̄ ).,
(B̄). are given external quantities, in general nonzero. A solution for v could be obtained
via, e.g. , a discretization scheme.

δA(v) = −

∫
V

.
P˜(v) : GradwdV +

∫
ST

.̄
T.wdS+

∫
V

.̄
B.wdV = 0 (3.8)

w = 0 on Su, arbitrary otherwise

For the so defined rate boundary value problem stability and bifurcation is analyzed in
the following sections.

3.2 Stability of equilibrium

In elasto-statics a stable equilibrium state for a purely elastic body under conservative
loading is usually defined via the Lagrange-Dirichlet theorem, i.e. a given equilibrium
state is stable if it assigns an strict minimum to the associated potential energy of the
load-structure system consisting of the body and the loading device [Leine, 2010]. Then,
any perturbation by a kinetic energy of vanishingly small amplitude is confined to in-
finitesimally close neighbor configurations.
The path dependence introduced by plasticity, however, precludes the existence of an

elastic potential and the Lagrange-Dirichlet theorem can not be invoked directly [Bažant
and Cedolin, 2010]. As a remedy, the work of a system is analyzed instead. The work
released by the complete load-structure system, indicated by the symbol A, is split into
a part representing the work released by the deformation of the body, called the internal
work Aint, and the work released by the loading device, called the external work Aext.
The internal work can also be thought of as the negative of the work supplied to the body
to realize a certain deformation.

A = Aint +Aext
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3 Stability and uniqueness of elastoplastic structures

According to [Hill, 1959], a given equilibrium state perturbed by supplying some kinetic
energy ∆T , the system can at most attain any configuration associated with the work
−∆A = ∆T . The magnitude of the perturbation is thought to be infinitesimal and only
configurations reached by a direct path, i.e. those paths activating only one constitutive
branch, are considered. The deformation will, in general, involve dissipation due to plas-
ticity, and it is assumed that the plastic work on a indirect path is not smaller than that
on the direct path leading to the same final configuration. Then, for a given value of
plastic work, any indirect or oscillating path will lead to a configuration closer to the
initial configuration, or at most the same configuration, than the direct path. If then,
∆A decreases monotonically from zero along every direct path from the initial configu-
ration the motion following a vanishingly small perturbation ∆T will vanish itself in the
limit, and the equilibrium is called stable in analogy to the Lagrange-Dirichlet theorem
for systems with an elastic potential.
The work done by the perturbation can be approximated by a Maclaurin series expan-

sion. In the series ∆A is stationary up to first order terms, as required for equilibrium.
Thus, stability is decided by the second order terms of the series, provided they are not
identically zero themselves, which will be excluded from the following considerations, and
higher order terms can be truncated.

∆A = +
.
A∆t+

..
A1

2
∆t2 +O(∆t3) (3.9).

A = 0

The internal work rate in general includes dissipation due to plasticity and the stress
increments depend on stain increments in a nonlinear manner. Second order terms are
obtained by derivation. In this section the gradient of w is denoted by Grad(w) instead
of the symbol (F˜). in order to emphasise the kinematic restrictions in place.

.
Aint(w) = −

∫
V

P˜(w) : GradwdV

..
Aint(w) = −

∫
V

(.
P˜(w) : Gradw+ P˜(w) : Grad

.
w
)
dV (3.10)

The external work is the work done by the loading device and assumed to be conservative.
It can be seen, therefore, as the negative change in the potential of the external forces

.
Aext(w) = +

∫
S

T.wdS +

∫
V

B̄.wdV
..
Aext(w) = +

∫
S

(.
T.w+ T. .w)dS+ ∫

V

( .̄
B.w+ B̄. .w)dV (3.11)

Stability is understood as a property of an equilibrium state, i.e. it is investigated at
a given instant of an ongoing deformation process. Therefore, the load proportionality
factor λ controlling the process remains frozen for the purpose of establishing stability.
Deformation dependent loading has been excluded from any considerations before. So
regardless of the actual dependence of the prescribed tractions and displacements on the
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3 Stability and uniqueness of elastoplastic structures

load proportionality factor all admitted loads can be considered dead loads.

in V : B̄ ∼ λ

on ST : T̄ ∼ λ

on Su: ū ∼ λ

 λ = const.


.̄
B = 0.̄
T = 0

w̄ = 0

(3.12)

The expression for the external work can thus be simplified, and the remaining terms can
be transformed to a volume integral via Gauss’s theorem and local equilibrium.

..
Aext = +

∫
ST

T̄. .wdS+
∫
V

B̄. .wdV = +

∫
S

T. .wdS+
∫
V

B̄. .wdV
= +

∫
V

(
Div(P˜(w)T

.
w) − Div(P˜(w)). .w)dV

..
Aext = +

∫
V

P˜(w) : Grad
.
wdV (3.13)

The external work cancels the second term of the internal work and the work done by an
infinitesimal perturbation does not depend on accelerations.

∆A = −1
2
∆t2
∫
V

.
P˜(w) : GradwdV +O(∆t3) (3.14)

From (3.14) it can be seen that stability of equilibrium is decided by a functional I(w),
as defined below. This stability functional was introduced by R. Hill [Hill, 1958, Hill,
1959]. A sufficient criterion for stability is provided, if I(w) is positive for every nonzero
kinematically admissible velocity fieldw, i.e. any velocity field that conforms to the frozen
displacements at Su by vanishing there.

I(w) :=

∫
V

.
P˜(w) : GradwdV

I(w) > 0 for every w, w 6= 0, w vanishes on Su =⇒ stable (3.15)

3.3 Hill’s criterion of uniqueness
As has been suggested in the introduction to this chapter stability and uniqueness are two
apart concepts for bodies under plastic deformations. A sufficient criterion for uniqueness
of the solution for a boundary-value problem in rate-form was given by R. Hill in [Hill,
1958,Hill, 1959], and an excerpt of the literature on the subject is included here to point
out the most important differences and their implications.
In order to investigate uniqueness, suppose that two distinct velocity solutions v∗ and

v to the rate-form boundary value problem exist, and let the respective quantities be
indicated by a present or missing superscript asterisk. Differences in quantities between
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3 Stability and uniqueness of elastoplastic structures

both solutions shall be denoted by the prefix ∆. The stress rates for each solution are
constitutively related to the gradient of the respective velocity field. Here Grad(v) is
used instead of (F˜). to emphasise the different kinematic constraints as opposed to the
previous section.

∆v = v∗ − v

Grad∆v = Grad v∗ − Grad v

∆
.
P˜ =

.
P˜∗ − .P˜ = C˜̃(Grad v∗) : Grad v∗ − C˜̃(Grad v) : Grad v

If both velocity fields are solutions, they share the prescribed body forces per reference
volume, B̄, the prescribed tractions per reference area, T̄ , on the surface Su and the
prescribed velocities, v̄, on the complementary surface and the respective rates. Therefore,
differences in the rates of prescribed quantities are zero on their particular domain.

in V : Div(
.
P˜∗) = Div(

.
P˜) = −

.̄
B

Div(
.
P˜∗) − Div(

.
P˜) = ∆(Div(

.
P˜)) = Div(∆

.
P˜) = −∆

.̄
B = 0

on ST : ∆
.̄
T = 0

on Su: ∆v̄ = 0

(3.16)

Since the differences in the controlled quantities vanish the following statements hold:∫
S

∆
.
T.∆vdS =

∫
ST

∆
.̄
T.∆vdS+

∫
Su

∆
.
T.∆v̄dS = 0 (3.17)∫

V

∆
.̄
B.∆vdV = 0 (3.18)

The last two equations can be combined with the divergence theorem and the local equi-
librium conditions to yield a relation for the volume integral of the differences of the
double contraction on PK1-stress with the deformation gradient:∫

S

∆
.
T.∆vdS+

∫
V

∆
.̄
B.∆vdV = 0∫

V

(
Div(∆

.
P˜T∆v) − Div(∆

.
P˜).∆v)dV = 0∫

V

∆
.
P˜ : Grad∆vdV = 0 (3.19)

To facilitate further references, the functional H, as defined below, is introduced as an ab-
breviation. The condition (3.19), respectively (3.17), necessary for nonuniqueness, can be
inverted to give a sufficient condition for uniqueness by replacing equality with nonequal-
ity. The condition can be weakened further and uniqueness is implied a fortiori if the
left hand side of (3.19) takes only positive values for any pair of kinematically admissible
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3 Stability and uniqueness of elastoplastic structures

velocity fields. A sufficient condition for uniqueness is, therefore, that the uniqueness
condition (3.21) holds for all pairs of continuously differentiable velocity fields taking the
values prescribed on Su [Hill, 1959].

H(v∗, v) :=
∫
V

∆
.
P˜ : Grad∆vdV =

∫
S

∆
.
T.∆vdS (3.20)

H(v∗, v) > 0 for every v∗, v and v∗ 6= v =⇒ unique and stable (3.21)

If uniqueness condition (3.21) holds, stability is implied because of (3.22). The converse,
however, is not true in general, and uniqueness is not implied by I(w) > 0 for every
nonzero w in the presence of inelastic material behaviour. Uniqueness and stability are
separate concepts for elastoplastic rate boundary value problems.

H(0,w) ≡ I(w) (3.22)

Taking into account the considerations regarding stability stated in section 3.2 it can fur-
ther be remarked that although H 6= 0 for all admissible pairs is sufficient for uniqueness,
the equilibrium is probably unstable if H < 0 for all admissible velocity pairs. This case
is excluded from any further considerations and (3.21) provides a condition sufficient for
both uniqueness and stability. If a solution v is known, it can be taken as a member in
the criterion. Hill’s uniqueness condition requires to prove the property H > 0 for all
admissible pairs v∗, v and is, therefore, difficult to apply in practice. It can, however, be
extended further for materials that admit a rate potential, as is the case for the material
obeying the normality flow rule that is considered in the present work.

3.4 Rate potential

Limiting all further considerations to materials that allow for the existence of a rate
potential U , the results from the previous sections can be specified further [Hill, 1958,Hill,
1959,Hill, 1978]. Deferring the requirements for such a potential to exist for the moment,
the rate potential takes the form in (3.23). It is, in general, a function homogeneous of
degree two in

.
F˜ and reverts to a quadratic form for the special case of elasticity.

U(
.
F˜) = 1

2

.
P˜ :
.
F˜ (3.23)

Via applying Euler’s theorem for homogeneous functions, cf. (7.17), the rate of PK1-stress
can be related to the partial derivative of U by comparison with (3.23):

2 · U(
.
F˜) = ∂U

∂
.
F˜

:
.
F˜ ⇒

.
P˜(.F˜) = ∂U

∂
.
F˜

(3.24)
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3 Stability and uniqueness of elastoplastic structures

The relation of the rate of the PK1-stress,
.
P˜, to the rate of the deformation gradient,.

F˜, is nonlinear in the plastic regime on account of the possibility to activate different
constitutional branches, but homogeneous of degree one. Applying Euler’s theorem again
and comparison with (2.22) relates the mixed material stiffness to the partial derivatives
of U .

1 ·
.
P˜(.F˜) = ∂

.
P˜
∂
.
F˜
:
.
F˜ =

∂2U

∂
.
F˜∂.F˜

:
.
F˜ ⇒ C˜̃(.F˜) = ∂2U

∂
.
F˜∂.F˜

(3.25)

Because of the symmetry of the second derivatives in the second equation in (3.25), major
symmetry of the material stiffness is required for the rate potential to exist via the Schwarz
integrability condition. In the present case a Von Mises-yield function with an associated
flow rule where adopted in chapter 2, and the material tangent moduli L˜̃ and C˜̃ possess
the major symmetry property.

The existence of the rate potential implies a so-called reciprocal relation for the varia-
tions. Therefore, the variation of the rate potential is given by (3.26) [Hill, 1978,Lubarda,
2002]:

δ
.
P˜ :
.
F˜ =

.
P˜ : δ

.
F˜

δU =
.
P˜ : δ

.
F˜ = δ

.
P˜ :
.
F˜ (3.26)

The uniqueness condition was developed by Hill [Hill, 1959] into an extremum principle
for materials that allow for the existence of a rate potential. A velocity field v is a solution
to the rate boundary value problem as defined in section 3.1 if and only if it assigns to
the functional J (v) as defined in (3.27) a stationary value, i.e. the first variation of the
functional vanishes for all w. This stationary condition is equivalent to the virtual work
principle in rate form (3.8) due to (3.26).

J (v) =
∫
V

U(Grad(v))dV −

∫
ST

.̄
T.vdS−

∫
V

.̄
B.vdV (3.27)

δJ (v,w) = 0 for every w (3.28)

The uniqueness condition (3.21) can be rewritten as:

δJ (v∗, v∗ − v) − δJ (v, v∗ − v) > 0 for every v∗, v and v∗ 6= v (3.29)

This is the condition of strict convexity of the functional J . Therefore, if the unique-
ness condition (3.21) holds, the unique solution v0 assigns to J (v) a strict and absolute
minimum [Hill, 1959,Hill, 1978]:

J (v) > J (v0) for every v and v 6= v0 (3.30)
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3 Stability and uniqueness of elastoplastic structures

3.5 Linear comparison material

The uniqueness condition (3.21) is difficult to apply to an actual problem, because it
requires to prove H(v∗, v) > 0 for all admissible velocity fields v∗, v. In practice the first
bifurcation point is usually sought-after. A possible approach would be to take the known
primary solution, say v0, as a member of the pair so that only the remaining arbitrary
but admissible velocity field v has to be considered in the criterion [Hill, 1978].
An other approach, applicable for materials that allow for a rate potential, was in-

troduced by Hill: The actual incrementally nonlinear material is thought to be replaced
by a linear comparison material for the purpose of determining uniqueness. The actual
material, nonlinear on account of being piecewise linear in the loading and the unloading
direction, is mentally replaced by a linear comparison material. Suppose the fundamen-
tal, i.e. unbuckled, deformation path that is to be investigated and the respective velocity
solution v0 following this path is known. Then the corresponding comparison material
C˜̃0 is obtained by disregarding the unloading branch of the constitutive relation and lin-
early extending the loading branch in both directions in those regions that are currently
yielding on the fundamental path. In currently elastic regions the material is already
incrementally linear and no change is necessary. The material tangent of the comparison
material then no longer depends on the gradient of the velocity field.
Because in the actual material the stiffer unloading branch might be active in some

parts, the comparison material has a lower stiffness or is at most as stiff as the actual
material. The actual rate potential of the material is as convex or more convex than the
potential of the comparison material which is a quadratic form with C˜̃0. The resulting
inequality is known as the relative convexity property, (3.31), and it can generally be
assumed for classic elastoplastic solids.

(
.
P˜∗ − .P˜) : (.F˜∗ − .F˜) > (.F˜∗ − .F˜) : C˜̃0 : (

.
F˜∗ − .F˜) for every

.
F˜,
.
F˜∗ (3.31)

The relative convexity property can be used in the uniqueness condition to obtain a lower
bound to H(v∗, v) in (3.20). By this procedure the uniqueness problem for the actual
solid is transformed to a stability of the comparison solid.

H(v∗, v) >
∫
V

(.
F˜∗ − .F˜) : C˜̃0 : (

.
F˜∗ − .F˜)dV.

F˜∗ − .F˜ = Grad v∗ − Grad v = Gradw

H(v∗, v) >
∫
V

Gradw : C˜̃0 : GradwdV = I0(w) (3.32)

It can be seen that a sufficient condition for uniqueness of the solution v0 following the
fundamental deformation path is that the stability-functional calculated for the linear
comparison solid, I0(w), is strictly positive [Hill, 1958,Hill, 1959]. Because (3.33) guar-
antees uniqueness of v0, I0(w) is called the exclusion functional.

I0(w) > 0 for every w 6= 0 =⇒ uniqueness of v0 (3.33)
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3 Stability and uniqueness of elastoplastic structures

Condition (3.33) is a sufficient condition for uniqueness. For discretized systems, however,
references [Petryk, 1991, Petryk and Thermann, 1992] show that it is also necessary for
uniqueness, cf. section 3.7, provided (3.15) holds.

3.6 Discretized systems
In the following chapters elastoplastic stability problems are considered in a discretized
form and deformations are approximated by shape functions. This applies to both,
analytical- and FEM-models. Critical loads calculated for discretized systems are, possi-
bly close, upper bounds for critical loads of the continuous system.
In this section relevant quantities are reformulated for discretized systems, following the
notation used in [Petryk and Thermann, 1992]. For ease of manipulation the generalized
coordinates (GCs), respectively their rates, are collected in an algebraic vector V. The
indices are assigned to the GCs in such a way that the uninterrupted sequence of GCs
from 1 to some number m is load controlled, while the remaining sequence from m + 1
to n is under displacement control. The velocity field v is approximated using shape
functions, φi, associated with the respective GC-rate.

V :=
[GCs under load control︷ ︸︸ ︷.
q1 . . .

.
qm

.
qm+1 . . .

.
qn︸ ︷︷ ︸

GCs under displacement control

]T

v =
[
φ1 . . . φm φm+1 . . . φn

]


.
q1
....
qm.
qm+1

....
qn


To approximate the velocity field conforming to homogeneous displacement BCs, w, a
different algebraic vector,W, is defined:

W :=
[GCs under load control︷ ︸︸ ︷.
q1 . . .

.
qm 0 0 0︸ ︷︷ ︸

GCs under displacement control

]T

w =
[
φ1 . . . φm φm+1 . . . φn

]


.
q1
....
qm
0
...
0
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3 Stability and uniqueness of elastoplastic structures

In order to clearly point out the range of the indices involved, summation is in the following
explicitly stated by the summation symbol, even for repeated indices. The rates of the
deformation gradient and the PK1-stress tensor are thus rewritten in terms of the discrete
GC-rates as follows:

.
F˜ =

n∑
j=1

.
qjGradφj

.
P˜(v) =

n∑
j=1

.
qj C˜̃(v) : Gradφj

Upon substituting the discretization into the rate form virtual work principle, (3.8), the
negative of the first volume integral on the left hand side is pertinently defined as the
product of the rate of the internal force vector components, (Qi)

., and the GC-rates,
.
qi.

The internal force rate vector components are then:

.
Qi(v) = +

∫
V

.
P˜(v) : Gradφi dV i = 1 . . .n

.
Qi(v) = +

n∑
j=1

.
qj

∫
V

Gradφj : C˜̃(v) : Gradφi dV i = 1 . . .n (3.34)

In analogy, the rate of the external force vector components (Pi)
. is formed by the last

two terms on the right hand side of (3.8). The index i extends only up to m, because the
remaining GC-rates are directly controlled.

.
Pi =

∫
V

.̄
B.φi dV +

∫
ST

.̄
T.φi dS i = 1 . . .m (3.35)

The J -functional for discretized systems takes the form:

J (v) = 1

2

n∑
i=1

.
Qi(v)

.
qi −

m∑
i=1

.
Pi
.
qi (3.36)

The rate form virtual work principle for discretized systems is given below. On account
of
.
qi being arbitrary where GC-rates are not directly controlled this reverts back to the

equation of continuing equilibrium, i.e. equilibrium of the internal and external force rates.

δJ (v,w) = −δA(v,w) =

m∑
i=1

(
+
.
Qi(v)

.
qi −

.
Pi
.
qi
)
= 0 (3.37)

.
Qi(v) =

.
Pi i = 1 . . .m (3.38)

The system’s tangent stiffness matrix is the change of the net force-rate with respect
to the GC-rate. When excluding deformation dependent loading the controlled external
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3 Stability and uniqueness of elastoplastic structures

force rates do not depend on the GC-rates.

Kij(v) =
∂

∂
.
qj

( .
Qi(v) −

.
Pi
)
=

∂

∂
.
qj

( .
Qi(v)

)
Kij(v) =

∫
V

Gradφj : C˜̃(v) : Gradφi dV i, j = 1 . . .n (3.39)

The systems stiffness matrix is also linked to the second derivatives of J :

∂2J (v)
∂
.
qk∂
.
ql

=
∂2

∂
.
qk∂
.
ql

(1

2

n∑
i=1

.
Qi(v)

.
qi −

m∑
i=1

.
Pi
.
qi

)
=

1

2

∂

∂
.
ql

( n∑
i=1

∂
.
Qi

∂
.
qk

.
qi +

n∑
i=1

.
Qiδik −

m∑
i=1

.
Piδik

)
∂2J (v)
∂
.
qi∂
.
qj

=
∂
.
Qi(v)

∂
.
qj

= Kij(v) (3.40)

3.7 Energy interpretation and path-stability

In [Petryk, 1991,Petryk and Thermann, 1992] an extended theory for inelastic bifurcation
problems was introduced on the basis of an energy interpretation. It is assumed, that the
material under consideration allows a rate potential. The references define an energy
functional E of the system consisting of the deformable body and the loading device as
the sum of the energy contained in the body and the potential of the loading device, V .
The energy of the deformable body is equal to the negative work of the internal forces,
Aint, which is used here instead.

E = −Aint + V (3.41)

The cited references consider discretized systems and energy expressions are given in terms
of generalized forces and displacements, respectively their rates.

−Aint = +

n∑
i=1

∫ t
0

Qi
.
qi dt (3.42)

The external forces are assumed to allow for a potential, V , it is in general not equal to
the negative of their work −Aext, unless the external forces are dead loads.

V = −

m∑
i=1

Piqi (3.43)
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3 Stability and uniqueness of elastoplastic structures

For equilibrium, the first time derivative of the energy functional does not depend on the
rate of the free GCs

.
qi, i = 1..m. The GC-rates

.
qi, i = m + 1..n and the rate of the

external forces (Pi)
. are prescribed.

.
E(v) =

n∑
i=1

Qi
.
qi −

m∑
i=1

(
.
Piqi + Pi

.
qi)

=

m∑
i=1

(Qi − Pi)
.
qi +

n∑
i=m+1

Qi
.
qi −

m∑
i=1

.
Piqi (3.44)

For an equilibrium state the second time derivative of the energy functional is:

..
E (v) =

n∑
i=1

.
Qi
.
qi − 2

m∑
i=1

.
Pi
.
qi +

n∑
i=m+1

Qi
..
qi −

m∑
i=1

..
Piqi (3.45)

The second time derivatives of qi and Pi are prescribed quantities for i = m + 1..n and
i = 1..m respectively. So for any pair of velocity fields v(1) and v(2) at an equilibrium
state there is the identity [Petryk, 1985]:

1
2

..
E (v(1)) − 1

2

..
E (v(2)) = J (v(1)) − J (v(2)) (3.46)

For an equilibrium state under constant loading, as has been considered in section 3.2,
the first time derivative of the energy functional (3.44) vanishes. The additional energy
required to move the system form the equilibrium state in an arbitrary, but kinematically
admissible, direction, at constant loading, is then given by

..
E (w):

..
E (w) =

m∑
i=1

.
Qi(w)

.
qi (3.47)

The last equation is used in [Petryk, 1991, Petryk and Thermann, 1992] to introduce
the notion of directional stability, i.e. if spontaneous departure from an equilibrium state
along a direct path w is prevented by an energy barrier in every admissible direction the
equilibrium is said to be directionally stable. For directional stability it is required that:

m∑
i=1

.
Qi(w)

.
qi > 0 for every w 6= 0 (3.48)

Under the limitations stated in section 3.2 the stability criteria (3.15) and (3.48) are
equivalent, with the latter given for discretized systems. With regard to the existence and
uniqueness of a solution to (3.38) [Petryk and Thermann, 1992] states three theorems.
Quantities with a superscript 0 refer to the fundamental (primary) deformation path.

Theorem 1: The system of equations (3.38) at a directionally stable equilibrium state
has a solution which assigns to J it absolute minimum value in V.
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3 Stability and uniqueness of elastoplastic structures

Theorem 2: For uniqueness of a solution v to (3.38) at a directionally stable equilibrium
state it is necessary that v assigns to J a strict and absolute minimum value.

J (v) < J (v∗) for every v 6= v∗ (3.49)

A necessary condition for a J (v) to attain a minimum is positive semidefiniteness of K˜(v),cf. (3.40).
.
qiKij(v)

.
qj > 0 for every w (3.50)

These theorems lead to the corollary:

Corollary 1: The solution in velocities is nonunique at every point on a solution path
along which (3.48) holds but (3.50) does not: This means that the bifurcation points are
then not isolated but form a continuous nonuniqueness range.

Theorem 3: If there exists a solution v0 to (3.38) such that:
(i) the respective tangent stiffness matrix K˜0 is positive definite, and
(ii) the stress and deformation rates (P˜0). and (F˜0). corresponding to v0 satisfy the

constitutive inequality (3.51)
then the solution v0 is unique.
.
P˜0 : .F˜ − .P˜ :

.
F˜0 > 0 for every

.
F˜ (3.51)

The constitutive inequality (3.51) is not more restrictive than the relative convexity prop-
erty (3.31) and holds for classic J2-plasticity. The theorems 2 and 3 lead to a second
corollary:

Corollary 2: If (3.48) and (3.51) hold along a deformation path then positive definiteness
of the tangent stiffness matrix K˜0 is necessary and sufficient for uniqueness of the first-
and second-order solutions.

This leaves the question which path is followed when uniqueness is lost. On the basis of
the first corollary it could be argued that once the system encounters the first bifurcation
point it can no longer be followed because because there nonuniqueness would persist in a
continuous interval. In [Petryk and Thermann, 1992] a criterion to exclude unstable paths
is given by appealing to energy considerations: Along a stable path the actual deformation
increment must minimize the value of the increment of the energy functional E calculated
with accuracy to second-order therms, within the class of all kinematically admissible
deformation increments. Because the first oder term E is independent of the deformation
mode for equilibrium states, as shown in (3.44), path-stability is decided by the second
order term. This definition can be regarded as a specification of the intuitive engineering
hypothesis that a real deformation mode in metals exhibits a tendency to minimize the
energy consumption. Due to the identity (3.46) this means that a stable deformation path
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3 Stability and uniqueness of elastoplastic structures

also necessarily minimizes J . Therefore, on the actually followed solution v there is the
relation:

J (v∗) > J (v) for every v∗ (3.52)

3.8 Example: axially loaded beam

As a demonstration the bifurcation behaviour of a rectangular beam-like structure of
length L and height H, under axial compressive loading, P, is investigated. The out-of-
plane dimension of the structure is one unit-length and no out-of-plane displacements are
permitted. The only deformation modes allowed in the model are sinusoidal deflection
and axial shortening and the respective GCs are q1 and q2. The load P is considered to
be controlled by the load proportionality factor λ.

Figure 3.1: Assumed deformation mode

The kinematic assumptions are the same as for the Euler-Bernoulli beam theory. The
quasi-static deformation rates vi for these assumptions are:

v1 = sin
(πX2

L

).
q1 (3.531)

v2 = −
X2

L

.
q2 −

∂v1

∂X2

X1

= −
X2

L

.
q2 −

πX1

L
cos
(πX2

L

).
q1 (3.532)

The coefficients of the GC-rates form the shape function vectors, (3.54), their spatial
gradients are given in (3.55).

φ1 =

[
sin(πX2

L
)

−πX1

L
cos(πX2

L
)

]
(3.541)

φ2 =

[
0

−X2

L

]
(3.542)
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Gradφ1 =

[
0 π

L
cos πX2

L

−π
L

cos πX2

L
+π

2

L2
sin πX2

L

]
(3.551)

Gradφ2 =

[
0 0
0 − 1

L

]
(3.552)

For simplicity the assumption is made that the structure is monotonically loaded to some
point beyond the initial yielding load along the primary equilibrium path. Instability
and bifurcation in the purely elastic regime or immediately upon yielding are excluded.
Quantities evaluated at the primary loading path are indicated by right superscript 0.
With regards to the constitutive behavior only the modulus L2222 is considered, which
is equal to the tangent modulus Et on the primary loading path. The current stress σ22
equals −P/H and is homogeneous over the entire cross-section, thus the linear comparison
material is obtained from (2.26):

C˜̃0 =


[

0 0
0 0

] [
0 − P

2H

+ P
2H

0

]
[

0 + P
2H

+ P
2H

0

] [
0 0
0 Et +

P
H

]
 (3.56)

Using the mixed material tangent of the linear comparison material in (3.34) yields the
internal force rates on the fundamental path. The beam-like structure is thought to have
a high ratio of L to H, so H2 can be reasonably neglected over L2.

.
Q1(v

0) =
π2

24L3

(
π2EtH

3 + (π2
��H

2 − 12L2)P
).
q1 (3.571)

.
Q2(v

0) =
HEt + P

L

.
q2 (3.572)

The system tangent stiffness matrix on the fundamental path is:

K˜(v0) =
[
π4EtH

3

24L3
− π2P

2L
0

0 EtH
L

+ P
L

]
(3.58)

The tangent stiffness matrix is initially positive definite, but with increasing load the
eigenvalues decrease and at some critical load, P0 it will become singular. The load can
be obtained from setting the determinant to zero.(

π2EtH
3 − 12L2P0

)(
EtH+ P0

)
= 0

(P0)1 =
π2EtH

3

12L2
(3.591)

(P0)2 = −EtH (3.592)
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The solution then resembles the elastic buckling load of the beam but has the Young’s
modulus exchanged for the tangent modulus. The similarity is superficial, though, as
both loss of uniqueness and stability coincide for the elastic Euler-buckling. In the present
case, however, (P0)1 merely marks the end of the uniqueness of v0. If the load is increased
further the system will deviate from the fundamental path. Stability, on the other hand,
is decided by (3.52) and has to be considered for a fixed value of the load proportionality
factor. At constant load L2222 is equal to Et only parts of the cross-section experiencing
further loading and equals the elastic modulus E in the unloaded ones, (3.56) does not
apply. The internal force rates (Qi(w)). and the tangent stiffness matrix K˜(w) are rather
involved for this scenario and it is more conveniently considered for a further simplified
problem known as Shanley’s column, cf. below.

3.9 Example: Shanley’s column

A classical introductory example is known as Shanley’s column in the literature [Bažant
and Cedolin, 2010]. As a further simplification over the previous problem a two degrees
of freedom-system consisting of rigid T-bars attached to vertical trusses is considered,
cf. Fig. 3.2. The homogeneity of stress and strain in the trusses allows for a more conve-
nient handling of the problem. Again, the load P is considered to be controlled.

Figure 3.2: Shanley’s column

The change in length of the trusses, as a function of the T-bar rotation angle ϕ, is given
in (3.60).

∆ll,r = −q1 ∓ 2
h

2
sin(ϕ) + 2(1 − cos(ϕ))l (3.60)
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Only first order accuracy is required, so the trigonometric functions are substituted by
the first element of their series expansion in the following.

.
εl,r =

∆ll,r

h
= −

.
q1

h
∓
.
q2

l
+O(.q2

i) (3.61)

For the rate of the truss forces the incremental nonlinearity needs to be taken into account
by allowing different constitutive branches to be active in the left and right truss. The
tangent moduli are El and Er, respectively, and they can assume either the tangent
modulus, Et, for loading or the elastic modulus, E, for the case of unloading.

.
Nl,r = El,rA(−

.
q1

h
∓
.
q2

l
) (3.62)

Since the structure forms a statically determinate system the internal forces can be ob-
tained directly from equilibrium. Force equilibrium in vertical direction and taking into
account that the non rate terms of the reference configuration are already balanced yields
the first internal force:

.
Q1 = −

.
Nl −

.
Nr = (El + Er)

A

h

.
q1 + (El − Er)

A

l

.
q2 (3.631)

The equilibrium of moments gives after some algebra the second internal force:

.
Q2 = (El − Er)

A

l

.
q1 + (El + Er)

Ah

l2
.
q2 − 2P

.
q2 (3.632)

Via (3.39) the system tangent stiffness matrix is obtained as:

K˜(v) =


(El + Er)A

h

(El − Er)A

l

(El − Er)A

l

(El + Er)Ah

l2
−

2P

l

 (3.64)

In order to find the first bifurcation load the tangent stiffness matrix is evaluated for the
primary equilibrium path, i.e. v = v0 =

[ .
q1 0

]
T. It is apparent from (3.61) that for

this path both trusses are in the loading branch, thus the tangent stiffness matrix takes
the form:

K˜0(v0) =


2EtA

h
0

0
2EtAh

l2
−

2P

l

 (3.65)

Other tangent stiffness matrices corresponding to other constitutive branches need not be
considered here, because of the arguments presented in section 3.5. Assuming the system
was loaded into the elastoplastic regime and neither instability nor bifurcation occurred
in the elastic regime or on the transition to the plastic regime, then K˜0 is still positive
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E = 10× 103 [FL−2] Et = 5× 103 [FL−2] h = 1 [L] l = 10 [L] A = 1 [L2]

Table 3.1: Parameters used to generate the Figs. 3.3(a), 3.4(a), 3.4(b) and 3.5(a).

definite. The functional J calculated for this scenario by (3.36) is depicted in Fig. 3.3(a).
Further loading will, however, decrease the lowest eigenvalue and at a certain level of the
loading parameter K˜0 will become singular. Then the primary loading path no longer
minimizes J and bifurcation occurs at load P∗0.

P∗0 =
EtAh

l
(3.66)

Instability, however, is not implied by bifurcation and needs to be evaluated separately by
the means of (3.48), i.e. the presence or absence of an energy barrier. When calculating
the internal forces the tangent stiffness has to be taken in the direction of w rather then
v0, and the respectively active constitutive branch has to be taken into account. The
result calculated at the bifurcation load P∗0 is presented as a contour plot, Fig. 3.4(b).
Note that there are 4 possible combinations of activated branches, resulting in a patch
of surfaces of piecewise constant curvature. The contours represent states that can be
reached by monotonic radial displacement from the origin for a given amount of work
done on the system. All contours form closed curves around the origin, and the work
is positive everywhere but the origin. Consequently the equilibrium state at P∗0 is still
stable in the energy sense as discussed in section 3.7.
Bifurcation at the primary bifurcation point can be prevented by additional constraints,

e.g. when the bifurcation load is lower than the yield load. If this additional constraint
is removed, bifurcation occurs at a secondary bifurcation point. If the stability criterion
is still met, secondary bifurcation will occur in a quasi-static manner i.e. without sudden
unloading, cf. Fig. 3.5(a).
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(a) Contour plot of J . The surface consist of three patches (solid lines); The dashed
lines are a continuation of the patches beyond their range of validity

(b) Axonometric view of the surface generated by J . Only the part J < 0 is shown.

Figure 3.3: Functional J (.q1,
.
q2,
.
P = 103) evaluated according to (3.36) at 90% of the

primary bifurcation load P∗0. J is minimized on the fundamental loading
path

.
q2 = 0. In the shaded cone above the origin both trusses are yielding;

in the one below both are unloading. In the unshaded areas only one truss is
loading, while the other is unloading.
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(b) Contour plot of I; Load control over all GCs is assumed, thenW = V =
[.
q1
.
q2
]T

Figure 3.4: Functionals J (.q1,
.
q2,
.
P = 103) and I(.q1,

.
q2) evaluated according to (3.36)

and (3.15) at the primary bifurcation load P∗0. The fundamental loading
path no longer strictly minimizes J and

.
q2 is not forced to zero at increasing

load (P)., cf. Fig. 3.4(a). On the other hand for (P). = 0 the perturbation
work I is still positive for all

.
q1,
.
q2, cf. Fig. 3.4(b).
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Figure 3.5: Functionals J (.q1,
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P = 103) and I(.q1,

.
q2) evaluated on the undeflected

equilibrium path at 110% of the primary bifurcation load P∗0. There are
three stationary points, but only two correspond to a minimum. Note that a
state like this can only be reached when additional constraints are enforced.

36



4 A preliminary, incompatible model

As a first approach to the problem, an infinite periodic arrangement of evenly spaced
lamellae connected to the matrix only at evenly spaced individual points, rather then
by a continuous bedding is considered. It is further assumed that the buckling-mode of
these lamella is such that there is symmetry with respect to the midplane between two
lamellae and the planes orthogonal to the lamellae passing through the connection points,
hence the name symmetric mode. In this regular arrangement the domain spanning the
space between two neighbouring symmetry planes, both horizontally and vertically, is
representative of the entire assembly and is, therefore, called a unit cell (UC). Any UC
can be made congruent with every other by suitable mirror transformations, and it is
sufficient to deal only with one in order to describe the entire assembly.

The UC itself is rectangular and consists of the lamella connected at the top and bottom
center and the matrix (Fig. 4.1). The main abstraction of the model is that in each
UC the matrix itself is divided into four rectangular subdomains. At the interfaces the
subdomains slide freely, they stay rectangular and do not separate or interpenetrate each
other normal to the interfaces. However, the formation of voids and interpenetrations is
otherwise allowed. For instance, an incompatibility will form at the UC center when the
lamella buckles. The UC height spans the distance between two lamella-matrix connection
points and corresponds to the half of the buckling-wavelength, which must be treated as
an unknown and can be obtained from minimizing the buckling-load.

As becomes apparent from the numerous simplifications and assumptions stated so far
the scope of the model is very limited. Due to the peculiar coupling the rectangular
subdomains will only experience domain wide constant normal strains and either yield or
unload as a whole, thus significantly simplifying the problem. This comes at the cost of
being incompatible. Also, instead of the buckling-mode naturally arising from the theory
it is a priory assumed to adhere to the symmetry conditions stated above, thus possibly
suppressing relevant buckling-modes. However, the symmetry assumptions are necessary
to allow for a meaningful coupling of the subdomains. While for these reasons the in-
compatible model is certainly not an accurate representation of an actual lamella-matrix
arrangement it serves as a demonstrator of the properties of inelastic buckling of lamellar
structures. It is, for instance, not obvious from the beginning whether there will be instant
or gradual unloading in some of the subdomains during buckling, cf. section 4.4. The sim-
plicity of the incompatible matrix segmentation allows for a more extensive mathematical
treatment of the problem without leading to intractable equations. The purpose of this
section is to relate the buckling-problem of a lamella embedded in an elastoplastic matrix
to the general theory of inelastic buckling as discussed in chapter 3 rather than making
accurate predictions for the actual lamella-structure. In the following chapters effort is
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4 A preliminary, incompatible model

made to drop the crude simplifications applied here and to derive compelling reasons for
many circumstances stated as assumptions here.

4.1 Kinematics and strain
The model width equals the lamella spacing and is denoted by 2A1, the height corresponds
to half the buckling wavelength and is assigned the symbol A2. The factor 2 is absent
from the height for consistency with models discussed in the following chapters. A full
buckling-period is obtained by mirroring the model at the top edge, and by repeated
mirroring at the model edges the entire 2-dimensional plane can be filled. All quantities
are considered per unit-depth.
Due to the abstractions introduced above, the model possesses only four GCs, q1 to

q4. The amplitude of the buckling-mode is represented by q1. The second GC, q2 allows
for unequal vertical expansion in the subdomains. The third and fourth GC relate to
the horizontal and vertical overall deformation at the model boundary, respectively. The
fourth GC q4 includes both, the displacement which is due to the axial straining of the
lamella, and the vertical displacement caused by the lateral deflection at constant axial
lamella strain. All of the four GCs are considered free, i.e. not directly controlled, in
the following. Conversely, the load P associated with

.
q4 is supposedly controlled and the

forces corresponding to the GCs one to three are controlled to zero.

Figure 4.1: Generalized coordinates of the preliminary incompatible model

Symbols that relate to lamella-quantities are distinguished from matrix-quantities by a
superscript α. Matrix-quantities, in turn, are furnished with a superscript γ. The lamella
follows standard beam-theory kinematics and deflects in a sine-shape over the course of
a half wavelength A2. To account for the plane stress situation the Young’s modulus in
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4 A preliminary, incompatible model

the lamella is to be scaled by 1/(1−ν2), which is implicitly assumed whenever it appears
and the symbol Eα stands for the scaled value. As has been mentioned above the lamella
connects to (is pinned to) the matrix only at the top and bottom boundary of the model
and freely interpenetrates the matrix in between.

vα1 = + sin
(πX2

A2

).
q1 (4.11)

vα2 = −
X2

A2

.
q4 −

∂v1

∂X2

X1

= −
X2

A2

.
q4 −

πX1

A2

cos
(πX2

A2

).
q1 (4.12)

The matrix kinematics are setup to generate constant strain in each of the four respective
subdomains. To avoid having four separate piecewise definitions the signum and absolute
value functions are used and the velocity field for all four subdomains is given by a single
expression:

vγ1 =
(

1 −
abs(X1)

A1

)
sgn(X2)

.
q1 +

X1

A1

.
q3 (4.21)

vγ2 =− sgn(X1)
(1

2
−

abs(X2)

A2

).
q2 −

X2

A2

.
q4 (4.22)

The shape functions are obtained by extracting the coefficients from the velocity fields.
The lamella shape functions are the same as those used in section 3.8 when L is replaced
by A2. The shape functions φα2 = φα3 are zero.

φα1 =

[
sin
(
πX2

A2

)
−πX1

A2
cos
(
πX2

A2

) ] (4.31)

φα4 =

[
0

−X2

A2

]
(4.32)

Lamella shape function gradients:

Gradφα1 =

[
0 π

A2
cos
(
πX2

A2

)
− π
A2

cos
(
πX2

A2

)
π2X1

A2
2

sin
(
πX2

A2

) ] (4.41)

Gradφα4 =

[
0 0

0 − 1
A2

]
(4.42)

Matrix shape functions:

φγ1 =

[
+ sgn(X2)

(
1 − abs(X1)

A1

)
0

]
(4.51)
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4 A preliminary, incompatible model

φγ2 =

[
0

− sgn(X1)
(
1
2
− abs(X2)

A2

) ] (4.52)

φγ3 =

[
X1

A1

0

]
(4.53)

φγ4 =

[
0

−X2

A2

]
(4.54)

Matrix shape function gradients

Gradφα1 =

[
− sgn(X1X2)

A1
0

0 0

]
(4.61)

Gradφα2 =

[
0 0

0 + sgn(X1X2)
A2

]
(4.62)

Gradφα3 =

[
+ 1
A1

0

0 0

]
(4.63)

Gradφα4 =

[
0 0

0 − 1
A2

]
(4.64)

4.2 Incremental constitutive law

The normal stress in 2-direction present in the lamella and the matrix in the unbuckled
configuration immediately prior to the instant of buckling is supposed to be known. The
stresses and the external load are related by the equilibrium (4.7). This relation is used
in the following to eliminate σα22 and give an expression in the known quantities P and
σγ22.

P + 2A1σ
γ
22 +A

ασα22 = 0 (4.7)

The usual convention with regard to the sign of the stress components is observed, i.e.,
compressive stress is counted negative. The lamella is treated by beam-theory so the stress
in an unbuckled configuration is simply σα22. For the matrix plane strain was assumed and
a biaxial stress state results from the loading in 2-direction. The out-of-plane component,
however, does not contribute to the work of the internal forces because the corresponding
strain is zero. Therefore, the components in 3-direction can be dropped.

σ˜γ =

[
0 0
0 σγ22

]
(4.8)
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4 A preliminary, incompatible model

The crude modeling of the matrix in the incompatible model has the virtue that it al-
lows different loading/unloading-combinations in the subdomains to be considered. Four
combinations can conceivably be triggered in the model: loading, respectively unloading,
everywhere in the matrix and loading, respectively unloading, in two diagonally oppo-
site matrix-subdomains. Each of these four combinations is assigned a subdomain-wise
constant switch function Lξ(X). The function takes the value 1 in yielding regions and
0 in unloading regions. For ξ, and, when necessary, for other quantities, the loading-
combination under consideration is indicated by using a left subscript L ∈ {ll, lu,ul,uu}.
The switch functions Lξ are defined in (4.9) and Fig. 4.2 show how L relates to yielding
or unloading in the subdomains.

-A1 A1

X1

-A2�2

A2�2

X2

(a) llξ(X)

-A1 A1

X1

-A2�2

A2�2

X2

(b) luξ(X)

-A1 A1

X1

-A2�2

A2�2

X2

(c) ulξ(X)

-A1 A1

X1

-A2�2

A2�2

X2

(d) uuξ(X)

Figure 4.2: Switch-function
L
ξ(X) for the loading situations under investigation, The func-

tion is 1 in the shaded areas and zero in the unshaded ones.

llξ(X) = 1

luξ(X) = 1
2

(
1 + sgn(X1X2)

)
ulξ(X) = 1

2

(
1 − sgn(X1X2)

)
uuξ(X) = 0

(4.9)

The Eulerian elastoplastic tangent material stiffness tensor valid on the primary loading
path is given by Eq. (2.37) as derived in section 2.4. To be able to handle all four loading-
combinations mentioned above in a unified way, the switch function is incorporated into
the tangent material stiffness tensor. For this purpose the definitions of the constitutive
constants, Fi, as introduced in (2.35), are recalled, and the switch function ξ for a loading-
combination L is considered therein.

LF1(X) = LL˜̃γ1111 = λ−
2µ2

θ+ 2µ
Lξ(X) + 2µ (4.101)

LF2(X) = LL˜̃γ1122 = LL˜̃γ2211 = λ+ 2µ2

θ+ 2µ
Lξ(X) (4.102)
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4 A preliminary, incompatible model

The lamella is assumed to remain in an elastic state and only the elastic modulus is
required:

L˜̃α2222 = Eα (4.11)

The mixed tangent material stiffness tensor are calculated from (2.26). It is subdomain-
wise constant, but the material regime in the subdomains may be different.

LC˜̃γ =


[
LF1(X) 0

] [
0 µ+ 1

2
σγ22

]
0 LF2(X) µ− 1

2
σγ22 0[

0 µ− 1
2
σγ22

] [
LF2(X) 0

]
µ− 1

2
σγ22 0 0 LF1(X)−σ

γ
22

 (4.12)

C˜̃α =


[

0 0
] [

0 +1
2
σα22

]
0 0 −1

2
σα22 0[

0 −1
2
σα22

] [
0 0

]
−1

2
σα22 0 0 Eα−σα22

 (4.13)

4.3 Internal force rates and stiffness

Equation (3.34) provides the instructions to calculate the internal force rates for the
present problem:

L

.
Qi =+

n∑
j=1

.
qj

∫+ 1
2A

α

− 1
2A

α

∫+ 1
2A2

− 1
2A2

Gradφαj : C˜̃α : Gradφαi dX1dX2

+

n∑
j=1

.
qj

∫+A1

−A1

∫+ 1
2A2

− 1
2A2

Gradφγj : LC˜̃γ : Gradφγi dX1dX2 (4.14)

The necessity to specify the loading-combination in the matrix by the subscript L is
present for the internal force rates as well. In order to specify the results in a concise
manner, the parts that require reference to a certain loading-combination are consolidated
into constants LCi and LDi. The constants are defined below and are precalculated for
further reference.

LCi :=
1

2A1A2

∫+A1

−A1

∫+ 1
2A2

− 1
2A2

LFi(X)dX1dX2 (4.15)

LDi :=
1

2A1A2

∫+A1

−A1

∫+ 1
2A2

− 1
2A2

LFi(X) sgn(X1X2)dX1dX2 (4.16)
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4 A preliminary, incompatible model

The constants are given in terms of the isotropic hardening factor and the Lamé-parameters:

llC1 = λ+
2µ(θ+µ)
θ+2µ llD1 = 0 (4.171)

llC2 = λ+
2µ2

θ+2µ llD2 = 0 (4.172)

luC1 = λ+
µ(2θ+3µ)
θ+2µ luD1 = − µ2

θ+2µ
(4.173)

luC2 = λ+
µ2

θ+2µ luD2 = − luD1 (4.174)

ulC1 = luC1 ulD1 = − luD1 (4.175)

ulC2 = luC2 ulD2 = luD1 (4.176)

uuC1 = (λ+ 2µ) uuD1 = 0 (4.177)

uuC2 = λ uuD2 = 0 (4.178)

This allows the internal force rates to be stated without the need to consider each loading-
combination individually. Note that some of theDi-constants might vanish for a particular
loading-combination and further simplification might be possible.

L

.
Q1 = 2

A2

A1
LC1
.
q1 − 2 LC2

.
q2 − 2

A2

A1
LD1
.
q3 + 2 LD2

.
q4

+
π4(Aα)3

24A3
2

(Eα − σα22)
.
q1 +

π2Aα

2A2

σα22
.
q1 (4.181)

L

.
Q2 = 2

A1

A2
LC1
.
q2 − 2 LC2

.
q1 − 2

A1

A2
LD1
.
q4 + 2 LD2

.
q3 − 2

A1

A2

σγ22
.
q2 (4.182)

L

.
Q3 = 2

A2

A1
LC1
.
q3 − 2 LC2

.
q4 − 2

A2

A1
LD1
.
q1 + 2 LD2

.
q2 (4.183)

L

.
Q4 = 2

A1

A2
LC1
.
q4 − 2 LC2

.
q3 − 2

A1

A2
LD1
.
q2 + 2 LD2

.
q1

+
Aα

A2

(Eα − σα22)
.
q4 − 2

A1

A2

σγ22
.
q4 (4.184)

In the equations above a direct subtraction of the lamella’s stress from the lamella’s
Young’s modulus occurs. It appears beneficial to assume that the elastic modulus in
the lamella exceeds the stress by far, and the stress can be dropped without incurring
a significant error. However, no such simplification should be made beforehand to the
relation of the matrix tangent hardening modulus and the matrix stress, since they might
be of similar scale when the matrix is hardening only little or not at all. The system
stiffness matrix is calculated by (3.39). The result in terms of the constants tabulated in
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(4.17) is stated below:

LK˜ = 2


A2
A1

LC1+
π2Aα

4A2
σα22+

π4(Aα)3

48A3
2
Eα − LC2 −A2

A1
LD1 LD2

− LC2
A1

A2
( LC1 − σ

γ
22) LD2 −A1

A2
LD1

−A2

A1
LD1 LD2

A2

A1
LC1 − LC2

LD2 −A1

A2
LD1 − LC2

A1
A2

( LC1−σ
γ
22)+

Aα

2A2
Eα


(4.19)

4.4 Buckling

With the stiffness matrix on hand, the bifurcation point can be determined by invoking
theorem 2 from [Petryk, 1991], cf. section 3.7. On the primary equilibrium path in the
elastoplastic regime, all four subdomains are loading and the stiffness matrix is given by
llK˜ . The tangent stiffness matrix is assumed positive definite when entering the elasto-
plastic regime, but turns positive semidefinite at some point with progressive loading.
Any further loading on the primary path would render the stiffness matrix indefinite, vio-
lating (3.50). Hence, the uniqueness of the primary loading path ends when llK˜ becomes
singular. Setting the determinant of llK˜ to zero leads to the expression (4.20) for the
buckling load P∗ where the lamella stress, σα22 has been eliminated by using (4.7).

P∗ =
π2Eα(Aα)3

12A2
2︸ ︷︷ ︸

Euler buckling load

+

due to geometric and material matrix stiffness︷ ︸︸ ︷
4A2

2( llC
2
1 − llC

2
2 − llC1σ

γ
22)

π2A1( llC1 − σ
γ
22)

− 2A1σ
γ
22︸ ︷︷ ︸

load carried by matrix

(4.20)

Examination of the expression (4.20) suggests a classification into three individual terms
contributing to the bifurcation load: The left most term represents the Euler-buckling load
of a laterally unsupported lamella with a buckling length A2. The middle term reflects
the effect of the lateral support exerted by the matrix on the lamella, and comprises the
material constants Ci and the matrix stress, in addition to the model dimensions. The
last term represents the load carried by the matrix directly. The matrix bedding affects
all three terms, even the Euler buckling term, since buckling half-wavelength A2 cannot
be regarded as known, but must be obtained from minimizing P∗.

It is of interest to determine to which extend the matrix-preload affects the bifurcation
load via the geometrical stiffness it causes. A simple way to do so is to replace LC˜̃γ by
LL˜̃γ in (4.16). This approach is equivalent to setting σγ22 to zero in (4.18) and (4.19), but
not in (4.7). For the lamella LC˜̃α must be retained, of course, otherwise buckling would
be completely suppressed. Any quantity derived under this simplification is marked by
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4 A preliminary, incompatible model

an overscript háček (upside-down chevron). Comparison of the recalculated bifurcation
load in (4.21) to (4.20) shows only the middle term is changed.

P̌∗ =
π2Eα(Aα)3

12A2
2︸ ︷︷ ︸

Euler buckling load

+

due material matrix stiffness only︷ ︸︸ ︷
4A2

2( llC
2
1 − llC

2
2)

π2A1 llC1

− 2A1σ
γ
22︸ ︷︷ ︸

load carried by matrix

(4.21)

∆P∗ = P∗ − P̌∗ (4.22)

∆P∗ = −
4A2

2 llC
2
2σ
γ
22

π2A1 llC1 ( llC1 − σ
γ
22)

(4.23)

The half-wavelength, A2, is calculated by minimizing for both, the buckling loads taking
the matrix prestress into account, and the buckling load neglecting it.

A2 =
4

√
π(Aα)3EαA1( llC1 − σ

γ
22)

48( llC2
1 − llC

2
2 − llC1σ

γ
22)

(4.241)

Ǎ2 =
4

√
π(Aα)3EαA1 llC1

48( llC2
1 − llC

2
2)

(4.242)

It is noteworthy that for the case of ideal plasticity llC1 equals llC2 and the wavelength
and the buckling load tend to infinity and zero, respectively, for the simplified case. Ideal
plasticity is revisited in chapter 5 for an improved model, and arguments are presented
that point to a coupling of the wavelength to the lamella spacing.
Substituting the result for the buckling wavelength back into the expression for the bi-

furcation load shows that when the lamella thickness and spacing are scaled by a common
factor the bifurcation load also scales with the same factor.

P̌∗ =
2
√
Eα
√
llC

2
1 − llC

2
2 (Aα)

3/2

√
3 llC1A1

− 2A1σ
γ
22 (4.25)

To reduce the algebraic complexity, only simplified quantities, neglecting the geomet-
ric matrix stiffness, are considered in the remainder of the chapter. The simplified J -
functional for the present model is:

LJ̌ = −
π2A1

.
q2
1

2A2

σγ22 +
A2 LC1

.
q2
1

A1

+
A1 LC1

.
q2
2

A2

+
A2 LC1

.
q2
3

A1

+
A1 LC1

.
q2
4

A2

−
2A2 LD1

.
q1
.
q3

A1

−
2A1 LD1

.
q2
.
q4

A2

−
π2.q2

1P

4A2

+
π4.q2

1E
α(Aα)3

48A3
2

+

.
q2
4E
αAα

2A2

− 2 LC2
.
q1
.
q2 − 2 LC2

.
q3
.
q4 + 2 LD2

.
q1
.
q4 + 2 LD2

.
q2
.
q3 −

.
q4

.
P (4.26)

The expression is valid for all loading-combinations on account of the constants LCi, LDi
taking different values for a given loading-combination. To examine the circumstances
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under which buckling occurs, it is of interest when the functional attains a minimal value.
In a contour plot similar to Figs. 3.3(a) to 3.5(a) only the dependence on two GCs can be
displayed. The GC-rates

.
q1 and

.
q4 are best suited to describe the model behaviour, so.

q2 and
.
q3 are eliminated by minimizing J̌ with respect to them. They assume the value

given below:

.
q2 =

( LC1 LC2 − LD1 LD2)A2
.
q1 + ( LC1 LD1 − LC2 LD2)A1

.
q4

( LC2
1 − LD

2
2)A1

(4.27)

.
q3 =

( LC1 LD1 − LC2 LD2)A2
.
q1 + ( LC1 LC2 − LD1 LD2)A1

.
q4

( LC2
1 − LD

2
2)A2

(4.28)

Eα = Eγ = 200× 103 [FL−2] Aα = 0.125 [L] ν = 0.45
Et = 5× 103 [FL−2] A1 = 1 [L]

Table 4.1: Parameters used to generate the plots in Fig. 4.3

The simplified J -functional for a model that has been loaded up to of 80% of the
bifurcation load is shown in Figure 4.3(a). There is a single, global minimum point on the.
q4-axis, thus demonstrating the uniqueness of the undeflected primary equilibrium path
V̌I.

V̌I = llǨ˜−1


0
0
0.
P

 =

.
P

2 llC2
1A1 − 2 llC2

2A1 + llC1EαAα


0
0

llC2A1

llC1A2

 (4.29)

In the figure the different loading-combinations manifest themselves as sectors radiating
from the origin. The ll-loading comprises the shaded sector on top, and the lu/ul-sectors
lie to either side of it. The system’s tangent stiffness matrix is positive definite in all
sectors, as can be inferred from the circumstance that all contours of constant value of
the functional are closed curves around the minimum.
When the load is increased to the bifurcation load, the ellipsoidal contours in the ll-

sector degenerate to parallel lines, Fig. 4.3(b), as llK˜ becomes singular. The eigenvector
W̌
∗
, corresponding to the singular eigenvalue, is given in (4.30).

2 llC
2
2A2

llC1A1
−2 llC2 0 0

−2 llC2
2 llC1A1

A2
0 0

0 0 2 llC1A2

A1
−2 llC2

0 0 −2 llC2
2 llC1A1+A

αEα

A2


︸ ︷︷ ︸

llǨ˜(P = P∗)


llC1A1

llC2A2

0
0


︸ ︷︷ ︸

W̌∗

=


0
0
0
0

 (4.30)

Since
.
q4 is zero in W̌

∗
any movement along the eigenvector immediately leaves the ll-

sector for which it has been calculated. The sector boundaries suppress the pure eigen-
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Figure 4.3: Evolution of the J̌ -function(al) evaluated at the primary equilibrium path
with increasing loads, P; P. = 103 [FT−1],σγ22 = −100 [FL−2]
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4 A preliminary, incompatible model

mode and maintain stability at constant load even when the stiffness matrix in the loading-
only sector is singular. However, it is also apparent that some limited deflection-rate,
confined by the sector boundaries, is possible when W̌

∗
is superposed by some additional

movement along the primary path V̌I. To minimize J̌ the system indeed must continue
to follow V̌I, and deflection by W̌

∗
as permitted by the length of the line segment forming

the minimum is possible at precisely the bifurcation load. Any ever so slight load increase,
however, forces the minimum to the two end-points of the line segment. The former min-
imum point on the

.
q4-axis is then a saddle point, and V̌I alone no longer minimizes J̌ .

The actual GC-rate vector at this instance is given by V̌II as a superposition of V̌I and
W̌
∗
so that the system at the very instant of bifurcation moves along the border of the

ll-sector and either one of the lu- or ul-sector. From this it is apparent that there is no
sudden unloading in any of the four matrix sub-domains at the bifurcation point. The
instant of bifurcation, that is the initiation of buckling, merely marks the transition from
gradual loading to gradual unloading in two of the four subdomains as V̌II initially follows
exactly the sector boundary. The J -functional continuously transitions from a sector
activating one set of constitutional branches to another activating different branches. In
the context of the current model this means that the transitions at the sector boundaries
are continuous, in particular V̌II coincides with the sector boundary in the instant of
bifurcation and, therefore:

llJ (V̌II) = luJ (V̌II) (4.31)

Since V̌II follows an equilibrium path internal and external force rates must coincide,
irrespective which loading-combination is used to calculate the force rate. The internal
force rates are the partial derivatives of the respective J so the transition is not only
continuous, but also has a continuous slope.

∂ llJ (V̌II)
∂
.
qi

= ll

.
Qi(V̌II) =

∂ luJ (V̌II)
∂
.
qi

= lu

.
Qi(V̌II) =

.
Pi (4.32)

The stiffness, however, is not continuous and neither is the curvature of the J -functional.

∂2 llJ
∂
.
qi∂
.
qj

= llKij 6=
∂2 luJ
∂
.
qi∂
.
qj

= luKij (4.33)

Using the continuity property gives a relation for the ray marking the sector boundary:

.
q1A2 =

{
+
.
q4A1 : llJ̌ = ulJ̌

−
.
q4A1 : llJ̌ = luJ̌

(4.34)

The bifurcating velocity solution V̌II at the instant of buckling is a superposition of the
primary velocity solution V̌I and the eigenvector W̌

∗
so that it exactly follows the sector

boundary. The relation for the sector boundary can be used to determine a multiplier, k,
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4 A preliminary, incompatible model

to be applied to W̌
∗
to obtain V̌II, cf. Fig. 4.3(b).

V̌II = V̌I + kW̌
∗

V̌II =

.
P

2 llC2
1A1 − 2 llC2

2A1 + llC1EαAα


llC1A1

llC2A2

llC2A1

llC1A2

 (4.35)

Usually the bifurcation load can not be exceeded in a loading process without deflection,
unless there are additional constraints in place. Such a situation could come up if the
bifurcation load is smaller then the load required to cause yielding in the matrix. In
that case no bifurcation occurs while the system is in the elastic regime, and deflection
immediately starts upon yielding. The simplified J -functional of the model for a load at
120% the bifurcation load is depicted in Fig. 4.3(c). The equilibrium is still stable. If the
system is held in an undeflected state and loaded to even higher loads the equilibrium
might become unstable when the additional constraint is released. In that case the de-
flection would occur in a dynamic rather then a quasi-static manner, cf. [Petryk, 1997]
for a comprehensive classification of instability modes.

4.5 Numeric examples
As a verification, the results are compared to results obtained from a finite element method
(FEM) analysis. The FEM-model is designed in analogy to Fig. 4.1 comprising four plane
strain-elements for the subdomain and several beam-elements for the lamella. Coupling
constraints enforce the same kinematic restrictions as (4.1) and (4.2). The simulations
were done using the commercial FEM-software Abaqus, version 6.13. The matrix is mod-
eled by four plane strain, reduced integration, hybrid formulation elements (CPE4RH).
For the lamella two-node cubic beam-elements are used. The load-deflection path is cal-
culated by an incremental static analysis. Both geometric and material nonlinearities are
covered in the simulation. To ensure convergence on the bifurcated branch the model is
provided with a slight geometric imperfection of 1× 10−5 [L] at the top connection point.
This imperfection transforms the bifurcation of the perfect model to a continuous loading
path close to the bifurcated branch in the post-bifurcation segment of the path. Since
the bifurcation load is not precisely calculated by this method, the numerical bifurcation
load is defined here as the load where any matrix-element is unloaded for the first time.
The increment of first unloading is highlighted by a blue circle marker in the graphs.
The results of two series of simulation runs for a uniaxial tangent modulus of zero (odd

numbered parameter sets) and 5000 [FL−2] (even numbered) are included below. Each se-
ries covers three different initial model-heights A2 = 0.5/1.0/1.5 [L]. All other parameters
are taken from Table 4.1. In the hardening series the models deform significantly before
bifurcation. Since the analytical results presented refer to quantities on the preloaded
configuration, the prebuckling deformation needs to be taken into account when compar-
ing numerical and analytical results. The matrix strain at the instant of bifurcation is far
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4 A preliminary, incompatible model

Et = 0 [FL−2]

parameter set 1
initial values:

A1 = 1.000 [L] A2 = 0.500 [L]
at buckling load:

A1 = 1.056 [L] A2 = 0.473 [L] σγ22 = −116 [FL−2] σα = −11549 [FL−2]
buckling loads:

P∗ = 1687 [F] llP̌
∗ = 1677 [F] P∗num = 1470 [F]

parameter set 3
initial values:

A1 = 1.000 [L] A2 = 1.000 [L]
at buckling load:

A1 = 1.015 [L] A2 = 0.985 [L] σγ22 = −116 [FL−2] σα = −3005 [FL−2]
buckling loads:

P∗ = 610.2 [F] P̌∗ = 565.4 [F] P∗num = 590 [F]

parameter set 5
initial values:

A1 = 1.000 [L] A2 = 1.500 [L]
at buckling load:

A1 = 1.010 [L] A2 = 1.485 [L] σγ22 = −116 [FL−2] σα = −1983 [FL−2]
buckling loads:

P∗ = 481.2 [F] P̌∗ = 379.0 [F] P∗num = 475 [F]

Table 4.2: Parameters for the simulation series for ideal plastic case

beyond the strain for initial yielding and the assumptions made in section 2.4 can be con-
sidered fulfilled. The lamella stress at buckling generally very high and attains extreme
values for the hardening case. In all cases the stable post buckling behaviour is apparent.
The bifurcation loads P∗ calculated from (4.20) or the simplification P̌∗ by (4.21) differ
only by a moderate amount. The geometric stiffness of the matrix has a stabilizing effect
for the cases considered here. The analytical bifurcation load P∗ is marked as a dashed
line in the diagrams. Comparison to the numerical bifurcation load (blue circle) show an
acceptable accordance for A2 = 1.0 [L] and A2 = 1.5 [L]. A certain discrepancy is appar-
ent for the shortest model height (parameter sets 1 and 2). Also the analytical result is
not strictly over- or underestimating the numerical outcome.
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Et = 5000 [FL−2]

parameter set 2
initial values:

A1 = 1.000 [L] A2 = 0.500 [L]
at buckling load:

A1 = 1.086 [L] A2 = 0.460 [L] σγ22 = −664 [FL−2] σα = −16760 [FL−2]
buckling loads:

P∗ = 3537 [F] P̌∗ = 3485 [F] P∗num = 3200 [F]

parameter set 4
initial values:

A1 = 1.000 [L] A2 = 1.000 [L]
at buckling load:

A1 = 1.130 [L] A2 = 0.884 [L] σγ22 = −807 [FL−2] σα = −20002 [FL−2]
buckling loads:

P∗ = 4324 [F] P̌∗ = 4100 [F] P∗num = 4490 [F]

parameter set 6
initial values:

A1 = 1.000 [L] A2 = 1.500 [L]
at buckling load:

A1 = 1.276 [L] A2 = 1.174 [L] σγ22 = −1745 [FL−2] σα = −31237 [FL−2]
buckling loads:

P∗ = 8358 [F] P̌∗ = 7602 [F] P∗num = 8230 [F]

Table 4.3: Parameters for the simulation series for hardening case

4.6 Conclusions
It can be concluded that the behavior of the highly abstracted incompatible model dis-
cussed in this chapter is in line with the expectations from the theory of elastoplastic
buckling presented in chapter 3. The prediction by the theory that the start of the
lamella deflection, i.e. the bifurcation of the primary equilibrium path, does not imply
loss of stability has been corroborated by analytical considerations in section 4.4. This
finding is consistent with the numerical simulations in section 4.5 that show a stable post-
buckling behaviour. At the bifurcation load there is no sudden unloading in the matrix,
but a gradual transition from loading to neutral loading to unloading taking place.
The geometric stiffness in the matrix has been found of some influence on the bifurcation

load in the incompatible model. The effects of initial matrix stress is investigated further
in the following chapters.
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Figure 4.4: Load-deflection diagrams
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plasticity

In order to obtain a model suited to accurately predict buckling loads the segmentation
into incompatible subdomains used in chapter 4 needs to be dropped, thus abandoning
the simplifications that allowed to handle simultaneous yielding and elastic unloading
in the matrix. Instead, the matrix is modelled as a compatible continuum in this and
the following chapters. The main assumption of chapter 4 that the buckling mode is
symmetric is retained for most of this chapter, and is shown in section 5.5 to coincide
with the buckling mode leading to the lowest buckling load. A unit cell approach is used
to model both the symmetric and the generic periodic BCs.
To gain insight into the nature of the problem the development of an analytical model is

attempted. The field equations that govern the behaviour of the elastoplastic matrix can
be formulated with either the displacements or stresses (Airy-stress function) as unknown
variables. For the special case of ideal plasticity a quite simple treatment of the problem
is possible by the formulation in the displacements. The so obtained displacement field in
the matrix is coupled to the assumed sinusoidal buckling mode of the lamella and, again,
a system with a finite degree of freedom is obtained. This discrete model can be analyzed
in analogy to the incompatible model. However, since the domains of active yielding
or unloading are no longer rectangular, modeling of matrix unloading in the manner of
chapter 4 is impractical.

5.1 Unit cells
For the case of evenly spaced lamellae the micro-structured material constitutes an in-
homogeneous periodic medium. It can be efficiently described via a cut-out representing
a whole period of the repeating arrangement, called a unit cell (UC) [Anthoine, 1995].
Such UCs are often utilized to calculate homogenized or smeared ‘material’-properties of
heterogeneous multi-scale materials that can be derived from the structural properties
at a smaller length-scale [Böhm, 2004]. This approach gives meaningful results only if
the length-scale at the micro-level and the length-scale of the macro scale are sufficiently
different, so that the gradient of the macro-scale properties and field variables can be
neglected on the micro-scale.
In the present case a plane strain situation was assumed which can be handled by a

2-dimensional UC. The periodicity results from the assumed evenly spaced lamellae in
horizontal direction and the periodic buckling modeshape in vertical direction defining
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5 A compatible model for ideal plasticity

two periodicity vectors rA and rB. The periodicity vectors touch the boundary of the UC
but its shape is otherwise arbitrary, provided it allows for compatible tiling of the medium
when translated by t, an integer multiple of the periodicity vectors, cf. Fig. 5.1 [Pahr,
2003].

t = nArA + nBrB nA,nB ∈ N (5.1)

Only quadrilateral UCs are considered here of which the lamella forms the left bound-
ary. The periodicity vector rB is locked to the buckling wavelength and must therefore
be treated as an unknown. At this point it is also left open whether two neighboring
lamellae buckle in-phase or with a phase-shift by allowing for a vertical component in the
periodicity vector rA.

(a) Rhomboidal UC (b) Rectangular UC

Figure 5.1: Two possible UC topologies. Both tile the 2-dimensional space in a compatible
way in the unbuckled and buckled configuration.

The linear strain tensor at any particular point in the UC can be decomposed into
contributions from the macroscopic strain and the local fluctuations on the length-scale
of the UC [Anthoine, 1995]. It was assumed that the length scales are sufficiently different
so that any gradient in the macroscopic strain is negligible on the scale of the UC. Under
these circumstances the macroscopic strain can be considered homogeneous on the micro
level and manifests it self as a mean or averaged strain in the UC. Any additional strain-
rate fluctuations, on the other hand, are local to the UC and do not contribute to the strain
apparent on the macro scale. Consequently, their average over the UC cancels out. In the
present case the problem is formulated in velocities, i.e. displacement rates, rather than
displacements, but the same principles apply to the rate of deformation tensor. Averaged
quantities are denoted by an overscript bar while fluctuating quantities are furnished with
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5 A compatible model for ideal plasticity

an overscript tilde.

d˜(X) = d̄˜ + d̃˜(X)
∫
V

d˜(X)dV = d̄˜
∫
V

dV +

∫
V

d̃˜(X)dV︸ ︷︷ ︸
= 0

d̄˜ =
1

V

∫
V

d˜(X)dV d̃˜(X) = d˜(X) − d̄˜ (5.2)

Disregarding rigid body motions the velocity field can be decomposed in a similar manner.
By choosing the frame of reference so that v(0) = 0 the mean velocity can be expressed
by the mean rate of deformation, i.e. the macroscopic strain rates. Again, the fluctuations
cancel out on average over the UC and give the same value if an integer multiple of the
periodicity vectors, t, is added to the position X.

v(X) = d̄˜X+ ṽ(X)

ṽ(X) = ṽ(t+ X) (5.3)

The relative velocity between a certain point in a UC and the associated point in a UC
translated by t is given in terms of the mean rate of deformation tensor and the vector t:

v(X+ t) = d̄˜ X+ d̄˜ t+ ṽ(X+ t) = d̄˜ X+ d̄˜ t+ ṽ(X)
v(X+ t) − v(X) = d̄˜ t (5.4)

Then the velocities in the points marked by the periodicity vectors is obtained by setting
nA = 1 ∧ nB = 0 and nA = 0 ∧ nB = 1 respectively.

vA = d̄˜ rA (5.51)
vB = d̄˜ rB (5.52)

In a finite element implementation the BCs must be realized by coupling the displacements
of two nodes on opposite sides of the quadrilateral UC and the displacements of the
reference nodes at the locations rA and rB. The relations given above also hold when
velocities and rate of deformation tensor are exchanged for the displacements and linear
strain. The mean strain is controlled by the displacement of the reference nodes and can
be expressed by inverting a expression similar to (5.5) in terms of displacements.[

uA1 uB1
uA2 uB2

]
︸ ︷︷ ︸

V˜
=

[
ε̄11 ε̄12
ε̄21 ε̄22

] [
rA1 rB1
rA2 rB2

]
︸ ︷︷ ︸

R˜
V˜ = ε̄˜R˜
ε̄˜ = V˜ R˜−1 (5.6)

Using (5.6) the displacements at two opposite boundaries of the quadrilateral UC are
related via the position and displacements of the periodicity vectors. This expression is
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5 A compatible model for ideal plasticity

particularly useful for the formulation of the coupling constraints in a FEM-model since
it only contains displacements as unknowns.

u(Xrgt) = V˜R˜−1Xrgt + u(Xlft) (5.71)
u(Xtop) = V˜R˜−1Xrgt + u(Xbot) (5.72)

Combining stress and strain the decomposition can be extended to the work of the internal
forces. Mixed terms will cancel out due to periodicity.

A =−

∫
V

σ˜ : d˜ dV = −

∫
V

(σ̄˜ + σ̃˜) : (d̄˜ + d̃˜)dV
=−

∫
V

(σ̄˜ : d̄˜ + σ̄˜ : d̃˜︸ ︷︷ ︸
= 0

+ σ̃˜ : d̄˜︸ ︷︷ ︸
= 0

+σ̃˜ : d̃˜ dV = Ā+ Ã (5.8)

Ā := −

∫
V

σ̄˜ : d̄˜ dV (5.9)

Ã := −

∫
V

σ̃˜ : d̃˜ dV (5.10)

5.2 Governing equations in terms of velocities
In the following the superscript γ to indicate matrix quantities will be dropped when
there is no ambiguity.
The crude assumptions with regard to the matrix kinematics made so far are now

replaced by kinematic assumptions that properly respect a set of governing equations,
(5.11) to (5.14). The stress-rates in the matrix are required to satisfy the equation of
continuing equilibrium. As a simplification, matrix body force densities are only admitted
if their rate vanishes.

Div
.
σ˜ = 0 (5.11)

The assumptions that were made in section 2.1 with regard to the additive decomposi-
tion of rate of deformation tensor and the identification of the material and the spatial
configuration in section 2.3 still apply.

F˜ = 1˜
d˜ = d˜e + d˜p = sym(vi,j) =

1
2
(vi,j + vj,i) (5.12)

The elastic response is given by Hooke’s law, cf. (2.3), and the plastic part of the defor-
mation rates is isochoric.

tr(d˜p) = 0 (5.13).
σ˜ = λ1˜ tr(d˜) + 2µd˜ − 2µd˜p (5.14)
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For ease of manipulation the governing equations are restated in index-notation:
.
σij,i = 0

.
σij =

.
σji (5.151)

dij = d
e
ij + d

p
ij = 1/2(vi,j + vj,i) (5.152)

dpkk = 0 dpij = d
p
ji (5.153).

σij = λδijdkk + 2µdij − 2µdpij (5.154)

In an adaption from [Mendelson, 1968] or [Srinivasa and Srinivasan, 2009], the equations
are be combined and restated as a partial differential equation (PDE) in terms of the
velocity:

.
σij = λδijvk,k + µ (vi,j + vj,i) − 2µdpij.
σij,i =

.
σij,j = 0.

σij,j = λ δijvk,kj︸ ︷︷ ︸
vk,kj = vj,ji = vj,ij

+µ (vi,jj + vj,ij) − 2µ dpij,j︸︷︷︸
dpij,j = d

p
ij,i

= 0

λvj,ij + µ(vi,jj + vj,ij) = 2µdpij,j

(λ+ µ)vj,ij + µvi,jj = 2µdpij,j

The second derivatives can be concisely written in terms of the nabla and Laplace differential-
operators.

vj,ij ei = Grad Div(v) = ∇(∇.v)
vi,jj ei = Div Grad(v) =

∇

(v)

Returning to direct notation, the PDE governing the matrix deformation is given by (5.16)

(λ+ µ)Grad Div(v) + µDiv Grad(v) = 2µDiv(d˜p)
(λ+ µ)∇(∇.v) + µ ∇

(v) = 2µ∇.d˜p (5.16)

In the equation above, no reference to a particular state of initial stress has been made.
However, the plastic part of the deformation tensor on right-hand side of the equation
needs to be expressed in terms of the velocity as well, and for this purpose it is necessary
to reference the conditions that were introduced in section 2.4. Utilizing the assumptions
made with regard to the initial deviatoric stress on the primary loading path in (2.30)
yields an expression for the right-hand side in derivations of the velocity.

σ̂˜ =
κ√
2

[
+1 0
0 −1

]
φ =

σ̂˜ : E˜̃ : d˜
σ̂˜ : E˜̃ : σ̂˜ + κ2θ

=

√
2 µ

κ(θ+ 2µ)
(v2,2 − v1,1)

d˜p = φσ̂˜ =
µ

θ+ 2µ

[
v1,1 − v2,2 0

0 v2,2 − v1,1

]
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∇.d˜p =
µ

θ+ 2µ

[
v1,11 − v2,21
v2,22 − v1,12

]
The general equation in (5.16) is thus restated for the problem of elastoplastic lamella
buckling:

(λ+ µ)

[
v1,11 + v2,12
v1,12 + v2,22

]
+ µ

[
v1,11 + v1,22
v2,11 + v2,22

]
=

2µ2

θ+ 2µ

[
v1,11 − v2,21
v2,22 − v1,12

]
(λ+ 2µ−

2µ2

θ+ 2µ
)

[
v1,11
v2,22

]
+ (λ+ µ+

2µ2

θ+ 2µ
)

[
v2,12
v1,12

]
+ µ

[
v1,22
v2,11

]
= 0 (5.17)

5.3 The symmetric unit cell

A solution to (5.17) can be guessed using a ‘ansatz’-function. One such function that
solves the PDE is given by (5.18). The fluctuation part of the ansatz is symmetric about
the axis X1 = A1 and is compatible with the symmetry of the UC assumed so far, thus it
can be seen as a compatible analogon to the model discussed in chapter 4.[

v1
v2

]
=

[
c cos(aX1/A1) sin(bX2/A2) + fX1/A1

d sin(aX1/A1) cos(bX2/A2) + eX2/A2

]
(5.18)[

v1,11
v2,22

]
=

[
−a

2c
A2

1
cos(aX1/A1) sin(bX2/A2)

−b
2d
A2

2
sin(aX1/A1) cos(bX2/A2)

]
[
v2,12
v1,12

]
=

[
− abd
A1A2

cos(aX1/A1) sin(bX2/A2)

− abc
A1A2

sin(aX1/A1) cos(bX2/A2)

]
[
v1,22
v2,11

]
=

[
−b

2c
A2

2
cos(aX1/A1) sin(bX2/A2)

−a
2d
A2

1
sin(aX1/A1) cos(bX2/A2)

]

The guessed solution to the PDE is of course not necessarily exhaustive, and a more
generic solution could be obtained, e.g. , by adding the expression (5.19) below. However,
in this section only (5.18) is considered as a solution, and in the course of the chapter
arguments are put forward that it is sufficient for the present purpose.[

g sin(aX1/A1) cos(bX2/A2)
h cos(aX1/A1) sin(bX2/A2)

]
(5.19)

The solution under consideration does not allow for shear strain in the matrix. Whether
this constitutes an oversimplification or not needs to be investigated in the following. The
investigations presented in this section and thereafter, however, show that the function
captures the buckling mode under certain circumstances, i.e. no hardening, well as will
be elaborated below. Since the fluctuation in the displacement field is reminiscent to a
checkerboard it will be referred to as ‘checkerboard pattern’, cf. Fig. 5.4 and Fig. 5.5.

58



5 A compatible model for ideal plasticity

Inserting the ansatz into the PDE and canceling the trigonometric functions gives two
equations:

−(λ+ 2µ−
2µ2

θ+ 2µ
)

[
a2c
A2

1
b2d
A2

2

]
− (λ+ µ+

2µ2

θ+ 2µ
)

[
abd
A1A2
abc
A1A2

]
− µ

[
b2c
A2

2
a2d
A2

1

]
= 0

Solving for a and c results in a complex solution for any real valued b and c, unless θ = 0,
i.e. the ansatz solves the differential equation only for the special case of ideal plasticity.
The case of ideal plasticity has been briefly considered in chapter 4. It has been found
problematic for the incompatible model insofar as the buckling length was unbounded.
For the compatible model, however, it is demonstrated in the following that the buckling
length is related to the lamella spacing and no complication arises for θ→ 0. Solving for
a and b gives:

−(λ+ µ)

[
a2c
A2

1
b2d
A2

2

]
− (λ+ 2µ)

[ abd
A1A2
abc
A1A2

]
− µ

[
b2c
A2

2
a2d
A2

1

]
= 0

a = ±bA1/A2 c = ∓d (5.20)

The two solutions in (5.20) represent the possibility to deflect to the left or the right. The
derivation continues with a = +bA1/A2 and c = −d.

vγ1 (X1,X2) = −d cos(bX1/A2) sin(bX2/A2) + fX1/A1 (5.211)
vγ2 (X1,X2) = +d sin(bX1/A2) cos(bX2/A2) + eX2/A2 (5.212)

Figure 5.2: Generalized coordinates of the symmetric UC.

In order to determine the remaining constants in (5.21) BCs need to be specified. The
UC-height is defined by the buckling wavelength 2A2 and contains, therefore, by definition,
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exactly one buckling period. The mean shortening-rate per half-wavelength is
.
q4, and by

comparison to (5.21) it follows that f =
.
q4. Likewise, for the horizontal direction e

can be determined as equal to
.
q3. The remaining constants b and d are obtained by

matching the lamella displacements at the left boundary. For simplicity, the lamella
thickness is neglected and coupling is thought to occur at the lamella centerline. Then
vγ1 (0,X2) = v

α
1 (0,X2) and −d =

.
q1, b = π. All constants have thus been determined, and

the velocity field can be stated in terms of the GC-rates as follows:

vγ(X) =

[
+
.
q1 cos(πX1/A2) sin(πX2/A2)

−
.
q1 sin(πX1/A2) cos(πX2/A2)

]
︸ ︷︷ ︸

ṽγ(X)

+

[
+
.
q3X1/A1

−
.
q4X2/A2

]
︸ ︷︷ ︸

v̄γ(X)

(5.22)

Figure 5.3: Tiling of the symmetric UC.

With all constants determined, the BC on the right side still needs to be accounted for.
It is met when the velocity fluctuations are periodic as required by (5.3). Taking notice
that the periodicity vectors of the current model are given by (5.23) the periodicity of the
velocity fluctuations is checked in (5.24).

rA =

[
2A1

A2

]
(5.231)

rB =

[
0

2A2

]
(5.232)

Expanding ṽγ(X+ t) for nA = 1 and nB = 0 via trigonometric identities:

+
1.
q1

ṽγ1 (X+ rA) = cos
(
π
X1 + 2A1

A2

)
sin
(
π
X2 +A2

A2

)
= −

[
cos
(
π
X1

A2

)
cos
(
π

2A1

A2

)
− sin

(
π
X1

A2

)
sin
(
π

2A1

A2

)]
sin
(
π
X2

A2

)
(5.241)
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−
1.
q1

ṽγ2 (X+ rA) = sin
(
π
X1 + 2A1

A2

)
cos
(
π
X2 +A2

A2

)
= −

[
sin
(
π
X1

A2

)
cos
(
π

2A1

A2

)
+ cos

(
π
X1

A2

)
sin
(
π

2A1

A2

)]
cos
(
π
X2

A2

)
(5.242)

To reconcile the fluctuating part of (5.22) and (5.24) a certain ratio of the buckling
wavelength to the lamella spacing is required. The UC-width can, in principle, contain
more than one fluctuation half-period in horizontal direction. For the present model,
however, it is thought that only one half-period in the fluctuations occurs over the space
between two lamellae. The more general case is investigated in section 5.5. So the relation
A1 to A2 is:

A2 = 2A1 (5.25)

It is notable that, unlike the situation in chapter 4, the buckling wavelength for the present
model is not determined by some minimization procedure, but arises from the relations
governing the matrix displacement.
With the matrix velocity field determined, the matrix shape functions and their gradi-

ents are given below. The lamella shape functions are unchanged from (4.3) and (4.4).

φγ1 =

[
+ cos

(
πX1

A2

)
sin
(
πX2

A2

)
− sin

(
πX1

A2

)
cos
(
πX2

A2

) ] (5.261)

φγ3 =

[
+X1

A1

0

]
(5.262)

φγ4 =

[
0

−X2

A2

]
(5.263)

Gradφγ1 =
π

A2

[
− sin

(
πX1

A2

)
sin
(
πX2

A2

)
+ cos

(
πX1

A2

)
cos
(
πX2

A2

)
− cos

(
πX1

A2

)
cos
(
πX2

A2

)
+ sin

(
πX1

A2

)
sin
(
πX2

A2

) ] (5.271)

Gradφγ3 =

[
+ 1
A1

0

0 0

]
(5.272)

Gradφγ4 =

[
0 0

0 − 1
A2

]
(5.273)

No shear strain is present in the matrix, because the ansatz in Eq. (5.18) does not allow
for shear deformation. By using it, the tacit assumption is made that any shear related
buckling modes are not relevant.

d˜γ = sym(
.
F˜γ(1˜)−1) = sym(

∑
i=1,3,4

.
qiGradφγi )
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Figure 5.4: Contour plot of the components of the displacement field vγ plus a contour
plot of the plastic consistency parameter φ. The GC-rate

.
q4 has been adjusted

so that φ > 0 everywhere.
A1 = 1 [L],A2 = 2 [L],

.
q1 = 1 [LT−1],

.
q3 = 0,

.
q4 = (π/2 − π2/16) [LT−1]
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Figure 5.5: Contour plot of the components of the strain-rate d˜γ. A single column of the
’checkerboard pattern’ can be seen in 5.5(a) and 5.5(b).
A1 = 1 [L],A2 = 2 [L],

.
q1 = 1 [LT−1],

.
q3 = 0,

.
q4 = (π/2 − π2/16) [LT−1]
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d˜γ =
π
.
q1

A2

sin
(πX1

A2

)
sin
(πX2

A2

) [ −1 0

0 +1

]
︸ ︷︷ ︸

d̃˜γ
+

[ .
q3

A1
0

0 −
.
q4

A2

]
︸ ︷︷ ︸

d̄˜γ
(5.28)

The difficulties of properly separating the matrix into yielding and nonyielding subdo-
mains effectively preclude the consideration of simultaneous loading and unloading in the
matrix. Only the ‘loading everywhere’-situation can be modeled easily. This is sufficient,
however, for the purpose of a comparison solid in the sense of section 3.5, and it can be
used to derive the bifurcation load. The matrix load is again given as the homogeneous
stress σγ22 and the constants llF1 and llF2 from (4.10) can be reused in the expression for
the mixed material stiffness. The left subscript ll can be dropped here, since no other
loading situation is considered. Because (5.18) is a solution for the case of ideal plasticity
only, the hardening factor θ takes the value zero, and both constants simplify to λ + µ.
The hardening factor is retained, however, in the formulae to investigate if the so obtained
results can serve as an approximation for slight hardening. The lamella material stiffness
is adopted from (4.13).

L˜̃γ =


[
F1 0

] [
0 µ

]
0 F2 µ 0[
0 µ

] [
F2 0

]
µ 0 0 F1

 (5.29)

C˜̃γ =


[

F1 0
] [

0 µ+ 1
2
σγ22

]
0 F2 µ− 1

2
σγ22 0[

0 µ− 1
2
σγ22

] [
F2 0

]
µ− 1

2
σγ22 0 0 F1 − σ

γ
22

 (5.30)

It is noteworthy that for ideal plasticity, i.e. F1 = F2, no change in Cauchy-stress is
associated with the GC-rate

.
q1. The lateral support stiffness exerted by the matrix on

the lamella vanishes.

L˜̃ : d̃˜γ =
π
.
q1

A2

(F1 − F2) sin
(πX1

A2

)
sin
(πX2

A2

) [ −1 0
0 +1

]
The internal force rates are calculated in the same way as specified by (4.14), the inte-
gration limits need to be updated to reflect the changed model size, however. The left
subscript is not used, all forces are calculated for the ‘loading everywhere’-case. Again,
the lamella stress is neglected in relation to the elastic modulus in direct subtraction.

.
Q1 =

(2π2(F1 − F2)A1

A2

+
π2Aασα22
A2

+
π4(Aα)3(Eα −�

�σα22)

12A3
2

).
q1 (5.311)

.
Q3 = +4F1

A2

A1

.
q3 − 4F2

.
q4 (5.312)
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.
Q4 = +

(
4
A1

A2

(F1 − σ
γ
22) + 2

Aα

A2

(Eα −�
�σα22)
).
q4 − 4F2

.
q3 (5.313)

K˜ =


π4(Aα)3

12A3
2
Eα + 2π

2A1

A2
(F1 − F2) +

π2Aα

A2
σα22 0 0

0 4A2

A1
F1 −4F2

0 −4F2 4A1

A2
(F1 − σ

γ
22) + 2A

α

A2
Eα


(5.32)

The load P can be introduced to (5.32) via the equilibrium condition (4.7), and the
bifurcation load is obtained as the load for which det(K˜) vanishes. The K11 element is
completely uncoupled from the other matrix elements, and the bifurcation load is reached
when it attains the value zero. The terms determining the bifurcation load P∗ of the
current model can be arranged in a way that allows to give them an interpretation, as
was done for the incompatible model. The first and the last term are identical to (4.20).
The middle term representing the matrix support does not depend on the matrix prestress
and is zero for ideal plasticity. This is in contrast to the result for the incompatible model
that showed a certain influence of the geometric matrix-stiffness on the bifurcation load.
Unlike for the incompatible model, the half-wavelength A2 for the current model is not to
be determined by a minimization procedure, but is directly related to the lamella spacing
by (5.25).

P∗ =
π2Eα(Aα)3

12A2
2︸ ︷︷ ︸

Euler-buckling load

+

due to matrix stiffness︷ ︸︸ ︷
4θµ

θ+ 2µ
− 2A1σ

γ
22︸ ︷︷ ︸

load carried by matrix

(5.33)

When P∗ is reached, one point in the UC experiences neutral loading, i.e. The plastic
consistency factor φ is zero there, cf. Fig. 5.4(c). When the load increases further on the
bifurcated equilibrium path this point becomes the nucleus of an expanding, elastically
unloading zone.

5.4 Symmetric finite element model

To verify the results for the symmetric UC a new compatible FEM-model is used. The
simulations are setup in the manner described in section 4.5, i.e. the bifurcating loading-
path is transformed into a continuous path by a small geometric imperfection, and the
path is followed by a quasi static analysis. Since the model is compatible, the matrix
is properly discretized by second order interpolating elements (Elements CPE8RH in
Abaqus). Again, the increment of first unloading in any previously yielding element is
used as a definition to extract the buckling load from the numerical data. The elastic
moduli, matrix Poisson’s ratio and the lamella thickness are the same for all models here
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and unchanged from the values given in Table 4.1. The matrix tangent modulus in the
plastic regime is set to zero, however.
It is one of the objectives of the FEM-model to verify the finding that the buckling

wavelength is determined by the lamella spacing. To this end, care has to be taken that
the wavelength can develop freely in the FEM-model. However, the FEM-model also
constitutes a UC of some sort and needs boundary constraints as specified by (5.72).
They suppress deflection at the corners, and only integer numbers of lamella fluctuation
periods can be accommodated in the FEM-model. To keep errors resulting from this
effect to a minimum the FEM-model height is 10 wavelengths or more. Horizontally the
FEM-model spans the distance between two lamellae, 2A1, in accordance with the UC
used in the analytical computations. The FEM-model, therefore, can be seen as a series
of UCs stacked in vertical direction.
To enforce symmetry, the fluctuations at the model boundary are subject to the con-

straint:

ṽ1(0,X2) = −ṽ1(2A1,X2) (5.341)
ṽ2(0,X2) = +ṽ2(2A1,X2) (5.342)

This condition is in general not equivalent to the periodicity of the fluctuations, as specified
by (5.3). Equation (5.34) does not strictly enforce compatibility. For the sinusoidal
lamella deflection postulated for this model compatibility is maintained, however. The
mode-shape of the lamella deflection is investigated below. The mean strain of the FEM-
model is controlled by the displacement of the node located at the periodicity vectors via
(5.6).
Figure 5.7 shows the evolution of the displacement at the left boundary (X1 = 0)

over increasing loads. Only a small part of the lower FEM-model boundary is shown.
The lamella spacing, 2A1, for the shown simulation is 2 [L]. The figure shows that the
half-wavelength is also equal to 2 [L] and this is in accordance with the prediction by
Equation (5.25). A total of 20 UCs is accommodated in the FEM-model with a total
height of 80 [L]. For the load increments near the buckling load a sinusoidal deflection-
mode becomes evident. This mode-shape is present even in the prebuckling steps since
the equilibrium-path of an imperfect system is followed. However, only when approaching
the buckling load the amplitude becomes significant.
Results for the buckling load from FEM-analysis are displayed in Fig. 5.6 and com-

pared to the analytical results by Eq. (5.33). To eliminate the effect of the prebuckling
deformations, the actual value of A1 at the instant of buckling in the FEM-model is used
in the analytical formula rather than the initial, unloaded value. The initial values of
A1 range from 0.5 [L] to 2.0 [L]. The data-points are positioned horizontally according to
A1 at the instant of buckling. For lamella spacings A1 > 1.1 [L] a certain scatter in the
distribution of the buckling loads, as calculated by FEM-analysis, appears. This is likely
caused by the low number of half-waves accommodated in the FEM-model (12 to 10).
When only few half-waves are contained within the FEM-model mismatch to the ideal
buckling wavelength is possibly larger, since the step size between integer wavelengths
increases.
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Figure 5.6: Comparison of buckling loads as calculated from (5.33) to results from FEM-
analysis. The numbers next to the data points indicate the number of buckling
waves over the FEM-model height.
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the lamella spacing 2A1 = 2 [L]
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The matrix strain as obtained from the simulation and expressed by the logarithmic
strain measure LE is shown in Fig. 5.8. It shows the checkerboard pattern predicted by
(5.28). A closer look to the amplitudes of the components of normal strain LEmax

11 −LEmin
11 =

8.00× 10−5 and LEmax
22 − LEmin

22 = 8.00× 10−5 reveals that they have an equal amplitude
but are phase shifted by a half-period. The shear strain, on the other hand is mostly due
to noise generated by the imperfection and only slightly hint at a checkerboard shifted by
a quarter period in both horizontal and vertical direction.

10
[L
]

2 [L]

(a) LE11 (b) LE22 (c) LE12

Figure 5.8: Logarithmic total strains, LE, as obtained from FEM-analysis for 2A1 = 2 [L]
at the increment of first unloading in the matrix (P = 311.5 [F]).

For completeness, the effect of the size of the initial imperfection on the buckling load
is investigated as well. However, due to the stable postbuckling behaviour no significant
effect is expected. As is evident from Fig. 5.9 the effect is indeed very small.

5.5 The periodic unit cell

In the previous sections several assumptions on the mean strain and the periodicity of the
displacements at the boundary are made. These assumptions impose artificial constraints
on the system, so the obtained results can not on their own be taken as representative
of the unconstrained case. Providing a motivation for the assumption of displacement
symmetry is the objective of the present section. For this purpose the UC is redefined to
allow for greater generality.
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Figure 5.9: The buckling load as a function of the initial amplitude of the random imper-
fection a0; An amplitude of 10−5 [L] was used in all simulations.

The UC used in section 5.3 required that there is exactly one half-period in the fluc-
tuation of the displacements over the horizontal width of the unit cell so the fluctuating
part of the deformation is symmetric with respect to the UC midplane. The question ad-
dressed here is if there is a different periodic solution that allows for periodic compatible
tiling and if this results in a lower buckling load lower than (5.33).

For periodicity it is required that ṽγ1 (X) = ṽγ1 (X + t). The periodicity vector rB is
related to the buckling wavelength and remains unchanged from (5.232). There is an
ambiguity in the definition of rA, however, as more than one half-period can occur in
horizontal direction, and rA is more generally given by (5.35). The symmetric UC is
recovered for m = 1 and n = 0.

rA =

[
2A1

(2n+m)A2

]
m ∈ N+, n ∈ N (5.35)

Figure 5.10 shows rA for a range of integers m and n. UCs for m from 1 to 4 are outlined
by alternating hatching in 45◦ and 135◦. In the figure the buckling wavelength is held
constant to avoid clutter and the lamella spacing is adapted for different values ofm. The
actual situation is in reverse, however, with the lamella spacing fixed and the wavelength
resulting from the UC definition. From this observation it is apparent thatm > 1 enforces
a shorter buckling length than the symmetric UC, and will result in a higher buckling load.
The general periodic relation between lamella spacing and buckling length follows from
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Figure 5.10: Possible periodic unit cell definitions and periodicity vectors rA for various
parameters m and n. N.b. the lamella spacing is always 2A1, regardless of
m, even though, it is adjusted in the figure for eachm to maintain a common
scale in vertical direction. The actual situation is in reverse with A2 adjusting
to match (2/m)A1.

comparing the velocity fluctuations in (5.22) to the fluctuations shifted by one period.

+
1.
q1

ṽγ1 (X+ rA) = cos
(
π
X1 + 2A1

A2

)
sin
(
π
X2 + (2n+m)A2

A2

)
= (−1)m

[
cos
(
π
X1

A2

)
cos
(
π

2A1

A2

)
− sin

(
π
X1

A2

)
sin
(
π

2A1

A2

)]
sin
(
π
X2

A2

)
(5.361)

−
1.
q1

ṽγ2 (X+ rA) = sin
(
π
X1 + 2A1

A2

)
cos
(
π
X2 + (2n+m)A2

A2

)
= (−1)m

[
sin
(
π
X1

A2

)
cos
(
π

2A1

A2

)
+ cos

(
π
X1

A2

)
sin
(
π

2A1

A2

)]
cos
(
π
X2

A2

)
(5.362)

Equations (5.22) and (5.36) coincide when:

A2 =
2

m
A1 (5.37)

Substituting into (5.33) confirms that m = 1 for the symmetric UC gives the lowest
buckling load.
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5.6 Periodic finite element model, phase angle

To obtain buckling load for different phase angles a FEM-model is used that allows for
different values for ϕ in (5.38). For ϕ = π/4 the periodicity vector coincides with (5.231)
and the model constitutes a symmetric UC.

rA =

[
2A1

2A1 tanϕ

]
(5.38)

The boundary of the UC forms a rhomboidal quadrilateral like in Fig. 5.1(a). Nodal
displacements on the boundary are constraint in the manner of (5.72) and the mean
strain is controlled by the displacements of control nodes at rA and rB via (5.6). Figure
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Fig. 5.12(a)

Fig. 5.12(b)

Fig. 5.12(c)

Figure 5.11: Buckling loads P∗ as a function of the phase shift angle ϕ. The red cross
markers are buckling loads calculated by (5.33) assuming a rectangular
checkerboard-type deformation. The relation of wavelength to lamella spac-
ing is given by (5.37), and values for m up to 8 are included in the figure.
The blue circles represent FEM-analysis results.

70



5 A compatible model for ideal plasticity

5.11 shows buckling loads obtained analytically from (5.33) (red crosses) and buckling
loads extracted from the FEM-model (blue circles) at different phase angles ϕ. The
lamella spacing 2A1 is set to 2 [L] for all calculations. The phase angle in the FEM-model
is controlled via rA in (5.38) and is evaluated at increments of 1◦. The FEM-model
extends for more than rB in vertical direction, like the one used in section 5.4 so that
the model size does not interfere to much with the buckling length. Superposed are
the analytically calculated buckling loads with the buckling length given by (5.37). The
analytical buckling load for a given integer m applies to multiple angles ϕ, because 2n
can be added arbitrarily, so more than one data point is present for m > 1. The phase
angle in the analytical model is related to m and n via equation (5.6). For instance,
the phase angle ϕ = arctan 1/3 is obtained for m = 3 and n = −1. The corresponding
periodicity vector is marked as ‘Example’ in Fig. 5.10.

ϕ = arctan(
(m+ 2n)A2

2A1

) = arctan(
(m+ 2n)

m
)

It is apparent from Figure 5.10 that the FEM-analysis results approach the analytical
results for low values of m. A source of discrepancy is due to the circumstance that
undeformed values for A1 are used in (5.33) and prebuckling deformation is neglected.
Also, the periodic BCs in (5.72) for the FEM-model can only be specified in terms of
undeformed coordinates, rather than coordinates at the instance of buckling. Prebuckling
shortening of the FEM-model will therefore cause the actual phase angle be less than
the nominal value. Taking these limitations into account, it can be seen that the FEM-
buckling loads attain local minima near data points for small values of m at the angles
0, arctan 1/5, arctan 1/3 and arctan 1/2 radian, although the minima are visibly shifted to
the right because of the effects mentioned. The absolute minimum is attained at π/4 for
the symmetric UC.
In Fig. 5.12 the strain distribution at the increment of buckling is examined at the

phase angles 11◦, 20◦ and 29◦, also marked in Fig. 5.11. The last two angles have a rather
undisturbed, ‘checkerboard’-style strain pattern for m = 3 and m = 4, respectively, as
they are located near a local minimum of the buckling load. The angle ϕ = 6◦, however,
coincides with a local maximum and the strain pattern is distorted as a mode change
from m = 2 to m = 3 is about to occur.

5.7 Array
All the models presented so far refer to a UC representation of the periodic medium
and necessarily introduce kinematic constraints. As a safeguard against possible over-
constraining by the UC-BCs it seems desirable to compare the UC-models against an
unconstrained, enlarged model comprising an entire array of lamellae.
The array-model used for this purpose consists of a block containing ten lamellae,

which are modelled by continuum elements rather than by the beam-elements used in
the previous models. Like the models in sections 5.3 and 5.6 this model extends 40 [L]
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2 [L]

(a) ϕ = 11◦

2 [L]

(b) ϕ = 20◦

2 [L]

(c) ϕ = 29◦

Figure 5.12: Matrix-LE11 for selected phase-shift angles ϕ.

in vertical direction to limit interference with the buckling length. It is compressed in
vertical direction by free horizontal sliding BCs at the top and the bottom. At the left and
right boundary the zero traction conditions is imposed and the block can expand freely.
Figure Fig. 5.13 displays the 11-components of the stress and strain fields in the matrix at
the instant of buckling for a lamella spacing of 2A1 = 2.0 [L]. Lamella elements are hidden
in the figure. The UC-BCs where developed for an infinite array and the free edge in the
array-model poses a discrepancy, but the effect is relatively minor and the situation at the
center of the array is close to the assumptions made for the UC-kinematics as can bee seen
in Fig. 5.13(a). Also comparing the matrix strain in a slice of matrix between two lamellae
in Fig. 5.13(b) to Fig. 5.8 shows a good match. The buckling load of 3681 [F] obtained
for the array-model, however, exceeds the tenfold value of the prediction by (5.33) for
the single slice 316.4 [F] . Repeating the simulation for a series of lamella spacings in the
manner of Fig. 5.6 reveals that the analytical prediction, red cross-marker, corrected for
prebuckling deformation, is met only for some lamella spacings. The software used did not
report any negative eigenvalues for the system stiffness matrix preceding the numerical
buckling load. Nevertheless, the enlarged array model seems to be more prone to numerical
difficulties than the UC-models. For some other lamella spacings the FEM-model failed
to converge at all, those data points are omitted in Fig. 5.14.

5.8 Periodic finite element model, post buckling

The symmetric UC definition with the periodicity vectors given by (5.23), put forward as
an assumption in section 5.3 and subsequently verified, allows for very efficient numerical
simulations. Since it has been found that the buckling wavelength is twice the lamella
spacing, (5.25), the vertical oversize that allowed for free adjustment of the wavelength

72



5 A compatible model for ideal plasticity

(a) True normal stress σ11; The effect of the free
boundary decays over roughly 3 lamellae

(b) Logarithmic normal strain in horizontal direction
LE11; only a fluctuation period occurs over the space
between two lamellae

Figure 5.13: Strain and stress distribution of an extended model containing 10 lamellae
and a total width of 20A1 = 1.0 × 20 [L]. The total height is 40 [L]. Only
a small section of the height is shown. Both images show the model at the
increment of buckling. The total load acting on the array is 3681 [F]

73



5 A compatible model for ideal plasticity

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

A1 [L]

0

1000

2000

3000

4000

5000

6000

P
∗
[F

]

P ∗  FEM

P ∗  analytic

Figure 5.14: Comparison of the numerical buckling loads of the ten lamella array-model
to the ten-fold of the analytic result from (5.33). For some lamella spacings
the model failed to converge, those data points are omitted in the figure;

at the cost of inflating the model can be dropped. A minimum FEM-model comprising
only one period in both directions is used here.

It has been shown for the incompatible model that the bifurcation load is not a limit
load and the loading can be increased further in the postbuckling regime. This is the case
even for ideal plasticity, cf. Fig. 4.4. This raises the question whether the same applies to
the compatible model. This is investigated using the minimum FEM-model as described
above.

Figure 5.15 displays the load carried per UC as a function of the UCs shortening for the
lamella spacing 2A1 = 2 [L]. The buckling load, marked by the circle-marker, coincides
with the buckling loads obtained for the other models so far. At the instant of buckling
no significant discontinuity in stiffness is apparent, and the buckling load can be exceeded
about four times without any noticeable softening. The limit load, indicated by the cross-
marker, is reached in a rather abrupt manner at about five times the buckling load. Using
the arc-length method the simulation could be extended slightly beyond the limit load
before it fails to converge. It can be seen in the inset of the figure that the model is
about to assume a ‘snap-back’-type behaviour, with both the load and the shortening
decreasing.

The strain-field at the limit load is shown in Fig. 5.16. The displacements are still quite
moderate and they are displayed true-to-scale in the Figure. The unloaded area of the
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5 A compatible model for ideal plasticity

matrix expands in the postbuckling regime and for some configurations the unloading can
even cause reyielding under tension in the unloaded areas.
Figure 5.16 shows the limit load for different lamella spacings. For the range of values

considered the limit load is typically three to four times the buckling load.

0.00 0.05 0.10 0.15 0.20 0.25

−u2 (0,2A2 ) [L]

0

500

1000

1500

2000

P
[F

]

P ∗  FEM
Plimit FEM

Figure 5.15: The load P carried by the UC as a function of the vertical displacement at
rB (shortening of the UC); The lamella spacing 2A1 is equal to 2 [L];

5.9 Conclusions
The case of ideal plasticity allowed for the derivation of an analytical prediction for the
buckling load. It has been concluded from analytical arguments and observed in numerical
simulations that the symmetric buckling mode corresponds to the lowest buckling load.
The symmetric buckling mode was also assumed for the incompatible model in chapter
4. The qualitative behaviour with respect to bifurcation and stability can be reasonably
expected to be similar, even though a detailed examination in the manner of section 4.4
is not possible for the compatible model. For the incompatible model the wavelength
depends on the hardening behaviour of the matrix. For ideal plasticity it tends towards
infinity. In the compatible model, however, the wavelength is tied to the lamella spacing
and is finite even for the ideal plastic case. As expected, the buckling load is not the limit
load, which is typically three to four times as large.
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(a) LE11 (b) LE22 (c) LE12

Figure 5.16: Logarithmic strain, LE, at the limit load; The displacements in the plot are
to scale;
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Figure 5.16

Figure 5.17: Buckling load and limit load in the postbuckling regime. In the shaded area
the UC is buckled, but the loading can increase further
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6 Matrix hardening

In the previous chapter it has been found that for the case of ideal plasticity the matrix
does not provide any direct lateral support to the lamella as the middle term in (5.33)
vanishes. The buckling mode was symmetrical, thus the deformation in neighbouring
lamellae is coupled and they cannot deform independently, regardless of their distance.
In this chapter, however, it is shown that matrix hardening is linked to an exponential

decay in the magnitude of stress and strain rates. For configurations with high tangent
hardening modulus and/or large lamella spacings the fluctuations due to buckling of one
lamella might fade out before reaching the other. In that case buckling of the lamella
only affects the immediate surrounding matrix-areas and this scenario is dubbed buckling
of noninteracting lamella. So within the range of increasing hardening modulus, the
fully coupled buckling mode encountered in chapter 5, and the noninteracting limit case
there exist a spectrum of varying degrees of mutual influence between the lamella. The
intermediate situations are rather complex, but for situations that fall near the two limit
cases certain approximations can be made. The buckling of lamellae embedded in a matrix
with a relatively low hardening modulus is investigated in section 6.1, and in section 6.3
the non interacting limit case is examined.

6.1 Interacting lamellae
Before the governing equations for a hardening matrix are discussed in section 6.2, the
strain field at the buckling load obtained from FEM-simulations of two different hardening
parameters is presented as an introduction. The results where obtained from a model
comprising an entire array of lamellae, like in section 5.7.
In Fig. 6.1(a) the strain field for a rather low tangent hardening modulus of 500 [FL−2]

is shown, and it can be seen to be very similar the pattern obtained for the ideal plastic
case cf. Fig. 5.13(b). Only one fluctuation half-period occurs in horizontal direction and
the lamellae are interacting in the same way as for the ideal plastic case. For Fig. 6.1(b)
the tangent modulus has been increased threefold, and a completely new strain pattern
emerges. Instead of only one there are three half-periods and a noticeable decreased
amplitude in the middle between the two lamellae. Even so, the fluctuations do not
completely decay and the lamellae can still be considered interacting, but this reveals the
trend that for increased hardening and increased spacing a limit case ensues that allows
to treat the lamellae isolated from each other.
An analytical description of a general interacting situation in the manner of Fig. 6.1(b)

seems to be a daunting task as even the noninteracting limit case is quite complicated as is
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shown in section 6.3. In principle the same methods as used in section 6.3 could be applied,
but no such attempt is made here. On the other hand a simple estimate for situations
with a very low tangent hardening modulus as depicted in Fig. 6.1(a) can be obtained by
assuming that the velocity field (5.22), solving the governing equations for the ideal plastic
case, is maintained as an approximation. Although (5.22) strictly applies only when the
hardening parameter θ is set to zero, cf. (5.20), it still has been retained in the subsequent
derivation of the buckling load (5.33). This conveniently allows (5.33) to be reused as an
estimate for the slightly hardening case considered here. A plot comparing the estimate
to FEM-results is depicted in Fig. 6.2. The figure reveals a rather high sensitivity of
the buckling load to even moderate hardening, and the estimate provided by (5.33) is
somewhat accurate for very small hardening moduli. The assumption that the velocity
field is given by (5.22) obviously does not hold for hardening moduli of 1500 [FL−2] as
can be seen from Fig. 6.1(b) as the strain distribution is very different.

(a) Et = 500 [FL−2] (b) Et = 1500 [FL−2]

Figure 6.1: Strain distribution in the postbuckling regime, Lamella not shown; Fig. 6.1(a)
maintains a strong similarity to the ideal plastic case, i.e. a similar strain
distribution to Fig. 5.13(b). In Fig. 6.1(b) the strain pattern is completely
different and the amplitude varies in horizontal and somewhat less in vertical
direction.

6.2 Governing equations in terms of a stress function

In section 5.2 the governing equations were formulated in displacements resulting in a
system of two second order PDEs. Simplification for ideal plasticity allowed a possible
solution to be found by an educated guess (ansatz). However, the problem can also be
formulated in terms of a stress function, denoted as A in the following. The in-plane
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Fig. 5.13(b)

Figure 6.2: Comparison of FEM-analysis buckling loads to estimates obtained from (5.33);
The lamella spacing 2A1 = 2.0 [L] the other parameters are given in Table 4.1;
The unconstrained multiple lamella model from section 5.7 is used with 10
lamellae, and FEM-analysis buckling loads are per slice. Equation 5.33 was
derived for ideal plasticity, but can also give a rough estimate for the slightly
hardening case. At about Et = 1000 [FL−2] however the velocity field devi-
ates substantially from (5.22), and the number of half-periods per unit cell in
horizontal direction, m, increases from 1 to 3
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stress-rates are derived from the stress function in a manner that ensures equilibrium:
.
σγ11 = +A,22.
σγ12 = −A,12.
σγ22 = +A,11

⇒ div(
.
σ˜γ) =

 +A,221 −A,122

+A,112 −A,121.
σγ33,3

 = 0 (6.1)

The superscript γ will be dropped for the remainder of the section. The elastic response in
the matrix is taken into account by substituting the stress function into the Prandtl-Reuss
equations for plane strain (2.6). It is more convenient here to replace the Lamé-parameters
by the Young’s modulus and the Poisson-ratio. The out-of-plane component dp33 of the
plastic strain rate could be expressed by the in-plane components since the trace of d˜pis zero. It is retained, however, and the same assumption with regard to the out-of-plane
strain rate as in section 2.4 is made further down when the equations are specialized for
the problem at hand.

d11 =
1

E

[
+(1 + ν)A,22 − ν

(
A,11 +A,22 +

.
σ33

)]
+ dp11 (6.21)

d12 =
1

E

[
−(1 + ν)A,12

]
+ dp12 (6.22)

d22 =
1

E

[
+(1 + ν)A,11 − ν

(
A,11 +A,22 +

.
σ33

)]
+ dp22 (6.23)

0 =
1

E

[
+(1 + ν)

.
σ33 − ν

(
A,11 +A,22 +

.
σ33

)]
+ dp33 (6.24)

The last equation can be used to eliminate the out-of-plane stress-rate.

d11 =
1 + ν

E

[
+A,22 − ν (A,11 +A,22)

]
+ dp11 + νd

p
33 (6.31)

d12 =
1 + ν

E

[
−A,12

]
+ dp12 (6.32)

d22 =
1 + ν

E

[
+A,11 − ν (A,11 +A,22)

]
+ dp22 + νd

p
33 (6.33)

In chapter 5 the governing equation was formulated directly in velocities, and compati-
bility is automatically ensured. Here, however, the governing equation is formulated in
terms of the stress function, and the requirement of compatibility provides an additional
equation.

2d12,12 − d11,22 − d22,11 = 0 (6.4)

The stress-strain relation (6.3) and compatibility condition (6.4) result in the PDE (6.5)
that relates the stress function and the plastic strain rates for the plane strain case,
cf. [Srinivasa and Srinivasan, 2009, Mendelson, 1968]. The symbol

∇

stands for the
Laplace-operator. Because the plastic strain rates depend on the stress function via
the stress rates it is an implicit relation. The equation describes a general plane strain
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situation and is not limited to the problems under investigation in this work.

2dp12,12 − d
p
11,22 − d

p
22,11 + ν

∇

dp33 =
(1 − ν2)

E

∇∇

A (6.5)

6.3 Non-interacting lamellae
In order to point out, at least in principle, the mechanisms behind buckling of elastic
lamellae embedded in a hardening plastic matrix the governing equations (6.5) are spe-
cialized using the assumptions introduced in section 2.4 and already used in section 5.2.
Together with the additional assumption that the strain rate is dominated by plastic
strain this allows the derivation of a rather crude estimate of the buckling load.

Figure 6.3: Generalized coordinates of the slice model

The problem is analyzed by considering a vertically repeating slice with a height of one
buckling wavelength, 2A2. The lamella lies at the center of the slice, and the horizontal
extension on both sides is supposed to be wide enough so that any fluctuations resulting
from lamella buckling have decayed at the boundary. Then the left and right boundary
remain vertical and multiple slices can be arranged side by side. The complete decay
of fluctuations means that, contrary to all other cases considered so far, buckling of one
lamella does not have any effect on its neighbours, and each slice can be considered
individually. Hence, the attribute ‘non-interacting’ is assigned to this situation.
The lamella velocity and the mean part of the matrix velocity field remain unchanged

from chapter 5 and are not repeated here to avoid redundancy. Moreover, the GCs
.
q3 and.

q4 contribute only to the mean stress/strain rates and have no effect on the buckling load
which can be inferred from the circumstance that the element K11 in (5.32) is uncoupled
from the rest of the stiffness matrix, i.e. the internal force rate (Q).1 does depend on

.
q1

only because K12 = K13 = 0. The stiffness matrix becomes singular for the first time
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when element K11 vanishes. The GC-rate
.
q1, on the other hand, is associated only with

fluctuations and does not contribute to the mean stress rates. Because (Q).1 is given as
the partial derivative of the rate potential of the internal forces with respect to

.
q1 the

mean part of the rate potential can be dropped and does not affect the buckling load.
Consequently it suffices to deal with the fluctuating fields, and the buckling load can be
derived from the condition K11 = 0.

U(.q1,
.
q3,
.
q4) = Ũ(

.
q1) + Ū(

.
q3,
.
q4) (6.6)

.
Q1(
.
q1) =

∂

∂
.
q1

∫
V

U(.q1,
.
q3,
.
q4)dV =

∂

∂
.
q1

∫
V

Ũ(.q1)dV (6.7)

K11 =
∂
.
Q1(
.
q1)

∂
.
q1

(6.8)

The investigations in section 4.4 have shown that the geometric stiffness of the matrix
has little effect on the buckling load, and only the geometric stiffness of the lamella is
essential. It, therefore, seems appropriate to neglect the effect of initial stresses due to
the pre-loading in the matrix rate potential, and the material time derivative rather than
the objective rate is used in the rate potential as a simplification.

Ũγ .
=

1

2

.̃
σ˜ : d̃˜ (6.9)

The mean stress rates are uniform everywhere so the fluctuations need to be in balance
among themselves. Thus the stress function is introduced in terms of the fluctuating
stress rates only:

.̃
σγ11 = +A,22.̃
σγ12 = −A,12.̃
σγ22 = +A,11

⇒ div(
.̃
σ˜γ) =

 +A,221 −A,122

+A,112 −A,121.̃
σγ33,3

 = 0 (6.10)

In order to make (6.5) explicit in A, the plastic strain rates are to be expressed in terms of
the stress function. For this purpose the relations between plastic and total strain rates,
specific for the preloaded, but unbuckled state, are used. These relations were derived in
section 2.4 and were used in section 5.2. Applying the procedure to separate mean and
fluctuating contributions stated in (5.2) to (2.33) yields:

d̃p11 = −d̃p22 =
E(d̃11 − d̃22)

2E+ 2θ(1 + ν)
(6.111)

d̃p12 = 0 (6.112)

d̃p33 = 0 (6.113)
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Applying the separation procedure again to (6.3) gives d̃11 and d̃22 which can be substi-
tuted into (6.111) to obtain an expression for d̃p11:

d̃11 − d̃22 =
1 + ν

E

[
A,22 −A,11

]
+ 2d̃p11

d̃p11 =
A,22 −A,11

2θ
= −d̃p22 (6.12)

With the plastic strain rates dp12 and dp33 equal to zero and dp11 and dp22 given explicitly in
terms of the stress function the governing equation can be specialized for the case at hand.
For this purpose it is pertinent to introduce the dimensionless ratio H as an abbreviation:

H :=
E

2θ(1 − ν2)
(6.13)

Substituting (6.112), (6.113) and (6.12) into (6.5) and making use of (6.13) yields a linear
homogeneous fourth order PDE in A(X1,X2):

(1 +H)A,1111 + 2(1 −H)A,1122 + (1 +H)A,2222 = 0 (6.14)

At this point it is helpful to take a look at a stress distribution obtained from a FEM-
simulation, as it provides a clue for a possible solution to (6.14). The contour plot of σ11
depicted in Fig. 6.4 was obtained from a model of a single lamella embedded in a matrix
patch extending for 5 [LU] on both sides of the lamella horizontally and 20 [LU] vertically.
The lamella is situated at the center and is not shown in the plot. The amplitude of the
fluctuations decreases with horizontal distance from the lamella and has almost completely
decayed at the left and right border, respectively, where a zero traction BC is imposed.
Some parts of the model are not shown in the figure. In vertical direction there is also a
certain variation in the amplitude. If this vertical amplitude variation is disregarded for
the moment the stress field can be interpreted as a variant of the ‘checkerboard’ pattern
that emerged in the ideal plastic case. Unlike before, however, the patterns evolution in
horizontal direction seems to resemble a damped oscillation here rather than an undamped
one. This observation motivates a separation of variables approach to (6.14) as stated in
(6.15)

A(X1,X2) = B(X1) sin(
πX2

A2

) (6.15)

With regard to the uneven amplitude in vertical direction it is not apparent whether
this constitutes an artifact of the numerical simulations or not. It could, for instance, be a
result of the finite model height. On the other hand it is present even for rather large FEM-
models. Regardless, the separation approach with the term sin(πX2/A2) representing the
dependence of the stress function on the vertical position is pursued here.

The separation results in a linear homogeneous fourth order ordinary differential equa-
tion (ODE) for B(X1). It can be solved in the usual manner by taking B as a linear
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Figs. 6.5 and 6.6

Lamella

Figure 6.4: Et = 1000 [FL−2],σα = (σα)∗ = 17300 FL−2

combination of exponential functions.[
(1 +H)

d4B

dX4
1

+ 2(1 −H)
d2B

dX2
1

(
−
π2

A2
2

)
+ (1 +H)B(X1)

(
+
π4

A4
2

)]
= 0 (6.16)[

(1 +H)r4 + 2(1 −H)r2
(
−
π2

A2
2

)
+ (1 +H)

(
+
π4

A4
2

)]
= 0 (6.17)

Equation (6.17) has two pairs of respectively conjugate complex numbers:

r1 =
(+1 − i

√
H )√

H+ 1

π

A2

r̄1 =
(+1 + i

√
H )√

H+ 1

π

A2

r2 =
(−1 − i

√
H )√

H+ 1

π

A2

r̄2 =
(−1 + i

√
H )√

H+ 1

π

A2

(6.18)

Observing Euler’s identity, the four roots can be combined to a solution to the ODE (6.16)
with the real coefficients G1 to G4.

B(X1)= e
+ 1√

H+1
πX1

A2

(
G1 sin

(√
H

1+H
πX1

A2

)
+G3 cos

(√
H

1+H
πX1

A2

))
+ e

− 1√
H+1

πX1

A2

(
G4 sin

(√
H

1+H
πX1

A2

)
+G2 cos

(√
H

1+H
πX1

A2

))
(6.19)

From here on only the half-plane X1 > 0 is considered, so that the first term in (6.19)
is exponentially increasing. Because only the non interacting case is considered here,
the increasing term can be dropped. Another simplification could be introduced here:
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The ratio H, as defined by (6.13), is typically large compared to one even for moderate
hardening. For instance taking Et = 5000 [FL−2], E = 200 × 103 [FL−2] and ν = 0.3 the
ratio H is approximately 32 and

√
H+ 1 could be replaced by

√
H without incurring a

significant error.

A(X1,X2) = e
− πX1√

1+HA2 sin
(
πX2

A2

)(
G4 sin

(√
H

1+H
πX1

A2

)
+G2 cos

(√
H

1+H
πX1

A2

))
(6.20)

The two remaining constants are determined from BCs at X1 = 0. The condition that
the fluctuations must fade out on the right boundary, which is idealized to be infinitely
remote, has already been used to eliminate the constants G1 and G3. It can be seen from
Fig. 6.4 that the fluctuations decay rather rapidly if the tangent hardening modulus is
not too low. On the left boundary, X1 = 0, the velocity fluctuations of matrix and lamella
must match. Like in the previous chapters the coupling between lamella and matrix is
thought to occur at the lamella centerline and its velocity is:

ṽα =

[ .
q1 sin

(
πX2

A2

)
0

]
The matrix velocity field has to be integrated from the rate of deformation tensor which in
turn could be determined from (6.3). This results in rather involved expressions, however,
so a different approach is followed here. The expression for the plastic strain rates given
by (6.12) is much simpler, and the total strain rates are dominated by their plastic part
for a wide range of tangent hardening moduli, cf. Fig. 6.6. Therefore, the simplification
that the total strain rates d˜ are approximately the same as the plastic strain rates d˜pseems reasonable. Evaluating (6.12) for A given by (6.20) yields:

d̃p11 = −d̃p22 = −
π2e

− πX1√
H+1A2 sin

(
πX2

A2

)
(H+ 1)A2

2θ

((√
HG2 +G4

)
sin
(√

H
H+1

πX1

A2

)
+(

G2 −
√
HG4

)
cos
(√

H
H+1

πX1

A2

))
(6.21)

The matrix fluctuating velocity field is thus approximated by (6.221) and (6.222):

ṽ1
.
=

∫
d̃p11 dX1

=
πe

− πX1

A2

√
H+1 sin

(
πX2

A2

)
√
H+ 1A2θ

(
G4 sin

(√
H
H+1

πX1

A2

)
+G2 cos

(√
H
H+1

πX1

A2

))
(6.221)

ṽ2
.
=

∫
d̃p22 dX2
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=
πe

− πX1

A2

√
H+1 cos

(
πX2

A2

)
(H+ 1)A2θ

((√
HG2 +G4

)
sin
(√

H
H+1

πX1

A2

)
+(

G2 −
√
HG4

)
cos
(√

H
H+1

πX1

A2

))
(6.222)

Because ṽ2 depends on X2 via cos(πX2/A2) only, compatible tiling at the top and bottom
of the slice is ensured. The equations obtained from setting ṽα(X2) = ṽ

γ(0,X2) yield the
two remaining constants:

G2 =

√
H+ 1 θA2

π

.
q1 (6.231)

G4 =

√
H+ 1 θA2

π
√
H

.
q1 (6.232)

The plastic part of the strain rate is given by:

d̃p11 = −
.
q1

√
H+ 1

H

π

A2

e
− 1√

H+1
πX1

A2 sin
(
πX2

A2

)
sin
(√

H
H+1

πX1

A2

)
(6.241)

d̃p22 = −d̃p11 (6.242)

d̃p12 = 0 (6.243)

The normal stress rates are:

.̃
σ11 = −

.
q1

√
H+ 1

H

πθ

A2

e
− 1√

H+1
πX1

A2 sin
(
πX2

A2

)(
+
√
H cos

(√
H
H+1

πX1

A2

)
+ sin

(√
H
H+1

πX1

A2

))
(6.25)

.̃
σ22 = +

.
q1

√
H+ 1

H

πθ

A2

e
− 1√

H+1
πX1

A2 sin
(
πX2

A2

)(
−
√
H cos

(√
H
H+1

πX1

A2

)
+ sin

(√
H
H+1

πX1

A2

))
(6.26)

For the purposes of calculating the rate potential of the fluctuations the slice is considered
to extend indefinitely in horizontal direction from both sides of the lamella. However,
because of the exponential decay the integral remains finite. The negative half-plane is
taken into account by multiplying the expression with a factor of 2. For the reasons
mentioned above, the internal force rate (Qγ1 )

. does not depend on mean quantities and
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can be calculated from the fluctuating quantities alone:

.
Qγ1 = 2

∂

∂
.
q1

∫ 2A2

0

∫∞
0

1

2

.̃
σ˜ : d̃˜ dX1dX2 = π

√
H+ 1 θ

.
q1 =

π√
2θ

√
E+ 2θ(1 − ν2)

(1 − ν2)

.
q1

(6.27)

The internal force rate of the lamella can be taken as the result from (3.571) multiplied
by two with A2, Aα and Eα replacing L,H and Et respectively.

.
Qα1 =

π2Aα(π2(Aα)2Eα + 12σαA2
2)

12A3
2

.
q1 (6.28)

The critical lamella stress (σα)∗ that will lead to buckling can be obtained from setting
the matrix element K11 to zero:

K11 =
∂(
.
Qα1 +

.
Qγ1 )

∂
.
q1

= π
√
H+ 1 θ+

π2Aα(π2(Aα)2Eα + 12σαA2
2)

6A3
2

(6.29)

(σα)∗ = −
π3(Aα)3Eα + 12

√
H+ 1 θA3

2

12πAαA2
2

(6.30)

The limit case for a vanishing hardening parameter θ in (6.30) is the Euler buckling load
of the lamella alone. The wavelength is obtained from minimizing the critical lamella
stress with respect to A2 and the only real-valued solution is:

A2 = πA
α
( Eα

6
√
H+ 1 θ

) 1
3

(6.31)

Combining (6.30) and (6.31) yields an expression for the buckling lamella stress with the
wavelength eliminated. The lamella width drops from the expression as well:

(σα)∗ = −
1

2

(9

2
(1 +H)Eαθ2

) 1
3

(6.32)

Comparing this result to results from FEM-analysis shows that the critical lamella stress
can be predicted approximately, cf. Table 6.1. Stress rate and strain rate distributions are
compared in Fig. 6.5 for Et = 1000 [Fl−2] and match qualitatively. Noticeable differences
are the more rapid decay and a larger wavelength in the numerical results.

6.4 Conclusions
Stating an accurate analytical prediction for the buckling load for the general case of a
hardening matrix is prevented by the complexity of the problem. Even the expression
found for the limit case of an isolated lamella is very inaccurate. However, some con-
clusions about the qualitative behaviour can be made: It can be seen that a nonzero
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1.

34
[L
]

1.
21

[L
]

(a) LE11 vs. d11 (b) S11 vs.
.
σ11

(c) LE22 vs. d22 (d) S22 vs.
.
σ22

(e) LE12 vs. d12 (f) S12 vs.
.
σ12

Figure 6.5: Comparison of numerical(above) and analytical(below) strain rate distribu-
tions for Et = 1000 [FL−2] along the slice marked in Fig. 6.4. Note that the
scale is slightly different in the analytical and numerical results.
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(a) LE11 vs. PE11

(b) LE22 vs. PE22

(c) LE12 vs. PE12

Figure 6.6: Comparison of total(above) and plastic(below) strain at the same instance as
Figure 6.5. The strain state is dominated by plastic deformations
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E/1000 Et (σα)∗ by (6.32) (σα)∗ from FEM-analysis
200 500 −16782 −13490
200 1000 −21180 −17300
200 2000 −26778 −23850
200 5000 −36727 −38770

Table 6.1: Comparison of the approximate analytical prediction to results from FEM-
analysis. Parameters other then Et are given in Table 4.1. All numbers refer
to the generic units [FL−2].

tangent hardening modulus provides lateral support to the lamella and leads to a shorter
buckling wavelength and a higher buckling load then ideal plasticity. It also constrains
the wavelength to a finite value even if only an isolated lamella in an infinitely extending
matrix is considered.
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7 Appendix

7.1 Tensor analysis

First order tensors (vectors):

a =

[
a1

a2

]
= ai ei (7.1)

a.b =
[
a1 a2

] [ b1
b2

]
= aibj ei.ej = aibi (7.2)

a⊗ b =

[
a1

a2

] [
b1 b2

]
= aibj ei ⊗ ej (7.3)

Second order tensors:

a˜ =

[
a11 a12

a21 a22

]
= aij ei ⊗ ej (7.4)

a˜.b =

[
a11 a12

a21 a22

] . [ b1
b2

]
= aijbk ei ⊗ ej.ek = aijbj ei (7.5)

a˜ : b˜ =

[
a11 a12

a21 a22

]
:

[
b11 b12
b21 b22

]
= aijbkl ei.ej ⊗ ek.el = aijbij (7.6)

Fourth order tensors:

a˜̃ =


[
a1111 a1112

] [
a1211 a1212

]
a1121 a1122 a1221 a1222[
a2111 a2112

] [
a2211 a2212

]
a2121 a2122 a2221 a2222

 = aijkl ei ⊗ ej ⊗ ek ⊗ el (7.7)

a˜̃ : b˜ = aijklbmn ei ⊗ ej ⊗ ek.em ⊗ el.en = aijklbkl ei ⊗ ej (7.8)

Differential operators:

∇ := ∇x =

[
∂

∂x1

∂

∂x2

]T
(7.9)

∇

:= ∇.∇ = div grad =
∂2

∂x21
+
∂2

∂x22
(7.10)

∇∇

:=
∂4

∂x41
+ 2

∂4

∂x21x
2
2

+
∂4

∂x42
(7.11)
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7.2 Index notation

F˜ =

3∑
i,j=1

∂xi

∂XI
ei ⊗ EI

index notation−→ FiI (7.12)

F˜−1 =

3∑
I,j=1

∂XI

∂xi
EI ⊗ ei

index notation−→ F−1
Ii (7.13)

grad(v) =

3∑
i,j=1

∂vi

∂xj
ei ⊗ ej

index notation−→ vi,j (7.14)

Grad(v) =

3∑
i,J=1

∂vi

∂XJ
ei ⊗ EJ

index notation−→ vi,J (7.15)

7.3 Homogeneous functions
A function f(x) is said to be positive homogeneous of degree k if it satisfies the relation
[Bartsch, 2001]:

αkf(x) = f(α x) i.e.: αkf(x1, . . . , xn) = f(αxi, . . . ,αxn)

k ∈ R, α ∈ R+ (7.16)

Euler’s theorem for a positive homogeneous function f(x1, . . . , xn) of degree k states:

k · f(x) = ∂f

∂x
.x i.e.: k · f(x1, . . . , xn) =

n∑
i=1

∂f

∂xi
xi (7.17)
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