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Abstract

Home and Building Automation System (HBAS) denominates systems for controlling
building applications summarized under the terms Heating, Ventilation and Air Con-
ditioning (HVAC). This allows to control room parameters in a centralized manner,
promising lower maintenance and energy costs and higher comfort. Usually, only basic
security mechanisms were implemented. The reasons were twofold: firstly, the used
hardware platforms often lacked the needed processing power to implement them. Sec-
ondly, the potential impact of malicious attacks against such systems were considered
negligible.
Nevertheless, corporate buildings as well as private homes contain a great variety of
additional applications, for example access controls, burglar alarms or fire detection
systems. This group of applications has much higher demands regarding the underlying
technical system. Obviously, access must be only granted to authenticated persons and
fire detection systems must work reliable in case of emergency.
The different requirements led to a separation of critical and uncritical systems. Unify-
ing them into one system would allow to further decrease maintenance costs and re-use
the existing infrastructure for both fields of applications.

Therefore, this thesis proposes an extension to KNX which is suitable for critical envi-
ronments. For this purpose, it is necessary to detect and guard against malicious attacks
as well as to cope with randomly occurring hardware faults. The former can be achieved
through cryptography, the latter by implementing redundancy. Both terms as well as the
Konnex (KNX) standard are introduced in detail, followed by the proposed solution.
The proposal divides KNX installations into an insecure and a secure part. The latter is
protected against malicious attacks and is implemented in a redundant way. This allows
to partially resist against transient hardware faults. Finally, the implementation of the
prototype is illustrated.
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Kurzfassung

Heim- und Gebäudeautomation (HGA) befasst sich mit Systemen zur Steuerung bzw.
Regelung von Gebäudeanwendungen, wie Heizungen, Klimaanlagen oder Beleuchtungssys-
temen. Raumparameter können so zentral gesteuert werden, wodurch sowohl der Ver-
waltungsaufwand als auch den Energieverbrauch gesenkt und der Komfort erhöht wer-
den kann. Sicherheitstechnische Überlegungen spielten traditionellerweise eine unter-
geordnete Rolle. Einerseits standen die Ressourcen auf den verwendeten Plattformen
oft nicht zur Verfügung, andererseits wurden die Auswirkungen eines böswilligen Ein-
griffes in das System vernachlässigt.
Firmengebäude wie Privatgebäude beherbergen jedoch eine viel grössere Anzahl an Ap-
plikationen, man denke hier an Zugangskontrollen, Alarmanlagen oder Brandlöschsys-
teme. Diese Gruppe von Anwendungen stellt höhere Anforderungen an das zugrunde
liegende technische System: Türe dürfen nur von authorisierten Personen geöffnet wer-
den, Alarmanlagen dürfen sich nicht einfach von Einbrechern deaktivieren lassen, und
Brandmeldesysteme müssen im Extremfall mit einem hohen Grad an Zuverlässigkeit
funktionieren.
Diese unterschiedlichen Anforderungen führten zu einem Auseinanderwachsen der vorhan-
denen Systeme. Das Zusammenführen von kritischen und unkritischen Systemen würde
einerseits den Verwaltungsaufwand weiter senken und zusätzlich erlauben, die vorhan-
dene Infrakstruktur, z.B. die Verkabelung, für beide Anwendungsgebiete zu verwenden.

Diese Arbeit beschäftigt sich deshalb mit einer Erweiterung des KNX Standards für die
HGA, die auch in kritischen Umgebungen eingesetzt werden kann. Dazu ist es einer-
seits nötig, böswillige Angriffe zu erkennen und zu verhindern als auch technische De-
fekte abfedern zu können. Ersteres ermöglicht der Einsatz von Kryptographie, zweiteres
kann mittels Redundanz bewerkstelligt werden. Beide Begriffe, sowie KNX selbst, wer-
den ausführlich erläutert, gefolgt von dem erarbeitetem Lösungsvorschlag. Der Ansatz
unterteilt eine KNX-Installation in einen ungesicherten und einen gesicherten Teil. Let-
zterer ist geschützt gegen böswillige Angriffe und ausserdem doppelt ausgeführt, womit
ein teilweiser Ausfall kompensiert werden kann. Der Aufbau der vorgeschlagenen Lö-
sung wird beschrieben und abschliessend der implementierte Prototyp erläutert.
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CHAPTER 1
Introduction

1.1 Motivation
KNX is an open communications protocol for HBAS. It uses a layered structure and
supports wired communication over twisted pair and power line as well as wireless
communication by radio transmission. Additionally, it supports communication with
Internet Protocol (IP) hosts by special routers. As such, it can be used for controlling
traditional services like HVAC, but also for more sophisticated applications like surveil-
lance or fire alarm systems of buildings [1].

Driven by the need to reduce maintenance costs and to improve usability, the appli-
cation of HBASs is no longer limited to traditional HVAC services. Modern building
management includes much more different and more sophisticated tasks like elevator
control, alarm systems or access control, to name just a few. To reduce costs it would be
natural to bring together these services under the control of one management system, a
claim also supported through improved standardization efforts.
Given these potential applications, a wide range of attacks would be possible. Replay
attacks by intercepting and replaying datagrams would allow an adversary to introduce
arbitrary KNX traffic, switching doors or disabling burglar alarms. Passive attackers
can monitor the bus traffic to analyze the types of KNX devices within the network,
gathering knowledge that can be used to develop further attack strategies. Denial of
Service (DOS) attacks, disabling all directly connected KNX devices, can be conducted
by simply physically shortcutting or interrupting a line connection, rendering the cor-
responding network segment unavailable. Clearly, such attacks must be precluded for
sensitive services like fire or burglar alarm systems, relying on the availability of the
communication network.
High availability, in general, can only be achieved by redundancy, i.e., by using repli-
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cated resources. Therefore, all resources needed for transmitting data between two
points must exist redundantly and independently from each other.
The countermeasure against eavesdropping and replay attacks, providing integrity, con-
fidentiality and authenticity, consists of authentication between the sender and receiver
of a message, and encryption of these messages, combined in a security scheme called
Authenticated Encryption (AE).

1.2 Problem statement - security in HBAS
HBASs emerged from automation systems, originally used for HVAC building con-
trol. Central building management, leading to "intelligent buildings", promises reduced
maintenance costs, energy savings and improved user comfort [2], compensating the
initially higher investment costs of such buildings. Following these arguments, it would
be natural to integrate additional building management functions like alarm systems, ac-
cess control or communication systems, exploiting already existing infrastructure like
cabling and thus benefiting from synergy effects.
This trend was contradicted by the fact that in the early days of HBAS, communication
security was not considered a critical requirement. Firstly, the communication was done
over wires, i.e., physical access to the network would have been necessary for attacking
the network [3]. Secondly, the possible threats by misusing HVAC applications were
considered negligible. Additionally, the devices used in such networks were character-
ized by very limited processing power - thus, the comprehensive use of cryptographic
measurements would have put remarkable computing loads onto these devices and was
therefore considered impracticable.
These arguments turn out to be true only at first glance. Because HBAS are opera-
tional over years, excluding short-time, temporary physical access is often impossible
for wired networks and nearly impossible for wireless networks. Regarding the second
argument, it is easy to see that simple acts of vandalism, for example shutting down the
lighting system of a company building, can result in considerable financial losses.

Today, the necessary processing power is available even on embedded systems, mean-
while systems integration continued until a point where security concerns could no
longer be neglected. It follows that such an HBAS must be protected against misuse
on all existing levels. Communication networks for HBAS are usually built upon a two-
tier model, consisting of a field- an a backbone level. The field level contains Sensors,
Actuators and Controllers (SACs), interacting with the environment and performing
the control functions. They are interconnected by the backbone network. Here, Man-
agement Devices (MDs), used for configuration, visualization and monitoring, as well
as Interconnection Devices (ICDs), connecting physical segments, are found. Special
ICDs may act as gateways, providing a connection to foreign networks.
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Due to this topology, two different classes of attacks are possible: network- and de-
vice attacks [4].

Network attacks

Here, the adversary tries to compromise the field or backbone network. In the first
scenario, the attacker can analyze or modify the control application. In the latter he
gains access to the concentrated network data and can thus obtain a global view of the
system.
To protect a communication network it would be possible to use security mechanism
known from the IP world. Unfortunately, these mechanisms often cannot be mapped
directly to HBASs because of the introduced overhead. Using established techniques
like Virtual Private Network (VPN), Transport Layer Security (TLS) or Internet Protocol
Security (IPSec) is therefore reserved for the backbone level where IP is used.
At the field level, IP is hardly ever used, a fact that excludes IP based technologies here.

Device attacks

Alternatively, the three different kinds of devices can be aimed at by either attacking a
SACs to manipulate its behavior or by attacking a ICD to access data of the segment.
Finally, the attacker can launch an attack against the MDs to gain management access
to the other two types of devices.
Such device attacks are divided into three categories: software attacks, side-channel and
physical attacks, extensively surveyed in [4] and [5].

It turns out that the basic version of the KNX standard does not offer any efficient pro-
tection against attackers. Being a communication protocol, KNX can’t handle attacks
against devices. Nevertheless, the origin standard did not include effective counter-
measures to prevent network attacks, too. This deficit was fixed afterwards by various
extensions, bringing confidentiality and authenticity to KNX. See Section 4.3 for a re-
view of them.
In contrast to these cryptographic extensions, up to today no methods for increasing
availability are at disposal. This fact avoids the deployment of KNX in certain appli-
cation domains. For example, a burglar can render an alarm system useless if he can
shortcut the bus lines, thus suppressing the (encrypted) alarm messages. In contrast to
such a malicious attack, a transient hardware failure can also disable a system, unac-
ceptable for systems handling fire alarms or controlling elevators.
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1.3 Aim of the work
The overall goal of this work is to develop a concept for a secure and highly available
KNX network that also considers interoperability and compatibility, allowing the usage
even in environments with increased safety-critical requirements. The proposed solu-
tion shall be resistant against malicious adversaries, as well as against transient hardware
failures.
To achieve this, so called security gateways will be used. These gateways will possess
two kinds of KNX interfaces: one kind of interface will be connected to standard, un-
secured KNX networks. The second interface constitutes the entry point to a secured
KNX network which is connected to the secure interfaces of other security gateways.
To achieve higher availability, these secure interfaces and the respective communication
lines must exist redundantly. This ensures that even in case of a DOS attack, communi-
cation within the segment is possible.

To show the feasibility of the solution by a proof of concept, a demonstration net-
work shall be built. For the security gateways, RaspberryPis in combination with KNX-
Universal Serial Bus (USB)-dongles will be used. Therefore, the RasperryPis are acting
as gateways between the secure and the insecure KNX networks, each of them running
a master daemon responsible for reading datagrams from the KNX insecure world, en-
crypting and authenticating them and sending them over the secure KNX lines.
It is important to note that the practical part of this work will only handle the twisted-
pair media of KNX (i.e., KNX Twisted Pair (TP)-1), although the basic principles can
be deployed in a modified manner in wireless and power line networks as well.
A threat analysis will be conducted to prove that the system can withstand the defined
attacks and is robust, i.e., that it can recover from erroneous states. This will be done by
exposing the demonstration network to various attacks.

1.4 Structure of the work
Chapter 2 explains the term "Informational security" and introduces the required pre-
requisites for providing integrity and confidentiality. Well known symmetric and asym-
metric ciphers are reviewed. The findings from this chapter serve as basis for designing
the cryptographic part of the proposed solution.
Nevertheless, an important part of "Informational security" is availability. Because the
main goal of this work is to improve availability, this property is discussed separately in
Chapter 3. State-of-the art technologies implementing highly-available communication
networks are introduced, serving as foundation for designing the mechanism to assure
high availability of the proposal.
To be able to design the general part of the KNX extension, insights into the structure
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of the KNX standard had to be gathered. This is the aim of Chapter 4. This part also
covers already existing cryptographic KNX extensions.
Based on the preceding findings, Chapter 5 suggests a KNX extension that is applicable
in environments with increased availability needs.
Afterwards, Chapter 6 explains how the prototype was implemented. For the practical
part, "C" was used as programming language. Therefore, this part also introduces some
important programming models like multi-threading and how they can be realized in
"C".
Finally, Chapter 7 discusses the results and proposes some additional improvements.
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CHAPTER 2
Prerequisites

2.1 Information security
Information security is the effort to protect information - be it in electronic or physical
form - from adversary threats. The domain in which the data is protected can be time,
i.e., protecting saved information for later usage, or space, i.e., protecting information
transmitted physically from one user to another. To protect information, three key ob-
jectives must be met:

Confidentiality is used to protect sensitive information from eavesdroppers who are
not allowed to gain knowledge of that information.
Integrity ensures that some kind of information can not be altered by third-parties, or
that such a modification can be detected by the receiver of the information, but also
includes information non-repudiation. Integrity can be separated into data integrity and
system integrity. While the first one assures that information is only modified in an au-
thorized manner, the latter one demands that a system performs its intended function,
free from manipulation.
Availability guarantees that the system works promptly and information, which is needed
by an entity to provide some service, is accessible.

Because all three properties go hand-in-hand with each other, they are also called the
"CIA - triad" [6] - successfully attacking one property may allow attacking another one.
For example, if a confidentiality attack against a computer system responsible for money
transfers can be conducted to steal a password used for controlling this system, an at-
tacker can subsequently render the system unusable, therefore compromising availabil-
ity. Otherwise, the attacker could also try to remain undetected and change booking
orders, thus mounting an attack against the integrity of the system. Therefore, these
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three basic concepts are interleaved and building a system which honors only parts of
them will most likely lead to an insecure system.
In addition to the three objectives listed above, additional security objectives are used
frequently: authenticity is the property of being genuine and being able to be trusted,
while accountability allows to trace the actions of an entity uniquely to that entity.

Threats
Threats form a potential violation of security. Stallings [7] divides threat consequences
into four categories:

• Unauthorized disclosure is a threat aimed against confidentiality. It occurs when
an entity gains access to information for which it is not authorized.

• Deception threatens system integrity, and may result in tricking an authorized
entity into accepting modified data.

• Usurpation opposes data integrity such that a system is controlled by an unau-
thorized entity.

• Disruption compromises the availability such that the system services do not
operate correctly.

Attacks
Attacks are the manifestation of a security violation, exploited by an attacker. A classi-
fication of attacks against communication networks is given in Figure 2.1.

Attacks

Passive Active

ReleaseAnalysis Replay DOS Masquerade Modification

Figure 2.1: Classification of attacks

Passive attacks
Passive attacks are aimed against confidentiality. The attacker E intercepts the data
transmitted between the two or more entities by monitoring the communication medium
and recording all the traffic.
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After obtaining the data, the attacker can release the data itself to an outside entity. An-
other way to exploit the data is to analyze them, allowing the attacker to gain knowledge
of some kind of meta data like origin, destination, quantity and frequency of the data
flows.
Because of its passive nature, the data sent are not modified, thus such an attack is
hard to detect. Otherwise, encrypting the traffic to gain confidentiality suffices to guard
against the release of data. To guard against traffic analysis is harder because it may be
impossible to encrypt some kind of meta data. For example, the destination address of
a message may not be encrypted because routers handling the message must be able to
determine the next routing decision based on this address. Another reason is that some
meta information will always be present, like the size of the message or the simple fact
that communication between two points has occurred.

A B

E

Figure 2.2: Passive attack

Active attacks
Unfortunately, a restriction to passive attacks only is no realistic assumption for many
systems. Whenever the adversary has access to the communication medium, active at-
tacks cannot be ruled out, allowing the attacker to modify the data stream, or to create
false ones. In contrast to their passive counterparts, active attacks can be detected but
not prevented. Therefore, the focus lies on detecting and recovering from active attacks.

A replay attack consists of two steps: first, the attacker monitors the traffic (i.e.,
conducts a passive attack) and injects this recorded package in the second step, thus
trying to produce an unauthorized effect. Of course the package can also be modified
and injected afterwards, resulting in a modification attack. A Denial of Service (DOS)
attack tries to overload system resources, attacking availability such that the system is
not usable by legitimate users. Finally, masquerade attacks occurs when one entity
pretends to be another entity, often based on replay attacks by replying (modified) au-
thentication messages of an authorized entity.

To prevent active attacks, integrity mechanisms must be combined with confidential-
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A B

E

Figure 2.3: Active attack

ity mechanisms - the basic tool to achieve them is cryptography, introduced in the next
Section 2.2. To provide availability, different techniques must be used, as shown in
Section 3.1.

2.2 Cryptography
Cryptography1 is the science of encrypting information - its evolution was no linear
process. Ciphers were used independently in different places, were forgotten and dis-
appeared when the corresponding civilization died. A short time table for prominent
events is presented below; for a comprehensive outline of cryptographic history, "The
Codebreakers", written by David Kahn, is suggested [8].

One of the oldest witnesses for cryptography are hieroglyphs used in Egypt about 2000
B.C., forming the predecessor of a simple substitution cipher. 500 B.C., the "sky-
tale" was used by greek and spartan military leaders, performing a transposition ci-
pher. Another classical example is the "Caesar Cipher", named after its inventor and
used about 100 B.C. to hide information by replacing every letter of the alphabet by a
letter some fixed number down the alphabet, thus performing a substitution cipher. Ah-
mas al-Qalqashandi, an Egypt writer, introduced the frequency analysis, a method for
breaking substitution ciphers, in the 14th century. About 300 years later, the "Geheime
Kabinets-Kanzlei" in Vienna routinely intercepts, copies and re-seales diplomatic cor-
respondence to embassies, and manages to decrypt a great percentage of the ciphertexts.
In the beginning of the 20th century, the first cryptographic device called "Enigma"2 is
patented for commercial use and is later used in World War 2 by german troops for mil-
itary communication. Successful attacks against the "Enigma" cipher are demonstrated
by polish mathematicians even before outbreak of the war, and systematic decryption
of "Enigma" - based ciphertexts are conducted in Bleatchley Park, U.K., by using so
called "Turing-Bombs", giving the allies invaluable advantages. The second half of the

1classical greek for kryptôs: concealed
2classical greek for "riddle"
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20th century introduces public key cryptography. In 1976 Whitfield Diffie and Martin
Hellman specify a protocol for key exchange, based on a public key system developed
by Ralph Merkle. One year later, the RSA public key encryption is invented by the
American mathematicians Rivest, Shamir and Adleman.
Cryptography is basically the art of hiding information by turning cleartext data into a
random looking stream or block of bits, called ciphertext, using some kind of key. This
process is referred to as encryption in general, but it is important to note that for many
block ciphers, this encryption process can also be used to generate a special tag called
Message Authentication Code (MAC), providing integrity.
The next sections deal with how to achieve confidentiality, the concepts of how to
achieve integrity are partially based on the confidentiality methods and are introduced
in Section 2.3.

Key, clear- and ciphertext are strings built from the alphabet A.

• A is a finite set, denoting the alphabet used, for example A = {0, 1}

• {0, 1}n denotes the set of all possible strings with length n

• M denotes the message space, consisting of all strings that can be built with the
underlying alphabet

• C denotes the ciphertext space, also consisting of the strings from the alphabet
A = {0, 1}

• K denotes the keyspace, also built from the alphabet. Key e is used for encryption,
while key d is used for decryption. Both keys are also referred to as keypair,
written (e, d). If it is computationally easy to derive the private key e from the
public key d (in most cases e = d), the encryption scheme is called symmetric,
otherwise the scheme is called asymmetric.

Every element e ∈ K determines the functionM→ C

ciphertext = Ee(cleartext)
3

Unauthorized parties - lacking the used key - should, by looking at the ciphertext, learn
absolutely nothing about the hidden cleartext apart from the length of the origin mes-
sage. Authorized parties are able to retrieve the original data out of the ciphertext by
using the key with polynomial work, thus reversing the encryption. This reversing pro-
cess is called decryption.

3this one-parameter function can also be written as the equivalent two-parameter function
ciphertext = E(e, cleartext)
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• For every key d ∈ K, Dd denotes the function from C → M, and is called
decryption function.

cleartext = Dd(ciphertext)

Combining these properties yields a cipher or encryption scheme defined over (K,M, C),
which is a pair of efficient 4 algorithms such that

K ×M→ C
K × C →M

The correctness property ensures for every pair of (e, d) ∈ K and for every message
m ∈M that encryption is reverseable, i.e., it must hold that

m = Dd(Ee(m))

Security of a cipher
Perfect secrecy

A formal definition of a secure cipher was introduced by Shannon in 1949 [9], viewed
from a communication-theory point of view, as follows: given a finite message space,
every possible cleartext message has its own a priori probability (for example, the dis-
tribution of letters in a specific language). Additionally, every key can be chosen with
specific probability. It is assumed that these two probabilities constitute the a priori
knowledge of an attacker.
A message is picked, encrypted and sent to the receiver. The eavesdropper, intercepting
the message, can calculate the a posteriori probabilities for all possible cleartext mes-
sages, leading to the observed ciphertext - these are the conditional properties that under
a fixed key, encrypting the cleartext message lead to the observed ciphertext message.
If the a posteriori probabilities for all possible encryptions are the same as all a priory
probabilities, the attacker has learned absolutely nothing from intercepting the cipher-
text, which is defined by Shannon as "perfect secrecy". Such a cipher cannot be broken
by a ciphertext-only-attack, even by an adversary with unlimited time and processing
power.
Shannon proved that for a perfectly secure cipher, the key space must be at least as big
as the message space. Otherwise there will exist cleartext messages which are mapped
to the same ciphertexts, and thus a priori and a posteriori probabilities will be different,
allowing the attacker to get knowledge he should not have gotten.

4"runs in polynomial time"
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Semantic security

Another definition of the security of a cipher, based on complexity theory, is "semantic
security". To be semantically secure, a cipher must not be breakable by an adversary in
a reasonable time frame [10], where this time frame is a function of the useful timespan
of the protected data. This synonymously means for a semantically secure cipher that
an adversary must be forced to spend super-polynomial time to be able to break it. It
follows that all semantically secure ciphers can be broken in principle by mounting
the "brute-focrce" attack, searching the correct n-bit key in the exponential big key
space 2n. Thus, such an exhaustive search must be rendered impracticable by using
a suitable large key space to obtain a secure cipher. Semantic security is therefore
a weaker form of security, namely perfect secrecy against an adversary having only
polynomially bounded processing powers [11].

Kerckhoff’s principle

When designing cryptographic systems, a fundamental question is what components of
it have to be protected from public knowledge, and what parts can be published without
compromising the security of the system.
The Dutch cryptographer Auguste Kerckhoff stated rules for designing a secure cipher.
According to "Kerckhoff’s Principle" that was stated in the year 1883, among other
properties, a secure system should not rely on the secrecy of its components, the only
part that should be kept secret is the key alone. Shannon acknowledged these assump-
tions to be "pessimistic and hence safe, but in the long run realistic, since one must
expect the system to be found out eventually".

Mapped to the definitions above, the setsM, C,K, as well as the transformation func-
tions Ee and Dd, must not be secret. The only thing that has to be kept private is the
decryption key d. This separation of key and algorithm allows the publication of the
basic cipher methods, benefiting from peer review. A contradicting approach trying
to strengthen the safety of a cryptographic system by hiding the inner workings from
public is also known as "Security by Obscurity".

Randomness and probabilistic theory
A basic requirement of all cryptographic schemes is the availability of randomness. En-
tropy, denoted H , is the unit of the unpredictability of a process, as defined by Shannon
in [12]

H = −
k∑
i=1

pi ∗ ln(pi) (2.1)
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where pi is the probability of a certain outcome. The higher the predictability, or in
other words, the more likely an event, the lower its entropy. Flipping a "fair" coin is a
canonical example of a process with maximum entropy, because every coin flip has a
probability of 1

2
, and all flips are independent from each other [13]. If obtaining "heads"

of the coin is viewed as a logical "0" and "tails" as a logical "1", a binary string of length
n can be built, where the probability of all possible strings of same length is equal, as
shown in Figure 2.4, yielding a uniform distribution, withH = 2n∗ 1

2n
∗ln(2n) = n bits.

The importance of random numbers in cryptography is founded on the nature of the
cipher used, as will be shown in the next sections. For example, stream ciphers generate
a keystream which is used for encryption. If the keystream is predictable by an adver-
sary, the security of the cipher is reduced. Similar arguments are valid for block ciphers,
which often rely on an initial value called Initialization Vector (IV) for encryption. Key
negotiation algorithms schemes often rely on finding a random prime number, which
can be achieved by choosing a random number and testing it for primality. Again, if
such a prime number can be narrowed down within some borders, this fact may weaken
the encryption process.
A fundamental problem in generating random numbers by utilizing computing devices
is the deterministic nature of an algorithm:

"Anyone who considers arithmetical methods of producing random digits is, of course,
in a state of sin." 5

Such numbers are therefore called pseudorandom. Lots of cryptographic products suf-
fered serious flaws because of relying on a broken Pseudo Random Number Generator
(PRNG). A historical example of such a broken random number generator, outputting
biased (i.e., not uniformly distributed) values was "RANDU", invented by IBM in the
1960s. The generator belongs to the class of multiplicative congruential algorithms as
proposed by Lehmer [14], which can basically generate random numbers of sufficient
quality, if the parameters are chosen correctly. Random values can be obtained after
setting an initial value for I0, called seed, and repeatedly executing the calculation

Ij+1 = 65539 ∗ Ij (mod 231).

One problem is that consecutive values generated by RANDU are not independent, a
fact that can be seen in Figure 2.5. To obtain the plot, 10000 uniformly distributed
random numbers were chosen as initial seeds for Ii and plotted as x-values, Ii+1 served
as y- and Ii+2 as z-values. While one would suspect that all points would be equally
distributed, a clear pattern arises, indicating that the values are correlated.
To assess the quality of a PRNG, beside of such spectral tests lots of additional tests are

5John von Neumann, 1951
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Figure 2.4: Uniform Distribution of binary string of length three

available, see [15] for details.
To encounter the shortcomings of a PRNG, a True Random Number Generator (TRNG)
uses a natural process as non-deterministic data source, for example thermal noise of a
semi conductor, cosmic noise from space or digital oscillators.

The discrete logarithm problem
The Discrete Logarithm Problem (DLP), a mathematical problem, is the basis of two
important key exchange algorithms, both introduced in Section 2.5. Diffie-Hellman
(D-H) utilizes finite fields, whose theoretical background is introduced below. Elliptic
Curves (ECs), basis for the second algorithm, are also explained.

Finite fields DLP

A field consists of a set F together with two operations ·, namely addition "+" and
multiplication "*", satisfying the following properties:

• Closure: for all elements from F , the set is closed under the defined operations,
i.e., applying an operator · to two elements from the set results in an element also
belonging to the set.

• Associativity and commutativity hold, i.e., a · (b · c) = (a · b) · c and a · b = b · a

• For both operations, an identity element e exists such that a·e = a for all elements
from the set F
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Figure 2.5: Spectral Plot of RANDU output

• For both operations, an inverse element exists such that a·a−1 = e for all elements
from the set F\{0}

• Distributivity holds: (a+ b) · c = a · c+ b · c for all elements

For a finite field, the cardinality of the set F is finite and called order of the field, with
identity elements for addition and multiplication. Inverses can be found for all elements
regarding addition such that a+ (−a) = e and regarding multiplication for all elements
except 0 such that a ∗ a−1 = e.

A specific example of a finite field is a prime field, which can be constructed by tak-
ing the set of integers Z (mod p), with p ∈ P, thus restricting the set of all integers
to the set Zp = {0, 1, ..., p − 1}. By choosing p as prime it is ensured that for any
element a ∈ F\{0}, a multiplicative inverse exists: a ∗ a−1 = 1 (mod p). The set
of numbers for which multiplicative inverses exist is called Zp∗, so for p being prime,
Zp\{0} = Zp∗.
By raising an element a ∈ Zp to different powers, a subgroup of Zp∗ is generated, a fact
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that follows from Fermat’s little theorem stating that for p being prime and raising a to
the power p− 1, the outcome is congruent 1 modulo p

ap−1 ≡ 1 (mod p).

Raising a to higher powers results in

ap ≡ a ∗ ap−1 ≡ a (mod p)
...

a2p ≡ a2 ∗ ap−1 ∗ ap−1 ≡ a2 (mod p).

Thus, generating higher powers than (p − 1) does not yield different outcomes. If by
raising a to (p− 1) different powers all elements from Zp∗ can be generated, a is called
primitive root or generator, generating a cyclic group. If p is prime it can be shown that
at least one such generator g must exist and can be found efficiently [16]. Conversely
this means that for all elements from Zp∗ a unique exponent in the interval [0, p − 1]
exists, called the discrete logarithm for the base g (mod p).

Several algorithms exist to find the discrete logarithm. The most naive method con-
ducts an exhaustive search, so for a prime of n bits length, 2n search operations are
necessary. More efficient algorithms exist, with the best methods finishing after about
2

n
2 steps [17]. Therefore, by choosing a sufficient large prime, finding the discrete log-

arithm is considered a hard problem, a fact that is exploited by the D-H key exchange
algorithm and its variants.

Elliptic curve DLP

An EC is basically the set of all points satisfying an equation with the form as shown in
2.2, called "Weierstraß" equation

y2 = x3 + ax+ b (2.2)

The additional condition 4a3 + 27b3 6= 0 assures that the EC does not possess any
singularities.
An imaginary point "in infinity", denoted ∞, serves as additive identity element, and
also belongs to the EC by definition

P +∞ =∞+ P = P, P + (−P ) =∞.

Negatives can be calculated easily due to the symmetric nature of the curves by swap-
ping the sign of the y-coordinate of the point. For point P with coordinates (x, y), −P
is defined as (x,−y), thus satisfying P + (−P ) =∞.
By defining an EC over Zp, with a, b ∈ Zp, a cyclic group can be generated. The addi-
tion operation that "adds" two points on this curve is defined by a "chord-and-tangent"
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rule. Figure 2.6 shows addition of two points, while Figure 2.7 shows adding a point
to itself. It is important to note that this representation is shown in the domain R for
visualization - in real EC cryptography, only elements (mod p) (i.e., from the set Zp)
are allowed to avoid rounding errors.

Addition is defined as connecting points P and Q, finding the intersection of the line
with the EC (R′) and reflecting that point across the x-axis to obtain the result R.

Figure 2.6: Adding two points

Mathematically, the new coordinates can be calculated as shown in Equation 2.3

x3 = (
y2 − y1
x2 − x1

)2 − x1 − x2, y3 =
y2 − y1
x2 − x1

(x1 − x3)− y1. (2.3)

Point-doubling of P is achieved in a similar way by determining the tangent of P ,
finding the intersection and reflection.
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Figure 2.7: Doubling a point

Multiplication is defined as successive addition of a point to it self in the way

kP = P + P + ...+ P︸ ︷︷ ︸
k−times

.

Elliptic Curve Discrete Logarithm Problem (ECDLP)

Based on this group operations, the ECDLP [18] can be defined as follows: given an
EC E over the finite field Fp, P of order n of this curve and a point Q, find the integer
k such that Q = kP . k is called the discrete logarithm of Q to the base P .

To find k, the most naive algorithm trying all possible numbers will terminate after
n
2

on average. In contrast, the running time of the best known attack is bounded by
√
p,

where p is the largest prime divisor of n. Therefore, such an attack is infeasible for
properly chosen EC parameters.

2.3 Symmetric vs. asymmetric cryptography
As already stated, two very fundamental differences regarding the key used in a crypto-
graphic system can be found. Symmetric ciphers, where the same key is used for encryp-
tion and decryption, outperform its asymmetric counterparts in regards of data through-
put by a factor of about 1000 [19]. Additionally, they need shorter keys to achieve the
same level of security - both arguments encourage its use in embedded devices because
of its less computing and memory demands.
The big disadvantage of symmetric ciphers is that the key must be known to sender and
receiver of the message before secure communication can take place. This constitutes
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some kind of chicken-egg problem: to be able to send encrypted data, the key must be
distributed, i.e., a secure channel has to be setup first for key exchange. But if such a
secure channel can be established, it could also be used for transmitting the sensitive
data themselves.
Asymmetric or public key cryptography solves the problem of key distribution by using
two different keys, belonging to the same key pair: the private key must be be protected
from disclosure, while the public key can be published without harming security. For
encryption, the public key of the receiver is used, who in turn will use his private key to
decrypt the message.
To be able to take benefit from the advantages of both schemes, a hybrid approach is
possible: at first, public key cryptography is used to negotiate a symmetric session key,
which then can be used to encrypt the actual, sensitive data.

Stream ciphers
For encryption, stream ciphers take arbitrary long messages (from the message space
M), and encrypt them to the corresponding ciphertext (out of the ciphertext-space C),
by applying one digit of the message to one digit of the key. It is valid to say that a
streamcipher is a block cipher with blocklength 1.
The sequence of symbols e0, e1, ..., en, all taken from the keyspaceK, is called keystream.
The encryption function Ee performs the substitution ci = Eei(mi), producing one en-
crypted symbol at a time. Analogously, the decryption function inverts this substitution:
mi = Ddi(ci).

Most stream ciphers belong to the family of symmetric ciphers, thus ei = di. The
reason is that most asymmetric ciphers are deterministic ciphers, i.e., the encryption of
the same message with a fixed public key always yields the same ciphertext. Thus, such
repeated messages can be detected by an adversary. Probabilistic public-key encryption
can solve this problem for stream ciphers, but this scheme will not be handled in this
work because of its low practical application.

Vernam cipher

This cipher, also called One Time Pad (OTP), was invented by Gilbert Vernam in 1918,
and belongs to the family of polyalphabetic stream ciphers, which means that every
character of the original message is mapped to another character of the same alphabet.
In contrast to a monoalphabetical cipher, there is no fixed mapping between the input
and output characters. The substitution is achieved by generating a keystream and by
executing a bit-wise Exclusive-Or (XOR) operation, as defined in Table 2.3, of key and
message.
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⊕
0 0 0
0 1 1
1 0 1
1 1 0

Decryption can be achieved by applying the XOR operation to key and ciphertext:

mi = ci
⊕

ki = (mi

⊕
ki)

⊕
ki = mi, with ki

⊕
ki = 0, const

⊕
0 = const.

Obviously, the security of the cipher heavily depends on the quality of the PRNG. If a
truly random source is used to generate the key stream, this cipher has perfect secrecy:
for a n-character ciphertext, all n-character cleartexts are equally probable, and vice
versa. The reason for this is the XOR operation: both outcomes are equally probable,
introducing one bit of randomness into every data bit.
Additionally, the XOR operation can be built easily in hardware, accelerating the en-
cryption or decryption process.
Nevertheless, the cipher can be completely broken if the same key is used for encrypting
more than one cleartext message, allowing to mount an attack based on frequency analy-
sis. If an attacker is able to intercept a high number of different ciphertexts, all encrypted
with the same key, the pairwise xor’ing of the ciphertexts yields the xor-combination of
the corresponding cleartexts, because

m1

⊕
m2 = (c1

⊕
k)

⊕
(c2

⊕
k) = c1

⊕
c2
⊕

k
⊕

k = c1
⊕

c2
⊕

0 = c1
⊕

c2.

Whenever the same character is present in two different ciphertexts at the same position,
the result of the XOR operation will be 0x00, allowing to draw inferences about the
language used. By utilizing frequency analysis, the used key can be determined with
high probability position by position with effort bounded by O(n2).

Stream ciphers based on Linear Feedback Shift Register (LFSR)

A disadvantage of the Vernam cipher is that a key of equal length as the message is
necessary. To mitigate this problem, a LFSR can be used to generate a key of proper
length from a much shorter, initial key, called seed. Such LFSR are denoted by the
tuple 〈L,C(D)〉. L is the number of stages, and C(D) is the connection polynomial.
Because of the finite length, every LFSR can only take on a finite number of internal
states, producing a periodic output sequence. If the degree of the connection polyno-
mial is equal to the number of stages and the connection polynomial is irreducible (i.e.,
the polynomial can not be factored into 2 non-constant polynomials), no matter of the
initial state, the output sequence produced will always be of maximum periodicity.
Figure 2.8 shows a four stage non-singular LFSR with connection polynomial C(D) =
1 +D +D4. Table 2.3 [20] shows the corresponding output sequence produced. After

20



OUTPUT

D3 D2 D1 D0

Figure 2.8: 4 Stage LFSR

15 shifts a state equal to the initial state is achieved, and the outputs begin to repeat.
While such LFSR can be easily built in hardware, a problematic fact remains that
their linear complexity is bounded by L. Therefore, a LFSR should never be used as
keystream generator directly, instead the outputs of different LFSR are combined by a
non-linear function, thus obtaining a nonlinear generator.

t D3 D2 D1 D0

0 0 1 1 0
1 0 0 1 1
2 1 0 0 1
3 0 1 0 0
4 0 0 1 0
5 0 0 0 1
6 1 0 0 0
7 1 1 0 0

t D3 D2 D1 D0

8 1 1 1 0
9 1 1 1 1

10 0 1 1 1
11 1 0 1 1
12 0 1 0 1
13 1 0 1 0
14 1 1 0 1
15 0 1 1 0

Block ciphers
These ciphers operate on input blocks of fixed size, transforming them into output
blocks of same size. This implies that larger messages must be broken into suitable
blocks, and that for the last remaining block it may be necessary to add padding bytes
to yield the full block size, adding overhead to the message - a disadvantage compared
to stream ciphers. For example, to encrypt a message just exceeding the block size by
one byte, for the excess byte a complete block must be concatenated.
On the other hand, while stream ciphers are strictly sequential by nature, there exist
methods to speed up block ciphers by splitting the message first, and then processing
them in parallel6.
Two main types of block cipher exist: transposition ciphers use a key-dependent permu-
tation to re-order the characters of the block to obtain the ciphertext. This is a bijective
transformation, so decryption can be achieved by simply reversing the permutation.

6Counter Mode, see Section 2.3
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Substitution ciphers define a key-dependent mapping of characters from the alphabet A
to the same alphabet, thus replacing every character by one or more other characters. In
the latter case, this equals an injective function which can not be reversed directly.
A product cipher is a combination of ciphers of different types to achieve a higher level
of security than possible as with the basic ciphers.
Feistel networks are special product ciphers, composed of Substitution-Permutation
(SP) networks. They were first described by Horst Feistel in the year 1973 [21], and
are the basis of a variety of block ciphers like "LUCIFER" [22] and Data Encryption
Standard (DES).
Figure 2.9 shows the principal layout of such ciphers: at first, the plaintext block of
length 2n-bits is divided into two n-bits blocks, often called L0 and R0 for left and right
block, respectively. After that the first round starts: every round is characterized by
performing a substitution, followed by a permutation of the two half-blocks. For substi-
tution, at first a round function, parametrized by a round key is applied to one half of the
data block, followed by a XOR operation. The output of the rounds can be calculated
according to the formulas shown in Table 2.3

Encryption of round 1: L1 = R0

R1 = L0

⊕
F (k1, R0)

Encryption of round 2: L2 = R1

R2 = L1

⊕
F (k2, R1)

...
Encryption of round n: Ln = Rn−1

Rn = Ln−1
⊕

F (kn, Rn−1)

Decryption is achieved by applying the ciphertext to the same network, with the round
keys applied in reverse order, reducing hardware- respectively code size. Because every
decryption step, see Table 2.3, does not rely on reversing the round function, there is no
necessity for the round function to be bijective.
Reversing one encryption stage is achieved as follows:

Rn−1 = Ln
Ln−1 = Rn

⊕
F (kn, Rn−1) = Rn

⊕
F (kn, Ln).

DES and Triple Data Encryption Standard (3DES)

DES, designed by IBM and published by National Institute of Standards and Technol-
ogy (NIST) in 1977 [23], encrypts 64 bit blocks in 16 processing rounds.
For every round, a 56 bit round key is derived from the basic 56 bit key by permuta-
tions. The 64 bit data block to be encrypted respectively decrypted is subjected to an
initial permutation and then feed into the Feistel network. The round function operates
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Figure 2.9: Feistel Substitution-Permutation Network

as follows:
At first, the 32 bit half block is expanded to 48 bit by copying specific bits. The out-
come is added to the round key modulo 2 (i.e., the XOR operation). Next, a non-linear
transformation is applied by so-called "S-Boxes", performing a surjective function by
substituting blocks of 6 bit by only 4 bit. Lastly, a deterministic permutation follows,
achieved through "P-Boxes", concluding the round function.
Because of the small key size, DES was successfully broken for the first time7 by a
brute-force attack in 1997.
To prevent such attacks, 3DES was published: the cleartext- respectively cipertext block
is fed 3 times to the DES cipher, using 3 different keys k1, k2, k3 to first encrypt with k1,
decrypt with k2 and finally encrypt with k3

ciphertext = E(k3(D(k2, E(k1, cleartext))),

effectively tripling the key size. The special sequence of encryption, decryption and
again encrypting was chosen because by setting k1 = k2 = k3, a 3DES implementation
can also be used for en/decryption of DES messages.

7At least officially - rumors about the involvement of the National Security Agency (NSA) regarding
the small key size and the design of the S-Boxes existed since the publication
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Figure 2.10: AES Encryption Process

Advanced Encryption Standard (AES)

Also called "Rijndael" after its developers Joan Daemen und Vincent Rijmen, AES is
the successor of 3DES, as proposed by the NIST in 2001. Basic properties are a block
size of 128 bit, and possible key sizes of 128, 192 or 256 bit.
The operation, shown in Figure 2.10, starts by copying the input block into a square
matrix, called "State", followed by a XOR combination of the first round key and the
matrix. Then, 9, 11 or 13 rounds, depending on the key size, are performed: substitution
by S-Boxes, permutation by shifting rows, another substitution by mixing columns and
applying the round key. A last round, omitting the mix-columns stage, concludes the
encryption. Operating on the whole data block, AES is not a Feistel network, therefore
all substitutions and permutations must be reversible to allow decryption: the S-Box
used here is therefore implementing byte-by-byte substitutions. The round keys are
derived from the original key by the AES key expansion. Decryption uses the round
keys in reverse order. To reverse the first substitution of every round, a unique inverse
S-Box is used, while the shifting rows and mixing columns can also be reversed.

Mode of operation
Because block ciphers operate on a fixed number of bytes, messages larger than this
block size must be broken into parts of suitable size, and depending on the resulting
size of the last block, it may be necessary to append a padding to it. Five different
modes of operation were defined by NIST in 2001 [24], which will be introduced in the
next sections. For all modes it does not matter what underlying block cipher is used, as
long as the block cipher implements a cryptographic secure function.
An important property of this modes is the error propagation. Whenever a bit error
occurs on the transmission channel due to noise or interference, a logical ’0’ of the
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transmitted ciphertext is substituted by a logical ’1’ or vice versa. This bit error in
the ciphertext produces one or more bit errors in the cleartext, thus the name error
propagation [25].

Electronic Code Book (ECB)

ECB can be used to gain confidentiality and allows the parallel processing of all input
blocks. This mode does not use any IV or nonce8, therefore repeating input blocks are
mapped to the same output blocks under the same key, implementing a deterministic
encryption scheme. This is problematic, which can be seen quite intuitively. Figure
2.11 shows a picture saved in the bitmap format. The pixel data following the header
were extracted and encrypted in ECB mode, as shown in Figure 2.12. It can be seen
easily that patterns occurring in the input data can be detected in the encrypted output
data. Therefore, this mode should never be used. In contrast, Figure 2.13 shows the
same picture encrypted with Cipher Block Chaining (CBC) mode, as introduced in the
next section.

Figure 2.11: Original file Figure 2.12: ECB mode Figure 2.13: CBC mode

CBC

This mode uses an IV and can therefore be used for encryption of same messages with-
out changing the key. Additionally, CBC can also be used for MAC generation, as
shown in Section 2.3.
Encrypting a message is shown in Figure 2.14.

C0 = E(k, (M0

⊕
IV ))

C1 = E(k, (M1

⊕
C0))

...
Ci = E(k, (Mi

⊕
Ci−1))

To reverse the process, i.e., decrypt the message, see Figure 2.14
8short for "number used once"
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...

IV MSG Block 0 MSG Block 1

ENC Block 0 ENC Block 1

E(k,.)

IV

MSG Block n

ENC Block n

E(k,.) E(k,.)

Figure 2.14: CBC for encrypting messages

M0 = D(k, C0)
⊕

IV
M1 = D(k, C1)

⊕
C0

...
Mi = D(k, Ci)

⊕
Ci−1

The IV does not have to be kept private, but must be known to the receiver of the
message. It is important that such an IV is unpredictable, otherwise allowing a Chosen
Plaintext Attack (CPA). Also, it must not repeat over the lifetime of the key, otherwise
introducing the ECB problem again.
The IV introduces overhead, which is problematic for short messages. To avoid such
a message expansion, a solution is to use a nonce, as suggested in [26]. To avoid the
need for sending the nonce with every message, the sender and receiver must maintain
a message counter. This message counter must be encrypted to avoid predictability, and
can then be used as IV. Care must be taken for the counter not to overflow within the
lifetime of a key.

Counter Mode (CTR) mode

This confidentiality mode generates a key stream by encrypting a counter value with
a block cipher. The key stream is then applied to the cleartext blocks with the XOR
operation, as shown in Figure 2.16. For the last block, the key stream is truncated to
match the size of the cleartext block.
Decryption works by generating the same key stream on the receiver’s side, and apply-
ing the XOR operation to the ciphertext blocks, similar to the decryption process used
in the Vernam cipher. To avoid the duplicate usage of the same counter value in bidirec-
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IV ENC Block 0 ENC Block 1 ENC Block n
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Figure 2.15: CBC for decrypting messages

Keyblock 0 Keyblock 1 Keyblock 2

Keystream S
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Figure 2.16: CTR mode encryption
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tional communication, the counter can be combined with a sender-dependent nonce by
concatenation before encrypting the counter:

K0 = E(k, nonce||Ctr0)
K1 = E(k, nonce||Ctr1)

...
Ki = E(k, nonce||Ctri)

Ci = Ki

⊕
Mi

Cipher Feedback Mode (CFB)

CFB can be used to turn a block cipher into a stream cipher. Beside the block size b,
another parameter s determines the operation. s corresponds to the size of one transmis-
sion unit. For initialization, an unpredictable IV is set as input for the underlying block
cipher. Then, in every processing step a new transmission unit is generated by XORing
the smost significant bits of the output of the encryption function with the s bit message
unit. After that, the IV is shifted to the left and the gap is filled by the newly generated
character, as shown in Figure 2.17:

C[0] = E(k, IV [0 : b− 1])[b− 1 : b− s− 1]
⊕

M [0]
C[1] = E(k, IV [0 : b− s− 1]||C[0])[b− 1 : b− s− 1]

⊕
M [1]

...
C[n] = E(k, IV [0 : b−ns−1]||C[0]||C[1]||..||C[n−1])[b−1 : b− s−1]

⊕
M [n−1]

To decrypt, the same encryption function, IV and key is used to retrieve one trans-
mission unit at a time.

Output Feedback Mode (OFB)

This mode is very similar to CFB, but here the s bit output from the encryption function
is used directly to update the space caused by the IV left shift. This avoids error prop-
agation in case a transmission unit was damaged on transmit and thus a bit changed its
value: for OFB encryption systems, one or more bit errors in one ciphertext character
only affects the decryption of this character. In contrast, one bit error in CFB affects
decryption of all following characters.

O0 = E(k, IV [0 : b− 1])[0 : s− 1]
C[0] = O0

⊕
M [0]

O1 = E(k, IV [0 : b− 1]||O0)[0 : s− 1]
C[1] = O1

⊕
M [1]

...
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IV[1:b-s-1]

E(k,.)

C[0] IV[1:b-sn-1] C[0] ... C[n-1]

Figure 2.17: CFB Encryption

M[0] M[2]

E(k,.)

... M[n]

E(k,.)

IV[0:b-1]

C[0] C[1] C[n]

IV[1:b-s-1]

E(k,.)

C[0] IV[1:b-sn-1] C[0] ... C[n-1]

Figure 2.18: OFB Encryption

0n = E(k, IV [0 : ns− 1]||O0||O1||On−1)[0 : s− 1]
C[n] = On

⊕
M [n]

Integrity

All modes of operation introduced so far are used to provide confidentiality only. To
provide the second column of information security, i.e., integrity, in general MACs or
digital signatures are used. Digital signatures, based on public key cryptography, are
introduced in Section 2.5. In contrast, MACs use symmetric keys, providing integrity
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and authenticity.
The basic way to protect a data unit - be it a message traveling from a sender to a recipi-
ent or a file saved for later usage - from modification by a third party is to generate a tag
t, also called MAC, and concatenating this tag to the message, as shown in Figure 2.19.
Verifying the integrity is done by re-generating the tag and comparing it to the saved one.

In contrast to confidentiality modes, which should always be combined with a method to
guarantee integrity, integrity-only modes do have a right to exist. For example, archives
containing source code for open source project, available from the Internet, must not be
encrypted but should be secured against modification. For example, the UNIX based
operating system "FreeBSD" uses asymmetric keys to protect its package management
system from adversary modification.

Combining integrity and confidentiality in a security scheme called AE will be han-
dled in Section 2.4.

As tag generation and tag verification algorithms, keyed or unkeyed cryptographic se-
cure hash functions are used. For integrity-only, keyed hash functions must be used, or
otherwise an arbitrary entity can modify the message undetectable by regenerating the
correct tag. Therefore, a simple checksum like a Cyclic Redundancy Check (CRC) or
an unkeyed hash function can not provide integrity only, simply because the function
value can be re-generated by an adversary modifying the message, allowing to mount an
attack called MAC forgery. Nevertheless, in combination with a confidentiality mode
such an unkeyed function may be secure, although its use is discouraged because many
applications operating this way are broken and can be attacked (i.e., Secure Shell (SSH)
version 1 [27]).

A hash function takes as input an arbitrary large messageM and generates a hash value
t = h(M) of fixed size, therefore |M | >> |t|. This many-to-one mapping implies the
existence of collisions, i.e., the existence of distinct messagesm1,m2 which are mapped
to the same tag t.

To be cryptographically secure, a hash function must fulfill specific properties [28].
Firstly, it should be easy to generate the tag by calculating t = h(m). Reversing the
process to get m by executing h(t)−1 should be hard, a property called preimage re-
sistance. Additionally, 2nd-preimage resistance assures that for any given message m
and corresponding tag t, it must be infeasible to find a second message that maps to the
same tag. Finally, (strong) collision resistance states that it also must be infeasible to
find any two messages generating the same tag, therefore collision resistance implies
2nd-preimage resistance [29].
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Message M t

t=h(M)

Figure 2.19: Tag generation

Important representatives of cryptographically secure hash functions are the family of
Standard Hashing Algorithms (SHAs), with variants providing hashes of 160, 256, 384
or 512 bit length, defined by NIST [30]. For SHA-1, an attack to find collisions was
found [31] and should therefore not be used anymore.
Because these hash functions lack a secret key and therefore would allow MAC forgery,
a construction called Keyed-Hash Message Authentication Code (HMAC) can be used,
which takes additionally to the message m as input a key k, and ipad and opad being
constant values [32].

t = S(k,m) = h((k
⊕

opad)||h((k
⊕

ipad)||m)) (2.4)

A different way for tag-generation, called CBC-MAC, is based on block ciphers, utiliz-
ing a construction similar to CBC mode encryption, shown in Figure 2.20. Here, F (k, ·)
denotes any block cipher of suitable size.

2.4 Authenticated encryption
Many applications demand the integration of confidentiality and integrity modes. The
need for confidentiality is self explaining in systems where submitted data must be pro-
tected from a passive adversary. One example would be a password for logging into a
remote computer, sent over a network connection - just by monitoring the connection,
an attacker can steal the password and gain illegitimate access to the system.

The need to additionally provide integrity and authenticity measurements is maybe not
that obvious, but can be motivated in various ways. For example, two entities sharing
an initial key known to both of them which want to negotiate a temporary session key
could randomly choose the temporary key, encrypt it and send it to the other side. Even
if a passive adversary knows that the package he monitors will be used as session key
he cannot derive it, provided a secure cipher is used. In contrast, an active attacker can
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IV MSG Block 0 MSG Block 1

F(k,.) F(k,.)
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F(k,.)

tag t

Figure 2.20: CBC for generating a MAC

intercept and modify the encrypted session key, and afterwards inject the modified mes-
sage. The receiver would then decrypt the package, thus obtaining a modified session
key. After all, the two entities would use two different keeps, crippling their communi-
cation.

To avoid that attacks, methods to provide encryption and integrity are combined. Basi-
cally, 3 different ways how this can be achieved exist:

• "encrypt-and-mac" encrypts the message m and appends the tag t of the cleartext
message

c = E(ke,m)||h(kh,m) (2.5)

• "mac-then-encrypt" generates the tag for the cleartext message m, appends it and
afterwards encrypts cleartext + tag to get ciphertext c:

c = E(ke,m||h(kh,m)) (2.6)

• "encrypt-then-mac" encrypts the message m first, and afterwards appends the tag
t of the encrypted message to obtain c

c = E(ke,m)||h(kh, E(ke,m)) (2.7)

For all 3 schemes, E(k,m) must be a semantically secure encryption function, and
h(k,m) denotes a keyed, cryptographically secure hash function. The latter is of par-
ticular importance for "encrypt-and-mac", because this scheme otherwise directly leaks
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information about the plaintext in the tag.
As general, cryptographic data should always be authenticated first. Only if authenticity
can be verified, the encrypted data should be processed further. Following this rule, it
turns out that only "encrypt-then-mac" is considered generically secure against chosen
plaintext attacks. "Encrypt-and-mac" [33], used in SSH, is considered generically inse-
cure. For "mac-then-encrypt", used in Secure Sockets Layer (SSL), the same holds true,
but this scheme can be used in a secure manner if CBC or a stream cipher like CTR
mode is used for encryption.

CCM
Counter with CBC MAC (CCM) [34] combines CBC for authentication with CTR for
encryption for 128 bit blocks. CCM generates the MAC for the message first, appends
this MAC to the cleartext data and afterwards encrypts data and MAC with counter
mode, thus using a MAC-then-Encrypt scheme. While authenticated encryption modes
using this scheme may be vulnerable to padding oracle attacks [35], CTR effectively
avoids these attacks simply because there is no padding needed.
Two application dependent parameters which are part of the CBC IV can be chosen. The
first parameter determines the length of the MAC field which allows to reduce overhead.
The second parameter allows a trade-off between the maximum message size and the
size of the nonce (i.e., the maximum number of messages which can be protected with
the same key).

2.5 Public key cryptography
Public Key Cryptography solves the problem of establishing a secure channel by using
an insecure one. Here sender and recipient use two different keys: one for encryption,
called public key, the other for decryption, called private key. This key pair belongs
together, hence this scheme is also called asymmetric encryption. A fundamental re-
quirement is that it must be hard to derive the decryption key from the encryption key.
This behavior is achieved by some kind of public known one-way function where it is
computationally easy to calculate the result of f(x) = y, but only given y, it is com-
putationally - in the domain of processing power and/or memory - hard to reverse this
function to get x. The basic idea for such a one-way function was formulated for the
first time in the year 1874 by William Stanley Jevons stating:

"Can the reader say what two numbers multiplied together will produce the number
8616460799? I think it unlikely that anyone but myself will ever know." [36]

Although his statement was not related to cryptography at all, and of course factoring
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of much bigger numbers is doable nowadays, this statement exactly describes the spirit
of public key systems. The security of RSA, introduced below, is directly connected to
the inability to factor large numbers in reasonable time.
Because disclosure of the public key does not affect the security of the scheme, the
public key can be published in some sort of dictionary. An entity wanting to send an
encrypted message to a receiver can then look up the receiver’s public key, encrypt the
message and send the resulting ciphertext to the recipient, who then can decrypt the
message.

It is remarkable that any algorithm establishing public keys must authenticate its partic-
ipants, or it will be vulnerable to man-in-the-middle attacks.

Merkle puzzles
In [37], Ralph C. Merkle developed an algorithm for key exchange between two parties.
While the algorithm is based on symmetric ciphers and is not practicable, it motivates
the usage of public key systems based on algebraic structures and is therefore intro-
duced.

The basic idea is that the necessary work by the two legitimate parties when negoti-
ating a key is bounded by O(n), while an adversary must spend O(n2) to also calculate
the key, thus generating a quadratic gap. Merkle defines a puzzle as ciphertext that is
supposed to be broken. This can be achieved by restricting the size of the symmetric
key used such that an exhaustive search can be finished in feasible time. Every puzzle
contains an id and a session key, both chosen randomly, as well as a static string, known
to all participants.
The party initiating the key exchange, called X , generates n such puzzles and sends all
of them to the receiver Y . Y picks one puzzle at random and decrypts it by trying all
possible keys. Because of the static string inside the puzzle, Y knows for sure when the
correct key has been tried. Y then extracts the session key and sends the corresponding
id back to X . Subsequently, both parties can use the session key referenced by the id
for encryption. An eavesdropper Z, monitoring all puzzles, cannot directly determine
which of them is containing the returned id and therefore does not know the session key
the two parties agreed on - the only possibility for Z is to attack all puzzles, squaring
the effort spent by X and Y .
If, for example, one puzzle can be broken by 232 computations, and 232 different puz-
zles are used, X must prepare, save and send 232 puzzles to Y , who in turn must try 232

different keys. Z must crack all 232 puzzles, each with effort 232, thus resulting in 264

processing steps.
While this algorithm is very wasteful in regards of processing power, memory and com-
munication capacity, such a protocol would be useful if a more-than-quadratic blowup
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could be achieved. Unfortunately, for all algorithms based on symmetric ciphers, a
quadratic gap is the best that can be achieved, as shown in [38].
To further increase the effort an attacker has to spend a different approach has to be
found. It turns out that hard mathematical problems exist that are suitable for such a
purpose.
Therefore, in the next sections three important public key algorithms are introduced: D-
H key exchange, based on prime fields, Elliptic Curve Cryptography (ECC), and RSA.

D-H key exchange
Whitfield Diffie and Martin Hellman proposed a way to solve the problem for key-
exchange based on finite fields in the year 1976 [39]. The algorithm enables two entities
to agree on a shared secret which never has to be transmitted between them. The secu-
rity of their original algorithm is based on the hardness of the DLP, as shown in 2.2.

With the original D-H algorithm, 2 entities - A and B - use exponentiation over fi-
nite fields to agree on a shared secret, which then can be used parametrize a block or
stream cipher. The first step for both entities is to agree on the set of parameters {p, g},
where p is a large prime and g is a generator of the cyclic group Zp∗. These parameters
are not secret and can thus be sent over an unsecured channel. Additionally, each en-
tity randomly chooses an integer x from the interval (1, p− 2], and calculates the value
y = gx (mod p). x is the private key, y, which is computationally easy to calculate, is
the public key. A sends its public key yA ≡ gxA (mod p) to B, and B its public key
yB ≡ gxB (mod p) to A. Due to the characteristics of exponentiation, A and B can
now easily derive the shared secret by using its counterpart’s public key and raising it to
the power of its own private key in the domain of Zp∗:

kB ≡ yA
xB ≡ (gxA)xB ≡ gxA∗xB (mod p)

=
kA ≡ yB

xA ≡ g(xB)xA ≡ gxB∗xA (mod p)

An eavesdropper that intercepts the initially sent parameter set {p, g} and the public
keys yA and yB and that wants to calculate the shared secret kA = kB must therefore
calculate the discrete logarithm of yA or yB to the base p, i.e., must solve the DLP, a
hard problem as shown in Section 2.2.

ECC
The D-H protocol can be based on different kinds of cyclic groups. Koblitz and Miller
independently proposed the usage of cyclic groups based on ECs [40] [41]. See Section
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Figure 2.21: D-H Round 1

2.2 for the theoretical introduction. These cyclic groups are receiving increased impor-
tance in cryptography because they allow the usage of shorter keys compared to D-H
over prime fields or RSA, while providing the same level of secrecy.
To build a public key system, two usersA andB initially agree on a set of public domain
parameters. The most important parameters are [42]

• the order of the field, q

• the coefficients a, b ∈ Fp, defining the EC

• the coordinates (xp, yp ∈ Fp) of the base point P ,

• the order of P , denoted n

After agreeing on this set, A selects a randomly chosen integer kA, calculates PA = kA∗
P and sends this point to B, who in turn randomly chooses kB and sends PB = kB ∗ P
toA. Subsequently, both can calculate the point kA∗kB ∗P , which can be used to derive
a key.

Multi-party key negotiation
D-H and therefore also the ECDLP can be generalized to n parties, obtaining one key in
common. The key negotiation procedure for three parties, using classical D-H, is shown
in Figures 2.21 and 2.22, where it is assumed that all three parties A, B and C already
agreed upon (p, g). After finishing the second communication round, every party raises
the last received value to its own private key and thus derives the shared secret.

((gb)c)a = ((gc)a)b = ((ga)b)c = ga∗b∗c (2.8)

For n parties, (n − 1) communication rounds are used. Obviously, this algorithm may
not be practicable for a large n. Additionally, a complete new run must be executed
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Figure 2.22: D-H Round 2

whenever a new node joins.
Additionally, this key agreement mechanism (as well as all others presented so far) uses
no authentication and is therefore vulnerable to active attacks.

RSA
RSA, published in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman [43] and
formalized in [44], relies on the hardness of finding the prime factors of a big composite
number. In contrast to D-H, RSA is no to key agreement algorithm but can instead be
used to encrypt and sign messages.
For key generation, two large primes p, q, which should be of about same size, are cho-
sen randomly, with N = pq. Additionally, a public exponent e and a private exponent d
are chosen such that they are multiplicative inverses to each other in (mod ϕ(N)):

e ∗ d ≡ 1 (mod ϕ(N)) (2.9)

ϕ(N), Euler’s totient function, counts the number of integers in the interval [1, N ] which
are relatively prime to N . For a prime p, ϕ(p) = (p− 1), therefore for the product p ∗ q
of two different primes, ϕ(p ∗ q) = (p − 1) ∗ (q − 1). Additionally, Euler’s theorem is
used:

aϕ(N) ≡ 1 (mod N) (2.10)

The public key consists of the pair (N, e) and the private key of the pair (N, d). In
practice, for the public exponent e the numbers 3, 5, 17, 257 or 65537 are suggested [45],
a suitable d satisfying Equation 2.9 can then be found by using the extended Euclidean
algorithm.
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Encryption and decryption of messages

To encrypt, the message M must be converted to an integer. Then, the sender uses the
recipients public key and raises M to the power of e (mod N):

C ≡M e (mod N)

To decrypt, the receiver uses his own private key to raise C to the power of d (mod N):

M ′ ≡ Cd ≡Md∗e mod N (2.11)

From the way e and d have been chosen in Equation 2.9 it follows that

e ∗ d = k ∗ ϕ(N) + 1, k ∈ Z (2.12)

Inserting Equation 2.12 in Equation 2.11 yields

M ′ ≡Mk∗ϕ(N)+1 ≡M ∗Mk∗ϕ(N) (mod N) (2.13)

By using Euler’s Theorem 2.10, Equation 2.13 shows that M = M ′, i.e., decryption
yields the correct value because

M ′ ≡M ∗Mk∗ϕ(N) ≡M ∗ (Mϕ(N))k ≡M ∗ 1k ≡M (mod N).

Digital signatures
Digital signatures are, as its symmetric-key MAC counterparts, used to provide integrity.
Most digital signature schemes are based on cryptographically secure hash functions, so
the same requirements as listed in Section 2.3 must also hold here.

Nevertheless, due to the use of asymmetric keys, an important semantic difference be-
tween MACs and digital signatures emerges: for a MAC a key is shared by at least 2
entities. A digital signature, in contrast, is generated by utilizing the private key of an
entity, which is not thought to be shared with other entities. Therefore, digital signatures
can also provide non-repudiation. This property allows to convince an unbiased "judge"
that a message, signed by the sender, was indeed sent by this sender, i.e., the message
was not forged by a third party. This is an important difference to MACs, where such
an assessment is not possible.

Signatures based on RSA

By ’reversing’ the encryption process, the RSA algorithm can also be used to generate
signatures of a message. This is typically achieved by generating a hash value of the
message and encrypting that hash with the private key. The signature is then attached
to the message. Afterwards, every entity can verify the integrity by decrypting the
signature with the public key of the sender, calculating of the hash of the message and
comparing it to the decrypted hash.
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Elliptic Curve Digital Signature Algorithm (ECDSA)

Based on the idea of Scott Vanstone, this signature algorithm is the ECC variant of the
Digital Signature Algorithm (DSA), standardized by NIST [46]. Analog to the ECDLP,
as shown in Section 2.2, the domain parameters are public knowledge. The signer of
the message chooses a random integer k and obtains the coordinates (xQ, yQ) of the
new point Q by multiplying the base point P with k. Afterwards, xQ is converted to an
integer, obtaining r = x′Q (mod n). Finally, by using his private key d, s is calculated:

s ≡ k−1(h(m) + dr) (mod n) (2.14)

This results in the tuple (r, s), i.e., the signature of m, where h(m) denotes a crypto-
graphically secure hash function.

The receiver of the message can use the domain parameters and signature to verify
the integrity by calculating:

x′ ≡ s−1(h(m)P + rQ) (mod n)

x′ ≡ s−1(h(m)P + rkP ) (mod n)

x′ ≡ P (s−1(h(m) + rk))︸ ︷︷ ︸
k′

(mod n)

x′ is converted to an integer and reduced (mod n) to obtain r′. If r = r′, the signature
is accepted, proving the authenticity of the message.

2.6 Summary
It showed that when designing a cryptographic extension, both integrity and confiden-
tiality must be honored. Additionally, the findings suggest that such an extension will
most likely exist of a mixture of symmetric and asymmetric schemes. To keep key size
small without harming security, ECC qualifies itself for key negotiation. Using CTR
mode of operation is a way to avoid unnecessary overhead, while AES serving as block
cipher is likely the best choice.
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CHAPTER 3
Availability

3.1 Introduction
Availability measures the delivery of correct service as a fraction of the time that the
system is ready to provide a service.
The services provided by the system through its service interface to the user(s) is de-
scribed by the functional specification. Whenever the provided service deviates from
correct service a system failure, called outage or downtime1 occurs. A failure is defined
to be caused originally by a fault inside the system, which may be dormant. Under
special conditions, the fault may become apparent and lead to an error. Faults can be
categorized into random and systematic faults. Random faults are unpredictable and
concern hardware: for example, because of aging a memory cell can be damaged, but
the fault may be hidden because the cell is not used. Software and design faults belong
to systematic faults. Similar to a damaged memory cell, a software bug may only trigger
an error under special inputs. In both cases, the error then causes a deviation from the
required operation of the system or a subsystem. Finally, the error can cause a failure if
the system fails to provide the correct service:

fault→ error → failure

Availability is measured subjectively from the system user’s point of view. While an
optimal system may have availability of 1, this value is only of theoretical value be-
cause random faults can not be ruled out. Therefore, system failures are inevitable, and
availability is often given in x-9s2 notation, denoting the number of nines in the time

1in contrast, uptime does not guarantee correct service - for example, a server can be ’up’ but un-
reachable

2read ’one-nine’, ’two-nines’, ...
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Figure 3.1: Relationship between MTTF and MTTR

x Pavailability failure duration per year
1 90,0000 36 days
2 99,0000 3,5 days
3 99,9000 9 hours
4 99,9900 1 hour
5 99,9990 5 minutes
6 99,9999 31 seconds

Table 3.1: Availability in x-9 notation

fraction the system delivers correct service, as shown in Table 3.1. The availability may
be asserted by the provider of the system to the customer by a Service Level Agreement
(SLA) - if the SLA is violated, the provider may be fined.

For a system with 6-9 availability, this would mean that the system provider assures
that the system will be unavailable not more than about 31 seconds over a whole year.

Availability is important simply because unavailable systems are costly. Because of
the relation of availability to reliability and the maintainability of the system, as shown
in Equation 3.1 and Figure 3.1, two options to improve availability exist: either increas-
ing the Mean Time To Failure (MTTF) (i.e., increasing reliability) or decreasing Mean
Time To Repair (MTTR).

PAvailability =
tcorrect service

ttotal
=

MTTF

MTTF +MTTR
(3.1)

Reliability measures the probability that the service will work as expected until time t:

R(t) = e−λ(t−t0) (3.2)

Equation 3.2 is known as the exponential failure law, λ denotes the failures per hour,
its inverse 1

λ
is called MTTF. Reliability can also be expressed in terms of unreliability,

41



Figure 3.2: Model of a series system

denoted Q(t):

Q(t) = 1−R(t) (3.3)

Maintainability measures the time that is needed to repair a system, with µ denoting the
repair rate and 1

µ
called MTTR.

Every system will most likely consist of different and distinct components, each with
its own reliability and failure rates. The final system will possess an overall reliability,
determining its availability. To model the resulting system, the components will be put
together in a mixture of serial and parallel systems. For example, if all i components,
ranging from 1 to N , are necessary to work correctly for the overall system to deliver
correct service, this can be modeled as a series system, see Figure 3.2. This does not
mean that the components are necessarily connected in a serial way, it just stresses that
failure of one single components breaks the whole system. System’s reliability then
equals the product of all component’s reliabilities:

Rsystem(t) =
N∏
i=1

Ri(t) (3.4)

In contrast, a system containing redundant components, failure of one such component
must not produce an outage of the overall system. This can be modeled as a parallel
system (as shown in Figure 3.3). Here, the overall reliability can be calculated as given
in Equation 3.5.

R(t)system = 1−
N∏
i=1

(1−Ri(t)) = 1−
N∏
i=1

Qi(t) (3.5)

Mixed systems, containing paralell and series system, can be calculated by iteratively
condensing serial subsystems or parallel subsystems into single components, as shown
in Figure 3.4.

High Availability (HA) characterizes a system that is designed in a way to avoid out-
ages, or in case of a failure that can be repaired in shortest possible time. The level of
the needed availability depends on the environment of the system and must be weighted
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Figure 3.3: Model of a parallel system

Figure 3.4: Condensing a mixed system

against the additional costs, introduced by improving availability. Therefore, no hard
definition for HA can be given - it is a design goal and depends on the context. Avail-
ability requirements will most certainly be higher for systems in safety-critical require-
ments. A safety-critical system must not fail, otherwise endangering human lives or
causing substantial economic loss or environmental damage [47]. On the other side,
systems that will produce only minor costs when not operating correctly will probably
have to meet less stringent availability levels.
For example, our society heavily depends on electric power supply, an outage is nearly
unacceptable. On the other side, it is impossible to guarantee 100% availability, so if a
power outage occurs, the system must be fixed as soon as possible to restore correct ser-
vice, otherwise risking human lives. On the contrary, a booking system will obviously
result in financial losses for the company if not working, but no more serious conse-
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quences are to be assumed.

This work’s focus lies on security-critical systems, increasing availability of KNX net-
works, but restricting its deployment to environments without safety-critical needs.
Thus, safety criticality is neglected here because of its most stringent demands, as
needed in avionics or weapons systems. The difference between safety-critical and
security-critical systems can be given as follows [48]: safety means that software must
not harm the world (i.e., containment), while security means that the world must not
harm software (i.e., protection).

3.2 Failure avoidance
Different strategies exist to handle faults, thus trying to avoid that a fault propagates
through the system and finally leads to a system failure. These strategies are introduced
in the next section.

Fault Removal
Fault removal tries to identify faults by testing the system before its deployment.
Therefore, the system is exposed to test cases, which ideally would cover all possible
internal states. Whenever a failure occurs, the erroneous state is identified, the underly-
ing fault is removed and a new testing cycle begins.
A problem about this approach is the huge test space that for even simple systems would
be required to iterate through. Therefore, the method suffers from the very fundamental
dilemma that testing never can prove that a system is fault free.

Fault avoidance
Fault avoidance aims at producing a system which is fault-free per design and is applied
at the design stage of the system. Despite the methods for achieving fault avoidance can
be applied in the domain of software and hardware, they can not guard against transient
hardware faults occurring after the system is deployed.
Fault avoidance is based on two distinct processing steps: validation and verification.
Validation is used to show that the specification, which is the basis of system imple-
mentation, matches the real world within reasonable borders. This is necessary because
every human built system uses an abstraction of the real world, thus simplifying the
model.
In contrast, verification assures that the system indeed matches the specification. In
other words, validation tries to answer if the correct system was built, while verification
is concerned about to build the system correctly.
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Formal methods can be be utilized for verification if the system model is available in a
formal language. The formal properties of the specification can then be checked auto-
matically against a finite-state model of the system, a method called model checking.
While automatic validation can prove that the resulting system is correct in regard to the
specification, a big problem here is to obtain the formal properties out of an informal
specification.

Obviously, both fault removal as well as fault avoidance cannot handle deliberately
introduced faults, caused by an active adversary. Additionally, they cannot deal with
hardware errors - therefore it is argued that fault tolerance is the only practical way to
guarantee availability in a hostile environment (i.e., an environment where active attack-
ers are assumed to exist and therefore DOS attacks cannot be ruled out), as well as to
protect against random hardware errors.
Consequently, the proposed solution will be based on fault tolerance to achieve HA,
which will be examined more detailed.

Fault tolerance
Fault tolerance tries to ensure correct service despite the occurrence of faults and is
achieved through error detection and subsequent system recovery. To enable error detec-
tion, redundancy is added to a system and thereby the system’s complexity is increased.
This can be achieved both in the domain of hardware and software.
The basis of the design of fault tolerant systems is the definition of a fault hypothesis,
stating which faults must be tolerable by the system, thus dividing the fault state into
normal faults and rare faults (i.e., faults not covered by the fault hypothesis). Normal
faults can be corrected by the fault-tolerance mechanism.

Fail-silent fault tolerance

Fault tolerance can be achieved based on fail-silent components. A fail-silent compo-
nent either works correctly, i.e., outputs correct values, or does not output any values at
all [49]. By duplicating such a module and comparing the outputs, fault tolerance can
be achieved by cutting off the faulty module from the system.
This method is used for example for Redundant Array of Independent Disks (RAID)
based date storage3. For RAID level 1, all data to be stored is duplicated to two in-
dependent disks. In case a hardware failure of one drive is detected, the data can be
accessed from the second drive. This method does obviously not work if both drives

3Although the logic distributing the data chunks to different devices can be built in hardware or in
software, i.e., the operating system, RAID always relies on redundant disks
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seem operable, but one drive outputs bogus data, i.e., it is not acting fail-silent. To han-
dle this situation, higher redundancy levels are needed, as implemented for example in
Triple Modular Redundancy (TMR).

TMR

A TMR system, see Figure 3.5, is composed out of 3 modules or black boxes, all per-
forming the same task, and one majority organ V , as proposed by John von Neumann
[50]. The latter element is also called voter because out of its 3 inputs, it chooses the
’correct’ output based on majority voting. As long as at least 2 black boxes do not fail,
the system can provide correct service. If it is assumed that the voting element has
perfect reliability = 1 and all black boxes M are independent from each other and have
reliability RM , the overall, time-invariant system’s reliability is given in Equation 3.6
[51] and plotted in Figure 3.6

Rsystem = RM
3 + 3RM

2(1−RM) = 3RM
2 − 2RM

3 (3.6)

It can be seen that if RM ≤ 0.5, overall reliability even gets worse, while for compo-
nents reliabilities nearly being unit, very high system reliability can be achieved.

The concept of TMR can be generalized to n devices performing the same operation. In
most cases n will be odd, so failure of up to n−1

2
modules can be tolerated.

3.3 Fault tolerant technologies
In the next sections, communication protocols based on Ethernet, satisfying the needs of
industrial communication networks, are examined. Beside the need for high availability,
industrial production lines are sensitive against network disruptions. While, depending
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Figure 3.6: Reliability of resulting system

on the application domain short interruptions in the range of milliseconds to seconds
may be tolerable, longer outages will force emergency stops or even cause damage.

Network redundancy
Communication networks can be modeled as graphs. A graph, as shown in Figure 3.7,
is an ordered pair G = (V,E), with V being the set of vertices and E the set of edges,
connecting the vertices. For a weighted graph, every edge is associated to a cost.
A closed walk or cycle exists if a path from one vertex to itself exists, resulting in
multiple paths from one node to others. Such a network possesses intrinsic redundancy,
a fact that can be exploited to gain fault tolerant systems.
If the graph is undirected, every line determines a bidirectional communication link.
A spanning tree of graph G is a subgraph T , possessing all vertices V but only a subset
of the edges E ′ ⊆ E such that all vertices are reachable, but no loops exists. In the case
of a weighted graph, the weight of the spanning tree is the sum of all existing edges.
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Spanning Tree Protocol (STP)

The widely used Institute of Electrical and Electronics Engineers (IEEE) 802.3 Ether-
net standard was not designed with high availability in mind. Nevertheless, it already
provided basic fault tolerance mechanisms based on the IEEE 802.1D STP.

In typical Ethernet installations, depending on the network topology different nodes
may be reachable through different paths, i.e., physical loops may exist. Switches, op-
erating at Open System Interconnection Model (OSI) layer 2, are responsible for loop
detection and loop prevention. They must logically disconnect such loops by blocking
the corresponding ports to protect the network, as required by the Ethernet specification,
because multicast or broadcast traffic, generated by one of the connected devices, will
be forwarded by all switches on all ports (except the incoming ports). This would flood
the network until no regular communication will be possible any more.
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Figure 3.8: Protecting Ethernet segments from loops with STP

This situation is shown in Figure 3.8: on the left side, the physical connections
are shown, containing loops. STP removes the loops by setting certain interfaces to
blocking mode, connected by dotted lines, as shown on the right side of Figure 3.8.
The algorithm works as follows:

• The first step of the STP algorithm is to nominate one device as root bridge4.
This can be done manually by the network administrator, or dynamically through
the exchange of packets containing a priority. All switches will agree on lowest
priority device as root bridge, additionally using the unique hardware Medium
Access (MAC) address if collisions occur. The root bridge sets all interfaces to
forwarding mode.

• Afterwards, every switch determines the path with minimal costs for reaching the
root bridge. The cost of every connection can be determined by the link speed or
configured by the network administrator manually.

• Finally, all devices except the root bridge set the ports belonging to the minimal-
cost path to forward mode. All other ports are set to blocking mode, thus remov-
ing any loops.

If a connection is lost and an Ethernet segment is not reachable any more, the STP,
although not primarily designed for that tasks, can be used to handle that fault. Nodes
affected by the link-change report that event to the root bridge, so that the network can

4The terms switch and bridge are used synonymously, with the major difference that switches can
break network segments into multiple subsegments through Virtual Local Area Networks (VLANs)
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be re-configured and a different path can be established, thus re-connecting the unreach-
able segment and providing fault tolerance.

A big drawback of this mechanism is the topology-dependent time needed for network
re-organization. While in simulations delays of millisecond magnitude can be achieved
[52], in practice link recovery can take up to one minute which is not acceptable for
many industrial environments. An improvement was achieved with IEEE 802.1w Rapid
Spanning Tree Protocol (RSTP) and a variety of different proprietary protocols, not
compatible to each other, but still no sufficient recovery times were achieved [53].

IEC 62439

As it turned out that the mechanisms based on STP and its variations were not suffi-
cient for many applications, the family of IEC 62439 standards was defined. IEC 62439
introduces a set of Ethernet extensions, assuring high availability and enabling its de-
ployment in industrial applications. Three extensions are introduced below.

Media Redundancy Protocol (MRP)

After IEC 62439-1 specifying basic definitions, the second draft introduced MRP which
confines network outages to less than 500ms [54]. This is achieved by restricting the
valid topologies to ring-only, so all switches are connected to the network by 2 inter-
faces. All switches, beside the ring manager, forward all traffic received, while the ring
manager opens the loop logically by setting one of its interfaces to blocking mode. In
this mode, all packages except management messages are discarded. The ring manager
detects a failure by periodically sending test management messages in both directions.
Additionally every node is able to detect a link failure on its local ports. It then sets the
port to blocking and signals this link failure to the ring manager which opens its second
port by setting it to forward mode and therefore reconnects the unreachable segment.
MRP does not rule out package loss in case of a failure, therefore it can be seen as
improved RSTP for ring topologies.
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Parallel Redundancy Protocol (PRP)

In 2010, IEC 62439-3 defined a first version of PRP and High Availability Seamless
Redundancy (HSR), both suitable for hard real-time systems 5 [55].
In 2012, IEC 62439-3 was revised, defining new versions of PRP and HSR. The basic
ideas behind both protocols remained unchanged, so the latest versions are described
below.

PRP can tolerate a link fault without packet loss by utilizing two redundant and inde-
pendent Local Area Networks (LANs). Nodes needing high availability, called Doubly
Attached Node with PRP (DANP), are connected to both networks by two interfaces,
sharing the same MAC and IP addresses. Additionally, standard Ethernet devices called
Single Attached Node (SAN) can be connected to only one network, enabling commu-
nication with devices on the same LAN only. An example of such a network is shown
in Figure 3.10.
To support redundant connections for DANPs, a sub-layer on OSI-layer 2 (i.e., the link
layer), called Link Redundancy Entity (LRE) is defined. Upper level data arriving at the
LRE of a DANP is duplicated and equipped with 6 bytes of control information, con-
taining a 2 byte sequence number, LAN number, length information and a static suffix
identifying the Link Service Data Unit (LSDU) as PRP traffic. The sequence number is
used for duplicate detection: every node uses one global counter Ctrglobal for outgoing
messages, not discriminating the receiver. For every packet sent, the sequence number
is incremented. Additionally, every node maintains distinct counter values Ctrsource
for every unicast source-address it receives messages from, as well as for multicast and

5hard real-time characterizes a system where missing of a dead line may result in a catastrophic event
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broadcast messages.
On the receiving side the PRP traffic is detected because of the suffix, duplicates can
be discarded by utilizing the sequence number [56]. The standard does not dictate how
this must be achieved, it only demands that legitimate packages must not be discarded.
Because of the short global outgoing sequence number, duplicates may not be detected
as such - responsibility for final detection is delegated to upper layers.

HSR

HSR is based on ring-topology, but it also allows to connect HSR and PRP networks,
different HSR rings or even to build a ring of rings. Every node is connected to the
network by two interfaces, duplicating data from upper layers and sending one copy in
clockwise, the other copy in counter-clockwise direction, thus eliminating the need for
duplicated networks but wasting about half of the available bandwidth [57].

3.4 Summary
To increase availability, the MTTF has to be minimized by handling faults. When in-
vestigating different techniques to handle them, it turned out that the only possibility
to handle malicious as well randomly happening transient faults is by applying redun-
dancy. Because the KNX specification forbids ring topologies, using intrinsic network
redundancy is not possible. Therefore, similar to PRP, some kind of redundancy must
be artificially introduced to be able to improve availability.
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CHAPTER 4
KNX

4.1 Introduction
KNX1 implements a specialized form of automated process control, dedicated to the
needs of HBAS. KNX emerged from three leading standards namely the European In-
stallation Bus (EIB), the European Home Systems Protocol (EHS) and BatiBUS. It is an
open, platform independent standard, developed by the KNX Association implementing
the EN50090 standard for home and building electronic systems.
To provide platform independence, the standard uses a layered structure, based on the
International Organization for Standardization (ISO) / OSI. Different kinds of physical
backends are supported, allowing its use in different environments.
EIB already supported interoperability between products from different manufacturers.
This was achieved by the definition of the EIB interworking standard (EIS), which stan-
dardizes the data transported inside the datragrams. KNX continued these efforts with
the introduction of common Data Point Types (DPTs), distinguishable through unique
IDs, thus standardizing their encoding, format, range and unit. Every DPT groups re-
lated Data Points (DPs), the actual control variables of the network together.
For example, every KNX certified manufacturer producing a switching actuator must
use the defined dataformat - an end-user can therefore exchange such an actuator with-
out caring about compatibility issues. For configuration and parametrization of the de-
vices, a Windows based software suite called Engineering Tool Software (ETS) is used,
which also offers a bus monitor for debugging.

1connexio, latin for connection
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Figure 4.1: OSI Layer Model, compared to the KNX Model

4.2 KNX layers
The OSI standardizes the communication between different, independent systems by
grouping the needed functions into 7 sublayers to provide interchangeability and ab-
straction. Every layer provides services to its next-higher layer, and uses the services
provided by its next-lower layer. Every service is defined by standardized interfaces -
that way any layer can be modified internally without compromising the function of the
system, as long as the defined interfaces are implemented. This fragmentation of one
service follows the paradigm of divide et impera2 and facilitates the building of complex
systems by dividing one complex problem into subsequent, less-complex problems.
KNX implements this model, omitting layers 5 and 6, as shown in Figure 4.1. Data
from applications are directly passed to the transport layer in a transparent way, and
vice versa.

Physical layer
This is the lowest layer as defined by OSI and determines the basic transmission pa-
rameters like symbol rate, signal form but also mechanical characteristics like which
connectors are used.

To provide flexibility in KNX, four different physical media are defined. TP-1 which
was inherited from EIB, and is the successor of TP-0, as defined by BatiBUS, is the
basis medium, consisting of a twisted pair cabling. Data and power can be transmitted
with one pair, so low-power devices can be fed over the bus. Data transfer is done asyn-

2latin for: divide and rule
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chronously, with bidirectional, half-duplex communication and a datarate of 9600 bits
per second (bps). TP-1 uses collision avoidance, and allows all topologies beside rings.
Because this work is based on the TP1 - part of KNX only, this medium will be ex-
plained in more detail in the next section.

PL110, which was also inherited from EIB, uses power line installations for commu-
nications. The carrier uses spread frequency shift keying, and can be used for bidirec-
tional, half duplex communication with an even lower data rate of 1200 bit/sec. KNX
Radio Frequency (RF) is used for short range wireless communication at 868,3 MHz.
KNXnet/IP allows the integration of KNX into networks using IP for communication.
Here, three different communication modes are defined: tunneling mode is used for
configuration and monitoring a client device by a KNXnet/IP server. Routing mode is
used for connecting KNX lines over IP, while KNX IP is used for direct communication
between KNX devices. [58]

TP-1

The accurate name for this medium is ’Physical Layer type Twisted Pair’, with variants
PhL TP-1-64 and PhL TP-1-256, which are backward compatible to the former one.
While the first one allows the connection of up to 64 devices, the latter one allows up to
256 devices connected in a linear, star, tree or mixed topology as one physical segment,
also called a line.
Bridges do not possess their own address and are used for galvanic separation of physi-
cal segments and for extension of TP-1-64 segments to allow up to 256 devices. There-
fore, they acknowledge layer 2 frames received on one side and forward them to their
second interface.
Routers have their own address space and only forward packages received on one side if
the destination address is located on the other side of the router. As well as bridges, they
can be used for galvanic separation and they acknowledge frames on layer 2. A Line
Coupler (LC) is a router that integrates up to 16 lines into one logical object called area.
A Backbone Coupler (BbC) is a router that connects up to 16 areas to one network, thus
providing the maximum size of a network consisting of 65536 devices:

• up to 256 devices per line

• up to 16 lines per area = 4096 devices in 16 lines

• up to 16 areas for whole network = 655363 devices in 16 areas
3It is to be noted that the actual number of usable devices is smaller because routers have their own

address
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Figure 4.2: Control Field

Gateways are used to connect KNX networks to non-KNX networks.

A logical ’1’ is regarded as the idle state of the bus, so the transmitter of the Medium Ac-
cess Unit (MAU) is disabled when sending a ’1’, i.e., the analog signal on the bus con-
sists only of the DC part. TP-1 uses Courier Sense Multiple Access (CSMA)/Collision
Avoidance (CA) for bus access, so every device must listen to the bus and is only al-
lowed to begin sending when the bus is idle. In the case of a simultaneous transmission
start, a logical ’1’ of one device will eventually be overwritten by a logical ’0’ of the
other device. The overruled sender will detect this by continuously checking the state
of the bus and has to stop transmission. This behavior is be used to implement priority
control and is exploited by the next layer.

Data link layer for TP1
This layer is responsible for error detection, retransmission of corrupted packages, fram-
ing of the higher level packages into suitable frames and accessing the bus according to
the rules used by the particular bus medium. It is often broken into 2 distinct sublayers,
namely the MAC as bus arbiter and the logical link control (LLC), providing a reliable
point-to-point datagram service. Three frame formats are defined: L_Data frames are
used for sending a data payload to an Individual Address (IA), a group address or for
broadcasting data to the bus. L_Poll_Data frames are used to request data from an indi-
vidual KNX device or a group of devices. Acknowledgement frames are used to provide
a reliable transport mechanism, i.e., to acknowledge the reception of a frame by a KNX
device.
For L_Data_Frame, 2 different formats are defined: standard frames, as shown in Figure
4.3 and extended frames, see Figure 4.5. While standard frames can bear up to 15 bytes
of application data, extended frames allow the transmission of up to 254 bytes of data.
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Figure 4.4: Standard Frame, in detail

Standard L_Data_Frame

Every standard frame starts with the control field, determining the frame type. After
that, sender address and destination address, each 2 bytes, follow. The next byte contains
1 address type bit, 3 bits which belong to the LSDU of the next higher layer and 4 bits
of length information, resulting in an maximum payload of 15 bytes (by design, it is
also allowed to set this length field to 0, i.e., to send an empty data frame). After the
corresponding number of payload bytes, a check byte completes the frame. This check
frame is defined as an odd parity over all preceding bytes, which represents a logical
NOT XOR function.

Extended L_Data_Frame

The extended frame starts with a control field, as a standard frame. After that, a special
Extended Control Field (CTRLE) follows, as shown in Figure 4.6. Source- and destina-
tion addresses, each 2 bytes, follow. To allow the bigger payload, the next byte is used
as length field, with the value 0xFF reserved as escape code, resulting in a maximum
payload of 254 bytes. After the length field, the payload and the check byte, as defined
above, follow.
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L_Poll_Data frame

These frames serve as data requests of the poll-data master for a maximum of 15 bytes
and start with a control field, as defined, followed by the 2 byte source address of the
sender (called Poll_Data Master). The following 2 byte destination address is used to
address up to 15 poll slaves, all belonging to the same poll group. The number of exp-
tected bytes and the check octet follow.
Poll requests are answered by poll slaves by transmitting the databytes in the corre-
sponding poll slave slot. This is achieved by defining exact timings when each poll data
slave must send the requested data. Therefore, such frames can only be used within one
physical segment [59].

Acknowledge frame

This frames are used to acknowledge the reception of a KNX data frames for Group
Addresss (GAs) or IAs and consist of one byte, sent after a fixed timespan after reception
of the frame.

KNX addressing scheme
Two different kinds of addresses are defined: GAs or IAs, which type is used is deter-
mined by the ’address type’ flag in the control field of the datagram(0 = IA). While the
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Figure 4.7: KNX individual and group addresses

source address always is an IAs and must be unique within the network, the destination
address can be of type group or individual (see Figure 4.7 for the layout).

For poll-data frames, the destination address determines the poll group address which
must be unique within the physical segment.

Poll data responses as well as acknowledgement frames each just contain 1 byte, i.e.,
they do not possess source- and destination addresses.

Network layer
The main task of the network layer is the routing and forwarding of packets, so the main
parameter on this layer is the destination address of the datagram. Additionally, KNX
reserves 3 bits of every standard- and extended data frame as hop count. This counter is
decremented by every router and the frame is discarded if the counter reaches the value
zero. This mechanism, known from Internet Protocol version 4 (IPv4) [60]4, avoids the
infinite circulation of packages within an incorrectly configured network.

Transport layer
According to the OSI modell, this layer provides point-to-point communication for
hosts.
In KNX, the connection orientated, reliable point-to-point communication mode ad-
dresses the IA of a remote device and uses a timer to detect timeouts. Up to to 3 retrans-
missions are allowed if the sent datagram is not acknowledged. A simple handshake -
similar to Transport Control Protocol (TCP) - is used, as shown in Figure 4.8.

All other modes are unreliable, i.e., unacknowledged, transport mechanisms and can
be used to address a IA, a GA or all devices in the network. For the latter mode, the spe-
cial KNX broadcast address 0x0000 is reserved. The Transport Layer Protocol Control
Information (TPCI), included in the control field, determines the type of the Transport

4Originally, this was called Time To Live (TTL)
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Figure 4.8: Handshake for connection-orientated communication

Layer Protocol Data Unit (TPDU) and also posseses a 4 bit sequence number by which
duplicate datagrams, caused by damaged acknowledge-frames, can be discarded.

Session layer
This layer is responsible for maintaining sessions, i.e., it provides services to maintain
synchronized data exchange. It does not exist in KNX.

Presentation layer
This layer allows a system-independent data representation, which is not necessary in
KNX because the usage of standardized DPTs.

Application layer
This layer provides services for process-to-process information through a KNX net-
work. Up to 10 bits are reserved in the application control field, inside the Application
Layer Protocol Data Unit (APDU), containing the application layer service code. The
provided services range from tasks like reading or writing group values, distribution of
network parameters to obtaining device information.
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Figure 4.9: Flags used at the Transport Layer

4.3 KNX security concept
As shown in Section 1.2, a paradigm shift towards increased security in HBASs can be
observed. Unfortunately, the basic KNX standard does not specify any security mecha-
nisms for control information:

"For KNX, security is a minor concern, as any breach of security requires local ac-
cess to the network. In the case of KNX TP1 or KNX PL110 networks this requires
even physical access to the network wires, which in nearly all cases is impossible as the
wires are inside a building or buried underground. Hence, security aspects are less of a
concern for KNX field level media." [3]

For KNX/IP, the physical containment arguments do not apply. To counter this, it is
proposed to use firewalls and VPNs to prevent unauthorized access, as well as hiding
critical network parameters from public. The latter concept is also known as "security
by obscurity", offering - if at all - only little protection.
For management communication, a rudimentary, password-based control is used. There-
fore, KNX suffers the following security flaws [61]: for management, the used keys
are transmitted as cleartext, enabling an attacker to perform a passive attack to obtain
the password. Subsequently, the attacker can mount an active attack, injecting arbi-
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trary management messages. No methods are foreseen for generation or distribution of
the keys. For control information, an adversary can directly inject arbitrary messages
to control the network, allowing passive and active attacks, too. These shortcomings
clearly disqualified KNX for usage in critical environments, restricting its possible field
of application.
Today, HBASs are used on a large scale, and the available processing power on em-
bedded computing platforms has risen significantly. Therefore, the deployment of such
systems would be possible also in critical environments if proper security mechanisms
are deployed. For KNX, several extensions exist which will be introduced in the next
sections.

KNX Data Security
In 2013, the KNX association published "Application Note 158" [62] which specifies
the KNX Secure-Application Layer (S-AL), providing authentication and encryption,
and the Application Interface Layer (AIL), implementing access control, both being
part of the application layer. The settlement of these functions above the transport layer
allows a transparent, communication media independent end-to-end encryption.
The application layer service code 0xF31 is reserved for this purpose, indicating that a
secure header and a S-AL Protocol Data Unit (PDU) follow instead of a plaintext-PDU.
This allows the flexible usage of the secure services just in situations where they are
needed - otherwise, the plaintext application layer services can be used.
The S-AL services defines modes for authenticated encryption or authentication-only
of a higher-level cleartext APDU. As underlying block cipher AES128 is used in CCM
mode, encrypting the payload with CTR and providing integrity with CBC mode. The
overhead introduced by the MAC is reduced by using only the 32 most significant bits
instead of the whole 128 bit block obtained from CBC. Source- and destination address
as well as frame- and addresstype, the TPCI, length information and a 6 byte sequence
number determine the IV for the CBC algorithm and are therefore also protected by the
MAC. The sequence number is a simple counter value that provides data freshness, thus
preventing replay attacks, and is sent along with every S-AL PDU. For synchronization
of this sequence number between two devices, a S-AL sync-service is defined. Because
no sequence number can be used here to guarantee data freshness, a challenge-response
mechanism is used instead. Two different types of keys are used: a Factory Default
Setup Key (FDSK) is used for initial setup with the ETS. The ETS then generates the
Tool Key (TK), which is used by the device for securing of the outgoing messages. Con-
sequently, every device must know the TK of its communication partners.

While the S-AL empowers two devices to communicate in a secure way, the AIL al-
lows a fine-grained control which sender has access to which data objects. Therefore,
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every link (a combination of source address and data or service object) is connected
with a role, which in turn has some specific permissions.

EIBsec
EIBsec is another extension to KNX, providing data integrity, confidentiality and fresh-
ness [63]. A semi-centralized approach is taken here by using special key servers, re-
sponsible for dedicated sets of keys, providing a sophisticated key management. EIBsec
divides a KNX network into subnets, connected by devices called Advanced Coupler
Units (ACUs). Beside their native task, i.e., routing traffic, they are responsible for the
key management of their network segments, which includes key generation, distribution
and revocation. Every standard device that wishes to communicate with other devices
must at first retrieve the corresponding secret key from its responsible ACU, which can
therefore control the group membership of the requesting device by allowing or denying
the request respectively by revoking the key at a later point in time.
EIBsec uses two different keys: in normal mode, a session with the keyserver is es-
tablished to retrieve the session key, establishing a secure channel. This mode uses
encryption-only by utilizing a Pre Shared Key (PSK), integrity must therefore be guar-
anteed by the sender of the message. Counter mode is used for transmitting management
and group data over the secure channel. A simple CRC is added to the payload before
encryption and shall guarantee integrity. Both modes encrypt the traffic on transport
level, allowing standard routers to handle the datagrams. As block cipher, AES-128 is
used in CTR mode.

KNX IP Security
This work [64] focuses on securing the KNX IP specification, which can be used as
backbone for connecting distinct KNX installations [65]. Thanks to the widespread use
of IP, a wide range of physical transport mechanisms can be utilized.
A structure comparable to the design of TLS is defined by building a distinct security
layer, residing above the transport layer (therefore, it directly connects the transport to
the application layer, because session- and presentation layer are empty, as defined by
the KNX specifications, see Section 4.2).
The design distinguishes three different types of modes:

• In the configuration phase, every device that wants to participate in the secure
network generates an asymmetric key pair, which is sent to the ETS over a secure
channel (for example, by transmitting the data over a direct, serial connection
between the ETS host and the KNX device). The ETS, acting as Certification
Authority (CA), signs the combination of IP and public key with its own private
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key, thus generating a certificate, which is sent back to the device, along with the
public key of the ETS.

• After that, the key set distribution phase starts, where a unicast and a multicast
scenario are differentiated: in the unicast case, the device initiating the commu-
nication - called client - obtains the key set from the target device by a 2-step
handshake: at first, mutual entity authenticity is established by utilizing the cer-
tificate provided by the ETS. Afterwards the keyset is obtained from the target,
which concludes the second phase.

• In the last step, secure communication can take place, i.e., the the client is able to
encrypt the data with the obtained key and sends it to the target device.

For the multicast scenario, a distinct coordinator, responsible for maintaining the group
key, is necessary. Every powered-up device identifies the coordinator as soon as possible
by broadcasting "hello" requests, adopting the coordinator role if no replies are received
in time. To actually send a payload, the group key is obtained from the coordinator and
the data is sent to the group, analog to the unicast case. By adding mechanisms to detect
"dead" coordinators and delegating the coordinator role to a different device, the design
avoids a Single Point of Failure (SPOF).

4.4 Summary
When examining the security mechanisms for KNX, it shows up that only rudimentary
precautions were defined in the basic standard simply because they were not considered
necessary.
This perspective changed and different extensions where introduced. Modes for application-
transparent encryption and authentication were introduced with "KNX Application Note
158". Securing IP based KNX backbones is possible by using "KNX IP Security".

Despite the KNX extensions, no solution providing high availability exists. Therefore,
this work proposes a solution which brings together cryptographic measurements with
redundancy mechanisms, allowing its deployment in more demanding environments.
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CHAPTER 5
Concept

5.1 Basic assumptions
The aim of this work is to propose a KNX prototype, applicable for environments with
increased availability demands. The prototype should be designed in a transparent way,
utilizing a "plug and play" functionality to build a secure KNX network. This means
that a device outside of this network, unaware of the secured KNX network, should be
able to deliver through and receive messages from such a secured network without any
prerequisites. Every device with one connection to an unsecured KNX network (called
cleartext KNX line) and two distinct connections to a secured KNX network (called
secure lines), running the master daemon, will work as a security gateway. Thus, the
presence of at least two of these security gateways connected to each other by two se-
cure lines will constitute a secured KNX area, bridging between areas with increased
security demands, as shown in Figure 5.1.

The basic tasks of such a security gateway consist of:

• establishing keys with its communication partners within the secured KNX net-
work (the security gateways)

• providing redundant communication lines, achieving improved availability by en-
crypting and authenticating all messages which are received on the unsecured line,
and delivering them to the proper security gateways which act as border device
for the given group address, using both secure lines

• checking all messages which are received on the secured lines for integrity and au-
thenticity, removing duplicates, unwrapping and delivering them to the unsecured
area
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Secure Line #1: Encrypted KNX Data

Secure Line #2: Encrypted KNX Data

Cleartext KNX Data

Standard

KNX Device
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Figure 5.1: Secure Area

Security related architectural overview
As stated in Section 4.2, different possibilities for communication within a KNX net-
work are possible: point to point, multicast and broadcast. To introduce as little ad-
ditional traffic into the network as possible, a sound concept for translating clear- to
secure-KNX addresses (and vice versa) has to be defined. While in principle it would
be possible to use the communication modes in a transparent way (i.e., point-to-point in
unsecured KNX translates to point-to-point in secured KNX, and vice versa, and so on),
this approach leads to some serious problems, rendering this solution impracticable: due
to the topology of KNX, it is impossible to know a priori the exact physical location of
a device (i.e., its IA). Additionally, every device can be member of an arbitrary number
of group addresses (bounded by the maximum number of group addresses), which also
is not known in advance. Group-membership may also be subject to change and there-
fore complicates the situation. Finally, devices can leave or join the network at every
moment by powering the device up or down.
Therefore, a device which receives a message on its unsecured KNX line, examining
the destination address, simply does not know which device(s), if any, will be the gate-
way(s) responsible for delivering this datagram one hop toward its final destination,
regardless if the destination address is a IA or a GA.

A straightforward solution to this problem would be to wrap every datagram which
enters the secured KNX network via a security gateway into a new, properly secured
broadcast datagram, and delivering this new package to the secured KNX network.
Then, the package would be available to all other security gateways, which will unwrap
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it and forward the resulting inner datagram to its unsecured KNX line. If the destination
address (group or individual) of the actual payload is assigned to a device connected to
the unsecured KNX network, the device holding this IA or GA will recognize it and the
package will reach its destination. Otherwise it will simply be discarded.
A serious constraint rising from this broadcast approach is that a single, global network
key must be used, because every security gateway must be able to decrypt and check
every package which it receives on its secured lines, even if it does not serve as gateway
to the wanted group address. The key of course can be renegotiated among the security
gateways at every time, but this approach is considered unsecure because an attacker
can target any of the security gateways constituting the secure network. An adversary
breaking one single device gains access to the network traffic of all devices. This could
be achieved by physical access to any of the security gateways, for example by reading
out the memory of the device, and thus obtaining the globally used network key. This
way, the network traffic can be decrypted by the adversary as long as no new key is
renegotiated. Another problem is that multi-party key negotiation is a costly task if a
public-private key scheme is to be used: as shown in Figures 2.21 and 2.22, a lot of
messages have to be exchanged before an encryption can be done.

To encounter these problems, different keys must be used, thus achieving pairwise end-
to-end encryption between all devices. Figure 5.2 shows the logical connections within
a KNX network using end-to-end encryption. An attack of node A can only compro-
mise keys known to the device, thus effectively separating communication between the
nodes B, C, and D from the attacker.

As stated above, to be able to use different keys every security gateway has to know
how to reach a given address so that the data can be encrypted exclusively for the re-
sponsible gateway. The solution to this problem is to maintain some kind of routing
table, mapping GAs and IAs of unsecured KNX devices to IAs of responsible security
gateways. Such a routing table can be built statically at setup time, with the obvious
disadvantage that the exact topology of the applied network has to be known in ad-
vance, thus reducing the flexibility. Here, every security gateway holds a static table
which consists of mappings between IAs or GAs of unsecured KNX devices and IAs of
security gateways at the border between the secured and the unsecured KNX network,
as well as all keys used for the particular security level the gateway belongs to. This
table would be generated once, after the topology of the network has been fixed, and
must be equipped with the proper keys and can then be copied to the security gateways
constituting the secured KNX area. New security gateways can be deployed as long
as they only introduce sending unsecured KNX devices, whose recipients are already
known group addresses behind existing security gateways. A new group address, intro-
duced by a newly installed device behind an already existing security gateway, will not
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be reachable, simply because the routing information is not available. Another disad-
vantage is that the deployment of new security gateways, connecting devices with new
or already known GAs, is impossible as the IA of the new gateway - which of course
must be unique - is unknown to the existing setup, thus making the new unsecured KNX
devices unreachable.
To tackle this problem, another approach would be to build this mapping table dynam-
ically. Therefore, every security gateway must periodically poll on its unsecured lines
for KNX devices, thus populating a list of reachable KNX devices. Whenever a device
wants to send data to a group address, it has to process a lookup first to obtain the IAs of
the responsible security gateways: the lookup must contain the wanted group address,
as well as the sender’s public key. Every gateway which finds the wanted group address
in its group list must reply with an according message to the requester, thus announc-
ing that it is responsible for delivering data to the wanted group address, and must also
publish its own public key, thus allowing pairwise end-to-end encryption. This pro-
cedure requires no a priori knowledge of the network topology, so security gateways
can be added to the network as well as unsecured KNX devices behind new or existing
gateways at any time. This flexibility of course has to be purchased with increased com-
plexity as well as additional traffic introduced into the network.

A middle course is chosen: the reachable group address list is generated whenever a
new security gateway is added to the network, handling discovery of these GAs as de-
scribed above. This allows to deploy new security gateways with connected unsecured
devices, thus achieving a compromise between flexibility and complexity.
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Figure 5.3: Communication schema

Sending data to a group address therefore follows the triad discovery request, discovery
response and data transfer, shown in Figure 5.3. Broadcast messages are depicted as
solid end of the arrow, the rest denoting unicast messages. To enable multiple devices
to announce responsibility for a group address, the device wanting to transmit data to
this group address must accept discovery responses following its request message for a
short time window.

The discovery messages generated by security gateways should be encrypted, too. Al-
though these datagrams don’t contain KNX data per se, they allow a listening adversary
to learn the topology of the network, knowledge which can be valuable for developing
an attack strategy, as well as generating meta data. For example, if an attacker learns
that a particular security gateway is responsible for only one group address and further
gets knowledge that this group address is responsible for switching a light (i.e., by vi-
sual observation), the attacker afterwards may be able to derive a personal profile just by
detecting packages for this group address, although the payload of the datagrams to the
responsible security gateway are encrypted. If the discovery messages are encrypted too
the adversary doesn’t know how many and what group addresses are behind a specific
gateway, and it will be harder to derive personal profiles or to gather knowledge of the
network topology.
Discovery request messages must be broadcast messages, readable by all security gate-
ways. To limit the protocol overhead, a global network key is used here.

To provide authenticity, all datagrams passing the secure KNX network must contain
a MAC to prevent modification of them.
Defense against replay attacks is achieved by counters. These must be strictly mono-
tonically increasing and must not overflow. The counters can be compared to an initial-
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ization vector that prevents the mapping of same cleartext messages to same ciphertext
messages under the same encryption key.
Two different types of counters are used: one global counter Ctrglobal, used for avoiding
replay attacks against discovery messages. A second kind of counter is used for the
actual data transfer. Beside avoiding replay attacks, this counter is necessary to detect
and delete duplicates, caused by the redundant network.
Usage of the global counter Ctrglobal raises another question, namely how a new device
gets knowledge of the actual value of Ctrglobal. Therefore, a synchronization service
must be defined, allowing a newly powered up device that wants to join the network to
synchronize with the rest of the network, as shown in Figure 5.4. Replay attacks are
mitigated by including the current time into MAC calculation. Low temporal resolution
relaxes time-synchronization issues between different devices.

Key management

While it would be possible to use a centralized concept, no trusted on-line party is used
in this work. A centralized approach would need fall-back key servers which inherit the
task of generating and distributing keys and parameters in case of a master key server
failure. Otherwise, the network would suffer from a single point of failure in case no
such fall-back mechanism is applied, an assumption that would clearly disqualify the
design as highly available.
The following key management is proposed:

• A long-term key known to all security gateways is defined. As already stated,
this key must be copied to every device at setup time. This pre-shared key kpsk is
used for symmetric encryption and serves different purposes: first, it authenticates
synchronization messages. Secondly, this key kpsk is used to encrypt discovery
requests and discovery responses.

• Asymmetric keys are used for end-to-end encryption of the actual data packages
between 2 security gateways. Elliptic Curve Diffie-Hellman (ECDH) serves as
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key negotiation algorithm. To protect against man-in-the-middle attacks, authen-
ticity of the D-H parameters must be assured.

• This is the task of the third kind of keys: another pre-shared key is used to au-
thenticate the D-H parameters.

Redundancy related architectural overview
Whenever a KNX packet is generated by a device on an unsecured line (called client),
the connected security gateway will read, duplicate and encapsulate it into another KNX
frame and then send it over both lines. If both lines are available, i.e., there is, for exam-
ple, no shortcut, the security gateway responsible for forwarding the frame will receive
two different KNX frames encapsulating the same payload, which itself is the KNX
frame generated by the KNX client device in the first place. One message must be dis-
carded to avoid duplicates. This is achieved with a monotonically increasing counter
that also guards against replay attacks. Whenever a package, generated by a client, en-
ters the network, a counter for outgoing packages is incremented, called Ctrout, and is
sent along the message. This counter must be unambiguously referenced by the origin
cleartext message. The receiving side must maintain a counter for incoming packets,
called Ctrin, which will be updated by the received counter value as soon as the first
frame is received if the received value is higher than the saved one. Subsequent delivery
of the duplicate can be detected because the containing counter value equals the saved
counter value.

To identify duplicate frames, basically various possibilities exist:
Referencing both Ctrout and Ctrin by the GA of the origin cleartext message does only
work if for every destination GA in the network, at most one sending client device exists.
Assuming client device A and afterwards client device B want to send the first message
to the same destination GA, the delivery of the message originating from device A will
trigger an update of the corresponding counter Ctrin at the responsible gateway, but
device B will use its own counter for the outgoing message. Because device’s B out-
going counter is less than the gateway’s actual incoming counter, both frames will be
discarded by the gateway. Therefore, this is no viable solution.

It shows that the easiest way to unambiguously identify duplicates is by referencing
both Ctrout and Ctrin by the IA of the origin cleartext message. This solution works
despite potential network failures on one or both secure lines, provided that each client
device is identified by a unique IA. This is argued as follows:
For simplicity, assume that three security gateways A, B and C are connected to each
other by two distinct, secured KNX lines, and each gateway is connected to an arbitrary
number of client devices through their cleartext lines, each with a unique IA. Addi-
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tionally, each client device is destination for an arbitrary number of GAs. If a security
gateway receives a cleartext message, it will at first check the counter value Ctrout for
the IA and increment it. After that, the discovery phase takes place. This discovery
request can be answered by zero, one or two other security gateways. If at least one
reply is received, the package is duplicated, encrypted, fitted into a unicast data frame
together with Ctrout and sent on both lines.
Every gateway answering the discovery request will be sent 2 duplicate messages, one
on each secure line. Now, there are three possibilities:

• If both secure lines are available, one data frame will be handled first and the
contained counter will be saved as actual Ctrin for the IA of the inner frame.
When handling the second frame, the contained counter will be equal the saved
counter, and thus the frame can be discarded.

• If only one secure line is available, no duplicate will arrive, but the receiving
gateway(s) will nevertheless update the received counter value for the IA.

• If both lines are unavailable, the responsible gateways cannot update the cor-
responding value for Ctrin. Nevertheless, the sending side will increment and
update the outgoing counter Ctrout. As soon as the responsible gateways are
reachable again, new data frames will bear an even higher counter than saved on
the receiving side, thus allowing data transfer to the GA again.

Operational constraints
The introduction of encapsulating security gateways implicates that some timing con-
straints, defined by KNX, cannot be met:

• Acknowledgement frames, used in point-to-point communication, as defined in
KNX and introduced in Section 4.2, cannot be guaranteed to be delivered within
the specified deadlines: whenever a new KNX datagram is generated by a client,
at first the discovery phase has to occur. Only after that the to-acknowledged
frame is sent. So there are multiple delays introduced, stalling the delivery: the
first delay is caused by sending of the discovery package. After that, a second de-
lay occurs because the security gateway must wait for the discovery response(s),
possibly retransmitting the discovery request in case of a timeout. After receiving
discovery responses, the third delay is caused by sending the actual, encapsulated
client package to the responsible security gateway(s), which then must check the
datagram, unpack it and forward it on their unsecured lines. Only after that, all
addressed, unsecured clients would be able to acknowledge the received frames to
their local security gateways, which must forward the acknowledgement frame to
the origin security gateway, causing another delay. Finally, the acknowledgement
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frame must be forwarded to the sender of the origin data frame, causing another
delay. These delays will always occur, and most of them cannot be restricted, thus
destroying the tight timing constraints for acknowledgement frames, as defined by
the KNX standard. This will most likely result in multiple retransmissions of the
same KNX packages by the client because the client’s timer will generate a time-
out.

The only way to avoid a retransmission by a client is to immediately acknowl-
edge a client frame by the security gateway that it is connected to, regardless of
whether the destination device is reachable or not. The receiving security gateway
will use a reliable transport mechanism to transfer the encrypted frame to all re-
cipient gateways, which must acknowledge reception. Finally, the gateway on the
receiving side will forward the contained frame to the client, who may generate
an acknowledge frame, depending on the transport mode chosen by the sending
device. This process is shown in Figure 5.5.

• Similar arguments avoid the processing of Poll-Data Frames. Here, event more
stringent timing constraints are to be met, see Section 4.2.

Apart from the data service, handling the actual data transfer of the KNX payloads, two
additional services are necessary, following the assumptions above. These two services,
handling synchronization and discovery, are defined as following and are summarized as
management services. To distinguish the different frame formats, a 8 bit secure header
field uniquely identifies every frame - see Section 5.2 for details.

5.2 Services

Synchronization service
As stated, a new gateway, joining the network, must get knowledge of the actual value
of Ctrglobal. This is achieved by sending a broadcast message on every secure line, serv-
ing as synchronization request. The frame contains the device’s local time in seconds.
The header flags in the secure header are set accordingly, identifying the frame as syn-
chronization request, see Figure 5.7.

Every device receiving such a request checks the integrity of the message first by re-
calculating the MAC. Afterwards, freshness is checked by comparing the supplied time
with its local time. If the timing information equals the device’s own local time, the
device sends a unicast synchronization response frame, containing its local time and the
actual counter value. See Figure 5.8 for the layout of such a synchronization response.
The accuracy of the time comparison is deliberately reduced by defining a window of
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allowed deviation. This allows a new device to join the network even if its local time
and the local time of the answering device are not perfectly synchronized. If no syn-
chronization response is received within 500ms, up to 2 retries are executed. After that,
the device assumes that it is the first device in the network and resets the global counter
Ctrglobal.

The MAC is calculated over all frame fields except the trailing frame check fields and
parts of the header field.

Discovery service
Whenever a gateway receives a message on its cleartext line, two distinct discovery
broadcast messages are sent, one for each secured line. The frame format is shown in
Figure 5.9. DH-A is the newly chosen ECDH - parameter of the requesting device.
The PSK encrypted field contains the group address, CTR contains the incremented
global counter Ctrglobal. Every device in the network first checks the authenticity of the
received frame by recalculating the MAC. If the value differs from the received one, the
frame is discarded. Otherwise, the requested group address is obtained by decrypting the
corresponding field, and every device recognizing the group address prepares a unicast
response frame as shown in Figure 5.10, with DH-B as its own newly chosen ECDH
parameter and the incremented global counter in the CTR field. The requested group
address is also sent, allowing the requester to identify the response message.
Integrity of the discovery messages is achieved by generating a MAC over all frame
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Header Secure Header Time MAC(PSK, x) FCS

6 Byte 1 Byte 4 Byte 4 Byte 1 Byte

Figure 5.7: Synchronization request frame layout

Secure Header CTR Time MAC(PSK, x)Header FCS

6 Byte 1 Byte 4 Byte 4 Byte 1 Byte4 Byte

Figure 5.8: Synchronization response frame layout

Secure Header CTR+1 DH-A MAC(PSK, x)Header FCSENC(PSK,"G.A.")

7 Byte 1 Byte 4 Byte 33 Byte 2 Byte 4 Byte 1 Byte

Figure 5.9: Discovery request frame layout

Secure Header CTR+1 DH-B MAC(PSK, x)Header FCSENC(PSK,"G.A.")

1 Byte 4 Byte 33 Byte 2 Byte 4 Byte 1 Byte7 Byte

Figure 5.10: Discovery response frame layout
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fields except the frame check field and parts of the header field.
The main logic from the discovery request receiver’s point of view is shown in the state
machine in Figure 5.11.

Data service
After receiving one or more discovery responses on one or both secure line, the device
which wants to send the KNX payload (called requester) now knows the IAs which
are responsible for delivering messages to the wanted GA. The requester can also derive
pairwise shared secrets with all responsible gateways, based on ECDH. From this shared
secret, a key is derived which is used to encrypt the origin KNX frame and inserted into
the frame after the counter value. This counter CTR − Ind is an individual counter,
maintained by the gateway forwarding the KNX frame received over the cleartext line.
Authenticity is guaranteed by calculating a MAC over all frame fields except the frame
check field. The key used for the MAC is also derived from the shared secret.
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Figure 5.12: Data frame layout

Figure 5.12 shows the layout of such a data frame.

Data structures
The used data structures, referenced above, are introduced in more detail below.

Secure header

Every frame sent by a security gateway contains a 8 bit header, uniquely determining
the type of the frame. Implicitly, this information also determines the exact type of
authentication or authenticated encryption mode used.

bytevalue frame type encryption authentication
0000 0000 invalid x x
0000 0001 invalid x x
0000 0010 synchronization request no yes
0000 0011 synchronization response no yes
0000 0100 discovery request yes yes
0000 0101 discovery response yes yes
0000 1000 data service yes yes
0000 1001 reserved x x

... ... ... ...
1111 1111 reserved x x

Values 0x09 - 0xFF are not used - frames containing such values should be discarded.

Global counter

The global counter Ctrglobal, obtained by the synchronization service and used in the
discovery messages, is a 4 byte integer, allowing 232 ≈ 4, 3 billion discovery request or
response messages to be sent before overflowing. This amount is assumed sufficiently
high, argued as follows: each discovery messages consists of a frame containing 53
bytes, sent with 9600 bps, resulting in about 44 milliseconds transfer duration. There-
fore, the absolute lower bound of the duration after that Ctrglobal overflows, assumed
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the KNX network is occupied by discovery messages only, is about two years, a very
conservative estimate.

Individual counter

Every individual counter is a 4 byte integer, responsible for duplicate detection. Two
distinct types of individual counters are used: Ctrout, referenced by an IA, and Ctrin,
also referenced by an IA. Figure 5.13 shows the state machine describing every security
gateway’s behavior from a high-level perspective.
Whenever a new KNX frame is received on the cleartext line and the gateway knows
which gateway(s) are responsible for the contained GA, the sending gateway determines
the outgoing counter value Ctrout[IA]. If an outgoing counter value for this IA exists,
this means that the device already sent at least one data frame to a GA, otherwise this
is the first frame. For the first case, the counter value Ctrout[IA] is incremented and
saved, otherwise it is set to 1. Afterwards, it is used as value for Ctrind. After that, the
cleartext frame is encrypted and inserted into a new unicast data frame, one for each
secure line.

Upon reception (the green transition in Figure 5.13), at first the validity of the MAC
is checked - if valid, the receiver checks its incoming individual counter value, refer-
enced by the IA of the inner frame. If the received counter value Ctrind is greater than
Ctrin[IA], Ctrind is saved as (Ctrin[IA] and the contained frame (i.e., the KNX data
frame) is forwarded. The second frame, which will be handled afterwards will bear the
counter value Ctrind = Ctrin[IA] and will be discarded, thus eliminating the duplicate.
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CHAPTER 6
Evaluation

To be able to evaluate the proposed solution in a real-life scenario, a prototype based
on the concept presented was built. This chapter introduces the implementation from
a high level view, followed by the evaluation of the result. Afterwards, the results are
discussed and improvements are suggested.

6.1 Implementation

Bus interface
The necessary software, running on each platform, is written in the programming lan-
guage "C". To interface with KNX, an Application Programming Interface (API) named
European Installation Bus Daemon (EIBD) is used, providing functions to send KNX
frames to and receive frames from the bus. EIBD offers synchronous as well as asyn-
chronous calls for sending and receiving frames. While the first kind of call will block
until the operation finished, the second kind of call will return immediately, the status of
such calls can be checked by another special EIBD call. Because it is not possible to use
callbacks with asynchronous calls, the implementation uses the synchronous functions.

Reading frames from the bus

EIBD provides a function to monitor the bus, this way all frames are available to the
application.

1 EIBConnection ∗fd;
2 fd = EIBSocketURL(socketPath);
3 EIBOpenVBusmonitor(fd);
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4 len = EIBGetBusmonitorPacket (fd, BUFSIZE, buffer);

Listing 6.1: Reading KNX frames

Writing frames to the bus

To write frames to the bus EIBD offers distinct functions for addressing individual de-
vices or all devices in the segment. A connection must be first by calling the corre-
sponding function, afterwards the data can be written to the bus:

1 // open an individual connection
2 EIBOpenT_Individual(fd, destination, 0);
3 // or a broadcast connection
4 EIBOpenT_Broadcast(fd, 0);
5 // finally, send the data
6 EIBSendAPDU(fd, len, (const uint8_t ∗)buf);

Listing 6.2: Writing to KNX frames

KNX addressing scheme

Care must be taken that no duplicate KNX addresses are used within the network.
Therefore, the following addressing convention is proposed: While it would be possible
to use the same addresses on both lines per gateway, a different scheme is proposed. For
the secured network, the address ranges starting at address 1.1.1 to address 1.1.15 and
1.2.1 to 1.2.15 are reserved for secure line number 1 and 2 respectively, which allows
a maximum of 15 gateways. Different addresses are used mainly because it facilitates
debugging. On the unsecured lines, every gateway uses an address from the range 1.0.1
- 1.0.15. Addresses are assigned in a linearly ascending way, so gateway number 1 uses
addresses 1.1.1 and 1.2.1 for secure lines 1 and 2, and 1.0.1 for its unsecured line.

Concurrency
Every platform possesses three distinct interfaces to the bus (two interfaces form the re-
dundant "secure" part of the network, one is connected to a standard KNX network), so
care must be taken that no frames are missed or delayed due to a blocking call to EIBD.
This can be achieved by splitting the main program into different processes or alterna-
tively, threads, where for each critical task, a distinct part is responsible. While threads
share the same address space, facilitating communication with each other, processes rely
on special system calls to share information. Additionally, thread-creation and switch-
ing between threads consumes less computing resources. Therefore, it was decided to
choose the multi-threaded approach. Consequently, at least three different threads - one
for each communication interface - are needed. Nevertheless, because every thread must
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be able to write to or receive frames from the bus at unpredictable moments, seven dif-
ferent threads are used: the main thread only handles argument processing and creates
the other threads. For the remaining threads, two pairs are responsible for the interfaces
to the secured network, while the remaining thread pair interfaces to the unsecured part
of the network. This setup is shown in Figure 6.1. This design allows to assign one

MAIN

SEC0
MAIN

SEC0
READ

SEC1
MAIN

SEC1
READ

CLR
MAIN

CLR
READ

Figure 6.1: Threads used in the implementation

timing-critical task to every thread: every READ thread immediately opens its corre-
sponding bus interface in "monitor" mode, allowing it to read all the bus traffic on the
corresponding line. After that, it enters a loop, performing a blocking read call to EIBD
on every iteration. This will set the whole thread to "blocked", and the operating system
will set another thread or process as runnable. Whenever data is available to the blocked
thread, the operating system will buffer the received data and eventually set the thread
runnable again. Thus, no frames will be missed.

The main-threads of the secure lines (i.e., SEC0 MAIN and SEC1 MAIN) will start
the synchronization sequence, as described in Section 5.2, and send out the synchro-
nization messages. After that, the main threads will enter the READY state and listen
for discovery messages.

Whenever the CLR READ thread receives new data, the frame will be forwarded to
both SEC MAIN threads together with the counter for the unique source address, con-
tained in the frame. Both SEC MAIN threads will send discovery requests, indepen-
dently from each other, each containing newly chosen ECDH parameters. Responsible
gateways (i.e., gateways which are connected to the wanted destination address through
their cleartext lines) will compute a new ECDH parameter, derive distinct shared secrets
for both lines, save them and send the parameters contained in the discovery responses
back to the requesting device. The requester than derives the same shared secrets, and
sends the encrypted frame, contained in extended KNX frames, to the destination gate-
ways, which will check and decrypt them and forward both decrypted frames and the
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corresponding global counter values to the CLR MAIN thread. Here, the duplicate will
be discarded and one frame will be sent to its final destination.

A thread can be created in C with the function pthread_create(). The function expects
four parameters:

• a variable of type pthread_t

• attributes for the new thread, or NULL for default values

• a function pointer, serving as entry-point for the new thread

• parameters for the function pointer, or NULL

1 if((pthread_create(&sec1MasterThread, NULL, (void ∗)secMasterStart, &
threadEnvSec[0])) != 0)

2 {
3 printf("sec1Thread thread init failed, exit\n");
4 return −1;
5 }

Listing 6.3: Creating a new thread

If the call to pthread_create() succeeds, the new thread will start executing the function
provided via the function pointer, and the main thread which called pthread_create()
will continue. Which of the threads is running first and in which order the threads are
assigned to the processor is unknown and determined by the operating system.

Thread-to-thread communication
To pass data from one thread to another, different ways are possible. While the easiest
way would be to use global data structures, the implementation uses Portable Operating
System Interface (POSIX)-pipes instead, mainly because with pipes, timeouts can be
implemented easily. Such timeouts are used when waiting for synchronization replies,
as well as for cleanup tasks.
How to create a new pipe is shown in Listing 6.4.

1 int pipefd[2];
2 if(pipe(pipefd) == −1)
3 {
4 printf("pipe() failed, exit\n");
5 exit(−1);
6 }

Listing 6.4: Creating a pipe
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Every pipe possesses two file descriptors, providing a uni-directional data channel: data
can be written to the pipe by performing a write() - operation to the write-end of the pipe
(index 1), while the data can be read from the pipe by calling read() with the read-end
of the pipe (index 0). Basically, the read() operation will block until new data can be
read - in combination with the select() system call, a maximum time for the blocking
operation can be set, as shown in Listing 6.5.

1 fd_set set;
2 struct timeval timeout;
3 int selectRC;
4 ...
5 FD_ZERO(&set);
6 FD_SET(fileDescriptor, &set);
7 timeout.tv_sec = 2; // set timeout to 2 seconds
8 timeout.tv_usec = 0;
9 selectRC = select(FD_SETSIZE, set, NULL, NULL, timeout);

10 if(selectRC == 0)
11 {
12 // timeout occured
13 }
14 else if(selectRC < 0)
15 {
16 // error occured
17 }
18 else
19 {
20 // data arrived − read it:
21 read(pipefd[READEND], buffer, len);
22 }

Listing 6.5: Blocking read with timeout

In this example, FD_ZERO at first clears the set containing the file handles to be
watched, FD_SET() then adds the file handle we are interested in (allowing to watch
multiple file descriptors). The timeout is then set to two seconds (microseconds gran-
ularity is supported, nevertheless the timing precision is limited by the system clock
granularity and kernel scheduling delays), and select() is called. If no data is received
within 2 seconds, the if-branch is executed. If data is received in time, the else-branch is
executed instead, and the waiting data can be obtained by performing a standard read()
call.
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Race conditions
Software race conditions occur whenever an application, using shared resources, de-
pends on the timing of its processes or threads. Because the exact time when a particular
process or thread is scheduled by the processor is unknown in advance, such conditions
must be avoided. An example of a program containing a race condition would be as
following:

1 for ( int i = 0; i < 1000000; i++ )
2 {
3 x = x + 1;
4 }
5 // x = ?

Listing 6.6: Race condition

For a single-threaded program, this would produce the value x = 1000000 after the loop,
while for a 2-threaded program, the resulting value will depend on the exact scheduling
of the threads and very likely differ from the expected value x = 2000000. The reason
is that the statement incrementing x is no atomic operation. Instead, the operation will
consist of several statements on machine language level, forming a critical region:

1. load value from address into register

2. add 0x01 to the register

3. write value from register to address

If thread 1 gets interrupted after the second step and thread 2 afterwards finishes, thread
1 will overwrite the value just written by thread 2 and thus produce a false result.

Such a critical region must be protected such that only one thread can enter it, a re-
quirement also called mutex, short for mutual exclusion. The implementation uses the
POSIX pthread mutex to lock critical regions, as shown in Listing 6.7.

1 if(pthread_mutex_init(&globalMutex, NULL) != 0)
2 {
3 printf("mutex init failed, exit");
4 return −1;
5 }
6 pthread_mutex_lock(&globalMutex);
7 /∗
8 CRITICAL REGION
9 ∗/

10 pthread_mutex_unlock(&globalMutex);

Listing 6.7: Locking a critical region
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globalMutex is a global variable of type pthread_mutex_t, shared between all threads
which are accessing the shared resource. After calling pthread_mutex_lock(), there are
two possibilities: if the mutex is unlocked, the call will lock it and continue the pro-
gram flow. If it is already locked, the call to pthread_mutex_lock() will block and the
corresponding thread will be set to blocking. If the mutex is unlocked by the possessing
thread, the blocked thread will be set active, lock for his part and continue execution.1

Communication between the CLR and SEC0/SEC1 threads is achieved by pipes, as
introduced above. Because data exchanged by pipes does not possess any internal struc-
ture, accessing them must be done in a consistent way, which is the task of globalMutex.
If one thread wants to write data to another thread, it first locks the mutex, writes the
data to the pipe and finally releases the mutex. The reading thread, waiting for data
in state "blocked", will be set running by the operating system, immediately lock the
mutex and read the data. Finally, it will unlock the mutex again.

Cryptographic functions
To use the needed cryptographic functions, the open source library "OpenSSL" is uti-
lized. The API supports a wide range of symmetric and asymmetric encryption, decryp-
tion, signing and key negotiation algorithms through two different kind of interfaces: a
high level "EVP" interface, hiding much of the complexity, and a low level interface. If
possible, the high level interface should be used, but for the key derivation function it
turned out that the low level interface was easier to use.

Documentation and code snippets can be found on https://wiki.openssl.org, another im-
portant source of information are the man-pages (available under Debian after installing
the package libssl-doc) and the header files.

It is noted that in the examples below no error checking of the return codes returned
by the OpenSSL calls is executed. These checks are omitted here just for clarity, never-
theless it is imperative to always check for error conditions.

Key derivation

To obtain a shared secret between two security gateways, ECDH over the curve "NID
X9 62 prime256v1" is used. This is a NIST elliptic curve defined over the 256 bit prime
p256 = 2256−2224+2192+296−1, thus the resulting points will have coordinates of size
256 bits each. The uncompressed form of such a point consists of 65 bytes: 1 byte for a
leading tag, 32 bytes for the x and 32 bytes for the y coordinate of the point. Because of

1Of course, pthread_mutex_lock() must be executed in an atomic way, otherwise introducing a race
condition on another level.
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the quadratic form of the curve (see Section 2.2 for a recap), it suffices to transmit only
the x coordinate and one byte, determining the sign of the solution. The corresponding
y coordinate can than be recovered.

Whenever a security gateway receives a new frame on its cleartext line, it generates
a new ECDH parameter, i.e., it generates a new key pair, the public key is then sent to
all other security gateways in the segment:

1 EC_KEY ∗pkey;
2 pkey = EC_KEY_new_by_curve_name(NID_X9_62_prime256v1)
3 EC_POINT ∗ecPoint = NULL;
4 size_t ecPoint_size;
5 const EC_GROUP ∗group;
6 EC_KEY_generate_key(pkey));
7 EC_KEY_set_conv_form(pkey, POINT_CONVERSION_COMPRESSED);
8 ecPoint = (EC_POINT ∗) EC_KEY_get0_public_key(pkey);
9 group = (EC_GROUP ∗)EC_KEY_get0_group(pkey);

10 ecPoint_size = EC_POINT_point2oct(group, ecPoint,
EC_KEY_get_conv_form(pkey), buf, BUFSIZE, NULL);

11 if(!EC_POINT_is_on_curve(group, ecPoint, NULL))
12 {
13 printf("ERROR: point not on curve\n");
14 exit(−1);
15 }

Listing 6.8: Generating an ECDH parameter

The new key pair is generated in line 6, the public key is obtained and converted to a
hexadecimal string in lines 8 and 10. Finally, it is checked if the new point indeed is
part of the curve.

The receiving side performs the same operations to obtain its own key pair which is
sent back to the requester, and immediately derives the shared secret as shown in List-
ing 6.9.

1 size_t secret_len;
2 unsigned char ∗secret;
3 EC_POINT ∗peerEcPoint = NULL;
4 EC_KEY ∗peerEcKey = NULL;
5 const EC_GROUP ∗group = NULL;
6 peerEcKey = EC_KEY_new_by_curve_name(NID_X9_62_prime256v1);
7 group = EC_KEY_get0_group(peerEcKey);
8 peerEcPoint = EC_POINT_new(group);
9 EC_POINT_oct2point(group, peerEcPoint, peerPubKey, (size_t)33, NULL))

10 EC_KEY_set_public_key(peerEcKey, peerEcPoint))
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11 secret = OPENSSL_malloc(32);
12 secret_len = ECDH_compute_key(secret, 32, EC_KEY_get0_public_key(

peerEcKey), pkey, NULL);

Listing 6.9: Deriving a shared secret

Here, the public key received (the pointer peerPubKey) must be first converted from a
hexadecimal string into point representation, and finally into an EC_KEY object (lines
9 and 10). The actual key derivation is shown in line 12.

This derived secret must be fed into a secure hashing function, for example SHA-256
because the shared secret may not be uniformly distributed. By appending different
strings it is also possible to derive an encryption and a MAC key in one run.

MAC generation

For this task, a SHA-256 based HMAC is used, producing a 32 byte MAC. To reduce
the overhead, only 4 bytes are used and contained in the messages. The usage of the
high-level API is shown in Listing 6.10.

1 size_t req = 0;
2 EVP_MD_CTX∗ ctx = EVP_MD_CTX_create();
3 const EVP_MD∗ md = EVP_get_digestbyname("SHA256");
4 EVP_DigestInit_ex(ctx, md, NULL);
5 EVP_DigestSignInit(ctx, NULL, md, NULL, pkey);
6 EVP_DigestSignUpdate(ctx, msg, mlen);
7 EVP_DigestSignFinal(ctx, NULL, &req);
8 ∗sig = OPENSSL_malloc(req);
9 ∗slen = req;

10 EVP_DigestSignFinal(ctx, ∗sig, slen);
11 EVP_MD_CTX_destroy(ctx);

Listing 6.10: Generating an HMAC

Line 2 allocates and initializes a digest context, a digest structure for SHA-256 is ob-
tained in line 3 and initialized in line 4. Line 5 sets up the signing context for the
underlying digest function. The actual signing of the input message string pointed to by
msg is done in line 6. Afterwards, the length of the signature is obtained by the first call
to EVP_DigestSignFinal(), the signature is written to the newly allocated memory and
the context memory is deallocated.

Encryption and decryption

As cipher, AES-256 in CTR mode is utilized. This mode has the advantage that no fixed
block size must be transmitted, but only the actual size of the ciphertext. Encryption
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with the OpenSSL high level interface is shown in Listing 6.11. As with the HMAC, a
context must be created and initialized.

1 EVP_CIPHER_CTX ∗aesCtx = NULL;
2 int cipherLen, len=0, i=0;
3 aesCtx = EVP_CIPHER_CTX_new();
4 EVP_EncryptInit_ex(aesCtx, EVP_aes_256_ctr(), NULL, key, ctrFull);
5 EVP_EncryptUpdate(aesCtx, &cipherBuf[0], &len, msg, msgLen);
6 cipherLen = len;
7 EVP_EncryptFinal_ex(aesCtx, cipherBuf + len, &cipherLen);
8 cipherLen += len;
9 EVP_CIPHER_CTX_free(aesCtx);

Listing 6.11: AES encryption

6.2 Evaluation
The proposed solution was evaluated by showing that it can resist against the attacks
defined in Section 2.1, and is robust against temporarily or permanent failure of one out
of two secure KNX lines.

Failure of one secure communication line does not imply failure of the whole system:
as long as the other secured line is still functional, synchronization, discovery and data
services will be handled by the functional line alone. As soon as the broken line is
available again, discovery and data service messages will be sent on both lines.

For malicious attacks, it is assumed that an attacker only has polynomially bounded
processing powers and is able to passively read frames from and inject arbitrary frames
into both secure communication lines. In contrast, it is assumed that the cleartext KNX
lines are out of reach of an attacker, as well as the hardware running the master dae-
mons, especially the memory holding the long-term encryption and authentication keys.
Attacking the hardware itself would allow the attacker to obtain these keys and thus
present itself as legitimate gateway.

The overall aim is to show that the communication network is able to withstand ma-
liciously introduced faults, as well as unintended faults happening randomly, resulting
in a KNX network with improved availability. In the case of DOS attacks, it is stated
that the proposed solution can withstand such an attack against one of its two secure
communication lines because of the duplicate and independent sending of the corre-
sponding messages. An attacker interrupting both lines will obviously cripple the data
exchange in total. Such a DOS attack can be conducted for example by shortcutting the
TP lines, or by permanently driving the bus line into the dominant level.
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Synchronization phase
Passive attacks

Packages in the synchronization phase are not encrypted, allowing a passive adversary
to learn the value of the global counter value Ctrglobal. Nevertheless, this counter is
only used to avoid deterministic encryption (see Section 2.3) and is of no use for the
attacker. Additionally, the attacker is able to learn all header fields, in particular the
device addresses of all active security gateways, but this is considered inevitable and
also of little use for the attacker.

Active attacks

An active attacker can inject new synchronization request and response messages, but
will fail to produce a correct MAC for the actual time stamp with probability 1− 1

232
be-

cause the MAC equals a random 32 bit number for the given header and payload. Such
a MAC forgery will be detected by all active security gateways, and the corresponding
frame will be discarded.
Opening a window for tolerating clock deviations allows an active attacker to replay cap-
tured synchronization request and response packages within that time window. Never-
theless, this is considered uncritical: for synchronization request messages, the attacker
can trigger a new synchronization response message by a legitimate security gateway,
which will re-send the actual counter value to the source address of the replayed mes-
sage. The corresponding device however has already finished synchronization phase
and will just drop the message.
When replaying a synchronization response message within the valid time window there
are two possibilities: if a joining device is waiting for a response message the replayed
message will be handled as legitimate response, and the newly joined device concludes
the synchronization phase. On the other hand, if no device is waiting for a synchroniza-
tion response, the message will simply get dropped.

Discovery phase
Passive attacks

In this phase, a passive attacker is able to learn the global counter valueCtrglobal, as well
as the ECDH parameters exchanged by requester and responder. Both is considered un-
problematic: for the first case, the same arguments as given for the synchronization
phase hold. To derive the key used by two parties in the subsequent data transmission
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from the D-H parameters the attacker would need to solve the ECDLP, as shown in
Section 2.2.

Additionally, the attacker can learn the encrypted value of the requested group address
and also learns which gateway(s) are responsible for the encrypted gateway. It is argued
that it is impossible for the attacker to learn the underlying cleartext group address be-
cause of the 256 bit AES encryption, assuming that the attacker does not know the long
term encryption key. Nevertheless, the attacker is able to derive communication profiles,
i.e., which devices behind which security gateways are communicating with each other,
and therefore enables the attacker to derive the basic topology of the network.

Active attacks

Injecting new or replaying old messages is useless from an attacker’s point of view,
argued as following: for newly generated, injected discovery request messages, the at-
tacker must at first generate the encryption for the wanted group address. Lacking the
encryption key, the attacker can produce the correct encryption for the 2 byte group
address with probability 1 − 216. Afterwards, the attacker additionally must guess the
correct lowest 4 bytes of the 256 bit MAC for the header fields and payload (again pro-
vided that the attacker does not know the key used for MAC generation). Failure to
forge the correct MAC will be detected by all receiving devices.
Similar arguments hold for discovery response messages.

Replaying discovery messages is considered pointless because of the freshness property
provided by Ctrglobal: such repeated frames will be detected by the security gateways
because of the outdated value of Ctrglobal, which will just drop the replayed frame.
Attacking alternating secure communication lines will also fail: for example, the at-
tacker could at first shortcut one secure communication line such that the discovery
message will not reach its recipient(s). Receiving the discovery message on the other
line and injecting the frame to the previously blocked line would result in a fresh counter
value. Nevertheless, such frames will bear the wrong secure line number as part of the
source address (for discovery request messages, with the destination field set to the
broadcast address) or source- and destination address, and will thus be detected. Al-
ternating the source- and/or destination-addresses will invalidate the MAC, forcing the
attacker again to forge the MAC, an infeasible task as already stated.
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Data transmission phase
Passive attacks

An eavesdropping attacker will be able to learn source- and destination addresses of the
security gateways exchanging the frame, as well as the length of the inner frame and
the individual counter Ctrind. Again, the meta data can be used to generate communi-
cation profiles, a fact considered inevitable. The individual counter is used as freshness
property and to detect the duplicate frames on the receiving side. Therefore, an attacker
does not benefit from knowing this counter value.
Decrypting the contained inner frame is considered impossible based on the following
facts: firstly, encryption is based on AES-256, therefore trying all possible keys is in-
feasible. Secondly, the attacker is unable to get knowledge of the key because of the key
agreement protocol used in the discovery phase.

Active attacks

An attacker, trying to inject a new data frame, again must succeed in forging the correct
MAC. Failure to do so will be detected by the receiving gateway. A replayed message
will be be correctly verified and decrypted by the receiving device, but because of the
outdated counter value Ctrind the message will be discarded.
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CHAPTER 7
Conclusion

7.1 Contribution
To be able to deploy a communication system in more demanding environments, it is
necessary to achieve informational security combined with mechanisms for improved
availability. For KNX, extensions for securing a network against malicious attacks ex-
ist, but these extension are not able to handle a fault concerning the communication
medium, as well as DOS attacks. Therefore, this work proposes a way to protect against
transient hardware failures, as well as active and passive adversaries. For the latter, the
proposal is able to resist restricted DOS attacks, too. This is achieved by using security
gateways which are connected to each other in a redundant way. Standard KNX devices
are connected through these gateways, which copy the client’s frames into two properly
secured frames and send them over both communication lines. The receiving side will
check the received frames for modification, discard one of the two copies and forward
the remaining one to the destined standard KNX device.

It was shown that the proposed solution can withstand malicious attacks, as well as
transient hardware failures of one of the secured lines. Therefore, the solution allows to
connect standard KNX devices which are spatially divided in a secure manner, bridging
over areas where malicious behavior cannot be ruled out. The proposed solution can be
deployed in a ’plug-and-play’ manner, as long as the constraints defined in Section 5.1
are regarded. Thus, it is possible to add confidentiality, integrity and availability to a
KNX network just where needed, coexisting with segments with low security demands.
By using more than 2 secured lines, the solution can easily be extended to use n instead
of 2 secure threads and communication lines, increasing availability to an even higher
level.
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7.2 Outlook
The following improvements to the prototype solution are proposed:

• Using a cache for the mapping of group address to security gateways and en-
cryption keys. A gateway receiving data from a client would send a discovery
message once and cache the address(es) of the responsible gateway(s), together
with the corresponding encryption key(s). Subsequent data transfer can be ex-
ecuted without the need for sending discovery messages first, reducing the bus
load. Of course, a reasonable caching time has to be found after which a cached
entry is deleted because newly connected clients may not be reachable within this
duration.

• Obfuscating the size of the data service messages, which can be achieved by
adding an additional length field and corresponding padding, chosen randomly.
This makes it harder to derive communication profiles.

• Attacks can be detected if frames with forged MACs are received, allowing to
send an alert to an operator. For the used platform, this can be achieved easily
by connecting the RaspberryPis to a restricted IP network and sending the alarm,
for example, by mail or Simple Network Management Protocol (SNMP). Addi-
tionally, the address of the attacking device can be added to a blacklist such that
traffic coming from this address is discarded immediately.

Restrictions

During development, the follow restrictions were found. Of course, the constraining
assumptions made in Section 5.1 are still valid.

• While EIBD can send extended frames, it does not support receiving frames with
payload ≥ 56 byte. While this clearly violates the KNX specification, no efforts
were made to debug this behavior.

• With the current EIBD API, sending raw frames is not possible, but only application-
or transport layer data units. This implies that it is not possible to set the source
address of a written frame. Frames delivered by a security gateway are therefore
sent with the gateway’s device address, instead of the origin device address. To
make the security gateways appear fully transparent to client devices, the API
must be extended.
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APPENDIX A
Setup of the base system

The base system consists of RaspberryPi boards running the Raspbian operating system
(a Debian variant), EIBD, shared libraries which are used by EIBD and the master
daemon. The operating system is based on the Debian project. The kernel, libraries and
binaries are ported to the ARM platform, so it is possible to benefit from using a full-
scale operating system, e.g. by using the comfortable packet manager called aptitude
provided by Debian. A short introduction to the most important commands is given
below as they are needed.

A.1 Raspbian
To obtain a running system for deploying the secure KNX daemon, a prebuilt Debian
image is used, which can be downloaded from the RaspberryPi homepage.

http://downloads.raspberrypi.org/raspbian_latest.torrent
The image must be unzipped and copied to a suitable memory card. First-generation

RaspberryPis (model ’A’) have SD slots, while all later models come with micro-SD
slots. To copy the basic operating system to the memory card, the Linux command "dd"
can be used. To find the correct device to write the image to, the following command
can be used:

1 # tail −f /var/log/kern.log

After inserting the memorycard into a cardreader, look for output like that:

1 [1004111.533698] sdb: detected capacity change from 7909408768
to 0

2 [1004114.055840] sd 6:0:0:0: [sdb] 15448064 512−byte logical
blocks: ...
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Here, the proper device to use is the device /dev/sdb. Pay attention to use the
correct device in the following command - this device will be overwritten:

1 # dd if=<Path to Image> of=<Device to overwrite>

After the write-command has finished, the memory card is ready to use. For first
time setup, a display must be connected via HDMI. Powering up the RaspberryPi opens
a ncurses configuration dialogue. First thing to do is to resize the root partition to
maximum size and set a password for the administrative account. Optionally, different
options like keyboard layout can be set. To be able to operate the RaspberryPi without
external display, it is necessary to start a SSH server under Advanced Options and assign
a fixed IP to the host by editing the file /etc/network/interfaces, as shown in example B.1.
This way it is possible to connect to the RaspberryPi with a SSH client. For password
less logins, create an unprivileged user and a SSH public/private key pair for that user
by executing these commands on the RaspberryPi:

1 # groupadd <usergroup>
2 # useradd −g <usergroup> −m <username>
3 # su <username>
4 # ssh−keygen

The program generates the user and the corresponding key pair and saves public and
private key in the subdirectory /.ssh/ of the actual user. When asked for a passphrase,
it is possible to use a password-less keypair, an option that should only be used in
restricted areas. To actually use the keypair for logging into the RaspberryPi, the pub-
lic key must be saved in the file /.ssh/authorized_keys. Additionally, the private key
must be copied to every host from that SSH connections to the RaspberryPi want to be
opened. After that, it is possible to load the private key into memory with the command
ssh-add and to connect to the host without a password:

1 # ssh−add // only necessary when non−empty passwort is used for
keypair

2 # ssh <username>@<host−ip|host−dns−name>

It is also advisable to update the operating system at this time by running the fol-
lowing commands as user root:

1 # apt−get update
2 # apt−get install

This will install the latest package versions of all installed packages. New software
can be installed from the command line with these commands:

1 # apt−cache search <pattern> // print a list matching packages for <
pattern>

2 # apt−get install <packagename>
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A.2 EIBD
The maintainer of EIBD provides binary packages for the i386 architecture only. There-
fore, the daemon and its prerequisites must be built from source to get suitable binaries
and shared libraries for the ARM environment. Building software under GNU Linux or
*nix from source always follows this scheme:

1. Downloading and extracting the source code.

2. If possible, comparing the developer supplied hash code with the hash code of
the downloaded source files with sha256 or one of its variants to verify that no
modified software has been downloaded.

3. Optionally, apply patches to the source code (not necessary here).

4. Set the make-options by calling ./configure <options>, overriding default compi-
lation options by setting the corresponding command line parameters. ./configure
–help should print a list of valid options.

5. Compiling the source code by calling make.

6. Copying the generated binaries and shared libraries into their correct place by
calling make install. This last step must always be executed as user root because
the generated files will be copied into system directories which are not writeable
by unprivileged users.

EIBD and the needed library pthsem are available from these locations:

https://www.auto.tuwien.ac.at/~mkoegler/pth/pthsem_2.0.8.tar.
gz
http://sourceforge.net/projects/bcusdk/

After copying the archives to the RaspberryPi, they must be unpacked and compiled.
First the pthsem shared library, offering user mode multi threading with semaphores,
must be compiled because it is used by EIBD.

1 # tar −xvzf pthsem−2.0.8.tar.gz
2 # cd pthsem−2.0.8
3 # ./configure
4 # make
5 # make install // must be executed as root

This will, among other things, generate the shared library libpthsem.so.20 in the di-
rectory /usr/local/lib. /usr/local is by convention the destination where self compiled
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software should reside. Now that pthsem is available, EIBD itself is ready for compila-
tion:

1 # tar −xvzf bcusdk−0.0.5.tar.gz
2 # cd bcdusk−0.0.5
3 # ./configure −−without−pth−test −−enable−onlyeibd −−enable−

tpuarts
4 # make
5 # make install // must be executed as root

These steps generate the binary eibd and lots of helper programs in the directories /us-
r/local/bin, and the shared object /usr/local/lib/libeibclient.so.0 that provides the EIBD
API and therefore is needed to be linked to the master daemon.
Additionally, the development files for interfacing with the OpenSSL API must be in-
stalled by executing the following command:

1 # aptitude install libssl−dev

A.3 Revision control
The source of the master daemon is managed by GIT. GIT is a decentralized version-
control system and is available under Debian/Raspbian after installing the package ’git’.
The command A.3 fetches the latest version and creates a directory called ’knxSec’
which contains all the needed source files, a proper makefile B.3 for the project, as well
as all other needed files.

1 # git clone git@github.com:hglanzer/knxSec.git

A.4 Busware USB couplers
To access the KNX TP1 bus, i.e., to write datagrams to and receive datagrams from the
bus, USB dongles as shown in Figure ?? from the company Busware are used. Depend-
ing on the revision, the bus couplers creates a new device which is used as Uniform
Resource Locator (URL) by the EIBD. The coupler will be accessible by /dev/ttyACMx,
where x is the number of the device. It may be necessary to flash the bus couplers with
the correct firmware first. The easiest way to check this is to use command A.1 and look
for output similar to listing A.4 when plugging the coupler into a USB slot.

1 ... usb 1−1.2: new full−speed USB device number 19 using ehci_hcd
2 ... usb 1−1.2: New USB device found, idVendor=03eb, idProduct=204b
3 ... usb 1−1.2: New USB device strings: Mfr=1, Product=2, SerialNumber

=220
4 ... usb 1−1.2: Product: TPUART
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Figure A.1: Busware KNX-USB coupler

5 ... usb 1−1.2: Manufacturer: busware.de
6 ... usb 1−1.2: SerialNumber: 7543034373135130C140
7 ... cdc_acm 1−1.2:1.0: ttyACM0: USB ACM device

If no such line like 7 appears, the correct firmware is available as file firmware/T-
PUARTtransparent.hex inside the git project. To actually flash the coupler, the program-
ming button on the bottom of the device must be kept pressed while connecting it to an
USB slot. Afterwards, the commands shown in A.4 must be executed.

1 # apt−get install dfu−programmer
2 # dfu−programmer atmega32u4 erase
3 # dfu−programmer atmega32u4 flash TPUARTtransparent.hex
4 # dfu−programmer atmega32u4 reset

A.5 UDEV
To obtain a consistent naming scheme for the busware dongles, udev rules are provided.
This way it is possible to always use the same device file for the distinct bus lines, no
matter in which ordering the dongles are connected to the RaspberryPi.

1 udevadm info −−name=/dev/ttyACM0 −−attribute−walk

A.6 Test setup
The test environment consists of 2 RaspberryPis, as shown in Figure 5.1.
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APPENDIX B
Code snippets and configuration files

1 # device: eth0
2 auto eth0
3 iface eth0 inet static
4 address 192.168.0.2
5 broadcast 192.168.0.255
6 netmask 255.255.255.0
7 gateway 192.168.0.1

Listing B.1: Raspbian configuration for static IP address

1 # device: eth0
2 iface eth0 inet dhcp

Listing B.2: Raspbian configuration for dynamic IP address

1 CFLAGS=−Wall
2 LIBS=−leibclient −lcrypto −lm
3 #LIBS=−lgmp −lcrypto −llibeibclient
4

5 all: clean
6 gcc $(CFLAGS) master.c sec.c clr.c knx.c cryptoHelper.c −o

master −pthread $(LIBS)
7

8 debug: clean
9 gcc $(CFLAGS) master.c clr.c sec.c knx.c cryptoHelper.c −o

master −pthread −DDEBUG $(LIBS)
10

11 clean:
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12 clear
13 rm −rf ∗.o
14 rm −f master
15

16 drun: debug
17 @echo "starts master daemon in debug mode, with KNX device

addr 1"
18 ../start.sh 1
19

20 run: all
21 ../start.sh 1
22

23 update:
24 git commit −a −−allow−empty
25 git pull
26 git push

Listing B.3: Makefile for the master daemon

1 #!/bin/bash
2

3 OPT="−−tpuarts−ack−all−group −−tpuarts−ack−all−individual"
4

5 echo "∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗"
6 echo "∗ignoreing dev − file for CLR device∗"
7 echo "∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗"
8

9 #if [ −a /dev/knxSEC1 ] && [ −a /dev/knxSEC2 ]
10 if [ −a /dev/knxCLR ] && [ −a /dev/knxSEC1 ] && [ −a /dev/knxSEC2 ]
11 then
12 echo "device files exist − OK"
13 else
14 echo "device file(s) missing − THIS IS BAD!"
15 #exit 1
16 fi
17

18 if [ $# −eq 1 ]
19 then
20 if [ "$1" −gt "0" ] && [ "$1" −lt "16" ]
21 then
22 killall −9 eibd
23 killall −9 eibd
24

25 rm /tmp/knxCLR
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26 rm /tmp/knxSEC1
27 rm /tmp/knxSEC2
28

29 cd src
30

31 #eibd tpuarts:/dev/knxSEC1 −−listen−local=/tmp/
knxSEC1 $OPT &

32 eibd −e 1.0.$1 tpuarts:/dev/knxSEC1 −−listen−local=/
tmp/knxSEC1 $OPT &

33 #sleep 1
34 #eibd tpuarts:/dev/knxSEC2 −−listen−local=/tmp/

knxSEC2 $OPT &
35 eibd −e 1.1.$1 tpuarts:/dev/knxSEC2 −−listen−local=/

tmp/knxSEC2 $OPT &
36 #sleep 1
37 #eibd tpuarts:/dev/knxCLR −−listen−local=/tmp/knxCLR

$OPT &
38 eibd −e 1.2.$1 tpuarts:/dev/knxCLR −−listen−local=/

tmp/knxCLR $OPT &
39

40 echo "starting master daemon"
41 sleep 1
42 #./master −−clrSocket local:/tmp/knxCLR −−

sec1Socket /tmp/knxSEC1 −−sec2Socket /tmp/
knxSEC2 −−addr $1

43 ./master −−clrSocket local:/tmp/knxCLR −−sec1Socket
local:/tmp/knxSEC1 −−sec2Socket local:/tmp/
knxSEC2 −−addr $1

44 else
45 echo "usage: "
46 fi
47 else
48 clear
49 echo "usage: ./start.sh <device addr> "
50 echo
51 echo
52 fi

Listing B.4: Start script
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3DES Triple Data Encryption Standard. 22–24

ACU Advanced Coupler Unit. 63
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CA Certification Authority. 63
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CPA Chosen Plaintext Attack. 26
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HMAC Keyed-Hash Message Authentication Code. 31, 89, 90
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IA Individual Address. 56, 58, 59, 66–68, 71, 72, 77, 79

ICD Interconnection Device. 2, 3

IEEE Institute of Electrical and Electronics Engineers. 48, 50

IP Internet Protocol. 1, 3, 51, 55, 61, 63, 64, 95, 97, 101

IPSec Internet Protocol Security. 3

IPv4 Internet Protocol version 4. 59
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LAN Local Area Network. 51

LC Line Coupler. 55
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LRE Link Redundancy Entity. 51

LSDU Link Service Data Unit. 51, 57

MAC Message Authentication Code. 10, 25, 29–31, 33, 38, 62, 69, 70, 73, 74, 77, 79,
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MAC Medium Access. 49, 51, 56

MAU Medium Access Unit. 56

MD Management Device. 2, 3

106



MRP Media Redundancy Protocol. 50

MTTF Mean Time To Failure. 41, 52

MTTR Mean Time To Repair. 41, 42

NIST National Institute of Standards and Technology. 22, 24, 31, 39, 87

NSA National Security Agency. 23

OFB Output Feedback Mode. 28

OSI Open System Interconnection Model. 48, 51, 53, 54, 59

OTP One Time Pad. 19

PDU Protocol Data Unit. 62

POSIX Portable Operating System Interface. 84, 86

PRNG Pseudo Random Number Generator. 13, 14, 20

PRP Parallel Redundancy Protocol. 51, 52

PSK Pre Shared Key. 63, 74

RAID Redundant Array of Independent Disks. 45

RF Radio Frequency. 55

RSTP Rapid Spanning Tree Protocol. 50

S-AL Secure-Application Layer. 62
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SNMP Simple Network Management Protocol. 95
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SSH Secure Shell. 30, 33, 97

SSL Secure Sockets Layer. 33

STP Spanning Tree Protocol. 48–50

TCP Transport Control Protocol. 59

TK Tool Key. 62

TLS Transport Layer Security. 3, 63

TMR Triple Modular Redundancy. 46
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TPCI Transport Layer Protocol Control Information. 59, 62

TPDU Transport Layer Protocol Data Unit. 59
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