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Kurzfassung

Diese Arbeit befasst sich mit der Synthese von drei-dimensionalen Geometrien, deren
natürliches Frequenzspektrum die gewünschte Zielfrequenz enthält und deren Erschei-
nungsbild dem beabsichtigten Entwurf ähnelt. Wir schlagen drei Methoden zur Para-
metrisierung von Geometrien vor, welche sinnvolle Freiheitsgrade zur Konstruktion von
Musikinstrumenten wie Marimba und Glocken gewähren. Die Formfamilie, auf welcher der
Optimierungsalgorithmus arbeitet, basiert auf der Repräsentation eines Körpers als das
Volumen zwischen einer Außenfläche und einer inneren Versatzfläche. Die Evaluierung des
Frequenzspektrums eines gegebenen Körpers wird mithilfe der Finite-Elemente-Methode
vorgenommen. Zu diesem Zweck werden verschiedene Elementtypen erklärt und deren
Eignung für die vorliegende Aufgabe analysiert. Zur Herstellung eines optimierten Körpers
stellen wir eine Fabrikationsmethode vor, welche es Amateurhandwerkern ermöglicht, mit-
hilfe von Sand- oder Kautschukformen Zinninstrumente herzustellen. Die Effizienz dieser
Methode wird an den Beispielen einer simplen Zinnglocke und einer komplexeren Glocke
in Form eines Hasen demonstriert. Die Tonhöhe der Glocken stimmt mit der von dem
Finite-Elemente-Modell prognostizierten Frequenz mit einer Abweichung von 2,8% bzw.
6% überein. Wir ergänzen diese Resultate mit einer Reihe von rechentechnischen Ergeb-
nissen, welche die Optimierung von Obertonfrequenzverhältnissen sowie den Einflussgrad
von Netzauflösung und Geometrieglätte auf die Genaugikeit des Berechnungsmodells
erforschen.
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Abstract

Given a target shape and a target frequency, we automatically synthesize shapes that
exhibit this frequency as part of their natural spectrum while resembling the target
shape as closely as possible. We propose three shape parametrization methods that
afford meaningful degrees of freedom in the design of instruments such as marimbas
and bells. The design space is based on the representation of a solid as the volume
enclosed by an outer surface and an inner offset surface. In order to evaluate the natural
frequency spectrum of a solid, we employ finite element modal analysis and evaluate the
suitability of different element types. We propose a fabrication method for the production
of optimized instruments by an amateur craftsperson using sand or rubber molds. The
efficiency of our method is demonstrated by the production of a simple tin bell and a
more complicated bell in the shape of a rabbit. We achieve agreement with the predicted
pitch frequencies of 2.8% and 6% respectively. These physical results are supplemented
by a number of computational results that explore the optimization of harmonic ratios
and the influence of mesh resolution and mesh smoothness on the accuracy of the finite
element model.
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CHAPTER 1
Introduction

1.1 Motivation
The computer graphics community has dedicated many of its efforts to the synthesis
of images that reflect parts of the real world, be it to achieve photorealistic special
effects or to visualize data in a comprehensible manner. Computers and displays are
ubiquitous, which is why digital content, such as videos, games, and e-books, enjoys
enormous popularity. This trend has even affected the production of tangible objects:
E-books make up 30% of all book sales in the U.S. now, and digital video game sales
surpassed the sale of physical copies in the U.K. in 2013.

While we can conclude that consumers see digital content as a viable alternative to
mass-produced items, limited and unique products are always in great demand. In the
past, creating a unique artifact has always been costly because it requires an expert
designer and expensive equipment to manufacture. Techniques for quickly producing
individual products have been used in industrial manufacturing processes under the
umbrella term “rapid prototyping” for more than thirty years. Especially additive
manufacturing techniques such as Fused Deposition Modeling (FDM) and Selective Laser
Sintering (SLS) have become a constant in CAD-CAM workflows. Other industries that
benefit from such techniques are the fashion, jewelry, and entertainment industries.

The latest development in additive manufacturing has largely mitigated the problem
of prohibitively high costs: Cheap FDM printers have been available to a broad audience
for about five years and enable even hobbyists and enthusiasts to use this technology.
Emergent online portals such as Thingiverse bear testimony to the widespread popularity
that desktop 3d printers have come to enjoy.

The advent of consumer-grade 3d printers has recently sparked interest in a novel
research direction: fabrication-aware shape design and optimization. This exciting
field leaves the realm of digital shape representations and focuses on the creation of
physical artifacts. Recent publications demonstrate a multitude of applications, the
interdisciplinary nature of the field, and diverse goals: reduction of printing costs,
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automatic stability analysis and improvements for printed models, synthesis of models
with particular mass properties, optimization of deformation properties, and many more.

In this master thesis we want to investigate a property that has not been discussed in a
shape optimization setting before: the natural frequency spectrum of a three-dimensional
solid. The natural frequency spectrum encodes the vibrations that an object can undergo
and therefore the pitch and timbre of the sounds that it can exhibit. Since the frequency
spectrum is an intrinsic property that depends on the shape and the material of an object,
it can be influenced by varying the geometry. This makes the natural frequency spectrum
a likely candidate for shape optimization techniques.

The most straightforward application of natural frequency optimization is the design
of struck idiophones—instruments that vibrate as a whole after being struck with a mallet,
like xylophones, triangles, and cymbals—with little need for user intervention. Instrument
shapes do not usually deviate from well-established designs like the rectangular bars of a
xylophone. The reason is that creating a novel instrument is a pain-staking trial-and-error
process that necessitates fabricating prototypes in order to evaluate pitch and sound
quality. Section 3.3 reviews works in acoustics that attempt to quantify relationships
between instrument shape and sound in a computational manner. Most of the works in
this area act in an analytical capacity and do not propose automated design solutions.
The goal of this thesis is to explore computational solutions that facilitate the design of
instruments by synthesizing 3d shapes to match a desired pitch.

1.2 Problem Statement

We aspire to create a workflow that helps a layperson design and fabricate an idiophone.
The user should be able to control the pitch and the targeted material and have consid-
erable influence over the shape of the finished result. Additionally, the user can set a
secondary goal in the form of harmonic ratios between the first overtones.

We can identify a number of subproblems that arise on the road to achieve these goals.
A fundamental question is which computational model to choose in order to establish
the connection between a given 3d object and its natural frequency spectrum. This is
a well-studied area in engineering because natural frequencies play an important role
in civil engineering for the prevention of resonance disasters (e.g., the collapse of the
Tacoma Narrows Bridge in 1940) and earthquake damages. The challenge lies in choosing
a model that is predictive enough to achieve a small error compared to the real natural
frequency spectrum. At the same time the evaluation of the model should take as little
time as possible in order to be a suitable candidate for a shape optimization algorithm.

A physical counterpart for the computational model is needed to validate the results.
Measuring the natural frequencies of a physical object is also a well-researched subject
in acoustics and in civil engineering, but the most common approach, which is briefly
discussed in Section 3.3, requires expensive equipment that is unavailable to us. We need
to find an alternative that allows us to measure natural frequencies by means of simple
tools.
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The other challenge is to choose an appropriate design space for the creation of
idiophones. The design space is a parametrized set of shapes that an optimization
algorithm can use to search for an optimal solution. One requirement is that it be large
enough to pinpoint frequencies in an adequate range, e.g., at least one octave for a
xylophone-like instrument. The other requirement is that the user be able to control the
shape of the instrument to a large degree. Thus, the visible parts of the instrument should
deviate as little as possible from the design targeted by the user. A third requirement is
that the design space only contain physically plausible shapes, i.e., the shapes must not
contain any self-intersections, and it should be possible to fabricate them with the means
at hand.

With a parametrized design space and a method to compute natural frequencies in
place, it is necessary to formulate an optimization problem. The constraints that the
formulation puts on the optimization parameters must ensure that physically implausible
shapes are excluded from the search. Ideally, the optimization problem should be
amenable to an off-the-shelf numerical solver.

The final problem is to choose a material and find a suitable fabrication method for
an optimized idiophone. The material has to be easy to acquire, cheap, and malleable by
means accessible to an amateur craftsperson.

1.3 Contributions

We provide a theoretical introduction to natural frequency analysis and explore a spec-
trum of solutions to the problems listed above. In particular, we use finite element
modal analysis to determine the natural frequency spectrum of a three-dimensional solid
computationally. To this end, we evaluate the suitability of different types of elements and
compare the results for a variety of shapes. We also provide benchmarks for geometric
primitives and compare our computational solutions to frequency measurements.

To validate the results found by our finite element models, we develop a poor man’s
version of the experimental modal analysis methods used in an engineering context.
Instead of using accelerometers, we take audio samples with a commercially available
microphone and extract frequency peaks in a semi-automatic fashion. This method
is used to assess the predictive power of our finite element model on the examples of
store-bought aluminium plates and self-produced idiophones.

In order to establish a suitable design space, we survey typical shapes and tuning
methods for a variety of idiophones to identify shape parameters that influence the
natural frequency spectrum. We then propose three methods of shape parametrization
with varying degrees of flexibility. All three methods use the idea of defining a 3d object
as the volume enclosed by an outer surface with boundary and an inner surface that
has been offset from the outer surface. The first design space uses the offset distance
as a parameter in order to regulate the pitch. This method is only applicable for very
smooth shapes because it can easily produce self-intersecting surfaces in high-curvature
regions. The second parametrization method uses the same parameter but calculates
the offset inner surface in a more sophisticated way. It introduces a meso-skeleton to
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limit the per-vertex offset distances in order to prevent self-intersections and intersections
between the two surfaces. These two parametrizations work with a single optimization
parameter and are therefore efficient in finding solutions that pinpoint a desired target
pitch. However, they cannot optimize overtone frequencies for lack of degrees of freedom.
This issue is addressed by the third parametrization method, which uses an adjustable
number of parameters. Depending on the complexity of the shape and of secondary
objectives, the number of parameters can be chosen to yield a larger design space. This
method is based on an order-reduction scheme using manifold harmonics.

We propose a three-stage fabrication pipeline that allows the inexpensive production
of an optimized idiophone by a layperson. Metals are suitable materials because they are
isotropic, thus affording precise finite element analysis, hard, thus exhibiting good-quality
sounds, and they can be made to assume almost arbitrary shapes using the casting
process. This manufacturing method requires the use of a heat-resistant mold into which
the molten metal is poured to acquire the desired shape. In our pipeline, we first produce
a positive of our 3d object out of plastic using an FDM printer. From the positive, we
create a mold using either oiled molding sand for simple shapes or silicone caoutchouc
for more complicated shapes. The mold is equipped with an opening into which molten
tin is poured to form the idiophone.

We demonstrate the optimization pipeline and the fabrication method by manufactur-
ing differently shaped tin bells that exhibit a desired pitch. To assess the quality of the
results, we measure the natural frequencies of the fabricated solids and compare them
to the frequencies predicted by the finite element model. In order to further improve
the accuracy of the prediction, we estimate the material properties of the tin we use
from a set of sound samples with an optimization algorithm. The manifold harmonics
parametrization is demonstrated on a computational result in which the harmonic ratio
between the pitch and the first overtone of a marimba bar is optimized using a Monte
Carlo sampling algorithm combined with local optimization.

The behavior of our finite element model is explored further on a series of com-
putational benchmarks. We analyze the effects of mesh resolution on the accuracy of
natural frequency calculations using the finite element method. Additionally, we analyze
the influence of small surface details and mesh smoothness on the natural frequencies
of an object. These experiments are carried out with the goal of speeding up future
implementations of a natural frequency optimization framework.

1.4 Overview

Chapter 2 serves as an introduction to linear elasticity theory as a mathematical model to
describe the motions and deformations of solid objects. It presents the concept of virtual
work and the principles of potential and kinetic energy in the context of deforming bodies.
These theories are the basis of the finite element approximation, which can be used to
simulate the behavior of an object computationally. The result of the finite element
model is a system of ordinary differential equations, whose solution is also discussed. The
finite element method makes heavy use of volume integrals that have to be integrated
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numerically. In the last section of this chapter, we derive the Newton–Cotes formulae and
several Gauss quadrature rules that are needed to evaluate the integrals. We also discuss
the problem of spurious modes, which occurs if the integrals are solved with insufficient
accuracy.

Chapter 3 reviews seminal works in the disciplines that are relevant to this thesis.
Shape optimization techniques have gained traction in the computer graphics community
in the last five years. The most important contributions are discussed in Section 3.1.
Section 3.2 presents works in the field of sound synthesis, i.e., techniques to simulate
physically plausible sounds in a virtual environment. In Section 3.3 we introduce works
that analyze instruments to establish a connection between sound and shape.

Chapter 4 describes the steps in our natural frequency optimization pipeline and
represents the primary contribution of this thesis. We first introduce three shape
parametrization methods for the design space of our shape optimization framework. The
section on finite element models develops the element types we explored and discusses
their implementation. Then we describe our formulation of the frequency optimization
problem in order to find feasible solutions in the design spaces.

Chapter 5 presents results obtained with the shape optimization framework and
discusses our methods of evaluating the quality of the solutions. We describe our
workflow to measure the natural frequencies in the audible spectrum of a given physical
object and compare the computational solutions of our finite element framework to
measurements using the example of aluminium plates. In order to increase the accuracy
of the frequency predictions, we perform material parameter estimation on the same
test objects. In this chapter, we also document our workflow for manufacturing our own
idiophones from tin and compare the finite element predictions to the experimentally
determined frequencies. Finally, we present a result that demonstrates the optimization
of harmonic ratios in our design space.

Chapter 6 discusses a possibility to speed up frequency optimization by using coarsely
resolved meshes. To this end, we evaluate how mesh resolution and the presence of fine
surface details influence the natural frequency predictions for an object.

Chapter 7 summarizes the major findings of this thesis and gives an outlook on future
research directions.
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CHAPTER 2
Theoretical Foundations

2.1 Linear Elasticity Theory
Elasticity theory is the subfield of continuum mechanics that describes the motions and
deformations of solid objects. Solid objects are modeled as continua that respond to
external forces with internal stresses and that deform in response to these stresses. If
deformations are expected to be small, the relationships between all occurring quantities
can be linearized, which significantly simplifies computation. The basics of elasticity
theory are discussed here because they lead to the development of equations of motions
that model the behavior of solids. We are ultimately interested in the description of
vibrations that lie in the audible spectrum, i.e., have a frequency between 20 and 20,000
Hz. These vibrations introduce only small deformations to the object and are therefore
described accurately by the linear theory.

The theory of elasticity is usually presented in three parts: kinematics, kinetics, and
constitutive relations. In combination, they culminate in the equations of motion for
linear elasticity, which yield a full description of solid object behavior.

Kinematics is purely descriptive and characterizes the motions and deformations of an
object in terms of a mathematical language. The most important assumptions are that a
solid object is a continuum, i.e., the atomic structure is ignored, and that deformations
are small enough to ignore quadratic terms. Kinetics is concerned with the causality
between physical forces and the resulting acceleration of the object. This involves body
forces such as gravity, surface forces such as collisions with other objects, as well as
internal forces that develop due to deformations. Constitutive relations describe the
properties of the material as idealized stress-strain laws. While the results of kinematics
and kinetics are derived from fundamental principles, constitutive laws are assumptions
that have proven to hold well in practice.

In the remainder of this section, we present the most important results of linear
elasticity theory. More thorough treatments of this subject can be found in engineering
textbooks [TG69, MEH12, Fel13].
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reference current

X
u(X)

u(X+dX)

x

dX
dx

X, x

Y, y

Z, z

Figure 2.1: Reference configuration and current configuration of an elastic body. The
points X and its infinitesimal neighbor X+dX of the reference configuration are displaced
to the points x and x + dx in the current configuration.

2.1.1 Kinematics

In the beginning, we introduce notation to describe a solid object as a moving and
deforming continuum. We define the reference configuration of a solid as a compact and
connected set Ω ⊂ R3. This configuration is the starting situation and describes the
state of the object in the absence of forces. The position of a particle in its reference
configuration is denoted as X ∈ R3, see Fig. 2.1.

The solid may deform over time, and this way a particle can move from its reference
configuration to the current configuration. Its position in the current configuration is
denoted as x ∈ R3. If we want to emphasize the dependence of x on its corresponding
reference point X and on time t, we denote it as x(X, t). The displacement between
the current and the reference configuration is denoted as u(X, t) = x(X, t)−X. This is
an important variable because our ultimate goal will be to find u as a function of time
because this describes the behavior of an object in its entirety.

The next quantity we introduce describes the deformation in the neighborhood of a
point X as the solid moves from the reference configuration to the current configuration.
To this end we define a point X + dX that is infinitesimally close to X. These two points
map to x and x + dx in the current configuration. As a quantification of deformation, we
look at the difference in length between the line segment connecting X and X + dX and
its image in the current configuration. To facilitate analysis, we measure the difference
between the squared lengths dS2 = dXTdX and ds2 = dxTdx.
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A look at Fig. 2.1 reveals that

dx = dX + u(X + dX)− u(X). (2.1)

The central term can be developed into a Taylor series

u(X + dX) = u(X) + ∂u
∂XdX, (2.2)

which can be truncated after the linear term because dX is an infinitesimal quantity.
Note that

∇u = ∂u
∂X =


∂u1
∂X1

∂u1
∂X2

∂u1
∂X3

∂u2
∂X1

∂u2
∂X2

∂u2
∂X3

∂u3
∂X1

∂u3
∂X2

∂u3
∂X3


is the Jacobi matrix of u with respect to X. Substitution of Eq. (2.2) into Eq. (2.1) yields

dx = dX + ∂u
∂XdX.

If we plug this formula into our deformation measure, we obtain

ds2 − dS2 =
(
dX + ∂u

∂XdX
)T (

dX + ∂u
∂XdX

)
− dXTdX =

= dXT

[
∂u
∂X +

(
∂u
∂X

)T
+
(
∂u
∂X

)T ∂u
∂X

]
dX,

which is usually written as

ds2 − dS2 = dXT · 2E · dX.

The symmetric second-order tensor E is referred to as the Green-Lagrange strain
tensor. It is given by

E = 1
2
[
(∇u)T +∇u + (∇u)T∇u

]
.

If the deformation gradients ∇u are small, the quadratic term in E can be neglected.
The resulting second-order tensor

ε = 1
2
[
(∇u)T +∇u

]
(2.3)

is referred to as the infinitesimal strain tensor or, in short, strain. Because it is symmetric
by definition, it has only six independent variables

ε =

ε11 ε12 ε13
ε22 ε23

symm. ε33

 .
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ΔS

ΔT

n

Figure 2.2: A mental planar cut is made through an elastic body. The mean stress is
defined as the ratio between the force acting on a surface element and its area.

The transition from E to ε represents the eponymous linearization of linear elasticity
theory. The diagonal elements of ε are known as normal deformations, and the off-
diagonal elements as shear deformations. These names refer to the type of geometric
transformation that the corresponding deformations induce if present.

The six equations contained in Eq. (2.3), which connect the six strain components
and the three displacement components, are referred to as the kinematic equations and
are part of the equations of motion of linear elasticity theory.

2.1.2 Kinetics

This section explains how the forces acting on and inside of a solid relate to the acceleration
of its constitutive points. The central concept is that of stress, which describes the forces
acting on a surface. To define the stress at a point x in the interior of the object domain,
we make a mental planar cut at that point, thereby splitting Ω in two parts, see Fig. 2.2.
Let ∆S be the area of a surface element around x, ∆T the force acting on said surface
element due to internal force interactions, and n the normal of the surface element. Then

t(n)
m = ∆T

∆S
defines the mean stress vector. The vector ∆T has the units of force, but stress describes
force per unit area. By shrinking the surface element S and taking the limit

t(n) = lim
∆S→0

∆T
∆S , (2.4)

we arrive at the stress vector t(n) in x with respect to the normal n of the surface element.
Note that the corresponding stress vector in x on the other side of the cut is t(−n) because
the two surface elements close seamlessly at x. Furthermore, it holds that −t(n) = t(−n)

due to Newton’s third law of action and reaction.
To describe the stress state at a point x in the current configuration, the Cauchy

stress tensor σ is introduced. We define a cuboid with infinitesimal side lengths dx1, dx2,
and dx3 that is anchored at x and aligned with the orthonormal basis (e1, e2, e3). The
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e

t(e t(e

t(e

e

e

Figure 2.3: The stress vectors acting on the positively-oriented faces of a cuboid define
the coefficients of the Cauchy stress tensor.

t(e

t(e

t(e

-t(e

-t(e

-t(e

x
x+dx

e
e

e

dx

dx

dx

Figure 2.4: The stress vectors acting on all faces of the cuboid.
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stress vectors on the positively-oriented faces of the cuboid, i.e., the faces whose normals
equal the basis vectors, are obtained by shrinking the cuboid to a point and taking the
limit as in Eq. (2.4). This yields

t(e1) = σ11e1 + σ12e2 + σ13e3,

t(e2) = σ21e1 + σ22e2 + σ23e3,

t(e3) = σ31e1 + σ32e2 + σ33e3.

As illustrated in Fig. 2.3, the coefficients σij constitute the Cauchy stress tensor

σ =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 .
The diagonal elements are known as normal stresses, and the off-diagonal elements as
shear stresses.

In order to prove the symmetry of the Cauchy stress tensor, we look at the stress
vectors acting on all six faces of the cuboid, as illustrated in Fig. 2.4. By taking moments
about the basis vector e1, we obtain

σ23(x2 + dx2) dx1 dx3
dx2
2 + σ23(x2) dx1 dx3

dx2
2

−σ32(x3 + dx3) dx1 dx2
dx3
2 − σ32(x3) dx1 dx2

dx3
2 = 0.

In this equation, σ23(x2 + dx2) dx1 dx3 is the force acting on the face with normal e2 and
dx2
2 is its distance to x. By shrinking the cuboid to a point, we take the limits dx2 → 0

and dx3 → 0, which yields σ23 = σ32. Taking moments about e2 and e3 as well proves
the symmetry of the Cauchy stress tensor

σ =

σ11 σ12 σ13
σ22 σ23

symm. σ33

 .
Equipped with this definition, Newton’s second law

dR = b dm, (2.5)

where dR is the resultant of forces, dm is the mass, and b is the acceleration of an
infinitesimal volume element, can be specialized to a deformable solid.

Again, we start with an infinitesimally small cuboid element that is aligned with the
coordinate system (e1, e2, e3) and anchored at x. The stress vectors acting on the six
cuboid faces are

−t(e1)(x1), t(e1)(x1 + dx1),
−t(e2)(x2), t(e2)(x2 + dx2),
−t(e3)(x3), t(e3)(x3 + dx3).

12
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Figure 2.5: An infinitesimal tetrahedral volume element.

The stress vectors acting on the positively oriented faces can be expanded into the Taylor
series

t(ei)(xi + dxi) = t(ei)(xi) + ∂t(ei)(xi)
∂xi

dxi + . . .

The resultant of forces dR acting on the cuboid element is given by the sum of body
forces fdV and the stresses acting on the cuboid faces. Here, f denotes volume force
density, and dV is the volume of the cuboid. By using the Taylor expansions, we arrive
at

dR =
[
f + ∂t(e1)(x1)

∂x1
+ ∂t(e2)(x2)

∂x2
+ ∂t(e3)(x3)

∂x3

]
dV + . . . ,

where dx1 dx2 dx3 has been replaced with dV . Division by dV and setting dm = ρ dV ,
where ρ is the density of the solid, yields

∂t(e1)(x1)
∂x1

+ ∂t(e2)(x2)
∂x2

+ ∂t(e3)(x3)
∂x3

+ f = ρb.

Using the divergence operator and the Cauchy stress tensor, this can be written more
concisely as

∇ · σ + f = ρb. (2.6)

This three-component equation is known as the fundamental law of dynamics and is part
of the equations of motion of a solid deformable continuum.

For the derivation of the principle of virtual work in Section 2.2, we need one more
result known as Cauchy’s stress theorem. It states that, by knowing the Cauchy stress
tensor at a point x, we can determine the stress vector for an arbitrary surface normal n
as

t(n) = σ · n. (2.7)

13



In order to prove this, we imagine an infinitesimally small tetrahedral volume element,
three of whose faces are aligned with the basis vectors e1, e2, and e3, as seen in Fig. 2.5.
Let n = (n1, n2, n3)T denote the normal of the fourth face of the tetrahedron. If dS(n)

denotes the surface area of this face, the surface areas of the other faces are given by the
projections of n onto the basis vectors. This yields the expressions

dS(e1) = n1 dS
(n),

dS(e2) = n2 dS
(n),

dS(e3) = n3 dS
(n).

Specializing Newton’s second law Eq. (2.5) to the tetrahedral element yields

f dV − t(e1) n1 dS
(n) − t(e2) n2 dS

(n) − t(e3) n3 dS
(n) + t(n) dS(n) = b(n) ρ dV,

where f denotes volume force density and dV the volume of the element. Substituting
dV = 1

3 dh dS
(n) and dividing by dS(n) leads to

f 1
3dh− t(e1) n1 − t(e2) n2 − t(e3) n3 + t(n) = b ρ 1

3dh.

If we shrink the tetrahedron to point and take the limit dh→ 0, we finally obtain

t(n) = t(e1) n1 + t(e2) n2 + t(e3) n3 = σ · n,

which proves Cauchy’s stress theorem.

2.1.3 Constitutive Equations

So far we have introduced 15 unknowns: the three components of the displacement
u, the six independent components of the Green-Lagrange strain tensor ε, and the six
independent components of the Cauchy stress tensor σ. With the six equations from
Eqs. (2.3), and the three equations from Eqs. (2.6), we are still six equations short of a
full set of equations of motion.

Constitutive equations provide these additional constraints by describing the relation-
ship between strains and stresses. They can be experimentally determined for specific
materials using universal testing machines. The general form of constitutive equations in
linear elasticity is

ε = F(σ).

For many materials, the relationship between stress and strain is linear for small defor-
mations and can be written as

σ = E ε, (2.8)

which is known as the generalized Hooke’s Law. The fourth-order tensor E is referred
to as the stiffness tensor. A fourth-order tensor consists of up to 81 independent scalar
variables. However, due to the symmetry of σ, ε, and E itself, E has at most 21
independent scalars.
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To express Eq. 2.8 in matrix notation, we write σ and ε as vectors and obtain

σ11
σ22
σ33
σ12
σ23
σ31


=



E11 E12 E13 E14 E15 E16
E22 E23 E24 E25 E26

E33 E34 E35 E36
E44 E45 E46

E55 E56
symm. E66





ε11
ε22
ε33
2ε12
2ε23
2ε31


.

For many material, further simplifications can be made. A material is called or-
thotropic if

1. there are three mutually orthogonal planes of symmetry,

2. shear stresses along these planes do not affect normal deformations,

3. normal stresses along these planes do not affect shear deformations, and

4. shear stresses only affect the corresponding shear deformations.

In this case, the nine values in the upper-right quadrant (and hence the lower-left
quadrant) of E equal zero because of conditions 2 and 3. Additionally, the off-diagonal
elements in the lower-right quadrant equal zero because of condition 4.

Even more simplifications can be made for isotropic materials, i.e., materials whose
behavior is completely direction-independent. In this case, two parameters suffice to
determine the remaining components of E. The first parameter is Young’s Modulus E,
which describes the ratio between stress and strain in a uniaxial tensile test: σ = E ε.
The second parameter is Poisson’s ratio ν, which relates the prolongation of a prismatic
member in tension to its decrease in diameter. Hooke’s Law for isotropic materials can
be written as

σ11
σ22
σ33
σ12
σ23
σ31


= E

(1 + ν)(1− 2ν)



1− ν ν ν
ν 1− ν ν
ν ν 1− ν

1
2 − ν

1
2 − ν

1
2 − ν





ε11
ε22
ε33
2ε12
2ε23
2ε31


.

(2.9)
For the rest of this thesis, we will use this constitutive law because metals are isotropic.

The kinematic equations (2.3), the fundamental law of dynamics (2.6), and the
constitutive equations (2.9) add up to 15 equations for 15 variables that describe the
motions of a deformable solid in full:

ε = 1
2
[
(∇u)T +∇u

]
,

σ = E ε,
∇ · σ + f = ρb.

(2.10)

15



2.2 Virtual Work and Energy Principles
The principle of virtual work is an alternative but equivalent formulation of the motions
of deformable solids. The equations derived in Section 2.1 directly describe the behavior
of each point in the continuum. In contrast to this, the principle of virtual work is
a global formulation that corresponds to the principle of stationary action in classical
mechanics. We review it here because it serves as the basis for the development of the
finite element method in solid mechanics.

Concisely stated, the principle of virtual work says the following: If the current con-
figuration of the deformable body is frozen in time, an arbitrary infinitesimal, admissible
displacement does zero mechanical work. This displacement is referred to as “virtual”
because it is not a displacement that the body actually undergoes and is denoted as δu.
The work that the body does as a result of the virtual displacement is called virtual work
and is denoted as δA. The virtual displacement has to respect the essential boundary
conditions of the body, e.g., δu = 0 at a point that has a fixed support.

The virtual work done by the surface stress vectors t(n) due to an arbitrary virtual
displacement δu on the boundary ∂Ω of Ω is∫

∂Ω
[t(n)]T δu dA.

Using Cauchy’s stress theorem Eq. (2.7) and the divergence theorem, we can transform
this surface integral to a volume integral and obtain∫

∂Ω
[t(n)]T δu dA =

∫
∂Ω

(δu)Tσn dA =
∫

Ω
∇ · (σ δu) dV =

=
∫

Ω
(∇ · σ)T δu dV +

∫
Ω
σT : ∇δu dV,

(2.11)

where the operator “:” denotes the Frobenius product, i.e., the component-wise inner
product of two matrices, also referred to as double tensor contraction. Using the
fundamental law of dynamics Eq. (2.6), we can rewrite the penultimate integral as∫

Ω
(∇ · σ)T δu dV =

∫
Ω

(−f + ρb)T δu dV. (2.12)

Using A : B = AT : BT and considering that σ is symmetric, we can relate the ultimate
integral to the infinitesimal strain tensor by∫

Ω
σT : ∇δu dV =

∫
Ω
σ : 1

2
[
∇δu + (∇δu)T

]
dV =

∫
Ω
σ : δε dV. (2.13)

Substituting Eqs. (2.12) and (2.13) back into Eq. (2.11) and reordering the terms yields
the principle of virtual work

−
∫

Ω
σ : δε dV︸ ︷︷ ︸
δAin

+
∫

Ω
fT δu dV +

∫
∂Ω

[t(n)]T δu dA︸ ︷︷ ︸
δAex

−
∫

Ω
ρbT δu dV︸ ︷︷ ︸
δAfi

= 0. (2.14)
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This states that the sum of internal virtual work δAin, external virtual work δAex, and
virtual work done by inertial forces δAfi vanishes. Inertial forces, also known as fictitious
forces or d’Alembert forces, are introduced such that the dynamics problem at hand can
be formulated as a statics problem. This technique is known as d’Alembert’s principle.
In the language of Lagrangian mechanics, the principle of virtual work states that among
all paths of motion that a deformable solid can follow, nature chooses the one that makes
Eq. (2.14) true.

The basis for finite element models in solid mechanics is an energy formulation of the
principle of virtual work. We do not discuss the energy equivalent of external virtual
work here because it will not play a part in our application. Instead, we focus on the
energy equivalents of internal virtual work—strain energy—and virtual work done by
inertial forces—kinetic energy.

For the remainder of this section, we use the symbols ε and σ to denote the linearized
versions of the tensors, such that we can write tensor contractions as matrix-vector
multiplications. The strain energy density for a linear constitutive relationship such as
Eq. (2.8) can then be defined as

U0 = 1
2ε

TEε = 1
2σ

Tε.

It follows immediately that
σT = ∂U0

∂ε
.

If we rewrite the definition of internal virtual work δAin in terms of differentials instead
of variations, we can make the substitutions

dAin = −
∫

Ω
σTdε dV = −

∫
Ω

∂U0
∂ε

dε dV = −
∫

Ω
dU0 dV.

The last integral
dU =

∫
Ω
dU0 dV

is known as strain energy.
A similar transformation is possible for the virtual work done by inertial forces. In

this case, we use the definition of kinetic energy density

T0 = 1
2ρu̇

T u̇

and verify that
ρu̇T = ∂T0

∂u̇ .

Using the relationship

bTdu =
(
∂u̇
∂t

)T
du =

(
∂u̇
∂t

)T ∂u
∂t
dt =

(
∂u
∂t

)T ∂u̇
∂t
dt = u̇Tdu̇, (2.15)
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Figure 2.6: Example of a finite element mesh. The domain Ω is partitioned into 20
elements Ω1, . . . ,Ω20. There are triangular, quadrilateral, and curved-boundary elements.
The element domains are defined by a total of 34 nodes.

we can also rewrite the virtual work done by inertial forces in terms of energy:

dAfi = −
∫

Ω
ρbTdu dV = −

∫
Ω
ρu̇Tdu̇ dV = −

∫
Ω

∂T0
∂u̇

du̇ dV = −
∫

Ω
dT0 dV.

The last integral
dT =

∫
Ω
dT0 dV

is known as kinetic energy.
As mentioned before, we ignore the external virtual work δAex for the purposes of

this thesis. This corresponds to the fact that neither body forces f nor prescribed surface
stresses t(n) will occur in our models. Therefore, external virtual work always equals
zero.

With all energy definitions in place, the principle of virtual work Eq. (2.14) can be
written in variational form as

δ(U + T ) = 0, (2.16)

which is a principle of stationary energy.

2.3 Finite Element Discretization
The stationary energy principle Eq. (2.16) is a compact description of the behavior of
a deformable solid. However, due its integral nature and infinite number of degrees of
freedom (DoF), it has a closed-form solution for but the simplest of examples.

The goal of the finite element method for solid mechanics is to provide a formulation
that satisfies Eq. (2.16) in an approximate sense while reducing the DoF to a finite
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Figure 2.7: The standard linear tetrahe-
dron with three degrees of freedom at
each node.
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Figure 2.8: Two tetrahedral elements are
joined at a face, sharing three nodes. A
quantity must be interpolated the same
way throughout the face by both ele-
ments.

number. The primary variable that represents these DoF is the displacement u at a finite
number of points throughout the domain Ω of the solid. Successful application of the
finite element method replaces Eq. (2.16) with a linear system in u.

The central discretization concept of finite elements is the partitioning of Ω into a
set of elements Ωe. There is a wide variety of element shapes, from linear tetrahedra,
bricks, and triangular prisms to elements with curved boundaries. Every element type
has a fixed number of nodes, which define its number of DoF. A 2d example is given in
Fig. 2.6, where a domain with a curved boundary is partitioned into a set of triangles,
quads, and curved elements at the boundary.

The basics of finite element analysis will be explained by working out a toy example:
the standard linear tetrahedral element spanned by the vertices

x1 = (1, 0, 0)T ,
x2 = (0, 1, 0)T ,
x3 = (0, 0, 1)T ,
x4 = (0, 0, 0)T .

The linear tetrahedral element is the simplest 3d element and has one node at each
corner. A displacement vector ui ∈ R3, i ∈ {1, . . . , 4} is defined at each node, totaling
twelve DoF, see Fig. 2.7. On the edges, faces and in the interior of the tetrahedron, the
displacements are interpolated from the nodes by using barycentric coordinates. Thus,
the displacements vary linearly across this element. Other quantities like the strain ε
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can be inferred by applying the definition Eq. (2.3) to the interpolated displacements
instead of the (unknown) real displacements.

To interpolate any quantity q at a point x = (x1, x2, x3)T in the standard tetrahedron,
we can use

q̄(x) = x1q1 + x2q2 + x3q3 + (1− x1 − x2 − x3)q4,

where the qi represent the values of the quantity q at the 4 corner nodes. For example,
applying this formula at the edge midpoint (0.5, 0, 0)T between nodes 1 and 4 yields the
arithmetic mean of q1 and q4. The coefficients of qi can be interpreted as the influence of
a node on the interior of the element and are referred to as shape functions N e

i :

N e
1 (x) = x1,

N e
2 (x) = x2,

N e
3 (x) = x3,

N e
4 (x) = 1− x1 − x2 − x3.

The shape functions meet a number of conditions that are necessary to qualify them
as a proper way of interpolation. They are a partition of unity on the element domain,
i.e., ∑

N e
i (x) = 1, ∀x ∈ Ωe.

Also, it holds that

N e
i (xi) = 1,

N e
i (xj) = 0, i 6= j

to ensure that the nodal value qi is attained through interpolation at point xi.
Additionally, the shape functions are continuous across element borders. For example,

if two elements share three nodes because they are joined at a face, the interpolation
formula yields the same value for points on the face, no matter on which one of the two
elements it is evaluated. Fig. 2.8 illustrates this situation with two tetrahedral elements
Ω1 and Ω2. For the point x it must hold that

N1
1 (x)q1 +N1

2 (x)q2 +N1
3 (x)q3 +N1

4 (x)q4 =
=N2

2 (x)q2 +N2
3 (x)q3 +N2

4 (x)q4 +N2
5 (x)q5,

where N e
i is the shape function of node i in element Ωe. Interpolation with barycentric

coordinates fulfills this condition because a quantity is linearly interpolated between the
three vertices of a face.

Let Ne = (N e
1 , N

e
2 , N

e
3 , N

e
4 )T and qe = (q1, q2, q3, q4)T , then the interpolation of q can

be written concisely as
q̄(x) = Ne(x)Tqe.

If we are interested in interpolating a vector quantity like the displacements u, it is
easiest to collect all twelve degrees of freedom in a vector

ue = (u1x, u1y, u1z, u2x, u2y, u2z, u3x, u3y, u3z, u4x, u4y, u4z)T
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and to adapt the shape function matrix accordingly:

ū(x) =

N e
1 0 0 N e

2 0 0 N e
3 0 0 N e

4 0 0
0 N e

1 0 0 N e
2 0 0 N e

3 0 0 N e
4 0

0 0 N e
1 0 0 N e

2 0 0 N e
3 0 0 N e

4

ue = Nue.

(2.17)
The next step is to derive secondary quantities, for example the infinitesimal strain

tensor ε in vector form. If we write the gradient operators that appear in the definition
Eq. (2.3) in matrix form, we arrive at



ε11
ε22
ε33
2ε12
2ε23
2ε31


=



∂
∂x

∂
∂y

∂
∂z

∂
∂y

∂
∂x
∂
∂z

∂
∂y

∂
∂z

∂
∂x


u1
u2
u3

 = Du. (2.18)

Substituting Eq. (2.17) into Eq. (2.18) yields the interpolated strain

ε̄(x) = Dū = DNue =



∂Ne
1

∂x 0 0 · · · ∂Ne
4

∂x 0 0
0 ∂Ne

1
∂y 0 · · · 0 ∂Ne

4
∂y 0

0 0 ∂Ne
1

∂z · · · 0 0 ∂Ne
4

∂z
∂Ne

1
∂y

∂Ne
1

∂x 0 · · · ∂Ne
4

∂y
∂Ne

4
∂x 0

0 ∂Ne
1

∂z
∂Ne

1
∂y · · · 0 ∂Ne

4
∂z

∂Ne
4

∂y
∂Ne

1
∂z 0 ∂Ne

1
∂x · · · ∂Ne

4
∂z 0 ∂Ne

4
∂x


ue = Bue,

which is a linear combination of the node displacements. In the case of a linear tetrahedron,
B is a constant matrix because the shape functions are linear. For more complex elements,
B will depend on x. Otherwise, the derivation procedure remains the same for elements
with more than four nodes and with higher-order shape functions.

With the approximate strain ε̄ in place, we can adapt the stationary energy principle
Eq. (2.16) to the finite element model. First, we split the integrals in the energy definitions
to reflect the element partition. This yields

U =
∫

Ω

1
2ε

TEε dV =
s∑
e=1

∫
Ωe

1
2ε

TEε dV (2.19)

and

T =
∫

Ω

1
2ρu̇

T u̇ dV =
s∑
e=1

∫
Ωe

1
2ρu̇

T u̇ dV, (2.20)

where s denotes the number of elements in the assemblage. The finite element approxi-
mation to these definitions is made by substituting unknown quantities that vary across

21



Ωe, like u and u̇, with the interpolated versions. We can do this on a per-element basis,
which yields the per-element strain energy

Ūe =
∫

Ωe

1
2 ε̄

TEε̄ dV = 1
2(ue)T

(∫
Ωe

BTEB dV

)
ue = 1

2(ue)TKeue, (2.21)

where Ke is referred to as the element stiffness matrix.
For the per-element kinetic energy, we can define an approximate version in a similar

fashion:

T̄ e =
∫

Ωe

1
2ρ

˙̄uT ˙̄u dV = 1
2(u̇e)T

(∫
Ωe
ρNTN dV

)
u̇e = 1

2(u̇e)TMeu̇e, (2.22)

where Me is known as the element mass matrix. The definitions of

Ke =
∫

Ωe
BTEB dV, Me =

∫
Ωe
ρNTN dV

are the vital accomplishments so far, and most of the effort in evaluating a finite element
model goes into computing the element stiffness matrices and element mass matrices in
an assemblage.

Now we shift our attention from a single element to the assemblage of elements that
constitute the whole domain Ω. The element stiffness matrices Ke pertaining to the
individual elements can be assembled into a master stiffness matrix K. This process
corresponds to calculating the sums in Eqs. (2.19) and (2.20). The element stiffness
matrices cannot be added up directly because each Ke corresponds to a different vector
ue that lists the degrees of freedom of this particular element. To solve this problem we
define the vector ũ, which lists the degrees of freedom of all nodes in the assemblage

ũ = (u1x, u1y, u1z, u2x, u2y, u2z, . . . , unx, uny, unz)T ,

where n is the total number of nodes.
Then we define expanded 3n-by-3n element stiffness matrices K̃e by pasting the

non-zero elements of the 12-by-12 matrix Ke into the locations of K̃e that correspond
to the degrees of freedom of this element. For the expanded element stiffness matrix it
holds that

(ue)TKeue = ũT K̃eũ.

This expansion process is illustrated in Fig. 2.9 using the example of a triangular element
in a two-element assemblage.

The master stiffness matrix and—analogously—the master mass matrix are then
defined by

K =
s∑
e=1

K̃e, M =
s∑
e=1

M̃e.

Finally, the finite element approximation of the principle of stationary energy is

δ(Ū + T̄ ) = δ

(1
2uTKu + 1

2 u̇TMu̇
)

= 0.
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Figure 2.9: A 2d triangular element with corner nodes 1, 3, and 4 in a 5-node assemblage.
The 6-by-6 element stiffness matrix is expanded to a 10-by-10 matrix by stamping the
non-zero entries into the appropriate locations. The rows and columns in the expanded
matrix that correspond to nodes 1, 3, and 4 are highlighted in gray.

We can make the transformations

δŪ = ∂Ū
∂u δu =

∂
(

1
2uTKu

)
∂u δu = (Ku)T δu

and, using an argument similar to Eq. (2.15),

δT̄ = ∂T̄
∂u̇ δu̇ =

∂
(

1
2 u̇TMu̇

)
∂u̇ δu̇ = (Mu̇)T δu̇ = (Mü)T δu.

A detailed derivation of the last equality can be found in the pertinent literature [MEH12].
Inserting back into Eq. (2.3) yields

δ(Ū + T̄ ) = (δu)T (Ku + Mü) = 0.

Because the virtual displacements δu are arbitrary, it must hold that

Ku + Mü = 0. (2.23)

These are the finite element equations of motion for a free deformable solid that is not
subject to any external forces. Free in this context means that the body is not supported
in any point, i.e., no degrees of freedom are restricted.
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2.4 Solving the Equations of Motion
The equations of motion (2.23) form a linear system of second-order ordinary differential
equations. A system like this is known to have particular solutions of the form

up(t) = veλt

and a general solution of the form

u(t) = c1up1(t) + . . .+ cnupn(t),

where ci are arbitrary constants and upi are linearly independent particular solutions.
Starting with u(t) = veλt as a trial solution, we find that

ü(t) = λ2veλt.

Substitution into the equations of motion yields

−λ2Mveλt = Kveλt

and, after division by the non-zero term eλt,

− λ2Mv = Kv. (2.24)

This is a generalized eigenvalue problem with eigenvalues −λ2 and eigenvectors v.
From the definitions in Section 2.3, the following properties of M and and K can be

inferred:

• The per-element kinetic energy T̄ e, see Eq. (2.22), is quadratic in ˙̄u and therefore
non-negative. It follows that Me and, by summation, M are positive semi-definitive.

• The same argument also ensures that M is symmetric.

• The per-element strain energy Ūe, see Eq. (2.21), is defined via the quadratic form
ε̄TEε̄ with the symmetric matrix E. Therefore Ke and K are are also symmetric.

• To show that K is positive semi-definite as well, it is sufficient to show that the
stiffness tensor E is positive semi-definitive. This can be shown for isotropic
materials, see Eq. (2.9), by invoking that Poisson’s ratio ν is between −1 and 0.5
and that Young’s Modulus E is positive.

These properties ensure that all eigenvalues −λ2 in Eq. (2.24) are real and non-negative.
It follows that λ = iω where i is the imaginary unit and ω ∈ R+

0 .
A particular solution can be written as

u(t) = veiωt = v(cosωt+ i sinωt).

Both the real and the imaginary part of u(t) are real solutions to the original generalized
eigenvalue problem:

u1(t) = v cosωt, u2(t) = v sinωt.
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We recognize these solutions as undamped oscillations with frequencies of ω
2π .

It is interesting to note that the smallest eigenvalue is always zero and has a multiplicity
of six. The corresponding solutions describe the six rigid-body modes, three translations
and three rotations, of the deformable body. These modes are present because no DoF
were restricted by introducing fixed supports into the system. Starting from the seventh
eigenvalue, the solutions describe actual vibrations with increasing frequencies. The
eigenvector that corresponds to a vibrational mode lists the geometric nodal displacements
for the particular vibration, referred to as the mode shape. Examples for mode shapes
are illustrated in Fig. 5.6. The application of finite element analysis in order to find
oscillations of a system is usually referred to as finite element modal analysis.

2.5 Numerical Integration

In Section 2.3, we derived integral expressions for the element stiffness matrix and the
element mass matrix such as

Ke =
∫

Ωe
BTEB dV, Me =

∫
Ωe
ρNTN dV.

For the toy example developed in Section 2.3, the integrand in the definition of Ke is
constant, and the integrand in the definition of Me is a polynomial in the variable of
integration x. Section 4.3 will present the derivation of more complex elements, and it
will become clear that the integrands are not necessarily polynomials in x but can be
rational functions, i.e., fractions of polynomials in x. While all rational functions can be
integrated analytically in theory, it is computationally expensive to do so. Instead, finite
element codes usually use numerical integration techniques to evaluate element matrices.

There are two classes of numerical integration procedures that can be used for the
evaluation of Ke and Me. Both classes are based on the idea of approximating an integral
over a function with a finite weighted sum of function values

∫ 1

0
f(x) dx ≈

n∑
i=1

wif(xi). (2.25)

Any quadrature rule can be expressed by specifying the number of samples n, the locations
of the sample points xi, and the weighting scheme wi. The simpler and less powerful
method of the two uses the Newton–Cotes quadrature rules. There is one Newton–Cotes
rule for each n > 1. The distribution of the sample points xi is equidistant in the interval
[0, 1], i.e.,

x1 = 0, x2 = 1
n− 1 , x3 = 2

n− 1 , . . . , xn−1 = n− 2
n− 1 , xn = 1.

The weights wi are chosen such that the n-point Newton–Cotes rule integrates polynomials
with a degree of up to (n− 1) exactly. This condition can be formulated as a set of linear
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equations in w1, . . . , wn

f(x) = 1 :
n∑
i=1

wi =
∫ 1

0
1 dx = 1,

f(x) = x :
n∑
i=1

wi
i− 1
n− 1 =

∫ 1

0
x dx = 1

2 ,

f(x) = x2 :
n∑
i=1

wi
(i− 1)2

(n− 1)2 =
∫ 1

0
x2 dx = 1

3 ,

...

f(x) = xn−1 :
n∑
i=1

wi
(i− 1)n−1

(n− 1)n−1 =
∫ 1

0
xn−1 dx = 1

n
,

(2.26)

which uniquely determine the weights. Note that this derivation procedure works even if
the sample locations are not spaced regularly. The only requirement is that the n sample
points are distinct and lie in the interval [0, 1].

As an example, the three-point Newton–Cotes rule is derived here. It has the sample
point locations x1 = 0, x2 = 1

2 , x3 = 1, and the weights can be found by solving the
linear equation system 1 1 1

0 1
2 1

0 1
4 1


w1
w2
w3

 =

1
1
2
1
3

 ,
which yields w1 = 1

6 , w2 = 2
3 , w3 = 1

6 . This rule integrates integrates constant, linear,
and quadratic functions exactly and is also known as Simpson’s rule. Fig. 2.10a shows
an example in which the rule is applied to a fifth-order polynomial.

The second and more powerful numerical integration method follows the Gauss
quadrature rules. These rules also have the basic form Eq. (2.25), but they achieve higher
accuracy than the Newton–Cotes rules. The n-point Gauss quadrature rule integrates
polynomials with a degree of up to (2n−1) exactly as opposed to a degree of up to (n−1).
This is made possible by replacing the regular sampling method of the Newton–Cotes
formulae with a set of optimized, non-equidistant sampling locations.

Gauss quadrature rules are derived using the sequence of Legendre polynomials Pn(x).
The n-th Legendre polynomial has degree n and is defined by Rodrigues’ formula

Pn(x) = 1
2nn!

dn

dxn
(x2 − 1)n.

It has two special properties that are needed in the derivation of Gauss quadrature rules.
Firstly, it holds that ∫ 1

−1
xkPn(x) dx = 0, k ∈ {0, 1, . . . , n− 1}.

Secondly, all n roots of the n-th Legendre polynomial are distinct, real, and lie in the
interval [−1, 1]. From the first property, it follows that Pn(x) is orthogonal to any
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(a) Newton–Cotes quadrature.
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(b) Gauss quadrature.

Figure 2.10: Three-point quadrature of a fifth-order polynomial with (a) the Newton–
Cotes formula and (b) the Gauss formula. The area of the hatched region results from
the respective quadrature rule. The Newton–Cotes formula approximates the integral,
while Gauss quadrature finds the exact result.

polynomial q(x) of degree (n− 1) or lower. To prove this, let q(x) =
∑n−1
k=0 qkx

k. Then it
holds that ∫ 1

−1
q(x)Pn(x) dx =

n−1∑
k=0

qk

∫ 1

−1
xkPn(x) dx = 0. (2.27)

In order to derive the sample positions and weights for n-point Gauss quadrature, let
f(x) be a polynomial with a degree of at most (2n− 1). Dividing f(x) by Pn(x) yields a
quotient q(x) and a remainder r(x), both of which are polynomials with a degree of at
most (n− 1). We can write this division as

f(x) = q(x)Pn(x) + r(x).

Using Eq. (2.27), it follows that

∫ 1

−1
f(x) dx =

∫ 1

−1
q(x)Pn(x) dx+

∫ 1

−1
r(x) dx =

∫ 1

−1
r(x) dx.

Since r(x) is of degree (n − 1) or lower, it can be integrated exactly using an n-point
quadrature rule for any choice of n distinct sampling locations. The corresponding sample
weights can always be found using the linear equation system in Eq. (2.26).

For Gauss quadrature, the sample point locations x1, . . . , xn are set to the roots of
the Legendre polynomial Pn(x), which are guaranteed to be real, distinct, and lie in the
interval [−1, 1]. Let w1, . . . , wn denote the weights corresponding to these sample point
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locations. This allows us to write
n∑
k=1

wkf(xk) =
n∑
k=1

wkq(xk)Pn(xk)︸ ︷︷ ︸
0

+
n∑
k=1

wkr(xk) =
n∑
k=1

wkr(xk) =

=
∫ 1

−1
r(x) dx =

∫ 1

−1
f(x) dx.

As an example, we derive the 3-point Gauss quadrature rule, which integrates
polynomials of degree 5 or lower exactly. The third Legendre polynomial is defined as

P3(x) = 1
2(5x3 − 3x)

and has roots
x1 = −

√
3
5 , x2 = 0, x3 =

√
3
5 ,

which serve as sample point locations. To find the corresponding weights, we impose the
condition that polynomials of degree 2 or less are integrated exactly. This yields the
equations

f(x) = 1 : w1 + w2 + w3 =
∫ 1

−1
1 dx = 2,

f(x) = x : −
√

3
5w1 +

√
3
5w3 =

∫ 1

−1
x dx = 0,

f(x) = x2 : 3
5w1 + 3

5w3 =
∫ 1

−1
x2 dx = 2

3 .

Solving the linear equation system 1 1 1
−
√

3
5 0

√
3
5

3
5 0 3

5


w1
w2
w3

 =

2
0
2
3


yields the weights w1 = 5

9 , w2 = 8
9 , w3 = 5

9 . Fig. 2.10b shows an example in which the
rule is applied to a fifth-order polynomial.

The Newton–Cotes rules were introduced to integrate functions over the interval [0, 1],
and the Gauss quadrature rules to integrate functions over the interval [−1, 1]. Both rule
families can easily be adapted to arbitrary intervals [a, b] by performing a coordinate
transformation. An integral over [a, b] can be transformed into an integral over [−1, 1]
using the transformation

y = b− a
2 x+ a+ b

2 .

This yields the Gauss quadrature rule∫ b

a
f(x) dx ≈ b− a

2

n∑
k=1

wkf

(
b− a

2 xk + a+ b

2

)
.
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In finite element models for applications in solid mechanics, we typically encounter
surface integrals and volume integrals. The quadrature rules introduced so far integrate
one-dimensional functions, but they can be generalized to higher dimensions. In order
to evaluate a surface integral over a quadrilateral region or a volume integral over a
hexahedral region, one can form tensor products of the original rule like so:

∫ 1

−1

∫ 1

−1
f(x, y) dx dy ≈

n∑
k=1

n∑
l=1

wkwl f(xk, xl).

For quadrilateral regions, this yields quadrature rules with four points, nine points, etc.
The tensor product approach can also be used to integrate triangular regions by

introducing a coordinate transformation that transforms the rectangular region into a
triangle. However, by shrinking an edge of the rectangle to a point, the inverse Jacobian
of the transformation will have a singularity there, and this decreases accuracy. There
are several additional disadvantages of tensor product rules for triangles. They have an
unnecessarily high number of integration points, and the sample point locations are not
symmetric and usually concentrated around the vertex that has been shrunk from the
edge of the rectangle.

The alternative is to derive triangle Gauss quadrature rules specially because they
provide higher accuracy. Usually these rules are derived for integrals over the standard
triangular element, which is bounded by the vertices (0, 0), (1, 0), (0, 1). To derive a rule
that integrates polynomials of degree 2 or lower exactly, i.e., the polynomials 1, x, y, x2,
xy, y2, we impose the six conditions

f(x, y) = 1 :
n∑
k=1

wk =
∫∫
4

1 dA = 1
2 ,

f(x, y) = x :
n∑
k=1

wkxk =
∫∫
4
x dA = 1

6 ,

...

f(x, y) = y2 :
n∑
k=1

wky
2
k =

∫∫
4
y2 dA = 1

12 .

Choosing n = 1 yields three variables w1, x1, y1, which is not enough to solve the
six equations. Choosing n = 2 yields six variables w1, w2, x1, x2, y1, y2, which has a
solution, however not a symmetric one. Therefore, a 2-point quadrature rule for triangles
is not commonly used. Choosing n = 3, the solution is no longer unique, but the most
commonly used 3-point rule is

(x1, y1) =
(1

6 ,
1
6

)
, (x2, y2) =

(2
3 ,

1
6

)
, (x3, y3) =

(1
6 ,

2
3

)
w1 = 1

6 , w2 = 1
6 , w3 = 1

6 .
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In order to integrate complex three-dimensional domains like triangular prisms, it is
possible to create tensor products between a triangle rule and a one-dimensional rule.
This is useful to compute the element matrices of the wedge element introduced in
Section 4.3.

In the integration of Ke and Me, we use Gauss quadrature because of its accuracy
advantages over Newton–Cotes formulae. Element domains are usually distorted geometric
primitives, and, in order to integrate over them, they are transformed to a standard
element domain with a change of variables. For example, quadrilateral elements are
transformed into the standard square element [−1, 1]× [−1, 1]. This involves multiplying
the integrand with determinant of the Jacobi matrix of the transformation and turns
the integrand into a rational function. The consequence is that the integral cannot be
evaluated exactly using numerical integration. If the Jacobian is well behaved, i.e., if the
element is not heavily distorted, Gauss quadrature still produces accurate results.

The major concern with the choice of an appropriate quadrature rule is that of rank
sufficiency [Bat06]. The element mass matrix Me has full rank, and the element stiffness
matrix Ke has a rank deficiency that is equal to the number of rigid-body modes of
the element. In the case of three-dimensional continuous elements for solid mechanics,
the number of rigid-body modes is six—three translational and three rotational degrees
of freedom. If the integral in the definition of an element matrix is evaluated with a
quadrature rule, it is of paramount importance that the rank of the matrix be preserved.

To calculate the rank of an element matrix that is evaluated with n-point Gauss
quadrature, we need to know the rank of the integrand. For the stiffness matrix Ke

of an element with m degrees of freedom, the integrand has the form BTEB, where
B is a 6-by-m matrix and E is a full-rank 6-by-6 matrix. Therefore, the integrand
BTEB is an m-by-m matrix with a rank of six. Using n-point Gauss quadrature, the
integral is replaced with a sum of n m-by-m matrices with a rank of six. The result of
this summation is an m-by-m matrix with a rank of at most 6n, and in practice this
rank is attained exactly. It can be concluded that, in order to create a rank-sufficient
element stiffness matrix, n has to be chosen such that 6n ≥ m − 6. For example, for
a 20-node hexahedral element, the number of degrees of freedom m = 60, which gives
an element stiffness matrix with a rank of 54. In order to ensure rank sufficiency, at
least 9 quadrature sample points are required. The tensor product method yields a
2× 2× 2-point rule and a 3× 3× 3-point rule for hexahedral regions. Since the 8-point
rule would compute an element stiffness matrix with a rank of 48, the 27-point rule has
to be used.

The integrand in the definition of the element mass matrix Me has the form NTN
where N is a 3-by-m matrix. Therefore, the integrand has a rank of three. The element
mass matrix has full rank, i.e., a rank ofm. Since every summand in the Gauss quadrature
rule adds three to rank of the result, n has to be chosen such that 3n ≥ m. For the
example of the 20-node hexahedral element, the 3× 3× 3-rule fulfills this requirement
since 3 · 27 ≥ 60 and is the appropriate choice.

We illustrate the deleterious effect of choosing a Gauss quadrature rule with an insuf-
ficient number of sample points with a two-dimensional plane stress problem. Consider a
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nine-node quadrilateral 2d element with 18 degrees of freedom. In two dimensions there
are three rigid-body modes, two translational and one rotational, yielding an element
stiffness matrix with a rank of 15. The appropriate Gauss quadrature rule is the tensor
product of the three-point rule, which results in a nine-point rule. In the first scenario,
Ke is integrated with this rule, and Me is integrated with a sufficiently accurate rule as
well. Plugging these matrices into the equations of motion yields

Keu + Meü = 0,

which reduces to a generalized eigenvalue problem as discussed in Section 2.4. Since Ke

has a rank deficiency of three, and Me has full rank, zero appears as an eigenvalue with a
multiplicity of three. The corresponding eigenvectors describe linear combinations of the
three rigid-body modes of the element. The remaining eigenvectors describe vibration
modes, and the corresponding eigenvalues give their frequencies. The first eight natural
modes are illustrated in Fig. 2.11.

Mode 1: 0 Hz Mode 2: 0 Hz Mode 3: 0 Hz Mode 4: 28 Hz

Mode 5: 28 Hz Mode 6: 29 Hz Mode 7: 29 Hz Mode 8: 43 Hz

Figure 2.11: Eigenmodes of a nine-node quadrilateral element. Numerical integration
has been performed with sufficient accuracy, which produces the correct number of three
rigid-body modes. The undeformed state of the element is plotted in gray, the mode
shapes in blue.

In the second scenario, we replace the nine-point quadrature rule for the stiffness
matrix with a four-point rule. Since every summand adds three to the rank of the result,
this yields a stiffness matrix with a rank of twelve. The consequence is that, when solving
the equations of motion, zero appears as an eigenvalue with a multiplicity of six. Fig. 2.12
illustrates this phenomenon, which is known as spurious modes. A spurious mode is
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a deformation shape that is falsely predicted to have zero strain energy by the finite
element model. The introduction of spurious modes leads to non-physical results and has
to be avoided.

Mode 1: 0 Hz Mode 2: 0 Hz Mode 3: 0 Hz Mode 4: 0 Hz

Mode 5: 0 Hz Mode 6: 0 Hz Mode 7: 28 Hz Mode 8: 28 Hz

Figure 2.12: Spurious mode of a nine-node quadrilateral element. Numerical integration
has been performed with insufficient accuracy, which produces too large a number of
zero-strain-energy modes. The undeformed state of the element is plotted in gray, the
mode shapes in blue.
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CHAPTER 3
Related Works

3.1 Shape Optimization
This section surveys literature about the optimization of shapes with respect to physical
properties, appearance, producibility, or other desirable qualities. We will start with an
overview of traditional shape optimization tasks in computer graphics and subsequently
explore more recent works, especially those fueled by the wide availability of 3d printers.

A groundbreaking work in this area is Taubin’s seminal publication on a signal
processing approach to surface processing [Tau95]. The most fundamental contribution
in this work is the definition of a Laplace operator on triangle meshes. This adapts
the Laplace-Beltrami operator known from differential geometry to a discrete setting
and creates natural analogues for concepts such as curvature and principal directions.
The first application of this operator was surface smoothing or low-pass filtering. The
umbrella operator proposed by Taubin is extended to take mesh geometry into account
in subsequent publications [DMSB99], and the surface fairing algorithm is modified to
support mesh boundaries and constraints. Meyer et al. [MDSB03] extend further concepts
from differential geometry to triangle meshes. Nealen et al. [NISA06] apply these ideas
for triangle shape optimization and feature preserving smoothing.

A different challenge in shape processing is the editing of shapes in an intuitive,
predictable, and user-friendly way. The influential work by Alexa et al. [ACOL00]
tackles shape interpolation—the gradual transformation from one shape into another
in a physically plausible way. This task is posed as an energy minimization problem,
where a high energy ensues if triangles are severely distorted during shape interpolation.
Related works explore similar tasks such as manual surface deformation with handles
and the transfer of surface details between different surfaces [SCOL+04, IMH05].

Many applications require a parametrization of a surface, i.e., a continuous mapping
from a surface with boundary into the plane. The challenge is to find a mapping that
distorts the surface as little as possible and does not produce any overlaps. The most
successful approach is to define a distortion measure in the vertices of the flattened
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surface and formulate an optimization problem in order to minimize it. Particularly
efficient are algorithms that use linear constraints [DMA02, LPRM02, ZLS07], while
non-linear formulations provide the best quality [SLMB05].

The spectral decomposition of the mesh Laplacian has been explored as a means
of performing frequency band filtering and mesh compression [Lév06, VL08]. Most
recently, Musialski et al. use manifold harmonics in order to represent the geometry of a
surface with a small number of parameters [MAB+15], an approach well suited to shape
optimization problems.

In the past five years, works about shape optimization have been focusing more and
more on fabrication tasks, i.e., to create models with the intent of producing an actual
physical copy. This trend has been brought about by the rise of cheap 3d printers that
are now available to a broad audience. An early work in this area explores the non-linear
material behavior of heterogeneous, soft bodies [BBO+10]. The authors develop an
optimization algorithm that approximates the material behavior of a soft object by a
stack of layers with varying microstructures. The search for an optimal set of layers is
posed as a combinatorial optimization problem that explores a finite set of base material
from which to choose the individual layers. In order to validate their results, a multi-
material 3d printer that is capable of printing soft and hard materials is used to produce
replicas. A recent work by Chen et al. [CZXZ14] tackles a different problem relating
to the design and fabrication of elastic bodies. They assume a homogeneous, elastic
material that is soft enough for any fabricated object to sag due to gravity and whose
resting pose is appreciably different from its initial pose. The contribution of this work is
a tool that allows for inverse shape design: The user specifies the desired resting pose as
a 3d model, and a corresponding initial pose is calculated automatically.

In the same vein, Skouras et al. [STBG12] optimize the initial shape of a rubber
balloon such that it assumes the desired shape in its inflated state. A later work explores
the design of balloons made from planar, inextensible membranes [STK+14]. Their
algorithm finds a partition of the desired shape into near-flat pieces and simulates the
inflated state using an advanced formulation of strain energy.

A different emergent research direction is the optimization of kinetic systems that
follow a prescribed motion. Ceylan et al. [CLM+13] represent a character as a hierarchical
structure of rigid links, i.e., a skeleton. A periodic motion sequence is prescribed as
time-varying rotations between connected links and translated into an assemblage of gears
and pulleys. Their system can be used to optimize in-plane motions such as walking and
running. Coros et al. [CTN+13] prescribe motions as curves specified at the endpoints of
limbs. These curves are matched by gear mechanisms by browsing a database of possible
motions that has been created beforehand. All resulting parts, e.g., limbs, gears, links,
and support structures, are produced individually with a 3d printer, thereby creating a
large design space. Thomaszewski et al. [TCG+14] enable the design of characters that
consist only of rigid links and joints that are driven by a single input crank. Their design
tool provides exploration options for different linkage topologies while automatically
optimizing the current design to match a given motion.

A big advantage of additive manufacturing techniques, such as fused-deposition
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modeling (FDM) printing, is that intricate internal structures can be printed at no
additional cost. Calì et al. [CCA+12] utilize this property to fabricate fully poseable
character models. Their joints are designed to allow the desired angular freedom, and the
whole model can be printed in one piece. Bächer et al. [BBJP12] automatically estimate
suitable joint locations and geometry from a skinned mesh. Skouras et al. [STC+13]
make articulation of their characters possible by distributing hard and soft materials
throughout the interior such that limbs remain rigid but the pose can be adjusted.

Natural concerns that arise during the fabrication of physical artifacts are those
regarding stability, producibility, and production costs. Stava et al. [SVB+12] address
the stability question by performing finite element stress analysis. If structurally weak
regions are detected, the algorithm tries to reinforce the mesh by thickening fragile
parts, hollowing the interior of the object to reduce its dead load, or adding support
struts. The work by Wang et al. [WWY+13] is concerned with reducing the printing
costs of an object while retaining structural soundness and printability. Their algorithm
hollows out the object and adds a frame structure under the skin for reinforcement. A
constraint system ensures quality criteria like stability, shape, and balance. The same
problem is also tackled by Lu et al. [LSZ+14], who propose to introduce a number of air
bubbles into the object. The resulting structures are reminiscent of a Voronoi diagram
in three dimensions and possess a high strength-to-weight ratio. Zhou et al. [ZPZ13]
take a purely analytic viewpoint and develop a framework to assess the stability of an
object without any specific assumptions regarding the loads. Weak regions are extracted
by performing modal analysis and searching for high-stress regions in the presence of
vibrations. The algorithm can then determine a set of worst-case loads that will cause
the highest stress possible for each weak region. The designer can subsequently decide
whether these worst-case scenarios are likely and whether the design needs an overhaul.
Dumas et al. [DHL14] address a difficulty specific to the FDM printing process. During
fused deposition modeling, layers of melted plastic are deposited on top of already
existing layers, and therefore it is impossible to print stalactites or even strong overhangs.
Print software currently in use solves this issue by printing dense support structures
wherever a model needs support, thereby significantly increasing material consumption.
A more efficient solution is to use a sparse support structure akin to scaffolding used on
construction sites—a combination between vertical columns and horizontal bridges.

The line of research most inspiring to this thesis follows the publication by Prévost
et al. [PWLSH13] on the optimization of an object’s center of gravity. Their goal is
to balance a given mesh by moving the center of gravity to a position that projects
downwards onto the base of support, i.e., the convex hull of all points touching the
ground. This is achieved by voxelizing the interior of the object and iteratively removing
voxels as a plane sweeps across the object. If static equilibrium cannot be achieved with
this step alone, the shape is automatically deformed using deformation handles that
the user places manually. A considerable generalization of this idea is made by Bächer
et al. [BWBSH14]. They address the optimization of general mass properties, such as
mass, center of gravity, and the tensor of inertia. Their framework is also based on a
voxelization of the interior, but the optimization routine searches for more general voxel
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configurations. Using this method, it is possible to design yo-yos and spinning tops with
strongly asymmetric shapes. Musialski et al. [MAB+15] propose another solution for the
optimization of mass properties. Given an outer surface, they find an inner outer surface
such that the enclosed solid satisfies the prescribed mass properties. Their formulation
of the optimization problem is fully continuous, and the resulting surfaces are always
smooth.

3.2 Sound Synthesis

The discipline of sound synthesis has the goal of supplementing a virtual scene with a
soundtrack that is computer generated instead of recorded. Techniques to infer sound
from a digital representation of a physical process is an alternative to recording a variety
of sounds and attaching them to objects or events in a computer animation, a film, or
a video game. This process has the potential to be more flexible if the medium allows
for a high degree of interactivity—not every possible interaction between the medium
and the user may be foreseen and an appropriate sound prepared. We give an overview
of publications in this area because it bears a resemblance to the goal of thesis: Sound
synthesis infers sounds from objects, while we find objects to match sounds.

Takala et al. [TH92] present a variety of methods to synchronize a soundtrack with
an animation in a semi-automatic manner. They propose several sound sources, e.g.,
digitally recorded sounds for impacts, natural mode banks, which were previously used for
animation [PW89], and procedural sounds. Attaching sounds to objects and propagating
sounds inside a scene is performed in analogy to texture mapping and coordinate space
transformation. Another early work in this area explores the role of sound in computer
interfaces by drawing analogies between everyday events and actions performed in, e.g., a
file explorer [Gav93]. The focus lies on parametrization of the sound models according to
human perception, such that sounds give meaningful acoustic feedback about the action
performed by the user.

An important contribution to physically based sound synthesis is the idea of a sound
map [vdDP96, vdDP98]. The vibration patterns of an object are approximated by a wave
function and precomputed analytically, which restricts the method to simple geometries.
This yields a number of eigenfunctions, each of which defines an amplitude distribution
over the object. The set of these amplitude distributions constitute the sound map, which
describes the eigenmodes that will be excited if there is an impact at a particular location.
This idea is extended upon in subsequent works [vdDKP01, PDJ+01] to include scraping
sounds and rolling sounds. Scraping is procedurally modeled as fractal noise, where the
fractal dimension is varied to account for the roughness of a surface.

O’Brien et al. [OCE01] show how to implement sound synthesis into a solid body
simulator, e.g., a finite element simulation routine [OH99]. This method is very direct in
the sense that is does not precompute eigenmodes but derives pressure waves directly
from the motions of an object. A requirement is that the simulator perform time step
integration on the order of 10−5 seconds such that vibrations in the audible spectrum are
captured. Naturally, this method is restricted to offline computation, but it is extended to
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work with real-time rigid-body simulation software in a subsequent publication [OSG02].
In this work, the finite element equations of motion are decomposed into a set of decoupled
oscillators. The impact forces derived from the rigid-body simulation are then projected
onto the vibrational modes in real time.

Van den Doel et al. [vdDKP04] propose an algorithm to reduce the computational
load of sound synthesis in a scenario involving many collisions. This is achieved by
applying psychoacoustic models to predict which impacts will be inaudible to the listener
in order to mask them. Raghuvanshi et al. [RL06] model the elastic properties of a solid
with a mass-spring model and introduce more optimizations to handle many impact
sounds in complex environments, most notably the fusion of similar modes. Bonneel
et al. [BDT+08] further accelerate sound synthesis by summing the contributions of all
impact sounds in the frequency domain to avoid the evaluation of every acoustic response
in favor of a single FFT computation.

James et al. [JBP06] increase the quality of synthesized sounds by taking into account
indirect effects, such as the occlusion and reflection of a sound wave that originates at a
specific location on an object. These effects of wave propagation are simulated for larger
scenes by Raghuvanshi et al. [RSM+10]. Chadwick et al. [CAJ09] are the first to use
non-linear coupling between vibrational modes to simulate impact sounds on thin-shelled
solids such as cymbals or plastic containers. This creates characteristic pitch changes as
the sound develops.

A useful technique for contact sound modeling such as scraping and rolling was
developed by Ren et al. [RYL10]. They use roughness information from a normal map
texture to simulate impacts that are not apparent from the geometry of colliding objects.
The works by Zheng et al. [ZJ10, ZJ11] propose solutions to model sounds for complex
fracture animations and contact phenomena such as rattling sounds. Chadwick et
al. [CZJ12] synthesize contact sounds that result from very brief collisions and abrupt
decelerations that occur if two brittle objects collide.

Langlois et al. [LAJJ14] propose a scheme to compress eigenmode information for
complex scenes. Each eigenmode is represented by a number of sample points from which
the eigenmode can be reconstructed via moving least squares. The storage requirements
are further reduced by exploiting the self-symmetry of modes and neighboring modes
that form rotationally congruent pairs. The inverse problem of contact sound synthesis
is the inference of a physically plausible animation given a series of sounds [LJ14]. This
problem is tackled by deriving a set of impact and sliding events from the audio track
and trying to finding a plausible fit from a database of sampled rigid-body animations.

3.3 Instrument Analysis

The millennia-old craft of instrument creation has always been a laborious process of
trial-and-error, and what sets the sound of a Stradivari apart from any other violin
largely remains a mystery. Nevertheless, there are accurate physical models that describe
the behavior of sound waves and solid bodies, as well as good approximations such as
the finite element modal analysis framework described in Chapter 2. There are a large
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number of works about instrument analysis by the engineering and acoustics communities,
and this section specifically reviews publications that make use of finite element modal
analysis. The physical counterpart of finite element modal analysis is dubbed experimental
modal analysis. This process finds natural mode shapes and frequencies by attaching
accelerometers to a physical object and measuring the vibrations that ensue after a hit
with an impulse hammer. The accuracy of a finite element model is often validated using
this technique.

A comparison between experimental modal analysis and finite element modal analysis
is conducted on a marimba bar, a rectangular bar with an undercut made out of
Rosewood [BCT+99]. The authors use three layers of brick elements in the finite element
mesh that represents the marimba bar. Initially, an isotropic material model is used, but
it only achieves accordance between the FEM solution and the experimental values for
the lowest frequencies. Using an orthotropic material model to account for the primary
direction of growth yields an agreement error of less than four percent for the first twelve
modes. Bretos et al. [BSM99a] study the influence of differently shaped undercuts and
the variation of different material parameters on the natural mode spectrum of marimba
bars. The primary concern is the ratio between the first few natural frequencies, because
harmonic ratios, e.g., 1:3 or 1:4, lead to better sound quality. The authors find that a
parabolic undercut is most suitable to achieve this goal. The other finding is that the
Young’s Modulus parallel to the grain of wood, the shear moduli parallel to the grain,
and the density of the material have the biggest influence on the natural modes.

Curtu et al. [CSCR09] analyze the mode shapes of classical guitar bodies. Guitar
bodies differ greatly in the type of bracing, i.e., the system of wooden struts attached
to the top plate from the inside, which is used to support the plate against the tension
of the strings. It is concluded that the strut layout mostly influences the quality of
high-frequency modes while lower frequencies remain unaffected.

The instrument most studied and most elusive in acoustic character is the violin.
The violin box has a complex shape, and luthiers pay close attention to the carvings to
achieve the highest sound quality and visual appeal. Bretos et al. [BSM99b] attempt
finite element analysis of the assembled violin body and achieve great correspondence
with experimental modal analysis. They also describe the steps of the violin tuning
process and assess the eigenmode shapes after every step using FEM. Yu et al. [YJKK10]
model a violin top plate using shell elements. They attempt to optimize the thickness
distribution of the elements in order to achieve ideal nodal line shapes, i.e., the curves
on the plate that remain at rest for a given mode. A recent work on violin top plates
explores the effect of using composite materials, e.g., balsa and carbon fiber instead of
traditional materials like spruce, on the natural frequency spectrum [Lu13].

Umetani et al. [UMI10] develop a tool that allows the user to design the bars for a
metallophone, e.g., a xylophone. The user manipulates the boundary curve of a planar
shape, and the application triangulates it and predicts the frequency of the pitch at
interactive rates. The finished design is fabricated by cutting the bar shapes from a metal
plate. If the actual frequencies do not coincide with the FEM predictions precisely, the
pieces are manually adjusted by trimming the edges.
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CHAPTER 4
Optimization of Natural

Frequencies

4.1 Overview

This chapter describes the computational framework that we use to synthesize the
geometry of a solid that will exhibit the desired pitch if fabricated from the targeted
material. The framework can be broken down into three modules: the definition of a
design space, the evaluation of a given design using finite element modal analysis, and
computational shape optimization to find a feasible design.

We choose our design space such that, on the one hand, it can reproduce common
shapes in the family of instruments that we want to model and, on the other, it can
be parametrized with a small set of optimization variables. To account for varying
degrees of shape complexity and difficulty of optimization, three different design-space
parametrizations are proposed.

For the evaluation of natural frequencies using the finite element method, we develop
a number of 3d element types that can be used to describe the geometry of the design. We
discuss a method to derive shape functions for continuous elements and choose methods
of integration. The structural thin-shell elements are introduced briefly as an alternative
to continuous element types. We conclude this section with remarks about Jacobian
positiveness and a comparison of the computational efforts for different elements.

The last section discusses the formulation of the optimization problem and the
constraints for different design-space parametrizations.

4.2 Design Space

The design space of an optimization problem is the family of all feasible solutions that
can be produced by varying the optimization parameters. The goal of this work is the
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fabrication of solids, and therefore our design space is a subset of the family of 2-manifolds,
which describe the boundary of a solid. In particular, we can identify the following design
goals:

• The main objective is the control of the lowest natural frequency (pitch) of the
volume enclosed by the surface. Since the pitch depends on the shape and the
material of an object, the material parameters and the desired pitch are constants
that the user can specify beforehand.

• The approximate shape of the resulting object can be determined by the user.

• The design space should be general enough to allow for a wide range of frequencies,
at the very least one octave.

The formulation of the optimization problem should also be subject to the following
considerations:

• The number of optimization parameters should be as low as possible to keep the
run-time of each optimization iteration short.

• The formulation of the optimization problem should be amenable to an off-the-shelf
non-linear optimization routine.

• Additional design goals like the optimization of harmonic ratios between overtone
frequencies can be enforced.

4.2.1 Motivation

We begin our analysis of the design goals by a survey of instruments that belong to the
class of struck idiophones. Instruments of this category are characterized by the way
they produce sounds: They are struck by an object and hence start vibrating as a whole.
Most struck idiophones are percussive in nature, i.e., the sonorous instrument is struck
with a non-sonorous object, for example with a wooden stick or the human hand. Since
this is the type of instrument we aim to produce, studying their shapes might give us
hints on how to choose our design space.

Common representatives of struck idiophones in western culture are the triangle, the
marimba, the xylophone, the glockenspiel, the vibraphone, the cymbal, the steel pan, the
wood block, the cow bell, and the bell.

The glockenspiel is an example of how a high range of pitches can be reached by
using simple shapes, namely rectangular metal plates, and varying only a single shape
parameter, the length of plate. However, the overtones of the glockenspiel are not tuned
in any way because a single shape parameter does not provide a sufficiently large design
space. The marimba resembles the glockenspiel in that it also consists of a set of oblong
bars, although usually made from rosewood. The big difference is that marimba bars
are additionally tuned by adding arched undercuts to the bottom. This way, a harmonic
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ratio of 1:4 between the pitch and the first overtone can be achieved in order to produce
dulcet tones.

Cymbals resemble thin circular plates with a small dome in the center. They are
usually made out of bronze, and their pitch is controlled by the diameter and the thickness
of the plate. The steel pan is an instrument that started evolving in the mid-20th century.
It is made from a circular steel plate that is bulged with a special 16 oz. hammer. The
bulges are distributed throughout the plate such that nearby bulges give tones that are
harmonically related. This leads to reciprocal excitations and a rich spectrum of sounds.

Bells are among the oldest and most widely distributed instruments. The weight
of a bell can vary between several grams and more than a hundred tons. There are
appreciable differences in shape, but most variations are radially symmetric and have
either cylindrical or pear shapes. The pitch of most bells is roughly proportional to the
thickness and inversely proportional to the squared diameter. The overtones of the sound
are shaped by thinning the material in select regions on the inside of the bell. By this
process, the first overtone is shaped to lie one octave above the pitch, and the second
overtone a minor third above the first.

What all of these instruments have in common is that they are composed of thin
plates or thin shells. A single parameter, e.g., the thickness, the height, or the diameter,
suffices to dramatically change the pitch by at least an octave. Further variations in
shape are either decorative or serve the improvement of sound quality and of the overtone
spectrum.

Motivated by this common property of struck idiophones, we choose a thin-shell
solid as our primary design. A thin-shell solid can be thought of as the volume enclosed
between an outer surface with boundary, an inner surface with boundary, and the surface
connecting the two boundaries. The distance between the two surfaces corresponds to the
thickness of the shell. Using this description, we can reproduce many of the instruments
described above. If the surfaces are two stacked rectangles, this describes a bar of a
glockenspiel or a xylophone. If the surfaces resemble nested hemispheres, this allows us to
describe bell-like resonators. Note that instead of using two surfaces with boundaries and
connecting them, it is also possible to use two surfaces without boundaries to begin with,
e.g., two nested spheres describing a spherical shell. Even though this type of shape is
less common in the design of idiophones, it does not pose a problem for our optimization
pipeline. In the case of bells, the outer surface is the defining aesthetic component. The
inner surface, on the other hand, can be used to control the sound without compromising
the visual appeal of the design.

Taking these considerations into account, we can define the input parameters and
the design space as follows: The user is asked to input the frequency of the desired
pitch, the parameters of the target material (material density ρ, Young’s Modulus E,
and Poisson’s ratio ν for isotropic materials), and a triangle mesh describing the desired
outer surface. The design space is parametrized by the shell thickness, which controls the
distance between the inner surface and the user-defined outer surface. The inner surface
is calculated as an offset surface to the outer surface.

We introduce notation to make the notion of the inner surface, which is created by
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Figure 4.1: The mesh we use to demon-
strate the three parametrizations of the
design space.

Figure 4.2: The meso-skeleton calcu-
lated for skeleton parametrization con-
sists of surface sheets and curves.

Figure 4.3: Inner surface calculated using per-vertex-normal parametrization. Even for
small offsets, the inner surface exhibits self-intersections.

shifting the vertices of the outer surface along an offset direction, more concrete. Let O
denote the constant outer surface and v1, . . . ,vn the vertex positions of the triangle mesh
describing O. Let o1, . . . ,on be a set of normalized offset directions corresponding to the
vertices of O. The offset magnitudes are denoted by δ1, . . . , δn. The vertex positions of
the inner surface I are given by vi + δioi. The vertex-edge-face topology of the inner
surface is defined to be the same as the outer surface.

What is left to choose are the offset directions oi and how to parametrize the offset
magnitudes δi. We have explored three possibilities to address this challenge and describe
each of them in turn.
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4.2.2 Per-Vertex-Normal Parametrization

The simplest choice for the offset directions is to use the inward-facing per-vertex normals
ni. The design space is parametrized by a single variable δ > 0 such that δi = δ for
all vertices. This results in an almost constant wall thickness, i.e., a constant distance
between the two surfaces.

There is an obvious problem with this formulation: Depending on the shape of the
outer surface and the value of δ, the inner surface could intersect either itself or the outer
surface. Self-intersections can be either local or global. Local self-intersections occur
when the offset magnitude at a point is higher than the inverse of the maximal curvature
κ1. In the case of smooth surfaces, this is easy to see because the inner offset surface will
develop a singularity if the offset magnitude matches or exceeds the curvature radius.
Predicting local self-intersections for discrete surfaces is less reliable because the notion
of curvature is only defined in an approximate sense.

The situation is even more difficult for global self-intersections, i.e., one region of the
inner surface intersects another region that is not directly bordering the first. The only
way to reliably detect these intersections is to perform triangle-triangle tests. The same
holds true for intersections between the inner and the outer surface. The implication
is that it is difficult to find an upper bound for δ in advance. It is equally difficult to
find per-vertex offset magnitude upper bounds δi. We demonstrate per-vertex-normal
parametrization for the mesh shown in Fig. 4.1. Fig. 4.3 shows the inner surface at
different distances to the original surface in a 2d illustration. In regions of high curvature,
the method fails even for small offsets.

Nevertheless, this simple parametrization of the design space is useful for outer
surfaces with low curvatures. It can be successfully applied to flat instruments and shapes
like the hemiellipsoid bell discussed in Section 5.2.1.

4.2.3 Skeleton Parametrization

To address the intersection problems of the per-vertex-normal parametrization, we follow
the lead of Musialski et al. [MAB+15]. The idea is to compute a meso-skeleton, an
approximation of the medial axis for triangle meshes. The medial axis of a surface is
the set of all centers of spheres that are tangent to the surface in at least two points.
Equivalently, it is the set of all points that are equidistant to the surface in at least two
points. In three dimensions, the medial axis consists of curves and surface sheets.

Tagliasacchi et al. [TAOZ12] propose an algorithm that produces a skeleton, i.e., a set
of curves, in the end but yields a meso-skeleton as an intermediate step by iterative mesh
contraction. A useful property of their algorithm is that the one-to-one matching between
a vertex mi of the meso-skeleton and a vertex vi of the initial surface is preserved. The
idea is to choose the offset directions as

oi = mi − vi
‖mi − vi‖

, 0 < δi < ‖mi − vi‖.

This means that a vertex of the inner surface lies on the line segment connecting the
corresponding vertex vi on the outer surface and the corresponding vertex mi on the
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Figure 4.4: Inner surface calculated using skeleton parametrization. The inner surface
avoids local and global self-intersections as well as intersections with the outer surface.

meso-skeleton. As the wall thickness δi is increased, the vertex is shifted closer to
the skeleton. The effect of skeleton parametrization, as opposed to per-vertex-normal
parametrization, is illustrated in Fig. 4.4.

Like the previous parametrization method, skeleton parametrization also uses a single
design-space parameter δ, which controls the distance between the two surfaces. However,
the offset directions oi no longer coincide with the per-vertex normals ni in general.
Therefore, setting δi = δ will not actually achieve a wall thickness of δ but a reduced
wall thickness of

ti = δioTi ni.

Often it is useful to enforce a minimum wall thickness w throughout the object due
to stability concerns or restrictions of the fabrication process. The approximate wall
thickness ti at vertex i can be found by projecting the offset vector δioi onto the normal:
To enforce that δi respects the minimum wall thickness, we can introduce the lower-bound
constraints

δi < δi, δi = w

oTi ni
.

Additionally, we modify the upper-bound constraints

δi < δi, δi = c‖mi − vi‖,

where c is a constant that is close to but less than one. This constant factor guarantees
that there is always a small gap between opposite regions of the inner surface. In our
implementation we set c = 0.95.

The meso-skeleton approach works well in practice, but it is not unconditionally
robust. It can happen that the meso-skeleton does not extend tendrils into very fine
surface details—“jags”. As a consequence, the line segment connecting vi and mi may
intersect the outer surface or the trajectory of other surface points. This means that
self-intersections can still occur for very noisy surfaces.

A practical detail that should be mentioned is that mean-curvature skeletons are
only defined for 2-manifolds without boundary. If the outer surface O, which is part
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Figure 4.5: The first twelve Laplacian eigenfunctions of a mesh. The color encodes the
influence regions of the individual functions. The first eigenfunction is always constant.

of the user input, has a boundary, we cannot directly feed it into the skeletonization
algorithm. Instead we ask the user to input an extended closed surface Õ such that
O ⊂ Õ. The surface Õ has annotations that identify the faces pertaining to O. In the
case of a hemiellipsoidal bell, the user could input the entire ellipsoid and annotate only
one half as belonging to O. The surface Õ is then used to build the meso-skeleton, and
the vertices not contained in O are discarded afterwards.

4.2.4 Manifold Harmonics Parametrization

If the design space afforded by a single thickness parameter δ is insufficiently large, we
can use a technique introduced by Musialski et al. [MAB+15] to extend the number
of parameters. This might by necessary if additional design goals are to be met, e.g.,
the optimization of overtones or aesthetic considerations. The order-reduction method
presented here strikes a balance between a single design parameter δ and n per-vertex

45



design parameters. This is achieved by projecting the set of offset magnitudes δi into a
lower-dimensional space.

The projection is based on the mesh Laplacian, a symmetric linear operator that
encodes the mesh topology and mesh geometry. It is defined via the matrix L with entries

Li,j =


wi,j if (i, j) ∈ E
−
∑
k wi,k if i = j

0 otherwise
,

where E denotes the set of edges of the mesh. The vertex weights are computed as

wi,j = 1
2(cotϕli,j + cotϕri,j),

where ϕli,j and ϕri,j are the angles opposite the edge (i, j).
Applying the discrete Laplacian operator to the 3-by-n matrix of vertex coordinates

V = [x|y|z] transforms them to δ-coordinates, i.e., the vectors pointing from the initial
vertex positions to the weighted mean of their 1-neighbors. The Laplacian operator has
applications in mesh encoding and mesh compression due to the nature of its eigenbasis.
Because the Laplacian is real symmetric, its eigendecomposition can be written as

L = QΛQT ,

where Λ = diag(λ1, λ2, . . . , λn) is the diagonal matrix of eigenvalues λ1 < . . . < λn, and
Q = [q1|q2| . . . |qn] is the orthogonal matrix whose columns are the eigenvectors of L. The
eigenvectors of the Laplacian correspond to the eigenfunctions of the Laplace-Beltrami
operator in differential geometry.

The discrete mesh Laplacian can be seen as a generalization of the discrete Fourier
Transform to arbitrary mesh topologies, where the eigenvectors take on the meaning of the
Fourier basis vectors. They share the property that eigenvectors corresponding to small
eigenvalues encode low frequency features of the mesh and eigenvectors corresponding to
large eigenvalues encode high-frequency features of the mesh. Fig. 4.5 illustrates the first
twelve eigenvectors of a mesh by interpreting them as scalar functions on the surface of
the mesh. Truncation of the series

L =
n∑
i=1

λiqiqTi

to the k < n lowest-frequency terms

Lk =
k∑
i=1

λiqiqTi = QkΛkQT
k

yields a reduced spectral basis that encodes only low-frequency surface features.
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Figure 4.6: Manifold harmonics parametrization. Each Laplacian eigenfunction changes
the wall thickness in a different region of influence.

As proposed by Musialski et al. [MAB+15], we do not transform the mesh vertices
themselves by projection on the reduced eigenbasis. Instead, we use the k lowest-
frequency eigenvectors to parametrize the offset magnitudes δ = (δ1, . . . , δn)T as a linear
combination of the eigenvectors with coefficients α = (α1, . . . , αk)

δ =
k∑
i=1

αiqi.

The coefficients α serve as a the new set of parameters. Fig. 4.6 shows a 2d illustration
of each summand αiqi for i ∈ {1, . . . , 8}. By linearly combining the offsets, a large design
space with smoothly varying wall thickness can be constructed.

The first eigenvector q1 is always equal to (1, . . . , 1)T . This means that the manifold
harmonics parametrization degenerates into the skeleton parametrization method from
Section 4.2.3 if k is chosen to be one. In practice it makes sense to keep k as small as
possible (e.g., k < 4) because optimization run-times increase drastically as the number
of parameters increases.

No matter which of the three parametrization methods is used, an element of the
design space always has the same form: an outer triangle mesh and an inner triangle
mesh, both of which have the same mesh topology. If one of the two latter methods is
used and the constraints on δi are respected, the inner surface will not intersect either
itself or the outer surface with a high likelihood.
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4.3 Finite Element Modeling

Given an element of the design space, this section describes how to calculate its natural
frequency spectrum. A design consists of an outer surface and an inner offset surface,
both of which are stored as triangle meshes with the same topology. If the two surfaces
are closed, we can define the domain Ω ⊂ R3 as the region delimited by the two surfaces.
In the case of surfaces with boundary, the domain is defined by first connecting the
boundaries of the outer and the inner surface. This yields one closed 2-manifold ∂Ω that
encloses Ω.

Section 2.3 describes the principal ideas behind a finite element model. The most
important choice when attempting a finite element analysis is that of the element types
to use. The linear tetrahedron is the most conceptually simple element, but more
complex elements have higher predictive power for complex structural problems. We
have implemented modal analysis with four different types of elements and will describe
each of them in turn.

4.3.1 Linear Tetrahedra

The element introduced in Section 2.3 spans the convex hull of four corner nodes. At each
node, there are three degrees of freedom in the form of a displacement vector u, totaling
twelve degrees of freedom per element. The first step is to construct an assemblage that
partitions Ω into a number of tetrahedral elements Ωe.

By connecting a triangle of the outer surfaces with the corresponding triangle of the
inner surface, we can construct a triangular prism. Doing this for every pair of triangles
yields a partition of Ω into a set of triangular prisms. As illustrated in Fig. 4.7 on the left,
a triangular prism can be subdivided into three tetrahedra, but there is a choice between
six distinct configurations that can be obtained by rotational and reflection symmetry. If
we were to choose a configuration at random, we will run into trouble regarding the quads
that join two prisms together. It must be ensured that the quads are split into triangles
in the same direction on both neighboring elements. The reason is that the interpolation
of nodal quantities must be continuous across element boundaries in order to guarantee
correctness of the finite element method. If two triangulated quads are joined together in
cross fashion, as seen in Fig. 4.7 on the right, this will no longer be the case.

Dompierre et al. describe an algorithm to tetrahedralize a mesh comprised of triangular
prisms without introducing non-matching elements [DLVC99]. The algorithm is based on
a global numbering of all vertices in the mesh. Each prism contains three quadrangular
faces, and each one is split along the vertex with the lowest global number. It is shown
that this always yields a valid tetrahedralization of the prism, and hence a globally
matching tetrahedral mesh.

Section 2.3 describes how to derive the element stiffness matrix and the element mass
matrix for the standard linear tetrahedron spanned by the vertices {(1, 0, 0)T , (0, 1, 0)T ,
(0, 0, 1)T , (0, 0, 0)T }. In order to derive the element matrices for elements with arbitrary
nodal positions, a coordinate transformation is required. We introduce the notion of the
natural coordinate system ξ = (ξ, η, ζ)T . In contrast to the global coordinate system
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Figure 4.7: Left: The six possible ways to subdivide a triangular prism into three
tetrahedra. Right: Joining two prisms in cross fashion results in a non-matching finite
element mesh.
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Figure 4.8: A linear tetrahedral element in the natural coordinate system (ξ, η, ζ) and in
the global coordinate system (x, y, z).
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x = (x, y, z)T , which is the same for each element Ωe, the natural coordinate system is
chosen locally for each element. It is constructed such that any element maps to the
standard tetrahedral element Ω0 in the natural coordinate system, see Fig. 4.8.

Given a point ξ = (ξ, η, ζ)T ∈ Ω0 in natural coordinates, it can be mapped to the
corresponding point x = (x, y, z)T ∈ Ωe using the familiar shape functions

N e
1 (ξ) = ξ,

N e
2 (ξ) = η,

N e
3 (ξ) = ζ,

N e
4 (ξ) = 1− ξ − η − ζ

with the mapping

x(ξ) =

x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4



N e

1 (ξ)
N e

2 (ξ)
N e

3 (ξ)
N e

4 (ξ)

 ,

where (xi, yi, zi)T denotes the position of node i. Note that positions in the global
coordinate system are interpolated in precisely the same way as other nodal quantities
like the displacements

u(ξ) =
4∑
i=1

N e
i (ξ)ui.

Elements that show this analogy between geometry and other nodal quantities are known
as isoparametric, as opposed to superparametric elements, whose geometry is less refined
than its unknowns.

In order to perform a transformation between the global and the natural coordinate
system, we make use of the Jacobi matrix

J = ∂x
∂ξ

=


∂x
∂ξ

∂x
∂η

∂x
∂ζ

∂y
∂ξ

∂y
∂η

∂y
∂ζ

∂z
∂ξ

∂z
∂η

∂z
∂ζ


and its inverse

∂ξ

∂x
= J−1.

In the case of a linear tetrahedral element, J and J−1 are constant across the whole
element because they depend only on the constant derivatives of the shape functions.
This does not hold for more complicated elements, where J and J−1 may depend on ξ.

50



The entries of J−1 enable the derivation of B, whose definition is repeated here for
convenience:

ε̄(x) =



∂Ne
1

∂x 0 0 · · · ∂Ne
4

∂x 0 0
0 ∂Ne

1
∂y 0 · · · 0 ∂Ne

4
∂y 0

0 0 ∂Ne
1

∂z · · · 0 0 ∂Ne
4

∂z
∂Ne

1
∂y

∂Ne
1

∂x 0 · · · ∂Ne
4

∂y
∂Ne

4
∂x 0

0 ∂Ne
1

∂z
∂Ne

1
∂y · · · 0 ∂Ne

4
∂z

∂Ne
4

∂y
∂Ne

1
∂z 0 ∂Ne

1
∂x · · · ∂Ne

4
∂z 0 ∂Ne

4
∂x


ue = Bue.

Since our shape functions depend on the natural coordinates ξ, we cannot calculate the
entries of B directly. Instead, we apply the chain rule, which yields

∂N e
1

∂x
= ∂N e

1
∂ξ

∂ξ

∂x
+ ∂N e

1
∂η

∂η

∂x
+ ∂N e

1
∂ζ

∂ζ

∂x

and analogous expressions for the remaining entries of B. Using matrix calculus notation,
they can be written as

∂Ne

∂x = ∂Ne

∂ξ

∂ξ

∂x = ∂Ne

∂ξ
J−1,

where Ne = (N e
1 , N

e
2 , N

e
3 , N

e
4 )T .

We are now in a position to evaluate the element stiffness matrix

Ke =
∫

Ωe
BTEB dV.

Because the integrand is constant, this simplifies to

Ke = VBTEB,

where V is the volume of the tetrahedral element

V = 1
6

∣∣∣∣∣∣∣∣∣
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4
1 1 1 1

∣∣∣∣∣∣∣∣∣ .

The element mass matrix

Me =
∫

Ωe
ρNTN dV
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for a linear tetrahedral element has the form

Me =
∫

Ωe
ρ



N2
1 N1N2 · · · N1N4

N2
1 N1N2 · · · N1N4

N2
1 N1N2 · · · N1N4

N1N2 N2
2 · · · N2N4

N1N2 N2
2 · · · N2N4

N1N2 N2
2 · · · N2N4

...
...

...
...

...
... . . . ...

...
...

N1N4 N2N4 · · · N2
4

N1N4 N2N4 · · · N2
4

N1N4 N2N4 · · · N2
4



dV,

where the subscript e has been omitted from N e
i . Because every entry in the integrand is

a sum of polynomials in ξ, η, ζ, and (1 − ξ − η − ζ), it can be integrated analytically
with the general formula∫

Ωe
ξi ηj ζk (1− ξ − η − ζ)l dV = i! j! k! l!

(i+ j + k + l + 3)! 6V.

for tetrahedral integration domains Ωe. For the two kinds of entries appearing in Me,
this yields the expressions∫

Ωe
ρNi(ξ)2 dV = ρ

∫
Ωe
ξ2 dV = 1

10ρV,∫
Ωe
ρNi(ξ)Nj(ξ) dV = ρ

∫
Ωe
ξη dV = 1

20ρV, i 6= j.

The construction of both Ke and Me is very efficient for linear tetrahedra because
no numerical integration has to be performed. This makes the linear tetrahedron an
attractive choice for prototyping purposes.

Unfortunately, this element does not perform well in the context of modal analysis,
and the frequencies predicted by the finite element model to not converge to the true
solution even if the mesh resolution is increased. This phenomenon is known as shear
locking and appears if elements of insufficient continuity are used to predict bending of
a structure. In the case of linear tetrahedra, only displacements possess C0 continuity
across element boundaries. Stresses and strains on the other hand are constant on the
interior of an element and exhibit large jumps across element boundaries. In order to
predict bending phenomena, stresses must be interpolated at least linearly in the element
interiors.

4.3.2 Quadratic Tetrahedra

To address the shortcomings of linear tetrahedra, one can introduce additional nodes on
the edges of the elements, called mid-side nodes. This increases the number of nodes
per element from four to ten. Fig. 4.9 illustrates the placement and numbering of a
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quadratic tetrahedron. The most notable difference to the linear tetrahedron is that the
new element supports curved boundaries. This also means that its natural coordinate
system is curvilinear.
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Figure 4.9: A quadratic tetrahedral element in the natural coordinate system (ξ, η, ζ)
and in the global coordinate system (x, y, z).

To define interpolation on a quadratic tetrahedron, it suffices to provide a set of
shape functions N e

1 , . . . , N
e
10. In constructing these shape functions, we have to keep the

following criteria in mind:

• The shape functions must be a partition of unity on Ωe.

• Each shape function must evaluate to one at the corresponding node and to zero at
any other node.

It is easiest to construct the shape functions on the standard element in the natural
coordinate system. For corner nodes like node 3 we can meet both criteria if we construct
the equations of the planes shown in Fig. 4.10 on the left. Taking their product and
scaling it to be one at the position of node 3 gives us a suitable shape function [Fel14]:

ε1 : ζ = 0, ε2 : ζ − 1
2 = 0,

N e
3 (ξ) = 2ζ

(
ζ − 1

2

)
.

We can do a similar construction for mid-side nodes like node 5.

ε1 : ζ = 0, ε3 : η = 0,
N e

5 (ξ) = 4ηζ.
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Figure 4.10: Planes for the construction of the shape functions of nodes 3 (left) and 5
(right) for the quadratic tetrahedron..

The eight remaining shape functions can be constructed analogously.
With the shape functions in place, we can readily evaluate B for any point ξ. A

complication for quadratic elements is that we can no longer evaluate the integral in the
definition of Ke analytically. Instead, we perform a coordinate transformation

Ke =
∫

Ωe
BTEB dV =

∫
Ω0

BTEB |J | dV, J = ∂x
∂ξ
,

into the natural coordinate system, where |J | denotes the Jacobi determinant.
This integral over the domain of the unit tetrahedron can be numerically approximated

by Gauss quadrature with the formula

Ke ≈
nG∑
i=1

wiBT (gi)EB(gi) |J(gi)|,

where nG is the number of quadrature points, wi is the weight of quadrature point i,
and gi are the natural coordinates of quadrature point i. It is suitable to choose the
simplest integration rule that will produce a rank-sufficient stiffness matrix. The rank
of Ke is 24 because the quadratic tetrahedral element has 30 degrees of freedom and
six rigid-body modes. The rank of the integrand BTEB is six, given that E has full
rank. Each summand in the quadrature rule adds six to the rank of the resulting stiffness
matrix, and therefore at least four quadrature points are necessary to achieve a rank of
24. Since a 4-point integration rule is available for tetrahedra, it is a suitable choice for
the integration of the element stiffness matrix.
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The construction of the mass matrix is also performed by substituting coordinates in
the integral

Me =
∫

Ωe
ρNTN dV =

∫
Ω0
ρNTN |J | dV

and evaluated using Gauss quadrature

Me ≈
nG∑
i=1

wiρN(gi)TN(gi) |J(gi)|,

however, the 4-point rule will not produce a rank-sufficient matrix. Every summand
adds only three to the rank of the resulting matrix, and therefore at least ten points are
required to achieve the full rank of 30. Since a symmetric 10-point rule for tetrahedra is
not available, the best choice is 14-point Gauss quadrature.

4.3.3 Quadratic Wedges

While quadratic tetrahedral elements converge to the true result, finite element literature
recommends to use prismatic elements over tetrahedra if possible. Our volume initially
consists of triangular prisms, and it is therefore viable to use 15-node quadratic wedge
elements. We construct these by introducing a mid-side node on every edge of the
triangular prism, as shown in Fig. 4.11 on the top-left.

This element is particularly elegant for our scenario because it captures the geometry
of the solid perfectly without the need to subdivide elements or to introduce nodes that
do not add meaningful degrees of freedom. It might even be possible to reduce the wedge
element to 12 nodes by removing the mid-side nodes 10-12. We include these nodes
because the FEM library that we use to construct the stiffness and mass matrices does
not support the 12-node wedge element.

The quadratic wedge element has three different types of nodes: corner nodes (nodes
1-6), base mid-side nodes (nodes 7-9 and 13-15), and axial mid-side nodes (nodes 10-12).
Using the product-of-planes construction method, we can come up with shape functions
for each type of node, as illustrated in Fig. 4.11. The corresponding shape functions are
given by

ε1 : 1 + ξ = 0, ε2 : ζ = 0, ε3 : 1
2ξ + ζ − 1 = 0,

N e
5 (ξ) = (1 + ξ)ζ

(1
2ξ + ζ − 1

)
,

ε1 : 1 + ξ = 0, ε2 : ζ = 0, ε4 : 1− ξ = 0,
N e

11(ξ) = (1− ξ2)ζ,

ε1 : 1 + ξ = 0, ε2 : ζ = 0, ε5 : η = 0,
N e

13(ξ) = 2(1 + ξ)ζη.
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Figure 4.11: Top-left: The 15-node wedge element with dimension markings. Remaining:
Planes for the construction of the shape functions of nodes 5 (top-right), 11 (bottom-left),
and 13 (bottom-right).

The remaining elements can be constructed in the same way, and the coordinate trans-
formations are performed in analogy to the calculation of quadratic tetrahedral elements.

Gauss quadrature can be performed by choosing a triangle quadrature rule for the
(η, ζ)-plane and a one-dimensional quadrature rule for the ξ-direction. The 15 nodes
have 45 degrees of freedom in total, which yields a rank of 39 for the element stiffness
matrix. Again, each summand of the form BTEB adds six to the rank of the result,
and therefore at least seven quadrature points are required. An appropriate choice is a
4-point triangle rule and a 2-point one-dimensional rule, which yields an 8-point rule for
the wedge-element stiffness matrix.

The element mass matrix has a rank of 45, and each summand of the form NTN
adds three to the rank of the result. Therefore, we need at least 15 quadrature points. A
valid choice is a 6-point triangle rule and a 3-point one-dimensional rule, which yields an
18-point rule for the wedge element mass matrix.

56



x

y

z

u, θu

u, θu

u, θu

v, θv

v, θv

v, θv

w

w

w

Figure 4.12: A triangular thin-shell element with five degrees of freedom at each node—
the membrane degrees of freedom u, v and the thin-plate degrees of freedoms w, θu, θv.

4.3.4 Thin-Shell Elements

Thin-shell structures are composed of curved surfaces whose thickness is considerably
smaller than its longitudinal dimensions. An assemblage of thin-shell elements can be used
to describe these structures with a smaller number of nodes and degrees of freedom than
are necessary with the quadratic elements introduced before. Unlike linear tetrahedral
elements, thin-shell elements can predict tensile stresses as well as bending stresses.

The reduction of DoF is made possible by distributing all nodes along the mid-surface
of the thin-shell structure. In contrast to the elements explored previously, there are no
nodes on the outer and inner surfaces. The transverse dimension takes on an implicit
role by including the thickness as a parameter in the energy formulation of the element.

An element suitable for our application is the triangular thin-shell element. Its
nodes are placed on the mid-surface of a triangular prism, see Fig. 4.12. Every node
has five degrees of freedom—two displacements to account for in-plane vibrations, and
an additional translational and two rotational degrees of freedom to describe flexural
vibrations. Derivation of the stiffness matrix for this element is a little more involved
than the one described in Section 2.3. The interested reader is referred to a finite element
textbook [Pet10].

The thin-shell formulation only works well as long as the distance between the outer
surface and the inner surface is small. However, we cannot always guarantee that the
distance stays small throughout the optimization routine at every vertex. If we expect
large wall thicknesses, we use quadratic wedge elements instead as they provide a good
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compromise between correctness and ease of calculation.

4.3.5 Jacobian Positiveness

With the introduction of the Jacobian |J |, we run the risk of violating the vital assumptions
that Ke and Me are positive semi-definite. Take as a simple example the element stiffness
matrix of the linear tetrahedron, in which the integrand is constant. The integral can
be solved by multiplying the integrand with the volume of the integration domain.
However, if the orientation of the domain Ωe is flipped with respect to the standard
linear tetrahedron Ω0, the volume will be negative. As a result, the stiffness matrix of
this element will be negative semi-definitive, and the positive semi-definiteness of the
master stiffness matrix K is no longer guaranteed.

For elements whose shape functions are at least bilinear or quadratic, like the quadratic
tetrahedron, the situation is more complicated. Since the Jacobian varies across the
integration domain, it can be positive in one region, negative in another, and zero in
between. The Jacobi matrix J is only evaluated at a finite set of Gauss integration points,
but if one of these points has a zero Jacobian, the inversion of J will fail. If the Jacobian
is negative, the element stiffness matrix can still be calculated, but the element does not
have a valid physical shape. Therefore, most finite element codes will issue a warning if
the Jacobian is not positive everywhere.

Section 4.2 describes how we avoid self-intersections of the inner surface and inter-
sections between the inner and the outer surface. Local self-intersections of the inner
surface automatically lead to inverted elements and negative Jacobians. By avoiding
intersections, we remove the main cause for invalid element shapes. In extreme cases, it
is possible to arrive at severely distorted, concave elements with negative Jacobians even
in the absence of self-intersections. However, we have never encountered these cases in
practice when using skeleton parametrization or manifold harmonics parametrization.

4.3.6 Remarks

A major part of the run-time of the shape optimization pipeline is spent on solving the
equations of motion. The complexity of this operation depends mostly on the size of the
master matrices, i.e., the total number of degrees of freedom in the finite element mesh.
Therefore, we evaluate the number of elements and total number of degrees of freedom
that we can expect when choosing an element type.

An infinite regular triangle mesh that is extruded to form a single layer of triangular
prisms serves as the basis of our considerations because it has a topology similar to that
of a finely tessellated mesh. As a measure of complexity, we evaluate the ratio between
the number of prisms and the total number of degrees of freedom in the finite element
model. Fig. 4.13 illustrates the nodes resulting from different element types.

For the thin-shell model, there is one element per prism, three axial mid-side nodes
(green) per element, five DoF at each node, and each node is shared by six elements.
This yields 3 · 5 · 1

6 = 2.5 DoF per prism in the limit.
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Figure 4.13: A prism in an infinite regular mesh is decomposed into quadratic tetrahedra.
The different types of nodes are marked in different colors.

For the wedge element, we have to distinguish between the different types of nodes. An
element has six corner nodes (gray) and three axial mid-side nodes (green) that are shared
by six elements each. Furthermore, it has six base mid-side nodes (blue) that are shared
by two elements each. Given three DoF per node, this yields 3 ·

(
(6 + 3) · 1

6 + 6 · 1
2

)
= 13.5

DoF per prism.

For the tetrahedral elements, every prism is subdivided into three tetrahedra with
the scheme introduced in Section 4.3.1. The six corner nodes (gray) are shared by six
prisms each. Given three DoF, we thus have 3 · 6 · 1

6 = 3 DoF per prism for the linear
tetrahedron. For the quadratic tetrahedron, we have all nodes that were present for the
wedge element plus three face nodes (red), which are shared by two prisms. This yields a
total of 3 ·

(
(6 + 3) · 1

6 + (3 + 6) · 1
2

)
= 18 DoF per prism.

We can conclude that the master finite element matrices obtained with the thin-shell
model or the linear tetrahedral model are far smaller than the ones obtained with the
quadratic models. Since linear tetrahedra are not suitable for our application, we expect
the thin-shell model to have the best run-time performance. However, tests with the
finite element library OpenFEM have shown that construction of the thin-shell element
matrices is comparatively slow. In some of our test cases, this problem outweighs the
disadvantageously large master matrices of the wedge model. The quadratic tetrahedral
model is by far the slowest of the four models for every test case.
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4.4 Non-Linear Optimization
Given an element of the design space—an outer surface and an inner offset surface—we
can evaluate the natural frequency spectrum using any of the finite element discretizations
introduced in the previous section. The stiffness matrix and the mass matrix can be fed
into a generalized eigenproblem solver for sparse matrices in order to find the smallest
eigenvalues with the corresponding eigenvectors. As discussed in Section 2.4, the first
eigenvalue is always zero and has a multiplicity of six, corresponding to the three
translational and three rotational rigid-body modes of a 3d solid. The seventh eigenvalue
is positive and describes the frequency of the pitch. This task of determining the first
seven eigenvalues is delegated to Matlab’s function eigs, which implements the Lanczos
algorithm to iteratively find eigenvalues.

We proceed by defining a global optimization problem, first for the case of per-vertex-
normal parametrization:

min
δ

f(δ) = (p− p0)2,

s.t. δ > 0.

The objective function f is the squared difference between the desired pitch p0 and pitch
of the incumbent solution p. The wall thickness parameter δ has to be positive to keep
the inner surface inside the outer surface. The individual offset magnitudes are set to
δi = δ for every vertex.

The inequality constraint is linear, but the objective function involves the eigenvalue
of a matrix and is therefore non-linear. Evaluating the objective function is very expensive
because it requires creating the inner surface based on δ, generating the stiffness matrix
and the mass matrix, and finding the smallest non-zero eigenvalue λ7 of a large, sparse
generalized eigenproblem. The frequency of the pitch is then found to be p =

√
λ7

2π .
To solve the minimization problem, we use Matlab’s fmincon, which implements

constrained non-linear optimization algorithms. We have experimented with both the
active set algorithm and the SQP algorithm and found that the latter outperforms the
former in all of our test cases.

If we use skeleton parametrization, the offset magnitudes δi are set to δ but clamped
to the individual offset limits δi and δi to guarantee a minimum wall thickness and a
safe distance to the skeleton. Let δmin = mini δi and δmax = maxi δi. Then we can write
the optimization problem for skeleton parametrization as

min
δ

f(δ) = (p− p0)2,

s.t. δmin < δ < δmax.

Whenever the objective function is evaluated, the individual offset magnitudes are set to

δi = min(max(δ, δi), δi).

Manifold harmonics parametrization increases the number of optimization variables
from 1 to k, depending on the number of basis functions. The variable δ is superseded
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by the variables α = (α1, . . . , αk)T , which determine the weights of the individual
eigenvectors q1, . . . ,qk. The offset magnitudes are given by

δ =
k∑
i=1

αiqi.

The optimization problem is adapted to reflect this change

min
α

f(α) = (p− p0)2,

s.t. δi � Qkα � δi,

where Qk = [q1|q2| . . . |qk], δi = (δ1, . . . , δn)T and δi = (δ1, . . . , δn)T .
As opposed to the original application of offset-surface parametrization [MAB+15],

we cannot analytically compute the gradient and the Hessian of the optimization function.
Therefore, the SQP routine uses finite differencing methods to find said quantities,
which increases the number of objective function evaluations. If we use more than one
optimization variable, this number will increase even further. Given the time it takes to
evaluate the objective function, it is ill-advised to choose k larger than four.

The optimization task also poses a numerical difficulty. Although the objective
function f(δ) is monotonic on large intervals for many of our test cases, the numerical
inaccuracies in evaluating the eigenvalues with eigs introduce very small-scale jags into
the function. To the SQP algorithm, these jags appear to be local minima, and they are
often returned instead of a feasible solution. This problem mostly occurs if the change in
variables in order to determine the gradient by finite differencing is very small, e.g., δ is
changed by less than 10−6.

The minimum and maximum change in variables can be set for fmincon with
the parameters DiffMinChange and DiffMaxChange. While the outcome is largely
insensitive to the value of DiffMaxChange, it can change dramatically depending on the
value of DiffMinChange. If the minimum change in variables is very small, e.g. 10−6,
the algorithm often returns a local minimum that only exists due to the inaccuracies of
eigs. If the minimum change in variables is larger, e.g. 10−3, the algorithm approaches
the true minimum, but returns a value that is up to about 2% off.

An approach that works well in practice is a two-phase strategy. The optimization
routine is run once with a large minimum change in variables to obtain a good estimate.
The routine is run again using the estimate as an initial solution and with a small
minimum change in variables to refine the solution.
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CHAPTER 5
Validation and Results

5.1 Validation Method

This section describes the method we use to assess the quality of the finite element
solutions and the results of the optimization pipeline. The most important metric is
the difference between the frequencies predicted by the FE solution and the frequencies
actually exhibited by the fabricated models.

A natural mode in structural dynamics is defined by three quantities: a frequency,
a damping factor, and a mode shape. In the finite element framework described in
Section 2.3, we use an undamped model to describe natural modes. This eliminates the
damping factor from the list of parameters in which we are interested. The frequency and
the mode shape emerge naturally from the solution of the linear system of second-order
ODEs as the eigenvalues and eigenvectors of the corresponding generalized eigenvalue
problem.

Modal analysis can be performed on a physical object with a series of experiments:
For lightweight structures it is common to use a combination of an impact hammer and a
set of accelerometers in order to perform modal testing. The accelerometers are attached
to nodes throughout the test subject and will record the acceleration history. The impact
hammer is equipped with a node cell at its tip to measure the force and duration of an
impact. All components are hooked up to modal testing software, which will process the
experimental data.

The theoretical ideal impulse is the so-called Dirac impulse, which has an infinitely
small duration. This impulse would excite all frequencies equally and therefore completely
characterize an ideal linear dynamical system. Since it is impossible to recreate in reality,
the impact delivered with the impact hammer is recorded and transformed into the
frequency spectrum by the modal testing software. This input spectrum determines
the excited frequency range and therefore the part of the output spectrum that will
contain valid data. The recorded accelerations are also transformed into frequencies and
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correlated with the input spectrum. From this data, the modal testing software estimates
the natural frequencies, damping factors, and even mode shapes.

5.1.1 Experimental Frequency Analysis

The only experimental data we require to assess the quality of the finite element solution
are the frequencies of the natural modes in the audible spectrum, i.e., 20 to 20,000 Hz.
Therefore, we forgo the standard experimental modal analysis setup in favor of a more
economic validation method. The fabricated solid is mounted between loops of yarn to
simulate free-free boundary conditions. Ideal free-free boundary conditions would require
that the object is not supported at all, but only supporting it with strings is a good
approximation [GPSG11]. It is then excited with a short impulse that is delivered with a
sharp object, e.g., a screwdriver. We record the sound with a standard microphone and
extract the frequency spectrum using the discrete short-time Fourier transform (STFT).
This variation of the discrete Fourier transform characterizes the frequency spectrum of
a signal as it changes over time. This is achieved by breaking up the signal into several
short time segments and performing a Fourier transform on each one. We use Matlab’s
spectrogram function to perform STFT with overlapping windows and the Hamming
window function. The result is a matrix P of power spectral densities, where each row
corresponds to a time segment and each column corresponds to a frequency between 0
and 22,000 Hz. The power spectral density is defined as the squared magnitude of the
amplitude of a particular frequency. A logarithmic plot of the power spectral densities,
with the frequency in Hz along the abscissa and the time in seconds along the ordinate,
conveys the dominant frequencies as shown in Fig. 5.1

The function spectrogram internally uses FFT to compute the Fourier transform
of each time segment. Therefore, the number of samples in each segment is padded
with zeros to yield a number of elements that is power-of-two by default. An additional
option allows for an artificially larger padding that leads to a higher resolution of the
result along the frequency axis. While this does not increase the information content, it
makes it easy to interpolate amplitudes between frequencies. This is a desirable quality
because we are interested in the frequency peaks, which correspond to natural modes of
the object.

In order to extract the frequency peaks, we opt for a two-phase method. The goal
of the first phase is to identify a set of approximate peak locations, along with their
approximate widths and durations. The second phase performs surface fitting for each
peak in order to determine its precise location.

For the first phase, we have implemented two variants: a simple interactive method
that lets the user select peaks, and an automatic method that detects probable peak
locations. In the interactive variant, the user is asked to select a frequency range
[fmin, fmax] around a peak and its approximate extension along the time dimension
[0, tmax] on the spectrogram.

The automatic variant searches for peaks on the second time segment from the
beginning of the signal. The first time segment is often subject to noise, and therefore
it is more robust to use the second. In the following description, p refers to power
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spectral density, and s is the derived quantity 10 · log10(p). The quantity s is used to
plot spectrograms, and we find it easier to formulate the peak-finding algorithm on s
rather than on p. We perform the following steps to find, narrow down, and characterize
peak locations (fi, si):

1. Perform non-maximum suppression [Can86] on s to rule out anything that is not a
local maximum.

2. Exclude any point that is smaller than smax − 40, where smax is the maximal value
of s on the time segment.

3. From the remaining points, exclude points fi that are not maximal in the frequency
range [fi − 120, fi + 120].

4. For each peak, determine the maximal region [fi− li, fi] in which s is monotonically
increasing, and the maximal region [fi, fi+ri] in which s is monotonically decreasing.
Let oi = min(li, ri), then the range of the peak along the frequency axis is assumed
to be [fmin, fmax] = [fi − 9

10oi, fi + 9
10oi].

5. For each peak, define a threshold ti = min(smax − 40, si − 30). Then the extension
of a peak along the time axis is given by the maximal duration [0, tmax], such that
s never falls below ti during this time interval.

The peaks found by this algorithm sometimes include peaks that do not correspond to a
natural mode and have to be removed manually. Fig. 5.2 illustrates the output of the
peak finder, omitting the extension of the peaks along the time axis for clarity.

The second phase of the peak-extraction pipeline is also automatic and performs local
optimization in order to fit a surface of the form

g : R2 → R, g : (f, t;A,D, µ, σ) 7→ Ae−Dte−( f−µ
σ

)2

to the selected range of power spectral densities with the Gauss–Newton algorithm. The
function g represents a Gaussian bell curve Ae−( f−µ

σ
)2 along the frequency axis, which

decays exponentially with the term e−Dt along the time axis. The parameter A represents
the height of the bell curve’s peak, µ is the location of the peak—this is what we are
ultimately interested in—, σ is the standard deviation of the bell curve, and D controls
the damping along the time axis.

Let n be the number of power spectral density samples in the range [fmin, fmax] ×
[0, tmax] that corresponds to the region covered by a peak. We enumerate these samples
as (f1, t1, p1), . . . , (fn, tn, pn), where fi is the frequency, ti is the time, and pi is the power
spectral density of a sample. The goal of the Gauss–Newton algorithm is to minimize
the residuals

ri = g(fi, ti)− pi, i ∈ {1, . . . , n}

in a sum of squares sense with respect to the parameters A, D, µ, and σ.
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Figure 5.1: The power spectrogram of a sound sample for plate 3. Red regions mark high spectral powers, blue regions mark
low spectral powers.
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Figure 5.2: This figure shows part of the time segment of the spectrogram on which
peak finding is performed. Blue circles mark estimated peak locations. The blue, shaded
regions mark the estimated frequency range of a peak. The third peak from the left is
found by the automatic peak finder although it does not actually correspond to a natural
mode and has to be removed manually.
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Figure 5.3: The 2d diagrams show a part of a time segment that contains a peak. The
gray, shaded area marks the interval that is being fitted with a surface. The time axis has
been omitted for clarity. After two Gauss–Newton iterations, a good fit has been obtained.
Note that fitting is performed on the power spectral densities p, but the ordinate shows
10 · log10(p). Therefore, the deviations between the two functions in the lower regions are
negligible—a good fit in the upper part of the function is important. The 3d diagram
includes the time axis to show the entire fitted surface.
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Using the Gauss–Newton algorithm requires the Jacobi matrix of the residuals with
respect to the estimation parameters, which is given by

Jr = ∂r
∂β

=


∂r1
∂A

∂r1
∂D

∂r1
∂µ

∂r1
∂σ

...
...

...
...

∂rn
∂A

∂rn
∂D

∂rn
∂µ

∂rn
∂σ

 .
The individual entries can be expressed as

∂ri
∂A

= e−Dtie−( fi−µ
σ

)2
,

∂ri
∂D

= −DAe−Dtie−( fi−µ
σ

)2
,

∂ri
∂µ

= 2Afi − µ
σ2 e−Dtie−( fi−µ

σ
)2
,

∂ri
∂σ

= 2A(fi − µ)2

σ3 e−Dtie−( fi−µ
σ

)2
.

This minimization problem requires an initial solution

β(0) = (A0, D0, µ0, σ0)T ,

but it turns out that the problem is largely insensitive to A0, D0, and σ0, and therefore we
can choose them in a naive way. The important initial parameter µ0 is set to fmax+fmin

2 ,
the center of the region around the peak. The parameter A0 is taken as the power
spectral density of the sample (µ0, 2), where 2 refers to the second row of P , i.e., the
second time segment after the start of the signal. The first time segment is often subject
to artifacts, and this is why we opt for the second. For D0 and σ0 we choose values of 1
and 30 respectively. These values are arbitrary choices of the same magnitude as the
true damping and standard deviation values. Each Gauss–Newton iteration is performed
with the formula

β(s+1) = β(s) − (JTr Jr)−1JTr r(β(s)).

We observe convergence to five significant digits within four iterations on average. The
surface fitting process is illustrated in Fig. 5.3.

The only parameter in which we are ultimately interested is the location of the peak
along the frequency axis µ. The reason why we extend g along the time axis, and hence
why we introduce the parameter D, is that it allows estimating µ from more samples.

So far we have explained how to estimate the frequency peaks from the sound samples
of a single impact. However, it cannot be taken for granted that a single impact will
excite every natural mode of the test subject, even if the impulse is a good approximation
to the Dirac impulse. In particular, an impact mainly excites the natural modes whose
mode shapes have a large displacement at the location of the impact. For example, take
the first mode shape from Fig. 5.6: This mode will be excited strongly if the rectangular
plate is hit in the center—the location of maximal displacement. If the bar is hit at a
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quarter of its length, the blue region in Fig. 5.6, the mode will be excited less. For this
reason, we extract the frequency peaks from impacts at various locations. However, our
experiments show that the fundamental tone and the first few overtones can be extracted
from any impact sound sample that we used.

Sometimes not every normal mode that is predicted by the finite element model can
be found by our experimental modal analysis setup. The reason is that only flexural
vibrations, i.e., vibrations along the normal of the surface, create large pressure waves
in the air. Transverse vibrations, i.e., vibrations tangential to the surface, see mode 8
in Fig. 5.6, do not create large pressure waves and are sometimes inaudible. Another
peculiarity of our setup is that low-frequency torsional modes, like mode 3 in Fig. 5.6,
are suppressed because their maximal displacement is exactly where our test subject is
supported by loops of yarn to keep it in suspension.

5.1.2 Material Parameter Estimation

A major factor in the accuracy of the finite element solution is the quality of the available
material parameters: the material density ρ, Young’s Modulus E, and Poisson’s ratio ν.
These parameters are usually determined experimentally, and listings for different alloys
can be found, e.g., on MatWeb1, a website dedicated to making data about material
properties freely available. However, these properties may vary slightly depending on
the producer and the production batch because they are sensitive to material purity and
internal defects.

To determine the properties of a material with sufficient accuracy requires expensive
equipment like a universal testing machine. As an alternative, we perform material
parameter estimation from impact sound samples using optimization. To start with, we
need a small set of physical artifacts with known dimensions that are produced from the
material in question. For example, to estimate the parameter of the tin that we use in
the production of bells, we produce two thin, rectangular tin plates. From these test
subjects, we extract the frequency spectrum experimentally with the method outlined
in Section 5.1.1. For the computational counterpart, we prepare finite element meshes
that describe the test subjects and evaluate them using one of the finite element models
discussed in Section 4.3. Initially, we use the expected material parameters obtained
from data sheets.

These steps yield a set of experimentally determined frequencies mi and a set of
frequencies fi obtained through finite element modal analysis. As discussed earlier, not
every natural mode can be observed using our experimental setup, and therefore we
cannot find a matching mi for every fi. However, the natural frequencies of our test
subjects are spaced widely enough to make it possible to match pairs by hand. If a
natural mode fi does not have a matching mi, it is ignored in the subsequent evaluation.

At this point we have obtained a set of pairs (mi, fi), i ∈ {1, . . . , n}, where mi denotes
a measured frequencies and fi denotes the corresponding frequency obtained with the
FE model. Each pair corresponds to a natural mode of one the test subjects. In practice,

1http://www.matweb.com/
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we use low-frequency modes, e.g., the first six modes of each test subject, for material
parameter estimation. Note that the fi are functions of the material parameters ρ, E,
and ν.

The only two parameters we estimate are ρ and E because ν is a well-documented
parameter that does not usually deviate from the listed values. In order to estimate ρ
and E, we formulate an optimization problem

min
ρ,E

f(ρ,E) =
n∑
i=1

∣∣∣∣1− fi(ρ,E)
mi

∣∣∣∣ .
We opt for the relative deviation measure

∣∣∣1− fi
mi

∣∣∣ instead of an absolute deviation
measure like |fi −mi| because it better corresponds to the sensitivity of human hearing.

This optimization problem suffers from the same numerical instability addressed in
Section 4.4, i.e., the objective function contains small bumps due to the approximate
eigenproblem solutions. Tuning the parameters DiffMinChange and DiffMaxChange
does not work well with this formulation because the two variables ρ and E have greatly
different magnitudes. Therefore, we scale the parameters in the following way. Let ρ0 and
E0 denote the initial material property values from the data sheets. Then we introduce
the dimensionless optimization parameters θρ and θE to denote the relative deviation
of the incumbent solution from ρ0 and E0. Using these parameters, the optimization
problem turns into

min
θρ,θE

f̂(θρ, θE) =
n∑
i=1

∣∣∣∣1− fi(θρρ0, θEE0)
mi

∣∣∣∣ . (5.1)

We constrain both parameters θρ and θE to the range [0.8, 1.2] because we do not
expect a deviation of more than 20% from the listed material parameters. Setting
DiffMinChange to 10−4 and DiffMaxChange to 10−2 achieves robust optimization.

5.1.3 Aluminium Plate Benchmark

In order to assess the accuracy of the four finite element models discussed in Section 4.3,
we use rectangular aluminium plates as benchmarks. The plates have been cut from a
large aluminium plate with a thickness of 1.5 mm using a bandsaw. The listed material
parameters for the aluminium plate are summarized in Table 5.2 in the column “Listed”.
The dimensions of the individual plates have been determined with a vernier scale to a
precision of 0.1 mm and are summarized in Table 5.1.

For each of the differently sized plates, we define finite element meshes for the different
element types. The basis for each mesh is a regular grid subdivision of the plate surface,
such that every grid cell is approximately 3 by 3 mm wide. For example, for plate 2,
which is 110.3 by 20.35 mm, this yields a 37-by-7 element grid. Every grid cell is split
along the diagonal to yield a triangulation and extruded along the normal to achieve a
height of 1.5 mm.

These steps yield a set of triangular prisms, which serve as the domains for wedge
elements. For the finite element models using linear tetrahedral elements and quadratic
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Plate ID Length Width Height
0 50.75 20.35 1.5
1 81.15 20.25 1.5
2 110.3 20.35 1.5
3 121.6 20.35 1.5
4 150.7 20.3 1.5
5 181 20.3 1.5

Table 5.1: This table summarizes the dimensions of the rectangular aluminium plates
used to benchmark the finite element models. All measurements are in millimeters.

Parameter Aluminium
Listed Optimized

Density ρ [kg/m3] 2710 2774
Young’s Modulus E [GPa] 68.0 66.4

Poisson’s ratio ν 0.33 0.33

Table 5.2: Material properties for aluminium. The column “Listed” lists the parameters
obtained from a data sheet, the column “Optimized” lists the parameters after parameter
estimation.

tetrahedral elements, the triangular prisms are further subdivided into tetrahedra as
described in Section 4.3.1. To use the thin-shell model, we use triangles along the
mid-surface of the plate as element domains.

The natural frequencies computed with the four different finite element models can
be found in Table 5.3 for plates 0 and 1, in Table 5.4 for plates 2 and 3, and in Table 5.5
for plates 4 and 5. These results have been obtained using the tabulated material
parameters. The effects of using estimated material parameters are discussed further
below. Additionally, these tables list the frequencies that have been experimentally
determined by recording the impact sounds and performing the peak fitting method
outlined above. The assignment of experimentally determined frequencies to the modes
of the FE model was performed manually. The measured frequency field is left blank if
the corresponding mode could not be observed in the sound samples, or if the assignment
was ambiguous.

The cell colors reflect the relative error between the measured frequency and the
frequency predicted by the finite element model. The color key is green for a deviation
of 0%, yellow for a deviation of 3%, and red for a deviation of 6% or more.

It is immediately evident that the wedge model (W) yields the best results with
almost every frequency below an error of 2.5%. The quadratic tetrahedral model (QT)
yields similar results for low frequencies but slightly worse results for higher frequencies.
The thin-shell model (TS) performs significantly worse for high frequencies with errors
as high as 5%. For low frequencies however, TS yields results that are as good as W and
QT. The results produced by the linear tetrahedral model (LT) are completely unusable,
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with errors of up to 200%, and the LT model will therefore not be considered any further.
The histograms and empirical cumulative distribution functions (CDF) of the relative
frequency deviations for the models W, QT, and TS are plotted in Fig. 5.4. The plot
reveals that the median error is 1.7% for the W model, 2.1% for the QT model, and 3.0%
for the TS model.

In the next step, we apply the parameter estimation procedure to the first six
modes of the W model. The optimized parameter values are listed in Table 5.2. The
density and the Young’s Modulus are adjusted by about 2.4% through the estimation
procedure. Tables 5.6, 5.7, and 5.8 list the frequencies obtained with the optimized
material parameters. It can be observed that the errors have been drastically reduced for
the W, QT, and TS models, although only the W model has been used during parameter
estimation. The empirical CDFs of the frequency deviations with the optimized parameters
are plotted in Fig. 5.5. The median errors have been reduced to 0.7% for the W model,
0.5% for the QT model, and 0.9% for the TS model. From the tables we can see that
mode 9 for plate 1, mode 8 for plate 2, modes 8 and 15 for plate 3, and mode 7 for plate
4 are outliers in that the prediction is significantly worse than for the neighboring modes.
This is only true for model W and QT however; model TS does not show any outliers.

Fig. 5.6 shows the first 24 natural mode shapes of plate 3. Modes 8 and 15 represent
in-plane vibrations of the plate, and those are exactly the two outliers for Table 5.7.
Mode 3 is the lowest-frequency torsional mode and is not observed in our sound sample.
The reason is that the plates are suspended by two loops of yarn at their endpoints,
which is exactly where the mode shape has its maximum displacements.

The spectrogram of a sound sample for plate 3, from which the user selects the
approximate locations of frequency peaks, is plotted in Fig. 5.1. The peaks extend far
along the time axis, which means that the aluminium plate has low damping factors,
especially for low-frequency modes. Because the aluminium plate produces a clear ringing
sound, the natural modes are clearly separated from the background.

We draw two main conclusions from the results of the aluminium plate benchmark.
Firstly, if the material parameters are chosen accordingly, the wedge model, the quadratic
tetrahedral model, and the thin-shell model all yield pitch frequency predictions with a
maximum error of 1.6%. This is a sizeable improvement on previous work [UMI10], in
which the authors report that their fabricated flat plates have a relative frequency error
of up to 6% with respect to the finite element solution before manually correcting the
plates by filing corners and edges.

Secondly, comparing Figs. 5.4 and 5.5, we observe that the wedge model is influenced
the least by the difference between the listed and the estimated parameter values, even
though the wedge model itself was used to estimate the parameters. Since our fabrication
method is crude, it is likely that we introduce defects into the material, e.g., slag from
the melting furnace, grains of sand from the molds, or air bubbles, and therefore the
wedge model might be preferable. This model has the added benefit that the triangular
prismatic element domains emerge naturally from the offset-surface representation of the
solid.
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Figure 5.4: Histogram and empirical CDF of the relative deviations between the measured
frequencies and the finite element model frequencies with the listed material parameters.
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Figure 5.5: Histogram and empirical CDF of the relative deviations between the mea-
sured frequencies and the finite element model frequencies with the optimized material
parameters.
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Figure 5.6: The first 24 mode shapes of aluminium plate 3.
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Mode No. Plate 0 Plate 1
M W QT TS LT M W QT TS LT

1 2987 3008 3012 3021 8296 1152 1176 1176 1178 3279
2 - 4481 4499 4580 13120 - 2782 2792 2841 8021
3 8260 8332 8361 8351 21723 3191 3257 3262 3287 8885
4 - 9627 9686 9971 x - 5773 5800 5919 13791
5 15820 16087 16211 16416 x 6271 6407 6428 6461 16422
6 15977 16144 16290 16660 x 9007 9159 9216 9390 17020
7 19472 19499 19612 19741 x 10362 10600 10655 10481 x
8 20798 20959 21110 21398 x 12850 13107 13211 13504 x
9 x x x x x 13515 13301 13300 13801 x
10 x x x x x 15400 15762 15880 16053 x
11 x x x x x 17358 17757 17937 18351 x
12 x x x x x 19344 19572 19668 19653 x
13 x x x x x 19676 19952 20063 20096 x
14 x x x x x x x x 21255 x
15 x x x x x x x x x x
16 x x x x x x x x x x
17 x x x x x x x x x x
18 x x x x x x x x x x
19 x x x x x x x x x x
20 x x x x x x x x x x
21 x x x x x x x x x x
22 x x x x x x x x x x
23 x x x x x x x x x x
24 x x x x x x x x x x

% deviation between M and FE model
0 1 2 3 4 5 6

Table 5.3: This table displays the natural frequencies determined by the different finite element models for the rectangular
aluminium plates with IDs 0 and 1 using listed parameter values without parameter estimation. All frequencies are in Hz.
Frequencies outside the range 20–20,000 Hz are marked with an ‘x’. M = Measured frequencies, W = Wedge elements, QT =
Quadratic tetrahedral elements, TS = Thin-shell elements, LT = Linear tetrahedral elements.
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Mode No. Plate 2 Plate 3
M W QT TS LT M W QT TS LT

1 624 636 636 637 1810 517 523 523 524 1487
2 1725 1760 1761 1766 4943 1426 1447 1448 1453 4069
3 - 2027 2034 2069 5917 - 1836 1843 1875 5351
4 3391 3463 3469 3482 8063 2805 2847 2851 2860 6749
5 4088 4148 4165 4238 9573 3697 3745 3760 3823 7900
6 5621 5741 5760 5834 11997 4651 4721 4733 4796 10818
7 6350 6449 6482 6595 15582 5715 5793 5820 5917 12905
8 7876 7750 7749 8036 18403 6590 6483 6483 6720 16295
9 8401 8591 8631 8693 19102 6955 7067 7095 7146 16531
10 8855 9005 9062 9224 x 7920 8038 8085 8223 18988
11 11719 11883 11974 12189 x 9714 9879 9933 10005 20570
12 - 11997 12074 12189 x 10360 10533 10608 10775 x
13 14799 15139 15281 15555 x 12918 13144 13235 13375 x
14 15560 15918 16049 16241 x 13082 13324 13435 13688 x
15 18363 18450 18447 18980 x 15980 15721 15723 15687 x
16 19005 18818 19032 19394 x 16133 16447 16616 16888 x
17 19220 19379 19472 19614 x 16537 16806 16951 18371 x
18 - 19386 19517 19705 x 19241 19256 19371 19575 x
19 20400 20820 21022 20840 x 19705 19722 19835 20286 x
20 20780 21038 21177 21495 x - 19932 20174 20286 x
21 x x x x x 20305 20452 20583 20600 x
22 x x x x x - 20570 20595 21104 x
23 x x x x x 21292 21526 21726 x x
24 x x x x x x x x x x

% deviation between M and FE model
0 1 2 3 4 5 6

Table 5.4: This table displays the natural frequencies determined by the different finite element models for the rectangular
aluminium plates with IDs 2 and 3 using listed parameter values without parameter estimation. All frequencies are in Hz.
Frequencies outside the range 20–20,000 Hz are marked with an ‘x’. M = Measured frequencies, W = Wedge elements, QT =
Quadratic tetrahedral elements, TS = Thin-shell elements, LT = Linear tetrahedral elements.
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Mode No. Plate 4 Plate 5
M W QT TS LT M W QT TS LT

1 335 340 340 341 969 232 236 236 236 674
2 926 941 941 941 2657 640 652 652 654 1851
3 1470 1482 1487 1514 4306 - 1233 1237 1258 3190
4 1820 1850 1852 1858 4519 1253 1280 1282 1284 3546
5 - 3004 3016 3075 5182 2078 2122 2125 2128 3661
6 3017 3067 3073 3075 8389 - 2489 2498 2541 5923
7 4393 4334 4334 4490 8794 - 3057 3057 3167 7242
8 4520 4594 4606 4631 11309 3106 3179 3185 3195 8182
9 - 4604 4624 4704 12444 3723 3792 3807 3873 8783
10 6319 6316 6348 6457 13327 4351 4450 4462 4488 10973
11 - 6429 6453 6513 16604 5062 5164 5188 5275 12158
12 8053 8171 8219 8363 17127 5805 5935 5956 5987 13830
13 8417 8570 8611 8667 18142 6487 6623 6657 6770 14712
14 10031 10194 10265 10471 19876 7459 7632 7666 7626 14835
15 10808 10886 10884 10898 x - 7861 7860 8086 16019
16 - 11011 11077 11336 x 8027 8187 8235 8375 18865
17 12190 12411 12510 12736 x 9317 9541 9592 9659 20333
18 13487 13743 13845 13951 x 9642 9871 9937 10106 x
19 14552 14840 14977 15247 x 11371 11656 11734 11451 x
20 - 16605 16606 15922 x - 11688 11780 11955 x
21 - 16737 16882 16658 x 13306 13653 13771 13878 x
22 17130 17501 17685 17959 x 13642 13829 13831 14007 x
23 - 19188 19189 19765 x - 13973 14082 14223 x
24 - 19283 19393 19765 x 14080 14174 14167 14696 x

% deviation between M and FE model
0 1 2 3 4 5 6

Table 5.5: This table displays the natural frequencies determined by the different finite element models for the rectangular
aluminium plates with IDs 4 and 5 using listed parameter values without parameter estimation. All frequencies are in Hz.
Frequencies outside the range 20–20,000 Hz are marked with an ‘x’. M = Measured frequencies, W = Wedge elements, QT =
Quadratic tetrahedral elements, TS = Thin-shell elements, LT = Linear tetrahedral elements.

77



Mode No. Plate 0 Plate 1
M W QT TS LT M W QT TS LT

1 2987 2939 2942 2950 8103 1152 1148 1149 1150 3203
2 - 4377 4395 4474 12815 - 2718 2727 2776 7834
3 8260 8136 8168 8335 21218 3191 3181 3186 3194 8679
4 - 9400 9462 9655 x - 5639 5665 5765 13470
5 15820 15712 15836 15973 x 6271 6258 6278 6316 16040
6 15977 15775 15910 16226 x 9007 8946 9001 9165 16624
7 19472 19087 19156 19351 x 10362 10351 10408 10506 x
8 20798 20469 20615 20912 x 12850 12803 12906 13158 x
9 x x x x x 13515 12990 12992 13451 x
10 x x x x x 15400 15394 15510 15696 x
11 x x x x x 17358 17341 17520 17864 x
12 x x x x x 19344 19098 19216 19455 x
13 x x x x x 19676 19459 19599 20024 x
14 x x x x x - 21904 x x x
15 x x x x x x x x x x
16 x x x x x x x x x x
17 x x x x x x x x x x
18 x x x x x x x x x x
19 x x x x x x x x x x
20 x x x x x x x x x x
21 x x x x x x x x x x
22 x x x x x x x x x x
23 x x x x x x x x x x
24 x x x x x x x x x x

% deviation between M and FE model
0 1 2 3 4 5 6

Table 5.6: This table displays the natural frequencies determined by the different finite element models for the rectangular
aluminium plates with IDs 0 and 1 using estimated parameter values. All frequencies are in Hz. Frequencies outside the
range 20–20,000 Hz are marked with an ‘x’. M = Measured frequencies, W = Wedge elements, QT = Quadratic tetrahedral
elements, TS = Thin-shell elements, LT = Linear tetrahedral elements.
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Mode No. Plate 2 Plate 3
M W QT TS LT M W QT TS LT

1 624 621 621 622 1768 517 511 511 511 1453
2 1725 1719 1720 1717 4828 1426 1413 1414 1418 3974
3 - 1980 1987 2021 5780 - 1794 1800 1831 5226
4 3391 3382 3389 3401 7875 2805 2780 2785 2794 6592
5 4088 4052 4068 4140 9350 3697 3658 3672 3737 7716
6 5621 5608 5626 5721 11718 4651 4611 4623 4643 10566
7 6350 6299 6331 6440 15219 5715 5658 5685 5784 12605
8 7876 7569 7569 7848 17975 6590 6332 6331 6563 15916
9 8401 8392 8431 8495 18658 6955 6902 6931 6976 16147
10 8855 8795 8851 9009 x 7920 7852 7896 8038 18546
11 11719 11607 11696 11894 x 9714 9647 9702 9705 20091
12 - 11722 11794 12073 x 10360 10288 10361 10535 x
13 14799 14790 14928 15231 x 12918 12834 12925 13053 x
14 15560 15544 15676 15877 x 13082 13014 13122 13362 x
15 18363 18022 18020 18294 x 15980 15357 15356 16209 x
16 19005 18380 18590 18941 x 16133 16064 16224 16209 x
17 19220 18932 19014 19256 x 16537 16412 16566 16511 x
18 - 18943 19063 19587 x 19241 18809 18910 19143 x
19 20400 20329 20527 21056 x 19705 19265 19371 19545 x
20 20780 20554 20684 21056 x - 19465 19683 20083 x
21 x x x x x 20305 19976 20087 20306 x
22 x x x x x - 20093 20114 20306 x
23 x x x x x 21292 21026 21222 21510 x
24 x x x x x - 21951 x x x

% deviation between M and FE model
0 1 2 3 4 5 6

Table 5.7: This table displays the natural frequencies determined by the different finite element models for the rectangular
aluminium plates with IDs 2 and 3 using estimated parameter values. All frequencies are in Hz. Frequencies outside the
range 20–20,000 Hz are marked with an ‘x’. M = Measured frequencies, W = Wedge elements, QT = Quadratic tetrahedral
elements, TS = Thin-shell elements, LT = Linear tetrahedral elements.
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Mode No. Plate 4 Plate 5
M W QT TS LT M W QT TS LT

1 335 332 333 333 946 232 230 230 231 658
2 926 919 919 921 2596 640 636 637 637 1808
3 1470 1448 1453 1477 4206 - 1204 1208 1229 3116
4 1820 1807 1809 1813 4414 1253 1251 1252 1254 3463
5 - 2935 2945 3000 5062 2078 2073 2077 2074 3575
6 3017 2996 3001 3014 8194 - 2431 2439 2481 5786
7 4393 4233 4233 4386 8589 - 2986 2984 3093 7074
8 4520 4487 4499 4518 11046 3106 3105 3111 3122 7992
9 - 4497 4517 4593 12154 3723 3704 3722 3783 8579
10 6319 6169 6200 6303 13017 4351 4346 4361 4334 10718
11 - 6279 6303 6368 16218 5062 5043 5066 5153 11875
12 8053 7980 8028 8181 16728 5805 5797 5832 5850 13508
13 8417 8370 8410 8468 17720 6487 6469 6498 6615 14370
14 10031 9957 10025 10219 19413 7459 7455 7480 7532 14490
15 10808 10631 10631 10916 21807 - 7679 7656 7965 15646
16 - 10754 10820 11025 x 8027 7996 8008 8179 18426
17 12190 12122 12219 12417 x 9317 9318 9371 9443 19860
18 13487 13423 13523 13637 x 9642 9641 9669 9871 21641
19 14552 14495 14629 14941 x 11371 11385 11470 11354 x
20 - 16220 16219 16237 x - 11416 11522 11711 x
21 - 16347 16490 16574 x 13306 13336 13489 13513 x
22 17130 17094 17274 17531 x 13642 13507 13489 13694 x
23 - 18742 18743 19288 x - 13650 13721 13903 x
24 - 18836 18948 19288 x 14080 13844 13806 14316 x

% deviation between M and FE model
0 1 2 3 4 5 6

Table 5.8: This table displays the natural frequencies determined by the different finite element models for the rectangular
aluminium plates with IDs 4 and 5 using estimated parameter values. All frequencies are in Hz. Frequencies outside the
range 20–20,000 Hz are marked with an ‘x’. M = Measured frequencies, W = Wedge elements, QT = Quadratic tetrahedral
elements, TS = Thin-shell elements, LT = Linear tetrahedral elements.
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5.2 Results

In order to optimize and produce an instrument, it is important to choose a suitable
material and fabrication method. In the family of modern struck idiophones, we encounter
a large variety of different materials: Wood, especially rosewood and padauk, has
traditionally been used to produce marimbas and xylophones. A modern trend is to use
synthetic fiberglass or fiberglass-reinforced plastics instead. A different class of idiophones
is that of metallophones. Common materials are steel, which is used for glockenspiels
triangles, and steel drums; brass, which is used for tubular bells; aluminium, for the
bell lyra; and bronze, for instruments such as the Gamelan, cymbals, tam-tams, and
bells [FR98].

The difficulty in making metallic instruments is that the material must be able to be
cast into a complex shape and, at the same time, be hard enough to emit pleasant sounds.
Additional criteria are durability, attractive appearance, availability, and inexpensiveness.
This is why the choice of materials for instruments was very limited up until the eighteenth
century. Instruments older than that were usually produced from native metals such as
gold, silver, and meteoritic iron. Other materials include lead, tin, zinc, and copper.

Our first experiment in fabricating an instrument was to 3d-print circular plates from
PLA, polylactic acid, the plastic used by our FDM printer. However, recording sound
samples and analyzing the spectrogram revealed that the material is too soft and damping
to exhibit an intelligible pitch. Another difficulty with this material is the microstructure
introduced by the FDM printing process: Young’s modulus has a dependence on the
direction of the material paths, which makes it difficult to apply an isotropic constitutive
model.

An important factor for our choice of material is quick prototyping, i.e., short
production cycles from an optimized 3d model to the finished physical artifact. Common
metals such as brass, steel, and aluminium are difficult to process for hobbyists because
they have melting points of 600◦C and above. This leaves us with tin and lead, which melt
at 230◦C and 330◦C respectively. Out of those two, tin is a better choice for us because
its Young’s modulus of 50 GPa is significantly higher than the Young’s modulus of lead,
which is 16 GPa. This makes for a harder material with better sound characteristics.

In the remainder of this chapter, we describe the production process of two differently
shaped bells and compare the measured pitch to the computational solution. The first
bell consists of a hemiellipsoidal shell and is therefore similar to the design of temple
bells. This smooth geometry enables a clear ringing sound with low damping and is
easy to analyze because of its low curvature. Therefore, it is a good candidate to test
per-vertex-normal parametrization. In the second experiment, we determine how well our
pipeline can work with a more complex shape. We design a bell in the shape of a thin-
shelled rabbit that has regions of high curvature as well as a geometrically smooth region
that acts as a resonator. Due to the high curvatures, per-vertex-normal parametrization
is not applicable, and we use skeleton parametrization instead.

Additionally, we describe an application of manifold harmonics parametrization to the
optimization of harmonic ratios in a marimba bar. This result is purely computational,
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and no physical prototype has been fabricated.

5.2.1 Hemiellipsoid Bell

In the manufacturing process, we liquify the tin in a small melting furnace and pour it
into a mold to give it a complex shape. The mold must be able to resist the temperature
of the molten tin, and therefore it cannot be 3d-printed from PLA directly. For simple
shapes, we use oiled molding sand to create the molds. This requires a positive of the 3d
object, which we can produce with an FDM printer.

The whole production process is documented in Figs. 5.7 and 5.8. To start with, the
positive is placed in a plastic frame with the circular edge down, brushed with separation
powder to keep the sand from sticking, and covered with molding sand, layer by layer.
Each layer is compressed manually with a wooden block before proceeding with the next
layer. Once the frame has been filled up with sand, the upper half of the sand mold is
finished. The block of sand, including the positive, is then turned over, and the bottom
surface is brushed with separation powder to keep the two sand blocks from sticking
together. A second plastic frame is fixed to the first by inserting metal rods into the
dedicated holes, and the process of layering and compressing sand is repeated. The two
halves can then be separated, and the model is removed. The upper half of the negative
is equipped with a feed opening in the middle for the molten tin, and small holes through
which the air can escape. Finally, the two halves are joined back together to form the
finished mold. Alignment is ensured by reinserting the metal rods that keep the two
plastic frames together.

Tin is melted in a melting furnace and poured into the feed opening. As soon as the
tin rises through the feed opening and the airholes, the mold is completely filled. After a
cooling period of ten minutes, the sand mold can be destroyed to recover the tin model.
The appendages resulting from the feed opening and the airholes have to be sawed off.
Any inaccuracies can be corrected by filing off bits of the model.

For the production of our first bell, we chose a hemiellipsoidal shape. For this smooth,
low-curvature shape, it suffices to use the naive per-vertex-normal parametrization with
a single optimization parameter, see Section 4.2.2, as illustrated in Fig. 5.9. Although
very large offsets can lead to self-intersections, it is easy to set a global upper bound on
the offset magnitudes to avoid cases like in the rightmost figure.

Parameter Tin #1
Density ρ [kg/m3] 7280

Young’s Modulus E [GPa] 49.9
Poisson’s ratio ν 0.36

Table 5.9: Material properties for the tin used for the hemiellipsoidal bell.

The outer surface of the bell has a height of 6 cm, a base width of about 5.3 cm, and
the mesh consists of 341 vertices and 640 faces. The raw tin bars we use for production
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(a) After the upper half is finished, we begin to make the lower half. (b) A layer of the lower half is being compressed.

(c) The upper half is equipped with a feed opening. (d) Molten tin is poured into the mold.

Figure 5.7: Production of a tin model with oiled molding sand.
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(a) The mold is destroyed to recover the object. (b) The tin appendages are sawed off.

(c) The positive and the finished model side by side. (d) The suspended bell, ready to record sound samples.

Figure 5.8: Finishing the tin bell and recording sound samples. 84



Figure 5.9: Offset surfaces of a hemiellipsoid using per-vertex normals, cross-sectional
view. Offset magnitudes increase from left to right. The right image illustrates that
self-intersections can occur if the offset magnitude exceeds the curvature radius.

are of Sn99.9 purity grade, and the material parameters obtained from a data sheet are
listed in Table 5.9.

For this bell, we use the thin-shell finite element model for the calculation of the
pitch for two reasons. Firstly, thin-shell elements are well suited to this shape because
the angles between adjacent elements are small, making the shape approximately flat
locally. Secondly, we experience shorter run-times using the thin-shell model due to the
small size of the finite element matrices and the faster solution to the eigenproblem.
As a preliminary, we perform a sweep of the parameter space and find out that a wall
thickness of 2 mm yields a pitch of 1104 Hz (approximately a D[6) and a wall thickness
of 6 mm yields a pitch of 3270 Hz (approximately an A[7). For our bell we aim for a
pitch of 1760 Hz (A6). Using 2 mm as the initial wall thickness parameter value and
setting DiffMinChange to 2 ·10−5, the non-linear optimization routine finds an optimal
solution of 3.2 mm after 25 seconds.

We manufacture a physical copy of the bell as described above and experimentally
determine the frequency spectrum. Table 5.10 shows the measured frequencies and the
corresponding frequencies obtained with the thin-shell finite element model. Note that
the solution predicted by the thin-shell model is 1761 instead of 1760 due to numerical
issues in the evaluation of the objective function, as discussed in Section 4.4. Additionally,
the table shows the finite element results using wedge and quadratic tetrahedral elements
for the same bell geometry. The reason we show the results for these models as well is
because it allows us to estimate how much of the error between the measured and the
computed frequencies is due to the production method, and how much is due to the
error of the finite element model. Note that the frequencies appear with a multiplicity
of two because the triangle mesh used to represent the bell is almost, but not entirely,
symmetric.

The measured pitch of the bell is 1809 Hz, which has a relative error of 2.8% w.r.t. the
desired pitch of 1760 Hz. The error is larger than what was achieved for the aluminium
plates, see Section 5.1. It is impossible to separate the error of the finite element model
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Mode No. Hemiellipsoid Bell
M TS W QT

1 1809 1761 1736 1744
2 1809 1762 1736 1744
3 4950 4804 4689 4723
4 4950 4830 4689 4723
5 8666 9031 8672 8754
6 8666 9164 8675 8760
7 9097 9283 9161 9169
8 9097 9295 9164 9173
9 10460 10899 10573 10639
10 10460 10899 10594 10641
11 12112 12462 12503 12488
12 12112 12462 12552 12507

% deviation between M and FE model
0 1 2 3 4 5 6

Table 5.10: This table displays the first twelve natural frequencies determined by the
different finite element models for the hemiellipsoidal bell. All frequencies are in Hz. M =
Measured frequencies, TS = Thin-shell elements, W = wedge elements, QT = quadratic
tetrahedral elements.

and the error due to the production process in a definite way. However, we observe that
the deviation among the pitches as predicted by the different finite element models is
less than 1.5%. Therefore, it is reasonable to assume that no more than half of the total
error of 2.8% is due to the finite element approximation. If the actual wall thickness of
the fabricated bell deviates by as little as 0.1 mm from the desired wall thickness of 3.2
mm, the resulting pitch will deviate from the desired pitch by more than 3%. It is likely
that an error of this magnitude was introduced when creating the sand molds. Therefore,
the error of 2.8% can also be attributed to the fabrication process. Additionally, the
available material parameters for Sn99.9 may deviate from the real parameters. For the
batch of tin that we used, we cannot perform parameter optimization, because the whole
batch was used up in the production of the bell.

5.2.2 Rabbit Bell

In this section we explore the fabrication of a bell with a shape that is more complex
than a hemiellipsoid. We use the rabbit mesh shown in Fig. 5.10a as the outer surface.
The mesh has 4,300 vertices and 8,482 faces and is thus more finely resolved than the
mesh for the hemiellipsoid bell.

For this object, the naive offsetting approach along the per-vertex normals does
not work anymore because it produces overfolds even for small offset magnitudes, as
illustrated in Fig. 5.11 with a 2d example. To counter this behavior, we use the skeleton
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(a) (b) (c)

Figure 5.10: The triangle mesh used for the rabbit bell. (a) Outer surface. (b) Transparent
outer surface and meso-skeleton. (c) Outer surface and optimized inner surface.

parametrization with a single optimization parameter as introduced in Section 4.2.3.
In a preprocessing step, the rabbit mesh is contracted to form a meso-skeleton, i.e., a
structure consisting of 1d path segments and 2d surface sheets, see Fig. 5.10b. The right
image in Fig. 5.12 illustrates the effect of using the skeleton on large offset magnitudes.
The offset magnitude at vertices in high-curvature regions is clamped so as to not go
beyond the skeleton.

Choosing a thickness parameter of 2 mm yields a pitch frequency of 2210 Hz (approx-
imately D[7), and 6 mm yields 5450 Hz (approximately G8). We optimize the rabbit
bell for the tone E7, which equals a pitch of 2637 Hz. After eight minutes, the non-linear
optimization routine finds an optimal thickness parameter of 2.48 mm using the wedge
finite element model. We do not use the thin-shell model for this mesh because the
high-curvature regions around the ears of the rabbit are better captured using continuous
rather than structural elements. Additionally, the evaluation of the wedge model yields
shorter run-times due to the faster construction of the finite element matrices. The
corresponding outer and inner surfaces are illustrated in Fig. 5.10c.

Producing the rabbit bell with sand molds is not possible because both the outer
and the inner surface cannot be represented as a height field. This means that the
plastic rabbit model could not be removed from the molds after the sand has been
compressed because it would rip out chunks of sand. We opt to use silicon caoutchouc,
or natural rubber, instead because it is flexible enough to remove from the plastic shell.
The manufacturing process is illustrated in Figs. 5.13 and 5.14. We design a three-part
caoutchouc mold for the rabbit model, one inner mold and a two-part outer mold. For
each of the outer mold parts, we design a single plastic mold. For the inner caoutchouc
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Figure 5.11: Offset surfaces of the rabbit mesh using per-vertex normals, cross-sectional
view. Offset magnitudes increase from left to right. The center image illustrates that
even for moderate offset magnitudes, self-intersections occur in high-curvature regions
like the ears and the feet.

Figure 5.12: Offset surfaces of a rabbit mesh using the skeleton parameterization, cross-
sectional view. Offset magnitudes increase from left to right. The right image illustrates
that self-intersections are avoided even for high offset magnitudes. This is achieved by
limiting the offset vectors to never cross the skeleton.
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mold, we use a two-part plastic mold. All four plastic molds are produced from PLA
with an FDM printer.

The plastic molds are first brushed with petroleum jelly to keep the caoutchouc from
sticking. The liquid caoutchouc is then mixed with a cross-linking agent. This agent
links the polymer chains in the caoutchouc and completely solidifies it after several hours.
We brush the plastic molds with a layer of caoutchouc before filling them completely
in order to avoid air bubbles. After the caoutchouc molds have solidified, they can be
removed from their plastic shells and assembled.

Once again, tin is melted in the melting furnace and poured into the mold. After
ten minutes, we remove the outer parts of the mold. The inner part of mold has to be
destroyed in order to remove it because it is too stiff to pull out in one piece.

A new batch of tin from a different producer was used in the production of the rabbit
bell. There is no reliable data sheet available to us, but this batch of tin is also labeled
“pure tin” like the one used for the hemiellipsoid bell. However, this second batch feels
significantly softer and produces the typical crackling sound known as the tin cry when
deformed. To optimize the rabbit bell, we use the same material parameters as for the
hemiellipsoid bell, see the “Listed” column in Table 5.11.

Parameter Tin #2
Listed Estimated

Density ρ [kg/m3] 7280 7419
Young’s Modulus E [GPa] 49.9 46.2

Poisson’s ratio ν 0.36 0.36

Table 5.11: Material properties for tin used for the rabbit bell.

The measured frequencies are listed in Table 5.12, and this time we observe a
significantly higher error in the prediction of the pitch. The experimentally determined
pitch has a frequency of 2369 Hz (approximately the note D7), which deviates from
the desired E7 by a whole tone, or 11%. In order to explain this large deviation, we
produce two rectangular thin plates out of tin for material parameter estimation. The
thin plates are produced by making sand molds from the aluminium plates 1 and 2 used
in Section 5.1.3, and casting them in tin.

The tin plates have visible manufacturing flaws where the feed opening and airholes
appendages have been sawed and rasped off. Therefore we cannot expect results as good
as for the aluminium plates. The experimentally determined frequencies and the finite
element prediction for the listed material parameters are documented in Table 5.13. Note
that the color key reflects a larger range in frequency deviation, namely green for 0%,
yellow for 6%, and red for 12%. The material parameters after running the estimation
procedure are listed in the “Estimated” column in Table 5.11. Evaluating the finite
elements model again with the estimated parameters yields the frequencies listed in
Table 5.14. It is evident that the frequencies for the short tin plate are now captured
adequately, while the frequencies for the long tin plate are still far off.
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(a) The plastic molds for the caoutchouc molds. (b) Brushing plastic molds with caoutchouc.

(c) Pouring caoutchouc into the molds. (d) One part of the caoutchouc mold.

Figure 5.13: Production of the rabbit bell with caoutchouc molds.
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(a) Closing the three-part caoutchouc mold. (b) The tin rabbit after removing the outer molds.

(c) Removing the inner caoutchouc mold. (d) The finished rabbit model.

Figure 5.14: Finishing the rabbit bell.

91



Mode No. Listed Parameters Estimated Parameters
M W QT TS M W QT TS

1 2369 2637 2647 2706 2369 2513 2522 2573
2 2491 2756 2770 2830 2491 2628 2639 2699
3 2797 4323 4338 4238 2797 4120 4134 4026
4 3545 4941 4956 4850 3545 4708 4722 4618
5 4742 5256 5277 5242 4742 5010 5028 5024
6 4848 5403 5429 5455 4848 5149 5173 5209
7 4983 6062 6102 6523 4983 5782 5816 6063
8 5409 6414 6447 6790 5409 6113 6143 6442
9 6360 7152 7187 7002 6360 6812 6849 6921
10 6663 7304 7318 7519 6663 6955 6972 6964

% deviation between M and FE model
0 2 4 6 8 10 12

Table 5.12: This table displays the natural frequencies determined by the different finite
element models for the rabbit bell. The evaluation as been performed with the listed
parameter values and with the estimated material parameters. All frequencies are in Hz.
M = Measured frequencies, W = Wedge elements, QT = Quadratic tetrahedral elements,
TS = Thin-shell elements.

The right part of Table 5.12 shows the predicted frequencies for the tin rabbit using
the estimated material parameters. This improves the error in pitch prediction of the
wedge model from 11% to 6%, which is approximately a semitone.

5.2.3 Harmonic Ratio Optimization

In every high-quality instrument, a resonator is not only designed to match a particular
pitch but also to exhibit a harmonic ratio in its overtones. Depending on the instrument,
different harmonic ratios are being used. For example, the torsional modes of a glockenspiel
have the frequency ratios 1:2:3. Carillons, i.e., church bells, are built such that the first
and second mode are one octave apart, the second and third mode are a minor third
apart, the second and fourth mode are a fifth apart, and the second and fifth mode are
an octave apart.

Marimba bars are equipped with an arched carving on the bottom side. This design
serves two functions. Firstly, it increases all frequencies in the mode spectrum, and thus
reduces the length of bar necessary to reach low notes. Secondly, it allows tuning the
overtones of the bar, most importantly a ratio of 1:4 between the first and the second
mode [FR98].

This section demonstrates how the manifold harmonics parametrization can be used
to optimize the shape of a marimba bar w.r.t. two simultaneous goals, namely, to match
the pitch to the desired frequency and to create a 1:4 ratio between the pitch and the first
overtone. As opposed to the two previous sections, the result presented here is purely
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Mode No. Short Tin Plate Long Tin Plate
M W QT TS M W QT TS

1 610 631 632 633 288 337 337 337
2 1461 1462 1467 1484 831 932 934 930
3 1645 1751 1754 1806 - 1062 1066 1085
4 2790 3038 3053 3125 1626 1837 1841 1847
5 3201 3448 3462 3490 2035 2175 2185 2232
6 4492 4833 4866 4898 2682 3048 3059 3038
7 5320 5707 5744 5800 3106 3386 3404 3449
8 6568 6937 6998 7365 3684 4070 4070 4223
9 6868 7090 7092 7486 4005 4563 4588 4637
10 8020 8478 8558 8532 4293 4733 4766 4860
11 8884 9426 9536 9702 5567 6254 6307 6425
12 9655 10396 10461 10335 5719 6374 6422 6540

% deviation between M and FE model
0 2 4 6 8 10 12

Table 5.13: This table displays the natural frequencies determined by the different finite
element models for the rectangular tin plates with the listed material parameters. All
frequencies are in Hz. M = Measured frequencies, W = Wedge elements, QT = Quadratic
tetrahedral elements, TS = Thin-shell elements.

Mode No. Short Tin Plate Long Tin Plate
M W QT TS M W QT TS

1 610 601 602 603 288 321 321 321
2 1461 1393 1398 1423 831 889 890 894
3 1645 1668 1672 1670 - 1012 1016 1033
4 2790 2895 2909 2964 1626 1750 1754 1762
5 3201 3285 3298 3320 2035 2073 2081 2118
6 4492 4605 4636 4730 2682 2904 2915 2914
7 5320 5438 5474 5451 3106 3226 3243 3279
8 6568 6610 6669 6817 3684 3878 3878 4029
9 6868 6756 6756 7012 4005 4348 4372 4403
10 8020 8078 8153 8270 4293 4510 4541 4630
11 8884 8981 9089 9298 5567 5958 6009 6104
12 9655 9906 9966 10090 5719 6074 6120 6230

% deviation between M and FE model
0 2 4 6 8 10 12

Table 5.14: This table displays the natural frequencies determined by the different finite
element models for the rectangular tin plates with the estimated material parameters.
All frequencies are in Hz. M = Measured frequencies, W = Wedge elements, QT =
Quadratic tetrahedral elements, TS = Thin-shell elements.
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Figure 5.15: The influence regions of the first eight eigenfunctions of the Laplacian of
the marimba bar surface. Only the eigenfunctions 1, 3, 5, and 7 are symmetric about the
bisecting plane.

Parameter East Indian Rosewood
Density ρ [kg/m3] 900

Young’s Modulus E [GPa] 11.5
Poisson’s ratio ν 0.33

Table 5.15: Material properties for East Indian Rosewood.

computational, and no physical marimba bar has been produced. We use the wedge
model and the same finite element mesh as for the aluminium plates, i.e., a single layer
of wedge elements obtained by triangulating a regular grid with a cell width of 1 cm. We
aim for a pitch of 523.3 Hz, which is a high C. The marimba bar is represented as the
volume enclosed by a top surface and a bottom surface. The length and width of the bar
are controlled via two optimization parameters w and l. The shape of the top surface is
fixed to be a flat rectangle, but the shape of the bottom surface is allowed to change by
varying the coefficients α of the Laplacian eigenfunctions.

We use a total of four eigenfunctions to modulate the shape of the undercut. Be-
cause we aim for a symmetric undercut, we pick the four lowest-frequency symmetric
eigenfunctions and omit asymmetric ones. Fig. 5.15 illustrates the influence of the first
eight eigenfunctions on the per-vertex-displacement magnitudes, with the symmetric
eigenfunctions highlighted in a red frame. The first eigenfunction is constant and its
coefficient directly controls the thickness of the bar. The coefficients of eigenfunctions 3,
5, and 7 control the shape of the bottom surface. This yields a six-dimensional design
space parametrized by (w, l, α1, α3, α5, α7), where we denote α = (α1, α3, α5, α7). The
parameters α are linearly constrained to respect a minimal and maximal bar thickness
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at every vertex.
The target material is East Indian Rosewood, a common material for the production

of marimba bars, see Table 5.15. For the initial solution to the non-linear optimization
problem, we set l = 44 mm, w = 6.8 mm, and α1 to yield a thickness of 2.9 mm. The
parameters α3, α5, α7 are set to zero. This initial solution yields a pitch frequency of
about 500 Hz. We use the objective function

g(w, l,α) = (f1 − 523.3)2 + (f2
4 − 523.3)2,

where f1 denotes the frequency of the pitch and f2 denotes the frequency of the first
overtone of the incumbent solution. Running the optimization routine for this initial
solution and a few similar initial solutions reveals that g has many local minima. Thus,
this problem cannot be solved with a local optimization strategy alone.

In order to learn more about the nature of the problem, we generate a set of parameter
samples that covers the feasible parameter space of α. First, we roughly estimate a
bounding box of the feasible parameter space as α1 ∈ [0, 1], α3, α5, α7 ∈ [−1, 1]. Then we
construct the first 105 members of the four-dimensional Halton sequence with primes 2,3,5,
and 7. The Halton sequence is a low-discrepancy sequence, i.e., a sequence whose elements
are uniformly distributed and have a quasi-random appearance, which is commonly used
for multi-dimensional Monte Carlo sampling. Of these samples, we only keep the ones
that lie in the actual feasible region of α defined by the minimal and maximal bar
thickness constraints. This leaves us with about 2,000 samples. For those parameter
samples we construct the corresponding marimba bars using the initial values for w and
l and evaluate the finite element model to find the pitch and the first overtone. This
results in a set of 2,000 frequency pairs, only five of which have a harmonic ratio of 1:4
or higher, all with similar parameter values and similarly shaped marimba bars.

We arbitrarily choose one of these five solutions, which has a harmonic ratio of 1:4.11,
as our best guess. Our sampling algorithm had the goal of sampling different harmonic
ratios, but it did not consider pitch. Therefore, we obtain a greatly decreased pitch of 153
Hz instead of the desired pitch of 523.3 Hz, although the width and length of the bar are
the same as in our initial solution. This reduction in pitch is due to the arched undercut
that our current solution possesses. We find that a uniform scaling of all six parameters
w, l, α changes all frequencies proportionally, and therefore keeps the harmonic ratio
constant. The optimal uniform scaling factor that moves the pitch and the overtone close
to the desired values is found by local optimization. This gives us a scaling factor of
0.293 and a solution with a bar length of 12.9 cm, a bar width of 2 cm, a pitch of 522.9
Hz, and a first overtone of 2150 Hz.

Using this as an initial solution for Matlab’s local optimization routine fmincon is
still not good enough to find an optimal solution with a harmonic ratio of 1:4. Therefore
we use the Monte Carlo approach to improve the initial solution again. This time we
sample the close neighborhood of all six optimization parameters w, l, and α. This is
achieved by calculating the first 200 members of the six-dimensional Halton sequence with
primes 2,3,5,7,11, and 13 and scaling them to the range [0.99, 1.01]. A new parameter
sample is generated by multiplying the six parameters of the old initial solution with a
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Figure 5.16: The optimal marimba bar with a harmonic ratio of 1:4.

sample from the Halton sequence, therefore inducing parameter perturbations of up to
1%. Out of these 200 new solutions, the best one serves as the new input to fmincon.
This initial solution is finally good enough to find an optimal solution with a pitch of
523.3 Hz and a first overtone of 2091.5 Hz, which corresponds to a harmonic ratio of
1:3.996. The finalized design, which is illustrated in Fig 5.16, has an arched undercut
that is very similar to the ones found in professional instruments.
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CHAPTER 6
Possible Optimizations

6.1 Overview
This chapter presents computational results that explore a possibility to speed up the
frequency optimization process. In particular, we evaluate the influence of mesh resolution
and mesh smoothness on finite element model analysis.

The most important factor that contributes to the duration of a single iteration in
the non-linear optimization procedure is the complexity of the finite element mesh that
is being evaluated. A finely tessellated mesh and high-order element types lead to a high
number of elements and nodes in the mesh. The number of elements directly corresponds
to the number of element mass matrices and element stiffness matrices that have to be
evaluated. The number of nodes defines the dimensions of the master mass matrix and
the master stiffness matrix. Large master matrices lead to longer run-times for the sparse
eigenproblem solver.

It is evident that an effective way of speeding up computations is to use coarse finite
element meshes. However, the accuracy of the finite element method is highly correlated
with the resolution of the mesh. Therefore, it is desirable to use a mesh resolution
that is just large enough such that further refinement would not improve the solution
significantly. Section 6.2 demonstrates the effects of changes in mesh resolution on the
results of finite element analysis.

An additional concern is the loss of geometric detail that may result from a decrease in
mesh resolution. If a mesh has high-frequency surface details that can only be represented
on a finely tessellated mesh, mesh simplification implicitly performs mesh smoothing
by removing those details. Therefore, it is an interesting question whether the presence
of fine surface details changes the frequency of natural modes significantly. Section 6.3
performs this analysis by artificially smoothing a mesh with fine surface details and
observing that this evokes only small changes in the natural frequencies. The reason
that we do not perform mesh simplification in order to study the influence of reduced
geometric detail is that this would also result in a decrease of the accuracy of the finite
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element model due to the larger size of the elements. If we remove surface details without
changing the resolution of the finite element mesh, we can more easily distinguish between
the two sources of error.

The combination of these two results justifies simplification of meshes for finite element
analysis even if this removes geometric surface details. A mesh simplification routine
could be incorporated into our frequency optimization framework by starting analysis
on a coarse mesh and gradually moving to a finer mesh as the optimization routine
approaches a local optimum to ensure correctness. The actual implementation of this
optimization strategy is outside the scope of this work.

6.2 Mesh-Resolution Benchmarks

The accuracy of finite element solutions depends on three major factors: the order of
individual elements, the degree of distortion of individual elements, and the resolution
of the finite element mesh. The order of an element is the degree of polynomial in the
primary variable, i.e., the displacement u, that can be represented exactly on the element
domain. Linear elements, such as the linear tetrahedral element, are the lowest-order
elements that are commonly used. They can only exactly represent linear functions in u,
and one of their uses is to predict the elongation in a prismatic bar element. Quadratic
elements, such as the wedge element or the quadratic tetrahedral element, are sufficient
for most other scenarios in solid mechanics such as the prediction of bending phenomena.
The degree of distortion refers to the deviation of the shape of an element domain from
its standard domain in natural coordinates. The negative effect of strongly distorted
elements on solution accuracy is explored by Lee and Bathe [LB93].

In this section, we present benchmarks to evaluate the dependence of solution accuracy
on the resolution of the finite element mesh. In particular, we want to analyze at which
mesh resolution the result is sufficiently converged, such that further refinement no longer
improves the solution significantly. One benchmark analyzes the effects of mesh resolution
on a thin rectangular plate and the other on a hemispherical shell. We choose these two
geometries because they can be parametrized easily w.r.t. mesh resolution, and they are
prominent in the design of struck idiophones.

Plate Benchmark. The first benchmark evaluates the natural frequencies of a thin
rectangular plate with the dimensions of plate 2 in Section 5.1. We generate ten regular
grids on the surface of the plate. The coarsest grid has a cell side length of 10 mm, and
the finest grid has a cell side length of 1 mm. This yields 36 cells for the coarsest and 2331
cells for the finest grid. Fig. 6.1 plots the relative deviations of the first twelve natural
frequencies w.r.t. to the result obtained from the most finely resolved mesh with the
respective finite element model. The wedge model and the quadratic tet model behave
similarly in that the deviations in frequency decrease almost monotonically as the grid
resolution is increased, but the wedge model converges slightly faster. E.g., for a cell side
length of 2.8 mm the maximal deviation from the final result is 0.6% in the wedge model
and 1.1% in the quadratic tet model. In general, the changes in frequency are greater
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for higher-frequency modes than for low-frequency modes. The reason is that the mode
shapes for high-frequency modes have steeper stress gradients that cannot be captured
accurately on a low-resolution finite element mesh.

The frequency development for the thin-shell model is much more chaotic than for
the other models. The natural frequencies only start to stabilize at a cell side length of
1.7 mm. This explains the comparatively bad predictive power of the thin-shell model in
the evaluation of the aluminium plates in Section 5.1. However, the wedge and quadratic
tet model only outperform the thin-shell model strongly on a few modes, namely modes
6, 8, and 11. The remaining modes behave stably for cell side lengths of 2.8 mm and
smaller. Most notably the frequency of the pitch itself retains its value on every grid
with a maximal deviation of 0.3%, compared to 0.4% for the wedge model and 0.6% for
the quadratic tet model.

Shell Benchmark. The second benchmark evaluates the natural frequencies of a
hemispherical shell with a radius of 5 cm and a thickness of 4 mm. The shell is
approximated with five triangle meshes at different resolutions. Each mesh is generated
by subdividing an icosahedron and removing the lower half of the mesh. With this
procedure, the triangle edge length is halved for each subsequent mesh, and the number
of elements is quadrupled. The coarsest mesh has edge lengths of 29.1 mm, and the finest
mesh has edge lengths of 1.9 mm. This yields 40 triangles for the coarsest and 10240
triangles for the finest mesh. Once more, convergence behavior is observed by comparing
results to the frequencies computed on the finest mesh.

Fig. 6.2 plots the relative deviations of the first twelve natural frequencies for the
three finite element models. The wedge model and the quadratic tet model show a
behavior similar to the first benchmark. The deviations decrease monotonically, but the
wedge model converges slightly faster. At the 7.5 mm benchmark, the maximal deviation
for the wedge model is 1.2%, and the maximal deviation for the quadratic tet model is
2.0%. The thin-shell model performs significantly worse for all modes except 1 and 2.
Most of the other modes start to converge at the 7.5 mm mark, except for modes 7, 9,
and 12. Comparing the results of the 1.9 mm benchmark for the thin-shell model and
the wedge model reveals that they converge to slightly differently results. The frequency
of the pitch differs by 1.6%, and the frequency of higher modes differs by up to 4.4%.

6.3 Mesh-Smoothness Benchmark

The local optimization routine introduced in Section 4.4, as well as the global optimization
performed in Section 5.2.3, spend most of their computation time on building the element
matrices of the finite element model and performing sparse eigendecomposition. To
compute the master stiffness matrix for the rabbit bell model that was used in Section 5.2.2,
a total of 8478 element stiffness matrices of dimensions 45-by-45 are computed by eight-
point Gauss quadrature. This computation, combined with the evaluation of the mass
matrix, takes 7 seconds on an Intel Core i7-4700HQ CPU using the OpenFEM library.
Every time the optimization routine evaluates the objective function, this computation
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Figure 6.1: Comparison of finite element solutions for different finite element meshes of a
thin rectangular plate.
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Figure 6.2: Comparison of finite element solutions for different finite element meshes of a
hemispherical shell.
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is performed. Since the gradient of the objective function is computed numerically,
the number of objective function evaluations increases drastically with the number of
optimization parameters.

The number of rows and columns of the master stiffness matrix is dictated by the
number of degrees of freedom in the finite element mesh. For the rabbit mesh, the master
stiffness matrix has the dimensions 12852-by-12852. Since the matrix is sparse, we use
Matlab’s function eigs to find the frequencies of the system. This algorithm is linear
in the number of non-zero entries in K and in the number of eigenvalues that have to
be found. Determining the frequency of the pitch alone means finding the seven lowest
eigenvalues because the eigenvalue zero is found six times. This computation takes 11
seconds for the rabbit model.

For smooth geometries, the finite element mesh can be simplified while maintaining
an accurate description of the geometry. If care is exercised when sizing the elements, the
wedge model and the quadratic tet model yield good results with a greatly reduced mesh
resolution, as discussed in Section 6.2. However, geometric information is lost through
mesh simplification if the surface has high-frequency details such as small bumps. In this
case, mesh simplification indirectly performs mesh smoothing.

This section evaluates how mesh smoothing affects the natural frequencies of a thin-
shelled solid. To implement mesh smoothing, we use the spectral technique reviewed by
Lévy et al. [LZ10]. This technique is based on the eigendecomposition

L = QΛQT

of the symmetric Laplacian that was introduced in Section 4.2.4. To define the manifold
harmonics parametrization, we used k eigenvectors corresponding to the k smallest
eigenvalues to parametrize a set of offset vectors. However, Q also provides a suitable
basis to represent the geometry of the underlying mesh itself. Let V = [x|y|z] denote the
n-by-3 matrix that lists the x-, y-, and z-coordinates of the vertices. The vertex positions
can be projected onto the orthonormal basis Q by computing

Ṽ = [x̃|ỹ|z̃] = Q−1V = QTV.

The rows of matrix Ṽ are the coefficients of the individual eigenvectors needed to
reconstruct the vertex positions. For most triangle meshes, the top rows in Ṽ carry the
most important information because they determine the low-frequency characteristics of
the mesh. The coefficients in the bottom rows encode high-frequency surface variations.
By scaling the entries of Ṽ, certain frequency bands can be amplified or damped. For
mesh smoothing purposes, it is useful to leave the low-frequency coefficients as they are
and to decrease or zero out high-frequency coefficients.

Our test mesh is an icosphere with 2,562 vertices and 5,120 faces. We add layers
of sinusoidal noise at different frequencies to the vertex positions, such that the sphere
develops bumps on the surface. Starting from this mesh, we create a series of smoothed
meshes with the spectral method described above. The plots in Fig. 6.3 illustrate how the
the spectral coefficients are damped to achieve different degrees of smoothness. Note that
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the coefficients of the first two eigenvectors are left untouched in order to prevent global
shrinking of the mesh. The remaining coefficients are scaled with the transformation

x̃i,m = x̃i ·
(
n− i
n

)2m1.3

,

where x̃i,m is the x-coefficient of the ith eigenvector for the mesh of smoothness level m.
If m = 0, the coefficients are not changed, and the larger m becomes, the more strongly
the coefficients are damped. The y-, and z-coefficients are scaled analogously.

From each of the ten meshes, a mean-curvature skeleton is computed in order to
create an inner offset surface. The volume between the outer and the inner surface
describes a spherical thin-shelled solid. Fig. 6.4 plots the frequencies of modes one to
twelve for the ten different geometries as calculated by the wedge finite element model.
It is evident that the removal of high-frequency surface details only has a minor influence
on the natural frequencies. The frequency of the pitch for m = 0 deviates only by 3.6%
from the pitch for m = 9. For higher modes, this deviation stays below 6%.

This result shows that it is possible to achieve meaningful results if frequency analysis
is performed on simplified meshes that miss fine surface details. Combined with the
knowledge that good results can be obtained even for coarse finite element meshes, this
may allow shorter computation times even for complex models.
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Figure 6.3: The line plots show the scaling factors of the eigenvector coefficients for
different values of m. The abscissa represents the index of the eigenvector, and the
ordinate the scaling factor between 0 and 1. Below the line plots, the resulting meshes
are illustrated.

m
0 1 2 3 4 5 6 7 8 9

Fr
eq

ue
nc

y 
[H

z]

× 10 4

3

3.5

4

4.5

5

5.5

Mode 1
Mode 2
Mode 3
Mode 4
Mode 5
Mode 6
Mode 7
Mode 8
Mode 9
Mode 10
Mode 11
Mode 12

Figure 6.4: Frequencies of modes one to twelve of the spherical thin-shelled solids. The
abscissa represents the smoothness level m.
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CHAPTER 7
Conclusion

7.1 Synopsis
This thesis explores a new application of shape optimization for the fabrication of physical
artifacts. We combine computational modal analysis with a non-linear optimization
routine in order to synthesize solids with desired sound properties. The main goal is to
optimize the frequency of the pitch, which is the most distinctive property of the sounds
exhibited by a musical instrument.

Our first contribution is a number of suitable shape parametrizations that enable the
description of instrument geometries. Motivated by the observation that many struck
idiophones consist of thin plates, e.g., xylophones and marimbas, and thin shells, e.g.,
bells and cymbals, we choose an offset surface representation. The solid geometry is
defined as the volume delimited by two surfaces, one of which remains fixed, and the
other is displaced along a set of offset vectors to achieve the desired optimization goals.
We provide three parametrizations of the offset vector magnitudes that provide different
levels of control over the instrument shape and different capacities to handle complex
geometries. The simplest parametrization offsets the outer surface along the per-vertex
normals at a distance that is constant across the mesh. This approach can only be applied
to simple, low-curvature shapes like bells because it is liable to produce self-intersections
of the inner surface for more complex geometries. The second parametrization variant
resolves this issue by replacing the per-vertex normals with offset vectors that point in
the direction of a meso-skeleton located at the center of the object. By displacing the
vertices of the outer surface along these offset directions, self-intersections are prevented
for all but very jaggy geometries. Like for the first parametrization, a single parameter is
used to control the offset magnitudes across the mesh, but the magnitudes are limited to
never exceed the distance to the meso-skeleton. The third parametrization introduces an
adjustable number of parameters in order to handle objectives that go beyond optimizing
the frequency of the pitch. This is achieved by representing offset magnitudes as weighted
sums of eigenfunctions of the mesh Laplacian, where the weights serve as optimization
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parameters. An application of this technique is the optimization of harmonic overtone
ratios, which is an important quality criterion of professional instruments.

In order to evaluate the pitch and overtone frequencies of a geometry given as the
volume between two surfaces, we use finite element modal analysis. The choice of element
has a great impact on solution accuracy, and thus we develop different elements and
evaluate their predictive power using a set of thin aluminium plates. We conclude that
linear elements like the linear tetrahedron are not suited to determine natural frequencies
because they cannot represent stress distributions with sufficient accuracy. Instead we opt
for quadratic elements like the quadratic tetrahedron and the 15-node triangular wedge
element because they produce results that are consistent with our measurements. Using
only reference material parameters we achieve a median error of 1.7% with the wedge
model across the first 24 natural frequencies of six aluminium plates. To increase accuracy,
we perform material parameter estimation on a fraction of the measured frequencies.
Using these optimized parameters in the finite element model, we can reduce the median
errors by up to 70%.

We incorporate finite element modal analysis into an optimization routine in order
to synthesize instrument geometries that exhibit the desired pitch. Using the basic
per-vertex-normal parametrization, we optimize a hemiellipsoidal bell to exhibit a pitch
frequency of 1760 Hz. In order to produce it, we build a two-part mold from oiled
molding sand and cast the bell from molten tin. The measured frequency deviates from
the predicted frequency by less than 3%. Our second physical result is a bell in the shape
of a rabbit that is optimized using the skeleton-parametrization method. The resulting
solid has undercuts and can therefore not be produced using sand molds. Instead we opt
for molds from natural rubber, which is flexible enough to describe concave features. For
this bell we experience an initial frequency error of 11%, but through material parameter
estimation we can reduce the error to 6%. The most likely explanation for the remaining
error is that our crude fabrication pipeline introduces manufacturing flaws that distort
the pitch.

The utility of the manifold harmonics parametrization is demonstrated on the example
of a marimba bar. Professional marimba bars are tuned by adding an arched carving
to the bottom in order to achieve the harmonic ratio 1:4 between the pitch and the
first overtone. We compute a bar shape that exhibits the same harmonic ratio through
parametrization of the offset surface using four Laplacian basis functions. To find a good
initial solution, we perform Monte Carlo sampling of the parameter space and finally
compute an optimal solution using Matlab’s non-linear local optimization routine. The
resulting shape reproduces the characteristic design of real marimba bars with a wide
central undercut.

In the last part of the thesis, we explore the influence of finite element mesh resolution
on the natural frequency spectrum. We present a number of benchmarks that evaluate
the natural frequencies of objects at different mesh resolutions. The conclusion is that the
wedge model and the quadratic tetrahedral model yield consistent results even for coarse
meshes, but the behavior of the thin-shell model is less predictable, and finer meshes
are required for reliable results. Another benchmark examines the effect of fine surface
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details on natural frequencies. Using Laplacian smoothing in the spectral domain, we
progressively filter high-frequency components of a thin-shelled object and observe the
effect on the frequency spectrum. The results suggest that the influence of high-frequency
surface details is very limited, and that coarse mesh approximations can be used to speed
up finite element modal analysis.

7.2 Future Work
A key limitation of our method is the inability to purposefully influence the frequency of
a specific mode while keeping the others constant due to the global influence of manifold
harmonics basis functions. This is why Monte Carlo techniques need to be employed in
order to optimize harmonic ratios between overtones. Literature on musical instruments
suggests that targeting specific modes through geometric variations is difficult in general.
However, instrument makers have developed techniques to tune instruments such as bells
by removing material from particular locations. A natural frequency is influenced most
by notches that are placed where the corresponding mode shape has its largest deflection.
An interesting research direction might be to evaluate this relationship more rigorously
in order to exert better control over particular natural modes.

This may lead to shape parametrization methods that are better suited to the
optimization of harmonic ratios than the manifold harmonics basis. The problem with
the latter approach is that Laplacian basis functions change the shape globally, and thus
the relationship between function coefficients and natural frequencies is very obscure.
Using parameters that modify the shape locally may yield objective functions with fewer
local minima, thereby reducing the need for global optimization.

We also see room for improvement regarding the run-time performance of our finite
element computations. The knowledge that coarse finite element meshes and smooth
geometries can yield meaningful results might make it possible to incorporate an automatic
mesh simplification routine into the optimization pipeline. This could enable faster
convergence to an approximate solution on a coarse mesh and refinement of the solution
on a detailed mesh.
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