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A B S T R AC T

Focus of this thesis was the improvement of the vertical flight performance
of the small-scaled, unmanned, autonomous DLR helicopters HE-1 and HE-2
by employing an advanced model-based controller. The success of the final
design was to be analyzed in flight experiments and benchmarked against the
original flight controller.

We cover the development of a basic three rigid body model for the heli-
copter HE-1. The heave (vertical) dynamics of the mechanical model was ex-
tended by the aerodynamic effect called heave dampening. Unknown parame-
ters of the heave dynamics model were determined with the Prediction Error
Minimization (PEM) system identification method. Necessary flight data was
recorded in specially designed test flights.

The decision for the controller concept was made in favor of H∞ control due
to its desirable characteristics, such as MIMO capability and its robustness
performance for systems subject to (parameter) uncertainties and external dis-
turbances. Based on the final heave dynamics model, various H∞ controller
designs, such as (i) S/KS/T mixed sensitivity optimization, (ii) signal-based
H∞ control, (iii) 1 degree-of-freedom loop shaping design, (iv) 2 degree-of-
freedom loop shaping design were realized and compared in simulation. The
most promising design (iv) was then implemented on the HE-2 on-board
flight controller and benchmarked in flight experiments versus the original
cascaded PID controller. Based on the analyzed data, suggestions on how to
further improve the controller are given.
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P R E FAC E

A short overview of the notation used, which is mostly consistent with that in
Jazar [13].

• Bold lower case letters indicate vectors, e.g.:

r

• Bold uppercase letters indicate matrices, e.g.:

J

• Calligraphic letters denote coordinate frame, e.g:

N Earth-fixed coordinate frame N

• Right subscript on a transformation matrix denotes the departure frame
and the left superscript the destination frame

ATB Transformation matrix from frame B

to frame A

• Left superscript on a vector denotes the frame in which the vector is
expressed, e.g.:

Nr position vector r expressed in frame N

in other words, the vector is described as a linear combination of the
respective frames basis vectors e.g.:

Nr = r1n1 + r2n2 + r3n3

• First right subscript letter denotes the tip point of a position vector, e.g.:

NrC position of point C,

expressed in frame N

• Second right subscript letters denote the shaft point of a position vector,
e.g.:

NrCD position vector pointing from D to C,

expressed in frame N

if the vector points from the origin of a frame it is expressed in, the
second letter will be left out, e.g:

NrC position vector pointing from origin of N to C,

expressed in N
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• Left subscript on a velocity vector denotes the frame the velocity is
measured with respect to, e.g.:
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1
I N T RO D U C T I O N

1.1 C H A L L E N G E S

Goal of this thesis was the improvement of the vertical flight performance
of the unmanned, autonomous DLR helicopter HE-1 and HE-2, respectively,
see figure 1. One major research field of the Flying Robots group at the DLR
Oberpfaffenhofen is aerial manipulation, [11]. For the success of these mis-
sions the helicopters’ set-point tracking performances are critical. Of utmost
importance is the helicopter’s capability to hover at constant height while
interacting with objects on the ground. To achieve this, it was intended to de-
velop model-based controller concepts for the heave dynamics, test them in
simulation and benchmark the most promising candidate against the original
flight controller in flight experiments. At first a basic three rigid bodies heli-

Vision Computer WiFi-Antenna

IMU GPS Motor

Flight Computer Camera

Figure 1: Helicopter HE-1 of the DLR Oberpfaffenhofen Flying Robots group

copter model was derived and then extended by heave dampening. Helicopter
modeling is quiet challenging. The underlying physical phenomenas are com-
plex and a plethora of couplings between the numerous subsystem make an
engineer’s life hard. Modeling the primary rotor dynamic effects of the main
rotor, such as flapping, lead-lag and coning already requires complex models
with plenty parameters. What makes life even harder is the fact, that pure ana-
lytical approaches promise very little success. All reliable helicopters models
that are used for the development of commercial flight controllers are derived
with special simulation software such as CAMRAD II, these „raw“ models
are then fine tuned in an iterative process of flight testing and system identifi-
cation for a vast array of different flight conditions, [24], [15], which covers
a time span of years. That makes it clear that the model had to be kept simple,
even though we were primarily interested in just the heave dynamics. Yet, it

1



2 I N T RO D U C T I O N

Figure 2: Helicopter HE-1 of the DLR Oberpfaffenhofen Flying Robots group

had to be precise enough to achieve flight performance improvements with a
model-based controller. The focus was set on extending the rigid-body model
by heave dampening. The Prediction Error Minimization (PEM) system iden-
tification method was used to determine unknown parameters of the heave
dynamics model, using log data of special test flights that were performed
at the airfield of Grob Aircraft AG and at the DLR Oberpfaffenhofen area.
The high vibrations that are inherent with airborne helicopters result in noisy
velocity, and especially acceleration data. A lot of care has to be taken when
fixing the IMUs on the helicopter. Good dampening and decoupling from the
main frame is mandatory to gain any usable flight data.

The helicopters used are the HE-1 and HE-2 from DLR, Oberpfaffenhofen.
Their mechanical parts are both based on a customized Maxi Joker 3. They
mostly differ in on-board electronic components and battery capacity, nev-
ertheless the total lift off weight is equal. As a result their flight behavior
is expected to be similar, which is backed up by manual flight experience.
Figure 1 shows helicopter HE-1 with an adapter on the bottom to pick up
ground based robots. Figure 2 shows helicopter HE-2 with the additional bat-
tery packs mounted right under the main rotor. More information about the
helicopters can be found in Kondak et al. [16], [18], [19].

Based on the heave dynamics model, several H∞ control schemes, such as

• S/KS/T mixed sensitivity optimization

• signal-based H∞ control

• 1 degree-of-freedom loop shaping design

• 2 degree-of-freedom loop shaping design

were realized and compared in simulation. The most promising design (2
DoF LSD) was then implemented on the HE-2 on-board flight controller
and benchmarked in flight experiments versus the original cascaded PID
controller. The H∞ based approach was chosen due to its excellent robust-
ness performance which is superior to that of other robust methods such as
LQR techniques when it comes to parametric and unstructured uncertainties,
[37]. The provided robustness performance to system models inherent para-
metric uncertainties, unmodeled uncertainties and external disturbances such
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as wind gusts has made H∞ a prominent choice in flight control design for
helicopter control, [33]. The success of this method in real-life flight control
application was shown by Postlethwaite and Yue [28], [27] and many others.

1.2 M E C H A N I C A L M O D E L

Helicopter HE-1 is approximated by three rigid bodies: fuselage, main and
tail rotor.

F U S E L AG E The fuselage with a mass of mF is assumed to have a vertical
plane of symmetry, therefore the entries Ixy, Iyz of its inertia tensor IF

are zero

IF =

IFxx 0 IFxz

0 IFyy
0

IFxz
0 IFzz

 . (1.1)

See chapter 2 for definition of the coordinate axes.

M A I N ROT O R The main rotor is modeled as a solid disc with a mass of
mMR = 246.5g and a radius of rMR = 892mm.

The main reason behind this simplification is the fact that the rotational
equation of motion becomes more compact, since the moment of iner-
tia tensor of the main rotor becomes time-invariant with respect to the
fuselage-fixed frame, see eq. (3.15).

TA I L ROT O R The tail rotor with a mass of mT R = 5g and a radius of rT R =

133mm is modeled in analog fashion to the main rotor.

The entire mass m of the fully equipped helicopter is given by:

m = mF +mMR +mT R (1.2)

and equals 101 N.





Part I

M O D E L I N G

"Helicopter vertical motion in hover is probably the simplest to
analyze, but even here our simplifying approximations break

down at higher frequencies and amplitudes, as unsteady
aerodynamics, blade stall and rotor dynamic effects alter the

details of the motion considerably."

— Gareth D. Padfield [25]





2
K I N E M AT I C S

2.1 C O O R D I N AT E S Y S T E M S

As it is common practice in the aerospace field, two reference frames are
introduced to describe the position and orientation of the helicopter, including
the earth-fixed inertial frame N and the fuselage-fixed body frame B.

2.1.1 Inertial Frame (Earth Frame)

The earth-fixed frame N with the standard basis n1,n2,n3 is assumed to be
inertial1. Its origin ON is located on the earth’s local tangential surface at
some arbitrary point. According to aeronautic convention the three axis are
defined as follows:

n1-axis pointing north

n2-axis pointing east

n3-axis positive towards the center of the earth

n2,yN,y

n1,xN,x

n3,zN,z

NED 
coordinates

North

Earths local
tangent
plane

East

Down

Figure 3: Ground reference frame: NED system (North, East, Down)

Often it is also referred to as NED (North, East, Down) system.

2.1.2 Body Frame

The origin OB of the orthogonal body axes system B, with basis vectors
b1,b2,b3

2, is fixed at the center of gravity (cog) C of the entire helicopter.

1 n1,n2,n3 and x,y,z are used interchangeably throughout this thesis
2 b1,b2,b3 and X,Y,Z are used interchangeably throughout this thesis

7
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The movement of the cog due to flapping of the rotor blades is neglected and
a mean position relative to a particular trim state is assumed. Again, according
to aeronautic convention the three axis are defined as follows:

b1-axis positive out the nose of the aircraft in the plane of symmetry of
the aircraft3

b3-axis perpendicular to the b1-axis, in the plane of symmetry of the
aircraft, positive below the aircraft

b2-axis perpendicular to the b1,b3-plane, positive determined by the
right-hand rule (generally, positive out the right wing)

Any orientation of a rigid body can be achieved by three successive ele-
mental4 rotations. In aeronautics three intrinsic rotations z,y′,x′′ are used to
describe a change of orientation of an aircraft, with the following sequence
of rotation:

1. rotation about the b3-axis by the yaw angle (ψ)

2. rotation about the first intermediary b2-axis by pitch angle (θ )

3. rotation about the 2nd intermediary b1-axis by roll angle (φ )

Lateral axis

Vertical axis

Longitudinal axis

b1

Roll
(Ф)Pitch

 (θ)
Yaw
 (ψ) b3

b2

Figure 4: Body-fixed coordinate system

The angular velocity of a rotating frame (body) can be described by either
an angular velocity vector or an angular velocity tensor. They can be derived
from each other.

It is often easier to set up equations of motions by using a body frame
to express certain vectors, especially when angular momentum or rotational
kinetic energy are involved in the calculations, since the moment of inertia
tensor is time invariant for rigid bodies when expressed in a body-fixed frame.

3 The helicopter HE-1 is assumed to be symmetric with respect to the b1,b3-plane.
4 A rotation about one of the axes of a Coordinate system.
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ψ

θ

φ

sequence of rotation axes: z, y’, x’’

xB,x’’,X

x’xN,x

yB,Y

y’,y’’
yN

zB,Z z’’

zN,z, z’

Figure 5: Orientation problem

2.2 AT T I T U D E D E S C R I P T I O N

The orientation of an aircraft is usually referred to as attitude. It can be de-
scribed by the relative orientation of the aircraft-fixed frame to the earth
frame, which will be used as the reference frame. In this thesis the relative
orientation will be expressed with rotation matrices or Euler angles. A popu-
lar alternative form would be Quaternions (no gimbal lock problematics).

2.2.1 Coordinate System Transformation

To transform the Earth frame N to the body frame we will use three intrin-
sic rotations z,y′,x′′ about the Euler angles ψ ,θ ,φ . Figure 5 visualizes this
process. x′,y′,z′, with z′ = zN , denote the axes of the first intermediary frame
which results from rotating the Earth Frame N around the zN-axis by the yaw
angle ψ . Consecutive rotation about the y′ axis by the pitch angle θ yields the
second intermediary frame. x′′,y′′,z′′ denote its axes, with y′′ = y′. Finally,
the body frame results by rotating the second intermediary frame around the
x′′-axis by the roll angle φ .

The single, elemental yaw, pitch and roll rotations of the coordinate frames
can also be described by the following rotation matrices:
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Rx(φ ) =
BR2(φ ) =

1 0 0

0 cos(φ ) sin(φ )

0 sin(φ ) cos(φ )

 (2.1)

Ry(θ ) =
2R1(θ ) =

cos(θ ) 0 −sin(θ )

0 1 0

sin(θ ) 0 cos(θ )

 (2.2)

Rz(ψ) =1RN(ψ) =

 cos(ψ) sin(ψ) 0

−sin(ψ) cos(ψ) 0

0 0 1

 . (2.3)

Rotation matrices are orthogonal with determinant 1, i.e. its columns and
rows are orthogonal unit vectors or equivalently RT = R−1 and det(R) = 1.

2.2.1.1 Transformations between frame N and B

By composing three elemental rotations (2.1)-(2.3) in the correct order, the
resulting rotation matrix BRN – which again is orthogonal – describes the
transformation from frame N to B

BRN(φ ,ψ ,θ ) = BR(φ )2
2R(θ )1

1R(ψ)N

=

[
c(ψ)c(θ ) c(θ )s(ψ) −s(θ )

c(ψ)s(φ )s(θ )−c(φ )s(ψ) c(φ )c(ψ)+s(φ )s(ψ)s(θ ) c(θ )s(φ )
s(φ )s(ψ)+c(φ )c(ψ)s(θ ) c(φ )s(ψ)s(θ )−c(ψ)s(φ ) c(φ )c(θ )

]
.

(2.4)

Transformation in the opposite direction can be achieved by pre-multiplying
with

NRB =BR−1
N = BRT

N =

=

[
c(ψ)c(θ ) c(ψ)s(φ )s(θ )−c(φ )s(ψ) s(φ )s(ψ)+c(φ )c(ψ)s(θ )
c(θ )s(ψ) c(φ )c(ψ)+s(φ )s(ψ)s(θ ) c(φ )s(ψ)s(θ )−c(ψ)s(φ )
−s(θ ) c(θ )s(φ ) c(φ )c(θ )

]
.

(2.5)

Remark. Certain orientations cannot be uniquely represented by Euler An-
gles; so called Gimbal lock might occur. For the rotations above, this will hap-
pen when the pitch angle reaches the following values: θ = π/2+nπ , n∈Z.
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DY NA M I C S

Kane’s method (sometimes called „Lagrange’s form of d’Alembert’s princi-
ple“, „Joudain’s principle“, or the „principle of virtual power, “[12]) is em-
ployed to derive the helicopter’s rigid body equations of motions.

The development in this chapter can be found in more detail in [14].

3.1 P R E L I M I N A R I E S

To employ Kanes Algorithm it is necessary to understand the meaning of
generalized coordinates and speeds, kinematic constraints and kinematic mo-
tion equations. Therefore we start this chapter with an introduction to those
concepts. Other important concepts are partial (angular) velocities and con-
tributing and non-contributing forces, which will be introduced later in this
chapter.

3.1.1 Generalized Coordinates

The configuration (position and orientation) of a system with a dimension
of configuration space of p, consisting of N rigid bodies, can be completely
described by a minimum set of p independent scalar values, the so called
independent generalized coordinates

q = [q1,q2, . . . ,qp]
T. (3.1)

Sometimes, the configuration of a system can be described more conve-
niently with a non-minimum set of n generalized coordinates

q = [q1,q2, . . . ,qn]
T. (3.2)

3.1.1.1 Equations of Constraints

For n > p a subset of these generalized coordinates are non-independent and
kinematic relations in form of constraint equations describe their dependen-
cies. The number of constraints µ depends on the number of generalized coor-
dinates n and the total degrees of freedom (dimension of configuration space)
p of the system

µ = n− p. (3.3)

Constraints of the form

f j(q1,q2, . . . ,qn, t) = 0, j = 1, . . . , µ (3.4)

are called holonomic constraints. If the constraints are dependent on the gen-
eralized coordinates and their first derivatives are non-integrable,

g j(q1,q2, . . . ,qn, q̇1, q̇2, . . . , q̇n, t) = 0 (3.5)

11
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they are called first-order non-holonomic constraints.

3.1.2 Generalized Velocities

The motion of a system can be completely described by a minimum set of m
independent scalars, the so called independent generalized velocities

u = [u1,u2, . . . ,um]
T. (3.6)

They can always be expressed as functions η ,κ of the generalized coordinates
qi and are linear in q̇i

u j =
n=1

∑
i

ηi(q1, . . . ,qn)q̇i +κ j(q1, . . . ,qn), j = 1, . . . , l. (3.7)

The number of independent generalized velocities m will be denoted as the
systems degrees of freedom.

3.1.2.1 Motion Constraints

For a non-minimal set of l generalized velocities l−m motion constraints
describe their dependencies. The generalized velocities can always be chosen
such that the motion constraints fi can be expressed as linear functions ξi, j of
the generalized speeds [17]

fi(q1,q2, . . . ,qn,u1,u2, . . . ,um, t) =
m

∑
j=1

ξi, j(q1,q2, . . . ,qn, t)u j = 0,

i = 1, . . . l−m, j = 1, . . . , l.

(3.8)

m is said to be the controllable degrees of freedom of the system. For holo-
nomic systems the controllable is equal to the total degrees of freedom, i.e.
p = m.

3.1.3 System Description

The helicopter is approximated to be composed of three rigid bodies; fuselage,
main rotor and tail rotor. To completely describe the systems configuration
and motion we introduce the following two sets of variables q and u. The
robot is assumed to be able to move freely in space. Therefore six independent
scalar values (q1− q6) are needed to describe the pose of the fuselage. Two
additional independent scalars are needed to describe the relative orientation
of both rotors with respect to the fuselage (q7,q8) .

• generalized coordinates q

q = [q1,q2,q3,q4,q5,q6,q7,q8]
T

= [x,y,z,φ ,θ ,ψ ,α ,β ]T
(3.9)
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q1, . . .q2 position of the center of grav-
ity of the entire helicopter C, ex-
pressed in N

NrC = q1n1 + q2n2 + q3n3

q4 . . .q6 orientation of the fuselage with
respect to frame N (Euler an-
gles)

see NTB in (2.4)

u1 . . .u3 translational vel. of C with re-
spect to frame N , expressed in
N

NvB = u1n1 + u2n2 + u3n3

u4 . . .u6 rotational vel. of the fuselage
with respect to earth frame N ,
expressed in B

B
NωB = u4b1 + u5b2 + u6b3

α ,β angular pos. of the main and tail
rotor relative to the fuselage

α̇ , β̇ angular vel. of the main and tail
rotor relative to the fuselage, ex-
pressed in frame B

BωMR = α̇b3, BωT R = β̇b3

Table 1: Generalized coordinates and velocities

• and the generalized speeds u

u = [u1,u2,u3,u4,u5,u6,u7,u8]
T

= [u,v,w, p,q,r, α̇ , β̇ ]T.
(3.10)

Check figure 6 to see how they are defined. Table 1 summarizes their defini-
tions.

The translational motion of the helicopter’s combined center of gravity NvC

is expressed in the Earth frame, which is advantageous when deriving the
translational dynamics since the gravitational force has only a vertical com-
ponent in N

NvO = u1n1 + u2n2 + u3n3 = q̇1n1 + q̇2n2 + q̇3n3. (3.11)

In good accordance with reality the angular velocities of the two rotors are
assumed to be constant, which eliminates the last two entries of u.

We express the rotational motions of each of the three bodies Bω i in Body
frame B.

B
NωB = pb1 + qb2 + rb3 (3.12)

B
NωMR = pb1 + qb2 +(r+ α̇)b3 (3.13)

B
NωT R = pb1 +(q+ β̇ )b2 + rb3 (3.14)

Thereby, when deriving the rotational dynamics we can make advantage of
the fact that the inertial tensors are time-invariant. Generally the inertial ten-
sor of a body is only time-invariant when expressed in a frame fixed to it.
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But in this case, the axes of rotation of the main rotor is fixed in B and the
moment of inertias about axes normal to its axis of rotation are equal – re-
call, we modeled the rotor as disc which is an axially symmetric body. Under
these conditions the inertial tensor of the main rotor, expressed in B, is time-
variant. As a result the time derivative of the angular momentum simplifies
to

BdBLMR

dt
= BIMR

BdB
NωMR

dt
,

which can be exploited when setting up Euler’s equation. The same is true
for the tail rotor. This simplifies the rotational dynamics significantly and is
the main reason for modeling the rotor as described in section 1.2. The axial
symmetry and time-invariant inertia tensors of the rotors result in equations
of motions independent of α and β , see eq. (3.5)-(3.5). Therefore the last two
entries of q can be eliminated as well.

3.1.4 Kinematic equations

By solving equations (3.8) for q̇i we receive n linear equations for q̇i with
respect to the generalized velocities u j of the following form

q̇i =
l

∑
j=1

α j(q1, . . . ,qn)u j +βi(q1, . . . ,qn), i = 1, ...,n (3.15)

Note, the kinematic equations are always linear in generalized speeds and
their number is dependent on the chosen set of generalized coordinates.

3.1.4.1 Kinematic Relations between the General Coordinates and the Lin-
ear and Rotational Generalized Velocities

We set up kinematic equations (compare eq. (3.15)) to relate the generalized
velocities u to the first order derivatives of the generalized coordinates. For
the translational motion these relations are trivial

N
NvT

OB
=
[
n1 n2 n3

]u

v

w

=
[
n1 n2 n3

]q̇1

q̇2

q̇3

= q̇trans, (3.16)

the same is true for u7
B
ωMR = q̇7b3 = u7b3 (3.17)

and u8
B
ωT R = q̇8b3 = u8b3, (3.18)

respectively.
Transformation of the Euler angular rates q̇rot =

[
φ̇ , θ̇ , ψ̇

]
into B and the

generalized angular velocities p,q,r.
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B
Nω

T
B =

[
b1 b2 b3

]p

q

r

=

φ̇

0

0

+ BR2(φ )

0

θ̇

0

+ BR2(φ )
2R1(θ )

0

0

ψ̇


which yields p

q

r

=

1 0 −sin(θ )

0 cos(φ ) sin(φ )cos(θ )

0 −sin(φ ) cos(φ )cos(θ )


︸ ︷︷ ︸

K

φ̇

θ̇

ψ̇

 , (3.19)

inversion of K leads toφ̇

θ̇

ψ̇

=

1 sin(φ ) tan(θ ) cos(φ ) tan(θ )

0 cos(φ ) −sin(φ )

0 sin(φ )/cos(θ ) cos(φ )/cos(θ )


︸ ︷︷ ︸

K−1

p

q

r

 , (3.20)

which relates the aircrafts local rotational rates to the Euler angular veloci-
ties. Matrix K−1 makes the Gimbal lock problematics apparent. As expected,
K and K−1 have unit matrix form for small Euler angles.

Now, we can relate the angular velocity vector B
NωB to the Euler angular

rates q̇rot by the following relation:

B
NωB =

ωx

ωy

ωz

= Kq̇rot (3.21)

And N
NωB in terms of yaw-pitch-roll angular velocities equals:

N
NωB =

ωX

ωY

ωZ

= NRBKq̇rot . (3.22)

Matrix K as well as ERBK are not/non orthogonal matrices. This is because
the Euler angles frame is not an orthogonal basis.

3.1.5 Kane’s Equations of Motion

This section presents a way to derive Kane’s equations of motion via New-
ton’s second law (3.23) and Euler’s equations (3.26). First, a summary of
both laws is given. One alternative way to arrive at Kane’s equations is via
d’Alembert’s principle, see Purushotham and J. [29].
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Theorem 3.1 (Newton’s 2nd Law). The translational equations of motion for
a rigid body can be derived by Newton’s second law:

NF =
NdNp

dt

(1)

= m
Nd
dt

Nv (3.23)

expression in frame B yields, [13]:

BF =
NdBp

dt
= m

Bd
dt

Bv+ B
NωB× Bv (3.24)

which states, the net force F acting on a rigid body is equal to the temporal
derivative of the body’s linear momentum p with respect to an inertial frame
N . Nv is the velocity of the body’s center of gravity expressed in N .

This law is also applicable to a mechanical multi body system whose center
of gravity moves like a point mass with equal mass, see Jazar [13] for example.
The resulting external force can be conveniently expressed in the body frame,
but then has to be transformed into inertial frame N .

NF = NRB
BF (3.25)

Theorem 3.2 (Euler’s Equation’s). The rotational dynamics of a rigid body
can be derived with Euler’s Law

NMA =
NdNLA

dt
+ rCA×maA (3.26)

where A is an arbitrary point on the body and C its center of gravity.

jLi =
jIi

j
Nω j (3.27)

denotes the angular momentum of the i-th body, expressed in frame j. Usu-
ally the inertia matrix can be more conveniently expressed in a body fixed
frame,B in this case, leading to

BMA =
BdBLA

dt
+ B

NωB× BLA + rCA×maA. (3.28)

Choosing the center of mass m as reference point yields

BMC =
BdBLC

dt
+ B

NωB× BLC

=BIC
B
Nω̇B +

B
NωB×

(BIC
B
NωB

) (3.29)

since I is constant in frame B.

1 Equality is true under the assumption of constant mass.
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3.2 K A N E ’ S M E T H O D

First we set up the Euler equations and Newton’s 2nd law for each body k.
For each of the N bodies the respective center of mass Ck is chosen as point
of reference. By post-multiplying these equations with vectors called partial
velocities ṽCk

r
FCk

k ṽCk
r = mkaCk ṽ

Ck
r (3.30)

and partial angular velocities ω̃
k
r

TCk
k ω̃

k
r = (Ikω̇k +ωk× (Ikωk)) ω̃

k
r (3.31)

we project those vector equations from R3 to R. By superposing force (3.30)
and moment equations (3.31) and summing up over all bodies we arrive at
Kane’s equations

N

∑
k

(
FCk

k ṽCk
r +TCk

k ω̃
k
r

)
=

N

∑
k

(
mkaCk ṽ

Ck
r +(Ikω̇k +ωk× (Ikωk)) ω̃

k
r

)
.

(3.32)
In total we get r scalar equations, one for each degree-of-freedom. We con-
sider holonomic systems only, i.e. p = m.

Theorem 3.3 (Partial velocities and partial angular velocities [12]). Consider
a multi-body system of N interconnected rigid bodies whose kinematics is
completely described by a set of generalized coordinates qi and a set of gen-
eralized velocities ur. The velocity of any body-fixed point of interest P and
angular velocity of any body k can be expressed as follows

vP =
m

∑
r=1

ṽP
r ur + ṽP

t , (3.33)

ω
k =

m

∑
r=1

ω̃
P
r ur + ω̃

P
t , (3.34)

where
ṽP

r , r = 1, . . . , p

is denoted as constrained partial velocities and

ω̃r, r = 1, . . . , p

as the constrained partial angular velocities.

Definition 3.1 (Generalized active forces [14]). The scalar values on the left
hand side for each of the p equations (3.32)

F̃r =
N

∑
k

(
FCk

k ṽCk
r +TCk

k ω̃
k
r

)
, r = 1, . . . , p (3.35)

are denoted as generalized active forces.
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Definition 3.2 (Generezalized inertia forces [14]). The scalar values on the
right hand side for each of the p equations (3.32)

F̃∗r =
N

∑
k

(
mkaCk ṽ

Ck
r +(Ikω̇k +ωk× (Ikωk)) ω̃

k
r

)
, r = 1, . . . , p (3.36)

are denoted as generalized inertia forces.

Using the definitions above Kane’s equations simplify to

F̃∗r (q,u, u̇, t)+ F̃r(q,u, t) = 0, r = 1, . . . , p. (3.37)

Remark. It is important to remember that RCk
k is the resultant force acting

on the center of gravity of body k. Which means, in order to calculate the
generalized active forces using equation (3.35) the actual load on each of the
N bodies has to be transformed, to an equivalent one, by moving the points
of action for all the forces acting on body k to its center of gravity Ck.

Similarly, TCk
k denotes the sum of all moments about the center of mass of

body k and all torques acting on it.

3.2.1 Non-Contributing Forces

Definition 3.3. Some summands of sum (3.35) have zero contribution to
the generalized forces. The corresponding forces FCk

k or torques TCk
k of these

terms are denoted non-contributing forces. They can be neglected when set-
ting up the equations of motions via Kane’s method.

3.2.2 Contributing Forces

Definition 3.4. Forces and FCk
k and torques TCk

k that have a non-zero contribu-
tion to at least one of the generalized active forces are denoted as contributing
forces.

Most contact forces such as reaction forces whose line of action are per-
pendicular to contact surfaces, static friction and rolling friction are non-
contributing forces. One exception are sliding forces, which do contribute
to the generalized active force.

Additionally, all forces whose points of attack have zero velocity with re-
spect to an inertial frame are non-contributing, as well as torques acting on a
body whose angular velocity relative to an inertial frame is zero.

3.3 S T E P - B Y- S T E P P RO C E D U R E T O C O N S T RU C T K A N E ’ S DY N A M -
I C A L E Q UAT I O N

1. SYSTEM DESCRIPTION. Define a set of generalized coordinates qi (i=
1, . . . ,n) and a set of independent generalized velocities u j ( j = 1, . . . , p)
to completely describe the systems configuration and motion, see fig. 6.
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2. KINEMATICS. Describe q̇i as functions of u j and qi by setting up n
kinematic equations of motion, see 3.1.4.

3. CONTRIBUTING AND TORQUES. Define the points of action of all
contributing forces. Express all contributing forces FPi

k and torques Tk

as functions of qi and u j

4. VELOCITIES & ACCELERATIONS. Determine the velocities vCk and
accelerations aCk for each of the N bodies centers of gravity. For every
contributing force FPi

k , acting on a point Pi on body k, calculate the
velocities vPi for each of the points Pi.

a) Write down the velocities vCk in the form shown in eq. (3.33)

vCk =
m

∑
r=1

ṽCk
r ur + ṽCk

t

and determine the linear vector coefficient of the generalized speeds
u j which correspond to the partial velocities ṽCk

r , p in total.

b) Write down the velocities vPi
r in the form shown in eq. (3.33)

vPi =
m

∑
r=1

ṽPi
r ur + ṽPi

t

and proceed as in the previous step to determine the partial veloc-
ities ṽPi

r .

c) The accelerations aCk are of the form

aCk = f (q, t)u̇+ g(q,u, t).

5. ANGULAR VELOCITIES & ACCELERATIONS. Determine the angu-
lar velocities ωk for each of the K bodies and express them as functions
of qi and u j. Similarly, calculate the angular accelerations αk for each
of the K bodies and express them as functions of qi, u j and u̇ j.

a) Write down the angular velocities ωk in the form shown in (3.34)

ω
k =

m

∑
r=1

ω̃
P
r ur + ω̃

P
t ,

b) Angular accelerations are of the form

αk = r(q, t)u̇+ t(q,u, t).

6. GENERALIZED ACTIVE FORCES. Calculate the p generalized active
forces using equation (3.35)

F̃r =
N

∑
k

(
mkaCk ṽ

Ck
r +

(
Ikω̇k +ωk× (Ikωk) ω̃

k
r

))
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where RCk
k is the resultant force acting on the center of gravity of body

k and TCk
k is the sum of all moments about the center of mass and all

torques acting on body k. Alternatively, equation

F̃r = ∑
k

∑
i

FPi
k ṽPi

r ∗∑
k

Tkω̃r r = 1, . . . ,m (3.37)

can be used, which requires no reduction of all external forces to the re-
spective centers of gravity, but demand calculation of additional partial
velocities ṽPi

r .

7. GENERALIZED INERTIAL FORCES. Calculate the p generalized inertia
forces using equation (3.36)

F̃∗r =
N

∑
k

(
FCk

k ṽCk
r +TCk

k ω̃
k
r

)
8. DYNAMIC EQUATIONS OF MOTION. As shown in (3.37) set up the p

differential equations (linear in u j) which describe the dynamics of the
entire system

F̃∗r (q,u, u̇, t)+ F̃r(q,u, t) = 0, r = 1, . . . , p.

3.4 E S T I M AT I N G T H E C O N T R I B U T I O N O F E AC H C O M P O N E N T O F

T H E M E C H A N I C A L M O D E L

Before we derive the equations of motion we estimate the contribution of
each of the three rigid bodies to the total torque requirements for rotational
motions. Thereby we can check whether any of the three rigid bodies might
be reduced to a point mass without significantly altering the total dynamics.
To analyze the contributions we consider the most straining flight condition,
i.e. maximal allowed angular velocities and accelerations, and then, calculate
the required torques to realize this motion for each body.

The maximal angular velocity of the fuselage is assumed to be

N
ωB = [ωmax,ωmax,ωmax]

T,

where ωmax = 3.14rad/s and the maximal angular acceleration is assumed to
be

N
αB = [αmax,αmax,αmax]

T,

where αmax = 3.14rad/s2. The angular velocities of both rotors are kept at
constant speeds

B
NωMR =

[
0 0 1400

]T
rpm

B
NωT R =

[
0 0 6720

]T
rpm.
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The tail rotor is driven by the main motor. The gear ratio between main and
tail rotor is 4.8. In good approximation, the angular accelerations of both
rotors with respect to the fuselage are assumed to be zero

B
BαMR = B

BαT R =
[
0 0 0

]T
rad/s2.

The fuselage is roughly approximated by a rectangular parallelepiped with
constant density of the dimensions mF = 10N, l1 = 0.5m, l2 = 0.15m and l3 =
0.3m. For the specified movement above, the following torque is required for
the fuselage:

TF =
[
0.85 −1.2 2.2

]T
, |TF |= 2.6N m

To simplify the EoM the main and tail rotor are approximated by solid discs.
The mass per circular ring of infinitesimal thickness dr and constant radius
r ∈ [0,R] is assumed to be constant, therefore the mass density decreases
linearly with increasing radius. The polar principal moment of inertia can be
calculated as

Irotor,33 =

R∫
0

r2dm, (3.36)

where

dm =
m
R

dr.

The resulting principal moments of inertia are

IMR = 10−1diag(0.33 0.33 0.66) m3kg

and

IT R = 10−4diag(0.15 0.15 0.3) m3kg.

According to Euler’s law the following torques are required for the previously
specified motions

TMR =
[
15 −15 0.20

]T
, |TMR|= 21.7N m

and
TT R =

[
0.033 −0.033 0.0001

]T
, |TT R|= 0.046N m.

Note, we assumed rotations about the principles axes of inertia for each of
the three bodies. In reality we would have to deal with rotations about axes
that go through the combined center of gravity C. In this case the moments
of inertia need to be transformed into frame B by exploiting the Huygens-
Steiner theorem. Since C is closer to the fuselage’s center of gravity F than
it is to MR or T R 2 the largest increase would be experienced by IMR and IT R.
Thereby the torque demands to rotate the fuselage and the main rotor would
differ even more.

2 Due to the significantly higher mass of the fuselage.



3.5 E Q UAT I O N S O F M OT I O N 23

Figure 7: Turbine powered Flettner helicopter with spray attachment

3.4.1 Conclusion

Interestingly, one can see, that the contribution of the tail rotor to the total
torque requirements is negligible, since its several magnitudes lower.3 The in-
ertial torque to rotate the fuselage about axis b1 and b2 is over one magnitude
smaller than that for the main rotor. The inertial torque requirements for ro-
tating the fuselage around axis b3 could be neglected since the aerodynamic
drag of the main rotor, which is not taken into account in the calculations
above, is at least one magnitude larger, [18].

Based on these rough estimations the following conclusions can be drawn:

• it is safe to reduce the tail rotor to a source of aerodynamic force

• the gyroscopic effects of the main rotor have by far the biggest impact
on the rotational dynamics

• for model simplification the fuselage could be reduced to a point mass

These findings are consistent with the results from Kondak et al. [18] for a
smaller sized helicopter (Logo 14). Generally, the relative influence of the
main rotor on the rotational dynamics compared to the fuselage, increases
with decreasing helicopter size. As preparations have already been made to
expand the application of the MAPLE algorithm, developed in this thesis, to
calculate Kane’s equations for significantly larger Flettner helicopters, see fig.
7, the fuselage is modeled as rigid body.

3.5 E Q UAT I O N S O F M OT I O N

By employing the procedure presented in section 3.3 we arrive at the fol-
lowing equations of motions for the HE-1 Helicopter. All calculations were

3 Even after applying Huygens-Steiner theorem.
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carried out in the computer algebra system MAPLE. The corresponding code
can be found in file: Dynamics_Kane_Basis_Vectors.mw.
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Translational dynamics:

u̇1 = −qw+ rv−gsin(θ )+Fx/m (3.37)

u̇2 = pw− ru+ gcos(θ ) sin(φ )+Fy/m (3.38)

u̇3 = pv+ qu+ gcos(φ )cos(θ )+Fz/m (3.39)

Rotational dynamics:

(mFz2
F +mmrz2

mr + Imrxx + IFxx)u̇4 = (mFz2
F +mmrz2

mr + Imryy + IFyy− Imrzz− IFzz)u5u6− Imrxxu5α̇ +Ftrztr +TX (3.40)

(mFz2
F +mmrz2

mr + Imryy + IFyy)u̇5 = (−mFz2
F −mmrz2

mr− Imrxx + Imrzz− IFxx + IFzz)u4u6 + Imryyu4α̇ +Fmrxmr +TY (3.41)

(Imrzz + IFzz)u̇6 = (−Imrxx + Imryy− IFxx + IFyy)u4u5 +Ftrxtr + Imrzzα̈ +Ftrxtr +TZ (3.42)

Rotational dynamics (compact):

(IS + Ixx)u̇4 = (IS + Iyy− Izz)u5u6− Imrxxu5α̇ +Ftrztr +TX (3.43)

(IS + Iyy)u̇5 = (−IS− Ixx + Izz)u4u6 + Imryyu4α̇ +Fmrxmr +TY (3.44)

Izzu̇6 = (−Ixx + Iyy)u4u5 + Imrzzα̈ +Ftrxtr +TZ (3.45)

with

m = m f +mmr (3.46)

Ixx = Imrxx + IFxx (3.47)

Iyy = Imryy + IFyy (3.48)

Izz = Imrzz + IFzz (3.49)

IS = mFz2
F +mmrz2

mr (3.50)



26 DY N A M I C S

Fi are the resultant external forces acting on the center of gravity C in di-
rection of axis i, where i = X ,Y ,Z. Ti is the resultant torque acting on the
helicopter about axis i.

3.6 L I N E A R I Z AT I O N

Before we can proceed with the design of linear H∞ optimization based con-
trollers (see chapter 6) we need a linear model. The system of 6 nonlinear
differential equations (3.37)-(3.42) that describe the helicopter dynamics and
can be written in short form as

ẋ = f(x,u,d, t), (3.51)

with f being a nonlinear function of the aircrafts states x, control inputs u,
external disturbances d and time t. The state vector is composed as follows

x =
[

u v w p q r x y z φ θ ψ

]T
. (3.52)

Three characteristics – trim, stability and reponse – are essential when dis-
cussing the flight mechanics of a helicopter.

T R I M . Trim is an equilibrium flight state such that ẋ = 0 and u = const.,
i.e.

f(xe,ue,de, t) = 0 (3.53)

Subscript e indicates a trim state. The most general trim would be a turning
about the vertical axis, ascending or descending, sideslipping maneuver at
constant speed. More basic flight conditions such as hover, cruise, sustained
turns or autorotation are also trims, [25].

See Padfield [25, p. 192ff.] for more information about detailed trim analy-
sis and the general trim problem.

S TA B I L I T Y. Stability is concerned with the analysis whether a helicopter
returns to its equilibrium point after being disturbed from its trim state. By
determining the eigenvalues of the system matrix A, of the linearized system
about a particular trim state xe, we can check for stability

det

(
λ

(
δ f
δx

∣∣∣∣
xe

))
= 0. (3.54)

R E S P O N S E The systems response to a certain control input u can be ana-
lyzed by evaluating the following equation

x(t) = x(0)+
∫

∞

0
f(x(τ),u(τ),τ)dτ . (3.55)

3.6.1 Linearization about an arbitrary Trim State

From now on, in good approximation, the rotor speeds are assumed to be
constant, i.e. α̈ = β̈ = 0. Only gravitational forces, the thrust of the main and
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tail rotor as well as the tilting moments induced by the main rotor are taken
into account, Aerodynamic and other external forces are neglected, therefore

FX = 0 FY = Ftr FZ = −Fmr

TX = Tmr,1 TY = Tmr,2 TZ = Tmr,3

Linearizing the EoM about an arbitrary trim state e yields the following
state space system where the matrices A in eq. (3.57) and B in eq. (3.58) are,
respectively, the system matrix and the control matrix

f(x,u,d, t) ·= f(xe,ue,de, t)︸ ︷︷ ︸
=0

+
∂ f
∂x

∣∣∣∣
xe︸ ︷︷ ︸

A

∆x+
∂ f
∂u

∣∣∣∣
ue︸ ︷︷ ︸

B

∆u+
∂ f
∂d

∣∣∣∣
de︸ ︷︷ ︸

E

∆d (3.56)

where the deviation variables are defined as

∆x = x−xe, ∆u = u−ue, ∆d = d−de.

Subindex e indicates linearization about an arbitrary trim state e.
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System Matrix A linearized about an arbitrary trim flight condition xe.

0 re −qe 0 −we ve 0 −gcos (θe) 0 0 0 0

−re 0 pe we 0 ue gcos (φe)cos (θe) −gsin (φe) sin (θe) 0 0 0 0

qe −pe 0 −ve ue 0 −gsin (φe)cos (θe) −gcos (φe) sin (θe) 0 0 0 0

0 0 0 0 (IS+IYY−IZZ)u6,e−IMRXX α̇

IS+IXX

(IS+IYY−IZZ)u5,e
IS+IXX

0 0 0 0 0 0

0 0 0 (−IS−IXX+IZZ)u6,e+IMRYY α̇

IS+IYY
0 (−IS+IXX+IZZ)u4,e

IS+IYY
0 0 0 0 0 0

0 0 0 (−IXX+IYY )u5,e
IZZ

(IXX−IYY )u4,e
IZZ

0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 K−1 (1,1) K−1 (1,2) K−1 (1,3) 0 0 0 0 0 0

0 0 0 K−1 (2,1) K−1 (2,2) K−1 (2,3) 0 0 0 0 0 0

0 0 0 K−1 (3,1) K−1 (3,2) K−1 (3,3) 0 0 0 0 0 0


(3.57)
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Be =



0 0 0 0

0 1/m 0 0

1/m 0 0 0

0 zT R
IS+Izz

1
IS+Izz

0

0 0 0 1
IS+Iyy

0 xT R
IS+Izz

0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



(3.58)

with the corresponding input vector

u =
[
FMR FT R TMR,1 TMR,2

]T
(3.59)

These are the four control inputs to the helicopter system. The main rotor lift
force FMR is controlled via the main rotor cyclic pitch angle θ0. Similarly,
the side force of the tail rotor FT R is controlled via the tail rotor cyclic pitch
angle θ0T . Whereas the tilting moments TMR,1 and TMR,2 are controlled via the
lateral cyclic pitch θ1c and longitudinal cyclic pitch θ1s, respectively.

Linearization of the EoM about hovering trim state yields the following
system and control matrices. The subindex 0 indicates linearization about
hover trim state.

B0 = Be (3.60)
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System Matrix A linearized about hovering state x0.

0 0 0 0 0 0 0 −g 0 0 0 0

0 0 0 0 0 0 g 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 − IMRXX α̇

IS+IXX
0 0 0 0 0 0 0

0 0 0 IMRYY α̇

IS+IYY
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0



(3.61)

3.7 H E AV E DY N A M I C S

The vertical dynamics of the multi-rigid-bodies model are governed by equa-
tion (3.39)

u̇3 = pv+ qu−gcos(φ )cos(θ )+
Fz

m
(3.62)

with Fz being the sum of all external forces referred to the combined center
of gravity C. All external forces are assumed to be continuous functions of
the vehicles states and control variables. Hence, their perturbations can be
expressed using a Taylor series expansion about a trim state xe. For small
changes in the states xi (i.e. ∆xi small) we can drop the higher order terms.
The external force Fz written in its linear, approximate form equals

Fz =Fz,e+
∂Fz

∂u

∣∣∣∣
e
∆u+ . . .+

∂Fz

∂ p

∣∣∣∣
e︸ ︷︷ ︸

Zp

∆w+ . . .+
∂Fz

∂ψ

∣∣∣∣
e
∆ψ+

∂Fz

∂θ0

∣∣∣∣
e︸ ︷︷ ︸

Zθ

∆θ0+ . . .+
∂Fz

∂θ1c

∣∣∣∣
e
∆θ1c

(3.63)
Where θ0 is the collective pitch angle of the main rotor. In literature the total
vertical force Fz is often labeled Z. For better flow of reading we will adopt
this notation and abbreviate perturbed states ∆xi ≡ xi. With that in mind ap-
proximation (3.63) can be written in the following form

Z = Ze +Zuu+ . . .+Zp p+ . . .+Zφ φ + . . .+Zxx+ . . .+Zθ0θ0 + . . .Zθ1cθ1c.
(3.64)
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Since we are primarily interested in the helicopter dynamics along the vertical
axis, and especially in the dynamics in hovering4 condition, we assume Z to
be a function of θ0, w and z only, therefore parameters Ze, Zw and Zz need
to be determined. Zw is called heave dampening derivative and Zθ0 control
sensitivity derivative. For the controller designs the helicopter is assumed to
operate out of ground effect. Therefore the effect of the flight altitude on Z
is negligible and Zz can be neglected. The range of operation is too small for
having the variation of air density with altitude to have any effect. In the end
the helicopter will indeed be operated in ground effect, but the controller shall
be robust enough to be able to cope with that situation.

Under these assumptions, the vertical dynamics of the helicopter, while
hovering, simplifies to

ẇ = −g+
Z0

m
+Zww+Zθ0θ0 = Zww+Zθ0θ0,

ẇ = −g+Zww+
FMR

m
,

(3.65)

reducing the number of unknown parameters to two. F0 is the vertical lift
required to keep the helicopter in hovering state. The total helicopter mass
m is subsumed within the heave dampening derivative Zw and the control
sensitivity derivative Zθ0 , i.e.

Zw = Zw/m, Zθ0 = Zθ0 /m, (3.66)

which is common practice in helicopter flight dynamics [25]. Ze is the vertical
lift required to stay in hovering condition. The total vertical thrust of the main
rotor in positive z direction would be Ze + Zθ0θ0. The vertical stability of
the helicopter is described by the solution of the homogeneous differential
equation

ẇ = Zww.

Obviously, eq. (3.66) has stable solutions if and only if Zw has negative values.
Transformation of the inhomogeneous differential equation into the fre-

quency domain yields the following transfer function between main rotor col-
lective pitch angle θ0 and ẇ

Gw,δcoll =
w(s)
θ0(s)

=
Zθ0

s+Zw
, (3.67)

where Zw > 0 and Zθ0 < 0. Typical values for Zw for manned helicopter lie
in the range of −0.25 to −0.40 . For unmanned, small-scaled helicopters Zw

varies a lot.
To get a feeling how complex even the heave dynamics of a helicopter

are, two physical phenomenas that affect the low-frequency heave dynamics
primarily are introduced:

4 When speaking of hover, we assume the helicopter to be in horizontal orientation with Euler
angles φ = θ = 0. ψ can have arbitrary values, since the vertical dynamics are assumed to
independent of the helicopter’s orientation about the b3 axis.
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Figure 8: Angle of attack, rotational and resultant relative wind, induced flow, [5]

• Change in angle of attack due to Induced Inflow vi and relative motion

• Ground effect

Rotor dynamics effects such as rotor coning, flapping and lead-lag that are
crucial for the high-frequency dynamics of the helicopter are not introduced
here due to the complexity of these effects. Padfield [25] and Leishman [20]
explain these effects in great detail and present methods how to model them.

Remark. It has to be stressed that these higher frequency rotor dynamics are
not covered by our simplified approximation of the heave dynamics in eq.
(3.65). Neither are any unsteady aerodynamics or aerodynamic cross cou-
plings governed. This

L I F T. The main rotor is composed of two symmetrical airfoils that provide
the vertical thrust enabling the helicopter to lift off. The lift force L, generated
by an airfoil for a specific flow condition, can be calculated by the following
lift equation

L =
1
2

cLρV 2A. (3.68)

where cL is the lift coefficient, ρ the density of the surrounding fluid, v the
true airspeed and A the projected area of the air foil (planform area).

For low angle of attack values α the lift coefficient can be approximated as
a linear function of α . For higher angles, especially past the stall angle, the
dependency becomes highly non-linear. The main and tail rotor of HE-1 and
HE-2 feature symmetrical airfoils5, i.e. cL(α= 0) = 0.

3.7.1 Change in Angle of Attack due to Induced Inflow vi

The lift and drag of the main rotor depends primarily on the angle of attack,
which is defined as the angle between the resultant relative wind and the
airfoils chord line, see fig. 8. By altering the angle of attacking we vary the
lift force and therefore the acceleration of the helicopter.

The resultant relative wind depends how the airfoil moves through the airResultant rel. wind

and is defined as the airflow relative to an airfoil. Mathematically, it can be

5 Symmetrical airfoil provide higher stability while asymmetrical airfoils are more (lift) effi-
cient on the cost of stability. Also stall characteristics and lift to drag ratios are advantageous.
With changing angle of attack the center of pressure moves up and down the cord line, which
induces torques and twisting loads on the airfoil.
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Figure 9: Components of relative wind and how they affect the angle of attack [5]

calculated by vector addition of the rotational relative speed and the induced
flow.

For a helicopter in hovering state under no-wind conditions, the rotational Rotational relative
speedrelative speed lies in the rotor plane and solely depends on the rpm of the

rotor, see teal vector in figure 8. Wind gusts and lateral motions of the heli-
copter alter the rotational relative speed, whereby it affects the advancing and
retreating blade in opposite fashion.

From a Newtonian perspective, lift is generated by turning a flow of air [36]. Induced flow

This flow turning is also known as induced flow vi or downwash. It reduces
the angle of attack and thereby lowers the rotor’s lift.

So we can summarize that generally, blade advancement, descent, forward
helicopter airspeed for the advancing blade, downflap and upgust increase
the angle of attack, while blade re-treatment, climbing, forward helicopter
airspeed for the retreating blade, upflap and downgust have a negative effects.
Figure 9 from Ean and Army [5] summarizes these relations. How the lift
forces changes while climbing or descending is described by Zw.

Remark. The lift force L which is a component of the total aerodynamic
forces always points in a direction perpendicular to the flow direction.
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Figure 10: Ground effect, [25]

3.7.2 Ground Effect

Operating the helicopter in close range to the ground alters some of its flight
characteristics. The most significant effect is the variation of the induced ve-
locity vi at the main rotor with its distance from the ground zg, which eventu-
ally alters the rotor thrust and the power required for a certain flight condition.
Figure 10 illustrates the variation of the ratio of rotor thrust in-ground effect
Tige to rotor thrust out-of ground effect Toge with distance from the ground. As
a rule of thumb, the ground effects significantly affects the lift below heights
in the order of the rotor radius R. The higher the forwards speed V the less
significant the effect becomes, as the rotor "escapes" its own wake.

3.7.3 Analytical Determination of Zw

Padfield [25] and Leishman [20] show ways to derive the heave dampening
parameter analytically. Results of these calculations are to be treated with
caution, but the formulas help to understand what parameters influence Zw.
For deriving Zw the induced downwash λi is assumed to be uniform and con-
stant over the rotor disc. „The induced rotor downwash is one of the most
important components of helicopter flight dynamics; it can also be the most
complex. The downwash, representing the discharged energy from the lifting
rotor, actually takes the form of a spiraling vortex wake with velocities that
vary in this introduction to the topic we make some major simplifications“
[25]. In hovering state the downwash can be written as

vihover =

√
T

2ρAd
(3.69)

or, in normalized form as

λi =
vi

Rω
=

√
CT

2
(3.70)



3.7 H E AV E DY N A M I C S 35

where CT is the thrust coefficient in hover and vertical flight conditions

CT =
α0s
2

(
θ0

3
+

µz−λi

2

)
. (3.71)

and µz is the normal velocity of the rotor, positive downwards and is about
equal to the aircrafts vertical velocity component w, which is especially true
for hovering trim state. Padfield [25, p. 220] uses the thrust coefficient deriva-
tive ∂CT

∂ µz
to derive Zw

Zw = −ρ(ωR)πR2

M
∂CT

∂ µz

= −2α0Abρ(ωR)λi

(16λi +α0s)M

(3.72)

where

Ab blade area [m2]

Ad disc area [m2]

s blade solidity; ratio of blade area to disc area

ρ air density [kg/m3]

ω rpm of main rotor

CT lift coefficient

λi induced hover downwash

α0 lift curve slope

M mass of helicopter [kg]

One key parameter is the blade loading Ab/M. The analytically determined
Zw value for helicopter HE-1 and HE-2 is −1.96, being equivalent to a time
constant of the helicopter’s vertical motion of 0.51s, see section 3.7.4.

Remark. Relation 3.72 is only valid in hovering state. Approximations for Zw

in forward flight are found in Padfield [25, p. 220].

3.7.4 Interpretation of the Heave Dampening Derivative Zw

To get a feeling for the influence of the heave dampening derivative Zw on the
vertical dynamics it is helpful to consider a step response of Gw,δcoll (s).

w(s) = Gw,δcoll (s)σ(s) =
Zθ0

s+Zw

1
s

(3.73)

w(t) = L −1
{

Zθ0

s+Zw

1
s

}
=

Zθ0

Zw

(
1− e−Zwt) . (3.74)

By looking at the term in parentheses in eq. (3.74) it becomes obvious that
Zw determines the time constant τ of the system

τ =
1

Zw
, (3.75)
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w(t)

t

Zθ0

Zw

63%

τ = 1/Zw

Figure 11: Step response of Gw,δcoll(s)

which means after a (unit) step input σ(s), w(t) reaches 63% of its final value
Zθ0
Zw

after 1
Zw

seconds, see also fig. 11.
Step response analysis of the transfer function

Gz,δcoll =
1
s

Gw,δcoll =
z(s)

θ0(s)
=

1
s

Zθ0

s+Zw
(3.76)

between height and collective pitch deviation angle θ0 and the vertical height
yields

z(s) = Gz,δcoll (s)σ(s) =
Zθ0

s+Zw

1
s2

=
Zθ0

Zw

(
− 1

Zws
+

1
s2 +

1
Zw

1
s+Zw

) (3.77)

z(t) = L −1
{

Zθ0

s+Zw

1
s2

}
=

Zθ0

Zw

(
−σ(t)

Zw
+ t +

1
Zw

e−Zwt
)

t≥0
=

Zθ0

Zw

(
− 1

Zw
+ t +

1
Zw

e−Zwt
) (3.78)

giving the following time behavior shown in fig. 12.

z(t)

t
slope: -Zθ0/Zw

slope: Zθ0/Zw

Zθ0

Zw
2

Figure 12: Step response of Gz,δcoll(s)
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3.7.5 Zw and its Relation to Vertical Gust Response in hover

The acceleration of the helicopter due to vertical gusts can be derived from
the linear approximation of the heave dynamics (3.65)

ẇ = Zw(w+wg)
hover
= Zwwg (3.79)

where wg is the vertical gust velocity. Thus the initial acceleration due to a
step-like vertical gusts can be written as

dw
dt

∣∣∣∣
t=0

= Zwwg, (3.80)

which can be regarded as a quantitative measure of ride quality, in terms of
vertical bumpiness, [25]. Increasing values of Zw increase the helicopter’s
susceptibility to vertical gusts. According to eq. (3.80), vertical gusts of mag-
nitude 5m/s result in an initial acceleration of about 2.5m/s2 ≈ 0.25g for
HE-1 and HE-2.6 This should be regarded as a rough estimation. Close to the
ground vertical gusts of this magnitude are rare and, due to the low Zw values,
they generally have a rather low influence on the helicopter dynamics. But in
situations where the helicopter is operated close to obstacles (e.g. aaerial ma-
nipulation of large objects) the power margin and the heave sensitivity play a
critical role when concerning vertical performance and handling qualities.

3.7.6 Vertical Gust Response in Forward Flight

According to Padfield [25] the following set of equations describe the induced
downwash viµ and heave dampening Zw in forward flight. V is the aircraft’s
forward velocity and V ′ is the forward component of the total velocity at the
rotor disc

viµ =
T

2ρAdV ′
(3.81)

∂CT

∂ µz
=

2α0sµ

8µ +α0s
(3.82)

µ =
V

ωR
(3.83)

Zw = −ρα0VAb

2Ma︸ ︷︷ ︸
ZwFW

(
4

8µ +α0s

)
. (3.84)

ZwFW is the corresponding heave dampening parameter for a fixed-wing air-
craft with wing area Ab. From equations (3.83)-(3.84) follows that helicopter
heave dampening parameters converge against fixed values with increasing
forward velocity, whereas those for fixed-wing aircrafts increase linearly. Typ-
ically lift curve values for helicopter blades are higher than for fixed-wing air-
planes, but blade loadings for helicopters are significantly higher than wing

6 With an assumed Zw value of 0.5 s−1, which was derived with PEM system identification, see
chapter 4.
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Figure 13: Heave dampening derivative in forward flight, [25]

loadings for airplanes of the similar weight class, resulting in higher (abso-
lute) Zw for low velocities, see fig. 13.

3.7.7 Modeling Vertical Wind Disturbance

As suggested by Skogestad and Postlethwaite [32] the atmospheric distur-
bance are modeled as gust velocity components that perturb the helicopter’s
velocity states u,v,w by du,dv,dw yielding the following disturbed system de-
scription

ẋ = Ax+A



du

dv

dw

0
...

0


+Bu. (3.85)

Which means, when considering the heave dynamics only, we can set

Gd = Gwδcoll . (3.86)

See [32, p. 496] for a more detailed argumentation.

3.8 S C A L I N G

Note, that prior to controller design the model was scaled. Figure 14 illus-
trates the scaling of the input variable u. The value of u represents the width
in ms of the pulse width modulated (PWM) input signal u. ûmax represents the
trim value for the hovering state (1052 ms). The actual input value is allowed
to vary by ±300ms about the trim value, i.e. û ∈ [ûtrim− ûmax, ûtrim + ûmax].
Remember, that for the linearized system θ0 = u−utrim.
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ûpwm

ûtrim

ûmax

û

ûmax

1052
752 1352

0 2000
t [ms]

Figure 14: Pulse width modulated input signal

ûmax = 300 m s ≡ Du largest allowed input change

ŷmax = 10 m largest allowed change of output value

d̂max = 10 m/s ≡ Dd largest allowed change of disturbance value

êmax = 1 m ≡ De largest allowed control error

r̂max = 10 m ≡ Dr largest expected change of reference value
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Since analytical calculations of Zw are all but reliable, system identification
tools of MATLAB were used to determine its value. The second parameter
of Gw,δcoll , see eq. (3.67), which is characteristic for the heave dynamics, the
control sensitive derivative Zθ0, was also determined via system identifica-
tion. The data of two flight sessions, one at Grob airfield and one at the DLR,
Oberpfaffenhofen area, was used. During those flights vertical steps of vary-
ing heights were flown. The recorded vertical velocity and acceleration data
was then used to identify the above mentioned parameters. To estimate these
unknown parameters the Prediction Error Minimization (PEM) Method of
the MATLAB System Identification Toolbox was employed. Two slightly dif-
ferent sets of parameters (Grob and DLR) were estimated from the flight data.
During re-evaluation of the recorded data it became apparent that the data
logger didn’t function perfectly as intended during the flights at Grob. Prior
to the second round of test flights (DLR) some adjustments in the logging
procedure were made to resolve the issue. Therefore more trust was put into
the system identification results based on the flight data at DLR. Nevertheless
the results derived from the erroneous data record are shown below (Grob).

The results of the system identification process can be seen in figure on
page 43. The upper plot shows the recorded velocity data of the flight at the
DLR area in yellow. The yellow line in the lower plot represents the cor-
responding accelerations during that flight The green lines show the predic-
tions of the identified models based on the recorded servo input data (PWM),
shown in figure .

Gw,δcoll(DLR, modified) represents an intermediary model between Gw,δcoll

(Grob) and Gw,δcoll(DLR) and was chosen by hand. Gw,δcoll(DLR, modified)
was extended by a 2nd order transfer function approximation of the servo
dynamics, its predictions are shown by the red lines; Gw,δcoll(DLR, modified,
servo dynamics). The predictions improved only slightly by including servo
dynamics. The improvements were deemed non worthy the increase in model
order, thereby model Gw,δcoll(DLR,modi f ied) was used for controller design
in chapter 6.
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Figures 17-19 visualize the effect of parameter uncertainty on the heavy
dynamics. Figure 17 shows the effect of varying Zw by ±20% of its nominal
value of 0.5s−1 in equidistant intervals. In analog fashion, figure 18 shows
the effect of varying Zθ0 by ±20% of its nominal values of −0.0230m/s2 in
equidistant intervals. To show the combined effect of uncertain Zw and Zθ0 ,
both variables were randomly varied by ±20% of their respective nominal
values.

In cooperation with Aaron Barth from the Institute of Helicopter Technol-
ogy of the Technical University of Munich (TUM) state-space matrices for
the helicopter in hovering trim were derived with CAMRAD II. 1 The result
for the heave dampening derivative of 0.7 matched that of the of system iden-
tification process of surprisingly well. There is definitely a lot of potential
in using CAMRAD II to derive the linearized helicopter dynamics for any
desired number of flight states – thereby providing a basis to realize MIMO
control concepts with optional gain scheduling.

4.1 F R E Q U E N C Y- D O M A I N S Y S T E M I D E N T I F I C AT I O N

Originally, it was planned to record frequency sweep flight data and perform
frequency-domain system identification with the software CIFER®, but due
to time constraints it had to be postponed. This method is especially well-
suited for system identification of aircraft and rotorcraft dynamics models
from flight data, and nice summarization of the differences between time-
response and frequency-response methods can be found in table 1.4 in Tis-
chler and Remple [34]. CIFER is an advanced modeling tool that has been
developed by NASA’s Ames Research Center which has been successfully
used to analyze the dynamics of a wide range of rotary-wing and fixed-wing
aircrafts including: XV-15, Bell-214ST, BO-105, AH-64, UH-60, V-22, AV-
8B Harrier, and OH-58D. An in-depth introduction to aircraft and rotorcraft
system identification using frequency-domain-based methods is given in Tis-
chler and Remple [34] and in Mettler [23] with special focus on small-sized
RUAV. Author of the former book, Mark B. Tischler has led development of
CIFER.

1 CAMRAD II is an aeromechanical analysis of helicopters and rotorcraft that incorporates
a combination of advanced technology, including multibody dynamics, nonlinear finite ele-
ments, structural dynamics, and rotorcraft aerodynamics.
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Figure 17: Variation of Zw about plus minus ±20% of its nominal value of 0.5s−1 in
equidistant intervals
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Figure 18: Variation of Zθ0 about plus minus ±20% of its nominal value of
−0.0230m/s2/ms in equidistant intervals
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Figure 19: Random variation of Zw and Zθ0 about plus minus±20%; of their nominal
values



Part II

C O N T RO L

"In the application of automatic controller, it is important to
realize that controller and process form a unit; credit or discredit
for results obtained are attributable to one as much as the other.

A poor controller is often able to perform acceptably on a
process which is easily controlled. The finest controller made,
when applied to a miserably designed process, may not deliver

the desired performance. True, on badly designed processes,
advanced controllers are able to eke out better results than older

models, but on these processes, there is a definite end point
which can be approached by instrumentation and it falls short of

perfection."

— Ziegler-Nichols [41]





5
M AT H E M AT I C A L P R E L I M I NA R I E S

This chapter gives a short overview of mathematical concepts crucial for de-
signing H∞ controller. Li et al. [21] gives a nice summary about the physical
interpretation of the H∞ norm and explains how to formulate the H∞ opti-
mization problems and how to derive the respective generalized plant in state-
space realization. A nice tutorial about loop shaping design is given by Glover
et al. [9], K. Glover and D.C. McFarlane both played decisive roles in advanc-
ing and developing H∞ design techniques.

5.1 G A I N O F A S Y S T E M G(s)

For the SISO case the gain of a system y = Gd at a given frequency ω is
given by

|G( jω ) | = |y(ω ) |
|u(ω ) |

=
|G( jω )u(ω ) |
|u(ω ) |

, G ∈ C . (5.1)

For a MIMO System y = Gu the gain at a given frequency ω is given by

|G( jω ) | = ||y(ω ) ||2
||u(ω ) ||2

=
||G( jω )u(ω ) ||2
||u(ω ) ||2

, G ∈ Cm×n . (5.2)

R E M A R K . In the SISO case, the gain depends on the frequency and is
independent of the input magnitude |u|. The same is true for MIMO systems,
but the gain is additionally dependent on the direction of the input u.

5.1.1 Measuring the Gain of MIMO Systems

The magnitudes of the eigenvalues of a transfer matrix |λ i (G( jω )) | pro-
vide no tool to generalize the SISO gain |G( jω ) |. This becomes most appar-
ent for matrices whose eigenvalues are zero but still there exist input vectors
whose corresponding output vector are non zero, see Skogestad and Postleth-
waite [32, p. 77]. Eigenvalues only provide a measure of the gain when the
input and output vectors point into the same direction, i.e. the direction of the
eigenvectors v i

y = Gv i = λ i v i . (5.3)

The spectral norm σ (A) of a matrix A

ρ (A) = max
i
|λ i (A) | (5.4)

does not fulfill the properties of a matrix norm since the triangular property
and multiplicative property are violated. See appendix A.4 for more informa-

47
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tion about matrix norms. But the spectral radius is valuable in that regard, that
it provides a lower bound on any matrix norm

ρ (A) ≤ ||A|| . (5.5)

5.2 S I N G U L A R VA L U E S

A measure of gain for MIMO systems that, opposed to EV, takes into account
the direction of the input u are the singular values of G. The maximum value
of the gain in (5.2) for a given frequency ω , for all possible input directions,
is the maximum singular value of G

σ = max
u6=0

||Gu||2
||u||2

= max
||u||2=1

||Gu||2 (5.6)

The largest singular value of a matrix, sometimes called spectral norm, is
equal to its induced 2 norm. All induced norms are matrix norms, therefore
relation (5.5) holds true. A simple interpretation is that matrix norms search
for the maximum gain in all directions whereas the eigenvalues measure the
gain of the matrix only in certain directions – that of the eigenvectors. There-
fore, the singular values actually bound the magnitude of the eigenvalues

σ ≤ |λi(A)| ≤ σ , (5.7)

where σ(G) is the minimum singular value of G

σ = min
u6=0

||Gu||2
||u||2

= min
||u||2=1

||Gu||2. (5.8)

An interesting relationship between the largest singular value and the largest
element ||A||max of a m×n matrix A is given in Skogestad and Postlethwaite
[32]

||A||max ≤
_
σ(A) ≤

√
mn ||A||max. (5.9)

5.2.1 Singular Value Decomposition

Theorem 5.1 (Singular Value Decomposition,[40]). Let G ∈ Fn×m. There ex-
ist unitary matrices

U =[u1,u2, . . . ,um] ∈ Fm×m

V =[v1,v2, . . . ,vn] ∈ Fn×n

Σ =

[
Σ1 0

0 0

]
∈ Fm×n

such that
G =UΣV ∗, (5.10)
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where (.)∗ denotes the conjugate transpose, or adjoint matrix and

Σ1 =


σ1 0 · · ·0
0 σ2 · · ·0
...

...
. . .

...

0 0 · · · σp

 (5.11)

and
σ1 ≥ σ2 ≥ ·· · ≥ σp ≥ 0, p = min{m,n}. (5.12)

A proof of theorem 5.1 can be found in Zhou [40]. The diagonal elements
of Σ are called singular values of G, the m columns of U are called the left
singular vectors and the n columns of V are called the right singular vector,
respectively. From the unitarity of V , i.e. V ∗V = I, follows directly GV =UΣ,
evaluated for the i-th columns yields

Gvi = σiui (5.13)

and

G∗ui = σivi, (5.14)

respectively. Which can be rewritten as

G∗Gvi = σ
2
i vi

GG∗ui = σ
2
i ui.

It becomes obvious that the singular values are the square roots of the eigen-
values of G∗G,

σi(G) =
√

λi(G∗G). (5.15)

5.2.2 Role of Singular Values in Control Theory

The orthonormal column vectors ui and vi represent, respectively, the output
and input directions of the plant G. Note, the input and output directions are
related via the singular values as stated in eq. (5.13). That is, an input vi into
plant G yields an output signal in direction ui of the magnitude σi(G). The
relation between the magnitude of the output signal and the corresponding
singular value stems from the fact that ||ui||2 = 1, which can be written as

||σi(G)ui||= σi(G) = ||Gvi||2 =
||Gvi||2
||vi||2

(5.16)
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G =

 u1︸︷︷︸
’highest gain’

. . . um︸︷︷︸
’lowest gain’

output directions


︸ ︷︷ ︸

U



σ1 0 . . . 0

0 σ2
. . .

...
...

. . . . . . 0

0 . . . 0 σp

0

0 0


︸ ︷︷ ︸

Σ

 v1︸︷︷︸
’highest gain’

. . . vn︸︷︷︸
’lowest gain’

input directions

∗
︸ ︷︷ ︸

V ∗

(5.17)

Since the magnitude of the singular values are descending from σ1 to σp,
u1 (um) represent the highest (lowest) gain output direction, while v1 (vn)
represent the highest (lowest) gain input direction. In other words, for any
input direction u, excluding the null space of G, we have that

σ(G( jω))≤ ||Gu(ω)||2
||u(ω)||2

≤ σ(G( jω)) (5.18)

and
Gv1 = σu1, Gvn = σum. (5.19)

C O N D I T I O N N U M B E R . Systems are ill-conditioned if some combina-
tions of inputs have strong effects on the output while others have weak ef-
fects. One way to quantify this is the condition number – the ratio between
the gains in the high gain and low gain directions. Ill-conditioned systems
with input uncertainty may become hard to control.

M I N I M U M S I N G U L A R VA L U E . Generally σ(G) is desired to be as large
as possible. To avoid input saturation σ must be larger than about 1 in all fre-
quency regions where control is required, see Skogestad and Postlethwaite
[32].

5.2.3 Singular Values as a Measure for Performance

Evaluating the sensitivity function S (see section 6.1.1) as function of fre-
quency allows a valuable estimation of the feedback error. Let r(ω) be the
vector of reference inputs and e(ω) the vector of control errors then bounds
for the relative control error ||e(ω)||2/||r(ω)||2 can be given by exploiting
inequality (5.18)

σ(S( jω))≤ ||e(ω)||2
||r(ω)||2

≤ σ(S( jω)). (5.20)

Therefore, in the worst-case direction the relative control error is bounded by
the maximum singular value of S.
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If we now define an upper limit for σ( jω) we can limit the maximum al-
lowed magnitude of the relative control error. Since the maximum singular
value of S is a function of frequency ω we can define frequency dependent
bounds for the relative control error. Let 1/wP( jω), the so called perfor-
mance weight, be such an upper bound which results in the following perfor-
mance requirement

σ(S( jω))< 1/|wP( jω)| ∀ω ⇔ σ(wPS) < 1 ∀ω (5.21)

⇔ ||wPS||∞ < 1 ∀ω (5.22)

therefore

||e(ω)||2
||r(ω)||2

< 1/|wP( jω)| ⇔ ||wPS||∞ < 1 ∀ω . (5.23)

Typical performance weights are given in section 6.5.

5.3 H∞ N O R M

5.3.1 Definition

Consider a stable, linear SISO system with transfer function G(s). The H∞ SISO

norm is defined as
||G||∞ = su p

ω

|G( jω ) | . (5.24)

Whereby |G( jω ) | is the amplification factor by which the system amplifies
a sinusoidal input signal u with angular frequency ω . Toivonen [35] shows
that the H∞ norm can be characterized as

||G||∞ = su p
{
||Gu||2
||u||2

: u 6=~0
}

. (5.25)

In this form it becomes apparent that the H∞ is the maximal factor by which
the system – described by G(s) – amplifies the L2 norm of any input u. In
operator theory, the H∞ norm would be called a L2 norm induced operator
norm.

In an analogous fashion, the H∞ norm can be defined for MIMO sys- MIMO

tems. Toivonen [35] shows a natural way to extend the definition (5.25) to
the MIMO case. First, the concept of the gain |G( jω ) | of a SISO sys-
tem at a certain frequency ω is generalized to the multi-variable case. Let
u = [u1 , . . . , um ]T ∈ Cm be a complex valued input vector, with

||u|| =
(
|u1 |2 + . . . |um |2

)1/2
(5.26)

being its Euclidean norm. Then the maximum gain of the transfer function
matrix G(s) at a given frequency ω is given by

||G|| = max
u

{
||G( jω )u||
||u||

: u 6= 0, u ∈ Cm
}

. (5.27)



52 M AT H E M AT I C A L P R E L I M I N A R I E S

In analogy to (5.25) the H∞ norm can be defined as the supremum of the
maximum gain of G( jω ) over all frequencies ω , which is, as shown above,
equal to its maximum singular value σ (G( jω ))

||G||∞ := su p
ω

||G( jω ) || . (5.28)

5.3.2 Interpretation

Assuming G(s) is a stable matrix transfer function, then its H∞ norm can be
interpreted in the following way.

In case of a SISO system the H∞ norm of its transfer function G(s) canSISO

be regarded as the largest possible amplification factor of the system’s steady
state response to a sinusoidal , [40]. The steady-state response of the system
with respect to a sinusoidal input

u(t) =U sin(ωt +φ ) (5.29)

is given by
y(t) =U |G( jω)|sin(ωt +φ + arg(G( jω)). (5.30)

Thus, the maximal possible amplification factor is sup
ω

|G( jω)|=: H∞.

In analogy with the SISO case, (5.28) can be interpreted in terms of how aMIMO

plant G effects vector-valued sinusoidal inputs of the form

u(t) = [a1 sin(ωt +φ1), . . . ,an sin(ωt +φn)]
T . (5.31)

Now, we look for the maximum possible steady-state response of G to the
above defined sinusoidal input signal. The output y = Gu is another vector-
valued sinusoid signal of the same frequency ω , but of different phase and
magnitudes of its components

y(t) = [b1 sin(ωt +ψ1), . . . ,bn sin(ωt +ψn)]
T . (5.32)

In that case, in can be shown that (5.28) is equal to

||G||∞ = sup
ω

max
{ai},{φi}

{
||y||2
||u||2

: y = Gu,u ∈ Cm
}

, (5.33)

with the respective euclidean norms

||u||= (a2
1 + . . .+ a2

n)
1/2 (5.34)

||y||= (b2
1 + . . .+ b2

n)
1/2, (5.35)

see Zhou [40, p. 58] and Toivonen [35, p. 18]. Thereby the H∞ norm can be
interpreted as the maximal factor by which the magnitude of a vector-valued
sinusoidal input signal, as defined in (5.31), gets amplified by the system G.

Li et al. [21, p. 945] and Desoer and Vidyasagar [1] give physical interpre-
tations of the H∞ norm of MIMO systems from the energy and power point
of view of the input and output signals.
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H I N F I N I T Y C O N T RO L

This chapter presents the various H∞ norm optimization based controllers that
were designed for controlling the heave dynamics of helicopter HE1. Intro-
ductions to the respective underlying mathematical concepts are given as well.
For all the theory that follows the model is assumed to be scaled. Simulink
models that were used to simulate the closed loop behavior are introduced at
the end.

6.1 D E S I G N G O A L S A N D T R A D E - O F F S I N M I M O F E E D B AC K D E -
S I G N

Most methodologies are based on shaping the singular values of specified
transfer functions such as the loop transfer function L or one or more of the
closed loop transfer functions such as the sensitivity function S, the comple-
mentary sensitivity function T or KS.

6.1.1 Closed Loop Transfer Functions

Figure 20 shows a block diagram of a standard one degree-of-freedom neg-
ative feedback control system with the plant model G and the disturbance
transfer function Gd . r is the reference value, d the disturbance signal, n the
measurement noise on the output signal y and the input signal to the plant is
given by

u = K(s)(r− y−n). (6.1)

The control error will from now on be defined as

e = y− r. (6.2)

The goal of control is to minimize the control error while the system is af-
fected by disturbances d and measurement noise n. In accordance with figure
20 the output equation can be written as

y = G(s)u+Gd(s)d. (6.3)

Substitution of (6.1) into (6.3) yields

y = G(s)K(s)(r− y−n)+Gdd, (6.4)

rearranging above equation yields a relation for the closed-loop response

y = (I +GK)−1GK︸ ︷︷ ︸
T

r+(I +GK)−1︸ ︷︷ ︸
S

Gdd− (I +GK)−1GK︸ ︷︷ ︸
T

n. (6.5)

53
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Figure 20: Standard 1 DoF feedback control system

With the following abbreviations

L = GK loop transfer function

S = (I +GK)−1 = (1+L)−1 sensitivity function

T = GK(I +GK)−1 = L(I +L)−1 complementary sensitivity function

equation (6.3) simplifies to

y = Tr+ SGdd−T n . (6.6)

By exploiting that S+T = I we obtain the following relation for the control
error e

e = y− r = −Sr+ SGdd−T n (6.7)

with the corresponding control input signal u given by

u = KSr−KSGdd−KSn (6.8)

The name „complementary“ sensitivity function originates from the impor-
tant identity

S+T = I. (6.9)

6.2 C L O S E D L O O P S TA B I L I T Y

The following three methods are commonly used to analyze closed loop sta-
bility behavior.

• Pole Analysis

• Nyquist’s Stability Criterion

• Bode’s Stability Criterion
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6.3 P E R F O R M A N C E C R I T E R I O N S

For evaluating the closed loop performance of the controller, quantitative per-
formance measures are needed.

6.3.1 Time Domain Performance

The following list gives common specifications for time-domain behavior of
control systems and typical values suggested by [32] Skogestad and Postleth-
waite.

R I S E T I M E (tr ) : the time it takes the system to reach 90% of its final value.

R I S E T I M E (t p ) : the time required to reach the maximum peak.

ε - S E T T L I N G T I M E : the time after which y(t ) stays within ε of y f .

ts ,ε := inf
τ

{
τ
∣∣ ||y(t )− y f || < ε∀t ∈ [τ , ∞)

}
(6.10)

M A X I M U M OV E R S H O OT (yos ) : is defined as

yos := sup
t

{
y(t )/y f

}
(6.11)

D E C AY R AT I O (rd ) : the ratio of the second and first peak

rd := A/B (6.12)

S T E A DY- S TAT E O F F S E T : the difference between the final value and the
desired final value.

eSSE := lim
t→∞
{y(t )− yd es} (6.13)

M E A N S Q UA R E D E R RO R (eMSE ) :

eMSE := ||e(t ) ||2 =

√√√√ ∞∫
0

|e(τ ) |d τ (6.14)

6.3.1.1 Design Goals

Design goals for the heave dynamics controller are zero steady-state offset,
minimal possible overshoot and minimization of the mean squared error in
hovering condition. These requirements primarily determine the helicopter’s
aerial manipulation capabilities. Throughout all flight missions the steepness
of the height reference trajectory will be limited by a rate limiter1; maximal
heave velocity is limited to 1.5 m/s. Therefor rise time tr has to be just as little
as is required to reach the maximal allowed heave velocity.

1 In addition, the reference signal is also filtered in standard missions, see fig. 39-41
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6.3.2 Frequency Domain Performance

Time-domain performance specifications are the easiest to get a feeling for.
However, frequency-domain performance specifications offer several advan-
tages. A lot of modern controller design methods rely on frequency domain
specifications. Compared to step response analysis a wider spectrum of input
signals can be considered – usually sinusoids of any frequency. Since „any“
signal can be described as a superposition of harmonic functions like sinu-
soids a broad spectrum of input signals can be covered.

6.3.2.1 Gain Margin

The gain margin is the factor by which the loop gain |L( jω180)| can be in-
creased before the closed-loop system becomes unstable. It is defined as

GM =
1

|L( jω180)|
(6.15)

where ω180 is the phase crossover frequency. It’s defined as the frequency
where the Nyquist curve of loop transfer function L( jω) crosses the negative
real axis between 0 and −1, i.e.

∠L( jω) = −180◦ (6.16)

In case L crosses the real axis multiple times between 0 and −1, the closest
crossing to −1 is regarded. Generally GM > 2 is required, [32].

6.3.2.2 Phase Margin

The phase margin describes how much more negative phase (phase lag) can
be added to the loop transfer function until L( jωc) equals −1 which means
closed-loop instability. It is defined as

PM = ∠L( jωc)+ 180◦ (6.17)

where ωc is the gain crossover frequency, i.e.

|L( jωc)|= 1. (6.18)

[32] Skogestad and Postlethwaite suggests the PM to be larger than 30°. The
higher the time delay uncertainty the higher the recommended PM, which
becomes obvious by the following relation [32, p. 32]

θmax = PM/ωc, (6.19)

where θmax is the maximum time delay that can be added until the closed-loop
system becomes unstable. Interestingly, the lower ωc the higher time delays
the system can tolerate.
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Design goals Dependencies Requirem. at freq. where

Disturbance rejection e = (1+L)−1Gdd large σ(L) σ(L)� 1

Reference tracking e = (1+L)−1r large σ(L) σ(L)� 1

Noise attenuation e = L(1+L)−1n small σ(L) σ(L)� 1

Input usage reduction u = K(r− y−n) small σ(K) σ(GK)� 1

Input usage disturbance u = K(1+L)−1Gdd small σ(K) σ(L)� 1

Physical system must be strictly proper lim
ω→∞

L = 0

Robust stability (multipl. output uncert.) small σ(GK) σ(GK)� 1

Robust stability (additive output uncert.) small σ(K) σ(GK)� 1

Table 2: Trade-offs in feedback control in terms of open-loop objectives L and K.

6.3.3 Maximum Peak Performance Criteria

The maximum peaks of the sensitivity function

MS := ||S||∞ (6.20)

and complementary sensitivity function

MT := ||T ||∞ (6.21)

can be used as performance and robustness indicators. Typically, it is required
that MS is less than 2 and MT is less than 1.25, [32, p. 36]. These recommen-
dations stem from the close relations between the peak values of S and T and
the GM and PM

GM ≥ MS

MS−1
; PM ≥ 1

Ms
[rad] (6.22)

GM ≥ 1+
1

MT
; PM ≥ 1

MT
[rad]. (6.23)

6.3.4 Trade-offs of Loop-shaping in terms of L

To achieve „perfect“ control, i.e. e = 0, we require S→ 0 (disturbance rejec-
tion and command tracking) and T → 0 (noise attenuation), compare eq. (6.7).
Small S implies large L since S = (1+L)−1, whereas small T implies small L
since T = L/(1+L)−1. This illustrates that trade-offs have to be made when
designing feedback controllers.

Usually we want the control input u to be constrained within specified bor-
ders. Since u = K(s)(r− y− n), see eq. (6.8), small magnitudes of u corre-
spond to small controller gains K and therefore small L = GK. Since design
goals usually have to be met in different frequency ranges, most design goals
can be fulfilled simultaneously by choosing large loop gains at low frequen-
cies and small loop gains at high frequencies. The frequency ωc at which
σ(L) drops below 1 is called gain crossover frequency. Generally we want
σ(L) to be as large as possible below ωc and L to fall as sharply as possible
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Design goals Dependencies Requirements

Disturbance rejection e = SGdd minimize ||S||∞
Reference tracking e = Sr minimize ||S||∞
Noise attenuation e = T n minimize ||T ||∞
Input usage reduction u = KS(r−n) minimize ||KS||∞
Input usage disturbance u = KSGdd minimize ||KSGd ||∞

Table 3: Trade-offs in feedback control in terms of closed-loop transfer functions

above ωc (high roll-off ) rate. Under the aspect of achieving sufficient GM and
PM these design goals are contradictory. For |L( jω)| typically a slope of −1
at ωc and a slope of at least −2 above crossover is desirable.

To achieve desirable low-frequency performance and offset-free reference
tracking, L(s) must contain at least one integrator for each integrator in r(s),
see [32, p. 44] Skogestad and Postlethwaite.

6.3.5 Trade-offs of Loop-shaping in Terms of Closed-Loop Transfer Func-
tions

Equation (6.7) shows how to design the closed-loop transfer function S and T
to achieve „perfect“ control, i.e. e = 0. Generally we want S→ 0 to achieve
optimal disturbance rejection and command tracking, and we want T → 0 for
optimal noise attenuation. Since S+T = I, trade-offs have to be made. Table
3 summarizes design goals in terms of closed-loop transfer functions.

Again, the contradicting design objectives have to be met at different fre-
quencies. Generally we want ||S||∞ to be small in the low frequency area and
||T ||∞ to be small in the high frequency area.

Remark. In the open-loop case with no control, i.e. K = 0, the control error
equals

e = y− r = Gdd + 0 ·n− r, (6.24)

whereas in the closed-loop case it equals

e = S(−r+Gdd−Ln). (6.25)

Imagine a SISO system, then it becomes obvious that feedback improves per-
formance in frequency areas where |S|< 1.

Remark. Probably the biggest advantage of shaping S and T is the fact that
only their magnitudes have to be taken into consideration, as opposed to when
shaping L, their phases can be neglected. As mentioned above, we generally
desire S ≈ 0 and T ≈ 0 for certain frequency areas, which will be the case if
|S| ≈ 0 and |T | ≈ 0, respectively, independent of their respective phases.
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6.4 G E N E R A L C O N T RO L C O N F I G U R AT I O N

Doyle [2], [3] proposed a general method of formulating control problems
which is based on casting the problem into the so called general control con-
figuration which is shown in figure 21. The main advantage of that standard
formulation is that any problem may be arranged into that form. Once the

Ku

w z

v

P

(weighted)
exogenous
ouputs

(weighted)
exogenous

inputs

control
inputs

sensed
ouput

Figure 21: General Control Configuration

problem is casted into the general control configuration the design goal of
H∞ control becomes to determine a stabilizing controller that minimizes the
H∞-norm of the closed loop transfer function N from w to z

z = Nw. (6.26)

In other words, the controller K generates a control signal u, which depends
on the measured output v, to counteract the influence of the external inputs w
on the external outputs z. To define P one has to identify the signals w,z,u and v
which then allows setting up the transfer function matrix. This can either be
done by writing down the outputs z and v as functions of the inputs w and u

z = P11(s)w+P12(s)u (6.27)

v = P21(s)w+P22(s)u (6.28)

and subsequently combining the elements of P

P =

[
P11 P12

P21 P22

]
, (6.29)

or by directly inspecting the block diagram representation of the control prob-
lem. Often it is useful to have a state space representation of P

P =

 A B1 B2

C1

C2

D11 D12

D21 D22

 . (6.30)

6.4.1 Closed Loop Transfer Function N

Once P is setup the closed-loop transfer function N can be derived by lower
linear fractional transformation (LFT) of P with K as the parameter.

N = Fl(P,K) = P11 +P12K(I−P22K)−1P21 (6.31)
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N can be numerically derived from P by employing MATLAB command lft.
A stabilizing, H∞ optimal controller that minimizes

||Fl(P,K)||∞ = max
ω

σ((Fl(P,K)( jω)) (6.32)

can then be determined with the general H∞ algorithm introduced in the ap-
pendix, see theorem A.1.

Remark. Sometimes N can be directly derived manually from the block dia-
gram of the corresponding design problem.

6.5 S/K S/T M I X E D S E N S I T I V I T Y O P T I M I Z AT I O N

S/K S/T mixed sensitivity optimization is one of the most popular H∞ con-
troller design concepts, mainly due the fact that it can be quickly implemented
and is more intuitive to the control engineer than to other design methods.
S/K S/T mixed sensitivity optimization is based on shaping one or more
of the closed-loop transfer functions S , T and K S. In addition to the require-
ment that K stabilizes G, trade-offs have to be made when defining design
objectives, which are summarized in table 3. Design specifications, such as
the level of model uncertainty that can be tolerated, disturbance rejection,
noise attenuation and desired bandwidth of the closed loop can be embedded
in the design stage in the form of frequency dependent performance weights,
see figure 22. The effects of the aforementioned closed-loop transfer func-

K
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WP

WU

+

-

z1

z3

z2 z

vu

y

rw P

e
Gw 1/s

Figure 22: S/KS/T mixed-sensitivity optimization

tions on design goals such as disturbance rejection, command tracking etc.
can be seen by recalling equations (6.6)-(6.8). E.g. the sensitivity function S
is the transfer function between the disturbance d and the output y. There-
for, feedback improves disturbance rejection performance in frequency areas
where σ(S( jω)) < 1. Since disturbances like wind gusts are usually of low
frequency it is sufficient to minimize the maximum singular values of S over
that same low frequencies. In this case we could choose a low-pass filter as
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performance weight Wp whose bandwidth matches that of the disturbance
signal and we would define |1/WP( jω)| as an upper bound for S

||S( jω)||∞ ≤ |W−1
P ( jω)| ∀ω . (6.33)

One of the goals of the optimization algorithm would then be to minimize
||WPS||∞. By making these kind of considerations and having relations (6.6) -
(6.8) in mind, weighting functions for the other closed loop transfer functions
can be chosen to meet design requirements, yielding singular value inequali-
ties of analog form

||KS( jω)||∞ ≤ |W−1
U ( jω)| ∀ω , (6.34)

||T ( jω)||∞ ≤ |W−1
T ( jω)| ∀ω . (6.35)

To combine these design specification a mixed approach is applied, yielding
the following overall specification

||N||∞ < 1, where N =

 WPS

WU KS

WT T

 . (6.36)

The reason behind this stacked approach is purely mathematical convenience.
One inherent disadvantage is, that this results in more conservative design
specifications than originally defined, but since the selection of weights is an
iterative process and the design specifications are generally rather rough, the
advantages of this approach outweigh the disadvantages.

Figure 22 shows how the mixed-sensitivity approach can be casted into the
general problem formulation. From figure 22 one can directly see that

z1 =WPe =WP(Gu− r) = −WP
I

I +GK
r = −WpSr (6.37)

z2 =WU u =WU Kv = WU
K

I +GK
r = WU KSu (6.38)

z3 =WT y =WT Gu = WT
GK

I +GK
r = WT Tr (6.39)

and from these relations the generalized plant

P : [w u]T −→ [z v]T (6.40)

can be derived

[
z

v

]
=


z1

z2

z3

v

=


−WP

0

0

WPG

WU

WT G

I −G


︸ ︷︷ ︸

P

 r

u

= P(s)

[
w

u

]
. (6.41)

With lower linear fractional transformation of P with parameter K the closed
loop transfer function from w to z can be derived
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N =

 −WPS

WT T

WU KS

 . (6.42)

Alternatively N can be directly obtained by rearranging relations (6.37)-(6.39)
that can be read out from figure 22. By comparing eq. (6.42) with eq. (6.36)
it becomes clear that we gained N of the stacked approach. Since we are only
interested in its H∞-norm the different sign does not matter.

6.5.1 Weight Selection

As a starting point, the weights were chosen to be similar to those used by
Postlethwaite and Yue [28] and then iteratively adapted in simulation runs
until desirable flight performance was achieved.

6.5.1.1 Selection of WP(s)

In SISO case performance weights are typically in the form of

WP =
s/M+ω∗B
s+ω∗BA

(6.43)

where M, the sensitivity peak, defines the maximum peak magnitude of S, i.e.
||S||∞ ≤M. M has to be larger than 1 for robustness reasons, a typical value
would be 2.

A is equal to the maximum steady-state tracking error. A value of A = 0
means no steady-state error and thereby demands a controller with integral ac-
tion. MATLAB is used to synthesize the H∞ controller. The command in use
is mixsyn, its underlying algorithm asks for stable weights to avoid numeri-
cal problems. By shifting integrators slightly into the left half plane numerical
issues can be circumvented. This doesn’t affect the controllers practical per-
formance.

The bandwidth frequency ω∗B defines where WP reaches 1/
√

2 from below
for the first time and where its asymptote crosses 1 at ω∗B, respectively. The
following helpful approximations of 1/|WP|, the upper bound of ||S||∞, can
be made

lim
ω→0

1/|WP|= A (6.44)

and

lim
ω→∞

1/|WP|= M. (6.45)

To improve performance a steeper slope for S for ω < ω∗B might be desirable,
according weights are typically of the form

WP =
(s/M1/n +ω∗B)

n

(s+ω∗BA1/n)n n ∈N, (6.46)
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where n determines the slope. In MIMO cases WP usually are diagonal matri-
ces with entries of the form given in equation (6.43) and (6.46), respectively.

The final weight WP was chosen as follows

WP(s) = 500
1+ s/6

1+ s/0.006
, (6.47)

which equals to M = 2,ω∗B = 3rad/s and A = 2×10−3. There is no point in
increasing the bandwidth ω∗B beyond approximately 1Hz since the high fre-
quency helicopter dynamics, especially the rotor dynamics (flapping, coning,
lead-lag etc.), are not modeled. In our case a bandwidth of approximately
0.5Hz was chosen since higher bandwidths would increase overshooting to
undesirable magnitudes.2

6.5.2 Selection of WU

For WU a first order high-pass filter was chosen as follows

WU (s) = 0.5
1+ 50s

1+ 0.05s
. (6.48)

Figure 23 shows the frequency-domain characteristics of the selected weights
WP, WU and their inverses.

Remark. In hindsight to the digital implementation of the controller, high fre-
quency controller action should be avoided, which is realized with an actuator
action punishing weight WU that increases with frequency. This prevents very
fast controller poles in the far left half-plane which would require the actuator
to operate in a broad dynamic range, which of course, should be prevented as
argued by Postlethwaite and Yue [28].
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Figure 23: Bode plots of weights for mixed sensitivity optimization

2 0.5Hz≈ 3rad/s
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γmin = ||N||∞ ωc MS MT GM PM ωGM [rad/s] ωPM delay margin

1.88 1 1.44 1 6.60 66.33◦ 5.63 1.55 0.72

Table 4: Performance parameters of the H∞ mixed sensitivity design

Remark. It’s important to choose stable weights for mixed sensitivity H∞

based optimization control, otherwise the general H∞ algorithm A.1 is not
applicable since the necessary assumption that (A,B2,C2) is stabilizable and
detectable would be violated.

6.5.2.1 Selection of WT

In the current controller design no WT weights was used.3 T cannot be shaped
independently from S, see eq. (6.9), therefore WT weights can often times be
neglected.

6.5.3 Analysis of the Controller

The number of states of the resulting controller is equal to that of the general-
ized plant P (4): plant Gz (2), performance weights WU , WP (2).

Figure 24 shows singular value plots of the transfer functions KS,S,T and
weights WP,WU . As desired the singular value of S is small at low frequen-
cies where feedback is effective. At high frequencies S approaches 1 like any
strictly proper system

ω → ∞ : L( jω)→ 0⇒ S( jω)→ I.

As with any real system σ(S( jω)) has a peak greater 1. For any real sys-
tem there exists a frequency ω180 where L( jω) reaches a phase lag of −180◦.
From the definition of the GM (6.15) for SISO systems and relation (6.22)
which states GM > 1, follows directly that |S( jω)| must exceed 1 at fre-
quency ω180.

GM =
1

|L( jω180)|
⇔ L( jω180) = −

1
GM
⇔ S( jω180) =

1
1− 1

GM

.

We originally required MS < 2, so a peak value of 1.31, at a frequency of
2.15rad/s, is perfectly fine. The bandwidth frequency ωB of 1.2rad/s lies close
to the desired bandwidth of 1rad/s. For this design problem we achieved an
H∞ norm of γ = 1.88, so the design requirements (6.48)-(6.55) are not per-
fectly satisfied.The final design is proven to be successful in simulation, see
chapter 7. Which is also backed up by the according performance parameters
summarized in table 7.

Remark. When employing weights wP and wT is it necessary to ensure that
the crossover frequency at which wp passes 1 lies below the crossover fre-
quency of wT . This ensures a gap between the performance bound wP and the
robustness bound w−1

T where open-loop transfer passes L can pass through.
3 No significant performance increases could be achieved by including one.
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Figure 24: Singular value plot showing the results of the H∞ mixed sensitivity con-
troller design

6.6 S I G N A L - B A S E D H∞ C O N T RO L

One major advantage of the signal based approach of H∞ controller design
is its generality. The engineer has a lot of freedom when defining the design
objectives and multiple objectives can be considered at once. At first all ex-
ogenous inputs affecting the system and the error signals, whose H∞ norm
should be kept minimal, have to be defined. Weights Wd , Wi and Wn can be
used to describe the frequency content of the exogenous signals d , r and n, as
shown in fig. 25. Weights WP and WU are used to shape the frequency content
of the error signal e and the control signal u. Transfer function Gd describes
the disturbance (wind disturbances in our case). By adjusting the weight Wd

the relative importance of disturbance rejection can be set. Sometimes an
additional weight Wre f is implemented to force the closed-loop transfer func-
tion from the weighted reference value rs to y to approximate the desired
closed-loop transfer function given by Wre f .

The problem can then be casted into the general control configuration with
the following exogenous inputs and outputs

w =

d

r

n

 z =

[
z1

z2

]

v =

[
rs

ym

]
u = u,

(6.49)
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and generalized plant

[
z

v

]
=


z1

z2

z3

v

=


WPGdWd −WPWr 0

0 0 0

WT GdWd 0 0

WPG

WU

WT G

−GdWd Wr −Wn −G




d

r

n

u

=P(s)

[
w

u

]
.

(6.50)
Next, the standard H∞ optimal control problem can be solved (see general

H∞ algorithm A.1).

6.6.0.1 Weight Selection

Weights WU and WP are chosen similar to those in the mixed sensitivity ap-
proach. A Wre f reference weight is not used. The weights for the exogenous
input signals were chosen in an iterative process as follows:

Wr = 1 Wd = 0.1 Wn = 0. (6.51)

Disturbance by noise wasn’t taken into account when formulating the design
problem, since simulation results suggested that no significant noise rejection
improvements could be achieved by integrating an additional weight Wn for n
without sacrificing tracking and wind disturbance rejection.

Remark. Compared to mixed sensitivity control the weights used in signal-
based H∞ control have not only to be stable but also proper, otherwise the
general H∞ algorithm would not be applicable.

K Gw
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1/s
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Figure 25: Signal-based H∞ control problem

6.7 H∞ L O O P - S H A P I N G D E S I G N ( 1 D O F )

The following looping-shaping design procedures were first published by Mc-
Farlan and Glover [22]. It’s a three-staged procedure:
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1. Augment the nominal open-loop plant G by pre- and post-compensators
W1 and W2. The compensators allow to shape the singular values of the
open-loop frequency response. The nominal system G and the weight-
ing functions W1 and W2 are combined to form the shaped plant Gs =

W2 GW1.

2. The normalized left coprime factorization of Gs is robustly stabilized,
with stability margin ε , by a feedback controller K∞ which is synthe-
sized with the Normalized LCF Stabilization Procedure.

3. The final feedback controller is then formed as follows

K =W1KsW2. (6.52)

See figure 26 for a block diagram representation of the design problem.

G

Ks

W2W1

Gsz1

d1

d2

z2

+
+

+
+

Figure 26: 1 DoF H∞ loop-shaping setup

6.7.1 Shaped System Gs

The robust stabilization procedure presented below (6.7.2) could be directly
applied to the original plant G, but this would leave the designer with little
tuning options to influence the performance of the system. Therefore Glover
and McFarlan [8] proposed shaping the nominal plants open-loop singular
values with pre- and post-compensators W1 and W2 (dynamic weighting ma-
trices) to achieve desirable open-loop properties in the frequency domain and
thereafter robustly stabilizing the shaped plant Gs = W2GW1. In our case we
apply the normalised left coprime factor robust stabilization procedure pre-
sented in 6.7.2.

6.7.2 Robust Stabilization

Let G be a plant with a normalized left coprime factorization

G = M−1
l Nl . (6.53)

Once this factorization is known we can use so called coprime factor un-
certainty description to describe a perturbed plant. Its sets of plants can be
written as

Gp = (Ml +∆M)
−1(Nl +∆N), || [∆N ∆M ] ||∞ ≤ ε (6.54)
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where ε > 0 is the ∞-norm bound of the stacked uncertainty and ∆N ,∆M

are stable, unknown transfer functions which describe the uncertainty of the
nominal plant model G, see figure 27 for a block diagram representation. The

Ks

Ml
-1

∆M

Nl

Gp

+

+ -

+

ɸ
u y

∆N

Figure 27: H∞ robust stabilization of a normalized left coprime factor plant G

norm bound ε is necessary for a tight condition for robust stability in terms of
||M||∞ ([32, p. 304], [28]), where M is defined as in 6.55. One advantage of
the coprime uncertainty description is, that it requires no a priori knowledge
about system uncertainties. The fact that poles and zeros are allowed to shift
into the RHP accounts for the generality of this uncertainty description.

Again, the goal of robust stabilization is to find a controller Ks which sta-
bilizes the nominal plant G and the set of perturbed plants Gp as defined in
(6.54). Before we can apply the algorithm presented below, we have to rear-
range the block diagram in Figure 27 to match the M ∆-structure shown in fig.
28. Reforming yields

Figure 28: M ∆-structure for robust stability analysis

∆ = [∆N ∆M ] ; M = −

[
Ks

I

]
(I +GKs)

−1M−1
l . (6.55)

Theorem 6.1 (Robust stability for unstructured („full“) perturbations [32]).
Assume that the nominal system M(s) is nominal stable and that the pertur-
bations ∆(s) are stable. Then the M ∆-system in figure 28 is stable for all
perturbations ∆ satisfying ||∆||∞ ≤ 1 (i.e. we have robust stability) if and
only if

σ(M( jω))≤ 1 ∀ω ⇔ ||M||∞ ≤ 1 (6.56)

When using coprime uncertainty description the tight bound in theorem 6.1
changes to 1/ε , where ε is the H∞ norm bound of the uncertainty

||∆N ∆M||∞ ≤ ε ⇔ ||M||∞ < 1/ε . (6.57)
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Glover and McFarlan [8] presented a method to maximize the stability mar-
gin ε . We define γK ≡ ||M||∞ which simplifies the robust stability condition
(6.57) to

γK ≡

∣∣∣∣∣
∣∣∣∣∣
[

Ks

I

]
(I−GK)−1M−1

∣∣∣∣∣
∣∣∣∣∣
∞

≤ 1
ε

(6.58)

where γK is the H∞ norm from φ to

[
u

y

]
and (I−GKs)−1 is the sensitivity

function. The minimal achievable value of γK is according to Glover and Mc-
Farlan [8] given by

γmin = min{γK}=
1

max{ε}
=
{

1−|| [N M] ||2H
}−1/2

. (6.59)

||.||H denotes the Hankel norm. A controller K that guarantees γK ≤ γ for a
given γ > γmin, was introduced by McFarlan and Glover [22]

Ks
s
=

[
A+BF + γ2(LT )−1ZCT (C+DF) γ2(LT )−1ZCT

BT X −DT

]
(6.60)

F = −S−1(DTC+BT X) (6.61)

L = (1− γ
2)I +XZ (6.62)

where X and Z are the solutions of the following two Riccati equations

(A−BS−1DTC)Z +Z(A−BS−1)DTC)T −ZCT R−1CZ +BS−1BT = 0
(6.63)

where

R = I +DDT , S = I +DT D

and

(A−BS−1DTC)T X +X(A−BS−1DTC)−XBS−1BT X +CT R−1C = 0.
(6.64)

A,B,C,D are the matrices of the state space realization of the shaped plant
Gs.

Remark. By using the algorithm above, we can avoid the general H∞ algo-
rithm, witch iteratively reduces γ to approach the optimal solution γmin (γ-
iteration). This is one of the advantages of the 1 DoF LSD method over the
previously presented ones in section 6.5 and 6.6. Another advantage com-
pared to the mixed sensitivity approach is that no pole-zero cancellations be-
tween the plant and the controller occurs, [32, p.372] 4.

4 One exception where also pole-zero cancellation might occur are systems with all-pass behav-
ior
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Figure 29: Singular value plots original plant G, the shaped plant Gs and the distur-
bance transfer function Gd

6.7.3 Plant Shaping and Final Controller

The weights are chosen as follows

W1 =
s+ 6

s
, (6.65)

W2 = 1. (6.66)

The integral action of W1 ensures low frequency performance and a theoreti-
cal steady-state error of zero. The phase-advance term reduces rolloff close to
gain crossover from −2 to −1. Typically, |L( jω)| should have a slope of −1
in the cross over region to improve transient behaviour and to achieve good
GM and PM [32, p.43,49]. W2 is usually used to define the relative impor-
tance of the controlled outputs. Since the output is one-dimensional W2 is set
to 1. Figure 29 shows bode plots of G,Gs and Gd .

Remark. Weights have to be chosen such that Gs contains no hidden, unstable
modes.

The final open-loop shape GK = GW1KsW2, achieved after robust stabiliza-
tion, matches that of the desired loop shape Gs = W2GW1. More precisely,
GK lies withing an δ neighborhood of Gs, as can be seen in the sigma plot in
figure 30. γ is an indicator for matching accuracy, Gu et al. [10, p. 179] states
the following relations/estimations

σ(GK) ≥ σ(
1
γ

Gs), ∀ω < ωc (6.67)

and

σ(GK) ≤ σ(γGs), ∀ω > ωc. (6.68)



6.8 T W O D E G R E E S O F F R E E D O M L O O P - S H A P I N G D E S I G N 71

10−2 10−1 100 101 102
10−4

10−2

100

102

104

106

108
Singular Values

Frequency (rad/s)

Si
ng

ul
ar

 V
al

ue
s 

(a
bs

)

σ(GKopt)

σ(Gs γmin)

σ(Gs/γmin)

σ(GK)
σ(Gs γ)

σ(Gs/γ)

σ(Gs)

Figure 30: Singular value plots of the shaped plant Gs and the final loop transfer
functions with their respective boundaries

In our case

γ = γrelγmin = 1.1∗3.1849 = (6.69)

As desired the slope is −2 in the higher and lower frequency regions and is
reduced to −1 at crossover.

Generally we want the stability margin εmax = 1/γmin, which defines the
maximum coprime uncertainty the system can handle, to be as large as possi-
ble. Postlethwaite and Yue [28] showed that for large ε (small γ) the singular
values of the final open loop resemble those of Gs. As a rule of thumb, emax

should be greater than 0.25 [32] and 0.2 [10], respectively. Therefore, ε can
be interpreted as an indicator of the success of loop matching and a measure
of robustness.

6.8 T W O D E G R E E S O F F R E E D O M L O O P - S H A P I N G D E S I G N

In 1 DoF freedom design problems the desired controller shape for „optimal“
reference tracking and disturbance rejection usually differ. Both design goals
cannot be optimally achieved with a single feedback controller.

One solution to this issue is to implement a 2 DoF controller which treats
the reference signal r and the measured output signal ym independently. In-
stead of a single controller with two inputs the controller can be split into two
separate blocks. One common form is depicted in figure 31 where K1 denotes
the prefilter and K2 the feedback part of controller. In this configuration the
prefilter K1 can be tuned to improve reference tracking performance by shap-
ing r and the feedback controller K2 can be tuned to alleviate the effects of
disturbances and model uncertainties.
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Figure 31: 2 DoF H∞ loop-shaping design problem with prefilter K1 and feedback
controller K2

In analog fashion to one degree-of-freedom H∞ LSD a prefilter

W1 =WpWa (6.70)

is used to shape the SV of the open loop. Wp contains the dynamic shaping
and is chosen to be equal to 6.65 for the same reasons given in section 6.7. The
same is true for W2. Significant model uncertainties are expected at frequen-
cies above about 6rad/s due to the limited description of the rotor dynamics
(see 6.5.1.1). Therefore the gain crossover is set to 6rad/s by introducing an
alignment gain Wa. The align algorithm used was first presented by Papageor-
giou [26]. It basically calculates an approximate plant inverse at the desired
frequency and can be used to set the 0dB crossover, [28]. The shaped plant is
defined as Gs =W2GW1.

Additionally, a reference model Tre f can be introduced to enforce the closed-
loop system to behave in a desired manner. As suggested by Walker and
Postlethwaite [39, p. 464] a second-order transfer function of the form

Tre f (s) =
ω2

n

s2 + 2ξ ωns+ω2
n

(6.71)

is implemented as the reference model, also called step reference model (SRM).
The dampening factor ζ and the natural frequency ωn are chosen as summa-
rized in table 5. The resulting rise time

tr =
π

ωn
√

1−ζ 2
(6.72)

is given as well in table 5. As a starting point the parameters were set as sug-
gested by Postlethwaite and Yue [28] and then iteratively adjusted until desir-
able reference tracking and disturbance rejection performances were achieved
in simulation runs.

By adjusting the scalar parameter ρ the focus can be shifted between ro-
bustness and reference model matching. By setting ρ = 0 model matching is
neglected and the design problem reduces to the robust stabilization problem,
i.e. minimizing the H∞ of the transfer function matrix from φ to [uT

s yT ]T .
In our case ρ is set to 1.5. Skogestad and Postlethwaite [32] suggests values
in the range of 1 to 3.
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Natural frequency ωn[rad/s] Dampening factor ζ Rise time tr[s] 5

2.20 0.71 2.03

Table 5: Parameters of the desired heave dynamics response

The design problem is based on finding a stabilizing controller that mini-
mizes the effect of the reference signal r and the uncertainty signal φ on the
control error e, the control input to the shaped plant us and the output signal y.
This effect is quantized by the H∞ norm of the transfer function matrix T that
maps the exogenous input signal w = [r φ ] to the exogenous output signals
z = [us y e]

T : [r φ ]T 7→ [us y e]T .

T can be directly derived from figure 31. The process is demonstrated in
exemplary manner on T21 : r 7→ y

y = Gsus = Gs

[
K1 K2

][
β

y

]
= GS(K1ρr+K2y)⇔

y =
Gs

I−GsK2
K1ρ︸︷︷︸

pre f ilter︸ ︷︷ ︸
T21

r,

eq. (6.73) shows Tus

y

e

=

 ρ(I−K2Gs)−1K1

ρ(I−GsK2)−1GsK1

K2(I−GsK2)−1M−1
s

(I−GsK2)−1M−1
s

ρ2[(I−GsK2)−1GsK1−Tre f ] ρ(I−GsK2)−1M−1
s

[r

φ

]
. (6.73)

Its elements Ti j can be interpreted as follows. T11 and T21 limit actuator usage.
T12 and T22 are related to robust stabilization. By comparing it with (6.58) it
becomes apparent that [T12 T22] is equal to the transfer function of the robust
stability criterion 6.58. T31 ensures model matching and T32 is related to the
performance of the loop, [32, p. 374].

One way to calculate a stabilizing controller, that minimizes the H∞ norm
of the closed loop transfer function T from w to z, is to cast the problem
into the general control configuration and apply the general H∞ algorithm
and γ-iteration as described in section A.1. Therefore we have to derive the
generalized plant P, which is defined as[

z

w

]
=

[
P11 P12

P21 P22

]
︸ ︷︷ ︸

P

[
w

u

]

At first we determine z,v,w,u and then set up z and w as functions of w and u
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z: outputs to minimize: [us y e]T

v: input to K: [β y]T

w: external input to P: [r φ ]T

u: input signal to Gs: us = [K1 K2 ]
[

β
y
]
= Kv

us = K1β +K2y = K1ρIr+K2M−1
s (φ +Nsus)

y = M−1
s (φ +Nsus)

e = ρIy = ρIM−1
s (φ +Nsus)−ρITre f ρIr

β = ρIr.

Reformulating these results in matrix form yields

z


v

{



us

y

e

β

y


=



0 0

0 M−1
s

−ρ2Tre f ρM−1
s

I

Gs

ρGs

ρI 0

0 M−1
s

0

Gs


︸ ︷︷ ︸

P

 r

φ

us


}

w}
u

(6.74)
Now the general H∞ algorithm (see A.1) can be applied to the generalized
plant P in eq. (6.74). γ-iteration is used to find a suboptimal controller that ful-
fills γ > γmin. The truly optimal controller, i.e. γ = γmin is usually not desirable
– mostly for practical reasons. The closer the controller moves to optimality
the faster the controller poles become [32, p.507]. This can be disadvanta-
geous if a discretized version of the controller is needed since the required
sampling rates would increase. If a truly optimal controller is desired, the al-
gorithm presented in 6.7.2 cannot be implemented; γ = γmin yields singular L.
Two distinct approaches for solving for controllers that achieve γ = γmin were
presented by Safonov et al. [30] and Glover [6].

6.8.0.1 Analyzing final Controller

Figure 32 shows singular value bode plots of the loop transfer function, the
input (output) sensitivity S = (I−K2G)−1 and input (output) complementary
sensitivity K2G(I−K2G)−1. Note, since G and K are one-dimensional trans-
fer functions GK = KG holds true. Therefore the input and output sensitivity
functions6 and the input and output complementary sensitivity functions are
identical, i.e.

Sin = (I−K2G)−1 SISO
= Sout = (I−GK2)

−1 (6.75)

and

Tin = K2G(I−K2G)−1 SISO
= Tout = GK2(I−GK2)

−1. (6.76)

6 Sin and Sout are the transfer matrices from du to u and dy to y, respectively. For our example
the following u = z1,y = Z2,du = d1 and dy = d2 holds true, see also fig. 26.



6.8 T W O D E G R E E S O F F R E E D O M L O O P - S H A P I N G D E S I G N 75

Singular Values

Frequency (rad/s)

Si
ng

ul
ar

 V
al

ue
s 

(a
bs

)

10−1 100 101 102 103
10−5

100

105

L
Sin/out
Tin/out

Figure 32: Singular value bode plots of the loop transfer function, the input/output
sensitivity S = (I−K2G)−1 and input/output complementary sensitivity
K2G(I−K2G)−1

As desired the loop transfer function has a slope of −2 in higher and lower
bandwidth regions and a slope of −1 at the predefined crossover frequency
of approximately 6rad/s. The peak values of S and T are 1.75 and 1.97.





7
S I M U L AT I O N R E S U LT S ( C O N T RO L L E R
C O M PA R I S O N S )

This chapter presents a comparison of the performances of the various con-
troller designs of chapter 6. Based upon the simulation results a final con-
troller design was picked and benchmarked in flight experiments on the HE-2
helicopter. See Kondak et al. [16],[17],[19] for more technical information
about the helicopter and its on-board software.

7.1 S I M U L I N K M O D E L

Figure 33 shows the Simulink Model being used to evaluate the performances
of the different controllers. The model allows to impose disturbances on the
system: noise on the output, wind disturbances, input disturbance and param-
eter variation on Gz. The results of these simulation runs are summarized in
table 7.

7.1.1 Step Response

Step response performance is shown in figure 34. The maximum overshoot
value |ymax| for a unit step response and the rise-time tr to 90% of the final
value are given for each of the controllers in table 7.

7.1.2 Disturbance Rejection

To imitate the noise of the measured height signal on the helicopter under real
flight conditions, the noise’s frequency and amplitude was estimated and then
replicated by a Band-Limited White Noise block in Simulink. The effects of
vertical wind gusts on the system were also tried to replicate in the Simulink
model by disturbing the vertical velocity state, see section 3.7.7. Based on
the superior disturbance rejection capabilities the 2 DoF LSD controller was
picked as the one to be implemented on the helicopter.
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Controller Design MSE |e|2max

S/KS Mixed Sensitivity Optimization 5.52×10−1 4.004

Signalling Approach 4.99×10−1 3.642

PID Controller 7.05×10−1 3.870

1 DoF Loop-Shaping Design (γ = γmin) 7.02×10−2 0.648

1 DoF Loop-Shaping Design (γrel = 1.1) 8.64×10−2 0.807

2 DoF Loop-Shaping Design 2.91×10−3 0.0407

Table 6: Comparison of the disturbance and output noise rejection capabilities of the
different controller designs in terms of MSE and maximum squared error.
Simulation time: 100 s.

Reference Disturbance

n γ = ||N||∞ ωc[rad/s] MS MT GM PM Delay tr [s] |ymax| y(t = 1) eMSE |e|max

Mixed sens. 4 1.88 1.55 1.44 1.00 6.60 64.3◦ 0.72 1.08 1.04 0.23 5.52×10−1 2.00

Sign. appr. 4 1.67 1.60 1.38 1.00 8.04 67.24◦ 0.74 1.20 1.01 0.22 4.99×10−1 1.91

PID - - 1 - - - −◦ 0.74 1.22 - 0.24 7.05×10−1 1.97

1 DoF LSD 3 3.50 3.70 2.20 2.27 11.4 27.1◦ 0.13 1.08 1.06 0.07 7.02×10−2 0.80

1 DoF LSD* 3 3.18 3.79 1.99 2.12 ∞ 29.7◦ 0.14 1.08 1.05 0.06 8.64×10−2 0.90

2 DoF LSD 5 3.82 7.04 1.75 1.97 2.34 29.6◦ 0.074 1.21 1.01 0.002 2.91×10−3 0.20

Table 7: Performance comparison of different H∞-optimization based controller de-
signs. * indicates that γ = γmin.

n controller order

γ reached H∞ norm of N in gamma-iteration

ωc gain crossover frequency

MS maximum singular value of S

MT maximum singular value of T

GM gain margin

PM phase margin

Delay how much phase lag the system can tolerate, see eq. 6.19

tr rise-time until the system reaches 90% of its final value after a unit step

|ymax| maximum overshoot in a unit step response

y(t = 1) output value after a input disturbance (10%of the maximal allowed input value)

eMSE MSE under wind disturbance and output noise

|e|max maximum quadratic error under wind disturbance and output noise



Part III

F L I G H T E X P E R I M E N T S

"No experiment is ever a complete failure. It can always be used
as a bad example."

— Charles Dickson
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F L I G H T E X P E R I M E N T S

As part of the master’s thesis a number of flight experiments were conducted
to analyze the performance of several different H∞ 2 DoF controller designs.
Starting with a rather conservative design the parameters were adapted to
slowly increase the controllers performance.

Prior to testing the flight controller airborne with the newly designed H∞

controller implemented, extensive and thorough ground tests were conducted
to minimize risks. Special focus was set on the mechanism to switch between
manual and autonomous flight mode. Switching over to autonomous mode
requires all the internal states of the various state space systems, constitut-
ing the controller, to be reset to zero (orange blocks in fig. 33). Other issues
were concerned with CPU overload of the respective on board processor. On
ground analysis of the collective pitch response to vertical steps showed the
necessity for an anti wind-up mechanism, especially for the more aggressive
controller versions. The pre-compensator W1 shows integral action (one pole
at zero), which is necessary for low-frequency disturbance rejection. But in
case of actuator saturation it keeps integrating and thereby causing windup
issues. To avoid this problem W1 is implemented in its self-conditioned form.

After resolving all the issues faced, nothing stood in the way of airborne
flight experiments. The original cascaded PID controller that was developed
over ten years ago and has been continuously adapted and tuned through out
this time span was used as reference. Figure 37 shows HE-2 in flight with
controller version FE03.

Figure 37: Test flight of HE-2 with controller version FE03
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Figure 38: General scheme of the helicopter control [18]

8.1 I M P L E M E N TAT I O N O F T H E H∞ C O N T RO L L E R I N T O T H E E X -
I S T I N G F L I G H T C O N T RO L L E R

The H∞ norm based controller that showed the most promising potential in
simulation was implemented in the existing flight controller framework, in
its core it is based on cascaded PID controllers for orientation and position
control. Solely the control part for the vertical dynamics was substituted with
the newly designed controller while the rest of the control framework was
left mostly unchanged (the control part for the other 5 degrees of freedoms
was left unchanged). The original flight controller can be tuned by pole place-
ment. The poles were set to standard values which are used for regular flight
missions. The controller scheme is composed of an outer loop for position
control and an inner loop for orientation control, see fig. 38. The outer loop
controller Rt rans processes the position and velocity errors and determines
the required translational accelerations to reduce these. It then determines the
orientation of the main rotor plane q∗4 , q∗5 and the magnitude of the lifting
force F MR

3 that are required to achieve these accelerations. Tracking of these
desired angles q∗4 and q∗5 is ensured by the inner controller Rori. From the
angular position and angular velocity error it computes the required angular
accelerations and then derives the required torques T MR

1 and T MR
2 . The ori-

entation about the body-fixed vertical axis b3 is controlled by a separate loop
not shown here.

Detailed information about the controller scheme for attitude and position
control can be found in [16], [18] and [19].

8.2 R E S U LT S

In total 3 different version of the H∞ 2 DoF controller were tested in flight
experiments. With safety concerns in mind, the first version was designed
extremely conservatively. The first test flight was successful and the vertical
performance was close to that of the PID controller. Based on the insights
gained, two alternative H∞ 2 DoF controllers variants were designed. Those
will be referred to as FE02 and FE03. The according design parameters can
be found in table 8.

Figure 39 shows the results of the test flight with the original PID con-
troller. The average wind speed was 4.0km/h and the wind gusts reached up
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H∞ contr. var. λ ωa [rad/s] ξ [kg/s] ωn [rad/s] Tre f ,rise [s]

FE02 2 2 0.9 2.0 3.6

FE03 3 3 0.9 3.0 2.4

Table 8: Design parameters for the H∞ 2 DoF controllers used in flight experiments

to 9.8km/h. During hovering phases, where good tracking performance is
particularly important, the actual height stays within a 15 cm band of the ref-
erence value for most of the time. Higher deviations can be observed at the
start of reference value changes where the controller reacts too slowly and the
helicopter lags behind. At the end of climbing as well as descending phases,
the helicopter clearly overshoots the reference height.
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Figure 39: Flight Experiments with original PID controller

Results of test flight with controller FE02 are shown in fig. 40. There was
no noticeable wind at that time.

Figure 41 shows the results of the test flight with the FE03 controller. Av-
erage wind speed was 4.8km/h and the wind gusts reached up to 15.0km/h.

MSE =
1
n

n

∑
i=1

(zre f − zmeas)
2 (8.1)

Controller FE03 shows similarly performance in hover conditions as the FE02
version, albeit slight better: MSEh,FE03 = 4.3×10−4 versus MSEh,FE02 =

6.4×10−4, see table 6, where MSE denotes the mean squared tracking er-
ror. Overall tracking performance, in terms of MSE, was increased by a fac-
tor of roughly two from 2.9×10−2 to 1.6×10−2. Important results of the
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Figure 40: Flight Experiments with H∞ controller (FE02)

flight experiments are summarized in table 9 and visualized in fig. 42 and 43.
|zre f − zmeas|max,h denotes the maximum absolute control error.

During hovering phases the measured height stays mostly within a 5 cm
band of the reference value. At the end of climbing and especially descend-
ing phases, shortly before the reference value flats out, the motion of the
helicopter is a little jerky. When hovering the helicopter oscillates about the
reference value with a period of about 2 s. The reason behind this will be
subject to further investigations.

An analysis of the log data of the height and input signal suggests non-
modeled delays as the reasons behind this undesired behavior. There are may
sources of delays. The signal pathway of the received differential GPS to
PMW servo input signal goes through many hardware components and gets
processes by many processes on the on-board flight computer. Between each
process the data gets written and read-out from an internal memory buffer.
An estimation is hardly possible and specially designed hardware would be
required to gain meaningful values. It has to measure the time an emulated
GPS signal impulse takes to arrive at the Power Cube® output which feeds
into the servo manipulating the main rotor collective pitch angle. In addition
the GPS signal inherent delay itself has to be determined. Moreover, servo
dynamics should be analyzed and modeled. Delay is definitely and important
aspect which has to be investigated to further improve the controller perfor-
mance and will be subject to future work. This behavior can be reproduced
in simulation by including an output delay which supports the theory of de-
lay induced oscillations. An input or output delay of 10 to 17 samples, which
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Figure 41: Flight Experiments with H∞ controller (FE03)

hover

Controller MSE [m2] MSEh [m2] |zre f − zmeas|max,h [cm]

PID 3.2×10−2 3.8×10−3 17

H∞ 2 DoF LSD (FE02) 2.9×10−2 6.4×10−4 9.3

H∞ 2 DoF LSD (FE03) 1.6×10−2 4.3×10−4 6.2

Table 9: Flight performance in terms of mean squared errors (MSE)

equals to 0.1-0.17 s, results in oscillations of the same period of about 2 s,
which further supports the theory of delay-induced oscillations.
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Figure 43: MSE in hovering
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Figure 44: Autonomous helicopter with 7 DoF manipulator

8.3 C O N C L U S I O N

The experimental data clearly indicate an improvement in the tracking per-
formance. Especially in hover flight condition, when the helicopter is com-
manded to hold its current position the new H∞ 2 DoF LSD outperforms the
original cascaded PID controller.

Accurate tracking reference height and hovering at constant level are of ut-
most importance in the following scenarios that are relevant for us: (1) aerial
manipulation with medium [31] and large-sized helicopters featuring a fully
actuated, redundant robot arm [11], see also fig. 44, and (2) picking up ground
based robotic systems in multi-robot missions [*** citation needed]. During
all these operations the helicopter is required to deal with turbulences arising
when operating in ground effect.

The height controller developed in this thesis can be easily adapted to other
helicopters, providing that flight data exist which is suitable for system iden-
tification of the heave dynamics. It is planned to implemented the new con-
troller on all helicopter platforms of the DLR Flying Robots group in Oberp-
faffenhofen. In near future more aerial manipulation missions are planned
where the new controller should be able to show its benefits over the existing
one.

By taking signal and servo delays into account in the model the controller
is expected to be improved further.
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A P P E N D I X





A
M AT H E M AT I C A L BAC K G RO U N D

A.1 G E N E R A L H∞ A L G O R I T H M

The idea behind H∞ control is to minimize the H∞ norm of Fl (P , K ), see
(6.31). The most general and widely used algorithm for H∞ control is based
on the ideas presented in Glover and Doyle [7] and Doyle et al. [4]. To employ
that algorithm the following assumptions have to be met

A.1 (A , B2 , C2 ) are stabilizable and detectable.

A.2 D12 and D21 have full rank.

A.3

[
A− jω I B2

C1 D12

]
has full column rank for all ω .

A.4

[
A− jω I B1

C2 D21

]
has full rank for all ω .

A.5 D11 = 0 and D22 = 0 will simplify the algorithm formulas signifi-
cantly but are not necessary conditions.

A.6 (A , B1 ) is stabilizable and (A , C1 ) is detectable.

The reasons behind those assumptions are given in the aforementioned pa-
pers.

Theorem A.1 (General H∞ algorithm, Skogestad and Postlethwaite[32]).
For the general control configuration of figure 21 described by (6.27)-(6.30),
with assumption A.1 to A.5, there exists a stabilizing controller K (s) such
that ||Fl (P , K )∞ || < γ if and only if

1. X∞ ≥ 0 is a solution to the algebraic Ricatti equation

AT X∞ + X∞ A +CT
1 C1 + X∞ (γ

−2 B1 BT
1 − B2 BT

2 )X∞ = 0 (A.1)

such that Re λ i [A + (γ−2 B1 BT
1 − B2 BT

2 )X∞ ] < 0 ∀i; and

2. Y∞ ≥ 0 is a solution to the algebraic Ricatti equation

AY∞ + Y∞ AT + B1 BT
1 + Y∞ (γ

−2CT
1 C1 −CT

2 C2 )Y∞ = 0 (A.2)

such that Re λ i [A + Y∞ AT + B1 BT
1 + Y∞ (γ−2CT

1 C1 −CT
2 C2 )Y∞ ] <

0, ∀i; and

3. ρ (X∞Y∞ ) < γ 2.
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All such controllers are then given by K = Fl (Kc , Q) where

Kc (s) =

 A∞ −Z∞ L∞ Z∞ B2

F∞

−C2

0 I

I 0

 (A.3)

F∞ = −BT
2 X∞ , L∞ = −Y∞CT

2 , Z∞ = (I − γ
−2Y∞ X∞ )

−1 (A.4)

A∞ = A + γ
−2 B1 BT

1 X∞ + B2 F∞ + Z∞ L∞C2 (A.5)

and Q(s) is any stable transfer function such that ||Q||∞ < γ . For Q(s) = 0
the so called central controller

K(s) = Kc11(s) = −F∞(sI−A∞)
−1Z∞L∞. (A.6)

The number of states of the resulting controller equal that of the generalized
plant P.

A.2 E S S E N T I A L S O F L I N E A R S Y S T E M T H E O RY

Linear state space systems in terms of deviation variables, where x and u
represent deviations from the equilibrium (trim) state, are written as

ẋ(t) = Ax(t)+Bu(t) (A.7)

y =Cx(t)+Du(t) (A.8)

(A.9)

where A,B,C and D are real matrices.
Remark. The representation in (A.8) and (A.9) is not a unique description

of a linear system.

x(t) = eA(t−t0)x(t0)+
∫ t

t0
eA(t−τ)Bu(τ)dτ (A.10)

eAt = I +
∞

∑
k=1

(At)k

k!
=

n

∑
i=1

tieλitqH
i (A.11)

A.3 C O P R I M E F AC T O R I Z AT I O N

Is a way of representing systems in transfer function form.1 One distinguishes
between the left coprime factorization

G(s) = M−1
l (s)Nl(s) (A.12)

and the right coprime factorization

G(s) = Nr(s)M−1
r (s) (A.13)

1 Coprime Factorization of systems in state space representation is also possible
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of G. Here Nl ,Ml ,Nr and Mr are stable coprime transfer functions.
Vidyasagar [38] presented a method to derive a normalized left coprime

factorization of G, if G has a minimal state space realization

G s
=

[
A B

C D

]

with the coprime transfer functions given by

[
Nl(s) Ml(s)

]
s
=

[
A+HC B+HD H

R−
1
2 C R−

1
2 D R−

1
2

]
(A.14)

where

H ≡−(BDT +ZCT )R−1

R≡ I +DDT

and Z being the solution to the following algebraic Ricatti equation

(A−BS−1DTC)Z +Z(A−BS−1DTC)T −ZCT R−1CZ +BS−1BT = 0

with

S≡ I +DT D.

MATLAB command ncfmr can be used to numerically find the normalized
coprime factorization for G by using (A.14).

A.4 M AT R I X N O R M

Definition A.1 (Matrix Norm, [32]). For A and B in Km×n, ||A|| denotes the
norm of A if

1. ||A|| ≥ 0 (non-negative)

2. ||A||= 0⇔ A = 0 (positive)

3. ||α ·A||= |α|||A||, α ∈ C (absolute homogeneity)

4. ||A+B|| ≤ ||A||+ ||B|| (triangular inequality)

5. ||AB|| ≤ ||A|| ||B|| A and B in Kn×n, (multiplicative property).

R E M A R K . From the second and third axiom results ||A|| ≥ 0 (positivity).





B
F I L E L I S T

B.1 M A P L E

• Dynamics_Kane_Basis_Vectors.mw Implementation of Kane’s
method to derive the dynamics of a standard configuration helicopter
composed of three rigid bodies.

• Dynamics_Lagrange_euler_angles.mw.mw, Dynamics_Lagrange_pqr.mw
Implementation of Lagrange’s method to derive the dynamics of a stan-
dard configuration helicopter composed of three rigid bodies (using
time-derivatives of the Euler angles and p,q,r to describe angular rota-
tions, respectively).

B.2 M AT L A B

• align.m
References:

1. Maciejowski, J.M., Multivariable Feedback Design, 1989, pp. 145–
148

2. Edmunds, J., and Kouvaritakis, B., Extensions of the frame align-
ment technique and their used in the characteristic locus design
method. Internation J. Control, 1979, 29, (5), pp.787–796

By Yi Cao, 1 May 1996, University of Exeter

Copyright 1996-2003 Sigurd Skogestad & Ian Postlethwaite

• coprimeunc.m Finds the controller which optimally robustifies a
given shaped plant in terms of tolerating maximum coprime uncertainty.
Used in the McFarlane-Glover H-infinity loopshaping procedure. Uses
the robust control toolbox. Copyright 1996-2003 Sigurd Skogestad &
Ian Postlethwaite.

• Heave_Dynamics_02.m Verification and analysis of the system iden-
tification results.

• Heave_Dynamics_Controller_Hinf_LSD_1DoF.m Algorithm to
calculate the H∞ 1 DoF LSD controller.

• Heave_Dynamics_Controller_Hinf_LSD_2DoF.m Algorithm to
calculate the H∞ 2 DoF LSD controller.

• Heave_Dynamics_Controller_Hinf_Mixed_Sensitivity.m Al-
gorithm to calculate the H∞ KS/S/T mixed sensitivity controller.
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• Heave_Dynamics_Controller_Plant_scaled.m Scaling of the
plant.

• Heave_Dynamics_Controller_RUN.m Execute this file to calcu-
late the various controller designs presented in this thesis and to run
Simulink model SIMULINK_Controller_Comparison.slx to com-
pare them.

• Heave_Dynamics_Parameters_Analytical.m Analytical calcu-
lation of the Heave dampening parameter.

• Hinf_mix_sens_weights.m Contains definitions of the weights
for the KS/S/T mixed sensitivity approach.

• hinf2dof.m synthesizes the H∞ 2-DOF controller as described
by Skogestad and Postlethwaite [32, p.375] by calling the function
hinfsyn of the MATLAB robust control toolbox.

• Plot_Results_of_Simulink_new.m Plotting results of simulation.

• PPWM2pitch_coll.m Converts the PWM collective pitch signal
into the resulting pitch angle for HE1 & HE2.

• findGainM.m Find gain at specified ωc and inverse plant at that
frequency. Copyright 1996-2003 Sigurd Skogestad & Ian Postlethwaite.

B.3 S I M U L I N K

• SIMULINK_Controller_Comparison.slxModel to test and compare
different controller design

• h_mech_ctrl.mdl Flight controller for position and attitude control
(programmed by Konstantin Kondak)

• kalman_tmp.mdlKalman state observer (programmed by FlyRob Team)
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