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Kurzfassung

Der derzeitige Stand der Technik in Cloud Computing und Virtualisierung ermöglicht
die Entwicklung von komplexen elastischen Cloud-Systemen. Die Komponenten solcher
Systeme können als virtuelle Container oder virtuelle Maschinen von mehreren Cloud-
Anbietern in verschiedensten Ausprägungen gehostet werden. Um solche Systeme zu bauen
und sowohl automatisch als auch manuell zu verwalten, müssen einige anspruchsvolle
Herausforderungen bewältigt werden. Diese Herausforderungen zeigen sich in den unter-
schiedlichen Phasen des Lebenszykluses eines solchen Cloud-Systems und umfassen die
Bereiche Entwurf, Bereitstellung und Laufzeitkontrolle.

Erstens, für die Bereitstellung eines elastischen Systems, ist es wichtig, die vom Cloud-
Anbieter bereitgestellten Angebote auszuwählen die die erforderlichen Elastizitätskriterien
unterstützen. Da elastische Systeme sowohl ihre Struktur, als auch die konsumierten
Cloud-Dienste zur Laufzeit verändern, ist es wichtig diese nach der Bereitstellung zu
überwachen und zu analysieren. Während elastische Systeme aufgrund steigender Leis-
tungsanforderungen hochskalieren, sind die dabei entstehende Kosten der Hauptgrund
die verwendeten Ressourcen wieder zu reduzieren. Deshalb ist es wichtig Entwicklern
solcher Systeme die Möglichkeit zu bieten die Kosten von Systemen, die in öffentlichen
Clouds laufen, zu überwachen und deren Kosteneffizienz zu analysieren.

Der Beitrag dieser Arbeit ist eine Reihe von Konzepten, Techniken und Algorithmen
zur Analyse von elastischen Cloud-Systemen. Wir wollen damit deren Entwurf, Implemen-
tierung und Laufzeitmanagement verbessern, in dem wir die relevanten Informationen
für die jeweiligen Phasen zur Verfügung stellen.

Wir quantifizieren die Elastizitätsfähigkeit von Cloud-Diensten, und bestimmen welche
Cloud-Dienste die nötige Elastizität bereitstellen und darüber hinaus die Anforderungen
an Ressourcen, Qualität und Kosten erfüllen. Für die Überwachung von elastischen
Systemen stellen wir ein Modell, Techniken und unterstützende Werkzeuge vor, die
die Komposition von Systemmetriken zur Erlangung der erforderlichen Informationen
auf dem geforderten Niveau ermöglichen. Zur Charakterisierung des Verhaltens von
elastischen Systemen definieren wir die Konzepte: Elastizität und Pathway, und stellen
Algorithmen für deren Bestimmung basierend auf Systemüberwachungsdaten bereit.
Weiter konzentrieren wir uns auf die Elastizitätsbeziehungen in Cloud-Systemen. Wir
ermöglichen damit verschiedenen Akteuren die Elastizitätsbeziehungen zu verstehen,
welche das Laufzeitverhalten von komplexen Cloud-Systemen steuern. Abschließend
beschäftigen wir uns mit den Themen der Kostenüberwachung und der Analyse der
Kosteneffizienz von komplexen Cloud Systemen die in öffentlichen Clouds laufen. Wir
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definieren Algorithmen zur Kostenüberwachung elastischer Systeme und bestimmen
welche Systemkomponenten kostengünstiger zu skalieren sind, als auch wann skaliert
werden sollte. Wir überprüfen unsere Techniken auf einem IoT (Internet der Dinge)
System, in dem wir Entwurf, Überwachung und Laufzeitelastizitätskontrolle unterstützen.



Abstract

Considering the current state of the art in cloud computing and virtualization, we are at
a point in time in which one can develop complex elastic cloud systems. Such systems
can have components/units hosted in virtual containers, inside virtual machines, using
different cloud offerings (from IaaS to SaaS), potentially from multiple cloud providers.
However, to build such systems, and manage them either automatically or through
human-based control, there are several important challenges to be addressed at different
stages of the system’s life-cycle, from design, to deployment and run-time.

First, for deploying an elastic system, it is crucial to select from the cloud providers
the offerings which support the required system elasticity. After deployment, a major
concern is monitoring and analyzing elastic systems, as they change their structure and
used cloud services at run-time. While elastic systems are scaled-out due to performance
requirements, cost is the main driver for scale-in. Thus, developers of such systems
require support for monitoring the costs and analyzing cost efficiency of elastic systems
running in public clouds.

In this thesis we bring as contribution a series of concepts, techniques and algorithms
for analyzing elastic cloud systems. We aim to facilitate their design, deployment, and
run-time management, by providing information crucial at each of these stages.

We aid in the design of elastic cloud systems by quantifying the elasticity capabilities
of cloud services. We analyze which cloud services provide the necessary elasticity support
and fulfill resources, quality, and cost requirements. For monitoring elastic systems we
introduce a model, technique and supporting platform for composing system metrics,
towards obtaining the required information at the needed level. For characterizing the
behavior of elastic systems we define the concepts of elasticity and pathway, and provide
algorithms for determining them based on multi-level monitoring information. We further
focus on analyzing elasticity relationships in cloud systems, enabling different stakehold-
ers, from developers to elasticity controllers, to understand the elasticity relationships
governing the run-time behavior of complex cloud systems. Finally, we address the issue
of monitoring costs and analyzing cost efficiency of elastic systems running in public
clouds. We introduce a model for capturing the pricing schemes of cloud services. We
define algorithms for monitoring costs of elastic systems, and evaluating which system
component is more cost efficient to scale-in and when. We evaluate our techniques on a
Data-as-a-Service elastic cloud system for IoT, by aiding in its design, monitoring, and
run-time elasticity control.
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CHAPTER 1
Introduction

In this thesis we monitor and analyze elastic cloud systems1 built on top of a mix of cloud
services and proprietary software. We facilitate their design, deployment, and run-time
management, by providing information crucial at each of these stages.

1.1 Context

Traditionally, IT systems where deployed on dedicated computing resources, making them
tied to the used hardware, and difficult to update and extend. This lead to sub-optimal
resources usage [6], and system vulnerability to hardware failure. Virtualization appeared
as a solution to this problem, enabling the partition of physical resources between several
virtual machines (VM). Virtual machines can still be used in the same way as dedicated
hardware. However, their advantage is that they can be consolidated and migrated be-
tween hardware resources according to needs [7]. Ecosystems offering such virtualization
where called virtualized datacenters [8]. Virtualized datacenters where usually propri-
etary, belonging to individual organizations and running the systems necessary for the
organizations’ operation. Using today’s terminology, such environments can be considered
as "private clouds". However, organizations still exhibited underutilization of hardware
resources, and where tied in running their systems only on their proprietary data centers.
This hindered the organizations’ expansion in other geographical regions. Organizations
had to buy the necessary hardware resources, build the data centers, maintain and pay
staff for managing them [9]. This can become too expensive and complex to manage for
small and medium enterprises (SMEs). A big step towards relieving companies of this
complexity came with the Amazon Elastic Compute Cloud (EC2)2. Under EC2, Amazon
offered their spare computing capacity as virtualized infrastructure, but, for the first time,

1In the thesis we use the term "system" to denote any complex system, application, or service built
on top of or using cloud offered services.

2https://aws.amazon.com/ec2/
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accessible on demand, over a network, from any corner of the world, and billed per usage.
In just a couple of years this new type of computing service offered over a network gained
worldwide attention [10], opening new research directions in theoretical and applied
computer science. The economic model introduced by Amazon allowed for the complete
separation (not only physical, but also geographical) of resource management from the
user of virtual resources. This lead to the definition of cloud and cloud computing as a
new computing paradigm [11, 12]. Now, companies or individuals could rent computing
resources according to their demand, matching what they pay to what they need. This
reduced the time to market for SMEs, letting companies focus on their core business
by reducing the cost required to buy and maintain computing infrastructure [13, 14].
As more and more enterprises became interested in cloud, cloud users became more
diverse, ranging from computer scientists, to people without IT training. In order to
support this large array of clients, especially clients without previous of knowledge in
infrastructure management, emerging cloud providers started to offer different types of
services. Departing from only virtualized infrastructure as a service (now called IaaS),
providers offered Platforms as a Service (PaaS) for developing systems directly "in the
cloud". Further, Software as a Service (SaaS) has proven useful for clients having no IT
experience, just wanting to use particular services for their business, such as data storage,
or even business analytics. Each of these service types has advantages and disadvantages.
The flexibility of using cloud services decreases from IaaS to SaaS, together with the
knowledge required to use them. While an IaaS service exposes a virtualized resource
which the user must fully configure (e.g, on a VM install OS and necessary software), for
SaaS the user just needs to interact with a provided API.

Benefiting from the ever increasing set of cloud services, a new computing sub-
discipline has emerged, elastic computing, in which distributed cloud systems are deployed
on "top of" and "are using" multiple instances of cloud services. Such systems can scale
up/out as long as the workload is high, and scale back in/down when possible, reducing
cost while maintaining performance and quality [15]. Crucially, this scaling is performed
by reconfiguring/allocating/deallocating instances of the used cloud services, from IaaS
to SaaS. Generally, an elastic cloud system has the ability to respond to stress factors
originating from different sources such as changes in system usage patterns, hosting clouds
properties, or pricing schemes. The system response involves modifying its run-time
structure through allocation/deallocation/reconfiguration of cloud services [16, 17]. One
of the most important aspects of elastic systems is horizontal scalability, in which the
system is capable of replicating parts of itself, to ensure a certain level of operation
quality. Inversely, the system can reduce the number of such replicas when no longer
needed, as to maintain a good cost per system usage ratio [18, 19]. To this end, such
systems have at least some parts/components/units designed to be deployed and run
independently on the other instances of the same unit (E.g., separate instances of a web
server), making it easier to horizontally scale them. This principle of running multiple
instances of system components depending on requirements has led to the emergence
of software containers [20, 21]. Software containers (E.g., LinuX Containers3) introduce

3https://wiki.archlinux.org/index.php/Linux_Containers
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Figure 1.1: Elastic cloud system behavior (adapted from [1])

another abstraction layer over operating system virtualization, each container providing
isolation for the software running inside it, from the other containers or host operating
system. Multiple containers can run on the same host operating systems, which in turn
can be hosted in a virtual, or hardware machine. This enables elastic systems to host new
system components/units in dedicated virtual machines, and/or in software containers
distributed among virtual and/or physical resources.

Elastic cloud systems can change themselves during run-time, increasing/decreasing
computing capacity as needed [15]. Figure 1.1 depicts the behavior of an elastic cloud
system relying on web servers reading/writing data from/to a distributed data end. Using
a Load Balancer, Web Service instances can be easily added/removed at run-time.
Similarly, the Data End is distributed, having a Data Controller acting as data
access load balancer, and can add/remove Data Node instances as needed. An elastic
system can start with a lighter initial configuration of virtual resources, and implicitly,
with a lower running cost. When the number of clients increases at T1, another Web
Service instance can be added to cope with the increasing number of clients, and
thus, increasing the cost of running the system. At time T2, when the number of clients
decreases, the additional Web Service instance can be deallocated, to reduce operation
cost. At time T4, when the system load is even greater, both Web Service and Data
Node instances could be added, to cope with the load.

Considering the current state of the art in cloud computing and virtualization, we
are at a point in time in which one can develop complex elastic cloud systems. Such
systems can have components/units hosted in virtual containers, inside virtual machines,
using different cloud offerings (from IaaS to SaaS), potentially from multiple cloud
providers. However, to build such systems, and manage them either automatically or
through human-based control, there are several important challenges to be addressed
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at different stages of the system’s life-cycle, from design, to deployment and run-time
control. First, for deploying an elastic system, it is crucial to select from the cloud
providers the offerings which support the required run-time system elasticity, i.e., run-time
reconfiguration/allocation/deallocation frequency. After deployment, a major concern
is monitoring elastic systems, as they change their structure and used cloud services at
run-time, to fulfill their requirements. Given the potential complexity of such elastic
systems, for run-time control is also important to understand which system units/parts
behave properly, and which need to be scaled/reconfigured and when. While elastic
systems are scaled-out due to performance requirements, cost is the main driver for
scale-in. However, cost of elastic systems running in public clouds is complex, some cloud
services having multiple cost elements. E.g., a VM service could be billed both every
hour, and separately per each GB of generated I/O. Thus, developers of elastic systems
require support for monitoring the costs and analyzing cost efficiency of elastic systems
running in public clouds.

The issues mentioned in this section open a broad field of research questions to be
solved for providing support in building and controlling elastic cloud systems.

1.2 Roadmap
The rest of this chapter is structured as follows. A detailed problem statement is given
in Section 1.3, setting the scope of this thesis. The core research questions are defined
in Section 1.4. The major thesis contributions are detailed in Section 1.5. Section 1.5.1
details the thesis organization.

1.3 Problem statement
To increase cloud adoption and foster innovation, we envision a platform enabling
developers to design elastic cloud systems, deploy them in cloud environments, and
manage them at run-time. The platform would reduce the complexity of designing and
managing such systems, allowing cloud users to fully take advantage of the benefits of
cloud computing. More companies would be able to rapidly build, deploy and manage
complex systems offering functionality as a service. Elastic cloud systems could be
first built by redesigning existing systems for cloud environments. They could also
be developed directly in the cloud using Platform as a Service (PaaS) cloud offerings.
Developers could also use Software as a Service (SaaS) cloud offerings, develop their own
software components, or employ a combination of these approaches. Elastic systems
would expose elasticity capabilities enabling run-time system reconfiguration through
allocation/deallocation of cloud services. Elasticity control strategies for system units and
whole systems would be designed, to fulfill requirements over system’s performance, cost,
and resource usage. The strategies would be enforced by full or semi-automatic (under
human supervision) elasticity controllers, based on multi-level monitoring information.

Due to the heterogeneity of the available cloud services offered by different cloud
providers, one must analyze which services are suitable for each system unit, depending
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on the system requirements and the envisioned elasticity control. During both design
time and run-time of elastic systems, the type of used cloud services can have a different
impact the elasticity of the system. For example, the rate at which cloud services can be
allocated/deallocated (E.g., hourly, weekly, monthly) can influence the system’s control
frequency. If a system unit/component is to be reconfigured often by addition/removal
of unit/component instances, it should use cloud services (E.g., VM, Network, Storage)
which can be deallocated on short notice. Certain cloud providers could also restrict or
impose certain combinations of cloud offered services, impacting the run-time availability
of the system’s elasticity capabilities. Available mechanisms for designing elastic systems
such as [22, 23] are often limited to the exact specification of the required cloud services,
without considering their elasticity. Currently, a system developer has to manually search
through cloud providers, and select the needed services without support in evaluating if
their elasticity capabilities support the required elasticity.

Once the system is deployed and running, it can change its used cloud offered services
at run-time, by adding/removing service instances depending on requirements. To take
appropriate actions, elasticity controllers must determine if a requirement violation
originates in a poorly chosen cloud service, resource congestion, or failing system unit.
This implies knowledge over the behavior of each system unit. Even more, it implies
understanding on how behavioral dependencies present between system units influence the
system’s behavior with respect to its requirements. Elastic systems can have many units,
distributed among different cloud services and even among cloud providers. Controlling
such systems requires information about what requirements to enforce for each unit
[24, 25]. The structure of elastic systems is dynamic, changing at run-time due to enforced
elasticity control. Due to this complexity, it is hard to have all the information required
to control elastic systems available beforehand. A simple example of such information
is knowing what data end latency ensures the required client-perceived response time.
Instead, such information needs to be determined by monitoring and analyzing the
run-time behavior of elastic systems.

While elastic systems are usually scaled-out due to performance requirements, cost is
the main driver for scale-in actions [26, 27]. Through cost-aware elasticity, controllers
should consider the costs of different types of used cloud services, rather than just
manipulating their number [28]. However, cost of elastic systems running in public clouds
is complex. Cloud services can have multiple cost elements, e.g., a VM service could
be billed both every hour, and separately per each GB of generated I/O. Certain costs
can be static, such as costs for reserving a cloud service [29, 30, 31]. Other costs can be
dynamic, such as discounts for certain service usage levels. Costs of cloud services can
also depend on particular service combinations. Additionally, public cloud services are
usually billed over pre-defined time and/or usage intervals. This means it might not be
cost efficient to deallocate such services at any moment in time, as one might deallocate
unused services, but paid in full. For example, paying for a cloud service per hour, but
deallocating it after 30 minutes. Due to this cost complexity, developers of elastic systems
running in public clouds require support for monitoring costs and developing cost-aware
elasticity controllers.
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Figure 1.2: Thesis focus in the context of elastic systems

To achieve elasticity, one must understand at each phase of the system’s life-cycle,
from system design, to deployment, and run-time control, what are the crucial aspects
influencing the system’s elasticity. However, currently such information is either not
available, or insufficient for supporting elasticity. Not solving the above issues can lead to
sub-optimal elasticity control, which, relying on insufficient or incomplete data, cannot
fully take advantage of the benefits of cloud computing.

To control elastic systems, different types of knowledge are required, both over the
system’s behavior and the behavior of the used cloud services. How to obtain such
knowledge and providing it in a useful manner to elasticity controllers is the objective of
this thesis (highlighted in Figure 1.2). We adopt the role of the cloud user, and view
cloud providers as black boxes. Cloud providers offer APIs for allocating/deallocating
services on-demand and querying their pricing schemes. Cloud users have no access to
the inner workings of the employed cloud providers, interacting only with their APIs.
System developers are using such cloud services to deploy and run their systems, and
have certain requirements over the systems’ performance and cost. Elastic systems have
controllers able to monitor the system’s state and ensure its requirements are fulfilled.
Depending on the system’s purpose, the control loop might be completely automated, or
partially automated involving human supervision.

1.4 Research questions
Addressing the above-mentioned problems, this thesis investigates and answers the
following research questions:

• Question 1: How is the run-time elasticity of cloud systems influenced by the
cloud services they use?
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Different cloud services might have particular configuration, combination options,
and restrictions, depending on individual cloud providers. The used cloud services
should provide to elastic systems the necessary control mechanisms for fulfilling
their operation requirements. Understanding how the service’s combination options
and restrictions influence the available system control mechanisms is crucial for
designing and managing elastic cloud systems.

• Question 2: How can elastic systems be monitored and analyzed, considering their
complexity and dynamic run-time structure?

The ability of elastic systems to re-configure individual components or the whole
system at run-time generates several issues. Through system scaling, component
instances can dynamically appear/disappear and cloud services can be allocat-
ed/deallocated dynamically at run-time. If monitoring information is associated
only with each service (E.g., VM), it will be lost during scale-in operations which
deallocate the service. For controlling elastic systems, monitoring must be able
to deal with dynamic system structures, and analyze not only the behavior of
individual instances, but also the overall component behavior over all its instances.

• Question 3: How can the behavior of elastic systems be characterized towards
aiding in their run-time control?

Controlling elastic systems requires understanding of the behavior of each system
component with respect to the system’s requirements. The behavioral dependencies
between system components must also be understood for effective control of elastic
systems. However, many times such information is not available beforehand. Thus,
starting from potentially generic requirements (E.g., over end to end client-perceived
response time), concrete enforceable requirements should be determined for each
system component. Additionally, one must understand how different elasticity
control actions impact the overall system behavior with respect to its requirements.

• Question 4: How can elastic systems running in public clouds be controlled in a
cost efficient manner?

Elastic systems can be reconfigured during run-time by allocating, deallocating, or
changing used cloud services. However, public cloud providers offer their services
under specific pricing schemes, billing them over usage and/or reservation time.
This means it might not be cost efficient to deallocate cloud services at any moment
in time, without considering their billing cycles. For cost efficient control of elastic
systems, controllers must understand which system component instance is cost
efficient to deallocate and when. Additionally, optimizing cost of elastic systems
requires analysis over the contribution of each system component to the overall
system costs.
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1.5 Scientific contributions
Addressing the research questions presented in Section 1.4, this thesis makes the following
contributions to the state of the art in the monitoring and analysis of elastic cloud
systems:

• Contribution 1: Method and algorithms for quantification elasticity of cloud
services and recommending cloud services for building elastic systems

We define the process of elasticity quantification as a means of evaluating the
elasticity support offered by cloud services. In the quantification process we
consider both the system’s run-time control capabilities and its requirements over
cost and performance. We define algorithms and integrate them in a platform for
recommending cloud services to be used by elastic systems, ensuring the cloud
services do not restrict their run-time elasticity. The contribution is discussed in
detail in Chapter 4 and was originally presented in [32].

• Contribution 2: Method, models, and language for multi-level monitoring of
elastic systems

We address the issue of monitoring elastic systems considering their dynamic
rum-time structure. Elastic systems can, depending on requirements, add/remove
resources to existing components, or allocate/deallocate component instances using
cloud services. In this contribution we introduce a metric composition mechanism
for associating monitoring information collected from used cloud services to the
system’s structure. We define algorithms for extracting higher level information
from collected monitoring data. We implement a platform for monitoring elastic
cloud systems, providing to elasticity controllers multi-level monitoring information.
The contribution is discussed in detail in Chapter 5 and was originally presented in
[33] and [1].

• Contribution 3: Concepts of elasticity space and pathway and algorithms for
analyzing the behavior of elastic systems
Elastic systems are an emerging concept, and there is lack of terminology for
describing them, and characterizing their behavior. In this contribution we define
new concepts for characterizing the behavior of such systems. We define the
concepts of elasticity space and elasticity pathway. We develop algorithms for
analyzing the behavior of elastic cloud systems from the whole system level to
the underlying virtual infrastructure. The contribution is discussed in detail in
Chapter 6 and was originally presented in [33] and [1].

• Contribution 4: Concept of elasticity energy and algorithms for determining
behavioral relationships present in elastic systems
In this contribution we analyze the behavioral relationships between components
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of elastic cloud systems. Knowing relationships enables predictive elasticity control,
understanding how system components influence each other. We define the concept
of elasticity energy for characterizing behavioral relationships present in elastic
cloud systems. We define algorithms for analyzing the relationships influencing
the system’s behavior with respect to its requirements, from the overall system
behavior, to individual system components. The contribution is discussed in detail
in Chapter 7 and was originally presented in [34].

• Contribution 5: Method, models, and algorithms for costs analysis and cost-aware
control of elastic systems in public clouds

Cost is one of the main drivers of elasticity control. While systems are scaled-out
due to performance requirements, cost is the main driver for system scale-in. In
this contribution we introduce a model for describing the pricing schemes of cloud
providers. Based on the pricing schemes and system monitoring information, we
define algorithms for evaluating the costs and cost efficiency of elastic systems
running in public clouds. We further analyze and recommend which cloud service is
cost efficient to deallocate during scale-in operations, and when. The contribution
is discussed in detail in Chapter 8 and was originally presented in [35].

1.5.1 Thesis Organization

The remainder of this thesis is structured as follows. Chapter 2 provides background
information, and introduces the concepts and terminology used throughout the rest of the
thesis. Chapter 3 introduces our case study used to evaluate all thesis contributions. The
case study is centered on a Data-as-a-Service elastic cloud system for IoT, which must
be designed, deployed, and controlled according to requirements. The five contributions
outlined in Section 1.5 are detailed into five main chapters. Chapter 4 details our
contribution in recommending cloud services for building elastic systems, introducing
our approach in quantifying elasticity of cloud services. Chapter 5 introduces our second
contribution, detailing our mechanism for monitoring elastic systems. Chapter 6 covers
the third contribution, introducing our algorithms for analyzing the elasticity space and
pathway of cloud systems. Chapter 7 introduces our fourth contribution on analyzing and
discovering elasticity relationships influencing the behavior of cloud systems. Chapter 8
introduces our approach for evaluating and improving the cost efficiency of elastic systems,
detailing the last contribution of the thesis. The five core chapters (Chapters 4, 5, 6, 7,
and 8) have a similar structure. They start with a detailed introduction and motivation
presenting the context and reason behind each contribution. They contain one or
more core sections detailing the contributions, and one evaluation section analyzing the
introduced approach. They conclude with remarks specific to each addressed contribution.
Chapter 9 presents related work categorized according to the research questions outlined
in Section 1.4. Finally, Chapter 10 concludes the thesis, critically discussing the thesis
contributions according to the posed research questions, and outlines future work.
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CHAPTER 2
Background

In this chapter we introduce the background behind the work done in the thesis. We
further introduce the core concepts and terminology which will be used throughout the
rest of the thesis.

2.1 Virtualization

Virtualization is a fundamental technology used in cloud computing. According to
National Institute of Standards and Technology (NIST)4, virtualization is the simulation
of the software and/or hardware upon which other software runs [36]. Virtualization
is further classified by the European Commission in [37] as an essential technological
characteristic of clouds which hides the technological complexity from the user and en-
ables enhanced flexibility. Virtualization of computing resources can be full, OS-assisted
(paravirtualization) or hardware-assisted [38]. In full virtualization, the guest OS requires
no modification, and runs exactly as on physical hardware. Paravirtualization involves
modifying the OS kernel to replace certain instructions with calls to the underlying
virtualization layer. In turn, hardware-assisted virtualization provides a special hardware
operation mode in which OS running inside the virtual machine can issue direct instruc-
tions to the physical CPU. Hardware assisted virtualization requires specific hardware
support, as provided by Intel VT-x5 and AMD-V 6. However, all virtualization solutions
rely on so called hypervisors [39], which are software, firmware, or hardware that creates
and runs virtual machines, such as KVM7, XEN8, vSphere9, or Hyper-V10

4http://www.nist.gov/
5http://ark.intel.com/Products/VirtualizationTechnology
6http://www.amd.com/en-us/solutions/servers/virtualization
7http://www.linux-kvm.org/
8http://www.xenproject.org/
9https://www.vmware.com/products/vsphere

10http://www.microsoft.com/en-us/server-cloud/solutions/virtualization.aspx
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Figure 2.1: Virtualization maturity levels (adapted from [44])

Usually hardware resources virtualization enables the emulation of several operating
systems running in isolation on the same set pf physical resources. However, virtualization
is also encountered in the software domain, providing an abstraction layer on top of the
underlying operating system. An example of such a virtualization approach is the Java
Virtual Machine [40]. The Java Virtual Machine acts an intermediary between the Java
application code and the operating system (OS), enabling the same Java application to
run on different operating systems.

As virtualization gained more and more interest, especially in the context of cloud
computing, there was an increased interest in both reducing the performance impact of
virtualizing resources [41, 42], and providing more flexible virtualization mechanisms.
This has led to the emergence of virtualization containers, such as Docker11. Docker
aims to be a lightweight alternative to VMs, isolating applications/systems/services
in containers based on LXC technology [20]. Docker is based on LinuX Containers
(LXC)12, an OS-level virtualization method for running multiple isolated Linux systems
(containers) on a single control host. LXC does not provide a virtual machine, but rather
provides a virtual environment that has its own CPU, memory, block I/O, network, etc.
Without containers, systems must be built for particular environments and operating
systems, making their migration difficult, such as from bare metal to VM, or between
different clouds. Containers address this by providing a common interface for migrating
applications between environments, increasing the possibilities of building, testing, and
operating distributed systems in the cloud [43].

2.2 Cloud Computing

The advent of virtualization has opened up numerous possibilities, enabling the emer-
gence of cloud computing, by providing the ability to completely separate the systems
that run in a cloud from the supporting hardware infrastructure. The contribution of
virtualization to cloud computing is highlighted by Microsoft in their Green Maturity
Model for Virtualization [44]. The model defines 4 (0-3) virtualization maturity levels
(see Figure 2.1). The virtualization maturity levels 2 and 3 clearly separate the Data
Center and Cloud concepts. The Data Center concept is defined by level 2 as having a

11https://www.docker.com/
12https://wiki.archlinux.org/index.php/Linux_Containers
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Figure 2.2: Cloud types and users (adapted from [46])

centralized location and an internal ownership, while, crucially, for the Cloud, location
and ownership are virtualized.

This brings us to the definition of cloud computing, synthesized by US National
Institute of Standards and Technology (NIST) [45]. NIST defines cloud computing as
"a model for enabling ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources". Today we find a wide range of cloud vendors
that provide almost anything under the form of a service in a pay-per-use manner, from
hardware Infrastructure as a Service (IaaS) to Platform (PaaS), and Software as a Service
(SaaS). These different cloud service models are aimed at different types of users [46], as
depicted in Figure 2.2. IaaS offers users the ability of renting computing resources and
using them as their own physical computers. IaaS provides maximum flexibility in service
customization and usage, and thus targets users which want to run their own software on
virtual infrastructure. PaaS services are aimed at users which want increased productivity
in their domain, and are not interested in managing a virtual infrastructure. Such users
can be developers which want fast access to complete development environments, without
worrying about installing the required software stack for their objectives. Finally, SaaS
users want to access out of the box services offering certain functionality over a network,
without the need to developing them, or configuring software stacks.

2.3 Scalability in Cloud Computing

Scalability is not a new concept, and relates to a system’s ability to maintain its operation
parameters during changes in load and other stress factors. However, there is no unified
consistent definition of scalability [47]. Thus, scalability can and was applied to define
different domains and engineering areas. For example, an operating system (OS) can be
described as scalable because it has "the ability to retain performance levels when adding
additional processors" [48].

However, in the context of elastic distributed systems, scalability usually refers to
either vertical or horizontal scalability [49]. Vertical scalability refers to adding more
resources to the system or increasing the computing power of system components. For
example, in Figure 2.3 a virtual machine hosting running a web service is scaled-up
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Figure 2.3: Vertical Vs. Horizontal scaling

vertically by adding more resources to it (E.g., memory, storage). The reverse process
for vertical scaling is scale-down, i.e., resizing the component by removing computing
resources. In turn, horizontal scalability defines the ability of a system to grow horizontally,
by replicating components, and thus, computing power, according to need. For example,
an elastic system providing functionality as web services, could scale-out horizontally by
adding/removing web servers behind a load balancer. The reverse process to scale-out is
scale-in, when instances of the replicated component are removed from the system.

While monolithic systems could also be deployed in cloud (depending on their size and
the cloud provider capabilities), vertical scaling is limited by the actual physical resources
of the used cloud provider. A virtual machine cannot occupy more than a physical one,
the maximum VM size depending on the available physical hardware. Thus, most benefit
from the cloud can be obtained by distributed systems having components which can be
scaled independently, as highlighted by Fehling et al. [50]. However, being distributed
is a necessary but not sufficient condition for benefiting from the cloud. To be truly
independently scalable, system components must be as decoupled as possible from the
other components. Communication mechanisms and software which promote decoupling
and transparency are best suited for cloud environments [2]. According to the previous
scalability examples, to scale horizontally a web server, a load balancing component
could be used to act as intermediary between the server and its clients, enabling dynamic
addition and removal of server instances. Similarly, a distributed data end designed to
support addition and removal of data processing components is better suited for scaling
in the cloud, compared to a single node database.

Cloud providers offer multiple types of services, as highlighted in Section 2.2. Thus,
horizontal scaling does not only target allocation and deallocation of VMs. Instead,
one can take advantage of multiple types of offered cloud services when scaling, such as
allocating a new VM with a new instance of cloud storage, a new instance of a monitoring
service to collect data about the VM, and allocating a backup service or configuring it
for the new used storage. Thus, horizontal scaling could imply several operations for

16



Figure 2.4: Automated elasticity and scalability (adapted from [2])

reconfiguration/allocation/deallocation of multiple cloud offered services, of potentially
different types.

2.4 Elasticity in Cloud Computing
The advent of cloud computing has brought with it new concepts and terminologies,
elasticity being one of the most encountered attribute in describing cloud services. Before
cloud computing, elasticity was used in physics, defining the property of a material to
return to an initial form or state following deformation [51]. Elasticity is also a term
widespread in economics, describing the change in the values of supply or demand of a
product with respect to its change in price [52].

In computing, Amazon Elastic Compute Cloud (Amazon EC213) popularized the
term elasticity. In their best practices for architecting systems for the cloud [2], Amazon
considers elasticity one of the fundamental properties of the cloud. Elasticity is considered
to enable the cloud infrastructure to expand and contract, aligning itself to actual demand,
thus increasing resource utilization and reducing cost (Figure 2.4). IBM14 highlights
that one significant difference between scalability and elasticity is the time interval
in which changes happen and whether they can be predicted [53]. Thus, scalability
is a static property used to describe the behavior of systems under predictable load.
Elasticity implies rapid changes in system load, and thus requires more flexibility and
even automation in dealing with such situations. Elasticity is also covered by NIST in
their definition of cloud computing [45]. NIST defines rapid elasticity as an essential
characteristic of cloud computing, enabling "capabilities to be elastically provisioned
and released, in some cases automatically, to scale rapidly outward and inward to
commensurate with demand".

13http://aws.amazon.com/ec2/
14http://www.ibm.com/
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The research community also took interest in elasticity. Unlike traditional scalability
which focuses on system performance, the fact that public cloud providers offer services
under a pay-per-use model turns cost the driving factor of scale in/down decisions in cloud.
This view is expressed by Dustdar et al. [15], determining three core dimensions influencing
elasticity: system cost, resource usage, and quality/performance. The importance of
the economic aspect of cloud elasticity is highlighted by Agmon et al. [54] on analyzing
Amazon EC2 pricing, and Suleiman et al. [6] analyzing the economics and elasticity
challenges in public cloud infrastructures. The economics behind elasticity and its
impact on the applications and systems running in cloud environments has also been the
focus of industry research. The difference between automatic elasticity and traditional
horizontal/vertical scalability has been analyzed by Amazon in [55] (Figure 2.4). The
business perspective is important as many systems running in cloud belong to businesses
which want to obtain a profit.

Thus, a common way of viewing elasticity in cloud computing is including all the
aspects impacting the behavior of the systems running in the cloud, not only system
performance, but also its cost. Moreover, elasticity implies systems are dynamic and
have a certain degree of automation. Such systems can cope with unexpected changes in
their load, changes in the cost of used cloud services, or other unexpected factors.

2.5 Service Oriented Computing in the Cloud

Distributed systems benefit from cloud computing, being capable of allocating/deallo-
cating cloud services on-demand. This makes them much more flexible than monolithic
applications. In cloud computing, resources and other capabilities are offered as services
over a network. Thus, service-oriented computing has emerged as a crucial paradigm for
designing, operating and controlling cloud-based, potentially distributed, elastic systems.
Originally defined outside of the cloud computing context, service-oriented computing
promotes the idea of assembling system components into a network of loosely coupled
services, creating flexible and agile systems. Such systems can span organizations and
computing platforms, as underlined by Michael et al. [56]. To follow the service-oriented
computing principle, systems can be designed having a service-oriented architecture
(SOA). SOA is an architectural pattern in computer software design in which system
components provide services to other components via a communications protocol, typi-
cally over a network [3]. Generically, in a service-oriented architecture, the individual
services composing the overall system act as providers and consumers of functionality,
collaborating to achieve the overall system’s goals. Figure 2.5 depicts a basic collaboration
flow, in which services expose their description to a registry, which then is used in finding
services offering desired functionality.

However, giving the current development in cloud computing, and especially con-
sidering elasticity, the community noticed that to make the best use of the Cloud,
service-oriented systems should be built from light cloud services. This gave way to the
term of microservice architecture, describing a way of structuring cloud systems as a
collection of independently deployable, scalable, and controllable services. While currently
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Figure 2.5: Collaborations between services in a service-oriented architecture (adapted
from [3])

there is no unanimously accepted definition for microservices, one can see them as an
approach to building distributed systems, promoting the use of finely grained services
with their own lifecycle, which communicate together (Newman et al. [57]). Thones et
al. [58] define a microservice as a small application which has a single responsibility, and
which can be deployed, scaled, and tested independently. Thus, microservices can be
used in building single or multi-cloud elastic systems, in which individual services can be
controlled and managed independent on the other system services.

2.6 Autonomic Computing

IBM identified a "software complexity crisis" with systems becoming larger and larger to
solve increasingly complex problems. This crisis could only be solved through autonomic
computing. IBM’s autonomic vision was synthesized by Kephart et al. [59], computing
systems being able to manage themselves given high-level objectives from administrators.
IBM’s definition of autonomic systems relied on the self-* concept, in which systems are
capable of self-configuration, self-optimization, self-healing, and self-protection. Compared
to traditional systems in which humans need to configure each component, self-configuring
systems are able to automatically configure its components, and seamlessly adjust to
changes in the system’s structure. Self-optimizing systems are able to detect performance
problems and improve their performance and efficiency automatically during run-time.
Self-healing systems are able to detect and adapt to failures in both the software and
underlying hardware, while self-protecting systems are able to detect and automatically
defend against malicious attacks.

For achieving autonomicity, IBM defined the MAPE-K control loop (Figure 2.6) with
four control phases, Monitoring, Analysis, Planning, and Execution, using and generating
Knowledge at each phase:
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Figure 2.6: Control loop in autonomic computing (adapted from [4])

Monitoring : the behavior of the autonomic system must be monitored through sensors,
sensing and reporting the current system state

Analysis : the system state retrieved from the monitoring phase is analyzed, determining
with respect to received requirements, if and what is wrong with the system

Planning : based on the analysis result, a plan is generated, containing actions which,
if executed, will bring the system back within desired parameters

Execution : the plan generated in the previous phase is executed, bringing the system
to a state in which its requirements are fulfilled

Knowledge : all phases of the control loop require knowledge and generate knowledge
used by the other phases

Due to the ability of controlling complex systems, autonomic computing can be
applied to elastic cloud computing. This aids in the design and operation of smart
elasticity controllers, capable of scaling and reconfiguring their systems dynamically
during run-time, based on a set of specified requirements. To this end, one goal of this
thesis is to ensure that in the Monitoring and Analysis phases we collect, structure, and
provide the required information for enabling automatic elasticity in the cloud. However,
due to the potential complexity of cloud systems, designing autonomic controllers requires
knowledge about the expected system behavior and boundaries, knowledge not always
available to human stakeholders. Thus, the Monitoring and Analysis phases must also
provide human-understandable information, to be used by the human in supervising and
configuring their autonomic controllers, and even in manually intervening in the control
of elastic systems.
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Figure 2.7: Elastic cloud system information model (adapted from [5])

2.7 Elastic Cloud Systems and Design by Units principle

According to the principle of "Design by Units" in elastic systems introduced by Tai et
al. [60], any system component and used cloud service is viewed as a unit. According
to this principle, elastic systems are composed from a collection of such units, units
abstracting both human and compute resources. Elastic systems can consist of a multitude
of components deployed on one or more cloud infrastructures, using different cloud services
to achieve their target functionality. Moreover, elastic systems must expose mechanisms
for reconfiguring them at run-time. Such mechanisms allow elasticity controllers to enforce
actions to maintain the system within required parameters, such as cost or performance.

In the rest of the thesis we follow the elastic system representation model described
in [5], adapting the "Design by Units" principle. The model defined in [5] captures the
design-time structure of elastic systems, their run-time structure when running on top
of cloud services, and their elasticity requirements and capabilities (Figure 2.7). From
a design-time point of view, an elastic cloud system consist of Units, functional blocks
of a system, capable of offering standalone functionality. One can use the unit concept
to define any software artifacts, software components, or used cloud service which offer
functionality independent of other units. For example, a unit can be a load balancer, a
web server, or database engine. Units which work together to achieve a higher level of
functionality can be grouped in higher level entities called Topologies. For example, a
distributed data storage system could have one or more data controller units managing
data access, and multiple data node units storing the data. In this case, the whole
distributed storage could be grouped in a topology representing the system’s data end.

Once the elastic system is deployed in a cloud, it is using cloud services, from virtual
infrastructure services (IaaS), to more complex ones (E.g., PaaS, SaaS). For controlling
elastic systems, one must understand how their run-time structure relates to the system’s
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design-time description. To this end, this model captures the cloud infrastructure
information, starting with the backbone of cloud computing, the Virtual Machine (VM)
and Virtual Storage. Virtual Machines can in turn be located in certain Virtual Clusters,
representing zones in a cloud provider where special rules apply. For example, a Virtual
Cluster can be a cluster with high network performance, or a separate physical location
of the cloud provider.

Providing support for system control, the model captures Elasticity Requirements,
i.e., restrictions imposed over cost, quality, or resource usage of system units, topologies,
or over the whole system. To enable analysis of system behavior with respect to these
requirements, i.e., determine if requirements are fulfilled or not, requirements are defined
over certain system metrics. Any metric targeted by an elasticity requirement is called
an Elasticity Metric. Finally, to allow run-time control over the elastic system, certain
system units can expose Elasticity Capabilities. An elasticity capability is any mechanism
enabling run-time system reconfiguration, from simple scale-out/in mechanisms, to more
complex configuration processes. The capabilities are used by control mechanisms in
charge with ensuring that the system’s requirements are fulfilled.

The above model is used throughout the thesis as a base for representing elastic
systems running in cloud environments. We will refer with the "unit" term to any
system/application component designed as a self-contained unit of functionality.
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CHAPTER 3
Motivating Scenario

Considering the previous introduced concepts of elasticity, service, and service unit, let
us consider a company offering services for maintenance of smart environments (E.g.,
buildings or vehicle fleets).

The company designs a cloud-based system with functionality for storing, retrieving
and managing sensor data, exposing its functionality as a service (Figure 3.1). Sensor
data is received by a Sensor Data Queue unit, intermediary analyzed by a Local
Data Processing unit, then sent to an Event Processing unit, which analyzes it
in detail and then stores it in a data store. If critical events have taken place, an external
system is notified. Depending on the system requirements, the units belonging to the
Local Data Processing topology can be deployed and executed on physical sensor
gateways, closer to the sensors sending data, or can be deployed in a cloud on "virtual"
gateways running on virtual machines (VMs).

Managing smart environments requires not only management of sensor data, but
also data analysis. The company wants to market the data management system as a
Data-as-a-Service (DaaS) pay-per-use service for IoT. The DaaS is to be used by clients
who want to manage smart environments, but do not have the knowledge or goal to build

14Content from this chapter was partially presented in [32, 33, 1, 34, 35].

Figure 3.1: Design time view of Data-as-a-Service cloud system for IoT
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Figure 3.2: Data-as-a-Service elastic cloud system for IoT with elasticity capabilities

and maintain data management systems. Instead, such users want to focus on other
areas crucial for their business, such as data analysis. As the company wants to charge
its users, it expects the system to fulfill a set of requirements, such as performance levels
(E.g., response time), and keep cost within certain limits, for price competitiveness.

Due to the system domain, i.e., smart environments, the system load is highly un-
predictable, sensors sending data in a non-linear fashion, depending on environment
conditions. As many times sensors rely on battery power, they might be enabled/dis-
abled depending on requirements (E.g., expected data frequency), or changes in the
managed environment (E.g., activate water pressure sensors during fire). The system
must cope with varying demand, and keep operating costs down for price competitiveness.
Thus, the system is designed as an elastic cloud systems (Figure 3.2), being capable of
allocating/deallocating system units and associated cloud services at run-time.

Elasticity capabilities are designed and implemented in the system, providing the
ability to control it during run-time. This enables run-time elasticity, enabling the system
to allocate more or better cloud services to guarantee expected performance, or reduce
the number of used cloud services to reduce cost. As the sensors send data to a queue, the
number of Local Data Processing unit instances retrieving data from the queue
can be changed at run-time. Further, a Load Balancer (E.g., HAProxy15) is added
between the Local Data Processing and the Event Processing. This enables
run-time addition and removal of Event Processing units. To ensure elasticity at
the data end, a distributed data storage engine (E.g., Cassandra16) is used, consisting
of a Data Controller distributing data requests between multiple instances of a
horizontally scalable Data Node unit.

For realizing elastic cloud systems multiple stakeholders are involved. Figure 3.3
depicts the use cases and stakeholders required for designing and managing elastic cloud
systems. The first stakeholders are the System Developer and System Owner, which have
the responsibility of designing Elastic Systems. They Define System Requirements over
performance and cost. An important responsibility is the Selection of Cloud Services
suitable for the designed elastic system, considering its requirements and elasticity

15http://www.haproxy.org/
16http://cassandra.apache.org/
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Figure 3.3: Stakeholders and use cases in controlling elastic cloud systems

capabilities. For selecting cloud services, the developer and/or system owner collaborate
with the Cloud Provider. Each Cloud Provider exposes APIs for Querying its Cloud
Services’ Descriptions and their Pricing Schemes. The cloud providers are black boxes,
system developers having no access to the inner workings of the used cloud providers.

System elasticity is achieved by an Elasticity Controller, ensuring requirements are
fulfilled by dynamically reconfiguring the system during run-time. Elasticity controllers
can be fully automatic, or under the supervision of system developers. System owners/de-
velopers submit their system requirements to the used elasticity controller, and trigger
the start of the process for Controlling the Elastic System. During elasticity control,
controllers Monitor Elastic Systems, and Analyze their behavior.

When required, controllers Enforce Elasticity Capabilities implemented on the con-
trolled system, to bring the system in a state in which its requirements are fulfilled. To
enforce the capabilities, controllers can query the description of the services offered by
cloud providers, and Allocate/Deallocate Cloud Services to meet system demand. After
any allocation/deallocation, controllers Reconfigure the Elastic System to acknowledge
the addition/removal of cloud services.

The introduced elastic system will act as base for evaluating the contributions in this
thesis. In the rest of the thesis we will reference the stakeholders and use cases described
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here.
Each of the presented use cases introduces particular challenges. Addressing these

challenges, in the rest of this thesis we facilitate the design and run-time management of
elastic systems by:

• quantifying the elasticity offered by different cloud services and recommend appro-
priate services depending on the system’s designed elasticity capabilities

• analyzing and describing the elasticity behavior of elastic cloud systems from the
whole system level to the underlying virtual infrastructure

• determining behavioral relationships between components of elastic cloud systems
influencing system’s behavior with respect to its requirements

• evaluating costs and cost efficiency of elastic systems running in public clouds,
providing support for cost-aware elasticity control
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CHAPTER 4
Building Cloud-native

Elastic Systems

4.1 Introduction
The appropriate cloud services must be determined and used for deploying elastic
systems. The used cloud services must both provide support for the required system
elasticity, and ensure the needed performance and cost. For example, we should avoided
selecting a service which must be reserved for 1 year, when service instances are to be
created/destroyed hourly. Although several frameworks allow a developer to model such
systems, they are often limited to the exact specification of the used cloud services [22, 23],
without considering their elasticity. Currently, a system developer has to manually search
through cloud providers, and select services for the system s/he needs to construct,
without support in evaluating if their elasticity capabilities support its system’s required
elasticity. To accelerate the development of such elastic cloud systems, we quantify
the elasticity capabilities of cloud services. We further provide suitable functions for
recommending systems deployment configurations using cloud services providing the
necessary elasticity capabilities, and which fulfill resources, quality, and cost requirements.

As mentioned in Chapter 2.2, rapid development in cloud computing has introduced
diverse types of cloud services offered by a large number of cloud software providers.
To understand the different types of cloud services, we focus on a subset of the main
cloud providers Amazon EC217, Rackspace18, HPCloud19, and Windows Azure20. We
compile a taxonomy of cloud offerings (Table 4.1), which, while not exhaustive, provides
a good idea into what types of services are currently offered by cloud providers, and their

16The contributions from this chapter where originally presented in [32].
17http://aws.amazon.com/ec2/
18http://www.rackspace.com/
19http://www.hpcloud.com/
20https://azure.microsoft.com/en-us/
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Category Subcategory Cloud providers
Amazon Rackspace HPCloud Windows

Azure

Infrastructure

Virtual
Machine

m1.small,
m1.medium,
m1.large,
m3.xlarge, ...

FG 256MB,FG
512MB,FG
1GB,...

Extra Small,
Small, Medium,
...

Extra Small,
Small, Medium,
Large, Extra
large, ...

Persistent
Storage

Elastic Block
Store

Block
Storage

Block
Storage

Data Disk

Shared
Storage

S3, Glacier,
Cloud Front

Cloud Files Object Storage,
CDN

Blob Storage

Network Public IP, Clus-
ter Networking,
Virtual Private
Cloud

Public IP, DNS Public IP, HP
Cloud DNS

Public IP, Vir-
tual Network

Software

Message Queue Simple Queue
Service

- HP Cloud Mes-
saging

Azure Service
Bus, Azure
Queue

Workflow
Engine

Simple Work-
flow Service

- - Azure Work-
flows, Share-
Point Work-
flows

Communication
Service

Simple Email
Service, Simple
Notification
Service

- - Notification
Hubs

Data
Processing

Oracle E-
Business Suite,
SAP Busi-
nessObjects,
Microsoft
SharePoint

Microsoft
SharePoint

- HDInsight,
Azure SQL
Reporting,
Microsoft
SharePoint

Load
Balancer

Elastic Load
Balancing,
Auto Scaling

Cloud Load
Balancers

Cloud Load
Balancer

Traffic Man-
ager

Database
Services

SQL Server,
ElastiCache,
RedShift, Dy-
namoDB

Cloud
Databases

Cloud Re-
lational
Database

SQL Server:
Web, Business,
and Premium

Management
Monitoring CloudWatch Cloud

Monitoring
Cloud
Monitoring

Health and
availability
monitoring

Backup - Cloud Backup - Azure Backup

Table 4.1: Representative subset of cloud services offered by main cloud providers

heterogeneity. The classification focuses on three main categories of services which can be
used to build elastic systems: (i) Infrastructure, (ii) Software, and (iii) Management. The
Infrastructure category contains all services offering some type of resource on demand
(E.g., computing, network, storage), and are the backbone of cloud computing. The
second category, Software, contains software elements that can be offered as a service,
either standalone or accompanying a Virtual Resource service (E.g., message queue, web
server, operating system). The third category, Management has emerged from the need
of exposing management functionality in turn as a service. The management capabilities
available in private clouds and datacenters allow cloud users to monitor, analyze, and
control the cloud services they use.

28



This ever increasing plethora of available cloud services has led to increasing effort
in understanding how to leverage the multitude of offered services towards building
elastic systems directly in the cloud [61, 62, 63]. As highlighted in Chapter 3, elastic
systems are designed with certain elasticity capabilities in mind, enabling run-time
reconfiguration. Thus, the first crucial step in obtaining such systems is analyzing
how the services offered by particular cloud providers influence the designed/envisioned
elasticity of the systems using them. This leads to the challenging question on how to
quantify the elasticity of these services to ensure that they meet the system’s elasticity
requirements. Elasticity appears at run-time, through dynamic system reconfiguration
depending on certain requirements. For elastic systems it is crucial to select the cloud
services providing the necessary elasticity capabilities. This selection takes place not
only when deploying an elastic system, but also during run-time system reconfiguration
through allocation/deallocation of new service instances. The service selection must
consider the system’s elasticity. For example, one should avoid selecting a service which
must be reserved for 1 year, when service instances are to be created/destroyed hourly.
Although several platforms allow a developer to model elastic systems, they are often
limited to the exact specification of the used cloud services [22, 23], without analyzing
their elasticity. Currently, a system developer has to manually search through cloud
providers, and select services for the system s/he needs to construct, without support in
evaluating if their elasticity capabilities are suitable for the designed system elasticity.

In the rest of this chapter we provide a mechanism for quantifying the elasticity
capabilities of cloud services and recommend services for elastic systems based on their
elasticity. The mechanism can be incorporated in different phases of the elastic system’s
development. To this end, we define an Elasticity Quantification function for quantifying
the elasticity of cloud services. Based on the quantification function and multi-level system
requirements over cost, quality, and resources, we provide algorithms and a platform
for aiding in the construction of elastic systems. The platform recommends system
deployment configurations and cloud services, based on the desired system elasticity.

In this chapter we make the following contributions:

• a model for describing elasticity capabilities of cloud offered services and multi-level
elasticity requirements of cloud systems

• the concept of elasticity quantification and algorithms for evaluating the elasticity
of cloud services

• platform for recommending suitable system deployment configurations w.r.t. elas-
ticity requirements, to be used by system developers, automatic cloud service
composition tools, or elasticity controllers

4.2 Roadmap
The rest of this chapter is structured as follows. Section 4.3 expands the motivation and
approach. Section 4.4 discusses elasticity quantification of cloud services. Section 4.5
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Figure 4.1: Constructing elastic systems using cloud services

introduces the algorithms for recommending configurations of elastic systems made from
cloud services. Section 4.6 presents our prototype platform for solving the aforementioned
issue, and validates it through experiments on building the mentioned elastic DaaS
system. Section 4.7 concludes the chapter.

4.3 Motivation and approach

To understand the challenges in constructing the Data-as-a-Service (DaaS) elastic system
presented in Chapter 3, we must consider that cloud systems can be constructed from
custom software running on top of or along a set of used cloud services. Such services
can range from the most basic IaaS offerings such as VMs, storage, or network, to SaaS
offerings such as message queues, or even business analytics offerings. Thus, our DaaS
system can be built from several cloud services, from basic IaaS VM services, to SaaS
offerings for data storage, and a message oriented middleware for events notifications.
In this scenario we assume the units of the Local Processing Topology are not deployed
in the cloud, and instead run on IoT gateways located closer to the IoT sensors. Thus,
in the rest of the chapter we focus on the cloud-based part of the DaaS, the Event
Processing and Data End topologies. To develop the DaaS, using current approaches
such as introduced by Patiniotakis et al. [64] and Kamateri et al. [65], a developer has
to manually investigate all services offered by various cloud providers, and evaluate
if their elasticity capabilities provide the required elasticity control options. Then, a
developer can use existing design and modeling tools such as Winery [22] or c-Eclipse [66]
to design and deploy the DaaS on cloud infrastructures. However, manually selecting
each service needed for constructing the DaaS is laborious, complex, and error prone.

To address the aforementioned issues and reduce the complexity in constructing
elastic cloud systems, we design a cloud system construction process (Figure 4.1) having
the following phases:

• The elasticity capabilities of services from different cloud providers are captured
and modeled. The capabilities are used in determining if the analyzed cloud services
provide support for the designed system elasticity (indicated by 1©)
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• The system requirements in terms of performance, resources, and cost are captured.
The requirements are used in determining if the analyzed cloud services offer the
required system functionality 2©)

• We define an elasticity quantification function for evaluating cloud services’ support
for the envisioned system elasticity. The function is used in ordering cloud services
after their elasticity, i.e., after their cost, resources, or performance elasticity
(indicated by 3©)

• Based on the quantification function, we apply algorithms for recommending system
configurations composed of cloud services. The configurations are generated in
software-interpretable deployment description formats to be used by existing cloud
deployment tools (indicated by 4©)

4.4 Quantifying elasticity of cloud services

4.4.1 Modeling elasticity capabilities of cloud services

Elasticity capabilities of a cloud service define how its cost, quality, and resources can be
configured during its life-cycle. This determines the available control options for particular
service properties during its instantiation and run-time. Following the multi-dimensional
principle of elasticity defined by Dustdar et al. [15], we define elasticity capabilities
of a service as configuration possibilities with respect to cost, quality, resources, and
associations with other services, and the dependencies among them. Thus, an elasticity
capability defines what resource, cost, quality or associations among services can be
created. The elasticity capability also specifies when the service can be reconfigured, such
as during instantiation or run time, and how often. By studying main cloud providers,
such as Amazon EC221, Rackspace22, HPCloud23, and Windows Azure24, and from
other studies [6], we noticed that similar cloud services can have different available
configurations at different phases of their life-cycle. The available configurations for a
cloud service can depend either on its combination with other services, or on the cloud
provider offering it. For example, certain Amazon EC2 VM types can only be used in
conjunction with Amazon EBS storage service, while others can be instantiated and used
standalone. Therefore, the elasticity capabilities of both individual and associations of
services are crucial in providing a base for evaluating which services are suitable for a
particular system’s elasticity. Thus, in the following we aim to understand and model the
elasticity capabilities of cloud services and their dependencies, and quantify the elasticity
of cloud services to support the development of elastic cloud systems.

To evaluate if a cloud service provides the necessary elasticity capabilities for the
envisioned run-time elasticity control, we need to capture when we can use an elasticity

21http://aws.amazon.com
22http://www.rackspace.com
23http://www.hpcloud.com/
24http://azure.microsoft.com/en-us/
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Figure 4.2: Representing elasticity capabilities of cloud services

capability (elasticity phase). Further, we must capture how often can the capability
be invoked (volatility), and if the service can be used standalone or not (dependency
type). Most existing cloud services representation models capture resources and quality
properties, such as defined by et Goncalves al. [67] and Villegas et al. [29]. We start
from such common representation models, and focus on enriching them with elasticity
capabilities (Figure 4.2).

We define an Elasticity Capability having an elasticityPhase, specifying if it can
be invoked during the service’s Instantiation-Time, Run-Time, or Both. The elasticity
dimension associated to the capability is defined by the elasticityDim property, and is
one of Cost, Quality, Resource, or Service Associations. The dimension can be used in
analyzing which "type" of elasticity a service supports. Cost elasticity implies the service
has multiple cost options under which it can be used. E.g., in Amazon EC2 there are
multiple VM cost options, Spot, On Demand, Reserved, but not all available to all VM
types. Resources elasticity indicates the service has multiple resource configurations
between which a service user can choose when creating a service instance. E.g., choosing
between a x64 and x86 CPU architecture for a VM type. Quality elasticity, similar to
resource elasticity, indicates the service can be used under multiple quality configurations.
E.g., instantiating an Amazon EBS storage service with different level of IO performance.
Finally, service association elasticity indicates the service can be used in conjunction
with other cloud services. E.g, only certain VM types in Amazon EC2 provide support
the Amazon ECB storage service.

As one capability might indicate multiple configuration possibilities, the elasticity
capability has a set of Elasticity Dependency instances. An ElasticityDependency specifies
to which Cost, Quality, Resource, or Service a cloud service can be associated using the
to property. Volatility is the most important dependency property, defining its minimum
"usage" time, determining the frequency at which the dependency can be allocated/deal-
located for the service (E.g., hourly, or monthly), and thus influencing the service’s
elasticity. For example, a service having dependencies which can be allocated/deallocated
hourly is more elastic than one with dependencies which can be reconfigured only on a
monthly basis. We describe if a dependency is Mandatory, or Optional using the type
property. Mandatory dependencies decrease the elasticity of a service by requiring for the
dependency to be always allocated with the service, reducing its usage flexibility. This
model provides a base for evaluating if services’ configuration options are appropriate for
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Figure 4.3: Representing requirements for elastic systems

particular system’s elasticity control.

4.4.2 Representing requirements for elastic systems

Using the previous elasticity capabilities model, towards supporting the development
of elastic systems, we provide a customizable function for quantifying the elasticity of
cloud services. The function is to be used in recommending services best suited to the
expected system run-time elasticity control. For this we must understand and model
requirements, run-time properties, and service selection strategies. Different stakeholders
might have different perspectives over a system. Using our platform, requirements can
be specified at different system levels, according to the model defined by Copil et al. [5]
and presented in Chapter 2.7. An elastic system is composed of units, logically grouped
in topologies (Figure 4.3).

Elasticity of a system appears at run-time, through dynamic reconfiguration with
respect to system requirements. Thus, describing and analyzing the expected run-time
properties of the system is crucial in discovering services that support the expected
behavior. Through Runtime Elasticity Properties, we capture the expected run-time
behavior of a system using Volatility and Dynamism. Volatility is applied in recommending
services with suitable capabilities for the expected unit usage time. Dynamism describes
the number of units expected to be allocated/deallocated within a time period in a time
interval. For example, we can describe a system unit which uses its instances on average
one hour (volatility), and allocates/deallocates 10 instances within 5 minutes every hour
(dynamism).

Depending on its purpose, a system might require different elasticity control strategies
over its units, topologies, or whole system, such as maximizing performance for a
unit, and quality for another. Thus, for selecting services which support the required
control, we employ Services Selection Strategies. We first define Elasticity-based selection
strategies, which are used to order and select cloud offered services based on their elasticity
capabilities. These strategies are crucial in considering the elasticity capabilities of cloud
services when building systems. We define five Elasticity-based strategies: Max {Overall,
Cost, Quality, Resource, Service Association} Elasticity, ordering cloud services based on
their particular elasticity dimensions.

While cloud services must support elasticity control, they must also fulfill a set of
resource, performance, and cost requirements, as any other system. Thus, we consider
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such requirements as requirements expressed over the cloud services’ properties, and
introduce Property-based strategies: Max {Fulfilled Requirements, Quality, Resources},
and Min Cost. Multiple different strategies can be specified for each system unit, topology,
or whole system, covering all potential system requirements.

For using property-based service ordering strategies, we need to evaluate requirements
over those properties. To this end, Requirements specify the cost, quality and resources re-
quired by the system, and are represented as functions of form felReq(constraint, g(time)).
The constraint is a function depending on the cost, quality or resource metric on
which the requirement is made, the type of constraint (E.g., greater than) and the
requested values (hconstraint(metric, operator, value)). A time parameter enables the
specification of time-varying requirements.

4.4.3 Function for quantifying elasticity of cloud services

Different systems can have different elasticity requirements, depending on system re-
quirements, and designed elasticity control mechanisms. For example, one system might
require more cost control options, and thus cost elasticity would be more important than
quality elasticity. Thus, we provide a set of customizable coefficients for quantifying
the elasticity of services, which can be tailored to suit particular system requirements.
Quantifying elasticity enables an ordering of services after their elasticity, crucial in
recommending services for system configurations.

One important factor in evaluating elasticity of cloud services is the phase during
the service’s lifetime when elasticity capabilities are active: instantiation-time, run-
time, or both. Let vi, vr, and vir be user-defined values representing the importance
of Instantiation-Time, Run-Time, and Both phases, respectively, for a particular
system; vi, vr, vir ∈ [0, 1]. Thus, we define an ElPhaseQ coefficient for quantifying the
phase in which a service can exhibit elasticity, as follows:

ElPhaseQ(phase) =


vi if phase = Instantiation-Time
vr if phase = Run-Time
vir if phase = Both

(4.1)

Typically, to obtain system configurations with maximum elasticity, vr should be at least
twice as vi, and vir their sum (E.g., vi = 0.33, vr = 0.67, and vir = 1).

Dependencies between services increase (optional dependencies) or decrease (manda-
tory dependencies) the service’s elasticity. Let vo, vm be user-defined values representing
the "importance" of Optional and Mandatory dependencies, respectively, for a par-
ticular system; vo, vm ∈ [−1, 1]. We define an ElDepQ for quantifying the elasticity
dependencies between services as follows:

ElDepQ(dependency) =
{
vo if dependency.type = Optional
vm if dependency.type = Mandatory

(4.2)
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Typically, to obtain system configurations with maximum elasticity, vo and vm should
have the same value but opposite signs, with vm < 0 as mandatory dependencies decrease
elasticity (E.g., vo = 1, and vm = −1).

The Volatility of a cloud service heavily influences the service’s elasticity, and
might have different importance for different systems. Thus, we consider a custom
VolatilityQ coefficient for quantifying volatility, supplied as to suit particular system
requirements. Typically, VolatilityQ would have the form
numberOfAllowedReconfigurations/timeInterval.

Based on the above coefficients, we quantify a single elasticity capability of a cloud
service as ECQ:

ECQ(C) = ElPhaseQ(C.phase)
∗ Σdep∈C.dependencies V olatilityQ(dep) ∗ ElDepQ(dep) (4.3)

where C is an elasticity capability, C.phase its elasticity phase, C.dependencies its
elasticity dependencies, and dep a single elasticity dependency.

For evaluating the overall elasticity of a cloud service S over all elasticity dimen-
sions (Cost, Quality, Resource, and Services Associations) we define an Elasticity
Quantification (EQ) function as:

EQ(S) = ΣD∈cost,quality,res,servicesAssoc WD ∗ ΣC∈D.capabilities ECQ(C) (4.4)

where D is an elasticity dimension, WD ∈ [0, 1] is its weight, and C is an elasticity
capability of S on dimension D. Different WD coefficients for each dimension D can be
set to suit particular system requirements. For example, a system interested only in cost
elasticity would set Wcost to 1, and the other WD coefficients to 0.

4.5 Recommending cloud services for elastic systems
In this section we introduce algorithms for recommending system deployment configura-
tions based on the elasticity capabilities of existing cloud services. As one service could
be instantiated under different configurations depending on its elasticity capabilities, Al-
gorithm 1 evaluates an entity (service, quality, cost, or resource) with respect to a system
unit requirements. The algorithm’s output is a set of potential configurations for the en-
tity’s elasticity dependencies (entityCfgs), depending on the requirements they fulfill.
One cloud service might have different mandatory and optional elasticity dependencies on
other entities with different properties (E.g., different cost). Thus, after the algorithm eval-
uates the static properties of the cloud service in Line 2 (EvalRequirements function),
it continues by applying the GetEntityCfgs function recursively over its mandatory
dependencies (must be used). Lines 3-6 determines the unit requirements fulfilled by
the dependencies’ configuration options, and add these options to the entityCfgs.
Next, the complete set of possible configurations for the entity is generated. To this end,
the potential configurations of the entity’s optional dependencies are evaluated against
requirements (Lines 7-10), and their configurations added to the entityCfgs.
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Algorithm 1 Evaluating cloud service against system unit requirements
Input: entity,requirements; Output: entityCfgs
1: function GetEntityCfgs(entity, requirements)
2: fulfilledReqs = EvalRequirements(entity, requirements)
3: for d in entity.elasticityCapabilities.mandatoryDependencies do
4: capabilityCfgs = GetEntityCfgs(d,requirements)
5: entityCfgs.addCapabilityCfgs(d, capabilityCfgs)
6: end for
7: for d in entity.elasticityCapabilities.optionalDependencies do
8: capabilityCfgs = GetEntityCfgs(d,requirements)
9: entityCfgs.addCapabilityCfgs(d, capabilityCfgs)

10: end for
11: return entityCfgs
12: end function

Algorithm 2 Elasticity-driven system configurations generation
Input: system, services, cfgsCount
Output: cfgs - set of possible system configurations
1: function RecommendSystemCfgs(system, services, cfgsCount)
2: unitsRequirements = MapRequirements(system.requirements)
3: for unit in unitsRequirements do
4: EQ = system.eqFunction(unit)
5: potentialCfgs = []
6: for s in services do
7: entityCfgs = GetEntityCfgs(s,unit.reqs)
8: if entityCfgs != empty then
9: potentialCfgs.add(entityCfgs, EQ(entityCfgs))

10: end if
11: end for
12: cfgs.add(unit, potentialCfgs.getBest(cfgsCount, system.strategies(unit)))
13: end for
14: return cfgs
15: end function

Algorithm 2 applies elasticity quantification functions to generate a user-specified
number of decreasingly elastic system deployment configurations. Input system de-
scription contains requirements, run-time properties, service selection strategies, and
custom EQ functions defined at any system level, from the whole system, to topologies
and units, which are mapped to system units (Line 2). If conflicts are detected between
levels, the lower level is applied. For each unit, its elasticity quantification function
EQ is retrieved from the supplied system description (Line 4). Then, for each cloud
service, GetEntityCfgs (Algorithm 1) is called, obtaining a set of potential service
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Figure 4.4: QUELLE platform

configurations entityCfgs (Lines 6-11). The EQ function for the system unit is used
to quantify the elasticity of the potential service configurations from entityCfgs (Line
9). Finally, supplied unit strategies system.strategies(unit) are applied sequen-
tially in recommending from potentialCfgs the best cfgsCount decreasingly elastic
configurations, according to their elasticity quantification (Line 12).

Quantifying elasticity towards selecting cloud services ensures that during the system
execution, an elasticity controller has the appropriate control options to be enforced
depending on system requirements and run-time behavior.

4.6 Evaluation

4.6.1 Prototype

The functions, algorithms and models described in Sections 4.4 and 4.5 are implemented
and integrated in QUELLE, a platform25(Figure 4.4) for quantifying the elasticity of
cloud services. For managing the Cloud Services Model, a graph-based Neo4j26 Cloud
Services Persistence Adapter was implemented. The population of the cloud services’
repository (see Figure 4.1) should ideally be an automatic process, with the increase
in cloud providers’ description APIs. However, currently we rely on available custom
description services and HTML parsing to populate our model. For enabling QUELLE’s
integration in existing software engineering processes, system requirements constructed

25Prototype and supplement materials: http://tuwiendsg.github.io/QUELLE/
26http://www.neo4j.org/
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Figure 4.5: Elasticity quantification and evaluation of Amazon EC2 IaaS services

by third party tools are submitted as XML, and configuration recommendations returned
as XML for easy processing. Currently, a TOSCA27-based output is generated using
QUELLE’s output formatter, which can be visualized using Winery [22].

4.6.2 Evaluating elasticity of Amazon EC2 cloud services

Most cloud providers still offer only basic cloud services, with reduced configuration
and combination options, and implicitly, reduced elasticity. This limits our options of
using real cloud services in our experiments. Thus, we focus on a single cloud provider,
Amazon EC2, from which we model 29 IaaS VM cloud services, each with various
elasticity capabilities, describing a total of 253 possible service configurations, sufficient
for showcasing our elasticity quantification functions. Additionally, Amazon provides
services for cloud storage (EBS), Monitoring, and Messaging, each with individual
elasticity capabilities, sufficient for building the DaaS.

As the desired elasticity might vary depending on the stakeholder, our platform
provides a customizable quantification function relying on user-defined VolatilityQ,
ElDepQ, and ElPhaseQ coefficients. As the user is interested in building an elas-
tic system, s/he expects services to be allocated/deallocated often. As Amazon bills
its services minimum on a hourly basis, the supplied volatility quantification coeffi-
cient is VolatilityQ = 1/minLifetime (Hours), generating a volatility of 1 for
hourly reserved services, and 1 / (365 * 24) for yearly reserved services. As the user
wants to use services which have as few dependencies on other services, s/he sup-
plies an elasticity dependency quantification coefficient ElDepQ = {1 if Optional,
and -1 if Mandatory}. Finally, the supplied elasticity phase quantification coef-
ficient is ElPhaseQ = {0.33 if Instantiation-Time, 0.67 if Run-Time,
1 if Both}, and all elasticity dimensions have same weight coefficient Wd=1.

27https://www.oasis-open.org/committees/tosca
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Figure 4.6: Multi-level DaaS elasticity requirements

The result of quantifying the elasticity of Amazon EC228 services over cost, quality, re-
sources, and services associations is depicted in Figure 4.5. As the defined VolatilityQ
function quantifies close to zero all options of reserving a service for 1 or 3 years, the
cost elasticity of most services, such as m3.large is quantified close to 2. Amazon
EC2 services which have optional dependencies have additional cost and quality control
options. Thus, Amazon EC2 IaaS services which can be associated with an EBS service
have their service association elasticity quantified to ≥ 1, and cost elasticity quantified
to ' 3.

4.6.3 Recommending system configurations

We aim to accelerate the development of elastic systems by recommending deployment
configurations using cloud services providing the required elasticity capabilities. Thus,
we have defined a four phase recommendation process (Figure 4.1): (i) processing
system requirements, (ii) quantifying elasticity of cloud services, (iii) recommending
elasticity-driven system configurations, and (iv) exporting system configurations as cloud
deployment descriptor.

As a user might not initially know the complete system requirements, we apply an
iterative approach. The recommended configurations are analyzed by a user, the system

28Services’ description accurate at time of writing
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Service Selection Recommended Quality Elasticity Cost Elasticity
Strategies IaaS Services Avg. Min. Max. Avg. Min. Max.

Max Requirements 23 0.6 0 1 2.39 1.0004 3.0004
+ Quality Elasticity 14 1 1 1 2.78 2.004 3.0004
+ Cost Elasticity 11 1 1 1 3.0004 3.0004 3.0004
+ Minimum Cost 1 1 1 1 3.0004 3.0004 3.0004

Table 4.2: Iterative services selection for Event Processing unit

requirements refined accordingly, and resubmitted. First, mixed system requirements
w.r.t. cost, resource and quality, are described by the user in a top-down fashion, from the
entire system to individual units. At the system level, a requirement for a Management
as a Service (MaaS) service with a monitoring frequency of 5 minutes is specified, which
will be applied to all system’s units. As the units belonging to the Event Processing
Topology level perform sensitive computation, a MaaS requirement for a service with
1 minute monitoring frequency is specified, overriding the 5 minutes frequency system
level requirement. The Event Processing Unit requires an IaaS service with over 2 CPU
cores and 5 GB of RAM, and a Moderate network performance. In turn, the Messaging
Unit requires a PaaS service of type messaging. Similarly, the Data End Unit requires an
IaaS service providing at least 10 GB of RAM, I/O Performance of at least 1000 IOps
together with at least a Moderate network performance.

While in the following we focus on IaaS services as they are most abundant and
exhibit most elasticity in current cloud computing, we can apply the same approach for
PaaS and MaaS requirements, as shown at the end of this section.

First iteration: The user submits to QUELLE system requirements, without
elasticity-based selection strategies. Focusing on the Event Processing Unit, the user
sees that 23 IaaS services were recommended (Table 4.2), with varying quality and cost
elasticity. Second iteration: The user adds a Quality Elasticity strategy, maximizing
the quality options available at run-time. In turn, 14 services are recommended, with
quality elasticity equal to 1, as the only modeled quality elasticity capability is an EBS
Optimized storage option. Third iteration: The user adds a Cost Elasticity strategy,
ensuring the system can switch between as many pricing schemes as possible during
run-time. Thus, 11 services are recommended, with cost elasticity of ' 3, due to supplied
VolatilityQ function evaluating yearly cost schemes ' 0, and hourly pricing schemes
(E.g., Spot) to 1. Fourth iteration: The user also wants Minimum Cost, reducing
the recommended services to 1, fulfilling most resource requirements, having maximum
quality and cost elasticity, and minimum cost.

In Table 4.3 we showcase the importance of quantifying elasticity capabilities of cloud
services in system construction. To this end we compare the usage of Elasticity-based
service selection strategies with only using the Property-based strategies Minimum Cost
and Max Requirements. With the later strategies, requirements are matched and services
with minimum cost selected in a traditional fashion, recommending 3 services with varying
quality and cost elasticity. Applying Elasticity-based strategies, the system’s elasticity is
increased, recommending an m1.xlarge service with more control options over its quality

40



Service Selection Recommended Avg. Quality Avg. Cost
Strategies IaaS Services Elasticity Elasticity

Max Requirements + Minimum Cost m3.large, m1.large 0.33 2.33
m2.xlarge

Max Requirements + Quality Elasticity m1.xlarge 1 3.0004
+ Cost Elasticity + Minimum Cost

Table 4.3: Elasticity versus property-based service selection for Event Processing unit

Figure 4.7: Complete configuration recommendation for Event Processing topology

and cost elasticity dimensions.
Processing all IaaS, PaaS, and MaaS requirements refined above, our prototype

generates a TOSCA descriptor containing the recommended system configuration. For
the Event Processing Topology, the recommendation is visualized in (Figure 4.7) using
Winery [22], a TOSCA modeling and visualization tool. The recommendation contains
an m1.large IaaS service fulfilling the resource and network performance quality require-
ments with associated SpotCost, due the Minimum Cost strategy. A SaaS Monitoring
Service with a High Monitoring Frequency is recommended for the monitoring frequency
requirement, and a MaaS SimpleQueue service for the message oriented middleware
requirements. In a similar fashion, recommendations are provided for the Data End
Topology.

Applying the same process for the Data End Topology, our prototype generates a
solution containing three cloud services (Figure 4.8). The recommendation for the data
end contains as for the event processing unit, am1.xlarge IaaS service fulfilling the resource
and network performance quality requirements. In addition, due to I/O performance
requirements, a IaaS EBS is recommended, with associated High I/O Performance and
High I/O Performance Cost. Further, a Monitoring Service is recommended, but, as the
data end does not require high monitoring frequency as the event processing, a Standard
Monitoring Frequency option is recommended for the service, with associated cost option.
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Figure 4.8: Complete configuration recommendation for Data End topology

In these experiments we highlighted that, using our platform, a system developer does
not have to search through all cloud providers for services providing necessary elasticity,
and thus, accelerates the system’s time to deployment.

4.7 Conclusion
In this chapter we have focused on reducing the complexity of building elastic systems
running in the cloud. We highlighted that selecting the suitable cloud services, their
particular configuration options, and associated cost, is not trivial, especially when
considering complex systems. Complex systems can have units using multiple services,
with potentially divergent requirements over the same type of service. Addressing this
issue, we introduced models, algorithms and supporting platform for analyzing and
quantifying the elasticity capabilities of cloud services, and dependencies among them.
We have shown that our approach significantly reduces this complexity, by providing a
set of system configuration recommendations. The recommendations consider both the
system’s requirements over resources, performance, and cost, and the envisioned system
elasticity.
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CHAPTER 5
Monitoring Elastic Cloud Systems

In the previous chapter we have focused on designing elastic systems from proprietary
software and a mix of different types of cloud services, from IaaS to PaaS. In this chapter
we focus on monitoring such elastic systems, deployed and running in cloud.

5.1 Introduction
Elastic systems can re-configure individual components/units at run-time, due to various
requirements. As discussed in Chapter 2, such run-time re-configuration usually focuses on:
(i) vertical scaling, adding/removing resources to existing components; or (ii) horizontal
scaling, duplicating components/instantiating more instances of the same service type.
This generates two main issues from monitoring point of view. First, as system units using
virtual machines or other types of cloud services can dynamically appear/disappear at
run-time, a monitoring system for elastic systems must be able to dynamically start/stop
collecting metrics from individual cloud services, especially virtual machines. Secondly,
as virtual machines themselves are allocated/deallocated dynamically at run-time, if
monitoring information is associated only with each virtual machine, it will be lost
during scale-in operations which deallocate the used virtual machines. While existing
monitoring systems such as JCatascopia [68], Ganglia29 or Nagios30 can address the first
issue, addressing the structure volatility issue requires a different approach in managing
collected monitoring information.

In this chapter we make the following contributions:

• a model for representing multi-level monitored information of cloud systems
28The contributions from this chapter where originally presented in [33] and [1].
28In the original content ([33] and [1]) we refer to cloud systems as cloud services. For consistency, in

this chapter we maintain the terminology used up to this point in the thesis.
29http://ganglia.sourceforge.net/
30https://www.nagios.org/
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• a domain-specific language for constructing multi-level monitoring snapshots for
elastic systems

• a platform for monitoring elastic cloud systems, to be used by system developers,
owners, or elasticity controllers

5.2 Roadmap

The rest of this chapter is structured as follows. Section 5.3 expands the motivation.
Section 5.4 introduces our approach on classifying monitoring information according to the
multidimensional elasticity principle defined by Dustdar et al. [15]. Section 5.4.1 presents
our model for capturing multi-level information about elastic systems. Section 5.4.2
introduces our approach and language for custom composition of monitoring information
in higher level information. Section 5.4.3 describes our prototype exposing elasticity
analytics as a service, and evaluates our approach by monitoring the elastic DaaS system
introduced in Chapter 3. Section 5.4.6 concludes the chapter.

5.3 Motivation

In this scenario we assume the units of the Local Processing Topology of the
elastic DaaS are not deployed in the cloud, and instead run on IoT gateways located
closer to the IoT sensors. Thus, in the rest of the chapter we focus on the cloud-based
part of the DaaS, the Event Processing and Data End topologies.

In general, we have can see cloud systems from three perspectives, focusing on:
(i) design-time, (ii) run-time, (iii) or the virtual infrastructure. The perspectives are
exemplified for the DaaS in Figure 5.1. The design-time perspective contains the system
structure, i.e., the whole cloud system with its topologies and units, and the system
requirements. At this level usually requirements are defined over the system’s performance,
resource usage or cost, either for the whole system or individual system components.
Thus, this level is also crucial for elasticity controllers such as [5, 69], which reason if the
whole system or particular components are fulfilling their requirements. If needed, the
controllers enforce actions to bring the system back in a state with all requirements fulfilled.
The second perspective focuses on the run-time structure of the system, capturing not
only the system components, but also their instances and used cloud services. This view
is crucial for controlling the elastic system through existing cloud system management
tools such as SALSA [70] or Slipstream31. Such tools can dinamically allocate/deallocate
system units, provisioning and managing the required cloud services. Lastly, the virtual
infrastructure perspective is concerned with the cloud services used by the elastic system.
This view is especially used by monitoring tools such as JCatascopia [68], Ganglia32 or

31http://sixsq.com/products/slipstream/
32http://ganglia.sourceforge.net/
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Figure 5.1: Elastic cloud system views

Nagios33, which monitor the virtual machines, without considering the structure of the
system running on top of them.

Existing cloud monitoring systems either focus on the virtual infrastructure perspec-
tive, or on the design time view (monitoring system level metrics, such as overall response
time). Thus, they fail to associate the monitoring information retrieved from the virtual
infrastructure to the system structure. This makes it difficult for elasticity controllers to
perform higher level reasoning. To aid in the process of controlling elastic systems, we
first collect monitoring information, map it to the system structure, and extract from it
higher level information used to characterize the system’s behavior. While analyzing the
behavior of a monitored element (E.g., load balancer or data node) is already challenging,
we cannot just deal with single instances. We must focus on understanding both the
behavior of individual instances, and the overall behavior of the system components. For
example, for an Event Processing Unit we need to understand if a particular unit
instance has too high response time. But we also need to understand if on average, the
response time of the unit is within acceptable boundaries. Further, depending on the
system requirements, if requirements are defined over entire topologies (e.g, over a whole
data end) or the entire system, the overall behavior of the topology or system must be
determined, to provide support to elasticity controllers in their decision making.

45



Figure 5.2: Elasticity dimensions

5.4 Multi-dimensional Elasticity

In order to support and analyze the multi-dimensional elasticity of cloud systems, we
categorize monitoring data in three dimensions: Cost, Quality, and Resource (Figure 5.2).
These categories are sufficient for capturing data about any monitored element (E.g.,
system topology or unit) within a cloud system, and can be used for understanding
the behavior of that system. For an elastic cloud system, the Quality dimension would
capture metrics characterizing the system’s quality, such as response time or throughput.
The Cost dimension would in turn capture all metrics influencing cost, such as cost of
using the virtual machine (E.g., hourly or monthly cost), cost of data transferred over
the network, or separate cost of using storage (E.g., cost per each 10 GB of stored data).
The Resource dimension metrics capture resource usage and allocation information, such
as the amount of data transferred over the network.

Conceptually, to capture monitoring data associated with a monitored element at a
specific time t, we define the monitoring snapshot, ms, containing monitoring data about
Cost, Quality and Resource elasticity dimensions (Eq. 5.1).

ms = {(〈ci〉, 〈qj〉, 〈rk〉, t)| ci ∈ Cost, qj ∈ Quality, rk ∈ Resource} (5.1)

5.4.1 Elastic cloud system model

Structuring monitoring information and describing the behavior of elastic systems from
all three previously mentioned perspectives requires appropriate models. To this end we
leverage the model defined in [5] and presented in Chapter 2.7. We represent a cloud
system composed of topologies, each topology containing system units, deployed on virtual
machines belonging to virtual clusters (Figure 5.3). A System Unit is a functional element

33https://www.nagios.org/

46

https://www.nagios.org/


Figure 5.3: Elastic cloud system monitoring model

of a cloud system, which can run inside a virtual machine, either standalone or along
other system units. A System Topology does not have an equivalent in the virtual cloud
infrastructure, instead it logically groups related system units, e.g., a Data Controller
and Data Nodes belonging to a distributed Data End. Conceptually, a system topology
would contain all system units that have a related logical role. E.g., a data end topology
containing all units having a role in providing data storage and management services.
Instances of units run on Virtual Machines belonging to Virtual Clusters (E.g., network
clusters, or different cloud providers). Thus, our model can represent cloud systems
which are composed of other sub-systems (system topologies), deployed in federated cloud
environments or in different availability zones (virtual clusters). System components are
considered Monitored Elements, and each can have associated a list of metrics.

The structure of the cloud system is defined by users or elasticity controllers, and
used for structuring monitoring information and analyzing the system’s behavior. For
easy integration with other tools, we use an XML-based representation format for
describing the system’s structure (Listing 5.1). Each monitored element is defined
with the MonitoredElement tag, and contains 2 mandatory properties, id, and
level, and an optional name property. The level indicates if the monitored ele-
ment is one of VM, VIRTUAL_CLUSTER, SYSTEM_UNIT, SYSTEM_TOPOLOGY, or
SYSTEM. Each monitored element can contain zero or more monitored elements with
a lower level. For the VM level, the id is the IP of each virtual machine. At run-time,
this description would be managed by a controller or human, and updated with the
added/removed virtual machines that run system units instances, after each scaling
in/out action.

Listing 5.1: XML-based dependency model
1 <MonitoredElement id=" " l e v e l="SYSTEM">
2 <MonitoredElement id=" " l e v e l="SYSTEM_TOPOLOGY">
3 <MonitoredElement id=" " l e v e l="SYSTEM_UNIT">
4 <MonitoredElement id=" 10 . x . x . x " l e v e l="VM" />
5 </MonitoredElement>
6 . . .
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5.4.2 Cross-layered metric composition

Existing tools for monitoring cloud systems such as Ganglia34 or JCatascopia [68] are
agnostic of the system’s logical structure and associate monitoring information with
the individual virtual machines running system units’ instances. As one unit can have
multiple instances distributed among different VMs, associating information with VMs
does not give any indicator about the overall behavior of the system units, information
crucial for elasticity controllers. Therefore, to obtain a complete view over the cloud
system behavior, from low level metrics to higher ones, we compose monitoring snapshots
following the previously presented cloud system model (Figure 5.3).

Metric composition language

Obtaining higher level information from collected monitoring snapshots through snapshot
composition introduces the problem of combining/aggregating metrics. Depending on
the type of metrics, a valid composition of two metrics might involve different operations,
depending on the metric type and the information which must be obtained through
composition. For example, one would average response time for a system unit to get an
indicator of the system’s performance, but sum up its throughput to get overall number of
performed operations. Depending on particular requirements, beside total throughput of
a system unit, one might also require the maximum throughout achieved by each instance
of the unit, to understand the maximum achievable performance. Thus, for providing
support for extracting custom information about the behavior of the system, we define
an XML-based domain-specific language. The language describes metric composition
rules as a cascading sequence of operations which apply one or more operators over
one or more operands. An operand can be a static value or a metric reference, and
the set of available operations is presented in Table 5.1. The language grammar is
shown in Listing 5.2, and the XML format for specifying rules is shown in Listing 5.3.
For each rule there are at least one reference metric, one resulting metric, and several
operations. The reference metric is used as a base for computing the composite metric,
and it is searched in the metrics of the target monitored element children having the
TargetMonitoredElementLevel. The resulting metric defines the name and unit of the
composite metric being created. Defining the composition rules requires domain specific
knowledge, such as knowing which operation is appropriate for which metric (E.g., SUM

34http://ganglia.sourceforge.net/

Listing 5.2: Metric composition rules grammar
r u l e := operat i on "=>" metr ic
opera t i on := operator " ( " operand { " , " operand } " ) "
operator := "+ " | " − " | " ∗ " | " / " | "AVG" | "SUM" | "MAX" | "MIN" | " SET " | "KEEP"
operand := metr ic | number | s t r i n g
metr ic := name , measurementUnit , [ monitoredElementID ] ,

monitoredElementLevel
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Operation Description
+, - Adds/Subtracts a value (metric or static) to another value (from another

operation or metric)
*, / Multiplies/Divides a value (from another operation or metric) with another

value (metric or static)
AVG Computes the average value of a sequence of metric values
SUM Computes the sum of a sequence of metric values

MAX, MIN Extracts the maximum/minimum value from a sequence of metric values
SET Assigns a static value to a metric
KEEP Returns unchanged a metric value or the result of another operation

Table 5.1: Metric composition operations

Listing 5.3: XML-based metric composition rule format
1 <CompositionRule TargetMonitoredElementLevel="LEVEL">
2 <TargetMonitoredElementID>id</TargetMonitoredElementID>
3 <ResultingMetric type="METRIC_TYPE"
4 measurementUnit=" text " name=" text " />
5 <Operation MetricSourceMonitoredElementLevel="LEVEL"
6 type="OPERATION␣TYPE">
7 <ReferenceMetric type="METRIC_TYPE"
8 measurementUnit=" text " name=" text " />
9 <SourceMonitoredElementID>ID</SourceMonitoredElementID>
10 </Operation>
11 </CompositionRule>

for cost, AVG for response time). The metric XML representation of the composition
rules can also be produced by using a fluent API implemented based on the grammar
described in Listing 5.2.

Monitoring information structuring and enrichment

Monitoring snapshots capture metrics, but not the same as elasticity requirements defined
by the user, or at the same level. For example, a monitoring snapshot might include
throughput per VM, while the elasticity requirements might target numberOfClients
over the whole system. Using the above metric composition language, metrics collected
from the VM level can be associated to the upper system levels. Moreover, new met-
rics can be created, according to individual system requirements, applying composi-
tion operations, as follows. First, the system level for which the new metric is created
should be specified using the TargetMonitoredElementLevel, and can be one of VM,
VIRTUAL_CLUSTER, SYSTEM_UNIT, SYSTEM_TOPOLOGY, or SYSTEM, according
to the system dependency model. Optionally, if the rule should be applied on a specific
monitored element, (a unit, a topology or the whole system), its ID can be specified with
the TargetMonitoredElementID tag. Information about the new metric to be cre-
ated must be specified using the ResultingMetric tag, including name, measurement
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Figure 5.4: Multi-level metric composition process

unit, and type (one of elasticity dimensions). Then, a cascading list of operations can be
defined, each operation having a type, defined in Table 5.1, and a ReferenceMetric,
indicating the metric over which the operation should be applied. If the operation should
be applied over metrics from a specific monitored element, its ID can be specified with
the SourceMonitoredElementID tag.

Metric composition process

The metric composition process has as aim to create from lower level metrics, higher level
ones, offering information better suited for providing support to system elasticity control
(Figure 5.4). Algorithm 3 describes our process of constructing multi-level monitoring
snapshots by applying custom metric composition rules. The rules are used to structure
monitoring information, compute cost, and/or enrich monitoring information. The
BuildMonitoringSnapshot function applies metric composition rules bottom-up on the
system’s monitored elements, first at the virtual machine level, then at system unit,
system topology and system levels, creating the cross-layer monitored snapshot. Each
composition rule is applied over its target monitored elements belonging to that specific
level (Lines 6-12). The ApplyCompositionRule function handles the application of metric
composition rules. First, if a rule specifies a specific monitored element from which the
metric values are to be collected, the element is considered as the source for monitored
values. Otherwise, monitored values are extracted from the element itself, or from all
children of the element which belong to the rule’s metric source level (Line 19). From all
monitored element data sources, the source metric is searched, and its values collected
(Lines 20-22). Over the collected values, the rule’s composition operations are applied
sequentially, the output of a previous operation acting as input for the next (Lines 24-26).
The output of the last operation is returned as result of the metric composition process.
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Algorithm 3 Cross-layered metric composition algorithm
Input: system,compositionRules,monitoring
Output: snapshot - multi layer monitoring snapshot
1: function BuildMonitoringSnapshot(system, compositionRules, monitoring)
2: snapshot = createInitialSnapshot(monitoring)
3: for all elementLevel in [VM,SystemUnit, SystemTopology, System] do
4: levelElements = system.getElementsOnLevel(elementLevel)
5: levelRules = compositionRules.getRulesOnLevel(elementLevel)
6: for all rule in levelRules do
7: targetElements = getRuleTargets(rule, levelElements)
8: for all element in targetElements do
9: compositionValue= ApplyCompositionRule(rule, element, snapshot)

10: snapshot.addNewMetric(rule.metric,compositionValue, element)
11: end for
12: end for
13: end for
14: return snapshot
15: end function
16:
17: function ApplyCompositionRule(rule, monitoredElement, snapshot)
18: sourceElements = getSourceElements(rule.metric, monitoredElement)
19: values = []
20: for all element in sourceElements do
21: values.add(snapshot.getMetricValue(element,rule.metric))
22: end for
23: for all operation in rule.operations do
24: values = operation.apply(values)
25: end for

return values
26: end function

5.4.3 Evaluation

In this section we apply the introduced mechanism for composing monitoring information
on the DaaS system presented in Chapter 3. In this scenario we assume the units of the
Local Processing Topology are not deployed in the cloud, and instead run on IoT
gateways located closer to the IoT sensors. Thus, in the rest of the chapter we focus on
the cloud-based part of the DaaS, the Event Processing and Data End topologies.
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Figure 5.5: MELA overview

5.4.4 Prototype: MELA Elasticity Analytics as a Service

Based on our concepts in Section 5.4.2, we develop MELA35, an elasticity analytics as a
service (Figure 5.5). MELA contains a core MELA Service, and Data Collector nodes. A
Data Collector node is a customizable component that gathers, from existing monitoring
solutions, data associated with a dependency model level or monitored element (E.g.,
responseTime or throughput for the Event Processing system topology), and
sends it for processing and analysis to the MELA Service.

Monitoring data from existing monitoring systems is usually associated with a sin-
gle level, e.g., virtual infrastructure, system topology or system unit. An important
MELA feature is the linking of these levels, implying a configuration step using the Con-
figuration API, defining the system structure, the metrics composition rules to be applied
for the monitored elements at each level, and the system requirements. The Multi-level
Monitoring Snapshot Construction component uses the system specific configuration to
provide composite monitoring snapshots from data collected from the Data Collector
nodes. Using the Multi-level Monitoring Information API, the MELA user can retrieve
the elasticity space and pathway for the whole system, or specific monitored elements.

As MELA is designed to analyze elastic systems which can allocate/deallocate virtual
machines depending on elasticity requirements, it provides two mechanisms for managing
this volatile system structure. The default mechanism is to delegate this responsibility

35Prototype and supplement materials at http://tuwiendsg.github.io/MELA/

52

http://tuwiendsg.github.io/MELA/


Figure 5.6: MELA visualization of multi-level monitoring data with complex metric
composition

to the MELA user (cloud system developer/provider or controller), which, in this, case
uses the MELA API to update the system structure after a new virtual machine running
system units has been added or removed. The second behavior is to let MELA detect
automatically when a new virtual machine has been added or removed to which system
units the machines belong. This behavior is achieved by reporting the system units’ ids
hosted by a virtual machine using a virtual machine metric, and configuring MELA to
use the metric to automatically update the system structure.

As we expect different cloud systems to use a wide range of monitoring mechanisms,
we provide to MELA several adapters for collecting monitoring information. A poll-based
adapter is implemented for Ganglia36 and JCatascopia [68]. Additionally, a generic
push-based adapter is provided, exposing a queue for receiving data.

5.4.5 Monitoring elastic cloud systems

Using the cross-layered metric composition mechanism, the MELA user (system develop-
er/provider) starts by defining a composition rule for extracting the cost of running the
system in cloud, customizing the template provided in Listing 5.3. The overall system

36http://ganglia.sourceforge.net/
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Figure 5.7: Complex metric composition for scaled out Data Node

cost metric is defined as a composition of the cost of running each virtual machine,
assumed 0.12 $ per VM per hour. MELA allows metric composition rules to be defined
for any service level with data from any of its children level elements. The MELA user
composes the cost of each Service Topology instance by multiplying the cost per virtual
machine with the sum of the numberOfVMs (number of service unit instances) of each
Service Unit belonging to the Service Topology. As the service provider is interested
in the overall cost per client, additional metric composition rules are defined. A rule
propagates the activeConnections metric from the virtual machines running the
LoadBalancer system unit to the System Unit level as a renamed numberOfClients
metric. The new numberOfClients metric is further propagated to the system unit’s
parent Event Processing topology. Obtaining the cost/client/h, a Cloud System
level rule sums the cost of the children System Topology instances, and divides it by
the numberOfClients metric from the EventProcessing topology. Figure 5.6 shows
with thick lines how, using MELA, such a complex cost/client/h metric is composed
and evaluated by combining available metrics with additional cost information.

To monitor the performance of the DaaS, the MELA user extracts for the Data
Controller unit its writeLatency by averaging the write_latency reported by all
its instances running in virtual machines. For the Event Processing unit the average
responseTime and total throughput are extracted from its virtual machines, and
propagated to the Event Processing topology. Additionally, a metric composition rule is
defined to extract the average cpuUsage for all system units’ instances. Figure 5.6 shows
a snapshot of the DaaS monitoring information enriched using MELA. The snapshot
contains the simple and composite metrics created through custom metric composition.

To better understand the importance of metric composition, Figure 5.7 depicts the
Data End topology, with 7 running instances of the Data Node. In this case, metric
composition provides the means of obtaining a higher level view over the overall behavior
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of the Data Node, in this case at the service unit level. Without metric composition,
we could only reason at the level of individual Data Node instance, VMs in this case.
When considering that elastic systems can have multiple elastic units, reasoning only at
the instance level significantly hinders the control of such services, as the controller is not
able to understand the contribution of each instance to the overall behavior of the unit.

5.4.6 Conclusions

In this chapter we have focused on monitoring elastic systems, dealing with their structure
volatility. We have introduced a model, technique and supporting platform for composing
system metrics, towards obtaining the required information at the needed level. The
information is to be used in run-time control of elastic systems. We applied our approach
for composing metrics collected from multiple instances of the same unit in order to
obtain the overall unit behavior. We further aggregated the unit metrics into topology
and system level ones, providing a multi-level behavioral view over the behavior of the
monitored elastic system.

We have shown that by providing higher-level composite metrics, such as
cost/client/h, structured after the system structure in topologies and units, MELA
facilitates system behavior analysis. The introduced language for specifying metric
composition rules enables users to apply our approach to any monitoring information
and elastic system, maximizing the approach’s applicability. Using data retrieved from
MELA, system controllers can analyze the system’s behavior at multiple levels, from
simple virtual infrastructure metrics, to system-level metrics composed of other simple
or composite metrics.
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CHAPTER 6
Analyzing Elasticity Space and

Pathway of Cloud Systems

In this chapter we focus on analyzing the behavior of running elastic cloud systems,
towards providing support for refining the system’s elasticity requirements. The analysis
is based on the multi-level monitoring information retrieved using the approach introduced
in the previous chapter.

6.1 Introduction

As described in Chapter 3, elastic systems can be reconfigured during run-time, according
to certain requirements with respect to their resource usage, performance, or cost.
However, to achieve a system behavior in which all system requirements are fulfilled, one
cannot assume that individual system units can be controlled individually. For example,
if a requirement over the response time of the DaaS system from Chapter 3 is violated,
there might be a need to reconfigure both the event processing topology, and the data end.
The whole set of requirements over all system’s units might not be known in advance.
This can be due to the system’s complexity, limited user knowledge of the overall system
behavior, or other factors. Furthermore, it might not be clear how to determine the
proper cost and quality indicators and their boundaries, and utilize them for optimizing
and controlling the system during run-time.

Capturing, describing and analyzing the behavior of elastic cloud systems is crucial
both for developers and software controllers. Developers build and optimize elastic
systems. In turn, software controllers change the systems’ topology at run-time, enforcing
user-defined elasticity requirements. Thus, elasticity controllers such as introduced by

36The contributions from this chapter where originally presented in [33] and [1].
36In the original content ([33] and [1]) we refer to cloud systems as cloud services. For consistency, in

this chapter we maintain the terminology used up to this point in the thesis.
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Copil et al. [5] or Ming et al. [69] need a mechanism for extracting elasticity characteristics.
Such a mechanism should be used to refine user-defined elasticity requirements and predict
the service behavior, leading to better service control and quality.

In this chapter we make the following contributions:

• the concepts of elasticity space and elasticity pathway for analyzing elasticity of
cloud systems at multiple levels

• customizable mechanisms for extracting runtime boundaries over the cloud system’s
behavior while fulfilling user-defined elasticity requirements

6.2 Roadmap

The rest of this chapter is structured as follows. Section 6.3 presents the motivation and
research problems. Section 6.4 introduces the concepts of elasticity space and pathway,
together with our approach for analyzing elasticity of cloud systems. Section 6.5 presents
our prototype and experiments. Section 6.6 concludes the chapter.

6.3 Motivation

The whole set of requirements over all system’s units might not be known, due to the
system complexity, limited system knowledge of the overall system, or other factors.
Furthermore, it might not be clear how to determine the proper cost and quality indicators
and their boundaries, and utilize them for optimizing and controlling the system at
runtime. Considering the DaaS introduced in Chapter 3, while the required system
response time is known, there is no knowledge about what data latency is required from
the data end to ensure the required response time. Existing monitoring and analysis
tools can present metrics related to performance, cost, or resource usage of the whole
cloud system as in Singh et al. [71], or Trihinas et al. [68], or from the underlying
virtual infrastructure as in Wang et al. [72] and Shicong et al [73]. However, they do not
provide a cross-layered, multi-level system elasticity behavior picture, thus hindering the
discovery of the cause for system requirements violations. Managing elastic cloud systems
would benefit from a multi-level monitoring and analysis view, which provides means for
reasoning about the system behavior at multiple levels. In particular, we argue that in
order to understand elastic cloud systems, we need to investigate new concepts that can
be used to characterize the cloud system’s elastic behavior based on multi-dimensional
monitoring data.

In this chapter we introduce the concepts of elasticity space and elasticity pathway,
and apply them in evaluating elasticity of cloud systems. First, the elasticity space is used
in capturing the behavior of elastic cloud systems. Second, the elasticity pathway charac-
terizes the systems’ evolution through the elasticity space, and can be used to predict
the systems’ behavior. We apply our technique for determining the elasticity space
and pathway over the multi-level monitoring snapshots constructed with the approach
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presented in the previous chapter. We extend MELA with elasticity space and elasticity
pathway analysis. We allow cloud system developers, providers and automatic controllers
to analyze their system behavior from the whole system level to the underlying virtual
infrastructure, extracting characteristics and providing crucial insights in their elasticity.

6.4 Elasticity Space and Pathway of Cloud Systems
In this section we introduce the concepts of elasticity space and elasticity pathway for
analyzing and characterizing the behavior of elastic cloud systems.

6.4.1 Elasticity Boundary

Monitoring snapshots capture metrics, but do not provide information about boundaries
over the metric’s values in which user-defined elasticity requirements are fulfilled. There-
fore, in order to analyze the behavior of elastic a monitored element, we represent metric
boundaries using the elasticity boundary concept:

Definition 1 An elasticity boundary describes the upper and lower bound over a set of
metrics for a monitored element.

Conceptually, an elasticity boundary, elBoundary, is defined as follows:

elBoundary = (〈cu
i , c
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i)〉, 〈qu
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l
k)〉) (6.1)

where cu
i and cl

i denote the upper bound and the lower bound of metric ci ∈ Cost,
respectively, qu

j and ql
j for qj ∈ Quality, and ru

k and rl
k for ri ∈ Resource.

We use the elasticity boundary to capture both user-defined elasticity requirements
(user-defined elasticity boundary), and detected/evaluated elasticity requirements (eval-
uated elasticity boundary). Using the user-defined elasticity boundary we represent
requirements over the user’s elastic system’s cost, quality and resources. The user-defined
requirements expressed as boundaries indicate the ci, gj , rk under which the cloud system
should behave. From these parameters, we evaluate collected monitoring information and
determine elasticity boundaries for all monitored elements of a cloud system. Thus, from
a set of supplied requirements for a particular monitored element (E.g., cloud system and
system unit), we determine the requirements for all cloud system monitored elements.
Thus, we provide information to control the elasticity from the whole elastic system to
individual units.

6.4.2 Elasticity Space

We start with a given set of monitoring snapshots and user-defined elasticity boundaries.
For supporting run-time control of system’s elasticity, we need to understand when a
monitored element is in elastic behavior. We must further understand if its behavior
violates the user-defined elasticity boundaries, and if we can characterize the system
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behavior using some specific ”pathways”. Naturally, we expect that the meaning of
“elasticity” will depend on the types of monitored elements, their runtime settings and
requirements. To this end, we define the concept of elasticity space to determine and
evaluate when a monitored element is in elastic behavior:

Definition 2 An elasticity space captures all runtime metrics described in the user-
defined elasticity boundary and all other metrics influencing the user-defined elasticity
boundary.

To respect its elasticity boundaries, an elastic system must scale out/in its cost, quality
and resources at run-time. By allocating/deallocating cloud services, the system copes
with variations in pricing, quality and load. We mean by elastic behavior the behavior of
a system which is dynamically reconfigured at run-time by software controllers. Formally,
let felSpace be an elasticity space function, and MS = {msi} be the set of monitoring
snapshots. Then an elasticity space elSpace can be defined as: elSpace = felSpace(MS).
A felSpace has to perform two steps: (i) detect when an elastic behavior starts and stops,
and (ii) extract monitoring data describing the system’s behavior while respecting the
user-defined elasticity boundaries. In principle, there could be several elasticity space
functions, which can be developed for and applied to different types of monitored elements.
E.g., to specific types of system units, topologies, or the whole system.

An elasticity space function is designed to extract useful information about the overall
behavior of the cloud system when elasticity requirements are fulfilled. For example,
given a user-defined elasticity requirement over cost/client/h, an elasticity space might
contain only the throughput and cost/VM/h metrics from which the cost/client/h
targeted by requirements can be determined. It would not include metrics that have
no impact on the cost/client/h. Thus, using the elasticity space, one can determine
the elasticity boundaries to be enforced on the metrics that influence the user-defined
elasticity requirements. Moreover, one can analyze if the behavior of an elastic cloud
system is within expected user-defined elasticity boundaries by checking the elasticity
boundaries of its elasticity space. For example, the upper elasticity boundary of the
cost/client/h from the determined elasticity space could have a different value than
expected by the user.

6.4.3 Elasticity Pathway

While the elasticity space enables cloud system elasticity analysis, it does not provide in-
sight into relationships and dependencies between metrics influencing the elastic behavior
over time. For example, throughput and cost/VM/h might or might not follow a linear
relationship. In order to characterize the elastic behavior from specific views/perspectives
over a cloud system, we define the concept of elasticity pathway.

Definition 3 Given a specific view on metrics V = {m1,m2, · · · ,mn}, an elasticity
pathway for V characterizes the elasticity relationship among mi over the time.
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Figure 6.1: Elasticity Space and Pathway concepts

A view over a set of metrics is a subset of metrics chosen for analysis, which potentially
influence the user-defined requirements. For example, given a user-defined elasticity
requirement over cost/client/h, a view could contain the throughput and cost/VM/h
metrics from which the cost/client/h can be derived. An elasticity pathway function
is designed to perform a complex evaluation of the cloud system behavior, determining
characteristics that can be used to predict the system’s behavior.

Formally, an elasticity pathway elP tw is determined by a function felP tw which
takes as input an elasticity space elSpace and a view V over the space’s metrics, and
returns another function describing behavioral patterns or characteristics of the monitored
element: elP tw = g(V ) = felP tw(elSpace, V ). Various elasticity pathway functions can
be defined over the elasticity space, enabling space analysis from multiple perspectives.
As the elasticity pathway function is applied over an elasticity space, the quality of the
determined elasticity pathway is heavily influenced by the data in the elasticity space.

The elasticity space and elasticity pathway concepts are conceptually visualized in
Figure 6.1. Informally, one can consider the elasticity space as the set of value ranges
taken by each system metric, and the pathway as the "way" the space changes, i.e., the
value ranges change, as time passes during the system’s run-time.

6.4.4 Multi-dimensional Elasticity Space and Pathway analysis

Based on the metric composition mechanism defined in Chapter 5, we provide an analysis
mechanism for determining the elasticity space and pathway at different system levels,
providing a multi-level decomposition of the cloud system behavior. The behavior decom-
position is beneficial to elasticity controllers. Controllers can use our approach to detect
which monitored element from which system dependency model level violates system
requirements, and reason in terms of metrics located at that particular level. Providing a

61



Algorithm 4 Evaluating elasticity space
Input: system, requirements, metricCompositionRules, monitoringData
1: function EvaluateElasticitySpace(system, requirements, metricComposition-

Rules, monitoringData)
2: snapshot = BuildMonitoringSnapshot(system, metricCompositionRules, monitor-

ingData)
3: elasticitySpace = getElasticitySpaceLearnedSoFar()
4: for all snapshot in monSnapshot.elements do
5: elementElSpace = elasticitySpace.get(snapshot.element)
6: elementRequirements = systemRequirements.get(snapshot.element)
7: if snapshot.fulfillsAll(elementRequirements) then
8: elementElSpace = elementElSpace.updateElasticityBoundaries(snapshot)
9: else

10: elementElSpace = elementElSpace.store(snapshot)
11: end if
12: end for
13: return elasticitySpace
14: end function

complete view over the behavior of cloud system enables system providers/developers
and software controllers to reason on the same system using separate perspectives.

Elasticity Space analysis

Algorithm 4 describes the process of evaluating the elasticity space, in which custom
elasticity space functions can be used to update the elasticity boundaries
(updateElasticityBoundaries function). The system structure, elasticity require-
ments, metric composition rules, and collected monitoring data are received as input. For
each new collected monitoring snapshot, the cross-layered enriched monitoring snapshot
is computed by applying metric composition rules in Line 2. For each system monitored
element, the elasticity space is evaluated by updating the elasticity boundaries. Lines 7-11
check if all elasticity requirements are fulfilled, and if yes, the upper and lower elasticity
boundaries are updated. If not, the monitoring snapshot is stored for future reference.

We understand that analyzing and controlling elasticity of cloud systems can be a
continuous process in which elasticity requirements or even the system structure are
refined during run-time. We define the following changes that have impact on the process
of determining the elasticity space and boundaries: (i) metric composition rules, (ii)
elasticity requirements, and (iii) system structure. In the first case, we support addition
and removal of metrics by altering the supplied composition rules, the elasticity space
evaluation continuing by enriching the space determined so far using the metrics available
in each new monitoring snapshot. In the latter 2 cases, the whole elasticity space is
recomputed based on historical monitoring information, updating all elasticity boundaries.

In the current prototype, we implement an elasticity space function which determines
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as space boundaries the maximum and minimum encountered metric values when the
user-defined elasticity requirements are respected. The function uses as input the user-
defined elasticity requirements for the whole cloud system, and is applied for all system
topologies, units, and unit instances.

Elasticity Pathway analysis

Based on an elasticity space, elasticity pathway functions can be defined for each system
unit, topology, or whole system, enabling custom analysis of system behavior. Based on
the determined elasticity space, for the supplied monitored element, we apply its elas-
ticity pathway functions. We analyze its behavior and extract behavioral characteristics,
using Algorithm 5.

For the current prototype, we adapt as elasticity pathway function an unsupervised
behavior learning technique using self-organizing maps (SOMs) presented by [74], and
classify monitoring snapshots by their encounter rate in DOMINANT, NON-DOMINANT,
and RARE. Such a pathway is important for understanding if the regular behavior of the
system respects user-defined elasticity requirements. As SOMs are unsupervised neural
networks that map multi-dimensional spaces into low dimensional ones, they are suitable
for classifying monitored snapshots, as snapshots can contain many different metrics.
Each SOM’s neuron value is derived from its snapshots. Each monitoring snapshot to
be classified is mapped to the group from which it has the smallest distance. With
each new snapshot, the group and its SOM neighbors are updated using the function
Vnew(group) = Vold(group) + A ∗ N(group)(V (snapshot) − Vold(group)), where A is a
discount factor, and N(group) is a neighborhood function determining the degree with
which a group value is updated. In unsupervised learning the initialization of the system
is important. As we classify groups after the number of snapshots mapped to them,
we do not initialize the SOM with random values, as it might generate groups which
are close together in value but far away in terms of location in the SOM. In such a
case similar snapshots might be assigned to separate groups, diluting the number of
snapshot mapped to a SOM entry. Thus, we initialize the SOM with snapshot groups
having all metrics equal to 0, and rely on its self-adaptive nature to map the input
data. We use a neighborhood function of 1 for the directly targeted group and of

Algorithm 5 Evaluating elasticity pathway
Input: elasticitySpace, systemElement
1: function EvaluateElasticityPathways(elasticitySpace, monitoredElement)
2: elPathwayFunctions = getPathwayFunctionsFor(monitoredElement)
3: elPathways = []
4: for all elPathwayFunction in elPathwayFunctions do
5: elPathways.push(elPathwayFunction(elasticitySpace))
6: end for
7: return elPathways
8: end function
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1/neighbourLevel/neighboursCount for its neighbors. Updating the neighbors creates
and updates new groups, mapping the input data better. The discount learning factor is
1/neighbourLevel, the neighborhood is 2 and the map size is 10× 10. A filtering step
merges groups with same value, consolidating the monitored snapshots. The average
absolute deviation AAD (the average of the absolute deviations) of the number of
snapshots mapped per group is computed. Using the average absolute deviation (AAD),
a group is RARE if its deviation is negative and its absolute higher than the AAD,
DOMINANT if its deviation is higher than the AAD, and NON-DOMINANT otherwise.
While finer grained classes can be defined, we argue that these are enough to give insight
in the behavior of elastic cloud systems.

6.5 Evaluation

In this section we analyze the elasticity space and pathway of the DaaS system presented
in Chapter 3. In this scenario, the DaaS provider wants to implement a 2.5$ monthly
subscription for each system client, i.e., per sensor. Using various tools, the system
developer describes the DaaS and its elasticity requirements. Then, the developer deploys
the system, which is then automatically controlled at run-time. MELA has two important
roles in this evaluation. First, it provides to the developer the ability to monitor and
analyze the system’s elasticity behavior (via metrics) at each system level. This is used by
the developer to understand the elasticity of the system, and verify if such a pricing scheme
is sustainable. Secondly, it provides structured and enriched monitoring information to
be used by elasticity controllers in managing elastic systems during run-time.

As elasticity is triggered by performance/cost requirements, we simulate a load from
real sensor data, following a Gaussian distribution of M2M sensors connecting to the
DaaS, starting from 50 sensors per second, increasing to 350, and then decreasing again,
each request requiring between 1 and 10 operations. The system VMs were deployed on
our OpenStack37 cloud. In this evaluation we use the MELA Data Collector implemented
for Ganglia38. Generic OS level and system specific monitoring data (E.g., clients/h,
throughput, response time) are retrieved using provided and custom Ganglia plug-ins.

6.5.1 Prototype

We extend MELA39 with services for managing and retrieving the elasticity space and
pathway of cloud systems (Figure 6.2). Elasticity space and pathway functions are
managed through the Elasticity Functions Management API. The elasticity space is
determined by the Elasticity Space Analysis MELA component, from which the elasticity
pathway is determined by the Elasticity Pathway Analysis MELA component. Composite
monitoring snapshots together with determined elasticity space are stored in a Monitoring

37http://www.openstack.org/
38http://ganglia.sourceforge.net/
39Prototype and supplement materials at http://tuwiendsg.github.io/MELA/

spaceAndPathwayAnalysisService.html
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Figure 6.2: MELA extended with services for analyzing elasticity space and pathway

& Elasticity Space Snapshots repository. Using the Elasticity Analysis API, the MELA
user can retrieve the elasticity space and pathway for the whole system, or specific
monitored elements.

6.5.2 Analyzing elastic cloud systems using Elasticity Space and
Pathway

The elasticity space is used to determine what are the behavioral boundaries in which
the system fulfills supplied requirements. The elasticity pathway function prototype

Figure 6.3: Cloud system level elasticity pathway
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Figure 6.4: Event Processing topology elasticity space snapshot

groups combination of different metric values as DOMINANT, NON-DOMINANT, and
RARE, according to their encounter rate in the monitoring data. Thus, it determines
the usual behavior of the system and the correlations between the analyzed metrics. In
our scenario, assuming a month of 30 days, the elasticity requirement for the system is a
maximum cost of 0.0034$ per served client per hour. Using MELA, the user determines
what are the elasticity boundaries for all the system topologies and units in which the
cost requirement is respected. The user also determines using MELA the correlations
between the analyzed metrics. Using this information, the MELA user can validate and
refine the system’s elasticity requirements used to control the elasticity of the system.

As the cost boundaries are set by the MELA user, the elasticity pathway of the
system is inspected (Figure 6.3), revealing that the cost/client/h is less than 0.0034$
only in approximate 72% of the encountered situations. This leads to the conclusion that
a pricing scheme of 2.5$ per month per client is not fully sustainable. To find the reason
for this situation, the provider uses the MELA multi-level analysis feature to focus on
the Event Processing Topology.

Figure 6.4 presents a snapshot of the elasticity space for the Event Processing
Topology containing the numberOfClients/h, responseTime, throughput, and
cost/h metrics. The complete space is depicted in Figure 6.5 and thick lines mark
the elasticity space boundaries, i.e. minimum and maximum acceptable values. For the
numberOfClients/h elasticity space dimension (upper left corner), the determined
lower elasticity space boundary is approximately 150, understandable given that the
system uses at least 4 VMs at 0.12$/h (150 multiplied by 0.0034, gives a 0.51$/h). To
learn more about the system topology behavior and its boundaries, the user focuses on
the responseTime dimension (lower right corner), for which MELA determines both a
minimum and maximum boundary. It might seem counter-intuitive to also determine a
minimum boundary, as the user would expect to always want minimum response time.
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Figure 6.5: Event Processing topology elasticity space

However, in this case, this might be as result of underusing the virtual machines, which
is not cost effective. Similarly, a lower boundary was determined for the throughout
dimension (lower left corner). The points of low throughput are consistent with those
of low responseTime, thus strengthening the previous conclusion. By investigating
the elasticity pathway of the Event Processing Topology (Figure 6.6), and summing up
the behavior situations, the user can determine that in approximately 20-30% of the
situations, there is high response time with low number of clients. This might indicate a
potential bottleneck in the system, and a system developer can use this information to
improve the system’s behavior.

The MELA user focuses next on the system units belonging to the DataEnd topology.
The user examines the elasticity space of the DataController system unit by capturing its
writeLatency and cpuUsage (Figure 6.7). For the writeLatency elasticity space
dimension (left side), MELA determined a higher elasticity space boundary, indicating
the maximum latency recorded in which the system respected the cost requirement. For
the cpuUsage dimension there is only a lower elasticity boundary. Investigating the
elasticity pathway of the DataController system unit (Figure 6.8), the MELA user can
determine that in approximately 30% of the encountered situations the cpuUsage was
over 95%, and in around 50% over 90%, indicating a potential bottleneck. However, a
further analysis is needed to understand the complete elasticity behavior of the DaaS
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Figure 6.6: Event Processing topology elasticity pathway

Figure 6.7: Data Controller unit elasticity space

system, by investigating the elasticity space and pathway for the other system elements,
selecting more metrics to be analyzed, and/or refining the elasticity requirements for the
elasticity controller.

The above-mentioned experiments have highlighted the importance and challenges of
monitoring and analyzing the behavior of elastic systems at multiple levels. The elasticity
space is crucial in understanding the elasticity boundaries of cloud systems. In these
experiments, the user can obtain insights regarding what other boundaries the control
mechanism must enforce at different levels in the cloud system. E.g., given the control
mechanism and workload used, the MELA user learned that that it needs at least 148
clients to fulfill the overall cost requirement. Applying the elasticity pathway function,
the user can learn what is the overall behavior of the cloud system. This brings insight
in how does the system behave and what are the dependencies between the system’s
metrics, e.g., responseTime, throughput and numberOfUsers. With this insight,
the user can refine the system’s requirements and resume the analysis process, iteratively
improving the system’s elasticity.
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Figure 6.8: Data Controller unit elasticity pathway

6.6 Conclusions
Elasticity analysis is crucial for cloud system developers and owners in understanding
the behavior of their systems at multiple levels, from individual units to the whole
system. This information can be further used towards developing smarter mechanisms
for controlling their elasticity. This chapter introduced concepts and techniques for
monitoring and analyzing the elasticity of cloud systems. Our approach determines
elasticity boundaries for all system’s elements, evaluating the elasticity space based on
the cross-level metric composition mechanism and user requirements. This brings insight
in the behavior of the system, providing information on how such a system should be
controlled. Applying the elasticity pathway over the elasticity space, a mechanism for
classifying the elasticity behavior of cloud systems was defined, providing insight in the
system’s behavior evolution and acting as a base for predicting it.
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CHAPTER 7
Analyzing Elasticity

Relationships in Elastic Systems

In this chapter we focus on determining the elasticity relationships influencing the
behavior of elastic systems, based on their elasticity space and monitoring information.
Such relationships can be present among system units and topologies, and understanding
them can improve the system’s elasticity control.

7.1 Introduction

Due to the increasing number of available technologies for developing cloud systems, from
hypervisors and virtual containers to platforms, cloud system are becoming more and
more complex. System developers are able to run system units on top of virtual containers
(E.g., Docker40), distributed among virtual machines in different clouds. However, in
such cloud systems, individual system units are typically not behaving independently.
Instead, due to communication dependencies (E.g., unit A sends/retrieves data from unit
B) or run-time control dependencies (E.g., data end re-balancing after scaling), there
exist different relationships between system units, influencing their run-time behavior.

We will refer to such relationships, which affect the run-time elasticity of the system,
as elasticity relationships. Particular relationships can be of interest for particular
stakeholders, including system owners, developers, and elasticity controllers. For example,
a relationship between performance and resource usage could be used by a developer to
estimate the maximum achievable performance before the resource becomes a bottleneck.
Another relationship between cost and performance could indicate how much a system

39The contributions from this chapter where originally presented in [34].
39In the original content ([34]) we refer to cloud systems as cloud services. For consistency, in this

chapter we maintain the terminology used up to this point in the thesis.
40https://www.docker.com/
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owner is expected to pay for certain performance. We have seen that existing tools
for analyzing elasticity of cloud systems focus on individual performance metrics [75].
However, relying only on information provided by these tools, system developers are
unable to discover hidden design issues with future system elasticity, which can be
captured by relationships between apparently unrelated system units. Moreover, current
elasticity controllers can evaluate only the impact of their decisions on individual units,
and are unable to understand how enforcing one elasticity capability on one unit affects
the other units in the system. Thus we analyze and understand if relationships exist
between system units, towards assisting the development and refinement of elastic cloud
systems and controllers.

However, analyzing such relationships is challenging. First, due to the potential
complexity of the system’s software stack, each software layer can introduce different
relationships. Second, due to possible multi-cloud system deployments, the relationships
can vary between different cloud providers. Thus, there is a need to investigate new
concepts and techniques for determining and analyzing elasticity relationships in complex
multi-cloud elastic systems.

To this end, we focus on determining relationships between any of the system’s
performance, cost, and resource usage. For this, we characterize elasticity relationships
of elastic cloud systems, and introduce algorithms to determine them.

In this chapter we make the following contributions:

• we formally define elasticity relationships of cloud systems

• we introduce a mechanism and algorithms for analyzing elasticity relationships
based on system monitoring information

• we implement our approach as a platform for run-time analysis of elasticity rela-
tionships of cloud systems

7.2 Roadmap
The rest of this chapter is structured as follows. Section 7.3 presents the motivation
and approach behind analyzing elasticity relationships of cloud systems. Section 7.4
introduces the concept of elasticity relationships and our approach for analyzing them.
Section 7.5 presents our prototype and evaluation. Section 7.6 concludes the chapter.

7.3 Motivation
Let us consider the Data-as-a-Service (DaaS) elastic cloud system from Chapter 3. At
run-time, an elasticity controller scales the service using these capabilities, according to
elasticity requirements defined over various monitored metrics, e.g., response time
≤ 100 ms for Event Processing unit, and cpu usage ≤ 90 % for Data Node units.
The DaaS provides data storage and exchange services for Machine-to-Machine (M2M)
gateways, such as smart cities or vehicle fleets. Due to data privacy concerns, the DaaS
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Figure 7.1: Elastic multi-cloud data-as-a-service (DaaS)

data end units are hosted in a private cloud, while event processing instances can run
both in private and public cloud providers.

To be able to leverage the DaaS’s elasticity capabilities for achieving user-defined
requirements, we must understand how the behavior of one system unit is affected by the
other units. Thus, we need to determine the elasticity relationships between individual
system units and topologies, to understand how enforcing an elasticity capability on one
unit/topology affects the elasticity of the other units and topologies.

For example, if the event processing end of our system is too loaded, a controller will
scale it out. After the scaling, the data end might not be able to handle the increased
number of requests coming from event processing instances. Thus, the data end could
become in turn a performance bottleneck. Knowing this relationship beforehand would
enable an elasticity controller to preemptively scale the data end, obtaining better system
performance.

From the DaaS’s structure (Figure 7.1) we can assume that elasticity relationships
should exist between units which communicate directly, such as Load Balancer and Event
Processing. However, other relationships might not be so obvious, being generated by
indirect communication. For example, a relationship could exist between Load Balancer
and Data Node, such as the load on the Load Balancer influencing the performance of
the Data Node. Depending on the system, the relationship’s interpretation can also differ,
a relationship between metrics belonging to the same individual unit being potentially
less important than relationships determined between different units.

Elasticity relationships are determined by analyzing the system’s monitoring in-
formation. For exemplifying potential elasticity relationships we consider the DaaS’s
monitoring information structured using our approach in Chapter 5 and depicted in
Figure 7.2. Due to communication dependencies, the DaaS can have several elasticity
relationships (Table 7.1). A relationship could be present between monitored cpuUsage
on the Data Node units, and responseTime of the Event Processing units, indicating if
the data end is a bottleneck or not. Another relationship could exist between throughput
on Event Processing unit, and cpuUsage on Data Controller, indicating what is the
maximum achievable throughput before cpuUsage is too high. While the previous rela-
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Figure 7.2: DaaS with structured monitoring information

Elasticity relationship (element:metric → element:metric)
DataNode: cpuUsage → EventProcessing: responseTime
EventProcessing: throughput → DataController: cpuUsage
LoadBalancer: connectionRate → EventProcessing: throughput
EventProcessing: throughput → DataNode: cpuUsage
DaaS:cost → DataNode: cpuUsage & EventProcessing: responseTime

Table 7.1: Potential DaaS elasticity relationships

tionships are direct, we can also have indirect relationships, such as the connectionRate
on Load Balancer influencing throughput on Event Processing, which in turn influences
cpuUsage on Data Node units. Finally, beside one-to-one relationships, we can also have
many-to-one relationships. For example, if the previous requirements are used to scale
the DaaS, the overall DaaS cost could depend on both requirements’ metrics, cpuUsage
on Data Node, and responseTime of the Event Processing units.

When discussing about elastic cloud systems it is important to consider the differ-
ent stakeholders involved, and their perspectives on elasticity (7.3). Moreover, each
of these stakeholders can have different elasticity boundaries over their perspectives,
i.e. different elasticity requirements. Starting from system level perspective, a System
Administrator would have an Infrastructure-level perspective, viewing elasticity as the
allocation/deallocation of virtual resources (VMs, virtual networks), and would have as
elasticity boundaries infrastructure-level requirements, such as User Quotas or Infras-
tructure Limits. A System Developer would have a Platform-level perspective, viewing
elasticity as reconfiguring, allocating and deallocating system units, and would consider
as elasticity boundaries system-level requirements, such as Requests Queue Size or Data
Processing Units Pool Size. The System Owner in turn would have a Business-level
perspective guided by Budget Constrains, and would consider as elasticity the possibil-
ity of altering business contracts such as Pricing Schemes, Cloud Services Reservation
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Figure 7.3: Elasticity stakeholders and perspectives

Schemes, or Agreed SLAs. Finally, the System Client would consider a system elastic if it
maintains its elasticity boundaries with respect to user-perceived system performance,
such as Perceived Response Time or Data Quality.

Thus, specific stakeholders could be interested in specific relationships. For example,
a DaaS provider might be interested in cost relationships, to better plan their business.
System developers might be interested in performance relationships, which they can use
to adjust the system to eliminate bottlenecks or reduce resource underutilization. Various
parameters of elasticity relationships can further be interpreted by software controllers,
ensuring better automated control decisions. For example, an elasticity controller would
benefit from understanding that after event processing scale-out, the DaaS’s data end
might not be able to handle the increasing number of requests, and thus, will become in
turn a performance bottleneck.

This potential relationship complexity highlights the need of automatically determin-
ing elasticity relationships, and using them to improve the elasticity of complex single
and multi-cloud systems. To be able to leverage the elasticity capabilities of elastic cloud
systems in controlling the system’s elasticity, we must understand how the elasticity of
one system unit is affected by the elasticity of the other system units. It is crucial to
understand how the system elasticity at one perspective influences the elasticity of the
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other perspectives, as to ensure the elasticity boundaries imposed by all stakeholders.
To this end, we need to determine the elasticity relationships between individual system
units and topologies, to understand how enforcing an elasticity capability on one topology
affects the elasticity of the other units and topologies.

Current tools such as JCatascopia [68] or vPerfGuard [76] can show metrics related to
performance, cost, or resource usage of individual system units, or give indicators about
the future evolution of such metrics [77]. However, they do now answer the following
questions crucial for developing elasticity controllers:

• what metrics are involved in elasticity relationships

• what are the functions describing the relationships

• how are the relationships affected by different clouds

To this end, we develop a mechanism for analyzing elasticity relationships of cloud
systems based on the system’s monitored behavior abstracted w.r.t its elasticity require-
ments.

7.4 Analyzing elasticity relationships of cloud systems
In this section we introduce our approach for analyzing elasticity relationships of cloud
systems, towards supporting the development and control of elasticity controllers which
better fulfill user-specified elasticity requirements. Before analyzing such relationships,
we must first understand what an elasticity relationship is. For clarity, the concepts
introduces in this section will be accompanied by examples targeting the DaaS presented
in Chapter 3. We assume a set of elasticity requirements stating a response time ≤
100 ms requirement for the Event Processing, and a CPU usage ≤ 90 % requirement
for the Data Node instances.

7.4.1 Classifying elasticity relationships

Depending on the system’s software stack and cloud deployment, various elasticity
relationships can exist at different software layers between system units. Thus, we must
be able to analyze multiple system types, from simple single-cloud systems, to complex
systems running multiple units in virtual containers distributed among virtual machines
hosted in different clouds. To this end, we use as input the model for representing elastic
cloud systems introduced by Copil et al. [5]. The model describes a cloud system as
composed of system units (i.e. functional blocks) logically grouped in system topologies
(Figure 7.4). Any of the units, topologies, or whole system is considered an Elastic
Element, and each element can have elasticity metrics, requirements, and capabilities.

As we aim to determine elasticity relationships, we expect that ”elasticity” means
different things for different cloud systems and units, according to specific requirements.
To this end, we denote with Elasticity Metric any monitored system metric which can be
used to determine if the system is elastic or not, i.e., has associated elasticity requirements.

76



Figure 7.4: Elastic cloud system

Following the multi-dimensional principle of elasticity introduced by Dustdar et al. [15],
an elasticity metric belongs to one of the following elasticity dimensions: Cost, Quality, or
Resources. Different systems and their units could have different elasticity metrics, such
as response time for an elastic web system, or data access latency for a data repository.

Elastic systems have elasticity requirements associated to elasticity metrics, describing
their desired behavior. Thus, in determining elasticity relationships, we consider such
requirements. We further use the concept of Elasticity Boundary, introduced in Chapter 6,
for representing requirements that bound the values of one or more elasticity metrics.
An Elasticity Boundary has the form ElBoundary(m) = 〈mu,ml)〉, where mu and ml

denote the upper and lower bound over the allowed values of metric m.
Usually, elasticity of cloud systems is driven by quality, cost, resource usage, or a

combination of the three. Moreover, system owners usually view their systems from
a perspective driven by cost, quality, or both. As different elasticity relationships can
exist between different perspectives, we classify relationships after the two fundamental
business dimensions, Cost and Quality, and the three elasticity dimensions, Quality, Cost,
and Resources (Table 7.2). The relationship category is given by the type of monitoring
information used to determine it, different categories being potentially of interest to
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Category Relationship Interested stakeholder Usefulness
Quality dependency Quality→Quality Developer, Controller Indicates potential qual-

ity/performance bottle-
necks

Benefit-Cost Quality→Cost Owner, Developer, Controller Indicates potential re-
source bottlenecks

Resource quality Quality→Resource Owner, Developer Describes expected
quality/performance
when using certain
resources

Cost effectiveness Cost→Quality Owner, Developer Describes expected
quality/performance
under certain cost
scheme

Cost composition Cost→Cost Owner, Developer Describes the cost ele-
ments contributing to
overall system’s cost, in-
dicating potential cost
hot spots

Cost utility Cost→Resource Owner, Developer Indicates potential re-
source bottlenecks un-
der certain cost schemes

Table 7.2: Elasticity relationships

different stakeholders. System developers and elasticity controllers might be interested in
Quality dependency or Resource quality relationships, which they can use to eliminate
bottlenecks or reduce resource underutilization. A DaaS owner might be interested in
cost-related relationships, such as Cost effectiveness, Benefit-Cost dependency, or Cost
composition. Various parameters of elasticity relationships can further be interpreted by
intelligent software controllers, ensuring better control decisions.

7.4.2 Elasticity relationship

Elasticity of cloud systems is driven by elasticity requirements, which specify boundaries
over the system’s metrics. To fulfill these requirements, elastic systems change their
structure and used virtual resources at run-time through reconfiguration actions. Due to
this reconfiguration, we should not determine relationships based on absolute monitored
values, as such relationships might not hold after a reconfiguration. Instead, we determine
relationships based on the system’s behavior with respect to its elasticity boundaries,
which, by abstracting from the absolute monitored values, can be used to describe the
system behavior under different configurations.

Thus, based on the previous model and the elasticity boundary concept, we define an
elasticity relationship, as follows:

Definition 4 An Elasticity relationship between one elastic element and a set of other
elements describes the change in the behavior of the first element w.r.t. its elasticity
boundaries, triggered by a change in the behavior of the other elements.
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Figure 7.5: Elasticity Boundary, Work and Energy concepts

The most important for a relationship is determining the change function. The
function describes how much the value of the elasticity metrics of one element change.
The change of interest is w.r.t., metric’s boundaries, when the values of the metrics
monitored on other elements change. According to the internal processes of each element,
the change function might be might be observed at run-time with a certain delay, and
could attenuate over time.

Considering these issues, we capture an elasticity relationship ElRelationship between
one or more elastic elements from a set, ElasticElements, as a tuple of functions:
ChangeFct, DelayFct and AttenuationFct as follows:

ElRelationship : ElasticElements→ (ChangeFct,DelayFct, AttenuationFct) (7.1)

where ChangeFct is the function describing the change in the metrics of the related
elements as a result of the relationship; DelayFct is the delay with which the ChangeFct
is observed at run-time; AttenuationFct the attenuation function which diminishes the
effect of ChangeFct over time.

We characterize the change function, ChangeFct, as taking for input a set of elastic
elements ElasticElements, and having as output the estimated values for the elasticity
behavior Elasticity of elastic element e:

ChangeFcte : ElasticElements × ... × ElasticElements → Elasticity(e) (7.2)

Relying on the change function, users can estimate the behavior of each element.
Quality, cost problems, or resource bottlenecks could be predicted using the relationships.
Then, actions could be taken to address the predicted problems, and improve the overall
elasticity of the system.

7.4.3 Elasticity relationships analysis

Elasticity of cloud systems is evaluated based on boundaries over the system’s metrics
defined by elasticity requirements. For determining the ChangeFct (Eq. 7.2), we need
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to abstract, from concrete monitored values, the behavior of elastic systems with respect
to their requirements (i.e., elasticity boundaries). To this end we define the concept of
Elasticity Work of a cloud system as the current load on the system with respect to
its elasticity boundaries. To the difference between the current elasticity work and the
elasticity boundaries, we define the Elasticity Energy as the difference between the current
and maximum acceptable load (upper boundary). Using these concepts illustrated for a
single metric in Figure 7.5, we can determine relationships between the elasticity energy
of two systems, and not individual metric values

First, for determining the ChangeFct (Eq. 7.2), we quantify the absolute distance
between the upper and lower elasticity boundaries for each elasticity metric of an elastic
element using the Initial Elasticity Energy (IElEnergy):

IElEnergy(e) = {‖ElBoundary(m)u − ElBoundary(m)l‖
| m ∈ elasticity metrics ∈ {Cost,Quality,Resource}} (7.3)

where ElBoundary(m)u and ElBoundary(m)l denote the upper and lower bound of
elasticity metric m belonging to any of elasticity dimensions Cost, Quality, Resource.

Using the IElEnergy we quantify the load monitored on the elasticity metrics of an
elastic element w.r.t. its initial elasticity energy using the Load Unit, defined as a unit of
usage over the energy of a metric in a time frame. We capture the load on the elasticity
metrics of an element using the Elasticity Work, ElWork, as the percentage of energy
used relative to the initial energy of the element over its metrics:

ElWork(m) = x ∗ LoadUnit(m)
IElEnergy(m) (7.4)

where x is the number of load units used per 1 time unit over which the load is measured,
from the initial energy IElEnergy of metric m.

ElWork is a result of system’s load, or resource usage while idle, based on which we
can compute the instant elasticity energy, ElEnergy, of an element e. ElEnergy is
computed as the difference between the element’s initial energy, normalized to 100, and
the sum of the work done in idle (ElWorkidle), and in load (ElWorkload), as follows :

ElEnergy(e) = 100− ElWorkidle(e)− ElWorkload(e) (7.5)

ElEnergy is used to describe the behavior of the system, a zero energy indicating it
violates its requirements, while one close to the initial energy indicates that it is under-
used. Using ElEnergy for representing the co-domain of the ChangeFct from Eq. 7.2
(Elasticity), from an elasticity relationship between one element ei and a set of other
elements ek, ..., en, we can compute the expected values of ei’s elasticity energy at time t.
To this end we apply the relationship’s ChangeFct over the elasticity energy of metrics
belonging to each related element, as ChangeFcttei

(ElEnergy(ek)t, ..., ElEnergy(en)t),
considering the DelayFct, and AttenuationFct functions. Estimating the energy values
is useful for both system developers and controllers in estimating the system’s behavior.
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We develop Algorithm 6 for determining elasticity relationships. Depending on the
type of relationships we want to determine, we must be able to investigate from only
a subset of metrics, to all collected metrics for all system’s elements. To this end,
our algorithm can be applied for determining for any metric of interest, the elasticity
relationships it has with another set of monitored metrics. For each analyzed elastic
metric, the ComputeElEnergy function (Lines 11-18) applies Eq. 7.5 to compute the
elasticity energy over each metric monitored value, considering the monitored value as
indicator of complete elasticity work, elWork. By applying ComputeElEnergy over
all analyzed metrics (Lines 2-6), we obtain for each metric a time series of elasticity
energy values. The elasticity energy is determined based on the initial elasticity energy,
which can change at run-time due to scaling actions, and energy work, which changes
according to the system load. The energy time series provides us with information about
the elasticity behavior of the analyzed elements over each analyzed element’s metric in
time. Over the elasticity time series, various analysis techniques can be applied (Line 8),
depending on the type of analyzed relationship.

Algorithm 6 Determining elasticity relationships between system metrics
Input: m - elastic metric to discover relationships for
Input: metrics - elasticity metrics potentially related to m
Output: relationship

function AnalyzeELRelationships(m, metrics)
mElEnergy = ComputeElEnergy(m)
metricsElEnergy
for mi in metrics do

metricsElEnergy.add(ComputeElEnergy(mi))
end for

return TimeSeriesAnalysis(mElEnergy, metricsElEnergy)
end function

function ComputeElEnergy(metric)
elEnergyInTime = []
iELEnergy = || m.Boundaryu −m.Boundaryl||
for elWork in metric.monitoredV alues do

elEnergyInTime.add(100 - elW ork
iElEnergy )

end for
return elEnergyInTime
end function
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Figure 7.6: MELA extended with elasticity relationships analysis service

7.5 Evaluation

7.5.1 Prototype

Architecture

For applying our approach from Section 7.4, we extend MELA, a platform for monitoring
and analyzing elastic services, introduced in Chapter 5.4.4. We add a new Elasticity
Relationship Analysis service41 implementing our techniques for analyzing elasticity
relationships (Figure 7.6). MELA already provides an Elasticity Monitoring system
which collects monitoring data, structures and enriches it, and an Elasticity Space Analysis
service which uses this data to determine the system’s elasticity space and boundaries.

While for the determined relationships we require elasticity boundaries over all
cloud system’s metrics for computing the system’s elasticity energy, they might not be
always known. Thus, we use MELA’s Elasticity Space Analysis service for determining
the Elasticity Space of the target system from supplied elasticity requirements and
collected monitoring information. The elasticity space contains the Elasticity Boundaries
determined for all elasticity metrics. Based on the determined boundaries and monitoring
information, our Elasticity Relationships Analysis service uses an array of functions and
techniques to determine the system’s elasticity relationships. The elasticity relationships’
analysis result is evaluated by a Result Evaluator, and an Elasticity Relationships Analysis
Controller orchestrates all components.

41Prototype and supplement materials at http://tuwiendsg.github.io/MELA/
elasticityRelationshipsService.html
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Functions for determining elasticity relationship

For determining the elasticity relationships’ coefficient functions, i.e., energy change,
delay, and attenuation, we apply R42 functions. To use R, we compute from monitoring
information the elasticity energy of each metric at each monitoring interval. Thus we
obtain for each elasticity metric an elasticity energy time series over which we apply R
analysis functions. To obtain a clear view over the usual behavior of the system, we apply
a preprocessing step over the time series and remove outliers determined by R mbox
function. We further determine the delay function DelayFct of an elasticity relationship
by computing the lag between the evaluated energy time series using the cross-covariance
estimation function ccf .

The change function of each relationship is determined using a linear regression
approach, computing the linear correlations between two energy time series with the
linear models fitting function lm available in R. The change function is extracted under
the form ChangeFunction(mdependent) = constant + coeffi ∗ mi + ... + coeffn ∗ mn,
where mdependent is the metric from the relationship whose values can be computed from
the values of the other metrics in the relationship, by adding to the constant, the values
of metrics mx multiplied by their corresponding coefficients, coeffx.

For each determined coefficient of the linear relationship, we check if the estimation
error is one order of magnitude smaller than the coefficient, and if not, we discard the
relationship as inaccurate. Finally, we obtain the change function, with the associated
Adjusted r coefficient of determination, an indicator on how well the extracted relationship
fits the original data, from 0% (no fitting), to 100% (maximum fitting). As linear model
fitting is used to estimate the values of the mdependent metric based on the related metrics,
we evaluate the quality of the estimation. We compute the standard, average, maximum,
and minimum absolute variance based on the absolute difference between the metric’s
estimated values based on the relationship, and the monitored values. The deviation is
reported in terms of concrete values, not percentages, to make it easier to evaluate it
with respect to monitored values.

7.5.2 Experiments

Setup

To evaluate the proposed approach, we deploy the DaaS in both single and multi-cloud
configurations, on our private OpenStack43 cloud, and Flexiant44, a public commercial
cloud, using virtual machines of similar types (1 CPU with 1 GB of RAM). The DaaS is
structured in two logical topologies, (i) Event Processing topology, containing instances
of Event Processing units and a Load Balancer, and (ii) a Data End topology containing
instances of Data Node units and a Data Controller acting as data load balancer. We
implemented a software controllable Load Generator for applying stepwise increasing/de-

42http://www.r-project.org/
43http://www.openstack.org/
44http://www.flexiant.com/
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Figure 7.7: DaaS on private cloud - Determined elasticity relationships graph

creasing load over the DaaS, simulating sensors which connect and send data to the
DaaS.

DaaS deployed on private cloud

First, monitoring information is structured using MELA (Figure 7.2), the metrics con-
sidered important being propagated and associated to each unit and topology. In this
case throughput, averageThroughput, and responseTime for Event Processing units, and
cpuUsage for all units are computed. The metrics are obtained applying an average
or sum operation on the values monitored for each unit instance running in a virtual
machine. Then, the metrics are further propagated and associated to the each unit’s
system topology. From the Load Balancer, connectionRate is also collected. Cost per
system unit is computed by multiplying the assumed virtual machine cost with the
number of machines running instances of each unit.

First, the DaaS is deployed in our private OpenStack-based cloud, with one VM for
each system unit. The Load Generator is used to apply a workload starting with 30
sensors, increasing to 90 in steps of 30, and decreasing to 30 again, according to expected
DaaS usage. Each load step takes around 5 minutes, providing enough monitoring
information during the same load to enable relationship analysis. As a system developer,
we want to understand if there exists any Quality relationship between the throughput
on the Event Processing and the CPU usage of Data End, as to understand if data end
CPU usage could be a bottleneck.

Using our prototype, relationships are determined as linear functions, expressed
under the form metric(t) : element = constant+ coeffi ∗metrici(t) : elementi + .... To
understand resource quality, from the determined relationships (Figure 7.7), we focus
on the relationship between the cpuUsage of the Data End and throughput of the Event
Processing. The determined relationship (Figure 7.8) is a linear equation in which the
elasticity energy of cpuUsage at time t can be estimated by multiplying the throughput’s
energy value at time t with 0.29, and adding 2.86 to the result. Converting the abstract
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Figure 7.8: DaaS on private cloud - Determined Quality relationship

Figure 7.9: DaaS on public cloud - Determined Quality relationship

energy to concrete values with respect to the current elasticity boundaries of the system, we
can estimate cpuUsage based on the throughput’s monitored values. From the relationship,
we estimate that, using this deployment structure, with maximum accepted CPU usage
(from elasticity requirements) of around 90%, the maximum achievable throughput is
(90-2.86)/0.29 ≈ 300 sensors per second. From the relationship’s quality indicators, i.e.,
standard deviation (std.) of 3.19, average (avg.) of 2.64 and maximum (max.) of 10, this
relationship is trustworthy. Thus, when more than 300 sensors are connecting to the
DaaS, the data end should be scaled out.

DaaS deployed on public cloud

We are further interested if the same relationship holds on the public cloud, and analyze the
DaaS deployed on Flexiant public cloud, with same load and number of VMs. Although the
DaaS behavior on the public cloud differs in terms of CPU usage pattern (Figure 7.9), the
same relationship type is detected, cpuUsage(t)=3.47+0.26*throughput(t), with
minor differences both in its coefficients, and quality indicators, increasing the confidence
that the determined relationship is not generated by particular cloud infrastructures, but
instead is present in the system design, and thus, must be considered when controlling
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Figure 7.10: DaaS on multi cloud - Determined Quality relationship

the system’s elasticity on any cloud.

DaaS deployed on multi-cloud

As both evaluations returned similar relationships, we further want to evaluate if the
same relationship holds when the DaaS "bursts" into a public cloud due to elasticity
requirements. To this end, we deploy the DaaS in a multi cloud configuration, with 2
Event Processing instances on each cloud, and the data end deployed on the private cloud.
The load on the DaaS is doubled, as the system is expected to burst in public clouds
only during high load periods.

From the same relationship determined for the multi-cloud scenario (Figure 7.10),
we notice that the coefficient for throughput, 0.18, is smaller than in the single cloud
scenario, and thus, it has less influence on the overall CPU usage. This might indicate
that other relationships between other metrics are influencing the DaaS, and we would
need to investigate also the other determined relationships in order to understand the
DaaS’s behavior.

DaaS deployed on private cloud with elasticity controller

A developer might further want to determine if the previous relationships also hold
during run-time elasticity control. Thus, we deploy the DaaS in the private cloud with
an attached elasticity controller, rSYBL [5]. Due to requirements of responseTime on
Event Processing topology ≤ 100 ms and cpuUsage on Data End ≤ 90%, at run-time,
the controller adds/removes unit instances.

In this scenario, the determined relationship (Figure 7.11) also includes responseTime,
indicating that, during elasticity control, responseTime has a contribution on cpuUsage,
even if small. From the relationship, we notice that the estimated cpuUsage goes over
100% between certain time frames, indicating potential bottlenecks. The estimated
bottlenecks are not encountered in the monitored cpuUsage, due to the controller scaling
out the data end. From the computed quality indicators, i.e., std. deviation of 55, avg. of
40 and max. of 173.6, we notice that due to enforcing elasticity actions, the determined
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Figure 7.11: DaaS with controller - Determined Quality relationship

Determined Elasticity Relationships Relationship quality statistics
Category No. Linear relationship function Adjusted Deviation

r Std Max Min Avg

Resource 1 cpuUsage(t):EventProcessingTopology = 11.7
+ 0.87*cpuUsage(t):DataEndTopology

0.55 20.2 51.5 0 17

quality 2 responseTime(t):EventProcessingTopology =
11.5

+ 2.35*cpu-
Usage(t):DataEndTopology

0.19 122.9 347.9 0.1 93.2

3 cpuUsage(t):LoadBalancerUnit = 4.9 +
0.53*connectionRate(t):LoadBalancerUnit

0.66 63.7 137.2 0.05 52.6

4 cpuUsage(t):EventProcessingUnit = 16.9 +
0.71*connectionRate(t):LoadBalancerUnit

0.4 68.7 187.2 0.01 54

Quality 5 throughput(t):EventProcessingUnit = 2.5 +
0.56* connectionRate(t):LoadBalancerUnit

0.54 41.9 161 0.00 30.6

dependency

Table 7.3: DaaS during run-time control - Determined relationships

relationship is not trustworthy anymore, as an average error of 40% in cpuUsage is too
high. From this evaluation we can conclude that applying elasticity control on cloud
systems changes their internal elasticity relationships. Thus, one should analyze the
elasticity relationships introduced by each controller, to understand if the controller
introduces additional performance or quality problems, or if it removes problematic
relationships such as bottlenecks.

Thus, we investigate other relationships, captured in Table 7.3. The first determined
Resource quality relationships indicates that cpuUsage on the data end influences both
the cpuUsage on the event processing topology (1), and the responseTime (2). This
means cpuUsage must still be considered as a metric influencing the elasticity of the
system. Relationship 3 between the connectionRate reported by the Load balancer and
its cpuUsage can be used by the elasticity controller to decide if and when the load
balancer should be scaled vertically, depending on the number of connected DaaS users.
From the Quality dependency relationship 5, we notice that the achieved throughput can
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be estimated to 60% of the connectionRate monitored on the load balancer, indicating
potential performance problems.

Based on the above elasticity relationships, the DaaS’s elasticity could be improved
by removing indicated potential bottlenecks, and its elasticity controller redesigned to
enforce elasticity actions preemptively, based on estimated values.

7.6 Conclusions
In this chapter we focused on analyzing elasticity relationships in cloud systems, enabling
different stakeholders to understand the behavioral relationships governing the run-
time behavior of complex cloud systems. To this end, we have defined the elasticity
relationships, and developed a mechanism for determining elasticity relationships of cloud
systems. Our approach can be applied to a large array of system configurations, from
single cloud to multi-cloud systems with complex software stacks.

We evaluated our approach on an elastic cloud system in single and multi-cloud
configurations, on both private and public clouds, with and without an elasticity controller.
We highlighted that different controllers and platforms can generate different relationships,
which influence their system’s run-time elasticity in different ways. We have shown that
using our approach, a user can easily discover relationships crucial for understanding how
system units and topologies influence each other at run-time.
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CHAPTER 8
Cost-aware scalability of elastic

systems in public clouds

In the previous chapters we have focused on selecting the appropriate cloud services, and
monitoring and analyzing the behavior of elastic systems running in cloud environments.
Through the experiments done in the previous chapters we have noticed that cost of
elastic systems running in public clouds can be very complex. Cost is the third elasticity
dimension [15], and understanding it is crucial for achieving cost-efficient elastic systems.

In this chapter we address the issue of monitoring costs and analyzing cost efficiency of
elastic systems running in public clouds. To this end, we introduce a model for capturing
the pricing schemes of cloud services. We define algorithms for evaluating costs of elastic
systems, and their cost efficiency. We further analyze which system units are more cost
efficient to scale-in and when, and provide cost-aware scale-in recommendations.

8.1 Introduction

Run-time costs evaluation is required for understanding and controlling elastic systems
running in public clouds [78]. Currently, distributed systems deployed in public clouds
can be built from a combination of proprietary software units, and public cloud ser-
vices. Such services span from virtual infrastructure, to image storage, monitoring, and
platform services such as message queues. Many such systems are elastic, capable of
automatic/manual run-time reconfiguration according to particular requirements [15].
Depending on requirements, such reconfiguration can be through scale-out actions can
allocate additional cloud services to run new instances of systems units. In turn, scale-in
actions reduce the number of used cloud services, reducing the systems’ running costs.

44The contributions from this chapter where originally presented in [35].
44In the original content ([35] we refer to cloud systems as cloud applications. For consistency, in this

chapter we maintain the terminology used up to this point in the thesis.
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While systems are scaled-out due to performance requirements, cost is the main
driver for system scale-in [26, 27]. Cost-aware scalability controllers consider the costs of
different types of cloud services used by the systems, rather than just manipulate the
number of used services [28]. However, cost of elastic systems is complex, some services
having multiple cost elements. For example, a VM service could be billed both every hour,
and separately per each GB of generated I/O. Certain costs can be static, such as costs
for reserving a cloud service [29, 30, 31]. Other costs can be dynamic, such as modifying
the price of using a cloud service depending on the usage. Costs of cloud services can
also depend on particular service combinations. For example, the reservation cost of
an Amazon EC245 VM service depends both on its type, and its storage configuration,
a VM optimized for high I/O costing more than a regular one. Additionally, public
cloud services are usually billed over certain time and/or usage intervals. This means it
might not be cost efficient to deallocate such services at any moment in time, such as
deallocating a cloud service used for 10 minutes but billed for an entire hour.

Due to this cost complexity, developers of elastic systems need support in analyzing
the systems’ costs when running in public clouds. Even more, developing cost-aware
scalability controllers requires detailed costs analysis, for improving the cost efficiency of
the controlled systems. For cost efficiency, one must understand how much a system has
used from a billed usage quota given by its cloud provider. For example, a cloud service
billed per GB of I/O, which has generated 1.5 GB of I/O, can generate another 0.5 GB
at no additional cost. The usage over cloud services employed by different elastic unit
instances can also diverge in time, e.g., after several scaling operations. This can make
different unit instances more/less cost-efficient to deallocate during scale-in operations.
Such cost analysis information is required in cost-aware scalability to avoid deallocating
unused but paid for cloud services, or by the systems, in improving their internal behavior
to take advantage of the unused services.

8.2 Roadmap

The rest of the chapter is structured as follows. Section 8.3 presents the motivation and
approach. Section 8.4 introduces our approach for analyzing cost and cost efficiency of
cloud systems. Section 8.5 presents our prototype and experiments. Section 8.8 concludes
the chapter and summarizes our contributions.

8.3 Motivation and approach

8.3.1 Motivation

It is not cost efficient to scale-in systems running in public clouds at any moment in time.
In private clouds, services can be deallocated when they are no longer needed [79], as
no billing is involved. However, public cloud providers usually bill services over crisp

45http://aws.amazon.com/ec2/
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Figure 8.1: Data-as-a-Service elastic system (Chapter 3) with used cloud services

Figure 8.2: Example of scalable unit costs complexity

time and/or usage intervals, rounding up the service usage. For example, let us consider
two VMs billed per hour and per GB of I/O. If allocated at the same time, and one
generates 0.5 GB, and the second 0.9 GB, it is cost efficient to deallocate the second one,
as the provider would bill each for one GB of I/O. If not allocated at the same time, their
run-time costs must also be considered. Thus, for cost-aware scalability in public clouds,
all costs must be analyzed, ensuring unused but paid for services are not deallocated.

Let us consider the Data-as-a-Service (DaaS) elastic cloud system from Chapter 3.
Sensors send data to the system for processing, and are enabled/disabled depending on
requirements (E.g., expected data frequency). Thus, the DaaS is designed as an elastic
system. Its units are horizontally scaled by allocating/deallocating cloud services at
run-time, to cope with varying demand, and reduce operating costs. The Local Data
Processing, Event Processing, and Data Node units are horizontally scalable,
around which a control mechanism is designed considering system operation costs and
performance. At run-time, each of the system units use cloud services for achieving
desired functionality.

All system’s units use Virtual Machine (VM) and Network cloud services (Fig-
ure 8.1). The scalable units (depicted in pairs in Figure 8.1) use OS Image services for
storing custom OS images used in allocating new units’ instances. The Data End tier’s
units also use high performance Cloud Storage services. Finally, the Sensor Data
Queue and Load Balancer use Public IP services for exposing their functionality
to users running outside the cloud. The system’s control mechanism enforces performance
and costs requirements. It analyzes the system’s state, plans and executes scaling actions
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Figure 8.3: Approach for cost-aware elasticity in public clouds

by adding/removing instances of the system’s scalable units, relying on monitoring and
costs information.

However, costs of elastic systems deployed in public clouds can be very complex. The
costs of a scalable unit, e.g., the Data Node (Figure 8.2), can be composed of: (i) the
cost for each Common service shared by all instances of the unit, e.g., OS image; (ii) and
costs of all the cloud services used by each unit instance, e.g., VM, Storage or Network.
Each cost element can be billed over different cost metrics.

For cost-aware scalability of systems in public clouds, developers and scalability
controllers must understand the system’s costs, posing several research questions:

• "How does each system unit contribute to the overall system’s costs?", i.e., which
unit is more expensive, and over which cost elements.

• "What are the instant system costs?", i.e., the rate at which system units are
spending money.

• "What is the system’s cost efficiency w.r.t., billed costs versus actual system usage?",
allowing controllers to avoid deallocating services paid in full but underused (E.g.,
billed per hour, but used only 10 minutes).

8.3.2 Approach

We focus on aiding developers of elastic systems for public clouds to monitor their costs,
and develop cost-aware scalability controllers. In our work cloud providers are black
boxes, providing APIs for allocating/deallocating services on-demand and querying their
pricing schemes. Developers are using such cloud services to run their systems, and want
to maximize their usage for same or lower costs. The developers have no access to the
inner workings of the clouds they use, interacting only with their user APIs.

For achieving cost-aware scalability in public clouds, in this chapter we develop a
platform for monitoring costs and analyzing cost efficiency of elastic systems (Figure 8.3),
providing:

92



• A model and mechanism for describing and managing complex pricing schemes of
cloud services ( 1©).

• A mechanism for describing elastic cloud systems and their used cloud services
( 2©), leveraging the model defined in [5].

• A mechanism for collecting cost billing metrics from instances of system units
and associating them to the system structure ( 3©). The mechanism relies on our
monitoring approach presented in Chapter 5.

• A service evaluating the total and instant costs for the system, its units, and used
cloud services ( 4©).

• A service evaluating cost efficiency of unit instances, providing insight in how much
was used from what it has been paid for ( 5©), to be used in improving the cost
efficiency of elastic systems.

• A service recommending which system unit instance to be deallocated during
scale-in operations based on desired cost efficiency, providing support for cost-aware
scalability in public clouds ( 6©).

8.4 Evaluating cost and cost efficiency of elastic systems

We first capture the pricing schemes of cloud providers. We then determine and evaluate
the system’s costs, depending on the cloud services used by the system.

8.4.1 Capturing complex cloud pricing schemes

Cloud providers offer multiple types of services. Each of these services can have con-
figuration options offered under different costs. Depending on its type, a cloud service
can have several cost elements, such as cost per reserving the service and cost per using
it, expressed over time and usage. Thus, for cost analysis, we need to manage complex
pricing schemes. To this end, based on previous work [32], we define a cost representation
model centered on the Cost Element concept (Figure 8.4). Each Cost Element has a type,
either service Reservation flat rate (E.g., hourly, monthly), or per Usage. A Cost Element
is defined and computed per billing cycle, over its reservation time (E.g., used hours)
or usage Unit (E.g., 1 GB I/O), over a service Billing Metric (E.g., VM uptime, I/O).
Additionally, cost can be specified in intervals, captured using a costFunction specifying
cost over intervals of measured Units over the billing Metric. Finally, a Cost Element is
applicable if the service is used in a particular configuration, marked by an applicableIf-
ServiceHas property, specifying which concrete Resource and Quality properties, or other
Cloud Services the service should have. Using this model, we are able to describe any
cost function, from simple fixed cost per used cloud service, to cost per service if used in
conjunction with other services, considering both the service usage and reservation time.
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Figure 8.4: Cost model of cloud offered services

Algorithm 7 Determining applicable costs
Input: el : Unit|Topology|System, providers : cloud− providers
Output: aC : applicable cost scheme
1: function DetermineApplicableCost(el, providers)
2: for s in el.usedServices do
3: service=GetServiceCostDescription(s,providers)
4: for costF in service.costFunctions do
5: for costEl in cf.costElements do
6: costR = costEl.applicableIfHasResources
7: costQ = costEl.applicableHasIfQuality
8: costS = costEl.applicableIfUsesServices
9: if el.HasAll(costR) && el.HasAll(costQ)&& el.UsesAll(costS) then

10: aC.Put(el,s,costEl)
11: end if
12: end for
13: end for
14: end for
15: return aC
16: end function

8.4.2 Determine applicable costs for current system configuration

During system run-time, if a unit is horizontally elastic, it will be instantiated more
times, each instance using cloud offered services, potentially with different configurations.
However, due to elasticity control, the system structure and associated cloud services
can change at run-time [80, 28, 81]. To this end, after any enforced elasticity control,
we use Algorithm 7 to analyze what cost elements are no longer applicable to the new
system structure, and what new cost elements must be considered in cost evaluation.
Depending on the concrete system configuration, we determine the applicable Cost
Elements depending on the system’s concrete configuration. For each cloud offered service
used by each element (Line 2), we search in the managed cloud providers for the complete
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Billing Billing Required monitoring information
type function for computing service cost

per Fixed - none

Reservation per Interval - service reservation time (allocation/deallocation)
- number of allocated service instances

per Fixed - instant value of the cost billing metric

Usage per Interval - instant value of the cost billing metric
- summed historical values of the billing metric

Table 8.1: Service billing types in public clouds

offered service description, and possibly applicable cost functions (Line 3). Then, for
each cost element, we verify its applicability conditions, by evaluating if the element
uses the Resources, Quality, or associated Cloud Offered Services specified in the cost
element’s description. If a cost element is applicable in the current system configuration,
it is used in cost evaluation.

8.4.3 Evaluating total and instant system cost

When evaluating cost of elastic systems, the information required by different cost billing
types must be considered. We analyze main cloud providers (E.g., Amazon EC246,
Flexiant47, Azure48, IBM Cloud49, Rackspace50), and classify their cost billing types in
Table 8.1. Cost can be billed as a fixed rate (E.g., α$ per hour), or over an interval (E.g.,
first x GB of I/O free, next β$). For computing Fixed Reservation cost, we retrieve from
the cloud provider the cost for reserving the service. For Interval Reservation cost we
monitor how many service instances where reserved and for how long, depending if the
cost is billed over instance count or time. For Fixed Usage cost, we must monitor the
billing metric, while for Interval Usage cost we need to record the historical usage over
the billing metric, to determine the applicable cost interval.

Cost can be defined over intervals of time and usage (E.g., first GB free, second α$).
To use the correct pricing interval in cost evaluation, we must maintain an accurate
view over the usage and lifetime of the cloud services employed by the system, for which
we define Algorithm 8. Starting from the applicable cost previously determined with
Algorithm 7, for each applicable cost element, we retrieve the billing metric (E.g., I/O size,
disk size) specified in pricing scheme (Line 4). If the cost element specifies a Reservation
billing for the service, we compute how many billing cycles have passed between the
last two monitoring intervals (Line 7), and add it in the system usage. If the cost is
per Usage, we need to record the total usage over the billing metric (Line 13). Some
monitored metrics can be cumulative, i.e., never reset, continuously increasing by adding
new monitoring values to the previous ones. With such metrics, we use their value for
the updated system usage (Line 15). Otherwise, we add the newly collected value to

46https://aws.amazon.com/ec2/
47https://www.flexiant.com/
48https://azure.microsoft.com/
49http://www.ibm.com/cloud-computing/
50http://www.rackspace.com/
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Algorithm 8 Determining usage of cloud services
Input: el : Unit|Topology|System, p : previousely determined usage
Input: aC : applicable cost scheme, m : current monitoring snapshot
Output: u : updated element usage snapshot
1: function UpdateElementUsage(el, p,m, aC)
2: for s in el.usedServices do
3: for ce in aC.GetApplicableCost(el, s) do
4: metric = ce.billingMetric
5: if ce.type == Reservation then
6: t=GetTimeBetween(m.timestamp,p.timestamp)
7: billingCycles=GetBillingCycles(metric, t)
8: if p.Contains(s) then
9: billingCycles += p.GetLifetime(s,el)

10: end if
11: u.UpdateLifetime(s,el,billingCycles)
12: else if ce.type == Usage then
13: currVal = m.GetValue(metric,s,el)
14: if metric.type == Cumulative then
15: u.SetValue(s,el,metric,currVal)
16: else
17: prevVal = 0
18: if p.Contains(s) then
19: prevVal = p.GetValue(metric,s,el)
20: end if
21: eVal = EstimateMissing(p, metric, prevVal, currVal,t)
22: usage = prevVal + currVal + eVal
23: u.SetValue(s,el,metric, usage)
24: end if
25: end if
26: end for
27: end for
28: return u
29: end function

the previous values, and compute the total (Lines 17-23). At run-time, monitoring data
might not be always available in time, or it might be missing. To solve such issues,
missing values could be estimated (Line 21), e.g., through interpolation.

For cost-based elasticity control, system developers and controllers require information
about the system’s instant cost, i.e., the rate at cost units are billed for the current system
configuration. Such information is crucial in evaluating if the current cost of the system
and its units is too high, and determining appropriate elasticity control. Thus, based
on latest monitoring information and the total system usage previously evaluated with
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Algorithm 9 Determining system instant cost
Input: el : Unit|Topology|System, sU : total system usage snapshot
Input: aC : applicable cost scheme, m : current monitoring snapshot
Output: iC : instant element cost
1: function EvalInstantCost(el, sU, aC,m)
2: elementCost=0
3: . compute instant cost rate for each used service
4: for s in el.usedServices do
5: for ce in aC.Get(el, s) do
6: metric = ce.billingMetric
7: if ce.type == Reservation then
8: lifetime = sU.GetLifetime(s,el)
9: cmICost = ce.GetCostForValue(lifetime)

10: iC.SetValue(metric, s, el, cmICost)
11: else if ce.type == Usage then
12: metricVal = m.GetValue(metric, s, el)
13: cPerUnit=ce.GetCostForValue(metricVal)
14: if metric.type == Cumulative then
15: iC.SetValue(metric, s, el, cPerUnit)
16: else
17: cmICost = metricVal * cPerUnit
18: iC.SetValue(metric, s, el, cmICost)
19: end if
20: end if
21: elementCost += cmICost
22: end for
23: . compute children cost and overall element cost
24: for childEl in el.children do
25: cChild = EvalInstantCost(childEl, sU, aC, m)
26: iC.AddCost(cChild)
27: elementCost += iC.GetElementCost(childEl)
28: end for
29: end for
30: iC.SetElementCost(elementCost)
31: return u
32: end function

Algorithm 8, we apply Algorithm 9 to evaluate the instant cost of an elastic system. For
each of the cloud services used by the system units (Line 4), we analyze each applicable
cost element (Line 5). For cost per Reservation, we compute the applicable cost value
based on the element’s cost intervals, w.r.t. the lifetime of the used service (Line 9),
and store the value directly in the instant cost. For cost per Usage, we determine based
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on the system usage so far the applicable cost value (Line 13). If the billing metric is
cumulative, we add the applicable cost rate to the instant cost (Line 15). Otherwise, the
latest monitored metric value is multiplied with the applicable cost value, and added in
the instant cost (Lines 17-18).

Developers or system controllers might be interested only in certain cost information.
For example, they could monitor overall system’s cost until it reaches a certain threshold,
after which they would be interested in which of the system’s units and topologies are
most expensive, to enforce appropriate cost-based elasticity control. Thus, to understand
the contribution of each cost element to the overall system cost, for each system unit,
we compute its overall instant cost by recursively computing the cost of all its used
cloud services. Further, for each system topology and overall system we compute its cost
from the cost of its children units and topologies, and cloud services used directly by
the system or topology (Lines 24-28). Computing composite cost of each system unit
and topology from the cost of its children and its used services provides a composite
hierarchical view over system’s cost, enabling developers or controllers to extract from
the cost snapshot only the cost information of interest.

We apply a similar algorithm for computing total system cost since deployment, for
total cost multiplying the total system usage (obtained using Algorithm 8) with the cost
element’s values, for each of the element’s cost intervals.

8.4.4 Evaluating cost efficiency of elastic systems

We define a function evaluating the cost efficiency of deallocating system unit instances,
based on the pricing scheme of the cloud services used by the system.

After multiple allocations/deallocations of cloud services during scaling, the billing
cycles of different instances of the cloud services used by different system units can
become desynchronized, i.e., billing occurs at different points in time, depending on
when each instance was allocated, and on how much it was used (Figure 8.5). Thus, for
increasing the system’s cost efficiency, developers and controllers need to understand
which particular instance of a service is more cost efficient to deallocate, and when. This is
important as the system gains nothing if a service is deallocated without using all what it

Figure 8.5: Service instance cost efficiency w.r.t. billing cycle
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was paid for. Moreover, if the system’s load is highly fluctuating, opportunistic scaling-in
can decrease cost efficiency by deallocating underused services, and then allocating new
ones to cope with rising demand.

When scaling-in an elastic system by deallocating cloud services, to maximize cost
efficiency, the developer/controller should deallocate the service instance closest to its
billing cycle for all its cost elements (E.g., Instance i). Ideally, a cost efficient system
would deallocate a service instance with a usage of 100% on all its cost elements, w.r.t.,
the billing cycle of each element. For example, if a service is billed per hour and per
GB of data, efficient from the cost perspective is to deallocate a service instance which
has been running for an integer number of hours, and which has generated an integer
number of GBs of data. To this end, based on the system total usage determined using
Algorithm 8, we define a function E for evaluating the cost efficiency of deallocating a
particular cloud service instance si, by computing a cost-weighted sum of the instance
usage over all its cost elements, both over reservation time and monitored usage, reported
to the overall billed cost units, as follows:

When scaling a cloud system, a cost-aware controller should deallocate the unit
having its services closest to their billing cycle for all cost elements (E.g., Instance
i in Figure 8.5), to maximize cost efficiency. Ideally, a cost-aware controller would
deallocate a unit instance with a usage of 100% over all its cost elements, w.r.t., the
billing cycle of each element. For example, if a unit uses cloud services billed per hour
and per GB of data, it is cost efficient to deallocate it when it has run for an integer
number of hours, and has generated an integer number of GBs. To this end, we define
a function E for evaluating the cost efficiency of deallocating a system unit instance i,
based on the system total usage obtained with Algorithm 8. Function E computes a
cost-weighted sum of the instance usage over all its cost elements, both over reservation
time and monitored usage, reported to the overall billed cost units:

E(i) =

∑
s∈i.serv

∑
c∈s.cEl

c.value ∗ (s.usage(c.metric) mod c.cycle))∑
s∈i.serv

∑
c∈s.cEl

c.value
(8.1)

, where i.serv are the cloud services used by the unit instance i; s.cEl are the applicable
cost elements for used cloud service s; c.value is the cost value in units of the cost element
c (E.g., I/O cost) for one billing cycle c.cycle (E.g., 1 GB, 1 hour); s.usage(c.metric) is the
current usage interval over the metric c.metric over which cost is billed.

Weighting the instance usage with the cost value ensures that each cost element has
a contribution proportional to its cost to the cost efficiency. Thus, a cost efficiency E of 1
means that the instance usage is the same as the total billed usage, and by deallocating
it, the cost efficiency does not decrease. Reversely, an efficiency < 1 means we pay
1-efficiency% more than what we use. Depending on individual system requirements,
other custom cost efficiency functions can be defined based on the same system total
usage and cloud pricing schemes. For example, another function might only analyze cost
efficiency of cost elements reported per service reservation.
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Figure 8.6: Cost analysis platform

Depending on the desired cost efficiency, a developer of controller can decide to
instantly deallocate the most cost efficient instance, or wait until one of the instances
reaches the desired cost efficiency before deallocating it.

8.5 Cost analysis platform prototype

Applying our cost efficiency analysis approach from Section 8.4, we have implemented a
cost analysis platform51 (Figure 8.6) by extending MELA, a platform for monitoring and
analyzing elastic cloud systems, first introduced in Chapter 5.4.4.

8.5.1 Managing pricing schemes of cloud providers

Cloud providers have different mechanisms for exposing their services’ pricing schemes,
from proprietary APIs to plain HTML descriptions. Thus, the first concern the platform
addresses is to provide an easy to use mechanism for describing the cloud services and
their cost elements from any cloud provider. To this end we extended MELA with a unit
for managing the description of cloud services, relying on an XML-based representation
of the pricing model defined in Section 8.4.1. As manually managing XML descriptions
can be difficult, we provide a Java-based Fluent API (Listing 8.1) for generating them.
Thus, adapters for retrieving the pricing scheme of custom cloud providers can be built
to use the fluent API to generate the cloud’s XML description, and submit it to our
platform using a specific RESTful service.

51Prototype and supplement materials at http://tuwiendsg.github.io/MELA/costEvaluationService.html
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Listing 8.1: Cloud pricing scheme description fluent API
CloudServ ice s e r v i c e = new CloudServ ice ( )

.withUuid(UUID) .withName( "Name" )

.withCategory ( "Name" ) . withSubcategory ( "Name" )

. withCostFunction (new CostFunction ( )
. withAppliedIfServiceInstanceUses ( L i s t<Unit>)
.withCostElement (new CostElement ( )

. withCostMetric (new Metric ( "name" , " un i t / time " ,Type ) )

. withBillingInterval (new MetricValue (v ) , co s tUn i t s )

. withBillingInterval ( . . .
) . withCostElement ( . . .

8.5.2 Managing the structure of elastic cloud systems

Elastic cloud systems change their structure at run-time by allocating/deallocating cloud
services. Thus, we provide a mechanism for updating the system’s structure and the used
cloud services during run-time, relying on the XML representation of the model introduced
in [33]. Using this model, a cloud system is represented as a cascading set of Monitored
Elements representing the system’s units, which in turn are grouped in topologies. We
extend the model to allow specification of the used cloud services, and provide a fluent
API for describing the system’s structure (Listing 8.2). The used cloud service instances
are identified by the unique identifier (UUID) of the cloud provider offering the service,
the UUID of the service in the provider’s service’s list, and the UUID of the service’s
instance. Further, if the same service has different cost for specific configurations, the
concrete configuration is specified in terms of resource/quality properties. The description
must be updated after each scaling action, to ensure cost analysis consistency. The
platform exposes the description to interested stakeholders in XML or JSON format, and
as a tree-based visualization.

Listing 8.2: Cloud system structure description fluent API
MonitoredElement vm = new MonitoredElement ( "UUID" )

. withCloudOfferedService (
new UsedCloudOfferedService ( )

.withCloudProviderID ( "UUID" ) )

.withCloudProviderName( " Provider " )

. withId ( "UUID" ) .withInstanceUUID( "UUID" )

.withName( " ServiceName " )

. withResourceProperties (Map<Property , Value>)

. withQualityProperties (Map<Property , Value>)
) . withCloudOfferedService ( . . .

8.5.3 Collecting and enriching monitoring information

Due to the dynamic structure of elastic systems, as VMs are created/destroyed dynamically
at run-time, if monitoring information is associated only with each VM, it will be lost
during scale-in operations. Addressing this, we use MELA Data Service, which provides a
mechanism for describing metric composition rules, enriching and associating monitoring
information collected from existing monitoring systems, to the current system structure.
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For example, associating a CPU usage metric collected from a VM to the instance of the
system unit hosted on the VM. Moreover, monitoring data can be enriched by applying
aggregation operations over collected metrics (E.g., average CPU usage over all instances
of a unit), or injecting information using a set operation. The metric composition rules
can be described directly in XML, or using a fluent API.

8.5.4 Evaluating and providing cost information

Using the enriched monitoring information, the system structure, and the cloud service’s
description, the algorithms from Section 8.4 are applied to evaluate the total and instant
cost, and cost efficiency of cloud systems. This information is exposed through RESTful
services, and the complete cost decomposition is also provided in comma-separated-values
(CSV) format. Services are implemented for evaluating the cost efficiency of scaling-in
one or more instances of a system unit, and for recommending which unit instance to
deallocate w.r.t., to desired cost efficiency. For aiding human users, we provide web-based
visualizations for the composite cost of elastic systems, both using tree and pie charts,
implemented in D3.js52. The visualizations enable them to monitor and understand the
cost of cloud systems. To ensure platform performance, after each evaluation of total and
instant cost, we cache the total computed usage and lifetime for each used cloud service.
This ensures a roughly constant cost evaluation time for each new monitoring snapshot, in
evaluation obtaining a cost analysis time of under 1 second for each monitoring snapshot.

8.6 Experimental scenarios

We evaluate our platform on the elastic cloud data center for IoT from Section 8.3
(Figure 8.1), deployed in Flexiant53 public cloud. The system developer deploys our
platform on a standalone VM, and uses it to understand the system’s cost under expected
load. To this end, a load is applied starting with 300 sensors, increasing to 900 in steps of
300, and decreasing again. While the used system has a shared-nothing architecture, each
unit using its own cloud services, our approach is also applicable on shared architectures,
with multiple units sharing a cloud service. In this case finer-grained monitoring is
required to differentiate the service usage generated by different units.

8.6.1 Configuring the platform for the target system

First, the system developer submits to our platform the pricing scheme of the cloud
services offered by Flexiant54(Table 8.2). While some services have monthly cost rates,
the billing is done per hour, and thus the pricing scheme is specified in hourly rates.
The offered services are classified using our API in IaaS (Infrastructure as a Service),

52http://d3js.org/
53We use Flexiant as an illustrative example in this chapter, but similar issues apply to other public

cloud providers
54www.flexiant.com/2010/04/14/flexiscale-2-0-pricing/

102

http://d3js.org/
www.flexiant.com/2010/04/14/flexiscale-2-0-pricing/


Service Cost Element
Category Subcategory Service metric Billing Billing Billing Cost

unit cycle interval units

IaaS
VM

1CPU, 0.5GB RAM

instance # hour 0→Inf.

2
1CPU, 1GB RAM 3
1CPU, 2GB RAM 4
2CPU, 4GB RAM 10
3CPU, 6GB RAM 15
4CPU, 8GB RAM 20

Disk VM-attached cloud storage disk size GB month 0→Inf. 5
I/O GB 2

Network Public data transfer GB 0→Inf. 5
Private instance # month 0

VLAN instance # month 0→1 0
2→Inf. 1000

IP instance # month 0→5 0
6→Inf. 100

Firewall instance # month 0→Inf. 1
MaaS Image Custom operating system image snapshot size GB month 0→Inf. 5

Table 8.2: Flexiant pricing scheme

Figure 8.7: Event Processing topology structure and used cloud services

offering VMs, Network and Disk, as a service, and MaaS (Management as a Service)
offering OS Image Storage services.

Next, the developer describes the system structure with the used cloud services.
As Flexiant provides separate billing for VM and Cloud Storage services, separate
instances are specified for each unit. units accessible from outside the cloud use Public
VLAN services providing public IPs (E.g., Load Balancer) and the elastic units use
OS Image Storage services in instantiating new unit instances on top of new VMs
(E.g., Event Processing). The developer visualizes the described system’s structure,
Figure 8.7 depicting the Event Processing topology’s structure after the initial cloud
deployment (before scaling), the used cloud services being represented with S©.

Next, the system developer must ensure the necessary monitoring information can
be collected, i.e., exposing the billing metrics specified by the cost elements captured in
Table 8.2. Thus, the system is configured to expose the required information through
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Ganglia55, by implementing the required plug-ins, such as to collect disk I/O, and then
structure it using MELA [33]. Metric resolution for associating the metrics targeted
by cost elements to the ones collected from the elastic service is done based on metric
name, and measurement unit. Thus, care must be taken to ensure that we will have
in the monitoring information the metrics targeted by the cost elements. This can be
done either by implementing data collection plug-ins returning the metrics with the same
name and unit, or use MELA metric composition rules to rename and convert monitoring
information, and even create aggregated complex metrics based on collected ones.

Listing 8.3: Fluent API for describing Cloud Pricing Scheme
CloudServ ice s e r v i c e = new CloudServ ice ( )

.withUuid(UUID) .withName( "Name" )

.withCategory ( "Name" ) . withSubcategory ( "Name" )

. withCostFunction (new CostFunction ( )
. withAppliedIfServiceInstanceUses ( L i s t<Unit>)
.withCostElement (new CostElement ( )

. withCostMetric (new Metric ( "name" , " un i t / time " ,Type ) )

. withBillingInterval (new MetricValue (v ) , co s tUn i t s )

. withBillingInterval ( . . .
) . withCostElement ( . . .

8.7 Evaluation

8.7.1 Evaluating cost of black-box systems

In our first experiment we apply our cost analysis approach to discover interesting cost
aspects of black-box systems, over which there is minimum knowledge about their internal
behavior. The system is a Spark56 cluster consisting of one master and one worker, used
for stream processing of IoT sensor data, which could be used for the DaaS’s Data End.
In this scenario, the system developer has a candidate for the DaaS Data End, and
wants to understand how changing the system load on Spark influences the system’s cost.
The system is deployed in Flexiant57 public cloud, both Spark units using instances of
the same type of 1CPU 1 GB RAM VM and Cloud Storage services, and the master
additionally using a Public VLAN providing a public IP to which data is streamed.

Initially, a developer or cloud provider uses our fluent API (Listing 8.3) for describing
the pricing scheme of cloud services offered by Flexiant58(Table 8.2). While the pricing
scheme specifies monthly cost rates for several services, the billing is done per hour, and
thus the pricing scheme is specified in hourly rates. The offered services are classified in
IaaS (Infrastructure as a Service), offering VMs, Network and Disk, as a service, and
MaaS (Management as a Service) offering OS Image Storage services. The system

55http://ganglia.sourceforge.net/
56https://spark.apache.org/
57We use Flexiant as an illustrative example in this chapter, but similar issues apply to other public

cloud providers
58www.flexiant.com/2010/04/14/flexiscale-2-0-pricing/

104

http://ganglia.sourceforge.net/
https://spark.apache.org/
www.flexiant.com/2010/04/14/flexiscale-2-0-pricing/


Figure 8.8: Spark cluster structure and used cloud services

configuration with the used cloud offered services attached to the system units and
topologies is visualized using our platform in Figure 8.8 (used cloud services are depicted
with S©). As Flexiant provides separate billing for VMs and cloud storage, separate
instances of VM and Cloud Storage services are specified for each unit (E.g., Spark
Master).

Next, the system developer must ensure the necessary monitoring information can
be collected, i.e., exposing the billing metrics specified by the cost elements captured in
Table 8.2. Thus, the system is configured to expose the required information through
Ganglia59, by implementing the required plug-ins, such as to collect disk I/O, and then
structure it using MELA [33]. Metric resolution for associating the metrics targeted
by cost elements to the ones collected from the elastic service is done based on metric
name, and measurement unit. Thus, care must be taken to ensure that we will have
in the monitoring information the metrics targeted by the cost elements. This can be
done either by implementing data collection plug-ins returning the metrics with the same
name and unit, or use MELA metric composition rules to rename and convert monitoring
information, and even create aggregated complex metrics based on collected ones.

What is the relationship between system cost and load? is the first question answered
in this experiment. As Spark is used for stream processing, the owner expects the impact
to be only on network data transfer cost. Thus, four separate Spark instances are deployed
and run for 5 hours, each processing data sent every second from 0, 1000, 5000, and
10.000 sensors. By analyzing retrieved total cost for each system every hour (Figure 8.9),
the owner understands that running the system 1 hour for 1000 sensors/second costs the
same as running the system with no load. However, if the system is run more hours, cost
for serving 1000 sensors increases with approx. 30%. Compared to serving 1000 sensors,
serving 5000 for 5 hours costs with approx. 80% more, while serving 10.000 sensors costs
with 40% more than serving 5000. From this information, the developer understands

59http://ganglia.sourceforge.net/
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Figure 8.9: Spark system cost for different load

Figure 8.10: Composite cost of system serving 10.000 sensors/s

that the system’s cost grows roughly with a factor of less than half the increase in the
sensors’ number. Thus, if the system is to be exposed as a service, the developer can
predict its cost and understand its cost efficiency for the expected load.

Which is the most expensive system unit? can be determined from the contribution
to system cost of each system unit, the owner understanding that when the load is
high, the Spark Master is the most expensive unit (Figure 8.10). Thus, the owner
retrieves the decomposed cost data, to understand how different system load influence the
cost elements applicable to the Spark Master, from which the most important where
determined cost per used VM, network data transfer, and I/O. For the system processing
no data, the cost is dominated by the cost per used VM (Figure 8.11a). When the system
load is increased to 1000 sensors (Figure 8.11b), the data transfer cost becomes at least
as important as cost per VM. However, when the system is serving 10.000 sensors/second
(Figure 8.11c), cost of data transferred over the network becomes the dominant cost
unit. With this information, depending on the envisioned load, system developers can
determine where cost can be reduced. For example, if the system is expected to serve
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(a) no load (b) serving 1000 sensors/s

(c) serving 10.000 sensors/s

Figure 8.11: Spark Master cost elements decomposition

over 1000 sensors/s, it is worthwhile to consider compression of sensor data received by
the system to reduce data transfer cost.

What are the most important cost elements? is answered from the cost decomposition
for each load (E.g., Figure 8.11c). While the developer expected the system load to
influence only data transfer cost, disk I/O cost emerged as the second most important
cost element. Moreover, cost per disk I/O tends to be equal to roughly 40% of data
transfer cost when the system is under load. Using this information, a developer could
reduce overall system cost by reducing the number of I/O bound operations, such as
logging.

Thus, even with a black-box system, using our approach, one can obtain crucial
insight into what are the dominant cost elements, information useful in predicting system
cost under different loads, and in reducing system cost by understanding what cost
aspects needs to be analyzed/improved.

8.7.2 Improving cost efficiency of elastic systems

In our second experiment, we analyze cost and improve cost efficiency of a complex elastic
system. In this scenario, the developer of the elastic cloud data center for IoT from
Chapter 3 (Figure 8.1) is interested in understanding the cost of each unit, topology, and
whole system. The developer further wants to design a cost-efficient elasticity controller,
for which s/he needs to understand how different cost elements influence the system’s
cost efficiency.
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Figure 8.12: System partial snapshot with composite instant cost associated to monitoring
information

Evaluating cost of elastic systems

As previously, the system configuration with used cloud services is described. Beside VM
and Cloud Storage services, units which must be accessible from outside the cloud also
use and pay for Public VLAN services providing public IPs (E.g., Load Balancer).
As several system units are elastic, OS Image Storage services are used for speeding
up the creation and instantiation of new unit instances on top of new VM instances (E.g.,
Event Processing Unit). To evaluate the cost of the used OS Image Storage
service, information hard to monitor directly is required, such as the size of each used
image. While this could be obtained from specific cloud provider APIs, in this experiment
the developer defines additional metric composition rules that create the required image
size metrics and associates them to the elastic system units using images. In this way the
same image is monitored only once per system unit, and not once per each individual
VM. As the system owner is interested in understanding the system’s cost under expected
load, a system load is applied according to expected usage, starting with 300 sensors,
increasing to 900 in steps of 300, and decreasing to 300 again.

What is the contribution to total cost of each system unit and topology? is visualized
using our platform in Figure 8.13. The system cost is composed of the cost of the
system children topologies. In turn, the topologies’ cost is composed of the cost of their
children units. The cost of individual units is composed of the cost of used instances
of VM services, the cost of the Cloud Storage, reported both in cost/disk size, and
per size of read/written data, and the cost of additional used services, such as the
Public VLAN. From this cost decomposition the owner/developer understands (from
the cost proportion of each cost element) which system units have low cost impact (E.g.,
Local Processing Unit), and which are costly (E.g., Data Node). Further, the
owner/developer sees that, under the given system load, the Cloud Storage cost is
roughly 1/3 of the Event Processing Unit cost. Further, the biggest contributor to
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Figure 8.13: System snapshot of total cost composition

storage cost is IO DataSize, i.e., cost for read/written data. This is not the case for
all units, such as Data Controller, for which the cost of using the 3 CPU 6GB RAM
VM is much higher than the Cloud Storage cost. Using this information, a system
developer or software elasticity controller can reduce system’s cost by changing I/O rate
for the Event Processing Unit, choosing services with less I/O cost for running the
unit’s instances, or migrating to a cloud with lower I/O cost.

System developers and software elasticity controllers traditionally enforce elasticity
decisions with respect to collected monitoring information. Thus, for supporting real-time
cost-based elasticity control, our platform exposes evaluated instant and total cost along
monitoring information. Figure 8.12 depicts such a monitoring snapshot visualized by our
platform, evaluated cost being represented by darker colored rectangles. Furthermore,
our platform aggregates cost of individual unit instances in overall cost for each unit,
topology, and the overall service, under an element_cost metric (highlighted with
thick line). In this snapshot, cost of used cloud offered services (E.g., Cloud Storage)
is associated to the unit instances running inside virtual machines. The cost of each
unit instance is further composed of the cost of each unit (E.g., Event Processing
Unit), which in turn is composed in the cost of the parent topologies, up to the cost
of the entire system. Thus, a developer or software elasticity controller, based on the
desired cost level (such as only topology, unit, or overall system), can retrieve cost at the
required level as any other monitored information.
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Figure 8.14: Cost efficiency variation between Event Processing Unit’s instances after
scale-in/out actions

Strategy type Deallocating Strategy description
w.r.t. - deallocates the component instance if it has

Cost-aware Reservation time run over 90% of its reservation cycle
w.r.t. - deallocates the unit instance with cost

Cost efficiency efficiency over 80%

Cost-agnostic Last allocated - deallocates the last allocated unit instance
First allocated - deallocates the first allocated unit instance

Table 8.3: Evaluated scalability control strategies

Evaluating cost efficiency of elastic systems

In this scenario, we apply our approach from Section 8.4.4 for improving the cost
efficiency of the elastic system described in Section 8.7.2, by providing cost efficiency
information and scale-in recommendations to its elasticity controller. While the presented
elastic system has three horizontally elastic topologies, in the following we focus on
controlling through horizontal scaling the Event Processing unit. Focusing on the
Event Processing Unit both fully covers the issues present in cost efficiency of
elastic systems, and increases the readability of the evaluation scenario.

For evaluating the system’s cost efficiency improvement when elasticity controllers
consider cost efficiency, an elasticity controller is implemented supporting different scale-in
strategies (Table 8.3): two which do not consider cost efficiency, and two relying on
our cost efficiency analysis. The two cost-efficiency agnostic strategies deallocate the
Last allocated and First allocated system unit instance. The first cost-based
strategy deallocates a unit it has run over 90% of its reservation billing cycle, i.e., run
over 54 minutes. The second cost-based strategy deallocates a system unit instance only
when its cost efficiency is over 80%. Due to the difference in billing cycles for the two cost
elements, as visible in Figure 8.14, 90% cost efficiency is not always achievable in this
scenario, and using such a limit would mean we might increase cost by running instances
more billing cycles. We deploy and control the elastic Event Processing Topology
for each strategy for over 12 hours. We apply a fixed system load of 450 sensors per
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Figure 8.15: Decomposed cost efficiency of VM cloud service

second and the Load Balancer distributes requests in a round-robin manner, to reduce
the variables influencing our results, enabling us to better evaluate and compare cost
efficiency of different controllers. As the elastic unit is the Event Processing Unit,
we continuously evaluate the cost efficiency of its instances. We start with five unit
instances, and repeatedly enforce 2 scale-out followed by 2 scale-in actions, each action
being enforced every 45 minutes. By performing the actions in a time interval less than 1
hour (the Reservation billing cycle of the used cloud services), we mimic normal behavior
of elastic systems which can add and remove services instances anytime. At the same
time we maintain an action periodicity allowing us to compare the efficiency of the scaling
strategies.

What is the system’s cost efficiency evolution in time? is answered by our platform by
analyzing cost efficiency of separate unit instances (Figure 8.14). The analysis highlights
the need for analyzing cost efficiency when scaling-in elastic systems. Initially, all 5
instances have similar cost efficiency. However, as time progresses and scale-in/out
actions are enforced, the cost efficiency of the unit instances differ between each other,
due to the different billing cycles of their cost elements. For improving the system’s
cost efficiency, it is crucial to understand how the cost efficiency of an individual system
unit instance is influenced by the cost elements applicable to the cloud offered services it
employs. Figure 8.15 shows for a single service unit instance its (i) VM reservation cost
efficiency, (ii) disk I/O cost efficiency, and (iii) overall cost efficiency. From the figure
we can notice that the disk I/O and the VM reservation cost efficiencies have different
cycles, as it roughly takes 2 reservation periods (1 hour each) to complete a disk cost
cycle, i.e., to generate 1GB of I/O. As cloud systems can have complex behavior, and can
employ a large array of cloud services, each with its own pricing scheme, this analysis
highlights the need to evaluate and consider the cost efficiency of elastic systems during
their control, to increase the system’s cost efficiency.

What is the system’s cost efficiency under different control strategies? is answered by
using our platform to evaluate the system’s cost efficiency, and using it in comparing
the cost efficiency of each scale-in operation for every control strategy. By integrating
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the cost information provided by our platform in the system’s control mechanism, the
developer maintains the service’s cost efficiency at over 80% during enforcement of
elasticity actions (Figure 8.16). From the figure we can notice that except one action,
the strategy deallocating units when their cost efficiency is over 80% obtains better cost
efficiency even compared to the one deallocating units at over 90% of their reservation
billing cycle. This highlights that all cost elements need to be considered when scaling
elastic systems, as relying only on reservation time can lead to less cost-efficient solutions.
Furthermore, employing cost-agnostic strategies can lead to deallocating services which
are almost unused, but paid in full, decreasing the system’s cost efficiency, and increasing
its cost.

Improving cost efficiency of elastic systems

While the above scenario highlights the improvement in cost efficiency of elastic systems
by using our cost efficiency analysis, the employed uniform periodic control does not
fully capture the dynamism of elastic systems. If the system load is highly fluctuating,
by opportunistic deallocation of cloud services, controllers can decrease cost efficiency
by deallocating services ahead of time, and then allocating new ones to cope with rising
demand. To evaluate such scenarios, we compare the best cost agnostic (deallocating last
added instance), and the best cost-based (deallocating w.r.t. cost efficiency) strategies
from the previous scenario. We implement an elasticity controller which tries to enforce
randomly between 1 and 3 scale-in/scale-out actions at time intervals between 30 and 60
minutes, mimicking the behavior of real systems which might scaled at different points
in time, depending on requirements. Under the cost-aware strategy, when a scale-in is
possible, the controller waits until a service instance has reached 80% cost efficiency,
while under the cost-agnostic strategy it deallocates services as soon as possible. If after a
scale-in request, a scale-out is received, the cost-aware controller will check if it’s waiting
to reach a certain cost efficiency to scale-in the system, and just cancel the scale-in action,
instead of allocating a new service.

What is the benefit of considering cost efficiency in elasticity control? is noticeable

Figure 8.16: Cost efficiency of unit instance deallocated by different strategies
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Figure 8.17: Event processing instances no. under cost-aware and cost-agnostic scalability

from Figure 8.17, depicting the number of Event Processing unit instances under
each evaluated control strategy. We have run the scenario over 12 hours, and in three
cases, the cost-based strategy avoided unnecessary scale-ins, while the cost-agnostic one
deallocated and allocated back service instances. For example, between 7:30 and 9:30,
the cost-based strategy scaled in just once, instead of two scale-in and one scale-out
performed by the cost-agnostic one. Thus, considering cost efficiency in scaling-in elastic
systems can reduce control oscillation. The improvements obtained by the controller
deallocating services considering their cost efficiency are summarized in Table 8.4. Overall,
the controller performed with approx. 37% less scale-in/out actions, left 8% more running
VMs, all with a cost reduction of 7%. Thus, the system is overall more stable, as any
scaling can introduce instability. By running more unit instances, the system has more
spare resources to accommodate unexpected spikes in load. Additionally, considering
the cost proportions obtained in Section 8.7.2, the cost reduction obtained in about 13
hours of operation time translates to money which can be spent to run one VM for over
3 hours and generate around 1.5 GB of I/O.

This scenario highlights that by considering cost efficiency, one can design better
elasticity control mechanisms which can, at the same time, increase the performance and
stability of the system, while reducing its operation cost.

8.7.3 Lessons and impact for elasticity control

We ran the evaluation scenarios repeatedly over a period of several weeks, to understand
the cost issues affecting elastic systems, and learned several important lessons.

Cost behavior of elastic systems is unpredictable even in uniform conditions. In the
last scenario, even with constant system load, the system’s behavior influencing cost (E.g.,
VM lifetime, disk I/O) was not uniform. Due to cloud internal processes, some VMs
took longer to allocate/deallocate than others. Additionally, due to unknown factors, the
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Evaluation Scalability control Cost-aware scalability
criteria cost-aware cost-agnostic vs. cost-agnostic control
Scaling 10 16 37% less actions
actions (6 out, 4 in) (9 out, 7 in) = increased system stability

Average no. 4.59 4.24 8% more instances
of instances = spare resources for load bursts
Total cost 143 153 7% cost savings
(units) = 3.3 VM hours + 1.5 GB I/O

Table 8.4: Cost-aware scalability control compared to cost-agnostic scalability

VMs behavior (E.g., disk I/O) was not uniform, such as for Instance 5 in Figure 8.14
having significantly higher cost efficiency in the first 15 minutes. To address this issue, we
imposed multiple logical structures over the same virtual infrastructure, starting with the
same VMs for each strategy, and only logically scaling-in the system units. Due to this
behavioral uncertainty, load prediction might be an unreliable for cost evaluation. Thus,
controllers should use real-time cost efficiency information in their decision processes.

Cost reduction is not the only benefit of using cost efficiency during system control.
From the last scenario, we have discovered that even using simple heuristics such as
waiting for the desired efficiency to deallocate services can reduce the system’s cost, while
also improving its performance and stability (Table 8.4).

Cost efficiency information could be used to improve the system’s usage. From
Figure fig:costEval:costEffectivenessVsLifetime one can see that after time 2:00, overall
cost efficiency remains rather low. In such situations, knowing the actual usage from
what was paid on each cost element, the system load could be re-routed as to increase
usage on certain cost metrics on some unit instances, and decrease on others. Thus, the
system cost efficiency would be increased by increasing the cost efficiency of each unit.

Cost information could also be used in system scale-out. Knowing the dominant cost
elements (E.g., Figure 8.11) could be useful during system scale up/out for selecting
cloud services with less cost over those elements, reducing if possible the cost increase
while increasing performance.

8.8 Conclusions
In this chapter we have focused on aiding developers of elastic systems for public clouds
to monitor their costs, and develop cost-aware scalability controllers. We have introduced
a model for capturing complex pricing schemes of cloud providers, from fixed service costs
to costs per multiple services. We have defined algorithms for determining the applicable
costs depending on the system’s configuration, and for maintaining an updated view
over the usage and costs of its cloud services. We have defined a function for evaluating
cost efficiency of cloud systems, used in cost-aware scalability, analyzing which system
unit is cost efficient to deallocate and when. We have implemented an open source costs
analysis platform for monitoring costs and analyzing cost efficiency of elastic systems.

114



We have evaluated our platform on a elastic cloud-based data center for IoT, deployed
in Flexiant, one of the leading European public cloud providers. The evaluation has
shown that cost-aware scalability can increase the performance and stability of cloud
systems, while reducing their operation costs. The evaluation further highlighted that
cost-agnostic scaling strategies can lead to deallocating unused services, but paid in full,
actually increasing cost.
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CHAPTER 9
Related work

This thesis provides support for developers and software controllers of elastic systems
in designing, monitoring, analyzing, and controlling the system’s elasticity. Due to the
particularities of each of these phases, related work spans multiple areas, from service
selection, to distributed systems monitoring, analysis, and control.

9.1 Building elastic systems
In the area of building elastic systems, which we targeted in Chapter 4, related work
spans from initial system design, to modeling the cloud providers whose services will be
used in building the systems, and the actual selection of cloud offered services.

Focusing on the design and cloud deployment of elastic systems, Slipstream60 is a
cloud provisioning tool enabling users to describe their systems in terms of required
resource, and deploy and run them on a variety of cloud providers. Another commercial
tool for deployment of cloud systems is Azure’s Octopus Deploy61, a .NET62 oriented
tool enabling developers to deploy their systems on both private or public cloud running
Microsoft’s Azure63 cloud platform. Going further than single-cloud systems, Di Nitto
et al. introduce the ModaClouds approach [23] for the development and operation of
multi-cloud systems, providing a set of tools enabling users to describe systems using
both PaaS and IaaS cloud services from multiple cloud providers. Kopp et al. introduce
Winery[22], a TOSCA[82] based modeling tool for cloud systems. Winery is a tool
offering an HTML5-based environment for graph-based modeling of systems, allowing the
definition of reusable components and relationships between system units. Winery allows
a user to specify for the system unit both software and virtual infrastructure resources

59The content from this chapter was partially presented in [32, 33, 1, 34, 35]
60http://sixsq.com/products/slipstream.html
61http://octopusdeploy.com
62http://www.microsoft.com/net
63https://azure.microsoft.com/
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required for the unit to run. However, all the above tools require from the user a complete
specification of the required cloud services. Completely describing cloud systems requires
the user to have absolute knowledge over all the cloud services which can be used from
multiple cloud providers. Our approach differs as we focus on reducing the complexity
of this task by providing recommendations for the system configuration, based on the
required system elasticity capabilities. As we focus on the service selection aspect, our
approach can be integrated or used in conjunction with existing system modeling tools,
as we have showcased in Chapter 4.6.2.

While the above tools enable the description of cloud systems, towards automating
the process selecting cloud services suitable for individual elastic systems, one must
capture information about the cloud services offered by different cloud providers. To
this end, several approaches exist focusing on modeling cloud providers towards cloud
services provisioning. Goncalves et al. [67] define CloudML, a modeling language for
describing resources, services, and service requests in the context of multi-cloud systems.
The objective of CloudML is to be vendor-neutral, providing abstractions for describing
the resources and functional capabilities of cloud services, hiding their particular repre-
sentation provided by each cloud provider. This provides to system developers a uniform
baseline to compare cloud services offered by different cloud providers, much more difficult
to do when each cloud provider exposes information in different formats. Enabling users
to describe their systems and the associated cloud services, Andrikopoulos et at. [83]
introduce GENTL, a topology language for describing cloud systems. Understanding
that there already exist many languages for specifying cloud systems, using GENTL,
the authors allow the mapping from these languages into a common model, which sup-
ports different types of annotations for enriching the topology model with additional
information. Focusing on efficient policies for selecting cloud services, Villegas et al. [29]
model cloud providers based on Amazon EC2, a popular commercial IaaS. Moreover, the
authors assume that allocating/deallocating any cloud service incurs a certain delay, and
that each such action has a certain cost associated to it. Stepping into the standards
domain, there are several standards aimed at describing cloud services and their capa-
bilities, such as the Open Cloud Computing Interface (OCCI)64. The OCCI core cloud
representation model classifies cloud services in categories, further split in sub-classed by
Kind and Mixin, which can be associated to define any Entity subclass, such as Resource
or Link. Entity properties are marked as mutable or immutable, indicating if they can
be changed or not. Action instances describe actions for instantiating/destroying Entity
instances or changing their properties. OCCI introduces two extension mechanisms for
their model, first by sub-classing Resource, Link and Action, and second, by defining
custom Category, Kind or Mixin instances. An infrastructure extension is also introduced
which provides Resource and Link subclasses for IaaS clouds. Another standard aiming to
standardize cloud representation and interaction is the Cloud Infrastructure Management
Interface (CIMI)65. The aim of CIMI is to provide a reference implementation model
for cloud management interfaces, strictly defining any action necessary for deallocating

64http://occi-wg.org/
65http://www.iso.org/iso/catalogue_detail.htm?csnumber=66296
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and allocating cloud services. However, these approaches focus on representing cloud
services mostly providing virtual infrastructure services, from the system deployment
perspective. We differ, as we adopt the run-time elasticity perspective, and view the
service selection as an intermediary step towards ensuring the elasticity of the constructed
system. To this end, we model cloud services capturing information about their available
elasticity capabilities, and analyze how each service influences the system’s elasticity
during run-time.

Focusing on cloud service selection, Zhang et al. [61] introduce a recommender
system for selecting cloud infrastructure services based on their functionality and QoS
parameters. The authors employ and ontology-based mechanism for modeling cloud
services, which can be manipulated through both regular expressions and SQL. The
introduced approach captures a repository of available infrastructure services from
different providers including compute, storage and network services, based on which
a semi-automatic selection mechanism is implemented. A mathematical formulation
of the cloud service provider selection problem towards maximizing selection benefits
within a given budget is introduced by Chang et al. [62], focusing on probability-based
selection of cloud storage services. Assuming that cloud services might fail in time,
the authors introduce a solution for choosing a subset of cloud offered services from
multiple cloud providers, to replicate data across multiple cloud sites, while maintaining
a fix budget. Acknowledging that human decision makers are crucial in selecting the
cloud services appropriate for building individual elastic systems, Wittern et al. [63]
capture properties of cloud services and requirements using variability modeling, and
integrate human decision-makers, towards filtering cloud services for constructing cloud
systems. Cloud services are described using feature models capturing the commonalities
and differences between cloud services. Considering the dynamics of cloud services, the
authors use features to capture information about both the control and management
capabilities exposed by cloud systems, and the particular life-cycle phases of different
service types. Dastjerdi et al. [84] address the issue of service selection from a negotiation
perspective, in which the cloud provider and cloud user negotiate over the service’s
properties. Users want lowest price with the highest availability, while cloud providers
would like to sell services with highest cost and lowest performance. The authors
consider that users need during their system’s run-time to allocate new cloud services,
to cope with spikes in demand. Thus, users are considered to have time requirements
influencing their negotiation, as they need to acquire the required services within a
certain time limit, after which the system needing the extra services starts to violate its
operating requirements. Moving from selecting computing resources based on concrete
requirements, Patiniotakis et al. [64] ranks and selects cloud services suitable for building
cloud systems using a fuzzy quantification approach. The authors argue that humans
are better inclined in using relative requirements, such as requiring something cheap,
or expensive, instead of exact requirements over crisp concrete service cost. Thus, the
authors describe the properties of quantifiable key performance indicators, which they
use to sort cloud services according to specified fuzzy requirements. Moving into the
platform as a service (PaaS) cloud model, Kamateri et al. [65] semantically interconnect
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heterogeneous PaaS offerings across different cloud providers. The authors aim to address
the issue of the diversity and heterogeneity of today’s existing PaaS offerings, providing
support for users to migrate between PaaS providers. Increasing the level of abstraction
even further, Demchenko et al. [85] leverage the everything as a service principle (XaaS),
and consider that cloud systems should be composed of services. To this end, the authors
introduce GEMBus, an automated services composition platform providing federated
network access to distributed systems and resources towards creating service oriented
architectures. Compared to the mentioned approaches, we do not focus only on initial
system construction and deployment. Instead we capture and use in our service selection
process information regarding the elasticity capabilities of selected services, and how
these capabilities influence the run-time elasticity of the system using them.

9.2 Monitoring elastic systems

Monitoring of elastic systems, which we targeted in Chapter 5, is crucial for human and
software controllers, which require relevant information to maintain their systems within
certain operating parameters. As cloud computing is a branch of distributed computing,
many existing approaches for monitoring distributed systems can also be applied for
cloud computing scenarios.

While arguing that virtualization brings benefits in autonomic resource management,
Lu et al. [86] highlight that profiling physical resource utilization information of VMs when
consolidated on a single server is crucial for understanding if this collocation creates system
performance issues. To this end, the authors provide a platform outputting estimates
of physical resource utilization on individual VMs, to be used in smart distribution
of system load. Focusing on managing large scale data centers and clouds, Wang et
al. [72] introduce Monalytics, a scalable platform for data collection and aggregation.
For effective management of large distributed systems (running on top of either physical
or virtual computing resources), the authors collect monitoring data, and analyze it
in real-time, as to identify problematic system states. Highlighting the complexity of
monitoring cloud systems, the Shao et al. [87] introduce a model for run-time monitoring
of cloud systems, focusing on common monitoring concerns. The authors focus on four
monitoring levels, starting from infrastructure level monitoring, followed by middleware
monitoring, system-level monitoring, and monitoring the systems interactions. Depending
on the requirements of interested stakeholders, each stakeholder can retrieve the data
captured by one of these four monitoring perspectives. Taking the system-level monitoring
approach, Singh et al. [71] focus on monitoring systems distributed across different servers
in a data center. Such systems consist of tiers, which in turn may also be replicated
via clustering. The authors monitor the workload at each system component and tier,
and use an aggregator to obtain the overall tier behavior in the case tiers are replicated,
and use this information in dynamically adding/removing replicas of each tier to match
the system workload. Dhingra et al. [88] argue that monitoring is crucial in building
systems which must adhere to certain QoS guarantees, monitoring enabling them to
know when to request for more resources, and what proportion of various physical
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resources are appropriate for each type of systems. To this end, the authors introduce a
distributed monitoring framework, in which monitoring agents run on individual physical
or virtual machines, and report monitoring information to a central collection point.
Katsaros et al. [89] introduce a self-adaptive hierarchical monitoring mechanism for clouds,
providing on-the-fly self-configuration in terms of monitoring frequency and monitored
metrics. Further, the authors measure both QoS at system level, and resource usage
of the underlying infrastructure, triggering events if monitored values exceed certain
thresholds. In the context of service clouds, i.e., cloud providers offering a large array of
services, Clayman et al. [90] raise the issue of monitoring when such clouds are federated.
Moreover, systems running on top of such federated clouds need to properly monitored,
the authors proposing Lattice, a framework for collecting, processing, and disseminating
information about the network and computing resources used by such systems. An elastic
monitoring framework for cloud infrastructures is presented in Konig et al.[91], based on
a peer-to-peer architecture enabling the authors to monitor a diverse set of entities and
metrics, spanning across all layers of a cloud stack. Furthermore, the authors consider
that elastic systems can change their structure at run-time, and design an extensible
query mechanism for retrieving monitored data, allowing the dynamic specification of
data sources. Also dealing with dynamic infrastructures, Trihinas et al. [68] introduce
JCatascopia, a tool for monitoring elastic systems, employing dynamic probe addition
and removal to cope with infrastructure dynamicity. Moreover, to provide support for
monitoring elasticity, monitoring probes can be activated/deactivated dynamically during
system run-time, if required by elasticity controllers. Moving further into system-level
monitoring, Leitner et al. [92] apply complex event processing techniques to extract system-
specific performance information from system-level metrics. To this end, monitored data
is expressed as event streams, the authors determining the system state using rules
targeting sequences of detected events. Highlighting that in cloud environments one
cannot assume the existence of online distributed monitoring nodes and reliable inter-node
communication, Shicong et al. [73] present an adaptive cloud monitoring system providing
information about monitoring message delay and loss. Further, the authors provide
estimations on monitoring accuracy, and capture uncertainties introduced by messaging
problems. Matthew et al. [93] introduce Ganglia, a scalable distributed monitoring system
designed initially for high performance computing. Ganglia was designed to provide
scalable monitoring of distributed systems, and has the ability of dynamically adding and
removing monitored machines. This makes Ganglia applicable in cloud computing, for
collecting monitoring data either from the physical cloud infrastructure, or from virtual
machines. Ward et al. [94] introduce Varanus, a similar monitoring tool, designed to
accommodate rapid cloud elasticity. Varanus is designed to maintain performance even
during periods of high elasticity, in which resources to be monitored are added or removed
at a high rate. Quoc et al. [95] monitor multi-cloud systems, introducing an approach for
near real-time resource utilization monitoring, including CPU, memory, disk activity and
network traffic. Alhamazani [96] highlight the need to monitor cloud systems at multiple
levels of both the system and cloud provider software stacks. To this end, the authors
integrate benchmarking and motoring in a framework for collecting baseline performance
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indicators and monitoring information about cloud systems. Cianciaruso [97] address
the issue of monitoring multi-cloud systems by introducing a model-based monitoring
approach. Depending on the monitored system model, the monitoring infrastructure
should dynamically adapt, both in terms of monitoring frequency, and in monitored
resources. Acknowledging that different cloud users can have individual monitoring
concerns, Nguyen et al. [98] introduce a role-based monitoring approach. Depending on
their goals, users use monitoring templates to describe their monitoring concerns. While
most cloud monitoring tools focus on generic monitoring tools which can be applied to
any distributed system, there also exist cloud platforms for high performance computing.
These introduce particular monitoring concerns, addressed by Agelastos et al.[99]. The
authors introduce a lightweight distributed metric collection service, which can be run
continuously across HPC platforms, obtaining insight in the platform resource usage due
to particular HPC job placements. Cloud monitoring is also the focus of many industry
tools such as Nagios66, Zabbix67, OpenNMS68, or Hyperic69.

Such tools mostly focus on gathering data from the physical and virtual infrastructure,
and distributing it, without correlating it with the systems running on it. We differ
as we do not focus on monitoring. Instead, we rely on data from existing monitoring
solutions, aggregate it according to the system’s structure and enrich it. We further use
the data to provide a multi-level integrated view over the behavior of individual system
unit instances, and the overall behavior of system units, topologies, and the complete
system. Moreover, existing work does not correlate collected data from multiple levels,
and especially does not correlate data collected from multiple instances of the same
system unit. Instead, we aggregate according to the system’s structure the monitoring
information collected from multiple levels and data sources, and enrich it with custom
derived metrics. Moreover, we adopt the cloud infrastructure user perspective, assuming
there is no access to the inner workings of the cloud provider. This enables our approach
to be used both in private clouds, and public clouds where the cloud user only has access
to his virtual infrastructure, i.e., the cloud services he requested and paid for.

9.3 Analyzing the behavior of elastic systems

Analysis of elastic systems, which we targeted in Chapter 6 and Chapter 7, is approached
from two perspectives in current research: (i) system monitoring and identification of
abnormal events, and (ii) determining relationships among different monitored metrics.

Dean et al. [74] use self-organizing maps (SOMs) to predict abnormal virtual machine
behaviors, classifying abnormal situations by their neighborhood distance. Doelitzscher
et al. [100] analyze the behavior of cloud users to discover security breaches leading to
VMs being overtaken. To this end, the authors introduce an anomaly detection system
for Infrastructure as a Service (IaaS) clouds, relying on neural networks to analyze

66http://www.nagios.org/
67http://www.zabbix.com/
68http://www.opennms.org/
69http://www.hyperic.com/

122

http://www.nagios.org/
http://www.zabbix.com/
http://www.opennms.org/
http://www.hyperic.com/


and learn the normal usage behavior systems running in the cloud. The introduced
approach provides a means of understanding if the behavior of particular instances of
system units falls within the expected behavior for those units. Analysis of cloud system
behavior towards detecting security issues is also addressed by He et al. [75], the authors
analyzing system monitoring using statistical anomaly detection for determining abnormal
behavior system behavior. To this end, the authors capture not only VM level metrics,
but also monitor and analyze the normal system behavior at the software level, e.g.,
resource usage for normal database operation. Moving away from security, Venzano et al.
[101] evaluate the performance impact virtualization has on the network performance of
systems migrated from data centers to virtualized environments, such as private clouds.
In the introduced approach, the authors study and evaluate the performance of cloud
systems under certain traffic patterns, determining the impact of the virtualization layer,
and especially of VM collocation, on the system’s network performance. Focusing on
energy efficiency of cloud infrastructures, Yang et al. [102] analyze the correlations
between different cloud workload patterns and the infrastructure’s energy efficiency. As
co-located workloads in virtualized environments have to compete for resources, and thus
computation power is wasted with resource sharing mechanisms, the authors analyze
different workload types influence the amount of work per Watt consumed. Moving from
the virtual infrastructure view to the system view, Gullhav et al. [103] focus on evaluating
distributed multi-tier systems in terms of performance and dependability. As the authors
consider that multi-tier systems replicate their units according to requirements, focus
on estimating the relationships between the system response time and the number of
such replicas, information to be used in improving system control. As in virtualized
environments the performance of individual VMs is influenced by the number of VMs
located on the same physical machine, and their usage patterns, Lloyd et al. [104]
focus on determining in cloud infrastructures the relationships between physical and
virtual machine resource utilization, and use this information to predict the performance
of systems running on top of those infrastructures. Adopting the same infrastructure
provider perspective, Yiduo et al. [105] analyze the network I/O performance of cloud
systems co-located on the same physical resources. The authors evaluate the impact of
idle virtual machines on the virtual machines that are executing load and are running on
the same physical host. Feifei et al. [106] correlate the performance of cloud systems with
the energy consumption of the used computing infrastructure, enabling cloud providers to
optimize the virtual machine placement for reducing overall energy consumption. Kim et
al. [107] perform multi-dimensional analysis of cloud systems, determining relationships
between system performance, availability, and used VM types. The relationships are
integrated in a mechanism for managing elastic scientific applications running on public
IaaS clouds. Panneerselvam et al. [108] focus on classifying cloud workloads depending
on the types of cloud systems and their particular operations. The workload classification
is applied in predicting usage of cloud environments, depending on the running systems.
Due to the complexity of cloud systems, Mdhaffar et al. [109] argue that complex
event processing should be used in determining if such systems behave properly or not.
Addressing the dynamicity and changing requirements in cloud systems, the authors
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introduce a dynamic complex event processing platform, in which platform components
are activated, deactivated according to requirements. Noticing that modern cloud systems
have from a few components, to hundreds of interacting software components running on
top of or using different types of cloud services, Singh et al. [77] focus on estimating the
behavior of distributed systems when any change in the system’s structure or workload
takes place. To this end, the authors commonly available monitoring information, and
provide a mechanism for executing workload-based "what-if" queries about the system’s
behavior. As scale of cloud systems continues to grow, exhibiting ever more complicated
interactions between system components, Ding et al. [110] aim to help cloud providers in
determining, without any prior knowledge, the number of systems and the dependency
relationships between system components, information to be used in cloud management,
such as system update. Relying on passive network monitoring data, the authors analyze
the cloud network traffic matrix, and determine the connectivity graph used by the
systems running in the cloud. Noticing that cloud systems produce a large amount
of monitoring data, Xiong et al. [76] introduce vPerfGuard, a framework for system
performance diagnosis which automatically discovers metrics which are most descriptive
of system performance. To this end, the authors introduce a mechanism relying on
statistical analysis for learning the system performance model, and analyzing the model’s
accuracy as the system evolves in time. Gambi et al. [111] use Kriging models to capture
and predict the performance of highly dynamic elastic cloud systems, automatically
adapting the model to changing system workload conditions.

With respect to the above approaches, we differ as we analyze the elasticity behavior
of the system with respect to its performance and cost requirements, and not absolute
metric values. This is crucial in analyzing elastic systems which scale up/down, potentially
bursting in different clouds. We further analyze both direct and indirect relationships
between different units and topologies, avoiding to focus on a single system unit, thus
obtaining a complete view over the system’s dependencies. Moreover, our work is not
focusing on any specific system type, and can be applied to analyze any elastic system,
providing information relevant for various types of stakeholders.

9.4 Evaluating cost and cost efficiency of elastic systems

Analyzing costs of complex elastic systems, which we targeted in Chapter 8, is required
from their design, to deployment and run-time control. When considering hybrid cloud
systems, understanding the cost of running them on public vs. private clouds is crucial
for their deployment and run-time control. This is highlighted by Kaviani et al. [112] in
system partitioning for hybrid clouds, helping developers trading off performance and
cost in a hybrid cloud deployment of cloud systems, and Andrikopoulos et al. [113] focus
on optimally distributing system components across cloud services in a cost efficient
and flexible manner. The rationale behind the cost of Amazon EC2 spot instances is
analyzed by Agmon et al. [114], analyzing the spot price histories to reverse engineer
Amazon’s pricing function. Sangho et al. [115] discuss cost-effective strategies for using
such instances, introducing adaptive check pointing schemes to improve completion time
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of long running jobs. A similar approach is introduced by Jangjaimon et al.[116], applying
enhanced adaptive incremental check-pointing for multi-threaded processes running in
Amazon EC2 on spot priced VMs. Imai et al. [117] introduce an optimization framework
for deploying MapReduce/Hadoop over multi-cloud environments, considering the virtual
machine and data transfer costs. Further, complex systems such as presented by Raghavan
et al. [118] providing cloud storage on top of different cloud services, require detailed
cost analysis of each used service towards run-time cost optimization. Franceschelli et
al. [119] introduce a tool for aiding developers of cloud systems to select suitable services,
enabling them to evaluate multiple system architecture, and how different cloud services
impact their performance and cost. This is further highlighted by [78] in requirements
for e-science clouds. Thus, cost-benefit evaluation is necessary for understanding the
behavior of complex scientific processes, due to the plethora of available cloud services
and configuration options.

Cost evaluation is crucial in controlling elastic cloud systems, such as underlined
by Lorido-Botran et al. [27], almost all surveyed scaling techniques considering cost
in their control processes. Further, Hwang et al. [26] survey cloud scaling strategies,
and underline that cloud productivity is tied to performance/cost ratio. Sharma et al.
[80] focus on cost-based optimization of elastic cloud systems, considering the cost of
different types of virtual resources, and of transitioning the system between different
configurations, and Truong et al. [120] analyze and estimate cost of running scientific
applications in the cloud, considering different execution models and service dependencies.
Douglas et al. [121] estimate the cost of running scientific simulations in public clouds,
leveraging the Amazon API for retrieving cost information, while Lilienthal [30] computes
the optimal resources for hybrid systems running in private-public clouds. Brighen et al.
[31] estimate running cost of data intensive systems in clouds, considering data query
processing time, while Tsai et al. [122] address the same problem by estimating expected
costs under estimated system load, and Teregowda et al. [123] port the SeerSuite search
engine to cloud as a scalable system. Zhang [124] analyze cost-efficient deployment
solutions for running Hadoop solutions on public clouds. The authors consider only the
virtual machine cost, and evaluate deployment strategies using the same type of VM,
and using different VM types. While the previous authors highlight the cost complexity
of elastic systems, they do not capture and evaluate all cost elements, and do not give
insight in the cost efficiency of the analyzed systems.

In [28], Mao et al. allocate virtual machines to perform given tasks in a time deadline,
shutting down VMs when approaching full hour operation. Pooyan et al. [81] provision
cloud services fulfilling SLA and cost constraints, terminating a cloud service if it has
been running a multiple number of hours. Silva et al. [125] introduce a framework for
benchmarking and scaling cloud systems for understanding their cost/performance trade
off. Hwang et al. [126] focus on cost effective provisioning of cloud services, considering
reserved and on-demand cost, and three cost functions: upfront fee, usage charge, and
on-demand cost. Guo et al. [127] focus on cost-aware bursting of systems running in
private clouds to public clouds, by proactively replicating virtualized systems, lowering
the bursting time. Fernandez et al. [79] focus on cost-aware scaling of web servers in
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heterogeneous cloud infrastructures, executing scale-in actions by releasing resources if
the system load exceeds a lower threshold, to reduce cost. In our work we provide to
such control approaches detailed information about both the cost, and cost efficiency of
elastic cloud systems, providing a base towards improving their run-time control.
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CHAPTER 10
Conclusions and future work

In this chapter we summarize the main results of this thesis. In Section 10.1 we focus
on the main outcomes of the conducted work, detailing the advancements brought over
the state of the art in monitoring and analyzing elastic systems. We revisit the research
questions introduced in Section 10.2 and critically analyze them in Section 10.2. Finally,
in Section 10.3 we discuss ongoing trends and directions where the contributions presented
in this work can act as a base for future research.

10.1 Summary of Contributions

Throughout this thesis, we have elaborated novel techniques for analyzing the aspects
influencing the run-time elasticity of cloud systems. We have adopted the cloud user
perspective, and aimed to support the design and run-time management of elastic systems,
by providing information crucial at each of these stages.

We have first focused on reducing the complexity of building elastic systems running
in the cloud. We have introduced a novel approach for analyzing and quantifying the
support cloud services offer for various forms of elasticity. We have integrated our
approach in a platform for recommending cloud services suitable to system’s require-
ments over resources, performance, cost, and the envisioned system elasticity. Targeting
elastic systems during their run-time, we have focused on monitoring them, taking into
consideration their structure volatility. We have introduced a model for representing the
run-time structure of elastic cloud systems, and a mechanism for associating monitor-
ing information collected from various sources to the logical system structure. Using
our approach, system controllers can analyze the system’s behavior at multiple levels,
from simple virtual infrastructure metrics, to system-level metrics composed of other
simple or composite metrics. We have introduced the concepts of elasticity space and
pathway to characterize the behavior in time of elastic systems. Based on our monitoring
mechanism we have defined techniques for characterizing the behavior of elastic systems
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Figure 10.1: Integrated platform for monitoring and analyzing elastic cloud systems

with respect to their requirements. Our approach provides information on how each
elastic system component should be controlled, and offers insight in the system’s behavior
evolution, acting as a base for predicting it. We have further introduced a mechanism for
determining behavioral relationships between system components, understanding how
different components influence each other at run-time. Determining the relationship
enables different stakeholders, from developers to elasticity controllers, to understand
the run-time behavior of elastic cloud systems, and improve their control mechanisms.
Providing support for cost-aware control of elastic systems, we have defined a mechanism
for evaluating their cost efficiency. We have analyzed which system components are cost
efficient to deallocate and when. To this end we have introduced a model for capturing
complex pricing schemes of cloud providers, and defined algorithms for determining and
evaluating the applicable costs depending on the system’s configuration.

We have evaluated our approach in multiple scenarios involving the elastic system
detailed in Section 3. We have integrated the research contributions brought by this
thesis (Section 1.5) in a unified platform for monitoring and analyzing elastic cloud
systems (Figure 10.1). Each research contribution was implemented on top of the existing
platform version, extending it with additional functionality. The platform has two distinct
components, relying on the same informational model. The first component is QUELLE
( 1©), analyzing and quantifying the elasticity capabilities of cloud services, implementing
the research contribution from Chapter 4. The second component is MELA, monitoring
and analyzing elastic cloud systems. MELA provides to elasticity controllers and system
developers information to be used in improving the run-time control of elastic systems.
MELA contains components which work together for implementing the rest of the
contributions made in this thesis. Contribution introduced in Chapter 5 is implemented
by a Monitoring service ( 2©). Using data obtained from the Monitoring service, an
Elasticity Space and Pathway Analysis service ( 3©) implements the contribution from
Chapter 6. Based on the determined system Elasticity Space, an Elasticity Relationships
Analysis service ( 4©) implements the contribution from 7. Finally, a Costs and Cost
Efficiency Analysis service ( 5©) implements the contribution from Chapter 8 based on data
obtained from the MELA Monitoring service. Through our evaluations, we have shown
that using our approach, we reduce the complexity of selecting cloud services suitable for
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deploying elastic cloud systems. Using our monitoring approach, both system developers
and elastic systems’ controllers can obtain multi-level system behavioral information.
We have further shown that our elasticity analysis approach reduces the complexity of
controlling elastic systems at run-time, providing additional knowledge about the system
behavior. Additionally, our cost efficiency analysis approach can increase the performance
and stability of cloud systems, while reducing their operation costs.

10.2 Research Questions Revisited
The research questions introduced in Section 1.4 guided the work in this thesis. In this
section, we revisit these questions and summarize how they have been answered within
the context of our work, along with a discussion of the limitations of the presented
solutions.

• Question 1: How is the run-time elasticity of cloud systems influenced by the
cloud services they use?
We have answered this question through our contributions from Chapter 4. In
design and control of elastic systems is important to understand the support offered
by cloud services for different types of elasticity. We have addressed this issue by
quantifying the elasticity of cloud services. We have introduced a quantification
function, and applied it to recommend cloud services based on their elasticity
support. In the quantification function we have considered mandatory service
configurations as reducing the overall elasticity of the cloud service, and optional
configurations as increasing their elasticity. We have integrated the function in
a platform for recommending suitable cloud services for building elastic systems,
depending on their requirements and designed elasticity capabilities. The described
quantification function only discriminates between two configuration categories:
mandatory (i.e., service MUST use option), and optional (service CAN use option).
However, for complex elastic systems more complex quantification functions might
need to be defined, such as weighting the service’s configuration options depending
on system requirements. The implemented platform for recommending system
configurations evaluates each system component/unit independently, and generates
a set of suitable cloud services for it. This leads to a need to further process and
aggregate the solutions for each system component, to achieve a deployable system.
Further work is required on analyzing and processing the generated solutions, to
generate a complete system description, such as understanding which recommended
cloud services can be shared among system components.

• Question 2: How can elastic systems be monitored and analyzed, considering their
complexity and dynamic run-time structure?
We have answered this question through our contributions from Chapter 5. Moni-
toring elastic cloud systems is non-trivial due to both their software complexity,
and dynamic run-time structure. We have addressed this issue by introducing a
mechanism for linking the system’s run-time structure and used cloud services
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to its design-time structure. The mechanism structures monitoring information
according to user requirements, in multiple levels of detail, from information about
cloud services, to information describing system components, and the entire system
behavior. However, our approach assumes that the system has a shared-nothing
architecture, one cloud service being used by a single system component. In practice,
while performance or security sensitive systems would adopt this shared-nothing
approach, less sensitive systems might not. In this case, finer-grained monitoring is
required to differentiate the cloud service usage done by each system component
relying on it. As the focus of the approach was on structuring collected monitoring
data, improving existent data collection mechanisms was out of the scope of this
thesis.

• Question 3: How can the behavior of elastic systems be characterized towards
aiding in their run-time control?
We have answered this question through our contributions from Chapters 6 and 7.
We have first focused on dealing with incomplete system requirements by determin-
ing missing requirements using novel concept of elasticity space and boundary. The
space is designed to characterize the behavior of all system components when all
system requirements are respected. In the provided prototype we record as space
boundaries the minimum and maximum values for each system metric, when all sys-
tem requirements are respected. However, we do not record the boundaries’ history,
losing data about their evolution in time. This can lead to isolated system behaviors,
such as spikes, to have a greater influence on the system’s elasticity boundaries than
if we have used a history-aware function. We also provide a function and prototype
for computing the elasticity pathway of cloud systems. In the provided prototype
we compute behavioral clusters, but we do not capture the transition between
one behavioral cluster to another, such as from low to high system performance.
While the presented approach provides information crucial in reactively controlling
elastic systems, addressing the previous issues would improve predictive control
mechanisms even more. In Chapter 7 we have focused on determining behavioral
relationships between components of elastic systems. Relationships describe the
impact an elasticity action enforced on particular component or change in system
load has on the rest of the system. To this end we define the concept of elasticity
energy based on the system’s behavior with respect to its elasticity boundaries.
However, in our prototype we only determine linear relationships. While knowing
such relationships enables predictive elasticity control, behavioral relationships can
be much more complex. In this case, more work is required on mechanisms for
determining other types of relationships, providing a more detailed view over the
behavior of elastic systems.
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• Question 4: How can elastic systems running in public clouds be controlled in a
cost efficient manner?
We have answered this question through our contributions from Chapter 8. Cloud
services are provided under different pricing schemes and billing options. Under-
standing when it is cost efficient to deallocate such services is important for elasticity
controllers. To address this issue, we have captured complex pricing schemes of
cloud providers, and have used them to recommend to elasticity controllers when
and what services can be deallocated. We have defined a cost-weighted function
evaluating how much a cloud service has used from what was paid for. We have
shown that our approach improves not only the cost efficiency of elastic systems,
but also their performance and stability. In our prototype we evaluate the cost
efficiency of deallocating cloud services based on desired cost efficiency. However,
due to the complexity of cloud cost schemes and the behavior of elastic systems,
required cost efficiency levels might be require an unattainable. This can lead to a
controller using our system to wait indefinitely for the desired cost efficiency before
deallocating services. To this end, more work is needed on analyzing and character-
izing the historical evolution of the cost efficiency of cloud systems, understanding
the possible efficiency values. As we have focused on providing a base platform for
building cost-aware elasticity controllers, historical costs analysis for requirements
validation was out of the scope of this thesis.

10.3 Future Work

In this thesis we have presented a set of concepts and techniques to enable and improve
run-time elasticity control of elastic cloud systems. However, based on the discussion in
Section 10.2, it is apparent that a number of important challenges were out of the scope
of this thesis. In the following, we outline some challenges and possibilities for future
research.

• Considering today’s computing state of the art, a new research direction is mon-
itoring and analyzing elastic cyber-physical systems. Such systems have both
components deployed on physical entities in the real world, and components run-
ning in clouds or data centers. Cyber-physical systems would benefit from our
monitoring approach, capable of collecting data from multiple sources, and aggre-
gating it to obtain higher level behavioral information. However, the heterogeneity
of cyber-physical systems implies different system components might be monitored
using different mechanisms, at different rates. Future work should address this
issue through adaptive monitoring, considering the particularities of each moni-
tored system component. This raises new research questions on how to monitor
and analyze cyber-physical system considering their particularities. Focus should
be placed on designing adaptive monitoring solutions, considering the particular
concerns of such systems, such as energy efficiency, security, or physical limitations.
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• As elastic computing is a relatively new research area, there is no comprehensive
taxonomy on elasticity capabilities, and no formal understanding when one capa-
bility is better than another. This opens a new research direction in analyzing
elasticity capabilities of cloud systems, which we consider crucial for increasing
the adoption of elastic systems. In Chapter 4 we have provided a base for aiding
cloud users to select cloud services depending on their support for certain system
elasticity, such as cost or performance elasticity. A logical continuation of this
work is focusing more on the elastic system to be designed, and analyzing its
particular elasticity capabilities. Developers of elastic systems would benefit from
understanding if certain designed elasticity capabilities are useful or not for their
system. Moreover, it is expected that certain capabilities might be applicable only
on some cloud providers. To provide complete support for designing elastic systems,
new approaches should be investigated for analyzing them and their elasticity
capabilities at every stage of their development process.

• Analyzing health of elastic systems is a research direction crucial in system manage-
ment and control. Health analysis should focus only on determining failures of the
used hardware or software, but also on verifying system health after enforcement
of elasticity capabilities. Further, health is not always a true/false property. It
is expected that future work will analyze degraded behavior of individual sys-
tem component instances and unstable performance triggered by enforcement of
elasticity capabilities. In our approach we have focused on performance and cost
analysis, not considering health aspects influencing elastic systems. The complexity
of elastic cloud services, both in terms of software stack, and elasticity control,
increases the chances of system failures or sub-optimal behavior. Future work must
focus on better capturing the relationships in time between the behavior of system
components over their health, performance, and cost.
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