

Technische Universität Wien
A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43-1-58801-0 ▪ www.tuwien.ac.at

Software Project Longevity –
A Case Study on Open Source

Software Development Projects

MAGISTERARBEIT

zur Erlangung des akademischen Grades

Magister der Sozial- und Wirtschaftswissenschaften

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Bernhard Kiselka
Matrikelnummer 0125881

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: Ao.Univ.Prof. Dipl.-Ing. Mag. Mag.rer.soc.oec. Dr.techn. Stefan Biffl
Mitwirkung: Projektass. Dipl.-Ing. Dietmar Winkler

Wien, 30.11.2015

 (Unterschrift Verfasser) (Unterschrift Betreuer)

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Bernhard Kiselka

0125881, 066 926

Master Thesis

Software Project and Product Longevity

A Case Study on Open Source Software Development

Projects

E-Mail: bernhard.kiselka@gmx.at

Phone: 0664/33 23 269

Date: 2015-11-30

For Raphaël

-

Für Raphaël

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - i - Contents

Contents

Contents... i

Erklärung zur Verfassung der Arbeit..iii

Abstract.. iv

Kurzfassung .. v

Acknowledgements .. vi

Danksagung...vii

List of Tables...viii

List of Figures... ix

1 Introduction... 1

1.1 Methodology... 1

1.2 Definitions .. 2

1.3 Motivation and Problem Definition .. 3

1.4 Content of the Work.. 4

2 Related Work.. 5

2.1 Process Models.. 5

2.1.1 Linear Process Models... 7

2.1.2 Cyclic Process Models ... 9

2.1.3 Light Weight Process Models... 11

2.2 Quality Models.. 13

2.2.1 Quality Assurance Models.. 13

2.2.2 Health Indicators .. 16

2.3 Frameworks for Measuring OSS Projects... 17

3 Research Issues ... 20

4 Solution Approach .. 23

4.1 Identification of quality attributes... 25

4.2 Concept of the Framework for Measuring Project Longevity............................... 27

4.3 Concept for Evaluation of the Framework... 28

5 Systematic Literature Review on Quality Attributes, Metrics and Tools 30

5.1 Systematic Literature Research.. 30

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - ii - Contents

5.2 Metrics.. 33

5.3 Tools .. 36

5.4 Summary.. 39

6 Tool Selection Process ... 41

6.1 Tool Study Setting .. 41

6.2 Tool Study .. 45

6.3 Results and Tool Selection ... 46

7 Framework for Longevity Evaluation ... 48

7.1 Combination of Tools.. 48

7.2 Metrics Selection .. 49

8 Feasibility Study.. 52

8.1 Open Source Software ... 52

8.1.1 Free Software .. 52

8.1.2 Open Source.. 53

8.2 Project Selection .. 58

8.3 Feasibility Study ... 60

8.4 Results ... 65

9 Case Study ... 67

10 Discussion ... 68

11 Conclusions... 70

12 Appendix ... 71

12.1 Literature References.. 71

12.2 SLR References.. 74

12.3 Results of SLR on Health Indicators.. 80

12.3.1 List of all projects found .. 80

12.3.2 List of all metrics found ... 82

12.3.3 List of all tools found ... 90

12.4 Results of Tool Evaluation... 92

12.4.1 Pre-selection using Mandatory Requirements... 92

12.4.2 Tool Selection Results .. 94

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - iii - Erklärung zur Verfassung der Arbeit

Erklärung zur Verfassung der Arbeit

Bernhard Kiselka, Friedrich Schiller-Straße 79b/7/3, 2340 Mödling

„Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die

verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen

der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder

dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter

Angabe der Quelle als Entlehnung kenntlich gemacht habe.“

Mödling, 30.11.2015

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - iv - Abstract

Abstract

Metrics on Software Projects measure the past and the status quo. The question if an

information system will still be usable in the future is not really answered. On the contrary

longevity is seen as an important design issue. Optimally, we want to measure software

product longevity right from the start of a project, not in the end when all effort is spent.

This work wants to find out what makes a (open source) software project so successful,

that its software is used for a long time, and how to measure this longevity beforehand.

The methodical approach involves a systematic literature research (SLR) on project health

indicators, which identifies successfully software projects, metrics and tools. A tool

selection process finds the most suitable tools for building a framework for longevity

evaluation based on quality attributes from ISO SQuaRE.

The work’s result is a set of tools that forms an evaluation framework to estimate quality

attributes, metrics, and key performance indicators with focus on software project

longevity. Open source software projects from related work evaluate the framework. Main

outcome is a short list of metrics measuring quality attributes important for longevity. A

feasibility study shows these metrics can be used to measure aspects of longevity.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - v - Kurzfassung

Kurzfassung

Metriken von Softwareprojekten messen die Vergangenheit und den Status Quo. Die

Frage, ob ein Informationssystem in Zukunft immer noch verwendbar ist, wird nicht

wirklich beantwortet. Im Gegensatz dazu wird Langlebigkeit als wichtiges Thema des

Entwurfs gesehen. Denn optimalerweise wollen wir die Langlebigkeit eines

Softwareprodukts bereits vom Start weg messen können, nicht erst am Ende wenn der

ganze Aufwand bereits geleistet wurde.

Diese Arbeit will herausfinden, was ein (Open Source) Softwareprojekt so erfolgreich

macht, dass dessen Software über lange Zeit verwendet wird, und wie diese Langlebigkeit

im Vorhinein gemessen werden kann.

Das wissenschaftliche Vorgehen umfasst eine systematische Literaturrecherche über die

Kennzeichen von gesunden Projekten, die erfolgreiche Softwareprojekte, Metriken und

Tools identifizieren. Mit einem Auswahlverfahren werden die am Besten geeigneten Tools

für ein Framework zur Beurteilung von Langlebigkeit basierend auf Qualitätsattributen von

ISO SQuaRE ermittelt.

Das Ergebnis der Arbeit ist eine Menge an Tools die ein Beurteilungsframework bilden,

um Qualitätsattribute, Metriken und Leistungskennzahlen mit dem Fokus auf der

Langlebigkeit von Softwareprojekten zu beurteilen. Hauptresultat ist eine kurze Liste von

Metriken, die Qualitätsattribute messen, welche für die Langlebigkeit wichtig sind. Wie

eine Machbarkeitsstudie zeigt, können diese Metriken für Teilaspekte von Langlebigkeit

verwendet werden.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - vi - Acknowledgements

Acknowledgements

First I want to thank my advisor, Ao.Univ.Prof. Dipl.-Ing. Mag. Mag.rer.soc.oec. Dr.techn.

Stefan Biffl, for inspiring talks and uncomplicated communication. Furthermore I really like

to express my gratitude to my main contact, Projektass. Dipl.-Ing. Dietmar Winkler, for the

continuous cooperation, his good ideas and guidance.

I thank my parents for their parental care and inspiration. At least equally I thank my

Grandma Ottilie Leskusek, who made my study possible due to her financial support.

I am deeply grateful to my girlfriend and partner Mag.pharm. Ines Raunicher. Ultimately

due to her constant insistence I started my master thesis. Repeated encouragement and

endless patience, when my work faltered, count as her strengths, which at least led to the

end of my studies.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - vii - Danksagung

Danksagung

An erster Stelle möchte ich meinem Betreuer, Ao.Univ.Prof. Dipl.-Ing. Mag.

Mag.rer.soc.oec. Dr.techn. Stefan Biffl, für die anregenden Gespräche und unkomplizierte

Kommunikation danken. Weiters möchte ich meinem Hauptansprechpartner, Projektass.

Dipl.-Ing. Dietmar Winkler, meinen besonderen Dank für die kontinuierliche

Zusammenarbeit, seine guten Ideen und die gute Beratung aussprechen.

Meinen Eltern danke ich für deren elterliche Fürsorge und Inspiration. Zu mindestens

ebenso großem Dank bin ich meiner Oma Ottilie Leskusek verpflichtet, durch deren

finanzielle Unterstützung dieses Studium erst möglich wurde.

Ganz besonders großer Dank geht an meine Freundin und Partnerin Mag.pharm. Ines

Raunicher. Durch ihr stetes Beharren habe ich diese Diplomarbeit letztlich begonnen.

Wiederholtes Aufmuntern und endlose Geduld, wenn die Arbeit ins Stocken geriet, zählen

zu ihren Stärken, die dazu geführt haben, dass ich mein Studium erfolgreich abschließen

kann.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - viii - List of Tables

List of Tables

Table 1 Ranking definition and results... 31

Table 2 Summary of OSS projects analyzed ... 32

Table 3 Metrics Groups with examples.. 34

Table 4 Active tools of A- and B-ranked papers... 38

Table 5 Mandatory tool requirements .. 41

Table 6 Additional tools found ... 42

Table 7 Remaining tools for detailed evaluation .. 43

Table 8 Tool Selection Criteria .. 44

Table 9 Tool Study Results ... 45

Table 10 Selected metrics and tools.. 49

Table 11 Comparison of open source licenses [19] ... 54

Table 12 Most frequently used projects in context of health indicators 58

Table 13 Metrics calculated for Apache HTTPD 2.4.17 ... 62

Table 13 Projects found in SLR... 80

Table 14 Metrics found in SLR .. 83

Table 15 Tools found in SLR ... 90

Table 16 Results of the pre-selection .. 92

Table 17 Tool Selection Scales 1/2 ... 94

Table 18 Tool Selection Scales 2/2 ... 95

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - ix - List of Figures

List of Figures

Figure 1 Position of Process Models in Software Development [32] 6

Figure 2 Waterfall model [24] .. 7

Figure 3 V-Model [25].. 8

Figure 4 Decision gates of the V-Modell XT [26].. 9

Figure 5 Spiral model [28] ... 10

Figure 6 Rational Unified Process [29] .. 11

Figure 7 McCall quality model [30] .. 14

Figure 8 Content of the Work .. 24

Figure 9 ISO/IEC SQuaRE – System/Software Product Quality [1] 26

Figure 10 Ranking all and relevant results... 32

Figure 11 OSS projects types.. 33

Figure 12 Metrics Groups identified... 35

Figure 13 All tool/paper combinations of the SLR.. 37

Figure 14 Different tools identified in the SLR.. 37

Figure 15 Example Kiviat Metrics Graph by SourceMonitor... 50

Figure 16 Apache HTTPD 2.4.17 Kiviat Metrics Graph by SourceMonitor 61

Figure 17 Apache Tomcat 9.0.0.M1 Kiviat Metrics Graph by SourceMonitor 63

Figure 18 Apache Xindice 1.2m1 Kiviat Metrics Graph by SourceMonitor 64

Figure 19 Apache Lenya 2.0.4 Kiviat Metrics Graph by SourceMonitor 65

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 1 - Introduction

1 Introduction

This work presents a case study on the longevity of software projects. It contains a

summary of all the necessary background and all steps that lead to the resulting

framework.

Intended readers are quality manager, project managers, software developers and also

decision makers. A practical understanding of and/or experience in software development

helps reading.

1.1 Methodology

Detailed models of software evolution date back to the 1960’s. As pointed out by Scacchi

there has been a search for process models since the beginning of big software projects

[35].

All Software life cycle models provide a scheme for managing the development of

software systems. A software life cycle model is a description of how software should be

developed [35].

Improving quality is either tried by improving process quality or product quality or both.

Kitchenham and Pfleeger identify five different views of software quality: a transcendental

view (sees quality as something that can be recognized but not defined), user view (sees

quality as fitness for purpose), manufacturing view (sees quality as conformance to

specification), product view (sees quality as tied to inherent characteristics of the project)

and a value-based view (sees quality as dependent on the amount the customer is willing

to pay for it). [36]

They also describe how to measure these views, but also state that “the way we measure

quality depends on the viewpoint we take and the aspect of quality we want to capture.” A

technique like the Goal-Question-Metric can help to identify which metric out of the

captured data from the software’s measurement system is suitable for monitoring and

improving quality. [36]

There exist different quality models, dividing quality into quality characteristics or using

factors. They all try to be easy to understand and to be used for any kind of software.

Section 2.2.1 describes details of three models.

Which quality characteristic is most important and which should be considered depends

on the view port. [36]

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 2 - Introduction

1.2 Definitions

longevity. 1a: a long duration of individual life. b: length of life. 2: long

continuance : permanence, durability1

Though this definition also used by Proenca et al., they state that “essentially, longevity

can be seen as a non-functional quality attribute of an artifact that describes the degree to

which the artifact continues to fulfil its purpose for a certain timespan or as long as a

defined set of conditions holds.” [9]

For the use in the context of software, we can find the following definitions

What is Software Longevity: The life expectancy of software, measured by

various factors among which is its age.2

Again Proenca et al. “define information longevity as the objective that is met if

information artifacts remain fulfilling their intended purpose across time for as long as

needed. On the other hand, systems longevity for an information system can be defined

as the objective that is met if it is possible to manage the system over time so that it

remains fulfilling its intended purpose for as long as needed.” [9]

The term Free Software was introduced by Richard Stallman in 1986 and means

software that the end user is allowed to use (i.e. run), study, share (copy and distribute)

and modify (change and improve). The term “free” is meant as in “free speech”, not as

“free of charge” (gratis) [37]. This definition known as the Free Software Definition is used

by the Free Software Foundation (FSF).

The term Free Software is older than the term Open Source Software, which was

introduced by Bruce Perens for the Open Source Initiative (OSI) stating which software

license fulfils the need of the open-source certification of OSI. This definition was based

on the Debian Free Software Guidelines of the FSF. So despite of fundamental

philosophical differences between the FSF and the OSI there are not so many differences.

Most software license fits both definitions. [38]

Additionally to the advantage of Open Source Software that you can look at the source

code, typical Open Source Projects also provide more information. Usually the source

code repository is accessible, providing not only the source code but also additionally

meta data like author, time and comment. Then for most projects there also exist a bug

1
 http://www.merriam-webster.com/dictionary/longevity

2
 http://www.igi-global.com/dictionary/software-longevity/38782

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 3 - Introduction

tracking system, a mailing list, maybe an internet relay chat and last but not least the

documentation. These data of the software system can be used to calculate metrics.

1.3 Motivation and Problem Definition

Successful software projects need requirements planning [12]. According to Senyard and

Michlmayr successful Open Source projects are built by a small group with traditional

software development and make a transition to a community based development [13]. For

successful operation of a project they also define crucial activities, e.g. a prototype,

modular design, available and working source code, attracting a community and

communication plus other important activities [13]. So they name necessary activities but

not success criteria.

Additionally project success criteria differ depending on the stakeholder [14]. The result of

a successful software project does not necessarily be a good, used piece of software. A

project can be financially successful, but the software is never used. This can be solved

by balancing project attributes responsible for project success [15] – additional to activities

found in [13]. So with attributes it is possible to meet the interests of both the customer

and the company developing the software.

The motivation of this thesis is to find out how to measure the longevity of a software

project/product. The measurements shall not only cover the produced code, but also the

other aspects of a product (help and support, ease of use, features and reliability).

The thesis shall answer, if an information system will still be usable in the future. This

aims at saving time at deciding whether to do a project or not and thus also saves

resources of unsuccessful projects.

Longevity is a topic that is currently not fully addressed [8]. But it is seen as an important

design issue [9].

The problem area is the evaluation of a software project: from static code analysis via

interpreting support efforts to the reason for a wide usage of a certain software product.

This includes all available information about a software project: specifications,

documentation, communication and more – not only the source code itself. All these fields

provided can be analysed for measuring longevity.

With that given problem area we can ask the following key questions:

What makes a (open source) software project so successful, that its

software is used for a long time? How can this longevity be measured

beforehand?

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 4 - Introduction

Answering these questions should lead to results in compliance with the motivation of the

work. The key questions will be used in the Research Issues in chapter 3.

Expected results are quality attributes and metrics, which are used for longevity

measurement of a software project. These findings are used to define the requirements

for metrics and tool selection. A selected set of tools will be included in an evaluation

framework to estimate selected quality attributes, metrics, and key performance indicators

with focus on software project longevity. We evaluate the framework by using selected

projects based on related work and commonly used successful and less successful open

source projects. Main outcome is the evaluation framework and a set of evaluated open

source projects to estimate important longevity attributes.

1.4 Content of the Work

The structure of the work uses its key questions described above.

After this introduction including a detailed problem definition and an overview of the

content of the work the next chapter 2 gives an overview of the Related Work useful for

this thesis. Relevant topics are Process Models in section 2.1, Quality Models in section

2.2 and other Frameworks for Measuring OSS Projects in section 2.3.

Chapter 3 defines the Research Issues based on the already given key questions in

section 1.3 in this chapter. How the research issues are handled is described with the

Solution Approach in chapter 4, which lay out the concept of the work in detail.

In chapter 5 the first part of this work describes the Systematic Literature Review on

Quality Attributes, Metrics and Tools. The Tool as second work part is documented in

chapter 6. The third part of the work is the creation of the Framework for Longevity

Evaluation, which is described in chapter 7. The evaluation of the work is split into chapter

8 containing the Feasibility Study based on Open Source Software and thus containing an

introduction in chapter 8.1 and chapter 9 containing a Case Study of the proposed

framework.

The Discussion of the results in chapter 10 contains also an outlook and potential next

steps that leads to chapter 11 with the Conclusions summing up the complete work.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 5 - Related Work

2 Related Work

Longevity is a topic that is currently not fully addressed [8], but it is seen as an important

design issue [9]. The longevity framework presented in this work wants to measure

longevity. This can be done by using project success criteria [14] and project attributes

[15].

Ongoing work show that the quality attributes of ISO SQuaRE [1] can be brought in

relation with the four topics of information longevity [8]. The longevity framework uses that

relation.

Another way of measuring project success is found in the work of Wahyudin et al. who

introduced “health indicators” to monitor the status of open source web engineering

projects [10]. Based on this work Sunindyo et al. provide a framework for analysing OSS

project health with heterogeneous data sources and evaluate the framework for a set of

different OSS projects [11].

Important parts of the theoretical background are process models and quality models as

they set the basis and environment for every software project.

The longevity framework is evaluated using related work on health indicators for

measuring OSS projects Apache HTTPD and Apache Tomcat.

In related work also other frameworks for measuring OSS projects are discussed.

2.1 Process Models

A central tool in software product development is the software development process. Each

company has its own practices, but usually the development follows a software process

model.

Let us define the term process model first. To give a short definition from literature: a

process models is “a simplified representation of software process, presented from a

specific perspective.” [31]

“A process model determines the sequence of phases and milestones in a project.

According to the sequence can be distinguished between sequential and iterative process

models. In sequential process models is a phase (which is in such models usually the

same as a production step) run through once. The start and end of each phase are

defined by milestones. In iterative process models are phases run through several times,

to gain a higher product maturity.” [253]

3
 Translated from German by the author

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 6 - Related Work

Process models are important for quality and thus for longevity, as they provide

guidelines, concrete instructions, sample documents and checklists helping the developer

to produce high-quality and well-documented code.

We notice a first classification into sequential (i.e. linear) and iterative (i.e. cyclic) process

model types here. This classification is extended by light weight process models.

According to Elting and Huber software process models can be classified, how far they

cover the full scope and how detailed they support the processes within the project. To

distinguish they suggest the following questions:

• Supports the process model hints to adapt it to concrete projects (tailoring)?

• What is all part of the process model?

• What are the project results of the process model?

• Does the Process Model contain components (e.g. report templates) to document

the results?

• How detailed is the support of the process model (e.g. estimation methods)?

Considering this questions process models cover a field that reaches on the one hand

from a simple software development support to an universal model and on the other hand

from a “prescription of a rough behaviour pattern” to “exact rules” [32]. The position and a

possible content of a software process model are shown in Figure 1.

Figure 1 Position of Process Models in Software Development [32]

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 7 - Related Work

The reason why process models are of special interest is simple. They provide another

form of knowledge and thus lead to improvement. While light weight process models (e.g.

SCRUM) just define responsibilities (roles), other (e.g. the V-Model and V-Modell XT)

define who has to do what and when. So a process model description also often contains

guidelines, concrete instructions, sample documents and checklists. By continuous

adaption of this assistance improvement is gained.

2.1.1 Linear Process Models

Linear Process Models are sequential process models. They have in common that it’s not

possible to step back from a later phase to a previous phase. A popular example is the

waterfall model as shown in Figure 2.

Figure 2 Waterfall model [24]

Both the V-Model and its successor the V-Modell XT are not strictly sequential process

models, because they do not force an inspection and approval at the end of each phase

and because a step back is possible (though not initially desired or even planned).

The V-Model can be seen as an extension to the waterfall model by testing after each

phase as shown in Figure 3. The phases after the implementation are bent upwards to

form a V shape. The tests can also be designed at the start of each phase.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 8 - Related Work

Figure 3 V-Model [25]

A special variant of the V-Model approach is the German V-Modell 97. The V-Modell 97 is

the old installation standard of the V-Model concept. It was replaced in February 2005 with

the first release of the V-Modell XT. Both versions are a development standard for IT

system development of federal agencies of the Federal Republic of Germany. The V-

Modell 97 is not only a software development model, but also accounts for the areas

project management, quality management and configuration management. Therefore it

contains the four sub models system development, quality assurance, configuration

management and project management. Each of these sub models are designed in the V

shape as shown in Figure 3. The real development activities are done in the sub model

system development, which itself distinguishes between software and hardware

development and is described from a functional point of view. The model describes who

has to do what and when, but the focus lies on the activities and their completion.

In the V-Modell XT the completion of a work product (or formally: a reached project

progress stage) is called a decision gate. Figure 4 shows possible decision gates in the

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 9 - Related Work

known V shape coloured in project execution strategies. It also shows nicely the extension

of the V-Modell 97 in all directions of the V shape. A project execution strategy suits the

project type (one of system development project (acquirer), system development project

(supplier), system development project (acquirer/supplier) - acquirer and supplier within

the same organization (without contract) or introduction and maintenance of an

organization-specific process model) and shows among the new integration of the

acquirer also the possibility for tailoring in the V-Modell XT.

Figure 4 Decision gates of the V-Modell XT [26]

2.1.2 Cyclic Process Models

In response to the weaknesses of the waterfall model, iterative and incremental software

development processes emerged. The work of a phase is split into iterations, which

usually have the same structural design. The spiral model by Boehm [28] shown in figure

5 is such an iterative model.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 10 - Related Work

Figure 5 Spiral model [28]

This incremental development is also an essential part of the Rational Unified Process

and in agile software development. Such process models for quick and not document

orientated software development often used for smaller projects are discussed in the next

section 2.1.3.

The spiral model was introduced in 1986 by Barry Boehm. It is not the first iterative

approach, but the first to combine elements of waterfall model and prototyping. It was

designed for big projects with an iteration lasting between 6 and 24 months. “It

incorporates many of the strengths of other models, while resolving many of their

difficulties.” [28] One major new feature is the risk analysis, but it lacks support for

contracts, risk evaluation and a mechanism for a consistent work context. The number of

iterations is also fixed, but the spiral model is very helpful to understand the Rational

Unified Process.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 11 - Related Work

Figure 6 Rational Unified Process [29]

The Rational Unified Process (short RUP) is a framework created by Rational Software,

which is now a division of IBM. They evolved an iterative software development process

framework of best practice approaches. Figure 6 shows the effort for the disciplines at any

iteration. RUP provides a tailorable process that guides development with detailed

description of activities and also sample artifacts. Additionally tools help to automate the

application of the process and to adapt the process and tools to own needs.

A more detailed description is provided at the Rational Unified Process itself. It contains

also a list of four “highlights”. [29]

2.1.3 Light Weight Process Models

The representatives of linear and cyclic process models focus strongly on process and

documentation. Compared to these heavy weight process models agile software

development tries to reduce overhead like e.g. unnecessary analysis or documentation

and focuses on the development and interaction. The critique of the heavy weight process

models, described in previous sections 2.1.1 and 2.1.2, summoned in the “Manifesto for

Agile Software Development”:

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 12 - Related Work

“We are uncovering better ways of developing software by doing it and helping others do

it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.”

[33]

Agile approaches to software development are a later idea of handling software

development and thus fairly new. The beginning of the agile paradigm marked the

introduction of Extreme Programming by Beck [34]. With the following software

development process models using an agile approach like Agile Software Development

(including Agile Modeling and Agile Database Techniques), Crystal, Dynamic Systems

Development Method (DSDM), Extreme Programming (XP), Feature Driven Development

(FDD), Lean Software Development (LD), Rapid Application Development (RAD), Scrum

and last but not least Test Driven Development (TDD) the agile paradigm is no longer a

hype or new trend. This work discusses just a few of this plenty of available models,

namely Extreme Programming and Test Driven Development.

Extreme Programming (XP) is an agile method for software development. It needs a

great deal of discipline during execution and is used most often for small and medium

sized projects. This approach to software developments uses stories defining the

requirements for short iteration cycles. The code will be written using Pair Programming,

(automated) tests performed all the time and with as few as necessary documentation.

Another important distinction from linear process models is that architectural changes are

welcomed and shall be performed using refactoring as adjustments are necessary for a

new version [34].

Test Driven Development (TDD) is very similar to XP. It may also use stories and the

technique Pair Programming; but the principle of TDD is to write an automated test first.

This way or work does not conflict with XP at all. Focusing on tests, larger systems are

designed from the start for testability by creating small, testable and preferable louse-

coupled code units.

A good testable code, which should always be the result of TDD, has a higher quality

code changes that produce errors should be impossible, if the tests covered all cases. A

software containing such code and especially the knowledge of such completely test

covered code raises the longevity of a software.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 13 - Related Work

2.2 Quality Models

Process models are supported by quality models and organisational processes.

2.2.1 Quality Assurance Models

A lot of quality models for various purposes exist.

One important quality model is the ISO 9000 family of quality management systems,

which focuses on quality in organizations to meet the needs of all stakeholders while

meeting regulatory requirements relating to a product [49]. It can be used quite universal.

The program Capability Maturity Model Integration (CMMI) is a standard focusing more

on software development [47]. The CMMI defines the following maturity levels for

development: Initial, Managed, Defined, Quantitatively Managed and Optimizing. Usually

like with ISO 9000 a company has a certification for reaching a certain CMMI level [47].

Other quality models put more a focus on process improvement like ISO/IEC 15504, also

known as Software Process Improvement and Capability dEtermination (SPICE). It is

the reference model for maturity models similar to CMMI and aims on assessing an

organization’s capability [48].

For this thesis we are more interested in the quality of a software product during the whole

engineering process.

Kitchenham and Pfleeger describe three quality models for software engineering: “One of

the earliest quality models was suggested by Jim McCall and colleagues. […] The model

defines software product qualities as a hierarchy of factors, criteria, and metrics.” Factors

are influenced by multiple criteria. “A quality factor represents a behavioral characteristic

of the system. A quality criterion is an attribute of a quality factor that is related to software

production and design. A quality metric is a measure that captures some aspect of a

quality criterion. Thus, the 11 quality factors contribute to a complete picture of software

quality. One or more quality metric should be associated with each criterion.” [36]

So the McCall quality model was the first influential model [30]. We will find portions of

this model further on in later published quality models. Also notable is the connection to

metrics shown in Figure 7.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 14 - Related Work

Figure 7 McCall quality model [30]

Figure 7 also lists nicely all quality factors and quality criteria of the McCall quality model.

The second quality model mentioned by Kitchenham and Pfleeger is the ISO 9126 quality

model. It is special part of the ISO 9000 family addressing software quality. Instead of

quality factor the term quality characteristic is used. “The standard recommends

measuring the characteristics directly, but does not indicate clearly how to do it. Rather,

the standard suggests that if the characteristic cannot be measured directly (particularly

during development), some other related attribute should be measured as a surrogate to

predict the required characteristic. However, no guidelines for establishing a good

prediction system are provided.” [36]

The ISO 9126 quality model is in the meantime out of date and was replaced by ISO/IEC

25000 SQuaRE, described in section 4.1 within the identification of quality attributes in the

solution approach.

Besides all similarities of the McCall quality model and the ISO 9126 quality model there

are several noteworthy differences: First the ISO 9126 model uses a different quality

framework and terminology [36]. Second, as mentioned before, it uses the term “quality

characteristics” instead of quality factor. Third, it also uses sub-characteristics to refine

characteristics and most noteworthy the ISO 9126 model is completely hierarchical. So

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 15 - Related Work

compared to the McCall quality model in Figure 7, which for example links the quality

criteria Generality to both quality factors Flexibility and Reusability, for the ISO 9126

model an ambiguity of sub-characteristics to quality attributes is not possible. “Also, the

sub-characteristics relate to quality aspects that are visible to the user, rather than to

internal software properties. Thus, the IS0 model reflects more of a user view, while the

McCall model reflects more of a product view.” [36]

Both the McCall and the ISO model share common problems: They lack a rationale for a

choosing their factors / characteristics and also for the division of sub-characteristics to

main-characteristics. This makes it impossible to check the model for completeness or

consistent definition [36]. Additionally there is no description of the metrics (or indicators

called in the ISO 9126 model). “In particular [...] there is no means for verifying that the

chosen metrics affect the observed behavior of a factor. That is, there is no attempt to

measure factors at the top of the hierarchy, so the model is untestable.” [36] The problem

of main-characteristics not being testable still also accounts to ISO SQuaRE, but later

research showed that metrics can be linked to quality attributes [46]. This is important for

this work, because we need a linkage.

The third quality model mentioned by Kitchenham and Pfleeger is an approach by Geoff

Dromey:

“Geoff Dromey has developed a model that addresses many of these problems. [...]

Dromey believes that it is impossible to build highlevel quality attributes such as reliability

or maintainability into products. Rather, software engineers must build components that

exhibit a consistent, harmonious, and complete set of product properties that result in the

manifestations of quality attributes. […] Dromey’s approach is important because it allows

us to verify models. It establishes a criterion for including a particular software property in

a model (that is, that a quality defect can be associated with the concept) and a means of

establishing when the model is incomplete (that the model cannot classify a specific

defect).” [36]

An overview of the quality factors / main characteristics used in the models (high level

quality attributes) is given by Suman and Wadhwa [45], who also had a look at other

quality models. Efficiency, Maintainability and Usability are present in almost all quality

models. Not that their comparison does not contain all quality attributes present in a

quality model, e.g. as sub-characteristics in ISO SQuaRE.

It is also important to look at the business value of quality: maybe a not fully working

software product is also good enough.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 16 - Related Work

We like to end the definition of software quality keeping in mind the non-definition of

Kitchenham and Pfleeger:

“Quality is a complex concept. Because it means different things to different

people, it is highly context-dependent. Just as there is no automobile to

satisfy everyone’s needs, so too there is no universal definition of quality.”

[36]

2.2.2 Health Indicators

Originally the term health indicator comes from pulbic heath care. In the use of software

development health indicators are special attributes of quality, that represent the state of a

software project.

A way of measuring project success is found in the work of Wahyudin et al. who

introduced “health indicators” to monitor the status of open source web engineering

projects [10].

Based on this work Sunindyo et al. provide a framework for analysing OSS project health

with heterogeneous data sources and evaluate the framework for a set of different OSS

projects [11].

The SLR for creating the longevity evaluation framework uses this term to search for

successful software projects.

The longevity framework is evaluated using the following related work on measuring OSS

projects:

2.2.2.1 Apache HTTPD

The Apache HTTP Server project is an open source web server started in 1995. It is C-

based and provides web pages, with plug-ins also pages written PHP and much more.

The software is licensed under the Apache License and runs on almost all platforms.

As an open source project it is developed and supported by an open community under the

lead of the Apache Software Foundation.

Apache can really be named a user-driven development, as the developers of the system

are also its biggest users. The extensible design and modular API fits the needs of various

users. [20]

All communication is available to the public. With a huge community most questions are

answered by other users. If a bug is found in the software, a publically available patch to

fix the problem is usually generated within a week. [20]

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 17 - Related Work

According to Open Hub4 Apache HTTP Server is a very highly active, well established

project with a very large development team (30 developers with commits in the last year).

Apache HTTPD is a good analysed healthy OSS project with different data sets from

different authors of metrics by [2], [3], [4] and [18].

2.2.2.2 Apache Tomcat

The Apache Tomcat project is an open source web server started in 1999. It is a Java-

based web application container that runs Java web applications: Servlet and JavaServer

Pages (JSP). Originally Apache Tomcat was created as a subproject of Apache named

Apache-Jakarta, but due to its popularity, it is now hosted as a separate Apache project.

As an open source project it is supported and enhanced by volunteers from the open

source community. [21]

The web server is very stable and has all features of a commercial web application

container. It also has some extra features that extend servlet container (named Catalina),

for example a management application [21].

Major versions on Apache Tomcat go along with versions of the Java Servlet specification

(Java Servlet API). The actual version 8.0 supports the Servlet API 3.1 and the

corresponding JSP 2.3 version.

According to Open Hub5 Apache Tomcat is a very highly active, well established project

with a large development team (10 developers with commits in the last year).

Apache Tomcat is a similarly good analysed OSS project [2], [6] and [7].

2.3 Frameworks for Measuring OSS Projects

A directly related work to the longevity framework measuring industry and OSS projects

are the frameworks “evolizer” and “changedistiller” [5] as well as “Alitheia Core” [42],

“OSSMeter” [43] and the Open Engineering Service Bus (OpenEngSB) [44]. They will be

used for comparison with the proposed longevity framework and we want to give an

overview here.

Evolizer [5] is an eclipse plug-in for software evolution analysis. The implementation uses

Hibernate to build a meta-model of the analyzed software. The current implementation

provides support for importing and representing data from the version-control systems

CVS and Subversion, the bug tracking system Bugzilla, Java source code and integrates

4
 https://www.openhub.net/p/apache/

5
 https://www.openhub.net/p/tomcat

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 18 - Related Work

the meta-models of it. The development seems to have stopped and the project website is

no longer online, but at least the source code of the project can be found on bitbucket6.

For analysis the ChangeDistiller-algorithm seems to be used. It extracts fine-grained

source code changes between subsequent revisions of Java classes. The algorithm does

tree differencing and works on abstract syntax trees. Although the research project

creating ChangeDistiller has stopped, the project can be found on bitbucket7, but it does

not show much activity.

Alitheia-Core [42] is a platform which aims at enabling software engineering research

targeting OSS projects. Alitheia-Core provides support for processing source code

repositories through an API. Alitheia-Core is designed to use OSGi. The platform has just

a few metrics implemented and lacks metrics related to mailing list and bug tracking

systems. It seems to be abandoned, as the website does not work and also the code

found on GitHub8 does not show activities.

OSSMeter [43] is a cloud-based platform that “extends the scope and effectiveness of

OSS analysis and measurement with novel contributions on language-agnostic and

language-specific methods for source code analysis, but also proposes using state-of-the-

art Natural Language Processing (NLP) and text mining techniques such as

question/answer extraction, sentiment analysis and thread clustering to analyse and

integrate relevant information extracted from communication channels (newsgroups,

forums, mailing lists), and bug tracking systems supporting OSS projects, in order to

provide a more comprehensive picture of the quality indicators of OSS projects, and

facilitate better evidence-based decision making and monitoring. OSSMETER also

provides metamodels for capturing the meta-information relevant to OSS projects, and

effective quality indicators, in a rigorous and consistent manner that enable direct

comparison between OSS projects.” [43] All these features sound very interesting, the

website is running, but holds very few information about the project and announces a beta

testing phase since February 2015. It looks like another EU-sponsored research program

that is abandoned after the project end, as the code can be found on GitHub9 and does

not show activity either.

6
 https://bitbucket.org/sealuzh/tools-evolizer/

7
 https://bitbucket.org/sealuzh/tools-changedistiller/

8
 https://github.com/istlab/Alitheia-Core

9
 https://github.com/ossmeter/ossmeter

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 19 - Related Work

The Open Engineering Service Bus (OpenEngSB) [M38], [44] is a platform for tool

integration. It puts more focus on a graphical workflow between the supported tools Mail,

Twitter, Facebook, JIRA, Git, GitHub, Prom, Trac and maven. It is a well documented,

modular system based on OSGi, that can be controlled via ssh console using Apache

Karaf. In contrast to typical Enterprise Service Bus approaches existing workflows can

easily be adapted to software changes due to the domain-based integration model. Thus,

OpenEngSB enables transparency in dynamic development processes too and frees the

engineers' time for productive work. Like with the other related projects, on the website

openengsb.org, JIRA10 and in the code11 no activity is seen for more than a half year.

To sum it up: all similar frameworks for measuring OSS projects seem to be dead. The

only active project is FLOSSmole12 [M22], a tool only for data retrieval, seems hard to

interact with. Though source code is available on GitHub13, it does not look like an easily

extendable framework.

10
 http://issues.openengsb.org/

11
 https://github.com/openengsb/openengsb

12
 http://flossmole.org/

13
 https://github.com/FLOSSmole

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 20 - Research Issues

3 Research Issues

The key questions defined in section 1.3 of the introduction give the inspiration of this

work: We are interested in success factors of software projects that have an influence on

people using the software for a long time. Optimally, we want to measure software product

longevity right from the start of a project, not in the end when all work is done.

That summarizes what this work should answer, but defined in more detail it specifies the

research issues of this work:

RI.1: What is the longevity (project health) of a software project?

If one really knows about the health status of a software project, it would be easy to

decide whether to use it or search for an alternative project. The longevity of a project also

depends like the health status on the quality of the project, but it additionally focuses on

the transition of project quality though changed perception of it in the future [9].

The knowledge about project health is highly critical for decision makers, because they

have a bigger chance of coming to a decision. Also project managers should be interested

in improving the longevity of a project, because it makes the product more attractive and

thus valuable.

Without a detailed analysis a health status or even a longevity outlook will just be a rough

estimation. The other research issues aim to reduce this uncertainty.

RI.2: What are the quality attributes (health indicators) of software?

The search for project success criteria [14] begins with identifying the relating project

attributes [15]. To find out what makes a software project successful, it is necessary to

identify what is different to other projects.

This step is necessary for quality assurance and academic researchers, as it provides the

theoretical background for comparing software projects in a systematic way and also

provides the link to a quality model.

RI.3: What is the quality of the code produced in a software project?

There exist multiple ways of assessing the correctness and quality of software: various

types of tests, code reviews, inspections etc. [25]

The answer to this research issue is one of the main questions of quality assurance, if no

static code analysis tool is used. Using a static code analysis tool this issue can be

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 21 - Research Issues

answered calculating metrics like the percentage of all code lines covered by well written

tests.

Code quality itself will vary in the eye of the beholder, but using tools should give

comparable results. The numbers calculated are interesting most of all for quality

managers but also for developers, because they provide insight/feedback that would have

to be guessed otherwise.

RI.4: How to measure important quality attributes (metrics) in context of

longevity/project health?

We need metrics for measuring the longevity attributes.

Assigning numbers and symbols of project attributes rely on internal attributes (i.e.

measurements) that can be computed directly [15]. These computed measurements are

also called software metrics; in this work just metrics.

The resulting numbers of the metrics without context are just an intermediate result that is

not much of use. But put into relation with previous runs on older versions of the software

project or other software projects, a quality manager can make interesting findings.

RI.5: Which tools help measuring software longevity?

As the prediction of software longevity/project health is needed from the start, an objective

opinion can be only calculated using tools.

The automatic and tool-supported use of metrics on a software project is of most interest

for the quality assurance, but the numbers are even more helpful for software developers,

as they get some reliable and even more important comparable numbers of their code.

RI.6: How can tools be combined to a usable framework?

Each tool has its strengths in calculating certain metrics. A combination of tools leads to a

variety of independently calculated metrics and the comparison of the results helps to

verify the metrics.

The framework for longevity is the goal of this work and should be interesting most of all

for decision makers (investors), but also for project managers, quality managers or

developers, because of all the advantages named in the above research issues and

because a framework combines many metrics and tools making it even more fail-proof. To

know an indication about the project health and thus the estimated longevity of the project

makes planning and decision making easier.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 22 - Research Issues

The research gap is mainly the systematic focus on software longevity, resulting in a

direct link of quality criteria via metrics to tools of a framework.

The research issues are covered by the results of the work.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 23 - Solution Approach

4 Solution Approach

This chapter is about the profound methodological approach for measuring the longevity

of a software project/product.

Based on the research issues (see previous chapter 3), the tasks for establishing a

framework evaluating longevity of a software project are:

• Design a process for software project evaluation with respect to systems longevity

• Identify quality criteria (project attributes) to assess project and product longevity

and help identify potential risks

• Identify metrics for measuring for these quality criteria

• Identify tools for calculating these metrics

• Aggregate these tools to a framework: integrate selected tools, i.e. making them

work together)

• Test the framework

• Find well analyzed Open Source Software (OSS) projects, run the framework on

them too and compare the results

These tasks represent the content of the work and are visualized in Figure 8.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 24 - Solution Approach

Figure 8 Content of the Work

As shown in Figure 8 above, the tasks are grouped to three parts covering the research

issues:

1. “Identify & Select”: Analysis and identification of software quality attributes for

longevity

Based on software quality attributes defined by ISO SQuaRE [1] we want to know

what makes a (open source) software project successful. We identify success

criteria from literature by doing a systematic literature research (SLR). During that

SLR we also identify metrics and tools and select those usable for longevity.

So this part of the work addresses research issues 1, 2 and 3.

The results of this part are a set of quality criteria that assess project and product

longevity and a set of metrics and tools to measure the longevity using quality

criteria.

2. “Combine & Build Framework”: Aggregate and select the identified tools and build

a framework for quality evaluation

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 25 - Solution Approach

Additional to the identified quality attributes we need a process supported by tools.

This part of the work designs a process for software project evaluation with respect

to systems longevity. Based on the identified metrics for the quality attributes and

tools for measuring these metrics, we integrate selected tools into a framework

(i.e. making them work together).

The second part of the work addresses research issue 4 concerning the selection

of tools and describes all steps of building the framework.

The result of this part is a framework (set of tools) that is capable of predicting the

longevity or risk of a project.

3. “Test & Apply”: Evaluation of the quality evaluation framework

We find out, if the built framework is valid and predicts correct results.

Therefore we initially evaluate the framework (Feasibility Study) and use well

analyzed Open Source Software (OSS) projects, run the framework on them too

and compare the results (Case Study).

The result of this part is a test of the framework by comparing with previous results

from related work (“learning from the past”) and by applying to some software

projects (“predicting the future”).

After describing the used quality model, this chapter describes the concept of the

framework plus the concept of its evaluation.

4.1 Identification of quality attributes

For estimating longevity of a software project we need to show which quality criteria are

related. This fully answers RI.2 asking for quality attributes of successful software [14], but

it also sets the basis for answering RI.1 about the longevity of a software project.

The quality criteria for designing the evaluation of the process are taken from ISO

SQuaRE (the ISO/IEC 25010 Standard from 2011) [1]. The longevity framework uses the

System/Software Product Quality. This is an overview of the concepts the framework for

measuring project and product longevity is built on.

ISO Square is a standard for System and Software Quality Requirements. It defines

software quality using eight main characteristics and 31 sub-characteristics shown in

Figure 9:

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 26 - Solution Approach

Figure 9 ISO/IEC SQuaRE – System/Software Product Quality [1]

ISO SQuaRE is the successor of the ISO 9126 standard from 1992 [39], which did not

contain the characteristics Compatibility and Security. Also some sub-characteristics

changed; for longevity for example relevant is the new sub-characteristic Modularity that

was added to Maintainability [45]. ISO 9126 itself derives of the McCall model [30]. Due to

limitations of ISO 9126 it was revised and though ISO SQuaRE now also “defines a

framework to specify and evaluate software quality” [22], direct measuring of the attributes

is still not easy.

The quality attributes of ISO SQuaRE provide the division we use for linking metrics and

tools to quality. Thus the main characteristics and their sub-characteristics are

enumerated here. Instead of the term sub-characteristics we use the term quality attribute.

For every quality attribute ISO SQuaRE gives a definition, like the cited definition of the

main characteristics of System/Software product quality [1].

Functional Suitability is the “degree to which the software product or system provides

functions that meet stated and implied needs when used under specified conditions” [1]

and divides into: functional completeness, functional correctness and functional

appropriateness. So this is mainly about functional requirements. A long-living software

should comply with at least most if not all of the users’ feature requests to it, resulting in

the requirements of the software.

Performance efficiency is defined as “performance relative to the amount of resources

used under stated conditions” [1] and contains the quality attributes time behaviour,

resource utilization and capacity.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 27 - Solution Approach

Compatibility according to ISO SQuaRE is defined as “degree to which a product, system

or component can exchange information with other products, systems or components

and/or perform its required functions, while sharing the same hardware and software

environment” [1]. It is divided into co-existence and interoperability.

Usability, defined as “degree to which a product or system can be used by specified users

to achieve goals with effectiveness, efficiency and satisfaction in a specified context of

use” contains the quality attributes appropriateness recognisability, learnability,

operability, user error protection, user interface aesthetics and accessibility. Especially the

use interface aesthetics are not all easy to measure.

Reliability is sub-divided into maturity, availability, fault tolerance, software faults and

recoverability.

Security lists confidentiality, integrity, non-repudiation, accountability and authenticity as

its noteworthy quality attributes.

Maintainability, defined by ISO SQuaRE as “degree of effectiveness and efficiency with

which a product or system can be modified by the intended maintainers” [1], is sub-divided

into: modularity, reusability, analysability, modifiability and testability. These quality

attributes are most relevant for software longevity. [8]

Portability is defined as “degree of effectiveness and efficiency with which a system,

product or component can be transferred from one hardware, software or other

operational or usage environment to another” [1]. It is sub-divided into adaptability,

installability and replaceability. Besides of installability these quality attributes are very

important for longevity.

The comprehensive categorization of quality attributes into these main characteristics

makes it easier to focus on a related issue and avoids overlooking other important issues

[22].

4.2 Concept of the Framework for Measuring Project Longevity

The methodological approach for creating a creating a framework to evaluate project

longevity consists of three parts:

1. SLR on project health

2. Tool selection process

3. Combination of selected tools

A systematic literature research (SLR) will find software projects that are successful

and thus showed a good health. We plan to analyze the papers found in the SLR further

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 28 - Solution Approach

to give an overview of the examined (open source) projects. During that scanning we also

note the metrics and tools used.

The tools selection process takes all tools found in the SLR, adds commercially

available tools for analyzing software or calculating metrics and finds the most suitable

tools for building an evaluation framework.

The evaluation framework is planned as an aggregation of all available metrics via

combining all selected tools into a framework. It combines the selected tools to a

framework and uses metrics, which are available in at least two tools and have a relation

to a quality attribute. The goal of the framework is simply to provide metrics associated to

quality attributes from ISO SQuaRE.

We plan to find out the quality attribute addressed by a metric by comparison with the

quality attribute definition of ISO SQuaRE. First by matching the metrics definition and the

definition of its measures, second by matching the results to ISO SQuaRE using it’s

distinction of main and sub characteristics. Moreover we can also match the metrics by

the way the author of a paper mentioning the metrics sees it.

Each metrics used in the evaluation framework will list its linked quality attributes. This

linking is based on identified quality attributes from ISO SQuaRE in literature [46].

As we know from the SLR which metric is used to describe healthy/longevity projects, we

can make a list of quality attributes affecting that metric and thus can answer RI.2 that

wants to know which quality criteria are related to the longevity of a software project. How

to find out which quality attributes are most important for longevity shows an in-depth

analysis of Information System Longevity aspects [46].

4.3 Concept for Evaluation of the Framework

The methodological approach for testing the framework consists of a feasibility study and

a case study.

The Feasibility Study shall include:

1. Testing/Training the framework: Apply the metrics of the framework to OSS

projects

a. an active (healthy) OSS project

b. an inactive (dead) OSS project

The aim of this first step is to see if the tools and metrics work out in practice with a

(OSS) project.

2. Comparing the testing/training results with findings from the related work

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 29 - Solution Approach

The aim of this second step is to verify the results of the framework with findings

from related work. Of most interest are papers that also give the values of the

metrics they calculated, because the feasibility study shall show if and how good it

is possible to compare these values with values by the framework.

The result of this part is a test of the framework by comparing with previous results from

related work (“learning from the past”).

The Case Study shall include testing/Training the framework: Apply the metrics of the

framework to

a. other active OSS projects

b. industry projects

The aim of this first step is to see if the tools and metrics work out in practice with a

(OSS) project.

The result of this part is a test of the framework by applying to some software projects

(“predicting the future”).

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 30 -Systematic Literature Review on Quality Attributes, Metrics and Tools

5 Systematic Literature Review on Quality Attributes, Metrics

and Tools

A systematic literature research (SLR) on health indicators for OSS projects is the first

part of the work:

1. Identifying metrics from SLR

a. Match metrics to different quality attributes from ISO SQuaRE [1]

2. Identifying tools from SLR

This chapter describes the results of the SLR.

5.1 Systematic Literature Research

The goal of this systematic literature research (SLR) is to find software projects that are

successful and thus showed a good health. We are interested in related work, because in

most cases the authors give arguments for a good or bad health status of a project. These

health indicators found in literature answer RI.1 by showing the project health of analyzed

projects. Additionally, the indicators found can be related to quality criteria answering RI.2.

Additionally the authors also often name the metrics and sometimes the tools they used

for interpreting a health indicator. We use their findings to address RI.4 and RI.5.

Based on previous work on Health Indicators [10] and [11], we executed a SLR in the

bibliographic database Scopus14 by using the following search string

Search string for Health Indicators: < TITLE-ABS-KEY("PROJECT HEALTH" AND

"SOFTWARE") AND SUBJAREA(COMP OR ENGI) >

This advanced search only returned 23 results, which is actually not a high number.

First we checked the results for relevance, i.e. if the results were out of scope and e.g. not

concerning software development. A first check based on the title and abstract; a second

in detailed analysis of the content.

During reading the resulting literature, we checked if each work described (i.e. named

used) metrics and projects analyzed. Of special interest were open source software (OSS)

projects, because it is fairly easy to get its data and to verify those results. For all relevant

14
 https://www.scopus.com/

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 31 -Systematic Literature Review on Quality Attributes, Metrics and Tools

papers we looked for the mentioned data sources, the approach of the paper, the

described metrics and tools as well as the OSS projects under investigation.

Eight out of the 23 resulting papers were out of scope and six were also not relevant,

because they mentioned neither metrics nor OSS projects. Including two papers without

full text available and two duplicates, that are 18 out of all results, little more than 78% of

the results were not usable.

Thus in a second search iteration (second level search) we scanned the references of the

relevant papers, that had a promising title, recursively and added them to the publication

list. This way we got additional 59 papers, of which only 10 are not relevant.

Based on this information we rated the papers using the scoring shown in following

Table 1 with the given results:

Table 1 Ranking definition and results

Ranking Meaning # of Papers %

A
Pick: Relevant well written paper with well

documented measurements of OSS projects
6 7,32%

B
Relevant paper with well documented measurements

of OSS projects
10 12,20%

C
Relevant paper with a sound approach analyzing

some OSS projects
15 18,29%

D
Relevant paper analyzing some OSS projects (no

measurements!)
16 19,51%

E

Relevant good written paper with well documented

measurements, but without OSS project links (no

trace possible!)

7 8,54%

F Out of scope 23 28,05%

Others Duplicates or no full text available 5 6,10%

Sum 82 100%

Figure 10 visualizes the ranking of the papers found in the SLR:

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 32 -Systematic Literature Review on Quality Attributes, Metrics and Tools

Figure 10 Ranking all and relevant results

The left shows the distribution of all 82 papers found, while the right shows the ranking of

only the 54 papers relevant for further research. The difference and distribution is

interesting, because it has an impact on the retrieval of metrics and tools.

Altogether we identified 59 different OSS projects. A summary is given in Table 2, while

the full list is given in the appendix.

Table 2 Summary of OSS projects analyzed

Project Type Projects # of Papers %

Apache

Ant, Cocoon, Excalibur, HTTPD, Jakarta,

Lenya, Log4J, Lucene, MyFaces, Ode,

OJB, OpenJPA, POI, Roller, Slide, Struts,

Tomcat, Woden and Xindice

53 39,26%

cross-project 11 8,15%

DBMS HSQLDB, MySQL and PostGreSQL 5 3,70%

Industry 4 2,96%

Operating System
Fedora Linux, FreeBSD, Linux, OpenBSD,

RedHat Enterprise Linux and SUSE Linux
10 7,41%

Programming Per and Python 7 5,19%

6
7%

10
12%

15
18%

16
20%

7
9%

23
28%

5
6%

A

B

C

D

E

F

Others

6
11%

10
19%

15
28%

16
29%

7
13%

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 33 -Systematic Literature Review on Quality Attributes, Metrics and Tools

Language

Special Purpose

Tools

ArgoUML, Azureus, BIND, CMS,

CodeCrawler, Cultivate, Eclipse,

Evolution, gcc, Ghostscript, Gnome,

Gutenprint, JBoss AS, jEdit, Jfreechart,

Jgit, JUnit, KDE, Mozilla, NetBeans,

OpenOffice, Sendmail, Squirrel,

StarOffice, Xdoclet and XFree86

34 25,19%

None 11 8,15%

Sum 135 100,00%

Figure 11 shows which OSS projects of the SLR are best analyzed:

Figure 11 OSS projects types

53

40%

11

8%
5

4%

4

3%

10

7%

7

5%

34

25%

11

8%

Apache

cross-project

DBMS

Industry

Operating System

Programming Language

Special Purpose Tools

None

This shows that in literature the OSS projects are not equally good analyzed. Some

projects receive a lot of attention, which might also be interpreted as an indicator of good

health of that software project.

5.2 Metrics

As defined in RI.2, which sees the need for metrics to calculate quality attributes, the

search for metrics is a goal of the work, as enables automation.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 34 -Systematic Literature Review on Quality Attributes, Metrics and Tools

Based on the SLR on health indicators from section 5.1 we also analyzed the metrics

identified in the papers. There are plenty of suggested metrics (altogether 115 different,

see Table 15 in the appendix for a full list) in the 54 relevant papers, but it was possible to

group the found metrics. Table 3 shows the classification to different kind of metrics and

some examples of metrics identified by the SLR.

Table 3 Metrics Groups with examples

Classification Examples of suggested metrics

of

Papers %

activity metrics Developer Contribution Pattern (Number of SCM

Commits/Number of Email Conversation, Number

of Defect Status Changes) [M1],

Number of Active Contributors [M32],

Responding Speed to Bug Reports [M21],

Service Delays on Open Issues [M34]

23 16,55%

code size

metrics

KLOC/time period added [M32],

Number of Administrators [M36],

Number of CVS commits [M36],

Number of Developers [M36]

21 15,11%

comments

metrics

Comment Frequency [M37],

Proportion of Code to Comments [M16]
8 5,76%

communication

metrics

Communication and Use Intensity (number of

downloads compared to mailing list activity) [M2],

Total Communication Metric (Number of

communication artefacts / time) [M28],

User Coupling Metric (Communication graph

based on mailing list) [M28]

9 6,47%

defect/quality

metrics

Bug History Metric (bug activities during a certain

period of time) [M28],

Defect Density (Post-release Defects/KLOCA)

[M5],

Defect Removal Time: Defect Confirmed [M1],

Defect Reported Timestamp - Defect Confirmed

33 23,74%

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 35 -Systematic Literature Review on Quality Attributes, Metrics and Tools

Timestamp [M1],

Defect Service Delay (Defect Response Time:

Time to resolve problem reports [M5]

project

success

metrics

Age of Project versa Number of Developers [M23],

Number of Downloads vs. Number of Developers

[M23],

Number of weekly Downloads [M17],

Page Views vs. Number of Developers [M23]

19 13,67%

risk metrics Risk Factor Analysis and Classification [M38] 2 1,44%

None Paper describes no metrics or no full text available 24 17,27%

Sum 139 100,00%

Figure 12 visualizes the classification of the 139 different metrics found in the SLR. We

see that the different metrics groups distribute quite fine.

Figure 12 Metrics Groups identified

23

17%

21

15%

8

6%
9

6%
33

24%

19

14%

2

1%

24

17%

activity metrics

code size metrics

comments metrics

communication metrics

defect/quality metrics

project success metrics

risk metrics

no metrics

The 16 A- and B-ranked papers (see Table 1), which we classified as papers with well

documented measurements of OSS projects in the SLR, present 48 (34 different) OSS

projects and 27 different metrics. Except project success metrics and risk metrics, for all

other metrics groups at least three metrics are described in detail in these papers and only

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 36 -Systematic Literature Review on Quality Attributes, Metrics and Tools

the defect/quality metrics group stands out with ten metrics. This means that we found

enough well documented metrics belonging to each group, as risk metrics were not in

scope of the SLR.

Note that the number metrics of relevant papers is much more than the number of

relevant papers found, as 22 papers of the 54 papers in the SLR named more than one

metric. The most metrics are mentioned by seven papers, naming more than five papers,

together 68 metrics. It is obvious that some papers name metrics that belong to more than

one classification.

Some of the papers just name a metric and do not give a definition. That is why we tried to

compare the findings of SLR with other information about OSS projects. We found

calculated metrics at Open Hub15. The metrics group communication, activity, code size

and comments exist also at Open Hub (former Ohloh). For example the Apache HTTP

Server project page16 and factoids17 list similar metrics.

5.3 Tools

Like at the search for metrics in the section above, we also analyzed the tools identified in

the papers of the SLR. The number of tools mentioned was not so big compared to the

number of metrics: 56 tools were named in the papers. We checked, if the mentioned

tools exists and, if found, classified them as active or inactive tool having no activity during

the last two years. Figure 12 shows these numbers:

15
 https://www.openhub.net/

16
 https://www.openhub.net/p/apache

17
 https://www.openhub.net/p/apache/factoids

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 37 -Systematic Literature Review on Quality Attributes, Metrics and Tools

Figure 13 All tool/paper combinations of the SLR

30

25%

14

12%

12

10%

62

53%

active

inactive

not found

no tool

62 papers named no tools, but not many papers used the same tools. Mostly papers of

the same author used the same tool for more than one paper. See Table 16 in the

appendix for a full list. Leaving out the duplicates, we still found 47 different tools, which is

presented in Figure 14 again with the classification of not found, active and inactive tools.

Figure 14 Different tools identified in the SLR

25

54%

11

23%

11

23%

active

inactive

not found

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 38 -Systematic Literature Review on Quality Attributes, Metrics and Tools

These 36 available tools and the 25 active tools among them (i.e. almost 70%) are not

really a high number; but compared with the 54 relevant papers, on average nearly every

second paper had a tool given. Also the metrics of the 21 A- and B-ranked papers of the

SLR were calculated with ten active tools shown in Table 4 with a short description of the

tool.

Table 4 Active tools of A- and B-ranked papers

No. Tool Description License

1 Bugzilla Query

Commands [M1]

use Command-line Bugzilla Queries, see

https://www.bugzilla.org/docs/2.16/html/cmdline.html

MPL

2 c_count [M47] c_count counts lines, statements, other simple

measures of C/C++ source programs, see

http://invisible-island.net/c_count/c_count.html

custom

3 Eclipse

Checkstyle Plugin

[M1], [M33]

The Eclipse Checkstyle Plugin (aka eclipse-cs)

integrates the static source code analyzer

Checkstyle into the Eclipse IDE, see http://eclipse-

cs.sourceforge.net/

LGPLv2

4 JIRA Query

Commands [M1]

use the query language JQL of Atlassian JIRA, see

https://developer.atlassian.com/jiradev/jira-apis/jira-

rest-apis/jira-rest-api-tutorials/jira-rest-api-example-

query-issues

commercial

5 Logiscope [M37] Automatic Code Analysis with Logiscope, see

http://www.kalimetrix.com/logiscope

commercial

6 Resource

Standard Metrics

(RSM) [M47]

RSM by M Squared Technologies provides a

standard method for analyzing C, ANSI C++, C#

and Java source code across operating systems,

see http://msquaredtechnologies.com/

commercial

7 SLOCCount [M8],

[M31]

set of tools for counting physical Source Lines of

Code (SLOC), see

http://www.dwheeler.com/sloccount/

GPLv2

8 Source Monitor

[M47]

SourceMonitor counts lines, comments and

calculates metrics (e.g. complexity), see

Freeware

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 39 -Systematic Literature Review on Quality Attributes, Metrics and Tools

http://www.campwoodsw.com/

9 SPSS [M28],

[M37]

IM SPSS Statistics is a software package used for

statistical analysis, see

http://www.ibm.com/software/analytics/spss/

commercial

10 Understand [M47] This Static Code Analysis Tool is an IDE built from

the ground up to help you fully comprehend your

source code, see https://scitools.com/

commercial

Most of the identified active tools are commercial ones. The open source tools were either

limited in functionality or focused on a special topic (language or metric) or not active any

more.

5.4 Summary

The SLR on health indicators resulted in 54 relevant papers out of 82 found. These

papers were classified by usefulness and further analyzed looking for metrics, tools and

projects as sources of its findings. All papers named 115 different metrics and 47 different

tools. This work presented the results of the metrics and tools search in the SLR, trying to

find some anomalies and/or commonalities. Those are the limitations found:

Though it was a systematic literature research, it is sure it did not contain all papers

relevant to this topic due to its search string “health indicators”. The search string

“longevity” is even worse, but it is clear that metrics and tools are also described in papers

on other topics related to open source projects.

Another limitation, likely of the search string, is that the search returned many papers

without metrics and even more papers without tools. Including the term “metrics” or “tool”

to the search string would reduce the number of papers even further leaving out all papers

that do not use this specific term.

A grave limitation is the return quality of the papers. Not all papers give a definition of the

metrics they use. Also risk metrics are rarely mentioned, but this may also be downside of

the search term “project health” – or simply sign for risk metrics not being present in

literature and tools.

Surprisingly project success metrics are only identified for papers without referenced data

or OSS projects. This leads to two possible reasons: first, project success metrics may not

be easy to measure reliable or second, they may be added to other groups.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 40 -Systematic Literature Review on Quality Attributes, Metrics and Tools

Interestingly the tools written for academic purposes can’t be found or are discontinued

and are thus listed as inactive. One reason might be that they are not valuable enough,

meaning they are useless to continue as an open source or commercial project. So this is

an example for a not long-living project. The license cannot be the reason for abundance:

if the software had some unique features, it would live on as an OSS project.

Further comparison with alternative other open source review sites like Open Hub or static

code analysis tools like SonarQube18 or Kiuwan19 should lead to an understanding of

commonly used metrics.

18
 http://www.sonarqube.org/

19
 https://www.kiuwan.com/

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 41 - Tool Selection Process

6 Tool Selection Process

Given all the metrics found in the SLR in chapter 5 and also plenty of tools that measure

these metrics, we want to know which tools are most suitable for calculating metrics.

These tools will be used to answer RI.5, as they calculate longevity metrics.

All the 25 active tools found in section 5.3 of the previous SLR plus additional tools found

by a web-based research on tools calculating metrics must be evaluated to select them for

usage in the framework for longevity evaluation.

To make this selection reproducible and well documented, the systematic tool evaluation

process of Poston and Sexton [23] is used. Additional to their presented systematic tool

evaluation process, we also use their set of forms for evaluation. This should lead to more

well-founded results when doing a tool evaluation. Their proposed evaluation process is

structured in four steps:

1. identifying user needs (including the definition of mandatory features of a tool),

2. defining the tool selection criteria and prioritizing them,

3. finding available tools and classify them and

4. evaluating candidate tools and selecting the best fitting [23].

We follow these steps doing the first three all during the set up of the tool study.

6.1 Tool Study Setting

The requirements listed in Table 5 must be fulfilled by all tools, otherwise no easy

integration into the longevity framework or test would be possible.

Table 5 Mandatory tool requirements

No. Requirement Category Mandatory Requirement

1 General Requirements Availability for testing purpose

2 Metrics Calculation
Ability of calculating multiple metrics of at least one

metrics group of Table 3 from the SLR

3 Metrics Calculation Support of the programming language Java

4 Export Functionality
Export calculated metrics as XML or another

interoperable format via API

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 42 - Tool Selection Process

The tool needs to be available for testing, because a well-founded selection and also

further use would not be possible. This means to exclude commercial tools without a test

version available from the current evaluation.

A tool must calculate a metric of a relevant type, i.e. the metric must be clearly assignable

to a metrics group of Table 3. That way we make sure to have a link to quality attributes.

Furthermore the tool must be able to export the metrics calculated in an easily readable

format. The metrics calculation and export must be also easy to run, read and to integrate.

We need this export functionality for the integration to a framework making the tools work

together.

The mandatory requirements are also used for a web-based research20 on tools

calculating metrics. Table 6 shows the results of that search.

Table 6 Additional tools found

No. Tool Description

1 Alitheia-Core
platform for software analytics and software engineering

research, see https://github.com/istlab/Alitheia-Core

2 BugzillaMetrics
Runs self-defined metrics on nearly any attribute and event

stored in Bugzilla, see http://www.bugzillametrics.org/

3 CLOC

Count Lines of Code (CLOC) counts blank lines, comment

lines, and physical lines of source code in many programming

languages, see https://github.com/AlDanial/cloc

4 JArchitect

Static code analysis tool for java that offers a wide range of

features: calculates 82 code quality metrics, run own queries

and integrates own plug-ins etc. See http://jarchitect.com/

5 Kiuwan
Software Analytics in the Cloud: Static code analysis using

metrics, see https://www.kiuwan.com/

6 nDepend
Static code analysis tool for .NET with the same features as

JArchtitect, see http://www.ndepend.com/

7 Open Hub
Retrieves data from open source repositories and provides

statistics about the longevity of projects, their licenses and

20
 mainly looking at tools from https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 43 - Tool Selection Process

software metrics and commit statistics, see

http://www.openhub.net

8 ProjectCodeMeter

Estimates Software Development Cost & Time, measures

Code Quality and Team Productivity using code analysis, see

http://www.projectcodemeter.com/cost_estimation/index.html

9 Sonargraph

Sonargraph is a static code analyzer that computes 100's of

metrics, finds code duplications, visualizes dependencies and

allows scripting own metrics or code checkers, see

https://www.hello2morrow.com/products/sonargraph

10 SonarQube Static code analysis tool, see http://www.sonarqube.org/

11 SourceMeter
Static source code analysis solution for Java, C/C++, Python

and RPG, see https://www.sourcemeter.com/

All of these tools are available, it would be impossible to find them otherwise. Together

with the 25 active tools from the SLR we run a pre-selection. The check, if a tool fulfils all

mandatory requirements, resulted in a list of remaining seven tools shown in Table 7. The

full reasoned result of this check is listed in Table 17 in the appendix.

Table 7 Remaining tools for detailed evaluation

No. Tool

1 BugzillaMetrics

2 CLOC

3 Eclipse Checkstyle Plugin

4 Open Hub

5 Resource Standard Metrics (RSM)

6 Source Monitor

7 Understand

For each of the requirement category multiple additional selection criteria are defined as

listed in Table 8 and for prioritisation weighted by a factor [23].

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 44 - Tool Selection Process

Table 8 Tool Selection Criteria

No. Selection Criteria Priority Weight

A General Requirements

1 Availability for Testing Purpose C (Critical) 10,0

2 Platform independency: tool runs on Windows H (High) 7,0

3 Platform independency: tool runs on Linux M (Medium) 3,5

4 Platform independency: tool runs on Mac OS L (Low) 1,0

5 Time of Installation not longer than 30 minutes H (High) 7,0

6 Simple Installation using script(s) or installer M (Medium) 3,5

B Metrics Calculation

7
Ability to calculate multiple metrics of at least one metrics

group of Table 3
C (Critical) 10,0

8 Support of the programming language Java H (High) 7,0

9
Ability to calculate metrics of both metric groups “code size

metrics” and “defect/quality metrics”
H (High) 7,0

10
Ability to calculate metrics of at least another metrics

groups (e.g. “activity metrics” or “communication metrics”)
M (Medium) 3,5

11
Support of additional sources (e.g. bug tracker, mailings

lists)
M (Medium) 3,5

12 Support of evaluating and checking design documents M (Medium) 3,5

C Export Functionality

13
Export calculated metrics as XML or another interoperable

format via API
C (Critical) 10,0

14 Usable User / Developer Guide for the Export / API exists H (High) 7,0

15 Support for a client to use the export M (Medium) 3,5

16 Examples available M (Medium) 3,5

17 Coding examples available L (Low) 1,0

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 45 - Tool Selection Process

With that selection criteria defined we can start the tool study.

6.2 Tool Study

Sticking to the tool evaluation approach proposed by Poston and Sexton, every selection

criterion is rated with a value between 0 and 1 standing for the percentage of fulfilling the

criterion [22]. We use the following scales:

• 0,0 if the selection criterion is not fulfilled

• 0,35 if the selection criterion is to a small amount fulfilled

• 0,7 if the selection criterion is mainly fulfilled

• 1,0 if the selection criterion is completely fulfilled

The above rating is replaced by a simpler one, if a distinction between four cases is far too

complicated to answer because the selection criterion is just a yes or no question:

• 0,0 if the selection criterion is not fulfilled

• 0,5 if the selection criterion is partially fulfilled

• 1,0 if the selection criterion is completely fulfilled

For all pre-selected tools we calculate the numbers for each selection criterion.

Additionally to the scale the value is also weighted and all numbers are summarized.

Some criteria were not so easy to scale, as we had to search the documentation for this

features.

The result of the scoring is shown in Table 9 (see Table 18 and Table 19 in the appendix

for detailed results):

Table 9 Tool Study Results

Rank Tool Score

1 Understand 77,5

2 Open Hub 75,575

3 Resource Standard Metrics (RSM) 70,9

4 Source Monitor 69,725

5 CLOC 69,125

6 BugzillaMetrics 66,175

7 Eclipse Checkstyle plug-in 53,18

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 46 - Tool Selection Process

The commercial tool Understand and the web-based commercial Open Hub (free

available for Open Source Projects) took the first two places. Understands looks like a real

powerful tool providing not only metrics but also dependency analysis. Like all commercial

client tools it satisfies with a nice installer. Like Open Hub they both provide a well-

documented API including examples and a wide range of metrics, though Open Hub

stands here clearly out in covering also activity metrics by analysing the check-in

frequency of the source code repository.

The commercial tool Resource Standard Metrics (RSM), the freeware source monitor and

the GPL tool CLOC cover most of the requirements sufficiently, but not outstanding.

BugzillaMetrics does fine, considered that it can’t analyze Java Code. If you are

interesting in metrics of a bug tracker like Bugzilla or Mantis you should definitely take

look at this solution. The Eclipse Checkstyle plug-in does have enough features to rank

better; it mostly does poorly because its main intention is not to calculate metrics.

6.3 Results and Tool Selection

Looking at the ranking we see two clear choices for a framework: Understand and Open

Hub. CLOC and Source Monitor should be integrated as well, because they are can be

run and integrated via command line. Always to keep in mind is the license of a tool,

especially for CLOC, as it is GPL based. RSM will not be included to the framework,

because in the trial version it supports only the evaluation of 20 files. We recommend

taking a deeper insight and integrating only those tools that provide interesting metrics.

All in all seem the results of the pre-selection and the final scoring valid. All tools of the

pre-selection are usable and achieve quite good results in the tests during the scoring.

And all results of the scoring realise between 85 and 58 percent of the maximum

reachable score. We have to consider that we scored only tools that fulfilled the

mandatory requirements, which alone account for a third of the scoring.

Like every study also this tools study, though based on the academically found method by

Poston and Sexton [22], has limitations.

Firstly, requirements used for the tool (pre-) selection and scenarios used for the selection

criteria are based on real-world settings. These settings also have an impact on the

weight factor used.

Secondly, the tool selection focuses on available tools (i.e. open source software, test

versions) excluding commercial tools from the current evaluation; if no test version is

available.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 47 - Tool Selection Process

Thirdly, data collection is based on subjective assessment that needs to be revisited to

increase evidence. A possible solution would be to let another person do the scoring

independently and compare the results.

And last but not least more a design issue: we left out requirements or selection criteria

that can’t be measured precisely. That way it is hard to include non functional

requirements like usability into the study.

Generally speaking, for a plug-in it is complicated to perform as good as a complete tool,

because the installation takes a big part of the score. Furthermore a plug-in might not

even make it into the pre-selection, as it might go unnoticed, especially if the containing

tool does not advertises the features of its plug-in.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 48 - Framework for Longevity Evaluation

7 Framework for Longevity Evaluation

Based on the SLR, the tools selection and related work we build the framework:

1. combining selected tools that measure metrics from the SLR

2. compare with alternative frameworks from related work

This chapter describes the work done for building the framework. It answers RI.6, how a

framework can combine the selected tools.

The requirements of the framework for longevity evaluation can be defined straight

ahead: It needs tools that calculate comparable metrics, which are relevant for software

longevity.

Additionally these principle considerations should be taken into account. We do not

want to create another framework that will be abandoned in the future. A much better idea

is to enhance existing tools with a metrics section about project health / longevity. Such a

section for example would fit very well to the tool ProjectCodeMeter because this software

has a quite similar way of presenting metrics in a manageable view. May be it is even

possible to sell that feature.

That is why we build only a prototype of the framework. This means that we calculate all

metrics using the selected tools manually and sum up the result using a spreadsheet.

As we use only tools approved by the tool selection process, it is clear that all these tools

have an export or an API for their calculated metrics. Integrating this proof of concept into

a framework from related work or a standalone software tool would be the next step done

in future work.

7.1 Combination of Tools

To combine tools, all metrics of all tools get listed. As stated in section 6.3, we

recommend taking a deeper insight and integrating only those tools that provide

interesting metrics. So we discard all metrics that are not used for longevity.

We do not list the resulting big list, as they can be extracted from Table 10.

It became more and more obvious during evaluation that every tool has other names for

the same metrics. Some tools have a good documentation, which defines precisely what a

metric means and often also how it is calculated. Resource Standard Metrics (RSM)

however calculates a lot of metrics, but has no documentation. So we were not able to list

these metrics simply we did not know, what they mean. The same accounts for CLOC, in

its very short documentation it does not even mention the word “metrics” – and “measure”

also only once. Open Hub has interesting values, but it does not provides enough details

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 49 - Framework for Longevity Evaluation

about the values giving often just a classification within a range. This is good for a human

readable overview, but is not necessarily correct.

7.2 Metrics Selection

Table 10 answers RI.3; as it is possible to read from it which selected tool calculates a

metric important for longevity.

Table 10 Selected metrics and tools

No. Metric Tool(s) Quality Attribute

1 Percent Lines with Comments /

Ratio of comment lines to code

lines

SourceMonitor, Understand,

RSM, (Open Hub)

Maintainability [1]

2 Methods per Class SourceMonitor, Understand,

RSM

Modularity [1]

3 Average Statements per Method SourceMonitor, Understand Modularity [1]

4 Maximum Complexity SourceMonitor Testability [46]

5 Average Block Depth / Depth

of Inheritance Tree

SourceMonitor,

(Understand)

Reusability [46]

6 Average Complexity SourceMonitor,

Understand, RSM

Testability [46]

7 Number of lines containing

source code (aka LOC)

SourceMonitor, Understand,

RSM, Open Hub

Maintainability [1]

8 Average Essential Complexity Understand Testability [46]

9 Lack of Cohesion in Methods Understand Modularity,

Reusability [46]

10 Number of commits Open Hub Modifiability [1]

11 Number of contributors Open Hub Analysability [1]

12 Commits per year Open Hub Maintainability [1]

13 COCOMO Open Hub Efficiency [1]

14 Project Activity Index Open Hub Satisfaction [1]

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 50 - Framework for Longevity Evaluation

We marked the metrics relevant for software longevity by printing the line bold. Actually

this applies to all identified metrics, which have a quality attribute that is relevant for

longevity [46].

The bold marked tools Understand, RSM and SourceMonitor in Table 10 help calculate

metrics for quality attributes that influence software longevity. This is the answer to RI.5.

We assume that, if all bold marked metrics do not exceed a certain threshold like shown in

Figure 15 for an example student Java project, the software project has a good longevity

answering RI.1.

Figure 15 Example Kiviat Metrics Graph by SourceMonitor

Alternatively, if more than four metrics out of the eight metrics in Table 10, which are

capable of setting an acceptance range, have a metric value calculated above of an

acceptable value and are relevant for longevity (i.e. have one value of a bold marked

metric out of range), the project exceeds the fixed threshold of 50 percent and thus is

relevant for longevity. That result answers RI.1 about the longevity of a software project

with “Yes”. The same idea is used by the commercial cloud-based software Kiuwan

(obviously the Kiviat diagram is where they got their name from).

Each metric used in the evaluation framework lists its linked quality attributes. This linking

is based on identified quality attributes from ISO SQuaRE in literature [46].

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 51 - Framework for Longevity Evaluation

As we know from the SLR which metric is used to describe healthy/longevity projects, we

can make a list of quality attributes affecting that metric and thus can answer RI.2 that

wants to know which quality criteria are related to the longevity of a software project. How

to find out which quality attributes are most important for longevity shows an in-depth

analysis of Information System Longevity aspects [46].

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 52 - Feasibility Study

8 Feasibility Study

We test the framework learning form the past:

1. Testing/Training the framework: Apply the metrics of the framework to OSS

projects

2. Compare the testing/training results with findings from the related work

This chapter describes the work done for evaluating the framework with a feasibility study,

i.e. comparing the framework results with findings of related work.

As this work uses open source projects for analysis, this chapter starts with an overview of

free software and open source software.

8.1 Open Source Software

Strictly speaking there is a difference between free software and open source software, as

already mentioned in the introduction in chapter 1.2 Definitions. The author likes the term

Open Source Software more, that is why this term is used throughout the thesis - for both

Free Software and Open Source Software.

Actually the idea behind Open Source Software is that all users and every developer can

participate. They all shall have any possibilities to do so – without limitations. In

comparison to closed source and / or privately owned software, also transparency and

collaboration are principles of Open Source Software.

With the start of computers in the 1950s software was mainly scholarly work of academic

researchers. Computer manufactures put focus on the hardware and added the software

for free. User groups sharing tips and software with each other started. In the late 1960s

writing software became increasingly more expensive, the era of legal protection of

software including software patents started [16].

Nevertheless, the culture of sharing software never really stopped.

8.1.1 Free Software

In 1984 Richard Stallman launched the GNU project21. For this project Stallman also

created the GNU General Public License (GPL). With its several different versions it had a

deep impact on software producers, as Stallman acted as an outspoken but also

controversial advocate for free software - especially in contrast to proprietary software.

21
 www.gnu.org

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 53 - Feasibility Study

The term Free Software was introduced by Stallman in 1986 and means software that the

end user is allowed to use (i.e. run), study, share (copy and distribute) and modify

(change and improve). The term “free” is meant as in “free speech”, not as “free of

charge” (gratis) [37]. This definition known as the Free Software Definition is used by the

Free Software Foundation (FSF).

The aim of the FSF is to promote Free Software politically, legally and socially. This

charity wants to help users to get Free Software as defined in The Free Software

Definition22.

8.1.2 Open Source

Despite of GNU’s success not everyone used the GPL. Plenty of slightly different license

agreements exist.

The term Free Software is older than the term Open Source Software, which was

introduced by Bruce Perens for the Open Source Initiative (OSI) stating which software

license fulfils the need of the open-source certification of OSI. This definition was based

on the Debian Free Software Guidelines of the FSF. So despite of fundamental

philosophical differences between the FSF and the OSI there are not so many differences.

Most software license fits both definitions. [38]

The differences between the various licenses require detailed study, but they all share a

common ground. If a piece of software is not declared public domain, copyright law is

protecting it. All open source software licences give users the right to access the source

code. If the licence is one of the FSF (e.g. GPL) it additionally requires that any software

that is build with this GPL based software must be distributed under the GPL itself. This

part of the GPL is also called the “viral” or “copyleft” provision. [16]

Each license has its own purpose. According to Krishnamurthy there are four significant

differences [19]:

1. Does the license allow mixing its open source code with non open source code?

2. Is it possible to make modifications and not to return them to the original author?

3. Can the open source code be relicensed by anyone?

4. Are there special privileges for the original copyright holder (i.e. the author)?

The result of this comparison is shown in Table .

22
 https://www.gnu.org/philosophy/free-sw.html

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 54 - Feasibility Study

Table 11 Comparison of open source licenses [19]

License

Can be

mixed with

non-free

software

Modifications

can be made

privately and not

returned to

author

Can be

relicensed

by anyone

Contains special

privileges for the

original copyright

holder over user’s

modifications

General Public

License (GPL)
No No No No

GNU Library General

Public License
Yes No No No

Berkeley System

Definition (BSD)
Yes Yes No No

Netscape Public

License
Yes Yes No Yes

Mozilla Public

License (MPL)
Yes Yes No No

Public Domain Yes Yes Yes No

The chosen license has an important impact on the project prospects, as it defines the

possibilities of further usage. The GPL for example forbids the bundling and selling of an

open source project with other code. [19]

According to Miller et al. “some open source advocates consider copyleft optional. Thus,

OSI accepts FSF’s GPL license, but it also endorses some licenses that FSF rejects.” [16]

Miller et al. state that “FOSS and commercial software need each other”, because “the

competition between the two keeps the software marketplace in check with added

diversity and innovation”. [16] The author thinks that mostly the need for innovation leads

to new software and just this incentive is the key to both open source and commercial

software development. There is surely more competition, if an open source and a

commercial version of a software for a certain purpose exist, but mostly the features, price

or support count. If a commercial version of open source software is developed, someone

sees a market for it. This leads to more competition of course, but does not necessarily

keep the software marketplace in check.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 55 - Feasibility Study

8.1.2.1 MIT, BSD, Apache and Academic Free Licences

The licenses of the Massachusetts Institute of Technology (MIT) and the Berkeley

Software Distribution (BSD) are among the oldest open source licenses [17]. They both

originate from an academic background, as both were started by a university in the United

States of America. These licenses read easily and contain all the basic principles of a

typical open source license. Together with the Apache License and the Academic Free

License they have in common that these projects do not require projects using such

licensed code to distribute the source code. So these licenses are easy to handle, as it is

not complicated to follow its clauses.

The MIT License23 contains the author and the year of the release, followed by a clause

granting permission free of charge. A precondition for usage is to preserve the copyright

notice and include them to all copies of the software. The license ends with a warranty

disclaimer. A warranty disclaimer alone does not take away all the risk: additional

agreements during sale or other laws can nullify the disclaimer [17].

The BSD License exists in multiple forms. Until 1999 the BSD had a clause forcing users

to acknowledge that the software include BSD code in advertisements. Though this clause

might still remain, it has no longer a legal effect [17]. The only key difference to the MIT

License is an additional clause that tries to protect the reputation of the creator.

The Apache 1.1 License is very similar to the BSD License. It does not have the

advertising clause, but after the warranty disclaimer it additionally names some original

contributors. The Apache 2.0 License was rewritten in 2004.

The Apache 2.0 License is a complete revision of the previous version 1.1. Its text is

longer and more complex, defining the rights granted in detail. New provisions are that

patent use is granted and other licenses are allowed for derivative works. “By making a

Contribution, a licensee is agreeing to have that addition to the Work licensed under the

same, open, terms applicable to the original Work. (...) But there is no obligation to make

a Contribution: licensees are free to take their Derivative Work and license it under a

different license.” [17]

The Academic Free License is essentially similar to the Apache 1.1 License. The license

additionally clarifies patent law and adds two provisions concerning the choice of law and

shifting of attorneys’ fees.

23
 https://opensource.org/licenses/MIT

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 56 - Feasibility Study

8.1.2.2 GPL, LGPL and Mozilla Licences

The licenses described in this chapter are very different from the previous description (see

chapter 8.1.2.1). They impose substantial limitations on the creation and usage of

derivative works. The GNU General Public License24 (GPL) demands that all changes by

own work need to be distributed (i.e. made public) under the GPL and does not allow

relicensing.

The GPL is one of the foundation open source licenses. The license was created by the

Free Software Foundation (FSF) and is the preferred license for FSF projects.

The license is prefaced with a preamble, which defines the 3 main purposes of the GPL:

Firstly to make sure that software is and stays free. Secondly to point out that software is

distributed “as is” and without warranty. And thirdly to prohibit software patents. Compared

with previous discussed licenses, the GPL is written more specific and more detailed.

The GNU Lesser General Public License25 (LGPL) is an alternative license to GPL. This

license allows the combination of proprietary and open source code. Originally this license

was designed to use libraries with the GPL (hence the first name Library General Public

License), but it is a license with just fewer rights (only for guaranteed freedom to modify

the components licensed under LGPL). As with the GPL, multiple versions of the LGPL

exist.

The Mozilla Public License26 (MPL) is a hybrid out of the ideas of the GPL and the BSD

license. While the BSD license allows relicensing, the GPL enforces new work to be

published under the GPL. The MPL allows code that stands under its license to be mixed

with code of other licenses, even proprietary code. However, code under the MPL must

remain under the MPL and made freely available. So the MPL makes it possible to keep

modules proprietary and in this way motivates open source enthusiast as well as

companies to use it and help to improve the code modules. As written by Netscape, the

MPL reads more like a corporate contract and it has also a focus on patent rights and its

limited grant to an extend that is still consistent with an open source model. [17]

8.1.2.3 Qt, Artistic and Creative Commons Licences

Additional to the classical open source licenses presented above, there are also some

other notable open source licenses mostly associated with particular programs: the Q

Public License (of the Qt Toolkit) and the Artistic License (of Perl). Both of them have

24
 http://www.gnu.org/licenses/gpl.html

25
 https://www.gnu.org/copyleft/lesser.html

26
 https://www.mozilla.org/en-US/MPL/

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 57 - Feasibility Study

special features and are frequently used, but mostly just applied to that kind of software

for which the licenses were originally written. To sum up the license introduction, we also

have a look at the Creative Commons license, an effort to bring the open source model of

developing software also to literature and the arts.

The Q Public License Version 1.027 (QPL) was written by Trolltech to let the Qt system

(the underlying system of the KDE linux desktop system) work legally together with the

free idea of linux. It permits the distribution of modified source code as patches under less

restrictive terms than modifications compiled into the original code, and it permits some

rights to the code just to the initial developer. With the cross-licensing of the Qt Toolkit 4.0

as both GPL and QPL, KDE switched to the GPL and the QPL may become less

important. With version 4.5 the Qt Toolkit changed its license to the LGPL.

Like the QPL the Artistic License28 (or Perl Artistic License) is non-copyleft license. The

Perl License adds an option for commercial usage to the Artistic License, whose intention

is to “maintain ‘artistic’ control over the licensed software and derivative works created

from it” [17]. Perl is dual licensed under both the Artistic License and the GPL, so it is

likely to stumble across this license, if you use open source software. Two versions of the

Artistic License exist: version 1.0 is vague and confusing and thus just an approved open

source license; the extensively rewritten version 2.0 is also an approved free software (i.e.

GPL compatible) license. Like QPL and MPL, this license is designed for centralized

projects. It has some limitations as it is ambiguous about key terms concerning

modification and distribution. However it is easy to comply with the spirit of the license and

the license itself. [17]

Actually the Creative Commons licenses29 (CC) are not licenses for open source software.

The non-profit Creative Commons Corporation and supported by the Stanford University

Law School created – inspired by the GPL – licenses to encourage creators of texts,

music, web sites and film to make their work open source.

The Creative Commons Licenses are solidly constructed and well-written and build on

modules [17]. Note that the “copyleft” idea from the GPL is called “share alike” in the CC,

a module of the CC.

27
 https://opensource.org/licenses/QPL-1.0

28
 http://www.perlfoundation.org/artistic_license_1_0

29
 https://creativecommons.org/licenses/

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 58 - Feasibility Study

8.1.2.4 License Usage

Although the MIT license is used most often according to GitHub30 or BlackDuck31, the

GPL and MPL (especially as it influenced a lot of similar licenses) are successful too.

But the author agrees with Laurent, who does not only see the success but also the

impact of a license:

“As can be seen from the examples of the GPL and the MPL, the success

of licenses is a factor less of the terms or the wording of those licenses than

of the ideas that they represent. Powerful, meaningful ideas draw minds,

and the success of open source and free software licensing is the result of

the minds that such ideas can draw.” [17]

8.2 Project Selection

Based on the SLR in chapter 5.1 containing 82 papers we sorted out the most frequently

analyzed OSS projects.

Table 12 Most frequently used projects in context of health indicators

Rank Project # Papers # different

Authors

data sets

1 Apache HTTPD 14 : [M1], [M2], [M3], [M4],

[M5], [M6], [M7], [M8], [M9],

[M10], [M11], [M12], [M13],

[M14]

10 3: [M1], [M5],

[M13]

2 Cross projects

(top x

sourceforge

projects, etc.)

12: [M15], [M16], [M17], [M18],

[M19], [M20], [M21], [M22],

[M23], [M24], [M25], [M26]

12 3: [M16], [M18],

[M21]

3 Apache Tomcat 9: [M1], [M2], [M3], [M8], [M27],

[M28], [M29], [M30], [M31]

5 4: [M1], [M28],

[M30], [M31]

4 Python 5: [M4], [M8], [M11], [M13],

[M32]

4 1: [M13]

30
 https://github.com/blog/1964-license-usage-on-github-com

31
 https://www.blackducksoftware.com/resources/data/top-20-open-source-licenses

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 59 - Feasibility Study

5 Gnome 3: [M8], [M14], [M32] 3 0

6 Linux (Kernel) 3: [M4], [M7], [M8] 3 0

7 Mozilla 3: [M4], [M8], [M14] 3 0

8 PostGreSQL 3: [M11], [M12], [M13] 2 1: [M13]

9 Apache

MyFaces

3: [M1], [M29], [M33] 1 1: [M1]

10 Apache Slide 3: [M1], [M2], [M3] 1 1: [M1]

11 Apache Xindice 3: [M1], [M2], [M3] 1 1: [M1]

12 ArgoUML 2: [M16], [M31] 2 2: [M16], [M31]

13 Eclipse 2: [M14], [M31] 2 1: [M31]

14 NetBeans 2: [M8], [M14] 2 0

15 Perl 2: [M4], [M8] 2 0

16 Apache Cocoon 2: [M27], [M28] 1 1: [M28]

17 Apache Lenya 2: [M28], [M34] 1 1: [M28]

18 Apache Log4J 2: [M28], [M34] 1 1: [M28]

19 jEdit 2: [M16], [M35] 1 1: [M16]

20 JFreeChart 2: [M16], [M35] 1 1: [M16]

As some authors used the same OSS projects for multiple papers, the number of different

authors is a hint for the number of distinguished data set of OSS projects. We select only

projects with well documented measures (i.e. ranked A or B) analyzed by at least two

different authors marked bold in Table 12: Apache HTTPD, Apache Tomcat and

ArgoUML. The papers analyzing cross projects do not cover identical or other projects of

the SLR, so we can’t use them.

Selecting these OSS projects might enable a comparison of different analysis approaches

and results (derived from at least two different authors) as they are analyzing similar

projects with (maybe) different data sources. Thus, we can use these projects/results for

verification/validation and for justification purposes of the framework.

There are some OSS projects containing data from the papers analyzing OSS projects:

flossmole.org, openhub.net (former ohloh.net), flossmetrics.org to name a few. Just the

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 60 - Feasibility Study

first two are fully active; the tool website of flossmetrics.org is no longer continued.

Besides of analysis data (e.g. flossmole32), some OSS projects also contain tools for

calculating measurements (e.g. ohcount33) or accessing source code (e.g.ohloh-scm34 or

sourcechange35).

It is notable to mention that the majority of papers analysed several projects on a higher

level to investigate communication issues, bug data or community activities. Furthermore

Apache projects were used for detailed investigations, e.g. to investigate health indicators.

Other available open source projects have not been considered for applying metrics and

measurements.

Additional projects to learn from the past

As defined in the concept for evaluation of the Solution Approach in section 4.3, we want

to compare with both active and inactive projects from related work.

Thus additional to the selected active projects Apache HTTPD, Apache Tomcat and

ArgoUML (marked bold in Table 12) we also need some inactive projects. We chose

Apache Xindice and Apache Lenya.

This lead to our final list of OSS projects, which are used to compare the testing/training

results with findings from the related work

1. Apache HTTPD as active OSS project [2], [3], [4] and [18]

2. Apache Tomcat as active OSS project [2], [6] and [7]

3. Apache Xindice as inactive OSS project [2]

4. Apache Lenya as inactive OSS project [6]

We chose these projects because they were named as active / inactive in the SLR.

Additionally they are good documented projects, as related work provided some

calculated values, making a comparison easy.

8.3 Feasibility Study

With the selected OSS projects we can the show results of the evaluation concept out of

chapter 4.3:

We started with Apache HTTPD Server 2.4.17, using the actual stable version.

32
 Flossmole: http://flossmole.org/content/getting-data

33
 Ohcount: https://github.com/blackducksw/ohcount

34
 Ohloh-scm: https://github.com/blackducksw/ohloh_scm

35
 Sourcechange: http://sourceforge.net/projects/sourcechange

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 61 - Feasibility Study

Figure 16 Apache HTTPD 2.4.17 Kiviat Metrics Graph by SourceMonitor

The Kiviat Metrics Graph show in Figure 16 shows a nice rating of some results. Note that

only averaged values can be compared reasonably between OSS projects. Thus the

metrics Maximum Complexity and Maximum Block Depth can not be compared. They are

related to Average Complexity and Average Block Depth anyway. The possible range is

suggested by SourceMonitor and it fits quite well. As Apache HTTPD is a large project,

this may reason the high Maximum Block Depth. The metrics also show a high

complexity. Due to the large code base, the percentage of comments in all lines of code

shows that Apache HTTPD is not badly documented and so usable. Also the average

statements per method point out a well written code. So a huge code base does not

necessarily mean that the methods must be huge as well.

These were only values visualized by the first tool. The other tools show similar results in

Table 13. As not all tools cover the calculation of all metrics, not all columns are filled.

Yellow values must be checked, they seem to be wrong. The results of the feasibility

study given for Apache HTTPD are just the numbers. We do not state here how which

metric of a tool are exported and interpreted. This can be found in the technical report.

Sometimes even small calculations are necessary to get a matching result. For matching

the metrics of the different tools a good documentation is necessary to avoid guessing.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 62 - Feasibility Study

Table 13 Metrics calculated for Apache HTTPD 2.4.17

No. Metric SourceMonitor Understand Open Hub

1 Percent Lines with Comments / Ratio

of comment lines to code lines
21,7 37 10,45

2 Methods per Class

3 Average Statements per Method 17,8

4 Maximum Complexity 189 165

5 Average Block Depth / Depth of

Inheritance Tree
1,79 0

6 Average Complexity 6,57 6,15

7 Number of lines containing source

code (aka LOC)
250625 251898 1774749

8 Average Essential Complexity 3,14

9 Lack of Cohesion in Methods 3,55

10 Number of commits 65981

11 Number of contributors 118

12 Commits per year 2416

13 COCOMO 934040

14 Project Activity Index 70

15 Number of Files 416 423

Problematic values seem to be the completely differing lines of code (LOC) metric. This is

an issue we find in almost every project, so it can’t be related to a language. Of course,

the number of LOC depends on the parts of the source code selected. Sometimes

libraries are included in the source code and very often also tests. At Open Hub it is

possible to define more than one source code repository. All these factors and also the

programming languages supported by the tool lead to a difference.

The second project in the feasibility study is Apache Tomcat 9.0.0.M1.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 63 - Feasibility Study

Figure 17 Apache Tomcat 9.0.0.M1 Kiviat Metrics Graph by SourceMonitor

Compared to Apache HTTPD, Apache Tomcat shows significant lower value of the metric

Average Complexity. Obviously is Apache Tomcat has really many comments, but the

reason for this may be simple: The usage of Javadoc leads to much more comments,

because the comments get bigger.

The metrics calculated do not differ much from Apache HTTPD. Both are highly active

projects. The values calculated can be found in the technical report.

With Apache Xindice 1.2m1 we chose an inactive project.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 64 - Feasibility Study

Figure 18 Apache Xindice 1.2m1 Kiviat Metrics Graph by SourceMonitor

Just by comparing this kiviat graph in Figure 18 with the kiviat graph of Apache Tomcat in

Figure 17, we do not see many differences. Just some metrics change a little. This means

that obviously the metrics Maximum Complexity, Depth of Inheritance Tree and Average

Complexity tough measuring relevant quality attributes for longevity do not predict a long

healthy software project life. Just Open Hub provides metrics that analyze the activity by

measuring commits of contributors.

The second inactive project Apache Lenya 2.0.4 shows a similar kiviat graph in Figure 19

like the tow projects before. The project has a huge code base containing a little more

than 3500 files resulting in much too high numbers for Maximum Complexity and Average

Complexity. Both Apache Xindice and Apache Lenya are retired projects. We used the

last available source code for calculating metrics.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 65 - Feasibility Study

Figure 19 Apache Lenya 2.0.4 Kiviat Metrics Graph by SourceMonitor

8.4 Results

The metrics Maximum Complexity, Depth of Inheritance Tree (aka Average Block Depth),

Average Complexity, Average Essential Complexity and Lack of Cohesion in Methods

measure quality attributes relevant to longevity. The quality attributes relevant for

longevity are Testability, Reusability and Modularity [46]. SourceMonitor and Understand

appeared to be the best tools for analyzing longevity.

SourceMonitor shows its user with just a few steps relevant metrics for longevity plus

shows a kiviat graph interpreting the metrics within a range. It is not possible to specify in

detail which source code to analyze. A user could do delete not necessary code before

analyzing, for machine interaction separate calls for each subfolder are a way to do the

same.

Understand is an even more powerful tool with a very fine documentation. It nominally

calculates more metrics, but they can not be interpreted easily. This needs some extra

work summing up metric results and calculating average or selecting a maximum value.

Open Hub calculates very interesting values, but only for open source projects and none

of them are relevant for longevity.

It is a very good idea to combine several tools, as not all tools calculate all metrics. Also

the metric return by different tools may very, depending on the type of metric. This is most

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 66 - Feasibility Study

likely caused by the different approach of all tools, which and how many source files to

analyze.

Feasibility Study Results

The feasibility study shows that the metrics calculated are not wrong at all. But they miss

aspects of longevity. The metrics do not cover the whole field of software development

and especially usage.

The metrics do show the status quo of a software project. The quality attributes relevant to

longevity only measure the longevity related to the source code. Other factors like project

activity, feature completeness, documentation or multiple other reasons for choosing a

rival project are not covered by metrics.

The feasibility study also showed that answering RI.1 about the longevity of a software

project precisely is not possible, because the frameworks misses metrics.

Limitations of the OSS project selection

It is notable to mention that the majority of papers in the SLR analysed several projects

just on a higher level. They investigate communication issues, bug data, or community

activities. As a source for these metrics is not only the source code of the project used,

but data from bug trackers and mailing lists.

Interestingly only Apache projects are used for detailed investigations, e.g., to investigate

health indicators. The reason for this selection is that except ArgoUML no other OSS

projects were analyzed by a least two different authors that wrote a paper we found in the

SLR.

A threat to validity of the framework for longevity evaluation is the number of used

metrics. With the selected tools we chose just 14 interesting metrics. This number might

be much too small to cover all relevant quality attributes. ISO SQuaRE alone names 55

characteristics. Another threat is that metrics cover only a parts of software.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 67 - Case Study

9 Case Study

In the original concept for evaluation of the framework we also wanted to test, if the

framework is capable of predicting the future. This should be done by calculating the

metrics of other open source projects. It is also possible to run the tools of the framework

for longevity evaluation to all kind of project, also industry projects.

But as the feasibility study already showed that the metrics of the framework fail to predict

usage in the future, we did not do a case study.

Generally speaking a case study actually involves the same steps as the feasibility study:

Run the tools of the framework on the source code and compare the results.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 68 - Discussion

10 Discussion

It is complicated to link OSS projects, metrics and tools found in the SLR (all of them are

linked via a SLR paper) to a quality attribute. The linkage of a quality attribute is

established via a metric as its measures (called success criteria [14]) can be connected to

a quality attribute (the same as a project attribute [15]). But this link is weak and not easy

to recognise.

Like in any another software project, there are plenty of open issues and ideas for further

improvements.

The first idea addresses the link of quality attributes to metrics. It would be a very

interesting and wide field of study with a potential huge impact on the usage of ISO

SQuaRE in practice to use the Metrics Guidebook of Wilbur et al. [40], who suggest

metrics and measures for typical system engineering quality improvement goals, to

enhance ISO SQuaRE with an application guidebook.

Another idea for further work on matching metrics to quality attributes is to do an SLR on

the quality attributes of ISO SQuaRE using the definition of the attributes and match the

metrics that was found in one paper of a quality attribute search to this quality attribute.

This will end in multiple connections of one metrics to many quality attributes similar to the

McCall quality model, that connects quality factors with quality criteria [30] show in Figure

7, but between quality criteria (quality attributes in ISO SQuaRE) and metrics will be a

connection line drawn, i.e. the metrics clearly named.

We definitely see potential in a better traceability of metrics to quality attributes using our

approach of evaluating longevity as just one part of the framework. This would lead to a

better understanding of the meaning of a metric calculated for a software project. It is also

the possibility for tools of being a bigger help to developers showing a complete stack of

quality attributes and not only a few selected (like maintainability, reliability, portability,

efficiency and security in the tool Kiuwan).

Further Improvement of the framework for longevity evaluation is a consequential next

issue. Integrating the proof of concept of this work into a framework from related work or a

standalone software tool would be the next step done in future work. And as mentioned in

section 5.4: If the software lives on (either as an OSS or commercial project), the quality

attributes of longevity are fulfilled fur this software.

Further improvement based on research can to be done on interpreting the selected

metrics in Table 10: score the relevance of each quality attribute for longevity by a factor

and replace the longevity relevance threshold calculation. A profound method for

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 69 - Discussion

determining the factor for each quality attribute of ISO SQuaRE needs to be found. This

would also be extension of [46].

A research on how the metrics of the tools of the frameworks are calculated would really

help to do a better integration of the calculated metrics. So the framework could weight

the input metric of each tool, giving a more precise combined metric result.

The intuitive next work package for this framework is to enlarge the tool set of the

framework to integrate more metrics and evaluate them. Then, if these enhancements

show good results, the following step would be the development a software tool. A big

challenge will be to the use of commercial tools then, so it could be a better idea to

calculate the metrics with the new developed tool, if possibly using existing tools.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 70 - Conclusions

11 Conclusions

As Spinellis put it: “Quality, time, and cost are the three central factors determining the

success or failure of any software project, and quality is the only one of those factors that

can not be changed on the spot by management fiat.” [41] In this work we had a look at

the quality as the factor for project health or even longevity. But, with the quote of Spinellis

in mind, do not forget that without enough time or too high development costs, the project

with the best quality is doomed!

This thesis gave a well-founded view on project health using a Systematic Literature

Review (SLR). Also possible metrics and especially tools were evaluated thoroughly and

tried to link with quality attributes to make it easier to focus on metrics relevant for

longevity.

The selection process for tools is based on a systematic tool evaluation [23]. The most

suitable tools were integrated into a framework. For making them work together the

provided metrics are interpreted and recalculated if necessary. The result of the

framework is a combined list of metrics of all tools.

The feasibility study shows that the metrics calculated return correct values. But they miss

aspects of longevity. Right now it is only possible to measure longevity based on the

source code. Other factors like project activity, feature completeness, documentation or

multiple other reasons for choosing a rival project are not covered by metrics.

One or more metrics for project health or longevity would be an interesting additional

feature for every analyzed tool.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 71 - Appendix

12 Appendix

12.1 Literature References

[1] ISO/IEC 25010:2011. “Software Engineering - Software Product Quality

Requirements and Evaluation (SQuaRE) - System and software quality models”.

International Standards Organisation, 2011.

[2] Wahyudin, Dindin. "Quality Prediction and Evaluation Models for Products and

Processes in Distributed Software Development". PhD thesis, Vienna University of

Technology, Vienna, 2008.

[3] Mockus, Audris, Roy T. Fielding, and James Herbsleb. "A case study of open

source software development: the Apache server." In Proceedings of the 22nd

international conference on Software engineering, pp. 263-272. Acm, 2000.

[4] Bird, Christian, Alex Gourley, and Prem Devanbu. "Detecting patch submission and

acceptance in OSS projects" In Proceedings of the Fourth International Workshop

on Mining Software Repositories, p. 26. IEEE Computer Society, 2007.

[5] Gall, Harald C., Beat Fluri, and Martin Pinzger. "Change analysis with evolizer and

changedistiller." IEEE Software 26, no. 1 (2009): 26-33. 2009.

[6] Biffl, Stefan, Wikan Danar Sunindyo, and Thomas Moser. "A Project Monitoring

Cockpit Based On Integrating Data Sources in Open Source Software

Development." In SEKE, pp. 620-627. 2010.

[7] Weissgerber, Peter, Mathias Pohl, and Michael Burch. "Visual data mining in

software archives to detect how developers work together." In Mining Software

Repositories, 2007. ICSE Workshops MSR'07. Fourth International Workshop on,

pp. 9-9. IEEE, 2007.

[8] Winkler, Dietmar, and Artur Kulmukhametov: ”Systematic Literature Review on

Information Systems Longevity“, Technical Report No.: IFS-CDL-13-04, Vienna

University of Technology, Vienna, 2013. http://qse.ifs.tuwien.ac.at/publication/IFS-

CDL-13-04.pdf (retrieved 2015-11-22)

[9] Proenca, Diogo, Goncalo Antunes, José Luis Borbinha, Artur Caetano, Stefan Biffl,

Dietmar Winkler, and Christoph Becker. "Longevity as an Information Systems

Design Concern." In CAiSE Forum, pp. 73-80. 2013.

[10] Wahyudin, Dindin, Khabib Mustofa, Alexander Schatten, Stefan Biffl, and A. Min

Tjoa. "Monitoring the “health” status of open source web-engineering projects."

International Journal of Web Information Systems 3, no. 1/2 (2007): 116-139. 2007.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 72 - Appendix

[11] Sunindyo, Wikan Danar, Thomas Moser, Dietmar Winkler, and Stefan Biffl.

"Analyzing OSS Project Health with Heterogeneous Data Sources." International

Journal of Open Source Software and Processes (IJOSSP) 3.4 (2011): 1-23. 2011.

[12] Anton, Annie I. "Successful software projects need requirements planning."

Software, IEEE 20.3 (2003): 44-46. 2003.

[13] Senyard, Anthony, and Martin Michlmayr. "How to have a successful free software

project." Software Engineering Conference, 2004. 11th Asia-Pacific. IEEE, 2004.

[14] Agarwal, Nitin, and Urvashi Rathod. "Defining ‘success’ for software projects: An

exploratory revelation." International journal of project management 24.4 (2006):

358-370. 2006.

[15] Fenton, Norman. "Software measurement: A necessary scientific basis." Software

Engineering, IEEE Transactions on 20.3 (1994): 199-206. 1994.

[16] Miller, Keith W., Jeffrey Voas, and Tom Costello. "Free and open source software."

It Professional 12.6 (2010): 14-16. 2010. http://www.upstreme.com/pdf/2010ITPro-

OpenSourceEditorial.pdf (retrieved 2015-05-14)

[17] Laurent, Andrew M. St. “Understanding open source and free software licensing."

O'Reilly Media, Inc., 2004.

[18] Bachmann, Adrian, and Abraham Bernstein. "Software process data quality and

characteristics: a historical view on open and closed source projects." Proceedings

of the joint international and annual ERCIM workshops on Principles of software

evolution (IWPSE) and software evolution (Evol) workshops. ACM, 2009.

[19] Krishnamurthy, Sandeep. "A managerial overview of open source software."

Business Horizons 46.5 (2003): 47-56. 2003.

[20] Fielding, Roy T., and Gail Kaiser. "The Apache HTTP server project." Internet

Computing, IEEE 1.4 (1997): 88-90. 1997.

[21] Vukotic, Aleksa, and James Goodwill. Apache Tomcat 7. Apress, 2011.

[22] Alves, Tiago L., Pedro Silva, and Miguel Sales Dias. "Applying ISO/IEC 25010

Standard to prioritize and solve quality issues of automatic ETL processes."

Software Maintenance and Evolution (ICSME), 2014 IEEE International Conference

on. IEEE, 2014.

[23] Poston, Robert M., and Michael P. Sexton. "Evaluating and selecting testing tools."

Software, IEEE 9.3 (1992): 33-42. 1992.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 73 - Appendix

[24] Royce, Winston W. "Managing the development of large software systems."

proceedings of IEEE WESCON. Vol. 26. No. 8. 1970.

http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf (27.11.09)

[25] Zuser, Wolfgang, Thomas Grechenig, and Monika Köhle. “Software-Engineering: Mit

UML und dem Unified Process“. München: Pearson Studium, 2001.

[26] V-Modell XT Authors: Das V-Modell XT, 2009. http://www.vmodellxt.de/

(13.12.2009)

In English: http://ftp.tu-clausthal.de/pub/institute/informatik/v-modell-

xt/Releases/1.2.1/Documentation/ (13.12.2009)

[28] Boehm, Barry W.: "A spiral model of software development and enhancement."

ACM SIGSOFT Software Engineering Notes 11.4 (1986): 14-24. 1986.

[29] IBM Corporation: RUP data sheet, 2007.

ftp://ftp.software.ibm.com/software/rational/web/datasheets/RUP_DS.pdf

(25.12.2009)

[30] General Electric Company; McCall, Jim A.; Richards, P. K.; Walters, G. F. Factors in

Software Quality: Final Report. Information Systems Programs, General Electric

Company, 1977.

[31] Sommerville, Ian: Software Engineering; Reading: Addison-Wesley, 2000.

[32] Elting, Andreas, and Walter Huber. "Immer im Plan? Programmieren zwischen

Chaos und Planwirtschaft." Magazin für Computertechnik (c’t)., Heise Verlag 2

(2001), pp. 184ff. 2001.

[33] Beck, Kent, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward

Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron

Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff

Sutherland, and Dave Thomas: ”Manifesto for Agile Software Development”, 2001.

http://www.agilemanifesto.org (10.01.2010).

[34] Beck, Kent. "Embracing change with extreme programming." Computer 32.10

(1999): 70-77. 1999.

[35] Scacchi, Walt. "Process models in software engineering." Encyclopedia of software

engineering, 2001.

[36] Kitchenham, Barbara, and Shari Lawrence Pfleeger. "Software quality: The elusive

target." IEEE software 1 (1996): 12-21, 1996.

[37] Stallman, Richard. Free software, free society: Selected essays of Richard M.

Stallman. Lulu.com, 2002.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 74 - Appendix

[38] Perens, Bruce. "The open source definition." Open sources: voices from the open

source revolution (1999): 171-188, 1999.

[39] IS0/IEC 9126. “Information Technology - Software Product Evaluation - Quality

Characteristics and Guidelines for Their Use” International Organisation for

Standardization, Geneva, 1992.

[40] Wilbur, Ann, Towers, Gayle, Sherman, Tom, Yasukawa, Dan, and Shreve, Sue.

Metrics Guidebook For Integrated Systems And Product Development, International

Council on Systems Engineering. INCOSE-TP-1995-002-01, 1995.

http://www.whalen.ws/index_files/MetricsGuidebook_1995-0725.pdf (17.11.2015)

[41] Spinellis, Diomidis. Code quality: the open source perspective. Addison Wesley,

2006. ISBN 0-321-16607-8. http://www.spinellis.gr/codequality/intro.html

(19.11.2015)

[42] Gousios, Georgios, and Diomidis Spinellis. "Alitheia core: An extensible software

quality monitoring platform." Proceedings of the 31st International Conference on

Software Engineering. IEEE Computer Society, 2009.

[43] Almeida, Bruno, et al. "OSSMETER: Automated Measurement and Analysis of

Open Source Software." Projects Showcase@ STAF’15 (2015): 36. 2015.

[44] Pieber, Andreas. “Flexible Engineering Environment Integration for (Software+)

Development Teams”, Master Thesis, Vienna University of Technology, Vienna,

2011.

[45] Suman, Manoj Wadhwa. "A Comparative Study of Software Quality Models."

International Journal of Computer Science and Information Technologies 5.4. 2014.

[46] Winkler, Dietmar, Nathaniel Boisgard, and Bernhard Kiselka: ”BenchmarkDP“,

Technical Report, Vienna University of Technology, Vienna, 2015.

[47] Chrissis, Mary Beth, Mike Konrad, and Sandra Shrum. CMMI for Development:

Guidelines for Process Integration and Product Improvement, 3rd Edition, SEI Series

in Software Engineering. Addison-Wesley Professional / Pearson Education, 2011.

[48] Van Loon, Han. Process Assessment and ISO/IEC 15504: a reference book.

Springer Science & Business Media, 2004.

[49] Poksinska, Bozena, Jens Jörn Dahlgaard, and Marc Antoni. "The state of ISO 9000

certification: a study of Swedish organizations." The TQM Magazine 14.5 (2002):

297-306.

12.2 SLR References

References containing metrics:

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 75 - Appendix

[M1] Wahyudin, Dindin. "Quality Prediction and Evaluation Models for Products and

Processes in Distributed Software Development". 2008.

[M2] Wahyudin, Dindin, Khabib Mustofa, Alexander Schatten, Stefan Biffl, and A. Min

Tjoa. "Monitoring the "health" status of open source web-engineering projects."

International Journal of Web Information Systems 3, no. 1/2 (2007): 116-139.

2007.

[M3] Wahyudin, Dindin, Alexander Schatten, Khabib Mustofa, Stefan Biffl, and A. Min

Tjoa. "Introducing" HEALTH" Perspective in Open Source Web-Enginerring

Software Projects Based on Project Data Analysis." In iiWAS, pp. 269-278. 2006.

[M4] Mishra, Birendra, Ashutosh Prasad, and Srinivasan Raghunathan. "Quality and

profits under open source versus closed source." ICIS 2002 Proceedings (2002):

32. 2002.

[M5] Mockus, Audris, Roy T. Fielding, and James Herbsleb. "A case study of open

source software development: the Apache server." In Proceedings of the 22nd

international conference on Software engineering, pp. 263-272. Acm, 2000.

[M6] Mockus, Audris, Roy T. Fielding, and James D. Herbsleb. "Two case studies of

open source software development: Apache and Mozilla." ACM Transactions on

Software Engineering and Methodology (TOSEM) 11, no. 3 (2002): 309-346.

2002.

[M7] Aberdour, Mark. "Achieving quality in open-source software." Software, IEEE 24,

no. 1 (2007): 58-64. 2007.

[M8] Halloran, Timothy J., and William L. Scherlis. "High quality and open source

software practices." In Meeting Challenges and Surviving Success: 2nd

Workshop on Open Source Software Engineering. 2002.

[M9] Roberts, Jeffrey A., Il-Horn Hann, and Sandra A. Slaughter. "Understanding the

motivations, participation, and performance of open source software developers:

A longitudinal study of the Apache projects." Management science 52, no. 7

(2006): 984-999. 2006.

[M10] Rigby, Peter C., and Ahmed E. Hassan. "What can oss mailing lists tell us? a

preliminary psychometric text analysis of the apache developer mailing list." In

Proceedings of the Fourth International Workshop on Mining Software

Repositories, p. 23. IEEE Computer Society, 2007.

[M11] Bird, Christian, Alex Gourley, Prem Devanbu, Anand Swaminathan, and Greta

Hsu. "Open borders? immigration in open source projects." In Mining Software

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 76 - Appendix

Repositories, 2007. ICSE Workshops MSR'07. Fourth International Workshop

on, pp. 6-6. IEEE, 2007.

[M12] Ogawa, Michael, Kwan-Liu Ma, Christian Bird, Premkumar Devanbu, and Alex

Gourley. "Visualizing social interaction in open source software projects." In

Visualization, 2007. APVIS'07. 2007 6th International Asia-Pacific Symposium

on, pp. 25-32. IEEE, 2007.

[M13] Bird, Christian, Alex Gourley, and Prem Devanbu. "Detecting patch submission

and acceptance in oss projects." In Proceedings of the Fourth International

Workshop on Mining Software Repositories, p. 26. IEEE Computer Society,

2007.

[M14] Bachmann, Adrian, and Abraham Bernstein. "When process data quality affects

the number of bugs: Correlations in software engineering datasets." In Mining

Software Repositories (MSR), 2010 7th IEEE Working Conference on, pp. 62-71.

IEEE, 2010.

[M15] Linstead, Erik, Sushil Bajracharya, Trung Ngo, Paul Rigor, Cristina Lopes, and

Pierre Baldi. "Sourcerer: mining and searching internet-scale software

repositories." Data Mining and Knowledge Discovery 18, no. 2 (2009): 300-336.

2009.

[M16] Gall, Harald C., Beat Fluri, and Martin Pinzger. "Change analysis with evolizer

and changedistiller." IEEE Software 26, no. 1 (2009): 26-33. 2009.

[M17] Choi, Namjoo, Indushobha Chengalur-Smith, and Andrew Whitmore. "Managing

first impressions of new open source software projects." Software, IEEE 27, no.

6 (2010): 73-77. 2010.

[M18] Wahyudin, Dindin, Rudolf Ramler, and Stefan Biffl. "A framework for defect

prediction in specific software project contexts." In Software Engineering

Techniques, pp. 261-274. Springer Berlin Heidelberg, 2011.

[M19] Sharma, Vibhu Saujanya, and Vikrant Kaulgud. "Adoption and use of new

metrics in a large organization: A case study." In Emerging Trends in Software

Metrics (WETSoM), 2013 4th International Workshop on, pp. 21-27. IEEE, 2013.

[M20] Gary, Kevin, and Harry Koehnemann. "The Benefits of Transparency in

Managing Software Engineering Capstone Projects." In American Society for

Engineering Education. American Society for Engineering Education, 2010.

[M21] Crowston, Kevin, James Howison, and Hala Annabi. "Information systems

success in free and open source software development: Theory and measures."

Software Process: Improvement and Practice 11, no. 2 (2006): 123-148. 2006.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 77 - Appendix

[M22] Howison, James, Megan Conklin, and Kevin Crowston. "FLOSSmole: A

collaborative repository for FLOSS research data and analyses." International

Journal of Information Technology and Web Engineering (IJITWE) 1, no. 3

(2006): 17-26. 2006.

[M23] Krishnamurthy, Sandeep. "Cave or community?: An empirical examination of

100 mature open source projects." First Monday (2002). 2002.

[M24] Stewart, Katherine, and Tony Ammeter. "An exploratory study of factors

influencing the level of vitality and popularity of open source projects." ICIS 2002

Proceedings (2002): 88. 2002.

[M25] Chow, Tsun, and Dac-Buu Cao. "A survey study of critical success factors in

agile software projects." Journal of Systems and Software 81, no. 6 (2008): 961-

971. 2008.

[M26] Ossher, Joel, Sushil Bajracharya, Erik Linstead, Pierre Baldi, and Cristina Lopes.

"Sourcererdb: An aggregated repository of statically analyzed and cross-linked

open source java projects." In Mining Software Repositories, 2009. MSR'09. 6th

IEEE International Working Conference on, pp. 183-186. IEEE, 2009.

[M27] Biffl, Stefan, Wikan Danar Sunindyo, and Thomas Moser. "Semantic integration

of heterogeneous data sources for monitoring frequent-release software

projects." In Complex, Intelligent and Software Intensive Systems (CISIS), 2010

International Conference on, pp. 360-367. IEEE, 2010.

[M28] Biffl, Stefan, Wikan Danar Sunindyo, and Thomas Moser. "A Project Monitoring

Cockpit Based On Integrating Data Sources in Open Source Software

Development." In SEKE, pp. 620-627. 2010.

[M29] Wahyudin, Dindin, Alexander Schatten, Dietmar Winkler, and Stefan Biffl.

"Aspects of Software Quality Assurance in Open Source Software Projects: Two

Case Studies from Apache Project." In Software Engineering and Advanced

Applications, 2007. 33rd EUROMICRO Conference on, pp. 229-236. IEEE,

2007.

[M30] Weissgerber, Peter, Mathias Pohl, and Michael Burch. "Visual data mining in

software archives to detect how developers work together." In Mining Software

Repositories, 2007. ICSE Workshops MSR'07. Fourth International Workshop

on, pp. 9-9. IEEE, 2007.

[M31] McIntosh, Shane, Bram Adams, and Ahmed E. Hassan. "The evolution of ANT

build systems." In Mining Software Repositories (MSR), 2010 7th IEEE Working

Conference on, pp. 42-51. IEEE, 2010.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 78 - Appendix

[M32] Jansen, Slinger. "Measuring the health of open source software ecosystems:

Beyond the scope of project health." Information and Software Technology 56,

no. 11 (2014): 1508-1519. 2014.

[M33 Wahyudin, Dindin, Alexander Schatten, Dietmar Winkler, A. Min Tjoa, and Stefan

Biffl. "Defect Prediction using Combined Product and Project Metrics-A Case

Study from the Open Source" Apache" MyFaces Project Family." In Software

Engineering and Advanced Applications, 2008. SEAA'08. 34th Euromicro

Conference, pp. 207-215. IEEE, 2008.

[M34] Winkler, Dietmar, Wikan Danar Sunindyo, Stefan Biffl, and Thomas Moser.

"Analyzing OSS Project Health with Heterogeneous Data Sources." Open

Source Software Dynamics, Processes, and Applications (2013): 207. 2013.

[M35] Fluri, Beat, Emanuel Giger, and Harald C. Gall. "Discovering patterns of change

types." In Automated Software Engineering, 2008. ASE 2008. 23rd IEEE/ACM

International Conference on, pp. 463-466. IEEE, 2008.

[M36] Chawla, Sanjay, Bavani Arunasalam, and Joseph Davis. Mining open source

software (oss) data using association rules network. Springer Berlin Heidelberg,

2003.

[M37] Stamelos, Ioannis, Lefteris Angelis, Apostolos Oikonomou, and Georgios L.

Bleris. "Code quality analysis in open source software development." Information

Systems Journal 12, no. 1 (2002): 43-60. 2002.

[M38] Sunindyo, Wikan, Thomas Moser, Dietmar Winkler, and Richard Mordinyi.

"Project Progress and Risk Monitoring in Automation Systems Engineering." In

Software Quality. Increasing Value in Software and Systems Development, pp.

30-54. Springer Berlin Heidelberg, 2013.

[M39] Wahyudin, Dindin. "Event-based monitoring of open source software projects."

Availability, Reliability and Security, 2007. ARES 2007. The Second International

Conference on. IEEE, 2007.

[M40] Kaltenegger, Andreas. "Deriving Project Health Indicators of Open Source

Software Projects using Social Network Analysis." Master Thesis, Vienna

University of Technology, Vienna, 2010.

[M41] Nonnen, Jan, and Paul Imhoff. "Identifying knowledge divergence by vocabulary

monitoring in software projects." Software Maintenance and Reengineering

(CSMR), 2012 16th European Conference on. IEEE, 2012.

[M42] Williams, Rose, et al. "Predicting Project Health Prior to Inception." SEKE. 2010.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 79 - Appendix

[M43] Shenhar, Aaron J., et al. "Project success: a multidimensional strategic concept."

Long range planning 34.6 (2001): 699-725. 2001.

[M44] Valverde, Sergi, et al. "Self-organization patterns in wasp and open source

communities." Intelligent Systems, IEEE 21.2 (2006): 36-40. 2006.

[M45] Li, Paul Luo, Jim Herbsleb, and Mary Shaw. "Forecasting field defect rates using

a combined time-based and metrics-based approach: a case study of

OpenBSD." Software Reliability Engineering, 2005. ISSRE 2005. 16th IEEE

International Symposium on. IEEE, 2005.

[M46] Sharma, Vibhu Saujanya, and Vikrant Kaulgud. "Pivot: Project insights and

visualization toolkit." Emerging Trends in Software Metrics (WETSoM), 2012 3rd

International Workshop on. IEEE, 2012.

[M47] Li, Paul Luo, Jim Herbsleb, and Mary Shaw. "Finding predictors of field defects

for open source software systems in commonly available data sources: A case

study of openbsd." Software Metrics, 2005. 11th IEEE International Symposium.

IEEE, 2005.

[M48] Gupta, Swastik, and Nilesh Kumar Dokania. "Predicting health of a project using

metric generator." Confluence The Next Generation Information Technology

Summit (Confluence), 2014 5th International Conference-. IEEE, 2014.

References containing OSS projects (additional to the above):

[P1] German, Daniel, and Audris Mockus. "Automating the measurement of open

source projects." Proceedings of the 3rd workshop on open source software

engineering. 2003.

[P2] Sunindyo, Wikan Danar, and Fajar Juang Ekaputra. "OSMF: a framework for

OSS process measurement." Information and Communication Technology.

Springer Berlin Heidelberg, 2013. 71-80. 2013.

[P3] Sunindyo, Wikan Danar, et al. "Improving Open Source Software Process

Quality Based on Defect Data Mining." SWQD. 2012.

References containing tools (additional to the above):

[T1] Lanza, Michele. "The evolution matrix: Recovering software evolution using

software visualization techniques." Proceedings of the 4th international workshop

on principles of software evolution. ACM, 2001.

[T2] Rahman, Mohammad Masudur, and Chanchal K. Roy. "An insight into the pull

requests of GitHub." Proceedings of the 11th Working Conference on Mining

Software Repositories. ACM, 2014.

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 80 - Appendix

[T3] Capraro, Maximilian. "Towards a Representative and Diverse Analysis of Issue-

Tracker Related Code and Process Metrics." (2013).

[T4] Gotel, Orlena CZ, and Francis T. Marchese. "Scouting Requirements Quality

Using Visual Representations." Information Visualisation, 2009 13th International

Conference. IEEE, 2009.

12.3 Results of SLR on Health Indicators

In this section we want to give the full details of the SLR on health indicators described in

chapter 5.

12.3.1 List of all projects found

While section 5.1 provides only grouped information about the projects found in literature,

the full list is shown here in Table 14:

Table 14 Projects found in SLR

No. Project Project Type Reference(s)

1 Apache Ant Apache [M28]

2 Apache Cocoon Apache [M27], [M28]

3 Apache Excalibur Apache [M34]

4 Apache HTTPD Apache

[M1], [M2], [M3], [M4],

[M5], [M6], [M7], [M8],

[M9], [M10], [M11], [M12],

[M13], [M14]

5 Apache Jakarta Apache [M9]

6 Apache Lenya Apache [M28], [M34]

7 Apache Log4J Apache [M28], [M34]

8 Apache Lucene Apache [M39]

9 Apache MyFaces Apache [M1], [M29], [M33]

10 Apache Ode Apache [M39]

11 Apache OJB Apache [M34]

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 81 - Appendix

12 Apache OpenJPA Apache [M39]

13 Apache POI Apache [M28]

14 Apache Roller Apache [M39]

15 Apache Slide Apache [M1], [M2], [M3]

16 Apache Struts Apache [M1]

17 Apache Tomcat Apache
[M27], [M28], [M1], [M2],

[M3], [M29]

18 Apache Woden Apache [M39]

19 Apache Xindice Apache [M1], [M2], [M3]

20 ArgoUML Special Purpose Tools [M16], [M31]

21 Azureus Special Purpose Tools [M16]

22 BIND Special Purpose Tools [M4]

23 CMS Special Purpose Tools [M32]

24 cross-project cross-project

[M15], [M16], [M17],

[M18], [M19], [M20],

[M21], [M22], [M23],

[M24], [M25], [M26]

25 Cultivate Special Purpose Tools [M41]

26 Eclipse Special Purpose Tools [M14], [M31]

27 Evolution Special Purpose Tools [P1]

28 Fedora Linux Operating System [P2]

29 FreeBSD Operating System [M4]

30 gcc Special Purpose Tools [M8]

31 Ghostscript Special Purpose Tools [M4]

32 Gnome Special Purpose Tools [M8], [M14], [M32]

33 Gutenprint Special Purpose Tools [M40]

34 HSQLDB DBMS [M40]

35 Industry Industry [M14], [M38], [M42], [M43]

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 82 - Appendix

36 JBoss AS Special Purpose Tools [M31]

37 jEdit Special Purpose Tools [M16], [M35]

38 Jfreechart Special Purpose Tools [M16], [M35]

39 Jgit Special Purpose Tools [M41]

40 JUnit Special Purpose Tools [M30]

41 KDE Special Purpose Tools [M8]

42 Linux Operating System [M4], [M7], [M8]

43 Mozilla Special Purpose Tools [M4], [M8], [M14]

44 MySQL DBMS [M13]

45 NetBeans Special Purpose Tools [M8], [M14]

46 OpenBSD Operating System [M45], [M48]

47 OpenOffice Special Purpose Tools [M14]

48 Perl Programming Language [M4], [M8]

49 PostGreSQL DBMS [M11], [M12], [M13]

50 Python Programming Language
[M4], [M8], [M11], [M13],

[M32]

51 RedHat Enterprise Linux Operating System [P3]

52 RedHat Enterprise Linux Operating System [P2]

53 Sendmail Special Purpose Tools [M4]

54 Squirrel Special Purpose Tools [M40]

55 StarOffice Special Purpose Tools [M4]

56 SUSE Linux Operating System [M37]

57 Xdoclet Special Purpose Tools [M40]

58 XFree86 Special Purpose Tools [M8]

12.3.2 List of all metrics found

While section 5.2 provides only some highlights of the metrics found in literature, the full

list of all metrics in alphabetical order is shown here in Table 15:

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 83 - Appendix

Table 15 Metrics found in SLR

No. Metric Metrics Group Reference(s)

1
age of project versa number of

developers

project success

measures
[M23]

2 Average attachments per bug report activity measures [M14]

3
Average bug report links per linked bug

report
comments measures [M14]

4 Average bug reporters per developer defect/quality measures [M14]

5 Average bug reports per bug reporter activity measures [M14]

6 Average bug reports per developer defect/quality measures [M14]

7 Average comments per bug report activity measures [M14]

8
Average commits per bug report (all bug

reports)
defect/quality measures [M14]

9
Average commits per bug report (only

fixed bug reports)
defect/quality measures [M14]

10 Average commits per developer defect/quality measures [M14]

11 Average fixed bug reports per developer defect/quality measures [M14]

12
Average length of commit messages (w/o

empty)
comments measures [M14]

13
Average number of bug report status

changers per developer
activity measures [M14]

14 Average number of emails per month
communication

measures
[M39]

15 Average relative error; error measure defect/quality measures [M18]

16 average size code size measures [M37]

17 Average status changes per bug report activity measures [M14]

18
Bug History Metric (bug activities during a

certain period of time)
defect/quality measures [M28]

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 84 - Appendix

19

Build Graph Depth: The depth of a build in

terms of the maximum level of depth

references made

code size measures [M31]

20
Centrality (Degree Centrality, Closeness

Centrality, Betweenness Centrality)

communication

measures
[M40]

21

change type patterns do describe

development activities and affect the

control flow, the exception flow, or change

the API.

activity measures [M35]

22 code churn defect/quality measures [M19]

23 Code churn (code activity) activity measures [M46]

24 code ownership code size measures [M5], [M6]

25 Code Quality defect/quality measures [M33], [M46]

26 Code Review Effectiveness
project success

measures
[M48]

27 comment frequency comments measures [M37]

28

communication and use intensity (number

of downloads compared to mailing list

activity)

communication

measures
[M2]

29 Consistency of changes comments measures [M16]

30 Control complexity defect/quality measures [M33]

31 cyclomatic complexity code size measures [M37]

32 Defect Closure Time defect/quality measures [M29]

33 Defect Collection Effectiveness defect/quality measures [M29]

34 Defect Density defect/quality measures [M48]

35
defect density (Post-release

Defects/KLOCA)
defect/quality measures [M5]

36 Defect Detection Frequency defect/quality measures [M29]

37
Defect Service Delay (Defect Response

Time: Defect Reported Timestamp -
defect/quality measures [M1]

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 85 - Appendix

Defect Confiremd Timestamp, Defect

Removal Time: Defect Confirmed

38 Design Review Effectiveness
project success

measures
[M48]

39

Developer Contribution Pattern (Number

of SCM Commits/Number of Email

Conversation, Number of Defect Status

Changes)

activity measures [M1]

40 Development Efficiency
project success

measures
[M46]

41
direct business and organizational

success: Creating a large market share

project success

measures
[M43]

42 distribution of the work in the community
communication

measures
[M5], [M6]

43 Dynamic Author-File Graph activity measures [M30]

44

Dynamic Build Graph Length: The length

of a build graph either in terms of the total

number of executed tasks or of the total

number of executed targets

code size measures [M31]

45

Dynamic Build Lines of Code (DBLOC):

The percentage of code in the build

system that is exercised by the default or

clean targets

code size measures [M31]

46 Effort Variance
project success

measures
[M48]

47
evolution patterns based on the code

structure
defect/quality measures [M41]

48 Feedback during evolution
communication

measures
[M16]

49 File Author Matrix activity measures [M30]

50 File Count: The number of specification code size measures [M31]

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 86 - Appendix

files in the build system

51

Halstead Complexity: The quantity of

information contained in the build system

(Volume), the mental difficulty, associated

with understanding the build system

specification files (Difficulty), and the

weighted Difficulty with respect to Volume

(Effort)

code size measures [M31]

52

impact on the customer: Meeting

technical specifications, Fulfilling

customer needs, Solving a customer’s

problem, The customer is using the

product, Customer satisfaction

project success

measures
[M43]

53 KLOC/time period added code size measures [M32]

54 maximum levels code size measures [M37]

55
Measures of Centrality: Strength and Out-

degree

communication

measures
[M44]

56 Modularity defect/quality measures [M33]

57 number of active contributors activity measures [M32]

58 Number of Adiministrators activity measures [M36]

59 Number of CVS commits activity measures [M36]

60
number of defects per thousands line of

code
defect/quality measures [M21]

61 Number of developers activity measures [M36]

62
number of downloads versa number of

developers

project success

measures
[M23]

63 Number of forum messages activity measures [M36]

64 number of inputs/outputs code size measures [M37]

65 Number of mailing lists activity measures [M36]

66 Number of patches completed, Number of defect/quality measures [M36]

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 87 - Appendix

bugs found, The percentage of bugs

fixed, Pct. of support req. Completed

67 Number of patches started activity measures [M36]

68 number of paths code size measures [M37]

69 Number of public forums activity measures [M36]

70 number of statements code size measures [M37]

71 Number of support requests activity measures [M36]

72 Number of weekly downloads
project success

measures
[M17]

73 page views versa number of developers
project success

measures
[M23]

74
Patch Submission Detection, Finding

Patch Applications
defect/quality measures [M13]

75

potential critical success factors of Agile

projects: a set of 12 possible critical

success factors for each of the four

project success categories – Quality,

Scope, Time, and Cost

project success

measures
[M25]

76

predicting model parameters of software

reliability growth models (SRGMs) using

metrics-based modeling methods

defect/quality measures [M45], [M47]

77 predictive algorithm risk measures [M42]

78

preparing for the future: Creating a new

market, Creating a new product line,

Developing a new technology

project success

measures
[M43]

79
probability of a fault in a module (Basili et

al 1994)
defect/quality measures [M21]

80 program length code size measures [M37]

81
project efficiency: Meeting schedule goal,

Meeting budget goal

project success

measures
[M43]

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 88 - Appendix

82 Proportion of code to comments comments measures [M16]

83 Proportion of Verified Solution defect/quality measures [M29]

84 proportions of activities in the community activity measures [M2], [M34]

85 Quality of Component Testing Effort defect/quality measures [M46]

86
Rate of commit messages with bug report

links (w/o empty)
comments measures [M14]

87 Rate of duplicate bug reports defect/quality measures [M14]

88 Rate of fixed bug reports defect/quality measures [M14]

89 Rate of invalid bug reports defect/quality measures [M14]

90
Rate of linked bug reports and Rate of

linked bug reports (only fixed bug reports)
comments measures [M14]

91 Requirement Stability Index
project success

measures
[M48]

92 responding speed to bug reports activity measures [M21]

93 Rework@Coding defect/quality measures [M48]

94 Risk Factor Analysis and Classification risk measures [M38]

95 Schecule Variance
project success

measures
[M48]

96 service delays on open issues activity measures [M2], [M34]

97
size of the Apache development

community
code size measures [M5], [M6]

98 SRS Review Effectiveness
project success

measures
[M48]

99 SRS Review Efficiency
project success

measures
[M48]

100
Stakeholder Value for Quality Assurance

(win conditions)

project success

measures
[M29]

101
Static Build Lines of Code (SBLOC): The

number of lines of code in build
code size measures [M31]

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 89 - Appendix

specification files

102
Target Count: The number of build targets

in the build specification files
code size measures [M31]

103

Target Coverage: The percentage of

targets in the build system that are

exercised by the default or clean targets

code size measures [M31]

104
Task Count: The number of tasks in the

build specification files
code size measures [M31]

105 Team Analysis and Composite Graphs
project success

measures
[M46]

106 the dynamics of developers’ participation
communication

measures
[M3]

107 The percentage of bugs fixed defect/quality measures [M36]

108 the performance of bug tracking defect/quality measures [M3]

109 time to resolve problem reports defect/quality measures [M6]

110
Total Communication Metric (No of

communication artifacts / time)

communication

measures
[M28]

111

Transaction Overview (Number and

frequency of the transactions, Number of

developers, Number of changed files in

one single transaction, Hierarchy-level of

the changed file and Sequence of

developers that are responsible for the

changes)

activity measures [M30]

112 unconditional jumps code size measures [M37]

113
User Coupling Metric (Communication

graph based on mailing list)

communication

measures
[M28]

114 vocabulary frequency comments measures [M37]

115 Volume or size code size measures [M33]

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 90 - Appendix

12.3.3 List of all tools found

While section 5.3 provides only some highlights of the tools found in literature, the full list

of all tools in alphabetical order is shown here in Table 16:

Table 16 Tools found in SLR

No. Tool Reference(s) available active

1 Apache Jena [M27] yes yes

2 Association Rules Network (ARN) [M36] no ?

3 Bug History Collector [P2] no ?

4 Bugzilla Query Commands [M1] yes yes

5 Bugzilla Web Service Interface [P3] yes yes

6 c_count [M47] yes yes

7 ChangeDistiller [M16], [M35] yes no

8 Cmetrics [M47] yes no

9 CodeCrawler [T1] yes no

10 Eclipse Checkstyle Plugin [M1], [M33] yes yes

11 Eclipse Metrics plugin [M1], [M33] yes ?

12 Engineering Cockpit (EnCo) [M38] no ?

13 Engineering Service Bus (EngSB) [M38] yes yes

14 Event Processing Agent [M39] no ?

15 Evolizer [M35] yes no

16 FLOSSmole [M22] yes yes

17 Google code search [M26] yes no

18 individual

[M5], [M6],

[M45], [M47],

[M48]

no ?

19 Initial Delivery Index [M42] no ?

20 JIRA Query Commands [M1] yes yes

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 91 - Appendix

21 Koders [M26] yes yes

22
Labeled LDA in Java (based on

JGibbLDA)
[T2] yes no

23
Linguistic Inquiry and Word Count

(LIWC)
[M10] yes yes

24 Logiscope [M37] yes yes

25 Mailinglist ARChive marc.info [M2] yes yes

26 Merobase [M26] no ?

27 Moose [M26], [T1] yes yes

28 Open Hub [T3] yes yes

29
Open Source Ecosystem Health

Operationalization
[M32] no ?

30 Process Mining Tool ProM [P2], [P3] yes yes

31 Project Data Fetcher [M34] no ?

32
Project Insights and Visualizations

Toolkit (PIVoT)
[M19], [M46] no ?

33
Project Monitoring Cockpit

(ProMonCo)
[M28], [M34] no ?

34 Protege [M27] yes yes

35 Rational Team Concert/Jazz [M20] yes yes

36
Resource Standard Metrics (RSM) by

M Squared Technologies
[M47] yes yes

37 RiskIt [M38] yes ?

38 SLOCCount [M8], [M31] yes yes

39 SNAnalzyer [M40] yes no

40 SoftChange [P1] yes no

41
Source Monitor by Campwood

Software
[M47] yes yes

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 92 - Appendix

42 Sourcerer [M15] yes yes

43 SPSS [M28], [M37] yes yes

44 StatSVN tool [M1], [M33] yes no

45 SVNKit [M27] yes yes

46 Understand [M47] yes yes

47 Wordle [T4] yes yes

12.4 Results of Tool Evaluation

In this section we want to give the full results of the tool evaluation described in chapter 6.

12.4.1 Pre-selection using Mandatory Requirements

Table 17 shows the full list of all tools passing the pre-selection of the tool study using the

mandatory requirements defined in Table 5:

Table 17 Results of the pre-selection

No. Tool Result Reasoning

1 Apache Jena no no metrics calculated

2 Bugzilla Query Commands no

obviously outdated API - no metrics

calculated; does not analyse code, but bug

data

3
Bugzilla Web Service

Interface
no

no metrics calculated; does not analyse

code, but bug data

4 c_count no does not support java

5 Eclipse Checkstyle plug-in yes

6
Engineering Service Bus

(EngSB)
no

Engineering Service Bus (EngSB) does not

calculate any metrics; it just integrates other

tools. It is an alternative to the framework we

are building, if it can integrate tools that

calculate metrics (i.e. other tools of this list)

7 FLOSSmole no no metrics available directly - needs to be

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 93 - Appendix

extracted from the database

8 JIRA Query Commands no
commercial tool not available for testing, no

metrics calculated

9 Koders no commercial tool, no metrics calculated

10
Linguistic Inquiry and Word

Count (LIWC)
no no metric of interest calculated

11 Logiscope no commercial tool not available for testing

12
Mailinglist ARChive

marc.info
no

this tool just searches mailings lists, no

metrics calculated

13 Moose no no metrics calculated

14 Open Hub yes
assesses only publically available open

source projects

15 Process Mining Tool ProM no no metrics calculated

16 Protege no no metric of interest calculated

17
Rational Team

Concert/Jazz
no commercial tool test version not working

18
Resource Standard Metrics

(RSM)
yes

19 SLOCCount no no export or API available

20 Source Monitor yes

21 Sourcerer no
no metrics available directly - needs to be

extracted from the database

22 SPSS no no metrics calculated

23 SVNKit no no metrics calculated

24 Understand yes

25 Wordle no no metrics calculated

26 Alitheia-Core no

project seems dead, no installer/just code

exists, metrics limited and API only

announced

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 94 - Appendix

27 BugzillaMetrics yes
no metrics calculated; does not analyse

code, but bug data

28 CLOC yes

29 JArchitect no
very interesting tool, also plug-ins possible,

but no export or API available

30 Kiuwan no no export or API available

31 nDepend no does not support java

32 ProjectCodeMeter no fast tool, export just reports (no API)

33 Sonargraph no
very interesting tool, many features, no

export or API available

34 SonarQube no metrics limited, no export or API for metrics

35 SourceMeter no no export or API available

12.4.2 Tool Selection Results

Table 18 and Table 19 show the full results of the tool selection. It contains the scales for

all pre-selected tools using the selection criteria defined in Table 8:

Table 18 Tool Selection Scales 1/2

No. Selection Criteria BugzillaMetrics CLOC

A General Requirements

1 Availability for Testing Purpose 1 1

2 Platform independency: tool runs on Windows 1 0,7

3 Platform independency: tool runs on Linux 1 1

4 Platform independency: tool runs on Mac OS 1 1

5 Time of Installation not longer than 30 minutes 0,5 1

6 Simple Installation using script(s) or installer 0,35 0,35

B Metrics Calculation

7 Ability to calculate multiple metrics of at least one 1 1

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 95 - Appendix

metrics group of Table 3

8 Support of the programming language Java 0,35 1

9
Ability to calculate metrics of both metric groups “code

size metrics” and “defect/quality metrics”
0 1

10

Ability to calculate metrics of at least another metrics

groups (e.g. “activity metrics” or “communication

metrics”)

1 0

11
Support of additional sources (e.g. bug tracker, mailings

lists)
1 0

12 Support of evaluating and checking design documents 0 0

C Export Functionality

13
Export calculated metrics as XML or another

interoperable format via API
1 1

14
Usable User / Developer Guide for the Export / API

exists
1 1

15 Support for a client to use the export 0 0

16 Examples available 1 0

17 Coding examples available 0 0,5

Score 66,175 69,125

Table 19 Tool Selection Scales 2/2

No. Eclipse Checkstyle plug-in Open Hub RSM Source Monitor Understand

A

1 1 1 1 1 1

2 1 1 1 1 1

3 1 1 1 0 1

4 1 1 1 0 1

5 1 0,7 1 1 1

Software Project Longevity – A Case Study on Open Source Software Projects

Bernhard Kiselka - 96 - Appendix

6 0 0 1 1 1

B

7 1 1 1 1 1

8 1 1 1 1 1

9 0,35 1 1 1 1

10 0 1 0 0 0

11 0 0 0 0 0

12 0 0 0 0 0

C

13 0,35 1 1 1 1

14 1 0,7 1 1

15 0 0,35 0 0 0

16 0,35 0,7 0 0,35 1

17 0,5 1 0,5 0,5 1

Score 53,18 75,575 70,9 69,725 77,5

