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Abstract 

 

Research on light induced molecular dynamical processes progressed tremendously in the last decades 

due to the advent of nonlinear optical spectroscopic techniques with femtosecond time resolution. In 

this field of research, the visible spectral regime is of outmost interest because light of visible 

wavelengths drives and probes electronic transitions in molecules. It can thus be used to investigate 

processes that start from an electronically excited state, e.g. visual phototransduction (the conversion 

of light into an electric stimulus in the eye) or photosynthesis. In spite of their electronic initiation, 

nuclear motion and especially such along vibrational coordinates plays a major role in these processes 

since all chemical reactions proceed via a change in nuclear arrangement. As an example, energy 

transfer in the initial steps of photosynthesis is mediated via vibrational motion. Also, as described by 

the Franck-Condon principle, the coupling of vibrations to electronic transitions yields significant 

contributions in visible spectra and is therefore essential for their interpretation. The fundamental role 

of molecular vibrations calls for a profound description and study of vibrational signatures in time 

resolved electronic spectra. 

This thesis addresses such signatures as measured by heterodyned transient grating spectroscopy of the 

model molecule hypericin. Vibrations modulating the visible spectra are recorded in the time domain, 

which allows for the retrieval of both, vibrational amplitude and phase in their signal wavelength 

dependence. The resulting spectra are compared with theoretical predictions based on the universal 

theoretical frame work of nonlinear response theory, which is shown to be a valid and especially 

insightful alternative to the more common treatment in the wavepacket formalism. The methodology 

presented in this thesis not only readily explains experimental findings but is applicable to a much 

wider range of molecules than hypericin or solvated molecules in general. For example, the study of 

vibrational-electronic coupling in energy transfer in light harvesting complexes is a logical contin-

uation of this work. 

 

 

 

  



Kurzfassung 

 

Die Erforschung lichtinduzierter molekulardynamischer Prozesse entwickelte sich in den vergangenen 

Dekaden auf Grund der Etablierung nichtlinearer spektroskopischer Methoden mit zeitlicher 

Auflösung im Femtosekunden - Bereich enorm weiter. In diesem Forschungsfeld kommt dem 

sichtbaren Spektralbereich eine besondere Rolle zu, da Licht sichtbarer Wellenlängen elektronische 

Übergänge in Molekülen bewirkt beziehungsweise abfragt. Er kann daher herangezogen werden, um 

Vorgänge zu untersuchen, die in elektronisch angeregten Zuständen beginnen. Beispiele für solche 

Vorgänge sind die visuelle Phototransduktion (Umwandlung von Licht in einen elektrischen Reiz im 

Auge) oder die Photosynthese. Trotz ihrer elektronischen Initialisierung spielen auch Bewegungen von 

Kernen, insbesondere solche entlang vibrationeller Koordinaten, eine entscheidende Rolle in diesen 

Prozessen, da alle chemischen Reaktionen in ihrem Verlauf die Anordnung der Kerne im Molekül 

verändern. Beispielsweise wird der Energietransfer in den ersten Schritten der Photosynthese durch 

vibrationelle Bewegung herbeigeführt. Außerdem trägt die Kopplung von Vibrationen an 

elektronische Übergänge, wie sie durch das Frank-Condon Prinzip beschrieben wird, maßgeblich zu 

Spektren im sichtbaren Spektralbereich bei und ist daher für deren Interpretation und Auswertung 

unerlässlich. Ihre entscheidende Bedeutung erfordert eine profunde Beschreibung und Untersuchung 

vibrationeller Beiträge in zeitaufgelösten elektronischen Spektren. 

Diese Arbeit beschäftigt sich mit solchen Beiträgen, die mittels heterodyn detektierter Transienter-

Gitter-Spektroskopie von Hypericin gemessen werden. Da die Modulation der elektronischen Spektren 

durch Schwingungen in der Zeitdomäne aufgezeichnet wird ist es möglich, sowohl ihre Amplitude als 

auch ihre Phase in Abhängigkeit der Detektionswellenlänge darzustellen. Den entsprechenden 

Spektren werden theoretische Vorhersagen gegenübergestellt, deren Grundlage die sehr universelle 

nichtlineare optische „Response“ - Theorie darstellt, die eine valide und besonders aufschlussreiche 

Alternative zur häufigeren Behandlung im Wellenpaket-Formalismus darstellt. Die in dieser Arbeit 

dargelegte Methodik erklärt nicht nur die experimentell erhaltenen Spektren, sondern ist darüber 

hinaus auf eine große Bandbreite anderer Moleküle als Hypericin, auch in anderem als gelöstem 

Zustand, anwendbar. Beispielsweise wäre die Untersuchung vibrationell-elektronischer Kopplung im 

Energietransfer in Lichtsammelkomplexen eine logische Fortsetzung dieser Arbeit. 



Abbreviations and Symbols 

 

2D ... Two dimensional 

2D-ES ... Two dimensional electronic spectroscopy 

(Het-)TG ... (Heterodyne detected) transient grating spectroscopy 

PP ... Pump probe spectroscopy = transient absorption spectroscopy 

FWM ... Four wave mixing 

VC ... Vibrational coherence 

FC ... Franck-Condon 

LO ... Local oscillator 

NOPA ... Noncollinear optical parametric amplifier 

CW ... Continuous wave 

FWHM ... Full width at half maximum 

FROG ... Frequency resolved optical gating 

OD ... Optical density 

DAS ... Decay associated spectrum 

RR ... Resonant Raman 

DFT ... Discrete Fourier transform 

FCm,n ... Franck-Condon factor 

AU ... Decadic Absorption units 

ρ ... Density matrix 

r ... Position 

t ... time 

E ... Electric field / Electric field amplitude of an electromagnetic wave 

I ... Intensity 

ε ... Energy 

ω ... Frequency; radian frequency in formulas, ordinary frequency in experimental results 

λ ... Wavelength 

τ ... Period 

k ... Wavevector 

µ ... Dipole operator 

µnm ... Transition dipole moment 

( )S 
 ... α

th
 order response function (if α is not specified, α = 3) 

( )R 

  ... α
th
 order Liouville space pathway (if α is not specified, α = 3) 

J ... Auxiliary function 

δmn ... Kronecker delta 



δ ... Delta function 

d ... Curve displacement 

D ... Huang-Rhys factor 

A ... Amplitude 

φ ... Phase 
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1 Introduction 

Time resolved spectroscopy in the visible and infrared regime is a routinely used tool for qualitative 

and quantitative chemical analysis. Consecutive recording of optical spectra, such as absorption -, 

fluorescence - or Raman scattering spectra, provides insights into the evolution of chemical reactions 

along their reaction coordinates and supplies the experimentalist with easy to interpret data. In such 

applications the timescales of interest are those of chemical reactions on a macroscopic scale as 

described by kinetic rate laws, ranging from days to ms in most conventional applications. The 

situation is fundamentally different when studying processes on a molecular level, i.e. when taking the 

step from the investigation of chemical rates to mechanistic studies of chemical and physical 

processes. This change of perspective is often referred to as the step from chemical kinetics to 

chemical dynamics. Research of the latter kind aims at “snapshots” of a process in the process. Such 

snapshots record, amongst others, the energetic distribution and the position of nuclei within a 

molecule and enable the study of isomerisation reactions [1,2], intra- and intermolecular proton- and 

electron transfer [3–5] and energy transport phenomena, which play a major role in photosynthesis [6–

8]. 

The temporal resolution necessary for these studies is mostly given from the timescales of nuclear 

motion. These can be estimated from the well known vibrational modes typically observed in infrared 

absorption spectra. For example, a C=C - stretch vibration of 1600 cm
-1

 has a period of 21 fs (1 fs = 

10
-15

 s). Such extreme temporal resolutions require a precise timing of both, the event initiating the 

studied process and the probing of the ongoing process. In nonlinear optical spectroscopy ultrashort 

laser pulses of typical duration on the order of 10 fs are used to meet these criteria. These pulses not 

only provide the required temporal resolution but enable multidimensional nonlinear spectroscopic 

experiments that yield extremely rich information inaccessible to any other technique. Their 

development was inspired by multidimensional NMR spectroscopy, which, just as the techniques 

described in this thesis, employs carefully designed sequences of impulsive excitations to prepare the 

sample, e.g. a collective of dissolved molecules, in well defined states which’s temporal evolution can 

then be studied. The most intuitive and still most widely used ultrafast spectroscopic technique is 

pump probe or transient absorption spectroscopy (PP). In PP a pump pulse prepares the system in an 

excited state whose spectral absorption and emission is recorded by a probe pulse after varying 

waiting times. PP therefore extends linear absorption and emission spectra of transient species onto a 

femtosecond time axis. [2,9,10] An even richer level of information can be achieved by exploiting the 

full range of nonlinear optical spectroscopic techniques (see VAUTHEY  [11] for an overview). In this 

thesis we will employ two dimensional electronic spectroscopy (2D-ES) and heterodyned transient 

grating spectroscopy (Het-TG), which are variants of four wave mixing (FWM) [12–14] that will be 

explained below. The examined spectral regime is situated in the visible, hence electronic spectra are 
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recorded, i.e. spectra associated with changes in electronic quantum numbers. Although light of such 

wavelengths is not in resonance with molecular vibrations, electronic spectra are strongly influenced 

by nuclear degrees of freedom. [15] The interplay between nuclear and electronic degrees of freedom 

in electronic transitions was investigated by FRANCK and CONDON [16,17] who explained how 

quasi-instantaneous electronic transitions can initiate molecular vibrations. In a quantum mechanical 

description, this is stated as the creation of vibrational coherences (VC), i.e. coherent superpositions of 

quantum mechanical vibrational states. VC on the electronic excited state can play an important role in 

photoreactivity and energy transport. For example, it was demonstrated recently that ultrafast energy 

transport in natural light harvesting complexes can be explained by the interplay of electronic and 

vibrational degrees of freedom while purely electronic coupling mechanisms failed to do so. [7] In 

addition to its participation in the studied processes, excited state VC can also serve as a probe for 

molecular structure of the initial excited state and possible product states that are populated from 

it [18]. 

The remarkable role of vibrations in molecular processes motivates the study of vibrational signatures 

in ultrafast electronic spectroscopy presented in this thesis. We investigate VC in heterodyned 

transient grating spectra of hypericin. Hypericin [19] is a natural photosensitizer that can be extracted 

from Hypericum perforatum (“St. Johns wort”) and other members of the Hypericum genus. As a 

photosensitizer it chemically reacts with its surrounding upon illumination. Hypericin acidifies its 

chemical environment, produces singlet oxygen and is subject of ongoing research due to its antiviral 

effects. [20–22] On the timescales of our experiments (50 fs to 40 ps) and in the spectroscopic 

techniques we employed, however, hypericin did not show clear signatures of photo-initiated 

reactions. We did, however, observe VC of multiple modes. We therefore employed hypericin as a 

model molecule to investigate the signatures of VC in ultrafast electronic Het-TG spectroscopy. 

We investigate the amplitude and phase of oscillatory signals arising from VC as a function of optical 

detection frequency for multiple vibrational modes of frequencies up to 1300 cm
-1

. The results are 

interpreted within the theoretical frame work of response theory and the Franck-Condon (FC) 

principle. Response theory for optical spectroscopy provides a unified description of all kinds of linear 

and nonlinear optical spectroscopy. [12] The key concepts of the theory will be reviewed. By applying 

the FC principle to a displaced harmonic oscillator model and combining the results with response 

theory we find analytic explanations for experimental observations. A discussion of experimental 

constraints and their effects on the formation and probing of VC is provided. 

In short, we use a nonlinear response theory based analytical approach to explain signatures of 

vibrations in time resolved electronic spectra as measured by heterodyned transient grating 

spectroscopy. While the approach is equivalent to the more widespread wavepacket formalism, the 

versatility of nonlinear response theory makes it applicable to a much wider range of nonlinear 

spectroscopic techniques and samples than covered by this thesis. 
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2 Theory 

This chapter will provide the theoretical background necessary for the discussion provided in chapter 5 

of vibrational signals in ultrafast spectra presented in chapter 4. Furthermore, the principles of 

nonlinear spectroscopic techniques used for this thesis will be explained. 

Sections 2.1.1 and 2.1.2 set the stage for section 2.1.3, in which we introduce response functions and 

their graphical representations, double sided Feynman diagrams, which will prove to be a valuable tool 

for the discussion of third order signals in chapter 5. Sections 2.1.4 to 2.1.7 deal with concepts relevant 

for chapter 5 and for the experiments introduced in section 2.2. In section 2.3 the role of vibrations in 

electronic spectra is discussed and the Franck-Condon principle is introduced, which we apply to the 

model of a displaced harmonic oscillator. 

2.1 Theory of nonlinear optical spectroscopy - response theory 

To understand the techniques of femtosecond nonlinear spectroscopy discussed in the following and 

some of its peculiarities, such as the emission of signal fields in directions different to incident beams, 

we must discuss some theory of nonlinear spectroscopy. We will thereby stay in the framework of 

nonlinear response theory which, due to its versatility and completeness, is to date the workhorse for 

both, experimentalists and theoreticians in the field of nonlinear optical spectroscopy. [12] Our 

derivations in the first three sections will mostly follow REZUS [23]. We also want to point to the 

TOKMAKOFF – lecture notes [24] on time dependent quantum mechanics and spectroscopy as a 

reference for the following discussion. 

Within response theory optical spectroscopic experiments are interpreted in the following manner: 

One or multiple interactions with an electromagnetic field induce a polarization P(r,t) in the molecular 

system under study. This polarization, if not stationary, acts as a source of a radiation field, which is 

referred to as “signal field”, according to Maxwell equations. Depending on the experiment the signal 

field may be emitted in a unique direction or overlap with incident fields before its intensity is 

measured. The molecular system influences the experiments only through the polarization. Response 

theory connects the induced polarization quantum mechanically to the system’s properties and the 

electric fields used to probe them. In other words, response theory describes molecular dynamics as 

probed by (ultrafast) optical spectroscopy. 

2.1.1 The density matrix 

P(r,t) is usually calculated semi-classically. The electromagnetic fields are treated classically while the 

system is described by time dependent quantum mechanics. From the system’s wave function, within 

the dipole approximation, P(r,t) can be calculated as the expectation value of the dipole operator µ 

 (r r )j j

j

µ q    (2.1) 

 ( )P µ Tr µ    .  (2.2) 
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Herein, 
jq represents the charge and jr the position, expressed in molecular coordinates, of the particle 

j of the system. Tr stands for the tracing operation. In Eq.(2.2) and throughout this work we use bra-

ket notation for quantum mechanical representations [25,26]. The molecular system can be described 

by its wavefunction   or by a density matrix [24] 

 :    .  (2.3) 

The matrix elements of ρ are given by 

 nm n m  ,  (2.4) 

where n  and m  are basis vectors. Most commonly, the wavefunction   and its complex 

conjugate   are given in an orthonormal eigenfunction basis, 
n

n

c n  . This makes the 

density matrix elements take the form *

nm n mc c   and easy to interpret. In accordance to response 

theory we will in the following make use of the density matrix, mostly because it allows us to interpret 

nonlinear spectra using an intuitive diagrammatic approach, i.e. double sided Feynman diagrams, and 

because it allows for the representation of mixed states, i.e. statistical states of an ensemble of 

molecules, which is essential, amongst others, for the description of solvated molecules interacting 

with the solvent (“bath”). When employing the density matrix in quantum mechanical descriptions one 

works within the so called Liouville space [12]. The time dependence of the system and therefore its 

time-dependent polarization is described through the dynamics of the density matrix elements. Based 

on their temporal behaviour it is useful to distinguish diagonal elements nn  (“populations”) and off-

diagonal elements nm  (“coherences”). The former represent eigenstates n  and evolve slowly, while 

the latter represent superpositions of eigenstates n  and m  which oscillate according to the energy 

difference nm  between the eigenstates and show up in spectroscopic experiments at their according 

frequency nm . 

2.1.2 Equations of motion for the density matrix and their solutions 

Where the temporal evolution of   is described by the Schrödinger equation, the time dependency 

of ρ is given by the Von Neumann - equation Eq.(2.5), which naturally arises from the Schrödinger 

equation and the definition Eq.(2.3) of ρ [24] 

  ˆ ˆ ˆ[H, ] H H
i i

t


  

  
  


.  (2.5) 

Herein, square brackets denote a commutator and Ĥ is the full Hamiltonian of the system. In the 

presence of an electromagnetic field perturbing the pure system Hamiltonian, 

 0
ˆ

n

n

H n n ,  (2.6) 
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where εn are the system’s eigenvalues of energy, the Hamiltonian can be written as (within the dipole 

approximation) 

 0 0
ˆ ˆ ˆ ˆ( ) ( )H H V t H µE t      (2.7) 

and the Von Neumann - equation for a given density matrix element reads [23] 

 ( )[ , ]nm
nm nm nm

i
i E t µ

t


  


  


.  (2.8) 

Note that Eq.(2.8) and all further discussions neglect dephasing in the oscillatory part 

 nm nm nm n mi i        . Therefore all equations presented in the following do not include 

lineshapes and all spectra would be stick spectra. Lineshapes can be included by adding a term ˆ
bathH  

in Eq.(2.7) which accounts for interactions of the system with its surrounding, most commonly the 

solvent [27]. A very basic discussion on lineshapes will be given in the context of absorptive - and 

dispersive signals in chapter 2.1.7. 

At this point it is necessary to expand (1) (2) (3) ...eq         . We will use the elements of this 

expansion to discuss signals produced by the corresponding polarization 

(1) (2) (3) ...eqP P P P P      We will show that the expansion elements correspond to the number of 

interactions with fields E and that the third order elements describe signals measured in pump probe, 

transient grating, 2D electronic spectroscopy and other four wave mixing experiments. 

Applying Eq. (2.8) to the expansion yields a set of coupled differential equations 

 
(1)

(1) ( )[ , ]nm
nm nm eq nm

i
i E t µ

t


  


  


  (2.9) 

 
(2)

(2) (1)
ˆ

( )[ , ]nm
nm nm nm

i
i E t µ

t


  


  


  (2.10) 

 
(3)

(3) (2)
ˆ

( )[ , ]nm
nm nm nm

i
i E t µ

t


  


  


  (2.11) 

 
( )

( ) ( 1)
ˆ

( )[ , ]nm
nm nm nm

i
i E t µ

t


 

   
  


  

Integration over the full history of the system, i.e. from  , yields 

   (1)

0 0 0 0( ) exp ( )[ , ( )]

t

nm nm eq nm

i
t d i t E µ      



     (2.12) 

   (2) (1)

1 1 1 1( ) exp ( )[ , ( )]

t

nm nm nm

i
t d i t E µ      



     (2.13) 

   (3) (2)

2 2 2 2( ) exp ( )[ , ( )]

t

nm nm nm

i
t d i t E µ      



     (2.14) 



 Theory  

6 

 

   ( ) ( 1)

1 1 1 1( ) exp ( )[ , ( )]

t

nm nm nm

i
t d i t E µ 

         

   



   .  (2.15) 

Herein j is an integration variable that indicates the moment at which the j
th
 dipole interaction of the 

system with the electric field occurs. Note that 
0 1 1...       . Because eq is assumed stationary 

the moment of first interaction 
0 is arbitrary and we therefore only care for the intervals 

1t      . 

2.1.3 Response functions, pathways and their graphical representation 

We now turn to a discussion of the structure of Eq.(2.15). This will not only prove insightful but allow 

us to introduce the response function and “(Liouville space) pathways”, leading to a graphical 

representation called “double sided Feynman diagrams.” We will then demonstrate how transition 

dipole moments enter the equations and scale the signals, which is a key aspect for the discussion of 

VC in chapter 5. 

Firstly, Eq.(2.12) - (2.15) are nested equations since 
( )  depends on 

( 1) 
. This structure represents 

a natural evolution of ( )  arising from 
( 1) 

 upon dipole interaction with E, so that for every ( )

nm

  

one can follow the paths through the lower order density matrices down to eq  that lead to the 

population of ( )

nm

 . The number of trajectories leading to ( )

nm

  depends on the number of dipole 

accessible states of the system and on α. 

Secondly,
( )  and hence  ( ) ( )P Tr µ  scale with E . The power α in the external field E 

determines the order of the signal and the order of spectroscopy it facilitates.  

Thirdly, the density matrix ( )  constituted of the elements described by Eq.(2.15) can be expressed 

as a sum of 2  terms based on the commutators in Eq.(2.12) - (2.15). These terms differ from each 

other in their sign and the sequence of sides of the density matrix on which µ  is multiplied. The latter 

aspect is usually stated as the dipole operator acting on the bra  - (right) or ket  side (left) of the 

density matrix. These 2  permutations correspond to the same number of (Liouville space) pathways

( )R 

 . 

In Appendix A we demonstrate for a two level system the evaluation of  (1) (1)( ) ( )P t Tr µ t  to 

illustrate the above mentioned findings and to demonstrate how the dipole operator in Eq.(2.9) -  

(2.15) is replaced by transition dipole moments µnm in the pathways ( )R 

 . 

Generally speaking, the α
th
 order (non)linear response function S

(α)
 and the pathways ( )R 

  are defined 

in a way that allows expressing ( )P   as (compare Appendix A or  [23]) 

    ( ) ( )

1 1 2 3
0 0

... , , ( ) ( )... ( )a a-1 a 1P t dt dt S t t t E t t E t t t E t t ... t 

 

 

          (2.16) 
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    
12 2

( ) ( ) ( )

1 2 1 2 1 2

1 1

( , ,..., ) , ,..., , ,..., . .S t t t R t t t R t t t c c

 

  

    
 



 

      (2.17) 

In Eq.(2.17) we made use of the fact that for any pathway there is a pathway representing the complex 

conjugate of it. 

To first order, (1)R  are given in Appendix A. To third order, (3)R  are given by Eq. - (adopted from 

REZUS [23], Eq.(2.34) - (2.37)) 

 
(3)

1 1 2 3 , 3 2 1( , , ) ( ) ( ) ( )eq aa db cd ac ba bd bc ba

abcd

R t t t µ µ µ µ J t J t J t   (2.18) 

 
(3)

2 1 2 3 , 3 2 1( , , ) ( ) ( ) ( )eq aa dc bd ca ab cd cb ab

abcd

R t t t µ µ µ µ J t J t J t   (2.19) 

 
(3)

3 1 2 3 , 3 2 1( , , ) ( ) ( ) ( )eq aa cd da bc ab dc ac ab

abcd

R t t t µ µ µ µ J t J t J t   (2.20) 

 
(3)

4 1 2 3 , 3 2 1( , , ) ( ) ( ) ( )eq aa ad dc cb ba da ca ba

abcd

R t t t µ µ µ µ J t J t J t   (2.21) 

Herein, we introduced the transition dipole moment 

 nmn µ m µ   (2.22) 

and the auxiliary function ( )nmJ t , which for the Hamiltonian described by Eq.(2.7) reads 

     ( ) exp expnm n m nmJ t it it       . (2.23) 

The auxiliary function represents the evolution of 
  during tα. The transition dipole moment µnm 

gives the probability of a dipole induced transition from m a  to n a  or from a n  to a m . 

The differences between the various pathways (3)R  will be discussed in section 2.1.6. The sums in 

Eq.(2.18) - (2.21) represent all possible trajectories 
1 1 2 2 3 3

(1) (2) (3)

,eq aa n m n m n m       through the 

different order density matrices. The sum of all possible trajectories gives 
(3)

1 2 3( , , )S t t t . 

A popular and highly useful representation of these trajectories are double sided Feynman 

diagrams [28]. An example for a double sided Feynman diagram is presented in Figure 1a. The 

diagram is to be read from bottom to top and illustrates the temporal evolution of the density matrix 

through its increasing orders. Solid arrows represent the dipole operator acting on the density matrix, 

i.e. the interaction of the system with light preparing the density matrix 
( )  from 

( 1) 
. Between 

two interactions 
( )  evolves for a time tα. After three interactions the density matrix 

(3) , then 

reading e g  in Figure 1a, gives rise to a third order polarization 
(3)

3( )P t  oscillating at the 

frequency eg  and a corresponding signal Es. This signal field is represented by a dashed arrow and 

the density matrix after the emission of the signal is given at the top of the diagram. 
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Figure 1. a, left: example for a double sided Feynman diagram representing a stimulated emission pathway in a 

two level system ,g e , illustrated by its energy level diagram (right). b, further diagrams for the same 

pathway in a system with two electronic levels each with one additional vibrational level. 

Double sided Feynman diagrams not only simplify the interpretation of nonlinear spectroscopic 

signals, but can be evaluated in an exact analytic manner to give a summand of the underlying 

pathway 
(3)

1 2 3( , , )R t t t . If all possible diagrams are evaluated one obtains the full response function 

(3)

1 2 3( , , )S t t t . The rules of evaluation are given in [12]. The basic rules relevant for writing and 

reading such diagrams are as follows: The arrows’ directions indicate the sign of the signals 

wavevector with respect to the wavevector of the interacting field. This determines the direction in 

which the signal is emitted, as will be discussed in section 2.1.5. Inward (outward) pointing arrows 

indicate an absorption (emission) event. By convention, the signal field is always emitted from the left 

(ket) side. Due to the definition of the commutator, interactions with a bra (right side) carry a negative 

sign, such with a ket (left side) a positive sign. Hence, the overall sign of a diagram is given by  1
n

 , 

where n is the number of right- (bra-) side interactions. This sign corresponds to the phase of the 

signal field with respect to the field of the third interaction. The density matrix after the emission of 

the signal must be in a population state since coherences vanish too rapidly. 

In general, a single pathway has many diagrams because the density matrix in each period can take 

many different forms, depending on the number of dipole accessible states of the system. This is 

illustrated in Figure 1b in which the system is composed of four vibronic eigenstates. In practice, the 

number of dipole accessible states is not only limited by the molecular system but by finite spectra 

E(ω) driving the transitions. 

As an example of 
(3)R  the pathway 

(3)

1 1 2 3( , , )R t t t  for the two level system in Figure 1a is given in 

Eq.(2.24). Since the system is constituted of only two levels and only the ground state is assumed to be 

populated in equilibrium, only a single diagram contributes to the pathway 
(3)

1 1 2 3( , , )R t t t . 

 (3)

1 1 2 3 1 2 3( , , ) exp( ) ( )exp( )eg ge ge eg eg ee egR t t t g g µ µ µ µ i t I t i t    .  (2.24) 

Within the assumption made in Eq.(2.7), 2( ) 1eeJ t  . More generally, 2( )nmJ t  denotes molecular 

dynamics in t2 that is to be studied. While the evolution in t1 and t3 is oscillatory with eg ge  

corresponding to optical frequencies, 2( )nmJ t  is non-oscillatory ( 0ee  ). The situation is slightly 

different in Figure 1b: The additional vibrational levels allow for second order density matrices 
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(2)

2( )t  that evolve as 0 2exp( )i t  in t2, i.e. diagrams that yield signals that oscillate at vibrational 

frequencies 
1 0 0 1 0e e e e     in t2. These signals will be discussed in great detail in this thesis. The 

finding that the system is in a rapidly oscillating coherence state during the intervals t1 and t3 but 

slowly evolves during t2 (population) is true for all pathways relevant to the experiments described 

below. Therefore t1 and t3 are referred to as coherence times, t2 as population time (even if the system 

is in a vibrational coherence during t2). 

2.1.4 Pulsed excitation fields provide time ordering 

Before being able to connect the double sided Feynman diagrams to spectra observed in third order 

nonlinear spectroscopic techniques described below we need to briefly discuss how t1, t2 and t3 can be 

controlled in experiments. So far we have made no assumptions about the electric field driving the 

described processes. Therefore we could not specify the moments in which the system and the field 

interact and it was necessary to integrate over all possible intervals t1, t2 and t3 in Eq.(2.16). 

We will now assume, in accordance with the experiments described below, that the electric field is 

composed of three short pulses whose temporal peak power and phases are controlled individually. If 

the pulses do not overlap temporally the order in which they interact with the system is fixed. If we 

additionally ensure that each pulse interacts with the system only once, which can be done by 

exploiting the phase matching condition described below, we can essentially control t1 and t2, which 

are then defined as the temporal peaks of the second and third pulse relative to the first one. The 

experiment therefore limits the time ranges that have to be integrated in Eq.(2.16) and nicely reflects 

the double sided Feynman diagram up to the third interaction (after t2). The last time interval t3 is not 

controlled in the sense of t1 or t2 but instead measured indirectly by recording the signal 1 2 3( , , )E t t   

using a spectrometer dispersing the signal field onto a camera. ωα and tα form Fourier transform pairs, 

hence the relation between 1 2 3(t , , t )E t and 1 2 3( , , ),E t   the most common representation of third 

order nonlinear signals, as well as (3)

1 2 3( , , )S t t t  and 1 2 3( , , )S    , is established. The representation in 

ω1, t2, ω3 is chosen due to the oscillatory evolution in t1 and t3 and the slow evolution in t2 discussed 

for Eq.(2.24). 

2.1.5 Directionality of third order signals 

We now turn to the directionality of the signal fields arising from the directionality of the fields 

interacting with a spatially extended sample. It turns out that different (third order) pathways Eq.(2.18) 

- (2.21) emit signals in different directions. This is exploited experimentally in four wave mixing 

(FWM) experiments, such as Het-TG and 2D-ES introduced in section 2.2, to detect third order signals 

selectively and background free [13]. We limit ourselves to giving a simple rule for the signals 

direction, the phase matching condition, and to an explanation of how to apply this rule to double 

sided Feynman diagrams. A more rigorous treatment is provided by HAMM and ZANNI. [29] 
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To describe the directional properties of the signal field and the excitation fields (excitation pulses) we 

introduce their wavevectors 1 2 3, ,  and sigk k k k . For isotropic samples of low concentration the 

individual molecules do not affect each other [12] and the directionality of the signal field only 

depends on the excitation pulses’ wavevectors via the phase matching condition [29,30]  

 1 2 3 0sigk k k k    .  (2.25) 

The signs of the wave vectors in the phase matching condition depend on the pathway and can be 

directly read from the double sided Feynman diagrams, more precisely from the pointing of the arrows 

(‘-‘ for left pointing, ‘+’ for right pointing arrows). For the pathway shown in Figure 1 this results in 

 1 2 3sigk k k k    .  (2.26) 

If the pointing of the wavevectors of the three excitation pulses differ from each other, as is the case in 

FWM, different pathways emit fields in different directions. Placing the detector in a phase matched 

direction not only greatly reduces the number of pathways (3)R that have to be considered but 

additionally gets rid of any contributions from lower order polarizations (if the phase matched 

direction does not coincide with k1, k2 or k3) or from the excitation pulses themselves. The signal field 

along ksig is then detected free of background contributions such as fluorescent light or excitation 

pulses. 

Intuitively, the phase matching condition can be understood as a consequence of the pulses imprinting 

their spatial phases, i.e. their wave vectors, onto the volume under study, creating a “transient grating”. 

 [13] This makes the source of the signal field of a pathway a lattice (or grating, hence Transient 

grating spectroscopy, section 2.2.2), from which the directionality of the signal results. Simply put, the 

phase of light emitted from the individual molecules is not randomly distributed in the sample volume, 

but coherent with the excitation pulses and therefore coherent throughout the excitation volume. 

2.1.6 Classification of pathways and their signals 

We discussed in the previous chapter how one can control and pick pathways by time ordering the 

pulses and choosing non-collinear excitation pulses. We will now explain how the pathways differ 

from each other and which properties of the system they probe. 

The first possible classification can be made into rephasing and non-rephasing pathways. This term 

describes the relation between the coherences during the intervals t1 and t3. In t3 the system can either 

be in a state that is the complex conjugate to the state during the t1-interval, e.g. g e  and e g , or 

in a state that resembles the state during t1, e.g. e g and e g . The first case shown in Figure 2, 

R1, is called “rephasing”, the latter “non-rephasing” (Figure 2, R2). Rephasing pathways produce so-

called photon echo signals, representing the optical analogue to spin echoes known from 2D-NMR 

spectroscopy [31]. A detailed description of photon echoes utilizing Bloch vectors is given in chapter 

2.6 of [29]. In essence, photon echoes are produced when the t1-evolution of an inhomogeneous 
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ensemble is reversed in t3, leading to a synchronous return of the ensemble to the phase of 1 0t   at 

3 1t t . This rephasing process gives rise to a macroscopic polarization and consequently the emission 

of the echo signal at 3 1t t . Non-Rephasing pathways do not invert the t1 evolution and the signals 

therefore decay exponentially with t3 and are, for moderate values of population time t2, in general 

weaker than rephasing signals. Note that for 1 0t   rephasing and corresponding non-rephasing 

pathways are identical as no evolution in t1 is possible. This will prove important for pump probe and 

transient grating spectroscopy. 

 

 

Figure 2. Examples of third order pathways represented by their double sided Feynman diagrams. 

All pathways contributing to third order nonlinear signals emitted in the phase matched directions 

1 2 3

I

sigk k k k     and 
1 2 3

II

sigk k k k   , which are the directions in which signals are recorded in 

all third order spectroscopic experiments discussed below, can additionally be classified as stimulated 

emission - (SE), ground state bleach- (GSB) or excited state absorption (ESA) pathways. This 

categorisation allows a straight forward physical interpretation of the signals. In SE pathways the 

signal is generated via stimulated emission of a photon from an electronically excited state population 

e e  during t2 (R1 and R2 in Figure 2). If a dipole allowed transition to a higher lying state is 

possible, the excited state population e e  can also give rise to ESA (R4 in Figure 2). GSB signals 

are, especially in pump probe, commonly interpreted as a lack of absorption due to partial 

depopulation of the ground state by a preceding pulse. This interpretation, however, is problematic in 

four wave mixing experiments where the signals are measured directly as positive intensity in a phase 

matched direction, instead of a lack of intensity as in PP (compare section 2.2.3). The sign of the 

signals corresponding to the different pathways follows the rule described in section 2.1.3, given by 

 1
n

 , where n is the number of right- (bra-) side interactions. SE and GSB signals are positive while 

ESA signals are negative. 

2.1.7 Absorptive and dispersive signal contributions 

So far we assumed the evolution of the system during t1 and t3 to be purely oscillatory. Such evolution 

would yield stick spectra, the peaks in ω1 and ω3 would have no linewidth. Lineshapes as well as their 
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temporal evolution are, however, of outmost interest in the study of so called spectral diffusion [29], 

which gives insights into the interaction of a system with its surrounding [32]. Lineshapes are 

therefore extensively studied in 2D-ES [33] as well as 2D-Infrared spectroscopy [34]. In this chapter 

we will outline the origin of the signals’ finite spectral width and thereby introduce absorptive and 

dispersive signals. A detailed discussion of the topic can be found in [29]. 

Finite line widths arise from a decay of the oscillating macroscopic polarization in the time domain. 

The origins of this decay are usually divided into inhomogeneous effects from a static distribution of 

oscillators of different frequencies and homogeneous effects arising from fast fluctuations in the 

(chemical) environment of a molecule and spontaneous relaxation, which will be similar for all 

molecules in the ensemble. [29] We will limit the discussion to homogeneous effects which can be 

described by exponential decays. An exponentially decaying oscillation of the form  

 0( ) θ(t) cos( ) exp( / )     E t t t   (2.27) 

is plotted in the time domain in Figure 3. Herein, θ(t)  denotes the Heaviside step function, ensuring 

the causality of the signal “produced” by an interaction with an electromagnetic field at 0t  . The 

Fourier transform of this signal is given by the convolution, denoted by the * - operator, of the Fourier 

transforms of the Heaviside step function, the cosine function and the exponential decay. 

  0 2 2

1 2 2 /
( ) ( ) ( )

2 1/


     

  

   
        

    

i
E   (2.28) 

Herein, δ denotes the Dirac Delta. Square brackets indicate the Fourier transforms of the terms of 

Eq.(2.27). 

It becomes clear and can be seen from Figure 3 that, in the frequency domain, this signal holds not 

only a finite distribution of cosine contributions, but also sine contributions. The jump of the 

imaginary part from positive to negative values at the central frequency ω0 can be assigned to the 

Fourier transform of the Heaviside step function, i.e. the causality of the signal. Note that the phase of 

an oscillation is defined relative to the phase of the inducing field (first pulse for t1, second pulse for t2, 

third pulse for t3). Cosine is in phase with the inducing field, sine out of phase (see. Eq.5.59 in [12]). 

More commonly cosine and sine are described as real and imaginary parts in an Euler representation. 

The real part is called absorptive because it is linked to the transition from one state to the other in a 

molecular system and its corresponding transition frequency ω0. It is particularly useful for 

investigating population dynamics as its amplitude is proportional to the populations of the involved 

states. The imaginary part is referred to as dispersive. It is a measure for dephasing processes, e.g. the 

interaction of an oscillating molecule with its environment. 
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Figure 3. Origin of absorptive and dispersive signal contributions. Left: exponentially decaying oscillation in the 

time domain. Right: same signal in the frequency domain as obtained from Fast Fourier Transform. In the 

frequency domain the signal holds real (absorptive) and imaginary (dispersive) contributions. 

An important practical aspect of these two signals is their linewidth. As can be seen from Figure 3 the 

absorptive peak is much narrower than the dispersive one. This makes it easier to distinguish spectral 

features that are in close proximity to each other in the absorptive parts of spectra. 

Because of the different information content of absorptive and dispersive signal contributions and the 

superior resolving power of absorptive signals it is desirable to measure them separately. This is 

possible in a straight forward manner if the electric field of the signal is measured directly. Photo 

detectors can, however, only measure the field’s intensity. We will discuss this aspect and the solution 

to this problem in section 2.2.4. 

2.2 Third order nonlinear experiments 

Three popular third order nonlinear spectroscopic experiments will be described in the context of third 

order nonlinear response theory: Two dimensional electronic spectroscopy [35], pump probe – and 

transient grating spectroscopy. Their experimental implementations, differences and other practical 

aspects will be discussed later. 

2.2.1 2D electronic spectroscopy 

We will start the discussion with two dimensional electronic spectroscopy (2D-ES) because firstly the 

other two techniques can be seen as a special case of 2D-ES, making it the most general of third order 

spectroscopic techniques. Secondly, the discussion of 2D-ES will illustrate how double sided Feynman 

diagrams can be used to interpret optical spectra. 

The basic concept of 2D-ES is illustrated in Figure 4. Figure 4 a shows the boxcar geometry typical 

for four wave mixing (FWM) experiments such as 2D-ES. In 2D-ES the time intervals t1 and t2 

defined by the delay of two ultra short pulses relative to a first one are scanned individually and the 

third order signal is measured spectrally resolved in the phase matched direction 1 2 3sigk k k k    . 

Note that, in this case, k1, k2, k3 refers to pulses in the experiment (compare Figure 4) and not 
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necessarily to time ordering. For rephasing pathways the time ordering illustrated in Figure 4 holds. 

When non-rephasing signals are to be measured, t1 is chosen negative and k2 precedes k1. 

 

 

Figure 4. a: Illustration of two dimensional electronic spectroscopy and heterodyned transient grating 

experiments. Three pulses, k1, k2 and k3 (green lines), interact with the sample (red square section) which then 

emits a signal field (red line) in the phase matched direction ksig. The signal field is mixed with a local oscillator 

pulse (LO) in a heterodyne detection scheme (compare section 2.2.4). b: Time ordering of the pulses in 2D-ES 

and Het-TG. For Het-TG t1 = 0. Adapted from [36] with permission of the authors. 

After Fourier transformation to 1 2 3( , , )sigE t   the spectra are usually shown in a two dimensional 

contour plot with axis ω1 and ω3 for a single value of t2. A schematic 2D-ES map is shown in  

Figure 5. The simplest way to interpret these maps is in terms of correlations between excitation 

frequency ω1 and emission frequency ω3. Diagonal peaks (ω1 = ω3) appear if the molecular system 

emits a field of the same frequency as it absorbed. Off diagonal elements indicate redistribution of 

energy in the system during t2 as the excitation frequency does not match the emission frequency. 

Studying the evolution of 2D-ES maps with t2 therefore makes it possible to follow the energy 

distribution in the molecular system with time. This makes 2D-ES an extremely powerful method for 

investigating a wide range of transfer processes, especially light harvesting in photosynthetic 

systems [6], and photoinduced chemical reactions [1]. 

A more profound interpretation of electronic 2D spectra utilizes double sided Feynman diagrams to 

link the evolution of the system to the position of signals in the ω1, ω3 - maps. The connection between 

the system’s states during t1, t2 and t3 and electronic 2D spectra is illustrated in  

Figure 5. Circles indicate positions at which one expects signals of the four level system described in 

Figure 1b. The position in ω1 (ω3) is given from 12  corresponding to the (coherence-) state 1 2

occupied during t1 (t3). The states can be read out of double sided Feynman diagrams. Note that some 

of the indicated positions correspond to more than one diagram. 

Electronic 2D spectra represent the highest level of information that can be achieved in third order 

optical spectroscopy, as all three intervals t1, t2 and t3 are resolved. All other third order techniques 

yield projections or slices of electronic 2D spectra. As 2D-ES signals hold absorptive (real) and 

dispersive (imaginary) components (see section 2.1.7), the full information content of 2D-ES is only 

accessible if the two contributions are separated. To do so the electric signal-fields have to be 

recovered with their appropriate phase from the intensities measured by the photo detector (compare 

section 2.2.4). 
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Figure 5. Schematic 2D – spectrum. Labeled circles indicate signals corresponding to diagrams drawn in Figure 

1. a: Figure 1a with e = e0, g = g0, b, c, d: Figure 1b left -, center-, right diagram. 
0 1 0 10 e e g g     

2.2.2 Transient Grating spectroscopy 

Just as 2D-ES, Transient Grating (TG) spectroscopy is a FWM technique involving the excitation of a 

sample with three pulses of different wavevectors (see Figure 4). The only difference to the 2D-ES 

experiment is that t1 is not scanned but fixed to t1 = 0. Therefore, ω1 is not resolved and TG spectra 

represent slices through the 2D-ES signal 1 2 3( , , )sigE t t   at t1 = 0 along ω3 and projections of 

1 2 3( , , )sigE t   onto ω3 (projection slice theorem, see section 3.5.2). More precisely, for finite pulses 

TG spectra are equivalent to t1 - integrals of 1 2 3( , , )sigE t t   over the pulse duration. 

The signals measured in the phase matched direction 1 2 3sigk k k k     hold absorptive and 

dispersive contributions. In analogy to 2D-ES, the absorptive part of the electric signal field can be 

recovered by heterodyne detection (Het-TG). 

2.2.3 Pump Probe spectroscopy 

The Pump probe (PP) experiment is illustrated in Figure 6. It involves the excitation of the sample 

with only two non-collinear ultrashort pulses, the second of which (probe) is chosen to be much 

weaker than the first one (pump). Commonly, PP is interpreted by means of two consecutive 

absorption events with the second pulse probing the molecular system some time t2 after the irradiation 

with the pump. Nonlinear response theory (which we employ), however, interprets it differently. 

 

Figure 6. a: Illustration of the Pump probe experiment. The pump pulse along kpump excites the sample (red 

square section). The probe pulse along kprobe carrying the signal is measured after being transmitted through the 

excited sample in absence and presence of the pump pulse. b: Time ordering in PP. Adapted from [36] with 

permission of the authors. 
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The relation to the so far presented theory, double sided Feynman diagrams and FWM experiments is 

established by realizing that the signals measured in PP are produced by two interactions with the 

pump pulse and a third interaction with the probe pulse. The sequence of interactions is therefore 

identical to TG (and 2D-ES). However, from the phase matching condition Eq.(2.26), the third order 

signal’s wave vector is given by kprobe and the corresponding third order signal co-propagates with the 

probe as well as first order signals (see Figure 6). Therefore one measures the sum of signal- (first and 

third order) and probe fields. The third order signal (3)

1 2 3( 0, , )sigE t t   is recovered by separately 

measuring the probe transmitted through the sample with the pump pulse on ( 2 3( , )probeI t  ) and off 

( (0)

3( )probeI  ) and calculating 

 

(3)

1 2 3 2 3

2 3 (0)(0)
33

( 0, , ) ( , )
( , ) 1

( )( )

sig probe

probeprobe

E t t I t
T t

II

 





    . (2.29) 

Herein we introduced the transient transmission 2 3( , )T t  , which is the most common representation 

of pump probe signals. 

As the first two interactions happen simultaneously (t1 = 0), ω1 is not resolved. It can be shown that 

the PP spectrum is equivalent to the projection of the real part of the 2D-ES signal field onto the ω3 – 

axis. [35] As will be discussed later this finding is extremely useful. It states that PP signals are purely 

absorptive. 

2.2.4 Heterodyne detection – recovering absorptive and dispersive signal fields 

Separation of absorptive and dispersive contributions is achieved by a technique called heterodyning. 

 [37] Heterodyning is a well-established technique in various fields of electrical engineering, such as 

telecommunications, and optical detection. The common element in all applications is the mixing of a 

signal with a reference signal of known frequency, amplitude and phase, the so called local oscillator 

(LO). In the context of nonlinear spectroscopy heterodyning refers to the mixing of the signal field Esig 

with a delayed, weak replica of the excitation pulse k3, yielding an interferogram Iint. If the two 

co-propagate, i.e. they possess a common wave vector, their interferogram measured at the detector 

can be written as [38] 

             int 3 3 3 3 3 3 3 3( ) . . 2 cos( )sig LO sig LO sig LO LOI E E c c I I I I t             . (2.30) 

Herein we introduced tLO as the delay between the third pulse k3 and the LO (see  

Figure 5). If the intensity  3LOI   and phase 3 LOt  of the field ELO are known the complex field 

 3sigE   can be recovered from the measured interferogram int 3( )I  . To do so one has to isolate the 

oscillating term by picking the contributions centred around t3 = tLO in the t3 domain after Fourier 
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transformation. After shifting the signal to t3 = 0 in a process called phasing (compare section 3.5.2), 

inverse Fourier transformation and division by 
LOI  the complex signal field is retrieved. 

2.3 Vibrational signatures in electronic spectroscopy 

The study of vibrational degrees of freedom in electronic spectra of molecules was pioneered by 

FRANCK [16] and CONDON [17] and developed tremendously by, amongst others, the work of 

HERZBERG, who wrote on the topic in a series of textbooks entitled Molecular spectra and molecular 

structure [39]. 

One of the most widely applied principals in the study of vibrational signatures in electronic spectra is 

the Franck-Condon (FC) principle. We will briefly review this principle based on HERZBERG’s 

work [15,39] as we will invoke it in the interpretation of vibrational signatures in time resolved 

electronic spectra in chapter 5. We will then apply it to the displaced harmonic oscillator model which 

we will use to explain the experimental findings of section 4.4. 

2.3.1 Vibrational progressions 

When an electronic transition is coupled to a vibrational mode of the molecule one observes a so-

called vibrational progression of the electronic transition in electronic spectra. The electronic transition 

at ωeg is accompanied by different quanta Δv of change in vibrational quantum number v. Additional 

peaks at 

 0eg v       (2.31) 

show up in electronic spectra. The situation is illustrated by the term diagram shown in Figure 7. 

In absorption spectra Δv is usually positive for typical vibrational frequencies ω0 because higher lying 

vibrational levels on the electronic ground state are not populated at room temperature. This is 

indicated in Figure 7 by dotted lines. In steady state emission spectra (fluorescence emission) mainly 

progression peaks of negative Δv are observed because most excited state population is in the 

vibrational ground state due to rapid vibrational population relaxation. In ultrafast spectroscopy the 

timescales of vibrational population relaxation are well resolved and pathways including electronically 

excited states with 0v   have to be taken into account. If more than one vibrational mode is linked to 

an electronic transition each vibrational quantum number vi gives rise to a progression and Eq.(2.31) 

reads 

 0,eg i i

i

v      .  (2.32) 

In the electronic/vibronic spectra all possible permutations of Δvi contribute. 



 Theory  

18 

 

 

Figure 7. Term diagram of a vibrational progression of an electronic transition. In accordance to spectra of 

hypericin, the arrows’ colours correspond to the colour of light of frequency ω with λeg = 590 nm and ω0 = 

1300 cm
-1

. 

2.3.2 The Franck-Condon principle, Franck-Condon factors 

In the so far discussion of vibrational progression we did not include the probability of the transitions. 

The magnitude of the signals of a progression can most often be explained by the FC principle, which 

will be discussed in this section. 

To describe spectra including vibrational degrees of freedom one has to turn to a quantum mechanical 

description of the molecular system that involves electronic coordinates τe and nuclear coordinates τv. 

The system’s wavefunction can be written in a product-ansatz of the form 

 ( , ) ( , )e e v v e v       .  (2.33) 

The Franck-Condon principle rests on two assumptions: firstly, the nuclear motion is assumed much 

slower than electronic motion; therefore the electrostatic potential that the nuclei experience due to the 

electrons around them is a quasi-static average over the rapidly fluctuating electron density. The 

nuclear wavefunction Ψv is then independent from the electronic coordinates τe, ( )v v v    

(Born-Oppenheimer approximation). Secondly, the variation of the electronic wavefunction with the 

nuclear coordinates is assumed small, i.e. ( )e e e    (Condon approximation). 

To analyse the intensity of signals corresponding to a vibrational progression we calculate the 

transition dipole moment of a transition ' ''    as 

 
' ''

' ''

' ' '' '' ' ' '' ''( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )e e v v e e e e v v e e v v v v e e v vµ

 

          

     

        

  (2.34) 

Herein we rewrote the dipole operator µ (see. Eq.(2.1)) as a sum of a dipole operator µe depending 

solely on electronic coordinates τe and an operator µv depending solely on nuclear coordinates τv. This 

allows us to rewrite the second term of Eq.(2.34) as 
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 ' '' ' '' 0v v v e eµ      .  (2.35) 

The expression is zero due to the orthogonality of the eigenstates '
e  and ''

e . The transition 

dipole moment becomes 

 ' ''

' '' ' ''
e e e v v         .  (2.36) 

The first factor in Eq.(2.36) is the electronic transition dipole moment. It is a constant number for all 

transitions of a progression. The second term is the overlap integral of the vibrational wavefunctions 

of the initial and final state and is referred to as Franck-Condon factor. The FC principle therefore 

states that the relative intensities of a progression only depend on nuclear wave functions, which are 

given from nuclear potential energy surfaces. Next, we will analyse the nuclear wave functions of a 

displaced harmonic oscillator. 

2.3.3 The displaced harmonic oscillator 

The displaced harmonic oscillator model [39] comprises two harmonic potentials, one on the 

electronic ground state and one on the electronic excited state, of the form 

    
2 2

2 2

0

1
( ) 2

2
      e eq e eqV r V k r r V m r r .  (2.37) 

The curves are illustrated in Figure 8 a. Ve is a (quasi-)constant electronic potential that defines the 

frequency of the purely electronic transition. k is a force constant, m is the reduced mass of the 

oscillator. Note that we switched to the normal mode coordinates r from the general nuclear 

coordinates τv (see normal modes [40]). k and req are in general different in the electronic ground- and 

excited state. The effect of different force constants k is usually small and is neglected hereafter. If the 

differences in k are small the vibrational wavefunctions are identical in the electronic ground and 

excited state, except for a shift in the vibrational coordinate r by ' '' eq eqd r r . The FC factor in 

Eq.(2.36) can then be expressed as 

 m,n

' '' ( ) ( ) : FC      m n

v v v vr r d .  (2.38) 

The superscripts m, n in FCm,n refer to the vibrational quantum number in the “non-displaced ground 

state” and the vibrational quantum number in the “displaced excited state.” 

The eigenfunctions of the time-independent Schrödinger equation for the potential given in Eq.(2.37) 

are the Hermite orthogonal functions. [39] 

 
2Hermite ( ) exp( / 2)

( )
2 !

m m
v

m

r r
r

m 

 
    (2.39) 
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Herein, Hermite ( )m r  denotes the m
th
 - order Hermite polynomial in r. Eq.(2.39) and Eq.(2.38) fully 

explain, amongst others, the intensities of progression peaks of the displaced harmonic oscillator in 

linear, but also nonlinear spectra. They will form the basis for the discussion of vibrational coherences 

in the time resolved spectra presented in this work. To this end, two properties of the FC-factors of the 

displaced harmonic oscillator are given. 

  m,n m,nFC = c.c. FC ( ) ( ) ( ) ( )        m n n m

v v v vr r r r   (2.40) 

 1 1

m,m+1 m+1,mFC = -FC ( ) ( ) ( ) ( )m m m m

v v v vr r r r             (2.41) 

The first equality states that Eq.(2.39) is real valued and the FC factors for absorption and emission 

events are equal for a given pair of states. The second equality arises from the  1
n

- symmetry of the 

n
th
 - Hermite polynomial towards inversion. [41]  

In linear absorption and fluorescence spectra, the intensity of peaks scales with the square of the 

transition dipole moment and therefore the square of FC factors. For the peaks of a vibronic 

progression from a vibrational ground state it can be shown [24] that the intensities are given by a 

Poisson distribution in the vibrational quantum number v: 

 
v

2
0 v

0( v ) ~ ~ exp( )
v!

    v v

D
I D   (2.42) 

Herein we introduced the Huang-Rhys factor 
2

0 2D d m . The Poisson distribution Eq.(2.42) is 

plotted in Figure 8 b for two values of D. 

 

 

Figure 8. a: Harmonic potentials on electronic ground and excited state, displaced by d. 
117000 cm eg ,

1

0 1300 cm  . b: Poisson distributions Eq.(2.42) for D = 0.5 and D = 1.5. c: Stick spectrum of a progression 

of an electronic transition 
117000 cm eg  by two harmonic potentials 

v1 1

0 1300 cm  , 
v2 1

0 300 cm  , 

v1 0.5D , v2 0.3D . 
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When a linear molecular spectrum is influenced by multiple normal vibrational modes the amplitudes 

of the progression are described by a multi-dimensional Poisson distribution 

 
v

0 v ~ exp( )
v !

  
i

i
v v i

i i

D
D .  (2.43) 

vi is the vibrational quantum number and Di the Huang-Rhys factor of the i
th
 mode. The frequency of 

the corresponding peak is given by Eq.(2.32). A progression of two normal modes is illustrated in 

Figure 8 c. 
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3 Experimental 

The first three sections of this chapter describe the laser setup and optics used for the experiments. The 

preparative procedures as well as the procedures of recording steady state Raman, fluorescence and 

absorption spectra and time resolved 2D-ES, Het-TG and PP spectra will be described in section 3.4. 

Section 3.5 will cover data processing and analysis of time resolved spectroscopic data, finishing with 

a model used to extract relevant parameters from the steady state absorption spectrum. 

3.1 Pulse generation and compression 

In this section the laser system used for all nonlinear experiments is briefly outlined. Techniques 

employed to shorten the pulses’ duration, i.e. pulse compression, are described. 

Broadband ultrashort pulses were generated in a home built non collinear optical parametric amplifier 

(NOPA) [42] described in [43]. Herein, a white light signal pulse is amplified by mixing it with a 

~400 nm pump pulse in a β-Barium-Borate crystal. The amplified spectrum can be tuned as described 

in [43]. Both, the pump and the white light signal are generated from ultrashort pulses produced by a 

Coherent RegA laser system. The latter consists of a Mira Seed modelocked ultrafast laser, a RegA 

Model 9050 amplifier laser and a Verdi V-18 pump laser. The modelocked laser [44] is a Ti:sapphire 

solid state laser [45] producing ultrashort pulses of approximately 20 fs centred at 790 nm. These are 

amplified by the regenerative amplifier laser (also Ti:sapphire) [46] at a repetition rate of 60 kHz. Both 

lasers are pumped by a diode-pumped frequency doubled Nd:YVO4 laser, emitting 18 W of 532 nm 

CW - light. 

To provide pulses near the transform limit it was necessary to compensate for dispersion j jd n d of 

different order j picked up throughout the pulse generation and the optical path through the 

experiment [47] [48]. In the nonlinear experiments described below two techniques of compression 

were used: prism pair compression [49] [50] and a setup similar to the so called 4f - shaper [48]. The 

prism compressor was a standard prism pair setup, consisting of two fused silica prisms placed into the 

beam path at Brewster’s angle θB (Figure 9, a). In this setup, the incident beam passes through the 

prisms and is dispersed. A mirror is placed behind the second prism at 90° in the paper plane, but 

slightly tilted upwards. After reversing the path through the prisms the beam is picked up by a mirror 

just above the incident beam (out of paper plane in Figure 9, a). The path between the prisms is longer 

for blue light. By varying the position of the second prism as indicated in Figure 9 group velocity 

dispersion 2 2d n d  could be compensated. The 4f – setup is depicted in Figure 9, b. The incident 

beam is dispersed in the paper plane by a grating. The grating is placed in the focus of a cylindrical 

mirror of focal length f. The second, identical cylindrical mirror, placed at a distance of 2f from the 

first one, focuses the collimated beam onto a second grating which recombines the dispersed colours. 

The overall optical path length of 4f gives the setup its name. In the ideal configuration described, the 

setup does not affect the beam and functions as a retroreflector. Most commonly the system is used to 

manipulate the beam’s spectrum in the Fourier plane (the mirror symmetry plane in Figure 9, b), 
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where each colour is focused into one point [48]. In our application it was not used like that, but 

instead slightly detuned to optimize the beam’s profile and pulse width. Most importantly, the beam’s 

spatial chirp, i.e. the spectrally inhomogeneous beam profile, in the direction normal to the paper plane 

in Figure 9 was corrected by slightly rotating the gratings around their surface normal as indicated. 

 

Figure 9. Pulse compression (schematic). See text. a: Prism pair setup. B: 4f –setup. 

3.2 Pulse characterization 

Characterization of the excitation pulses was carried out at the sample position. The power of the 

pump beams (k1, k2, k3) was measured to 0.7 mW each, corresponding to pulse energies of 12 nJ. 

Their common focus in the sample cell was approximately 85 µm in diameter, resulting in a photon 

flux of 13 -25 10 cm  per pulse. The pulses spectra were centred at 585 nm with a FWHM of 

approximately 60 nm (Figure 10, right). 

 

 

Figure 10. Representative example of pulse spectra. Left: FROG trace recorded in neat water. Right: Spectrum of 

the excitation pulses (grey area) and time of maximum FROG-signal as determined from a Gaussian fit to the 

FROG traces for each frequency (chirp). 

The pulses’ temporal profile was measured in frequency resolved optical gating (FROG) 

experiments [51]. FROG traces were recorded by measuring the so called coherent artefact in water, 

i.e. the signal measured when setting t1 = 0 and scanning t2 around t2 = 0 in a TG setup (see below). 

From this method a temporal FWHM of 17 fs was measured, varying by approximately 4 fs between 
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different experiments. By fitting a Gaussian profile along t2 for every frequency to the FROG traces 

the temporal maximum was found to vary with the frequency, i.e. the excitation pulses were slightly 

positively chirped (red before blue, see Figure 10, right). Reducing this chirp and the temporal FWHM 

of the pulses via the prism pair without losing spectral bandwidth was subject to an almost daily 

optimization procedure and carried out with best effort. Figure 10 represents a compromise between 

bandwidth and chirp. 

The phase stability between pulses was measured to λ/60 in previous experiments [52] for pulses 

generated at common diffractive optical elements (k1 and k2; k3, LO+ and LO-; see Figure 11). This is 

essential for the recording of optical frequencies (ω1) in the time domain (t1) and for stable 

heterodyning of the TG signals. The stability between k2 and k3 was not measured but has to be 

considered significantly worse than λ/60 because these pulses do not run over common reflective 

optics. This results in path length fluctuations on the order of the amplitude of the mirrors’ vibrations. 

Since only slowly oscillating signals with wavelengths much bigger than the mirrors’ vibrations are 

measured during t2 the results presented below are not corrupted. 

3.3 Experimental apparatus 

All nonlinear measurements presented below were carried out using the same setup. TG and 2D-ES 

use identical optical settings while PP requires only minor adaptations described below. Note that the 

described setup is only one of many possible implementations of 2D-ES. For a review of other 

implementations see [53]. 

3.3.1 2D-ES and Het-TG 

The setup is described in [52] and its scheme is reprinted from [52] in Figure 11 with permission of 

the authors. In essence it facilitates the splitting of the incident pulse into five, the introduction of 

scanable delays between them as well as their focussing into the sample cell. For convenience we will 

denominate the three pulses facilitating the third order signals after their wave vector (k1, k2, k3). The 

beam coming from the pulse compression section is split 50:50 at a beamsplitter (BS). The transmitted 

beam, that will form k3 and the LOs, is retroreflected by two mirrors mounted at 90°. The mirrors are 

mounted on a computer controlled linear precision stage that is used to introduce the delay t2 (

1 fs 0.15 µm of stage movement). 

Both, the transmitted and the reflected beam, are guided into diffractive optical elements (DOE) 

placed in the focal point of spherical mirrors (SM). One DOE generates k1 and k2 from the non-

delayed beam. These run atop of each other in Figure 11. Similarly, the beam delayed by t2 passes 

through a second DOE that produces an intense k3 - beam and the two LOs (LO+ and LO-) with an 

intensity of approximately 1% of k3. k1, k2 and k3 pass through pairs of wedged fused silica plates 

(WP). One of the wedges forming WP2 is mounted on another precision stage moving linearly in a 

direction perpendicular to the beam. Thereby the amount of glass in the beam path of k2 is varied and 

the delay t1 is introduced. WP1 and WP3 are static and solely compensate for dispersion. All beams 
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travel parallel as they approach SM3. Before SM3 the beams are transmitted through glass plates of 

different thickness. Thereby, the delays between k3 and the LOs is introduced such that the LOs 

precede the pump pulses. A cross section of the parallel running beams is given in inset (A) of Figure 

11. SM3 focuses the beams into a common point in the sample where the signal is generated. The parts 

of the signal emitted in the phase matched direction 
1 2 3k k k    (compare section 2.1.5) copropagate 

with LO+ and interference occurs. The interferogram of the signal and LO+ is spectrally dispersed by 

a grating spectrometer and imaged onto the CCD - camera’s pixel array. A calibration links the 

horizontal pixel position of the camera to ω3. 

 

Figure 11. Optical setup for 2D-ES, TG and PP experiments. BS: Beam splitter; CP: compensation plate; SM: 

spherical mirror; WP: wedge pair; DOE: diffractive optics element. Reprinted from  [52] 

3.3.2 Pump Probe 

To adjust the described setup to a PP configuration the pump pulses k1 and k3 are blocked. k2 serves as 

the pump and LO+ as the probe which is recorded by a CCD – camera as described above, while the 

delay between k2 and LO+ is scanned via the t2 - delay line. 

3.4 Experimental procedures 

3.4.1 Sample preparation 

The sample, hypericin primary reference standard, was purchased from HWI Analytik GmbH. A 

saturated solution in ethylene glycol, spectrophotometric grade, was prepared by sonicating the 

solution at approximately 40 °C and isolating the clear dark red supernatant after centrifuging. The 

resulting stock solution was diluted for the different experiments to give the desired optical density 

(OD) of 0.55 at a path length of one centimetre in absorption and fluorescence measurements and 0.2 

at a path length of 200 µm in nonlinear measurements (OD given for λ = 596 nm). All solutions were 
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stored in the dark and degassed with Argon repeatedly to avoid photo oxidation of hypericin by singlet 

oxygen known to be formed from hypericin’s triplet state [54]. 

For all time resolved spectroscopic measurements the sample was introduced in the focus of M3 

(Figure 11) in a 200 µm flow cell from Hellma Analytics and circulated at approximately 1 mL/min. 

The flow cell was chosen over the usually employed freely flowing film in a wire-guided drop jet [55] 

to keep the sample under an inert, oxygen free atmosphere and avoid photo oxidation. Flow cells are 

avoided due to the possibility of nonlinear signals from glass and additional scatter contributions, as 

will be discussed in chapter 4. 

3.4.2 Pump Probe spectroscopy 

The PP scanning routine is described as follows: Before every scan of t2 the pump was blocked and the 

spectra of LO+ and LO- were recorded (
(0) ,probeI (0)

refI ). LO- was recorded throughout the scans as a 

reference to balance the spectra for variations of the laser power. This is possible because LO- carries 

no third order signal since it does not overlap with the pump pulse in the sample. Next the LOs were 

blocked and the scatter of the pump was measured ( ,scatI  scatI  ). Finally all beams were unblocked 

and spectra of the two LOs, with LO+ carrying the third order signal, were recorded for the desired 

values of t2 ( 2( ),probeI t
2( )refI t ). The scans were repeated numerous times to improve the signal to 

noise ratio. For the PP spectrum presented in section 4.2 (Figure 15) t2 was scanned from -100 fs to 

800 fs in steps of 9.3 fs. The scan was repeated 50 times. All spectra were sampled onto 2048 data 

points (the camera’s horizontal resolution) ranging from 379.7 THz to 624.9 THz. 

The recording of a spectrum took approximately 2.5 s per t2 - step. The integration time of the camera 

was set to approximately 100 ms to run it at ~ 80 % of saturation to minimize read out noise. The 

power of the LOs was set to the rather unusually high value of 1 % of the pump to amplify the signal 

relative to the very large contributions of scatter discussed below. 

3.4.3 2D Electronic Spectroscopy and Heterodyned Transient Grating 

As discussed above Het-TG is exactly equivalent to the 2D-ES experiment with the only difference 

being that t1 is not scanned but fixed to zero. Throughout the experiments LO- and all co-propagating 

signals were blocked behind the sample position. Before every scan the spectrum of LO+ ( 3( )LOI  ) 

was measured with all other beams blocked. Next all beams (except for LO-) were unblocked and the 

interferogram of signal and LO+ was recorded for the desired range of t2 ( int 2 3( , )I t  ). 

For the 2D-ES spectrum discussed in section 4.3 (Figure 16) only a single value of t2 = 156 fs was 

recorded. t1 was scanned ten times from -200 fs to 200 fs in steps of 1.33 fs ( int 1 2 3(t , , )I t  ). As this 

sampling does not fulfil the Nyquist criterion for optical frequencies around 500 THz (τ = 2 fs) these 

frequencies are undersampled. The process of retrieving undersampled frequencies is discussed in 

section 3.5.3. 
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For the Het-TG spectra shown below t1 was fixed to zero. t1 = 0 was found by setting t2 = 1 ps and 

scanning t1. The point of maximum signal intensity defined t1 = 0. Spectra were recorded for t2 ranging 

from -248.2 fs to 2250.2 fs in steps of 8.00(3) fs. The scan was repeated 82 times with alternating scan 

direction to avoid effects of long time drifts, such as slowly decaying laser power, which would show 

up in the spectra as a decay along t2 if one only scanned with positive t2 increments. 

The intensity of LO+ in both experiments was chosen via a variable neutral density filter to be 

approximately 60 times bigger than the signal (at t1 = 0), resulting in a modulation depth of 12 %, i.e. 

the amplitude of the oscillating term in Eq.(2.30) was 12 % of the sum of the non oscillating terms. 

3.4.4 Steady state experiments 

The resonant Raman spectrum presented below was recorded on a Witec alpha 300 RAS+ confocal 

Raman microscope. In contrast to all other measurements presented in this text the sample (Hypericin 

primary reference standard) was measured in its solid state because the Raman intensities of the 

dissolved samples were too low. The sample was prepared on a CaF2 window and excited with 1 mW 

of 532 nm radiation. 

Absorption and fluorescence spectra were recorded with a resolution of 1 nm. Fluorescence emission 

was measured with an excitation wavelength of 547 nm. Due to the very small stokes shift the 

fluorescence and absorption spectra of hypericin overlap, resulting in reabsorption of fluoresced light 

within the cuvette. This was compensated for [56] by calculating a corrected spectrum Icor(λ) from the 

recorded spectrum Irec(λ) using 

    

  
 

ln 10

1 10

OD

cor rec OD
I I




 






 


.  (3.1) 

3.5 Data Processing and Analysis 

All data processing described below was carried out in MATLAB. The described functions refer to 

MATLAB functions. 

3.5.1 Pump Probe 

From the above described spectra the pump probe signal was calculated as 

 
     2 2

2 (0) (0)
( ) 1

/

probe scat ref scat

probe ref

I t I I t I
T t

I I

  
     (3.2) 

Herein,  denotes the averaging operation over all scans. This equation represents an extension of 

Eq.(2.29) to include balanced detection and subtraction of pump scatter (compare section 3.4.2 for a 

definition of variables in Eq.(3.2)). A detailed analysis of different balancing schemes can be found 

in [57]. 
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3.5.2 Data processing of Het-TG and 2D-ES; phasing 

As discussed in section 2.2, signals measured in Het-TG and 2D-ES experiments can be real 

(absorptive) or imaginary (dispersive). The aim of the processing steps described below is to extract 

and separate these contributions from the interferograms int 1 2 3( , , )I t t  . 

The process of separating the heterodyne interferogram into real and imaginary signals is outlined for 

Het-TG in Figure 12. We will start the discussion with Het-TG, as Het-TG is always included in any 

2D-ES experiment, and afterwards discuss the adaptations necessary for 2D-ES. 

In a first step the spectrum ILO(ω3) recorded before each scan was subtracted from the interferograms 

int 2 3( , )I t  . Next all consecutive scans were averaged. For the Het-TG spectra presented below only 

54 out of the 82 recorded scans were averaged because some spectra were corrupted by too low Laser 

power or by significant scatter contributions. The averaged scans were Fourier transformed along ω3 

to int 2 3( , )I t t  using the ifft - function. In the t3 - domain the oscillating term of Eq.(2.30) was isolated 

by applying a single sided Gaussian window function centred at t3 = 0.742 ps with a FWHM of 

0.184 ps (Figure 12, centre). After Fourier transform from t3 back to ω3 using the fft – function the 

complex valued spectra I(t2,ω3) were multiplied by 3exp( )LO LOi t I  to shift the signal to t3 = 0 in the 

t3 domain and to arrive at the complex signal field. Although this sounds straight forward the last step 

is challenging because tLO has to be known to a precision of at least / 50  to correctly separate real 

and imaginary components. [29] This corresponds to 33 attoseconds for ω3 = 500 THz. tLO cannot be 

measured directly with this precision and slightly varies on a day to day basis. Therefore tLO had to be 

determined in a process called phasing via a fitting routine. [29] This step makes use of the equality of 

the real part of the TG signal and the PP signal explained in section 2.2.3. [35] During phasing the 

residuals 

  2 3 3 2 3( , ) ( ) ( , , )probe TG LOT t I C E t t        (3.3) 

of the phased real TG signal and a beforehand measured PP spectrum were minimized in a least square 

sense by varying tLO and C (compare Eq.(3.2) and Eq.(2.29)). Herein,  2 3( , , )TG LOE t t denotes the 

real part of the transient grating signal calculated using tLO. C is a constant scaling factor. Because of 

the high noise level in PP and the absence of fast dynamics along t2 a single value of tLO was 

determined for all t2 from PP and TG spectra averaged over a t2 - range from 100 - 800 fs. 

Before all steps described above 2D-ES spectra Iint(t1,t2,ω3) were Fourier transformed to Iint(ω1,t2,ω3) 

and integrated over all ω1, yielding the projected spectrum Iint(t2,ω3). The step of Fourier transforming 

the undersampled spectrum is discussed below. The projected spectra were treated equivalently to the 

above described Het-TG spectra. In doing so we assumed that the projected 2D-ES spectrum and the 

TG spectrum are equal. This assumption is true because of the so called projection slice theorem. [58] 

The projection slice theorem states that, for a given two dimensional function, the Fourier transform of 

a projection of the function onto one dimension is the same as a slice through the Fourier transform 
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along the same dimension through the origin. The Het-TG spectrum is a slice through the 2D-ES 

spectrum along the ω3 axis at t1 = 0 and therefore the projection slice theorem applies. Note that in 

principle one could find tLO by simply picking the spectrum Iint(t1=0,t2,ω3) from the 2D-ES data set. 

The projection of the Fourier transformed data however gives more reliable results. 

 

Figure 12. Phasing. Left: Interferogram of LO and signal field excluding constant contributions. Centre: 

Interferogram in t3 – domain after inverse Fourier Transform and Gaussian window function used to isolate the 

signal. Right: Pump probe (PP) and phased real Transient Grating (TG) spectrum. 

3.5.3 Further analysis of 2D-ES 

As discussed above the spectra were undersampled along t1. This is a popular method in 2D-ES 

because it reduces the large number of data points that have to be sampled and therefore allows one to 

acquire more scans and increase signal to noise ratio. The process is described in [29] for 2D - infrared 

spectroscopy. Undersampled signals appear at aliasing frequencies  

 0 Nm      (3.4) 

in the Fourier spectrum. Herein, ω0 is the original signal frequency, ωN is the Nyquist frequency 

corresponding to half the sampling frequency and m is an odd integer. The signal was extracted from 

the m = 3 aliasing frequency component centred around -250 THz using a boxcar window. The 

frequency-axis was corrected using Eq.(3.4) with m = 3.  

The second step in the analysis of 2D-ES data after phasing was the separation of rephasing and non-

rephasing signals. This was achieved by separating the dataset into int 1 2 3( 0, , )I t t   and 

int 1 2 3( 0, , )I t t   (compare Figure 2, R1 and R2). Finally, the value of tLO found in the phasing process 

was used to calculate the real and imaginary components of the rephasing and non-rephasing signals. 

3.5.4 Analysis of vibrations in Heterodyned Transient Grating 

The Transient Grating spectra were analyzed for their vibrations along t2 (compare section 4.4.1). In 

this section we will describe how the ω3 - resolved vibrational amplitudes and phases discussed below 

were extracted from the Het-TG spectra. The procedure is outlined in Figure 13. 

In a first step the spectra’s population dynamics were modeled by global analysis (GA) using a 

sequential model with two time constants. [59] GA was performed using MATLAB code developed 

by JASPER VAN THOR, LUUK VAN WILDEREN and CRAIG LINCOLN described in [60]. Via this step the 

slowly varying signal contributions could be subtracted from the data to isolate the oscillating parts of 
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the signal. In essence, GA models time resolved spectra by considering the two dimensional map to be 

a superposition of a number of spectral species, called decay associated spectra (DAS). The 

coefficients of the spectra are time dependent, forming time traces. Their temporal evolution is given 

by a user defined model. The two dimensional data set is described by a matrix product of the DAS – 

matrix and the time traces – matrix (Figure 13, b, Eq.(3.7)). For the Het-TG scan shown in Figure 17 

(results), two time constants and DAS were sufficient to describe the coherent artefact and population 

dynamics. Global analysis was performed including data from t2 = -20 to 2250 fs and ω3 = 14679 cm
-1

 

(440 THz) to 18678 cm
-1

 (560 THz). 

The residuals from the global fit were Fourier transformed along t2 for each detection frequency in the 

range t2 = 0.104 to 2.146 ps and then summed over all detection frequencies. The resulting projected 

Fourier power spectrum was plotted (Figure 18) and the frequencies of the five most intense peaks 

were used as initial guess parameters in the following step. The resolution in ω2 is 15 cm
-1

. 

To retrieve the magnitude and phase of each oscillation we employed GA on the residuals of the first 

GA. The time traces, rather than being rate equations (as in the description of population dynamics in 

the first GA), took the form of exponentially damped cosines and sinusoids. 

    cos, 2 2 2, 2( ) exp cosi i iTrace t t t      (3.5) 

    sin, 2 2 2, 2( ) exp sini i iTrace t t t      (3.6) 

Herein, τi is the damping constant and ω2,i is the frequency of the i
th
 mode. The corresponding DAS 

were calculated using the mldivide function to solve the system of linear equations 
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Herein, the coordinates along ω3 and t2 are given as superscripts ω3,i and t2,i. The parameters τi and ωi 

were fitted in a least square sense using the residuals defined by 

 
2 1 cos, 3 cos, 2 sin, 3 sin, 2

1...5

( ). ( ) ( ). ( )GA GA i i i i

i

residuals residuals DAS Trace t DAS Trace t 
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   .  (3.8) 

Subscript GA1 denotes residuals from the first GA. 

From the cos- and sin- spectra the amplitudes Ai and phases φi of the oscillations were calculated as  

 2 2

3 cos, 3 sin, 3( ) ( ) DAS ( )i i iA DAS      (3.9) 
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Phase jumps of 2π were corrected using the unwrap function. 
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Figure 13. Data processing of the phased data for the extraction of oscillatory amplitudes and phases. (a) Map of 

real TG spectra and slices along ω3 (top panel) and t2 axis (right panel) at indicated positions (dashed lines). (b) 

Result of global analysis. Top panel: decay associated spectra (DAS); right panel: corresponding time traces; (c) 

Residuals of global analysis for ω3 = 17345 cm
-1

 and global fit of five exponentially decaying oscillators; (d) 

Amplitude and phase of the 1287 cm
-1

 oscillation. 

Evaluation of the presented method of retrieving the phase and amplitude of oscillations is presented 

in Appendix B. Additionally, the results are compared with a more common analysis based on fast 

Fourier transform with eight-fold zero padding [61]. 

3.5.5 Model for fitting of hypericin’s absorption spectrum 

The absorption spectrum shown in Figure 14 (results) was fitted using a displaced harmonic oscillator 

model based on the theory presented in section 2.3. The model describes the spectrum by means of 

two electronic transitions, one of which, centred around 17000 cm
-1

, is subject to progressions of two 

vibrational harmonic modes. The second electronic transition at approx. 21000 cm
-1

 is fitted by a 

single Gaussian profile. The twelve model parameters are listed and described in Table 1. The model 

function f is given by Eq.(3.11)-(3.14). G( , )µ  denotes a Gaussian profile, L( , )µ  a Lorentzian 

profile and 
b

aP  a Poisson distribution in a, defined by the Huang-Rhys factor Db (compare Eq.(2.42)). 

  1 2

j k 1 2 1 2

0...2 0...2

f G( , ) P P (1 )G( , ) L( , )B B A A A

j k

B µ A w µ j k w µ j k     
 

              (3.11) 
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Table 1. Parameters of the displaced harmonic oscillator model used to fit hypericin’s absorption spectrum 

Parameter Description Parameter Description 

A, B scaled transition dipole moments w Shape factor. 0 ... Gauss, 1 ... Lorentz 

µA, µB Electronic transition frequency ν1, ν2 Frequency of harmonic oscillator 

σA, σB Gaussian width D1, D2 Huang – Rhys factor 

ΛA Lorentzian width   
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4 Results 

In this chapter we present and discuss steady state and ultrafast optical spectra of hypericin. Steady 

state spectra presented in section 4.1 show clear signatures of vibrational progression, as confirmed by 

the fit of the absorption spectrum by a displaced harmonic oscillator model. Pump probe and 2D-ES 

spectra presented in sections 4.2 and 4.3 suffered from strong scatter. Although the same was true for 

Het-TG, a spectrum could be recorded via this technique that even resolved relatively weak oscillatory 

signals (section 4.4). Their amplitudes and phases will be discussed in great detail in chapter 5. 

Note that, in accordance to common practice in literature of 2D-ES, ω refers to ordinary frequency in 

the figures and their discussion below, in spite of its use as a circular frequency in the equations 

presented in this text. 

4.1 Steady state spectroscopy 

The absorption spectrum and a fluorescence emission spectrum, recorded at an excitation wavelength 

λex = 547 nm, are depicted in Figure 14. The spectra are dominated by the electronic singlet transition 

from the electronic ground state to the first excited state, S0  S1, centred at 16900 cm
-1

 / 592 nm. 

This transition is assigned to the first π  π* transition with a transition dipole moment parallel to the 

C2 axis of hypericin (horizontal in Figure 14) [62]. The electronic transition is subject to two clearly 

visible vibrational progressions. The high frequency progression is comprised of several closely 

spaced modes at approx. 1240 cm
-1

, 1300 cm
-1

 and 1375 cm
-1

 while two low frequency modes at 

approx. 440 cm
-1

 and 300 cm
-1

 show up as shoulders on the high frequency progression peaks (see also 

Figure 18). The second π  π* transition’s dipole moment (S0  S2) is aligned perpendicular to the 

first one [62] and its energy corresponds to 21100 cm
-1

 / 473 nm. 

Figure 14 additionally shows the fitted model function described by Eq. (3.11). The fitted parameters 

are given in Table 2. The fit was carried out in OriginPro 2015G. The model was fitted to 350 data 

points from 12000 cm
-1

 to 22170 cm
-1

. The high energy region of the spectrum, especially the S0  S2 

– peak, is poorly described due to additional electronic transitions other than S0  S2 and their 

progressions that could not be included in the model. 
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Figure 14. Normalized absorption- and fluorescence 

emission spectra (λex = 547 nm) of hypericin (inset) in 

ethylene glycol. 

4.2  Pump Probe spectroscopy 

Pump probe spectroscopy of hypericin proved challenging. Especially scatter contributions from the 

sample itself and from the glass windows hampered the data quality significantly. During the 

experiments, portions of the sample aggregated at the windows where the beams hit the sample, 

causing additional scatter. In an attempt to solve the problem the cell was slightly moved up or down 

roughly every thirty minutes.  

Although scatter spectra were recorded before each scan and subtracted from each spectrum in 

accordance to Eq.(3.2), a complete removal of scatter contributions was not possible in this straight 

forward manner. The interference pattern of the probe and scatter from the pump could not be 

removed from the signal because it cannot be recorded separately in absence of signal (i.e. in absence 

of the pump). The pattern is clearly visible at early t2 times in the PP-map shown in Figure 15, left. In 

the t3 / t2 representation (Fourier transformed along ω3, Figure 15, right) the pattern shows up at t3 = t2. 

For t2 > 100 fs the interference pattern was digitally removed in the t3 - domain by applying a 

rectangular window function around t3 = t2. 

The PP spectra are dominated by GSB and SE signals at 16900 cm
-1

 referring to the S0  S1 transition 

and the GSB of the first vibrational progression peak at approximately 18200 cm
-1

. On the low energy 

side the expected SE peak of the vibrational progression at 1

3 15500 cm   is not observed. Besides 

the high noise level the significantly lower power of the excitation pulse at the red spectral end may 

explain this finding (compare Figure 10). 

The overall data quality of the PP spectra did not allow for a comprehensive analysis of the spectra for 

subtle spectral dynamics or vibrations along t2. We therefore limit ourselves to the analysis of Het-TG 

spectra presented below as they hold, after phasing, identical information as PP spectra. 
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Figure 15. Left: Pump probe scan of hypericin in ethylene glycol. Scatter contributions were removed for 

t2 > 0.1 ps (see text). Right: Unfiltered pump probe scan in the t3 domain. Scatter of the pump interfering with 

the probe is clearly visible at t3 = t2. 

4.3 2D-ES 

The above mentioned problems related to scatter persist for 2D-ES with the additional difficulty of 

much longer scan times and correspondingly smaller numbers of scans that could be averaged. For this 

reason and due to the lack of significant dynamics in the PP – and Het-TG – spectra (see below) t2 was 

not scanned but fixed to 156 fs. The phased total (rephasing + nonrephasing) 2D-ES map is shown in 

Figure 16. A detailed discussion of the spectrum is again precluded by the poor signal to noise ratio. 

The spectrum illustrates, however, the expansion of ω3 in an additional dimension, the excitation 

frequency ω1. Some examples of double sided Feynman diagrams contributing to the spectrum as well 

as their positions in ω1 / ω3 are given in Figure 16. Expected peaks centred at 1

3 15600 cm   are 

again missing. 
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Figure 16. Total phased 2D-ES map of hypericin at t2 = 156 fs and examples of double sided Feynman diagrams 

contributing to it. 1: Rephasing stimulated emission, 2: Rephasing ground state bleach, 3: Non rephasing 

stimulated emission. 

4.4 Het-TG 

The Het-TG spectrum shown in Figure 17 as well as Het-TG scans up to t2 = 30 ps are qualitatively 

similar to the steady state absorption and fluorescence spectra shown in Figure 14. The vibronic 

progression peaks discussed above for the steady state spectra are clearly visible on both, the high and 

low energy side of the electronic transition frequency of 16900 cm
-1

. The low energy band that could 

not be observed in PP or 2D-ES could be resolved in Het-TG, yet it is still relatively weak compared 

to the high energy band. When assuming that the model of a displaced harmonic oscillator applies and 

that no dynamic processes influence the spectra it is expected that the time resolved spectra are largely 

similar in shape to the steady state spectra. A possible cause for the deviation from this expectation is 

the low power of the excitation pulses at the red end of the spectrum (Figure 10). Global analysis of t2 

population dynamics found a time constant of ~ 70 ps, i.e. much greater than our scan ranges. Besides 

this slow population dynamics, no significant spectral dynamics were observed. 
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Figure 17. Left: phased real Het-TG map of hypericin. Top and right panels show slices through the map at 

indicated positions. Right: Absolute FFT – amplitude (FFT - power) map of the residuals of a global fit to the 

map shown on the left hand side (see text). The FFT is taken from 0.1 ps to 2.25 ps without zero padding 

(269 datapoints). White dashed lines drawn at 
1

2 316900 cm    indicate expected peak positions 

3 0eg v      corresponding to vibrational progressions of 1v    (compare Eq.(2.32)). 

4.4.1 Vibrations in Het-TG spectra 

The residuals of global analysis include, besides noise, signals that oscillate along t2 at the frequency 

of molecular vibrations, i.e. signals from vibrational coherence (VC) states. These signals are resonant 

Raman (RR) signals, and spectroscopic techniques aiming at the recording of these signals in the time 

domain are referred to as impulsive Raman spectroscopy. [61] To analyze VC signals the residuals 

were Fourier transformed along t2 (see section 3.5.4). The resulting ω2 / ω3 - map is shown in Figure 

17. The projection of this map onto the ω2 axis is shown in Figure 18 and compared to a RR spectrum 

of the pure, solid hypericin sample. For the three most dominant vibrational contributions in the TG 

spectrum, centred at 300 cm
-1

, 440 cm
-1

 and 1290 cm
-1

, we find corresponding peaks in the RR 

spectrum as well as in literature [63]. We attribute additional peaks in the RR spectrum at frequencies 

higher than 1400 cm
-1

 as well as differences in relative amplitudes of peaks to the differing aggregate 

state of the sample in the two measurements as well as the finite spectrum of the excitation pulses in 

the TG – experiment. The effect of temporally and spectrally finite excitation pulses will be addressed 

in section 5.3.2. For an assessment of this aspect a Gaussian fit to the excitation pulses’ spectrum is 

shown in Figure 18 as grey dashed line (compare also Figure 10). 
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Figure 18. Black line: Resonant Raman spectrum of pure, solid hypericin (λex = 532 nm). Green line: Projection 

over ω3 of the Fourier power spectrum shown in Figure 17, right, governed from the phased real Het-TG 

spectrum of hypericin in ethylene glycol. Grey dashed line: Gaussian fit to the excitation pulse spectrum, shifted 

to 0 cm
-1

. 

For the analysis of vibrational amplitudes and phases as a function of detection frequency we will limit 

ourselves to the three most prominent modes centred around 300 cm
-1

, 440 cm
-1

 and 1290 cm
-1

. The 

amplitude - and phase spectra of these modes are plotted for phased, real TG as well as for absolute 

TG in Figure 19. 

We first turn to the real, absorptive part of the TG signal (green lines). The low frequency modes of 

300 cm
-1

 and 440 cm
-1

 appear qualitatively similar. Their amplitudes show pronounced dips at the 

electronic resonance frequency, accompanied by a phase jump of approximately π from low to high 

detection frequency ω3. Their amplitudes peak at or close to the vibronic progression peaks. In 

contrast, the 1290 cm
-1

 mode shows distinct maxima at the electronic resonance frequency as well as 

at the vibronic progression peak positions. The amplitude is significantly smaller between the peaks. 

The phase as extracted from the experiment exhibits a pronounced slope that has to be classified as an 

experimental artefact (see section 5.3.2). For visualization purposes the phase spectra of the 1290 cm
-1

 

mode were straightened by subtracting a linear fit from the original phase spectrum (full lines in 

Figure 19, 1290 cm
-1

). A change in phase similar to that found for the low frequency modes can be 

observed around the centre frequency. 

Vibrations in absolute TG (dispersive + absorptive signals) differ from those in the absorptive signals 

in both amplitude and phase. At the electronic resonance frequency the vibrational amplitude shows 

no dip as observed in real TG and the phase undergoes no significant change. Analysis of the 

1290 cm
-1

 – mode’s phase is again hampered by the pronounced slope. 
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Figure 19. Amplitude - and phase spectra of vibrations in phased real TG and absolute TG for 
1

2 300 cm  , 

1

2 440 cm   and 
1

2 1290 cm  . Dashed vertical lines indicate the spectral positions of the absorption 

maximum (Δv = 0) along with the first vibronic side band positions (Δv = ±1). The retrieved phases of the 

1290 cm
-1

 mode (dashed lines) show a significant slope, whose origin is discussed in the text. For visualization 

purposes, straightened phase spectra (full lines, right-hand y - axis) were calculated by subtracting a fitted 

straight line from the data. 
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5 Discussion 

In this chapter we discuss the experimental results for Het-TG. All other spectra were discussed in 

chapter 4. We start with a discussion of advantages of Het-TG over PP that enabled the recording of 

vibrational spectra (Figure 19) under demanding experimental conditions. In section 5.2 the global 

analysis approach for retrieving oscillatory signals from time resolved spectra is briefly discussed as it 

is, to our knowledge, new to the field of ultrafast spectroscopy. The vibrational amplitude- and phase 

spectra presented in Figure 19 are explained qualitatively in section 5.3.1 by applying the Franck 

Condon principle to the transition dipole moments in the molecular response function of a displaced 

harmonic oscillator. To keep the response functions and their interpretation simple we invoke the limit 

of impulsive excitation (excitation by delta pulses) and neglect effects of finite lineshapes and 

dispersive signal contributions. Their effects and oscillations in dispersive signals are discussed in 

sections 5.3.2 and 5.3.3. 

5.1 Advantages and experimental aspects of Het-TG in comparison to PP 

The results presented in sections 4.2 and 4.4 illustrate the experimental difficulties associated with 

hypericin and the advantages of Het-TG over PP that enabled the recording of weak vibrational 

signals. One important advantage is that in TG (and other four wave mixing techniques) signals are 

recorded background free as they are emitted in a unique phase matched direction. Using PP for 

impulsive Raman spectroscopy requires the resolution of vibrational modulations of relatively small 

transient absorptions. Assuming transient absorptions of 10
-2

 - 10
-3

 AU and modulations on the order 

of 1 - 10 % requires detection limits of 10
-3

 - 10
-5

 AU, which makes the recording of high quality 

spectra challenging. The vibrational signals in TG can be slightly bigger than in PP because the signals 

are produced by three intense pump pulses instead of an intense pump and a weak probe as is the case 

for PP. More importantly, however, they are recorded without large undesired background, which 

reduces the requirements for a large dynamic range of the detector system. 

Significant additional experimental advantages arise when detecting TG - signals in a heterodyned 

detection scheme. [53,64] Firstly, it enables the recovery of the amplitude and phase of the electric 

signal field instead of its modulus square (see section 3.5.2). Secondly, as can be seen from Eq.(2.30), 

heterodyning linearizes the detector signal in Esig and amplifies it by a factor of LOI . To increase the 

signal to noise ratio the LO intensity is often chosen orders of magnitude (~10
3
) bigger than the signal 

itself. The LO, however, also contributes a constant term to Eq. (2.30) that has to be subtracted from 

the signal. The choice of the ideal ratio /LO sigI I  is heavily dependent on the detection system, the 

intensity of the signal and the sources of noise (constant or proportional in the absolute signal 

detected). For single point detectors, large LO - intensities can be chosen as the constant ILO - 

background can be subtracted easily by chopping one of the pump pulses and isolating the modulated 

signals in a lock-in amplifier [64]. As single point detectors require the recording of an interferogram 
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to resolve ω3, which is inherently slow, most modern systems are based on CCD - cameras with ω3-

dispersed detection in a spectrograph. [53] The limited speed of the camera, however, typically does 

not allow the rapid acquisition of modulated spectra. This was also the case for our setup. The constant 

contribution of the LO therefore had to be subtracted in post processing (see section 3.5.2), which 

limited the feasible ratio /LO sigI I . In latest systems [65] fast (tens of kHz) CCD - cameras are used in 

combination with choppers to combine the advantages of signal modulation and fast recording of 

spectra in what is referred to as shot to shot or single shot detection. 

On the downside, compared to PP, TG is more demanding with respect to the optical setup. Most 

importantly, the phase stability between the first two pulses, and additionally between the third pulse 

and the LO in heterodyne detection, has to be ensured. The precise spatial overlap of three instead of 

two pulses in the sample may be an additional source of errors. 

5.2 Data analysis, retrieval of vibrational amplitude and phase 

Utilizing global analysis in the time domain for the retrieval of vibrational amplitude and phase is, to 

our knowledge, a new approach not reported on in literature on time resolved spectroscopy. Therefore, 

a brief discussion of the topic and comparison to the more common techniques of discrete Fourier 

transformation (DFT) is provided (see Appendix B). Note that time domain fitting procedures are, 

however, known to metrology literature. [66,67] 

The main motivation for turning to an alternative to DFT is its inherent discrete sampling of 

frequencies. As discussed in section 2.1.7 using Eq.(2.27) and (2.28) the causal nature of the measured 

signals, i.e. the fact that no signal field is emitted before the interaction of the sample with the third 

excitation field, causes an abrupt jump of the imaginary part of the signals in the frequency domain at 

the resonance frequency (see Figure 3). As the phase of an oscillation is calculated as 

   arctan ( ) ( )    E E  it relies critically on the proper sampling of the rapidly changing 

 ( ) E . This problem is usually addressed by zero padding (see Appendix B). For global analysis ω 

is not discrete but a continuous fitting parameter, which circumvents this issue. We take care to note 

that the introduced technique does not overcome principle limitations of Fourier transformation, such 

as limited spectral resolution imposed by the scanned range. For resolved oscillations fulfilling the 

model assumptions it will, however, find the frequencies that describe the data in an optimal way and 

additionally yield physically relevant model parameters, such as dephasing times. 

5.3 Analysis of vibrational coherence in Het-TG 

The dependence of vibrational phase and amplitude on detection frequency (Figure 19) has been 

discussed previously in literature using the Wigner phase-space picture of VC, also called the 

wavepacket formalism. [68–72] Here we utilize third order response functions and FC overlap 

integrals for a displaced harmonic oscillator model introduced in section 2.3. This approach is 

described in [73] for the molecule Zn-phthalocyanine, whose most important difference to hypericin in 
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the context of the following discussion is that instead of a single electronic excited state two 

degenerate excited states are dipole accessible in Zn-phthalocyanine. 

We will show how FC overlap integrals enter the response functions. A systematic analysis of double 

sided Feynman diagrams corresponding to VC signals will provide an analytical explanation for 

experimental findings in Figure 19. In the derivation of this explanation we assume impulsive 

excitation, i.e. all excitation pulses are delta pulses in the time domain, and neglect lineshapes, i.e. the 

molecular response function is assumed to be zero except at the spectral positions of the vibronic 

progression. The latter simplification limits the validity of the results to absorptive signals (real TG, 

PP). We will discuss the expected effects of deviations from these assumptions in an attempt to 

explain the experimental findings made for the 1290 cm
-1

 mode. 

5.3.1 Theoretical predictions for a displaced harmonic oscillator model within the 

impulsive limit 

In order to discuss the oscillatory signals presented above within the context of nonlinear response 

theory we analyse all VC double sided Feynman diagrams for a system comprising two electronic 

levels and their first two vibrational levels (see Figure 20). Two vibrational levels are sufficient due to 

the relatively small curve displacements found in section 4.1. We define VC diagrams as diagrams in 

which 
(2)  is in a vibrational coherence during t2. VC on the excited state, 1 0e e  or its complex 

conjugate, appears in SE pathways and is sometimes referred to as vibronic coherence to distinguish it 

from vibrational coherence on the ground state, 1 0g g  or c.c., which only appears in GSB 

pathways. [6] The diagrams are given in Figure 20.  

As discussed in section 2.1.3 (Eq.(2.18) - (2.21)) the signal corresponding to a third order diagram 

scales with the product of four transition dipole moments (sometimes referred to as the transition 

dipole product). Additionally to scaling the signals, the generally complex transition dipole product 

carries a phase which, together with other parameters, gives the phase of the signal [74]. We can 

therefore use the transition dipole product to explain vibrational amplitude and phase spectra. 

In section 2.3.2 and 2.3.3 the transition dipole moments of a displaced harmonic oscillator within the 

approximations of the FC principle were analysed and expressed as the product of a purely electronic 

transition dipole moment µeg and the FC factor depending on the initial and final vibrational states 

(Eq.(2.36) and (2.39)). µeg is equal for all possible transitions in Figure 20 as only two electronic levels 

are involved. The product of the four FC factors, however, is different for the diagrams depicted in 

Figure 20. Two examples of transition dipole products are given in Eq.(5.1) and (5.2). Herein, FCm,n 

denotes the FC factor for a transition from a ground state vibrational wave function 
g

v  to an excited 

state vibrational wave function 
e

v  (see Eq.(2.38)) or vice versa (see Eq.(2.40)). 

 
4

R 2 0,0 0,1 1,0 1,1SE ( , t , ) ~ FC FC FC FCeg eg egµ        (5.1) 

 
4

R 0 2 0,1 0,0 0,1 0,0SE ( , t , ) ~ FC FC FC FCeg eg egµ         (5.2) 
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The product of the FC factors for each diagram were evaluated in Wolfram Mathematica 9.0 using 

Eq.(2.38) and Eq.(2.39). The results are given in Figure 20 beneath each diagram. 

Since the eigenfunctions of the displaced harmonic oscillator are real valued the FC factors are real 

valued. Therefore the phase associated with the transition dipole product is reduced to a positive or 

negative sign, referring to an oscillatory phase of zero (positive sign) or π (negative sign). [41] The 

sign with respect to d
2
 of the transition dipole products of the diagrams in Figure 20 are given in 

Figure 21 in a schematic 2D-ES map. The corresponding oscillatory part of the PP or Het-TG 

spectrum is calculated by summing up all oscillatory pathways along the ω1 – axis. Up to the second 

power of d and within the impulsive limit this can be done by line wise summation of the signs in 

Figure 21. Having done so, we can discuss the expected oscillatory amplitude and phase at the 

positions 3 0eg    , 3 eg   and 3 0eg    . 

 figure next page  

Figure 20.Summary of all double sided Feynman diagrams (excluding ESA) with vibrational coherence in t2 

for a two electronic level two vibrational level system (top right). Subscript R (NR) denotes rephasing (non 

rephasing) pathways. In angular brackets the position ω1 / ω3 of the corresponding signal in a 2D-ES - 

spectrum is given (Stokes shift and line shapes neglected). Beneath each diagram the product of the four 

Franck – Condon factors involved in the diagram is given. PF ... pre - factor 



 Discussion  

44 

 

 



 Discussion  

45 

 

 

Figure 21. Spectral positions of the signals referring to the diagrams depicted in Figure 20 and their signs with 

respect to d
2
. The four quadrants indicate the kind of pathway and do not refer to different spectral positions. 

Blank quadrants indicate that no VC signal is expected. See text for interpretation. 

 

For the electronic resonance frequency, 3 eg  , we find for every diagram contributing at 1 eg   

an oppositely signed diagram of the same pathway (SER, SENR, GSBR, GSBNR) at 1 0eg    . 

Therefore the signals interfere destructively up to d
2
 and the experimentally found dip in amplitude is 

readily explained. We point out that a dip in amplitude is found for each of the four pathways 

individually. The finding is therefore independent of interferences between the different pathways and 

their relative amplitudes or phases. 

At the high and low energy positions of the vibronic progression ( 3 3 0    ) the situation is 

different for SE and GSB contributions. For SE, a single rephasing and a single non-rephasing 

diagram contribute with equal sign at different positions in ω1. Therefore maxima of vibrational 

amplitude are expected at these positions, in agreement with experimental findings. The phase is 

expected to be π at 3 0eg     and zero at 3 0eg    . Although the absolute values slightly 

deviate, the difference of π between the two sides is well represented in the data. Two rephasing GSB 

signals with opposing sign are expected at 3 0eg    , resulting in cancellation in ω1-integrated 

spectra. The same is true for non-rephasing GSB signals at 3 0eg    . It is therefore expected that, 

in the impulsive excitation limit, SE contributes more strongly to oscillatory signals at the spectral 

positions of vibronic progression 3 0eg    . 

It can be shown (see Appendix C), that within the impulsive limit (t1 = 0) no ground state VC can be 

created, i.e. no GSB pathways can yield oscillatory signals in ω1 – integrated spectra. This prediction, 

however, contradicts experimental findings, where the impulsive limit is hardly ever met. [61] It is 

therefore necessary to discuss the constraints of the impulsive limit and the effects of finite pulses. 
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In conclusion, the methodology presented in this section could explain qualitatively the experimentally 

found amplitude- and phase spectra by drawing double sided Feynman diagrams and calculating the 

product of four FC factors for each diagram. This procedure is not only straight forward, but also 

applicable to a wide range of experiments in which similar vibronic coupling or coupling to phonons is 

observed in nonlinear optical spectra. Note, the analysis presented here is by no means limited to only 

two vibrational eigenstates and can be extended without adaptation. Also, the limitation to SE and 

GSB pathways is no principal limitation of this analysis. ESA pathways can be included in a straight 

forward manner by adding a third displaced potential energy surface to the system and drawing the 

relevant diagrams. The additional negative sign associated with ESA pathways has to be taken into 

account for direct comparison with SE and GSB. ESA contributions are not discussed because they are 

not observed in the spectra presented above. Generally, ESA in perylenes (hypericin is a 

phanantrhoperylene quinone) is far red shifted from the S0  S1 transition. [62,69] In a theoretical 

treatment, BUTKUS et al. found that the inclusion of ESA pathways leads to a reduction of VC-signal 

strength while retaining the overall phase relations between the pathways. [75]  

5.3.2 Non-impulsive excitation 

Up to this point we argued within the impulsive limit, i.e. convolution of the response function with 

the excitation pulses’ E-field (compare Eq.(2.16)) did not influence the measured signals. This limit 

does not hold for the high frequency vibrational mode, since the temporal FWHM of the excitation 

pulses as determined from the FROG trace (~ 15 fs) is bigger than half the period of this mode (25 fs), 

which allows for the nuclear wavefunctions to significantly evolve in t1 during excitation. In the 

literature, effects of the excitation pulses on VC on the electronic ground – and excited state are well 

documented as they can provide a tool to selectively measure ground – or excited state VC. [71,76–79] 

A clear separation of these is desired as only excited state VC can play a role in processes originating 

from an electronic excited state. 

It was demonstrated numerically [71] that the pulse duration of a transform limited pulse strongly 

effects the vibrational amplitude measured in pump probe and that an optimal pulse duration can be 

found. This is also found in Appendix C, where the effects of finite pulse durations are investigated in 

the frequency domain. In Appendix C and in the following discussion each transition 1 2  in a 

diagram is assumed to scale with the electric field amplitude  1,2E   resonant with that transition. 

Since finite pulse durations imply finite pulse spectra, the amplitudes  0vegE    differ for 

different changes in vibrational quantum number Δv. The diagrams in Figure 20 include different Δv , 

so finite spectra have to be taken into account when summing up the diagrams. 

A more frequently addressed cause of deviations from the findings made in the impulsive limit are 

chirped pulses (see Figure 10 for an assessment of the chirp in the experiments presented above). [76–

79] Especially GSB contributions, i.e. signals from VC on the electronic ground state, are strongly 

affected by chirp. It was demonstrated experimentally and numerically [76] that positive chirp (red 
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before blue) discriminates against ground state vibrational coherences in pump probe signals, while 

negative chirp (blue before red) significantly enhances them. This phenomenon was explained via the 

excited state wave packet created upon interaction with the blue spectral end of the pulse having time 

during t1 to move on the potential energy surface to a position of greater overlap with vibrationally 

excited states on the electronic ground state. Therefore, upon de-excitation resonant with the red 

spectral end of the pulse, the wavepacket is prepared on the electronic ground state in a non-

equilibrium position. This also explains the finding of WAND et.al. [78] that the chirp optimal for 

creation of ground state vibrational coherence depends on the curve displacement d. CHRISTENSSON 

et.al. [79] investigated the effect of chirped pulses on 2D-ES and found that even moderate chirp can 

produce significant artefacts, especially in systems with strongly coupled vibrational and electronic 

modes (large curve displacement d). They also found that chirped pulses can cause imaginary parts of 

the molecular response function to contribute to the real part of the third order polarization, i.e. a 

mixing of dispersive and absorptive contributions is observed (see section 5.3.3). 

In the response function formalism, negative chirp can be considered to lead to stronger signals from 

diagrams in which a low energy transition is followed some time t1 after a high energy transition and 

vice versa for positive chirp. Such selectivity would also lift the cancellation of pathways at 3 eg  . 

So far discussed effects associated with finite, real pulses become more pronounced as the vibrational 

mode’s frequency ω0 increases. This explains why good agreement with the predictions above could 

be found for the 300 cm
-1

 - and 440 cm
-1

 mode, while the 1290 cm
-1

 mode deviates significantly from 

the theoretical predictions. Additionally, as can be seen from Figure 18, the 1290 cm
-1

 mode overlaps 

with neighbouring modes and possibly additional, non-resolved modes, which likely obscures the 

behaviour of the “pure”, isolated mode. The pronounced slope in the phase of the 1290 cm
-1

 mode is 

most likely attributed to chirp. 

5.3.3 Finite line-widths, vibrational coherence in absolute and dispersive TG signals 

So far we considered the molecular response to be limited to six precise positions in the 2D-ES plot 

and thereby neglected all mechanisms leading to finite line-width. By doing so we also neglected 

dispersive signal contributions. Fitting of the absorption spectrum (Figure 14, Table 1) yielded a 

FWHM of the peaks of approximately 430 cm
-1

. Especially for the low energy vibrations significant 

overlap of peaks is therefore expected and has to be taken into account. Since the overlapping 

oscillatory signals are out of phase an increasingly pronounced dip at the central spectral position is 

expected for increasingly overlapping peaks. In fact the dip is found to be more pronounced for the 

300 cm
-1

 - than for the 440 cm
-1

 mode. 

Dispersive signals are hardly discussed in literature and no discussion of VC in dispersive signals 

could be found. As only absorptive signals allow for the direct simultaneous study of vibrational 

coherent motion and electronic population dynamics it is essential to eliminate dispersive signal 

contributions that would otherwise significantly obscure absorptive VC signals. 
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We give a brief general discussion of possible influences of dispersive oscillatory signals on 

vibrational signals as measured via unphased, absolute TG or inadequately phased Het-TG or other 

FWM techniques, such as 2D-ES. Although absorptive and dispersive signals are orthogonal (i.e. non-

interfering) in t3 (they are defined by their phase difference of π/2), their oscillations in t2 do interfere. 

It is important to notice that the vibrational amplitude in absolute TG as presented in Figure 19 is not 

simply given by the sum of amplitudes in real (absorptive) and imaginary (dispersive) TG, but by the 

sum of two complex amplitudes AC. 

 , , ,,C abs abs abs C real C imA A A A     (5.3) 

  2 2 2 cosabs real im real imA A A A A        (5.4) 

 
   

   

sin sin
arctan

cos sin

im im real real

abs

real real im im

A A

A A

 


 

 
    

  (5.5) 

Herein, subscripts abs / real / im denote vibrational amplitudes A and phases φ measured in absolute / 

real (absorptive) / imaginary (dispersive) TG or 2D-ES.   is the difference in phase between 

oscillations in real and imaginary signals. The complex summation explains why vibrational 

amplitudes in absolute TG are found to be smaller than in real TG at some positions but bigger at 

others. 
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6 Conclusion 

Femtosecond nonlinear transient grating spectra of hypericin were  shown to resolve molecular 

vibrational motion in the time domain. This method was chosen carefully, after establishing that 

pump-probe spectroscopy yields a lower signal to noise ratio and 2D electronic spectroscopy suffers 

under too long data acquisition times. The vibrations’ amplitude and phase were plotted as a function 

of detection wavelength (Figure 19). To extract these values from the time resolved spectra a new 

method was developed based on a global fitting routine. Evaluation of the method proved its reliability 

and showed that errors in alternative methods such as discrete Fourier transformation, linked to the 

discrete sampling of frequencies, can be avoided by making the frequency a continuous fitting 

parameter. 

Vibrational amplitude and phase spectra were compared to theoretical predictions derived for a 

displaced harmonic oscillator. Theoretical analysis was based on response theory of optical 

spectroscopy which was discussed in chapter 2 starting from a density matrix description of the 

molecule and arriving at double sided Feynman diagrams. To compare the diagrams contributing to 

different positions in the spectra, the four transition dipole moments scaling each diagram were 

analysed. By invoking the Franck-Condon principle, the transition dipole moments were weighted by 

their specific Franck-Condon factors. It was found that, due to opposing signs of the products of the 

four Franck-Condon factors, some diagrams cancel each other at one position in the spectrum and 

constructively overlap at others. The sign of the Franck-Condon factor also reflected the 

experimentally found phase of the vibrational signals. 

Agreement between experiment and theory was found for vibrational modes of 300 cm
-1

 and 440 cm
-1

 

in the phased absorptive transient grating spectrum. Vibrational spectra of unphased data deviate 

significantly from their phased counterparts, which is readily explained by mixing of dispersive and 

absorptive signals. Additionally, the spectra of hypericin’s 1290 cm
-1

 mode were found to contradict 

theoretical predictions. Effects from finite laser pulse spectra and the pulses’ chirp were discussed and 

shown to be more severe for higher frequency vibrations, explaining the experimental differences 

between high and low frequency modes. 

In summary, we showed that vibrational dynamics in both phase and amplitude is readily explained in 

the response function formalism, extended by transition specific Franck-Condon factors. This 

analytical treatment gives a physical and comprehensive picture of all phenomena observed in vibronic 

spectra of hypericin and is a fully equivalent alternative to the computationally more demanding 

wavepacket formalism. 
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Appendix 

Appendix A. Calculation of the first order polarization of a two level system 

In an effort to demonstrate the role of transition dipole moments in optical signals of different order 

we calculate 

  (1) (1)( ) ( )P t Tr µ t   (A.1) 

for  

 0 0eq  ,  (A.2) 

i.e. we assume no thermal population of excited states. Eq.(2.12) then reads 

 

  

 

(1)

0 0 0

0 0 0 0 0 0 0

( ) exp ( )[ , ]

( ) ( )

t

nm nm eq nm

t

nm m n n m

i
t d i t E µ

i
d J t E µ µ

     

    





  

   





  (A.3) 

Herein, we made use of Eq.(A.4) - (A.6) as well as Eq.(2.23) (compare Eq.(2.4) and Eq.(A.2)). 

  0 01 0 0 0 0[ , ( )] 0 0 0 0 0 0 0 0eq m n n mµ n µ µ m n µ m n µ m µ µ           (A.4) 

 nmn m    (A.5) 

 nmn µ m µ   (A.6) 

Herein, 
nm  is the Kronecker delta function. Eq.(A.5) states that we assume an orthonormal basis of 

eigenfunctions. 

If we now turn to a two level system constituted of the eigenkets 0  and 1 , eq  takes the form 

 
1 0

0 0
0 0

eq
 

   
 

.  (A.7) 

Eq.(A.3) can then be used to calculate the elements of (1) ( )t : 

  (1)

01 0 01 0 0 01 0( ) ( ) ( ) ( )

t
i

t d J t E µ    


      (A.8) 

 
(1)

10 0 10 0 0 10 0( ) ( ) ( ) ( )

t
i

t d J t E µ    


     (A.9) 

  (1)

00 0 00 0 0 00 0 00 0( ) ( ) ( ) ( ) ( ) 0

t
i

t d J t E µ µ     


       (A.10) 

 
(1)

11 0 11 0 0( ) ( ) ( ) 0 0

t
i

t d J t E   


      (A.11) 
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Inserting Eq.(A.8) - (A.11) into Eq.(A.1) we write 

  (1) (1) (1) (1)

00 11( ) ( ) [ ( )] [ ( )]P t Tr µ t µ t µ t       (A.12) 

 
(1) (1)

nm

nm

n m    (A.13) 

 
(1) (1) (1) (1)

00 10 01[ ] 0 0 0 0 ( )nm

nm

µ µ µ n m t µ        (A.14) 

 
(1) (1) (1) (1)

11 01 10[ ] 1 1 1 1 ( )nm

nm

µ µ µ n m t µ        (A.15) 

to arrive at 

      (1)

01 0 10 0 0 10 10 0 01 0 0 01( ) ( ) ( )

t t
i

P t µ d J t E µ µ d J t E µ     
 

 
       

 
  .  (A.16) 

Since 
2 2

01 10 10 01µ µ µ µ   we can rewrite Eq.(A.16) as 

     
2(1) (1)

10 0 0 10 0 01 0 0 0 0( ) ( ) ( ) ( , )

t t
i i

P t µ d E J t J t d E S t      
 

      .  (A.17) 

When writing out the auxiliary functions Eq.(2.23) the response function 
(1)

0( , )S t   takes the form 

       2(1)

0 10 10 0 10 0( , ) exp expS t µ i t i t         .  (A.18) 

More generally, for a molecular system with an arbitrary number of eigenstates and thermal population 

of states other than the ground state, 
(1)

0( , )S t   reads (see REZUS [23], Eq.(2.25)) 

    
2 2(1)

0 0 , 0 ,( , ) ba ba eq aa ab ba eq aa

ab ab

S t J t µ J t µ         .  (A.19) 

 

Appendix B. Evaluation of time domain GA for the retrieval of oscillatory 

phase- and amplitude spectra 

Evaluation of the GA method of retrieving oscillatory phases and amplitudes in the time domain was 

performed by creating test data and analyzing it via GA and FFT. The test data was calculated as a 

sum of five exponentially decaying oscillations 

    2 3 3 2 2 3

1...5

( , ) A( ) exp cos ( ) ( )test i i i

i

E t wgn t t t     


         , (A.20) 

sampled on the same grid used for the experimental Het-TG data presented in Figure 17. Herein, wgn 

stands for white Gaussian noise added to the data to give an overall signal to noise ratio (SNR) of 

0.36. The SNR was defined as the ratio of integrated power of the signal and the integrated power of 

the noise in the ω2 domain. From experimental data a value of SNR = 0.36 was estimated. Δt is a 

Gaussian distributed phase instability. For a comparative FFT analysis the data was eight-fold zero 
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padded to 4096 datapoints. The amplitude - and phase spectra were extracted by slicing through the 

Fourier transformed data at the desired value of ω2 and calculating the absolute value and phase of the 

complex Fourier amplitude. The found amplitude – and phase spectra of both GA and FFT were 

smoothened via a Savitzky Golay filter. The spectra were compared to the input spectra by calculating 

the Pearson correlation coefficient of the input – and output spectra. 

The GA fitting routine was found to converge to the same results for initial frequency parameters 

varying by two percent of the true frequencies ωi and a factor of two around the true decay-rates τi. 

GA also converged for noise corresponding to a SNR of 0.1 and additional phase instability Δt of 1 fs. 

The results for a dataset calculated using the parameters defined in Table A1 are presented in Figure 

A1. The Pearson correlation coefficients of the spectra and the input spectra as well as frequencies ωi 

and decay constants τi found via GA are given in Table A2. 

 

Table A1. Model parameters for the dataset analyzed in Figure A1. 

      SNR Δt FWHM / fs 

Frequency ωi / cm
-1

 290 450 1200 1280 1367 
0.36 0.2 

Decay constant τi / ps 0,577 0,433 0,245 0,433 0,721 

 

Table A2. Results of GA and FFT analysis. R
2
 for the 1200 cm

-1
 cannot be 

calculated because the input phase is a constant value. 

Mode / cm
-1

 290 450 1200 1280 1367 

R
2
(AGA(ω3)) 0.956 0.986 0.989 0.987 0.949 

R
2
(AFFT(ω3)) 0.972 0.988 0.952 0.936 0.935 

R
2
(φGA(ω3)) 0.996 0.998 - 0.995 0.994 

R
2
(φFFT(ω3)) 0.996 0.996 - 0.806 0.987 

GA fit for ωi / cm
-1

 290.0 449.9 1197.2 1281.4 1367.5 

GA fit for τi / ps 0.643 0.459 0.284 0.480 0.805 

 

Both, FFT analysis and GA could reconstruct the basic shape of the amplitude spectra and yielded 

Pearson R
2
 factors well above 0.93. In the reconstruction of the phase spectra the time domain GA 

routine outperformed the studied FFT routine. Firstly, the correlation coefficient is higher for all 

modes and the spectra appear in general less noisy. Secondly, the time domain method not only 

reconstructed the shape of the phase spectrum but yielded the correct absolute values. The FFT – 

method suffers from the steep phase jump along the frequency axis ω2 that appears at the transition 

frequency in the FFT – spectrum (see Figure 3). Since the frequency axis is discrete, the “true” 

frequency is not sampled. This results in significant errors in the phase calculated from the real part 

and the rapidly changing imaginary part of the FFT – amplitude. 
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Figure A1. Evaluation of methods for amplitude- and phase- retrieval from oscillations recorded in the time 

domain. Top: FFT power – spectrum of the input dataset projected onto the ω2 – axis. Left: Amplitude spectra of 

the indicated oscillations. Right: Phase spectra corresponding to the left hand amplitude spectra. Black lines 

correspond to input (ideal), red lines to results found via GA and blue lines to results found via FFT. Amplitude 

spectra from FFT analysis were normalized to the amplitude at 16844 cm
-1

. All other results are presented as 

calculated. 
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Appendix C. Ground state vibrational coherence and the impulsive limit 

To demonstrate that, in the impulsive limit, no ground state vibrational coherence can be observed in 

ω1 – integrated spectroscopic techniques (PP, TG) we calculate the ground state elements 

(2) (2)

0 0n ng g   of the second order density matrix (2)  after two simultaneous dipole interactions. 

These density matrix elements or there c.c. participate in all third order VC diagrams of GSB 

pathways (in the diagrams, (2)

0n  is represented by 0ng g ). Therefore the matrix elements can be 

taken as a measure for the amplitude of the corresponding signals. We follow the procedure outlined 

in section 5.3.1, but include a larger number of vibrational eigenstates. In equilibrium, ,00eq  is 

considered to be 1, all others 0. As illustrated in Figure A2 b, the second order density matrix element 

(2)

0n  can be reached via a number of trajectories (1) (2)

,00 0 0eq m ne g    . Each trajectory scales with 

two FC factors, 0, ,m n mFC FC . (2)

0n  scales with the sum over all trajectories with appropriate sign. 

 (2)

0 0, ,~n m n m

m

FC FC    (A.21) 

The sum in Eq.(A.21) was evaluated in Mathematica 9.0 for the wave functions described by Eq.(2.39) 

for m = 0...20 using analytical formulas for FCn,m reported by CHANG [80]. Independent of the 

displacement d, the sum was found to vanish for all elements (2)

0n  except for (2)

00 , proofing that no 

ground state vibrational coherences can be created impulsively. 

In an attempt to investigate the boundaries of the impulsive limit in the simplest possible way we 

modify Eq.(A.21) by assuming that every transition scales with the electric field amplitude  1,2E   

resonant with the transition 1 2 : 

    (2)

0 0 0, 0 ,( )n eg m eg n m

m

E m FC E m n FC           (A.22) 

(2)

0n  is plotted in Figure A2 for n = 0…3 as a function of temporal pulse length in units of vibrational 

period. The electric field amplitude was modeled by a Gaussian profile. Note that, for n = 0, 
(2)

001   is 

plotted. 

 

Figure A2. a: Trajectories leading to 
(2)

0n . b: 
(2)

0n as a function of pulse duration for a curve displacement d = 1. 
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