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A B S T R AC T

More than 50 years ago, during the investigation of fetal distress, it was
realized that the variation of the heart rate, i. e., Heart Rate Variabil-
ity (HRV), is a marker of the health status, since it unveils changes in
beat-to-beat variation of the heart, even before there was a remarkable
change in heart rate itself. HRV reflects the balance between the sym-
pathetic and the parasympathetic nervous system. Furthermore, several
physiological effects, which influence the normal rhythm of the heart, are
manifested by HRV. Since the heart rate itself is nonstationary and the
structure generating the signal involves nonlinear contributions, nonlin-
ear methods to quantify the variability of the heart rate gained interest
over the last years. Cardiovascular Diseases (CVD) are more common and
their occurrences are increasing since centuries. HRV analysis is a useful
noninvasive tool for early detection and the prevention of CVD.
The goal of this thesis is to implement numerous indices to quantify HRV
derived from mathematical models and compare them to each other in
different test cases. Most of them belong to the section of nonlinear meth-
ods, though some other standard measures, as statistical parameters and
one index of the time-frequency domain, are calculated. The implemented
methods are tested on their ability to differentiate between healthy and
pathological subjects. Furthermore, their sensitivity to a varying data
length is investigated. In addition, the HRV measures are tested if there
is a difference between young and elderly people. The last test case ex-
amines subjects with ventricular arrhythmias. The models are applied to
baseline data and on-therapy data, i. e., during medication, of the same
subject in order to detect effects of antiarrhythmic treatment.
The results show that all of the implemented indices are able to differ-
entiate between nonpathological and pathological subjects. Most of them
show a significant difference before and after antiarrhythmic treatment,
though no index is sensitive to age. Their robustness to varying lengths
of recordings is formidable.
The well-trodden statistical indices justified their existence with signif-
icant differences in all, except the age-dependency, test cases. However,
they are strongly correlated to each other. Apart from the age-dependency
test case, all of the fractal indices show thoroughly remarkable results, too.
Just one of them found no significant differences before and after anti-
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arrhythmic treatment. Two of them are independent for all the applied
data.
In summary, this thesis shows that fractal descriptors are an appropriate
support for analyzing the HRV, and therefore to prevent or detect cardio-
vascular diseases. Especially the Hurst exponent, well established in the
financial community, should get more attention in analyzing biomedical
signals, such as HRV.
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K U R Z FA S S U N G

Bereits vor 50 Jahren wurde beobachtet, dass Schwankungen der
Herzrate, die sogenannte Herzratenvariabilität (HRV), ein Indikator für
den Gesundheitszustand ist. Diese Beobachtung wurde bei der Unter-
suchung von Komplikationen in der Schwangerschaft gemacht, als eine
zeitliche Veränderung zwischen zwei Grundschlägen (RR-Intervall) ge-
funden wurde, bevor man eine auffällige Veränderung der Herzschlagfre-
quenz selbst wahrnehmen konnte. Das Gleichgewicht zwischen dem sym-
pathischen und parasympathischen Nervensystem wird durch die HRV
widergespiegelt. Darüber hinaus manifestieren sich noch weitere physi-
ologische Effekte in der HRV, die den normalen Herzrhythmus beein-
flussen. Der vermehrte Einsatz von nichtlinearen Methoden zur Quan-
tifizierung der HRV in den letzten Jahren ist darauf zurückzuführen,
dass die Herzschlagfrequenz selbst ein nichtstationärer Prozess ist und
komplexe, nichtlineare Einflüsse den Herzschlag regeln. Herz-Kreislauf-
Erkrankung gehören zu den häufigsten Todesursachen und die Anzahl
von Erkrankungen steigt seit Jahrzehnten an. Die HRV Analyse ist ein
wichtiges, nichtinvasives Hilfsmittel zur Früherkennung und Vorbeugung
von Herz-Kreislauf Erkrankungen.
Das Ziel dieser Arbeit ist die Implementierung von zahlreichen Indizes
zur Qunatifizierung der HRV basierend auf mathematischen Modellen.
Danach werden diese in verschiedenen Testszenarien miteinander ver-
glichen. Die meisten der implementierten Indizes kommen aus dem Bere-
ich der nichtlinearen Methoden. Es wurden jedoch auch Standardmetho-
den, wie beispielsweise statistische Parameter, sowie ein Index aus dem
Zeit-Frequenz Bereich berechnet. Die implementierten Parameter wurden
auf ihre Fähigkeit untersucht, gesunde Daten von pathologischen Daten
zu unterscheiden. Weiters wurden die Modelle auf ihre Abhängigkeit von
der Datenlänge, welche der EKG-Dauer entspricht, getestet. Ein weit-
eres Testszenario stellte die Unterscheidung von gesunden jungen und
alten Probanden dar. Der letzte Test befasste sich mit Probanden, welche
an ventrikulären Herzrhythmusstörungen leiden. Die Modelle errechnen
dabei die Parameter aus den Daten der Probanden, einerseits vor dem
Beginn einer medikamentösen Behandlung, andererseits nach der Behand-
lung. Die Modelle wurden also darauf getestet, ob sie einen Behandlungsef-
fekt widerspiegeln können.
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Die Testergebnisse zeigen, dass alle implementierten Parameter signifikant
zwischen gesunden und pathologischen Probanden unterscheiden können.
Die meisten Modelle haben auch signifikante Unterschiede bei Probanden
in der Herzrythmusstörungsbehandlung aufgezeigt. Kein einziger Param-
eter konnte nach dem Alter differenzieren. Die Robustheit der Modelle
gegenüber unterschiedlicher Datenlängen ist hingegen beeindruckend.
Die altbekannten statistischen Parameter haben mit signifikanten Ergeb-
nissen in allen Testszenarien, außer dem Alterstest, ihr Dasein gerecht-
fertigt. Diese korrelieren alle sehr stark miteinander. Abgesehen vom Al-
terstest haben die fraktalen Parameter auch durch die Bank hervorra-
gende Ergebnisse geliefert. Nur ein Index aus jener Gruppe fand keine sig-
nifikanten Unterschiede bei Probanden in Herzrythmusstörungsbehand-
lung. Zwei der fraktalen Parameter sind unabhängig voneinander.
Zusammenfassend zeigt diese Arbeit, dass fraktale Parameter eine
geeignete Unterstützung für die Analyse der HRV sind und sich somit
Herz-Kreislauf Erkrankungen früh erkennen lassen. Vor allem der Hurst
Exponent, welcher in der Finanzwelt schon sehr etabliert ist, sollte mehr
Aufmerksamkeit bei der Analyse von biomedizinischen Signalen, wie HRV,
erhalten.
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1 I N T R O D U C T I O N

The ”European Society of Cardiology” reports in the European Cardiovascular Diseases
(CVD) Statistics 2012 that cardiovascular disease causes 47% of all deaths in Europe. Fur-
thermore, CVD is the main cause of death in women in all countries of Europe and is the
main cause of death in men in all but six countries [61].
Several papers showed the significant relationship between Autonomic Nervous System (ANS)
and cardiovascular mortality [6]. Heart Rate Variability (HRV) analysis is a useful tool for
understanding the status of the ANS. Furthermore, HRV is an early predictor of cardiac fail-
ures [23]. A plurality of HRV measures in different domains, e. g., time domain, frequency
domain, and nonlinear techniques have been proposed. In order to standardize initial nor-
mative values and standard methods of measurement, the ”European Society of Cardiology”
and the ”North American Society of Pacing and Electrophysiology” formed a Task Force
and released ”Guidelines - Heart Rate Variability” [86].
The complex origin of biomedical signal limits this traditional linear approaches [82]. Hence,
nonlinear methods gained recent interest, in order to reveal more information embedded in
the Heart Rate (HR) [9]. Thus, most of the proposed indices in this thesis are nonlinear.

1.1 scope of work

In the article ”Heart Rate Variability: A Review” [6] different linear, frequency domain,
and nonlinear techniques used for the analysis of the HRV are presented and discussed. The
scope of this thesis is to implement existing indices of different domains in MATLAB®. After
implementation, the indices are compared to each other in different test cases to answer the
following research questions:

- How sensitive are the indices regarding the length of the data and what is the best
data length region for each index?

- Are there indices, which can distinguish between nonpathological and pathological
subjects?

- Are any of the indices able to differentiate between younger and elderly healthy sub-
jects?

- Do some indices show a variation before and after antiarrhythmic treatment?

- Which indices are interdependent?
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2 introduction

1.2 methodical approach

At the beginning, a literature research was carried out. Although ”Heart Rate Variability: A
Review” [6] provides a great overview of all the indices and furthermore useful citations, for
some of the implemented algorithms a more detailed description was essential. One has to
keep in mind that implementation is one thing, but (a range of) suitable input parameters
are needed too. Especially, since some of the implemented indices are not just limited to
HRV data, but can be applied to different fields (e. g., the Hurst exponent or Detrended
Fluctuation Analysis (DFA) to financial data).
The data is obtained from PhysioNet [34]. This source provides already annotated Electro-
cardiogram (ECG) recordings. Nevertheless, preprocessing of the data is needed in order to
ensure that the calculation of the indices is done only on sinus beats, i. e., normal heartbeats.
At the end statistical tests were applied to analyze the indices with respect to the research
questions.
The flow chart in figure 1 sketches the steps needed, in order to calculate an index either
in the time domain or in the frequency domain or by using nonlinear methods. Most of
the nonlinear methods can be applied directly on the NN data sequence, i. e., the sequence
of normal beats. For calculation of the Largest Lyapunov Exponent (LLE), resampling is
needed [88].
The implementation process in this thesis starts with filtering, since PhysioNet provides
annotated RR-intervals.
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R-peak
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Nonlinear
Methods

Interpolation
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Figure 1: Steps used beginning with an ECG signal in order to calculate HRV indices in different
domains (adapted from [86]). The dashed line from the NN-data sequence to the frequency
domain indicates the use of the Lomb-Scargle Periodogram, which allows the calculation
of frequency parameters directly from the unsampled NN-intervals (see section 5.2).

1.3 structure of thesis

This thesis is organized as follows:

Chapter 2: First, the physiological background of HRV is described in chapter 2. Af-
terward methods of measuring the HRV are presented. The ECG is described in detail,
since it defines the gold standard of measurements. This leads directly to the definition
of HRV, completing chapter 2.

Chapter 3: In chapter 3, the used data is specified. Furthermore, this chapter deals with
preprocessing. Hence, one filtering algorithm and a clustering method are presented.

Chapter 4: The test cases are presented in chapter 4. This chapter is completed with
the applied statistical methods.

Chapter 5: Chapter 5, i. e., methods, describes and defines the implemented indices.
The methods are sectioned into three parts: time domain methods, frequency domain
methods and nonlinear methods. After the definition of the indices and their typical
applications, chapter 5 lists the implementation steps performed for this thesis.



4 introduction

Chapter 6: The results of the implemented indices, with respect to the test cases are
presented in chapter 6.

Chapter 7: In chapter 7, the discussion of indices with respect to the research questions
and the literature can be found.

Chapter 8: Chapter 8 concludes the thesis with summarized answers to the research
questions, as well as further suggestions of the use of HRV indices.



2 B AC KG R O U N D

The goal of life is to make your
heartbeat match the beat of the
universe, to match your nature with
Nature.

Joseph Campbell

The clinical relevance of Heart Rate Variability (HRV) was first appreciated by Hon and Lee
in 1965. They noted that fetal distress was preceded by alterations in interbeat intervals
before any appreciable change occurred in the heart rate itself [43]. A substantial relationship
between the Autonomic Nervous System (ANS) and cardiovascular mortality was found [86].
The variation of the heart rate reflects many physiological factors modulating the normal
rhythm of the heart. HRV is a noninvasive Electrocardiogram (ECG) marker reflecting the
activity of the ANS on the Sinoatrial (SA) node.

2.1 physiological background

The following section is based on chapters 9-10 of [39], if not further specified.

One complete cardiac cycle consists of two stages. The active phase is called ”systole” and
is followed by a period of relaxation called ”diastole”. Each cardiac cycle represents one
heartbeat.
Figure 2, a Wiggers1 diagram, visualizes the different events occurring in the cardiac cycle
for the left side of the heart. Pressure curves are given for the aortic pressure, atrial pressure
and the ventricular pressure. The solid red curve describes changes in ventricular volume.
The lower dark blue line illustrates the ECG recording and the bottom line shows a Phono-
cardiogram.
The normal rhythmical impulse of the heart is generated in the SA node, which is located
in the right atrium. Hence, the SA node is commonly called ”pacemaker”. Via internodal
pathways this impulse is conducted to the second node, the Atrioventricular (AV) node. This
node delays the impulse, before passing it into the ventricles.
There are two parts of the ANS, the parasympathetic (vagus) and sympathetic part modi-

1 Carl J. Wiggers (May 28, 1883 – April 28, 1963)
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6 background

fying and regulating the heart rate (see figure 3). Sympathetic nervous system stimulation
increases the heart rate by the release of neuropeptide as well as norepinephrine [94].

Is
ov

ol
um

ic
 c
on

tra
ct
io
n

Eje
ct
io
n

Is
ov

ol
um

ic
 re

la
xa

tio
n

R
ap

id
 in

flo
w

D
ia
st
as

is

Atri
al
 s
ys

to
le

Aortic pressure

Atrial pressure

Ventricular pressure

Ventricular volume

Electrocardiogram

Phonocardiogram

Systole Diastole Systole

1st 2nd 3rd

P
R

T

Q
S

a c vP
re

s
s
u

re
 (

m
m

H
g

)

120

100

80

60

40

20

0

V
o

lu
m

e
 (

m
L

)

130

90

50

Aortic valve

opens

Aortic valve

closes

Mitral valve

closes

Mitral valve

opens

Figure 2: Events for the left side of the heart during the cardiac cycle [2].

In case of a young adult, the normal Heart Rate (HR) of 70 beats per minute (bpm) raises to
180-200 bpm [39]. In contrast, parasympathetic stimulation reduces the HR via the release
of acetylcholine by inhibition of the sympathetic nervous system and by direct hyperpo-
larization of sinus nodal cells [67]. The beats generated form the SA node are called sinus
beats. Occasionally beats are generated from other sources. These are termed ectopic beats.
Healthy subjects exhibit a small number of ectopic beats, though. Up to 10 ectopic beats
per hour were reported in a study of healthy men, aged 40-66 years [68].
The regulation system of the HR is one of the most complex systems in humans [91]. In [22],
Costa et al. proposed that pathologic dynamics increase the regulatory and thus lead to less
variability. As a rough guide, one can say:

“Healthy subjects have a higher HRV compared to unhealthy ones.”
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Figure 3: Sympathetic (in red) and parasympathetic nervous system (in blue) control the heart
rhythm (adapted from [1]).

2.2 hrv measurement and the ecg

There are different methods measuring the HR. These are based on two principles: The first
one is based on the pumping activity of the heart, leading to blood flow and generation of
a pulse wave. The second one, and also gold standard for HRV measurements, involves the
use of an ECG. By placing surface electrodes on the body skin either at the thorax or at the
extremities electrical potentials are recorded. If the heart muscle depolarizes it causes tiny
electrical changes and the resulting potential differences are measured. In order to measure
these differences two measuring points are needed. For a conventional 12-lead2 ECG ten
electrodes are used and the whole cardiac cycle is recorded.
Figure 4 illustrates an ECG signal with the P, Q, R, S and T waves. Several algorithms for
detection already exists [11, 12].
The P wave is caused by spreading of the depolarization through the atria and is followed
by the QRS complex. This sharp complex appears as a result of depolarization of the
ventricles. Since the ventricles have a larger muscle mass compared to the atria, the QRS
complex usually has a larger amplitude than the P wave. Finally the ventricular T wave
represents the repolarization of the ventricles.

2 A lead represents the electrical potential difference between two measuring points.
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Figure 4: Illustration of an ECG-signal. The beat-to-beat interval (i. e., RR-interval) is defined be-
tween two consecutive R-peaks.

2.3 definition of hrv

The term HRV refers to the variation of beat-to-beat intervals. Usually, HRV is studied in
an ECG by considering the time duration between two R-peaks. Therefore, the beat-to-
beat intervals are often named RR-intervals. As the x-axis represents time, the unit of
RR-intervals is given in seconds (s) or milliseconds (ms). A schematic representation of an
ECG-signal can be seen in figure 4.



3 DATA

All data used for the tests have been taken from PhysioNet [34], a free-access, online archive
of physiological signals. PhysioNet guarantees that all data have been fully deidentified
(anonymized), and may be used without further institutional review board approval.
In the following three sections the used databases are described in detail. This chapter
concludes with section 3.4, treating preprocessing.

3.1 nonpathological data

The nonpathological dataset is a composition of the three PhysioNet databases: fantasia,
nsrdb and nsr2db.

- Fantasia Database [47]:
This database consists of forty 120 minutes long recordings of healthy subjects. It is
divided in two cohorts: twenty young and twenty elderly subjects. Each cohort includes
equal numbers of men and women and the Electrocardiogram (ECG) is digitized at
250 Hz.

- Massachusetts Institute of Technology (MIT)-Boston’s Beth Israel Hospital (BIH) Nor-
mal Sinus Rhythm Database [34]:
The nsrdb includes 18 long-term ECG recordings of subjects referred to the Arrhyth-
mia Laboratory at Boston’s Beth Israel Hospital. It includes 5 men, aged 26 to 45,
and 13 women, aged 20 to 50. Data is sampled at 128 Hz.

- Normal Sinus Rhythm RR-Interval Database [34]:
Furthermore, the nsr2db, a composition of 54 approximately 24 hours long ECG record-
ings, is included. The 30 healthy men are 28.5 to 76 years old and the 24 women range
from 58-73 years. Sample frequency of the signal is 128 Hz.

A histogram of the age distribution of the entire nonpathological data is plotted in figure 5.
Table 1 shows the number of young and elderly subjects and their range for each database.

9
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Figure 5: Histogram of the age distribution of the total 112 healthy subjects. Their mean age is 53
years.

young old
no. subjects / range[years] no. subjects / range[years]

fantasia 20 / 21-34 20 / 68-85
nsrdb 18 / 20-50 - / -
nsr2db 8 / 28.5-40 46 / 58-76
total 46 / 20-50 66 / 58-85

Table 1: Age distribution of nonpathological data.

3.2 pathological data

The pathological dataset is also a collection of three PhysioNet databases: chf2db, mitdb
and svdb.

- Congestive Heart Failure RR-Interval Database [13]:
This database consists of 29 long-term (each approximately 24 hours long) recordings
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of subjects with congestive heart failure. The age of the subjects ranges from 34-79
years. Sample frequency of the signals is 128 Hz. Furthermore, the New York Heart
Association (NYHA) classes (I., II. and III.) for this database are denoted [10].

- MIT-BIH Arrhythmia Database [65]:
The mitdb is a junction of 48 half-hour recordings from 47 subjects (25 men aged 32 to
89 years and 22 women aged 23 to 89 years. It includes 25 examples of uncommon but
clinically important arrhythmias and the remaining recordings are randomly chosen.
The digitization rate is 360 Hz.

- MIT-BIH Supraventricular Arrhythmia Database [38]:
The svdb includes 78 half-hour ECG recordings of subjects with supraventricular ar-
rhythmia, sampled at 128 Hz. Further descriptions, i. e., age or gender are not available.

Table 2 lists the number of recordings and their recording lengths (number of RR-intervals)
of the pathological database, in comparison to the nonpathological database, since the non-
pathological database defines the control group. The shortest recording of both databases
consists of 1431 RR-intervals.

nonpath path
db name fantasia nsrdb nsr2db chf2db mitdb svdb

records (female) 40 (20) 18 (13) 54 (24) 29 (21) 48 (22) 78 (-2)
Nmin 4924 7983 77373 90850 1512 1431

Table 2: PhysioNet databases. Nmin is the minimal number of RR-intervals per database.

From mitdb, the last 4 recordings, i. e., 231-234, were excluded, since after clustering, less
than 1100 RR-intervals were available. This threshold defines the minimal required length in
order to run Test Case I (see section 6.1). The same reason holds for record 860 from svdb.
Table 3 clarifies and summarizes the used data of the nonpathological and the pathological
databases.

nonpath path
records (female) 112 (57) 150 (213)

Table 3: Used databases after exclusion.

1 gender only known for 10 recordings: 8 men and 2 women
2 gender not specified
3 gender is provided just for 57 recordings
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3.3 cris data

The Cardiac Arrhythmia Suppression Trial (CAST) RR Interval Sub-Study Database [85]
was initiated to test the hypothesis that suppression of ventricular arrhythmias by antiar-
rhythmic drugs after myocardial infarction improves survival [25]. Subjects of the CAST RR
Interval Sub-Study Database were randomly assigned to receive different antiarrhythmic
drugs. The database consists of 1543 24-hour RR-interval records from 809 subjects.
For 734 subjects the following criteria are fulfilled:

- had usable pre-treatment and on-therapy recordings,

- received a randomly-assigned antiarrhythmic treatment that successfully reduced their
PVC rates by at least 80% on the first attempt,

- continued on that treatment.

In order to avoid daytime-dependent variations, the window for all the data samples was
defined around 6 p.m. Three more recordings have been excluded, since there was no data
in the chosen time window. The database is divided in two parts, i. e., crisa and crisb, where
crisa contains the baseline data and crisb contains the on-therapy recordings.

crisa crisb
records (female) 731 (132) 731 (132)

Table 4: CRIS database after exclusion.

3.4 preprocessing

PhysioNet provides annotated beats as *.txt-files. In order to obtain RR-intervals, the time
differences between normal beats have to be computed. A full list of the PhysioNet annota-
tions1 is available.
If a sequence of not-normal beats interjacent two normal beats, their time difference is im-
moderate long. Hence, the first step of preprocessing is to remove all intervals longer than
2.5 seconds. In [14] deletion of beats longer than 2 seconds is reported.
One clustering method and one filtering method are presented in the following sections. The
clustering method was applied to data, in order to perform the calculations only on the sinus
beat cluster.

1 http://physionet.org/physiobank/annotations.shtml

http://physionet.org/physiobank/annotations.shtml
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3.4.1 Clustering

Clustering (or cluster analysis) is the technique for developing meaningful subgroups of ob-
jects [40]. To be more precise, to classify objects into smaller groups based on the similarities
among the entities [40].
In this thesis a density based clustering algorithm is chosen, in order to group data points
of different heart rhythms. The Density-Based Spatial Clustering of Applications with
Noise (DBSCAN)-algorithm, shows - as the name suggests - a high robustness against noise
[29]. Furthermore, DBSCAN does not require an a-priori number of clusters. The two input
parameters needed to define a cluster are the neighborhood threshold ε and the minimum
number of points (MinPts).
Ensemble Density-Based Spatial Clustering of Applications with Noise (EDBSCAN) is an
improvement of the DBSCAN algorithm, since the choice of the neighborhood ε is one of
the difficulties of the DBSCAN procedure. EDBSCAN varies the threshold parameter for the
neighborhood ε, r-times equidistantly from εmin to εmax.
The ε ranges are picked automatically by the algorithm depending on the input data. A
detailed description of the clustering is published in [93]. The remaining input parameters
are the minimum number of points in one cluster (MinPts) and the number of iterations
(r), to obtain ε. For all data filtered with the EDBSCAN r = 20 and MinPts = 4 as in [44]
are chosen.
Figure 6 shows a clustered Poincaré plot2 of a subject with arrhythmia. Since only the sinus
beat cluster is considered for indices calculations, the number of RR-intervals is reduced.

2 The definition of the Poincaré plot is provided in the appendix (A.2)



14 data

0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

RRi[s]

RR
i+
1[s
]

Figure 6: Clustered poincaré plot of a subject with arrhythmia. Noise (points in no cluster) is marked
as black crosses. The red cluster defines the sinus beat cluster, where HRV Parameters are
calculated. Other clusters are also refused.

One detriment of filtering by clusters is to get rid of data points (obviously recordings
with the same data length before filtering do not have to be equally long after filtering).
Furthermore, the clustering procedure is computationally expensive.

3.4.2 Impulse Rejection Filter

The Impulse Rejection Filter (IRF) is a median filter and was introduced by McNames et
al. [60]. Median filters replace the incorrect, or detected as incorrect, RR-interval with the
median of a specified window. IRF detects erroneous beats on its own. In order to identify
the ectopic beats, a test statistic is calculated (see equation (1)).
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Figure 7: Tachogram of a subject with CHF. The teal1 line represents the original data before filtering
and the filtered data is colored red. Ectopic beats are replaced by median values of specified
windows.

Figure 7 shows an approximately six minutes long recording of a subject with CHF and
some sharp impulses (ectopic beats). The IRF replaces these, as sharp detected peaks, by the
median value of the neighborhood (figure 7b ). To be more precise, for every beat number
a test statistic is calculated:

D(j) :=
|x(j)−XM |

1.483 ·median(|X −XM |)
with j = 1, . . . ,N , (1)

where XM defines the median value of the entire recording, i. e.,

XM := median(X) = median
({
x1, . . . ,xN

})
. (2)

The filtered signal x̃(i) is defined as:

x̃(j) =

x(j) D(j) < τ

r(j) D(j) ≥ τ .
(3)

1 Teal is a deep blue-green color; a dark cyan. Teal gets its name from the colored area around the eyes of the
common teal, a member of the duck family - Wikipedia, Sept. 2015.
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The replaced beat value r(j) depends on a user specified window length wm:

r(j) := median
({
x(j +m) : |m| ≤ wm − 1

2
})

. (4)

For computation, wm = 5 and τ = 4 are chosen (same as in [60]).



4 T E S T C A S E S A N D S TAT I S T I C S

At the beginning of this chapter, the different test cases are described. In order to test for
the significance of index differences between different test groups, we us statistical methods
that are described at the end of this chapter in section 4.5.

4.1 test i: data length sensitivity

The first test is to figure out how sensitive the implemented indices react to different record-
ing lengths. At the beginning, recordings of 1100 RR-intervals of the nonpathological dataset
are tested against pathological recordings of the same length. Then the data length is re-
duced stepwise by 50 RR-intervals from the end. The initial data length of 1100 intervals was
chosen since the shortest unfiltered signal consists of 1431 data points and after clustering
1100 points were available for each recording. Furthermore, 1100 RR-intervals is the upper
length limit for short-term recordings [15] (20 minutes recording with an average heart rate
of 60 beats per minute (bpm) results in a data length of 1200 intervals).
The starting time of each record is not specified for most of the recordings, so a sequence
of 1431 points is taken from the middle of each recording before clustering.

4.2 test i i: nonpathological vs. pathological sub-
jects

To test if the indices can differentiate between healthy and unhealthy subjects, indices of
the pathological database are tested against the calculated indices of the nonpathological
database. After running the first test, a data length of 1024 RR-intervals seems to be a
reasonable and feasible choice. A length of the power of two, i. e., 1024, was chosen in order
to ensure that each index can exploit the same data length for computation. For instance,
the implemented algorithm of the Hurst exponent H crops the input data at the maximum
feasible value of power of two (see section 5.3.5).
The first 1024 points of the clustered data from Test Case I were used.

17



18 test cases and statistics

4.3 test i i i: younger vs. older healthy subjects

For testing the indices on their age-dependency, the nonpathological database was split into
two groups. The first group contains subjects of age 53 and less, subjects in the second
group are older than 53 years. This threshold was chosen, since it is the mean age of
the nonpathological database. For a more detailed description of the two groups and a
histogram, see section 3.1. The data length of 1024 points is the same as in the second test
case. Furthermore, the same clustering and statistical tests were applied.

4.4 test iv: pre- vs. post-antiarrhythmic treatment

To test if indices can discriminate between data before and after arrhythmia suppressing med-
ication, the CRIS-database was used. Again, the data length is fixed by 1024 RR-intervals.
To obtain the designed data length, the first 2000 data points around 6 p.m. from the 24-
hour recording were filtered and afterward the sequence was cropped. For each of the 731
subjects the indices before and after treatment were tested for significant differences.

4.5 statistics

The Lilliefors1 test was used to detect if the results are normally distributed. If they follow
a normal distribution, the t-test was used to determine the differences between the data
sets. Otherwise, the Wilcoxon rank-sum test was used to obtain the p-value. In addition, a
visual inspection of the distribution was made in Q-Q plots. Figure 8 shows the Q-Q plot
for the index pNN50 of the nonpathological data set.
The Wilcoxon rank-sum test is a nonparametric test of the null hypothesis that data x and
y are samples from continuous distributions with equal medians, against the alternative
that they are not. The test assumes that the two samples are independent but there is no
assumption of normality. Furthermore, the two data samples can have different size.
In order to compare all the indices in Test Case I, for varying data lengths, only the Wilcoxon
rank sum test was used in this case.
The assumption of independency is not given for test case IV, since the compared data
samples (pre- and post-treatment) are of the same subject, and so dependent. In this case
and furthermore, if the data was not normal distributed, the Wilcoxon signed-rank test was
applied.
A test with a p-value p < 0.05 is called significant. If the p-value is smaller than 0.01,
the test outcome was declared as very significant. To test if indices correlate with each

1 Hubert W. Lilliefors (1928 – February 23, 2008)
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Figure 8: Q-Q plot for the index pNN50 of healthy subjects. The dot-dashed red line represents the
normal distribution. Especially at the edges the sample of pNN50 is not normal distributed.

other, Spearman’s2 rank correlation coefficient r was used. According to [66], Spearman’s
correlation coefficient is more robust against outliers than Pearson’s correlations coefficient
and should be used if the variables are not normally distributed. It assesses the strength
of association between two variables, by using a monotonic function. If one variable is a
perfect monotone function of the other r ∈ {−1, 1} holds. The sign of the Spearman’s rank
correlation coefficient specifies the direction of dependence between the two variables. Strong
correlation was defined as |r| > 0.85.
All tests were done with MATLAB®built-in functions.

2 Charles E. Spearman (September 10, 1863 – September, 17 1945)





5 M E T H O D S

For all the algorithms in this chapter we consider the set of RR-intervals
{
RR1, . . . ,RRN

}
of length N and denote it as:

X :=
{
x1, . . . ,xN

}
=
{
x(1), . . . ,x(N)

}
=
{
RR1, . . . ,RRN

}
. (5)

In order to obtain useful and comparable results the data has to be preprocessed, before
calculating the indices. Detailed description of used filter and clustering algorithms is pro-
vided in section 3.4.
The methods can be divided into three main sections, where most of the implemented algo-
rithms belong to the Nonlinear Methods.

5.1 time domain analysis

Due to completeness and also comparison reasons, the most important statistical methods
are briefly described. Since geometric methods are relatively insensitive to the analytical
quality of the set of RR-intervals [55], we will also consider two of them.

5.1.1 Statistical Methods

There are two classes of parameters, those obtained directly from the RR-series and those
considering the differences of the time series. In literature RR-intervals are sometimes de-
noted as NN-intervals, in order to emphasize that this is the duration between ”normal”
beats. The Standard Deviation of the NN intervals (SDNN) is defined as:

SDNN :=

√√√√ 1
N

N∑
i=1

(xi −mean (X))2. (6)

The total variance of Heart Rate Variability (HRV) and therefore the SDNN increases with the
length of the recording. Hence, same data lengths have to be considered in order to compare
SDNN measures [86]. For the following measures, we consider the differences in the RR-series.
Precisely, the Standard Deviation of the Successive Differences (SDSD) is calculated as:

SDSD :=

√√√√ 1
N − 1

N−1∑
i=1

(|xi+1 − xi| −mean (|∆X|)), (7)

21
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where ∆X is the set of successive differences of X of length N − 1, i. e.,

∆X :=
{
x2 − x1, . . . ,xN − xN−1

}
. (8)

The Number of interval differences of successive NN intervals greater than 50 ms (NN50) and
the percentage of interval differences of successive NN intervals greater than 50 ms (pNN50)
have the following definitions:

NN50 := #(|∆X| > 50 ms), (9)

pNN50 :=
NN50
N

· 100. (10)

5.1.2 Geometrical methods

In this section, two measures, i. e., the HRV index (HRVIdx) and the Triangular Interpolation
of NN interval histogram (TINN) are presented. The calculation of the index TINN follows
[86].
Figure 9 illustrates the calculation of the TINN of a healthy subject. On the x-axis the
duration of RR-intervals and on the y-axis the number of each equally long RR-interval are
plotted, respectively. D(j) is the approximated discrete density distribution function. The
function D is constructed as follows:

- ”bin” the x-values, i. e., divide entire range of RR-intervals into sequences of intervals.

- D(j) assigns the number of equally long NN-intervals at each bin.

If the sample frequency is given, its inverse should be used as the bin width. Dmax is the
count of the modal bin and is used in the formula of the HRVIdx. Precisely, the geometric
indices are defined as:

HRVIdx :=
N

Dmax
, (11)

and the index TINN is defined as the baseline width of the fitted triangular:

TINN := B −A. (12)

In order to obtain the two points A and B on the x-axis, a triangle with the upper edge
lying in Dmax is fitted to the distribution function, in a least-squares sense. The edges of
the base of the triangle are calculated by means of a piecewise continuous linear function
q(t) defined as:

q(t) :=



0, t ≤ A

q1, A ≤ t ≤ C

q2, C ≤ t ≤ B

0, t ≥ B.

(13)
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Figure 9: Calculation of the TINN of a nonpathological subject. TINN is defined as the baseline width:
B-A.

If the integral over all sections of the squared difference reaches the minimum, i. e.,∫ ∞
0

(D(t)− q(t))2 dt→ 0, (14)

the values for A and B are fixed.

It should be noted, that the number of bins strongly influences the HRVIdx, since if the
bin width is larger, the denominator is larger and thus HRVIdx smaller. The sample frequen-
cies in the composite nonpathological database are different and the same is true for the
pathological database. In order to make the results comparable, a fixed sample frequency
of 128 Hz was chosen for the calculation of both geometrical indices. According to [86], 128
Hz is also the standard scale for the geometrical measures, otherwise the size of bins should
be quoted.
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5.2 frequency domain analysis

This section covers the second category of HRV analysis, namely the frequency domain.
First, common HRV frequency domain measures, which are not implemented in this thesis,
are described. Subsequently, the Continuous Wavelet Transform with the implemented index
decay scaling exponent τ (q) is presented.

5.2.1 Common HRV Frequency Domain Measures

The simple calculated time methods can not distinguish between sympathetic and parasym-
pathetic contributions of HRV [6]. Hence, the Power Spectral Density (PSD) analysis has
been employed. PSD is the power distribution as a function of frequency. The frequency
band is sectioned into four bands, namely ultra low frequency (ULF, <0.003 Hz), very low
frequency (VLF, 0.003-0.04 Hz), low frequency (LF, 0.04-0.15 Hz) and high frequency (HF,
0.15-0.4 Hz). The last three spectral components are distinguished in short-term recordings
[86].
One commonly used technique to estimate the PSD is the Fourier transform, i. e., Fast Fourier
Transform (FFT). FFT requires an evenly sampled time series, hence, the first step is resam-
pling (see figure 1). This is generally done by interpolation (e. g., linear or cubic splines) of
the RR-series and a common samplerate is 4 Hz (see figure 10).
In addition to classical FFT based methods, used for the calculation of frequency parame-
ters in HRV, the Lomb-Scargle periodogram allows to estimate the PSD directly from the
unevenly sampled RR-series [20]. The direct path from unevenly sampled RR-series to the
calculation of frequency parameters is also sketched in figure 1.
The recommended standard frequency measures (according to ”Guidelines”, [86]) for short-
term recordings are the powers in the three main ranges: VLF, LF and HF. Their unit is
given in ms2 or the powers are normalized. The formula of the normalized power in LF is
given by:

LFnorm = LF/(Total Power-VLF) · 100. (15)

For the normalized HF power, the acronym ”LF” is just replaced by ”HF” in (15).
Moreover, the ratio LF/HF is computed as a standard measure. In figure 11, the PSD of a
healthy subject is plotted. Furthermore, the standard frequency measures of this recording
are embedded, boxed beside the legend.

5.2.2 Continuous Time Wavelet Transform Analysis

The Continuous Wavelet Transform (CWT) possesses the ability to construct a time-frequency
representation of a signal. Hence, time-frequency analysis allows to study a transformed,
two-dimensional signal in contrast to the time domain and the ordinary frequency domain
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Figure 10: Tachogram of a healthy subject. Note the different x-axis. (a) Unsampled RR-intervals.
(b) Interpolated and resampled RR-series in order to calculate frequency parameters.
Interpolation was done with cubic splines.
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methods.
A wavelet is a mathematical function used to divide a given function or continuous-time
signal f(t) into different scale components. Each scale component can then be studied with
a resolution that matches its scale. A wavelet transform is the representation of the signal
by wavelets. For the CWT arbitrary scale and dilation parameters can vary continuously. In
[80], the CWT has been used to evaluate the effect of local anesthesia on HRV parameters.
Furthermore, different scalograms, i. e., the visualization of the CWT coefficients, and their
visual pattern are described in [7].
The CWT for a function f is defined as:

W (a, b) :=
∫ ∞
−∞

f(t)ψa,b(t) dt, (16)

where the set of wavelets is defined by

ψa,b(t) :=
1√
|a|
ψ

(
t− b
a

)
, (17)

i. e., by scaling and shifting the so-called ”mother wavelet” ψ.
The scalogram is the absolute value squared of the output of the wavelet transform and
shows the scale parameter a on the y-axis over the translation parameter b. The intensity
of colors in this two-dimensional plane indicates the wavelet energy density function (see
figure 12a). In [7], Acharya et al. described that the scalogram for normal cases should be
”flowery” and regular, whereas ectopic signals are indicated as a sudden surge of radial lines
in the scalogram.
In order to automatically capture and compare the characteristics of the scalogram, the
Wavelet Transform Modulus Maxima (WTMM) method was applied in this thesis. According
to [35] this method consist of the following steps:

1. Calculation of the CWT according to equation (16).

2. Obtain the local maxima of the modulus of the CWT: The largest wavelet transform
coefficients are found at each scale a by:

∂W (a, b)
∂b

= 0. (18)

3. Generate a partition function Z(q, a):

Z(q, a) =
∑
a,b

sup
a
|W (a, b)|q . (19)

4. Calculation of the decay scaling exponent τ̃ (q) using linear regression:

logZ(q, a) ≈ τ̃ (q) log a+C(q). (20)
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5. Obtain the index τ by a linear fit of the plot τ̃ (q) over q.

The calculation was done by means of the MATLAB® Wavelet Toolbox and the WaveLab
[17] library was used as well. According to [5] the Morlet wavelet is chosen as ”mother
wavelet”. Figure 12b shows a plot of a the Morlet wavelet with support [−4, 4].
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Figure 12: Morlet mother wavelet and scalogram of CWT analysis: (a) Scalogram of CWT coefficients
with scales a=1, . . . , 122. (b) Morlet mother wavelet with support [−4, 4].

5.3 nonlinear methods

Already in the 1980s, it was indicated that beat generation in a human heart is a chaotic
process [63]. As the RR-time series is not constant over time, and irregular, it can not be
completely explained by a linear approach [53]. Thus, recently there is an increasing interest
in nonlinear methods and methods from chaos theory [46].
The following nonlinear measures can be divided in two categories, first chaos theory de-
scriptors and second fractal descriptors. Another set of nonlinear descriptors are information
descriptors, such as Approximate Entropy (ApEn) and Sample Entropy (SampEn). The ap-
plication of those parameters in HRV data has been investigated in [59].

5.3.1 Correlation Dimension Analysis

The first nonlinear measure, the Correlation Dimension (CD) assesses the fractal dimension
of the system attractor in the reconstructed phase space, i. e., measures the complexity of
the chaotic system [54].
CD has been applied to healthy and unhealthy subjects, including different diseases of the
myocardium [18]. In 1998, Fojt and Holcik observed a significant decrease of CD in patients
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with bigeminy [16].
The CD index is calculated based on an algorithm proposed by Grassberger and Procaccia
[37]. In the first step, a phase space reconstruction is created:

Yi =
{
x(i),x(i+ τ ), . . . ,x(i+ (m− 1)τ )

}
, i = 1, . . . ,N − (m− 1)τ . (21)

Hereby, m is the embedding dimension and τ is the delay time. So Y is a M ×m matrix
with M := N − (m− 1)τ as a composition of row vectors Yi.
The measure CD is obtained by considering correlations between points on this attractor.
Therefore, the correlation integral is defined as:

C(r) :=
2

M (M − 1)

M−1∑
i=1

M∑
j=i+1

Θ (r− ‖Yi − Yj‖) , (22)

where r is the radius and Θ denotes the Heaviside function:

Θ(x) :=

0, x ≤ 0

1, x > 0.
(23)

‖Yi − Yj‖ is the Euclidean distance between a pair of points within the attractor. Hence,
the correlation function counts the number of distances closer than r, over the total number
of distances. Obviously C(r) has values between 0 and 1. If M is sufficiently large and r is
small enough, the following definition holds:

CD := lim
r→0

logC(r)
log r . (24)

To obtain an optimal value for the delay time τ the Autocorrelation Function (ACF) method,
i. e., finding the place where ACF is below a certain predefined threshold close to zero, is
commonly used [8]. Another design criteria to determine the delay time is the Mutual
Information (MI) method [31]. In this work, the delay time and the embedding dimension
are chosen as τ = 1 and m = 22, according to [62]. The last step is the design of the scaling
region for the power law behavior. The approach of [62] is the following: Obtain rmax at
C(rmax)) = 0.1 and rmin = r0 + 0.25(rmax− r0), where r0 is the smallest radius. Since most
of the subjects had nearly the same scaling region, parameters for rmax and rmin conversely
are fixed as rmax = 0.15 and rmin = 0.06. In figure 13, the plot of the scaling region and
the linear fit for a healthy subject is shown.



5.3 nonlinear methods 29

−4.5 −4 −3.5 −3 −2.5 −2 −1.5
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

log
2
 r

lo
g

2
 C

(r
)

Correlation Dimension CD

 

 

rmin=0.06 rmax=0.15

Correlation Integral C(r)

Linear fit

Figure 13: CD of a nonpathological subject. The fitting region lies between the black dashed lines.

5.3.2 Largest Lyapunov exponent

Chaotic systems are sensitive to initial conditions. Small changes in the state variables at
one point evolve large differences in the behavior of the system at some future point [88].
The Lyapunov exponent assesses this dependency on initial conditions, by defining an aver-
age rate of divergence of two neighboring trajectories [6].
Wolf proposed the first algorithm that allows the estimation of nonnegative Lyapunov expo-
nents from an experimental time series in 1985 [92]. Since the shortest dataset used in this
thesis just contains 1431 samples (unfiltered) the algorithm of Rosenstein, which allows the
calculation of the Largest Lyapunov Exponent (LLE) for small data sets is chosen [79].
The first step of this approach is again the phase space reconstruction (see equation (21)).
The reconstructed phase space vectors Yi forms a M ×m matrix:

Y = (Y1,Y2, . . . ,YM )T . (25)

By a given embedding dimension m and a delay time τ , M is defined as:

M := N − (m− 1)τ . (26)

Shalizi proposed the ”magic embedding dimension”, as most of the time m = 2d + 1 is
true [81]. d denotes the dimension of the state vector. Other methods for simultaneously
determining the embedding dimension and the delay time have been proposed [52].
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After the reconstruction, the nearest neighbor of each point on the trajectory has to be
found. This is done by searching the nearest neighbor Yĵ to a particular reference point Yj :

dj(0) = min
Yĵ

(∥∥∥Yj − Yĵ∥∥∥) . (27)

The Largest Lyapunov exponent is then estimated as the mean rate of separation of the
nearest neighbors.
According to [88], the LLE was computed on a resampled RR-series (see section 5.2 for
resampling). The delay time was set to approximately one beat after resampling (τ = 4).

5.3.3 Detrended Fluctuation Analysis

The Detrended Fluctuation Analysis is used to quantify the fractal scaling properties of short
RR-interval series [45]. It is a modification of the root-mean-square analysis of random walks
applied to nonstationary signals [4]. This method has a broad field of applications, such as
Deoxyribonucleic Acid (DNA) sequences [70], economics [90] and characterization of HRV,
e. g., classification of Congestive Heart Failure (CHF) patients [82].
The Detrended Fluctuation Analysis (DFA) algorithm consists of the following steps [71]:

1. Integrate the signal y(k) =
∑k
i=1 x(i)−mean (X).

2. Divide the profile Y =
{
y1, . . . , yN

}
into Nt := bN/tc nonoverlapping segments of

equal length t.

3. Calculate the local trend for each segment by a least-squares method with a polynomial
pj :

Ft(j) :=
1
t

t∑
i=1

[y((j − 1)t+ i)− pj(i)]2 . (28)

4. Average over all segments:

F (t) :=

 1
Nt

Nt∑
j=1

Ft(j)

1/2

. (29)

By repeating steps 2 to 4 for increasing time scales, the fluctuation function F (t) typically
also increases, following a power law:

F (t) ∼ tα. (30)

Even if F is denoted as F (t), it is not a continuous function, as t represents the heart beat
number and not the time.
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DFA can be performed for different polynomial orders. An illustration of a first-order DFA
(DFA1) of a healthy subject is shown in figure 14.
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Figure 14: DFA1 of a nonpathological subject. Segment length: t = 100. In each segment a polynomial
is fitted - in a least-squares sense - to the (black dashed) profile.

The plot of the fluctuation function F (t) over t on a double logarithmic scale is shown
in figure 15. The discrepancy of the fluctuation function to the linear fit at the beginning
indicates to define two scaling exponents, i. e., α1 and α2. The range of the short-term
scaling exponent α1 was set to 4 ≤ t ≤ 11 beats, hence, the long-term scaling exponent α2
has a range of 11 < t < bN/4c beats [72].
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Figure 15: Scaling methods of Detrended Fluctuation Analysis: (a) one scaling exponent α, (b) short-
term scaling exponent α1 and long-term scaling exponent α2, respectively.

5.3.4 Fractal Dimension

The terms ”Fractal” and ”Fractal Dimension” were first introduced by Mandelbrot in 1967
in the paper: ”How long is the coast of Britain? Statistical Self-Similarity and Fractional
Dimension” [57]. Mandelbrot noted that the total length of the coastline changes, with
different measuring sticks used. In detail, the length of the coastline increases as the used
measuring stick is scaled smaller.
The term fractal is used for objects exhibiting a repeating pattern that displays at every
scale. If the subunits exactly resemble the larger scale structure, this property is known as
self-similarity [33]. Famous examples of fractals are the Koch1 curve (also known as Koch
snowflake), or the Sierpińksi2 Triangle.
For ordinary geometric objects, the Fractal Dimension (FD) equals the well known Euclidean
or topological dimension, i. e., lines are one-dimensional, surfaces have two dimensions and
solids are three-dimensional. But the fractal dimension has not to be an integer, usually it
is greater than its topological dimension [30].
To understand the need of the FD, the Koch curve is considered. Its topological dimension
is one, but the length of the curve between two arbitrary points is infinite. One can assume
that the curve can be explained as a fractal line, but it is to simple to be two-dimensional
[41]. The FD of the Koch curve is defined as FD := log(4)

log(3) ≈ 1.26, which lies indeed between
one and two. The first two iterations of the Koch curve are plotted in figure 16.

1 Niels Fabian Helge von Koch (January 25, 1870 – March 11, 1924)
2 Wac law Franciszek Sierpiński (March 14, 1882 – October 21, 1969)
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Figure 16: The first two iterations of the Koch curve. In each iteration the lines are divided into
three equal parts. The middle part is duplicated and then arranged like a triangle.

5.3.4.1 Higuchi’s algorithm

Before introducing Higuchi’s method for calculating the Fractal Dimension, several meanings
of the term Fractal Dimension have to be clarified. Especially Higuchi’s FD should not be
confused with the Correlation Dimension, which describes the FD of an attractor in the
phase space.
Beginning at this point, the abbreviation FD refers to Higuchi’s Fractal Dimension.
FD is calculated directly from the analyzed signal. This marker assesses the self-similarity
in signals [82]. Thus, the FD has been applied to different biomedical signals, such as
Electroencephalography (EEG) and Electrocardiogram (ECG) recordings [27].
The following algorithm was proposed by Higuchi in 1988 [42].

1. For a fixed k ∈
{

1, . . . , kmax
}

, k new time series are constructed:

xkm =
{
x(m),x(m+ k),x(m+ 2k), . . . ,x(m+ back)

}
m = 1, . . . , k (31)

where bac :=
⌊
N−m
k

⌋
.

2. Compute the length of each time series:

Lm(k) =
bac∑
i=1
|x(m+ ik)− x(m+ (i− 1)k)| . (32)

3. Normalize the lengths for each k:

L̃m(k) = Lm(k)
N − 1
back

. (33)

4. Calculate the average length:

L(k) := meanm
(
L̃m(k)

)
. (34)

Theses steps are repeated for k = 1, . . . , kmax.

The FD is defined as the slope of the linear fit (in a least squares sense) of the plot
1/ log(L(k)) versus log(k). (see figure 17)
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The implemented method is an adaption of Higuchi’s algorithm with a moving time window
of fixed window length. Hence, this method is sometimes specified as ”running FD” [50].
According to [74], the parameter kmax was set to kmax = 10 and the RR-intervals are di-
vided into windows with a length of 100 samples, shifted by one sample. The FD of one
entire record was obtained by averaging over all FDs of all windows.
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Figure 17: FD calculated on a window of 100 samples of a nonpathological subject. kmax = 10

5.3.4.2 Katz’s algorithm

Katz’s method gained recent interest in analyzing biomedical signals. According to Google
Scholar it has been cited by at least 400 papers. Researchers published the better perfor-
mance of Katz’s algorithm over Higuchi’s approach, applying them on EEG data [28].
Katz described the fractal dimension of a waveform, i. e., ordered collections of (x, y) point
pairs, where the x-values increase monotonically. The implemented algorithm for the Katz’s
method is based on [49]. In this paper the fractal dimension DKatz is defined as:

DKatz :=
logL
log d , (35)

where L is the total length of the curve and d is the diameter (the planar extend) of the
curve. For ordered pairs of points (xi, yi)Ni=1 the distance is calculated as:

di,j := ‖(xj , yj)− (xi, yi)‖ . (36)
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Hence, the diameter is the maximum distance and the total length is the cumulative sum
of successive distances, i. e.,

d = max (di,j) and L =
N−1∑
i=1

di,i+1. (37)

To overcome the problem of different measurement units, Katz introduced a general unit or
yardstick. More precisely this yardstick a is defined as average distance between successive
points. With this yardstick a = L/N , it follows:

DKatz :=
log(L/a)
log(d/a)

=
log(N)

log(N) + log(d/L)
. (38)

For mono-dimensional sequences, such as HRV time series, Katz generated a bi-dimensional
curve, in order to calculate the fractal dimension, i. e., (ti,RRi)Ni=1. The time-axis can be
interpreted as beat number, or continuous time, when the heart beat occurs. Therefore,
equation (36) sums together different units and the use of the general unit is obsolete.
According to [19], the algorithm is simplified and even faster. Instead of generating a bi-
dimensional curve, the calculations of length and diameter are direct computed using the
one-dimensional sequence. The total length L is computed thus, by using:

L :=
N−1∑
i=1
|x(i+ 1)− x(i)| (39)

and the maximum extend, i. e., the range of X is defined as:

d := max(X)−min(X). (40)

The definition of the modified Katz’s dimension results in the same form, as Katz proposed:

D :=
log(L)
log(d) . (41)

5.3.5 Hurst Exponent

The Hurst exponent, denoted by H, is a measure for long-term memory and fractality of a
time series [6]. In the last decade it became popular in the finance community [21, 75], but
the Hurst exponent is also applied to EEG data [24] and HRV sequences [58, 51].
For self-similar models such as fractional Gaussion noise and fractional Brownian motion,
the Hurst exponent H is related to the FD and the following equation holds:

H = E + 1− FD, where (42)
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E denotes the Euclidean dimension, hence, for the one-dimensional RR-interval series the
equation becomes:

H = 2− FD. (43)

Values for the Hurst exponent ranges from 0 to 1. Furthermore, the specific value of H = 0.5,
indicates a random walk behavior. For H > 0.5 the time series is characterized by long-time
correlations on all time scales [58], i. e., a trend reinforcing series. If H < 0.5, it indicates
a long term switching in adjacent values. I. e., after a high value in the series there will
probably be a low value, and so on. As a result the series indicates no trend or tendency, in
contrast there is a return to the average value [24].
In this section, the method to calculate the Hurst exponent by rescaled range analysis is
described. The algorithm is the following [75]:

1. For j = 1, . . . ,N calculate the mean adjusted series:

yj = xj −mean (X) .

2. Calculate cumulative deviate series: Zt =
∑t
j=1 yj .

3. Calculate range series: Rt = max(Z1, . . . ,Zt)−min(Z1, . . . ,Zt).

4. Calculate standard deviation series: St =
√

1
t

∑t
j=1 y

2
j .

5. Rescaled range series is the fraction: (R/S)t := Rt
St

.

The implemented algorithm starts with one initial data block of

t0 = 2blog2(N)c (44)

data points. E. g., for a length of N=1024 RR-intervals, the initial data block consits of
t0 = 210 = 1024 points. This length is chosen for many reasons. First, it is easy to cut each
segment in every step into halves. Second, for Test case I, the initial data length is 1100
points, which is close to 210. Finally, if HRV data is also applied to the frequency domain,
data lengths of the power of two allow directly FFT computation.
After calculating steps 1.-5., the data sequence is divided in half. Steps 2.-5. are calculated
for each partition. The rescaled range (R/S)1 is the mean value of both rescale range values.
This process continued up to a minimal segment length of 23 = 8 data points. Figure 18
illustrates the first two iterations.
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Figure 18: The initial and first two steps of the implemented rescaled range analysis. In each step
every partition is divided into two halves. The rescaled range value is the average value
of all the partitions in one step.

Hurst found that following the power law holds:

(R/S)t ∼ tH. (45)

The Hurst exponent H can be obtained by fitting a straight line in the double logarithmic
plot of (R/S) over t.

5.4 implementation

All calculations were done with MATLAB®version R2013b. The Wavelet toolbox [64] and
WaveLab [17], a collection of MATLAB®functions related to wavelet analysis, were employed
in order to calculate the scaling exponent τ with the WTMM method.
The calculation of the Largest Lyapunov Exponent is a modification of the MATLAB®function
lyarosenstein.m, available on MathWorks®file exchange server3. The pretty illustrations of
the correlations were done with the schemaball.m function, also available on MathWorks®file
exchange4.

After importing data from PhysioNet and filtering data with the Ensemble Density-Based
Spatial Clustering of Applications with Noise (EDBSCAN) algorithm, several routines are
executed, in order to obtain results for the test cases. Figure 19 gives an illustration of the

3 http://www.mathworks.com/matlabcentral/fileexchange/
38424-largest-lyapunov-exponent-with-rosenstein-s-algorithm/content/lyarosenstein.m

4 http://www.mathworks.com/matlabcentral/fileexchange/42279-schemaball

http://www.mathworks.com/matlabcentral/fileexchange/38424-largest-lyapunov-exponent-with-rosenstein-s-algorithm/content/lyarosenstein.m
http://www.mathworks.com/matlabcentral/fileexchange/38424-largest-lyapunov-exponent-with-rosenstein-s-algorithm/content/lyarosenstein.m
http://www.mathworks.com/matlabcentral/fileexchange/42279-schemaball
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three main steps: Importing data and filtering, test case routines and statistics routines.
The test case routines are described in detail:

- test length(n0, step):
The function test length.m has two input parameters. n0 specifies the initial data
length and step defines the decrement. In this thesis there are two restrictions. First,
n0 ≤ 1100 must be true, since this is the minimum data length after clustering. The
second restriction is that the shortest data length has to include more than 100 data
points, i. e.,

n0 − k · step ≥ 100, k ∈N

is true. E. g., test length(600, 200), calculates the indices for data lengths: 600, 400, 200.

- test nonPath(N):
The test function for test case II has one input argument, i. e., the desired data length
N . If the first test case was executed before and indices for the desired data length
have already been computed, this function is obsolete. The termination condition is:

IF mod(n0 -N,step) == 0 THEN
exit;

ELSE
run test_nonPath (N)

END �
- test crisAB(N):

This function has one input argument, the desired data length N . test crisAB.m
computes the indices for the pre- and post-anti arrhythmic treatment databases, re-
spectively.

There is no routine for test case III, i. e., age-dependency test, since the calculation is
included in test nonPath(N).

5.5 summary

Before presenting the results table 5 summarizes the implemented indices and their abbre-
viation used in this thesis.
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Figure 19: Schematic representation of the implementation steps. The dotted lines from the routine test length indicate that
test nonPath has not always to be calculated, in order to reach the section of statistics for test case II-III.
name ∈ {nonpath, path, crisa, crisb}. nonPath := {nonpath, path}, crisAB := {crisa, crisb}.

importdb(name) ⇒ name.mat

test crisAB(N ) ⇒ crisAB ind.mat stat crisAB() ⇒ crisAB stat.mat

test nonPath(N ) ⇒ nonPath ind.mat

stat age() ⇒ nonpath ind.mat

stat nonPath() ⇒ nonPath stat.mat

test length(n0,step) ⇒ nonPath len ind.mat stat length() ⇒ nonPath len stat.mat

Import and filtering data Test Cases Statistics
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Table 5: Overview of implemented indices and their abbreviation with the unit.

Abbreviation (Unit) Description

Statistical Indices
SDNN (s) Standard Deviation of the NN intervals
SDSD (s) Standard Deviation of the Successive Differences
NN50 (#) Number of interval differences of successive NN intervals greater than 50 ms
pNN50 (%) percentage of interval differences of successive NN intervals greater than 50 ms
Geometrical Indices
HRVIdx Fraction of N over maximum of density distribution function
TINN (s) Triangular Interpolation of NN interval histogram
Time-Frequency Index
τ Slope of the scaling exponent of Continuous Wavelet Transform Analysis
Chaos Descriptors
CD Correlation Dimension
LLE Largest Lyapunov Exponent
Fractal Descriptors
α1 Short-time scaling exponent Detrended Fluctuation Analysis
α2 Long-time scaling exponent Detrended Fluctuation Analysis
FD Higuchi’s Fractal Dimension
D Katz’s Fractal Dimension
H Hurst exponent
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The results are presented for each test case. For Test Case I, the p-values for the different
data lengths and all the indices are diagrammed. For the other test cases the p-value is
tabulated for each index. Furthermore, the median and 95% central range or, for normally
distributed indices, the mean and standard deviation are tabulated.

6.1 test case i: data length sensitivity

Two of the plotted indices for the length test must be specified in detail. The Hurst exponent
H, reduces the data length stepwise in steps of the power of two. Hence, the values of H will
not change between 1000 and 550 points. Higuchi’s FD is realized with a shifting window
of 100 samples, shifted by one beat. As a result the value at N=100 is exactly the value of
one window. At N=200, the value of FD is averaged over ten windows, each consisting of
100 samples.

As shown in figure 20, all of the 14 implemented indices exhibit significant differences for
most of the data lengths. The Continuous Wavelet Transform (CWT) index τ is not signif-
icant for signals shorter than 400 points except for signals of length 100. Furthermore, all
the indices differentiate significantly for data lengths of 1100 points to a lower bound of 400
points.

Figure 21 shows the highly significant differentiation behavior (p < 0.01) for all indices,
which are significant for all data lengths, i. e., all except the CWT index τ are plotted in this
figure.
Between 450 and 200 points, Katz’s Dimension D is significant, otherwise very significant
too. The geometrical index HRVIdx and the long term scaling exponent α2 have one outlier
above the highly significance level. All the other indices show a very significant differen-
tiation behavior, hardly with respect to length of the signal. The only index with minor
fluctuations is the statistical index SDNN, but it is still very significant for all data lengths.

41
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Figure 20: Indices with at least one p-value below the significance threshold of 0.05, marked with
the dashed line.
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Figure 21: Indices with significant, and for some Number of points, very significant p-value. The
dashed line marks the significance threshold of 0.05 and the dotted line represents the
very significance threshold of 0.05, respectively.

Table 6 lists the maximum p-values for each index, when partitioning the data lengths in
three sections. The section in the middle is found to be the optimal region, since all indices
were very significant for data lengths in that range, i. e., from 1000-500 points.
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Test Case I
Upper lengths Optimal region Lower lengths

[1100-1050] [1000-500] [450-100]
max. p-Value max. p-Value max. p-Value

Statistical Indices
SDNN (s) < 0.01∗∗ < 0.01∗∗ < 0.01∗∗

SDSD (s) < 0.01∗∗ < 0.01∗∗ < 0.01∗∗

NN50 (#) < 0.01∗∗ < 0.01∗∗ < 0.01∗∗

pNN50 (%) < 0.01∗∗ < 0.01∗∗ < 0.01∗∗

Geometrical Indices
TINN (s) < 0.01∗∗ < 0.01∗∗ < 0.01∗∗

HRVIdx < 0.01∗∗ < 0.01∗∗ < 0.05∗

Time-Frequency Indices
τ < 0.01∗∗ < 0.01∗∗ 0.923
Chaos Descriptors
CD < 0.01∗∗ < 0.01∗∗ < 0.01∗∗

LLE < 0.01∗∗ < 0.01∗∗ < 0.01∗∗

Fractal Descriptors
α1 < 0.01∗∗ < 0.01∗∗ < 0.01∗∗

α2 < 0.05∗ < 0.01∗∗ < 0.01∗∗

FD < 0.01∗∗ < 0.01∗∗ < 0.01∗∗

D < 0.01∗∗ < 0.01∗∗ < 0.05∗

H < 0.01∗∗ < 0.01∗∗ < 0.01∗∗

Table 6: p-values and optimal region for test case I. All significant results (p < 0.05) are marked
with ∗. Very significant results (p < 0.01) are marked with ∗∗. If an index is very significant
for all data length it is bold too.

6.2 overview of test cases i i-iv

In table 7, the p-values for test cases II-IV are listed. If the data was normally distributed,
the p-value was calculated with the t-test. For not normally distributed data, either the
Wilcoxon rank-sum test was used for test case II-III, or the Wilcoxon signed rank test was
applied for test case IV.
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Test Case II: Test Case III: Test Case IV:
Nonpath./Path. Young/Old Pre./Post.

Index p-Value p-Value p-Value

Statistical Indices
SDNN < 0.01∗∗ 0.852 < 0.01∗∗

SDSD < 0.01∗∗ 0.593 < 0.01∗∗

NN50 < 0.01∗∗ 0.946 < 0.01∗∗

pNN50 < 0.01∗∗ 0.946 < 0.01∗∗

Geometrical Indices
TINN < 0.01∗∗ 0.623 0.075
HRVIdx < 0.01∗∗ 0.665 < 0.01∗∗

Time-Frequency Indices
τ < 0.01∗∗ 0.890 < 0.01∗∗

Chaos Descriptors
CD < 0.01∗∗ 0.082 0.739
LLE < 0.01∗∗ 0.755 < 0.01∗∗

Fractal Descriptors
α1 < 0.01∗∗ 0.544 < 0.01∗∗

α2 < 0.01∗∗ 0.456 < 0.01∗∗

FD < 0.01∗∗ 0.707 < 0.01∗∗

D < 0.01∗∗ 0.716 0.907
H < 0.01∗∗ 0.886 < 0.01∗∗

Table 7: p-values of test cases II-IV. All significant results (p < 0.05) are bold and marked with ∗.
Very significant results (p < 0.01) are marked with ∗∗

6.3 test case i i: nonpathological vs. pathological
subjects

The first column of table 7 shows that all indices can differentiate between nonpathological
and pathological data very significantly.

Table 8 shows the distribution parameters of each index for test case II. If the calculated val-
ues of the index are normally distributed, the p-value and the Standard Deviation (SD) are
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listed. Otherwise, the median and the limits of 95% central range, i. e., the 2.5th percentile
and the 97.5th percentile, are given.

Test Case II
median [95% central range] or mean (SD)

Index Nonpathological Pathological

Statistical Indices
SDNN (s) 0.0560 [0.0190,0.1801] 0.0784 [0.0151,0.2435]
SDSD (s) 0.0195 [0.0074,0.1408] 0.0689 [0.0083,0.2474]
NN50 (#) 73.5 [0,701] 145 [1,835]
pNN50 (%) 7.1777 [0,68.4570] 14.1602 [0.0977,81.5430]
Geometrical Indices
TINN (s) 0.2011 [0.0796,0.4799] 0.1387 [0.0326,0.5048]
HRVIdx 13.3862 [5.5510,29.6157] 10.8936 [3.2753,31.7576]
Time-Frequency Indices
τ 0.5535 (0.0695 SD) 0.6226 (0.1326 SD)
Chaos Descriptors
CD 7.4316 (2.9194 SD) 5.4074 (3.7146 SD)
LLE 0.1533 (0.0314 SD) 0.1075 (0.0505 SD)
Fractal Descriptors
α1 1.2703 [0.4341,1.6246] 0.5880 [0.1803,1.4238]
α2 0.9187 (0.1714 SD) 0.8276 (0.2886 SD)
FD 1.7010 (0.1478 SD) 1.9121 (0.1332 SD)
D 1.1066 [0.9076,1.6008] 1.2407 [0.8591,2.6361]
H 0.3029(0.0696 SD) 0.2356 (0.1004 SD)

Table 8: Statistical parameters for test case II. For normally distributed indices mean and SD are
listed, otherwise median and 95% central range.

6.4 test case i i i: young vs. old subjects

For the third test case none of the indices was able to obtain significant differences between
young and elderly people. The p-values are listed in table 7.

Table 9 shows the distribution parameters of all indices.
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Test Case III
median [95% central range] or mean (SD)

Index Young Old

Statistical Indices
SDNN (s) 0.0537 [0.0279, 0.1558] 0.0565 [0.0178, 0.1919]
SDSD (s) 0.0184 [0.0067, 0.1887] 0.0203 [0.0077, 0.1086]
NN50 (#) 74 [0, 582.15] 73.5 [0, 725.35]
pNN50 (%) 7.2266 [0, 56.8506] 7.1777 [0, 70.8350]
Geometrical Indices
TINN (s) 0.2310 (0.0992 SD) 0.2204 (0.1207 SD)
HRVIdx 15.0990 (6.0606 SD) 14.5495 (6.9383 SD)
Time-Frequency Indices
τ 0.5524 (0.0702 SD) 0.5542 (0.0695 SD)
Chaos Descriptors
CD 6.8615 (3.0273 SD) 7.8478 (2.7889 SD)
LLE 0.1522 (0.0312 SD) 0.1541 (0.0317 SD)
Fractal Descriptors
α1 1.2206 (0.3189 SD) 1.1852 (0.2915 SD)
α2 0.9333 (0.1608 SD) 0.9086 (0.1790 SD)
FD 1.6946 (0.1557 SD) 1.7054 (0.1431 SD)
D 1.1060 [0.9065, 1.5856] 1.1122 [0.9078, 1.7349]
H 0.3040 (0.0690 SD) 0.3021 (0.0705 SD)

Table 9: Statistical parameters for test case III. For normally distributed indices mean and SD are
listed, otherwise median and 95% central range.

6.5 test case iv: pre- vs. post-antiarrhythmic treat-
ment

The last column in table 7 shows that all indices can differentiate between data before and
after antiarrhythmic treatment very significantly, except for CD, Katz’s Dimension D and
the triangular index TINN. These three indices show no significance.
Figure 22 shows two boxplots of indices calculated from the pre- and post-antiarrhythmic
treatment database. The left boxplot shows one index with no significance in this test case,
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i. e., CD (see figure 22a). The right boxplot represents the highly significant short-term
Detrended Fluctuation Analysis (DFA) exponent α1.
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Figure 22: Boxplots for test case IV. of the (a) Correlation Dimension index CD, (b) short-term
Detrended Fluctuation Analysis exponent α1.

The distribution parameters for the last test case are presented in table 10.
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Test Case IV
median [95% central range] or mean (SD)

Index Pre-Treatment Post-Treatment

Statistical Indices
SDNN (s) 0.0492 [0.0123, 0.1998] 0.0377 [0.0105,0.1301]
SDSD (s) 0.0248 [0.0061, 0.2233] 0.0125 [0.0058,0.1321]
NN50 (#) 47 [0, 739.15] 12 [0,518.0250]
pNN50 (%) 4.5898 [0, 72.1826] 1.1719 [0,50.5884]
Geometrical Indices
TINN (s) 0.1298 [0.0386, 0.4263] 0.1268 [0.0430, 0.3902]
HRVIdx 9.4815 [2.9777,26.2564] 8.8276 [3.1251,23.2727]
Time-Frequency Indices
τ 0.6250 (0.0852 SD) 0.6053 (0.0802 SD)
Chaos Descriptors
CD 4.8334 [0.8016, 10.8110] 4.9201 [0.8277,11.4276]
LLE 0.1120 (0.0427 SD) 0.1030 (0.0391 SD)
Fractal Descriptors
α1 0.7689 [0.1720, 1.4956] 0.9629 [0.2798, 1.5197]
α2 0.9701 [0.3957, 1.3413] 1.0503 [0.5429, 1.3959]
FD 1.8172 [1.5283, 2.0994] 1.7960 [1.5269, 2.0534]
D 1.0910 [0.8049, 2.5588] 1.1090 [0.8477, 2.0787]
H 0.3044 [0.0722,0.4449] 0.3193 [0.1210,0.4424]

Table 10: Statistical parameters for test case IV. For normally distributed indices mean and SD are
listed, otherwise median and 95% central range.

6.6 correlation

In figures 23-24 the correlation between indices is shown. For this purpose the Spearman’s
rank correlation coefficient r was calculated. If |r| > 0.85 holds, the correlation is declared
as strong. Only correlations of indices, which showed significant differences either in test
case II or test case IV were calculated. The correlation matrices, i. e., r-values of tested
indices, are given in the appendix (see A.3).
Furthermore, all the strong correlations had a p-value less than 0.01 for testing the hypoth-
esis of no correlation against the alternative that there is a nonzero correlation.
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Figure 23 shows the correlations between indices of the nonpathological database and the
pathological database, respectively. Since all 14 implemented indices had a very significant
difference in test case II, which used data of those two databases, none index had been
rejected before calculating the correlations.
Two pairs of indices of the pathological database strongly correlate with each other (see
figure 23b). I. e., the statistical indices pNN50 and NN50 and both geometrical indices
(HRVIdx and TINN ) have a strong positive correlation. Furthermore, the fractal descriptors
Hurst exponent H and Katz’s dimension D have a strong negative correlation.
In figure 23a three of the statistical indices (pNN50, NN50, SDSD) are strongly positively
correlated with each other. The geometrical indices HRVIdx and TINN are correlated, as
for the pathological data (see subfigure b). Furthermore, the HRVIdx correlates with the
index SDNN. Two of the fractal descriptors, i. e., the short-term scaling exponent α1 and
Higuchi’s Fractal Dimension FD have a strong negative correlation.
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Figure 23: Strong correlations (|r| > 0.85) between indices. Teal lines mark positive and red lines
negative correlation of: (a) Nonpathological database. (b) Pathological database.

Figure 24 shows the correlations between indices of the pre- and post-antiarrhythmic treat-
ment databases. The three statistical indices (pNN50, NN50, SDSD) are strongly positively
correlated with each other, as already seen for the nonpathological database (see figure 23a).
The fractal descriptors short-term scaling exponent α1 and Higuchi’s FD have a strong neg-
ative correlation.
The indices TINN, chaos descriptor CD and Katz’s dimension D, are missing in figure 24,
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since their p-values in test case IV (calculated with the databases crisa and crisb) were
not significant.
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Figure 24: Strong correlations (|r| > 0.85) between indices. Teal lines mark positive and red lines neg-
ative correlation of: (a) pre-antiarrhythmic treatment database. (b) post-antiarrhythmic
treatment database.
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In this chapter the groups of indices are discussed in detail. One section is dedicated to
nonlinear methods and their sensitivity to age. In general, age-dependency of Heart Rate
Variability (HRV) is contradictory at all, since for most of the indices studies with significant
differences in age and studies which report no differences in age, can be found. Furthermore,
all of the subjects for the age-dependency test, i. e., test case III are healthy.
Chapter 7 concludes with limitations of this thesis.

7.1 cris results

Cardiac Arrhythmia Suppression Trial (CAST) was a study to test the hypothesis that
suppression of ventricular arrhythmias by antiarrhythmic drugs after myocardial infarction
improves survival.
Before considering the CAST RR Interval Sub-Study database (CRIS) results, it can be
observed that table 8 shows healthy subjects in the left column, while the right column lists
the indices of the pathological subjects. Hence, the left values are the ”healthy ones” and
with significant differences the right column represents the ”unhealthy values”. In test case
IV, the left column represents indices calculated for the subjects before treatment and the
right column lists the indices after antiarrhythmic treatment. Most of the indices show a
significant difference in test case IV, too. One would assume that the values after treatment
should be closer to the ”healthy” values, e. g., a higher Detrended Fluctuation Analysis (DFA)
scaling exponent, but the opposite is true. The ranges of the indices after treatment are even
worse.
NOTE:

CAST was stopped early because the first 14-day period of treatment with anti-
arrhythmic drugs after a myocardial infarction was associated with excess mor-
tality [87].

7.2 statistical indices

The statistical indices pNN50 and NN50 show a perfect Spearman correlation of r=1 for
all test cases (see appendix A.3). This unsurprising observation is owed to the fact, that
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NN50 is a multiple of pNN50 for a fixed data length.
The index SDSD correlates strongly with the last two indices mentioned, except for the
pathological data with a correlation of r = 0.8.
The age independency of the statistical indices was also reported by Malpas et al. in [56],
where the statistical index SDSD showed no significant differences in age for alcohol addicted
people. Stein et al. published in [84] that time domain indices were significantly lower for
older men compared to younger ones. In this study each older man was matched with a
younger one, approximately 35 years younger. The assertion that older age is associated
with a global reduction in HRV can not be verified in this thesis. Just two of the statistical
indices, i. e., NN50 and hence, pNN50 too, have lower values among the older than the
younger subjects. But there was no significant difference between these two groups as well.

7.3 geometrical indices

Both geometrical indices, i. e., TINN and HRVIdx, are strongly positively correlated (see
figure 23). TINN is robuster against varying data lengths, while HRVIdx is very significant
in test case IV, i. e., differentiating antiarrhythmic treatment. The TINN ranges of healthy
subjects can be found in [4]. Acharya et al. reported that HRV decreases with aging [4]. The
reduced values can be observed in table 9, though the p-value of p = 0.075 is barely above
the level of significance. However, one has to note that age groups in [4] ranged from 5-70
years and for test case III the age of the test groups in this thesis ranged from 20-50 years
and 58-85 years, respectively (see table 1 and figure 5).
In [77], Redwood et al. proposed that HRVIdx is an important marker predicting arrhythmic
events and mortality following myocardial infarction. Subjects who developed arrhythmic
events had a significant lower HRVIdx. Cripps et al. reported that the relative risk of sudden
death is significantly higher for lower values of HRVIdx [23]. These results can be observed
in table 10, since after antiarrhythmic treatment there was an increase of deaths and among
the subjects after treatment the HRVIdx is significantly lower.

7.4 time-frequency index

The time frequency index, i. e., the scaling exponent τ is the only parameter which was not
significant for all data lengths. To be more precise, τ left the level of significance for less
than 200 data points. This is hardly surprising, intrinsically the Wavelet Transform Modulus
Maxima (WTMM) method would require data lengths starting with N = 213 = 8192 data
points [48]. As Kantelhardt et al. stated in [48]: ”For the WTMM method and short series,
one has to be very careful in order not to draw false conclusions from results”. Hence,
the significant outcome for test cases II and IV are looking good at first glance, but their
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physiological relevance is nonexistent. E. g., among the pathological subjects the index τ is
higher compared to healthy ones (see table 8).
The time-frequency index was implemented nevertheless, due to the fact, that it assesses
the long-time correlations as well as the Hurst exponent does. Furthermore, future work
with longer data can be analyzed with the implemented algorithm.

7.5 nonlinear methods and age

Before discussing each nonlinear index in detail, some statements for their sensitivity to age
have to be clarified.
In [89], Vandeput et al. discussed the age dependency in HRV for several nonlinear meth-
ods. The following indices: FD, CD, α1, α2 and LLE, calculated by Vandeput et al. were
significantly correlated with age. All, except one index (α2) were significantly lower with
increasing age. For α2 the opposite was true. The lower values reflect the decreasing nonlin-
ear behavior [89]. Their models were calculated on 300 seconds windows, sliding the window
every 30 seconds. Furthermore, Vandeput et al. differentiated between night hours and day
time and moreover sex of each subject. Differences in age were especially prominent during
daytime. This result is also reported in [62].
In this thesis, just the two Detrended Fluctuation Analysis scaling exponents α1 and α2
show lower values for older subjects (see table 9). However, the varying recording times
among subjects in one database, may have strongly influenced their mean value. According
to [62, 89], this could be especially true for the nonpathological data.

7.6 chaos descriptors

The computed values of the Correlation Dimension CD are similar to the reported ones
in [62]. Mia et al. characterized the HRV by means of the CD for two groups, i. e., healthy
subjects and hypertension patients and distinguish between values during the day and at
night. Their outcome was that healthy subjects had a lower CD in daytime than at night.
This relationship was not seen in hypertensive patients [62]. Since the recording time was
not specified for the pathological data and especially for the nonpathological database, used
in this thesis (see limitations, section 7.8), this may have affected the results among the
healthy people in this thesis.
Acharya et al. reported in [3] that the index CD for high variability classes (such as atrial
fibrillation) is rather low compared to healthy subjects. This can be verified by the results
of test case II (see figure 8).
To determine the LLE of RR-time series, usually longer signals than in this thesis are
considered (e. g., 20000 − 100000 intervals as in [78, 83]). The implemented algorithm is
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based on ”Estimating the Lyapunov-Exponent Spectrum from Short Time Series of Low
Precision”, where reasonable results for data series of N = 5000 points are presented [97].
Nevertheless, significant decreases in pathological subjects (as in [83]) are observable in test
case II.

7.7 fractal descriptors

Between two of the fractal descriptors, i. e., short-term scaling exponent α1 and Higuchi’s
FD, a strong negative correlation exists for almost all tested databases.
Higuchi’s Fractal dimension is very close to 2 for the pathological dataset. These values
are also reported in [73]. The FD of healthy subjects is significantly smaller. Pierzchalski
reported that FD reflects the effect of antiarrhythmic drug intake, as it decreases significantly
[73]. This is not verified in test case IV, where people after treatment had a significantly
higher FD.
One would assume that Higuchi’s FD and Katz’s D are correlated, which is not obtained by
correlation calculation. This could be due to the fact that the implemented Higuchi’s FD
was realized by sliding windows of 100 samples, whereas the index of Katz’s Dimension (D)
was computed directly on all RR-intervals. This may have also effected some outliers in test
case I, which D shows between 400-250 data points (see figure 21).
The values of the DFA scaling exponents (α1 and α2) for healthy subjects are exactly in
the same range, as reported in [72]. Yeh et al. proposed in [95] that a record length of
ten minutes may be the minimum to assess healthy subjects by the DFA method. With a
recording length of 1024 RR-intervals, this condition is generally fulfilled (10min = 600s,
hence, the average RR-interval of 1024 samples within 600s is meani (RR) = 600

1024 ≈ 0.6s).
Yeh et al. compared the scaling exponents of young and old adults for a duration of ten
minutes. The short term scaling exponent α1 among the young adults was higher compared
to old subjects. For the long-term scaling exponent α2 the opposite was true. Exactly the
same results can be found in table 9. Though the differences between the two groups are not
significant in this thesis. Significant differences between pathological subjects (with lower
scaling exponents) and healthy subjects can be observed. Since the pathological database is
a composition of several different pathologies (e. g., such as Congestive Heart Failure (CHF)
and Atrial Fibrillation (AF)) their mean value is hard to interpret, but it is in the range of
adults with AF and adults with CHF as reported in [95]. To be more precise, the value of α1
corresponds to AF patients, while α2 corresponds with CHF subjects.
The Hurst exponent H is significantly lower for pathological data. This effect is also reported
in [36], where healthy subjects are compared to CHF patients. The higher value of the Hurst
exponent in healthy subjects reflects the higher RR variations, whereas for pathological
subjects the variation is low [36]. In [69], Park et al. reported that the Hurst exponent is lower
with aging. The study population were children during sevoflurane anesthesia. However, it
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is necessary to note that they were aged from 2-12 years.
Equation (43), i. e., the linear relation between FD and H : H =2-FD, can be observed by
examining the medians in tables 8-10. It is all the more surprising that their Spearmans’s
correlations coefficient is not close to ±1. This result can be verified due to the reason, that
generally H and the FD are independent from each other. FD is a local property and H
reflects long-memory dependence, which is a global characteristic [32]. For ideal self-similar
processes, the local properties are reflected in the global ones and equation (43) holds [32].
Hence, for Brownian motion H=0.5 and FD=1.5 is true.

7.8 limitations

The outcome of this thesis is bound by several limitations. The first limitation concerns
the composition of the pathological and nonpathological database. They are not as homoge-
nous, as they should be. Precisely, the pathological database includes subjects with different
pathologies, including people with and without arrhythmias. Furthermore, the starting time
of the recordings of both databases was not specified. Hence, it could have happened that
one series of 1100 RR-intervals is cropped from night hours and another series of 1100 RR-
intervals is cropped during day time. In [76], Ramaekers et al. reported significant differences
for the statistical methods between different times of the day. The same observations can
be found in [62, 89].
Furthermore, the separated test groups for testing the indices for age dependency have a
wide range of ages. The threshold of less than 53 years to declare a subject as ”young” is
rather high.
Moreover, the minimum data length after filtering was 1100 RR-intervals. Hence, the short-
est recording is ”svdb865” of the supraventricular arrhythmia database with 453 seconds,
which corresponds to approximately 7.5 minutes. A wide range of indices requires longer
data for their calculation (e. g., the index τ , obtained by the WTMM method and several
papers calculated the Hurst exponent and Detrended Fluctuation Analysis of longer RR-
seqences, e. g., [89]).
Last but not least, since an automatic filtering method, i. e., the Ensemble Density-Based
Spatial Clustering of Applications with Noise (EDBSCAN) algorithm was used in this thesis
to remove the ectopic beats before calculating the HRV parameters, there is no guarantee
that all the ”missed and extra beats” are rejected.
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At the beginning of this thesis, in section 1.1, the research questions were declared. After
executing the test cases the answers are the following:

- Most of the implemented indices are insensitive to varying data lengths. Only the
Continuous Wavelet Transform index τ needs more than 400 RR-intervals in order to
obtain significant differences.

- All indices are able to differentiate between nonpathological subjects and pathological
subjects. Furthermore, all but one indices showed very significant differences between
those focus groups.

- None of the implemented indices could distinguish between young and elderly healthy
subjects, significantly.

- Most of the indices have a significant difference between data before and post an-
tiarrhythmia therapy. In fact, all except the geometrical index TINN, the chaotic
descriptor CD and Katz’s Dimension D.

- The statistical indices pNN50, NN50, and SDSD are strong positive correlated for all
data tested, except the pathological database. The same is true for both geometrical
indices, i. e., HRVIdx and TINN. Furthermore, Higuchi’s FD and the short time-scaling
exponent α1 show a strong negative correlation.

Some of the indices had excellent results over all test cases, except of test case III, where
not a single index could differentiate between healthy young and elderly people. These are:

- Statistical Indices: SDSD, NN50 and pNN50.

- Chaos Descriptors: LLE.

- Fractal Descriptors: α1, FD and H.

A few methods, usually used for calculating Heart Rate Variability (HRV) parameters of 24-
hour recordings, were tested on their ability to provide consistent results, even with less than
1100 data points. This is especially the case for the Detrended Fluctuation Analysis (DFA),
which was developed as long-term correlation dimension using 24-hour recordings [71].
Since long-term recordings require more effort compared to short-term recordings, short-
term indices would be more clinically practical.
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Yeh et al. started this ”trimming”-process in 2009 with N = 660 RR-intervals [96]. One
year later, Yeh et al. proposed that their results offered additional evidence that DFA from
long-length might be ”extended” to ten minutes short-length series and furthermore, that
the length dependency of DFA exponents would be an interesting and useful topic for further
study [95].

Indeed, most of the implementation and interpretation process was interesting and I can
propose:

Based on our results, the short-term scaling exponent α1 might even be trimmed
from data lengths of ten minutes short-length series, to standard short-term
recordings of five minutes duration.



A A P P E N D I X

a.1 correlation between tinn and hrvidx

Cripps et al. reported in [23] the steps needed, to calculate the HRVIdx:
The first step is to assign the area A of the triangle as the total number of NN-intervals,
i. e., A := N . The index H̃RVIdx is defined as the baseline width of the triangle, hence:

H̃RVIdx =
2 ·A
Dmax

=
2 ·N
Dmax

= 2 ·HRVIdx.

Since this easy calculation is done with an equilateral triangle, this is a good approximation
for data with non-zero skewness distribution. Probably, the H̃RVIdx with the inability to
calculate definite values of data with skewed distributions was responsible for an adaption,
the Triangular Interpolation of NN interval histogram (TINN). TINN calculates both points
of the width separately and hence, can handle skewed distributions.

a.2 poincaré plot

For a given data set X :=
{
x1, . . . ,xN

}
the Poincaré plot of lag m is obtained by plotting

X1 :=
{
x1, . . . ,xN−m

}
against X1+m :=

{
x1+m, . . . ,xN

}
.

The standard Poincaré plot uses a lag of 1, hence:

(x1,x2), (x2,x3), . . .

defines the data points of the Poincaré plot. A typical unfiltered Poincaré plot of a healthy
subject is shown in figure 25. For healthy subjects these plots are typically shaped like a
comet, torpedo or a cigar [26]. If there is no variation in the Heart Rate (HR), the Poincaré
plot just consists of a single point.
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Figure 25: Standard Poincaré plot (lag 1) of a nonpathological subject [44]. Each point in the figure
has coordinates (RRi,RRi+1).

a.3 correlation

Tables 11-12 show the correlation matrices of all the indices, since all of them were signifcant
in test case II. The correlation matrices in table 13 are given for the significant indices in
test case IV. These are all except of the Triangular Interpolation of NN interval histogram
TINN, the Correlation Dimension CD and Katz’s Dimension D.

Correlation was declared strong for |r| > 0.85, where r denotes the sample correlation
coefficient.
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Table 11: The correlation coefficients for the nonpathological database.
SDNN SDSD NN50 pNN50 TINN HRVIdx CD LLE α1 α2 FD D H τ

SDNN 1 0.825 0.781 0.781 0.833 0.914 0.168 0.373 −0.115 0.143 0.052 0.096 −0.205 0.193
SDSD 0.825 1 0.951 0.951 0.675 0.739 0.378 0.367 −0.45 −0.149 0.393 0.442 −0.538 0.079
NN50 0.781 0.951 1 1 0.704 0.749 0.415 0.413 −0.443 −0.121 0.427 0.557 −0.559 0.031

pNN50 0.781 0.951 1 1 0.704 0.749 0.415 0.413 −0.443 −0.121 0.427 0.557 −0.559 0.031
TINN 0.833 0.675 0.704 0.704 1 0.974 0.187 0.51 0.037 0.068 −0.066 0.181 −0.264 0.025

HRVIdx 0.914 0.739 0.749 0.749 0.974 1 0.166 0.485 0.003 0.085 −0.047 0.156 −0.248 0.057
CD 0.168 0.378 0.415 0.415 0.187 0.166 1 0.472 −0.209 −0.276 0.226 0.344 −0.304 −0.361
LLE 0.373 0.367 0.413 0.413 0.51 0.485 0.472 1 0.219 −0.377 −0.227 0.226 −0.317 −0.386
α1 −0.115 −0.45 −0.443 −0.443 0.037 0.003 −0.209 0.219 1 −0.016 −0.923 −0.668 0.568 −0.214
α2 0.143 −0.149 −0.121 −0.121 0.068 0.085 −0.276 −0.377 −0.016 1 0.044 −0.328 0.472 0.562
FD 0.052 0.393 0.427 0.427 −0.066 −0.047 0.226 −0.227 −0.923 0.044 1 0.672 −0.546 0.208
D 0.096 0.442 0.557 0.557 0.181 0.156 0.344 0.226 −0.668 −0.328 0.672 1 −0.843 −0.123
H −0.205 −0.538 −0.559 −0.559 −0.264 −0.248 −0.304 −0.317 0.568 0.472 −0.546 −0.843 1 0.21
τ 0.193 0.079 0.031 0.031 0.025 0.057 −0.361 −0.386 −0.214 0.562 0.208 −0.123 0.21 1
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Table 12: The correlation coefficients for the pathological database.
SDNN SDSD NN50 pNN50 TINN HRVIdx CD LLE α1 α2 FD D H τ

SDNN 1 0.805 0.707 0.707 0.424 0.704 0.076 0.417 −0.232 −0.185 0.158 0.236 −0.383 0.196
SDSD 0.805 1 0.803 0.803 0.166 0.39 0.006 0.311 −0.632 −0.564 0.543 0.432 −0.65 0.255
NN50 0.707 0.803 1 1 0.29 0.497 0.168 0.157 −0.534 −0.492 0.597 0.684 −0.717 0.006
pNN50 0.707 0.803 1 1 0.29 0.497 0.168 0.157 −0.534 −0.492 0.597 0.684 −0.717 0.006
TINN 0.424 0.166 0.29 0.29 1 0.87 0.482 0.225 0.16 0.133 −0.157 0.062 −0.032 −0.224

HRVIdx 0.704 0.39 0.497 0.497 0.87 1 0.392 0.291 0.062 0.09 −0.072 0.189 −0.181 −0.096
CD 0.076 0.006 0.168 0.168 0.482 0.392 1 0.191 0.216 −0.055 −0.03 0.163 −0.078 −0.552
LLE 0.417 0.311 0.157 0.157 0.225 0.291 0.191 1 0.163 −0.235 −0.277 −0.059 −0.034 −0.141
α1 −0.232 −0.632 −0.534 −0.534 0.16 0.062 0.216 0.163 1 0.459 −0.793 −0.505 0.602 −0.373
α2 −0.185 −0.564 −0.492 −0.492 0.133 0.09 −0.055 −0.235 0.459 1 −0.624 −0.479 0.618 0.25
FD 0.158 0.543 0.597 0.597 −0.157 −0.072 −0.03 −0.277 −0.793 −0.624 1 0.648 −0.712 0.013
D 0.236 0.432 0.684 0.684 0.062 0.189 0.163 −0.059 −0.505 −0.479 0.648 1 −0.859 −0.19
H −0.383 −0.65 −0.717 −0.717 −0.032 −0.181 −0.078 −0.034 0.602 0.618 −0.712 −0.859 1 0.099
τ 0.196 0.255 0.006 0.006 −0.224 −0.096 −0.552 −0.141 −0.373 0.25 0.013 −0.19 0.099 1
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Table 13: The correlation coefficients for the antiarrhythmic treatment databases, i. e.,
(a) pre-treatment (crisa) database and (b) post-treatment (crisb) database.

SDNN SDSD NN50 pNN50 HRVIdx LLE α1 α2 FD H τ

SDNN 1 0.759 0.74 0.74 0.677 0.528 −0.287 −0.287 0.208 −0.388 0.191
SDSD 0.759 1 0.865 0.865 0.313 0.338 −0.715 −0.634 0.575 −0.643 0.333
NN50 0.74 0.865 1 1 0.457 0.255 −0.579 −0.539 0.565 −0.696 0.172
pNN50 0.74 0.865 1 1 0.457 0.255 −0.579 −0.539 0.565 −0.696 0.172
HRVIdx 0.677 0.313 0.457 0.457 1 0.471 0.166 0.093 −0.204 −0.13 −0.127

LLE 0.528 0.338 0.255 0.255 0.471 1 0.218 −0.276 −0.321 −0.134 −0.122
α1 −0.287 −0.715 −0.579 −0.579 0.166 0.218 1 0.517 −0.884 0.625 −0.461
α2 −0.287 −0.634 −0.539 −0.539 0.093 −0.276 0.517 1 −0.492 0.66 0.01
FD 0.208 0.575 0.565 0.565 −0.204 −0.321 −0.884 −0.492 1 −0.64 0.287
H −0.388 −0.643 −0.696 −0.696 −0.13 −0.134 0.625 0.66 −0.64 1 −0.048
τ 0.191 0.333 0.172 0.172 −0.127 −0.122 −0.461 0.01 0.287 −0.048 1

(a)

SDNN SDSD NN50 pNN50 HRVIdx LLE α1 α2 FD H τ

SDNN 1 0.652 0.625 0.625 0.836 0.556 0.148 0.141 −0.207 0.157 0.167
SDSD 0.652 1 0.935 0.935 0.489 0.283 −0.373 −0.304 0.301 −0.36 0.15
NN50 0.625 0.935 1 1 0.542 0.27 −0.304 −0.246 0.27 −0.379 0.091
pNN50 0.625 0.935 1 1 0.542 0.27 −0.304 −0.246 0.27 −0.379 0.091
HRVIdx 0.836 0.489 0.542 0.542 1 0.566 0.321 0.208 −0.346 0.153 −0.003

LLE 0.556 0.283 0.27 0.27 0.566 1 0.549 −0.182 −0.57 0.192 −0.214
α1 0.148 −0.373 −0.304 −0.304 0.321 0.549 1 0.192 −0.934 0.629 −0.26
α2 0.141 −0.304 −0.246 −0.246 0.208 −0.182 0.192 1 −0.213 0.537 0.314
FD −0.207 0.301 0.27 0.27 −0.346 −0.57 −0.934 −0.213 1 −0.677 0.152
H 0.157 −0.36 −0.379 −0.379 0.153 0.192 0.629 0.537 −0.677 1 0.129
τ 0.167 0.15 0.091 0.091 −0.003 −0.214 −0.26 0.314 0.152 0.129 1

(b)
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HR Heart Rate

HRV Heart Rate Variability
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